diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/fork.c | 2 | ||||
-rw-r--r-- | kernel/sched.c | 283 | ||||
-rw-r--r-- | kernel/sched_rt.c | 455 |
3 files changed, 537 insertions, 203 deletions
diff --git a/kernel/fork.c b/kernel/fork.c index 9f8ef32cbc7a..0c969f4fade0 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -1246,7 +1246,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1246 | * parent's CPU). This avoids alot of nasty races. | 1246 | * parent's CPU). This avoids alot of nasty races. |
1247 | */ | 1247 | */ |
1248 | p->cpus_allowed = current->cpus_allowed; | 1248 | p->cpus_allowed = current->cpus_allowed; |
1249 | p->nr_cpus_allowed = current->nr_cpus_allowed; | 1249 | p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; |
1250 | if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || | 1250 | if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || |
1251 | !cpu_online(task_cpu(p)))) | 1251 | !cpu_online(task_cpu(p)))) |
1252 | set_task_cpu(p, smp_processor_id()); | 1252 | set_task_cpu(p, smp_processor_id()); |
diff --git a/kernel/sched.c b/kernel/sched.c index e9a7beee9b79..5ea2c533b432 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -161,6 +161,8 @@ struct rt_prio_array { | |||
161 | 161 | ||
162 | struct cfs_rq; | 162 | struct cfs_rq; |
163 | 163 | ||
164 | static LIST_HEAD(task_groups); | ||
165 | |||
164 | /* task group related information */ | 166 | /* task group related information */ |
165 | struct task_group { | 167 | struct task_group { |
166 | #ifdef CONFIG_FAIR_CGROUP_SCHED | 168 | #ifdef CONFIG_FAIR_CGROUP_SCHED |
@@ -171,6 +173,11 @@ struct task_group { | |||
171 | /* runqueue "owned" by this group on each cpu */ | 173 | /* runqueue "owned" by this group on each cpu */ |
172 | struct cfs_rq **cfs_rq; | 174 | struct cfs_rq **cfs_rq; |
173 | 175 | ||
176 | struct sched_rt_entity **rt_se; | ||
177 | struct rt_rq **rt_rq; | ||
178 | |||
179 | unsigned int rt_ratio; | ||
180 | |||
174 | /* | 181 | /* |
175 | * shares assigned to a task group governs how much of cpu bandwidth | 182 | * shares assigned to a task group governs how much of cpu bandwidth |
176 | * is allocated to the group. The more shares a group has, the more is | 183 | * is allocated to the group. The more shares a group has, the more is |
@@ -208,6 +215,7 @@ struct task_group { | |||
208 | unsigned long shares; | 215 | unsigned long shares; |
209 | 216 | ||
210 | struct rcu_head rcu; | 217 | struct rcu_head rcu; |
218 | struct list_head list; | ||
211 | }; | 219 | }; |
212 | 220 | ||
213 | /* Default task group's sched entity on each cpu */ | 221 | /* Default task group's sched entity on each cpu */ |
@@ -215,9 +223,15 @@ static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | |||
215 | /* Default task group's cfs_rq on each cpu */ | 223 | /* Default task group's cfs_rq on each cpu */ |
216 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | 224 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; |
217 | 225 | ||
226 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | ||
227 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | ||
228 | |||
218 | static struct sched_entity *init_sched_entity_p[NR_CPUS]; | 229 | static struct sched_entity *init_sched_entity_p[NR_CPUS]; |
219 | static struct cfs_rq *init_cfs_rq_p[NR_CPUS]; | 230 | static struct cfs_rq *init_cfs_rq_p[NR_CPUS]; |
220 | 231 | ||
232 | static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS]; | ||
233 | static struct rt_rq *init_rt_rq_p[NR_CPUS]; | ||
234 | |||
221 | /* task_group_mutex serializes add/remove of task groups and also changes to | 235 | /* task_group_mutex serializes add/remove of task groups and also changes to |
222 | * a task group's cpu shares. | 236 | * a task group's cpu shares. |
223 | */ | 237 | */ |
@@ -240,6 +254,9 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares); | |||
240 | struct task_group init_task_group = { | 254 | struct task_group init_task_group = { |
241 | .se = init_sched_entity_p, | 255 | .se = init_sched_entity_p, |
242 | .cfs_rq = init_cfs_rq_p, | 256 | .cfs_rq = init_cfs_rq_p, |
257 | |||
258 | .rt_se = init_sched_rt_entity_p, | ||
259 | .rt_rq = init_rt_rq_p, | ||
243 | }; | 260 | }; |
244 | 261 | ||
245 | #ifdef CONFIG_FAIR_USER_SCHED | 262 | #ifdef CONFIG_FAIR_USER_SCHED |
@@ -269,10 +286,13 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
269 | } | 286 | } |
270 | 287 | ||
271 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | 288 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
272 | static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) | 289 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
273 | { | 290 | { |
274 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | 291 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
275 | p->se.parent = task_group(p)->se[cpu]; | 292 | p->se.parent = task_group(p)->se[cpu]; |
293 | |||
294 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; | ||
295 | p->rt.parent = task_group(p)->rt_se[cpu]; | ||
276 | } | 296 | } |
277 | 297 | ||
278 | static inline void lock_task_group_list(void) | 298 | static inline void lock_task_group_list(void) |
@@ -297,7 +317,7 @@ static inline void unlock_doms_cur(void) | |||
297 | 317 | ||
298 | #else | 318 | #else |
299 | 319 | ||
300 | static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { } | 320 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
301 | static inline void lock_task_group_list(void) { } | 321 | static inline void lock_task_group_list(void) { } |
302 | static inline void unlock_task_group_list(void) { } | 322 | static inline void unlock_task_group_list(void) { } |
303 | static inline void lock_doms_cur(void) { } | 323 | static inline void lock_doms_cur(void) { } |
@@ -343,13 +363,22 @@ struct cfs_rq { | |||
343 | struct rt_rq { | 363 | struct rt_rq { |
344 | struct rt_prio_array active; | 364 | struct rt_prio_array active; |
345 | unsigned long rt_nr_running; | 365 | unsigned long rt_nr_running; |
366 | #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED | ||
367 | int highest_prio; /* highest queued rt task prio */ | ||
368 | #endif | ||
346 | #ifdef CONFIG_SMP | 369 | #ifdef CONFIG_SMP |
347 | unsigned long rt_nr_migratory; | 370 | unsigned long rt_nr_migratory; |
348 | int highest_prio; /* highest queued rt task prio */ | ||
349 | int overloaded; | 371 | int overloaded; |
350 | #endif | 372 | #endif |
373 | int rt_throttled; | ||
351 | u64 rt_time; | 374 | u64 rt_time; |
352 | u64 rt_throttled; | 375 | |
376 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
377 | struct rq *rq; | ||
378 | struct list_head leaf_rt_rq_list; | ||
379 | struct task_group *tg; | ||
380 | struct sched_rt_entity *rt_se; | ||
381 | #endif | ||
353 | }; | 382 | }; |
354 | 383 | ||
355 | #ifdef CONFIG_SMP | 384 | #ifdef CONFIG_SMP |
@@ -411,12 +440,14 @@ struct rq { | |||
411 | u64 nr_switches; | 440 | u64 nr_switches; |
412 | 441 | ||
413 | struct cfs_rq cfs; | 442 | struct cfs_rq cfs; |
443 | struct rt_rq rt; | ||
444 | u64 rt_period_expire; | ||
445 | |||
414 | #ifdef CONFIG_FAIR_GROUP_SCHED | 446 | #ifdef CONFIG_FAIR_GROUP_SCHED |
415 | /* list of leaf cfs_rq on this cpu: */ | 447 | /* list of leaf cfs_rq on this cpu: */ |
416 | struct list_head leaf_cfs_rq_list; | 448 | struct list_head leaf_cfs_rq_list; |
449 | struct list_head leaf_rt_rq_list; | ||
417 | #endif | 450 | #endif |
418 | struct rt_rq rt; | ||
419 | u64 rt_period_expire; | ||
420 | 451 | ||
421 | /* | 452 | /* |
422 | * This is part of a global counter where only the total sum | 453 | * This is part of a global counter where only the total sum |
@@ -613,9 +644,9 @@ const_debug unsigned int sysctl_sched_rt_period = 1000; | |||
613 | 644 | ||
614 | /* | 645 | /* |
615 | * ratio of time -rt tasks may consume. | 646 | * ratio of time -rt tasks may consume. |
616 | * default: 100% | 647 | * default: 95% |
617 | */ | 648 | */ |
618 | const_debug unsigned int sysctl_sched_rt_ratio = SCHED_RT_FRAC; | 649 | const_debug unsigned int sysctl_sched_rt_ratio = 62259; |
619 | 650 | ||
620 | /* | 651 | /* |
621 | * For kernel-internal use: high-speed (but slightly incorrect) per-cpu | 652 | * For kernel-internal use: high-speed (but slightly incorrect) per-cpu |
@@ -1337,7 +1368,7 @@ unsigned long weighted_cpuload(const int cpu) | |||
1337 | 1368 | ||
1338 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 1369 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1339 | { | 1370 | { |
1340 | set_task_cfs_rq(p, cpu); | 1371 | set_task_rq(p, cpu); |
1341 | #ifdef CONFIG_SMP | 1372 | #ifdef CONFIG_SMP |
1342 | /* | 1373 | /* |
1343 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | 1374 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
@@ -5281,7 +5312,7 @@ int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) | |||
5281 | p->sched_class->set_cpus_allowed(p, &new_mask); | 5312 | p->sched_class->set_cpus_allowed(p, &new_mask); |
5282 | else { | 5313 | else { |
5283 | p->cpus_allowed = new_mask; | 5314 | p->cpus_allowed = new_mask; |
5284 | p->nr_cpus_allowed = cpus_weight(new_mask); | 5315 | p->rt.nr_cpus_allowed = cpus_weight(new_mask); |
5285 | } | 5316 | } |
5286 | 5317 | ||
5287 | /* Can the task run on the task's current CPU? If so, we're done */ | 5318 | /* Can the task run on the task's current CPU? If so, we're done */ |
@@ -7079,8 +7110,50 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
7079 | 7110 | ||
7080 | rt_rq->rt_time = 0; | 7111 | rt_rq->rt_time = 0; |
7081 | rt_rq->rt_throttled = 0; | 7112 | rt_rq->rt_throttled = 0; |
7113 | |||
7114 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
7115 | rt_rq->rq = rq; | ||
7116 | #endif | ||
7082 | } | 7117 | } |
7083 | 7118 | ||
7119 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
7120 | static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg, | ||
7121 | struct cfs_rq *cfs_rq, struct sched_entity *se, | ||
7122 | int cpu, int add) | ||
7123 | { | ||
7124 | tg->cfs_rq[cpu] = cfs_rq; | ||
7125 | init_cfs_rq(cfs_rq, rq); | ||
7126 | cfs_rq->tg = tg; | ||
7127 | if (add) | ||
7128 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | ||
7129 | |||
7130 | tg->se[cpu] = se; | ||
7131 | se->cfs_rq = &rq->cfs; | ||
7132 | se->my_q = cfs_rq; | ||
7133 | se->load.weight = tg->shares; | ||
7134 | se->load.inv_weight = div64_64(1ULL<<32, se->load.weight); | ||
7135 | se->parent = NULL; | ||
7136 | } | ||
7137 | |||
7138 | static void init_tg_rt_entry(struct rq *rq, struct task_group *tg, | ||
7139 | struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, | ||
7140 | int cpu, int add) | ||
7141 | { | ||
7142 | tg->rt_rq[cpu] = rt_rq; | ||
7143 | init_rt_rq(rt_rq, rq); | ||
7144 | rt_rq->tg = tg; | ||
7145 | rt_rq->rt_se = rt_se; | ||
7146 | if (add) | ||
7147 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | ||
7148 | |||
7149 | tg->rt_se[cpu] = rt_se; | ||
7150 | rt_se->rt_rq = &rq->rt; | ||
7151 | rt_se->my_q = rt_rq; | ||
7152 | rt_se->parent = NULL; | ||
7153 | INIT_LIST_HEAD(&rt_se->run_list); | ||
7154 | } | ||
7155 | #endif | ||
7156 | |||
7084 | void __init sched_init(void) | 7157 | void __init sched_init(void) |
7085 | { | 7158 | { |
7086 | int highest_cpu = 0; | 7159 | int highest_cpu = 0; |
@@ -7090,6 +7163,10 @@ void __init sched_init(void) | |||
7090 | init_defrootdomain(); | 7163 | init_defrootdomain(); |
7091 | #endif | 7164 | #endif |
7092 | 7165 | ||
7166 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
7167 | list_add(&init_task_group.list, &task_groups); | ||
7168 | #endif | ||
7169 | |||
7093 | for_each_possible_cpu(i) { | 7170 | for_each_possible_cpu(i) { |
7094 | struct rq *rq; | 7171 | struct rq *rq; |
7095 | 7172 | ||
@@ -7099,30 +7176,20 @@ void __init sched_init(void) | |||
7099 | rq->nr_running = 0; | 7176 | rq->nr_running = 0; |
7100 | rq->clock = 1; | 7177 | rq->clock = 1; |
7101 | init_cfs_rq(&rq->cfs, rq); | 7178 | init_cfs_rq(&rq->cfs, rq); |
7179 | init_rt_rq(&rq->rt, rq); | ||
7102 | #ifdef CONFIG_FAIR_GROUP_SCHED | 7180 | #ifdef CONFIG_FAIR_GROUP_SCHED |
7103 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | ||
7104 | { | ||
7105 | struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i); | ||
7106 | struct sched_entity *se = | ||
7107 | &per_cpu(init_sched_entity, i); | ||
7108 | |||
7109 | init_cfs_rq_p[i] = cfs_rq; | ||
7110 | init_cfs_rq(cfs_rq, rq); | ||
7111 | cfs_rq->tg = &init_task_group; | ||
7112 | list_add(&cfs_rq->leaf_cfs_rq_list, | ||
7113 | &rq->leaf_cfs_rq_list); | ||
7114 | |||
7115 | init_sched_entity_p[i] = se; | ||
7116 | se->cfs_rq = &rq->cfs; | ||
7117 | se->my_q = cfs_rq; | ||
7118 | se->load.weight = init_task_group_load; | ||
7119 | se->load.inv_weight = | ||
7120 | div64_64(1ULL<<32, init_task_group_load); | ||
7121 | se->parent = NULL; | ||
7122 | } | ||
7123 | init_task_group.shares = init_task_group_load; | 7181 | init_task_group.shares = init_task_group_load; |
7182 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | ||
7183 | init_tg_cfs_entry(rq, &init_task_group, | ||
7184 | &per_cpu(init_cfs_rq, i), | ||
7185 | &per_cpu(init_sched_entity, i), i, 1); | ||
7186 | |||
7187 | init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */ | ||
7188 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | ||
7189 | init_tg_rt_entry(rq, &init_task_group, | ||
7190 | &per_cpu(init_rt_rq, i), | ||
7191 | &per_cpu(init_sched_rt_entity, i), i, 1); | ||
7124 | #endif | 7192 | #endif |
7125 | init_rt_rq(&rq->rt, rq); | ||
7126 | rq->rt_period_expire = 0; | 7193 | rq->rt_period_expire = 0; |
7127 | 7194 | ||
7128 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | 7195 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
@@ -7460,12 +7527,36 @@ static int load_balance_monitor(void *unused) | |||
7460 | } | 7527 | } |
7461 | #endif /* CONFIG_SMP */ | 7528 | #endif /* CONFIG_SMP */ |
7462 | 7529 | ||
7530 | static void free_sched_group(struct task_group *tg) | ||
7531 | { | ||
7532 | int i; | ||
7533 | |||
7534 | for_each_possible_cpu(i) { | ||
7535 | if (tg->cfs_rq) | ||
7536 | kfree(tg->cfs_rq[i]); | ||
7537 | if (tg->se) | ||
7538 | kfree(tg->se[i]); | ||
7539 | if (tg->rt_rq) | ||
7540 | kfree(tg->rt_rq[i]); | ||
7541 | if (tg->rt_se) | ||
7542 | kfree(tg->rt_se[i]); | ||
7543 | } | ||
7544 | |||
7545 | kfree(tg->cfs_rq); | ||
7546 | kfree(tg->se); | ||
7547 | kfree(tg->rt_rq); | ||
7548 | kfree(tg->rt_se); | ||
7549 | kfree(tg); | ||
7550 | } | ||
7551 | |||
7463 | /* allocate runqueue etc for a new task group */ | 7552 | /* allocate runqueue etc for a new task group */ |
7464 | struct task_group *sched_create_group(void) | 7553 | struct task_group *sched_create_group(void) |
7465 | { | 7554 | { |
7466 | struct task_group *tg; | 7555 | struct task_group *tg; |
7467 | struct cfs_rq *cfs_rq; | 7556 | struct cfs_rq *cfs_rq; |
7468 | struct sched_entity *se; | 7557 | struct sched_entity *se; |
7558 | struct rt_rq *rt_rq; | ||
7559 | struct sched_rt_entity *rt_se; | ||
7469 | struct rq *rq; | 7560 | struct rq *rq; |
7470 | int i; | 7561 | int i; |
7471 | 7562 | ||
@@ -7479,100 +7570,89 @@ struct task_group *sched_create_group(void) | |||
7479 | tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL); | 7570 | tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL); |
7480 | if (!tg->se) | 7571 | if (!tg->se) |
7481 | goto err; | 7572 | goto err; |
7573 | tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL); | ||
7574 | if (!tg->rt_rq) | ||
7575 | goto err; | ||
7576 | tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL); | ||
7577 | if (!tg->rt_se) | ||
7578 | goto err; | ||
7579 | |||
7580 | tg->shares = NICE_0_LOAD; | ||
7581 | tg->rt_ratio = 0; /* XXX */ | ||
7482 | 7582 | ||
7483 | for_each_possible_cpu(i) { | 7583 | for_each_possible_cpu(i) { |
7484 | rq = cpu_rq(i); | 7584 | rq = cpu_rq(i); |
7485 | 7585 | ||
7486 | cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, | 7586 | cfs_rq = kmalloc_node(sizeof(struct cfs_rq), |
7487 | cpu_to_node(i)); | 7587 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); |
7488 | if (!cfs_rq) | 7588 | if (!cfs_rq) |
7489 | goto err; | 7589 | goto err; |
7490 | 7590 | ||
7491 | se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL, | 7591 | se = kmalloc_node(sizeof(struct sched_entity), |
7492 | cpu_to_node(i)); | 7592 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); |
7493 | if (!se) | 7593 | if (!se) |
7494 | goto err; | 7594 | goto err; |
7495 | 7595 | ||
7496 | memset(cfs_rq, 0, sizeof(struct cfs_rq)); | 7596 | rt_rq = kmalloc_node(sizeof(struct rt_rq), |
7497 | memset(se, 0, sizeof(struct sched_entity)); | 7597 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); |
7598 | if (!rt_rq) | ||
7599 | goto err; | ||
7498 | 7600 | ||
7499 | tg->cfs_rq[i] = cfs_rq; | 7601 | rt_se = kmalloc_node(sizeof(struct sched_rt_entity), |
7500 | init_cfs_rq(cfs_rq, rq); | 7602 | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); |
7501 | cfs_rq->tg = tg; | 7603 | if (!rt_se) |
7604 | goto err; | ||
7502 | 7605 | ||
7503 | tg->se[i] = se; | 7606 | init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0); |
7504 | se->cfs_rq = &rq->cfs; | 7607 | init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0); |
7505 | se->my_q = cfs_rq; | ||
7506 | se->load.weight = NICE_0_LOAD; | ||
7507 | se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD); | ||
7508 | se->parent = NULL; | ||
7509 | } | 7608 | } |
7510 | 7609 | ||
7511 | tg->shares = NICE_0_LOAD; | ||
7512 | |||
7513 | lock_task_group_list(); | 7610 | lock_task_group_list(); |
7514 | for_each_possible_cpu(i) { | 7611 | for_each_possible_cpu(i) { |
7515 | rq = cpu_rq(i); | 7612 | rq = cpu_rq(i); |
7516 | cfs_rq = tg->cfs_rq[i]; | 7613 | cfs_rq = tg->cfs_rq[i]; |
7517 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | 7614 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); |
7615 | rt_rq = tg->rt_rq[i]; | ||
7616 | list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | ||
7518 | } | 7617 | } |
7618 | list_add_rcu(&tg->list, &task_groups); | ||
7519 | unlock_task_group_list(); | 7619 | unlock_task_group_list(); |
7520 | 7620 | ||
7521 | return tg; | 7621 | return tg; |
7522 | 7622 | ||
7523 | err: | 7623 | err: |
7524 | for_each_possible_cpu(i) { | 7624 | free_sched_group(tg); |
7525 | if (tg->cfs_rq) | ||
7526 | kfree(tg->cfs_rq[i]); | ||
7527 | if (tg->se) | ||
7528 | kfree(tg->se[i]); | ||
7529 | } | ||
7530 | kfree(tg->cfs_rq); | ||
7531 | kfree(tg->se); | ||
7532 | kfree(tg); | ||
7533 | |||
7534 | return ERR_PTR(-ENOMEM); | 7625 | return ERR_PTR(-ENOMEM); |
7535 | } | 7626 | } |
7536 | 7627 | ||
7537 | /* rcu callback to free various structures associated with a task group */ | 7628 | /* rcu callback to free various structures associated with a task group */ |
7538 | static void free_sched_group(struct rcu_head *rhp) | 7629 | static void free_sched_group_rcu(struct rcu_head *rhp) |
7539 | { | 7630 | { |
7540 | struct task_group *tg = container_of(rhp, struct task_group, rcu); | ||
7541 | struct cfs_rq *cfs_rq; | ||
7542 | struct sched_entity *se; | ||
7543 | int i; | ||
7544 | |||
7545 | /* now it should be safe to free those cfs_rqs */ | 7631 | /* now it should be safe to free those cfs_rqs */ |
7546 | for_each_possible_cpu(i) { | 7632 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
7547 | cfs_rq = tg->cfs_rq[i]; | ||
7548 | kfree(cfs_rq); | ||
7549 | |||
7550 | se = tg->se[i]; | ||
7551 | kfree(se); | ||
7552 | } | ||
7553 | |||
7554 | kfree(tg->cfs_rq); | ||
7555 | kfree(tg->se); | ||
7556 | kfree(tg); | ||
7557 | } | 7633 | } |
7558 | 7634 | ||
7559 | /* Destroy runqueue etc associated with a task group */ | 7635 | /* Destroy runqueue etc associated with a task group */ |
7560 | void sched_destroy_group(struct task_group *tg) | 7636 | void sched_destroy_group(struct task_group *tg) |
7561 | { | 7637 | { |
7562 | struct cfs_rq *cfs_rq = NULL; | 7638 | struct cfs_rq *cfs_rq = NULL; |
7639 | struct rt_rq *rt_rq = NULL; | ||
7563 | int i; | 7640 | int i; |
7564 | 7641 | ||
7565 | lock_task_group_list(); | 7642 | lock_task_group_list(); |
7566 | for_each_possible_cpu(i) { | 7643 | for_each_possible_cpu(i) { |
7567 | cfs_rq = tg->cfs_rq[i]; | 7644 | cfs_rq = tg->cfs_rq[i]; |
7568 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | 7645 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
7646 | rt_rq = tg->rt_rq[i]; | ||
7647 | list_del_rcu(&rt_rq->leaf_rt_rq_list); | ||
7569 | } | 7648 | } |
7649 | list_del_rcu(&tg->list); | ||
7570 | unlock_task_group_list(); | 7650 | unlock_task_group_list(); |
7571 | 7651 | ||
7572 | BUG_ON(!cfs_rq); | 7652 | BUG_ON(!cfs_rq); |
7573 | 7653 | ||
7574 | /* wait for possible concurrent references to cfs_rqs complete */ | 7654 | /* wait for possible concurrent references to cfs_rqs complete */ |
7575 | call_rcu(&tg->rcu, free_sched_group); | 7655 | call_rcu(&tg->rcu, free_sched_group_rcu); |
7576 | } | 7656 | } |
7577 | 7657 | ||
7578 | /* change task's runqueue when it moves between groups. | 7658 | /* change task's runqueue when it moves between groups. |
@@ -7588,11 +7668,6 @@ void sched_move_task(struct task_struct *tsk) | |||
7588 | 7668 | ||
7589 | rq = task_rq_lock(tsk, &flags); | 7669 | rq = task_rq_lock(tsk, &flags); |
7590 | 7670 | ||
7591 | if (tsk->sched_class != &fair_sched_class) { | ||
7592 | set_task_cfs_rq(tsk, task_cpu(tsk)); | ||
7593 | goto done; | ||
7594 | } | ||
7595 | |||
7596 | update_rq_clock(rq); | 7671 | update_rq_clock(rq); |
7597 | 7672 | ||
7598 | running = task_current(rq, tsk); | 7673 | running = task_current(rq, tsk); |
@@ -7604,7 +7679,7 @@ void sched_move_task(struct task_struct *tsk) | |||
7604 | tsk->sched_class->put_prev_task(rq, tsk); | 7679 | tsk->sched_class->put_prev_task(rq, tsk); |
7605 | } | 7680 | } |
7606 | 7681 | ||
7607 | set_task_cfs_rq(tsk, task_cpu(tsk)); | 7682 | set_task_rq(tsk, task_cpu(tsk)); |
7608 | 7683 | ||
7609 | if (on_rq) { | 7684 | if (on_rq) { |
7610 | if (unlikely(running)) | 7685 | if (unlikely(running)) |
@@ -7612,7 +7687,6 @@ void sched_move_task(struct task_struct *tsk) | |||
7612 | enqueue_task(rq, tsk, 0); | 7687 | enqueue_task(rq, tsk, 0); |
7613 | } | 7688 | } |
7614 | 7689 | ||
7615 | done: | ||
7616 | task_rq_unlock(rq, &flags); | 7690 | task_rq_unlock(rq, &flags); |
7617 | } | 7691 | } |
7618 | 7692 | ||
@@ -7697,6 +7771,31 @@ unsigned long sched_group_shares(struct task_group *tg) | |||
7697 | return tg->shares; | 7771 | return tg->shares; |
7698 | } | 7772 | } |
7699 | 7773 | ||
7774 | /* | ||
7775 | * Ensure the total rt_ratio <= sysctl_sched_rt_ratio | ||
7776 | */ | ||
7777 | int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio) | ||
7778 | { | ||
7779 | struct task_group *tgi; | ||
7780 | unsigned long total = 0; | ||
7781 | |||
7782 | rcu_read_lock(); | ||
7783 | list_for_each_entry_rcu(tgi, &task_groups, list) | ||
7784 | total += tgi->rt_ratio; | ||
7785 | rcu_read_unlock(); | ||
7786 | |||
7787 | if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio) | ||
7788 | return -EINVAL; | ||
7789 | |||
7790 | tg->rt_ratio = rt_ratio; | ||
7791 | return 0; | ||
7792 | } | ||
7793 | |||
7794 | unsigned long sched_group_rt_ratio(struct task_group *tg) | ||
7795 | { | ||
7796 | return tg->rt_ratio; | ||
7797 | } | ||
7798 | |||
7700 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7799 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
7701 | 7800 | ||
7702 | #ifdef CONFIG_FAIR_CGROUP_SCHED | 7801 | #ifdef CONFIG_FAIR_CGROUP_SCHED |
@@ -7772,12 +7871,30 @@ static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft) | |||
7772 | return (u64) tg->shares; | 7871 | return (u64) tg->shares; |
7773 | } | 7872 | } |
7774 | 7873 | ||
7874 | static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype, | ||
7875 | u64 rt_ratio_val) | ||
7876 | { | ||
7877 | return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val); | ||
7878 | } | ||
7879 | |||
7880 | static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft) | ||
7881 | { | ||
7882 | struct task_group *tg = cgroup_tg(cgrp); | ||
7883 | |||
7884 | return (u64) tg->rt_ratio; | ||
7885 | } | ||
7886 | |||
7775 | static struct cftype cpu_files[] = { | 7887 | static struct cftype cpu_files[] = { |
7776 | { | 7888 | { |
7777 | .name = "shares", | 7889 | .name = "shares", |
7778 | .read_uint = cpu_shares_read_uint, | 7890 | .read_uint = cpu_shares_read_uint, |
7779 | .write_uint = cpu_shares_write_uint, | 7891 | .write_uint = cpu_shares_write_uint, |
7780 | }, | 7892 | }, |
7893 | { | ||
7894 | .name = "rt_ratio", | ||
7895 | .read_uint = cpu_rt_ratio_read_uint, | ||
7896 | .write_uint = cpu_rt_ratio_write_uint, | ||
7897 | }, | ||
7781 | }; | 7898 | }; |
7782 | 7899 | ||
7783 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 7900 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index fd10d965aa06..1178257613ad 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -45,47 +45,167 @@ static void update_rt_migration(struct rq *rq) | |||
45 | } | 45 | } |
46 | #endif /* CONFIG_SMP */ | 46 | #endif /* CONFIG_SMP */ |
47 | 47 | ||
48 | static int sched_rt_ratio_exceeded(struct rq *rq, struct rt_rq *rt_rq) | 48 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
49 | { | 49 | { |
50 | return container_of(rt_se, struct task_struct, rt); | ||
51 | } | ||
52 | |||
53 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | ||
54 | { | ||
55 | return !list_empty(&rt_se->run_list); | ||
56 | } | ||
57 | |||
58 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
59 | |||
60 | static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq) | ||
61 | { | ||
62 | if (!rt_rq->tg) | ||
63 | return SCHED_RT_FRAC; | ||
64 | |||
65 | return rt_rq->tg->rt_ratio; | ||
66 | } | ||
67 | |||
68 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
69 | list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | ||
70 | |||
71 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
72 | { | ||
73 | return rt_rq->rq; | ||
74 | } | ||
75 | |||
76 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
77 | { | ||
78 | return rt_se->rt_rq; | ||
79 | } | ||
80 | |||
81 | #define for_each_sched_rt_entity(rt_se) \ | ||
82 | for (; rt_se; rt_se = rt_se->parent) | ||
83 | |||
84 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
85 | { | ||
86 | return rt_se->my_q; | ||
87 | } | ||
88 | |||
89 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se); | ||
90 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | ||
91 | |||
92 | static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq) | ||
93 | { | ||
94 | struct sched_rt_entity *rt_se = rt_rq->rt_se; | ||
95 | |||
96 | if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { | ||
97 | enqueue_rt_entity(rt_se); | ||
98 | resched_task(rq_of_rt_rq(rt_rq)->curr); | ||
99 | } | ||
100 | } | ||
101 | |||
102 | static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq) | ||
103 | { | ||
104 | struct sched_rt_entity *rt_se = rt_rq->rt_se; | ||
105 | |||
106 | if (rt_se && on_rt_rq(rt_se)) | ||
107 | dequeue_rt_entity(rt_se); | ||
108 | } | ||
109 | |||
110 | #else | ||
111 | |||
112 | static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq) | ||
113 | { | ||
114 | return sysctl_sched_rt_ratio; | ||
115 | } | ||
116 | |||
117 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | ||
118 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | ||
119 | |||
120 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
121 | { | ||
122 | return container_of(rt_rq, struct rq, rt); | ||
123 | } | ||
124 | |||
125 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
126 | { | ||
127 | struct task_struct *p = rt_task_of(rt_se); | ||
128 | struct rq *rq = task_rq(p); | ||
129 | |||
130 | return &rq->rt; | ||
131 | } | ||
132 | |||
133 | #define for_each_sched_rt_entity(rt_se) \ | ||
134 | for (; rt_se; rt_se = NULL) | ||
135 | |||
136 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | ||
137 | { | ||
138 | return NULL; | ||
139 | } | ||
140 | |||
141 | static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq) | ||
142 | { | ||
143 | } | ||
144 | |||
145 | static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq) | ||
146 | { | ||
147 | } | ||
148 | |||
149 | #endif | ||
150 | |||
151 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | ||
152 | { | ||
153 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
154 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | ||
155 | |||
156 | if (rt_rq) | ||
157 | return rt_rq->highest_prio; | ||
158 | #endif | ||
159 | |||
160 | return rt_task_of(rt_se)->prio; | ||
161 | } | ||
162 | |||
163 | static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq) | ||
164 | { | ||
165 | unsigned int rt_ratio = sched_rt_ratio(rt_rq); | ||
50 | u64 period, ratio; | 166 | u64 period, ratio; |
51 | 167 | ||
52 | if (sysctl_sched_rt_ratio == SCHED_RT_FRAC) | 168 | if (rt_ratio == SCHED_RT_FRAC) |
53 | return 0; | 169 | return 0; |
54 | 170 | ||
55 | if (rt_rq->rt_throttled) | 171 | if (rt_rq->rt_throttled) |
56 | return 1; | 172 | return 1; |
57 | 173 | ||
58 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; | 174 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; |
59 | ratio = (period * sysctl_sched_rt_ratio) >> SCHED_RT_FRAC_SHIFT; | 175 | ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT; |
60 | 176 | ||
61 | if (rt_rq->rt_time > ratio) { | 177 | if (rt_rq->rt_time > ratio) { |
62 | rt_rq->rt_throttled = rq->clock + period - rt_rq->rt_time; | 178 | rt_rq->rt_throttled = 1; |
179 | sched_rt_ratio_dequeue(rt_rq); | ||
63 | return 1; | 180 | return 1; |
64 | } | 181 | } |
65 | 182 | ||
66 | return 0; | 183 | return 0; |
67 | } | 184 | } |
68 | 185 | ||
186 | static void __update_sched_rt_period(struct rt_rq *rt_rq, u64 period) | ||
187 | { | ||
188 | unsigned long rt_ratio = sched_rt_ratio(rt_rq); | ||
189 | u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT; | ||
190 | |||
191 | rt_rq->rt_time -= min(rt_rq->rt_time, ratio); | ||
192 | if (rt_rq->rt_throttled) { | ||
193 | rt_rq->rt_throttled = 0; | ||
194 | sched_rt_ratio_enqueue(rt_rq); | ||
195 | } | ||
196 | } | ||
197 | |||
69 | static void update_sched_rt_period(struct rq *rq) | 198 | static void update_sched_rt_period(struct rq *rq) |
70 | { | 199 | { |
71 | while (rq->clock > rq->rt_period_expire) { | 200 | struct rt_rq *rt_rq; |
72 | u64 period, ratio; | 201 | u64 period; |
73 | 202 | ||
203 | while (rq->clock > rq->rt_period_expire) { | ||
74 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; | 204 | period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC; |
75 | ratio = (period * sysctl_sched_rt_ratio) >> SCHED_RT_FRAC_SHIFT; | ||
76 | |||
77 | rq->rt.rt_time -= min(rq->rt.rt_time, ratio); | ||
78 | rq->rt_period_expire += period; | 205 | rq->rt_period_expire += period; |
79 | } | ||
80 | 206 | ||
81 | /* | 207 | for_each_leaf_rt_rq(rt_rq, rq) |
82 | * When the rt throttle is expired, let them rip. | 208 | __update_sched_rt_period(rt_rq, period); |
83 | * (XXX: use hrtick when available) | ||
84 | */ | ||
85 | if (rq->rt.rt_throttled && rq->clock > rq->rt.rt_throttled) { | ||
86 | rq->rt.rt_throttled = 0; | ||
87 | if (!sched_rt_ratio_exceeded(rq, &rq->rt)) | ||
88 | resched_task(rq->curr); | ||
89 | } | 209 | } |
90 | } | 210 | } |
91 | 211 | ||
@@ -96,6 +216,8 @@ static void update_sched_rt_period(struct rq *rq) | |||
96 | static void update_curr_rt(struct rq *rq) | 216 | static void update_curr_rt(struct rq *rq) |
97 | { | 217 | { |
98 | struct task_struct *curr = rq->curr; | 218 | struct task_struct *curr = rq->curr; |
219 | struct sched_rt_entity *rt_se = &curr->rt; | ||
220 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
99 | u64 delta_exec; | 221 | u64 delta_exec; |
100 | 222 | ||
101 | if (!task_has_rt_policy(curr)) | 223 | if (!task_has_rt_policy(curr)) |
@@ -111,95 +233,184 @@ static void update_curr_rt(struct rq *rq) | |||
111 | curr->se.exec_start = rq->clock; | 233 | curr->se.exec_start = rq->clock; |
112 | cpuacct_charge(curr, delta_exec); | 234 | cpuacct_charge(curr, delta_exec); |
113 | 235 | ||
114 | rq->rt.rt_time += delta_exec; | 236 | rt_rq->rt_time += delta_exec; |
115 | update_sched_rt_period(rq); | 237 | /* |
116 | if (sched_rt_ratio_exceeded(rq, &rq->rt)) | 238 | * might make it a tad more accurate: |
239 | * | ||
240 | * update_sched_rt_period(rq); | ||
241 | */ | ||
242 | if (sched_rt_ratio_exceeded(rt_rq)) | ||
117 | resched_task(curr); | 243 | resched_task(curr); |
118 | } | 244 | } |
119 | 245 | ||
120 | static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq) | 246 | static inline |
247 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
121 | { | 248 | { |
122 | WARN_ON(!rt_task(p)); | 249 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
123 | rq->rt.rt_nr_running++; | 250 | rt_rq->rt_nr_running++; |
251 | #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED | ||
252 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) | ||
253 | rt_rq->highest_prio = rt_se_prio(rt_se); | ||
254 | #endif | ||
124 | #ifdef CONFIG_SMP | 255 | #ifdef CONFIG_SMP |
125 | if (p->prio < rq->rt.highest_prio) | 256 | if (rt_se->nr_cpus_allowed > 1) { |
126 | rq->rt.highest_prio = p->prio; | 257 | struct rq *rq = rq_of_rt_rq(rt_rq); |
127 | if (p->nr_cpus_allowed > 1) | ||
128 | rq->rt.rt_nr_migratory++; | 258 | rq->rt.rt_nr_migratory++; |
259 | } | ||
129 | 260 | ||
130 | update_rt_migration(rq); | 261 | update_rt_migration(rq_of_rt_rq(rt_rq)); |
131 | #endif /* CONFIG_SMP */ | 262 | #endif |
132 | } | 263 | } |
133 | 264 | ||
134 | static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq) | 265 | static inline |
266 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
135 | { | 267 | { |
136 | WARN_ON(!rt_task(p)); | 268 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
137 | WARN_ON(!rq->rt.rt_nr_running); | 269 | WARN_ON(!rt_rq->rt_nr_running); |
138 | rq->rt.rt_nr_running--; | 270 | rt_rq->rt_nr_running--; |
139 | #ifdef CONFIG_SMP | 271 | #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED |
140 | if (rq->rt.rt_nr_running) { | 272 | if (rt_rq->rt_nr_running) { |
141 | struct rt_prio_array *array; | 273 | struct rt_prio_array *array; |
142 | 274 | ||
143 | WARN_ON(p->prio < rq->rt.highest_prio); | 275 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); |
144 | if (p->prio == rq->rt.highest_prio) { | 276 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { |
145 | /* recalculate */ | 277 | /* recalculate */ |
146 | array = &rq->rt.active; | 278 | array = &rt_rq->active; |
147 | rq->rt.highest_prio = | 279 | rt_rq->highest_prio = |
148 | sched_find_first_bit(array->bitmap); | 280 | sched_find_first_bit(array->bitmap); |
149 | } /* otherwise leave rq->highest prio alone */ | 281 | } /* otherwise leave rq->highest prio alone */ |
150 | } else | 282 | } else |
151 | rq->rt.highest_prio = MAX_RT_PRIO; | 283 | rt_rq->highest_prio = MAX_RT_PRIO; |
152 | if (p->nr_cpus_allowed > 1) | 284 | #endif |
285 | #ifdef CONFIG_SMP | ||
286 | if (rt_se->nr_cpus_allowed > 1) { | ||
287 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
153 | rq->rt.rt_nr_migratory--; | 288 | rq->rt.rt_nr_migratory--; |
289 | } | ||
154 | 290 | ||
155 | update_rt_migration(rq); | 291 | update_rt_migration(rq_of_rt_rq(rt_rq)); |
156 | #endif /* CONFIG_SMP */ | 292 | #endif /* CONFIG_SMP */ |
157 | } | 293 | } |
158 | 294 | ||
159 | static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | 295 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se) |
160 | { | 296 | { |
161 | struct rt_prio_array *array = &rq->rt.active; | 297 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
298 | struct rt_prio_array *array = &rt_rq->active; | ||
299 | struct rt_rq *group_rq = group_rt_rq(rt_se); | ||
162 | 300 | ||
163 | list_add_tail(&p->rt.run_list, array->queue + p->prio); | 301 | if (group_rq && group_rq->rt_throttled) |
164 | __set_bit(p->prio, array->bitmap); | 302 | return; |
165 | inc_cpu_load(rq, p->se.load.weight); | ||
166 | 303 | ||
167 | inc_rt_tasks(p, rq); | 304 | list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); |
305 | __set_bit(rt_se_prio(rt_se), array->bitmap); | ||
168 | 306 | ||
169 | if (wakeup) | 307 | inc_rt_tasks(rt_se, rt_rq); |
170 | p->rt.timeout = 0; | 308 | } |
309 | |||
310 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | ||
311 | { | ||
312 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | ||
313 | struct rt_prio_array *array = &rt_rq->active; | ||
314 | |||
315 | list_del_init(&rt_se->run_list); | ||
316 | if (list_empty(array->queue + rt_se_prio(rt_se))) | ||
317 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | ||
318 | |||
319 | dec_rt_tasks(rt_se, rt_rq); | ||
320 | } | ||
321 | |||
322 | /* | ||
323 | * Because the prio of an upper entry depends on the lower | ||
324 | * entries, we must remove entries top - down. | ||
325 | * | ||
326 | * XXX: O(1/2 h^2) because we can only walk up, not down the chain. | ||
327 | * doesn't matter much for now, as h=2 for GROUP_SCHED. | ||
328 | */ | ||
329 | static void dequeue_rt_stack(struct task_struct *p) | ||
330 | { | ||
331 | struct sched_rt_entity *rt_se, *top_se; | ||
332 | |||
333 | /* | ||
334 | * dequeue all, top - down. | ||
335 | */ | ||
336 | do { | ||
337 | rt_se = &p->rt; | ||
338 | top_se = NULL; | ||
339 | for_each_sched_rt_entity(rt_se) { | ||
340 | if (on_rt_rq(rt_se)) | ||
341 | top_se = rt_se; | ||
342 | } | ||
343 | if (top_se) | ||
344 | dequeue_rt_entity(top_se); | ||
345 | } while (top_se); | ||
171 | } | 346 | } |
172 | 347 | ||
173 | /* | 348 | /* |
174 | * Adding/removing a task to/from a priority array: | 349 | * Adding/removing a task to/from a priority array: |
175 | */ | 350 | */ |
351 | static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | ||
352 | { | ||
353 | struct sched_rt_entity *rt_se = &p->rt; | ||
354 | |||
355 | if (wakeup) | ||
356 | rt_se->timeout = 0; | ||
357 | |||
358 | dequeue_rt_stack(p); | ||
359 | |||
360 | /* | ||
361 | * enqueue everybody, bottom - up. | ||
362 | */ | ||
363 | for_each_sched_rt_entity(rt_se) | ||
364 | enqueue_rt_entity(rt_se); | ||
365 | |||
366 | inc_cpu_load(rq, p->se.load.weight); | ||
367 | } | ||
368 | |||
176 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 369 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
177 | { | 370 | { |
178 | struct rt_prio_array *array = &rq->rt.active; | 371 | struct sched_rt_entity *rt_se = &p->rt; |
372 | struct rt_rq *rt_rq; | ||
179 | 373 | ||
180 | update_curr_rt(rq); | 374 | update_curr_rt(rq); |
181 | 375 | ||
182 | list_del(&p->rt.run_list); | 376 | dequeue_rt_stack(p); |
183 | if (list_empty(array->queue + p->prio)) | 377 | |
184 | __clear_bit(p->prio, array->bitmap); | 378 | /* |
185 | dec_cpu_load(rq, p->se.load.weight); | 379 | * re-enqueue all non-empty rt_rq entities. |
380 | */ | ||
381 | for_each_sched_rt_entity(rt_se) { | ||
382 | rt_rq = group_rt_rq(rt_se); | ||
383 | if (rt_rq && rt_rq->rt_nr_running) | ||
384 | enqueue_rt_entity(rt_se); | ||
385 | } | ||
186 | 386 | ||
187 | dec_rt_tasks(p, rq); | 387 | dec_cpu_load(rq, p->se.load.weight); |
188 | } | 388 | } |
189 | 389 | ||
190 | /* | 390 | /* |
191 | * Put task to the end of the run list without the overhead of dequeue | 391 | * Put task to the end of the run list without the overhead of dequeue |
192 | * followed by enqueue. | 392 | * followed by enqueue. |
193 | */ | 393 | */ |
394 | static | ||
395 | void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | ||
396 | { | ||
397 | struct rt_prio_array *array = &rt_rq->active; | ||
398 | |||
399 | list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); | ||
400 | } | ||
401 | |||
194 | static void requeue_task_rt(struct rq *rq, struct task_struct *p) | 402 | static void requeue_task_rt(struct rq *rq, struct task_struct *p) |
195 | { | 403 | { |
196 | struct rt_prio_array *array = &rq->rt.active; | 404 | struct sched_rt_entity *rt_se = &p->rt; |
405 | struct rt_rq *rt_rq; | ||
197 | 406 | ||
198 | list_move_tail(&p->rt.run_list, array->queue + p->prio); | 407 | for_each_sched_rt_entity(rt_se) { |
408 | rt_rq = rt_rq_of_se(rt_se); | ||
409 | requeue_rt_entity(rt_rq, rt_se); | ||
410 | } | ||
199 | } | 411 | } |
200 | 412 | ||
201 | static void | 413 | static void yield_task_rt(struct rq *rq) |
202 | yield_task_rt(struct rq *rq) | ||
203 | { | 414 | { |
204 | requeue_task_rt(rq, rq->curr); | 415 | requeue_task_rt(rq, rq->curr); |
205 | } | 416 | } |
@@ -229,7 +440,7 @@ static int select_task_rq_rt(struct task_struct *p, int sync) | |||
229 | * cold cache anyway. | 440 | * cold cache anyway. |
230 | */ | 441 | */ |
231 | if (unlikely(rt_task(rq->curr)) && | 442 | if (unlikely(rt_task(rq->curr)) && |
232 | (p->nr_cpus_allowed > 1)) { | 443 | (p->rt.nr_cpus_allowed > 1)) { |
233 | int cpu = find_lowest_rq(p); | 444 | int cpu = find_lowest_rq(p); |
234 | 445 | ||
235 | return (cpu == -1) ? task_cpu(p) : cpu; | 446 | return (cpu == -1) ? task_cpu(p) : cpu; |
@@ -252,27 +463,51 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) | |||
252 | resched_task(rq->curr); | 463 | resched_task(rq->curr); |
253 | } | 464 | } |
254 | 465 | ||
255 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 466 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, |
467 | struct rt_rq *rt_rq) | ||
256 | { | 468 | { |
257 | struct rt_prio_array *array = &rq->rt.active; | 469 | struct rt_prio_array *array = &rt_rq->active; |
258 | struct task_struct *next; | 470 | struct sched_rt_entity *next = NULL; |
259 | struct list_head *queue; | 471 | struct list_head *queue; |
260 | struct rt_rq *rt_rq = &rq->rt; | ||
261 | int idx; | 472 | int idx; |
262 | 473 | ||
263 | if (sched_rt_ratio_exceeded(rq, rt_rq)) | 474 | if (sched_rt_ratio_exceeded(rt_rq)) |
264 | return NULL; | 475 | goto out; |
265 | 476 | ||
266 | idx = sched_find_first_bit(array->bitmap); | 477 | idx = sched_find_first_bit(array->bitmap); |
267 | if (idx >= MAX_RT_PRIO) | 478 | BUG_ON(idx >= MAX_RT_PRIO); |
268 | return NULL; | ||
269 | 479 | ||
270 | queue = array->queue + idx; | 480 | queue = array->queue + idx; |
271 | next = list_entry(queue->next, struct task_struct, rt.run_list); | 481 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
482 | out: | ||
483 | return next; | ||
484 | } | ||
272 | 485 | ||
273 | next->se.exec_start = rq->clock; | 486 | static struct task_struct *pick_next_task_rt(struct rq *rq) |
487 | { | ||
488 | struct sched_rt_entity *rt_se; | ||
489 | struct task_struct *p; | ||
490 | struct rt_rq *rt_rq; | ||
274 | 491 | ||
275 | return next; | 492 | retry: |
493 | rt_rq = &rq->rt; | ||
494 | |||
495 | if (unlikely(!rt_rq->rt_nr_running)) | ||
496 | return NULL; | ||
497 | |||
498 | if (sched_rt_ratio_exceeded(rt_rq)) | ||
499 | return NULL; | ||
500 | |||
501 | do { | ||
502 | rt_se = pick_next_rt_entity(rq, rt_rq); | ||
503 | if (unlikely(!rt_se)) | ||
504 | goto retry; | ||
505 | rt_rq = group_rt_rq(rt_se); | ||
506 | } while (rt_rq); | ||
507 | |||
508 | p = rt_task_of(rt_se); | ||
509 | p->se.exec_start = rq->clock; | ||
510 | return p; | ||
276 | } | 511 | } |
277 | 512 | ||
278 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 513 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
@@ -282,6 +517,7 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
282 | } | 517 | } |
283 | 518 | ||
284 | #ifdef CONFIG_SMP | 519 | #ifdef CONFIG_SMP |
520 | |||
285 | /* Only try algorithms three times */ | 521 | /* Only try algorithms three times */ |
286 | #define RT_MAX_TRIES 3 | 522 | #define RT_MAX_TRIES 3 |
287 | 523 | ||
@@ -292,7 +528,7 @@ static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | |||
292 | { | 528 | { |
293 | if (!task_running(rq, p) && | 529 | if (!task_running(rq, p) && |
294 | (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && | 530 | (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && |
295 | (p->nr_cpus_allowed > 1)) | 531 | (p->rt.nr_cpus_allowed > 1)) |
296 | return 1; | 532 | return 1; |
297 | return 0; | 533 | return 0; |
298 | } | 534 | } |
@@ -300,52 +536,33 @@ static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | |||
300 | /* Return the second highest RT task, NULL otherwise */ | 536 | /* Return the second highest RT task, NULL otherwise */ |
301 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | 537 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) |
302 | { | 538 | { |
303 | struct rt_prio_array *array = &rq->rt.active; | 539 | struct task_struct *next = NULL; |
304 | struct task_struct *next; | 540 | struct sched_rt_entity *rt_se; |
305 | struct list_head *queue; | 541 | struct rt_prio_array *array; |
542 | struct rt_rq *rt_rq; | ||
306 | int idx; | 543 | int idx; |
307 | 544 | ||
308 | if (likely(rq->rt.rt_nr_running < 2)) | 545 | for_each_leaf_rt_rq(rt_rq, rq) { |
309 | return NULL; | 546 | array = &rt_rq->active; |
310 | 547 | idx = sched_find_first_bit(array->bitmap); | |
311 | idx = sched_find_first_bit(array->bitmap); | 548 | next_idx: |
312 | if (unlikely(idx >= MAX_RT_PRIO)) { | 549 | if (idx >= MAX_RT_PRIO) |
313 | WARN_ON(1); /* rt_nr_running is bad */ | 550 | continue; |
314 | return NULL; | 551 | if (next && next->prio < idx) |
315 | } | 552 | continue; |
316 | 553 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | |
317 | queue = array->queue + idx; | 554 | struct task_struct *p = rt_task_of(rt_se); |
318 | BUG_ON(list_empty(queue)); | 555 | if (pick_rt_task(rq, p, cpu)) { |
319 | 556 | next = p; | |
320 | next = list_entry(queue->next, struct task_struct, rt.run_list); | 557 | break; |
321 | if (unlikely(pick_rt_task(rq, next, cpu))) | 558 | } |
322 | goto out; | 559 | } |
323 | 560 | if (!next) { | |
324 | if (queue->next->next != queue) { | 561 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); |
325 | /* same prio task */ | 562 | goto next_idx; |
326 | next = list_entry(queue->next->next, struct task_struct, | 563 | } |
327 | rt.run_list); | ||
328 | if (pick_rt_task(rq, next, cpu)) | ||
329 | goto out; | ||
330 | } | ||
331 | |||
332 | retry: | ||
333 | /* slower, but more flexible */ | ||
334 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | ||
335 | if (unlikely(idx >= MAX_RT_PRIO)) | ||
336 | return NULL; | ||
337 | |||
338 | queue = array->queue + idx; | ||
339 | BUG_ON(list_empty(queue)); | ||
340 | |||
341 | list_for_each_entry(next, queue, rt.run_list) { | ||
342 | if (pick_rt_task(rq, next, cpu)) | ||
343 | goto out; | ||
344 | } | 564 | } |
345 | 565 | ||
346 | goto retry; | ||
347 | |||
348 | out: | ||
349 | return next; | 566 | return next; |
350 | } | 567 | } |
351 | 568 | ||
@@ -774,12 +991,12 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) | |||
774 | * Update the migration status of the RQ if we have an RT task | 991 | * Update the migration status of the RQ if we have an RT task |
775 | * which is running AND changing its weight value. | 992 | * which is running AND changing its weight value. |
776 | */ | 993 | */ |
777 | if (p->se.on_rq && (weight != p->nr_cpus_allowed)) { | 994 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
778 | struct rq *rq = task_rq(p); | 995 | struct rq *rq = task_rq(p); |
779 | 996 | ||
780 | if ((p->nr_cpus_allowed <= 1) && (weight > 1)) { | 997 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
781 | rq->rt.rt_nr_migratory++; | 998 | rq->rt.rt_nr_migratory++; |
782 | } else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) { | 999 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
783 | BUG_ON(!rq->rt.rt_nr_migratory); | 1000 | BUG_ON(!rq->rt.rt_nr_migratory); |
784 | rq->rt.rt_nr_migratory--; | 1001 | rq->rt.rt_nr_migratory--; |
785 | } | 1002 | } |
@@ -788,7 +1005,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) | |||
788 | } | 1005 | } |
789 | 1006 | ||
790 | p->cpus_allowed = *new_mask; | 1007 | p->cpus_allowed = *new_mask; |
791 | p->nr_cpus_allowed = weight; | 1008 | p->rt.nr_cpus_allowed = weight; |
792 | } | 1009 | } |
793 | 1010 | ||
794 | /* Assumes rq->lock is held */ | 1011 | /* Assumes rq->lock is held */ |