diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/compat.c | 3 | ||||
-rw-r--r-- | kernel/kexec.c | 2 | ||||
-rw-r--r-- | kernel/posix-cpu-timers.c | 11 | ||||
-rw-r--r-- | kernel/sched.c | 6 | ||||
-rw-r--r-- | kernel/sched_debug.c | 4 | ||||
-rw-r--r-- | kernel/softirq.c | 20 | ||||
-rw-r--r-- | kernel/time.c | 54 | ||||
-rw-r--r-- | kernel/time/ntp.c | 398 | ||||
-rw-r--r-- | kernel/time/timekeeping.c | 17 | ||||
-rw-r--r-- | kernel/workqueue.c | 6 |
10 files changed, 277 insertions, 244 deletions
diff --git a/kernel/compat.c b/kernel/compat.c index 4a856a3643bb..32c254a8ab9a 100644 --- a/kernel/compat.c +++ b/kernel/compat.c | |||
@@ -955,7 +955,8 @@ asmlinkage long compat_sys_adjtimex(struct compat_timex __user *utp) | |||
955 | __put_user(txc.jitcnt, &utp->jitcnt) || | 955 | __put_user(txc.jitcnt, &utp->jitcnt) || |
956 | __put_user(txc.calcnt, &utp->calcnt) || | 956 | __put_user(txc.calcnt, &utp->calcnt) || |
957 | __put_user(txc.errcnt, &utp->errcnt) || | 957 | __put_user(txc.errcnt, &utp->errcnt) || |
958 | __put_user(txc.stbcnt, &utp->stbcnt)) | 958 | __put_user(txc.stbcnt, &utp->stbcnt) || |
959 | __put_user(txc.tai, &utp->tai)) | ||
959 | ret = -EFAULT; | 960 | ret = -EFAULT; |
960 | 961 | ||
961 | return ret; | 962 | return ret; |
diff --git a/kernel/kexec.c b/kernel/kexec.c index cb85c79989b4..1c5fcacbcf33 100644 --- a/kernel/kexec.c +++ b/kernel/kexec.c | |||
@@ -1217,7 +1217,7 @@ static int __init parse_crashkernel_mem(char *cmdline, | |||
1217 | } | 1217 | } |
1218 | 1218 | ||
1219 | /* match ? */ | 1219 | /* match ? */ |
1220 | if (system_ram >= start && system_ram <= end) { | 1220 | if (system_ram >= start && system_ram < end) { |
1221 | *crash_size = size; | 1221 | *crash_size = size; |
1222 | break; | 1222 | break; |
1223 | } | 1223 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index ae5c6c147c4b..f1525ad06cb3 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -4,8 +4,9 @@ | |||
4 | 4 | ||
5 | #include <linux/sched.h> | 5 | #include <linux/sched.h> |
6 | #include <linux/posix-timers.h> | 6 | #include <linux/posix-timers.h> |
7 | #include <asm/uaccess.h> | ||
8 | #include <linux/errno.h> | 7 | #include <linux/errno.h> |
8 | #include <linux/math64.h> | ||
9 | #include <asm/uaccess.h> | ||
9 | 10 | ||
10 | static int check_clock(const clockid_t which_clock) | 11 | static int check_clock(const clockid_t which_clock) |
11 | { | 12 | { |
@@ -47,12 +48,10 @@ static void sample_to_timespec(const clockid_t which_clock, | |||
47 | union cpu_time_count cpu, | 48 | union cpu_time_count cpu, |
48 | struct timespec *tp) | 49 | struct timespec *tp) |
49 | { | 50 | { |
50 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 51 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) |
51 | tp->tv_sec = div_long_long_rem(cpu.sched, | 52 | *tp = ns_to_timespec(cpu.sched); |
52 | NSEC_PER_SEC, &tp->tv_nsec); | 53 | else |
53 | } else { | ||
54 | cputime_to_timespec(cpu.cpu, tp); | 54 | cputime_to_timespec(cpu.cpu, tp); |
55 | } | ||
56 | } | 55 | } |
57 | 56 | ||
58 | static inline int cpu_time_before(const clockid_t which_clock, | 57 | static inline int cpu_time_before(const clockid_t which_clock, |
diff --git a/kernel/sched.c b/kernel/sched.c index e2f7f5acc807..34bcc5bc120e 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -8025,7 +8025,7 @@ static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |||
8025 | 8025 | ||
8026 | se->my_q = cfs_rq; | 8026 | se->my_q = cfs_rq; |
8027 | se->load.weight = tg->shares; | 8027 | se->load.weight = tg->shares; |
8028 | se->load.inv_weight = div64_64(1ULL<<32, se->load.weight); | 8028 | se->load.inv_weight = div64_u64(1ULL<<32, se->load.weight); |
8029 | se->parent = parent; | 8029 | se->parent = parent; |
8030 | } | 8030 | } |
8031 | #endif | 8031 | #endif |
@@ -8692,7 +8692,7 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares) | |||
8692 | dequeue_entity(cfs_rq, se, 0); | 8692 | dequeue_entity(cfs_rq, se, 0); |
8693 | 8693 | ||
8694 | se->load.weight = shares; | 8694 | se->load.weight = shares; |
8695 | se->load.inv_weight = div64_64((1ULL<<32), shares); | 8695 | se->load.inv_weight = div64_u64((1ULL<<32), shares); |
8696 | 8696 | ||
8697 | if (on_rq) | 8697 | if (on_rq) |
8698 | enqueue_entity(cfs_rq, se, 0); | 8698 | enqueue_entity(cfs_rq, se, 0); |
@@ -8787,7 +8787,7 @@ static unsigned long to_ratio(u64 period, u64 runtime) | |||
8787 | if (runtime == RUNTIME_INF) | 8787 | if (runtime == RUNTIME_INF) |
8788 | return 1ULL << 16; | 8788 | return 1ULL << 16; |
8789 | 8789 | ||
8790 | return div64_64(runtime << 16, period); | 8790 | return div64_u64(runtime << 16, period); |
8791 | } | 8791 | } |
8792 | 8792 | ||
8793 | #ifdef CONFIG_CGROUP_SCHED | 8793 | #ifdef CONFIG_CGROUP_SCHED |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 8a9498e7c831..6b4a12558e88 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -357,8 +357,8 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
357 | 357 | ||
358 | avg_per_cpu = p->se.sum_exec_runtime; | 358 | avg_per_cpu = p->se.sum_exec_runtime; |
359 | if (p->se.nr_migrations) { | 359 | if (p->se.nr_migrations) { |
360 | avg_per_cpu = div64_64(avg_per_cpu, | 360 | avg_per_cpu = div64_u64(avg_per_cpu, |
361 | p->se.nr_migrations); | 361 | p->se.nr_migrations); |
362 | } else { | 362 | } else { |
363 | avg_per_cpu = -1LL; | 363 | avg_per_cpu = -1LL; |
364 | } | 364 | } |
diff --git a/kernel/softirq.c b/kernel/softirq.c index 3c44956ee7e2..36e061740047 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
@@ -589,16 +589,20 @@ static void takeover_tasklets(unsigned int cpu) | |||
589 | local_irq_disable(); | 589 | local_irq_disable(); |
590 | 590 | ||
591 | /* Find end, append list for that CPU. */ | 591 | /* Find end, append list for that CPU. */ |
592 | *__get_cpu_var(tasklet_vec).tail = per_cpu(tasklet_vec, cpu).head; | 592 | if (&per_cpu(tasklet_vec, cpu).head != per_cpu(tasklet_vec, cpu).tail) { |
593 | __get_cpu_var(tasklet_vec).tail = per_cpu(tasklet_vec, cpu).tail; | 593 | *(__get_cpu_var(tasklet_vec).tail) = per_cpu(tasklet_vec, cpu).head; |
594 | per_cpu(tasklet_vec, cpu).head = NULL; | 594 | __get_cpu_var(tasklet_vec).tail = per_cpu(tasklet_vec, cpu).tail; |
595 | per_cpu(tasklet_vec, cpu).tail = &per_cpu(tasklet_vec, cpu).head; | 595 | per_cpu(tasklet_vec, cpu).head = NULL; |
596 | per_cpu(tasklet_vec, cpu).tail = &per_cpu(tasklet_vec, cpu).head; | ||
597 | } | ||
596 | raise_softirq_irqoff(TASKLET_SOFTIRQ); | 598 | raise_softirq_irqoff(TASKLET_SOFTIRQ); |
597 | 599 | ||
598 | *__get_cpu_var(tasklet_hi_vec).tail = per_cpu(tasklet_hi_vec, cpu).head; | 600 | if (&per_cpu(tasklet_hi_vec, cpu).head != per_cpu(tasklet_hi_vec, cpu).tail) { |
599 | __get_cpu_var(tasklet_hi_vec).tail = per_cpu(tasklet_hi_vec, cpu).tail; | 601 | *__get_cpu_var(tasklet_hi_vec).tail = per_cpu(tasklet_hi_vec, cpu).head; |
600 | per_cpu(tasklet_hi_vec, cpu).head = NULL; | 602 | __get_cpu_var(tasklet_hi_vec).tail = per_cpu(tasklet_hi_vec, cpu).tail; |
601 | per_cpu(tasklet_hi_vec, cpu).tail = &per_cpu(tasklet_hi_vec, cpu).head; | 603 | per_cpu(tasklet_hi_vec, cpu).head = NULL; |
604 | per_cpu(tasklet_hi_vec, cpu).tail = &per_cpu(tasklet_hi_vec, cpu).head; | ||
605 | } | ||
602 | raise_softirq_irqoff(HI_SOFTIRQ); | 606 | raise_softirq_irqoff(HI_SOFTIRQ); |
603 | 607 | ||
604 | local_irq_enable(); | 608 | local_irq_enable(); |
diff --git a/kernel/time.c b/kernel/time.c index 86729042e4cd..cbe0d5a222ff 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
@@ -36,6 +36,7 @@ | |||
36 | #include <linux/security.h> | 36 | #include <linux/security.h> |
37 | #include <linux/fs.h> | 37 | #include <linux/fs.h> |
38 | #include <linux/slab.h> | 38 | #include <linux/slab.h> |
39 | #include <linux/math64.h> | ||
39 | 40 | ||
40 | #include <asm/uaccess.h> | 41 | #include <asm/uaccess.h> |
41 | #include <asm/unistd.h> | 42 | #include <asm/unistd.h> |
@@ -391,13 +392,17 @@ EXPORT_SYMBOL(set_normalized_timespec); | |||
391 | struct timespec ns_to_timespec(const s64 nsec) | 392 | struct timespec ns_to_timespec(const s64 nsec) |
392 | { | 393 | { |
393 | struct timespec ts; | 394 | struct timespec ts; |
395 | s32 rem; | ||
394 | 396 | ||
395 | if (!nsec) | 397 | if (!nsec) |
396 | return (struct timespec) {0, 0}; | 398 | return (struct timespec) {0, 0}; |
397 | 399 | ||
398 | ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec); | 400 | ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); |
399 | if (unlikely(nsec < 0)) | 401 | if (unlikely(rem < 0)) { |
400 | set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec); | 402 | ts.tv_sec--; |
403 | rem += NSEC_PER_SEC; | ||
404 | } | ||
405 | ts.tv_nsec = rem; | ||
401 | 406 | ||
402 | return ts; | 407 | return ts; |
403 | } | 408 | } |
@@ -527,8 +532,10 @@ jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | |||
527 | * Convert jiffies to nanoseconds and separate with | 532 | * Convert jiffies to nanoseconds and separate with |
528 | * one divide. | 533 | * one divide. |
529 | */ | 534 | */ |
530 | u64 nsec = (u64)jiffies * TICK_NSEC; | 535 | u32 rem; |
531 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); | 536 | value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, |
537 | NSEC_PER_SEC, &rem); | ||
538 | value->tv_nsec = rem; | ||
532 | } | 539 | } |
533 | EXPORT_SYMBOL(jiffies_to_timespec); | 540 | EXPORT_SYMBOL(jiffies_to_timespec); |
534 | 541 | ||
@@ -566,12 +573,11 @@ void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | |||
566 | * Convert jiffies to nanoseconds and separate with | 573 | * Convert jiffies to nanoseconds and separate with |
567 | * one divide. | 574 | * one divide. |
568 | */ | 575 | */ |
569 | u64 nsec = (u64)jiffies * TICK_NSEC; | 576 | u32 rem; |
570 | long tv_usec; | ||
571 | 577 | ||
572 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec); | 578 | value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, |
573 | tv_usec /= NSEC_PER_USEC; | 579 | NSEC_PER_SEC, &rem); |
574 | value->tv_usec = tv_usec; | 580 | value->tv_usec = rem / NSEC_PER_USEC; |
575 | } | 581 | } |
576 | EXPORT_SYMBOL(jiffies_to_timeval); | 582 | EXPORT_SYMBOL(jiffies_to_timeval); |
577 | 583 | ||
@@ -587,9 +593,7 @@ clock_t jiffies_to_clock_t(long x) | |||
587 | return x / (HZ / USER_HZ); | 593 | return x / (HZ / USER_HZ); |
588 | # endif | 594 | # endif |
589 | #else | 595 | #else |
590 | u64 tmp = (u64)x * TICK_NSEC; | 596 | return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); |
591 | do_div(tmp, (NSEC_PER_SEC / USER_HZ)); | ||
592 | return (long)tmp; | ||
593 | #endif | 597 | #endif |
594 | } | 598 | } |
595 | EXPORT_SYMBOL(jiffies_to_clock_t); | 599 | EXPORT_SYMBOL(jiffies_to_clock_t); |
@@ -601,16 +605,12 @@ unsigned long clock_t_to_jiffies(unsigned long x) | |||
601 | return ~0UL; | 605 | return ~0UL; |
602 | return x * (HZ / USER_HZ); | 606 | return x * (HZ / USER_HZ); |
603 | #else | 607 | #else |
604 | u64 jif; | ||
605 | |||
606 | /* Don't worry about loss of precision here .. */ | 608 | /* Don't worry about loss of precision here .. */ |
607 | if (x >= ~0UL / HZ * USER_HZ) | 609 | if (x >= ~0UL / HZ * USER_HZ) |
608 | return ~0UL; | 610 | return ~0UL; |
609 | 611 | ||
610 | /* .. but do try to contain it here */ | 612 | /* .. but do try to contain it here */ |
611 | jif = x * (u64) HZ; | 613 | return div_u64((u64)x * HZ, USER_HZ); |
612 | do_div(jif, USER_HZ); | ||
613 | return jif; | ||
614 | #endif | 614 | #endif |
615 | } | 615 | } |
616 | EXPORT_SYMBOL(clock_t_to_jiffies); | 616 | EXPORT_SYMBOL(clock_t_to_jiffies); |
@@ -619,10 +619,9 @@ u64 jiffies_64_to_clock_t(u64 x) | |||
619 | { | 619 | { |
620 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | 620 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 |
621 | # if HZ < USER_HZ | 621 | # if HZ < USER_HZ |
622 | x *= USER_HZ; | 622 | x = div_u64(x * USER_HZ, HZ); |
623 | do_div(x, HZ); | ||
624 | # elif HZ > USER_HZ | 623 | # elif HZ > USER_HZ |
625 | do_div(x, HZ / USER_HZ); | 624 | x = div_u64(x, HZ / USER_HZ); |
626 | # else | 625 | # else |
627 | /* Nothing to do */ | 626 | /* Nothing to do */ |
628 | # endif | 627 | # endif |
@@ -632,8 +631,7 @@ u64 jiffies_64_to_clock_t(u64 x) | |||
632 | * but even this doesn't overflow in hundreds of years | 631 | * but even this doesn't overflow in hundreds of years |
633 | * in 64 bits, so.. | 632 | * in 64 bits, so.. |
634 | */ | 633 | */ |
635 | x *= TICK_NSEC; | 634 | x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); |
636 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | ||
637 | #endif | 635 | #endif |
638 | return x; | 636 | return x; |
639 | } | 637 | } |
@@ -642,21 +640,17 @@ EXPORT_SYMBOL(jiffies_64_to_clock_t); | |||
642 | u64 nsec_to_clock_t(u64 x) | 640 | u64 nsec_to_clock_t(u64 x) |
643 | { | 641 | { |
644 | #if (NSEC_PER_SEC % USER_HZ) == 0 | 642 | #if (NSEC_PER_SEC % USER_HZ) == 0 |
645 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | 643 | return div_u64(x, NSEC_PER_SEC / USER_HZ); |
646 | #elif (USER_HZ % 512) == 0 | 644 | #elif (USER_HZ % 512) == 0 |
647 | x *= USER_HZ/512; | 645 | return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); |
648 | do_div(x, (NSEC_PER_SEC / 512)); | ||
649 | #else | 646 | #else |
650 | /* | 647 | /* |
651 | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | 648 | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, |
652 | * overflow after 64.99 years. | 649 | * overflow after 64.99 years. |
653 | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | 650 | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... |
654 | */ | 651 | */ |
655 | x *= 9; | 652 | return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); |
656 | do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) / | ||
657 | USER_HZ)); | ||
658 | #endif | 653 | #endif |
659 | return x; | ||
660 | } | 654 | } |
661 | 655 | ||
662 | #if (BITS_PER_LONG < 64) | 656 | #if (BITS_PER_LONG < 64) |
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 5fd9b9469770..5125ddd8196b 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -15,7 +15,8 @@ | |||
15 | #include <linux/jiffies.h> | 15 | #include <linux/jiffies.h> |
16 | #include <linux/hrtimer.h> | 16 | #include <linux/hrtimer.h> |
17 | #include <linux/capability.h> | 17 | #include <linux/capability.h> |
18 | #include <asm/div64.h> | 18 | #include <linux/math64.h> |
19 | #include <linux/clocksource.h> | ||
19 | #include <asm/timex.h> | 20 | #include <asm/timex.h> |
20 | 21 | ||
21 | /* | 22 | /* |
@@ -23,11 +24,14 @@ | |||
23 | */ | 24 | */ |
24 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | 25 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ |
25 | unsigned long tick_nsec; /* ACTHZ period (nsec) */ | 26 | unsigned long tick_nsec; /* ACTHZ period (nsec) */ |
26 | static u64 tick_length, tick_length_base; | 27 | u64 tick_length; |
28 | static u64 tick_length_base; | ||
29 | |||
30 | static struct hrtimer leap_timer; | ||
27 | 31 | ||
28 | #define MAX_TICKADJ 500 /* microsecs */ | 32 | #define MAX_TICKADJ 500 /* microsecs */ |
29 | #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ | 33 | #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ |
30 | TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ) | 34 | NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
31 | 35 | ||
32 | /* | 36 | /* |
33 | * phase-lock loop variables | 37 | * phase-lock loop variables |
@@ -35,11 +39,12 @@ static u64 tick_length, tick_length_base; | |||
35 | /* TIME_ERROR prevents overwriting the CMOS clock */ | 39 | /* TIME_ERROR prevents overwriting the CMOS clock */ |
36 | static int time_state = TIME_OK; /* clock synchronization status */ | 40 | static int time_state = TIME_OK; /* clock synchronization status */ |
37 | int time_status = STA_UNSYNC; /* clock status bits */ | 41 | int time_status = STA_UNSYNC; /* clock status bits */ |
38 | static s64 time_offset; /* time adjustment (ns) */ | 42 | static long time_tai; /* TAI offset (s) */ |
43 | static s64 time_offset; /* time adjustment (ns) */ | ||
39 | static long time_constant = 2; /* pll time constant */ | 44 | static long time_constant = 2; /* pll time constant */ |
40 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | 45 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ |
41 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | 46 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ |
42 | long time_freq; /* frequency offset (scaled ppm)*/ | 47 | static s64 time_freq; /* frequency offset (scaled ns/s)*/ |
43 | static long time_reftime; /* time at last adjustment (s) */ | 48 | static long time_reftime; /* time at last adjustment (s) */ |
44 | long time_adjust; | 49 | long time_adjust; |
45 | static long ntp_tick_adj; | 50 | static long ntp_tick_adj; |
@@ -47,16 +52,56 @@ static long ntp_tick_adj; | |||
47 | static void ntp_update_frequency(void) | 52 | static void ntp_update_frequency(void) |
48 | { | 53 | { |
49 | u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 54 | u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
50 | << TICK_LENGTH_SHIFT; | 55 | << NTP_SCALE_SHIFT; |
51 | second_length += (s64)ntp_tick_adj << TICK_LENGTH_SHIFT; | 56 | second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT; |
52 | second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC); | 57 | second_length += time_freq; |
53 | 58 | ||
54 | tick_length_base = second_length; | 59 | tick_length_base = second_length; |
55 | 60 | ||
56 | do_div(second_length, HZ); | 61 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
57 | tick_nsec = second_length >> TICK_LENGTH_SHIFT; | 62 | tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ); |
63 | } | ||
64 | |||
65 | static void ntp_update_offset(long offset) | ||
66 | { | ||
67 | long mtemp; | ||
68 | s64 freq_adj; | ||
69 | |||
70 | if (!(time_status & STA_PLL)) | ||
71 | return; | ||
58 | 72 | ||
59 | do_div(tick_length_base, NTP_INTERVAL_FREQ); | 73 | if (!(time_status & STA_NANO)) |
74 | offset *= NSEC_PER_USEC; | ||
75 | |||
76 | /* | ||
77 | * Scale the phase adjustment and | ||
78 | * clamp to the operating range. | ||
79 | */ | ||
80 | offset = min(offset, MAXPHASE); | ||
81 | offset = max(offset, -MAXPHASE); | ||
82 | |||
83 | /* | ||
84 | * Select how the frequency is to be controlled | ||
85 | * and in which mode (PLL or FLL). | ||
86 | */ | ||
87 | if (time_status & STA_FREQHOLD || time_reftime == 0) | ||
88 | time_reftime = xtime.tv_sec; | ||
89 | mtemp = xtime.tv_sec - time_reftime; | ||
90 | time_reftime = xtime.tv_sec; | ||
91 | |||
92 | freq_adj = (s64)offset * mtemp; | ||
93 | freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant); | ||
94 | time_status &= ~STA_MODE; | ||
95 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { | ||
96 | freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL), | ||
97 | mtemp); | ||
98 | time_status |= STA_MODE; | ||
99 | } | ||
100 | freq_adj += time_freq; | ||
101 | freq_adj = min(freq_adj, MAXFREQ_SCALED); | ||
102 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
103 | |||
104 | time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | ||
60 | } | 105 | } |
61 | 106 | ||
62 | /** | 107 | /** |
@@ -78,62 +123,70 @@ void ntp_clear(void) | |||
78 | } | 123 | } |
79 | 124 | ||
80 | /* | 125 | /* |
81 | * this routine handles the overflow of the microsecond field | 126 | * Leap second processing. If in leap-insert state at the end of the |
82 | * | 127 | * day, the system clock is set back one second; if in leap-delete |
83 | * The tricky bits of code to handle the accurate clock support | 128 | * state, the system clock is set ahead one second. |
84 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | ||
85 | * They were originally developed for SUN and DEC kernels. | ||
86 | * All the kudos should go to Dave for this stuff. | ||
87 | */ | 129 | */ |
88 | void second_overflow(void) | 130 | static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) |
89 | { | 131 | { |
90 | long time_adj; | 132 | enum hrtimer_restart res = HRTIMER_NORESTART; |
91 | 133 | ||
92 | /* Bump the maxerror field */ | 134 | write_seqlock_irq(&xtime_lock); |
93 | time_maxerror += MAXFREQ >> SHIFT_USEC; | ||
94 | if (time_maxerror > NTP_PHASE_LIMIT) { | ||
95 | time_maxerror = NTP_PHASE_LIMIT; | ||
96 | time_status |= STA_UNSYNC; | ||
97 | } | ||
98 | 135 | ||
99 | /* | ||
100 | * Leap second processing. If in leap-insert state at the end of the | ||
101 | * day, the system clock is set back one second; if in leap-delete | ||
102 | * state, the system clock is set ahead one second. The microtime() | ||
103 | * routine or external clock driver will insure that reported time is | ||
104 | * always monotonic. The ugly divides should be replaced. | ||
105 | */ | ||
106 | switch (time_state) { | 136 | switch (time_state) { |
107 | case TIME_OK: | 137 | case TIME_OK: |
108 | if (time_status & STA_INS) | ||
109 | time_state = TIME_INS; | ||
110 | else if (time_status & STA_DEL) | ||
111 | time_state = TIME_DEL; | ||
112 | break; | 138 | break; |
113 | case TIME_INS: | 139 | case TIME_INS: |
114 | if (xtime.tv_sec % 86400 == 0) { | 140 | xtime.tv_sec--; |
115 | xtime.tv_sec--; | 141 | wall_to_monotonic.tv_sec++; |
116 | wall_to_monotonic.tv_sec++; | 142 | time_state = TIME_OOP; |
117 | time_state = TIME_OOP; | 143 | printk(KERN_NOTICE "Clock: " |
118 | printk(KERN_NOTICE "Clock: inserting leap second " | 144 | "inserting leap second 23:59:60 UTC\n"); |
119 | "23:59:60 UTC\n"); | 145 | leap_timer.expires = ktime_add_ns(leap_timer.expires, |
120 | } | 146 | NSEC_PER_SEC); |
147 | res = HRTIMER_RESTART; | ||
121 | break; | 148 | break; |
122 | case TIME_DEL: | 149 | case TIME_DEL: |
123 | if ((xtime.tv_sec + 1) % 86400 == 0) { | 150 | xtime.tv_sec++; |
124 | xtime.tv_sec++; | 151 | time_tai--; |
125 | wall_to_monotonic.tv_sec--; | 152 | wall_to_monotonic.tv_sec--; |
126 | time_state = TIME_WAIT; | 153 | time_state = TIME_WAIT; |
127 | printk(KERN_NOTICE "Clock: deleting leap second " | 154 | printk(KERN_NOTICE "Clock: " |
128 | "23:59:59 UTC\n"); | 155 | "deleting leap second 23:59:59 UTC\n"); |
129 | } | ||
130 | break; | 156 | break; |
131 | case TIME_OOP: | 157 | case TIME_OOP: |
158 | time_tai++; | ||
132 | time_state = TIME_WAIT; | 159 | time_state = TIME_WAIT; |
133 | break; | 160 | /* fall through */ |
134 | case TIME_WAIT: | 161 | case TIME_WAIT: |
135 | if (!(time_status & (STA_INS | STA_DEL))) | 162 | if (!(time_status & (STA_INS | STA_DEL))) |
136 | time_state = TIME_OK; | 163 | time_state = TIME_OK; |
164 | break; | ||
165 | } | ||
166 | update_vsyscall(&xtime, clock); | ||
167 | |||
168 | write_sequnlock_irq(&xtime_lock); | ||
169 | |||
170 | return res; | ||
171 | } | ||
172 | |||
173 | /* | ||
174 | * this routine handles the overflow of the microsecond field | ||
175 | * | ||
176 | * The tricky bits of code to handle the accurate clock support | ||
177 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | ||
178 | * They were originally developed for SUN and DEC kernels. | ||
179 | * All the kudos should go to Dave for this stuff. | ||
180 | */ | ||
181 | void second_overflow(void) | ||
182 | { | ||
183 | s64 time_adj; | ||
184 | |||
185 | /* Bump the maxerror field */ | ||
186 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | ||
187 | if (time_maxerror > NTP_PHASE_LIMIT) { | ||
188 | time_maxerror = NTP_PHASE_LIMIT; | ||
189 | time_status |= STA_UNSYNC; | ||
137 | } | 190 | } |
138 | 191 | ||
139 | /* | 192 | /* |
@@ -143,7 +196,7 @@ void second_overflow(void) | |||
143 | tick_length = tick_length_base; | 196 | tick_length = tick_length_base; |
144 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); | 197 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); |
145 | time_offset -= time_adj; | 198 | time_offset -= time_adj; |
146 | tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE); | 199 | tick_length += time_adj; |
147 | 200 | ||
148 | if (unlikely(time_adjust)) { | 201 | if (unlikely(time_adjust)) { |
149 | if (time_adjust > MAX_TICKADJ) { | 202 | if (time_adjust > MAX_TICKADJ) { |
@@ -154,25 +207,12 @@ void second_overflow(void) | |||
154 | tick_length -= MAX_TICKADJ_SCALED; | 207 | tick_length -= MAX_TICKADJ_SCALED; |
155 | } else { | 208 | } else { |
156 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / | 209 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / |
157 | NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT; | 210 | NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT; |
158 | time_adjust = 0; | 211 | time_adjust = 0; |
159 | } | 212 | } |
160 | } | 213 | } |
161 | } | 214 | } |
162 | 215 | ||
163 | /* | ||
164 | * Return how long ticks are at the moment, that is, how much time | ||
165 | * update_wall_time_one_tick will add to xtime next time we call it | ||
166 | * (assuming no calls to do_adjtimex in the meantime). | ||
167 | * The return value is in fixed-point nanoseconds shifted by the | ||
168 | * specified number of bits to the right of the binary point. | ||
169 | * This function has no side-effects. | ||
170 | */ | ||
171 | u64 current_tick_length(void) | ||
172 | { | ||
173 | return tick_length; | ||
174 | } | ||
175 | |||
176 | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 216 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
177 | 217 | ||
178 | /* Disable the cmos update - used by virtualization and embedded */ | 218 | /* Disable the cmos update - used by virtualization and embedded */ |
@@ -236,8 +276,8 @@ static inline void notify_cmos_timer(void) { } | |||
236 | */ | 276 | */ |
237 | int do_adjtimex(struct timex *txc) | 277 | int do_adjtimex(struct timex *txc) |
238 | { | 278 | { |
239 | long mtemp, save_adjust, rem; | 279 | struct timespec ts; |
240 | s64 freq_adj, temp64; | 280 | long save_adjust, sec; |
241 | int result; | 281 | int result; |
242 | 282 | ||
243 | /* In order to modify anything, you gotta be super-user! */ | 283 | /* In order to modify anything, you gotta be super-user! */ |
@@ -247,147 +287,132 @@ int do_adjtimex(struct timex *txc) | |||
247 | /* Now we validate the data before disabling interrupts */ | 287 | /* Now we validate the data before disabling interrupts */ |
248 | 288 | ||
249 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) { | 289 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) { |
250 | /* singleshot must not be used with any other mode bits */ | 290 | /* singleshot must not be used with any other mode bits */ |
251 | if (txc->modes != ADJ_OFFSET_SINGLESHOT && | 291 | if (txc->modes & ~ADJ_OFFSET_SS_READ) |
252 | txc->modes != ADJ_OFFSET_SS_READ) | ||
253 | return -EINVAL; | 292 | return -EINVAL; |
254 | } | 293 | } |
255 | 294 | ||
256 | if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) | ||
257 | /* adjustment Offset limited to +- .512 seconds */ | ||
258 | if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) | ||
259 | return -EINVAL; | ||
260 | |||
261 | /* if the quartz is off by more than 10% something is VERY wrong ! */ | 295 | /* if the quartz is off by more than 10% something is VERY wrong ! */ |
262 | if (txc->modes & ADJ_TICK) | 296 | if (txc->modes & ADJ_TICK) |
263 | if (txc->tick < 900000/USER_HZ || | 297 | if (txc->tick < 900000/USER_HZ || |
264 | txc->tick > 1100000/USER_HZ) | 298 | txc->tick > 1100000/USER_HZ) |
265 | return -EINVAL; | 299 | return -EINVAL; |
266 | 300 | ||
301 | if (time_state != TIME_OK && txc->modes & ADJ_STATUS) | ||
302 | hrtimer_cancel(&leap_timer); | ||
303 | getnstimeofday(&ts); | ||
304 | |||
267 | write_seqlock_irq(&xtime_lock); | 305 | write_seqlock_irq(&xtime_lock); |
268 | result = time_state; /* mostly `TIME_OK' */ | ||
269 | 306 | ||
270 | /* Save for later - semantics of adjtime is to return old value */ | 307 | /* Save for later - semantics of adjtime is to return old value */ |
271 | save_adjust = time_adjust; | 308 | save_adjust = time_adjust; |
272 | 309 | ||
273 | #if 0 /* STA_CLOCKERR is never set yet */ | ||
274 | time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ | ||
275 | #endif | ||
276 | /* If there are input parameters, then process them */ | 310 | /* If there are input parameters, then process them */ |
277 | if (txc->modes) | 311 | if (txc->modes) { |
278 | { | 312 | if (txc->modes & ADJ_STATUS) { |
279 | if (txc->modes & ADJ_STATUS) /* only set allowed bits */ | 313 | if ((time_status & STA_PLL) && |
280 | time_status = (txc->status & ~STA_RONLY) | | 314 | !(txc->status & STA_PLL)) { |
281 | (time_status & STA_RONLY); | 315 | time_state = TIME_OK; |
282 | 316 | time_status = STA_UNSYNC; | |
283 | if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ | 317 | } |
284 | if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { | 318 | /* only set allowed bits */ |
285 | result = -EINVAL; | 319 | time_status &= STA_RONLY; |
286 | goto leave; | 320 | time_status |= txc->status & ~STA_RONLY; |
287 | } | 321 | |
288 | time_freq = ((s64)txc->freq * NSEC_PER_USEC) | 322 | switch (time_state) { |
289 | >> (SHIFT_USEC - SHIFT_NSEC); | 323 | case TIME_OK: |
290 | } | 324 | start_timer: |
291 | 325 | sec = ts.tv_sec; | |
292 | if (txc->modes & ADJ_MAXERROR) { | 326 | if (time_status & STA_INS) { |
293 | if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { | 327 | time_state = TIME_INS; |
294 | result = -EINVAL; | 328 | sec += 86400 - sec % 86400; |
295 | goto leave; | 329 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); |
330 | } else if (time_status & STA_DEL) { | ||
331 | time_state = TIME_DEL; | ||
332 | sec += 86400 - (sec + 1) % 86400; | ||
333 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
334 | } | ||
335 | break; | ||
336 | case TIME_INS: | ||
337 | case TIME_DEL: | ||
338 | time_state = TIME_OK; | ||
339 | goto start_timer; | ||
340 | break; | ||
341 | case TIME_WAIT: | ||
342 | if (!(time_status & (STA_INS | STA_DEL))) | ||
343 | time_state = TIME_OK; | ||
344 | break; | ||
345 | case TIME_OOP: | ||
346 | hrtimer_restart(&leap_timer); | ||
347 | break; | ||
348 | } | ||
296 | } | 349 | } |
297 | time_maxerror = txc->maxerror; | ||
298 | } | ||
299 | 350 | ||
300 | if (txc->modes & ADJ_ESTERROR) { | 351 | if (txc->modes & ADJ_NANO) |
301 | if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { | 352 | time_status |= STA_NANO; |
302 | result = -EINVAL; | 353 | if (txc->modes & ADJ_MICRO) |
303 | goto leave; | 354 | time_status &= ~STA_NANO; |
355 | |||
356 | if (txc->modes & ADJ_FREQUENCY) { | ||
357 | time_freq = (s64)txc->freq * PPM_SCALE; | ||
358 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
359 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
304 | } | 360 | } |
305 | time_esterror = txc->esterror; | ||
306 | } | ||
307 | 361 | ||
308 | if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ | 362 | if (txc->modes & ADJ_MAXERROR) |
309 | if (txc->constant < 0) { /* NTP v4 uses values > 6 */ | 363 | time_maxerror = txc->maxerror; |
310 | result = -EINVAL; | 364 | if (txc->modes & ADJ_ESTERROR) |
311 | goto leave; | 365 | time_esterror = txc->esterror; |
366 | |||
367 | if (txc->modes & ADJ_TIMECONST) { | ||
368 | time_constant = txc->constant; | ||
369 | if (!(time_status & STA_NANO)) | ||
370 | time_constant += 4; | ||
371 | time_constant = min(time_constant, (long)MAXTC); | ||
372 | time_constant = max(time_constant, 0l); | ||
312 | } | 373 | } |
313 | time_constant = min(txc->constant + 4, (long)MAXTC); | ||
314 | } | ||
315 | 374 | ||
316 | if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ | 375 | if (txc->modes & ADJ_TAI && txc->constant > 0) |
317 | if (txc->modes == ADJ_OFFSET_SINGLESHOT) { | 376 | time_tai = txc->constant; |
318 | /* adjtime() is independent from ntp_adjtime() */ | 377 | |
319 | time_adjust = txc->offset; | 378 | if (txc->modes & ADJ_OFFSET) { |
379 | if (txc->modes == ADJ_OFFSET_SINGLESHOT) | ||
380 | /* adjtime() is independent from ntp_adjtime() */ | ||
381 | time_adjust = txc->offset; | ||
382 | else | ||
383 | ntp_update_offset(txc->offset); | ||
320 | } | 384 | } |
321 | else if (time_status & STA_PLL) { | 385 | if (txc->modes & ADJ_TICK) |
322 | time_offset = txc->offset * NSEC_PER_USEC; | 386 | tick_usec = txc->tick; |
323 | 387 | ||
324 | /* | 388 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) |
325 | * Scale the phase adjustment and | 389 | ntp_update_frequency(); |
326 | * clamp to the operating range. | 390 | } |
327 | */ | 391 | |
328 | time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC); | 392 | result = time_state; /* mostly `TIME_OK' */ |
329 | time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC); | 393 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) |
330 | |||
331 | /* | ||
332 | * Select whether the frequency is to be controlled | ||
333 | * and in which mode (PLL or FLL). Clamp to the operating | ||
334 | * range. Ugly multiply/divide should be replaced someday. | ||
335 | */ | ||
336 | |||
337 | if (time_status & STA_FREQHOLD || time_reftime == 0) | ||
338 | time_reftime = xtime.tv_sec; | ||
339 | mtemp = xtime.tv_sec - time_reftime; | ||
340 | time_reftime = xtime.tv_sec; | ||
341 | |||
342 | freq_adj = time_offset * mtemp; | ||
343 | freq_adj = shift_right(freq_adj, time_constant * 2 + | ||
344 | (SHIFT_PLL + 2) * 2 - SHIFT_NSEC); | ||
345 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { | ||
346 | u64 utemp64; | ||
347 | temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL); | ||
348 | if (time_offset < 0) { | ||
349 | utemp64 = -temp64; | ||
350 | do_div(utemp64, mtemp); | ||
351 | freq_adj -= utemp64; | ||
352 | } else { | ||
353 | utemp64 = temp64; | ||
354 | do_div(utemp64, mtemp); | ||
355 | freq_adj += utemp64; | ||
356 | } | ||
357 | } | ||
358 | freq_adj += time_freq; | ||
359 | freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC); | ||
360 | time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC); | ||
361 | time_offset = div_long_long_rem_signed(time_offset, | ||
362 | NTP_INTERVAL_FREQ, | ||
363 | &rem); | ||
364 | time_offset <<= SHIFT_UPDATE; | ||
365 | } /* STA_PLL */ | ||
366 | } /* txc->modes & ADJ_OFFSET */ | ||
367 | if (txc->modes & ADJ_TICK) | ||
368 | tick_usec = txc->tick; | ||
369 | |||
370 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | ||
371 | ntp_update_frequency(); | ||
372 | } /* txc->modes */ | ||
373 | leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) | ||
374 | result = TIME_ERROR; | 394 | result = TIME_ERROR; |
375 | 395 | ||
376 | if ((txc->modes == ADJ_OFFSET_SINGLESHOT) || | 396 | if ((txc->modes == ADJ_OFFSET_SINGLESHOT) || |
377 | (txc->modes == ADJ_OFFSET_SS_READ)) | 397 | (txc->modes == ADJ_OFFSET_SS_READ)) |
378 | txc->offset = save_adjust; | 398 | txc->offset = save_adjust; |
379 | else | 399 | else { |
380 | txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) * | 400 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
381 | NTP_INTERVAL_FREQ / 1000; | 401 | NTP_SCALE_SHIFT); |
382 | txc->freq = (time_freq / NSEC_PER_USEC) << | 402 | if (!(time_status & STA_NANO)) |
383 | (SHIFT_USEC - SHIFT_NSEC); | 403 | txc->offset /= NSEC_PER_USEC; |
404 | } | ||
405 | txc->freq = shift_right((s32)(time_freq >> PPM_SCALE_INV_SHIFT) * | ||
406 | (s64)PPM_SCALE_INV, | ||
407 | NTP_SCALE_SHIFT); | ||
384 | txc->maxerror = time_maxerror; | 408 | txc->maxerror = time_maxerror; |
385 | txc->esterror = time_esterror; | 409 | txc->esterror = time_esterror; |
386 | txc->status = time_status; | 410 | txc->status = time_status; |
387 | txc->constant = time_constant; | 411 | txc->constant = time_constant; |
388 | txc->precision = 1; | 412 | txc->precision = 1; |
389 | txc->tolerance = MAXFREQ; | 413 | txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
390 | txc->tick = tick_usec; | 414 | txc->tick = tick_usec; |
415 | txc->tai = time_tai; | ||
391 | 416 | ||
392 | /* PPS is not implemented, so these are zero */ | 417 | /* PPS is not implemented, so these are zero */ |
393 | txc->ppsfreq = 0; | 418 | txc->ppsfreq = 0; |
@@ -399,9 +424,15 @@ leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) | |||
399 | txc->errcnt = 0; | 424 | txc->errcnt = 0; |
400 | txc->stbcnt = 0; | 425 | txc->stbcnt = 0; |
401 | write_sequnlock_irq(&xtime_lock); | 426 | write_sequnlock_irq(&xtime_lock); |
402 | do_gettimeofday(&txc->time); | 427 | |
428 | txc->time.tv_sec = ts.tv_sec; | ||
429 | txc->time.tv_usec = ts.tv_nsec; | ||
430 | if (!(time_status & STA_NANO)) | ||
431 | txc->time.tv_usec /= NSEC_PER_USEC; | ||
432 | |||
403 | notify_cmos_timer(); | 433 | notify_cmos_timer(); |
404 | return(result); | 434 | |
435 | return result; | ||
405 | } | 436 | } |
406 | 437 | ||
407 | static int __init ntp_tick_adj_setup(char *str) | 438 | static int __init ntp_tick_adj_setup(char *str) |
@@ -411,3 +442,10 @@ static int __init ntp_tick_adj_setup(char *str) | |||
411 | } | 442 | } |
412 | 443 | ||
413 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | 444 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); |
445 | |||
446 | void __init ntp_init(void) | ||
447 | { | ||
448 | ntp_clear(); | ||
449 | hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); | ||
450 | leap_timer.function = ntp_leap_second; | ||
451 | } | ||
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index 2d6087c7cf98..e91c29f961c9 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
@@ -53,7 +53,7 @@ void update_xtime_cache(u64 nsec) | |||
53 | timespec_add_ns(&xtime_cache, nsec); | 53 | timespec_add_ns(&xtime_cache, nsec); |
54 | } | 54 | } |
55 | 55 | ||
56 | static struct clocksource *clock; /* pointer to current clocksource */ | 56 | struct clocksource *clock; |
57 | 57 | ||
58 | 58 | ||
59 | #ifdef CONFIG_GENERIC_TIME | 59 | #ifdef CONFIG_GENERIC_TIME |
@@ -246,7 +246,7 @@ void __init timekeeping_init(void) | |||
246 | 246 | ||
247 | write_seqlock_irqsave(&xtime_lock, flags); | 247 | write_seqlock_irqsave(&xtime_lock, flags); |
248 | 248 | ||
249 | ntp_clear(); | 249 | ntp_init(); |
250 | 250 | ||
251 | clock = clocksource_get_next(); | 251 | clock = clocksource_get_next(); |
252 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | 252 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); |
@@ -371,7 +371,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
371 | * here. This is tuned so that an error of about 1 msec is adjusted | 371 | * here. This is tuned so that an error of about 1 msec is adjusted |
372 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | 372 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
373 | */ | 373 | */ |
374 | error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ); | 374 | error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
375 | error2 = abs(error2); | 375 | error2 = abs(error2); |
376 | for (look_ahead = 0; error2 > 0; look_ahead++) | 376 | for (look_ahead = 0; error2 > 0; look_ahead++) |
377 | error2 >>= 2; | 377 | error2 >>= 2; |
@@ -380,8 +380,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
380 | * Now calculate the error in (1 << look_ahead) ticks, but first | 380 | * Now calculate the error in (1 << look_ahead) ticks, but first |
381 | * remove the single look ahead already included in the error. | 381 | * remove the single look ahead already included in the error. |
382 | */ | 382 | */ |
383 | tick_error = current_tick_length() >> | 383 | tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); |
384 | (TICK_LENGTH_SHIFT - clock->shift + 1); | ||
385 | tick_error -= clock->xtime_interval >> 1; | 384 | tick_error -= clock->xtime_interval >> 1; |
386 | error = ((error - tick_error) >> look_ahead) + tick_error; | 385 | error = ((error - tick_error) >> look_ahead) + tick_error; |
387 | 386 | ||
@@ -412,7 +411,7 @@ static void clocksource_adjust(s64 offset) | |||
412 | s64 error, interval = clock->cycle_interval; | 411 | s64 error, interval = clock->cycle_interval; |
413 | int adj; | 412 | int adj; |
414 | 413 | ||
415 | error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1); | 414 | error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); |
416 | if (error > interval) { | 415 | if (error > interval) { |
417 | error >>= 2; | 416 | error >>= 2; |
418 | if (likely(error <= interval)) | 417 | if (likely(error <= interval)) |
@@ -434,7 +433,7 @@ static void clocksource_adjust(s64 offset) | |||
434 | clock->xtime_interval += interval; | 433 | clock->xtime_interval += interval; |
435 | clock->xtime_nsec -= offset; | 434 | clock->xtime_nsec -= offset; |
436 | clock->error -= (interval - offset) << | 435 | clock->error -= (interval - offset) << |
437 | (TICK_LENGTH_SHIFT - clock->shift); | 436 | (NTP_SCALE_SHIFT - clock->shift); |
438 | } | 437 | } |
439 | 438 | ||
440 | /** | 439 | /** |
@@ -473,8 +472,8 @@ void update_wall_time(void) | |||
473 | } | 472 | } |
474 | 473 | ||
475 | /* accumulate error between NTP and clock interval */ | 474 | /* accumulate error between NTP and clock interval */ |
476 | clock->error += current_tick_length(); | 475 | clock->error += tick_length; |
477 | clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift); | 476 | clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); |
478 | } | 477 | } |
479 | 478 | ||
480 | /* correct the clock when NTP error is too big */ | 479 | /* correct the clock when NTP error is too big */ |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 721093a22561..29fc39f1029c 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -195,7 +195,6 @@ static void delayed_work_timer_fn(unsigned long __data) | |||
195 | int queue_delayed_work(struct workqueue_struct *wq, | 195 | int queue_delayed_work(struct workqueue_struct *wq, |
196 | struct delayed_work *dwork, unsigned long delay) | 196 | struct delayed_work *dwork, unsigned long delay) |
197 | { | 197 | { |
198 | timer_stats_timer_set_start_info(&dwork->timer); | ||
199 | if (delay == 0) | 198 | if (delay == 0) |
200 | return queue_work(wq, &dwork->work); | 199 | return queue_work(wq, &dwork->work); |
201 | 200 | ||
@@ -219,11 +218,12 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
219 | struct timer_list *timer = &dwork->timer; | 218 | struct timer_list *timer = &dwork->timer; |
220 | struct work_struct *work = &dwork->work; | 219 | struct work_struct *work = &dwork->work; |
221 | 220 | ||
222 | timer_stats_timer_set_start_info(&dwork->timer); | ||
223 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 221 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { |
224 | BUG_ON(timer_pending(timer)); | 222 | BUG_ON(timer_pending(timer)); |
225 | BUG_ON(!list_empty(&work->entry)); | 223 | BUG_ON(!list_empty(&work->entry)); |
226 | 224 | ||
225 | timer_stats_timer_set_start_info(&dwork->timer); | ||
226 | |||
227 | /* This stores cwq for the moment, for the timer_fn */ | 227 | /* This stores cwq for the moment, for the timer_fn */ |
228 | set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); | 228 | set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); |
229 | timer->expires = jiffies + delay; | 229 | timer->expires = jiffies + delay; |
@@ -564,7 +564,6 @@ EXPORT_SYMBOL(schedule_work); | |||
564 | int schedule_delayed_work(struct delayed_work *dwork, | 564 | int schedule_delayed_work(struct delayed_work *dwork, |
565 | unsigned long delay) | 565 | unsigned long delay) |
566 | { | 566 | { |
567 | timer_stats_timer_set_start_info(&dwork->timer); | ||
568 | return queue_delayed_work(keventd_wq, dwork, delay); | 567 | return queue_delayed_work(keventd_wq, dwork, delay); |
569 | } | 568 | } |
570 | EXPORT_SYMBOL(schedule_delayed_work); | 569 | EXPORT_SYMBOL(schedule_delayed_work); |
@@ -581,7 +580,6 @@ EXPORT_SYMBOL(schedule_delayed_work); | |||
581 | int schedule_delayed_work_on(int cpu, | 580 | int schedule_delayed_work_on(int cpu, |
582 | struct delayed_work *dwork, unsigned long delay) | 581 | struct delayed_work *dwork, unsigned long delay) |
583 | { | 582 | { |
584 | timer_stats_timer_set_start_info(&dwork->timer); | ||
585 | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); | 583 | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); |
586 | } | 584 | } |
587 | EXPORT_SYMBOL(schedule_delayed_work_on); | 585 | EXPORT_SYMBOL(schedule_delayed_work_on); |