aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/async.c4
-rw-r--r--kernel/cgroup.c276
-rw-r--r--kernel/cpuset.c251
-rw-r--r--kernel/cred.c5
-rw-r--r--kernel/fork.c4
-rw-r--r--kernel/ns_cgroup.c2
-rw-r--r--kernel/pid.c6
-rw-r--r--kernel/power/disk.c6
-rw-r--r--kernel/power/snapshot.c370
-rw-r--r--kernel/power/swsusp.c122
-rw-r--r--kernel/res_counter.c44
-rw-r--r--kernel/sched_fair.c2
-rw-r--r--kernel/trace/ring_buffer.c8
13 files changed, 710 insertions, 390 deletions
diff --git a/kernel/async.c b/kernel/async.c
index 97373380c9e7..64cc916299a5 100644
--- a/kernel/async.c
+++ b/kernel/async.c
@@ -206,7 +206,9 @@ EXPORT_SYMBOL_GPL(async_schedule_special);
206 206
207void async_synchronize_full(void) 207void async_synchronize_full(void)
208{ 208{
209 async_synchronize_cookie(next_cookie); 209 do {
210 async_synchronize_cookie(next_cookie);
211 } while (!list_empty(&async_running) || !list_empty(&async_pending));
210} 212}
211EXPORT_SYMBOL_GPL(async_synchronize_full); 213EXPORT_SYMBOL_GPL(async_synchronize_full);
212 214
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index f221446aa02d..c29831076e7a 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -84,7 +84,7 @@ struct cgroupfs_root {
84 /* Tracks how many cgroups are currently defined in hierarchy.*/ 84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups; 85 int number_of_cgroups;
86 86
87 /* A list running through the mounted hierarchies */ 87 /* A list running through the active hierarchies */
88 struct list_head root_list; 88 struct list_head root_list;
89 89
90 /* Hierarchy-specific flags */ 90 /* Hierarchy-specific flags */
@@ -148,8 +148,8 @@ static int notify_on_release(const struct cgroup *cgrp)
148#define for_each_subsys(_root, _ss) \ 148#define for_each_subsys(_root, _ss) \
149list_for_each_entry(_ss, &_root->subsys_list, sibling) 149list_for_each_entry(_ss, &_root->subsys_list, sibling)
150 150
151/* for_each_root() allows you to iterate across the active hierarchies */ 151/* for_each_active_root() allows you to iterate across the active hierarchies */
152#define for_each_root(_root) \ 152#define for_each_active_root(_root) \
153list_for_each_entry(_root, &roots, root_list) 153list_for_each_entry(_root, &roots, root_list)
154 154
155/* the list of cgroups eligible for automatic release. Protected by 155/* the list of cgroups eligible for automatic release. Protected by
@@ -271,7 +271,7 @@ static void __put_css_set(struct css_set *cg, int taskexit)
271 271
272 rcu_read_lock(); 272 rcu_read_lock();
273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { 273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 struct cgroup *cgrp = cg->subsys[i]->cgroup; 274 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
275 if (atomic_dec_and_test(&cgrp->count) && 275 if (atomic_dec_and_test(&cgrp->count) &&
276 notify_on_release(cgrp)) { 276 notify_on_release(cgrp)) {
277 if (taskexit) 277 if (taskexit)
@@ -384,6 +384,25 @@ static int allocate_cg_links(int count, struct list_head *tmp)
384 return 0; 384 return 0;
385} 385}
386 386
387/**
388 * link_css_set - a helper function to link a css_set to a cgroup
389 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
390 * @cg: the css_set to be linked
391 * @cgrp: the destination cgroup
392 */
393static void link_css_set(struct list_head *tmp_cg_links,
394 struct css_set *cg, struct cgroup *cgrp)
395{
396 struct cg_cgroup_link *link;
397
398 BUG_ON(list_empty(tmp_cg_links));
399 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
400 cgrp_link_list);
401 link->cg = cg;
402 list_move(&link->cgrp_link_list, &cgrp->css_sets);
403 list_add(&link->cg_link_list, &cg->cg_links);
404}
405
387/* 406/*
388 * find_css_set() takes an existing cgroup group and a 407 * find_css_set() takes an existing cgroup group and a
389 * cgroup object, and returns a css_set object that's 408 * cgroup object, and returns a css_set object that's
@@ -399,7 +418,6 @@ static struct css_set *find_css_set(
399 int i; 418 int i;
400 419
401 struct list_head tmp_cg_links; 420 struct list_head tmp_cg_links;
402 struct cg_cgroup_link *link;
403 421
404 struct hlist_head *hhead; 422 struct hlist_head *hhead;
405 423
@@ -444,26 +462,11 @@ static struct css_set *find_css_set(
444 * only do it for the first subsystem in each 462 * only do it for the first subsystem in each
445 * hierarchy 463 * hierarchy
446 */ 464 */
447 if (ss->root->subsys_list.next == &ss->sibling) { 465 if (ss->root->subsys_list.next == &ss->sibling)
448 BUG_ON(list_empty(&tmp_cg_links)); 466 link_css_set(&tmp_cg_links, res, cgrp);
449 link = list_entry(tmp_cg_links.next,
450 struct cg_cgroup_link,
451 cgrp_link_list);
452 list_del(&link->cgrp_link_list);
453 list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 link->cg = res;
455 list_add(&link->cg_link_list, &res->cg_links);
456 }
457 }
458 if (list_empty(&rootnode.subsys_list)) {
459 link = list_entry(tmp_cg_links.next,
460 struct cg_cgroup_link,
461 cgrp_link_list);
462 list_del(&link->cgrp_link_list);
463 list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 link->cg = res;
465 list_add(&link->cg_link_list, &res->cg_links);
466 } 467 }
468 if (list_empty(&rootnode.subsys_list))
469 link_css_set(&tmp_cg_links, res, dummytop);
467 470
468 BUG_ON(!list_empty(&tmp_cg_links)); 471 BUG_ON(!list_empty(&tmp_cg_links));
469 472
@@ -586,11 +589,18 @@ static void cgroup_call_pre_destroy(struct cgroup *cgrp)
586{ 589{
587 struct cgroup_subsys *ss; 590 struct cgroup_subsys *ss;
588 for_each_subsys(cgrp->root, ss) 591 for_each_subsys(cgrp->root, ss)
589 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id]) 592 if (ss->pre_destroy)
590 ss->pre_destroy(ss, cgrp); 593 ss->pre_destroy(ss, cgrp);
591 return; 594 return;
592} 595}
593 596
597static void free_cgroup_rcu(struct rcu_head *obj)
598{
599 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
600
601 kfree(cgrp);
602}
603
594static void cgroup_diput(struct dentry *dentry, struct inode *inode) 604static void cgroup_diput(struct dentry *dentry, struct inode *inode)
595{ 605{
596 /* is dentry a directory ? if so, kfree() associated cgroup */ 606 /* is dentry a directory ? if so, kfree() associated cgroup */
@@ -610,19 +620,19 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode)
610 /* 620 /*
611 * Release the subsystem state objects. 621 * Release the subsystem state objects.
612 */ 622 */
613 for_each_subsys(cgrp->root, ss) { 623 for_each_subsys(cgrp->root, ss)
614 if (cgrp->subsys[ss->subsys_id]) 624 ss->destroy(ss, cgrp);
615 ss->destroy(ss, cgrp);
616 }
617 625
618 cgrp->root->number_of_cgroups--; 626 cgrp->root->number_of_cgroups--;
619 mutex_unlock(&cgroup_mutex); 627 mutex_unlock(&cgroup_mutex);
620 628
621 /* Drop the active superblock reference that we took when we 629 /*
622 * created the cgroup */ 630 * Drop the active superblock reference that we took when we
631 * created the cgroup
632 */
623 deactivate_super(cgrp->root->sb); 633 deactivate_super(cgrp->root->sb);
624 634
625 kfree(cgrp); 635 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
626 } 636 }
627 iput(inode); 637 iput(inode);
628} 638}
@@ -712,23 +722,26 @@ static int rebind_subsystems(struct cgroupfs_root *root,
712 BUG_ON(cgrp->subsys[i]); 722 BUG_ON(cgrp->subsys[i]);
713 BUG_ON(!dummytop->subsys[i]); 723 BUG_ON(!dummytop->subsys[i]);
714 BUG_ON(dummytop->subsys[i]->cgroup != dummytop); 724 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
725 mutex_lock(&ss->hierarchy_mutex);
715 cgrp->subsys[i] = dummytop->subsys[i]; 726 cgrp->subsys[i] = dummytop->subsys[i];
716 cgrp->subsys[i]->cgroup = cgrp; 727 cgrp->subsys[i]->cgroup = cgrp;
717 list_add(&ss->sibling, &root->subsys_list); 728 list_move(&ss->sibling, &root->subsys_list);
718 rcu_assign_pointer(ss->root, root); 729 ss->root = root;
719 if (ss->bind) 730 if (ss->bind)
720 ss->bind(ss, cgrp); 731 ss->bind(ss, cgrp);
721 732 mutex_unlock(&ss->hierarchy_mutex);
722 } else if (bit & removed_bits) { 733 } else if (bit & removed_bits) {
723 /* We're removing this subsystem */ 734 /* We're removing this subsystem */
724 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); 735 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
725 BUG_ON(cgrp->subsys[i]->cgroup != cgrp); 736 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
737 mutex_lock(&ss->hierarchy_mutex);
726 if (ss->bind) 738 if (ss->bind)
727 ss->bind(ss, dummytop); 739 ss->bind(ss, dummytop);
728 dummytop->subsys[i]->cgroup = dummytop; 740 dummytop->subsys[i]->cgroup = dummytop;
729 cgrp->subsys[i] = NULL; 741 cgrp->subsys[i] = NULL;
730 rcu_assign_pointer(subsys[i]->root, &rootnode); 742 subsys[i]->root = &rootnode;
731 list_del(&ss->sibling); 743 list_move(&ss->sibling, &rootnode.subsys_list);
744 mutex_unlock(&ss->hierarchy_mutex);
732 } else if (bit & final_bits) { 745 } else if (bit & final_bits) {
733 /* Subsystem state should already exist */ 746 /* Subsystem state should already exist */
734 BUG_ON(!cgrp->subsys[i]); 747 BUG_ON(!cgrp->subsys[i]);
@@ -990,7 +1003,7 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
990 root = NULL; 1003 root = NULL;
991 } else { 1004 } else {
992 /* New superblock */ 1005 /* New superblock */
993 struct cgroup *cgrp = &root->top_cgroup; 1006 struct cgroup *root_cgrp = &root->top_cgroup;
994 struct inode *inode; 1007 struct inode *inode;
995 int i; 1008 int i;
996 1009
@@ -1031,7 +1044,7 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
1031 list_add(&root->root_list, &roots); 1044 list_add(&root->root_list, &roots);
1032 root_count++; 1045 root_count++;
1033 1046
1034 sb->s_root->d_fsdata = &root->top_cgroup; 1047 sb->s_root->d_fsdata = root_cgrp;
1035 root->top_cgroup.dentry = sb->s_root; 1048 root->top_cgroup.dentry = sb->s_root;
1036 1049
1037 /* Link the top cgroup in this hierarchy into all 1050 /* Link the top cgroup in this hierarchy into all
@@ -1042,29 +1055,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
1042 struct hlist_node *node; 1055 struct hlist_node *node;
1043 struct css_set *cg; 1056 struct css_set *cg;
1044 1057
1045 hlist_for_each_entry(cg, node, hhead, hlist) { 1058 hlist_for_each_entry(cg, node, hhead, hlist)
1046 struct cg_cgroup_link *link; 1059 link_css_set(&tmp_cg_links, cg, root_cgrp);
1047
1048 BUG_ON(list_empty(&tmp_cg_links));
1049 link = list_entry(tmp_cg_links.next,
1050 struct cg_cgroup_link,
1051 cgrp_link_list);
1052 list_del(&link->cgrp_link_list);
1053 link->cg = cg;
1054 list_add(&link->cgrp_link_list,
1055 &root->top_cgroup.css_sets);
1056 list_add(&link->cg_link_list, &cg->cg_links);
1057 }
1058 } 1060 }
1059 write_unlock(&css_set_lock); 1061 write_unlock(&css_set_lock);
1060 1062
1061 free_cg_links(&tmp_cg_links); 1063 free_cg_links(&tmp_cg_links);
1062 1064
1063 BUG_ON(!list_empty(&cgrp->sibling)); 1065 BUG_ON(!list_empty(&root_cgrp->sibling));
1064 BUG_ON(!list_empty(&cgrp->children)); 1066 BUG_ON(!list_empty(&root_cgrp->children));
1065 BUG_ON(root->number_of_cgroups != 1); 1067 BUG_ON(root->number_of_cgroups != 1);
1066 1068
1067 cgroup_populate_dir(cgrp); 1069 cgroup_populate_dir(root_cgrp);
1068 mutex_unlock(&inode->i_mutex); 1070 mutex_unlock(&inode->i_mutex);
1069 mutex_unlock(&cgroup_mutex); 1071 mutex_unlock(&cgroup_mutex);
1070 } 1072 }
@@ -1113,10 +1115,9 @@ static void cgroup_kill_sb(struct super_block *sb) {
1113 } 1115 }
1114 write_unlock(&css_set_lock); 1116 write_unlock(&css_set_lock);
1115 1117
1116 if (!list_empty(&root->root_list)) { 1118 list_del(&root->root_list);
1117 list_del(&root->root_list); 1119 root_count--;
1118 root_count--; 1120
1119 }
1120 mutex_unlock(&cgroup_mutex); 1121 mutex_unlock(&cgroup_mutex);
1121 1122
1122 kfree(root); 1123 kfree(root);
@@ -1145,14 +1146,16 @@ static inline struct cftype *__d_cft(struct dentry *dentry)
1145 * @buf: the buffer to write the path into 1146 * @buf: the buffer to write the path into
1146 * @buflen: the length of the buffer 1147 * @buflen: the length of the buffer
1147 * 1148 *
1148 * Called with cgroup_mutex held. Writes path of cgroup into buf. 1149 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1149 * Returns 0 on success, -errno on error. 1150 * reference. Writes path of cgroup into buf. Returns 0 on success,
1151 * -errno on error.
1150 */ 1152 */
1151int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) 1153int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1152{ 1154{
1153 char *start; 1155 char *start;
1156 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1154 1157
1155 if (cgrp == dummytop) { 1158 if (!dentry || cgrp == dummytop) {
1156 /* 1159 /*
1157 * Inactive subsystems have no dentry for their root 1160 * Inactive subsystems have no dentry for their root
1158 * cgroup 1161 * cgroup
@@ -1165,13 +1168,14 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1165 1168
1166 *--start = '\0'; 1169 *--start = '\0';
1167 for (;;) { 1170 for (;;) {
1168 int len = cgrp->dentry->d_name.len; 1171 int len = dentry->d_name.len;
1169 if ((start -= len) < buf) 1172 if ((start -= len) < buf)
1170 return -ENAMETOOLONG; 1173 return -ENAMETOOLONG;
1171 memcpy(start, cgrp->dentry->d_name.name, len); 1174 memcpy(start, cgrp->dentry->d_name.name, len);
1172 cgrp = cgrp->parent; 1175 cgrp = cgrp->parent;
1173 if (!cgrp) 1176 if (!cgrp)
1174 break; 1177 break;
1178 dentry = rcu_dereference(cgrp->dentry);
1175 if (!cgrp->parent) 1179 if (!cgrp->parent)
1176 continue; 1180 continue;
1177 if (--start < buf) 1181 if (--start < buf)
@@ -1216,7 +1220,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1216 int retval = 0; 1220 int retval = 0;
1217 struct cgroup_subsys *ss; 1221 struct cgroup_subsys *ss;
1218 struct cgroup *oldcgrp; 1222 struct cgroup *oldcgrp;
1219 struct css_set *cg = tsk->cgroups; 1223 struct css_set *cg;
1220 struct css_set *newcg; 1224 struct css_set *newcg;
1221 struct cgroupfs_root *root = cgrp->root; 1225 struct cgroupfs_root *root = cgrp->root;
1222 int subsys_id; 1226 int subsys_id;
@@ -1236,11 +1240,16 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1236 } 1240 }
1237 } 1241 }
1238 1242
1243 task_lock(tsk);
1244 cg = tsk->cgroups;
1245 get_css_set(cg);
1246 task_unlock(tsk);
1239 /* 1247 /*
1240 * Locate or allocate a new css_set for this task, 1248 * Locate or allocate a new css_set for this task,
1241 * based on its final set of cgroups 1249 * based on its final set of cgroups
1242 */ 1250 */
1243 newcg = find_css_set(cg, cgrp); 1251 newcg = find_css_set(cg, cgrp);
1252 put_css_set(cg);
1244 if (!newcg) 1253 if (!newcg)
1245 return -ENOMEM; 1254 return -ENOMEM;
1246 1255
@@ -1445,7 +1454,7 @@ static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1445 struct cftype *cft = __d_cft(file->f_dentry); 1454 struct cftype *cft = __d_cft(file->f_dentry);
1446 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); 1455 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1447 1456
1448 if (!cft || cgroup_is_removed(cgrp)) 1457 if (cgroup_is_removed(cgrp))
1449 return -ENODEV; 1458 return -ENODEV;
1450 if (cft->write) 1459 if (cft->write)
1451 return cft->write(cgrp, cft, file, buf, nbytes, ppos); 1460 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
@@ -1490,7 +1499,7 @@ static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1490 struct cftype *cft = __d_cft(file->f_dentry); 1499 struct cftype *cft = __d_cft(file->f_dentry);
1491 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); 1500 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1492 1501
1493 if (!cft || cgroup_is_removed(cgrp)) 1502 if (cgroup_is_removed(cgrp))
1494 return -ENODEV; 1503 return -ENODEV;
1495 1504
1496 if (cft->read) 1505 if (cft->read)
@@ -1554,10 +1563,8 @@ static int cgroup_file_open(struct inode *inode, struct file *file)
1554 err = generic_file_open(inode, file); 1563 err = generic_file_open(inode, file);
1555 if (err) 1564 if (err)
1556 return err; 1565 return err;
1557
1558 cft = __d_cft(file->f_dentry); 1566 cft = __d_cft(file->f_dentry);
1559 if (!cft) 1567
1560 return -ENODEV;
1561 if (cft->read_map || cft->read_seq_string) { 1568 if (cft->read_map || cft->read_seq_string) {
1562 struct cgroup_seqfile_state *state = 1569 struct cgroup_seqfile_state *state =
1563 kzalloc(sizeof(*state), GFP_USER); 1570 kzalloc(sizeof(*state), GFP_USER);
@@ -1671,7 +1678,7 @@ static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1671 if (!error) { 1678 if (!error) {
1672 dentry->d_fsdata = cgrp; 1679 dentry->d_fsdata = cgrp;
1673 inc_nlink(parent->d_inode); 1680 inc_nlink(parent->d_inode);
1674 cgrp->dentry = dentry; 1681 rcu_assign_pointer(cgrp->dentry, dentry);
1675 dget(dentry); 1682 dget(dentry);
1676 } 1683 }
1677 dput(dentry); 1684 dput(dentry);
@@ -1812,6 +1819,7 @@ struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1812{ 1819{
1813 struct task_struct *res; 1820 struct task_struct *res;
1814 struct list_head *l = it->task; 1821 struct list_head *l = it->task;
1822 struct cg_cgroup_link *link;
1815 1823
1816 /* If the iterator cg is NULL, we have no tasks */ 1824 /* If the iterator cg is NULL, we have no tasks */
1817 if (!it->cg_link) 1825 if (!it->cg_link)
@@ -1819,7 +1827,8 @@ struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1819 res = list_entry(l, struct task_struct, cg_list); 1827 res = list_entry(l, struct task_struct, cg_list);
1820 /* Advance iterator to find next entry */ 1828 /* Advance iterator to find next entry */
1821 l = l->next; 1829 l = l->next;
1822 if (l == &res->cgroups->tasks) { 1830 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1831 if (l == &link->cg->tasks) {
1823 /* We reached the end of this task list - move on to 1832 /* We reached the end of this task list - move on to
1824 * the next cg_cgroup_link */ 1833 * the next cg_cgroup_link */
1825 cgroup_advance_iter(cgrp, it); 1834 cgroup_advance_iter(cgrp, it);
@@ -2013,14 +2022,16 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan)
2013 */ 2022 */
2014static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) 2023static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2015{ 2024{
2016 int n = 0; 2025 int n = 0, pid;
2017 struct cgroup_iter it; 2026 struct cgroup_iter it;
2018 struct task_struct *tsk; 2027 struct task_struct *tsk;
2019 cgroup_iter_start(cgrp, &it); 2028 cgroup_iter_start(cgrp, &it);
2020 while ((tsk = cgroup_iter_next(cgrp, &it))) { 2029 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2021 if (unlikely(n == npids)) 2030 if (unlikely(n == npids))
2022 break; 2031 break;
2023 pidarray[n++] = task_pid_vnr(tsk); 2032 pid = task_pid_vnr(tsk);
2033 if (pid > 0)
2034 pidarray[n++] = pid;
2024 } 2035 }
2025 cgroup_iter_end(cgrp, &it); 2036 cgroup_iter_end(cgrp, &it);
2026 return n; 2037 return n;
@@ -2052,7 +2063,6 @@ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2052 2063
2053 ret = 0; 2064 ret = 0;
2054 cgrp = dentry->d_fsdata; 2065 cgrp = dentry->d_fsdata;
2055 rcu_read_lock();
2056 2066
2057 cgroup_iter_start(cgrp, &it); 2067 cgroup_iter_start(cgrp, &it);
2058 while ((tsk = cgroup_iter_next(cgrp, &it))) { 2068 while ((tsk = cgroup_iter_next(cgrp, &it))) {
@@ -2077,7 +2087,6 @@ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2077 } 2087 }
2078 cgroup_iter_end(cgrp, &it); 2088 cgroup_iter_end(cgrp, &it);
2079 2089
2080 rcu_read_unlock();
2081err: 2090err:
2082 return ret; 2091 return ret;
2083} 2092}
@@ -2324,7 +2333,7 @@ static void init_cgroup_css(struct cgroup_subsys_state *css,
2324 struct cgroup *cgrp) 2333 struct cgroup *cgrp)
2325{ 2334{
2326 css->cgroup = cgrp; 2335 css->cgroup = cgrp;
2327 atomic_set(&css->refcnt, 0); 2336 atomic_set(&css->refcnt, 1);
2328 css->flags = 0; 2337 css->flags = 0;
2329 if (cgrp == dummytop) 2338 if (cgrp == dummytop)
2330 set_bit(CSS_ROOT, &css->flags); 2339 set_bit(CSS_ROOT, &css->flags);
@@ -2332,6 +2341,29 @@ static void init_cgroup_css(struct cgroup_subsys_state *css,
2332 cgrp->subsys[ss->subsys_id] = css; 2341 cgrp->subsys[ss->subsys_id] = css;
2333} 2342}
2334 2343
2344static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2345{
2346 /* We need to take each hierarchy_mutex in a consistent order */
2347 int i;
2348
2349 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2350 struct cgroup_subsys *ss = subsys[i];
2351 if (ss->root == root)
2352 mutex_lock_nested(&ss->hierarchy_mutex, i);
2353 }
2354}
2355
2356static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2357{
2358 int i;
2359
2360 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2361 struct cgroup_subsys *ss = subsys[i];
2362 if (ss->root == root)
2363 mutex_unlock(&ss->hierarchy_mutex);
2364 }
2365}
2366
2335/* 2367/*
2336 * cgroup_create - create a cgroup 2368 * cgroup_create - create a cgroup
2337 * @parent: cgroup that will be parent of the new cgroup 2369 * @parent: cgroup that will be parent of the new cgroup
@@ -2380,7 +2412,9 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2380 init_cgroup_css(css, ss, cgrp); 2412 init_cgroup_css(css, ss, cgrp);
2381 } 2413 }
2382 2414
2415 cgroup_lock_hierarchy(root);
2383 list_add(&cgrp->sibling, &cgrp->parent->children); 2416 list_add(&cgrp->sibling, &cgrp->parent->children);
2417 cgroup_unlock_hierarchy(root);
2384 root->number_of_cgroups++; 2418 root->number_of_cgroups++;
2385 2419
2386 err = cgroup_create_dir(cgrp, dentry, mode); 2420 err = cgroup_create_dir(cgrp, dentry, mode);
@@ -2431,7 +2465,7 @@ static int cgroup_has_css_refs(struct cgroup *cgrp)
2431{ 2465{
2432 /* Check the reference count on each subsystem. Since we 2466 /* Check the reference count on each subsystem. Since we
2433 * already established that there are no tasks in the 2467 * already established that there are no tasks in the
2434 * cgroup, if the css refcount is also 0, then there should 2468 * cgroup, if the css refcount is also 1, then there should
2435 * be no outstanding references, so the subsystem is safe to 2469 * be no outstanding references, so the subsystem is safe to
2436 * destroy. We scan across all subsystems rather than using 2470 * destroy. We scan across all subsystems rather than using
2437 * the per-hierarchy linked list of mounted subsystems since 2471 * the per-hierarchy linked list of mounted subsystems since
@@ -2452,19 +2486,67 @@ static int cgroup_has_css_refs(struct cgroup *cgrp)
2452 * matter, since it can only happen if the cgroup 2486 * matter, since it can only happen if the cgroup
2453 * has been deleted and hence no longer needs the 2487 * has been deleted and hence no longer needs the
2454 * release agent to be called anyway. */ 2488 * release agent to be called anyway. */
2455 if (css && atomic_read(&css->refcnt)) 2489 if (css && (atomic_read(&css->refcnt) > 1))
2456 return 1; 2490 return 1;
2457 } 2491 }
2458 return 0; 2492 return 0;
2459} 2493}
2460 2494
2495/*
2496 * Atomically mark all (or else none) of the cgroup's CSS objects as
2497 * CSS_REMOVED. Return true on success, or false if the cgroup has
2498 * busy subsystems. Call with cgroup_mutex held
2499 */
2500
2501static int cgroup_clear_css_refs(struct cgroup *cgrp)
2502{
2503 struct cgroup_subsys *ss;
2504 unsigned long flags;
2505 bool failed = false;
2506 local_irq_save(flags);
2507 for_each_subsys(cgrp->root, ss) {
2508 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2509 int refcnt;
2510 do {
2511 /* We can only remove a CSS with a refcnt==1 */
2512 refcnt = atomic_read(&css->refcnt);
2513 if (refcnt > 1) {
2514 failed = true;
2515 goto done;
2516 }
2517 BUG_ON(!refcnt);
2518 /*
2519 * Drop the refcnt to 0 while we check other
2520 * subsystems. This will cause any racing
2521 * css_tryget() to spin until we set the
2522 * CSS_REMOVED bits or abort
2523 */
2524 } while (atomic_cmpxchg(&css->refcnt, refcnt, 0) != refcnt);
2525 }
2526 done:
2527 for_each_subsys(cgrp->root, ss) {
2528 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2529 if (failed) {
2530 /*
2531 * Restore old refcnt if we previously managed
2532 * to clear it from 1 to 0
2533 */
2534 if (!atomic_read(&css->refcnt))
2535 atomic_set(&css->refcnt, 1);
2536 } else {
2537 /* Commit the fact that the CSS is removed */
2538 set_bit(CSS_REMOVED, &css->flags);
2539 }
2540 }
2541 local_irq_restore(flags);
2542 return !failed;
2543}
2544
2461static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) 2545static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2462{ 2546{
2463 struct cgroup *cgrp = dentry->d_fsdata; 2547 struct cgroup *cgrp = dentry->d_fsdata;
2464 struct dentry *d; 2548 struct dentry *d;
2465 struct cgroup *parent; 2549 struct cgroup *parent;
2466 struct super_block *sb;
2467 struct cgroupfs_root *root;
2468 2550
2469 /* the vfs holds both inode->i_mutex already */ 2551 /* the vfs holds both inode->i_mutex already */
2470 2552
@@ -2487,12 +2569,10 @@ static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2487 2569
2488 mutex_lock(&cgroup_mutex); 2570 mutex_lock(&cgroup_mutex);
2489 parent = cgrp->parent; 2571 parent = cgrp->parent;
2490 root = cgrp->root;
2491 sb = root->sb;
2492 2572
2493 if (atomic_read(&cgrp->count) 2573 if (atomic_read(&cgrp->count)
2494 || !list_empty(&cgrp->children) 2574 || !list_empty(&cgrp->children)
2495 || cgroup_has_css_refs(cgrp)) { 2575 || !cgroup_clear_css_refs(cgrp)) {
2496 mutex_unlock(&cgroup_mutex); 2576 mutex_unlock(&cgroup_mutex);
2497 return -EBUSY; 2577 return -EBUSY;
2498 } 2578 }
@@ -2502,8 +2582,12 @@ static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2502 if (!list_empty(&cgrp->release_list)) 2582 if (!list_empty(&cgrp->release_list))
2503 list_del(&cgrp->release_list); 2583 list_del(&cgrp->release_list);
2504 spin_unlock(&release_list_lock); 2584 spin_unlock(&release_list_lock);
2505 /* delete my sibling from parent->children */ 2585
2586 cgroup_lock_hierarchy(cgrp->root);
2587 /* delete this cgroup from parent->children */
2506 list_del(&cgrp->sibling); 2588 list_del(&cgrp->sibling);
2589 cgroup_unlock_hierarchy(cgrp->root);
2590
2507 spin_lock(&cgrp->dentry->d_lock); 2591 spin_lock(&cgrp->dentry->d_lock);
2508 d = dget(cgrp->dentry); 2592 d = dget(cgrp->dentry);
2509 spin_unlock(&d->d_lock); 2593 spin_unlock(&d->d_lock);
@@ -2525,6 +2609,7 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2525 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); 2609 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2526 2610
2527 /* Create the top cgroup state for this subsystem */ 2611 /* Create the top cgroup state for this subsystem */
2612 list_add(&ss->sibling, &rootnode.subsys_list);
2528 ss->root = &rootnode; 2613 ss->root = &rootnode;
2529 css = ss->create(ss, dummytop); 2614 css = ss->create(ss, dummytop);
2530 /* We don't handle early failures gracefully */ 2615 /* We don't handle early failures gracefully */
@@ -2544,6 +2629,7 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2544 * need to invoke fork callbacks here. */ 2629 * need to invoke fork callbacks here. */
2545 BUG_ON(!list_empty(&init_task.tasks)); 2630 BUG_ON(!list_empty(&init_task.tasks));
2546 2631
2632 mutex_init(&ss->hierarchy_mutex);
2547 ss->active = 1; 2633 ss->active = 1;
2548} 2634}
2549 2635
@@ -2562,7 +2648,6 @@ int __init cgroup_init_early(void)
2562 INIT_HLIST_NODE(&init_css_set.hlist); 2648 INIT_HLIST_NODE(&init_css_set.hlist);
2563 css_set_count = 1; 2649 css_set_count = 1;
2564 init_cgroup_root(&rootnode); 2650 init_cgroup_root(&rootnode);
2565 list_add(&rootnode.root_list, &roots);
2566 root_count = 1; 2651 root_count = 1;
2567 init_task.cgroups = &init_css_set; 2652 init_task.cgroups = &init_css_set;
2568 2653
@@ -2669,15 +2754,12 @@ static int proc_cgroup_show(struct seq_file *m, void *v)
2669 2754
2670 mutex_lock(&cgroup_mutex); 2755 mutex_lock(&cgroup_mutex);
2671 2756
2672 for_each_root(root) { 2757 for_each_active_root(root) {
2673 struct cgroup_subsys *ss; 2758 struct cgroup_subsys *ss;
2674 struct cgroup *cgrp; 2759 struct cgroup *cgrp;
2675 int subsys_id; 2760 int subsys_id;
2676 int count = 0; 2761 int count = 0;
2677 2762
2678 /* Skip this hierarchy if it has no active subsystems */
2679 if (!root->actual_subsys_bits)
2680 continue;
2681 seq_printf(m, "%lu:", root->subsys_bits); 2763 seq_printf(m, "%lu:", root->subsys_bits);
2682 for_each_subsys(root, ss) 2764 for_each_subsys(root, ss)
2683 seq_printf(m, "%s%s", count++ ? "," : "", ss->name); 2765 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
@@ -2800,8 +2882,10 @@ void cgroup_post_fork(struct task_struct *child)
2800{ 2882{
2801 if (use_task_css_set_links) { 2883 if (use_task_css_set_links) {
2802 write_lock(&css_set_lock); 2884 write_lock(&css_set_lock);
2885 task_lock(child);
2803 if (list_empty(&child->cg_list)) 2886 if (list_empty(&child->cg_list))
2804 list_add(&child->cg_list, &child->cgroups->tasks); 2887 list_add(&child->cg_list, &child->cgroups->tasks);
2888 task_unlock(child);
2805 write_unlock(&css_set_lock); 2889 write_unlock(&css_set_lock);
2806 } 2890 }
2807} 2891}
@@ -2907,6 +2991,7 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2907 mutex_unlock(&cgroup_mutex); 2991 mutex_unlock(&cgroup_mutex);
2908 return 0; 2992 return 0;
2909 } 2993 }
2994 task_lock(tsk);
2910 cg = tsk->cgroups; 2995 cg = tsk->cgroups;
2911 parent = task_cgroup(tsk, subsys->subsys_id); 2996 parent = task_cgroup(tsk, subsys->subsys_id);
2912 2997
@@ -2919,6 +3004,7 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2919 3004
2920 /* Keep the cgroup alive */ 3005 /* Keep the cgroup alive */
2921 get_css_set(cg); 3006 get_css_set(cg);
3007 task_unlock(tsk);
2922 mutex_unlock(&cgroup_mutex); 3008 mutex_unlock(&cgroup_mutex);
2923 3009
2924 /* Now do the VFS work to create a cgroup */ 3010 /* Now do the VFS work to create a cgroup */
@@ -2937,7 +3023,7 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2937 } 3023 }
2938 3024
2939 /* Create the cgroup directory, which also creates the cgroup */ 3025 /* Create the cgroup directory, which also creates the cgroup */
2940 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755); 3026 ret = vfs_mkdir(inode, dentry, 0755);
2941 child = __d_cgrp(dentry); 3027 child = __d_cgrp(dentry);
2942 dput(dentry); 3028 dput(dentry);
2943 if (ret) { 3029 if (ret) {
@@ -2947,13 +3033,6 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2947 goto out_release; 3033 goto out_release;
2948 } 3034 }
2949 3035
2950 if (!child) {
2951 printk(KERN_INFO
2952 "Couldn't find new cgroup %s\n", nodename);
2953 ret = -ENOMEM;
2954 goto out_release;
2955 }
2956
2957 /* The cgroup now exists. Retake cgroup_mutex and check 3036 /* The cgroup now exists. Retake cgroup_mutex and check
2958 * that we're still in the same state that we thought we 3037 * that we're still in the same state that we thought we
2959 * were. */ 3038 * were. */
@@ -3049,7 +3128,8 @@ void __css_put(struct cgroup_subsys_state *css)
3049{ 3128{
3050 struct cgroup *cgrp = css->cgroup; 3129 struct cgroup *cgrp = css->cgroup;
3051 rcu_read_lock(); 3130 rcu_read_lock();
3052 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) { 3131 if ((atomic_dec_return(&css->refcnt) == 1) &&
3132 notify_on_release(cgrp)) {
3053 set_bit(CGRP_RELEASABLE, &cgrp->flags); 3133 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3054 check_for_release(cgrp); 3134 check_for_release(cgrp);
3055 } 3135 }
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 345ace5117de..647c77a88fcb 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -84,7 +84,7 @@ struct cpuset {
84 struct cgroup_subsys_state css; 84 struct cgroup_subsys_state css;
85 85
86 unsigned long flags; /* "unsigned long" so bitops work */ 86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ 88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89 89
90 struct cpuset *parent; /* my parent */ 90 struct cpuset *parent; /* my parent */
@@ -195,8 +195,6 @@ static int cpuset_mems_generation;
195 195
196static struct cpuset top_cpuset = { 196static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), 197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
198 .cpus_allowed = CPU_MASK_ALL,
199 .mems_allowed = NODE_MASK_ALL,
200}; 198};
201 199
202/* 200/*
@@ -278,7 +276,7 @@ static struct file_system_type cpuset_fs_type = {
278}; 276};
279 277
280/* 278/*
281 * Return in *pmask the portion of a cpusets's cpus_allowed that 279 * Return in pmask the portion of a cpusets's cpus_allowed that
282 * are online. If none are online, walk up the cpuset hierarchy 280 * are online. If none are online, walk up the cpuset hierarchy
283 * until we find one that does have some online cpus. If we get 281 * until we find one that does have some online cpus. If we get
284 * all the way to the top and still haven't found any online cpus, 282 * all the way to the top and still haven't found any online cpus,
@@ -291,15 +289,16 @@ static struct file_system_type cpuset_fs_type = {
291 * Call with callback_mutex held. 289 * Call with callback_mutex held.
292 */ 290 */
293 291
294static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) 292static void guarantee_online_cpus(const struct cpuset *cs,
293 struct cpumask *pmask)
295{ 294{
296 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map)) 295 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
297 cs = cs->parent; 296 cs = cs->parent;
298 if (cs) 297 if (cs)
299 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map); 298 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
300 else 299 else
301 *pmask = cpu_online_map; 300 cpumask_copy(pmask, cpu_online_mask);
302 BUG_ON(!cpus_intersects(*pmask, cpu_online_map)); 301 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
303} 302}
304 303
305/* 304/*
@@ -375,14 +374,9 @@ void cpuset_update_task_memory_state(void)
375 struct task_struct *tsk = current; 374 struct task_struct *tsk = current;
376 struct cpuset *cs; 375 struct cpuset *cs;
377 376
378 if (task_cs(tsk) == &top_cpuset) { 377 rcu_read_lock();
379 /* Don't need rcu for top_cpuset. It's never freed. */ 378 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
380 my_cpusets_mem_gen = top_cpuset.mems_generation; 379 rcu_read_unlock();
381 } else {
382 rcu_read_lock();
383 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
384 rcu_read_unlock();
385 }
386 380
387 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { 381 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
388 mutex_lock(&callback_mutex); 382 mutex_lock(&callback_mutex);
@@ -414,12 +408,43 @@ void cpuset_update_task_memory_state(void)
414 408
415static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 409static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
416{ 410{
417 return cpus_subset(p->cpus_allowed, q->cpus_allowed) && 411 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
418 nodes_subset(p->mems_allowed, q->mems_allowed) && 412 nodes_subset(p->mems_allowed, q->mems_allowed) &&
419 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 413 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
420 is_mem_exclusive(p) <= is_mem_exclusive(q); 414 is_mem_exclusive(p) <= is_mem_exclusive(q);
421} 415}
422 416
417/**
418 * alloc_trial_cpuset - allocate a trial cpuset
419 * @cs: the cpuset that the trial cpuset duplicates
420 */
421static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
422{
423 struct cpuset *trial;
424
425 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
426 if (!trial)
427 return NULL;
428
429 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
430 kfree(trial);
431 return NULL;
432 }
433 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
434
435 return trial;
436}
437
438/**
439 * free_trial_cpuset - free the trial cpuset
440 * @trial: the trial cpuset to be freed
441 */
442static void free_trial_cpuset(struct cpuset *trial)
443{
444 free_cpumask_var(trial->cpus_allowed);
445 kfree(trial);
446}
447
423/* 448/*
424 * validate_change() - Used to validate that any proposed cpuset change 449 * validate_change() - Used to validate that any proposed cpuset change
425 * follows the structural rules for cpusets. 450 * follows the structural rules for cpusets.
@@ -469,7 +494,7 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
469 c = cgroup_cs(cont); 494 c = cgroup_cs(cont);
470 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 495 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
471 c != cur && 496 c != cur &&
472 cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) 497 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
473 return -EINVAL; 498 return -EINVAL;
474 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 499 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
475 c != cur && 500 c != cur &&
@@ -479,7 +504,7 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
479 504
480 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ 505 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
481 if (cgroup_task_count(cur->css.cgroup)) { 506 if (cgroup_task_count(cur->css.cgroup)) {
482 if (cpus_empty(trial->cpus_allowed) || 507 if (cpumask_empty(trial->cpus_allowed) ||
483 nodes_empty(trial->mems_allowed)) { 508 nodes_empty(trial->mems_allowed)) {
484 return -ENOSPC; 509 return -ENOSPC;
485 } 510 }
@@ -494,7 +519,7 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
494 */ 519 */
495static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 520static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
496{ 521{
497 return cpus_intersects(a->cpus_allowed, b->cpus_allowed); 522 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
498} 523}
499 524
500static void 525static void
@@ -519,7 +544,7 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
519 cp = list_first_entry(&q, struct cpuset, stack_list); 544 cp = list_first_entry(&q, struct cpuset, stack_list);
520 list_del(q.next); 545 list_del(q.next);
521 546
522 if (cpus_empty(cp->cpus_allowed)) 547 if (cpumask_empty(cp->cpus_allowed))
523 continue; 548 continue;
524 549
525 if (is_sched_load_balance(cp)) 550 if (is_sched_load_balance(cp))
@@ -586,7 +611,8 @@ update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
586 * element of the partition (one sched domain) to be passed to 611 * element of the partition (one sched domain) to be passed to
587 * partition_sched_domains(). 612 * partition_sched_domains().
588 */ 613 */
589static int generate_sched_domains(cpumask_t **domains, 614/* FIXME: see the FIXME in partition_sched_domains() */
615static int generate_sched_domains(struct cpumask **domains,
590 struct sched_domain_attr **attributes) 616 struct sched_domain_attr **attributes)
591{ 617{
592 LIST_HEAD(q); /* queue of cpusets to be scanned */ 618 LIST_HEAD(q); /* queue of cpusets to be scanned */
@@ -594,10 +620,10 @@ static int generate_sched_domains(cpumask_t **domains,
594 struct cpuset **csa; /* array of all cpuset ptrs */ 620 struct cpuset **csa; /* array of all cpuset ptrs */
595 int csn; /* how many cpuset ptrs in csa so far */ 621 int csn; /* how many cpuset ptrs in csa so far */
596 int i, j, k; /* indices for partition finding loops */ 622 int i, j, k; /* indices for partition finding loops */
597 cpumask_t *doms; /* resulting partition; i.e. sched domains */ 623 struct cpumask *doms; /* resulting partition; i.e. sched domains */
598 struct sched_domain_attr *dattr; /* attributes for custom domains */ 624 struct sched_domain_attr *dattr; /* attributes for custom domains */
599 int ndoms = 0; /* number of sched domains in result */ 625 int ndoms = 0; /* number of sched domains in result */
600 int nslot; /* next empty doms[] cpumask_t slot */ 626 int nslot; /* next empty doms[] struct cpumask slot */
601 627
602 doms = NULL; 628 doms = NULL;
603 dattr = NULL; 629 dattr = NULL;
@@ -605,7 +631,7 @@ static int generate_sched_domains(cpumask_t **domains,
605 631
606 /* Special case for the 99% of systems with one, full, sched domain */ 632 /* Special case for the 99% of systems with one, full, sched domain */
607 if (is_sched_load_balance(&top_cpuset)) { 633 if (is_sched_load_balance(&top_cpuset)) {
608 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 634 doms = kmalloc(cpumask_size(), GFP_KERNEL);
609 if (!doms) 635 if (!doms)
610 goto done; 636 goto done;
611 637
@@ -614,7 +640,7 @@ static int generate_sched_domains(cpumask_t **domains,
614 *dattr = SD_ATTR_INIT; 640 *dattr = SD_ATTR_INIT;
615 update_domain_attr_tree(dattr, &top_cpuset); 641 update_domain_attr_tree(dattr, &top_cpuset);
616 } 642 }
617 *doms = top_cpuset.cpus_allowed; 643 cpumask_copy(doms, top_cpuset.cpus_allowed);
618 644
619 ndoms = 1; 645 ndoms = 1;
620 goto done; 646 goto done;
@@ -633,7 +659,7 @@ static int generate_sched_domains(cpumask_t **domains,
633 cp = list_first_entry(&q, struct cpuset, stack_list); 659 cp = list_first_entry(&q, struct cpuset, stack_list);
634 list_del(q.next); 660 list_del(q.next);
635 661
636 if (cpus_empty(cp->cpus_allowed)) 662 if (cpumask_empty(cp->cpus_allowed))
637 continue; 663 continue;
638 664
639 /* 665 /*
@@ -684,7 +710,7 @@ restart:
684 * Now we know how many domains to create. 710 * Now we know how many domains to create.
685 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 711 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
686 */ 712 */
687 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL); 713 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
688 if (!doms) 714 if (!doms)
689 goto done; 715 goto done;
690 716
@@ -696,7 +722,7 @@ restart:
696 722
697 for (nslot = 0, i = 0; i < csn; i++) { 723 for (nslot = 0, i = 0; i < csn; i++) {
698 struct cpuset *a = csa[i]; 724 struct cpuset *a = csa[i];
699 cpumask_t *dp; 725 struct cpumask *dp;
700 int apn = a->pn; 726 int apn = a->pn;
701 727
702 if (apn < 0) { 728 if (apn < 0) {
@@ -719,14 +745,14 @@ restart:
719 continue; 745 continue;
720 } 746 }
721 747
722 cpus_clear(*dp); 748 cpumask_clear(dp);
723 if (dattr) 749 if (dattr)
724 *(dattr + nslot) = SD_ATTR_INIT; 750 *(dattr + nslot) = SD_ATTR_INIT;
725 for (j = i; j < csn; j++) { 751 for (j = i; j < csn; j++) {
726 struct cpuset *b = csa[j]; 752 struct cpuset *b = csa[j];
727 753
728 if (apn == b->pn) { 754 if (apn == b->pn) {
729 cpus_or(*dp, *dp, b->cpus_allowed); 755 cpumask_or(dp, dp, b->cpus_allowed);
730 if (dattr) 756 if (dattr)
731 update_domain_attr_tree(dattr + nslot, b); 757 update_domain_attr_tree(dattr + nslot, b);
732 758
@@ -766,7 +792,7 @@ done:
766static void do_rebuild_sched_domains(struct work_struct *unused) 792static void do_rebuild_sched_domains(struct work_struct *unused)
767{ 793{
768 struct sched_domain_attr *attr; 794 struct sched_domain_attr *attr;
769 cpumask_t *doms; 795 struct cpumask *doms;
770 int ndoms; 796 int ndoms;
771 797
772 get_online_cpus(); 798 get_online_cpus();
@@ -835,7 +861,7 @@ void rebuild_sched_domains(void)
835static int cpuset_test_cpumask(struct task_struct *tsk, 861static int cpuset_test_cpumask(struct task_struct *tsk,
836 struct cgroup_scanner *scan) 862 struct cgroup_scanner *scan)
837{ 863{
838 return !cpus_equal(tsk->cpus_allowed, 864 return !cpumask_equal(&tsk->cpus_allowed,
839 (cgroup_cs(scan->cg))->cpus_allowed); 865 (cgroup_cs(scan->cg))->cpus_allowed);
840} 866}
841 867
@@ -853,7 +879,7 @@ static int cpuset_test_cpumask(struct task_struct *tsk,
853static void cpuset_change_cpumask(struct task_struct *tsk, 879static void cpuset_change_cpumask(struct task_struct *tsk,
854 struct cgroup_scanner *scan) 880 struct cgroup_scanner *scan)
855{ 881{
856 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed)); 882 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
857} 883}
858 884
859/** 885/**
@@ -885,10 +911,10 @@ static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
885 * @cs: the cpuset to consider 911 * @cs: the cpuset to consider
886 * @buf: buffer of cpu numbers written to this cpuset 912 * @buf: buffer of cpu numbers written to this cpuset
887 */ 913 */
888static int update_cpumask(struct cpuset *cs, const char *buf) 914static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
915 const char *buf)
889{ 916{
890 struct ptr_heap heap; 917 struct ptr_heap heap;
891 struct cpuset trialcs;
892 int retval; 918 int retval;
893 int is_load_balanced; 919 int is_load_balanced;
894 920
@@ -896,8 +922,6 @@ static int update_cpumask(struct cpuset *cs, const char *buf)
896 if (cs == &top_cpuset) 922 if (cs == &top_cpuset)
897 return -EACCES; 923 return -EACCES;
898 924
899 trialcs = *cs;
900
901 /* 925 /*
902 * An empty cpus_allowed is ok only if the cpuset has no tasks. 926 * An empty cpus_allowed is ok only if the cpuset has no tasks.
903 * Since cpulist_parse() fails on an empty mask, we special case 927 * Since cpulist_parse() fails on an empty mask, we special case
@@ -905,31 +929,31 @@ static int update_cpumask(struct cpuset *cs, const char *buf)
905 * with tasks have cpus. 929 * with tasks have cpus.
906 */ 930 */
907 if (!*buf) { 931 if (!*buf) {
908 cpus_clear(trialcs.cpus_allowed); 932 cpumask_clear(trialcs->cpus_allowed);
909 } else { 933 } else {
910 retval = cpulist_parse(buf, &trialcs.cpus_allowed); 934 retval = cpulist_parse(buf, trialcs->cpus_allowed);
911 if (retval < 0) 935 if (retval < 0)
912 return retval; 936 return retval;
913 937
914 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map)) 938 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
915 return -EINVAL; 939 return -EINVAL;
916 } 940 }
917 retval = validate_change(cs, &trialcs); 941 retval = validate_change(cs, trialcs);
918 if (retval < 0) 942 if (retval < 0)
919 return retval; 943 return retval;
920 944
921 /* Nothing to do if the cpus didn't change */ 945 /* Nothing to do if the cpus didn't change */
922 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed)) 946 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
923 return 0; 947 return 0;
924 948
925 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); 949 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
926 if (retval) 950 if (retval)
927 return retval; 951 return retval;
928 952
929 is_load_balanced = is_sched_load_balance(&trialcs); 953 is_load_balanced = is_sched_load_balance(trialcs);
930 954
931 mutex_lock(&callback_mutex); 955 mutex_lock(&callback_mutex);
932 cs->cpus_allowed = trialcs.cpus_allowed; 956 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
933 mutex_unlock(&callback_mutex); 957 mutex_unlock(&callback_mutex);
934 958
935 /* 959 /*
@@ -1017,7 +1041,7 @@ static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1017 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1041 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1018 1042
1019 fudge = 10; /* spare mmarray[] slots */ 1043 fudge = 10; /* spare mmarray[] slots */
1020 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */ 1044 fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
1021 retval = -ENOMEM; 1045 retval = -ENOMEM;
1022 1046
1023 /* 1047 /*
@@ -1104,9 +1128,9 @@ done:
1104 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1128 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1105 * their mempolicies to the cpusets new mems_allowed. 1129 * their mempolicies to the cpusets new mems_allowed.
1106 */ 1130 */
1107static int update_nodemask(struct cpuset *cs, const char *buf) 1131static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1132 const char *buf)
1108{ 1133{
1109 struct cpuset trialcs;
1110 nodemask_t oldmem; 1134 nodemask_t oldmem;
1111 int retval; 1135 int retval;
1112 1136
@@ -1117,8 +1141,6 @@ static int update_nodemask(struct cpuset *cs, const char *buf)
1117 if (cs == &top_cpuset) 1141 if (cs == &top_cpuset)
1118 return -EACCES; 1142 return -EACCES;
1119 1143
1120 trialcs = *cs;
1121
1122 /* 1144 /*
1123 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1145 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1124 * Since nodelist_parse() fails on an empty mask, we special case 1146 * Since nodelist_parse() fails on an empty mask, we special case
@@ -1126,27 +1148,27 @@ static int update_nodemask(struct cpuset *cs, const char *buf)
1126 * with tasks have memory. 1148 * with tasks have memory.
1127 */ 1149 */
1128 if (!*buf) { 1150 if (!*buf) {
1129 nodes_clear(trialcs.mems_allowed); 1151 nodes_clear(trialcs->mems_allowed);
1130 } else { 1152 } else {
1131 retval = nodelist_parse(buf, trialcs.mems_allowed); 1153 retval = nodelist_parse(buf, trialcs->mems_allowed);
1132 if (retval < 0) 1154 if (retval < 0)
1133 goto done; 1155 goto done;
1134 1156
1135 if (!nodes_subset(trialcs.mems_allowed, 1157 if (!nodes_subset(trialcs->mems_allowed,
1136 node_states[N_HIGH_MEMORY])) 1158 node_states[N_HIGH_MEMORY]))
1137 return -EINVAL; 1159 return -EINVAL;
1138 } 1160 }
1139 oldmem = cs->mems_allowed; 1161 oldmem = cs->mems_allowed;
1140 if (nodes_equal(oldmem, trialcs.mems_allowed)) { 1162 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1141 retval = 0; /* Too easy - nothing to do */ 1163 retval = 0; /* Too easy - nothing to do */
1142 goto done; 1164 goto done;
1143 } 1165 }
1144 retval = validate_change(cs, &trialcs); 1166 retval = validate_change(cs, trialcs);
1145 if (retval < 0) 1167 if (retval < 0)
1146 goto done; 1168 goto done;
1147 1169
1148 mutex_lock(&callback_mutex); 1170 mutex_lock(&callback_mutex);
1149 cs->mems_allowed = trialcs.mems_allowed; 1171 cs->mems_allowed = trialcs->mems_allowed;
1150 cs->mems_generation = cpuset_mems_generation++; 1172 cs->mems_generation = cpuset_mems_generation++;
1151 mutex_unlock(&callback_mutex); 1173 mutex_unlock(&callback_mutex);
1152 1174
@@ -1167,7 +1189,8 @@ static int update_relax_domain_level(struct cpuset *cs, s64 val)
1167 1189
1168 if (val != cs->relax_domain_level) { 1190 if (val != cs->relax_domain_level) {
1169 cs->relax_domain_level = val; 1191 cs->relax_domain_level = val;
1170 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs)) 1192 if (!cpumask_empty(cs->cpus_allowed) &&
1193 is_sched_load_balance(cs))
1171 async_rebuild_sched_domains(); 1194 async_rebuild_sched_domains();
1172 } 1195 }
1173 1196
@@ -1186,31 +1209,36 @@ static int update_relax_domain_level(struct cpuset *cs, s64 val)
1186static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1209static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1187 int turning_on) 1210 int turning_on)
1188{ 1211{
1189 struct cpuset trialcs; 1212 struct cpuset *trialcs;
1190 int err; 1213 int err;
1191 int balance_flag_changed; 1214 int balance_flag_changed;
1192 1215
1193 trialcs = *cs; 1216 trialcs = alloc_trial_cpuset(cs);
1217 if (!trialcs)
1218 return -ENOMEM;
1219
1194 if (turning_on) 1220 if (turning_on)
1195 set_bit(bit, &trialcs.flags); 1221 set_bit(bit, &trialcs->flags);
1196 else 1222 else
1197 clear_bit(bit, &trialcs.flags); 1223 clear_bit(bit, &trialcs->flags);
1198 1224
1199 err = validate_change(cs, &trialcs); 1225 err = validate_change(cs, trialcs);
1200 if (err < 0) 1226 if (err < 0)
1201 return err; 1227 goto out;
1202 1228
1203 balance_flag_changed = (is_sched_load_balance(cs) != 1229 balance_flag_changed = (is_sched_load_balance(cs) !=
1204 is_sched_load_balance(&trialcs)); 1230 is_sched_load_balance(trialcs));
1205 1231
1206 mutex_lock(&callback_mutex); 1232 mutex_lock(&callback_mutex);
1207 cs->flags = trialcs.flags; 1233 cs->flags = trialcs->flags;
1208 mutex_unlock(&callback_mutex); 1234 mutex_unlock(&callback_mutex);
1209 1235
1210 if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed) 1236 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1211 async_rebuild_sched_domains(); 1237 async_rebuild_sched_domains();
1212 1238
1213 return 0; 1239out:
1240 free_trial_cpuset(trialcs);
1241 return err;
1214} 1242}
1215 1243
1216/* 1244/*
@@ -1311,42 +1339,47 @@ static int fmeter_getrate(struct fmeter *fmp)
1311 return val; 1339 return val;
1312} 1340}
1313 1341
1342/* Protected by cgroup_lock */
1343static cpumask_var_t cpus_attach;
1344
1314/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ 1345/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1315static int cpuset_can_attach(struct cgroup_subsys *ss, 1346static int cpuset_can_attach(struct cgroup_subsys *ss,
1316 struct cgroup *cont, struct task_struct *tsk) 1347 struct cgroup *cont, struct task_struct *tsk)
1317{ 1348{
1318 struct cpuset *cs = cgroup_cs(cont); 1349 struct cpuset *cs = cgroup_cs(cont);
1350 int ret = 0;
1319 1351
1320 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) 1352 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1321 return -ENOSPC; 1353 return -ENOSPC;
1322 if (tsk->flags & PF_THREAD_BOUND) {
1323 cpumask_t mask;
1324 1354
1355 if (tsk->flags & PF_THREAD_BOUND) {
1325 mutex_lock(&callback_mutex); 1356 mutex_lock(&callback_mutex);
1326 mask = cs->cpus_allowed; 1357 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
1358 ret = -EINVAL;
1327 mutex_unlock(&callback_mutex); 1359 mutex_unlock(&callback_mutex);
1328 if (!cpus_equal(tsk->cpus_allowed, mask))
1329 return -EINVAL;
1330 } 1360 }
1331 1361
1332 return security_task_setscheduler(tsk, 0, NULL); 1362 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
1333} 1363}
1334 1364
1335static void cpuset_attach(struct cgroup_subsys *ss, 1365static void cpuset_attach(struct cgroup_subsys *ss,
1336 struct cgroup *cont, struct cgroup *oldcont, 1366 struct cgroup *cont, struct cgroup *oldcont,
1337 struct task_struct *tsk) 1367 struct task_struct *tsk)
1338{ 1368{
1339 cpumask_t cpus;
1340 nodemask_t from, to; 1369 nodemask_t from, to;
1341 struct mm_struct *mm; 1370 struct mm_struct *mm;
1342 struct cpuset *cs = cgroup_cs(cont); 1371 struct cpuset *cs = cgroup_cs(cont);
1343 struct cpuset *oldcs = cgroup_cs(oldcont); 1372 struct cpuset *oldcs = cgroup_cs(oldcont);
1344 int err; 1373 int err;
1345 1374
1346 mutex_lock(&callback_mutex); 1375 if (cs == &top_cpuset) {
1347 guarantee_online_cpus(cs, &cpus); 1376 cpumask_copy(cpus_attach, cpu_possible_mask);
1348 err = set_cpus_allowed_ptr(tsk, &cpus); 1377 } else {
1349 mutex_unlock(&callback_mutex); 1378 mutex_lock(&callback_mutex);
1379 guarantee_online_cpus(cs, cpus_attach);
1380 mutex_unlock(&callback_mutex);
1381 }
1382 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1350 if (err) 1383 if (err)
1351 return; 1384 return;
1352 1385
@@ -1359,7 +1392,6 @@ static void cpuset_attach(struct cgroup_subsys *ss,
1359 cpuset_migrate_mm(mm, &from, &to); 1392 cpuset_migrate_mm(mm, &from, &to);
1360 mmput(mm); 1393 mmput(mm);
1361 } 1394 }
1362
1363} 1395}
1364 1396
1365/* The various types of files and directories in a cpuset file system */ 1397/* The various types of files and directories in a cpuset file system */
@@ -1454,21 +1486,29 @@ static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1454 const char *buf) 1486 const char *buf)
1455{ 1487{
1456 int retval = 0; 1488 int retval = 0;
1489 struct cpuset *cs = cgroup_cs(cgrp);
1490 struct cpuset *trialcs;
1457 1491
1458 if (!cgroup_lock_live_group(cgrp)) 1492 if (!cgroup_lock_live_group(cgrp))
1459 return -ENODEV; 1493 return -ENODEV;
1460 1494
1495 trialcs = alloc_trial_cpuset(cs);
1496 if (!trialcs)
1497 return -ENOMEM;
1498
1461 switch (cft->private) { 1499 switch (cft->private) {
1462 case FILE_CPULIST: 1500 case FILE_CPULIST:
1463 retval = update_cpumask(cgroup_cs(cgrp), buf); 1501 retval = update_cpumask(cs, trialcs, buf);
1464 break; 1502 break;
1465 case FILE_MEMLIST: 1503 case FILE_MEMLIST:
1466 retval = update_nodemask(cgroup_cs(cgrp), buf); 1504 retval = update_nodemask(cs, trialcs, buf);
1467 break; 1505 break;
1468 default: 1506 default:
1469 retval = -EINVAL; 1507 retval = -EINVAL;
1470 break; 1508 break;
1471 } 1509 }
1510
1511 free_trial_cpuset(trialcs);
1472 cgroup_unlock(); 1512 cgroup_unlock();
1473 return retval; 1513 return retval;
1474} 1514}
@@ -1487,13 +1527,13 @@ static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1487 1527
1488static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) 1528static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1489{ 1529{
1490 cpumask_t mask; 1530 int ret;
1491 1531
1492 mutex_lock(&callback_mutex); 1532 mutex_lock(&callback_mutex);
1493 mask = cs->cpus_allowed; 1533 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1494 mutex_unlock(&callback_mutex); 1534 mutex_unlock(&callback_mutex);
1495 1535
1496 return cpulist_scnprintf(page, PAGE_SIZE, &mask); 1536 return ret;
1497} 1537}
1498 1538
1499static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) 1539static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
@@ -1729,7 +1769,7 @@ static void cpuset_post_clone(struct cgroup_subsys *ss,
1729 parent_cs = cgroup_cs(parent); 1769 parent_cs = cgroup_cs(parent);
1730 1770
1731 cs->mems_allowed = parent_cs->mems_allowed; 1771 cs->mems_allowed = parent_cs->mems_allowed;
1732 cs->cpus_allowed = parent_cs->cpus_allowed; 1772 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1733 return; 1773 return;
1734} 1774}
1735 1775
@@ -1755,6 +1795,10 @@ static struct cgroup_subsys_state *cpuset_create(
1755 cs = kmalloc(sizeof(*cs), GFP_KERNEL); 1795 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1756 if (!cs) 1796 if (!cs)
1757 return ERR_PTR(-ENOMEM); 1797 return ERR_PTR(-ENOMEM);
1798 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1799 kfree(cs);
1800 return ERR_PTR(-ENOMEM);
1801 }
1758 1802
1759 cpuset_update_task_memory_state(); 1803 cpuset_update_task_memory_state();
1760 cs->flags = 0; 1804 cs->flags = 0;
@@ -1763,7 +1807,7 @@ static struct cgroup_subsys_state *cpuset_create(
1763 if (is_spread_slab(parent)) 1807 if (is_spread_slab(parent))
1764 set_bit(CS_SPREAD_SLAB, &cs->flags); 1808 set_bit(CS_SPREAD_SLAB, &cs->flags);
1765 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1809 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1766 cpus_clear(cs->cpus_allowed); 1810 cpumask_clear(cs->cpus_allowed);
1767 nodes_clear(cs->mems_allowed); 1811 nodes_clear(cs->mems_allowed);
1768 cs->mems_generation = cpuset_mems_generation++; 1812 cs->mems_generation = cpuset_mems_generation++;
1769 fmeter_init(&cs->fmeter); 1813 fmeter_init(&cs->fmeter);
@@ -1790,6 +1834,7 @@ static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1790 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 1834 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1791 1835
1792 number_of_cpusets--; 1836 number_of_cpusets--;
1837 free_cpumask_var(cs->cpus_allowed);
1793 kfree(cs); 1838 kfree(cs);
1794} 1839}
1795 1840
@@ -1813,6 +1858,8 @@ struct cgroup_subsys cpuset_subsys = {
1813 1858
1814int __init cpuset_init_early(void) 1859int __init cpuset_init_early(void)
1815{ 1860{
1861 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1862
1816 top_cpuset.mems_generation = cpuset_mems_generation++; 1863 top_cpuset.mems_generation = cpuset_mems_generation++;
1817 return 0; 1864 return 0;
1818} 1865}
@@ -1828,7 +1875,7 @@ int __init cpuset_init(void)
1828{ 1875{
1829 int err = 0; 1876 int err = 0;
1830 1877
1831 cpus_setall(top_cpuset.cpus_allowed); 1878 cpumask_setall(top_cpuset.cpus_allowed);
1832 nodes_setall(top_cpuset.mems_allowed); 1879 nodes_setall(top_cpuset.mems_allowed);
1833 1880
1834 fmeter_init(&top_cpuset.fmeter); 1881 fmeter_init(&top_cpuset.fmeter);
@@ -1840,6 +1887,9 @@ int __init cpuset_init(void)
1840 if (err < 0) 1887 if (err < 0)
1841 return err; 1888 return err;
1842 1889
1890 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1891 BUG();
1892
1843 number_of_cpusets = 1; 1893 number_of_cpusets = 1;
1844 return 0; 1894 return 0;
1845} 1895}
@@ -1914,7 +1964,7 @@ static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1914 * has online cpus, so can't be empty). 1964 * has online cpus, so can't be empty).
1915 */ 1965 */
1916 parent = cs->parent; 1966 parent = cs->parent;
1917 while (cpus_empty(parent->cpus_allowed) || 1967 while (cpumask_empty(parent->cpus_allowed) ||
1918 nodes_empty(parent->mems_allowed)) 1968 nodes_empty(parent->mems_allowed))
1919 parent = parent->parent; 1969 parent = parent->parent;
1920 1970
@@ -1955,7 +2005,7 @@ static void scan_for_empty_cpusets(struct cpuset *root)
1955 } 2005 }
1956 2006
1957 /* Continue past cpusets with all cpus, mems online */ 2007 /* Continue past cpusets with all cpus, mems online */
1958 if (cpus_subset(cp->cpus_allowed, cpu_online_map) && 2008 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
1959 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) 2009 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1960 continue; 2010 continue;
1961 2011
@@ -1963,13 +2013,14 @@ static void scan_for_empty_cpusets(struct cpuset *root)
1963 2013
1964 /* Remove offline cpus and mems from this cpuset. */ 2014 /* Remove offline cpus and mems from this cpuset. */
1965 mutex_lock(&callback_mutex); 2015 mutex_lock(&callback_mutex);
1966 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map); 2016 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2017 cpu_online_mask);
1967 nodes_and(cp->mems_allowed, cp->mems_allowed, 2018 nodes_and(cp->mems_allowed, cp->mems_allowed,
1968 node_states[N_HIGH_MEMORY]); 2019 node_states[N_HIGH_MEMORY]);
1969 mutex_unlock(&callback_mutex); 2020 mutex_unlock(&callback_mutex);
1970 2021
1971 /* Move tasks from the empty cpuset to a parent */ 2022 /* Move tasks from the empty cpuset to a parent */
1972 if (cpus_empty(cp->cpus_allowed) || 2023 if (cpumask_empty(cp->cpus_allowed) ||
1973 nodes_empty(cp->mems_allowed)) 2024 nodes_empty(cp->mems_allowed))
1974 remove_tasks_in_empty_cpuset(cp); 2025 remove_tasks_in_empty_cpuset(cp);
1975 else { 2026 else {
@@ -1995,7 +2046,7 @@ static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
1995 unsigned long phase, void *unused_cpu) 2046 unsigned long phase, void *unused_cpu)
1996{ 2047{
1997 struct sched_domain_attr *attr; 2048 struct sched_domain_attr *attr;
1998 cpumask_t *doms; 2049 struct cpumask *doms;
1999 int ndoms; 2050 int ndoms;
2000 2051
2001 switch (phase) { 2052 switch (phase) {
@@ -2010,7 +2061,7 @@ static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
2010 } 2061 }
2011 2062
2012 cgroup_lock(); 2063 cgroup_lock();
2013 top_cpuset.cpus_allowed = cpu_online_map; 2064 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2014 scan_for_empty_cpusets(&top_cpuset); 2065 scan_for_empty_cpusets(&top_cpuset);
2015 ndoms = generate_sched_domains(&doms, &attr); 2066 ndoms = generate_sched_domains(&doms, &attr);
2016 cgroup_unlock(); 2067 cgroup_unlock();
@@ -2055,7 +2106,7 @@ static int cpuset_track_online_nodes(struct notifier_block *self,
2055 2106
2056void __init cpuset_init_smp(void) 2107void __init cpuset_init_smp(void)
2057{ 2108{
2058 top_cpuset.cpus_allowed = cpu_online_map; 2109 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2059 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; 2110 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2060 2111
2061 hotcpu_notifier(cpuset_track_online_cpus, 0); 2112 hotcpu_notifier(cpuset_track_online_cpus, 0);
@@ -2065,15 +2116,15 @@ void __init cpuset_init_smp(void)
2065/** 2116/**
2066 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 2117 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2067 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 2118 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2068 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set. 2119 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2069 * 2120 *
2070 * Description: Returns the cpumask_t cpus_allowed of the cpuset 2121 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2071 * attached to the specified @tsk. Guaranteed to return some non-empty 2122 * attached to the specified @tsk. Guaranteed to return some non-empty
2072 * subset of cpu_online_map, even if this means going outside the 2123 * subset of cpu_online_map, even if this means going outside the
2073 * tasks cpuset. 2124 * tasks cpuset.
2074 **/ 2125 **/
2075 2126
2076void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask) 2127void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2077{ 2128{
2078 mutex_lock(&callback_mutex); 2129 mutex_lock(&callback_mutex);
2079 cpuset_cpus_allowed_locked(tsk, pmask); 2130 cpuset_cpus_allowed_locked(tsk, pmask);
@@ -2084,7 +2135,7 @@ void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
2084 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. 2135 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2085 * Must be called with callback_mutex held. 2136 * Must be called with callback_mutex held.
2086 **/ 2137 **/
2087void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask) 2138void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2088{ 2139{
2089 task_lock(tsk); 2140 task_lock(tsk);
2090 guarantee_online_cpus(task_cs(tsk), pmask); 2141 guarantee_online_cpus(task_cs(tsk), pmask);
diff --git a/kernel/cred.c b/kernel/cred.c
index ff7bc071991c..3a039189d707 100644
--- a/kernel/cred.c
+++ b/kernel/cred.c
@@ -372,7 +372,8 @@ int commit_creds(struct cred *new)
372 old->fsuid != new->fsuid || 372 old->fsuid != new->fsuid ||
373 old->fsgid != new->fsgid || 373 old->fsgid != new->fsgid ||
374 !cap_issubset(new->cap_permitted, old->cap_permitted)) { 374 !cap_issubset(new->cap_permitted, old->cap_permitted)) {
375 set_dumpable(task->mm, suid_dumpable); 375 if (task->mm)
376 set_dumpable(task->mm, suid_dumpable);
376 task->pdeath_signal = 0; 377 task->pdeath_signal = 0;
377 smp_wmb(); 378 smp_wmb();
378 } 379 }
@@ -506,6 +507,7 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon)
506 else 507 else
507 old = get_cred(&init_cred); 508 old = get_cred(&init_cred);
508 509
510 *new = *old;
509 get_uid(new->user); 511 get_uid(new->user);
510 get_group_info(new->group_info); 512 get_group_info(new->group_info);
511 513
@@ -529,6 +531,7 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon)
529 531
530error: 532error:
531 put_cred(new); 533 put_cred(new);
534 put_cred(old);
532 return NULL; 535 return NULL;
533} 536}
534EXPORT_SYMBOL(prepare_kernel_cred); 537EXPORT_SYMBOL(prepare_kernel_cred);
diff --git a/kernel/fork.c b/kernel/fork.c
index 0bce4a43bb37..1d68f1255dd8 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1126,12 +1126,12 @@ static struct task_struct *copy_process(unsigned long clone_flags,
1126 1126
1127 if (pid != &init_struct_pid) { 1127 if (pid != &init_struct_pid) {
1128 retval = -ENOMEM; 1128 retval = -ENOMEM;
1129 pid = alloc_pid(task_active_pid_ns(p)); 1129 pid = alloc_pid(p->nsproxy->pid_ns);
1130 if (!pid) 1130 if (!pid)
1131 goto bad_fork_cleanup_io; 1131 goto bad_fork_cleanup_io;
1132 1132
1133 if (clone_flags & CLONE_NEWPID) { 1133 if (clone_flags & CLONE_NEWPID) {
1134 retval = pid_ns_prepare_proc(task_active_pid_ns(p)); 1134 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1135 if (retval < 0) 1135 if (retval < 0)
1136 goto bad_fork_free_pid; 1136 goto bad_fork_free_pid;
1137 } 1137 }
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c
index 43c2111cd54d..78bc3fdac0d2 100644
--- a/kernel/ns_cgroup.c
+++ b/kernel/ns_cgroup.c
@@ -13,7 +13,6 @@
13 13
14struct ns_cgroup { 14struct ns_cgroup {
15 struct cgroup_subsys_state css; 15 struct cgroup_subsys_state css;
16 spinlock_t lock;
17}; 16};
18 17
19struct cgroup_subsys ns_subsys; 18struct cgroup_subsys ns_subsys;
@@ -84,7 +83,6 @@ static struct cgroup_subsys_state *ns_create(struct cgroup_subsys *ss,
84 ns_cgroup = kzalloc(sizeof(*ns_cgroup), GFP_KERNEL); 83 ns_cgroup = kzalloc(sizeof(*ns_cgroup), GFP_KERNEL);
85 if (!ns_cgroup) 84 if (!ns_cgroup)
86 return ERR_PTR(-ENOMEM); 85 return ERR_PTR(-ENOMEM);
87 spin_lock_init(&ns_cgroup->lock);
88 return &ns_cgroup->css; 86 return &ns_cgroup->css;
89} 87}
90 88
diff --git a/kernel/pid.c b/kernel/pid.c
index af9224cdd6c0..1b3586fe753a 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -474,6 +474,12 @@ pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
474} 474}
475EXPORT_SYMBOL(task_session_nr_ns); 475EXPORT_SYMBOL(task_session_nr_ns);
476 476
477struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
478{
479 return ns_of_pid(task_pid(tsk));
480}
481EXPORT_SYMBOL_GPL(task_active_pid_ns);
482
477/* 483/*
478 * Used by proc to find the first pid that is greater than or equal to nr. 484 * Used by proc to find the first pid that is greater than or equal to nr.
479 * 485 *
diff --git a/kernel/power/disk.c b/kernel/power/disk.c
index f77d3819ef57..45e8541ab7e3 100644
--- a/kernel/power/disk.c
+++ b/kernel/power/disk.c
@@ -258,12 +258,12 @@ int hibernation_snapshot(int platform_mode)
258{ 258{
259 int error; 259 int error;
260 260
261 /* Free memory before shutting down devices. */ 261 error = platform_begin(platform_mode);
262 error = swsusp_shrink_memory();
263 if (error) 262 if (error)
264 return error; 263 return error;
265 264
266 error = platform_begin(platform_mode); 265 /* Free memory before shutting down devices. */
266 error = swsusp_shrink_memory();
267 if (error) 267 if (error)
268 goto Close; 268 goto Close;
269 269
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 5d2ab836e998..f5fc2d7680f2 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -25,6 +25,7 @@
25#include <linux/syscalls.h> 25#include <linux/syscalls.h>
26#include <linux/console.h> 26#include <linux/console.h>
27#include <linux/highmem.h> 27#include <linux/highmem.h>
28#include <linux/list.h>
28 29
29#include <asm/uaccess.h> 30#include <asm/uaccess.h>
30#include <asm/mmu_context.h> 31#include <asm/mmu_context.h>
@@ -192,12 +193,6 @@ static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
192 return ret; 193 return ret;
193} 194}
194 195
195static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196{
197 free_list_of_pages(ca->chain, clear_page_nosave);
198 memset(ca, 0, sizeof(struct chain_allocator));
199}
200
201/** 196/**
202 * Data types related to memory bitmaps. 197 * Data types related to memory bitmaps.
203 * 198 *
@@ -233,7 +228,7 @@ static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
233#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 228#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
234 229
235struct bm_block { 230struct bm_block {
236 struct bm_block *next; /* next element of the list */ 231 struct list_head hook; /* hook into a list of bitmap blocks */
237 unsigned long start_pfn; /* pfn represented by the first bit */ 232 unsigned long start_pfn; /* pfn represented by the first bit */
238 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 233 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
239 unsigned long *data; /* bitmap representing pages */ 234 unsigned long *data; /* bitmap representing pages */
@@ -244,24 +239,15 @@ static inline unsigned long bm_block_bits(struct bm_block *bb)
244 return bb->end_pfn - bb->start_pfn; 239 return bb->end_pfn - bb->start_pfn;
245} 240}
246 241
247struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
253};
254
255/* strcut bm_position is used for browsing memory bitmaps */ 242/* strcut bm_position is used for browsing memory bitmaps */
256 243
257struct bm_position { 244struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block; 245 struct bm_block *block;
260 int bit; 246 int bit;
261}; 247};
262 248
263struct memory_bitmap { 249struct memory_bitmap {
264 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 250 struct list_head blocks; /* list of bitmap blocks */
265 struct linked_page *p_list; /* list of pages used to store zone 251 struct linked_page *p_list; /* list of pages used to store zone
266 * bitmap objects and bitmap block 252 * bitmap objects and bitmap block
267 * objects 253 * objects
@@ -273,11 +259,7 @@ struct memory_bitmap {
273 259
274static void memory_bm_position_reset(struct memory_bitmap *bm) 260static void memory_bm_position_reset(struct memory_bitmap *bm)
275{ 261{
276 struct zone_bitmap *zone_bm; 262 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
277
278 zone_bm = bm->zone_bm_list;
279 bm->cur.zone_bm = zone_bm;
280 bm->cur.block = zone_bm->bm_blocks;
281 bm->cur.bit = 0; 263 bm->cur.bit = 0;
282} 264}
283 265
@@ -285,151 +267,184 @@ static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
285 267
286/** 268/**
287 * create_bm_block_list - create a list of block bitmap objects 269 * create_bm_block_list - create a list of block bitmap objects
270 * @nr_blocks - number of blocks to allocate
271 * @list - list to put the allocated blocks into
272 * @ca - chain allocator to be used for allocating memory
288 */ 273 */
289 274static int create_bm_block_list(unsigned long pages,
290static inline struct bm_block * 275 struct list_head *list,
291create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 276 struct chain_allocator *ca)
292{ 277{
293 struct bm_block *bblist = NULL; 278 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
294 279
295 while (nr_blocks-- > 0) { 280 while (nr_blocks-- > 0) {
296 struct bm_block *bb; 281 struct bm_block *bb;
297 282
298 bb = chain_alloc(ca, sizeof(struct bm_block)); 283 bb = chain_alloc(ca, sizeof(struct bm_block));
299 if (!bb) 284 if (!bb)
300 return NULL; 285 return -ENOMEM;
301 286 list_add(&bb->hook, list);
302 bb->next = bblist;
303 bblist = bb;
304 } 287 }
305 return bblist; 288
289 return 0;
306} 290}
307 291
292struct mem_extent {
293 struct list_head hook;
294 unsigned long start;
295 unsigned long end;
296};
297
308/** 298/**
309 * create_zone_bm_list - create a list of zone bitmap objects 299 * free_mem_extents - free a list of memory extents
300 * @list - list of extents to empty
310 */ 301 */
302static void free_mem_extents(struct list_head *list)
303{
304 struct mem_extent *ext, *aux;
311 305
312static inline struct zone_bitmap * 306 list_for_each_entry_safe(ext, aux, list, hook) {
313create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 307 list_del(&ext->hook);
308 kfree(ext);
309 }
310}
311
312/**
313 * create_mem_extents - create a list of memory extents representing
314 * contiguous ranges of PFNs
315 * @list - list to put the extents into
316 * @gfp_mask - mask to use for memory allocations
317 */
318static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
314{ 319{
315 struct zone_bitmap *zbmlist = NULL; 320 struct zone *zone;
316 321
317 while (nr_zones-- > 0) { 322 INIT_LIST_HEAD(list);
318 struct zone_bitmap *zbm;
319 323
320 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 324 for_each_zone(zone) {
321 if (!zbm) 325 unsigned long zone_start, zone_end;
322 return NULL; 326 struct mem_extent *ext, *cur, *aux;
327
328 if (!populated_zone(zone))
329 continue;
323 330
324 zbm->next = zbmlist; 331 zone_start = zone->zone_start_pfn;
325 zbmlist = zbm; 332 zone_end = zone->zone_start_pfn + zone->spanned_pages;
333
334 list_for_each_entry(ext, list, hook)
335 if (zone_start <= ext->end)
336 break;
337
338 if (&ext->hook == list || zone_end < ext->start) {
339 /* New extent is necessary */
340 struct mem_extent *new_ext;
341
342 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
343 if (!new_ext) {
344 free_mem_extents(list);
345 return -ENOMEM;
346 }
347 new_ext->start = zone_start;
348 new_ext->end = zone_end;
349 list_add_tail(&new_ext->hook, &ext->hook);
350 continue;
351 }
352
353 /* Merge this zone's range of PFNs with the existing one */
354 if (zone_start < ext->start)
355 ext->start = zone_start;
356 if (zone_end > ext->end)
357 ext->end = zone_end;
358
359 /* More merging may be possible */
360 cur = ext;
361 list_for_each_entry_safe_continue(cur, aux, list, hook) {
362 if (zone_end < cur->start)
363 break;
364 if (zone_end < cur->end)
365 ext->end = cur->end;
366 list_del(&cur->hook);
367 kfree(cur);
368 }
326 } 369 }
327 return zbmlist; 370
371 return 0;
328} 372}
329 373
330/** 374/**
331 * memory_bm_create - allocate memory for a memory bitmap 375 * memory_bm_create - allocate memory for a memory bitmap
332 */ 376 */
333
334static int 377static int
335memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 378memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
336{ 379{
337 struct chain_allocator ca; 380 struct chain_allocator ca;
338 struct zone *zone; 381 struct list_head mem_extents;
339 struct zone_bitmap *zone_bm; 382 struct mem_extent *ext;
340 struct bm_block *bb; 383 int error;
341 unsigned int nr;
342 384
343 chain_init(&ca, gfp_mask, safe_needed); 385 chain_init(&ca, gfp_mask, safe_needed);
386 INIT_LIST_HEAD(&bm->blocks);
344 387
345 /* Compute the number of zones */ 388 error = create_mem_extents(&mem_extents, gfp_mask);
346 nr = 0; 389 if (error)
347 for_each_zone(zone) 390 return error;
348 if (populated_zone(zone))
349 nr++;
350
351 /* Allocate the list of zones bitmap objects */
352 zone_bm = create_zone_bm_list(nr, &ca);
353 bm->zone_bm_list = zone_bm;
354 if (!zone_bm) {
355 chain_free(&ca, PG_UNSAFE_CLEAR);
356 return -ENOMEM;
357 }
358
359 /* Initialize the zone bitmap objects */
360 for_each_zone(zone) {
361 unsigned long pfn;
362 391
363 if (!populated_zone(zone)) 392 list_for_each_entry(ext, &mem_extents, hook) {
364 continue; 393 struct bm_block *bb;
394 unsigned long pfn = ext->start;
395 unsigned long pages = ext->end - ext->start;
365 396
366 zone_bm->start_pfn = zone->zone_start_pfn; 397 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
367 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
368 /* Allocate the list of bitmap block objects */
369 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
370 bb = create_bm_block_list(nr, &ca);
371 zone_bm->bm_blocks = bb;
372 zone_bm->cur_block = bb;
373 if (!bb)
374 goto Free;
375 398
376 nr = zone->spanned_pages; 399 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
377 pfn = zone->zone_start_pfn; 400 if (error)
378 /* Initialize the bitmap block objects */ 401 goto Error;
379 while (bb) {
380 unsigned long *ptr;
381 402
382 ptr = get_image_page(gfp_mask, safe_needed); 403 list_for_each_entry_continue(bb, &bm->blocks, hook) {
383 bb->data = ptr; 404 bb->data = get_image_page(gfp_mask, safe_needed);
384 if (!ptr) 405 if (!bb->data) {
385 goto Free; 406 error = -ENOMEM;
407 goto Error;
408 }
386 409
387 bb->start_pfn = pfn; 410 bb->start_pfn = pfn;
388 if (nr >= BM_BITS_PER_BLOCK) { 411 if (pages >= BM_BITS_PER_BLOCK) {
389 pfn += BM_BITS_PER_BLOCK; 412 pfn += BM_BITS_PER_BLOCK;
390 nr -= BM_BITS_PER_BLOCK; 413 pages -= BM_BITS_PER_BLOCK;
391 } else { 414 } else {
392 /* This is executed only once in the loop */ 415 /* This is executed only once in the loop */
393 pfn += nr; 416 pfn += pages;
394 } 417 }
395 bb->end_pfn = pfn; 418 bb->end_pfn = pfn;
396 bb = bb->next;
397 } 419 }
398 zone_bm = zone_bm->next;
399 } 420 }
421
400 bm->p_list = ca.chain; 422 bm->p_list = ca.chain;
401 memory_bm_position_reset(bm); 423 memory_bm_position_reset(bm);
402 return 0; 424 Exit:
425 free_mem_extents(&mem_extents);
426 return error;
403 427
404 Free: 428 Error:
405 bm->p_list = ca.chain; 429 bm->p_list = ca.chain;
406 memory_bm_free(bm, PG_UNSAFE_CLEAR); 430 memory_bm_free(bm, PG_UNSAFE_CLEAR);
407 return -ENOMEM; 431 goto Exit;
408} 432}
409 433
410/** 434/**
411 * memory_bm_free - free memory occupied by the memory bitmap @bm 435 * memory_bm_free - free memory occupied by the memory bitmap @bm
412 */ 436 */
413
414static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 437static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
415{ 438{
416 struct zone_bitmap *zone_bm; 439 struct bm_block *bb;
417 440
418 /* Free the list of bit blocks for each zone_bitmap object */ 441 list_for_each_entry(bb, &bm->blocks, hook)
419 zone_bm = bm->zone_bm_list; 442 if (bb->data)
420 while (zone_bm) { 443 free_image_page(bb->data, clear_nosave_free);
421 struct bm_block *bb;
422 444
423 bb = zone_bm->bm_blocks;
424 while (bb) {
425 if (bb->data)
426 free_image_page(bb->data, clear_nosave_free);
427 bb = bb->next;
428 }
429 zone_bm = zone_bm->next;
430 }
431 free_list_of_pages(bm->p_list, clear_nosave_free); 445 free_list_of_pages(bm->p_list, clear_nosave_free);
432 bm->zone_bm_list = NULL; 446
447 INIT_LIST_HEAD(&bm->blocks);
433} 448}
434 449
435/** 450/**
@@ -437,38 +452,33 @@ static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
437 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 452 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
438 * of @bm->cur_zone_bm are updated. 453 * of @bm->cur_zone_bm are updated.
439 */ 454 */
440
441static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 455static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
442 void **addr, unsigned int *bit_nr) 456 void **addr, unsigned int *bit_nr)
443{ 457{
444 struct zone_bitmap *zone_bm;
445 struct bm_block *bb; 458 struct bm_block *bb;
446 459
447 /* Check if the pfn is from the current zone */ 460 /*
448 zone_bm = bm->cur.zone_bm; 461 * Check if the pfn corresponds to the current bitmap block and find
449 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 462 * the block where it fits if this is not the case.
450 zone_bm = bm->zone_bm_list; 463 */
451 /* We don't assume that the zones are sorted by pfns */ 464 bb = bm->cur.block;
452 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
453 zone_bm = zone_bm->next;
454
455 if (!zone_bm)
456 return -EFAULT;
457 }
458 bm->cur.zone_bm = zone_bm;
459 }
460 /* Check if the pfn corresponds to the current bitmap block */
461 bb = zone_bm->cur_block;
462 if (pfn < bb->start_pfn) 465 if (pfn < bb->start_pfn)
463 bb = zone_bm->bm_blocks; 466 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
467 if (pfn >= bb->start_pfn)
468 break;
464 469
465 while (pfn >= bb->end_pfn) { 470 if (pfn >= bb->end_pfn)
466 bb = bb->next; 471 list_for_each_entry_continue(bb, &bm->blocks, hook)
472 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
473 break;
467 474
468 BUG_ON(!bb); 475 if (&bb->hook == &bm->blocks)
469 } 476 return -EFAULT;
470 zone_bm->cur_block = bb; 477
478 /* The block has been found */
479 bm->cur.block = bb;
471 pfn -= bb->start_pfn; 480 pfn -= bb->start_pfn;
481 bm->cur.bit = pfn + 1;
472 *bit_nr = pfn; 482 *bit_nr = pfn;
473 *addr = bb->data; 483 *addr = bb->data;
474 return 0; 484 return 0;
@@ -519,6 +529,14 @@ static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
519 return test_bit(bit, addr); 529 return test_bit(bit, addr);
520} 530}
521 531
532static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
533{
534 void *addr;
535 unsigned int bit;
536
537 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
538}
539
522/** 540/**
523 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 541 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
524 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 542 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
@@ -530,29 +548,21 @@ static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
530 548
531static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 549static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
532{ 550{
533 struct zone_bitmap *zone_bm;
534 struct bm_block *bb; 551 struct bm_block *bb;
535 int bit; 552 int bit;
536 553
554 bb = bm->cur.block;
537 do { 555 do {
538 bb = bm->cur.block; 556 bit = bm->cur.bit;
539 do { 557 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
540 bit = bm->cur.bit; 558 if (bit < bm_block_bits(bb))
541 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 559 goto Return_pfn;
542 if (bit < bm_block_bits(bb)) 560
543 goto Return_pfn; 561 bb = list_entry(bb->hook.next, struct bm_block, hook);
544 562 bm->cur.block = bb;
545 bb = bb->next; 563 bm->cur.bit = 0;
546 bm->cur.block = bb; 564 } while (&bb->hook != &bm->blocks);
547 bm->cur.bit = 0; 565
548 } while (bb);
549 zone_bm = bm->cur.zone_bm->next;
550 if (zone_bm) {
551 bm->cur.zone_bm = zone_bm;
552 bm->cur.block = zone_bm->bm_blocks;
553 bm->cur.bit = 0;
554 }
555 } while (zone_bm);
556 memory_bm_position_reset(bm); 566 memory_bm_position_reset(bm);
557 return BM_END_OF_MAP; 567 return BM_END_OF_MAP;
558 568
@@ -808,8 +818,7 @@ static unsigned int count_free_highmem_pages(void)
808 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 818 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
809 * and it isn't a part of a free chunk of pages. 819 * and it isn't a part of a free chunk of pages.
810 */ 820 */
811 821static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
812static struct page *saveable_highmem_page(unsigned long pfn)
813{ 822{
814 struct page *page; 823 struct page *page;
815 824
@@ -817,6 +826,8 @@ static struct page *saveable_highmem_page(unsigned long pfn)
817 return NULL; 826 return NULL;
818 827
819 page = pfn_to_page(pfn); 828 page = pfn_to_page(pfn);
829 if (page_zone(page) != zone)
830 return NULL;
820 831
821 BUG_ON(!PageHighMem(page)); 832 BUG_ON(!PageHighMem(page));
822 833
@@ -846,13 +857,16 @@ unsigned int count_highmem_pages(void)
846 mark_free_pages(zone); 857 mark_free_pages(zone);
847 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 858 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
848 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 859 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
849 if (saveable_highmem_page(pfn)) 860 if (saveable_highmem_page(zone, pfn))
850 n++; 861 n++;
851 } 862 }
852 return n; 863 return n;
853} 864}
854#else 865#else
855static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 866static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
867{
868 return NULL;
869}
856#endif /* CONFIG_HIGHMEM */ 870#endif /* CONFIG_HIGHMEM */
857 871
858/** 872/**
@@ -863,8 +877,7 @@ static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
863 * of pages statically defined as 'unsaveable', and it isn't a part of 877 * of pages statically defined as 'unsaveable', and it isn't a part of
864 * a free chunk of pages. 878 * a free chunk of pages.
865 */ 879 */
866 880static struct page *saveable_page(struct zone *zone, unsigned long pfn)
867static struct page *saveable_page(unsigned long pfn)
868{ 881{
869 struct page *page; 882 struct page *page;
870 883
@@ -872,6 +885,8 @@ static struct page *saveable_page(unsigned long pfn)
872 return NULL; 885 return NULL;
873 886
874 page = pfn_to_page(pfn); 887 page = pfn_to_page(pfn);
888 if (page_zone(page) != zone)
889 return NULL;
875 890
876 BUG_ON(PageHighMem(page)); 891 BUG_ON(PageHighMem(page));
877 892
@@ -903,7 +918,7 @@ unsigned int count_data_pages(void)
903 mark_free_pages(zone); 918 mark_free_pages(zone);
904 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 919 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
905 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 920 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
906 if(saveable_page(pfn)) 921 if (saveable_page(zone, pfn))
907 n++; 922 n++;
908 } 923 }
909 return n; 924 return n;
@@ -944,7 +959,7 @@ static inline struct page *
944page_is_saveable(struct zone *zone, unsigned long pfn) 959page_is_saveable(struct zone *zone, unsigned long pfn)
945{ 960{
946 return is_highmem(zone) ? 961 return is_highmem(zone) ?
947 saveable_highmem_page(pfn) : saveable_page(pfn); 962 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
948} 963}
949 964
950static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 965static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
@@ -966,7 +981,7 @@ static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
966 * data modified by kmap_atomic() 981 * data modified by kmap_atomic()
967 */ 982 */
968 safe_copy_page(buffer, s_page); 983 safe_copy_page(buffer, s_page);
969 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 984 dst = kmap_atomic(d_page, KM_USER0);
970 memcpy(dst, buffer, PAGE_SIZE); 985 memcpy(dst, buffer, PAGE_SIZE);
971 kunmap_atomic(dst, KM_USER0); 986 kunmap_atomic(dst, KM_USER0);
972 } else { 987 } else {
@@ -975,7 +990,7 @@ static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
975 } 990 }
976} 991}
977#else 992#else
978#define page_is_saveable(zone, pfn) saveable_page(pfn) 993#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
979 994
980static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 995static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
981{ 996{
@@ -1459,9 +1474,7 @@ load_header(struct swsusp_info *info)
1459 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1474 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1460 * the corresponding bit in the memory bitmap @bm 1475 * the corresponding bit in the memory bitmap @bm
1461 */ 1476 */
1462 1477static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1463static inline void
1464unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1465{ 1478{
1466 int j; 1479 int j;
1467 1480
@@ -1469,8 +1482,13 @@ unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1469 if (unlikely(buf[j] == BM_END_OF_MAP)) 1482 if (unlikely(buf[j] == BM_END_OF_MAP))
1470 break; 1483 break;
1471 1484
1472 memory_bm_set_bit(bm, buf[j]); 1485 if (memory_bm_pfn_present(bm, buf[j]))
1486 memory_bm_set_bit(bm, buf[j]);
1487 else
1488 return -EFAULT;
1473 } 1489 }
1490
1491 return 0;
1474} 1492}
1475 1493
1476/* List of "safe" pages that may be used to store data loaded from the suspend 1494/* List of "safe" pages that may be used to store data loaded from the suspend
@@ -1608,7 +1626,7 @@ get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1608 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1626 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1609 if (!pbe) { 1627 if (!pbe) {
1610 swsusp_free(); 1628 swsusp_free();
1611 return NULL; 1629 return ERR_PTR(-ENOMEM);
1612 } 1630 }
1613 pbe->orig_page = page; 1631 pbe->orig_page = page;
1614 if (safe_highmem_pages > 0) { 1632 if (safe_highmem_pages > 0) {
@@ -1677,7 +1695,7 @@ prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1677static inline void * 1695static inline void *
1678get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1696get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1679{ 1697{
1680 return NULL; 1698 return ERR_PTR(-EINVAL);
1681} 1699}
1682 1700
1683static inline void copy_last_highmem_page(void) {} 1701static inline void copy_last_highmem_page(void) {}
@@ -1788,8 +1806,13 @@ prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1788static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1806static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1789{ 1807{
1790 struct pbe *pbe; 1808 struct pbe *pbe;
1791 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1809 struct page *page;
1810 unsigned long pfn = memory_bm_next_pfn(bm);
1792 1811
1812 if (pfn == BM_END_OF_MAP)
1813 return ERR_PTR(-EFAULT);
1814
1815 page = pfn_to_page(pfn);
1793 if (PageHighMem(page)) 1816 if (PageHighMem(page))
1794 return get_highmem_page_buffer(page, ca); 1817 return get_highmem_page_buffer(page, ca);
1795 1818
@@ -1805,7 +1828,7 @@ static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1805 pbe = chain_alloc(ca, sizeof(struct pbe)); 1828 pbe = chain_alloc(ca, sizeof(struct pbe));
1806 if (!pbe) { 1829 if (!pbe) {
1807 swsusp_free(); 1830 swsusp_free();
1808 return NULL; 1831 return ERR_PTR(-ENOMEM);
1809 } 1832 }
1810 pbe->orig_address = page_address(page); 1833 pbe->orig_address = page_address(page);
1811 pbe->address = safe_pages_list; 1834 pbe->address = safe_pages_list;
@@ -1868,7 +1891,10 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1868 return error; 1891 return error;
1869 1892
1870 } else if (handle->prev <= nr_meta_pages) { 1893 } else if (handle->prev <= nr_meta_pages) {
1871 unpack_orig_pfns(buffer, &copy_bm); 1894 error = unpack_orig_pfns(buffer, &copy_bm);
1895 if (error)
1896 return error;
1897
1872 if (handle->prev == nr_meta_pages) { 1898 if (handle->prev == nr_meta_pages) {
1873 error = prepare_image(&orig_bm, &copy_bm); 1899 error = prepare_image(&orig_bm, &copy_bm);
1874 if (error) 1900 if (error)
@@ -1879,12 +1905,14 @@ int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1879 restore_pblist = NULL; 1905 restore_pblist = NULL;
1880 handle->buffer = get_buffer(&orig_bm, &ca); 1906 handle->buffer = get_buffer(&orig_bm, &ca);
1881 handle->sync_read = 0; 1907 handle->sync_read = 0;
1882 if (!handle->buffer) 1908 if (IS_ERR(handle->buffer))
1883 return -ENOMEM; 1909 return PTR_ERR(handle->buffer);
1884 } 1910 }
1885 } else { 1911 } else {
1886 copy_last_highmem_page(); 1912 copy_last_highmem_page();
1887 handle->buffer = get_buffer(&orig_bm, &ca); 1913 handle->buffer = get_buffer(&orig_bm, &ca);
1914 if (IS_ERR(handle->buffer))
1915 return PTR_ERR(handle->buffer);
1888 if (handle->buffer != buffer) 1916 if (handle->buffer != buffer)
1889 handle->sync_read = 0; 1917 handle->sync_read = 0;
1890 } 1918 }
diff --git a/kernel/power/swsusp.c b/kernel/power/swsusp.c
index 023ff2a31d89..a92c91451559 100644
--- a/kernel/power/swsusp.c
+++ b/kernel/power/swsusp.c
@@ -262,3 +262,125 @@ int swsusp_shrink_memory(void)
262 262
263 return 0; 263 return 0;
264} 264}
265
266/*
267 * Platforms, like ACPI, may want us to save some memory used by them during
268 * hibernation and to restore the contents of this memory during the subsequent
269 * resume. The code below implements a mechanism allowing us to do that.
270 */
271
272struct nvs_page {
273 unsigned long phys_start;
274 unsigned int size;
275 void *kaddr;
276 void *data;
277 struct list_head node;
278};
279
280static LIST_HEAD(nvs_list);
281
282/**
283 * hibernate_nvs_register - register platform NVS memory region to save
284 * @start - physical address of the region
285 * @size - size of the region
286 *
287 * The NVS region need not be page-aligned (both ends) and we arrange
288 * things so that the data from page-aligned addresses in this region will
289 * be copied into separate RAM pages.
290 */
291int hibernate_nvs_register(unsigned long start, unsigned long size)
292{
293 struct nvs_page *entry, *next;
294
295 while (size > 0) {
296 unsigned int nr_bytes;
297
298 entry = kzalloc(sizeof(struct nvs_page), GFP_KERNEL);
299 if (!entry)
300 goto Error;
301
302 list_add_tail(&entry->node, &nvs_list);
303 entry->phys_start = start;
304 nr_bytes = PAGE_SIZE - (start & ~PAGE_MASK);
305 entry->size = (size < nr_bytes) ? size : nr_bytes;
306
307 start += entry->size;
308 size -= entry->size;
309 }
310 return 0;
311
312 Error:
313 list_for_each_entry_safe(entry, next, &nvs_list, node) {
314 list_del(&entry->node);
315 kfree(entry);
316 }
317 return -ENOMEM;
318}
319
320/**
321 * hibernate_nvs_free - free data pages allocated for saving NVS regions
322 */
323void hibernate_nvs_free(void)
324{
325 struct nvs_page *entry;
326
327 list_for_each_entry(entry, &nvs_list, node)
328 if (entry->data) {
329 free_page((unsigned long)entry->data);
330 entry->data = NULL;
331 if (entry->kaddr) {
332 iounmap(entry->kaddr);
333 entry->kaddr = NULL;
334 }
335 }
336}
337
338/**
339 * hibernate_nvs_alloc - allocate memory necessary for saving NVS regions
340 */
341int hibernate_nvs_alloc(void)
342{
343 struct nvs_page *entry;
344
345 list_for_each_entry(entry, &nvs_list, node) {
346 entry->data = (void *)__get_free_page(GFP_KERNEL);
347 if (!entry->data) {
348 hibernate_nvs_free();
349 return -ENOMEM;
350 }
351 }
352 return 0;
353}
354
355/**
356 * hibernate_nvs_save - save NVS memory regions
357 */
358void hibernate_nvs_save(void)
359{
360 struct nvs_page *entry;
361
362 printk(KERN_INFO "PM: Saving platform NVS memory\n");
363
364 list_for_each_entry(entry, &nvs_list, node)
365 if (entry->data) {
366 entry->kaddr = ioremap(entry->phys_start, entry->size);
367 memcpy(entry->data, entry->kaddr, entry->size);
368 }
369}
370
371/**
372 * hibernate_nvs_restore - restore NVS memory regions
373 *
374 * This function is going to be called with interrupts disabled, so it
375 * cannot iounmap the virtual addresses used to access the NVS region.
376 */
377void hibernate_nvs_restore(void)
378{
379 struct nvs_page *entry;
380
381 printk(KERN_INFO "PM: Restoring platform NVS memory\n");
382
383 list_for_each_entry(entry, &nvs_list, node)
384 if (entry->data)
385 memcpy(entry->kaddr, entry->data, entry->size);
386}
diff --git a/kernel/res_counter.c b/kernel/res_counter.c
index f275c8eca772..bf8e7534c803 100644
--- a/kernel/res_counter.c
+++ b/kernel/res_counter.c
@@ -15,10 +15,11 @@
15#include <linux/uaccess.h> 15#include <linux/uaccess.h>
16#include <linux/mm.h> 16#include <linux/mm.h>
17 17
18void res_counter_init(struct res_counter *counter) 18void res_counter_init(struct res_counter *counter, struct res_counter *parent)
19{ 19{
20 spin_lock_init(&counter->lock); 20 spin_lock_init(&counter->lock);
21 counter->limit = (unsigned long long)LLONG_MAX; 21 counter->limit = (unsigned long long)LLONG_MAX;
22 counter->parent = parent;
22} 23}
23 24
24int res_counter_charge_locked(struct res_counter *counter, unsigned long val) 25int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
@@ -34,14 +35,34 @@ int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
34 return 0; 35 return 0;
35} 36}
36 37
37int res_counter_charge(struct res_counter *counter, unsigned long val) 38int res_counter_charge(struct res_counter *counter, unsigned long val,
39 struct res_counter **limit_fail_at)
38{ 40{
39 int ret; 41 int ret;
40 unsigned long flags; 42 unsigned long flags;
41 43 struct res_counter *c, *u;
42 spin_lock_irqsave(&counter->lock, flags); 44
43 ret = res_counter_charge_locked(counter, val); 45 *limit_fail_at = NULL;
44 spin_unlock_irqrestore(&counter->lock, flags); 46 local_irq_save(flags);
47 for (c = counter; c != NULL; c = c->parent) {
48 spin_lock(&c->lock);
49 ret = res_counter_charge_locked(c, val);
50 spin_unlock(&c->lock);
51 if (ret < 0) {
52 *limit_fail_at = c;
53 goto undo;
54 }
55 }
56 ret = 0;
57 goto done;
58undo:
59 for (u = counter; u != c; u = u->parent) {
60 spin_lock(&u->lock);
61 res_counter_uncharge_locked(u, val);
62 spin_unlock(&u->lock);
63 }
64done:
65 local_irq_restore(flags);
45 return ret; 66 return ret;
46} 67}
47 68
@@ -56,10 +77,15 @@ void res_counter_uncharge_locked(struct res_counter *counter, unsigned long val)
56void res_counter_uncharge(struct res_counter *counter, unsigned long val) 77void res_counter_uncharge(struct res_counter *counter, unsigned long val)
57{ 78{
58 unsigned long flags; 79 unsigned long flags;
80 struct res_counter *c;
59 81
60 spin_lock_irqsave(&counter->lock, flags); 82 local_irq_save(flags);
61 res_counter_uncharge_locked(counter, val); 83 for (c = counter; c != NULL; c = c->parent) {
62 spin_unlock_irqrestore(&counter->lock, flags); 84 spin_lock(&c->lock);
85 res_counter_uncharge_locked(c, val);
86 spin_unlock(&c->lock);
87 }
88 local_irq_restore(flags);
63} 89}
64 90
65 91
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index e0c0b4bc3f08..8e1352c75557 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -1617,8 +1617,6 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1617 } 1617 }
1618} 1618}
1619 1619
1620#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1621
1622/* 1620/*
1623 * Share the fairness runtime between parent and child, thus the 1621 * Share the fairness runtime between parent and child, thus the
1624 * total amount of pressure for CPU stays equal - new tasks 1622 * total amount of pressure for CPU stays equal - new tasks
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index a9d9760dc7b6..8b0daf0662ef 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -168,7 +168,13 @@ rb_event_length(struct ring_buffer_event *event)
168 */ 168 */
169unsigned ring_buffer_event_length(struct ring_buffer_event *event) 169unsigned ring_buffer_event_length(struct ring_buffer_event *event)
170{ 170{
171 return rb_event_length(event); 171 unsigned length = rb_event_length(event);
172 if (event->type != RINGBUF_TYPE_DATA)
173 return length;
174 length -= RB_EVNT_HDR_SIZE;
175 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
176 length -= sizeof(event->array[0]);
177 return length;
172} 178}
173EXPORT_SYMBOL_GPL(ring_buffer_event_length); 179EXPORT_SYMBOL_GPL(ring_buffer_event_length);
174 180