aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile1
-rw-r--r--kernel/exit.c13
-rw-r--r--kernel/fork.c1
-rw-r--r--kernel/irq/chip.c5
-rw-r--r--kernel/irq/handle.c57
-rw-r--r--kernel/irq/internals.h7
-rw-r--r--kernel/irq/manage.c12
-rw-r--r--kernel/irq/migration.c12
-rw-r--r--kernel/irq/numa_migrate.c19
-rw-r--r--kernel/irq/proc.c4
-rw-r--r--kernel/perf_counter.c2169
-rw-r--r--kernel/sched.c76
-rw-r--r--kernel/sched_rt.c36
-rw-r--r--kernel/softirq.c5
-rw-r--r--kernel/sys.c7
-rw-r--r--kernel/sys_ni.c3
16 files changed, 2366 insertions, 61 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index 170a9213c1b6..5537554ed808 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -92,6 +92,7 @@ obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o
92obj-$(CONFIG_FUNCTION_TRACER) += trace/ 92obj-$(CONFIG_FUNCTION_TRACER) += trace/
93obj-$(CONFIG_TRACING) += trace/ 93obj-$(CONFIG_TRACING) += trace/
94obj-$(CONFIG_SMP) += sched_cpupri.o 94obj-$(CONFIG_SMP) += sched_cpupri.o
95obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o
95 96
96ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) 97ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
97# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is 98# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
diff --git a/kernel/exit.c b/kernel/exit.c
index f80dec3f1875..29f4b790751c 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -159,6 +159,9 @@ static void delayed_put_task_struct(struct rcu_head *rhp)
159{ 159{
160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 161
162#ifdef CONFIG_PERF_COUNTERS
163 WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
164#endif
162 trace_sched_process_free(tsk); 165 trace_sched_process_free(tsk);
163 put_task_struct(tsk); 166 put_task_struct(tsk);
164} 167}
@@ -1093,10 +1096,6 @@ NORET_TYPE void do_exit(long code)
1093 tsk->mempolicy = NULL; 1096 tsk->mempolicy = NULL;
1094#endif 1097#endif
1095#ifdef CONFIG_FUTEX 1098#ifdef CONFIG_FUTEX
1096 /*
1097 * This must happen late, after the PID is not
1098 * hashed anymore:
1099 */
1100 if (unlikely(!list_empty(&tsk->pi_state_list))) 1099 if (unlikely(!list_empty(&tsk->pi_state_list)))
1101 exit_pi_state_list(tsk); 1100 exit_pi_state_list(tsk);
1102 if (unlikely(current->pi_state_cache)) 1101 if (unlikely(current->pi_state_cache))
@@ -1363,6 +1362,12 @@ static int wait_task_zombie(struct task_struct *p, int options,
1363 */ 1362 */
1364 read_unlock(&tasklist_lock); 1363 read_unlock(&tasklist_lock);
1365 1364
1365 /*
1366 * Flush inherited counters to the parent - before the parent
1367 * gets woken up by child-exit notifications.
1368 */
1369 perf_counter_exit_task(p);
1370
1366 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1371 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1367 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1372 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1368 ? p->signal->group_exit_code : p->exit_code; 1373 ? p->signal->group_exit_code : p->exit_code;
diff --git a/kernel/fork.c b/kernel/fork.c
index bf0cef8bbdf2..70ca1852a0e5 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -985,6 +985,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
985 goto fork_out; 985 goto fork_out;
986 986
987 rt_mutex_init_task(p); 987 rt_mutex_init_task(p);
988 perf_counter_init_task(p);
988 989
989#ifdef CONFIG_PROVE_LOCKING 990#ifdef CONFIG_PROVE_LOCKING
990 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 991 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c
index f63c706d25e1..c248eba98b43 100644
--- a/kernel/irq/chip.c
+++ b/kernel/irq/chip.c
@@ -46,7 +46,10 @@ void dynamic_irq_init(unsigned int irq)
46 desc->irq_count = 0; 46 desc->irq_count = 0;
47 desc->irqs_unhandled = 0; 47 desc->irqs_unhandled = 0;
48#ifdef CONFIG_SMP 48#ifdef CONFIG_SMP
49 cpumask_setall(&desc->affinity); 49 cpumask_setall(desc->affinity);
50#ifdef CONFIG_GENERIC_PENDING_IRQ
51 cpumask_clear(desc->pending_mask);
52#endif
50#endif 53#endif
51 spin_unlock_irqrestore(&desc->lock, flags); 54 spin_unlock_irqrestore(&desc->lock, flags);
52} 55}
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c
index c20db0be9173..375d68cd5bf0 100644
--- a/kernel/irq/handle.c
+++ b/kernel/irq/handle.c
@@ -17,6 +17,7 @@
17#include <linux/kernel_stat.h> 17#include <linux/kernel_stat.h>
18#include <linux/rculist.h> 18#include <linux/rculist.h>
19#include <linux/hash.h> 19#include <linux/hash.h>
20#include <linux/bootmem.h>
20 21
21#include "internals.h" 22#include "internals.h"
22 23
@@ -57,6 +58,7 @@ int nr_irqs = NR_IRQS;
57EXPORT_SYMBOL_GPL(nr_irqs); 58EXPORT_SYMBOL_GPL(nr_irqs);
58 59
59#ifdef CONFIG_SPARSE_IRQ 60#ifdef CONFIG_SPARSE_IRQ
61
60static struct irq_desc irq_desc_init = { 62static struct irq_desc irq_desc_init = {
61 .irq = -1, 63 .irq = -1,
62 .status = IRQ_DISABLED, 64 .status = IRQ_DISABLED,
@@ -64,9 +66,6 @@ static struct irq_desc irq_desc_init = {
64 .handle_irq = handle_bad_irq, 66 .handle_irq = handle_bad_irq,
65 .depth = 1, 67 .depth = 1,
66 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), 68 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
67#ifdef CONFIG_SMP
68 .affinity = CPU_MASK_ALL
69#endif
70}; 69};
71 70
72void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr) 71void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
@@ -101,6 +100,10 @@ static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
101 printk(KERN_ERR "can not alloc kstat_irqs\n"); 100 printk(KERN_ERR "can not alloc kstat_irqs\n");
102 BUG_ON(1); 101 BUG_ON(1);
103 } 102 }
103 if (!init_alloc_desc_masks(desc, cpu, false)) {
104 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
105 BUG_ON(1);
106 }
104 arch_init_chip_data(desc, cpu); 107 arch_init_chip_data(desc, cpu);
105} 108}
106 109
@@ -109,7 +112,7 @@ static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
109 */ 112 */
110DEFINE_SPINLOCK(sparse_irq_lock); 113DEFINE_SPINLOCK(sparse_irq_lock);
111 114
112struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly; 115struct irq_desc **irq_desc_ptrs __read_mostly;
113 116
114static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = { 117static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
115 [0 ... NR_IRQS_LEGACY-1] = { 118 [0 ... NR_IRQS_LEGACY-1] = {
@@ -119,14 +122,10 @@ static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_sm
119 .handle_irq = handle_bad_irq, 122 .handle_irq = handle_bad_irq,
120 .depth = 1, 123 .depth = 1,
121 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), 124 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
122#ifdef CONFIG_SMP
123 .affinity = CPU_MASK_ALL
124#endif
125 } 125 }
126}; 126};
127 127
128/* FIXME: use bootmem alloc ...*/ 128static unsigned int *kstat_irqs_legacy;
129static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
130 129
131int __init early_irq_init(void) 130int __init early_irq_init(void)
132{ 131{
@@ -134,18 +133,30 @@ int __init early_irq_init(void)
134 int legacy_count; 133 int legacy_count;
135 int i; 134 int i;
136 135
136 /* initialize nr_irqs based on nr_cpu_ids */
137 arch_probe_nr_irqs();
138 printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
139
137 desc = irq_desc_legacy; 140 desc = irq_desc_legacy;
138 legacy_count = ARRAY_SIZE(irq_desc_legacy); 141 legacy_count = ARRAY_SIZE(irq_desc_legacy);
139 142
143 /* allocate irq_desc_ptrs array based on nr_irqs */
144 irq_desc_ptrs = alloc_bootmem(nr_irqs * sizeof(void *));
145
146 /* allocate based on nr_cpu_ids */
147 /* FIXME: invert kstat_irgs, and it'd be a per_cpu_alloc'd thing */
148 kstat_irqs_legacy = alloc_bootmem(NR_IRQS_LEGACY * nr_cpu_ids *
149 sizeof(int));
150
140 for (i = 0; i < legacy_count; i++) { 151 for (i = 0; i < legacy_count; i++) {
141 desc[i].irq = i; 152 desc[i].irq = i;
142 desc[i].kstat_irqs = kstat_irqs_legacy[i]; 153 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
143 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); 154 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
144 155 init_alloc_desc_masks(&desc[i], 0, true);
145 irq_desc_ptrs[i] = desc + i; 156 irq_desc_ptrs[i] = desc + i;
146 } 157 }
147 158
148 for (i = legacy_count; i < NR_IRQS; i++) 159 for (i = legacy_count; i < nr_irqs; i++)
149 irq_desc_ptrs[i] = NULL; 160 irq_desc_ptrs[i] = NULL;
150 161
151 return arch_early_irq_init(); 162 return arch_early_irq_init();
@@ -153,7 +164,10 @@ int __init early_irq_init(void)
153 164
154struct irq_desc *irq_to_desc(unsigned int irq) 165struct irq_desc *irq_to_desc(unsigned int irq)
155{ 166{
156 return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL; 167 if (irq_desc_ptrs && irq < nr_irqs)
168 return irq_desc_ptrs[irq];
169
170 return NULL;
157} 171}
158 172
159struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) 173struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
@@ -162,10 +176,9 @@ struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
162 unsigned long flags; 176 unsigned long flags;
163 int node; 177 int node;
164 178
165 if (irq >= NR_IRQS) { 179 if (irq >= nr_irqs) {
166 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n", 180 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
167 irq, NR_IRQS); 181 irq, nr_irqs);
168 WARN_ON(1);
169 return NULL; 182 return NULL;
170 } 183 }
171 184
@@ -207,9 +220,6 @@ struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
207 .handle_irq = handle_bad_irq, 220 .handle_irq = handle_bad_irq,
208 .depth = 1, 221 .depth = 1,
209 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock), 222 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
210#ifdef CONFIG_SMP
211 .affinity = CPU_MASK_ALL
212#endif
213 } 223 }
214}; 224};
215 225
@@ -219,12 +229,15 @@ int __init early_irq_init(void)
219 int count; 229 int count;
220 int i; 230 int i;
221 231
232 printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
233
222 desc = irq_desc; 234 desc = irq_desc;
223 count = ARRAY_SIZE(irq_desc); 235 count = ARRAY_SIZE(irq_desc);
224 236
225 for (i = 0; i < count; i++) 237 for (i = 0; i < count; i++) {
226 desc[i].irq = i; 238 desc[i].irq = i;
227 239 init_alloc_desc_masks(&desc[i], 0, true);
240 }
228 return arch_early_irq_init(); 241 return arch_early_irq_init();
229} 242}
230 243
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h
index e6d0a43cc125..40416a81a0f5 100644
--- a/kernel/irq/internals.h
+++ b/kernel/irq/internals.h
@@ -16,7 +16,14 @@ extern int __irq_set_trigger(struct irq_desc *desc, unsigned int irq,
16extern struct lock_class_key irq_desc_lock_class; 16extern struct lock_class_key irq_desc_lock_class;
17extern void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr); 17extern void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr);
18extern spinlock_t sparse_irq_lock; 18extern spinlock_t sparse_irq_lock;
19
20#ifdef CONFIG_SPARSE_IRQ
21/* irq_desc_ptrs allocated at boot time */
22extern struct irq_desc **irq_desc_ptrs;
23#else
24/* irq_desc_ptrs is a fixed size array */
19extern struct irq_desc *irq_desc_ptrs[NR_IRQS]; 25extern struct irq_desc *irq_desc_ptrs[NR_IRQS];
26#endif
20 27
21#ifdef CONFIG_PROC_FS 28#ifdef CONFIG_PROC_FS
22extern void register_irq_proc(unsigned int irq, struct irq_desc *desc); 29extern void register_irq_proc(unsigned int irq, struct irq_desc *desc);
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index cd0cd8dcb345..b98739af4558 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -98,14 +98,14 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
98 98
99#ifdef CONFIG_GENERIC_PENDING_IRQ 99#ifdef CONFIG_GENERIC_PENDING_IRQ
100 if (desc->status & IRQ_MOVE_PCNTXT || desc->status & IRQ_DISABLED) { 100 if (desc->status & IRQ_MOVE_PCNTXT || desc->status & IRQ_DISABLED) {
101 cpumask_copy(&desc->affinity, cpumask); 101 cpumask_copy(desc->affinity, cpumask);
102 desc->chip->set_affinity(irq, cpumask); 102 desc->chip->set_affinity(irq, cpumask);
103 } else { 103 } else {
104 desc->status |= IRQ_MOVE_PENDING; 104 desc->status |= IRQ_MOVE_PENDING;
105 cpumask_copy(&desc->pending_mask, cpumask); 105 cpumask_copy(desc->pending_mask, cpumask);
106 } 106 }
107#else 107#else
108 cpumask_copy(&desc->affinity, cpumask); 108 cpumask_copy(desc->affinity, cpumask);
109 desc->chip->set_affinity(irq, cpumask); 109 desc->chip->set_affinity(irq, cpumask);
110#endif 110#endif
111 desc->status |= IRQ_AFFINITY_SET; 111 desc->status |= IRQ_AFFINITY_SET;
@@ -127,16 +127,16 @@ int do_irq_select_affinity(unsigned int irq, struct irq_desc *desc)
127 * one of the targets is online. 127 * one of the targets is online.
128 */ 128 */
129 if (desc->status & (IRQ_AFFINITY_SET | IRQ_NO_BALANCING)) { 129 if (desc->status & (IRQ_AFFINITY_SET | IRQ_NO_BALANCING)) {
130 if (cpumask_any_and(&desc->affinity, cpu_online_mask) 130 if (cpumask_any_and(desc->affinity, cpu_online_mask)
131 < nr_cpu_ids) 131 < nr_cpu_ids)
132 goto set_affinity; 132 goto set_affinity;
133 else 133 else
134 desc->status &= ~IRQ_AFFINITY_SET; 134 desc->status &= ~IRQ_AFFINITY_SET;
135 } 135 }
136 136
137 cpumask_and(&desc->affinity, cpu_online_mask, irq_default_affinity); 137 cpumask_and(desc->affinity, cpu_online_mask, irq_default_affinity);
138set_affinity: 138set_affinity:
139 desc->chip->set_affinity(irq, &desc->affinity); 139 desc->chip->set_affinity(irq, desc->affinity);
140 140
141 return 0; 141 return 0;
142} 142}
diff --git a/kernel/irq/migration.c b/kernel/irq/migration.c
index bd72329e630c..e05ad9be43b7 100644
--- a/kernel/irq/migration.c
+++ b/kernel/irq/migration.c
@@ -18,7 +18,7 @@ void move_masked_irq(int irq)
18 18
19 desc->status &= ~IRQ_MOVE_PENDING; 19 desc->status &= ~IRQ_MOVE_PENDING;
20 20
21 if (unlikely(cpumask_empty(&desc->pending_mask))) 21 if (unlikely(cpumask_empty(desc->pending_mask)))
22 return; 22 return;
23 23
24 if (!desc->chip->set_affinity) 24 if (!desc->chip->set_affinity)
@@ -38,13 +38,13 @@ void move_masked_irq(int irq)
38 * For correct operation this depends on the caller 38 * For correct operation this depends on the caller
39 * masking the irqs. 39 * masking the irqs.
40 */ 40 */
41 if (likely(cpumask_any_and(&desc->pending_mask, cpu_online_mask) 41 if (likely(cpumask_any_and(desc->pending_mask, cpu_online_mask)
42 < nr_cpu_ids)) { 42 < nr_cpu_ids)) {
43 cpumask_and(&desc->affinity, 43 cpumask_and(desc->affinity,
44 &desc->pending_mask, cpu_online_mask); 44 desc->pending_mask, cpu_online_mask);
45 desc->chip->set_affinity(irq, &desc->affinity); 45 desc->chip->set_affinity(irq, desc->affinity);
46 } 46 }
47 cpumask_clear(&desc->pending_mask); 47 cpumask_clear(desc->pending_mask);
48} 48}
49 49
50void move_native_irq(int irq) 50void move_native_irq(int irq)
diff --git a/kernel/irq/numa_migrate.c b/kernel/irq/numa_migrate.c
index ecf765c6a77a..666260e4c065 100644
--- a/kernel/irq/numa_migrate.c
+++ b/kernel/irq/numa_migrate.c
@@ -38,15 +38,22 @@ static void free_kstat_irqs(struct irq_desc *old_desc, struct irq_desc *desc)
38 old_desc->kstat_irqs = NULL; 38 old_desc->kstat_irqs = NULL;
39} 39}
40 40
41static void init_copy_one_irq_desc(int irq, struct irq_desc *old_desc, 41static bool init_copy_one_irq_desc(int irq, struct irq_desc *old_desc,
42 struct irq_desc *desc, int cpu) 42 struct irq_desc *desc, int cpu)
43{ 43{
44 memcpy(desc, old_desc, sizeof(struct irq_desc)); 44 memcpy(desc, old_desc, sizeof(struct irq_desc));
45 if (!init_alloc_desc_masks(desc, cpu, false)) {
46 printk(KERN_ERR "irq %d: can not get new irq_desc cpumask "
47 "for migration.\n", irq);
48 return false;
49 }
45 spin_lock_init(&desc->lock); 50 spin_lock_init(&desc->lock);
46 desc->cpu = cpu; 51 desc->cpu = cpu;
47 lockdep_set_class(&desc->lock, &irq_desc_lock_class); 52 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
48 init_copy_kstat_irqs(old_desc, desc, cpu, nr_cpu_ids); 53 init_copy_kstat_irqs(old_desc, desc, cpu, nr_cpu_ids);
54 init_copy_desc_masks(old_desc, desc);
49 arch_init_copy_chip_data(old_desc, desc, cpu); 55 arch_init_copy_chip_data(old_desc, desc, cpu);
56 return true;
50} 57}
51 58
52static void free_one_irq_desc(struct irq_desc *old_desc, struct irq_desc *desc) 59static void free_one_irq_desc(struct irq_desc *old_desc, struct irq_desc *desc)
@@ -76,12 +83,18 @@ static struct irq_desc *__real_move_irq_desc(struct irq_desc *old_desc,
76 node = cpu_to_node(cpu); 83 node = cpu_to_node(cpu);
77 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node); 84 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
78 if (!desc) { 85 if (!desc) {
79 printk(KERN_ERR "irq %d: can not get new irq_desc for migration.\n", irq); 86 printk(KERN_ERR "irq %d: can not get new irq_desc "
87 "for migration.\n", irq);
88 /* still use old one */
89 desc = old_desc;
90 goto out_unlock;
91 }
92 if (!init_copy_one_irq_desc(irq, old_desc, desc, cpu)) {
80 /* still use old one */ 93 /* still use old one */
94 kfree(desc);
81 desc = old_desc; 95 desc = old_desc;
82 goto out_unlock; 96 goto out_unlock;
83 } 97 }
84 init_copy_one_irq_desc(irq, old_desc, desc, cpu);
85 98
86 irq_desc_ptrs[irq] = desc; 99 irq_desc_ptrs[irq] = desc;
87 100
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c
index aae3f742bcec..692363dd591f 100644
--- a/kernel/irq/proc.c
+++ b/kernel/irq/proc.c
@@ -20,11 +20,11 @@ static struct proc_dir_entry *root_irq_dir;
20static int irq_affinity_proc_show(struct seq_file *m, void *v) 20static int irq_affinity_proc_show(struct seq_file *m, void *v)
21{ 21{
22 struct irq_desc *desc = irq_to_desc((long)m->private); 22 struct irq_desc *desc = irq_to_desc((long)m->private);
23 const struct cpumask *mask = &desc->affinity; 23 const struct cpumask *mask = desc->affinity;
24 24
25#ifdef CONFIG_GENERIC_PENDING_IRQ 25#ifdef CONFIG_GENERIC_PENDING_IRQ
26 if (desc->status & IRQ_MOVE_PENDING) 26 if (desc->status & IRQ_MOVE_PENDING)
27 mask = &desc->pending_mask; 27 mask = desc->pending_mask;
28#endif 28#endif
29 seq_cpumask(m, mask); 29 seq_cpumask(m, mask);
30 seq_putc(m, '\n'); 30 seq_putc(m, '\n');
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c
new file mode 100644
index 000000000000..1ac18daa424f
--- /dev/null
+++ b/kernel/perf_counter.c
@@ -0,0 +1,2169 @@
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/fs.h>
11#include <linux/cpu.h>
12#include <linux/smp.h>
13#include <linux/file.h>
14#include <linux/poll.h>
15#include <linux/sysfs.h>
16#include <linux/ptrace.h>
17#include <linux/percpu.h>
18#include <linux/uaccess.h>
19#include <linux/syscalls.h>
20#include <linux/anon_inodes.h>
21#include <linux/kernel_stat.h>
22#include <linux/perf_counter.h>
23
24/*
25 * Each CPU has a list of per CPU counters:
26 */
27DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
28
29int perf_max_counters __read_mostly = 1;
30static int perf_reserved_percpu __read_mostly;
31static int perf_overcommit __read_mostly = 1;
32
33/*
34 * Mutex for (sysadmin-configurable) counter reservations:
35 */
36static DEFINE_MUTEX(perf_resource_mutex);
37
38/*
39 * Architecture provided APIs - weak aliases:
40 */
41extern __weak const struct hw_perf_counter_ops *
42hw_perf_counter_init(struct perf_counter *counter)
43{
44 return NULL;
45}
46
47u64 __weak hw_perf_save_disable(void) { return 0; }
48void __weak hw_perf_restore(u64 ctrl) { barrier(); }
49void __weak hw_perf_counter_setup(int cpu) { barrier(); }
50int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
51 struct perf_cpu_context *cpuctx,
52 struct perf_counter_context *ctx, int cpu)
53{
54 return 0;
55}
56
57void __weak perf_counter_print_debug(void) { }
58
59static void
60list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
61{
62 struct perf_counter *group_leader = counter->group_leader;
63
64 /*
65 * Depending on whether it is a standalone or sibling counter,
66 * add it straight to the context's counter list, or to the group
67 * leader's sibling list:
68 */
69 if (counter->group_leader == counter)
70 list_add_tail(&counter->list_entry, &ctx->counter_list);
71 else
72 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
73}
74
75static void
76list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77{
78 struct perf_counter *sibling, *tmp;
79
80 list_del_init(&counter->list_entry);
81
82 /*
83 * If this was a group counter with sibling counters then
84 * upgrade the siblings to singleton counters by adding them
85 * to the context list directly:
86 */
87 list_for_each_entry_safe(sibling, tmp,
88 &counter->sibling_list, list_entry) {
89
90 list_del_init(&sibling->list_entry);
91 list_add_tail(&sibling->list_entry, &ctx->counter_list);
92 sibling->group_leader = sibling;
93 }
94}
95
96static void
97counter_sched_out(struct perf_counter *counter,
98 struct perf_cpu_context *cpuctx,
99 struct perf_counter_context *ctx)
100{
101 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
102 return;
103
104 counter->state = PERF_COUNTER_STATE_INACTIVE;
105 counter->hw_ops->disable(counter);
106 counter->oncpu = -1;
107
108 if (!is_software_counter(counter))
109 cpuctx->active_oncpu--;
110 ctx->nr_active--;
111 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
112 cpuctx->exclusive = 0;
113}
114
115static void
116group_sched_out(struct perf_counter *group_counter,
117 struct perf_cpu_context *cpuctx,
118 struct perf_counter_context *ctx)
119{
120 struct perf_counter *counter;
121
122 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
123 return;
124
125 counter_sched_out(group_counter, cpuctx, ctx);
126
127 /*
128 * Schedule out siblings (if any):
129 */
130 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
131 counter_sched_out(counter, cpuctx, ctx);
132
133 if (group_counter->hw_event.exclusive)
134 cpuctx->exclusive = 0;
135}
136
137/*
138 * Cross CPU call to remove a performance counter
139 *
140 * We disable the counter on the hardware level first. After that we
141 * remove it from the context list.
142 */
143static void __perf_counter_remove_from_context(void *info)
144{
145 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
146 struct perf_counter *counter = info;
147 struct perf_counter_context *ctx = counter->ctx;
148 unsigned long flags;
149 u64 perf_flags;
150
151 /*
152 * If this is a task context, we need to check whether it is
153 * the current task context of this cpu. If not it has been
154 * scheduled out before the smp call arrived.
155 */
156 if (ctx->task && cpuctx->task_ctx != ctx)
157 return;
158
159 curr_rq_lock_irq_save(&flags);
160 spin_lock(&ctx->lock);
161
162 counter_sched_out(counter, cpuctx, ctx);
163
164 counter->task = NULL;
165 ctx->nr_counters--;
166
167 /*
168 * Protect the list operation against NMI by disabling the
169 * counters on a global level. NOP for non NMI based counters.
170 */
171 perf_flags = hw_perf_save_disable();
172 list_del_counter(counter, ctx);
173 hw_perf_restore(perf_flags);
174
175 if (!ctx->task) {
176 /*
177 * Allow more per task counters with respect to the
178 * reservation:
179 */
180 cpuctx->max_pertask =
181 min(perf_max_counters - ctx->nr_counters,
182 perf_max_counters - perf_reserved_percpu);
183 }
184
185 spin_unlock(&ctx->lock);
186 curr_rq_unlock_irq_restore(&flags);
187}
188
189
190/*
191 * Remove the counter from a task's (or a CPU's) list of counters.
192 *
193 * Must be called with counter->mutex and ctx->mutex held.
194 *
195 * CPU counters are removed with a smp call. For task counters we only
196 * call when the task is on a CPU.
197 */
198static void perf_counter_remove_from_context(struct perf_counter *counter)
199{
200 struct perf_counter_context *ctx = counter->ctx;
201 struct task_struct *task = ctx->task;
202
203 if (!task) {
204 /*
205 * Per cpu counters are removed via an smp call and
206 * the removal is always sucessful.
207 */
208 smp_call_function_single(counter->cpu,
209 __perf_counter_remove_from_context,
210 counter, 1);
211 return;
212 }
213
214retry:
215 task_oncpu_function_call(task, __perf_counter_remove_from_context,
216 counter);
217
218 spin_lock_irq(&ctx->lock);
219 /*
220 * If the context is active we need to retry the smp call.
221 */
222 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
223 spin_unlock_irq(&ctx->lock);
224 goto retry;
225 }
226
227 /*
228 * The lock prevents that this context is scheduled in so we
229 * can remove the counter safely, if the call above did not
230 * succeed.
231 */
232 if (!list_empty(&counter->list_entry)) {
233 ctx->nr_counters--;
234 list_del_counter(counter, ctx);
235 counter->task = NULL;
236 }
237 spin_unlock_irq(&ctx->lock);
238}
239
240/*
241 * Cross CPU call to disable a performance counter
242 */
243static void __perf_counter_disable(void *info)
244{
245 struct perf_counter *counter = info;
246 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
247 struct perf_counter_context *ctx = counter->ctx;
248 unsigned long flags;
249
250 /*
251 * If this is a per-task counter, need to check whether this
252 * counter's task is the current task on this cpu.
253 */
254 if (ctx->task && cpuctx->task_ctx != ctx)
255 return;
256
257 curr_rq_lock_irq_save(&flags);
258 spin_lock(&ctx->lock);
259
260 /*
261 * If the counter is on, turn it off.
262 * If it is in error state, leave it in error state.
263 */
264 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
265 if (counter == counter->group_leader)
266 group_sched_out(counter, cpuctx, ctx);
267 else
268 counter_sched_out(counter, cpuctx, ctx);
269 counter->state = PERF_COUNTER_STATE_OFF;
270 }
271
272 spin_unlock(&ctx->lock);
273 curr_rq_unlock_irq_restore(&flags);
274}
275
276/*
277 * Disable a counter.
278 */
279static void perf_counter_disable(struct perf_counter *counter)
280{
281 struct perf_counter_context *ctx = counter->ctx;
282 struct task_struct *task = ctx->task;
283
284 if (!task) {
285 /*
286 * Disable the counter on the cpu that it's on
287 */
288 smp_call_function_single(counter->cpu, __perf_counter_disable,
289 counter, 1);
290 return;
291 }
292
293 retry:
294 task_oncpu_function_call(task, __perf_counter_disable, counter);
295
296 spin_lock_irq(&ctx->lock);
297 /*
298 * If the counter is still active, we need to retry the cross-call.
299 */
300 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
301 spin_unlock_irq(&ctx->lock);
302 goto retry;
303 }
304
305 /*
306 * Since we have the lock this context can't be scheduled
307 * in, so we can change the state safely.
308 */
309 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
310 counter->state = PERF_COUNTER_STATE_OFF;
311
312 spin_unlock_irq(&ctx->lock);
313}
314
315/*
316 * Disable a counter and all its children.
317 */
318static void perf_counter_disable_family(struct perf_counter *counter)
319{
320 struct perf_counter *child;
321
322 perf_counter_disable(counter);
323
324 /*
325 * Lock the mutex to protect the list of children
326 */
327 mutex_lock(&counter->mutex);
328 list_for_each_entry(child, &counter->child_list, child_list)
329 perf_counter_disable(child);
330 mutex_unlock(&counter->mutex);
331}
332
333static int
334counter_sched_in(struct perf_counter *counter,
335 struct perf_cpu_context *cpuctx,
336 struct perf_counter_context *ctx,
337 int cpu)
338{
339 if (counter->state <= PERF_COUNTER_STATE_OFF)
340 return 0;
341
342 counter->state = PERF_COUNTER_STATE_ACTIVE;
343 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
344 /*
345 * The new state must be visible before we turn it on in the hardware:
346 */
347 smp_wmb();
348
349 if (counter->hw_ops->enable(counter)) {
350 counter->state = PERF_COUNTER_STATE_INACTIVE;
351 counter->oncpu = -1;
352 return -EAGAIN;
353 }
354
355 if (!is_software_counter(counter))
356 cpuctx->active_oncpu++;
357 ctx->nr_active++;
358
359 if (counter->hw_event.exclusive)
360 cpuctx->exclusive = 1;
361
362 return 0;
363}
364
365/*
366 * Return 1 for a group consisting entirely of software counters,
367 * 0 if the group contains any hardware counters.
368 */
369static int is_software_only_group(struct perf_counter *leader)
370{
371 struct perf_counter *counter;
372
373 if (!is_software_counter(leader))
374 return 0;
375 list_for_each_entry(counter, &leader->sibling_list, list_entry)
376 if (!is_software_counter(counter))
377 return 0;
378 return 1;
379}
380
381/*
382 * Work out whether we can put this counter group on the CPU now.
383 */
384static int group_can_go_on(struct perf_counter *counter,
385 struct perf_cpu_context *cpuctx,
386 int can_add_hw)
387{
388 /*
389 * Groups consisting entirely of software counters can always go on.
390 */
391 if (is_software_only_group(counter))
392 return 1;
393 /*
394 * If an exclusive group is already on, no other hardware
395 * counters can go on.
396 */
397 if (cpuctx->exclusive)
398 return 0;
399 /*
400 * If this group is exclusive and there are already
401 * counters on the CPU, it can't go on.
402 */
403 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
404 return 0;
405 /*
406 * Otherwise, try to add it if all previous groups were able
407 * to go on.
408 */
409 return can_add_hw;
410}
411
412/*
413 * Cross CPU call to install and enable a performance counter
414 */
415static void __perf_install_in_context(void *info)
416{
417 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
418 struct perf_counter *counter = info;
419 struct perf_counter_context *ctx = counter->ctx;
420 struct perf_counter *leader = counter->group_leader;
421 int cpu = smp_processor_id();
422 unsigned long flags;
423 u64 perf_flags;
424 int err;
425
426 /*
427 * If this is a task context, we need to check whether it is
428 * the current task context of this cpu. If not it has been
429 * scheduled out before the smp call arrived.
430 */
431 if (ctx->task && cpuctx->task_ctx != ctx)
432 return;
433
434 curr_rq_lock_irq_save(&flags);
435 spin_lock(&ctx->lock);
436
437 /*
438 * Protect the list operation against NMI by disabling the
439 * counters on a global level. NOP for non NMI based counters.
440 */
441 perf_flags = hw_perf_save_disable();
442
443 list_add_counter(counter, ctx);
444 ctx->nr_counters++;
445
446 /*
447 * Don't put the counter on if it is disabled or if
448 * it is in a group and the group isn't on.
449 */
450 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
451 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
452 goto unlock;
453
454 /*
455 * An exclusive counter can't go on if there are already active
456 * hardware counters, and no hardware counter can go on if there
457 * is already an exclusive counter on.
458 */
459 if (!group_can_go_on(counter, cpuctx, 1))
460 err = -EEXIST;
461 else
462 err = counter_sched_in(counter, cpuctx, ctx, cpu);
463
464 if (err) {
465 /*
466 * This counter couldn't go on. If it is in a group
467 * then we have to pull the whole group off.
468 * If the counter group is pinned then put it in error state.
469 */
470 if (leader != counter)
471 group_sched_out(leader, cpuctx, ctx);
472 if (leader->hw_event.pinned)
473 leader->state = PERF_COUNTER_STATE_ERROR;
474 }
475
476 if (!err && !ctx->task && cpuctx->max_pertask)
477 cpuctx->max_pertask--;
478
479 unlock:
480 hw_perf_restore(perf_flags);
481
482 spin_unlock(&ctx->lock);
483 curr_rq_unlock_irq_restore(&flags);
484}
485
486/*
487 * Attach a performance counter to a context
488 *
489 * First we add the counter to the list with the hardware enable bit
490 * in counter->hw_config cleared.
491 *
492 * If the counter is attached to a task which is on a CPU we use a smp
493 * call to enable it in the task context. The task might have been
494 * scheduled away, but we check this in the smp call again.
495 *
496 * Must be called with ctx->mutex held.
497 */
498static void
499perf_install_in_context(struct perf_counter_context *ctx,
500 struct perf_counter *counter,
501 int cpu)
502{
503 struct task_struct *task = ctx->task;
504
505 counter->ctx = ctx;
506 if (!task) {
507 /*
508 * Per cpu counters are installed via an smp call and
509 * the install is always sucessful.
510 */
511 smp_call_function_single(cpu, __perf_install_in_context,
512 counter, 1);
513 return;
514 }
515
516 counter->task = task;
517retry:
518 task_oncpu_function_call(task, __perf_install_in_context,
519 counter);
520
521 spin_lock_irq(&ctx->lock);
522 /*
523 * we need to retry the smp call.
524 */
525 if (ctx->is_active && list_empty(&counter->list_entry)) {
526 spin_unlock_irq(&ctx->lock);
527 goto retry;
528 }
529
530 /*
531 * The lock prevents that this context is scheduled in so we
532 * can add the counter safely, if it the call above did not
533 * succeed.
534 */
535 if (list_empty(&counter->list_entry)) {
536 list_add_counter(counter, ctx);
537 ctx->nr_counters++;
538 }
539 spin_unlock_irq(&ctx->lock);
540}
541
542/*
543 * Cross CPU call to enable a performance counter
544 */
545static void __perf_counter_enable(void *info)
546{
547 struct perf_counter *counter = info;
548 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
549 struct perf_counter_context *ctx = counter->ctx;
550 struct perf_counter *leader = counter->group_leader;
551 unsigned long flags;
552 int err;
553
554 /*
555 * If this is a per-task counter, need to check whether this
556 * counter's task is the current task on this cpu.
557 */
558 if (ctx->task && cpuctx->task_ctx != ctx)
559 return;
560
561 curr_rq_lock_irq_save(&flags);
562 spin_lock(&ctx->lock);
563
564 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
565 goto unlock;
566 counter->state = PERF_COUNTER_STATE_INACTIVE;
567
568 /*
569 * If the counter is in a group and isn't the group leader,
570 * then don't put it on unless the group is on.
571 */
572 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
573 goto unlock;
574
575 if (!group_can_go_on(counter, cpuctx, 1))
576 err = -EEXIST;
577 else
578 err = counter_sched_in(counter, cpuctx, ctx,
579 smp_processor_id());
580
581 if (err) {
582 /*
583 * If this counter can't go on and it's part of a
584 * group, then the whole group has to come off.
585 */
586 if (leader != counter)
587 group_sched_out(leader, cpuctx, ctx);
588 if (leader->hw_event.pinned)
589 leader->state = PERF_COUNTER_STATE_ERROR;
590 }
591
592 unlock:
593 spin_unlock(&ctx->lock);
594 curr_rq_unlock_irq_restore(&flags);
595}
596
597/*
598 * Enable a counter.
599 */
600static void perf_counter_enable(struct perf_counter *counter)
601{
602 struct perf_counter_context *ctx = counter->ctx;
603 struct task_struct *task = ctx->task;
604
605 if (!task) {
606 /*
607 * Enable the counter on the cpu that it's on
608 */
609 smp_call_function_single(counter->cpu, __perf_counter_enable,
610 counter, 1);
611 return;
612 }
613
614 spin_lock_irq(&ctx->lock);
615 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
616 goto out;
617
618 /*
619 * If the counter is in error state, clear that first.
620 * That way, if we see the counter in error state below, we
621 * know that it has gone back into error state, as distinct
622 * from the task having been scheduled away before the
623 * cross-call arrived.
624 */
625 if (counter->state == PERF_COUNTER_STATE_ERROR)
626 counter->state = PERF_COUNTER_STATE_OFF;
627
628 retry:
629 spin_unlock_irq(&ctx->lock);
630 task_oncpu_function_call(task, __perf_counter_enable, counter);
631
632 spin_lock_irq(&ctx->lock);
633
634 /*
635 * If the context is active and the counter is still off,
636 * we need to retry the cross-call.
637 */
638 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
639 goto retry;
640
641 /*
642 * Since we have the lock this context can't be scheduled
643 * in, so we can change the state safely.
644 */
645 if (counter->state == PERF_COUNTER_STATE_OFF)
646 counter->state = PERF_COUNTER_STATE_INACTIVE;
647 out:
648 spin_unlock_irq(&ctx->lock);
649}
650
651/*
652 * Enable a counter and all its children.
653 */
654static void perf_counter_enable_family(struct perf_counter *counter)
655{
656 struct perf_counter *child;
657
658 perf_counter_enable(counter);
659
660 /*
661 * Lock the mutex to protect the list of children
662 */
663 mutex_lock(&counter->mutex);
664 list_for_each_entry(child, &counter->child_list, child_list)
665 perf_counter_enable(child);
666 mutex_unlock(&counter->mutex);
667}
668
669void __perf_counter_sched_out(struct perf_counter_context *ctx,
670 struct perf_cpu_context *cpuctx)
671{
672 struct perf_counter *counter;
673 u64 flags;
674
675 spin_lock(&ctx->lock);
676 ctx->is_active = 0;
677 if (likely(!ctx->nr_counters))
678 goto out;
679
680 flags = hw_perf_save_disable();
681 if (ctx->nr_active) {
682 list_for_each_entry(counter, &ctx->counter_list, list_entry)
683 group_sched_out(counter, cpuctx, ctx);
684 }
685 hw_perf_restore(flags);
686 out:
687 spin_unlock(&ctx->lock);
688}
689
690/*
691 * Called from scheduler to remove the counters of the current task,
692 * with interrupts disabled.
693 *
694 * We stop each counter and update the counter value in counter->count.
695 *
696 * This does not protect us against NMI, but disable()
697 * sets the disabled bit in the control field of counter _before_
698 * accessing the counter control register. If a NMI hits, then it will
699 * not restart the counter.
700 */
701void perf_counter_task_sched_out(struct task_struct *task, int cpu)
702{
703 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
704 struct perf_counter_context *ctx = &task->perf_counter_ctx;
705
706 if (likely(!cpuctx->task_ctx))
707 return;
708
709 __perf_counter_sched_out(ctx, cpuctx);
710
711 cpuctx->task_ctx = NULL;
712}
713
714static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
715{
716 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
717}
718
719static int
720group_sched_in(struct perf_counter *group_counter,
721 struct perf_cpu_context *cpuctx,
722 struct perf_counter_context *ctx,
723 int cpu)
724{
725 struct perf_counter *counter, *partial_group;
726 int ret;
727
728 if (group_counter->state == PERF_COUNTER_STATE_OFF)
729 return 0;
730
731 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
732 if (ret)
733 return ret < 0 ? ret : 0;
734
735 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
736 return -EAGAIN;
737
738 /*
739 * Schedule in siblings as one group (if any):
740 */
741 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
742 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
743 partial_group = counter;
744 goto group_error;
745 }
746 }
747
748 return 0;
749
750group_error:
751 /*
752 * Groups can be scheduled in as one unit only, so undo any
753 * partial group before returning:
754 */
755 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
756 if (counter == partial_group)
757 break;
758 counter_sched_out(counter, cpuctx, ctx);
759 }
760 counter_sched_out(group_counter, cpuctx, ctx);
761
762 return -EAGAIN;
763}
764
765static void
766__perf_counter_sched_in(struct perf_counter_context *ctx,
767 struct perf_cpu_context *cpuctx, int cpu)
768{
769 struct perf_counter *counter;
770 u64 flags;
771 int can_add_hw = 1;
772
773 spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 if (likely(!ctx->nr_counters))
776 goto out;
777
778 flags = hw_perf_save_disable();
779
780 /*
781 * First go through the list and put on any pinned groups
782 * in order to give them the best chance of going on.
783 */
784 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
785 if (counter->state <= PERF_COUNTER_STATE_OFF ||
786 !counter->hw_event.pinned)
787 continue;
788 if (counter->cpu != -1 && counter->cpu != cpu)
789 continue;
790
791 if (group_can_go_on(counter, cpuctx, 1))
792 group_sched_in(counter, cpuctx, ctx, cpu);
793
794 /*
795 * If this pinned group hasn't been scheduled,
796 * put it in error state.
797 */
798 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
799 counter->state = PERF_COUNTER_STATE_ERROR;
800 }
801
802 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
803 /*
804 * Ignore counters in OFF or ERROR state, and
805 * ignore pinned counters since we did them already.
806 */
807 if (counter->state <= PERF_COUNTER_STATE_OFF ||
808 counter->hw_event.pinned)
809 continue;
810
811 /*
812 * Listen to the 'cpu' scheduling filter constraint
813 * of counters:
814 */
815 if (counter->cpu != -1 && counter->cpu != cpu)
816 continue;
817
818 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
819 if (group_sched_in(counter, cpuctx, ctx, cpu))
820 can_add_hw = 0;
821 }
822 }
823 hw_perf_restore(flags);
824 out:
825 spin_unlock(&ctx->lock);
826}
827
828/*
829 * Called from scheduler to add the counters of the current task
830 * with interrupts disabled.
831 *
832 * We restore the counter value and then enable it.
833 *
834 * This does not protect us against NMI, but enable()
835 * sets the enabled bit in the control field of counter _before_
836 * accessing the counter control register. If a NMI hits, then it will
837 * keep the counter running.
838 */
839void perf_counter_task_sched_in(struct task_struct *task, int cpu)
840{
841 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
842 struct perf_counter_context *ctx = &task->perf_counter_ctx;
843
844 __perf_counter_sched_in(ctx, cpuctx, cpu);
845 cpuctx->task_ctx = ctx;
846}
847
848static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
849{
850 struct perf_counter_context *ctx = &cpuctx->ctx;
851
852 __perf_counter_sched_in(ctx, cpuctx, cpu);
853}
854
855int perf_counter_task_disable(void)
856{
857 struct task_struct *curr = current;
858 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
859 struct perf_counter *counter;
860 unsigned long flags;
861 u64 perf_flags;
862 int cpu;
863
864 if (likely(!ctx->nr_counters))
865 return 0;
866
867 curr_rq_lock_irq_save(&flags);
868 cpu = smp_processor_id();
869
870 /* force the update of the task clock: */
871 __task_delta_exec(curr, 1);
872
873 perf_counter_task_sched_out(curr, cpu);
874
875 spin_lock(&ctx->lock);
876
877 /*
878 * Disable all the counters:
879 */
880 perf_flags = hw_perf_save_disable();
881
882 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
883 if (counter->state != PERF_COUNTER_STATE_ERROR)
884 counter->state = PERF_COUNTER_STATE_OFF;
885 }
886
887 hw_perf_restore(perf_flags);
888
889 spin_unlock(&ctx->lock);
890
891 curr_rq_unlock_irq_restore(&flags);
892
893 return 0;
894}
895
896int perf_counter_task_enable(void)
897{
898 struct task_struct *curr = current;
899 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
900 struct perf_counter *counter;
901 unsigned long flags;
902 u64 perf_flags;
903 int cpu;
904
905 if (likely(!ctx->nr_counters))
906 return 0;
907
908 curr_rq_lock_irq_save(&flags);
909 cpu = smp_processor_id();
910
911 /* force the update of the task clock: */
912 __task_delta_exec(curr, 1);
913
914 perf_counter_task_sched_out(curr, cpu);
915
916 spin_lock(&ctx->lock);
917
918 /*
919 * Disable all the counters:
920 */
921 perf_flags = hw_perf_save_disable();
922
923 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
924 if (counter->state > PERF_COUNTER_STATE_OFF)
925 continue;
926 counter->state = PERF_COUNTER_STATE_INACTIVE;
927 counter->hw_event.disabled = 0;
928 }
929 hw_perf_restore(perf_flags);
930
931 spin_unlock(&ctx->lock);
932
933 perf_counter_task_sched_in(curr, cpu);
934
935 curr_rq_unlock_irq_restore(&flags);
936
937 return 0;
938}
939
940/*
941 * Round-robin a context's counters:
942 */
943static void rotate_ctx(struct perf_counter_context *ctx)
944{
945 struct perf_counter *counter;
946 u64 perf_flags;
947
948 if (!ctx->nr_counters)
949 return;
950
951 spin_lock(&ctx->lock);
952 /*
953 * Rotate the first entry last (works just fine for group counters too):
954 */
955 perf_flags = hw_perf_save_disable();
956 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
957 list_del(&counter->list_entry);
958 list_add_tail(&counter->list_entry, &ctx->counter_list);
959 break;
960 }
961 hw_perf_restore(perf_flags);
962
963 spin_unlock(&ctx->lock);
964}
965
966void perf_counter_task_tick(struct task_struct *curr, int cpu)
967{
968 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
969 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
970 const int rotate_percpu = 0;
971
972 if (rotate_percpu)
973 perf_counter_cpu_sched_out(cpuctx);
974 perf_counter_task_sched_out(curr, cpu);
975
976 if (rotate_percpu)
977 rotate_ctx(&cpuctx->ctx);
978 rotate_ctx(ctx);
979
980 if (rotate_percpu)
981 perf_counter_cpu_sched_in(cpuctx, cpu);
982 perf_counter_task_sched_in(curr, cpu);
983}
984
985/*
986 * Cross CPU call to read the hardware counter
987 */
988static void __read(void *info)
989{
990 struct perf_counter *counter = info;
991 unsigned long flags;
992
993 curr_rq_lock_irq_save(&flags);
994 counter->hw_ops->read(counter);
995 curr_rq_unlock_irq_restore(&flags);
996}
997
998static u64 perf_counter_read(struct perf_counter *counter)
999{
1000 /*
1001 * If counter is enabled and currently active on a CPU, update the
1002 * value in the counter structure:
1003 */
1004 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1005 smp_call_function_single(counter->oncpu,
1006 __read, counter, 1);
1007 }
1008
1009 return atomic64_read(&counter->count);
1010}
1011
1012/*
1013 * Cross CPU call to switch performance data pointers
1014 */
1015static void __perf_switch_irq_data(void *info)
1016{
1017 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1018 struct perf_counter *counter = info;
1019 struct perf_counter_context *ctx = counter->ctx;
1020 struct perf_data *oldirqdata = counter->irqdata;
1021
1022 /*
1023 * If this is a task context, we need to check whether it is
1024 * the current task context of this cpu. If not it has been
1025 * scheduled out before the smp call arrived.
1026 */
1027 if (ctx->task) {
1028 if (cpuctx->task_ctx != ctx)
1029 return;
1030 spin_lock(&ctx->lock);
1031 }
1032
1033 /* Change the pointer NMI safe */
1034 atomic_long_set((atomic_long_t *)&counter->irqdata,
1035 (unsigned long) counter->usrdata);
1036 counter->usrdata = oldirqdata;
1037
1038 if (ctx->task)
1039 spin_unlock(&ctx->lock);
1040}
1041
1042static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1043{
1044 struct perf_counter_context *ctx = counter->ctx;
1045 struct perf_data *oldirqdata = counter->irqdata;
1046 struct task_struct *task = ctx->task;
1047
1048 if (!task) {
1049 smp_call_function_single(counter->cpu,
1050 __perf_switch_irq_data,
1051 counter, 1);
1052 return counter->usrdata;
1053 }
1054
1055retry:
1056 spin_lock_irq(&ctx->lock);
1057 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1058 counter->irqdata = counter->usrdata;
1059 counter->usrdata = oldirqdata;
1060 spin_unlock_irq(&ctx->lock);
1061 return oldirqdata;
1062 }
1063 spin_unlock_irq(&ctx->lock);
1064 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1065 /* Might have failed, because task was scheduled out */
1066 if (counter->irqdata == oldirqdata)
1067 goto retry;
1068
1069 return counter->usrdata;
1070}
1071
1072static void put_context(struct perf_counter_context *ctx)
1073{
1074 if (ctx->task)
1075 put_task_struct(ctx->task);
1076}
1077
1078static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1079{
1080 struct perf_cpu_context *cpuctx;
1081 struct perf_counter_context *ctx;
1082 struct task_struct *task;
1083
1084 /*
1085 * If cpu is not a wildcard then this is a percpu counter:
1086 */
1087 if (cpu != -1) {
1088 /* Must be root to operate on a CPU counter: */
1089 if (!capable(CAP_SYS_ADMIN))
1090 return ERR_PTR(-EACCES);
1091
1092 if (cpu < 0 || cpu > num_possible_cpus())
1093 return ERR_PTR(-EINVAL);
1094
1095 /*
1096 * We could be clever and allow to attach a counter to an
1097 * offline CPU and activate it when the CPU comes up, but
1098 * that's for later.
1099 */
1100 if (!cpu_isset(cpu, cpu_online_map))
1101 return ERR_PTR(-ENODEV);
1102
1103 cpuctx = &per_cpu(perf_cpu_context, cpu);
1104 ctx = &cpuctx->ctx;
1105
1106 return ctx;
1107 }
1108
1109 rcu_read_lock();
1110 if (!pid)
1111 task = current;
1112 else
1113 task = find_task_by_vpid(pid);
1114 if (task)
1115 get_task_struct(task);
1116 rcu_read_unlock();
1117
1118 if (!task)
1119 return ERR_PTR(-ESRCH);
1120
1121 ctx = &task->perf_counter_ctx;
1122 ctx->task = task;
1123
1124 /* Reuse ptrace permission checks for now. */
1125 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1126 put_context(ctx);
1127 return ERR_PTR(-EACCES);
1128 }
1129
1130 return ctx;
1131}
1132
1133/*
1134 * Called when the last reference to the file is gone.
1135 */
1136static int perf_release(struct inode *inode, struct file *file)
1137{
1138 struct perf_counter *counter = file->private_data;
1139 struct perf_counter_context *ctx = counter->ctx;
1140
1141 file->private_data = NULL;
1142
1143 mutex_lock(&ctx->mutex);
1144 mutex_lock(&counter->mutex);
1145
1146 perf_counter_remove_from_context(counter);
1147 put_context(ctx);
1148
1149 mutex_unlock(&counter->mutex);
1150 mutex_unlock(&ctx->mutex);
1151
1152 kfree(counter);
1153
1154 return 0;
1155}
1156
1157/*
1158 * Read the performance counter - simple non blocking version for now
1159 */
1160static ssize_t
1161perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1162{
1163 u64 cntval;
1164
1165 if (count != sizeof(cntval))
1166 return -EINVAL;
1167
1168 /*
1169 * Return end-of-file for a read on a counter that is in
1170 * error state (i.e. because it was pinned but it couldn't be
1171 * scheduled on to the CPU at some point).
1172 */
1173 if (counter->state == PERF_COUNTER_STATE_ERROR)
1174 return 0;
1175
1176 mutex_lock(&counter->mutex);
1177 cntval = perf_counter_read(counter);
1178 mutex_unlock(&counter->mutex);
1179
1180 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1181}
1182
1183static ssize_t
1184perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1185{
1186 if (!usrdata->len)
1187 return 0;
1188
1189 count = min(count, (size_t)usrdata->len);
1190 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1191 return -EFAULT;
1192
1193 /* Adjust the counters */
1194 usrdata->len -= count;
1195 if (!usrdata->len)
1196 usrdata->rd_idx = 0;
1197 else
1198 usrdata->rd_idx += count;
1199
1200 return count;
1201}
1202
1203static ssize_t
1204perf_read_irq_data(struct perf_counter *counter,
1205 char __user *buf,
1206 size_t count,
1207 int nonblocking)
1208{
1209 struct perf_data *irqdata, *usrdata;
1210 DECLARE_WAITQUEUE(wait, current);
1211 ssize_t res, res2;
1212
1213 irqdata = counter->irqdata;
1214 usrdata = counter->usrdata;
1215
1216 if (usrdata->len + irqdata->len >= count)
1217 goto read_pending;
1218
1219 if (nonblocking)
1220 return -EAGAIN;
1221
1222 spin_lock_irq(&counter->waitq.lock);
1223 __add_wait_queue(&counter->waitq, &wait);
1224 for (;;) {
1225 set_current_state(TASK_INTERRUPTIBLE);
1226 if (usrdata->len + irqdata->len >= count)
1227 break;
1228
1229 if (signal_pending(current))
1230 break;
1231
1232 if (counter->state == PERF_COUNTER_STATE_ERROR)
1233 break;
1234
1235 spin_unlock_irq(&counter->waitq.lock);
1236 schedule();
1237 spin_lock_irq(&counter->waitq.lock);
1238 }
1239 __remove_wait_queue(&counter->waitq, &wait);
1240 __set_current_state(TASK_RUNNING);
1241 spin_unlock_irq(&counter->waitq.lock);
1242
1243 if (usrdata->len + irqdata->len < count &&
1244 counter->state != PERF_COUNTER_STATE_ERROR)
1245 return -ERESTARTSYS;
1246read_pending:
1247 mutex_lock(&counter->mutex);
1248
1249 /* Drain pending data first: */
1250 res = perf_copy_usrdata(usrdata, buf, count);
1251 if (res < 0 || res == count)
1252 goto out;
1253
1254 /* Switch irq buffer: */
1255 usrdata = perf_switch_irq_data(counter);
1256 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1257 if (res2 < 0) {
1258 if (!res)
1259 res = -EFAULT;
1260 } else {
1261 res += res2;
1262 }
1263out:
1264 mutex_unlock(&counter->mutex);
1265
1266 return res;
1267}
1268
1269static ssize_t
1270perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1271{
1272 struct perf_counter *counter = file->private_data;
1273
1274 switch (counter->hw_event.record_type) {
1275 case PERF_RECORD_SIMPLE:
1276 return perf_read_hw(counter, buf, count);
1277
1278 case PERF_RECORD_IRQ:
1279 case PERF_RECORD_GROUP:
1280 return perf_read_irq_data(counter, buf, count,
1281 file->f_flags & O_NONBLOCK);
1282 }
1283 return -EINVAL;
1284}
1285
1286static unsigned int perf_poll(struct file *file, poll_table *wait)
1287{
1288 struct perf_counter *counter = file->private_data;
1289 unsigned int events = 0;
1290 unsigned long flags;
1291
1292 poll_wait(file, &counter->waitq, wait);
1293
1294 spin_lock_irqsave(&counter->waitq.lock, flags);
1295 if (counter->usrdata->len || counter->irqdata->len)
1296 events |= POLLIN;
1297 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1298
1299 return events;
1300}
1301
1302static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1303{
1304 struct perf_counter *counter = file->private_data;
1305 int err = 0;
1306
1307 switch (cmd) {
1308 case PERF_COUNTER_IOC_ENABLE:
1309 perf_counter_enable_family(counter);
1310 break;
1311 case PERF_COUNTER_IOC_DISABLE:
1312 perf_counter_disable_family(counter);
1313 break;
1314 default:
1315 err = -ENOTTY;
1316 }
1317 return err;
1318}
1319
1320static const struct file_operations perf_fops = {
1321 .release = perf_release,
1322 .read = perf_read,
1323 .poll = perf_poll,
1324 .unlocked_ioctl = perf_ioctl,
1325 .compat_ioctl = perf_ioctl,
1326};
1327
1328static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1329{
1330 int cpu = raw_smp_processor_id();
1331
1332 atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
1333 return 0;
1334}
1335
1336static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1337{
1338 int cpu = raw_smp_processor_id();
1339 s64 prev;
1340 u64 now;
1341
1342 now = cpu_clock(cpu);
1343 prev = atomic64_read(&counter->hw.prev_count);
1344 atomic64_set(&counter->hw.prev_count, now);
1345 atomic64_add(now - prev, &counter->count);
1346}
1347
1348static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1349{
1350 cpu_clock_perf_counter_update(counter);
1351}
1352
1353static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1354{
1355 cpu_clock_perf_counter_update(counter);
1356}
1357
1358static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1359 .enable = cpu_clock_perf_counter_enable,
1360 .disable = cpu_clock_perf_counter_disable,
1361 .read = cpu_clock_perf_counter_read,
1362};
1363
1364/*
1365 * Called from within the scheduler:
1366 */
1367static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1368{
1369 struct task_struct *curr = counter->task;
1370 u64 delta;
1371
1372 delta = __task_delta_exec(curr, update);
1373
1374 return curr->se.sum_exec_runtime + delta;
1375}
1376
1377static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1378{
1379 u64 prev;
1380 s64 delta;
1381
1382 prev = atomic64_read(&counter->hw.prev_count);
1383
1384 atomic64_set(&counter->hw.prev_count, now);
1385
1386 delta = now - prev;
1387
1388 atomic64_add(delta, &counter->count);
1389}
1390
1391static void task_clock_perf_counter_read(struct perf_counter *counter)
1392{
1393 u64 now = task_clock_perf_counter_val(counter, 1);
1394
1395 task_clock_perf_counter_update(counter, now);
1396}
1397
1398static int task_clock_perf_counter_enable(struct perf_counter *counter)
1399{
1400 u64 now = task_clock_perf_counter_val(counter, 0);
1401
1402 atomic64_set(&counter->hw.prev_count, now);
1403
1404 return 0;
1405}
1406
1407static void task_clock_perf_counter_disable(struct perf_counter *counter)
1408{
1409 u64 now = task_clock_perf_counter_val(counter, 0);
1410
1411 task_clock_perf_counter_update(counter, now);
1412}
1413
1414static const struct hw_perf_counter_ops perf_ops_task_clock = {
1415 .enable = task_clock_perf_counter_enable,
1416 .disable = task_clock_perf_counter_disable,
1417 .read = task_clock_perf_counter_read,
1418};
1419
1420static u64 get_page_faults(void)
1421{
1422 struct task_struct *curr = current;
1423
1424 return curr->maj_flt + curr->min_flt;
1425}
1426
1427static void page_faults_perf_counter_update(struct perf_counter *counter)
1428{
1429 u64 prev, now;
1430 s64 delta;
1431
1432 prev = atomic64_read(&counter->hw.prev_count);
1433 now = get_page_faults();
1434
1435 atomic64_set(&counter->hw.prev_count, now);
1436
1437 delta = now - prev;
1438
1439 atomic64_add(delta, &counter->count);
1440}
1441
1442static void page_faults_perf_counter_read(struct perf_counter *counter)
1443{
1444 page_faults_perf_counter_update(counter);
1445}
1446
1447static int page_faults_perf_counter_enable(struct perf_counter *counter)
1448{
1449 /*
1450 * page-faults is a per-task value already,
1451 * so we dont have to clear it on switch-in.
1452 */
1453
1454 return 0;
1455}
1456
1457static void page_faults_perf_counter_disable(struct perf_counter *counter)
1458{
1459 page_faults_perf_counter_update(counter);
1460}
1461
1462static const struct hw_perf_counter_ops perf_ops_page_faults = {
1463 .enable = page_faults_perf_counter_enable,
1464 .disable = page_faults_perf_counter_disable,
1465 .read = page_faults_perf_counter_read,
1466};
1467
1468static u64 get_context_switches(void)
1469{
1470 struct task_struct *curr = current;
1471
1472 return curr->nvcsw + curr->nivcsw;
1473}
1474
1475static void context_switches_perf_counter_update(struct perf_counter *counter)
1476{
1477 u64 prev, now;
1478 s64 delta;
1479
1480 prev = atomic64_read(&counter->hw.prev_count);
1481 now = get_context_switches();
1482
1483 atomic64_set(&counter->hw.prev_count, now);
1484
1485 delta = now - prev;
1486
1487 atomic64_add(delta, &counter->count);
1488}
1489
1490static void context_switches_perf_counter_read(struct perf_counter *counter)
1491{
1492 context_switches_perf_counter_update(counter);
1493}
1494
1495static int context_switches_perf_counter_enable(struct perf_counter *counter)
1496{
1497 /*
1498 * ->nvcsw + curr->nivcsw is a per-task value already,
1499 * so we dont have to clear it on switch-in.
1500 */
1501
1502 return 0;
1503}
1504
1505static void context_switches_perf_counter_disable(struct perf_counter *counter)
1506{
1507 context_switches_perf_counter_update(counter);
1508}
1509
1510static const struct hw_perf_counter_ops perf_ops_context_switches = {
1511 .enable = context_switches_perf_counter_enable,
1512 .disable = context_switches_perf_counter_disable,
1513 .read = context_switches_perf_counter_read,
1514};
1515
1516static inline u64 get_cpu_migrations(void)
1517{
1518 return current->se.nr_migrations;
1519}
1520
1521static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1522{
1523 u64 prev, now;
1524 s64 delta;
1525
1526 prev = atomic64_read(&counter->hw.prev_count);
1527 now = get_cpu_migrations();
1528
1529 atomic64_set(&counter->hw.prev_count, now);
1530
1531 delta = now - prev;
1532
1533 atomic64_add(delta, &counter->count);
1534}
1535
1536static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1537{
1538 cpu_migrations_perf_counter_update(counter);
1539}
1540
1541static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1542{
1543 /*
1544 * se.nr_migrations is a per-task value already,
1545 * so we dont have to clear it on switch-in.
1546 */
1547
1548 return 0;
1549}
1550
1551static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1552{
1553 cpu_migrations_perf_counter_update(counter);
1554}
1555
1556static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1557 .enable = cpu_migrations_perf_counter_enable,
1558 .disable = cpu_migrations_perf_counter_disable,
1559 .read = cpu_migrations_perf_counter_read,
1560};
1561
1562static const struct hw_perf_counter_ops *
1563sw_perf_counter_init(struct perf_counter *counter)
1564{
1565 const struct hw_perf_counter_ops *hw_ops = NULL;
1566
1567 switch (counter->hw_event.type) {
1568 case PERF_COUNT_CPU_CLOCK:
1569 hw_ops = &perf_ops_cpu_clock;
1570 break;
1571 case PERF_COUNT_TASK_CLOCK:
1572 hw_ops = &perf_ops_task_clock;
1573 break;
1574 case PERF_COUNT_PAGE_FAULTS:
1575 hw_ops = &perf_ops_page_faults;
1576 break;
1577 case PERF_COUNT_CONTEXT_SWITCHES:
1578 hw_ops = &perf_ops_context_switches;
1579 break;
1580 case PERF_COUNT_CPU_MIGRATIONS:
1581 hw_ops = &perf_ops_cpu_migrations;
1582 break;
1583 default:
1584 break;
1585 }
1586 return hw_ops;
1587}
1588
1589/*
1590 * Allocate and initialize a counter structure
1591 */
1592static struct perf_counter *
1593perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1594 int cpu,
1595 struct perf_counter *group_leader,
1596 gfp_t gfpflags)
1597{
1598 const struct hw_perf_counter_ops *hw_ops;
1599 struct perf_counter *counter;
1600
1601 counter = kzalloc(sizeof(*counter), gfpflags);
1602 if (!counter)
1603 return NULL;
1604
1605 /*
1606 * Single counters are their own group leaders, with an
1607 * empty sibling list:
1608 */
1609 if (!group_leader)
1610 group_leader = counter;
1611
1612 mutex_init(&counter->mutex);
1613 INIT_LIST_HEAD(&counter->list_entry);
1614 INIT_LIST_HEAD(&counter->sibling_list);
1615 init_waitqueue_head(&counter->waitq);
1616
1617 INIT_LIST_HEAD(&counter->child_list);
1618
1619 counter->irqdata = &counter->data[0];
1620 counter->usrdata = &counter->data[1];
1621 counter->cpu = cpu;
1622 counter->hw_event = *hw_event;
1623 counter->wakeup_pending = 0;
1624 counter->group_leader = group_leader;
1625 counter->hw_ops = NULL;
1626
1627 counter->state = PERF_COUNTER_STATE_INACTIVE;
1628 if (hw_event->disabled)
1629 counter->state = PERF_COUNTER_STATE_OFF;
1630
1631 hw_ops = NULL;
1632 if (!hw_event->raw && hw_event->type < 0)
1633 hw_ops = sw_perf_counter_init(counter);
1634 if (!hw_ops)
1635 hw_ops = hw_perf_counter_init(counter);
1636
1637 if (!hw_ops) {
1638 kfree(counter);
1639 return NULL;
1640 }
1641 counter->hw_ops = hw_ops;
1642
1643 return counter;
1644}
1645
1646/**
1647 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
1648 *
1649 * @hw_event_uptr: event type attributes for monitoring/sampling
1650 * @pid: target pid
1651 * @cpu: target cpu
1652 * @group_fd: group leader counter fd
1653 */
1654asmlinkage int
1655sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
1656 pid_t pid, int cpu, int group_fd)
1657{
1658 struct perf_counter *counter, *group_leader;
1659 struct perf_counter_hw_event hw_event;
1660 struct perf_counter_context *ctx;
1661 struct file *counter_file = NULL;
1662 struct file *group_file = NULL;
1663 int fput_needed = 0;
1664 int fput_needed2 = 0;
1665 int ret;
1666
1667 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1668 return -EFAULT;
1669
1670 /*
1671 * Get the target context (task or percpu):
1672 */
1673 ctx = find_get_context(pid, cpu);
1674 if (IS_ERR(ctx))
1675 return PTR_ERR(ctx);
1676
1677 /*
1678 * Look up the group leader (we will attach this counter to it):
1679 */
1680 group_leader = NULL;
1681 if (group_fd != -1) {
1682 ret = -EINVAL;
1683 group_file = fget_light(group_fd, &fput_needed);
1684 if (!group_file)
1685 goto err_put_context;
1686 if (group_file->f_op != &perf_fops)
1687 goto err_put_context;
1688
1689 group_leader = group_file->private_data;
1690 /*
1691 * Do not allow a recursive hierarchy (this new sibling
1692 * becoming part of another group-sibling):
1693 */
1694 if (group_leader->group_leader != group_leader)
1695 goto err_put_context;
1696 /*
1697 * Do not allow to attach to a group in a different
1698 * task or CPU context:
1699 */
1700 if (group_leader->ctx != ctx)
1701 goto err_put_context;
1702 /*
1703 * Only a group leader can be exclusive or pinned
1704 */
1705 if (hw_event.exclusive || hw_event.pinned)
1706 goto err_put_context;
1707 }
1708
1709 ret = -EINVAL;
1710 counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
1711 if (!counter)
1712 goto err_put_context;
1713
1714 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1715 if (ret < 0)
1716 goto err_free_put_context;
1717
1718 counter_file = fget_light(ret, &fput_needed2);
1719 if (!counter_file)
1720 goto err_free_put_context;
1721
1722 counter->filp = counter_file;
1723 mutex_lock(&ctx->mutex);
1724 perf_install_in_context(ctx, counter, cpu);
1725 mutex_unlock(&ctx->mutex);
1726
1727 fput_light(counter_file, fput_needed2);
1728
1729out_fput:
1730 fput_light(group_file, fput_needed);
1731
1732 return ret;
1733
1734err_free_put_context:
1735 kfree(counter);
1736
1737err_put_context:
1738 put_context(ctx);
1739
1740 goto out_fput;
1741}
1742
1743/*
1744 * Initialize the perf_counter context in a task_struct:
1745 */
1746static void
1747__perf_counter_init_context(struct perf_counter_context *ctx,
1748 struct task_struct *task)
1749{
1750 memset(ctx, 0, sizeof(*ctx));
1751 spin_lock_init(&ctx->lock);
1752 mutex_init(&ctx->mutex);
1753 INIT_LIST_HEAD(&ctx->counter_list);
1754 ctx->task = task;
1755}
1756
1757/*
1758 * inherit a counter from parent task to child task:
1759 */
1760static struct perf_counter *
1761inherit_counter(struct perf_counter *parent_counter,
1762 struct task_struct *parent,
1763 struct perf_counter_context *parent_ctx,
1764 struct task_struct *child,
1765 struct perf_counter *group_leader,
1766 struct perf_counter_context *child_ctx)
1767{
1768 struct perf_counter *child_counter;
1769
1770 /*
1771 * Instead of creating recursive hierarchies of counters,
1772 * we link inherited counters back to the original parent,
1773 * which has a filp for sure, which we use as the reference
1774 * count:
1775 */
1776 if (parent_counter->parent)
1777 parent_counter = parent_counter->parent;
1778
1779 child_counter = perf_counter_alloc(&parent_counter->hw_event,
1780 parent_counter->cpu, group_leader,
1781 GFP_KERNEL);
1782 if (!child_counter)
1783 return NULL;
1784
1785 /*
1786 * Link it up in the child's context:
1787 */
1788 child_counter->ctx = child_ctx;
1789 child_counter->task = child;
1790 list_add_counter(child_counter, child_ctx);
1791 child_ctx->nr_counters++;
1792
1793 child_counter->parent = parent_counter;
1794 /*
1795 * inherit into child's child as well:
1796 */
1797 child_counter->hw_event.inherit = 1;
1798
1799 /*
1800 * Get a reference to the parent filp - we will fput it
1801 * when the child counter exits. This is safe to do because
1802 * we are in the parent and we know that the filp still
1803 * exists and has a nonzero count:
1804 */
1805 atomic_long_inc(&parent_counter->filp->f_count);
1806
1807 /*
1808 * Link this into the parent counter's child list
1809 */
1810 mutex_lock(&parent_counter->mutex);
1811 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
1812
1813 /*
1814 * Make the child state follow the state of the parent counter,
1815 * not its hw_event.disabled bit. We hold the parent's mutex,
1816 * so we won't race with perf_counter_{en,dis}able_family.
1817 */
1818 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
1819 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
1820 else
1821 child_counter->state = PERF_COUNTER_STATE_OFF;
1822
1823 mutex_unlock(&parent_counter->mutex);
1824
1825 return child_counter;
1826}
1827
1828static int inherit_group(struct perf_counter *parent_counter,
1829 struct task_struct *parent,
1830 struct perf_counter_context *parent_ctx,
1831 struct task_struct *child,
1832 struct perf_counter_context *child_ctx)
1833{
1834 struct perf_counter *leader;
1835 struct perf_counter *sub;
1836
1837 leader = inherit_counter(parent_counter, parent, parent_ctx,
1838 child, NULL, child_ctx);
1839 if (!leader)
1840 return -ENOMEM;
1841 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
1842 if (!inherit_counter(sub, parent, parent_ctx,
1843 child, leader, child_ctx))
1844 return -ENOMEM;
1845 }
1846 return 0;
1847}
1848
1849static void sync_child_counter(struct perf_counter *child_counter,
1850 struct perf_counter *parent_counter)
1851{
1852 u64 parent_val, child_val;
1853
1854 parent_val = atomic64_read(&parent_counter->count);
1855 child_val = atomic64_read(&child_counter->count);
1856
1857 /*
1858 * Add back the child's count to the parent's count:
1859 */
1860 atomic64_add(child_val, &parent_counter->count);
1861
1862 /*
1863 * Remove this counter from the parent's list
1864 */
1865 mutex_lock(&parent_counter->mutex);
1866 list_del_init(&child_counter->child_list);
1867 mutex_unlock(&parent_counter->mutex);
1868
1869 /*
1870 * Release the parent counter, if this was the last
1871 * reference to it.
1872 */
1873 fput(parent_counter->filp);
1874}
1875
1876static void
1877__perf_counter_exit_task(struct task_struct *child,
1878 struct perf_counter *child_counter,
1879 struct perf_counter_context *child_ctx)
1880{
1881 struct perf_counter *parent_counter;
1882 struct perf_counter *sub, *tmp;
1883
1884 /*
1885 * If we do not self-reap then we have to wait for the
1886 * child task to unschedule (it will happen for sure),
1887 * so that its counter is at its final count. (This
1888 * condition triggers rarely - child tasks usually get
1889 * off their CPU before the parent has a chance to
1890 * get this far into the reaping action)
1891 */
1892 if (child != current) {
1893 wait_task_inactive(child, 0);
1894 list_del_init(&child_counter->list_entry);
1895 } else {
1896 struct perf_cpu_context *cpuctx;
1897 unsigned long flags;
1898 u64 perf_flags;
1899
1900 /*
1901 * Disable and unlink this counter.
1902 *
1903 * Be careful about zapping the list - IRQ/NMI context
1904 * could still be processing it:
1905 */
1906 curr_rq_lock_irq_save(&flags);
1907 perf_flags = hw_perf_save_disable();
1908
1909 cpuctx = &__get_cpu_var(perf_cpu_context);
1910
1911 group_sched_out(child_counter, cpuctx, child_ctx);
1912
1913 list_del_init(&child_counter->list_entry);
1914
1915 child_ctx->nr_counters--;
1916
1917 hw_perf_restore(perf_flags);
1918 curr_rq_unlock_irq_restore(&flags);
1919 }
1920
1921 parent_counter = child_counter->parent;
1922 /*
1923 * It can happen that parent exits first, and has counters
1924 * that are still around due to the child reference. These
1925 * counters need to be zapped - but otherwise linger.
1926 */
1927 if (parent_counter) {
1928 sync_child_counter(child_counter, parent_counter);
1929 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
1930 list_entry) {
1931 if (sub->parent)
1932 sync_child_counter(sub, sub->parent);
1933 kfree(sub);
1934 }
1935 }
1936
1937 kfree(child_counter);
1938}
1939
1940/*
1941 * When a child task exits, feed back counter values to parent counters.
1942 *
1943 * Note: we may be running in child context, but the PID is not hashed
1944 * anymore so new counters will not be added.
1945 */
1946void perf_counter_exit_task(struct task_struct *child)
1947{
1948 struct perf_counter *child_counter, *tmp;
1949 struct perf_counter_context *child_ctx;
1950
1951 child_ctx = &child->perf_counter_ctx;
1952
1953 if (likely(!child_ctx->nr_counters))
1954 return;
1955
1956 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
1957 list_entry)
1958 __perf_counter_exit_task(child, child_counter, child_ctx);
1959}
1960
1961/*
1962 * Initialize the perf_counter context in task_struct
1963 */
1964void perf_counter_init_task(struct task_struct *child)
1965{
1966 struct perf_counter_context *child_ctx, *parent_ctx;
1967 struct perf_counter *counter;
1968 struct task_struct *parent = current;
1969
1970 child_ctx = &child->perf_counter_ctx;
1971 parent_ctx = &parent->perf_counter_ctx;
1972
1973 __perf_counter_init_context(child_ctx, child);
1974
1975 /*
1976 * This is executed from the parent task context, so inherit
1977 * counters that have been marked for cloning:
1978 */
1979
1980 if (likely(!parent_ctx->nr_counters))
1981 return;
1982
1983 /*
1984 * Lock the parent list. No need to lock the child - not PID
1985 * hashed yet and not running, so nobody can access it.
1986 */
1987 mutex_lock(&parent_ctx->mutex);
1988
1989 /*
1990 * We dont have to disable NMIs - we are only looking at
1991 * the list, not manipulating it:
1992 */
1993 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
1994 if (!counter->hw_event.inherit)
1995 continue;
1996
1997 if (inherit_group(counter, parent,
1998 parent_ctx, child, child_ctx))
1999 break;
2000 }
2001
2002 mutex_unlock(&parent_ctx->mutex);
2003}
2004
2005static void __cpuinit perf_counter_init_cpu(int cpu)
2006{
2007 struct perf_cpu_context *cpuctx;
2008
2009 cpuctx = &per_cpu(perf_cpu_context, cpu);
2010 __perf_counter_init_context(&cpuctx->ctx, NULL);
2011
2012 mutex_lock(&perf_resource_mutex);
2013 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2014 mutex_unlock(&perf_resource_mutex);
2015
2016 hw_perf_counter_setup(cpu);
2017}
2018
2019#ifdef CONFIG_HOTPLUG_CPU
2020static void __perf_counter_exit_cpu(void *info)
2021{
2022 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2023 struct perf_counter_context *ctx = &cpuctx->ctx;
2024 struct perf_counter *counter, *tmp;
2025
2026 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2027 __perf_counter_remove_from_context(counter);
2028}
2029static void perf_counter_exit_cpu(int cpu)
2030{
2031 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2032 struct perf_counter_context *ctx = &cpuctx->ctx;
2033
2034 mutex_lock(&ctx->mutex);
2035 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2036 mutex_unlock(&ctx->mutex);
2037}
2038#else
2039static inline void perf_counter_exit_cpu(int cpu) { }
2040#endif
2041
2042static int __cpuinit
2043perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2044{
2045 unsigned int cpu = (long)hcpu;
2046
2047 switch (action) {
2048
2049 case CPU_UP_PREPARE:
2050 case CPU_UP_PREPARE_FROZEN:
2051 perf_counter_init_cpu(cpu);
2052 break;
2053
2054 case CPU_DOWN_PREPARE:
2055 case CPU_DOWN_PREPARE_FROZEN:
2056 perf_counter_exit_cpu(cpu);
2057 break;
2058
2059 default:
2060 break;
2061 }
2062
2063 return NOTIFY_OK;
2064}
2065
2066static struct notifier_block __cpuinitdata perf_cpu_nb = {
2067 .notifier_call = perf_cpu_notify,
2068};
2069
2070static int __init perf_counter_init(void)
2071{
2072 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2073 (void *)(long)smp_processor_id());
2074 register_cpu_notifier(&perf_cpu_nb);
2075
2076 return 0;
2077}
2078early_initcall(perf_counter_init);
2079
2080static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2081{
2082 return sprintf(buf, "%d\n", perf_reserved_percpu);
2083}
2084
2085static ssize_t
2086perf_set_reserve_percpu(struct sysdev_class *class,
2087 const char *buf,
2088 size_t count)
2089{
2090 struct perf_cpu_context *cpuctx;
2091 unsigned long val;
2092 int err, cpu, mpt;
2093
2094 err = strict_strtoul(buf, 10, &val);
2095 if (err)
2096 return err;
2097 if (val > perf_max_counters)
2098 return -EINVAL;
2099
2100 mutex_lock(&perf_resource_mutex);
2101 perf_reserved_percpu = val;
2102 for_each_online_cpu(cpu) {
2103 cpuctx = &per_cpu(perf_cpu_context, cpu);
2104 spin_lock_irq(&cpuctx->ctx.lock);
2105 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2106 perf_max_counters - perf_reserved_percpu);
2107 cpuctx->max_pertask = mpt;
2108 spin_unlock_irq(&cpuctx->ctx.lock);
2109 }
2110 mutex_unlock(&perf_resource_mutex);
2111
2112 return count;
2113}
2114
2115static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2116{
2117 return sprintf(buf, "%d\n", perf_overcommit);
2118}
2119
2120static ssize_t
2121perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2122{
2123 unsigned long val;
2124 int err;
2125
2126 err = strict_strtoul(buf, 10, &val);
2127 if (err)
2128 return err;
2129 if (val > 1)
2130 return -EINVAL;
2131
2132 mutex_lock(&perf_resource_mutex);
2133 perf_overcommit = val;
2134 mutex_unlock(&perf_resource_mutex);
2135
2136 return count;
2137}
2138
2139static SYSDEV_CLASS_ATTR(
2140 reserve_percpu,
2141 0644,
2142 perf_show_reserve_percpu,
2143 perf_set_reserve_percpu
2144 );
2145
2146static SYSDEV_CLASS_ATTR(
2147 overcommit,
2148 0644,
2149 perf_show_overcommit,
2150 perf_set_overcommit
2151 );
2152
2153static struct attribute *perfclass_attrs[] = {
2154 &attr_reserve_percpu.attr,
2155 &attr_overcommit.attr,
2156 NULL
2157};
2158
2159static struct attribute_group perfclass_attr_group = {
2160 .attrs = perfclass_attrs,
2161 .name = "perf_counters",
2162};
2163
2164static int __init perf_counter_sysfs_init(void)
2165{
2166 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2167 &perfclass_attr_group);
2168}
2169device_initcall(perf_counter_sysfs_init);
diff --git a/kernel/sched.c b/kernel/sched.c
index 52bbf1c842a8..40d70d9c0af3 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -668,7 +668,7 @@ static inline int cpu_of(struct rq *rq)
668#define task_rq(p) cpu_rq(task_cpu(p)) 668#define task_rq(p) cpu_rq(task_cpu(p))
669#define cpu_curr(cpu) (cpu_rq(cpu)->curr) 669#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670 670
671static inline void update_rq_clock(struct rq *rq) 671inline void update_rq_clock(struct rq *rq)
672{ 672{
673 rq->clock = sched_clock_cpu(cpu_of(rq)); 673 rq->clock = sched_clock_cpu(cpu_of(rq));
674} 674}
@@ -979,6 +979,26 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
979 } 979 }
980} 980}
981 981
982void curr_rq_lock_irq_save(unsigned long *flags)
983 __acquires(rq->lock)
984{
985 struct rq *rq;
986
987 local_irq_save(*flags);
988 rq = cpu_rq(smp_processor_id());
989 spin_lock(&rq->lock);
990}
991
992void curr_rq_unlock_irq_restore(unsigned long *flags)
993 __releases(rq->lock)
994{
995 struct rq *rq;
996
997 rq = cpu_rq(smp_processor_id());
998 spin_unlock(&rq->lock);
999 local_irq_restore(*flags);
1000}
1001
982void task_rq_unlock_wait(struct task_struct *p) 1002void task_rq_unlock_wait(struct task_struct *p)
983{ 1003{
984 struct rq *rq = task_rq(p); 1004 struct rq *rq = task_rq(p);
@@ -1885,12 +1905,14 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1885 p->se.sleep_start -= clock_offset; 1905 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start) 1906 if (p->se.block_start)
1887 p->se.block_start -= clock_offset; 1907 p->se.block_start -= clock_offset;
1908#endif
1888 if (old_cpu != new_cpu) { 1909 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations); 1910 p->se.nr_migrations++;
1911#ifdef CONFIG_SCHEDSTATS
1890 if (task_hot(p, old_rq->clock, NULL)) 1912 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations); 1913 schedstat_inc(p, se.nr_forced2_migrations);
1892 }
1893#endif 1914#endif
1915 }
1894 p->se.vruntime -= old_cfsrq->min_vruntime - 1916 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime; 1917 new_cfsrq->min_vruntime;
1896 1918
@@ -2242,6 +2264,27 @@ static int sched_balance_self(int cpu, int flag)
2242 2264
2243#endif /* CONFIG_SMP */ 2265#endif /* CONFIG_SMP */
2244 2266
2267/**
2268 * task_oncpu_function_call - call a function on the cpu on which a task runs
2269 * @p: the task to evaluate
2270 * @func: the function to be called
2271 * @info: the function call argument
2272 *
2273 * Calls the function @func when the task is currently running. This might
2274 * be on the current CPU, which just calls the function directly
2275 */
2276void task_oncpu_function_call(struct task_struct *p,
2277 void (*func) (void *info), void *info)
2278{
2279 int cpu;
2280
2281 preempt_disable();
2282 cpu = task_cpu(p);
2283 if (task_curr(p))
2284 smp_call_function_single(cpu, func, info, 1);
2285 preempt_enable();
2286}
2287
2245/*** 2288/***
2246 * try_to_wake_up - wake up a thread 2289 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread 2290 * @p: the to-be-woken-up thread
@@ -2384,6 +2427,7 @@ static void __sched_fork(struct task_struct *p)
2384 p->se.exec_start = 0; 2427 p->se.exec_start = 0;
2385 p->se.sum_exec_runtime = 0; 2428 p->se.sum_exec_runtime = 0;
2386 p->se.prev_sum_exec_runtime = 0; 2429 p->se.prev_sum_exec_runtime = 0;
2430 p->se.nr_migrations = 0;
2387 p->se.last_wakeup = 0; 2431 p->se.last_wakeup = 0;
2388 p->se.avg_overlap = 0; 2432 p->se.avg_overlap = 0;
2389 2433
@@ -2604,6 +2648,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2604 */ 2648 */
2605 prev_state = prev->state; 2649 prev_state = prev->state;
2606 finish_arch_switch(prev); 2650 finish_arch_switch(prev);
2651 perf_counter_task_sched_in(current, cpu_of(rq));
2607 finish_lock_switch(rq, prev); 2652 finish_lock_switch(rq, prev);
2608#ifdef CONFIG_SMP 2653#ifdef CONFIG_SMP
2609 if (current->sched_class->post_schedule) 2654 if (current->sched_class->post_schedule)
@@ -4132,6 +4177,29 @@ EXPORT_PER_CPU_SYMBOL(kstat);
4132 * Return any ns on the sched_clock that have not yet been banked in 4177 * Return any ns on the sched_clock that have not yet been banked in
4133 * @p in case that task is currently running. 4178 * @p in case that task is currently running.
4134 */ 4179 */
4180unsigned long long __task_delta_exec(struct task_struct *p, int update)
4181{
4182 s64 delta_exec;
4183 struct rq *rq;
4184
4185 rq = task_rq(p);
4186 WARN_ON_ONCE(!runqueue_is_locked());
4187 WARN_ON_ONCE(!task_current(rq, p));
4188
4189 if (update)
4190 update_rq_clock(rq);
4191
4192 delta_exec = rq->clock - p->se.exec_start;
4193
4194 WARN_ON_ONCE(delta_exec < 0);
4195
4196 return delta_exec;
4197}
4198
4199/*
4200 * Return any ns on the sched_clock that have not yet been banked in
4201 * @p in case that task is currently running.
4202 */
4135unsigned long long task_delta_exec(struct task_struct *p) 4203unsigned long long task_delta_exec(struct task_struct *p)
4136{ 4204{
4137 unsigned long flags; 4205 unsigned long flags;
@@ -4391,6 +4459,7 @@ void scheduler_tick(void)
4391 update_rq_clock(rq); 4459 update_rq_clock(rq);
4392 update_cpu_load(rq); 4460 update_cpu_load(rq);
4393 curr->sched_class->task_tick(rq, curr, 0); 4461 curr->sched_class->task_tick(rq, curr, 0);
4462 perf_counter_task_tick(curr, cpu);
4394 spin_unlock(&rq->lock); 4463 spin_unlock(&rq->lock);
4395 4464
4396#ifdef CONFIG_SMP 4465#ifdef CONFIG_SMP
@@ -4586,6 +4655,7 @@ need_resched_nonpreemptible:
4586 4655
4587 if (likely(prev != next)) { 4656 if (likely(prev != next)) {
4588 sched_info_switch(prev, next); 4657 sched_info_switch(prev, next);
4658 perf_counter_task_sched_out(prev, cpu);
4589 4659
4590 rq->nr_switches++; 4660 rq->nr_switches++;
4591 rq->curr = next; 4661 rq->curr = next;
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index 954e1a81b796..da932f4c8524 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -960,16 +960,17 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
960 960
961static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 961static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
962 962
963static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) 963static inline int pick_optimal_cpu(int this_cpu,
964 const struct cpumask *mask)
964{ 965{
965 int first; 966 int first;
966 967
967 /* "this_cpu" is cheaper to preempt than a remote processor */ 968 /* "this_cpu" is cheaper to preempt than a remote processor */
968 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask)) 969 if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
969 return this_cpu; 970 return this_cpu;
970 971
971 first = first_cpu(*mask); 972 first = cpumask_first(mask);
972 if (first != NR_CPUS) 973 if (first < nr_cpu_ids)
973 return first; 974 return first;
974 975
975 return -1; 976 return -1;
@@ -981,6 +982,7 @@ static int find_lowest_rq(struct task_struct *task)
981 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 982 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
982 int this_cpu = smp_processor_id(); 983 int this_cpu = smp_processor_id();
983 int cpu = task_cpu(task); 984 int cpu = task_cpu(task);
985 cpumask_var_t domain_mask;
984 986
985 if (task->rt.nr_cpus_allowed == 1) 987 if (task->rt.nr_cpus_allowed == 1)
986 return -1; /* No other targets possible */ 988 return -1; /* No other targets possible */
@@ -1013,19 +1015,25 @@ static int find_lowest_rq(struct task_struct *task)
1013 if (this_cpu == cpu) 1015 if (this_cpu == cpu)
1014 this_cpu = -1; /* Skip this_cpu opt if the same */ 1016 this_cpu = -1; /* Skip this_cpu opt if the same */
1015 1017
1016 for_each_domain(cpu, sd) { 1018 if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1017 if (sd->flags & SD_WAKE_AFFINE) { 1019 for_each_domain(cpu, sd) {
1018 cpumask_t domain_mask; 1020 if (sd->flags & SD_WAKE_AFFINE) {
1019 int best_cpu; 1021 int best_cpu;
1020 1022
1021 cpumask_and(&domain_mask, sched_domain_span(sd), 1023 cpumask_and(domain_mask,
1022 lowest_mask); 1024 sched_domain_span(sd),
1025 lowest_mask);
1023 1026
1024 best_cpu = pick_optimal_cpu(this_cpu, 1027 best_cpu = pick_optimal_cpu(this_cpu,
1025 &domain_mask); 1028 domain_mask);
1026 if (best_cpu != -1) 1029
1027 return best_cpu; 1030 if (best_cpu != -1) {
1031 free_cpumask_var(domain_mask);
1032 return best_cpu;
1033 }
1034 }
1028 } 1035 }
1036 free_cpumask_var(domain_mask);
1029 } 1037 }
1030 1038
1031 /* 1039 /*
diff --git a/kernel/softirq.c b/kernel/softirq.c
index bdbe9de9cd8d..0365b4899a3d 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -795,6 +795,11 @@ int __init __weak early_irq_init(void)
795 return 0; 795 return 0;
796} 796}
797 797
798int __init __weak arch_probe_nr_irqs(void)
799{
800 return 0;
801}
802
798int __init __weak arch_early_irq_init(void) 803int __init __weak arch_early_irq_init(void)
799{ 804{
800 return 0; 805 return 0;
diff --git a/kernel/sys.c b/kernel/sys.c
index e7dc0e10a485..87ca037dc03a 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -14,6 +14,7 @@
14#include <linux/prctl.h> 14#include <linux/prctl.h>
15#include <linux/highuid.h> 15#include <linux/highuid.h>
16#include <linux/fs.h> 16#include <linux/fs.h>
17#include <linux/perf_counter.h>
17#include <linux/resource.h> 18#include <linux/resource.h>
18#include <linux/kernel.h> 19#include <linux/kernel.h>
19#include <linux/kexec.h> 20#include <linux/kexec.h>
@@ -1799,6 +1800,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1799 case PR_SET_TSC: 1800 case PR_SET_TSC:
1800 error = SET_TSC_CTL(arg2); 1801 error = SET_TSC_CTL(arg2);
1801 break; 1802 break;
1803 case PR_TASK_PERF_COUNTERS_DISABLE:
1804 error = perf_counter_task_disable();
1805 break;
1806 case PR_TASK_PERF_COUNTERS_ENABLE:
1807 error = perf_counter_task_enable();
1808 break;
1802 case PR_GET_TIMERSLACK: 1809 case PR_GET_TIMERSLACK:
1803 error = current->timer_slack_ns; 1810 error = current->timer_slack_ns;
1804 break; 1811 break;
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c
index 27dad2967387..68320f6b07b5 100644
--- a/kernel/sys_ni.c
+++ b/kernel/sys_ni.c
@@ -175,3 +175,6 @@ cond_syscall(compat_sys_timerfd_settime);
175cond_syscall(compat_sys_timerfd_gettime); 175cond_syscall(compat_sys_timerfd_gettime);
176cond_syscall(sys_eventfd); 176cond_syscall(sys_eventfd);
177cond_syscall(sys_eventfd2); 177cond_syscall(sys_eventfd2);
178
179/* performance counters: */
180cond_syscall(sys_perf_counter_open);