diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Kconfig.preempt | 25 | ||||
-rw-r--r-- | kernel/Makefile | 6 | ||||
-rw-r--r-- | kernel/exit.c | 2 | ||||
-rw-r--r-- | kernel/extable.c | 16 | ||||
-rw-r--r-- | kernel/futex.c | 351 | ||||
-rw-r--r-- | kernel/irq/manage.c | 12 | ||||
-rw-r--r-- | kernel/lockdep.c | 60 | ||||
-rw-r--r-- | kernel/lockdep_proc.c | 28 | ||||
-rw-r--r-- | kernel/mutex.c | 10 | ||||
-rw-r--r-- | kernel/notifier.c | 8 | ||||
-rw-r--r-- | kernel/panic.c | 32 | ||||
-rw-r--r-- | kernel/posix-cpu-timers.c | 10 | ||||
-rw-r--r-- | kernel/printk.c | 2 | ||||
-rw-r--r-- | kernel/rcuclassic.c | 4 | ||||
-rw-r--r-- | kernel/rcupreempt.c | 10 | ||||
-rw-r--r-- | kernel/rcupreempt_trace.c | 10 | ||||
-rw-r--r-- | kernel/rcutorture.c | 66 | ||||
-rw-r--r-- | kernel/rcutree.c | 1535 | ||||
-rw-r--r-- | kernel/rcutree_trace.c | 271 | ||||
-rw-r--r-- | kernel/resource.c | 9 | ||||
-rw-r--r-- | kernel/sched.c | 3 | ||||
-rw-r--r-- | kernel/softirq.c | 19 | ||||
-rw-r--r-- | kernel/softlockup.c | 2 | ||||
-rw-r--r-- | kernel/stacktrace.c | 11 | ||||
-rw-r--r-- | kernel/sys.c | 2 |
25 files changed, 2159 insertions, 345 deletions
diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt index 9fdba03dc1fc..bf987b95b356 100644 --- a/kernel/Kconfig.preempt +++ b/kernel/Kconfig.preempt | |||
@@ -52,28 +52,3 @@ config PREEMPT | |||
52 | 52 | ||
53 | endchoice | 53 | endchoice |
54 | 54 | ||
55 | config PREEMPT_RCU | ||
56 | bool "Preemptible RCU" | ||
57 | depends on PREEMPT | ||
58 | default n | ||
59 | help | ||
60 | This option reduces the latency of the kernel by making certain | ||
61 | RCU sections preemptible. Normally RCU code is non-preemptible, if | ||
62 | this option is selected then read-only RCU sections become | ||
63 | preemptible. This helps latency, but may expose bugs due to | ||
64 | now-naive assumptions about each RCU read-side critical section | ||
65 | remaining on a given CPU through its execution. | ||
66 | |||
67 | Say N if you are unsure. | ||
68 | |||
69 | config RCU_TRACE | ||
70 | bool "Enable tracing for RCU - currently stats in debugfs" | ||
71 | depends on PREEMPT_RCU | ||
72 | select DEBUG_FS | ||
73 | default y | ||
74 | help | ||
75 | This option provides tracing in RCU which presents stats | ||
76 | in debugfs for debugging RCU implementation. | ||
77 | |||
78 | Say Y here if you want to enable RCU tracing | ||
79 | Say N if you are unsure. | ||
diff --git a/kernel/Makefile b/kernel/Makefile index 027edda63511..e1c5bf3365c0 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -73,10 +73,10 @@ obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | |||
73 | obj-$(CONFIG_SECCOMP) += seccomp.o | 73 | obj-$(CONFIG_SECCOMP) += seccomp.o |
74 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o | 74 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o |
75 | obj-$(CONFIG_CLASSIC_RCU) += rcuclassic.o | 75 | obj-$(CONFIG_CLASSIC_RCU) += rcuclassic.o |
76 | obj-$(CONFIG_TREE_RCU) += rcutree.o | ||
76 | obj-$(CONFIG_PREEMPT_RCU) += rcupreempt.o | 77 | obj-$(CONFIG_PREEMPT_RCU) += rcupreempt.o |
77 | ifeq ($(CONFIG_PREEMPT_RCU),y) | 78 | obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o |
78 | obj-$(CONFIG_RCU_TRACE) += rcupreempt_trace.o | 79 | obj-$(CONFIG_PREEMPT_RCU_TRACE) += rcupreempt_trace.o |
79 | endif | ||
80 | obj-$(CONFIG_RELAY) += relay.o | 80 | obj-$(CONFIG_RELAY) += relay.o |
81 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o | 81 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o |
82 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | 82 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o |
diff --git a/kernel/exit.c b/kernel/exit.c index c7422ca92038..a946221879d7 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -1328,10 +1328,10 @@ static int wait_task_zombie(struct task_struct *p, int options, | |||
1328 | * group, which consolidates times for all threads in the | 1328 | * group, which consolidates times for all threads in the |
1329 | * group including the group leader. | 1329 | * group including the group leader. |
1330 | */ | 1330 | */ |
1331 | thread_group_cputime(p, &cputime); | ||
1331 | spin_lock_irq(&p->parent->sighand->siglock); | 1332 | spin_lock_irq(&p->parent->sighand->siglock); |
1332 | psig = p->parent->signal; | 1333 | psig = p->parent->signal; |
1333 | sig = p->signal; | 1334 | sig = p->signal; |
1334 | thread_group_cputime(p, &cputime); | ||
1335 | psig->cutime = | 1335 | psig->cutime = |
1336 | cputime_add(psig->cutime, | 1336 | cputime_add(psig->cutime, |
1337 | cputime_add(cputime.utime, | 1337 | cputime_add(cputime.utime, |
diff --git a/kernel/extable.c b/kernel/extable.c index feb0317cf09a..e136ed8d82ba 100644 --- a/kernel/extable.c +++ b/kernel/extable.c | |||
@@ -67,3 +67,19 @@ int kernel_text_address(unsigned long addr) | |||
67 | return 1; | 67 | return 1; |
68 | return module_text_address(addr) != NULL; | 68 | return module_text_address(addr) != NULL; |
69 | } | 69 | } |
70 | |||
71 | /* | ||
72 | * On some architectures (PPC64, IA64) function pointers | ||
73 | * are actually only tokens to some data that then holds the | ||
74 | * real function address. As a result, to find if a function | ||
75 | * pointer is part of the kernel text, we need to do some | ||
76 | * special dereferencing first. | ||
77 | */ | ||
78 | int func_ptr_is_kernel_text(void *ptr) | ||
79 | { | ||
80 | unsigned long addr; | ||
81 | addr = (unsigned long) dereference_function_descriptor(ptr); | ||
82 | if (core_kernel_text(addr)) | ||
83 | return 1; | ||
84 | return module_text_address(addr) != NULL; | ||
85 | } | ||
diff --git a/kernel/futex.c b/kernel/futex.c index 4fe790e89d0f..7c6cbabe52b3 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -92,11 +92,12 @@ struct futex_pi_state { | |||
92 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | 92 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
93 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. | 93 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
94 | * The order of wakup is always to make the first condition true, then | 94 | * The order of wakup is always to make the first condition true, then |
95 | * wake up q->waiters, then make the second condition true. | 95 | * wake up q->waiter, then make the second condition true. |
96 | */ | 96 | */ |
97 | struct futex_q { | 97 | struct futex_q { |
98 | struct plist_node list; | 98 | struct plist_node list; |
99 | wait_queue_head_t waiters; | 99 | /* There can only be a single waiter */ |
100 | wait_queue_head_t waiter; | ||
100 | 101 | ||
101 | /* Which hash list lock to use: */ | 102 | /* Which hash list lock to use: */ |
102 | spinlock_t *lock_ptr; | 103 | spinlock_t *lock_ptr; |
@@ -123,24 +124,6 @@ struct futex_hash_bucket { | |||
123 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; | 124 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; |
124 | 125 | ||
125 | /* | 126 | /* |
126 | * Take mm->mmap_sem, when futex is shared | ||
127 | */ | ||
128 | static inline void futex_lock_mm(struct rw_semaphore *fshared) | ||
129 | { | ||
130 | if (fshared) | ||
131 | down_read(fshared); | ||
132 | } | ||
133 | |||
134 | /* | ||
135 | * Release mm->mmap_sem, when the futex is shared | ||
136 | */ | ||
137 | static inline void futex_unlock_mm(struct rw_semaphore *fshared) | ||
138 | { | ||
139 | if (fshared) | ||
140 | up_read(fshared); | ||
141 | } | ||
142 | |||
143 | /* | ||
144 | * We hash on the keys returned from get_futex_key (see below). | 127 | * We hash on the keys returned from get_futex_key (see below). |
145 | */ | 128 | */ |
146 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | 129 | static struct futex_hash_bucket *hash_futex(union futex_key *key) |
@@ -161,6 +144,45 @@ static inline int match_futex(union futex_key *key1, union futex_key *key2) | |||
161 | && key1->both.offset == key2->both.offset); | 144 | && key1->both.offset == key2->both.offset); |
162 | } | 145 | } |
163 | 146 | ||
147 | /* | ||
148 | * Take a reference to the resource addressed by a key. | ||
149 | * Can be called while holding spinlocks. | ||
150 | * | ||
151 | */ | ||
152 | static void get_futex_key_refs(union futex_key *key) | ||
153 | { | ||
154 | if (!key->both.ptr) | ||
155 | return; | ||
156 | |||
157 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | ||
158 | case FUT_OFF_INODE: | ||
159 | atomic_inc(&key->shared.inode->i_count); | ||
160 | break; | ||
161 | case FUT_OFF_MMSHARED: | ||
162 | atomic_inc(&key->private.mm->mm_count); | ||
163 | break; | ||
164 | } | ||
165 | } | ||
166 | |||
167 | /* | ||
168 | * Drop a reference to the resource addressed by a key. | ||
169 | * The hash bucket spinlock must not be held. | ||
170 | */ | ||
171 | static void drop_futex_key_refs(union futex_key *key) | ||
172 | { | ||
173 | if (!key->both.ptr) | ||
174 | return; | ||
175 | |||
176 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | ||
177 | case FUT_OFF_INODE: | ||
178 | iput(key->shared.inode); | ||
179 | break; | ||
180 | case FUT_OFF_MMSHARED: | ||
181 | mmdrop(key->private.mm); | ||
182 | break; | ||
183 | } | ||
184 | } | ||
185 | |||
164 | /** | 186 | /** |
165 | * get_futex_key - Get parameters which are the keys for a futex. | 187 | * get_futex_key - Get parameters which are the keys for a futex. |
166 | * @uaddr: virtual address of the futex | 188 | * @uaddr: virtual address of the futex |
@@ -179,12 +201,10 @@ static inline int match_futex(union futex_key *key1, union futex_key *key2) | |||
179 | * For other futexes, it points to ¤t->mm->mmap_sem and | 201 | * For other futexes, it points to ¤t->mm->mmap_sem and |
180 | * caller must have taken the reader lock. but NOT any spinlocks. | 202 | * caller must have taken the reader lock. but NOT any spinlocks. |
181 | */ | 203 | */ |
182 | static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared, | 204 | static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key) |
183 | union futex_key *key) | ||
184 | { | 205 | { |
185 | unsigned long address = (unsigned long)uaddr; | 206 | unsigned long address = (unsigned long)uaddr; |
186 | struct mm_struct *mm = current->mm; | 207 | struct mm_struct *mm = current->mm; |
187 | struct vm_area_struct *vma; | ||
188 | struct page *page; | 208 | struct page *page; |
189 | int err; | 209 | int err; |
190 | 210 | ||
@@ -208,100 +228,50 @@ static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
208 | return -EFAULT; | 228 | return -EFAULT; |
209 | key->private.mm = mm; | 229 | key->private.mm = mm; |
210 | key->private.address = address; | 230 | key->private.address = address; |
231 | get_futex_key_refs(key); | ||
211 | return 0; | 232 | return 0; |
212 | } | 233 | } |
213 | /* | ||
214 | * The futex is hashed differently depending on whether | ||
215 | * it's in a shared or private mapping. So check vma first. | ||
216 | */ | ||
217 | vma = find_extend_vma(mm, address); | ||
218 | if (unlikely(!vma)) | ||
219 | return -EFAULT; | ||
220 | 234 | ||
221 | /* | 235 | again: |
222 | * Permissions. | 236 | err = get_user_pages_fast(address, 1, 0, &page); |
223 | */ | 237 | if (err < 0) |
224 | if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ)) | 238 | return err; |
225 | return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES; | 239 | |
240 | lock_page(page); | ||
241 | if (!page->mapping) { | ||
242 | unlock_page(page); | ||
243 | put_page(page); | ||
244 | goto again; | ||
245 | } | ||
226 | 246 | ||
227 | /* | 247 | /* |
228 | * Private mappings are handled in a simple way. | 248 | * Private mappings are handled in a simple way. |
229 | * | 249 | * |
230 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | 250 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if |
231 | * it's a read-only handle, it's expected that futexes attach to | 251 | * it's a read-only handle, it's expected that futexes attach to |
232 | * the object not the particular process. Therefore we use | 252 | * the object not the particular process. |
233 | * VM_MAYSHARE here, not VM_SHARED which is restricted to shared | ||
234 | * mappings of _writable_ handles. | ||
235 | */ | 253 | */ |
236 | if (likely(!(vma->vm_flags & VM_MAYSHARE))) { | 254 | if (PageAnon(page)) { |
237 | key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */ | 255 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
238 | key->private.mm = mm; | 256 | key->private.mm = mm; |
239 | key->private.address = address; | 257 | key->private.address = address; |
240 | return 0; | 258 | } else { |
259 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ | ||
260 | key->shared.inode = page->mapping->host; | ||
261 | key->shared.pgoff = page->index; | ||
241 | } | 262 | } |
242 | 263 | ||
243 | /* | 264 | get_futex_key_refs(key); |
244 | * Linear file mappings are also simple. | ||
245 | */ | ||
246 | key->shared.inode = vma->vm_file->f_path.dentry->d_inode; | ||
247 | key->both.offset |= FUT_OFF_INODE; /* inode-based key. */ | ||
248 | if (likely(!(vma->vm_flags & VM_NONLINEAR))) { | ||
249 | key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT) | ||
250 | + vma->vm_pgoff); | ||
251 | return 0; | ||
252 | } | ||
253 | 265 | ||
254 | /* | 266 | unlock_page(page); |
255 | * We could walk the page table to read the non-linear | 267 | put_page(page); |
256 | * pte, and get the page index without fetching the page | 268 | return 0; |
257 | * from swap. But that's a lot of code to duplicate here | ||
258 | * for a rare case, so we simply fetch the page. | ||
259 | */ | ||
260 | err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL); | ||
261 | if (err >= 0) { | ||
262 | key->shared.pgoff = | ||
263 | page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | ||
264 | put_page(page); | ||
265 | return 0; | ||
266 | } | ||
267 | return err; | ||
268 | } | ||
269 | |||
270 | /* | ||
271 | * Take a reference to the resource addressed by a key. | ||
272 | * Can be called while holding spinlocks. | ||
273 | * | ||
274 | */ | ||
275 | static void get_futex_key_refs(union futex_key *key) | ||
276 | { | ||
277 | if (key->both.ptr == NULL) | ||
278 | return; | ||
279 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | ||
280 | case FUT_OFF_INODE: | ||
281 | atomic_inc(&key->shared.inode->i_count); | ||
282 | break; | ||
283 | case FUT_OFF_MMSHARED: | ||
284 | atomic_inc(&key->private.mm->mm_count); | ||
285 | break; | ||
286 | } | ||
287 | } | 269 | } |
288 | 270 | ||
289 | /* | 271 | static inline |
290 | * Drop a reference to the resource addressed by a key. | 272 | void put_futex_key(int fshared, union futex_key *key) |
291 | * The hash bucket spinlock must not be held. | ||
292 | */ | ||
293 | static void drop_futex_key_refs(union futex_key *key) | ||
294 | { | 273 | { |
295 | if (!key->both.ptr) | 274 | drop_futex_key_refs(key); |
296 | return; | ||
297 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | ||
298 | case FUT_OFF_INODE: | ||
299 | iput(key->shared.inode); | ||
300 | break; | ||
301 | case FUT_OFF_MMSHARED: | ||
302 | mmdrop(key->private.mm); | ||
303 | break; | ||
304 | } | ||
305 | } | 275 | } |
306 | 276 | ||
307 | static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval) | 277 | static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval) |
@@ -328,10 +298,8 @@ static int get_futex_value_locked(u32 *dest, u32 __user *from) | |||
328 | 298 | ||
329 | /* | 299 | /* |
330 | * Fault handling. | 300 | * Fault handling. |
331 | * if fshared is non NULL, current->mm->mmap_sem is already held | ||
332 | */ | 301 | */ |
333 | static int futex_handle_fault(unsigned long address, | 302 | static int futex_handle_fault(unsigned long address, int attempt) |
334 | struct rw_semaphore *fshared, int attempt) | ||
335 | { | 303 | { |
336 | struct vm_area_struct * vma; | 304 | struct vm_area_struct * vma; |
337 | struct mm_struct *mm = current->mm; | 305 | struct mm_struct *mm = current->mm; |
@@ -340,8 +308,7 @@ static int futex_handle_fault(unsigned long address, | |||
340 | if (attempt > 2) | 308 | if (attempt > 2) |
341 | return ret; | 309 | return ret; |
342 | 310 | ||
343 | if (!fshared) | 311 | down_read(&mm->mmap_sem); |
344 | down_read(&mm->mmap_sem); | ||
345 | vma = find_vma(mm, address); | 312 | vma = find_vma(mm, address); |
346 | if (vma && address >= vma->vm_start && | 313 | if (vma && address >= vma->vm_start && |
347 | (vma->vm_flags & VM_WRITE)) { | 314 | (vma->vm_flags & VM_WRITE)) { |
@@ -361,8 +328,7 @@ static int futex_handle_fault(unsigned long address, | |||
361 | current->min_flt++; | 328 | current->min_flt++; |
362 | } | 329 | } |
363 | } | 330 | } |
364 | if (!fshared) | 331 | up_read(&mm->mmap_sem); |
365 | up_read(&mm->mmap_sem); | ||
366 | return ret; | 332 | return ret; |
367 | } | 333 | } |
368 | 334 | ||
@@ -385,6 +351,7 @@ static int refill_pi_state_cache(void) | |||
385 | /* pi_mutex gets initialized later */ | 351 | /* pi_mutex gets initialized later */ |
386 | pi_state->owner = NULL; | 352 | pi_state->owner = NULL; |
387 | atomic_set(&pi_state->refcount, 1); | 353 | atomic_set(&pi_state->refcount, 1); |
354 | pi_state->key = FUTEX_KEY_INIT; | ||
388 | 355 | ||
389 | current->pi_state_cache = pi_state; | 356 | current->pi_state_cache = pi_state; |
390 | 357 | ||
@@ -469,7 +436,7 @@ void exit_pi_state_list(struct task_struct *curr) | |||
469 | struct list_head *next, *head = &curr->pi_state_list; | 436 | struct list_head *next, *head = &curr->pi_state_list; |
470 | struct futex_pi_state *pi_state; | 437 | struct futex_pi_state *pi_state; |
471 | struct futex_hash_bucket *hb; | 438 | struct futex_hash_bucket *hb; |
472 | union futex_key key; | 439 | union futex_key key = FUTEX_KEY_INIT; |
473 | 440 | ||
474 | if (!futex_cmpxchg_enabled) | 441 | if (!futex_cmpxchg_enabled) |
475 | return; | 442 | return; |
@@ -614,7 +581,7 @@ static void wake_futex(struct futex_q *q) | |||
614 | * The lock in wake_up_all() is a crucial memory barrier after the | 581 | * The lock in wake_up_all() is a crucial memory barrier after the |
615 | * plist_del() and also before assigning to q->lock_ptr. | 582 | * plist_del() and also before assigning to q->lock_ptr. |
616 | */ | 583 | */ |
617 | wake_up_all(&q->waiters); | 584 | wake_up(&q->waiter); |
618 | /* | 585 | /* |
619 | * The waiting task can free the futex_q as soon as this is written, | 586 | * The waiting task can free the futex_q as soon as this is written, |
620 | * without taking any locks. This must come last. | 587 | * without taking any locks. This must come last. |
@@ -726,20 +693,17 @@ double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |||
726 | * Wake up all waiters hashed on the physical page that is mapped | 693 | * Wake up all waiters hashed on the physical page that is mapped |
727 | * to this virtual address: | 694 | * to this virtual address: |
728 | */ | 695 | */ |
729 | static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared, | 696 | static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset) |
730 | int nr_wake, u32 bitset) | ||
731 | { | 697 | { |
732 | struct futex_hash_bucket *hb; | 698 | struct futex_hash_bucket *hb; |
733 | struct futex_q *this, *next; | 699 | struct futex_q *this, *next; |
734 | struct plist_head *head; | 700 | struct plist_head *head; |
735 | union futex_key key; | 701 | union futex_key key = FUTEX_KEY_INIT; |
736 | int ret; | 702 | int ret; |
737 | 703 | ||
738 | if (!bitset) | 704 | if (!bitset) |
739 | return -EINVAL; | 705 | return -EINVAL; |
740 | 706 | ||
741 | futex_lock_mm(fshared); | ||
742 | |||
743 | ret = get_futex_key(uaddr, fshared, &key); | 707 | ret = get_futex_key(uaddr, fshared, &key); |
744 | if (unlikely(ret != 0)) | 708 | if (unlikely(ret != 0)) |
745 | goto out; | 709 | goto out; |
@@ -767,7 +731,7 @@ static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
767 | 731 | ||
768 | spin_unlock(&hb->lock); | 732 | spin_unlock(&hb->lock); |
769 | out: | 733 | out: |
770 | futex_unlock_mm(fshared); | 734 | put_futex_key(fshared, &key); |
771 | return ret; | 735 | return ret; |
772 | } | 736 | } |
773 | 737 | ||
@@ -776,19 +740,16 @@ out: | |||
776 | * to this virtual address: | 740 | * to this virtual address: |
777 | */ | 741 | */ |
778 | static int | 742 | static int |
779 | futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared, | 743 | futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2, |
780 | u32 __user *uaddr2, | ||
781 | int nr_wake, int nr_wake2, int op) | 744 | int nr_wake, int nr_wake2, int op) |
782 | { | 745 | { |
783 | union futex_key key1, key2; | 746 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
784 | struct futex_hash_bucket *hb1, *hb2; | 747 | struct futex_hash_bucket *hb1, *hb2; |
785 | struct plist_head *head; | 748 | struct plist_head *head; |
786 | struct futex_q *this, *next; | 749 | struct futex_q *this, *next; |
787 | int ret, op_ret, attempt = 0; | 750 | int ret, op_ret, attempt = 0; |
788 | 751 | ||
789 | retryfull: | 752 | retryfull: |
790 | futex_lock_mm(fshared); | ||
791 | |||
792 | ret = get_futex_key(uaddr1, fshared, &key1); | 753 | ret = get_futex_key(uaddr1, fshared, &key1); |
793 | if (unlikely(ret != 0)) | 754 | if (unlikely(ret != 0)) |
794 | goto out; | 755 | goto out; |
@@ -833,18 +794,12 @@ retry: | |||
833 | */ | 794 | */ |
834 | if (attempt++) { | 795 | if (attempt++) { |
835 | ret = futex_handle_fault((unsigned long)uaddr2, | 796 | ret = futex_handle_fault((unsigned long)uaddr2, |
836 | fshared, attempt); | 797 | attempt); |
837 | if (ret) | 798 | if (ret) |
838 | goto out; | 799 | goto out; |
839 | goto retry; | 800 | goto retry; |
840 | } | 801 | } |
841 | 802 | ||
842 | /* | ||
843 | * If we would have faulted, release mmap_sem, | ||
844 | * fault it in and start all over again. | ||
845 | */ | ||
846 | futex_unlock_mm(fshared); | ||
847 | |||
848 | ret = get_user(dummy, uaddr2); | 803 | ret = get_user(dummy, uaddr2); |
849 | if (ret) | 804 | if (ret) |
850 | return ret; | 805 | return ret; |
@@ -880,7 +835,8 @@ retry: | |||
880 | if (hb1 != hb2) | 835 | if (hb1 != hb2) |
881 | spin_unlock(&hb2->lock); | 836 | spin_unlock(&hb2->lock); |
882 | out: | 837 | out: |
883 | futex_unlock_mm(fshared); | 838 | put_futex_key(fshared, &key2); |
839 | put_futex_key(fshared, &key1); | ||
884 | 840 | ||
885 | return ret; | 841 | return ret; |
886 | } | 842 | } |
@@ -889,19 +845,16 @@ out: | |||
889 | * Requeue all waiters hashed on one physical page to another | 845 | * Requeue all waiters hashed on one physical page to another |
890 | * physical page. | 846 | * physical page. |
891 | */ | 847 | */ |
892 | static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared, | 848 | static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2, |
893 | u32 __user *uaddr2, | ||
894 | int nr_wake, int nr_requeue, u32 *cmpval) | 849 | int nr_wake, int nr_requeue, u32 *cmpval) |
895 | { | 850 | { |
896 | union futex_key key1, key2; | 851 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
897 | struct futex_hash_bucket *hb1, *hb2; | 852 | struct futex_hash_bucket *hb1, *hb2; |
898 | struct plist_head *head1; | 853 | struct plist_head *head1; |
899 | struct futex_q *this, *next; | 854 | struct futex_q *this, *next; |
900 | int ret, drop_count = 0; | 855 | int ret, drop_count = 0; |
901 | 856 | ||
902 | retry: | 857 | retry: |
903 | futex_lock_mm(fshared); | ||
904 | |||
905 | ret = get_futex_key(uaddr1, fshared, &key1); | 858 | ret = get_futex_key(uaddr1, fshared, &key1); |
906 | if (unlikely(ret != 0)) | 859 | if (unlikely(ret != 0)) |
907 | goto out; | 860 | goto out; |
@@ -924,12 +877,6 @@ static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared, | |||
924 | if (hb1 != hb2) | 877 | if (hb1 != hb2) |
925 | spin_unlock(&hb2->lock); | 878 | spin_unlock(&hb2->lock); |
926 | 879 | ||
927 | /* | ||
928 | * If we would have faulted, release mmap_sem, fault | ||
929 | * it in and start all over again. | ||
930 | */ | ||
931 | futex_unlock_mm(fshared); | ||
932 | |||
933 | ret = get_user(curval, uaddr1); | 880 | ret = get_user(curval, uaddr1); |
934 | 881 | ||
935 | if (!ret) | 882 | if (!ret) |
@@ -981,7 +928,8 @@ out_unlock: | |||
981 | drop_futex_key_refs(&key1); | 928 | drop_futex_key_refs(&key1); |
982 | 929 | ||
983 | out: | 930 | out: |
984 | futex_unlock_mm(fshared); | 931 | put_futex_key(fshared, &key2); |
932 | put_futex_key(fshared, &key1); | ||
985 | return ret; | 933 | return ret; |
986 | } | 934 | } |
987 | 935 | ||
@@ -990,7 +938,7 @@ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) | |||
990 | { | 938 | { |
991 | struct futex_hash_bucket *hb; | 939 | struct futex_hash_bucket *hb; |
992 | 940 | ||
993 | init_waitqueue_head(&q->waiters); | 941 | init_waitqueue_head(&q->waiter); |
994 | 942 | ||
995 | get_futex_key_refs(&q->key); | 943 | get_futex_key_refs(&q->key); |
996 | hb = hash_futex(&q->key); | 944 | hb = hash_futex(&q->key); |
@@ -1103,8 +1051,7 @@ static void unqueue_me_pi(struct futex_q *q) | |||
1103 | * private futexes. | 1051 | * private futexes. |
1104 | */ | 1052 | */ |
1105 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | 1053 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
1106 | struct task_struct *newowner, | 1054 | struct task_struct *newowner, int fshared) |
1107 | struct rw_semaphore *fshared) | ||
1108 | { | 1055 | { |
1109 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; | 1056 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
1110 | struct futex_pi_state *pi_state = q->pi_state; | 1057 | struct futex_pi_state *pi_state = q->pi_state; |
@@ -1183,7 +1130,7 @@ retry: | |||
1183 | handle_fault: | 1130 | handle_fault: |
1184 | spin_unlock(q->lock_ptr); | 1131 | spin_unlock(q->lock_ptr); |
1185 | 1132 | ||
1186 | ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++); | 1133 | ret = futex_handle_fault((unsigned long)uaddr, attempt++); |
1187 | 1134 | ||
1188 | spin_lock(q->lock_ptr); | 1135 | spin_lock(q->lock_ptr); |
1189 | 1136 | ||
@@ -1203,12 +1150,13 @@ handle_fault: | |||
1203 | * In case we must use restart_block to restart a futex_wait, | 1150 | * In case we must use restart_block to restart a futex_wait, |
1204 | * we encode in the 'flags' shared capability | 1151 | * we encode in the 'flags' shared capability |
1205 | */ | 1152 | */ |
1206 | #define FLAGS_SHARED 1 | 1153 | #define FLAGS_SHARED 0x01 |
1154 | #define FLAGS_CLOCKRT 0x02 | ||
1207 | 1155 | ||
1208 | static long futex_wait_restart(struct restart_block *restart); | 1156 | static long futex_wait_restart(struct restart_block *restart); |
1209 | 1157 | ||
1210 | static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | 1158 | static int futex_wait(u32 __user *uaddr, int fshared, |
1211 | u32 val, ktime_t *abs_time, u32 bitset) | 1159 | u32 val, ktime_t *abs_time, u32 bitset, int clockrt) |
1212 | { | 1160 | { |
1213 | struct task_struct *curr = current; | 1161 | struct task_struct *curr = current; |
1214 | DECLARE_WAITQUEUE(wait, curr); | 1162 | DECLARE_WAITQUEUE(wait, curr); |
@@ -1225,8 +1173,7 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1225 | q.pi_state = NULL; | 1173 | q.pi_state = NULL; |
1226 | q.bitset = bitset; | 1174 | q.bitset = bitset; |
1227 | retry: | 1175 | retry: |
1228 | futex_lock_mm(fshared); | 1176 | q.key = FUTEX_KEY_INIT; |
1229 | |||
1230 | ret = get_futex_key(uaddr, fshared, &q.key); | 1177 | ret = get_futex_key(uaddr, fshared, &q.key); |
1231 | if (unlikely(ret != 0)) | 1178 | if (unlikely(ret != 0)) |
1232 | goto out_release_sem; | 1179 | goto out_release_sem; |
@@ -1258,12 +1205,6 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1258 | if (unlikely(ret)) { | 1205 | if (unlikely(ret)) { |
1259 | queue_unlock(&q, hb); | 1206 | queue_unlock(&q, hb); |
1260 | 1207 | ||
1261 | /* | ||
1262 | * If we would have faulted, release mmap_sem, fault it in and | ||
1263 | * start all over again. | ||
1264 | */ | ||
1265 | futex_unlock_mm(fshared); | ||
1266 | |||
1267 | ret = get_user(uval, uaddr); | 1208 | ret = get_user(uval, uaddr); |
1268 | 1209 | ||
1269 | if (!ret) | 1210 | if (!ret) |
@@ -1278,12 +1219,6 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1278 | queue_me(&q, hb); | 1219 | queue_me(&q, hb); |
1279 | 1220 | ||
1280 | /* | 1221 | /* |
1281 | * Now the futex is queued and we have checked the data, we | ||
1282 | * don't want to hold mmap_sem while we sleep. | ||
1283 | */ | ||
1284 | futex_unlock_mm(fshared); | ||
1285 | |||
1286 | /* | ||
1287 | * There might have been scheduling since the queue_me(), as we | 1222 | * There might have been scheduling since the queue_me(), as we |
1288 | * cannot hold a spinlock across the get_user() in case it | 1223 | * cannot hold a spinlock across the get_user() in case it |
1289 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when | 1224 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when |
@@ -1294,7 +1229,7 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1294 | 1229 | ||
1295 | /* add_wait_queue is the barrier after __set_current_state. */ | 1230 | /* add_wait_queue is the barrier after __set_current_state. */ |
1296 | __set_current_state(TASK_INTERRUPTIBLE); | 1231 | __set_current_state(TASK_INTERRUPTIBLE); |
1297 | add_wait_queue(&q.waiters, &wait); | 1232 | add_wait_queue(&q.waiter, &wait); |
1298 | /* | 1233 | /* |
1299 | * !plist_node_empty() is safe here without any lock. | 1234 | * !plist_node_empty() is safe here without any lock. |
1300 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. | 1235 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. |
@@ -1307,8 +1242,10 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1307 | slack = current->timer_slack_ns; | 1242 | slack = current->timer_slack_ns; |
1308 | if (rt_task(current)) | 1243 | if (rt_task(current)) |
1309 | slack = 0; | 1244 | slack = 0; |
1310 | hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, | 1245 | hrtimer_init_on_stack(&t.timer, |
1311 | HRTIMER_MODE_ABS); | 1246 | clockrt ? CLOCK_REALTIME : |
1247 | CLOCK_MONOTONIC, | ||
1248 | HRTIMER_MODE_ABS); | ||
1312 | hrtimer_init_sleeper(&t, current); | 1249 | hrtimer_init_sleeper(&t, current); |
1313 | hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack); | 1250 | hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack); |
1314 | 1251 | ||
@@ -1363,6 +1300,8 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1363 | 1300 | ||
1364 | if (fshared) | 1301 | if (fshared) |
1365 | restart->futex.flags |= FLAGS_SHARED; | 1302 | restart->futex.flags |= FLAGS_SHARED; |
1303 | if (clockrt) | ||
1304 | restart->futex.flags |= FLAGS_CLOCKRT; | ||
1366 | return -ERESTART_RESTARTBLOCK; | 1305 | return -ERESTART_RESTARTBLOCK; |
1367 | } | 1306 | } |
1368 | 1307 | ||
@@ -1370,7 +1309,7 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1370 | queue_unlock(&q, hb); | 1309 | queue_unlock(&q, hb); |
1371 | 1310 | ||
1372 | out_release_sem: | 1311 | out_release_sem: |
1373 | futex_unlock_mm(fshared); | 1312 | put_futex_key(fshared, &q.key); |
1374 | return ret; | 1313 | return ret; |
1375 | } | 1314 | } |
1376 | 1315 | ||
@@ -1378,15 +1317,16 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1378 | static long futex_wait_restart(struct restart_block *restart) | 1317 | static long futex_wait_restart(struct restart_block *restart) |
1379 | { | 1318 | { |
1380 | u32 __user *uaddr = (u32 __user *)restart->futex.uaddr; | 1319 | u32 __user *uaddr = (u32 __user *)restart->futex.uaddr; |
1381 | struct rw_semaphore *fshared = NULL; | 1320 | int fshared = 0; |
1382 | ktime_t t; | 1321 | ktime_t t; |
1383 | 1322 | ||
1384 | t.tv64 = restart->futex.time; | 1323 | t.tv64 = restart->futex.time; |
1385 | restart->fn = do_no_restart_syscall; | 1324 | restart->fn = do_no_restart_syscall; |
1386 | if (restart->futex.flags & FLAGS_SHARED) | 1325 | if (restart->futex.flags & FLAGS_SHARED) |
1387 | fshared = ¤t->mm->mmap_sem; | 1326 | fshared = 1; |
1388 | return (long)futex_wait(uaddr, fshared, restart->futex.val, &t, | 1327 | return (long)futex_wait(uaddr, fshared, restart->futex.val, &t, |
1389 | restart->futex.bitset); | 1328 | restart->futex.bitset, |
1329 | restart->futex.flags & FLAGS_CLOCKRT); | ||
1390 | } | 1330 | } |
1391 | 1331 | ||
1392 | 1332 | ||
@@ -1396,7 +1336,7 @@ static long futex_wait_restart(struct restart_block *restart) | |||
1396 | * if there are waiters then it will block, it does PI, etc. (Due to | 1336 | * if there are waiters then it will block, it does PI, etc. (Due to |
1397 | * races the kernel might see a 0 value of the futex too.) | 1337 | * races the kernel might see a 0 value of the futex too.) |
1398 | */ | 1338 | */ |
1399 | static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | 1339 | static int futex_lock_pi(u32 __user *uaddr, int fshared, |
1400 | int detect, ktime_t *time, int trylock) | 1340 | int detect, ktime_t *time, int trylock) |
1401 | { | 1341 | { |
1402 | struct hrtimer_sleeper timeout, *to = NULL; | 1342 | struct hrtimer_sleeper timeout, *to = NULL; |
@@ -1419,8 +1359,7 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1419 | 1359 | ||
1420 | q.pi_state = NULL; | 1360 | q.pi_state = NULL; |
1421 | retry: | 1361 | retry: |
1422 | futex_lock_mm(fshared); | 1362 | q.key = FUTEX_KEY_INIT; |
1423 | |||
1424 | ret = get_futex_key(uaddr, fshared, &q.key); | 1363 | ret = get_futex_key(uaddr, fshared, &q.key); |
1425 | if (unlikely(ret != 0)) | 1364 | if (unlikely(ret != 0)) |
1426 | goto out_release_sem; | 1365 | goto out_release_sem; |
@@ -1509,7 +1448,6 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1509 | * exit to complete. | 1448 | * exit to complete. |
1510 | */ | 1449 | */ |
1511 | queue_unlock(&q, hb); | 1450 | queue_unlock(&q, hb); |
1512 | futex_unlock_mm(fshared); | ||
1513 | cond_resched(); | 1451 | cond_resched(); |
1514 | goto retry; | 1452 | goto retry; |
1515 | 1453 | ||
@@ -1541,12 +1479,6 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1541 | */ | 1479 | */ |
1542 | queue_me(&q, hb); | 1480 | queue_me(&q, hb); |
1543 | 1481 | ||
1544 | /* | ||
1545 | * Now the futex is queued and we have checked the data, we | ||
1546 | * don't want to hold mmap_sem while we sleep. | ||
1547 | */ | ||
1548 | futex_unlock_mm(fshared); | ||
1549 | |||
1550 | WARN_ON(!q.pi_state); | 1482 | WARN_ON(!q.pi_state); |
1551 | /* | 1483 | /* |
1552 | * Block on the PI mutex: | 1484 | * Block on the PI mutex: |
@@ -1559,7 +1491,6 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1559 | ret = ret ? 0 : -EWOULDBLOCK; | 1491 | ret = ret ? 0 : -EWOULDBLOCK; |
1560 | } | 1492 | } |
1561 | 1493 | ||
1562 | futex_lock_mm(fshared); | ||
1563 | spin_lock(q.lock_ptr); | 1494 | spin_lock(q.lock_ptr); |
1564 | 1495 | ||
1565 | if (!ret) { | 1496 | if (!ret) { |
@@ -1625,7 +1556,6 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1625 | 1556 | ||
1626 | /* Unqueue and drop the lock */ | 1557 | /* Unqueue and drop the lock */ |
1627 | unqueue_me_pi(&q); | 1558 | unqueue_me_pi(&q); |
1628 | futex_unlock_mm(fshared); | ||
1629 | 1559 | ||
1630 | if (to) | 1560 | if (to) |
1631 | destroy_hrtimer_on_stack(&to->timer); | 1561 | destroy_hrtimer_on_stack(&to->timer); |
@@ -1635,34 +1565,30 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1635 | queue_unlock(&q, hb); | 1565 | queue_unlock(&q, hb); |
1636 | 1566 | ||
1637 | out_release_sem: | 1567 | out_release_sem: |
1638 | futex_unlock_mm(fshared); | 1568 | put_futex_key(fshared, &q.key); |
1639 | if (to) | 1569 | if (to) |
1640 | destroy_hrtimer_on_stack(&to->timer); | 1570 | destroy_hrtimer_on_stack(&to->timer); |
1641 | return ret; | 1571 | return ret; |
1642 | 1572 | ||
1643 | uaddr_faulted: | 1573 | uaddr_faulted: |
1644 | /* | 1574 | /* |
1645 | * We have to r/w *(int __user *)uaddr, but we can't modify it | 1575 | * We have to r/w *(int __user *)uaddr, and we have to modify it |
1646 | * non-atomically. Therefore, if get_user below is not | 1576 | * atomically. Therefore, if we continue to fault after get_user() |
1647 | * enough, we need to handle the fault ourselves, while | 1577 | * below, we need to handle the fault ourselves, while still holding |
1648 | * still holding the mmap_sem. | 1578 | * the mmap_sem. This can occur if the uaddr is under contention as |
1649 | * | 1579 | * we have to drop the mmap_sem in order to call get_user(). |
1650 | * ... and hb->lock. :-) --ANK | ||
1651 | */ | 1580 | */ |
1652 | queue_unlock(&q, hb); | 1581 | queue_unlock(&q, hb); |
1653 | 1582 | ||
1654 | if (attempt++) { | 1583 | if (attempt++) { |
1655 | ret = futex_handle_fault((unsigned long)uaddr, fshared, | 1584 | ret = futex_handle_fault((unsigned long)uaddr, attempt); |
1656 | attempt); | ||
1657 | if (ret) | 1585 | if (ret) |
1658 | goto out_release_sem; | 1586 | goto out_release_sem; |
1659 | goto retry_unlocked; | 1587 | goto retry_unlocked; |
1660 | } | 1588 | } |
1661 | 1589 | ||
1662 | futex_unlock_mm(fshared); | ||
1663 | |||
1664 | ret = get_user(uval, uaddr); | 1590 | ret = get_user(uval, uaddr); |
1665 | if (!ret && (uval != -EFAULT)) | 1591 | if (!ret) |
1666 | goto retry; | 1592 | goto retry; |
1667 | 1593 | ||
1668 | if (to) | 1594 | if (to) |
@@ -1675,13 +1601,13 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared, | |||
1675 | * This is the in-kernel slowpath: we look up the PI state (if any), | 1601 | * This is the in-kernel slowpath: we look up the PI state (if any), |
1676 | * and do the rt-mutex unlock. | 1602 | * and do the rt-mutex unlock. |
1677 | */ | 1603 | */ |
1678 | static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared) | 1604 | static int futex_unlock_pi(u32 __user *uaddr, int fshared) |
1679 | { | 1605 | { |
1680 | struct futex_hash_bucket *hb; | 1606 | struct futex_hash_bucket *hb; |
1681 | struct futex_q *this, *next; | 1607 | struct futex_q *this, *next; |
1682 | u32 uval; | 1608 | u32 uval; |
1683 | struct plist_head *head; | 1609 | struct plist_head *head; |
1684 | union futex_key key; | 1610 | union futex_key key = FUTEX_KEY_INIT; |
1685 | int ret, attempt = 0; | 1611 | int ret, attempt = 0; |
1686 | 1612 | ||
1687 | retry: | 1613 | retry: |
@@ -1692,10 +1618,6 @@ retry: | |||
1692 | */ | 1618 | */ |
1693 | if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current)) | 1619 | if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current)) |
1694 | return -EPERM; | 1620 | return -EPERM; |
1695 | /* | ||
1696 | * First take all the futex related locks: | ||
1697 | */ | ||
1698 | futex_lock_mm(fshared); | ||
1699 | 1621 | ||
1700 | ret = get_futex_key(uaddr, fshared, &key); | 1622 | ret = get_futex_key(uaddr, fshared, &key); |
1701 | if (unlikely(ret != 0)) | 1623 | if (unlikely(ret != 0)) |
@@ -1754,34 +1676,30 @@ retry_unlocked: | |||
1754 | out_unlock: | 1676 | out_unlock: |
1755 | spin_unlock(&hb->lock); | 1677 | spin_unlock(&hb->lock); |
1756 | out: | 1678 | out: |
1757 | futex_unlock_mm(fshared); | 1679 | put_futex_key(fshared, &key); |
1758 | 1680 | ||
1759 | return ret; | 1681 | return ret; |
1760 | 1682 | ||
1761 | pi_faulted: | 1683 | pi_faulted: |
1762 | /* | 1684 | /* |
1763 | * We have to r/w *(int __user *)uaddr, but we can't modify it | 1685 | * We have to r/w *(int __user *)uaddr, and we have to modify it |
1764 | * non-atomically. Therefore, if get_user below is not | 1686 | * atomically. Therefore, if we continue to fault after get_user() |
1765 | * enough, we need to handle the fault ourselves, while | 1687 | * below, we need to handle the fault ourselves, while still holding |
1766 | * still holding the mmap_sem. | 1688 | * the mmap_sem. This can occur if the uaddr is under contention as |
1767 | * | 1689 | * we have to drop the mmap_sem in order to call get_user(). |
1768 | * ... and hb->lock. --ANK | ||
1769 | */ | 1690 | */ |
1770 | spin_unlock(&hb->lock); | 1691 | spin_unlock(&hb->lock); |
1771 | 1692 | ||
1772 | if (attempt++) { | 1693 | if (attempt++) { |
1773 | ret = futex_handle_fault((unsigned long)uaddr, fshared, | 1694 | ret = futex_handle_fault((unsigned long)uaddr, attempt); |
1774 | attempt); | ||
1775 | if (ret) | 1695 | if (ret) |
1776 | goto out; | 1696 | goto out; |
1777 | uval = 0; | 1697 | uval = 0; |
1778 | goto retry_unlocked; | 1698 | goto retry_unlocked; |
1779 | } | 1699 | } |
1780 | 1700 | ||
1781 | futex_unlock_mm(fshared); | ||
1782 | |||
1783 | ret = get_user(uval, uaddr); | 1701 | ret = get_user(uval, uaddr); |
1784 | if (!ret && (uval != -EFAULT)) | 1702 | if (!ret) |
1785 | goto retry; | 1703 | goto retry; |
1786 | 1704 | ||
1787 | return ret; | 1705 | return ret; |
@@ -1908,8 +1826,7 @@ retry: | |||
1908 | * PI futexes happens in exit_pi_state(): | 1826 | * PI futexes happens in exit_pi_state(): |
1909 | */ | 1827 | */ |
1910 | if (!pi && (uval & FUTEX_WAITERS)) | 1828 | if (!pi && (uval & FUTEX_WAITERS)) |
1911 | futex_wake(uaddr, &curr->mm->mmap_sem, 1, | 1829 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
1912 | FUTEX_BITSET_MATCH_ANY); | ||
1913 | } | 1830 | } |
1914 | return 0; | 1831 | return 0; |
1915 | } | 1832 | } |
@@ -2003,18 +1920,22 @@ void exit_robust_list(struct task_struct *curr) | |||
2003 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, | 1920 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
2004 | u32 __user *uaddr2, u32 val2, u32 val3) | 1921 | u32 __user *uaddr2, u32 val2, u32 val3) |
2005 | { | 1922 | { |
2006 | int ret = -ENOSYS; | 1923 | int clockrt, ret = -ENOSYS; |
2007 | int cmd = op & FUTEX_CMD_MASK; | 1924 | int cmd = op & FUTEX_CMD_MASK; |
2008 | struct rw_semaphore *fshared = NULL; | 1925 | int fshared = 0; |
2009 | 1926 | ||
2010 | if (!(op & FUTEX_PRIVATE_FLAG)) | 1927 | if (!(op & FUTEX_PRIVATE_FLAG)) |
2011 | fshared = ¤t->mm->mmap_sem; | 1928 | fshared = 1; |
1929 | |||
1930 | clockrt = op & FUTEX_CLOCK_REALTIME; | ||
1931 | if (clockrt && cmd != FUTEX_WAIT_BITSET) | ||
1932 | return -ENOSYS; | ||
2012 | 1933 | ||
2013 | switch (cmd) { | 1934 | switch (cmd) { |
2014 | case FUTEX_WAIT: | 1935 | case FUTEX_WAIT: |
2015 | val3 = FUTEX_BITSET_MATCH_ANY; | 1936 | val3 = FUTEX_BITSET_MATCH_ANY; |
2016 | case FUTEX_WAIT_BITSET: | 1937 | case FUTEX_WAIT_BITSET: |
2017 | ret = futex_wait(uaddr, fshared, val, timeout, val3); | 1938 | ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt); |
2018 | break; | 1939 | break; |
2019 | case FUTEX_WAKE: | 1940 | case FUTEX_WAKE: |
2020 | val3 = FUTEX_BITSET_MATCH_ANY; | 1941 | val3 = FUTEX_BITSET_MATCH_ANY; |
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 801addda3c43..e9d1c8205a3b 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
@@ -673,6 +673,18 @@ int request_irq(unsigned int irq, irq_handler_t handler, | |||
673 | struct irq_desc *desc; | 673 | struct irq_desc *desc; |
674 | int retval; | 674 | int retval; |
675 | 675 | ||
676 | /* | ||
677 | * handle_IRQ_event() always ignores IRQF_DISABLED except for | ||
678 | * the _first_ irqaction (sigh). That can cause oopsing, but | ||
679 | * the behavior is classified as "will not fix" so we need to | ||
680 | * start nudging drivers away from using that idiom. | ||
681 | */ | ||
682 | if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) | ||
683 | == (IRQF_SHARED|IRQF_DISABLED)) | ||
684 | pr_warning("IRQ %d/%s: IRQF_DISABLED is not " | ||
685 | "guaranteed on shared IRQs\n", | ||
686 | irq, devname); | ||
687 | |||
676 | #ifdef CONFIG_LOCKDEP | 688 | #ifdef CONFIG_LOCKDEP |
677 | /* | 689 | /* |
678 | * Lockdep wants atomic interrupt handlers: | 690 | * Lockdep wants atomic interrupt handlers: |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index 74b1878b8bb8..06b0c3568f0b 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -137,16 +137,16 @@ static inline struct lock_class *hlock_class(struct held_lock *hlock) | |||
137 | #ifdef CONFIG_LOCK_STAT | 137 | #ifdef CONFIG_LOCK_STAT |
138 | static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], lock_stats); | 138 | static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], lock_stats); |
139 | 139 | ||
140 | static int lock_contention_point(struct lock_class *class, unsigned long ip) | 140 | static int lock_point(unsigned long points[], unsigned long ip) |
141 | { | 141 | { |
142 | int i; | 142 | int i; |
143 | 143 | ||
144 | for (i = 0; i < ARRAY_SIZE(class->contention_point); i++) { | 144 | for (i = 0; i < LOCKSTAT_POINTS; i++) { |
145 | if (class->contention_point[i] == 0) { | 145 | if (points[i] == 0) { |
146 | class->contention_point[i] = ip; | 146 | points[i] = ip; |
147 | break; | 147 | break; |
148 | } | 148 | } |
149 | if (class->contention_point[i] == ip) | 149 | if (points[i] == ip) |
150 | break; | 150 | break; |
151 | } | 151 | } |
152 | 152 | ||
@@ -186,6 +186,9 @@ struct lock_class_stats lock_stats(struct lock_class *class) | |||
186 | for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) | 186 | for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) |
187 | stats.contention_point[i] += pcs->contention_point[i]; | 187 | stats.contention_point[i] += pcs->contention_point[i]; |
188 | 188 | ||
189 | for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) | ||
190 | stats.contending_point[i] += pcs->contending_point[i]; | ||
191 | |||
189 | lock_time_add(&pcs->read_waittime, &stats.read_waittime); | 192 | lock_time_add(&pcs->read_waittime, &stats.read_waittime); |
190 | lock_time_add(&pcs->write_waittime, &stats.write_waittime); | 193 | lock_time_add(&pcs->write_waittime, &stats.write_waittime); |
191 | 194 | ||
@@ -210,6 +213,7 @@ void clear_lock_stats(struct lock_class *class) | |||
210 | memset(cpu_stats, 0, sizeof(struct lock_class_stats)); | 213 | memset(cpu_stats, 0, sizeof(struct lock_class_stats)); |
211 | } | 214 | } |
212 | memset(class->contention_point, 0, sizeof(class->contention_point)); | 215 | memset(class->contention_point, 0, sizeof(class->contention_point)); |
216 | memset(class->contending_point, 0, sizeof(class->contending_point)); | ||
213 | } | 217 | } |
214 | 218 | ||
215 | static struct lock_class_stats *get_lock_stats(struct lock_class *class) | 219 | static struct lock_class_stats *get_lock_stats(struct lock_class *class) |
@@ -288,14 +292,12 @@ void lockdep_off(void) | |||
288 | { | 292 | { |
289 | current->lockdep_recursion++; | 293 | current->lockdep_recursion++; |
290 | } | 294 | } |
291 | |||
292 | EXPORT_SYMBOL(lockdep_off); | 295 | EXPORT_SYMBOL(lockdep_off); |
293 | 296 | ||
294 | void lockdep_on(void) | 297 | void lockdep_on(void) |
295 | { | 298 | { |
296 | current->lockdep_recursion--; | 299 | current->lockdep_recursion--; |
297 | } | 300 | } |
298 | |||
299 | EXPORT_SYMBOL(lockdep_on); | 301 | EXPORT_SYMBOL(lockdep_on); |
300 | 302 | ||
301 | /* | 303 | /* |
@@ -577,7 +579,8 @@ static void print_lock_class_header(struct lock_class *class, int depth) | |||
577 | /* | 579 | /* |
578 | * printk all lock dependencies starting at <entry>: | 580 | * printk all lock dependencies starting at <entry>: |
579 | */ | 581 | */ |
580 | static void print_lock_dependencies(struct lock_class *class, int depth) | 582 | static void __used |
583 | print_lock_dependencies(struct lock_class *class, int depth) | ||
581 | { | 584 | { |
582 | struct lock_list *entry; | 585 | struct lock_list *entry; |
583 | 586 | ||
@@ -2509,7 +2512,6 @@ void lockdep_init_map(struct lockdep_map *lock, const char *name, | |||
2509 | if (subclass) | 2512 | if (subclass) |
2510 | register_lock_class(lock, subclass, 1); | 2513 | register_lock_class(lock, subclass, 1); |
2511 | } | 2514 | } |
2512 | |||
2513 | EXPORT_SYMBOL_GPL(lockdep_init_map); | 2515 | EXPORT_SYMBOL_GPL(lockdep_init_map); |
2514 | 2516 | ||
2515 | /* | 2517 | /* |
@@ -2690,8 +2692,9 @@ static int check_unlock(struct task_struct *curr, struct lockdep_map *lock, | |||
2690 | } | 2692 | } |
2691 | 2693 | ||
2692 | static int | 2694 | static int |
2693 | __lock_set_subclass(struct lockdep_map *lock, | 2695 | __lock_set_class(struct lockdep_map *lock, const char *name, |
2694 | unsigned int subclass, unsigned long ip) | 2696 | struct lock_class_key *key, unsigned int subclass, |
2697 | unsigned long ip) | ||
2695 | { | 2698 | { |
2696 | struct task_struct *curr = current; | 2699 | struct task_struct *curr = current; |
2697 | struct held_lock *hlock, *prev_hlock; | 2700 | struct held_lock *hlock, *prev_hlock; |
@@ -2718,6 +2721,7 @@ __lock_set_subclass(struct lockdep_map *lock, | |||
2718 | return print_unlock_inbalance_bug(curr, lock, ip); | 2721 | return print_unlock_inbalance_bug(curr, lock, ip); |
2719 | 2722 | ||
2720 | found_it: | 2723 | found_it: |
2724 | lockdep_init_map(lock, name, key, 0); | ||
2721 | class = register_lock_class(lock, subclass, 0); | 2725 | class = register_lock_class(lock, subclass, 0); |
2722 | hlock->class_idx = class - lock_classes + 1; | 2726 | hlock->class_idx = class - lock_classes + 1; |
2723 | 2727 | ||
@@ -2902,9 +2906,9 @@ static void check_flags(unsigned long flags) | |||
2902 | #endif | 2906 | #endif |
2903 | } | 2907 | } |
2904 | 2908 | ||
2905 | void | 2909 | void lock_set_class(struct lockdep_map *lock, const char *name, |
2906 | lock_set_subclass(struct lockdep_map *lock, | 2910 | struct lock_class_key *key, unsigned int subclass, |
2907 | unsigned int subclass, unsigned long ip) | 2911 | unsigned long ip) |
2908 | { | 2912 | { |
2909 | unsigned long flags; | 2913 | unsigned long flags; |
2910 | 2914 | ||
@@ -2914,13 +2918,12 @@ lock_set_subclass(struct lockdep_map *lock, | |||
2914 | raw_local_irq_save(flags); | 2918 | raw_local_irq_save(flags); |
2915 | current->lockdep_recursion = 1; | 2919 | current->lockdep_recursion = 1; |
2916 | check_flags(flags); | 2920 | check_flags(flags); |
2917 | if (__lock_set_subclass(lock, subclass, ip)) | 2921 | if (__lock_set_class(lock, name, key, subclass, ip)) |
2918 | check_chain_key(current); | 2922 | check_chain_key(current); |
2919 | current->lockdep_recursion = 0; | 2923 | current->lockdep_recursion = 0; |
2920 | raw_local_irq_restore(flags); | 2924 | raw_local_irq_restore(flags); |
2921 | } | 2925 | } |
2922 | 2926 | EXPORT_SYMBOL_GPL(lock_set_class); | |
2923 | EXPORT_SYMBOL_GPL(lock_set_subclass); | ||
2924 | 2927 | ||
2925 | /* | 2928 | /* |
2926 | * We are not always called with irqs disabled - do that here, | 2929 | * We are not always called with irqs disabled - do that here, |
@@ -2944,7 +2947,6 @@ void lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
2944 | current->lockdep_recursion = 0; | 2947 | current->lockdep_recursion = 0; |
2945 | raw_local_irq_restore(flags); | 2948 | raw_local_irq_restore(flags); |
2946 | } | 2949 | } |
2947 | |||
2948 | EXPORT_SYMBOL_GPL(lock_acquire); | 2950 | EXPORT_SYMBOL_GPL(lock_acquire); |
2949 | 2951 | ||
2950 | void lock_release(struct lockdep_map *lock, int nested, | 2952 | void lock_release(struct lockdep_map *lock, int nested, |
@@ -2962,7 +2964,6 @@ void lock_release(struct lockdep_map *lock, int nested, | |||
2962 | current->lockdep_recursion = 0; | 2964 | current->lockdep_recursion = 0; |
2963 | raw_local_irq_restore(flags); | 2965 | raw_local_irq_restore(flags); |
2964 | } | 2966 | } |
2965 | |||
2966 | EXPORT_SYMBOL_GPL(lock_release); | 2967 | EXPORT_SYMBOL_GPL(lock_release); |
2967 | 2968 | ||
2968 | #ifdef CONFIG_LOCK_STAT | 2969 | #ifdef CONFIG_LOCK_STAT |
@@ -3000,7 +3001,7 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip) | |||
3000 | struct held_lock *hlock, *prev_hlock; | 3001 | struct held_lock *hlock, *prev_hlock; |
3001 | struct lock_class_stats *stats; | 3002 | struct lock_class_stats *stats; |
3002 | unsigned int depth; | 3003 | unsigned int depth; |
3003 | int i, point; | 3004 | int i, contention_point, contending_point; |
3004 | 3005 | ||
3005 | depth = curr->lockdep_depth; | 3006 | depth = curr->lockdep_depth; |
3006 | if (DEBUG_LOCKS_WARN_ON(!depth)) | 3007 | if (DEBUG_LOCKS_WARN_ON(!depth)) |
@@ -3024,18 +3025,22 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip) | |||
3024 | found_it: | 3025 | found_it: |
3025 | hlock->waittime_stamp = sched_clock(); | 3026 | hlock->waittime_stamp = sched_clock(); |
3026 | 3027 | ||
3027 | point = lock_contention_point(hlock_class(hlock), ip); | 3028 | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); |
3029 | contending_point = lock_point(hlock_class(hlock)->contending_point, | ||
3030 | lock->ip); | ||
3028 | 3031 | ||
3029 | stats = get_lock_stats(hlock_class(hlock)); | 3032 | stats = get_lock_stats(hlock_class(hlock)); |
3030 | if (point < ARRAY_SIZE(stats->contention_point)) | 3033 | if (contention_point < LOCKSTAT_POINTS) |
3031 | stats->contention_point[point]++; | 3034 | stats->contention_point[contention_point]++; |
3035 | if (contending_point < LOCKSTAT_POINTS) | ||
3036 | stats->contending_point[contending_point]++; | ||
3032 | if (lock->cpu != smp_processor_id()) | 3037 | if (lock->cpu != smp_processor_id()) |
3033 | stats->bounces[bounce_contended + !!hlock->read]++; | 3038 | stats->bounces[bounce_contended + !!hlock->read]++; |
3034 | put_lock_stats(stats); | 3039 | put_lock_stats(stats); |
3035 | } | 3040 | } |
3036 | 3041 | ||
3037 | static void | 3042 | static void |
3038 | __lock_acquired(struct lockdep_map *lock) | 3043 | __lock_acquired(struct lockdep_map *lock, unsigned long ip) |
3039 | { | 3044 | { |
3040 | struct task_struct *curr = current; | 3045 | struct task_struct *curr = current; |
3041 | struct held_lock *hlock, *prev_hlock; | 3046 | struct held_lock *hlock, *prev_hlock; |
@@ -3084,6 +3089,7 @@ found_it: | |||
3084 | put_lock_stats(stats); | 3089 | put_lock_stats(stats); |
3085 | 3090 | ||
3086 | lock->cpu = cpu; | 3091 | lock->cpu = cpu; |
3092 | lock->ip = ip; | ||
3087 | } | 3093 | } |
3088 | 3094 | ||
3089 | void lock_contended(struct lockdep_map *lock, unsigned long ip) | 3095 | void lock_contended(struct lockdep_map *lock, unsigned long ip) |
@@ -3105,7 +3111,7 @@ void lock_contended(struct lockdep_map *lock, unsigned long ip) | |||
3105 | } | 3111 | } |
3106 | EXPORT_SYMBOL_GPL(lock_contended); | 3112 | EXPORT_SYMBOL_GPL(lock_contended); |
3107 | 3113 | ||
3108 | void lock_acquired(struct lockdep_map *lock) | 3114 | void lock_acquired(struct lockdep_map *lock, unsigned long ip) |
3109 | { | 3115 | { |
3110 | unsigned long flags; | 3116 | unsigned long flags; |
3111 | 3117 | ||
@@ -3118,7 +3124,7 @@ void lock_acquired(struct lockdep_map *lock) | |||
3118 | raw_local_irq_save(flags); | 3124 | raw_local_irq_save(flags); |
3119 | check_flags(flags); | 3125 | check_flags(flags); |
3120 | current->lockdep_recursion = 1; | 3126 | current->lockdep_recursion = 1; |
3121 | __lock_acquired(lock); | 3127 | __lock_acquired(lock, ip); |
3122 | current->lockdep_recursion = 0; | 3128 | current->lockdep_recursion = 0; |
3123 | raw_local_irq_restore(flags); | 3129 | raw_local_irq_restore(flags); |
3124 | } | 3130 | } |
@@ -3442,7 +3448,6 @@ retry: | |||
3442 | if (unlock) | 3448 | if (unlock) |
3443 | read_unlock(&tasklist_lock); | 3449 | read_unlock(&tasklist_lock); |
3444 | } | 3450 | } |
3445 | |||
3446 | EXPORT_SYMBOL_GPL(debug_show_all_locks); | 3451 | EXPORT_SYMBOL_GPL(debug_show_all_locks); |
3447 | 3452 | ||
3448 | /* | 3453 | /* |
@@ -3463,7 +3468,6 @@ void debug_show_held_locks(struct task_struct *task) | |||
3463 | { | 3468 | { |
3464 | __debug_show_held_locks(task); | 3469 | __debug_show_held_locks(task); |
3465 | } | 3470 | } |
3466 | |||
3467 | EXPORT_SYMBOL_GPL(debug_show_held_locks); | 3471 | EXPORT_SYMBOL_GPL(debug_show_held_locks); |
3468 | 3472 | ||
3469 | void lockdep_sys_exit(void) | 3473 | void lockdep_sys_exit(void) |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index 20dbcbf9c7dd..13716b813896 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
@@ -470,11 +470,12 @@ static void seq_line(struct seq_file *m, char c, int offset, int length) | |||
470 | 470 | ||
471 | static void snprint_time(char *buf, size_t bufsiz, s64 nr) | 471 | static void snprint_time(char *buf, size_t bufsiz, s64 nr) |
472 | { | 472 | { |
473 | unsigned long rem; | 473 | s64 div; |
474 | s32 rem; | ||
474 | 475 | ||
475 | nr += 5; /* for display rounding */ | 476 | nr += 5; /* for display rounding */ |
476 | rem = do_div(nr, 1000); /* XXX: do_div_signed */ | 477 | div = div_s64_rem(nr, 1000, &rem); |
477 | snprintf(buf, bufsiz, "%lld.%02d", (long long)nr, (int)rem/10); | 478 | snprintf(buf, bufsiz, "%lld.%02d", (long long)div, (int)rem/10); |
478 | } | 479 | } |
479 | 480 | ||
480 | static void seq_time(struct seq_file *m, s64 time) | 481 | static void seq_time(struct seq_file *m, s64 time) |
@@ -556,7 +557,7 @@ static void seq_stats(struct seq_file *m, struct lock_stat_data *data) | |||
556 | if (stats->read_holdtime.nr) | 557 | if (stats->read_holdtime.nr) |
557 | namelen += 2; | 558 | namelen += 2; |
558 | 559 | ||
559 | for (i = 0; i < ARRAY_SIZE(class->contention_point); i++) { | 560 | for (i = 0; i < LOCKSTAT_POINTS; i++) { |
560 | char sym[KSYM_SYMBOL_LEN]; | 561 | char sym[KSYM_SYMBOL_LEN]; |
561 | char ip[32]; | 562 | char ip[32]; |
562 | 563 | ||
@@ -573,6 +574,23 @@ static void seq_stats(struct seq_file *m, struct lock_stat_data *data) | |||
573 | stats->contention_point[i], | 574 | stats->contention_point[i], |
574 | ip, sym); | 575 | ip, sym); |
575 | } | 576 | } |
577 | for (i = 0; i < LOCKSTAT_POINTS; i++) { | ||
578 | char sym[KSYM_SYMBOL_LEN]; | ||
579 | char ip[32]; | ||
580 | |||
581 | if (class->contending_point[i] == 0) | ||
582 | break; | ||
583 | |||
584 | if (!i) | ||
585 | seq_line(m, '-', 40-namelen, namelen); | ||
586 | |||
587 | sprint_symbol(sym, class->contending_point[i]); | ||
588 | snprintf(ip, sizeof(ip), "[<%p>]", | ||
589 | (void *)class->contending_point[i]); | ||
590 | seq_printf(m, "%40s %14lu %29s %s\n", name, | ||
591 | stats->contending_point[i], | ||
592 | ip, sym); | ||
593 | } | ||
576 | if (i) { | 594 | if (i) { |
577 | seq_puts(m, "\n"); | 595 | seq_puts(m, "\n"); |
578 | seq_line(m, '.', 0, 40 + 1 + 10 * (14 + 1)); | 596 | seq_line(m, '.', 0, 40 + 1 + 10 * (14 + 1)); |
@@ -582,7 +600,7 @@ static void seq_stats(struct seq_file *m, struct lock_stat_data *data) | |||
582 | 600 | ||
583 | static void seq_header(struct seq_file *m) | 601 | static void seq_header(struct seq_file *m) |
584 | { | 602 | { |
585 | seq_printf(m, "lock_stat version 0.2\n"); | 603 | seq_printf(m, "lock_stat version 0.3\n"); |
586 | seq_line(m, '-', 0, 40 + 1 + 10 * (14 + 1)); | 604 | seq_line(m, '-', 0, 40 + 1 + 10 * (14 + 1)); |
587 | seq_printf(m, "%40s %14s %14s %14s %14s %14s %14s %14s %14s " | 605 | seq_printf(m, "%40s %14s %14s %14s %14s %14s %14s %14s %14s " |
588 | "%14s %14s\n", | 606 | "%14s %14s\n", |
diff --git a/kernel/mutex.c b/kernel/mutex.c index 12c779dc65d4..4f45d4b658ef 100644 --- a/kernel/mutex.c +++ b/kernel/mutex.c | |||
@@ -59,7 +59,7 @@ EXPORT_SYMBOL(__mutex_init); | |||
59 | * We also put the fastpath first in the kernel image, to make sure the | 59 | * We also put the fastpath first in the kernel image, to make sure the |
60 | * branch is predicted by the CPU as default-untaken. | 60 | * branch is predicted by the CPU as default-untaken. |
61 | */ | 61 | */ |
62 | static void noinline __sched | 62 | static __used noinline void __sched |
63 | __mutex_lock_slowpath(atomic_t *lock_count); | 63 | __mutex_lock_slowpath(atomic_t *lock_count); |
64 | 64 | ||
65 | /*** | 65 | /*** |
@@ -96,7 +96,7 @@ void inline __sched mutex_lock(struct mutex *lock) | |||
96 | EXPORT_SYMBOL(mutex_lock); | 96 | EXPORT_SYMBOL(mutex_lock); |
97 | #endif | 97 | #endif |
98 | 98 | ||
99 | static noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count); | 99 | static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count); |
100 | 100 | ||
101 | /*** | 101 | /*** |
102 | * mutex_unlock - release the mutex | 102 | * mutex_unlock - release the mutex |
@@ -184,7 +184,7 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, | |||
184 | } | 184 | } |
185 | 185 | ||
186 | done: | 186 | done: |
187 | lock_acquired(&lock->dep_map); | 187 | lock_acquired(&lock->dep_map, ip); |
188 | /* got the lock - rejoice! */ | 188 | /* got the lock - rejoice! */ |
189 | mutex_remove_waiter(lock, &waiter, task_thread_info(task)); | 189 | mutex_remove_waiter(lock, &waiter, task_thread_info(task)); |
190 | debug_mutex_set_owner(lock, task_thread_info(task)); | 190 | debug_mutex_set_owner(lock, task_thread_info(task)); |
@@ -268,7 +268,7 @@ __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested) | |||
268 | /* | 268 | /* |
269 | * Release the lock, slowpath: | 269 | * Release the lock, slowpath: |
270 | */ | 270 | */ |
271 | static noinline void | 271 | static __used noinline void |
272 | __mutex_unlock_slowpath(atomic_t *lock_count) | 272 | __mutex_unlock_slowpath(atomic_t *lock_count) |
273 | { | 273 | { |
274 | __mutex_unlock_common_slowpath(lock_count, 1); | 274 | __mutex_unlock_common_slowpath(lock_count, 1); |
@@ -313,7 +313,7 @@ int __sched mutex_lock_killable(struct mutex *lock) | |||
313 | } | 313 | } |
314 | EXPORT_SYMBOL(mutex_lock_killable); | 314 | EXPORT_SYMBOL(mutex_lock_killable); |
315 | 315 | ||
316 | static noinline void __sched | 316 | static __used noinline void __sched |
317 | __mutex_lock_slowpath(atomic_t *lock_count) | 317 | __mutex_lock_slowpath(atomic_t *lock_count) |
318 | { | 318 | { |
319 | struct mutex *lock = container_of(lock_count, struct mutex, count); | 319 | struct mutex *lock = container_of(lock_count, struct mutex, count); |
diff --git a/kernel/notifier.c b/kernel/notifier.c index 4282c0a40a57..61d5aa5eced3 100644 --- a/kernel/notifier.c +++ b/kernel/notifier.c | |||
@@ -82,6 +82,14 @@ static int __kprobes notifier_call_chain(struct notifier_block **nl, | |||
82 | 82 | ||
83 | while (nb && nr_to_call) { | 83 | while (nb && nr_to_call) { |
84 | next_nb = rcu_dereference(nb->next); | 84 | next_nb = rcu_dereference(nb->next); |
85 | |||
86 | #ifdef CONFIG_DEBUG_NOTIFIERS | ||
87 | if (unlikely(!func_ptr_is_kernel_text(nb->notifier_call))) { | ||
88 | WARN(1, "Invalid notifier called!"); | ||
89 | nb = next_nb; | ||
90 | continue; | ||
91 | } | ||
92 | #endif | ||
85 | ret = nb->notifier_call(nb, val, v); | 93 | ret = nb->notifier_call(nb, val, v); |
86 | 94 | ||
87 | if (nr_calls) | 95 | if (nr_calls) |
diff --git a/kernel/panic.c b/kernel/panic.c index 4d5088355bfe..13f06349a786 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -21,6 +21,7 @@ | |||
21 | #include <linux/debug_locks.h> | 21 | #include <linux/debug_locks.h> |
22 | #include <linux/random.h> | 22 | #include <linux/random.h> |
23 | #include <linux/kallsyms.h> | 23 | #include <linux/kallsyms.h> |
24 | #include <linux/dmi.h> | ||
24 | 25 | ||
25 | int panic_on_oops; | 26 | int panic_on_oops; |
26 | static unsigned long tainted_mask; | 27 | static unsigned long tainted_mask; |
@@ -321,36 +322,27 @@ void oops_exit(void) | |||
321 | } | 322 | } |
322 | 323 | ||
323 | #ifdef WANT_WARN_ON_SLOWPATH | 324 | #ifdef WANT_WARN_ON_SLOWPATH |
324 | void warn_on_slowpath(const char *file, int line) | ||
325 | { | ||
326 | char function[KSYM_SYMBOL_LEN]; | ||
327 | unsigned long caller = (unsigned long) __builtin_return_address(0); | ||
328 | sprint_symbol(function, caller); | ||
329 | |||
330 | printk(KERN_WARNING "------------[ cut here ]------------\n"); | ||
331 | printk(KERN_WARNING "WARNING: at %s:%d %s()\n", file, | ||
332 | line, function); | ||
333 | print_modules(); | ||
334 | dump_stack(); | ||
335 | print_oops_end_marker(); | ||
336 | add_taint(TAINT_WARN); | ||
337 | } | ||
338 | EXPORT_SYMBOL(warn_on_slowpath); | ||
339 | |||
340 | |||
341 | void warn_slowpath(const char *file, int line, const char *fmt, ...) | 325 | void warn_slowpath(const char *file, int line, const char *fmt, ...) |
342 | { | 326 | { |
343 | va_list args; | 327 | va_list args; |
344 | char function[KSYM_SYMBOL_LEN]; | 328 | char function[KSYM_SYMBOL_LEN]; |
345 | unsigned long caller = (unsigned long)__builtin_return_address(0); | 329 | unsigned long caller = (unsigned long)__builtin_return_address(0); |
330 | const char *board; | ||
331 | |||
346 | sprint_symbol(function, caller); | 332 | sprint_symbol(function, caller); |
347 | 333 | ||
348 | printk(KERN_WARNING "------------[ cut here ]------------\n"); | 334 | printk(KERN_WARNING "------------[ cut here ]------------\n"); |
349 | printk(KERN_WARNING "WARNING: at %s:%d %s()\n", file, | 335 | printk(KERN_WARNING "WARNING: at %s:%d %s()\n", file, |
350 | line, function); | 336 | line, function); |
351 | va_start(args, fmt); | 337 | board = dmi_get_system_info(DMI_PRODUCT_NAME); |
352 | vprintk(fmt, args); | 338 | if (board) |
353 | va_end(args); | 339 | printk(KERN_WARNING "Hardware name: %s\n", board); |
340 | |||
341 | if (fmt) { | ||
342 | va_start(args, fmt); | ||
343 | vprintk(fmt, args); | ||
344 | va_end(args); | ||
345 | } | ||
354 | 346 | ||
355 | print_modules(); | 347 | print_modules(); |
356 | dump_stack(); | 348 | dump_stack(); |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index 4e5288a831de..157de3a47832 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -58,21 +58,21 @@ void thread_group_cputime( | |||
58 | struct task_struct *tsk, | 58 | struct task_struct *tsk, |
59 | struct task_cputime *times) | 59 | struct task_cputime *times) |
60 | { | 60 | { |
61 | struct signal_struct *sig; | 61 | struct task_cputime *totals, *tot; |
62 | int i; | 62 | int i; |
63 | struct task_cputime *tot; | ||
64 | 63 | ||
65 | sig = tsk->signal; | 64 | totals = tsk->signal->cputime.totals; |
66 | if (unlikely(!sig) || !sig->cputime.totals) { | 65 | if (!totals) { |
67 | times->utime = tsk->utime; | 66 | times->utime = tsk->utime; |
68 | times->stime = tsk->stime; | 67 | times->stime = tsk->stime; |
69 | times->sum_exec_runtime = tsk->se.sum_exec_runtime; | 68 | times->sum_exec_runtime = tsk->se.sum_exec_runtime; |
70 | return; | 69 | return; |
71 | } | 70 | } |
71 | |||
72 | times->stime = times->utime = cputime_zero; | 72 | times->stime = times->utime = cputime_zero; |
73 | times->sum_exec_runtime = 0; | 73 | times->sum_exec_runtime = 0; |
74 | for_each_possible_cpu(i) { | 74 | for_each_possible_cpu(i) { |
75 | tot = per_cpu_ptr(tsk->signal->cputime.totals, i); | 75 | tot = per_cpu_ptr(totals, i); |
76 | times->utime = cputime_add(times->utime, tot->utime); | 76 | times->utime = cputime_add(times->utime, tot->utime); |
77 | times->stime = cputime_add(times->stime, tot->stime); | 77 | times->stime = cputime_add(times->stime, tot->stime); |
78 | times->sum_exec_runtime += tot->sum_exec_runtime; | 78 | times->sum_exec_runtime += tot->sum_exec_runtime; |
diff --git a/kernel/printk.c b/kernel/printk.c index f492f1583d77..e651ab05655f 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -662,7 +662,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
662 | if (recursion_bug) { | 662 | if (recursion_bug) { |
663 | recursion_bug = 0; | 663 | recursion_bug = 0; |
664 | strcpy(printk_buf, recursion_bug_msg); | 664 | strcpy(printk_buf, recursion_bug_msg); |
665 | printed_len = sizeof(recursion_bug_msg); | 665 | printed_len = strlen(recursion_bug_msg); |
666 | } | 666 | } |
667 | /* Emit the output into the temporary buffer */ | 667 | /* Emit the output into the temporary buffer */ |
668 | printed_len += vscnprintf(printk_buf + printed_len, | 668 | printed_len += vscnprintf(printk_buf + printed_len, |
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c index 37f72e551542..e503a002f330 100644 --- a/kernel/rcuclassic.c +++ b/kernel/rcuclassic.c | |||
@@ -191,7 +191,7 @@ static void print_other_cpu_stall(struct rcu_ctrlblk *rcp) | |||
191 | 191 | ||
192 | /* OK, time to rat on our buddy... */ | 192 | /* OK, time to rat on our buddy... */ |
193 | 193 | ||
194 | printk(KERN_ERR "RCU detected CPU stalls:"); | 194 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); |
195 | for_each_possible_cpu(cpu) { | 195 | for_each_possible_cpu(cpu) { |
196 | if (cpu_isset(cpu, rcp->cpumask)) | 196 | if (cpu_isset(cpu, rcp->cpumask)) |
197 | printk(" %d", cpu); | 197 | printk(" %d", cpu); |
@@ -204,7 +204,7 @@ static void print_cpu_stall(struct rcu_ctrlblk *rcp) | |||
204 | { | 204 | { |
205 | unsigned long flags; | 205 | unsigned long flags; |
206 | 206 | ||
207 | printk(KERN_ERR "RCU detected CPU %d stall (t=%lu/%lu jiffies)\n", | 207 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu/%lu jiffies)\n", |
208 | smp_processor_id(), jiffies, | 208 | smp_processor_id(), jiffies, |
209 | jiffies - rcp->gp_start); | 209 | jiffies - rcp->gp_start); |
210 | dump_stack(); | 210 | dump_stack(); |
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c index 59236e8b9daa..04982659875a 100644 --- a/kernel/rcupreempt.c +++ b/kernel/rcupreempt.c | |||
@@ -551,6 +551,16 @@ void rcu_irq_exit(void) | |||
551 | } | 551 | } |
552 | } | 552 | } |
553 | 553 | ||
554 | void rcu_nmi_enter(void) | ||
555 | { | ||
556 | rcu_irq_enter(); | ||
557 | } | ||
558 | |||
559 | void rcu_nmi_exit(void) | ||
560 | { | ||
561 | rcu_irq_exit(); | ||
562 | } | ||
563 | |||
554 | static void dyntick_save_progress_counter(int cpu) | 564 | static void dyntick_save_progress_counter(int cpu) |
555 | { | 565 | { |
556 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | 566 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); |
diff --git a/kernel/rcupreempt_trace.c b/kernel/rcupreempt_trace.c index 35c2d3360ecf..7c2665cac172 100644 --- a/kernel/rcupreempt_trace.c +++ b/kernel/rcupreempt_trace.c | |||
@@ -149,12 +149,12 @@ static void rcupreempt_trace_sum(struct rcupreempt_trace *sp) | |||
149 | sp->done_length += cp->done_length; | 149 | sp->done_length += cp->done_length; |
150 | sp->done_add += cp->done_add; | 150 | sp->done_add += cp->done_add; |
151 | sp->done_remove += cp->done_remove; | 151 | sp->done_remove += cp->done_remove; |
152 | atomic_set(&sp->done_invoked, atomic_read(&cp->done_invoked)); | 152 | atomic_add(atomic_read(&cp->done_invoked), &sp->done_invoked); |
153 | sp->rcu_check_callbacks += cp->rcu_check_callbacks; | 153 | sp->rcu_check_callbacks += cp->rcu_check_callbacks; |
154 | atomic_set(&sp->rcu_try_flip_1, | 154 | atomic_add(atomic_read(&cp->rcu_try_flip_1), |
155 | atomic_read(&cp->rcu_try_flip_1)); | 155 | &sp->rcu_try_flip_1); |
156 | atomic_set(&sp->rcu_try_flip_e1, | 156 | atomic_add(atomic_read(&cp->rcu_try_flip_e1), |
157 | atomic_read(&cp->rcu_try_flip_e1)); | 157 | &sp->rcu_try_flip_e1); |
158 | sp->rcu_try_flip_i1 += cp->rcu_try_flip_i1; | 158 | sp->rcu_try_flip_i1 += cp->rcu_try_flip_i1; |
159 | sp->rcu_try_flip_ie1 += cp->rcu_try_flip_ie1; | 159 | sp->rcu_try_flip_ie1 += cp->rcu_try_flip_ie1; |
160 | sp->rcu_try_flip_g1 += cp->rcu_try_flip_g1; | 160 | sp->rcu_try_flip_g1 += cp->rcu_try_flip_g1; |
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 85cb90588a55..b31065522104 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -39,6 +39,7 @@ | |||
39 | #include <linux/moduleparam.h> | 39 | #include <linux/moduleparam.h> |
40 | #include <linux/percpu.h> | 40 | #include <linux/percpu.h> |
41 | #include <linux/notifier.h> | 41 | #include <linux/notifier.h> |
42 | #include <linux/reboot.h> | ||
42 | #include <linux/freezer.h> | 43 | #include <linux/freezer.h> |
43 | #include <linux/cpu.h> | 44 | #include <linux/cpu.h> |
44 | #include <linux/delay.h> | 45 | #include <linux/delay.h> |
@@ -108,7 +109,6 @@ struct rcu_torture { | |||
108 | int rtort_mbtest; | 109 | int rtort_mbtest; |
109 | }; | 110 | }; |
110 | 111 | ||
111 | static int fullstop = 0; /* stop generating callbacks at test end. */ | ||
112 | static LIST_HEAD(rcu_torture_freelist); | 112 | static LIST_HEAD(rcu_torture_freelist); |
113 | static struct rcu_torture *rcu_torture_current = NULL; | 113 | static struct rcu_torture *rcu_torture_current = NULL; |
114 | static long rcu_torture_current_version = 0; | 114 | static long rcu_torture_current_version = 0; |
@@ -136,6 +136,30 @@ static int stutter_pause_test = 0; | |||
136 | #endif | 136 | #endif |
137 | int rcutorture_runnable = RCUTORTURE_RUNNABLE_INIT; | 137 | int rcutorture_runnable = RCUTORTURE_RUNNABLE_INIT; |
138 | 138 | ||
139 | #define FULLSTOP_SIGNALED 1 /* Bail due to signal. */ | ||
140 | #define FULLSTOP_CLEANUP 2 /* Orderly shutdown. */ | ||
141 | static int fullstop; /* stop generating callbacks at test end. */ | ||
142 | DEFINE_MUTEX(fullstop_mutex); /* protect fullstop transitions and */ | ||
143 | /* spawning of kthreads. */ | ||
144 | |||
145 | /* | ||
146 | * Detect and respond to a signal-based shutdown. | ||
147 | */ | ||
148 | static int | ||
149 | rcutorture_shutdown_notify(struct notifier_block *unused1, | ||
150 | unsigned long unused2, void *unused3) | ||
151 | { | ||
152 | if (fullstop) | ||
153 | return NOTIFY_DONE; | ||
154 | if (signal_pending(current)) { | ||
155 | mutex_lock(&fullstop_mutex); | ||
156 | if (!ACCESS_ONCE(fullstop)) | ||
157 | fullstop = FULLSTOP_SIGNALED; | ||
158 | mutex_unlock(&fullstop_mutex); | ||
159 | } | ||
160 | return NOTIFY_DONE; | ||
161 | } | ||
162 | |||
139 | /* | 163 | /* |
140 | * Allocate an element from the rcu_tortures pool. | 164 | * Allocate an element from the rcu_tortures pool. |
141 | */ | 165 | */ |
@@ -199,11 +223,12 @@ rcu_random(struct rcu_random_state *rrsp) | |||
199 | static void | 223 | static void |
200 | rcu_stutter_wait(void) | 224 | rcu_stutter_wait(void) |
201 | { | 225 | { |
202 | while (stutter_pause_test || !rcutorture_runnable) | 226 | while ((stutter_pause_test || !rcutorture_runnable) && !fullstop) { |
203 | if (rcutorture_runnable) | 227 | if (rcutorture_runnable) |
204 | schedule_timeout_interruptible(1); | 228 | schedule_timeout_interruptible(1); |
205 | else | 229 | else |
206 | schedule_timeout_interruptible(round_jiffies_relative(HZ)); | 230 | schedule_timeout_interruptible(round_jiffies_relative(HZ)); |
231 | } | ||
207 | } | 232 | } |
208 | 233 | ||
209 | /* | 234 | /* |
@@ -599,7 +624,7 @@ rcu_torture_writer(void *arg) | |||
599 | rcu_stutter_wait(); | 624 | rcu_stutter_wait(); |
600 | } while (!kthread_should_stop() && !fullstop); | 625 | } while (!kthread_should_stop() && !fullstop); |
601 | VERBOSE_PRINTK_STRING("rcu_torture_writer task stopping"); | 626 | VERBOSE_PRINTK_STRING("rcu_torture_writer task stopping"); |
602 | while (!kthread_should_stop()) | 627 | while (!kthread_should_stop() && fullstop != FULLSTOP_SIGNALED) |
603 | schedule_timeout_uninterruptible(1); | 628 | schedule_timeout_uninterruptible(1); |
604 | return 0; | 629 | return 0; |
605 | } | 630 | } |
@@ -624,7 +649,7 @@ rcu_torture_fakewriter(void *arg) | |||
624 | } while (!kthread_should_stop() && !fullstop); | 649 | } while (!kthread_should_stop() && !fullstop); |
625 | 650 | ||
626 | VERBOSE_PRINTK_STRING("rcu_torture_fakewriter task stopping"); | 651 | VERBOSE_PRINTK_STRING("rcu_torture_fakewriter task stopping"); |
627 | while (!kthread_should_stop()) | 652 | while (!kthread_should_stop() && fullstop != FULLSTOP_SIGNALED) |
628 | schedule_timeout_uninterruptible(1); | 653 | schedule_timeout_uninterruptible(1); |
629 | return 0; | 654 | return 0; |
630 | } | 655 | } |
@@ -734,7 +759,7 @@ rcu_torture_reader(void *arg) | |||
734 | VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); | 759 | VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); |
735 | if (irqreader && cur_ops->irqcapable) | 760 | if (irqreader && cur_ops->irqcapable) |
736 | del_timer_sync(&t); | 761 | del_timer_sync(&t); |
737 | while (!kthread_should_stop()) | 762 | while (!kthread_should_stop() && fullstop != FULLSTOP_SIGNALED) |
738 | schedule_timeout_uninterruptible(1); | 763 | schedule_timeout_uninterruptible(1); |
739 | return 0; | 764 | return 0; |
740 | } | 765 | } |
@@ -831,7 +856,7 @@ rcu_torture_stats(void *arg) | |||
831 | do { | 856 | do { |
832 | schedule_timeout_interruptible(stat_interval * HZ); | 857 | schedule_timeout_interruptible(stat_interval * HZ); |
833 | rcu_torture_stats_print(); | 858 | rcu_torture_stats_print(); |
834 | } while (!kthread_should_stop()); | 859 | } while (!kthread_should_stop() && !fullstop); |
835 | VERBOSE_PRINTK_STRING("rcu_torture_stats task stopping"); | 860 | VERBOSE_PRINTK_STRING("rcu_torture_stats task stopping"); |
836 | return 0; | 861 | return 0; |
837 | } | 862 | } |
@@ -899,7 +924,7 @@ rcu_torture_shuffle(void *arg) | |||
899 | do { | 924 | do { |
900 | schedule_timeout_interruptible(shuffle_interval * HZ); | 925 | schedule_timeout_interruptible(shuffle_interval * HZ); |
901 | rcu_torture_shuffle_tasks(); | 926 | rcu_torture_shuffle_tasks(); |
902 | } while (!kthread_should_stop()); | 927 | } while (!kthread_should_stop() && !fullstop); |
903 | VERBOSE_PRINTK_STRING("rcu_torture_shuffle task stopping"); | 928 | VERBOSE_PRINTK_STRING("rcu_torture_shuffle task stopping"); |
904 | return 0; | 929 | return 0; |
905 | } | 930 | } |
@@ -914,10 +939,10 @@ rcu_torture_stutter(void *arg) | |||
914 | do { | 939 | do { |
915 | schedule_timeout_interruptible(stutter * HZ); | 940 | schedule_timeout_interruptible(stutter * HZ); |
916 | stutter_pause_test = 1; | 941 | stutter_pause_test = 1; |
917 | if (!kthread_should_stop()) | 942 | if (!kthread_should_stop() && !fullstop) |
918 | schedule_timeout_interruptible(stutter * HZ); | 943 | schedule_timeout_interruptible(stutter * HZ); |
919 | stutter_pause_test = 0; | 944 | stutter_pause_test = 0; |
920 | } while (!kthread_should_stop()); | 945 | } while (!kthread_should_stop() && !fullstop); |
921 | VERBOSE_PRINTK_STRING("rcu_torture_stutter task stopping"); | 946 | VERBOSE_PRINTK_STRING("rcu_torture_stutter task stopping"); |
922 | return 0; | 947 | return 0; |
923 | } | 948 | } |
@@ -934,12 +959,27 @@ rcu_torture_print_module_parms(char *tag) | |||
934 | stutter, irqreader); | 959 | stutter, irqreader); |
935 | } | 960 | } |
936 | 961 | ||
962 | static struct notifier_block rcutorture_nb = { | ||
963 | .notifier_call = rcutorture_shutdown_notify, | ||
964 | }; | ||
965 | |||
937 | static void | 966 | static void |
938 | rcu_torture_cleanup(void) | 967 | rcu_torture_cleanup(void) |
939 | { | 968 | { |
940 | int i; | 969 | int i; |
941 | 970 | ||
942 | fullstop = 1; | 971 | mutex_lock(&fullstop_mutex); |
972 | if (!fullstop) { | ||
973 | /* If being signaled, let it happen, then exit. */ | ||
974 | mutex_unlock(&fullstop_mutex); | ||
975 | schedule_timeout_interruptible(10 * HZ); | ||
976 | if (cur_ops->cb_barrier != NULL) | ||
977 | cur_ops->cb_barrier(); | ||
978 | return; | ||
979 | } | ||
980 | fullstop = FULLSTOP_CLEANUP; | ||
981 | mutex_unlock(&fullstop_mutex); | ||
982 | unregister_reboot_notifier(&rcutorture_nb); | ||
943 | if (stutter_task) { | 983 | if (stutter_task) { |
944 | VERBOSE_PRINTK_STRING("Stopping rcu_torture_stutter task"); | 984 | VERBOSE_PRINTK_STRING("Stopping rcu_torture_stutter task"); |
945 | kthread_stop(stutter_task); | 985 | kthread_stop(stutter_task); |
@@ -1015,6 +1055,8 @@ rcu_torture_init(void) | |||
1015 | { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, | 1055 | { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, |
1016 | &srcu_ops, &sched_ops, &sched_ops_sync, }; | 1056 | &srcu_ops, &sched_ops, &sched_ops_sync, }; |
1017 | 1057 | ||
1058 | mutex_lock(&fullstop_mutex); | ||
1059 | |||
1018 | /* Process args and tell the world that the torturer is on the job. */ | 1060 | /* Process args and tell the world that the torturer is on the job. */ |
1019 | for (i = 0; i < ARRAY_SIZE(torture_ops); i++) { | 1061 | for (i = 0; i < ARRAY_SIZE(torture_ops); i++) { |
1020 | cur_ops = torture_ops[i]; | 1062 | cur_ops = torture_ops[i]; |
@@ -1024,6 +1066,7 @@ rcu_torture_init(void) | |||
1024 | if (i == ARRAY_SIZE(torture_ops)) { | 1066 | if (i == ARRAY_SIZE(torture_ops)) { |
1025 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", | 1067 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", |
1026 | torture_type); | 1068 | torture_type); |
1069 | mutex_unlock(&fullstop_mutex); | ||
1027 | return (-EINVAL); | 1070 | return (-EINVAL); |
1028 | } | 1071 | } |
1029 | if (cur_ops->init) | 1072 | if (cur_ops->init) |
@@ -1146,9 +1189,12 @@ rcu_torture_init(void) | |||
1146 | goto unwind; | 1189 | goto unwind; |
1147 | } | 1190 | } |
1148 | } | 1191 | } |
1192 | register_reboot_notifier(&rcutorture_nb); | ||
1193 | mutex_unlock(&fullstop_mutex); | ||
1149 | return 0; | 1194 | return 0; |
1150 | 1195 | ||
1151 | unwind: | 1196 | unwind: |
1197 | mutex_unlock(&fullstop_mutex); | ||
1152 | rcu_torture_cleanup(); | 1198 | rcu_torture_cleanup(); |
1153 | return firsterr; | 1199 | return firsterr; |
1154 | } | 1200 | } |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c new file mode 100644 index 000000000000..a342b032112c --- /dev/null +++ b/kernel/rcutree.c | |||
@@ -0,0 +1,1535 @@ | |||
1 | /* | ||
2 | * Read-Copy Update mechanism for mutual exclusion | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | * | ||
18 | * Copyright IBM Corporation, 2008 | ||
19 | * | ||
20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | ||
21 | * Manfred Spraul <manfred@colorfullife.com> | ||
22 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version | ||
23 | * | ||
24 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | ||
25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | ||
26 | * | ||
27 | * For detailed explanation of Read-Copy Update mechanism see - | ||
28 | * Documentation/RCU | ||
29 | */ | ||
30 | #include <linux/types.h> | ||
31 | #include <linux/kernel.h> | ||
32 | #include <linux/init.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/smp.h> | ||
35 | #include <linux/rcupdate.h> | ||
36 | #include <linux/interrupt.h> | ||
37 | #include <linux/sched.h> | ||
38 | #include <asm/atomic.h> | ||
39 | #include <linux/bitops.h> | ||
40 | #include <linux/module.h> | ||
41 | #include <linux/completion.h> | ||
42 | #include <linux/moduleparam.h> | ||
43 | #include <linux/percpu.h> | ||
44 | #include <linux/notifier.h> | ||
45 | #include <linux/cpu.h> | ||
46 | #include <linux/mutex.h> | ||
47 | #include <linux/time.h> | ||
48 | |||
49 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | ||
50 | static struct lock_class_key rcu_lock_key; | ||
51 | struct lockdep_map rcu_lock_map = | ||
52 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | ||
53 | EXPORT_SYMBOL_GPL(rcu_lock_map); | ||
54 | #endif | ||
55 | |||
56 | /* Data structures. */ | ||
57 | |||
58 | #define RCU_STATE_INITIALIZER(name) { \ | ||
59 | .level = { &name.node[0] }, \ | ||
60 | .levelcnt = { \ | ||
61 | NUM_RCU_LVL_0, /* root of hierarchy. */ \ | ||
62 | NUM_RCU_LVL_1, \ | ||
63 | NUM_RCU_LVL_2, \ | ||
64 | NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \ | ||
65 | }, \ | ||
66 | .signaled = RCU_SIGNAL_INIT, \ | ||
67 | .gpnum = -300, \ | ||
68 | .completed = -300, \ | ||
69 | .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ | ||
70 | .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ | ||
71 | .n_force_qs = 0, \ | ||
72 | .n_force_qs_ngp = 0, \ | ||
73 | } | ||
74 | |||
75 | struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state); | ||
76 | DEFINE_PER_CPU(struct rcu_data, rcu_data); | ||
77 | |||
78 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); | ||
79 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | ||
80 | |||
81 | #ifdef CONFIG_NO_HZ | ||
82 | DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks); | ||
83 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
84 | |||
85 | static int blimit = 10; /* Maximum callbacks per softirq. */ | ||
86 | static int qhimark = 10000; /* If this many pending, ignore blimit. */ | ||
87 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ | ||
88 | |||
89 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); | ||
90 | |||
91 | /* | ||
92 | * Return the number of RCU batches processed thus far for debug & stats. | ||
93 | */ | ||
94 | long rcu_batches_completed(void) | ||
95 | { | ||
96 | return rcu_state.completed; | ||
97 | } | ||
98 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
99 | |||
100 | /* | ||
101 | * Return the number of RCU BH batches processed thus far for debug & stats. | ||
102 | */ | ||
103 | long rcu_batches_completed_bh(void) | ||
104 | { | ||
105 | return rcu_bh_state.completed; | ||
106 | } | ||
107 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | ||
108 | |||
109 | /* | ||
110 | * Does the CPU have callbacks ready to be invoked? | ||
111 | */ | ||
112 | static int | ||
113 | cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) | ||
114 | { | ||
115 | return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; | ||
116 | } | ||
117 | |||
118 | /* | ||
119 | * Does the current CPU require a yet-as-unscheduled grace period? | ||
120 | */ | ||
121 | static int | ||
122 | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) | ||
123 | { | ||
124 | /* ACCESS_ONCE() because we are accessing outside of lock. */ | ||
125 | return *rdp->nxttail[RCU_DONE_TAIL] && | ||
126 | ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum); | ||
127 | } | ||
128 | |||
129 | /* | ||
130 | * Return the root node of the specified rcu_state structure. | ||
131 | */ | ||
132 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp) | ||
133 | { | ||
134 | return &rsp->node[0]; | ||
135 | } | ||
136 | |||
137 | #ifdef CONFIG_SMP | ||
138 | |||
139 | /* | ||
140 | * If the specified CPU is offline, tell the caller that it is in | ||
141 | * a quiescent state. Otherwise, whack it with a reschedule IPI. | ||
142 | * Grace periods can end up waiting on an offline CPU when that | ||
143 | * CPU is in the process of coming online -- it will be added to the | ||
144 | * rcu_node bitmasks before it actually makes it online. The same thing | ||
145 | * can happen while a CPU is in the process of coming online. Because this | ||
146 | * race is quite rare, we check for it after detecting that the grace | ||
147 | * period has been delayed rather than checking each and every CPU | ||
148 | * each and every time we start a new grace period. | ||
149 | */ | ||
150 | static int rcu_implicit_offline_qs(struct rcu_data *rdp) | ||
151 | { | ||
152 | /* | ||
153 | * If the CPU is offline, it is in a quiescent state. We can | ||
154 | * trust its state not to change because interrupts are disabled. | ||
155 | */ | ||
156 | if (cpu_is_offline(rdp->cpu)) { | ||
157 | rdp->offline_fqs++; | ||
158 | return 1; | ||
159 | } | ||
160 | |||
161 | /* The CPU is online, so send it a reschedule IPI. */ | ||
162 | if (rdp->cpu != smp_processor_id()) | ||
163 | smp_send_reschedule(rdp->cpu); | ||
164 | else | ||
165 | set_need_resched(); | ||
166 | rdp->resched_ipi++; | ||
167 | return 0; | ||
168 | } | ||
169 | |||
170 | #endif /* #ifdef CONFIG_SMP */ | ||
171 | |||
172 | #ifdef CONFIG_NO_HZ | ||
173 | static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5); | ||
174 | |||
175 | /** | ||
176 | * rcu_enter_nohz - inform RCU that current CPU is entering nohz | ||
177 | * | ||
178 | * Enter nohz mode, in other words, -leave- the mode in which RCU | ||
179 | * read-side critical sections can occur. (Though RCU read-side | ||
180 | * critical sections can occur in irq handlers in nohz mode, a possibility | ||
181 | * handled by rcu_irq_enter() and rcu_irq_exit()). | ||
182 | */ | ||
183 | void rcu_enter_nohz(void) | ||
184 | { | ||
185 | unsigned long flags; | ||
186 | struct rcu_dynticks *rdtp; | ||
187 | |||
188 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | ||
189 | local_irq_save(flags); | ||
190 | rdtp = &__get_cpu_var(rcu_dynticks); | ||
191 | rdtp->dynticks++; | ||
192 | rdtp->dynticks_nesting--; | ||
193 | WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); | ||
194 | local_irq_restore(flags); | ||
195 | } | ||
196 | |||
197 | /* | ||
198 | * rcu_exit_nohz - inform RCU that current CPU is leaving nohz | ||
199 | * | ||
200 | * Exit nohz mode, in other words, -enter- the mode in which RCU | ||
201 | * read-side critical sections normally occur. | ||
202 | */ | ||
203 | void rcu_exit_nohz(void) | ||
204 | { | ||
205 | unsigned long flags; | ||
206 | struct rcu_dynticks *rdtp; | ||
207 | |||
208 | local_irq_save(flags); | ||
209 | rdtp = &__get_cpu_var(rcu_dynticks); | ||
210 | rdtp->dynticks++; | ||
211 | rdtp->dynticks_nesting++; | ||
212 | WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); | ||
213 | local_irq_restore(flags); | ||
214 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | ||
215 | } | ||
216 | |||
217 | /** | ||
218 | * rcu_nmi_enter - inform RCU of entry to NMI context | ||
219 | * | ||
220 | * If the CPU was idle with dynamic ticks active, and there is no | ||
221 | * irq handler running, this updates rdtp->dynticks_nmi to let the | ||
222 | * RCU grace-period handling know that the CPU is active. | ||
223 | */ | ||
224 | void rcu_nmi_enter(void) | ||
225 | { | ||
226 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | ||
227 | |||
228 | if (rdtp->dynticks & 0x1) | ||
229 | return; | ||
230 | rdtp->dynticks_nmi++; | ||
231 | WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs); | ||
232 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * rcu_nmi_exit - inform RCU of exit from NMI context | ||
237 | * | ||
238 | * If the CPU was idle with dynamic ticks active, and there is no | ||
239 | * irq handler running, this updates rdtp->dynticks_nmi to let the | ||
240 | * RCU grace-period handling know that the CPU is no longer active. | ||
241 | */ | ||
242 | void rcu_nmi_exit(void) | ||
243 | { | ||
244 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | ||
245 | |||
246 | if (rdtp->dynticks & 0x1) | ||
247 | return; | ||
248 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | ||
249 | rdtp->dynticks_nmi++; | ||
250 | WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs); | ||
251 | } | ||
252 | |||
253 | /** | ||
254 | * rcu_irq_enter - inform RCU of entry to hard irq context | ||
255 | * | ||
256 | * If the CPU was idle with dynamic ticks active, this updates the | ||
257 | * rdtp->dynticks to let the RCU handling know that the CPU is active. | ||
258 | */ | ||
259 | void rcu_irq_enter(void) | ||
260 | { | ||
261 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | ||
262 | |||
263 | if (rdtp->dynticks_nesting++) | ||
264 | return; | ||
265 | rdtp->dynticks++; | ||
266 | WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); | ||
267 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | ||
268 | } | ||
269 | |||
270 | /** | ||
271 | * rcu_irq_exit - inform RCU of exit from hard irq context | ||
272 | * | ||
273 | * If the CPU was idle with dynamic ticks active, update the rdp->dynticks | ||
274 | * to put let the RCU handling be aware that the CPU is going back to idle | ||
275 | * with no ticks. | ||
276 | */ | ||
277 | void rcu_irq_exit(void) | ||
278 | { | ||
279 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | ||
280 | |||
281 | if (--rdtp->dynticks_nesting) | ||
282 | return; | ||
283 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | ||
284 | rdtp->dynticks++; | ||
285 | WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); | ||
286 | |||
287 | /* If the interrupt queued a callback, get out of dyntick mode. */ | ||
288 | if (__get_cpu_var(rcu_data).nxtlist || | ||
289 | __get_cpu_var(rcu_bh_data).nxtlist) | ||
290 | set_need_resched(); | ||
291 | } | ||
292 | |||
293 | /* | ||
294 | * Record the specified "completed" value, which is later used to validate | ||
295 | * dynticks counter manipulations. Specify "rsp->completed - 1" to | ||
296 | * unconditionally invalidate any future dynticks manipulations (which is | ||
297 | * useful at the beginning of a grace period). | ||
298 | */ | ||
299 | static void dyntick_record_completed(struct rcu_state *rsp, long comp) | ||
300 | { | ||
301 | rsp->dynticks_completed = comp; | ||
302 | } | ||
303 | |||
304 | #ifdef CONFIG_SMP | ||
305 | |||
306 | /* | ||
307 | * Recall the previously recorded value of the completion for dynticks. | ||
308 | */ | ||
309 | static long dyntick_recall_completed(struct rcu_state *rsp) | ||
310 | { | ||
311 | return rsp->dynticks_completed; | ||
312 | } | ||
313 | |||
314 | /* | ||
315 | * Snapshot the specified CPU's dynticks counter so that we can later | ||
316 | * credit them with an implicit quiescent state. Return 1 if this CPU | ||
317 | * is already in a quiescent state courtesy of dynticks idle mode. | ||
318 | */ | ||
319 | static int dyntick_save_progress_counter(struct rcu_data *rdp) | ||
320 | { | ||
321 | int ret; | ||
322 | int snap; | ||
323 | int snap_nmi; | ||
324 | |||
325 | snap = rdp->dynticks->dynticks; | ||
326 | snap_nmi = rdp->dynticks->dynticks_nmi; | ||
327 | smp_mb(); /* Order sampling of snap with end of grace period. */ | ||
328 | rdp->dynticks_snap = snap; | ||
329 | rdp->dynticks_nmi_snap = snap_nmi; | ||
330 | ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0); | ||
331 | if (ret) | ||
332 | rdp->dynticks_fqs++; | ||
333 | return ret; | ||
334 | } | ||
335 | |||
336 | /* | ||
337 | * Return true if the specified CPU has passed through a quiescent | ||
338 | * state by virtue of being in or having passed through an dynticks | ||
339 | * idle state since the last call to dyntick_save_progress_counter() | ||
340 | * for this same CPU. | ||
341 | */ | ||
342 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | ||
343 | { | ||
344 | long curr; | ||
345 | long curr_nmi; | ||
346 | long snap; | ||
347 | long snap_nmi; | ||
348 | |||
349 | curr = rdp->dynticks->dynticks; | ||
350 | snap = rdp->dynticks_snap; | ||
351 | curr_nmi = rdp->dynticks->dynticks_nmi; | ||
352 | snap_nmi = rdp->dynticks_nmi_snap; | ||
353 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
354 | |||
355 | /* | ||
356 | * If the CPU passed through or entered a dynticks idle phase with | ||
357 | * no active irq/NMI handlers, then we can safely pretend that the CPU | ||
358 | * already acknowledged the request to pass through a quiescent | ||
359 | * state. Either way, that CPU cannot possibly be in an RCU | ||
360 | * read-side critical section that started before the beginning | ||
361 | * of the current RCU grace period. | ||
362 | */ | ||
363 | if ((curr != snap || (curr & 0x1) == 0) && | ||
364 | (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) { | ||
365 | rdp->dynticks_fqs++; | ||
366 | return 1; | ||
367 | } | ||
368 | |||
369 | /* Go check for the CPU being offline. */ | ||
370 | return rcu_implicit_offline_qs(rdp); | ||
371 | } | ||
372 | |||
373 | #endif /* #ifdef CONFIG_SMP */ | ||
374 | |||
375 | #else /* #ifdef CONFIG_NO_HZ */ | ||
376 | |||
377 | static void dyntick_record_completed(struct rcu_state *rsp, long comp) | ||
378 | { | ||
379 | } | ||
380 | |||
381 | #ifdef CONFIG_SMP | ||
382 | |||
383 | /* | ||
384 | * If there are no dynticks, then the only way that a CPU can passively | ||
385 | * be in a quiescent state is to be offline. Unlike dynticks idle, which | ||
386 | * is a point in time during the prior (already finished) grace period, | ||
387 | * an offline CPU is always in a quiescent state, and thus can be | ||
388 | * unconditionally applied. So just return the current value of completed. | ||
389 | */ | ||
390 | static long dyntick_recall_completed(struct rcu_state *rsp) | ||
391 | { | ||
392 | return rsp->completed; | ||
393 | } | ||
394 | |||
395 | static int dyntick_save_progress_counter(struct rcu_data *rdp) | ||
396 | { | ||
397 | return 0; | ||
398 | } | ||
399 | |||
400 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | ||
401 | { | ||
402 | return rcu_implicit_offline_qs(rdp); | ||
403 | } | ||
404 | |||
405 | #endif /* #ifdef CONFIG_SMP */ | ||
406 | |||
407 | #endif /* #else #ifdef CONFIG_NO_HZ */ | ||
408 | |||
409 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
410 | |||
411 | static void record_gp_stall_check_time(struct rcu_state *rsp) | ||
412 | { | ||
413 | rsp->gp_start = jiffies; | ||
414 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; | ||
415 | } | ||
416 | |||
417 | static void print_other_cpu_stall(struct rcu_state *rsp) | ||
418 | { | ||
419 | int cpu; | ||
420 | long delta; | ||
421 | unsigned long flags; | ||
422 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
423 | struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | ||
424 | struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; | ||
425 | |||
426 | /* Only let one CPU complain about others per time interval. */ | ||
427 | |||
428 | spin_lock_irqsave(&rnp->lock, flags); | ||
429 | delta = jiffies - rsp->jiffies_stall; | ||
430 | if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) { | ||
431 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
432 | return; | ||
433 | } | ||
434 | rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | ||
435 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
436 | |||
437 | /* OK, time to rat on our buddy... */ | ||
438 | |||
439 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | ||
440 | for (; rnp_cur < rnp_end; rnp_cur++) { | ||
441 | if (rnp_cur->qsmask == 0) | ||
442 | continue; | ||
443 | for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) | ||
444 | if (rnp_cur->qsmask & (1UL << cpu)) | ||
445 | printk(" %d", rnp_cur->grplo + cpu); | ||
446 | } | ||
447 | printk(" (detected by %d, t=%ld jiffies)\n", | ||
448 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | ||
449 | force_quiescent_state(rsp, 0); /* Kick them all. */ | ||
450 | } | ||
451 | |||
452 | static void print_cpu_stall(struct rcu_state *rsp) | ||
453 | { | ||
454 | unsigned long flags; | ||
455 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
456 | |||
457 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", | ||
458 | smp_processor_id(), jiffies - rsp->gp_start); | ||
459 | dump_stack(); | ||
460 | spin_lock_irqsave(&rnp->lock, flags); | ||
461 | if ((long)(jiffies - rsp->jiffies_stall) >= 0) | ||
462 | rsp->jiffies_stall = | ||
463 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | ||
464 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
465 | set_need_resched(); /* kick ourselves to get things going. */ | ||
466 | } | ||
467 | |||
468 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | ||
469 | { | ||
470 | long delta; | ||
471 | struct rcu_node *rnp; | ||
472 | |||
473 | delta = jiffies - rsp->jiffies_stall; | ||
474 | rnp = rdp->mynode; | ||
475 | if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { | ||
476 | |||
477 | /* We haven't checked in, so go dump stack. */ | ||
478 | print_cpu_stall(rsp); | ||
479 | |||
480 | } else if (rsp->gpnum != rsp->completed && | ||
481 | delta >= RCU_STALL_RAT_DELAY) { | ||
482 | |||
483 | /* They had two time units to dump stack, so complain. */ | ||
484 | print_other_cpu_stall(rsp); | ||
485 | } | ||
486 | } | ||
487 | |||
488 | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
489 | |||
490 | static void record_gp_stall_check_time(struct rcu_state *rsp) | ||
491 | { | ||
492 | } | ||
493 | |||
494 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | ||
495 | { | ||
496 | } | ||
497 | |||
498 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
499 | |||
500 | /* | ||
501 | * Update CPU-local rcu_data state to record the newly noticed grace period. | ||
502 | * This is used both when we started the grace period and when we notice | ||
503 | * that someone else started the grace period. | ||
504 | */ | ||
505 | static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) | ||
506 | { | ||
507 | rdp->qs_pending = 1; | ||
508 | rdp->passed_quiesc = 0; | ||
509 | rdp->gpnum = rsp->gpnum; | ||
510 | rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + | ||
511 | RCU_JIFFIES_TILL_FORCE_QS; | ||
512 | } | ||
513 | |||
514 | /* | ||
515 | * Did someone else start a new RCU grace period start since we last | ||
516 | * checked? Update local state appropriately if so. Must be called | ||
517 | * on the CPU corresponding to rdp. | ||
518 | */ | ||
519 | static int | ||
520 | check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) | ||
521 | { | ||
522 | unsigned long flags; | ||
523 | int ret = 0; | ||
524 | |||
525 | local_irq_save(flags); | ||
526 | if (rdp->gpnum != rsp->gpnum) { | ||
527 | note_new_gpnum(rsp, rdp); | ||
528 | ret = 1; | ||
529 | } | ||
530 | local_irq_restore(flags); | ||
531 | return ret; | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * Start a new RCU grace period if warranted, re-initializing the hierarchy | ||
536 | * in preparation for detecting the next grace period. The caller must hold | ||
537 | * the root node's ->lock, which is released before return. Hard irqs must | ||
538 | * be disabled. | ||
539 | */ | ||
540 | static void | ||
541 | rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | ||
542 | __releases(rcu_get_root(rsp)->lock) | ||
543 | { | ||
544 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | ||
545 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
546 | struct rcu_node *rnp_cur; | ||
547 | struct rcu_node *rnp_end; | ||
548 | |||
549 | if (!cpu_needs_another_gp(rsp, rdp)) { | ||
550 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
551 | return; | ||
552 | } | ||
553 | |||
554 | /* Advance to a new grace period and initialize state. */ | ||
555 | rsp->gpnum++; | ||
556 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | ||
557 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | ||
558 | rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + | ||
559 | RCU_JIFFIES_TILL_FORCE_QS; | ||
560 | record_gp_stall_check_time(rsp); | ||
561 | dyntick_record_completed(rsp, rsp->completed - 1); | ||
562 | note_new_gpnum(rsp, rdp); | ||
563 | |||
564 | /* | ||
565 | * Because we are first, we know that all our callbacks will | ||
566 | * be covered by this upcoming grace period, even the ones | ||
567 | * that were registered arbitrarily recently. | ||
568 | */ | ||
569 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
570 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
571 | |||
572 | /* Special-case the common single-level case. */ | ||
573 | if (NUM_RCU_NODES == 1) { | ||
574 | rnp->qsmask = rnp->qsmaskinit; | ||
575 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
576 | return; | ||
577 | } | ||
578 | |||
579 | spin_unlock(&rnp->lock); /* leave irqs disabled. */ | ||
580 | |||
581 | |||
582 | /* Exclude any concurrent CPU-hotplug operations. */ | ||
583 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | ||
584 | |||
585 | /* | ||
586 | * Set the quiescent-state-needed bits in all the non-leaf RCU | ||
587 | * nodes for all currently online CPUs. This operation relies | ||
588 | * on the layout of the hierarchy within the rsp->node[] array. | ||
589 | * Note that other CPUs will access only the leaves of the | ||
590 | * hierarchy, which still indicate that no grace period is in | ||
591 | * progress. In addition, we have excluded CPU-hotplug operations. | ||
592 | * | ||
593 | * We therefore do not need to hold any locks. Any required | ||
594 | * memory barriers will be supplied by the locks guarding the | ||
595 | * leaf rcu_nodes in the hierarchy. | ||
596 | */ | ||
597 | |||
598 | rnp_end = rsp->level[NUM_RCU_LVLS - 1]; | ||
599 | for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) | ||
600 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
601 | |||
602 | /* | ||
603 | * Now set up the leaf nodes. Here we must be careful. First, | ||
604 | * we need to hold the lock in order to exclude other CPUs, which | ||
605 | * might be contending for the leaf nodes' locks. Second, as | ||
606 | * soon as we initialize a given leaf node, its CPUs might run | ||
607 | * up the rest of the hierarchy. We must therefore acquire locks | ||
608 | * for each node that we touch during this stage. (But we still | ||
609 | * are excluding CPU-hotplug operations.) | ||
610 | * | ||
611 | * Note that the grace period cannot complete until we finish | ||
612 | * the initialization process, as there will be at least one | ||
613 | * qsmask bit set in the root node until that time, namely the | ||
614 | * one corresponding to this CPU. | ||
615 | */ | ||
616 | rnp_end = &rsp->node[NUM_RCU_NODES]; | ||
617 | rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | ||
618 | for (; rnp_cur < rnp_end; rnp_cur++) { | ||
619 | spin_lock(&rnp_cur->lock); /* irqs already disabled. */ | ||
620 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
621 | spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ | ||
622 | } | ||
623 | |||
624 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | ||
625 | spin_unlock_irqrestore(&rsp->onofflock, flags); | ||
626 | } | ||
627 | |||
628 | /* | ||
629 | * Advance this CPU's callbacks, but only if the current grace period | ||
630 | * has ended. This may be called only from the CPU to whom the rdp | ||
631 | * belongs. | ||
632 | */ | ||
633 | static void | ||
634 | rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | ||
635 | { | ||
636 | long completed_snap; | ||
637 | unsigned long flags; | ||
638 | |||
639 | local_irq_save(flags); | ||
640 | completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */ | ||
641 | |||
642 | /* Did another grace period end? */ | ||
643 | if (rdp->completed != completed_snap) { | ||
644 | |||
645 | /* Advance callbacks. No harm if list empty. */ | ||
646 | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; | ||
647 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; | ||
648 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
649 | |||
650 | /* Remember that we saw this grace-period completion. */ | ||
651 | rdp->completed = completed_snap; | ||
652 | } | ||
653 | local_irq_restore(flags); | ||
654 | } | ||
655 | |||
656 | /* | ||
657 | * Similar to cpu_quiet(), for which it is a helper function. Allows | ||
658 | * a group of CPUs to be quieted at one go, though all the CPUs in the | ||
659 | * group must be represented by the same leaf rcu_node structure. | ||
660 | * That structure's lock must be held upon entry, and it is released | ||
661 | * before return. | ||
662 | */ | ||
663 | static void | ||
664 | cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | ||
665 | unsigned long flags) | ||
666 | __releases(rnp->lock) | ||
667 | { | ||
668 | /* Walk up the rcu_node hierarchy. */ | ||
669 | for (;;) { | ||
670 | if (!(rnp->qsmask & mask)) { | ||
671 | |||
672 | /* Our bit has already been cleared, so done. */ | ||
673 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
674 | return; | ||
675 | } | ||
676 | rnp->qsmask &= ~mask; | ||
677 | if (rnp->qsmask != 0) { | ||
678 | |||
679 | /* Other bits still set at this level, so done. */ | ||
680 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
681 | return; | ||
682 | } | ||
683 | mask = rnp->grpmask; | ||
684 | if (rnp->parent == NULL) { | ||
685 | |||
686 | /* No more levels. Exit loop holding root lock. */ | ||
687 | |||
688 | break; | ||
689 | } | ||
690 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
691 | rnp = rnp->parent; | ||
692 | spin_lock_irqsave(&rnp->lock, flags); | ||
693 | } | ||
694 | |||
695 | /* | ||
696 | * Get here if we are the last CPU to pass through a quiescent | ||
697 | * state for this grace period. Clean up and let rcu_start_gp() | ||
698 | * start up the next grace period if one is needed. Note that | ||
699 | * we still hold rnp->lock, as required by rcu_start_gp(), which | ||
700 | * will release it. | ||
701 | */ | ||
702 | rsp->completed = rsp->gpnum; | ||
703 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | ||
704 | rcu_start_gp(rsp, flags); /* releases rnp->lock. */ | ||
705 | } | ||
706 | |||
707 | /* | ||
708 | * Record a quiescent state for the specified CPU, which must either be | ||
709 | * the current CPU or an offline CPU. The lastcomp argument is used to | ||
710 | * make sure we are still in the grace period of interest. We don't want | ||
711 | * to end the current grace period based on quiescent states detected in | ||
712 | * an earlier grace period! | ||
713 | */ | ||
714 | static void | ||
715 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | ||
716 | { | ||
717 | unsigned long flags; | ||
718 | unsigned long mask; | ||
719 | struct rcu_node *rnp; | ||
720 | |||
721 | rnp = rdp->mynode; | ||
722 | spin_lock_irqsave(&rnp->lock, flags); | ||
723 | if (lastcomp != ACCESS_ONCE(rsp->completed)) { | ||
724 | |||
725 | /* | ||
726 | * Someone beat us to it for this grace period, so leave. | ||
727 | * The race with GP start is resolved by the fact that we | ||
728 | * hold the leaf rcu_node lock, so that the per-CPU bits | ||
729 | * cannot yet be initialized -- so we would simply find our | ||
730 | * CPU's bit already cleared in cpu_quiet_msk() if this race | ||
731 | * occurred. | ||
732 | */ | ||
733 | rdp->passed_quiesc = 0; /* try again later! */ | ||
734 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
735 | return; | ||
736 | } | ||
737 | mask = rdp->grpmask; | ||
738 | if ((rnp->qsmask & mask) == 0) { | ||
739 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
740 | } else { | ||
741 | rdp->qs_pending = 0; | ||
742 | |||
743 | /* | ||
744 | * This GP can't end until cpu checks in, so all of our | ||
745 | * callbacks can be processed during the next GP. | ||
746 | */ | ||
747 | rdp = rsp->rda[smp_processor_id()]; | ||
748 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
749 | |||
750 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | ||
751 | } | ||
752 | } | ||
753 | |||
754 | /* | ||
755 | * Check to see if there is a new grace period of which this CPU | ||
756 | * is not yet aware, and if so, set up local rcu_data state for it. | ||
757 | * Otherwise, see if this CPU has just passed through its first | ||
758 | * quiescent state for this grace period, and record that fact if so. | ||
759 | */ | ||
760 | static void | ||
761 | rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) | ||
762 | { | ||
763 | /* If there is now a new grace period, record and return. */ | ||
764 | if (check_for_new_grace_period(rsp, rdp)) | ||
765 | return; | ||
766 | |||
767 | /* | ||
768 | * Does this CPU still need to do its part for current grace period? | ||
769 | * If no, return and let the other CPUs do their part as well. | ||
770 | */ | ||
771 | if (!rdp->qs_pending) | ||
772 | return; | ||
773 | |||
774 | /* | ||
775 | * Was there a quiescent state since the beginning of the grace | ||
776 | * period? If no, then exit and wait for the next call. | ||
777 | */ | ||
778 | if (!rdp->passed_quiesc) | ||
779 | return; | ||
780 | |||
781 | /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */ | ||
782 | cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); | ||
783 | } | ||
784 | |||
785 | #ifdef CONFIG_HOTPLUG_CPU | ||
786 | |||
787 | /* | ||
788 | * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy | ||
789 | * and move all callbacks from the outgoing CPU to the current one. | ||
790 | */ | ||
791 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | ||
792 | { | ||
793 | int i; | ||
794 | unsigned long flags; | ||
795 | long lastcomp; | ||
796 | unsigned long mask; | ||
797 | struct rcu_data *rdp = rsp->rda[cpu]; | ||
798 | struct rcu_data *rdp_me; | ||
799 | struct rcu_node *rnp; | ||
800 | |||
801 | /* Exclude any attempts to start a new grace period. */ | ||
802 | spin_lock_irqsave(&rsp->onofflock, flags); | ||
803 | |||
804 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | ||
805 | rnp = rdp->mynode; | ||
806 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | ||
807 | do { | ||
808 | spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
809 | rnp->qsmaskinit &= ~mask; | ||
810 | if (rnp->qsmaskinit != 0) { | ||
811 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | ||
812 | break; | ||
813 | } | ||
814 | mask = rnp->grpmask; | ||
815 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | ||
816 | rnp = rnp->parent; | ||
817 | } while (rnp != NULL); | ||
818 | lastcomp = rsp->completed; | ||
819 | |||
820 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | ||
821 | |||
822 | /* Being offline is a quiescent state, so go record it. */ | ||
823 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
824 | |||
825 | /* | ||
826 | * Move callbacks from the outgoing CPU to the running CPU. | ||
827 | * Note that the outgoing CPU is now quiscent, so it is now | ||
828 | * (uncharacteristically) safe to access it rcu_data structure. | ||
829 | * Note also that we must carefully retain the order of the | ||
830 | * outgoing CPU's callbacks in order for rcu_barrier() to work | ||
831 | * correctly. Finally, note that we start all the callbacks | ||
832 | * afresh, even those that have passed through a grace period | ||
833 | * and are therefore ready to invoke. The theory is that hotplug | ||
834 | * events are rare, and that if they are frequent enough to | ||
835 | * indefinitely delay callbacks, you have far worse things to | ||
836 | * be worrying about. | ||
837 | */ | ||
838 | rdp_me = rsp->rda[smp_processor_id()]; | ||
839 | if (rdp->nxtlist != NULL) { | ||
840 | *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist; | ||
841 | rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | ||
842 | rdp->nxtlist = NULL; | ||
843 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
844 | rdp->nxttail[i] = &rdp->nxtlist; | ||
845 | rdp_me->qlen += rdp->qlen; | ||
846 | rdp->qlen = 0; | ||
847 | } | ||
848 | local_irq_restore(flags); | ||
849 | } | ||
850 | |||
851 | /* | ||
852 | * Remove the specified CPU from the RCU hierarchy and move any pending | ||
853 | * callbacks that it might have to the current CPU. This code assumes | ||
854 | * that at least one CPU in the system will remain running at all times. | ||
855 | * Any attempt to offline -all- CPUs is likely to strand RCU callbacks. | ||
856 | */ | ||
857 | static void rcu_offline_cpu(int cpu) | ||
858 | { | ||
859 | __rcu_offline_cpu(cpu, &rcu_state); | ||
860 | __rcu_offline_cpu(cpu, &rcu_bh_state); | ||
861 | } | ||
862 | |||
863 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
864 | |||
865 | static void rcu_offline_cpu(int cpu) | ||
866 | { | ||
867 | } | ||
868 | |||
869 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | ||
870 | |||
871 | /* | ||
872 | * Invoke any RCU callbacks that have made it to the end of their grace | ||
873 | * period. Thottle as specified by rdp->blimit. | ||
874 | */ | ||
875 | static void rcu_do_batch(struct rcu_data *rdp) | ||
876 | { | ||
877 | unsigned long flags; | ||
878 | struct rcu_head *next, *list, **tail; | ||
879 | int count; | ||
880 | |||
881 | /* If no callbacks are ready, just return.*/ | ||
882 | if (!cpu_has_callbacks_ready_to_invoke(rdp)) | ||
883 | return; | ||
884 | |||
885 | /* | ||
886 | * Extract the list of ready callbacks, disabling to prevent | ||
887 | * races with call_rcu() from interrupt handlers. | ||
888 | */ | ||
889 | local_irq_save(flags); | ||
890 | list = rdp->nxtlist; | ||
891 | rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; | ||
892 | *rdp->nxttail[RCU_DONE_TAIL] = NULL; | ||
893 | tail = rdp->nxttail[RCU_DONE_TAIL]; | ||
894 | for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) | ||
895 | if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) | ||
896 | rdp->nxttail[count] = &rdp->nxtlist; | ||
897 | local_irq_restore(flags); | ||
898 | |||
899 | /* Invoke callbacks. */ | ||
900 | count = 0; | ||
901 | while (list) { | ||
902 | next = list->next; | ||
903 | prefetch(next); | ||
904 | list->func(list); | ||
905 | list = next; | ||
906 | if (++count >= rdp->blimit) | ||
907 | break; | ||
908 | } | ||
909 | |||
910 | local_irq_save(flags); | ||
911 | |||
912 | /* Update count, and requeue any remaining callbacks. */ | ||
913 | rdp->qlen -= count; | ||
914 | if (list != NULL) { | ||
915 | *tail = rdp->nxtlist; | ||
916 | rdp->nxtlist = list; | ||
917 | for (count = 0; count < RCU_NEXT_SIZE; count++) | ||
918 | if (&rdp->nxtlist == rdp->nxttail[count]) | ||
919 | rdp->nxttail[count] = tail; | ||
920 | else | ||
921 | break; | ||
922 | } | ||
923 | |||
924 | /* Reinstate batch limit if we have worked down the excess. */ | ||
925 | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) | ||
926 | rdp->blimit = blimit; | ||
927 | |||
928 | local_irq_restore(flags); | ||
929 | |||
930 | /* Re-raise the RCU softirq if there are callbacks remaining. */ | ||
931 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | ||
932 | raise_softirq(RCU_SOFTIRQ); | ||
933 | } | ||
934 | |||
935 | /* | ||
936 | * Check to see if this CPU is in a non-context-switch quiescent state | ||
937 | * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). | ||
938 | * Also schedule the RCU softirq handler. | ||
939 | * | ||
940 | * This function must be called with hardirqs disabled. It is normally | ||
941 | * invoked from the scheduling-clock interrupt. If rcu_pending returns | ||
942 | * false, there is no point in invoking rcu_check_callbacks(). | ||
943 | */ | ||
944 | void rcu_check_callbacks(int cpu, int user) | ||
945 | { | ||
946 | if (user || | ||
947 | (idle_cpu(cpu) && !in_softirq() && | ||
948 | hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | ||
949 | |||
950 | /* | ||
951 | * Get here if this CPU took its interrupt from user | ||
952 | * mode or from the idle loop, and if this is not a | ||
953 | * nested interrupt. In this case, the CPU is in | ||
954 | * a quiescent state, so count it. | ||
955 | * | ||
956 | * No memory barrier is required here because both | ||
957 | * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference | ||
958 | * only CPU-local variables that other CPUs neither | ||
959 | * access nor modify, at least not while the corresponding | ||
960 | * CPU is online. | ||
961 | */ | ||
962 | |||
963 | rcu_qsctr_inc(cpu); | ||
964 | rcu_bh_qsctr_inc(cpu); | ||
965 | |||
966 | } else if (!in_softirq()) { | ||
967 | |||
968 | /* | ||
969 | * Get here if this CPU did not take its interrupt from | ||
970 | * softirq, in other words, if it is not interrupting | ||
971 | * a rcu_bh read-side critical section. This is an _bh | ||
972 | * critical section, so count it. | ||
973 | */ | ||
974 | |||
975 | rcu_bh_qsctr_inc(cpu); | ||
976 | } | ||
977 | raise_softirq(RCU_SOFTIRQ); | ||
978 | } | ||
979 | |||
980 | #ifdef CONFIG_SMP | ||
981 | |||
982 | /* | ||
983 | * Scan the leaf rcu_node structures, processing dyntick state for any that | ||
984 | * have not yet encountered a quiescent state, using the function specified. | ||
985 | * Returns 1 if the current grace period ends while scanning (possibly | ||
986 | * because we made it end). | ||
987 | */ | ||
988 | static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, | ||
989 | int (*f)(struct rcu_data *)) | ||
990 | { | ||
991 | unsigned long bit; | ||
992 | int cpu; | ||
993 | unsigned long flags; | ||
994 | unsigned long mask; | ||
995 | struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | ||
996 | struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; | ||
997 | |||
998 | for (; rnp_cur < rnp_end; rnp_cur++) { | ||
999 | mask = 0; | ||
1000 | spin_lock_irqsave(&rnp_cur->lock, flags); | ||
1001 | if (rsp->completed != lastcomp) { | ||
1002 | spin_unlock_irqrestore(&rnp_cur->lock, flags); | ||
1003 | return 1; | ||
1004 | } | ||
1005 | if (rnp_cur->qsmask == 0) { | ||
1006 | spin_unlock_irqrestore(&rnp_cur->lock, flags); | ||
1007 | continue; | ||
1008 | } | ||
1009 | cpu = rnp_cur->grplo; | ||
1010 | bit = 1; | ||
1011 | for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) { | ||
1012 | if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu])) | ||
1013 | mask |= bit; | ||
1014 | } | ||
1015 | if (mask != 0 && rsp->completed == lastcomp) { | ||
1016 | |||
1017 | /* cpu_quiet_msk() releases rnp_cur->lock. */ | ||
1018 | cpu_quiet_msk(mask, rsp, rnp_cur, flags); | ||
1019 | continue; | ||
1020 | } | ||
1021 | spin_unlock_irqrestore(&rnp_cur->lock, flags); | ||
1022 | } | ||
1023 | return 0; | ||
1024 | } | ||
1025 | |||
1026 | /* | ||
1027 | * Force quiescent states on reluctant CPUs, and also detect which | ||
1028 | * CPUs are in dyntick-idle mode. | ||
1029 | */ | ||
1030 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | ||
1031 | { | ||
1032 | unsigned long flags; | ||
1033 | long lastcomp; | ||
1034 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | ||
1035 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1036 | u8 signaled; | ||
1037 | |||
1038 | if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) | ||
1039 | return; /* No grace period in progress, nothing to force. */ | ||
1040 | if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { | ||
1041 | rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ | ||
1042 | return; /* Someone else is already on the job. */ | ||
1043 | } | ||
1044 | if (relaxed && | ||
1045 | (long)(rsp->jiffies_force_qs - jiffies) >= 0 && | ||
1046 | (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) >= 0) | ||
1047 | goto unlock_ret; /* no emergency and done recently. */ | ||
1048 | rsp->n_force_qs++; | ||
1049 | spin_lock(&rnp->lock); | ||
1050 | lastcomp = rsp->completed; | ||
1051 | signaled = rsp->signaled; | ||
1052 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | ||
1053 | rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + | ||
1054 | RCU_JIFFIES_TILL_FORCE_QS; | ||
1055 | if (lastcomp == rsp->gpnum) { | ||
1056 | rsp->n_force_qs_ngp++; | ||
1057 | spin_unlock(&rnp->lock); | ||
1058 | goto unlock_ret; /* no GP in progress, time updated. */ | ||
1059 | } | ||
1060 | spin_unlock(&rnp->lock); | ||
1061 | switch (signaled) { | ||
1062 | case RCU_GP_INIT: | ||
1063 | |||
1064 | break; /* grace period still initializing, ignore. */ | ||
1065 | |||
1066 | case RCU_SAVE_DYNTICK: | ||
1067 | |||
1068 | if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) | ||
1069 | break; /* So gcc recognizes the dead code. */ | ||
1070 | |||
1071 | /* Record dyntick-idle state. */ | ||
1072 | if (rcu_process_dyntick(rsp, lastcomp, | ||
1073 | dyntick_save_progress_counter)) | ||
1074 | goto unlock_ret; | ||
1075 | |||
1076 | /* Update state, record completion counter. */ | ||
1077 | spin_lock(&rnp->lock); | ||
1078 | if (lastcomp == rsp->completed) { | ||
1079 | rsp->signaled = RCU_FORCE_QS; | ||
1080 | dyntick_record_completed(rsp, lastcomp); | ||
1081 | } | ||
1082 | spin_unlock(&rnp->lock); | ||
1083 | break; | ||
1084 | |||
1085 | case RCU_FORCE_QS: | ||
1086 | |||
1087 | /* Check dyntick-idle state, send IPI to laggarts. */ | ||
1088 | if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp), | ||
1089 | rcu_implicit_dynticks_qs)) | ||
1090 | goto unlock_ret; | ||
1091 | |||
1092 | /* Leave state in case more forcing is required. */ | ||
1093 | |||
1094 | break; | ||
1095 | } | ||
1096 | unlock_ret: | ||
1097 | spin_unlock_irqrestore(&rsp->fqslock, flags); | ||
1098 | } | ||
1099 | |||
1100 | #else /* #ifdef CONFIG_SMP */ | ||
1101 | |||
1102 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | ||
1103 | { | ||
1104 | set_need_resched(); | ||
1105 | } | ||
1106 | |||
1107 | #endif /* #else #ifdef CONFIG_SMP */ | ||
1108 | |||
1109 | /* | ||
1110 | * This does the RCU processing work from softirq context for the | ||
1111 | * specified rcu_state and rcu_data structures. This may be called | ||
1112 | * only from the CPU to whom the rdp belongs. | ||
1113 | */ | ||
1114 | static void | ||
1115 | __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | ||
1116 | { | ||
1117 | unsigned long flags; | ||
1118 | |||
1119 | /* | ||
1120 | * If an RCU GP has gone long enough, go check for dyntick | ||
1121 | * idle CPUs and, if needed, send resched IPIs. | ||
1122 | */ | ||
1123 | if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || | ||
1124 | (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0) | ||
1125 | force_quiescent_state(rsp, 1); | ||
1126 | |||
1127 | /* | ||
1128 | * Advance callbacks in response to end of earlier grace | ||
1129 | * period that some other CPU ended. | ||
1130 | */ | ||
1131 | rcu_process_gp_end(rsp, rdp); | ||
1132 | |||
1133 | /* Update RCU state based on any recent quiescent states. */ | ||
1134 | rcu_check_quiescent_state(rsp, rdp); | ||
1135 | |||
1136 | /* Does this CPU require a not-yet-started grace period? */ | ||
1137 | if (cpu_needs_another_gp(rsp, rdp)) { | ||
1138 | spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); | ||
1139 | rcu_start_gp(rsp, flags); /* releases above lock */ | ||
1140 | } | ||
1141 | |||
1142 | /* If there are callbacks ready, invoke them. */ | ||
1143 | rcu_do_batch(rdp); | ||
1144 | } | ||
1145 | |||
1146 | /* | ||
1147 | * Do softirq processing for the current CPU. | ||
1148 | */ | ||
1149 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
1150 | { | ||
1151 | /* | ||
1152 | * Memory references from any prior RCU read-side critical sections | ||
1153 | * executed by the interrupted code must be seen before any RCU | ||
1154 | * grace-period manipulations below. | ||
1155 | */ | ||
1156 | smp_mb(); /* See above block comment. */ | ||
1157 | |||
1158 | __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data)); | ||
1159 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | ||
1160 | |||
1161 | /* | ||
1162 | * Memory references from any later RCU read-side critical sections | ||
1163 | * executed by the interrupted code must be seen after any RCU | ||
1164 | * grace-period manipulations above. | ||
1165 | */ | ||
1166 | smp_mb(); /* See above block comment. */ | ||
1167 | } | ||
1168 | |||
1169 | static void | ||
1170 | __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | ||
1171 | struct rcu_state *rsp) | ||
1172 | { | ||
1173 | unsigned long flags; | ||
1174 | struct rcu_data *rdp; | ||
1175 | |||
1176 | head->func = func; | ||
1177 | head->next = NULL; | ||
1178 | |||
1179 | smp_mb(); /* Ensure RCU update seen before callback registry. */ | ||
1180 | |||
1181 | /* | ||
1182 | * Opportunistically note grace-period endings and beginnings. | ||
1183 | * Note that we might see a beginning right after we see an | ||
1184 | * end, but never vice versa, since this CPU has to pass through | ||
1185 | * a quiescent state betweentimes. | ||
1186 | */ | ||
1187 | local_irq_save(flags); | ||
1188 | rdp = rsp->rda[smp_processor_id()]; | ||
1189 | rcu_process_gp_end(rsp, rdp); | ||
1190 | check_for_new_grace_period(rsp, rdp); | ||
1191 | |||
1192 | /* Add the callback to our list. */ | ||
1193 | *rdp->nxttail[RCU_NEXT_TAIL] = head; | ||
1194 | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; | ||
1195 | |||
1196 | /* Start a new grace period if one not already started. */ | ||
1197 | if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) { | ||
1198 | unsigned long nestflag; | ||
1199 | struct rcu_node *rnp_root = rcu_get_root(rsp); | ||
1200 | |||
1201 | spin_lock_irqsave(&rnp_root->lock, nestflag); | ||
1202 | rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ | ||
1203 | } | ||
1204 | |||
1205 | /* Force the grace period if too many callbacks or too long waiting. */ | ||
1206 | if (unlikely(++rdp->qlen > qhimark)) { | ||
1207 | rdp->blimit = LONG_MAX; | ||
1208 | force_quiescent_state(rsp, 0); | ||
1209 | } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || | ||
1210 | (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0) | ||
1211 | force_quiescent_state(rsp, 1); | ||
1212 | local_irq_restore(flags); | ||
1213 | } | ||
1214 | |||
1215 | /* | ||
1216 | * Queue an RCU callback for invocation after a grace period. | ||
1217 | */ | ||
1218 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
1219 | { | ||
1220 | __call_rcu(head, func, &rcu_state); | ||
1221 | } | ||
1222 | EXPORT_SYMBOL_GPL(call_rcu); | ||
1223 | |||
1224 | /* | ||
1225 | * Queue an RCU for invocation after a quicker grace period. | ||
1226 | */ | ||
1227 | void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
1228 | { | ||
1229 | __call_rcu(head, func, &rcu_bh_state); | ||
1230 | } | ||
1231 | EXPORT_SYMBOL_GPL(call_rcu_bh); | ||
1232 | |||
1233 | /* | ||
1234 | * Check to see if there is any immediate RCU-related work to be done | ||
1235 | * by the current CPU, for the specified type of RCU, returning 1 if so. | ||
1236 | * The checks are in order of increasing expense: checks that can be | ||
1237 | * carried out against CPU-local state are performed first. However, | ||
1238 | * we must check for CPU stalls first, else we might not get a chance. | ||
1239 | */ | ||
1240 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | ||
1241 | { | ||
1242 | rdp->n_rcu_pending++; | ||
1243 | |||
1244 | /* Check for CPU stalls, if enabled. */ | ||
1245 | check_cpu_stall(rsp, rdp); | ||
1246 | |||
1247 | /* Is the RCU core waiting for a quiescent state from this CPU? */ | ||
1248 | if (rdp->qs_pending) | ||
1249 | return 1; | ||
1250 | |||
1251 | /* Does this CPU have callbacks ready to invoke? */ | ||
1252 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | ||
1253 | return 1; | ||
1254 | |||
1255 | /* Has RCU gone idle with this CPU needing another grace period? */ | ||
1256 | if (cpu_needs_another_gp(rsp, rdp)) | ||
1257 | return 1; | ||
1258 | |||
1259 | /* Has another RCU grace period completed? */ | ||
1260 | if (ACCESS_ONCE(rsp->completed) != rdp->completed) /* outside of lock */ | ||
1261 | return 1; | ||
1262 | |||
1263 | /* Has a new RCU grace period started? */ | ||
1264 | if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) /* outside of lock */ | ||
1265 | return 1; | ||
1266 | |||
1267 | /* Has an RCU GP gone long enough to send resched IPIs &c? */ | ||
1268 | if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) && | ||
1269 | ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || | ||
1270 | (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)) | ||
1271 | return 1; | ||
1272 | |||
1273 | /* nothing to do */ | ||
1274 | return 0; | ||
1275 | } | ||
1276 | |||
1277 | /* | ||
1278 | * Check to see if there is any immediate RCU-related work to be done | ||
1279 | * by the current CPU, returning 1 if so. This function is part of the | ||
1280 | * RCU implementation; it is -not- an exported member of the RCU API. | ||
1281 | */ | ||
1282 | int rcu_pending(int cpu) | ||
1283 | { | ||
1284 | return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) || | ||
1285 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)); | ||
1286 | } | ||
1287 | |||
1288 | /* | ||
1289 | * Check to see if any future RCU-related work will need to be done | ||
1290 | * by the current CPU, even if none need be done immediately, returning | ||
1291 | * 1 if so. This function is part of the RCU implementation; it is -not- | ||
1292 | * an exported member of the RCU API. | ||
1293 | */ | ||
1294 | int rcu_needs_cpu(int cpu) | ||
1295 | { | ||
1296 | /* RCU callbacks either ready or pending? */ | ||
1297 | return per_cpu(rcu_data, cpu).nxtlist || | ||
1298 | per_cpu(rcu_bh_data, cpu).nxtlist; | ||
1299 | } | ||
1300 | |||
1301 | /* | ||
1302 | * Initialize a CPU's per-CPU RCU data. We take this "scorched earth" | ||
1303 | * approach so that we don't have to worry about how long the CPU has | ||
1304 | * been gone, or whether it ever was online previously. We do trust the | ||
1305 | * ->mynode field, as it is constant for a given struct rcu_data and | ||
1306 | * initialized during early boot. | ||
1307 | * | ||
1308 | * Note that only one online or offline event can be happening at a given | ||
1309 | * time. Note also that we can accept some slop in the rsp->completed | ||
1310 | * access due to the fact that this CPU cannot possibly have any RCU | ||
1311 | * callbacks in flight yet. | ||
1312 | */ | ||
1313 | static void | ||
1314 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp) | ||
1315 | { | ||
1316 | unsigned long flags; | ||
1317 | int i; | ||
1318 | long lastcomp; | ||
1319 | unsigned long mask; | ||
1320 | struct rcu_data *rdp = rsp->rda[cpu]; | ||
1321 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1322 | |||
1323 | /* Set up local state, ensuring consistent view of global state. */ | ||
1324 | spin_lock_irqsave(&rnp->lock, flags); | ||
1325 | lastcomp = rsp->completed; | ||
1326 | rdp->completed = lastcomp; | ||
1327 | rdp->gpnum = lastcomp; | ||
1328 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ | ||
1329 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ | ||
1330 | rdp->beenonline = 1; /* We have now been online. */ | ||
1331 | rdp->passed_quiesc_completed = lastcomp - 1; | ||
1332 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | ||
1333 | rdp->nxtlist = NULL; | ||
1334 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
1335 | rdp->nxttail[i] = &rdp->nxtlist; | ||
1336 | rdp->qlen = 0; | ||
1337 | rdp->blimit = blimit; | ||
1338 | #ifdef CONFIG_NO_HZ | ||
1339 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | ||
1340 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
1341 | rdp->cpu = cpu; | ||
1342 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
1343 | |||
1344 | /* | ||
1345 | * A new grace period might start here. If so, we won't be part | ||
1346 | * of it, but that is OK, as we are currently in a quiescent state. | ||
1347 | */ | ||
1348 | |||
1349 | /* Exclude any attempts to start a new GP on large systems. */ | ||
1350 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | ||
1351 | |||
1352 | /* Add CPU to rcu_node bitmasks. */ | ||
1353 | rnp = rdp->mynode; | ||
1354 | mask = rdp->grpmask; | ||
1355 | do { | ||
1356 | /* Exclude any attempts to start a new GP on small systems. */ | ||
1357 | spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
1358 | rnp->qsmaskinit |= mask; | ||
1359 | mask = rnp->grpmask; | ||
1360 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | ||
1361 | rnp = rnp->parent; | ||
1362 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | ||
1363 | |||
1364 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | ||
1365 | |||
1366 | /* | ||
1367 | * A new grace period might start here. If so, we will be part of | ||
1368 | * it, and its gpnum will be greater than ours, so we will | ||
1369 | * participate. It is also possible for the gpnum to have been | ||
1370 | * incremented before this function was called, and the bitmasks | ||
1371 | * to not be filled out until now, in which case we will also | ||
1372 | * participate due to our gpnum being behind. | ||
1373 | */ | ||
1374 | |||
1375 | /* Since it is coming online, the CPU is in a quiescent state. */ | ||
1376 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
1377 | local_irq_restore(flags); | ||
1378 | } | ||
1379 | |||
1380 | static void __cpuinit rcu_online_cpu(int cpu) | ||
1381 | { | ||
1382 | #ifdef CONFIG_NO_HZ | ||
1383 | struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); | ||
1384 | |||
1385 | rdtp->dynticks_nesting = 1; | ||
1386 | rdtp->dynticks |= 1; /* need consecutive #s even for hotplug. */ | ||
1387 | rdtp->dynticks_nmi = (rdtp->dynticks_nmi + 1) & ~0x1; | ||
1388 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
1389 | rcu_init_percpu_data(cpu, &rcu_state); | ||
1390 | rcu_init_percpu_data(cpu, &rcu_bh_state); | ||
1391 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
1392 | } | ||
1393 | |||
1394 | /* | ||
1395 | * Handle CPU online/offline notifcation events. | ||
1396 | */ | ||
1397 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | ||
1398 | unsigned long action, void *hcpu) | ||
1399 | { | ||
1400 | long cpu = (long)hcpu; | ||
1401 | |||
1402 | switch (action) { | ||
1403 | case CPU_UP_PREPARE: | ||
1404 | case CPU_UP_PREPARE_FROZEN: | ||
1405 | rcu_online_cpu(cpu); | ||
1406 | break; | ||
1407 | case CPU_DEAD: | ||
1408 | case CPU_DEAD_FROZEN: | ||
1409 | case CPU_UP_CANCELED: | ||
1410 | case CPU_UP_CANCELED_FROZEN: | ||
1411 | rcu_offline_cpu(cpu); | ||
1412 | break; | ||
1413 | default: | ||
1414 | break; | ||
1415 | } | ||
1416 | return NOTIFY_OK; | ||
1417 | } | ||
1418 | |||
1419 | /* | ||
1420 | * Compute the per-level fanout, either using the exact fanout specified | ||
1421 | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. | ||
1422 | */ | ||
1423 | #ifdef CONFIG_RCU_FANOUT_EXACT | ||
1424 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | ||
1425 | { | ||
1426 | int i; | ||
1427 | |||
1428 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) | ||
1429 | rsp->levelspread[i] = CONFIG_RCU_FANOUT; | ||
1430 | } | ||
1431 | #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ | ||
1432 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | ||
1433 | { | ||
1434 | int ccur; | ||
1435 | int cprv; | ||
1436 | int i; | ||
1437 | |||
1438 | cprv = NR_CPUS; | ||
1439 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | ||
1440 | ccur = rsp->levelcnt[i]; | ||
1441 | rsp->levelspread[i] = (cprv + ccur - 1) / ccur; | ||
1442 | cprv = ccur; | ||
1443 | } | ||
1444 | } | ||
1445 | #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ | ||
1446 | |||
1447 | /* | ||
1448 | * Helper function for rcu_init() that initializes one rcu_state structure. | ||
1449 | */ | ||
1450 | static void __init rcu_init_one(struct rcu_state *rsp) | ||
1451 | { | ||
1452 | int cpustride = 1; | ||
1453 | int i; | ||
1454 | int j; | ||
1455 | struct rcu_node *rnp; | ||
1456 | |||
1457 | /* Initialize the level-tracking arrays. */ | ||
1458 | |||
1459 | for (i = 1; i < NUM_RCU_LVLS; i++) | ||
1460 | rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; | ||
1461 | rcu_init_levelspread(rsp); | ||
1462 | |||
1463 | /* Initialize the elements themselves, starting from the leaves. */ | ||
1464 | |||
1465 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | ||
1466 | cpustride *= rsp->levelspread[i]; | ||
1467 | rnp = rsp->level[i]; | ||
1468 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | ||
1469 | spin_lock_init(&rnp->lock); | ||
1470 | rnp->qsmask = 0; | ||
1471 | rnp->qsmaskinit = 0; | ||
1472 | rnp->grplo = j * cpustride; | ||
1473 | rnp->grphi = (j + 1) * cpustride - 1; | ||
1474 | if (rnp->grphi >= NR_CPUS) | ||
1475 | rnp->grphi = NR_CPUS - 1; | ||
1476 | if (i == 0) { | ||
1477 | rnp->grpnum = 0; | ||
1478 | rnp->grpmask = 0; | ||
1479 | rnp->parent = NULL; | ||
1480 | } else { | ||
1481 | rnp->grpnum = j % rsp->levelspread[i - 1]; | ||
1482 | rnp->grpmask = 1UL << rnp->grpnum; | ||
1483 | rnp->parent = rsp->level[i - 1] + | ||
1484 | j / rsp->levelspread[i - 1]; | ||
1485 | } | ||
1486 | rnp->level = i; | ||
1487 | } | ||
1488 | } | ||
1489 | } | ||
1490 | |||
1491 | /* | ||
1492 | * Helper macro for __rcu_init(). To be used nowhere else! | ||
1493 | * Assigns leaf node pointers into each CPU's rcu_data structure. | ||
1494 | */ | ||
1495 | #define RCU_DATA_PTR_INIT(rsp, rcu_data) \ | ||
1496 | do { \ | ||
1497 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ | ||
1498 | j = 0; \ | ||
1499 | for_each_possible_cpu(i) { \ | ||
1500 | if (i > rnp[j].grphi) \ | ||
1501 | j++; \ | ||
1502 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ | ||
1503 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ | ||
1504 | } \ | ||
1505 | } while (0) | ||
1506 | |||
1507 | static struct notifier_block __cpuinitdata rcu_nb = { | ||
1508 | .notifier_call = rcu_cpu_notify, | ||
1509 | }; | ||
1510 | |||
1511 | void __init __rcu_init(void) | ||
1512 | { | ||
1513 | int i; /* All used by RCU_DATA_PTR_INIT(). */ | ||
1514 | int j; | ||
1515 | struct rcu_node *rnp; | ||
1516 | |||
1517 | printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n"); | ||
1518 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
1519 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | ||
1520 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
1521 | rcu_init_one(&rcu_state); | ||
1522 | RCU_DATA_PTR_INIT(&rcu_state, rcu_data); | ||
1523 | rcu_init_one(&rcu_bh_state); | ||
1524 | RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data); | ||
1525 | |||
1526 | for_each_online_cpu(i) | ||
1527 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i); | ||
1528 | /* Register notifier for non-boot CPUs */ | ||
1529 | register_cpu_notifier(&rcu_nb); | ||
1530 | printk(KERN_WARNING "Experimental hierarchical RCU init done.\n"); | ||
1531 | } | ||
1532 | |||
1533 | module_param(blimit, int, 0); | ||
1534 | module_param(qhimark, int, 0); | ||
1535 | module_param(qlowmark, int, 0); | ||
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c new file mode 100644 index 000000000000..d6db3e837826 --- /dev/null +++ b/kernel/rcutree_trace.c | |||
@@ -0,0 +1,271 @@ | |||
1 | /* | ||
2 | * Read-Copy Update tracing for classic implementation | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | * | ||
18 | * Copyright IBM Corporation, 2008 | ||
19 | * | ||
20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | ||
21 | * | ||
22 | * For detailed explanation of Read-Copy Update mechanism see - | ||
23 | * Documentation/RCU | ||
24 | * | ||
25 | */ | ||
26 | #include <linux/types.h> | ||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/smp.h> | ||
31 | #include <linux/rcupdate.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/sched.h> | ||
34 | #include <asm/atomic.h> | ||
35 | #include <linux/bitops.h> | ||
36 | #include <linux/module.h> | ||
37 | #include <linux/completion.h> | ||
38 | #include <linux/moduleparam.h> | ||
39 | #include <linux/percpu.h> | ||
40 | #include <linux/notifier.h> | ||
41 | #include <linux/cpu.h> | ||
42 | #include <linux/mutex.h> | ||
43 | #include <linux/debugfs.h> | ||
44 | #include <linux/seq_file.h> | ||
45 | |||
46 | static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) | ||
47 | { | ||
48 | if (!rdp->beenonline) | ||
49 | return; | ||
50 | seq_printf(m, "%3d%cc=%ld g=%ld pq=%d pqc=%ld qp=%d rpfq=%ld rp=%x", | ||
51 | rdp->cpu, | ||
52 | cpu_is_offline(rdp->cpu) ? '!' : ' ', | ||
53 | rdp->completed, rdp->gpnum, | ||
54 | rdp->passed_quiesc, rdp->passed_quiesc_completed, | ||
55 | rdp->qs_pending, | ||
56 | rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending, | ||
57 | (int)(rdp->n_rcu_pending & 0xffff)); | ||
58 | #ifdef CONFIG_NO_HZ | ||
59 | seq_printf(m, " dt=%d/%d dn=%d df=%lu", | ||
60 | rdp->dynticks->dynticks, | ||
61 | rdp->dynticks->dynticks_nesting, | ||
62 | rdp->dynticks->dynticks_nmi, | ||
63 | rdp->dynticks_fqs); | ||
64 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
65 | seq_printf(m, " of=%lu ri=%lu", rdp->offline_fqs, rdp->resched_ipi); | ||
66 | seq_printf(m, " ql=%ld b=%ld\n", rdp->qlen, rdp->blimit); | ||
67 | } | ||
68 | |||
69 | #define PRINT_RCU_DATA(name, func, m) \ | ||
70 | do { \ | ||
71 | int _p_r_d_i; \ | ||
72 | \ | ||
73 | for_each_possible_cpu(_p_r_d_i) \ | ||
74 | func(m, &per_cpu(name, _p_r_d_i)); \ | ||
75 | } while (0) | ||
76 | |||
77 | static int show_rcudata(struct seq_file *m, void *unused) | ||
78 | { | ||
79 | seq_puts(m, "rcu:\n"); | ||
80 | PRINT_RCU_DATA(rcu_data, print_one_rcu_data, m); | ||
81 | seq_puts(m, "rcu_bh:\n"); | ||
82 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m); | ||
83 | return 0; | ||
84 | } | ||
85 | |||
86 | static int rcudata_open(struct inode *inode, struct file *file) | ||
87 | { | ||
88 | return single_open(file, show_rcudata, NULL); | ||
89 | } | ||
90 | |||
91 | static struct file_operations rcudata_fops = { | ||
92 | .owner = THIS_MODULE, | ||
93 | .open = rcudata_open, | ||
94 | .read = seq_read, | ||
95 | .llseek = seq_lseek, | ||
96 | .release = single_release, | ||
97 | }; | ||
98 | |||
99 | static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp) | ||
100 | { | ||
101 | if (!rdp->beenonline) | ||
102 | return; | ||
103 | seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d,%ld,%ld", | ||
104 | rdp->cpu, | ||
105 | cpu_is_offline(rdp->cpu) ? "\"Y\"" : "\"N\"", | ||
106 | rdp->completed, rdp->gpnum, | ||
107 | rdp->passed_quiesc, rdp->passed_quiesc_completed, | ||
108 | rdp->qs_pending, | ||
109 | rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending, | ||
110 | rdp->n_rcu_pending); | ||
111 | #ifdef CONFIG_NO_HZ | ||
112 | seq_printf(m, ",%d,%d,%d,%lu", | ||
113 | rdp->dynticks->dynticks, | ||
114 | rdp->dynticks->dynticks_nesting, | ||
115 | rdp->dynticks->dynticks_nmi, | ||
116 | rdp->dynticks_fqs); | ||
117 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
118 | seq_printf(m, ",%lu,%lu", rdp->offline_fqs, rdp->resched_ipi); | ||
119 | seq_printf(m, ",%ld,%ld\n", rdp->qlen, rdp->blimit); | ||
120 | } | ||
121 | |||
122 | static int show_rcudata_csv(struct seq_file *m, void *unused) | ||
123 | { | ||
124 | seq_puts(m, "\"CPU\",\"Online?\",\"c\",\"g\",\"pq\",\"pqc\",\"pq\",\"rpfq\",\"rp\","); | ||
125 | #ifdef CONFIG_NO_HZ | ||
126 | seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); | ||
127 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
128 | seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n"); | ||
129 | seq_puts(m, "\"rcu:\"\n"); | ||
130 | PRINT_RCU_DATA(rcu_data, print_one_rcu_data_csv, m); | ||
131 | seq_puts(m, "\"rcu_bh:\"\n"); | ||
132 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m); | ||
133 | return 0; | ||
134 | } | ||
135 | |||
136 | static int rcudata_csv_open(struct inode *inode, struct file *file) | ||
137 | { | ||
138 | return single_open(file, show_rcudata_csv, NULL); | ||
139 | } | ||
140 | |||
141 | static struct file_operations rcudata_csv_fops = { | ||
142 | .owner = THIS_MODULE, | ||
143 | .open = rcudata_csv_open, | ||
144 | .read = seq_read, | ||
145 | .llseek = seq_lseek, | ||
146 | .release = single_release, | ||
147 | }; | ||
148 | |||
149 | static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp) | ||
150 | { | ||
151 | int level = 0; | ||
152 | struct rcu_node *rnp; | ||
153 | |||
154 | seq_printf(m, "c=%ld g=%ld s=%d jfq=%ld j=%x " | ||
155 | "nfqs=%lu/nfqsng=%lu(%lu) fqlh=%lu\n", | ||
156 | rsp->completed, rsp->gpnum, rsp->signaled, | ||
157 | (long)(rsp->jiffies_force_qs - jiffies), | ||
158 | (int)(jiffies & 0xffff), | ||
159 | rsp->n_force_qs, rsp->n_force_qs_ngp, | ||
160 | rsp->n_force_qs - rsp->n_force_qs_ngp, | ||
161 | rsp->n_force_qs_lh); | ||
162 | for (rnp = &rsp->node[0]; rnp - &rsp->node[0] < NUM_RCU_NODES; rnp++) { | ||
163 | if (rnp->level != level) { | ||
164 | seq_puts(m, "\n"); | ||
165 | level = rnp->level; | ||
166 | } | ||
167 | seq_printf(m, "%lx/%lx %d:%d ^%d ", | ||
168 | rnp->qsmask, rnp->qsmaskinit, | ||
169 | rnp->grplo, rnp->grphi, rnp->grpnum); | ||
170 | } | ||
171 | seq_puts(m, "\n"); | ||
172 | } | ||
173 | |||
174 | static int show_rcuhier(struct seq_file *m, void *unused) | ||
175 | { | ||
176 | seq_puts(m, "rcu:\n"); | ||
177 | print_one_rcu_state(m, &rcu_state); | ||
178 | seq_puts(m, "rcu_bh:\n"); | ||
179 | print_one_rcu_state(m, &rcu_bh_state); | ||
180 | return 0; | ||
181 | } | ||
182 | |||
183 | static int rcuhier_open(struct inode *inode, struct file *file) | ||
184 | { | ||
185 | return single_open(file, show_rcuhier, NULL); | ||
186 | } | ||
187 | |||
188 | static struct file_operations rcuhier_fops = { | ||
189 | .owner = THIS_MODULE, | ||
190 | .open = rcuhier_open, | ||
191 | .read = seq_read, | ||
192 | .llseek = seq_lseek, | ||
193 | .release = single_release, | ||
194 | }; | ||
195 | |||
196 | static int show_rcugp(struct seq_file *m, void *unused) | ||
197 | { | ||
198 | seq_printf(m, "rcu: completed=%ld gpnum=%ld\n", | ||
199 | rcu_state.completed, rcu_state.gpnum); | ||
200 | seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", | ||
201 | rcu_bh_state.completed, rcu_bh_state.gpnum); | ||
202 | return 0; | ||
203 | } | ||
204 | |||
205 | static int rcugp_open(struct inode *inode, struct file *file) | ||
206 | { | ||
207 | return single_open(file, show_rcugp, NULL); | ||
208 | } | ||
209 | |||
210 | static struct file_operations rcugp_fops = { | ||
211 | .owner = THIS_MODULE, | ||
212 | .open = rcugp_open, | ||
213 | .read = seq_read, | ||
214 | .llseek = seq_lseek, | ||
215 | .release = single_release, | ||
216 | }; | ||
217 | |||
218 | static struct dentry *rcudir, *datadir, *datadir_csv, *hierdir, *gpdir; | ||
219 | static int __init rcuclassic_trace_init(void) | ||
220 | { | ||
221 | rcudir = debugfs_create_dir("rcu", NULL); | ||
222 | if (!rcudir) | ||
223 | goto out; | ||
224 | |||
225 | datadir = debugfs_create_file("rcudata", 0444, rcudir, | ||
226 | NULL, &rcudata_fops); | ||
227 | if (!datadir) | ||
228 | goto free_out; | ||
229 | |||
230 | datadir_csv = debugfs_create_file("rcudata.csv", 0444, rcudir, | ||
231 | NULL, &rcudata_csv_fops); | ||
232 | if (!datadir_csv) | ||
233 | goto free_out; | ||
234 | |||
235 | gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); | ||
236 | if (!gpdir) | ||
237 | goto free_out; | ||
238 | |||
239 | hierdir = debugfs_create_file("rcuhier", 0444, rcudir, | ||
240 | NULL, &rcuhier_fops); | ||
241 | if (!hierdir) | ||
242 | goto free_out; | ||
243 | return 0; | ||
244 | free_out: | ||
245 | if (datadir) | ||
246 | debugfs_remove(datadir); | ||
247 | if (datadir_csv) | ||
248 | debugfs_remove(datadir_csv); | ||
249 | if (gpdir) | ||
250 | debugfs_remove(gpdir); | ||
251 | debugfs_remove(rcudir); | ||
252 | out: | ||
253 | return 1; | ||
254 | } | ||
255 | |||
256 | static void __exit rcuclassic_trace_cleanup(void) | ||
257 | { | ||
258 | debugfs_remove(datadir); | ||
259 | debugfs_remove(datadir_csv); | ||
260 | debugfs_remove(gpdir); | ||
261 | debugfs_remove(hierdir); | ||
262 | debugfs_remove(rcudir); | ||
263 | } | ||
264 | |||
265 | |||
266 | module_init(rcuclassic_trace_init); | ||
267 | module_exit(rcuclassic_trace_cleanup); | ||
268 | |||
269 | MODULE_AUTHOR("Paul E. McKenney"); | ||
270 | MODULE_DESCRIPTION("Read-Copy Update tracing for hierarchical implementation"); | ||
271 | MODULE_LICENSE("GPL"); | ||
diff --git a/kernel/resource.c b/kernel/resource.c index 4337063663ef..e633106b12f6 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
@@ -853,6 +853,15 @@ int iomem_map_sanity_check(resource_size_t addr, unsigned long size) | |||
853 | if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && | 853 | if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && |
854 | PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) | 854 | PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) |
855 | continue; | 855 | continue; |
856 | /* | ||
857 | * if a resource is "BUSY", it's not a hardware resource | ||
858 | * but a driver mapping of such a resource; we don't want | ||
859 | * to warn for those; some drivers legitimately map only | ||
860 | * partial hardware resources. (example: vesafb) | ||
861 | */ | ||
862 | if (p->flags & IORESOURCE_BUSY) | ||
863 | continue; | ||
864 | |||
856 | printk(KERN_WARNING "resource map sanity check conflict: " | 865 | printk(KERN_WARNING "resource map sanity check conflict: " |
857 | "0x%llx 0x%llx 0x%llx 0x%llx %s\n", | 866 | "0x%llx 0x%llx 0x%llx 0x%llx %s\n", |
858 | (unsigned long long)addr, | 867 | (unsigned long long)addr, |
diff --git a/kernel/sched.c b/kernel/sched.c index 748ff924a290..22aa9cab3fe5 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -4192,7 +4192,6 @@ void account_steal_time(struct task_struct *p, cputime_t steal) | |||
4192 | 4192 | ||
4193 | if (p == rq->idle) { | 4193 | if (p == rq->idle) { |
4194 | p->stime = cputime_add(p->stime, steal); | 4194 | p->stime = cputime_add(p->stime, steal); |
4195 | account_group_system_time(p, steal); | ||
4196 | if (atomic_read(&rq->nr_iowait) > 0) | 4195 | if (atomic_read(&rq->nr_iowait) > 0) |
4197 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 4196 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); |
4198 | else | 4197 | else |
@@ -4328,7 +4327,7 @@ void __kprobes sub_preempt_count(int val) | |||
4328 | /* | 4327 | /* |
4329 | * Underflow? | 4328 | * Underflow? |
4330 | */ | 4329 | */ |
4331 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 4330 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked()))) |
4332 | return; | 4331 | return; |
4333 | /* | 4332 | /* |
4334 | * Is the spinlock portion underflowing? | 4333 | * Is the spinlock portion underflowing? |
diff --git a/kernel/softirq.c b/kernel/softirq.c index e7c69a720d69..466e75ce271a 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
@@ -102,20 +102,6 @@ void local_bh_disable(void) | |||
102 | 102 | ||
103 | EXPORT_SYMBOL(local_bh_disable); | 103 | EXPORT_SYMBOL(local_bh_disable); |
104 | 104 | ||
105 | void __local_bh_enable(void) | ||
106 | { | ||
107 | WARN_ON_ONCE(in_irq()); | ||
108 | |||
109 | /* | ||
110 | * softirqs should never be enabled by __local_bh_enable(), | ||
111 | * it always nests inside local_bh_enable() sections: | ||
112 | */ | ||
113 | WARN_ON_ONCE(softirq_count() == SOFTIRQ_OFFSET); | ||
114 | |||
115 | sub_preempt_count(SOFTIRQ_OFFSET); | ||
116 | } | ||
117 | EXPORT_SYMBOL_GPL(__local_bh_enable); | ||
118 | |||
119 | /* | 105 | /* |
120 | * Special-case - softirqs can safely be enabled in | 106 | * Special-case - softirqs can safely be enabled in |
121 | * cond_resched_softirq(), or by __do_softirq(), | 107 | * cond_resched_softirq(), or by __do_softirq(), |
@@ -269,6 +255,7 @@ void irq_enter(void) | |||
269 | { | 255 | { |
270 | int cpu = smp_processor_id(); | 256 | int cpu = smp_processor_id(); |
271 | 257 | ||
258 | rcu_irq_enter(); | ||
272 | if (idle_cpu(cpu) && !in_interrupt()) { | 259 | if (idle_cpu(cpu) && !in_interrupt()) { |
273 | __irq_enter(); | 260 | __irq_enter(); |
274 | tick_check_idle(cpu); | 261 | tick_check_idle(cpu); |
@@ -295,9 +282,9 @@ void irq_exit(void) | |||
295 | 282 | ||
296 | #ifdef CONFIG_NO_HZ | 283 | #ifdef CONFIG_NO_HZ |
297 | /* Make sure that timer wheel updates are propagated */ | 284 | /* Make sure that timer wheel updates are propagated */ |
298 | if (!in_interrupt() && idle_cpu(smp_processor_id()) && !need_resched()) | ||
299 | tick_nohz_stop_sched_tick(0); | ||
300 | rcu_irq_exit(); | 285 | rcu_irq_exit(); |
286 | if (idle_cpu(smp_processor_id()) && !in_interrupt() && !need_resched()) | ||
287 | tick_nohz_stop_sched_tick(0); | ||
301 | #endif | 288 | #endif |
302 | preempt_enable_no_resched(); | 289 | preempt_enable_no_resched(); |
303 | } | 290 | } |
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index dc0b3be6b7d5..1ab790c67b17 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
@@ -164,7 +164,7 @@ unsigned long __read_mostly sysctl_hung_task_check_count = 1024; | |||
164 | /* | 164 | /* |
165 | * Zero means infinite timeout - no checking done: | 165 | * Zero means infinite timeout - no checking done: |
166 | */ | 166 | */ |
167 | unsigned long __read_mostly sysctl_hung_task_timeout_secs = 120; | 167 | unsigned long __read_mostly sysctl_hung_task_timeout_secs = 480; |
168 | 168 | ||
169 | unsigned long __read_mostly sysctl_hung_task_warnings = 10; | 169 | unsigned long __read_mostly sysctl_hung_task_warnings = 10; |
170 | 170 | ||
diff --git a/kernel/stacktrace.c b/kernel/stacktrace.c index 94b527ef1d1e..eb212f8f8bc8 100644 --- a/kernel/stacktrace.c +++ b/kernel/stacktrace.c | |||
@@ -6,6 +6,7 @@ | |||
6 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 6 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
7 | */ | 7 | */ |
8 | #include <linux/sched.h> | 8 | #include <linux/sched.h> |
9 | #include <linux/kernel.h> | ||
9 | #include <linux/module.h> | 10 | #include <linux/module.h> |
10 | #include <linux/kallsyms.h> | 11 | #include <linux/kallsyms.h> |
11 | #include <linux/stacktrace.h> | 12 | #include <linux/stacktrace.h> |
@@ -24,3 +25,13 @@ void print_stack_trace(struct stack_trace *trace, int spaces) | |||
24 | } | 25 | } |
25 | EXPORT_SYMBOL_GPL(print_stack_trace); | 26 | EXPORT_SYMBOL_GPL(print_stack_trace); |
26 | 27 | ||
28 | /* | ||
29 | * Architectures that do not implement save_stack_trace_tsk get this | ||
30 | * weak alias and a once-per-bootup warning (whenever this facility | ||
31 | * is utilized - for example by procfs): | ||
32 | */ | ||
33 | __weak void | ||
34 | save_stack_trace_tsk(struct task_struct *tsk, struct stack_trace *trace) | ||
35 | { | ||
36 | WARN_ONCE(1, KERN_INFO "save_stack_trace_tsk() not implemented yet.\n"); | ||
37 | } | ||
diff --git a/kernel/sys.c b/kernel/sys.c index ebe65c2c9873..d356d79e84ac 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -907,8 +907,8 @@ void do_sys_times(struct tms *tms) | |||
907 | struct task_cputime cputime; | 907 | struct task_cputime cputime; |
908 | cputime_t cutime, cstime; | 908 | cputime_t cutime, cstime; |
909 | 909 | ||
910 | spin_lock_irq(¤t->sighand->siglock); | ||
911 | thread_group_cputime(current, &cputime); | 910 | thread_group_cputime(current, &cputime); |
911 | spin_lock_irq(¤t->sighand->siglock); | ||
912 | cutime = current->signal->cutime; | 912 | cutime = current->signal->cutime; |
913 | cstime = current->signal->cstime; | 913 | cstime = current->signal->cstime; |
914 | spin_unlock_irq(¤t->sighand->siglock); | 914 | spin_unlock_irq(¤t->sighand->siglock); |