diff options
Diffstat (limited to 'kernel')
106 files changed, 12088 insertions, 12648 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 2093a691f1c2..187c89b4783d 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -80,26 +80,22 @@ obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o | |||
80 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | 80 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ |
81 | obj-$(CONFIG_SECCOMP) += seccomp.o | 81 | obj-$(CONFIG_SECCOMP) += seccomp.o |
82 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o | 82 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o |
83 | obj-$(CONFIG_CLASSIC_RCU) += rcuclassic.o | ||
84 | obj-$(CONFIG_TREE_RCU) += rcutree.o | 83 | obj-$(CONFIG_TREE_RCU) += rcutree.o |
85 | obj-$(CONFIG_PREEMPT_RCU) += rcupreempt.o | 84 | obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o |
86 | obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o | 85 | obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o |
87 | obj-$(CONFIG_PREEMPT_RCU_TRACE) += rcupreempt_trace.o | ||
88 | obj-$(CONFIG_RELAY) += relay.o | 86 | obj-$(CONFIG_RELAY) += relay.o |
89 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o | 87 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o |
90 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | 88 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o |
91 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o | 89 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o |
92 | obj-$(CONFIG_MARKERS) += marker.o | ||
93 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o | 90 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o |
94 | obj-$(CONFIG_LATENCYTOP) += latencytop.o | 91 | obj-$(CONFIG_LATENCYTOP) += latencytop.o |
95 | obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o | ||
96 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ | 92 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ |
97 | obj-$(CONFIG_TRACING) += trace/ | 93 | obj-$(CONFIG_TRACING) += trace/ |
98 | obj-$(CONFIG_X86_DS) += trace/ | 94 | obj-$(CONFIG_X86_DS) += trace/ |
99 | obj-$(CONFIG_RING_BUFFER) += trace/ | 95 | obj-$(CONFIG_RING_BUFFER) += trace/ |
100 | obj-$(CONFIG_SMP) += sched_cpupri.o | 96 | obj-$(CONFIG_SMP) += sched_cpupri.o |
101 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 97 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
102 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | 98 | obj-$(CONFIG_PERF_EVENTS) += perf_event.o |
103 | 99 | ||
104 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 100 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
105 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 101 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
@@ -119,7 +115,7 @@ $(obj)/config_data.gz: .config FORCE | |||
119 | $(call if_changed,gzip) | 115 | $(call if_changed,gzip) |
120 | 116 | ||
121 | quiet_cmd_ikconfiggz = IKCFG $@ | 117 | quiet_cmd_ikconfiggz = IKCFG $@ |
122 | cmd_ikconfiggz = (echo "static const char kernel_config_data[] = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ | 118 | cmd_ikconfiggz = (echo "static const char kernel_config_data[] __used = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ |
123 | targets += config_data.h | 119 | targets += config_data.h |
124 | $(obj)/config_data.h: $(obj)/config_data.gz FORCE | 120 | $(obj)/config_data.h: $(obj)/config_data.gz FORCE |
125 | $(call if_changed,ikconfiggz) | 121 | $(call if_changed,ikconfiggz) |
diff --git a/kernel/acct.c b/kernel/acct.c index 9f3391090b3e..9a4715a2f6bf 100644 --- a/kernel/acct.c +++ b/kernel/acct.c | |||
@@ -491,13 +491,17 @@ static void do_acct_process(struct bsd_acct_struct *acct, | |||
491 | u64 run_time; | 491 | u64 run_time; |
492 | struct timespec uptime; | 492 | struct timespec uptime; |
493 | struct tty_struct *tty; | 493 | struct tty_struct *tty; |
494 | const struct cred *orig_cred; | ||
495 | |||
496 | /* Perform file operations on behalf of whoever enabled accounting */ | ||
497 | orig_cred = override_creds(file->f_cred); | ||
494 | 498 | ||
495 | /* | 499 | /* |
496 | * First check to see if there is enough free_space to continue | 500 | * First check to see if there is enough free_space to continue |
497 | * the process accounting system. | 501 | * the process accounting system. |
498 | */ | 502 | */ |
499 | if (!check_free_space(acct, file)) | 503 | if (!check_free_space(acct, file)) |
500 | return; | 504 | goto out; |
501 | 505 | ||
502 | /* | 506 | /* |
503 | * Fill the accounting struct with the needed info as recorded | 507 | * Fill the accounting struct with the needed info as recorded |
@@ -578,6 +582,8 @@ static void do_acct_process(struct bsd_acct_struct *acct, | |||
578 | sizeof(acct_t), &file->f_pos); | 582 | sizeof(acct_t), &file->f_pos); |
579 | current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; | 583 | current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; |
580 | set_fs(fs); | 584 | set_fs(fs); |
585 | out: | ||
586 | revert_creds(orig_cred); | ||
581 | } | 587 | } |
582 | 588 | ||
583 | /** | 589 | /** |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index b6eadfe30e7b..cd83d9933b6b 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -596,10 +596,11 @@ void cgroup_unlock(void) | |||
596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
598 | static int cgroup_populate_dir(struct cgroup *cgrp); | 598 | static int cgroup_populate_dir(struct cgroup *cgrp); |
599 | static struct inode_operations cgroup_dir_inode_operations; | 599 | static const struct inode_operations cgroup_dir_inode_operations; |
600 | static struct file_operations proc_cgroupstats_operations; | 600 | static struct file_operations proc_cgroupstats_operations; |
601 | 601 | ||
602 | static struct backing_dev_info cgroup_backing_dev_info = { | 602 | static struct backing_dev_info cgroup_backing_dev_info = { |
603 | .name = "cgroup", | ||
603 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, | 604 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, |
604 | }; | 605 | }; |
605 | 606 | ||
@@ -960,7 +961,7 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
960 | return ret; | 961 | return ret; |
961 | } | 962 | } |
962 | 963 | ||
963 | static struct super_operations cgroup_ops = { | 964 | static const struct super_operations cgroup_ops = { |
964 | .statfs = simple_statfs, | 965 | .statfs = simple_statfs, |
965 | .drop_inode = generic_delete_inode, | 966 | .drop_inode = generic_delete_inode, |
966 | .show_options = cgroup_show_options, | 967 | .show_options = cgroup_show_options, |
@@ -1710,7 +1711,7 @@ static struct file_operations cgroup_file_operations = { | |||
1710 | .release = cgroup_file_release, | 1711 | .release = cgroup_file_release, |
1711 | }; | 1712 | }; |
1712 | 1713 | ||
1713 | static struct inode_operations cgroup_dir_inode_operations = { | 1714 | static const struct inode_operations cgroup_dir_inode_operations = { |
1714 | .lookup = simple_lookup, | 1715 | .lookup = simple_lookup, |
1715 | .mkdir = cgroup_mkdir, | 1716 | .mkdir = cgroup_mkdir, |
1716 | .rmdir = cgroup_rmdir, | 1717 | .rmdir = cgroup_rmdir, |
@@ -2313,7 +2314,7 @@ static int cgroup_tasks_show(struct seq_file *s, void *v) | |||
2313 | return seq_printf(s, "%d\n", *(int *)v); | 2314 | return seq_printf(s, "%d\n", *(int *)v); |
2314 | } | 2315 | } |
2315 | 2316 | ||
2316 | static struct seq_operations cgroup_tasks_seq_operations = { | 2317 | static const struct seq_operations cgroup_tasks_seq_operations = { |
2317 | .start = cgroup_tasks_start, | 2318 | .start = cgroup_tasks_start, |
2318 | .stop = cgroup_tasks_stop, | 2319 | .stop = cgroup_tasks_stop, |
2319 | .next = cgroup_tasks_next, | 2320 | .next = cgroup_tasks_next, |
diff --git a/kernel/cpu.c b/kernel/cpu.c index 8ce10043e4ac..6ba0f1ecb212 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
@@ -401,6 +401,7 @@ int disable_nonboot_cpus(void) | |||
401 | break; | 401 | break; |
402 | } | 402 | } |
403 | } | 403 | } |
404 | |||
404 | if (!error) { | 405 | if (!error) { |
405 | BUG_ON(num_online_cpus() > 1); | 406 | BUG_ON(num_online_cpus() > 1); |
406 | /* Make sure the CPUs won't be enabled by someone else */ | 407 | /* Make sure the CPUs won't be enabled by someone else */ |
@@ -413,6 +414,14 @@ int disable_nonboot_cpus(void) | |||
413 | return error; | 414 | return error; |
414 | } | 415 | } |
415 | 416 | ||
417 | void __weak arch_enable_nonboot_cpus_begin(void) | ||
418 | { | ||
419 | } | ||
420 | |||
421 | void __weak arch_enable_nonboot_cpus_end(void) | ||
422 | { | ||
423 | } | ||
424 | |||
416 | void __ref enable_nonboot_cpus(void) | 425 | void __ref enable_nonboot_cpus(void) |
417 | { | 426 | { |
418 | int cpu, error; | 427 | int cpu, error; |
@@ -424,6 +433,9 @@ void __ref enable_nonboot_cpus(void) | |||
424 | goto out; | 433 | goto out; |
425 | 434 | ||
426 | printk("Enabling non-boot CPUs ...\n"); | 435 | printk("Enabling non-boot CPUs ...\n"); |
436 | |||
437 | arch_enable_nonboot_cpus_begin(); | ||
438 | |||
427 | for_each_cpu(cpu, frozen_cpus) { | 439 | for_each_cpu(cpu, frozen_cpus) { |
428 | error = _cpu_up(cpu, 1); | 440 | error = _cpu_up(cpu, 1); |
429 | if (!error) { | 441 | if (!error) { |
@@ -432,6 +444,9 @@ void __ref enable_nonboot_cpus(void) | |||
432 | } | 444 | } |
433 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); | 445 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); |
434 | } | 446 | } |
447 | |||
448 | arch_enable_nonboot_cpus_end(); | ||
449 | |||
435 | cpumask_clear(frozen_cpus); | 450 | cpumask_clear(frozen_cpus); |
436 | out: | 451 | out: |
437 | cpu_maps_update_done(); | 452 | cpu_maps_update_done(); |
diff --git a/kernel/cred.c b/kernel/cred.c index 1bb4d7e5d616..d7f7a01082eb 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
@@ -18,6 +18,18 @@ | |||
18 | #include <linux/cn_proc.h> | 18 | #include <linux/cn_proc.h> |
19 | #include "cred-internals.h" | 19 | #include "cred-internals.h" |
20 | 20 | ||
21 | #if 0 | ||
22 | #define kdebug(FMT, ...) \ | ||
23 | printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__) | ||
24 | #else | ||
25 | static inline __attribute__((format(printf, 1, 2))) | ||
26 | void no_printk(const char *fmt, ...) | ||
27 | { | ||
28 | } | ||
29 | #define kdebug(FMT, ...) \ | ||
30 | no_printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__) | ||
31 | #endif | ||
32 | |||
21 | static struct kmem_cache *cred_jar; | 33 | static struct kmem_cache *cred_jar; |
22 | 34 | ||
23 | /* | 35 | /* |
@@ -36,6 +48,10 @@ static struct thread_group_cred init_tgcred = { | |||
36 | */ | 48 | */ |
37 | struct cred init_cred = { | 49 | struct cred init_cred = { |
38 | .usage = ATOMIC_INIT(4), | 50 | .usage = ATOMIC_INIT(4), |
51 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
52 | .subscribers = ATOMIC_INIT(2), | ||
53 | .magic = CRED_MAGIC, | ||
54 | #endif | ||
39 | .securebits = SECUREBITS_DEFAULT, | 55 | .securebits = SECUREBITS_DEFAULT, |
40 | .cap_inheritable = CAP_INIT_INH_SET, | 56 | .cap_inheritable = CAP_INIT_INH_SET, |
41 | .cap_permitted = CAP_FULL_SET, | 57 | .cap_permitted = CAP_FULL_SET, |
@@ -48,6 +64,31 @@ struct cred init_cred = { | |||
48 | #endif | 64 | #endif |
49 | }; | 65 | }; |
50 | 66 | ||
67 | static inline void set_cred_subscribers(struct cred *cred, int n) | ||
68 | { | ||
69 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
70 | atomic_set(&cred->subscribers, n); | ||
71 | #endif | ||
72 | } | ||
73 | |||
74 | static inline int read_cred_subscribers(const struct cred *cred) | ||
75 | { | ||
76 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
77 | return atomic_read(&cred->subscribers); | ||
78 | #else | ||
79 | return 0; | ||
80 | #endif | ||
81 | } | ||
82 | |||
83 | static inline void alter_cred_subscribers(const struct cred *_cred, int n) | ||
84 | { | ||
85 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
86 | struct cred *cred = (struct cred *) _cred; | ||
87 | |||
88 | atomic_add(n, &cred->subscribers); | ||
89 | #endif | ||
90 | } | ||
91 | |||
51 | /* | 92 | /* |
52 | * Dispose of the shared task group credentials | 93 | * Dispose of the shared task group credentials |
53 | */ | 94 | */ |
@@ -85,15 +126,29 @@ static void put_cred_rcu(struct rcu_head *rcu) | |||
85 | { | 126 | { |
86 | struct cred *cred = container_of(rcu, struct cred, rcu); | 127 | struct cred *cred = container_of(rcu, struct cred, rcu); |
87 | 128 | ||
129 | kdebug("put_cred_rcu(%p)", cred); | ||
130 | |||
131 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
132 | if (cred->magic != CRED_MAGIC_DEAD || | ||
133 | atomic_read(&cred->usage) != 0 || | ||
134 | read_cred_subscribers(cred) != 0) | ||
135 | panic("CRED: put_cred_rcu() sees %p with" | ||
136 | " mag %x, put %p, usage %d, subscr %d\n", | ||
137 | cred, cred->magic, cred->put_addr, | ||
138 | atomic_read(&cred->usage), | ||
139 | read_cred_subscribers(cred)); | ||
140 | #else | ||
88 | if (atomic_read(&cred->usage) != 0) | 141 | if (atomic_read(&cred->usage) != 0) |
89 | panic("CRED: put_cred_rcu() sees %p with usage %d\n", | 142 | panic("CRED: put_cred_rcu() sees %p with usage %d\n", |
90 | cred, atomic_read(&cred->usage)); | 143 | cred, atomic_read(&cred->usage)); |
144 | #endif | ||
91 | 145 | ||
92 | security_cred_free(cred); | 146 | security_cred_free(cred); |
93 | key_put(cred->thread_keyring); | 147 | key_put(cred->thread_keyring); |
94 | key_put(cred->request_key_auth); | 148 | key_put(cred->request_key_auth); |
95 | release_tgcred(cred); | 149 | release_tgcred(cred); |
96 | put_group_info(cred->group_info); | 150 | if (cred->group_info) |
151 | put_group_info(cred->group_info); | ||
97 | free_uid(cred->user); | 152 | free_uid(cred->user); |
98 | kmem_cache_free(cred_jar, cred); | 153 | kmem_cache_free(cred_jar, cred); |
99 | } | 154 | } |
@@ -106,12 +161,90 @@ static void put_cred_rcu(struct rcu_head *rcu) | |||
106 | */ | 161 | */ |
107 | void __put_cred(struct cred *cred) | 162 | void __put_cred(struct cred *cred) |
108 | { | 163 | { |
164 | kdebug("__put_cred(%p{%d,%d})", cred, | ||
165 | atomic_read(&cred->usage), | ||
166 | read_cred_subscribers(cred)); | ||
167 | |||
109 | BUG_ON(atomic_read(&cred->usage) != 0); | 168 | BUG_ON(atomic_read(&cred->usage) != 0); |
169 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
170 | BUG_ON(read_cred_subscribers(cred) != 0); | ||
171 | cred->magic = CRED_MAGIC_DEAD; | ||
172 | cred->put_addr = __builtin_return_address(0); | ||
173 | #endif | ||
174 | BUG_ON(cred == current->cred); | ||
175 | BUG_ON(cred == current->real_cred); | ||
110 | 176 | ||
111 | call_rcu(&cred->rcu, put_cred_rcu); | 177 | call_rcu(&cred->rcu, put_cred_rcu); |
112 | } | 178 | } |
113 | EXPORT_SYMBOL(__put_cred); | 179 | EXPORT_SYMBOL(__put_cred); |
114 | 180 | ||
181 | /* | ||
182 | * Clean up a task's credentials when it exits | ||
183 | */ | ||
184 | void exit_creds(struct task_struct *tsk) | ||
185 | { | ||
186 | struct cred *cred; | ||
187 | |||
188 | kdebug("exit_creds(%u,%p,%p,{%d,%d})", tsk->pid, tsk->real_cred, tsk->cred, | ||
189 | atomic_read(&tsk->cred->usage), | ||
190 | read_cred_subscribers(tsk->cred)); | ||
191 | |||
192 | cred = (struct cred *) tsk->real_cred; | ||
193 | tsk->real_cred = NULL; | ||
194 | validate_creds(cred); | ||
195 | alter_cred_subscribers(cred, -1); | ||
196 | put_cred(cred); | ||
197 | |||
198 | cred = (struct cred *) tsk->cred; | ||
199 | tsk->cred = NULL; | ||
200 | validate_creds(cred); | ||
201 | alter_cred_subscribers(cred, -1); | ||
202 | put_cred(cred); | ||
203 | |||
204 | cred = (struct cred *) tsk->replacement_session_keyring; | ||
205 | if (cred) { | ||
206 | tsk->replacement_session_keyring = NULL; | ||
207 | validate_creds(cred); | ||
208 | put_cred(cred); | ||
209 | } | ||
210 | } | ||
211 | |||
212 | /* | ||
213 | * Allocate blank credentials, such that the credentials can be filled in at a | ||
214 | * later date without risk of ENOMEM. | ||
215 | */ | ||
216 | struct cred *cred_alloc_blank(void) | ||
217 | { | ||
218 | struct cred *new; | ||
219 | |||
220 | new = kmem_cache_zalloc(cred_jar, GFP_KERNEL); | ||
221 | if (!new) | ||
222 | return NULL; | ||
223 | |||
224 | #ifdef CONFIG_KEYS | ||
225 | new->tgcred = kzalloc(sizeof(*new->tgcred), GFP_KERNEL); | ||
226 | if (!new->tgcred) { | ||
227 | kfree(new); | ||
228 | return NULL; | ||
229 | } | ||
230 | atomic_set(&new->tgcred->usage, 1); | ||
231 | #endif | ||
232 | |||
233 | atomic_set(&new->usage, 1); | ||
234 | |||
235 | if (security_cred_alloc_blank(new, GFP_KERNEL) < 0) | ||
236 | goto error; | ||
237 | |||
238 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
239 | new->magic = CRED_MAGIC; | ||
240 | #endif | ||
241 | return new; | ||
242 | |||
243 | error: | ||
244 | abort_creds(new); | ||
245 | return NULL; | ||
246 | } | ||
247 | |||
115 | /** | 248 | /** |
116 | * prepare_creds - Prepare a new set of credentials for modification | 249 | * prepare_creds - Prepare a new set of credentials for modification |
117 | * | 250 | * |
@@ -132,16 +265,19 @@ struct cred *prepare_creds(void) | |||
132 | const struct cred *old; | 265 | const struct cred *old; |
133 | struct cred *new; | 266 | struct cred *new; |
134 | 267 | ||
135 | BUG_ON(atomic_read(&task->real_cred->usage) < 1); | 268 | validate_process_creds(); |
136 | 269 | ||
137 | new = kmem_cache_alloc(cred_jar, GFP_KERNEL); | 270 | new = kmem_cache_alloc(cred_jar, GFP_KERNEL); |
138 | if (!new) | 271 | if (!new) |
139 | return NULL; | 272 | return NULL; |
140 | 273 | ||
274 | kdebug("prepare_creds() alloc %p", new); | ||
275 | |||
141 | old = task->cred; | 276 | old = task->cred; |
142 | memcpy(new, old, sizeof(struct cred)); | 277 | memcpy(new, old, sizeof(struct cred)); |
143 | 278 | ||
144 | atomic_set(&new->usage, 1); | 279 | atomic_set(&new->usage, 1); |
280 | set_cred_subscribers(new, 0); | ||
145 | get_group_info(new->group_info); | 281 | get_group_info(new->group_info); |
146 | get_uid(new->user); | 282 | get_uid(new->user); |
147 | 283 | ||
@@ -157,6 +293,7 @@ struct cred *prepare_creds(void) | |||
157 | 293 | ||
158 | if (security_prepare_creds(new, old, GFP_KERNEL) < 0) | 294 | if (security_prepare_creds(new, old, GFP_KERNEL) < 0) |
159 | goto error; | 295 | goto error; |
296 | validate_creds(new); | ||
160 | return new; | 297 | return new; |
161 | 298 | ||
162 | error: | 299 | error: |
@@ -229,9 +366,12 @@ struct cred *prepare_usermodehelper_creds(void) | |||
229 | if (!new) | 366 | if (!new) |
230 | return NULL; | 367 | return NULL; |
231 | 368 | ||
369 | kdebug("prepare_usermodehelper_creds() alloc %p", new); | ||
370 | |||
232 | memcpy(new, &init_cred, sizeof(struct cred)); | 371 | memcpy(new, &init_cred, sizeof(struct cred)); |
233 | 372 | ||
234 | atomic_set(&new->usage, 1); | 373 | atomic_set(&new->usage, 1); |
374 | set_cred_subscribers(new, 0); | ||
235 | get_group_info(new->group_info); | 375 | get_group_info(new->group_info); |
236 | get_uid(new->user); | 376 | get_uid(new->user); |
237 | 377 | ||
@@ -250,6 +390,7 @@ struct cred *prepare_usermodehelper_creds(void) | |||
250 | #endif | 390 | #endif |
251 | if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0) | 391 | if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0) |
252 | goto error; | 392 | goto error; |
393 | validate_creds(new); | ||
253 | 394 | ||
254 | BUG_ON(atomic_read(&new->usage) != 1); | 395 | BUG_ON(atomic_read(&new->usage) != 1); |
255 | return new; | 396 | return new; |
@@ -286,6 +427,10 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags) | |||
286 | ) { | 427 | ) { |
287 | p->real_cred = get_cred(p->cred); | 428 | p->real_cred = get_cred(p->cred); |
288 | get_cred(p->cred); | 429 | get_cred(p->cred); |
430 | alter_cred_subscribers(p->cred, 2); | ||
431 | kdebug("share_creds(%p{%d,%d})", | ||
432 | p->cred, atomic_read(&p->cred->usage), | ||
433 | read_cred_subscribers(p->cred)); | ||
289 | atomic_inc(&p->cred->user->processes); | 434 | atomic_inc(&p->cred->user->processes); |
290 | return 0; | 435 | return 0; |
291 | } | 436 | } |
@@ -331,6 +476,8 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags) | |||
331 | 476 | ||
332 | atomic_inc(&new->user->processes); | 477 | atomic_inc(&new->user->processes); |
333 | p->cred = p->real_cred = get_cred(new); | 478 | p->cred = p->real_cred = get_cred(new); |
479 | alter_cred_subscribers(new, 2); | ||
480 | validate_creds(new); | ||
334 | return 0; | 481 | return 0; |
335 | 482 | ||
336 | error_put: | 483 | error_put: |
@@ -355,13 +502,20 @@ error_put: | |||
355 | int commit_creds(struct cred *new) | 502 | int commit_creds(struct cred *new) |
356 | { | 503 | { |
357 | struct task_struct *task = current; | 504 | struct task_struct *task = current; |
358 | const struct cred *old; | 505 | const struct cred *old = task->real_cred; |
359 | 506 | ||
360 | BUG_ON(task->cred != task->real_cred); | 507 | kdebug("commit_creds(%p{%d,%d})", new, |
361 | BUG_ON(atomic_read(&task->real_cred->usage) < 2); | 508 | atomic_read(&new->usage), |
509 | read_cred_subscribers(new)); | ||
510 | |||
511 | BUG_ON(task->cred != old); | ||
512 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
513 | BUG_ON(read_cred_subscribers(old) < 2); | ||
514 | validate_creds(old); | ||
515 | validate_creds(new); | ||
516 | #endif | ||
362 | BUG_ON(atomic_read(&new->usage) < 1); | 517 | BUG_ON(atomic_read(&new->usage) < 1); |
363 | 518 | ||
364 | old = task->real_cred; | ||
365 | security_commit_creds(new, old); | 519 | security_commit_creds(new, old); |
366 | 520 | ||
367 | get_cred(new); /* we will require a ref for the subj creds too */ | 521 | get_cred(new); /* we will require a ref for the subj creds too */ |
@@ -390,12 +544,14 @@ int commit_creds(struct cred *new) | |||
390 | * cheaply with the new uid cache, so if it matters | 544 | * cheaply with the new uid cache, so if it matters |
391 | * we should be checking for it. -DaveM | 545 | * we should be checking for it. -DaveM |
392 | */ | 546 | */ |
547 | alter_cred_subscribers(new, 2); | ||
393 | if (new->user != old->user) | 548 | if (new->user != old->user) |
394 | atomic_inc(&new->user->processes); | 549 | atomic_inc(&new->user->processes); |
395 | rcu_assign_pointer(task->real_cred, new); | 550 | rcu_assign_pointer(task->real_cred, new); |
396 | rcu_assign_pointer(task->cred, new); | 551 | rcu_assign_pointer(task->cred, new); |
397 | if (new->user != old->user) | 552 | if (new->user != old->user) |
398 | atomic_dec(&old->user->processes); | 553 | atomic_dec(&old->user->processes); |
554 | alter_cred_subscribers(old, -2); | ||
399 | 555 | ||
400 | sched_switch_user(task); | 556 | sched_switch_user(task); |
401 | 557 | ||
@@ -428,6 +584,13 @@ EXPORT_SYMBOL(commit_creds); | |||
428 | */ | 584 | */ |
429 | void abort_creds(struct cred *new) | 585 | void abort_creds(struct cred *new) |
430 | { | 586 | { |
587 | kdebug("abort_creds(%p{%d,%d})", new, | ||
588 | atomic_read(&new->usage), | ||
589 | read_cred_subscribers(new)); | ||
590 | |||
591 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
592 | BUG_ON(read_cred_subscribers(new) != 0); | ||
593 | #endif | ||
431 | BUG_ON(atomic_read(&new->usage) < 1); | 594 | BUG_ON(atomic_read(&new->usage) < 1); |
432 | put_cred(new); | 595 | put_cred(new); |
433 | } | 596 | } |
@@ -444,7 +607,20 @@ const struct cred *override_creds(const struct cred *new) | |||
444 | { | 607 | { |
445 | const struct cred *old = current->cred; | 608 | const struct cred *old = current->cred; |
446 | 609 | ||
447 | rcu_assign_pointer(current->cred, get_cred(new)); | 610 | kdebug("override_creds(%p{%d,%d})", new, |
611 | atomic_read(&new->usage), | ||
612 | read_cred_subscribers(new)); | ||
613 | |||
614 | validate_creds(old); | ||
615 | validate_creds(new); | ||
616 | get_cred(new); | ||
617 | alter_cred_subscribers(new, 1); | ||
618 | rcu_assign_pointer(current->cred, new); | ||
619 | alter_cred_subscribers(old, -1); | ||
620 | |||
621 | kdebug("override_creds() = %p{%d,%d}", old, | ||
622 | atomic_read(&old->usage), | ||
623 | read_cred_subscribers(old)); | ||
448 | return old; | 624 | return old; |
449 | } | 625 | } |
450 | EXPORT_SYMBOL(override_creds); | 626 | EXPORT_SYMBOL(override_creds); |
@@ -460,7 +636,15 @@ void revert_creds(const struct cred *old) | |||
460 | { | 636 | { |
461 | const struct cred *override = current->cred; | 637 | const struct cred *override = current->cred; |
462 | 638 | ||
639 | kdebug("revert_creds(%p{%d,%d})", old, | ||
640 | atomic_read(&old->usage), | ||
641 | read_cred_subscribers(old)); | ||
642 | |||
643 | validate_creds(old); | ||
644 | validate_creds(override); | ||
645 | alter_cred_subscribers(old, 1); | ||
463 | rcu_assign_pointer(current->cred, old); | 646 | rcu_assign_pointer(current->cred, old); |
647 | alter_cred_subscribers(override, -1); | ||
464 | put_cred(override); | 648 | put_cred(override); |
465 | } | 649 | } |
466 | EXPORT_SYMBOL(revert_creds); | 650 | EXPORT_SYMBOL(revert_creds); |
@@ -502,11 +686,15 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon) | |||
502 | if (!new) | 686 | if (!new) |
503 | return NULL; | 687 | return NULL; |
504 | 688 | ||
689 | kdebug("prepare_kernel_cred() alloc %p", new); | ||
690 | |||
505 | if (daemon) | 691 | if (daemon) |
506 | old = get_task_cred(daemon); | 692 | old = get_task_cred(daemon); |
507 | else | 693 | else |
508 | old = get_cred(&init_cred); | 694 | old = get_cred(&init_cred); |
509 | 695 | ||
696 | validate_creds(old); | ||
697 | |||
510 | *new = *old; | 698 | *new = *old; |
511 | get_uid(new->user); | 699 | get_uid(new->user); |
512 | get_group_info(new->group_info); | 700 | get_group_info(new->group_info); |
@@ -526,7 +714,9 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon) | |||
526 | goto error; | 714 | goto error; |
527 | 715 | ||
528 | atomic_set(&new->usage, 1); | 716 | atomic_set(&new->usage, 1); |
717 | set_cred_subscribers(new, 0); | ||
529 | put_cred(old); | 718 | put_cred(old); |
719 | validate_creds(new); | ||
530 | return new; | 720 | return new; |
531 | 721 | ||
532 | error: | 722 | error: |
@@ -589,3 +779,95 @@ int set_create_files_as(struct cred *new, struct inode *inode) | |||
589 | return security_kernel_create_files_as(new, inode); | 779 | return security_kernel_create_files_as(new, inode); |
590 | } | 780 | } |
591 | EXPORT_SYMBOL(set_create_files_as); | 781 | EXPORT_SYMBOL(set_create_files_as); |
782 | |||
783 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
784 | |||
785 | /* | ||
786 | * dump invalid credentials | ||
787 | */ | ||
788 | static void dump_invalid_creds(const struct cred *cred, const char *label, | ||
789 | const struct task_struct *tsk) | ||
790 | { | ||
791 | printk(KERN_ERR "CRED: %s credentials: %p %s%s%s\n", | ||
792 | label, cred, | ||
793 | cred == &init_cred ? "[init]" : "", | ||
794 | cred == tsk->real_cred ? "[real]" : "", | ||
795 | cred == tsk->cred ? "[eff]" : ""); | ||
796 | printk(KERN_ERR "CRED: ->magic=%x, put_addr=%p\n", | ||
797 | cred->magic, cred->put_addr); | ||
798 | printk(KERN_ERR "CRED: ->usage=%d, subscr=%d\n", | ||
799 | atomic_read(&cred->usage), | ||
800 | read_cred_subscribers(cred)); | ||
801 | printk(KERN_ERR "CRED: ->*uid = { %d,%d,%d,%d }\n", | ||
802 | cred->uid, cred->euid, cred->suid, cred->fsuid); | ||
803 | printk(KERN_ERR "CRED: ->*gid = { %d,%d,%d,%d }\n", | ||
804 | cred->gid, cred->egid, cred->sgid, cred->fsgid); | ||
805 | #ifdef CONFIG_SECURITY | ||
806 | printk(KERN_ERR "CRED: ->security is %p\n", cred->security); | ||
807 | if ((unsigned long) cred->security >= PAGE_SIZE && | ||
808 | (((unsigned long) cred->security & 0xffffff00) != | ||
809 | (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8))) | ||
810 | printk(KERN_ERR "CRED: ->security {%x, %x}\n", | ||
811 | ((u32*)cred->security)[0], | ||
812 | ((u32*)cred->security)[1]); | ||
813 | #endif | ||
814 | } | ||
815 | |||
816 | /* | ||
817 | * report use of invalid credentials | ||
818 | */ | ||
819 | void __invalid_creds(const struct cred *cred, const char *file, unsigned line) | ||
820 | { | ||
821 | printk(KERN_ERR "CRED: Invalid credentials\n"); | ||
822 | printk(KERN_ERR "CRED: At %s:%u\n", file, line); | ||
823 | dump_invalid_creds(cred, "Specified", current); | ||
824 | BUG(); | ||
825 | } | ||
826 | EXPORT_SYMBOL(__invalid_creds); | ||
827 | |||
828 | /* | ||
829 | * check the credentials on a process | ||
830 | */ | ||
831 | void __validate_process_creds(struct task_struct *tsk, | ||
832 | const char *file, unsigned line) | ||
833 | { | ||
834 | if (tsk->cred == tsk->real_cred) { | ||
835 | if (unlikely(read_cred_subscribers(tsk->cred) < 2 || | ||
836 | creds_are_invalid(tsk->cred))) | ||
837 | goto invalid_creds; | ||
838 | } else { | ||
839 | if (unlikely(read_cred_subscribers(tsk->real_cred) < 1 || | ||
840 | read_cred_subscribers(tsk->cred) < 1 || | ||
841 | creds_are_invalid(tsk->real_cred) || | ||
842 | creds_are_invalid(tsk->cred))) | ||
843 | goto invalid_creds; | ||
844 | } | ||
845 | return; | ||
846 | |||
847 | invalid_creds: | ||
848 | printk(KERN_ERR "CRED: Invalid process credentials\n"); | ||
849 | printk(KERN_ERR "CRED: At %s:%u\n", file, line); | ||
850 | |||
851 | dump_invalid_creds(tsk->real_cred, "Real", tsk); | ||
852 | if (tsk->cred != tsk->real_cred) | ||
853 | dump_invalid_creds(tsk->cred, "Effective", tsk); | ||
854 | else | ||
855 | printk(KERN_ERR "CRED: Effective creds == Real creds\n"); | ||
856 | BUG(); | ||
857 | } | ||
858 | EXPORT_SYMBOL(__validate_process_creds); | ||
859 | |||
860 | /* | ||
861 | * check creds for do_exit() | ||
862 | */ | ||
863 | void validate_creds_for_do_exit(struct task_struct *tsk) | ||
864 | { | ||
865 | kdebug("validate_creds_for_do_exit(%p,%p{%d,%d})", | ||
866 | tsk->real_cred, tsk->cred, | ||
867 | atomic_read(&tsk->cred->usage), | ||
868 | read_cred_subscribers(tsk->cred)); | ||
869 | |||
870 | __validate_process_creds(tsk, __FILE__, __LINE__); | ||
871 | } | ||
872 | |||
873 | #endif /* CONFIG_DEBUG_CREDENTIALS */ | ||
diff --git a/kernel/delayacct.c b/kernel/delayacct.c index abb6e17505e2..ead9b610aa71 100644 --- a/kernel/delayacct.c +++ b/kernel/delayacct.c | |||
@@ -15,6 +15,7 @@ | |||
15 | 15 | ||
16 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
17 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
18 | #include <linux/taskstats.h> | ||
18 | #include <linux/time.h> | 19 | #include <linux/time.h> |
19 | #include <linux/sysctl.h> | 20 | #include <linux/sysctl.h> |
20 | #include <linux/delayacct.h> | 21 | #include <linux/delayacct.h> |
diff --git a/kernel/dma-coherent.c b/kernel/dma-coherent.c deleted file mode 100644 index 962a3b574f21..000000000000 --- a/kernel/dma-coherent.c +++ /dev/null | |||
@@ -1,176 +0,0 @@ | |||
1 | /* | ||
2 | * Coherent per-device memory handling. | ||
3 | * Borrowed from i386 | ||
4 | */ | ||
5 | #include <linux/kernel.h> | ||
6 | #include <linux/dma-mapping.h> | ||
7 | |||
8 | struct dma_coherent_mem { | ||
9 | void *virt_base; | ||
10 | u32 device_base; | ||
11 | int size; | ||
12 | int flags; | ||
13 | unsigned long *bitmap; | ||
14 | }; | ||
15 | |||
16 | int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, | ||
17 | dma_addr_t device_addr, size_t size, int flags) | ||
18 | { | ||
19 | void __iomem *mem_base = NULL; | ||
20 | int pages = size >> PAGE_SHIFT; | ||
21 | int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); | ||
22 | |||
23 | if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0) | ||
24 | goto out; | ||
25 | if (!size) | ||
26 | goto out; | ||
27 | if (dev->dma_mem) | ||
28 | goto out; | ||
29 | |||
30 | /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ | ||
31 | |||
32 | mem_base = ioremap(bus_addr, size); | ||
33 | if (!mem_base) | ||
34 | goto out; | ||
35 | |||
36 | dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); | ||
37 | if (!dev->dma_mem) | ||
38 | goto out; | ||
39 | dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); | ||
40 | if (!dev->dma_mem->bitmap) | ||
41 | goto free1_out; | ||
42 | |||
43 | dev->dma_mem->virt_base = mem_base; | ||
44 | dev->dma_mem->device_base = device_addr; | ||
45 | dev->dma_mem->size = pages; | ||
46 | dev->dma_mem->flags = flags; | ||
47 | |||
48 | if (flags & DMA_MEMORY_MAP) | ||
49 | return DMA_MEMORY_MAP; | ||
50 | |||
51 | return DMA_MEMORY_IO; | ||
52 | |||
53 | free1_out: | ||
54 | kfree(dev->dma_mem); | ||
55 | out: | ||
56 | if (mem_base) | ||
57 | iounmap(mem_base); | ||
58 | return 0; | ||
59 | } | ||
60 | EXPORT_SYMBOL(dma_declare_coherent_memory); | ||
61 | |||
62 | void dma_release_declared_memory(struct device *dev) | ||
63 | { | ||
64 | struct dma_coherent_mem *mem = dev->dma_mem; | ||
65 | |||
66 | if (!mem) | ||
67 | return; | ||
68 | dev->dma_mem = NULL; | ||
69 | iounmap(mem->virt_base); | ||
70 | kfree(mem->bitmap); | ||
71 | kfree(mem); | ||
72 | } | ||
73 | EXPORT_SYMBOL(dma_release_declared_memory); | ||
74 | |||
75 | void *dma_mark_declared_memory_occupied(struct device *dev, | ||
76 | dma_addr_t device_addr, size_t size) | ||
77 | { | ||
78 | struct dma_coherent_mem *mem = dev->dma_mem; | ||
79 | int pos, err; | ||
80 | |||
81 | size += device_addr & ~PAGE_MASK; | ||
82 | |||
83 | if (!mem) | ||
84 | return ERR_PTR(-EINVAL); | ||
85 | |||
86 | pos = (device_addr - mem->device_base) >> PAGE_SHIFT; | ||
87 | err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); | ||
88 | if (err != 0) | ||
89 | return ERR_PTR(err); | ||
90 | return mem->virt_base + (pos << PAGE_SHIFT); | ||
91 | } | ||
92 | EXPORT_SYMBOL(dma_mark_declared_memory_occupied); | ||
93 | |||
94 | /** | ||
95 | * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area | ||
96 | * | ||
97 | * @dev: device from which we allocate memory | ||
98 | * @size: size of requested memory area | ||
99 | * @dma_handle: This will be filled with the correct dma handle | ||
100 | * @ret: This pointer will be filled with the virtual address | ||
101 | * to allocated area. | ||
102 | * | ||
103 | * This function should be only called from per-arch dma_alloc_coherent() | ||
104 | * to support allocation from per-device coherent memory pools. | ||
105 | * | ||
106 | * Returns 0 if dma_alloc_coherent should continue with allocating from | ||
107 | * generic memory areas, or !0 if dma_alloc_coherent should return @ret. | ||
108 | */ | ||
109 | int dma_alloc_from_coherent(struct device *dev, ssize_t size, | ||
110 | dma_addr_t *dma_handle, void **ret) | ||
111 | { | ||
112 | struct dma_coherent_mem *mem; | ||
113 | int order = get_order(size); | ||
114 | int pageno; | ||
115 | |||
116 | if (!dev) | ||
117 | return 0; | ||
118 | mem = dev->dma_mem; | ||
119 | if (!mem) | ||
120 | return 0; | ||
121 | |||
122 | *ret = NULL; | ||
123 | |||
124 | if (unlikely(size > (mem->size << PAGE_SHIFT))) | ||
125 | goto err; | ||
126 | |||
127 | pageno = bitmap_find_free_region(mem->bitmap, mem->size, order); | ||
128 | if (unlikely(pageno < 0)) | ||
129 | goto err; | ||
130 | |||
131 | /* | ||
132 | * Memory was found in the per-device area. | ||
133 | */ | ||
134 | *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); | ||
135 | *ret = mem->virt_base + (pageno << PAGE_SHIFT); | ||
136 | memset(*ret, 0, size); | ||
137 | |||
138 | return 1; | ||
139 | |||
140 | err: | ||
141 | /* | ||
142 | * In the case where the allocation can not be satisfied from the | ||
143 | * per-device area, try to fall back to generic memory if the | ||
144 | * constraints allow it. | ||
145 | */ | ||
146 | return mem->flags & DMA_MEMORY_EXCLUSIVE; | ||
147 | } | ||
148 | EXPORT_SYMBOL(dma_alloc_from_coherent); | ||
149 | |||
150 | /** | ||
151 | * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool | ||
152 | * @dev: device from which the memory was allocated | ||
153 | * @order: the order of pages allocated | ||
154 | * @vaddr: virtual address of allocated pages | ||
155 | * | ||
156 | * This checks whether the memory was allocated from the per-device | ||
157 | * coherent memory pool and if so, releases that memory. | ||
158 | * | ||
159 | * Returns 1 if we correctly released the memory, or 0 if | ||
160 | * dma_release_coherent() should proceed with releasing memory from | ||
161 | * generic pools. | ||
162 | */ | ||
163 | int dma_release_from_coherent(struct device *dev, int order, void *vaddr) | ||
164 | { | ||
165 | struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; | ||
166 | |||
167 | if (mem && vaddr >= mem->virt_base && vaddr < | ||
168 | (mem->virt_base + (mem->size << PAGE_SHIFT))) { | ||
169 | int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; | ||
170 | |||
171 | bitmap_release_region(mem->bitmap, page, order); | ||
172 | return 1; | ||
173 | } | ||
174 | return 0; | ||
175 | } | ||
176 | EXPORT_SYMBOL(dma_release_from_coherent); | ||
diff --git a/kernel/exit.c b/kernel/exit.c index 869dc221733e..60d6fdcc9265 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -47,7 +47,7 @@ | |||
47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
50 | #include <linux/perf_counter.h> | 50 | #include <linux/perf_event.h> |
51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
52 | 52 | ||
53 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
@@ -154,8 +154,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
154 | { | 154 | { |
155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
156 | 156 | ||
157 | #ifdef CONFIG_PERF_COUNTERS | 157 | #ifdef CONFIG_PERF_EVENTS |
158 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | 158 | WARN_ON_ONCE(tsk->perf_event_ctxp); |
159 | #endif | 159 | #endif |
160 | trace_sched_process_free(tsk); | 160 | trace_sched_process_free(tsk); |
161 | put_task_struct(tsk); | 161 | put_task_struct(tsk); |
@@ -359,8 +359,10 @@ void __set_special_pids(struct pid *pid) | |||
359 | { | 359 | { |
360 | struct task_struct *curr = current->group_leader; | 360 | struct task_struct *curr = current->group_leader; |
361 | 361 | ||
362 | if (task_session(curr) != pid) | 362 | if (task_session(curr) != pid) { |
363 | change_pid(curr, PIDTYPE_SID, pid); | 363 | change_pid(curr, PIDTYPE_SID, pid); |
364 | proc_sid_connector(curr); | ||
365 | } | ||
364 | 366 | ||
365 | if (task_pgrp(curr) != pid) | 367 | if (task_pgrp(curr) != pid) |
366 | change_pid(curr, PIDTYPE_PGID, pid); | 368 | change_pid(curr, PIDTYPE_PGID, pid); |
@@ -901,6 +903,8 @@ NORET_TYPE void do_exit(long code) | |||
901 | 903 | ||
902 | tracehook_report_exit(&code); | 904 | tracehook_report_exit(&code); |
903 | 905 | ||
906 | validate_creds_for_do_exit(tsk); | ||
907 | |||
904 | /* | 908 | /* |
905 | * We're taking recursive faults here in do_exit. Safest is to just | 909 | * We're taking recursive faults here in do_exit. Safest is to just |
906 | * leave this task alone and wait for reboot. | 910 | * leave this task alone and wait for reboot. |
@@ -943,6 +947,8 @@ NORET_TYPE void do_exit(long code) | |||
943 | if (group_dead) { | 947 | if (group_dead) { |
944 | hrtimer_cancel(&tsk->signal->real_timer); | 948 | hrtimer_cancel(&tsk->signal->real_timer); |
945 | exit_itimers(tsk->signal); | 949 | exit_itimers(tsk->signal); |
950 | if (tsk->mm) | ||
951 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | ||
946 | } | 952 | } |
947 | acct_collect(code, group_dead); | 953 | acct_collect(code, group_dead); |
948 | if (group_dead) | 954 | if (group_dead) |
@@ -979,7 +985,7 @@ NORET_TYPE void do_exit(long code) | |||
979 | * Flush inherited counters to the parent - before the parent | 985 | * Flush inherited counters to the parent - before the parent |
980 | * gets woken up by child-exit notifications. | 986 | * gets woken up by child-exit notifications. |
981 | */ | 987 | */ |
982 | perf_counter_exit_task(tsk); | 988 | perf_event_exit_task(tsk); |
983 | 989 | ||
984 | exit_notify(tsk, group_dead); | 990 | exit_notify(tsk, group_dead); |
985 | #ifdef CONFIG_NUMA | 991 | #ifdef CONFIG_NUMA |
@@ -1009,7 +1015,10 @@ NORET_TYPE void do_exit(long code) | |||
1009 | if (tsk->splice_pipe) | 1015 | if (tsk->splice_pipe) |
1010 | __free_pipe_info(tsk->splice_pipe); | 1016 | __free_pipe_info(tsk->splice_pipe); |
1011 | 1017 | ||
1018 | validate_creds_for_do_exit(tsk); | ||
1019 | |||
1012 | preempt_disable(); | 1020 | preempt_disable(); |
1021 | exit_rcu(); | ||
1013 | /* causes final put_task_struct in finish_task_switch(). */ | 1022 | /* causes final put_task_struct in finish_task_switch(). */ |
1014 | tsk->state = TASK_DEAD; | 1023 | tsk->state = TASK_DEAD; |
1015 | schedule(); | 1024 | schedule(); |
@@ -1203,6 +1212,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1203 | if (likely(!traced) && likely(!task_detached(p))) { | 1212 | if (likely(!traced) && likely(!task_detached(p))) { |
1204 | struct signal_struct *psig; | 1213 | struct signal_struct *psig; |
1205 | struct signal_struct *sig; | 1214 | struct signal_struct *sig; |
1215 | unsigned long maxrss; | ||
1206 | 1216 | ||
1207 | /* | 1217 | /* |
1208 | * The resource counters for the group leader are in its | 1218 | * The resource counters for the group leader are in its |
@@ -1251,6 +1261,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1251 | psig->coublock += | 1261 | psig->coublock += |
1252 | task_io_get_oublock(p) + | 1262 | task_io_get_oublock(p) + |
1253 | sig->oublock + sig->coublock; | 1263 | sig->oublock + sig->coublock; |
1264 | maxrss = max(sig->maxrss, sig->cmaxrss); | ||
1265 | if (psig->cmaxrss < maxrss) | ||
1266 | psig->cmaxrss = maxrss; | ||
1254 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1267 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1255 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1268 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
1256 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1269 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
diff --git a/kernel/fork.c b/kernel/fork.c index e6c04d462ab2..51ad0b0b7266 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -49,6 +49,7 @@ | |||
49 | #include <linux/ftrace.h> | 49 | #include <linux/ftrace.h> |
50 | #include <linux/profile.h> | 50 | #include <linux/profile.h> |
51 | #include <linux/rmap.h> | 51 | #include <linux/rmap.h> |
52 | #include <linux/ksm.h> | ||
52 | #include <linux/acct.h> | 53 | #include <linux/acct.h> |
53 | #include <linux/tsacct_kern.h> | 54 | #include <linux/tsacct_kern.h> |
54 | #include <linux/cn_proc.h> | 55 | #include <linux/cn_proc.h> |
@@ -61,7 +62,8 @@ | |||
61 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
62 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
63 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
64 | #include <linux/perf_counter.h> | 65 | #include <linux/perf_event.h> |
66 | #include <linux/posix-timers.h> | ||
65 | 67 | ||
66 | #include <asm/pgtable.h> | 68 | #include <asm/pgtable.h> |
67 | #include <asm/pgalloc.h> | 69 | #include <asm/pgalloc.h> |
@@ -136,9 +138,17 @@ struct kmem_cache *vm_area_cachep; | |||
136 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 138 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
137 | static struct kmem_cache *mm_cachep; | 139 | static struct kmem_cache *mm_cachep; |
138 | 140 | ||
141 | static void account_kernel_stack(struct thread_info *ti, int account) | ||
142 | { | ||
143 | struct zone *zone = page_zone(virt_to_page(ti)); | ||
144 | |||
145 | mod_zone_page_state(zone, NR_KERNEL_STACK, account); | ||
146 | } | ||
147 | |||
139 | void free_task(struct task_struct *tsk) | 148 | void free_task(struct task_struct *tsk) |
140 | { | 149 | { |
141 | prop_local_destroy_single(&tsk->dirties); | 150 | prop_local_destroy_single(&tsk->dirties); |
151 | account_kernel_stack(tsk->stack, -1); | ||
142 | free_thread_info(tsk->stack); | 152 | free_thread_info(tsk->stack); |
143 | rt_mutex_debug_task_free(tsk); | 153 | rt_mutex_debug_task_free(tsk); |
144 | ftrace_graph_exit_task(tsk); | 154 | ftrace_graph_exit_task(tsk); |
@@ -152,8 +162,7 @@ void __put_task_struct(struct task_struct *tsk) | |||
152 | WARN_ON(atomic_read(&tsk->usage)); | 162 | WARN_ON(atomic_read(&tsk->usage)); |
153 | WARN_ON(tsk == current); | 163 | WARN_ON(tsk == current); |
154 | 164 | ||
155 | put_cred(tsk->real_cred); | 165 | exit_creds(tsk); |
156 | put_cred(tsk->cred); | ||
157 | delayacct_tsk_free(tsk); | 166 | delayacct_tsk_free(tsk); |
158 | 167 | ||
159 | if (!profile_handoff_task(tsk)) | 168 | if (!profile_handoff_task(tsk)) |
@@ -254,6 +263,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
254 | tsk->btrace_seq = 0; | 263 | tsk->btrace_seq = 0; |
255 | #endif | 264 | #endif |
256 | tsk->splice_pipe = NULL; | 265 | tsk->splice_pipe = NULL; |
266 | |||
267 | account_kernel_stack(ti, 1); | ||
268 | |||
257 | return tsk; | 269 | return tsk; |
258 | 270 | ||
259 | out: | 271 | out: |
@@ -289,6 +301,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
289 | rb_link = &mm->mm_rb.rb_node; | 301 | rb_link = &mm->mm_rb.rb_node; |
290 | rb_parent = NULL; | 302 | rb_parent = NULL; |
291 | pprev = &mm->mmap; | 303 | pprev = &mm->mmap; |
304 | retval = ksm_fork(mm, oldmm); | ||
305 | if (retval) | ||
306 | goto out; | ||
292 | 307 | ||
293 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 308 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
294 | struct file *file; | 309 | struct file *file; |
@@ -425,7 +440,8 @@ static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | |||
425 | atomic_set(&mm->mm_count, 1); | 440 | atomic_set(&mm->mm_count, 1); |
426 | init_rwsem(&mm->mmap_sem); | 441 | init_rwsem(&mm->mmap_sem); |
427 | INIT_LIST_HEAD(&mm->mmlist); | 442 | INIT_LIST_HEAD(&mm->mmlist); |
428 | mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; | 443 | mm->flags = (current->mm) ? |
444 | (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; | ||
429 | mm->core_state = NULL; | 445 | mm->core_state = NULL; |
430 | mm->nr_ptes = 0; | 446 | mm->nr_ptes = 0; |
431 | set_mm_counter(mm, file_rss, 0); | 447 | set_mm_counter(mm, file_rss, 0); |
@@ -486,6 +502,7 @@ void mmput(struct mm_struct *mm) | |||
486 | 502 | ||
487 | if (atomic_dec_and_test(&mm->mm_users)) { | 503 | if (atomic_dec_and_test(&mm->mm_users)) { |
488 | exit_aio(mm); | 504 | exit_aio(mm); |
505 | ksm_exit(mm); | ||
489 | exit_mmap(mm); | 506 | exit_mmap(mm); |
490 | set_mm_exe_file(mm, NULL); | 507 | set_mm_exe_file(mm, NULL); |
491 | if (!list_empty(&mm->mmlist)) { | 508 | if (!list_empty(&mm->mmlist)) { |
@@ -789,10 +806,10 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig) | |||
789 | thread_group_cputime_init(sig); | 806 | thread_group_cputime_init(sig); |
790 | 807 | ||
791 | /* Expiration times and increments. */ | 808 | /* Expiration times and increments. */ |
792 | sig->it_virt_expires = cputime_zero; | 809 | sig->it[CPUCLOCK_PROF].expires = cputime_zero; |
793 | sig->it_virt_incr = cputime_zero; | 810 | sig->it[CPUCLOCK_PROF].incr = cputime_zero; |
794 | sig->it_prof_expires = cputime_zero; | 811 | sig->it[CPUCLOCK_VIRT].expires = cputime_zero; |
795 | sig->it_prof_incr = cputime_zero; | 812 | sig->it[CPUCLOCK_VIRT].incr = cputime_zero; |
796 | 813 | ||
797 | /* Cached expiration times. */ | 814 | /* Cached expiration times. */ |
798 | sig->cputime_expires.prof_exp = cputime_zero; | 815 | sig->cputime_expires.prof_exp = cputime_zero; |
@@ -850,6 +867,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
850 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 867 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
851 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 868 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
852 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 869 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; |
870 | sig->maxrss = sig->cmaxrss = 0; | ||
853 | task_io_accounting_init(&sig->ioac); | 871 | task_io_accounting_init(&sig->ioac); |
854 | sig->sum_sched_runtime = 0; | 872 | sig->sum_sched_runtime = 0; |
855 | taskstats_tgid_init(sig); | 873 | taskstats_tgid_init(sig); |
@@ -864,6 +882,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
864 | 882 | ||
865 | tty_audit_fork(sig); | 883 | tty_audit_fork(sig); |
866 | 884 | ||
885 | sig->oom_adj = current->signal->oom_adj; | ||
886 | |||
867 | return 0; | 887 | return 0; |
868 | } | 888 | } |
869 | 889 | ||
@@ -1008,10 +1028,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1008 | copy_flags(clone_flags, p); | 1028 | copy_flags(clone_flags, p); |
1009 | INIT_LIST_HEAD(&p->children); | 1029 | INIT_LIST_HEAD(&p->children); |
1010 | INIT_LIST_HEAD(&p->sibling); | 1030 | INIT_LIST_HEAD(&p->sibling); |
1011 | #ifdef CONFIG_PREEMPT_RCU | 1031 | rcu_copy_process(p); |
1012 | p->rcu_read_lock_nesting = 0; | ||
1013 | p->rcu_flipctr_idx = 0; | ||
1014 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | ||
1015 | p->vfork_done = NULL; | 1032 | p->vfork_done = NULL; |
1016 | spin_lock_init(&p->alloc_lock); | 1033 | spin_lock_init(&p->alloc_lock); |
1017 | 1034 | ||
@@ -1079,10 +1096,12 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1079 | 1096 | ||
1080 | p->bts = NULL; | 1097 | p->bts = NULL; |
1081 | 1098 | ||
1099 | p->stack_start = stack_start; | ||
1100 | |||
1082 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1101 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
1083 | sched_fork(p, clone_flags); | 1102 | sched_fork(p, clone_flags); |
1084 | 1103 | ||
1085 | retval = perf_counter_init_task(p); | 1104 | retval = perf_event_init_task(p); |
1086 | if (retval) | 1105 | if (retval) |
1087 | goto bad_fork_cleanup_policy; | 1106 | goto bad_fork_cleanup_policy; |
1088 | 1107 | ||
@@ -1257,7 +1276,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1257 | write_unlock_irq(&tasklist_lock); | 1276 | write_unlock_irq(&tasklist_lock); |
1258 | proc_fork_connector(p); | 1277 | proc_fork_connector(p); |
1259 | cgroup_post_fork(p); | 1278 | cgroup_post_fork(p); |
1260 | perf_counter_fork(p); | 1279 | perf_event_fork(p); |
1261 | return p; | 1280 | return p; |
1262 | 1281 | ||
1263 | bad_fork_free_pid: | 1282 | bad_fork_free_pid: |
@@ -1284,7 +1303,7 @@ bad_fork_cleanup_semundo: | |||
1284 | bad_fork_cleanup_audit: | 1303 | bad_fork_cleanup_audit: |
1285 | audit_free(p); | 1304 | audit_free(p); |
1286 | bad_fork_cleanup_policy: | 1305 | bad_fork_cleanup_policy: |
1287 | perf_counter_free_task(p); | 1306 | perf_event_free_task(p); |
1288 | #ifdef CONFIG_NUMA | 1307 | #ifdef CONFIG_NUMA |
1289 | mpol_put(p->mempolicy); | 1308 | mpol_put(p->mempolicy); |
1290 | bad_fork_cleanup_cgroup: | 1309 | bad_fork_cleanup_cgroup: |
@@ -1297,8 +1316,7 @@ bad_fork_cleanup_put_domain: | |||
1297 | module_put(task_thread_info(p)->exec_domain->module); | 1316 | module_put(task_thread_info(p)->exec_domain->module); |
1298 | bad_fork_cleanup_count: | 1317 | bad_fork_cleanup_count: |
1299 | atomic_dec(&p->cred->user->processes); | 1318 | atomic_dec(&p->cred->user->processes); |
1300 | put_cred(p->real_cred); | 1319 | exit_creds(p); |
1301 | put_cred(p->cred); | ||
1302 | bad_fork_free: | 1320 | bad_fork_free: |
1303 | free_task(p); | 1321 | free_task(p); |
1304 | fork_out: | 1322 | fork_out: |
diff --git a/kernel/futex.c b/kernel/futex.c index e18cfbdc7190..248dd119a86e 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -115,6 +115,9 @@ struct futex_q { | |||
115 | /* rt_waiter storage for requeue_pi: */ | 115 | /* rt_waiter storage for requeue_pi: */ |
116 | struct rt_mutex_waiter *rt_waiter; | 116 | struct rt_mutex_waiter *rt_waiter; |
117 | 117 | ||
118 | /* The expected requeue pi target futex key: */ | ||
119 | union futex_key *requeue_pi_key; | ||
120 | |||
118 | /* Bitset for the optional bitmasked wakeup */ | 121 | /* Bitset for the optional bitmasked wakeup */ |
119 | u32 bitset; | 122 | u32 bitset; |
120 | }; | 123 | }; |
@@ -1089,6 +1092,10 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |||
1089 | if (!top_waiter) | 1092 | if (!top_waiter) |
1090 | return 0; | 1093 | return 0; |
1091 | 1094 | ||
1095 | /* Ensure we requeue to the expected futex. */ | ||
1096 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | ||
1097 | return -EINVAL; | ||
1098 | |||
1092 | /* | 1099 | /* |
1093 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in | 1100 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1094 | * the contended case or if set_waiters is 1. The pi_state is returned | 1101 | * the contended case or if set_waiters is 1. The pi_state is returned |
@@ -1276,6 +1283,12 @@ retry_private: | |||
1276 | continue; | 1283 | continue; |
1277 | } | 1284 | } |
1278 | 1285 | ||
1286 | /* Ensure we requeue to the expected futex for requeue_pi. */ | ||
1287 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | ||
1288 | ret = -EINVAL; | ||
1289 | break; | ||
1290 | } | ||
1291 | |||
1279 | /* | 1292 | /* |
1280 | * Requeue nr_requeue waiters and possibly one more in the case | 1293 | * Requeue nr_requeue waiters and possibly one more in the case |
1281 | * of requeue_pi if we couldn't acquire the lock atomically. | 1294 | * of requeue_pi if we couldn't acquire the lock atomically. |
@@ -1751,6 +1764,7 @@ static int futex_wait(u32 __user *uaddr, int fshared, | |||
1751 | q.pi_state = NULL; | 1764 | q.pi_state = NULL; |
1752 | q.bitset = bitset; | 1765 | q.bitset = bitset; |
1753 | q.rt_waiter = NULL; | 1766 | q.rt_waiter = NULL; |
1767 | q.requeue_pi_key = NULL; | ||
1754 | 1768 | ||
1755 | if (abs_time) { | 1769 | if (abs_time) { |
1756 | to = &timeout; | 1770 | to = &timeout; |
@@ -1858,6 +1872,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared, | |||
1858 | 1872 | ||
1859 | q.pi_state = NULL; | 1873 | q.pi_state = NULL; |
1860 | q.rt_waiter = NULL; | 1874 | q.rt_waiter = NULL; |
1875 | q.requeue_pi_key = NULL; | ||
1861 | retry: | 1876 | retry: |
1862 | q.key = FUTEX_KEY_INIT; | 1877 | q.key = FUTEX_KEY_INIT; |
1863 | ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE); | 1878 | ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE); |
@@ -2118,11 +2133,11 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
2118 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | 2133 | * We call schedule in futex_wait_queue_me() when we enqueue and return there |
2119 | * via the following: | 2134 | * via the following: |
2120 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() | 2135 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
2121 | * 2) wakeup on uaddr2 after a requeue and subsequent unlock | 2136 | * 2) wakeup on uaddr2 after a requeue |
2122 | * 3) signal (before or after requeue) | 2137 | * 3) signal |
2123 | * 4) timeout (before or after requeue) | 2138 | * 4) timeout |
2124 | * | 2139 | * |
2125 | * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function. | 2140 | * If 3, cleanup and return -ERESTARTNOINTR. |
2126 | * | 2141 | * |
2127 | * If 2, we may then block on trying to take the rt_mutex and return via: | 2142 | * If 2, we may then block on trying to take the rt_mutex and return via: |
2128 | * 5) successful lock | 2143 | * 5) successful lock |
@@ -2130,7 +2145,7 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
2130 | * 7) timeout | 2145 | * 7) timeout |
2131 | * 8) other lock acquisition failure | 2146 | * 8) other lock acquisition failure |
2132 | * | 2147 | * |
2133 | * If 6, we setup a restart_block with futex_lock_pi() as the function. | 2148 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
2134 | * | 2149 | * |
2135 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | 2150 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. |
2136 | * | 2151 | * |
@@ -2169,15 +2184,16 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared, | |||
2169 | debug_rt_mutex_init_waiter(&rt_waiter); | 2184 | debug_rt_mutex_init_waiter(&rt_waiter); |
2170 | rt_waiter.task = NULL; | 2185 | rt_waiter.task = NULL; |
2171 | 2186 | ||
2172 | q.pi_state = NULL; | ||
2173 | q.bitset = bitset; | ||
2174 | q.rt_waiter = &rt_waiter; | ||
2175 | |||
2176 | key2 = FUTEX_KEY_INIT; | 2187 | key2 = FUTEX_KEY_INIT; |
2177 | ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE); | 2188 | ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE); |
2178 | if (unlikely(ret != 0)) | 2189 | if (unlikely(ret != 0)) |
2179 | goto out; | 2190 | goto out; |
2180 | 2191 | ||
2192 | q.pi_state = NULL; | ||
2193 | q.bitset = bitset; | ||
2194 | q.rt_waiter = &rt_waiter; | ||
2195 | q.requeue_pi_key = &key2; | ||
2196 | |||
2181 | /* Prepare to wait on uaddr. */ | 2197 | /* Prepare to wait on uaddr. */ |
2182 | ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); | 2198 | ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); |
2183 | if (ret) | 2199 | if (ret) |
@@ -2248,14 +2264,11 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared, | |||
2248 | rt_mutex_unlock(pi_mutex); | 2264 | rt_mutex_unlock(pi_mutex); |
2249 | } else if (ret == -EINTR) { | 2265 | } else if (ret == -EINTR) { |
2250 | /* | 2266 | /* |
2251 | * We've already been requeued, but we have no way to | 2267 | * We've already been requeued, but cannot restart by calling |
2252 | * restart by calling futex_lock_pi() directly. We | 2268 | * futex_lock_pi() directly. We could restart this syscall, but |
2253 | * could restart the syscall, but that will look at | 2269 | * it would detect that the user space "val" changed and return |
2254 | * the user space value and return right away. So we | 2270 | * -EWOULDBLOCK. Save the overhead of the restart and return |
2255 | * drop back with EWOULDBLOCK to tell user space that | 2271 | * -EWOULDBLOCK directly. |
2256 | * "val" has been changed. That's the same what the | ||
2257 | * restart of the syscall would do in | ||
2258 | * futex_wait_setup(). | ||
2259 | */ | 2272 | */ |
2260 | ret = -EWOULDBLOCK; | 2273 | ret = -EWOULDBLOCK; |
2261 | } | 2274 | } |
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig index 22e9dcfaa3d3..654efd09f6a9 100644 --- a/kernel/gcov/Kconfig +++ b/kernel/gcov/Kconfig | |||
@@ -34,7 +34,7 @@ config GCOV_KERNEL | |||
34 | config GCOV_PROFILE_ALL | 34 | config GCOV_PROFILE_ALL |
35 | bool "Profile entire Kernel" | 35 | bool "Profile entire Kernel" |
36 | depends on GCOV_KERNEL | 36 | depends on GCOV_KERNEL |
37 | depends on S390 || X86 | 37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) |
38 | default n | 38 | default n |
39 | ---help--- | 39 | ---help--- |
40 | This options activates profiling for the entire kernel. | 40 | This options activates profiling for the entire kernel. |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 49da79ab8486..e5d98ce50f89 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -48,36 +48,7 @@ | |||
48 | 48 | ||
49 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
50 | 50 | ||
51 | /** | 51 | #include <trace/events/timer.h> |
52 | * ktime_get - get the monotonic time in ktime_t format | ||
53 | * | ||
54 | * returns the time in ktime_t format | ||
55 | */ | ||
56 | ktime_t ktime_get(void) | ||
57 | { | ||
58 | struct timespec now; | ||
59 | |||
60 | ktime_get_ts(&now); | ||
61 | |||
62 | return timespec_to_ktime(now); | ||
63 | } | ||
64 | EXPORT_SYMBOL_GPL(ktime_get); | ||
65 | |||
66 | /** | ||
67 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
68 | * | ||
69 | * returns the time in ktime_t format | ||
70 | */ | ||
71 | ktime_t ktime_get_real(void) | ||
72 | { | ||
73 | struct timespec now; | ||
74 | |||
75 | getnstimeofday(&now); | ||
76 | |||
77 | return timespec_to_ktime(now); | ||
78 | } | ||
79 | |||
80 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
81 | 52 | ||
82 | /* | 53 | /* |
83 | * The timer bases: | 54 | * The timer bases: |
@@ -106,31 +77,6 @@ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | |||
106 | } | 77 | } |
107 | }; | 78 | }; |
108 | 79 | ||
109 | /** | ||
110 | * ktime_get_ts - get the monotonic clock in timespec format | ||
111 | * @ts: pointer to timespec variable | ||
112 | * | ||
113 | * The function calculates the monotonic clock from the realtime | ||
114 | * clock and the wall_to_monotonic offset and stores the result | ||
115 | * in normalized timespec format in the variable pointed to by @ts. | ||
116 | */ | ||
117 | void ktime_get_ts(struct timespec *ts) | ||
118 | { | ||
119 | struct timespec tomono; | ||
120 | unsigned long seq; | ||
121 | |||
122 | do { | ||
123 | seq = read_seqbegin(&xtime_lock); | ||
124 | getnstimeofday(ts); | ||
125 | tomono = wall_to_monotonic; | ||
126 | |||
127 | } while (read_seqretry(&xtime_lock, seq)); | ||
128 | |||
129 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
130 | ts->tv_nsec + tomono.tv_nsec); | ||
131 | } | ||
132 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
133 | |||
134 | /* | 80 | /* |
135 | * Get the coarse grained time at the softirq based on xtime and | 81 | * Get the coarse grained time at the softirq based on xtime and |
136 | * wall_to_monotonic. | 82 | * wall_to_monotonic. |
@@ -485,6 +431,7 @@ void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |||
485 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | 431 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); |
486 | __hrtimer_init(timer, clock_id, mode); | 432 | __hrtimer_init(timer, clock_id, mode); |
487 | } | 433 | } |
434 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); | ||
488 | 435 | ||
489 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | 436 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
490 | { | 437 | { |
@@ -497,6 +444,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |||
497 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 444 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
498 | #endif | 445 | #endif |
499 | 446 | ||
447 | static inline void | ||
448 | debug_init(struct hrtimer *timer, clockid_t clockid, | ||
449 | enum hrtimer_mode mode) | ||
450 | { | ||
451 | debug_hrtimer_init(timer); | ||
452 | trace_hrtimer_init(timer, clockid, mode); | ||
453 | } | ||
454 | |||
455 | static inline void debug_activate(struct hrtimer *timer) | ||
456 | { | ||
457 | debug_hrtimer_activate(timer); | ||
458 | trace_hrtimer_start(timer); | ||
459 | } | ||
460 | |||
461 | static inline void debug_deactivate(struct hrtimer *timer) | ||
462 | { | ||
463 | debug_hrtimer_deactivate(timer); | ||
464 | trace_hrtimer_cancel(timer); | ||
465 | } | ||
466 | |||
500 | /* High resolution timer related functions */ | 467 | /* High resolution timer related functions */ |
501 | #ifdef CONFIG_HIGH_RES_TIMERS | 468 | #ifdef CONFIG_HIGH_RES_TIMERS |
502 | 469 | ||
@@ -853,7 +820,7 @@ static int enqueue_hrtimer(struct hrtimer *timer, | |||
853 | struct hrtimer *entry; | 820 | struct hrtimer *entry; |
854 | int leftmost = 1; | 821 | int leftmost = 1; |
855 | 822 | ||
856 | debug_hrtimer_activate(timer); | 823 | debug_activate(timer); |
857 | 824 | ||
858 | /* | 825 | /* |
859 | * Find the right place in the rbtree: | 826 | * Find the right place in the rbtree: |
@@ -939,7 +906,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | |||
939 | * reprogramming happens in the interrupt handler. This is a | 906 | * reprogramming happens in the interrupt handler. This is a |
940 | * rare case and less expensive than a smp call. | 907 | * rare case and less expensive than a smp call. |
941 | */ | 908 | */ |
942 | debug_hrtimer_deactivate(timer); | 909 | debug_deactivate(timer); |
943 | timer_stats_hrtimer_clear_start_info(timer); | 910 | timer_stats_hrtimer_clear_start_info(timer); |
944 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 911 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
945 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 912 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, |
@@ -1154,7 +1121,6 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
1154 | clock_id = CLOCK_MONOTONIC; | 1121 | clock_id = CLOCK_MONOTONIC; |
1155 | 1122 | ||
1156 | timer->base = &cpu_base->clock_base[clock_id]; | 1123 | timer->base = &cpu_base->clock_base[clock_id]; |
1157 | INIT_LIST_HEAD(&timer->cb_entry); | ||
1158 | hrtimer_init_timer_hres(timer); | 1124 | hrtimer_init_timer_hres(timer); |
1159 | 1125 | ||
1160 | #ifdef CONFIG_TIMER_STATS | 1126 | #ifdef CONFIG_TIMER_STATS |
@@ -1173,7 +1139,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
1173 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 1139 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1174 | enum hrtimer_mode mode) | 1140 | enum hrtimer_mode mode) |
1175 | { | 1141 | { |
1176 | debug_hrtimer_init(timer); | 1142 | debug_init(timer, clock_id, mode); |
1177 | __hrtimer_init(timer, clock_id, mode); | 1143 | __hrtimer_init(timer, clock_id, mode); |
1178 | } | 1144 | } |
1179 | EXPORT_SYMBOL_GPL(hrtimer_init); | 1145 | EXPORT_SYMBOL_GPL(hrtimer_init); |
@@ -1197,7 +1163,7 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
1197 | } | 1163 | } |
1198 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 1164 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
1199 | 1165 | ||
1200 | static void __run_hrtimer(struct hrtimer *timer) | 1166 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
1201 | { | 1167 | { |
1202 | struct hrtimer_clock_base *base = timer->base; | 1168 | struct hrtimer_clock_base *base = timer->base; |
1203 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 1169 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
@@ -1206,7 +1172,7 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1206 | 1172 | ||
1207 | WARN_ON(!irqs_disabled()); | 1173 | WARN_ON(!irqs_disabled()); |
1208 | 1174 | ||
1209 | debug_hrtimer_deactivate(timer); | 1175 | debug_deactivate(timer); |
1210 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 1176 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
1211 | timer_stats_account_hrtimer(timer); | 1177 | timer_stats_account_hrtimer(timer); |
1212 | fn = timer->function; | 1178 | fn = timer->function; |
@@ -1217,7 +1183,9 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1217 | * the timer base. | 1183 | * the timer base. |
1218 | */ | 1184 | */ |
1219 | spin_unlock(&cpu_base->lock); | 1185 | spin_unlock(&cpu_base->lock); |
1186 | trace_hrtimer_expire_entry(timer, now); | ||
1220 | restart = fn(timer); | 1187 | restart = fn(timer); |
1188 | trace_hrtimer_expire_exit(timer); | ||
1221 | spin_lock(&cpu_base->lock); | 1189 | spin_lock(&cpu_base->lock); |
1222 | 1190 | ||
1223 | /* | 1191 | /* |
@@ -1328,7 +1296,7 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
1328 | break; | 1296 | break; |
1329 | } | 1297 | } |
1330 | 1298 | ||
1331 | __run_hrtimer(timer); | 1299 | __run_hrtimer(timer, &basenow); |
1332 | } | 1300 | } |
1333 | base++; | 1301 | base++; |
1334 | } | 1302 | } |
@@ -1450,7 +1418,7 @@ void hrtimer_run_queues(void) | |||
1450 | hrtimer_get_expires_tv64(timer)) | 1418 | hrtimer_get_expires_tv64(timer)) |
1451 | break; | 1419 | break; |
1452 | 1420 | ||
1453 | __run_hrtimer(timer); | 1421 | __run_hrtimer(timer, &base->softirq_time); |
1454 | } | 1422 | } |
1455 | spin_unlock(&cpu_base->lock); | 1423 | spin_unlock(&cpu_base->lock); |
1456 | } | 1424 | } |
@@ -1477,6 +1445,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) | |||
1477 | sl->timer.function = hrtimer_wakeup; | 1445 | sl->timer.function = hrtimer_wakeup; |
1478 | sl->task = task; | 1446 | sl->task = task; |
1479 | } | 1447 | } |
1448 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); | ||
1480 | 1449 | ||
1481 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 1450 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
1482 | { | 1451 | { |
@@ -1626,7 +1595,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | |||
1626 | while ((node = rb_first(&old_base->active))) { | 1595 | while ((node = rb_first(&old_base->active))) { |
1627 | timer = rb_entry(node, struct hrtimer, node); | 1596 | timer = rb_entry(node, struct hrtimer, node); |
1628 | BUG_ON(hrtimer_callback_running(timer)); | 1597 | BUG_ON(hrtimer_callback_running(timer)); |
1629 | debug_hrtimer_deactivate(timer); | 1598 | debug_deactivate(timer); |
1630 | 1599 | ||
1631 | /* | 1600 | /* |
1632 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 1601 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the |
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c index 13c68e71b726..c1660194d115 100644 --- a/kernel/irq/chip.c +++ b/kernel/irq/chip.c | |||
@@ -222,6 +222,34 @@ int set_irq_chip_data(unsigned int irq, void *data) | |||
222 | } | 222 | } |
223 | EXPORT_SYMBOL(set_irq_chip_data); | 223 | EXPORT_SYMBOL(set_irq_chip_data); |
224 | 224 | ||
225 | /** | ||
226 | * set_irq_nested_thread - Set/Reset the IRQ_NESTED_THREAD flag of an irq | ||
227 | * | ||
228 | * @irq: Interrupt number | ||
229 | * @nest: 0 to clear / 1 to set the IRQ_NESTED_THREAD flag | ||
230 | * | ||
231 | * The IRQ_NESTED_THREAD flag indicates that on | ||
232 | * request_threaded_irq() no separate interrupt thread should be | ||
233 | * created for the irq as the handler are called nested in the | ||
234 | * context of a demultiplexing interrupt handler thread. | ||
235 | */ | ||
236 | void set_irq_nested_thread(unsigned int irq, int nest) | ||
237 | { | ||
238 | struct irq_desc *desc = irq_to_desc(irq); | ||
239 | unsigned long flags; | ||
240 | |||
241 | if (!desc) | ||
242 | return; | ||
243 | |||
244 | spin_lock_irqsave(&desc->lock, flags); | ||
245 | if (nest) | ||
246 | desc->status |= IRQ_NESTED_THREAD; | ||
247 | else | ||
248 | desc->status &= ~IRQ_NESTED_THREAD; | ||
249 | spin_unlock_irqrestore(&desc->lock, flags); | ||
250 | } | ||
251 | EXPORT_SYMBOL_GPL(set_irq_nested_thread); | ||
252 | |||
225 | /* | 253 | /* |
226 | * default enable function | 254 | * default enable function |
227 | */ | 255 | */ |
@@ -299,6 +327,45 @@ static inline void mask_ack_irq(struct irq_desc *desc, int irq) | |||
299 | } | 327 | } |
300 | } | 328 | } |
301 | 329 | ||
330 | /* | ||
331 | * handle_nested_irq - Handle a nested irq from a irq thread | ||
332 | * @irq: the interrupt number | ||
333 | * | ||
334 | * Handle interrupts which are nested into a threaded interrupt | ||
335 | * handler. The handler function is called inside the calling | ||
336 | * threads context. | ||
337 | */ | ||
338 | void handle_nested_irq(unsigned int irq) | ||
339 | { | ||
340 | struct irq_desc *desc = irq_to_desc(irq); | ||
341 | struct irqaction *action; | ||
342 | irqreturn_t action_ret; | ||
343 | |||
344 | might_sleep(); | ||
345 | |||
346 | spin_lock_irq(&desc->lock); | ||
347 | |||
348 | kstat_incr_irqs_this_cpu(irq, desc); | ||
349 | |||
350 | action = desc->action; | ||
351 | if (unlikely(!action || (desc->status & IRQ_DISABLED))) | ||
352 | goto out_unlock; | ||
353 | |||
354 | desc->status |= IRQ_INPROGRESS; | ||
355 | spin_unlock_irq(&desc->lock); | ||
356 | |||
357 | action_ret = action->thread_fn(action->irq, action->dev_id); | ||
358 | if (!noirqdebug) | ||
359 | note_interrupt(irq, desc, action_ret); | ||
360 | |||
361 | spin_lock_irq(&desc->lock); | ||
362 | desc->status &= ~IRQ_INPROGRESS; | ||
363 | |||
364 | out_unlock: | ||
365 | spin_unlock_irq(&desc->lock); | ||
366 | } | ||
367 | EXPORT_SYMBOL_GPL(handle_nested_irq); | ||
368 | |||
302 | /** | 369 | /** |
303 | * handle_simple_irq - Simple and software-decoded IRQs. | 370 | * handle_simple_irq - Simple and software-decoded IRQs. |
304 | * @irq: the interrupt number | 371 | * @irq: the interrupt number |
@@ -382,7 +449,10 @@ handle_level_irq(unsigned int irq, struct irq_desc *desc) | |||
382 | 449 | ||
383 | spin_lock(&desc->lock); | 450 | spin_lock(&desc->lock); |
384 | desc->status &= ~IRQ_INPROGRESS; | 451 | desc->status &= ~IRQ_INPROGRESS; |
385 | if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) | 452 | |
453 | if (unlikely(desc->status & IRQ_ONESHOT)) | ||
454 | desc->status |= IRQ_MASKED; | ||
455 | else if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) | ||
386 | desc->chip->unmask(irq); | 456 | desc->chip->unmask(irq); |
387 | out_unlock: | 457 | out_unlock: |
388 | spin_unlock(&desc->lock); | 458 | spin_unlock(&desc->lock); |
@@ -572,6 +642,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, | |||
572 | desc->chip = &dummy_irq_chip; | 642 | desc->chip = &dummy_irq_chip; |
573 | } | 643 | } |
574 | 644 | ||
645 | chip_bus_lock(irq, desc); | ||
575 | spin_lock_irqsave(&desc->lock, flags); | 646 | spin_lock_irqsave(&desc->lock, flags); |
576 | 647 | ||
577 | /* Uninstall? */ | 648 | /* Uninstall? */ |
@@ -591,6 +662,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, | |||
591 | desc->chip->startup(irq); | 662 | desc->chip->startup(irq); |
592 | } | 663 | } |
593 | spin_unlock_irqrestore(&desc->lock, flags); | 664 | spin_unlock_irqrestore(&desc->lock, flags); |
665 | chip_bus_sync_unlock(irq, desc); | ||
594 | } | 666 | } |
595 | EXPORT_SYMBOL_GPL(__set_irq_handler); | 667 | EXPORT_SYMBOL_GPL(__set_irq_handler); |
596 | 668 | ||
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index 065205bdd920..a81cf80554db 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c | |||
@@ -161,7 +161,7 @@ int __init early_irq_init(void) | |||
161 | 161 | ||
162 | desc = irq_desc_legacy; | 162 | desc = irq_desc_legacy; |
163 | legacy_count = ARRAY_SIZE(irq_desc_legacy); | 163 | legacy_count = ARRAY_SIZE(irq_desc_legacy); |
164 | node = first_online_node; | 164 | node = first_online_node; |
165 | 165 | ||
166 | /* allocate irq_desc_ptrs array based on nr_irqs */ | 166 | /* allocate irq_desc_ptrs array based on nr_irqs */ |
167 | irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT); | 167 | irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT); |
@@ -172,6 +172,9 @@ int __init early_irq_init(void) | |||
172 | 172 | ||
173 | for (i = 0; i < legacy_count; i++) { | 173 | for (i = 0; i < legacy_count; i++) { |
174 | desc[i].irq = i; | 174 | desc[i].irq = i; |
175 | #ifdef CONFIG_SMP | ||
176 | desc[i].node = node; | ||
177 | #endif | ||
175 | desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; | 178 | desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; |
176 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); | 179 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); |
177 | alloc_desc_masks(&desc[i], node, true); | 180 | alloc_desc_masks(&desc[i], node, true); |
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h index e70ed5592eb9..1b5d742c6a77 100644 --- a/kernel/irq/internals.h +++ b/kernel/irq/internals.h | |||
@@ -44,6 +44,19 @@ extern int irq_select_affinity_usr(unsigned int irq); | |||
44 | 44 | ||
45 | extern void irq_set_thread_affinity(struct irq_desc *desc); | 45 | extern void irq_set_thread_affinity(struct irq_desc *desc); |
46 | 46 | ||
47 | /* Inline functions for support of irq chips on slow busses */ | ||
48 | static inline void chip_bus_lock(unsigned int irq, struct irq_desc *desc) | ||
49 | { | ||
50 | if (unlikely(desc->chip->bus_lock)) | ||
51 | desc->chip->bus_lock(irq); | ||
52 | } | ||
53 | |||
54 | static inline void chip_bus_sync_unlock(unsigned int irq, struct irq_desc *desc) | ||
55 | { | ||
56 | if (unlikely(desc->chip->bus_sync_unlock)) | ||
57 | desc->chip->bus_sync_unlock(irq); | ||
58 | } | ||
59 | |||
47 | /* | 60 | /* |
48 | * Debugging printout: | 61 | * Debugging printout: |
49 | */ | 62 | */ |
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 0ec9ed831737..bde4c667d24d 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
@@ -230,9 +230,11 @@ void disable_irq_nosync(unsigned int irq) | |||
230 | if (!desc) | 230 | if (!desc) |
231 | return; | 231 | return; |
232 | 232 | ||
233 | chip_bus_lock(irq, desc); | ||
233 | spin_lock_irqsave(&desc->lock, flags); | 234 | spin_lock_irqsave(&desc->lock, flags); |
234 | __disable_irq(desc, irq, false); | 235 | __disable_irq(desc, irq, false); |
235 | spin_unlock_irqrestore(&desc->lock, flags); | 236 | spin_unlock_irqrestore(&desc->lock, flags); |
237 | chip_bus_sync_unlock(irq, desc); | ||
236 | } | 238 | } |
237 | EXPORT_SYMBOL(disable_irq_nosync); | 239 | EXPORT_SYMBOL(disable_irq_nosync); |
238 | 240 | ||
@@ -294,7 +296,8 @@ void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume) | |||
294 | * matches the last disable, processing of interrupts on this | 296 | * matches the last disable, processing of interrupts on this |
295 | * IRQ line is re-enabled. | 297 | * IRQ line is re-enabled. |
296 | * | 298 | * |
297 | * This function may be called from IRQ context. | 299 | * This function may be called from IRQ context only when |
300 | * desc->chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! | ||
298 | */ | 301 | */ |
299 | void enable_irq(unsigned int irq) | 302 | void enable_irq(unsigned int irq) |
300 | { | 303 | { |
@@ -304,9 +307,11 @@ void enable_irq(unsigned int irq) | |||
304 | if (!desc) | 307 | if (!desc) |
305 | return; | 308 | return; |
306 | 309 | ||
310 | chip_bus_lock(irq, desc); | ||
307 | spin_lock_irqsave(&desc->lock, flags); | 311 | spin_lock_irqsave(&desc->lock, flags); |
308 | __enable_irq(desc, irq, false); | 312 | __enable_irq(desc, irq, false); |
309 | spin_unlock_irqrestore(&desc->lock, flags); | 313 | spin_unlock_irqrestore(&desc->lock, flags); |
314 | chip_bus_sync_unlock(irq, desc); | ||
310 | } | 315 | } |
311 | EXPORT_SYMBOL(enable_irq); | 316 | EXPORT_SYMBOL(enable_irq); |
312 | 317 | ||
@@ -436,6 +441,26 @@ int __irq_set_trigger(struct irq_desc *desc, unsigned int irq, | |||
436 | return ret; | 441 | return ret; |
437 | } | 442 | } |
438 | 443 | ||
444 | /* | ||
445 | * Default primary interrupt handler for threaded interrupts. Is | ||
446 | * assigned as primary handler when request_threaded_irq is called | ||
447 | * with handler == NULL. Useful for oneshot interrupts. | ||
448 | */ | ||
449 | static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) | ||
450 | { | ||
451 | return IRQ_WAKE_THREAD; | ||
452 | } | ||
453 | |||
454 | /* | ||
455 | * Primary handler for nested threaded interrupts. Should never be | ||
456 | * called. | ||
457 | */ | ||
458 | static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) | ||
459 | { | ||
460 | WARN(1, "Primary handler called for nested irq %d\n", irq); | ||
461 | return IRQ_NONE; | ||
462 | } | ||
463 | |||
439 | static int irq_wait_for_interrupt(struct irqaction *action) | 464 | static int irq_wait_for_interrupt(struct irqaction *action) |
440 | { | 465 | { |
441 | while (!kthread_should_stop()) { | 466 | while (!kthread_should_stop()) { |
@@ -451,6 +476,23 @@ static int irq_wait_for_interrupt(struct irqaction *action) | |||
451 | return -1; | 476 | return -1; |
452 | } | 477 | } |
453 | 478 | ||
479 | /* | ||
480 | * Oneshot interrupts keep the irq line masked until the threaded | ||
481 | * handler finished. unmask if the interrupt has not been disabled and | ||
482 | * is marked MASKED. | ||
483 | */ | ||
484 | static void irq_finalize_oneshot(unsigned int irq, struct irq_desc *desc) | ||
485 | { | ||
486 | chip_bus_lock(irq, desc); | ||
487 | spin_lock_irq(&desc->lock); | ||
488 | if (!(desc->status & IRQ_DISABLED) && (desc->status & IRQ_MASKED)) { | ||
489 | desc->status &= ~IRQ_MASKED; | ||
490 | desc->chip->unmask(irq); | ||
491 | } | ||
492 | spin_unlock_irq(&desc->lock); | ||
493 | chip_bus_sync_unlock(irq, desc); | ||
494 | } | ||
495 | |||
454 | #ifdef CONFIG_SMP | 496 | #ifdef CONFIG_SMP |
455 | /* | 497 | /* |
456 | * Check whether we need to change the affinity of the interrupt thread. | 498 | * Check whether we need to change the affinity of the interrupt thread. |
@@ -492,7 +534,7 @@ static int irq_thread(void *data) | |||
492 | struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, }; | 534 | struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, }; |
493 | struct irqaction *action = data; | 535 | struct irqaction *action = data; |
494 | struct irq_desc *desc = irq_to_desc(action->irq); | 536 | struct irq_desc *desc = irq_to_desc(action->irq); |
495 | int wake; | 537 | int wake, oneshot = desc->status & IRQ_ONESHOT; |
496 | 538 | ||
497 | sched_setscheduler(current, SCHED_FIFO, ¶m); | 539 | sched_setscheduler(current, SCHED_FIFO, ¶m); |
498 | current->irqaction = action; | 540 | current->irqaction = action; |
@@ -518,6 +560,9 @@ static int irq_thread(void *data) | |||
518 | spin_unlock_irq(&desc->lock); | 560 | spin_unlock_irq(&desc->lock); |
519 | 561 | ||
520 | action->thread_fn(action->irq, action->dev_id); | 562 | action->thread_fn(action->irq, action->dev_id); |
563 | |||
564 | if (oneshot) | ||
565 | irq_finalize_oneshot(action->irq, desc); | ||
521 | } | 566 | } |
522 | 567 | ||
523 | wake = atomic_dec_and_test(&desc->threads_active); | 568 | wake = atomic_dec_and_test(&desc->threads_active); |
@@ -565,7 +610,7 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
565 | struct irqaction *old, **old_ptr; | 610 | struct irqaction *old, **old_ptr; |
566 | const char *old_name = NULL; | 611 | const char *old_name = NULL; |
567 | unsigned long flags; | 612 | unsigned long flags; |
568 | int shared = 0; | 613 | int nested, shared = 0; |
569 | int ret; | 614 | int ret; |
570 | 615 | ||
571 | if (!desc) | 616 | if (!desc) |
@@ -590,10 +635,32 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
590 | rand_initialize_irq(irq); | 635 | rand_initialize_irq(irq); |
591 | } | 636 | } |
592 | 637 | ||
638 | /* Oneshot interrupts are not allowed with shared */ | ||
639 | if ((new->flags & IRQF_ONESHOT) && (new->flags & IRQF_SHARED)) | ||
640 | return -EINVAL; | ||
641 | |||
642 | /* | ||
643 | * Check whether the interrupt nests into another interrupt | ||
644 | * thread. | ||
645 | */ | ||
646 | nested = desc->status & IRQ_NESTED_THREAD; | ||
647 | if (nested) { | ||
648 | if (!new->thread_fn) | ||
649 | return -EINVAL; | ||
650 | /* | ||
651 | * Replace the primary handler which was provided from | ||
652 | * the driver for non nested interrupt handling by the | ||
653 | * dummy function which warns when called. | ||
654 | */ | ||
655 | new->handler = irq_nested_primary_handler; | ||
656 | } | ||
657 | |||
593 | /* | 658 | /* |
594 | * Threaded handler ? | 659 | * Create a handler thread when a thread function is supplied |
660 | * and the interrupt does not nest into another interrupt | ||
661 | * thread. | ||
595 | */ | 662 | */ |
596 | if (new->thread_fn) { | 663 | if (new->thread_fn && !nested) { |
597 | struct task_struct *t; | 664 | struct task_struct *t; |
598 | 665 | ||
599 | t = kthread_create(irq_thread, new, "irq/%d-%s", irq, | 666 | t = kthread_create(irq_thread, new, "irq/%d-%s", irq, |
@@ -662,9 +729,12 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
662 | desc->status |= IRQ_PER_CPU; | 729 | desc->status |= IRQ_PER_CPU; |
663 | #endif | 730 | #endif |
664 | 731 | ||
665 | desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | | 732 | desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | IRQ_ONESHOT | |
666 | IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); | 733 | IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); |
667 | 734 | ||
735 | if (new->flags & IRQF_ONESHOT) | ||
736 | desc->status |= IRQ_ONESHOT; | ||
737 | |||
668 | if (!(desc->status & IRQ_NOAUTOEN)) { | 738 | if (!(desc->status & IRQ_NOAUTOEN)) { |
669 | desc->depth = 0; | 739 | desc->depth = 0; |
670 | desc->status &= ~IRQ_DISABLED; | 740 | desc->status &= ~IRQ_DISABLED; |
@@ -875,7 +945,14 @@ EXPORT_SYMBOL_GPL(remove_irq); | |||
875 | */ | 945 | */ |
876 | void free_irq(unsigned int irq, void *dev_id) | 946 | void free_irq(unsigned int irq, void *dev_id) |
877 | { | 947 | { |
948 | struct irq_desc *desc = irq_to_desc(irq); | ||
949 | |||
950 | if (!desc) | ||
951 | return; | ||
952 | |||
953 | chip_bus_lock(irq, desc); | ||
878 | kfree(__free_irq(irq, dev_id)); | 954 | kfree(__free_irq(irq, dev_id)); |
955 | chip_bus_sync_unlock(irq, desc); | ||
879 | } | 956 | } |
880 | EXPORT_SYMBOL(free_irq); | 957 | EXPORT_SYMBOL(free_irq); |
881 | 958 | ||
@@ -884,6 +961,8 @@ EXPORT_SYMBOL(free_irq); | |||
884 | * @irq: Interrupt line to allocate | 961 | * @irq: Interrupt line to allocate |
885 | * @handler: Function to be called when the IRQ occurs. | 962 | * @handler: Function to be called when the IRQ occurs. |
886 | * Primary handler for threaded interrupts | 963 | * Primary handler for threaded interrupts |
964 | * If NULL and thread_fn != NULL the default | ||
965 | * primary handler is installed | ||
887 | * @thread_fn: Function called from the irq handler thread | 966 | * @thread_fn: Function called from the irq handler thread |
888 | * If NULL, no irq thread is created | 967 | * If NULL, no irq thread is created |
889 | * @irqflags: Interrupt type flags | 968 | * @irqflags: Interrupt type flags |
@@ -963,8 +1042,12 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
963 | 1042 | ||
964 | if (desc->status & IRQ_NOREQUEST) | 1043 | if (desc->status & IRQ_NOREQUEST) |
965 | return -EINVAL; | 1044 | return -EINVAL; |
966 | if (!handler) | 1045 | |
967 | return -EINVAL; | 1046 | if (!handler) { |
1047 | if (!thread_fn) | ||
1048 | return -EINVAL; | ||
1049 | handler = irq_default_primary_handler; | ||
1050 | } | ||
968 | 1051 | ||
969 | action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); | 1052 | action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); |
970 | if (!action) | 1053 | if (!action) |
@@ -976,7 +1059,10 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
976 | action->name = devname; | 1059 | action->name = devname; |
977 | action->dev_id = dev_id; | 1060 | action->dev_id = dev_id; |
978 | 1061 | ||
1062 | chip_bus_lock(irq, desc); | ||
979 | retval = __setup_irq(irq, desc, action); | 1063 | retval = __setup_irq(irq, desc, action); |
1064 | chip_bus_sync_unlock(irq, desc); | ||
1065 | |||
980 | if (retval) | 1066 | if (retval) |
981 | kfree(action); | 1067 | kfree(action); |
982 | 1068 | ||
diff --git a/kernel/irq/pm.c b/kernel/irq/pm.c index 638d8bedec14..a0bb09e79867 100644 --- a/kernel/irq/pm.c +++ b/kernel/irq/pm.c | |||
@@ -15,10 +15,10 @@ | |||
15 | /** | 15 | /** |
16 | * suspend_device_irqs - disable all currently enabled interrupt lines | 16 | * suspend_device_irqs - disable all currently enabled interrupt lines |
17 | * | 17 | * |
18 | * During system-wide suspend or hibernation device interrupts need to be | 18 | * During system-wide suspend or hibernation device drivers need to be prevented |
19 | * disabled at the chip level and this function is provided for this purpose. | 19 | * from receiving interrupts and this function is provided for this purpose. |
20 | * It disables all interrupt lines that are enabled at the moment and sets the | 20 | * It marks all interrupt lines in use, except for the timer ones, as disabled |
21 | * IRQ_SUSPENDED flag for them. | 21 | * and sets the IRQ_SUSPENDED flag for each of them. |
22 | */ | 22 | */ |
23 | void suspend_device_irqs(void) | 23 | void suspend_device_irqs(void) |
24 | { | 24 | { |
diff --git a/kernel/irq/resend.c b/kernel/irq/resend.c index 89c7117acf2b..090c3763f3a2 100644 --- a/kernel/irq/resend.c +++ b/kernel/irq/resend.c | |||
@@ -70,8 +70,7 @@ void check_irq_resend(struct irq_desc *desc, unsigned int irq) | |||
70 | if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { | 70 | if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { |
71 | desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY; | 71 | desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY; |
72 | 72 | ||
73 | if (!desc->chip || !desc->chip->retrigger || | 73 | if (!desc->chip->retrigger || !desc->chip->retrigger(irq)) { |
74 | !desc->chip->retrigger(irq)) { | ||
75 | #ifdef CONFIG_HARDIRQS_SW_RESEND | 74 | #ifdef CONFIG_HARDIRQS_SW_RESEND |
76 | /* Set it pending and activate the softirq: */ | 75 | /* Set it pending and activate the softirq: */ |
77 | set_bit(irq, irqs_resend); | 76 | set_bit(irq, irqs_resend); |
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c index 4d568294de3e..114e704760fe 100644 --- a/kernel/irq/spurious.c +++ b/kernel/irq/spurious.c | |||
@@ -297,7 +297,6 @@ static int __init irqfixup_setup(char *str) | |||
297 | 297 | ||
298 | __setup("irqfixup", irqfixup_setup); | 298 | __setup("irqfixup", irqfixup_setup); |
299 | module_param(irqfixup, int, 0644); | 299 | module_param(irqfixup, int, 0644); |
300 | MODULE_PARM_DESC("irqfixup", "0: No fixup, 1: irqfixup mode, 2: irqpoll mode"); | ||
301 | 300 | ||
302 | static int __init irqpoll_setup(char *str) | 301 | static int __init irqpoll_setup(char *str) |
303 | { | 302 | { |
diff --git a/kernel/itimer.c b/kernel/itimer.c index 58762f7077ec..b03451ede528 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
@@ -12,6 +12,7 @@ | |||
12 | #include <linux/time.h> | 12 | #include <linux/time.h> |
13 | #include <linux/posix-timers.h> | 13 | #include <linux/posix-timers.h> |
14 | #include <linux/hrtimer.h> | 14 | #include <linux/hrtimer.h> |
15 | #include <trace/events/timer.h> | ||
15 | 16 | ||
16 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
17 | 18 | ||
@@ -41,10 +42,43 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer) | |||
41 | return ktime_to_timeval(rem); | 42 | return ktime_to_timeval(rem); |
42 | } | 43 | } |
43 | 44 | ||
45 | static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
46 | struct itimerval *const value) | ||
47 | { | ||
48 | cputime_t cval, cinterval; | ||
49 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
50 | |||
51 | spin_lock_irq(&tsk->sighand->siglock); | ||
52 | |||
53 | cval = it->expires; | ||
54 | cinterval = it->incr; | ||
55 | if (!cputime_eq(cval, cputime_zero)) { | ||
56 | struct task_cputime cputime; | ||
57 | cputime_t t; | ||
58 | |||
59 | thread_group_cputimer(tsk, &cputime); | ||
60 | if (clock_id == CPUCLOCK_PROF) | ||
61 | t = cputime_add(cputime.utime, cputime.stime); | ||
62 | else | ||
63 | /* CPUCLOCK_VIRT */ | ||
64 | t = cputime.utime; | ||
65 | |||
66 | if (cputime_le(cval, t)) | ||
67 | /* about to fire */ | ||
68 | cval = cputime_one_jiffy; | ||
69 | else | ||
70 | cval = cputime_sub(cval, t); | ||
71 | } | ||
72 | |||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | |||
75 | cputime_to_timeval(cval, &value->it_value); | ||
76 | cputime_to_timeval(cinterval, &value->it_interval); | ||
77 | } | ||
78 | |||
44 | int do_getitimer(int which, struct itimerval *value) | 79 | int do_getitimer(int which, struct itimerval *value) |
45 | { | 80 | { |
46 | struct task_struct *tsk = current; | 81 | struct task_struct *tsk = current; |
47 | cputime_t cinterval, cval; | ||
48 | 82 | ||
49 | switch (which) { | 83 | switch (which) { |
50 | case ITIMER_REAL: | 84 | case ITIMER_REAL: |
@@ -55,44 +89,10 @@ int do_getitimer(int which, struct itimerval *value) | |||
55 | spin_unlock_irq(&tsk->sighand->siglock); | 89 | spin_unlock_irq(&tsk->sighand->siglock); |
56 | break; | 90 | break; |
57 | case ITIMER_VIRTUAL: | 91 | case ITIMER_VIRTUAL: |
58 | spin_lock_irq(&tsk->sighand->siglock); | 92 | get_cpu_itimer(tsk, CPUCLOCK_VIRT, value); |
59 | cval = tsk->signal->it_virt_expires; | ||
60 | cinterval = tsk->signal->it_virt_incr; | ||
61 | if (!cputime_eq(cval, cputime_zero)) { | ||
62 | struct task_cputime cputime; | ||
63 | cputime_t utime; | ||
64 | |||
65 | thread_group_cputimer(tsk, &cputime); | ||
66 | utime = cputime.utime; | ||
67 | if (cputime_le(cval, utime)) { /* about to fire */ | ||
68 | cval = jiffies_to_cputime(1); | ||
69 | } else { | ||
70 | cval = cputime_sub(cval, utime); | ||
71 | } | ||
72 | } | ||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | cputime_to_timeval(cval, &value->it_value); | ||
75 | cputime_to_timeval(cinterval, &value->it_interval); | ||
76 | break; | 93 | break; |
77 | case ITIMER_PROF: | 94 | case ITIMER_PROF: |
78 | spin_lock_irq(&tsk->sighand->siglock); | 95 | get_cpu_itimer(tsk, CPUCLOCK_PROF, value); |
79 | cval = tsk->signal->it_prof_expires; | ||
80 | cinterval = tsk->signal->it_prof_incr; | ||
81 | if (!cputime_eq(cval, cputime_zero)) { | ||
82 | struct task_cputime times; | ||
83 | cputime_t ptime; | ||
84 | |||
85 | thread_group_cputimer(tsk, ×); | ||
86 | ptime = cputime_add(times.utime, times.stime); | ||
87 | if (cputime_le(cval, ptime)) { /* about to fire */ | ||
88 | cval = jiffies_to_cputime(1); | ||
89 | } else { | ||
90 | cval = cputime_sub(cval, ptime); | ||
91 | } | ||
92 | } | ||
93 | spin_unlock_irq(&tsk->sighand->siglock); | ||
94 | cputime_to_timeval(cval, &value->it_value); | ||
95 | cputime_to_timeval(cinterval, &value->it_interval); | ||
96 | break; | 96 | break; |
97 | default: | 97 | default: |
98 | return(-EINVAL); | 98 | return(-EINVAL); |
@@ -123,11 +123,62 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer) | |||
123 | struct signal_struct *sig = | 123 | struct signal_struct *sig = |
124 | container_of(timer, struct signal_struct, real_timer); | 124 | container_of(timer, struct signal_struct, real_timer); |
125 | 125 | ||
126 | trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0); | ||
126 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); | 127 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); |
127 | 128 | ||
128 | return HRTIMER_NORESTART; | 129 | return HRTIMER_NORESTART; |
129 | } | 130 | } |
130 | 131 | ||
132 | static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns) | ||
133 | { | ||
134 | struct timespec ts; | ||
135 | s64 cpu_ns; | ||
136 | |||
137 | cputime_to_timespec(ct, &ts); | ||
138 | cpu_ns = timespec_to_ns(&ts); | ||
139 | |||
140 | return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns; | ||
141 | } | ||
142 | |||
143 | static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
144 | const struct itimerval *const value, | ||
145 | struct itimerval *const ovalue) | ||
146 | { | ||
147 | cputime_t cval, nval, cinterval, ninterval; | ||
148 | s64 ns_ninterval, ns_nval; | ||
149 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
150 | |||
151 | nval = timeval_to_cputime(&value->it_value); | ||
152 | ns_nval = timeval_to_ns(&value->it_value); | ||
153 | ninterval = timeval_to_cputime(&value->it_interval); | ||
154 | ns_ninterval = timeval_to_ns(&value->it_interval); | ||
155 | |||
156 | it->incr_error = cputime_sub_ns(ninterval, ns_ninterval); | ||
157 | it->error = cputime_sub_ns(nval, ns_nval); | ||
158 | |||
159 | spin_lock_irq(&tsk->sighand->siglock); | ||
160 | |||
161 | cval = it->expires; | ||
162 | cinterval = it->incr; | ||
163 | if (!cputime_eq(cval, cputime_zero) || | ||
164 | !cputime_eq(nval, cputime_zero)) { | ||
165 | if (cputime_gt(nval, cputime_zero)) | ||
166 | nval = cputime_add(nval, cputime_one_jiffy); | ||
167 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); | ||
168 | } | ||
169 | it->expires = nval; | ||
170 | it->incr = ninterval; | ||
171 | trace_itimer_state(clock_id == CPUCLOCK_VIRT ? | ||
172 | ITIMER_VIRTUAL : ITIMER_PROF, value, nval); | ||
173 | |||
174 | spin_unlock_irq(&tsk->sighand->siglock); | ||
175 | |||
176 | if (ovalue) { | ||
177 | cputime_to_timeval(cval, &ovalue->it_value); | ||
178 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
179 | } | ||
180 | } | ||
181 | |||
131 | /* | 182 | /* |
132 | * Returns true if the timeval is in canonical form | 183 | * Returns true if the timeval is in canonical form |
133 | */ | 184 | */ |
@@ -139,7 +190,6 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | |||
139 | struct task_struct *tsk = current; | 190 | struct task_struct *tsk = current; |
140 | struct hrtimer *timer; | 191 | struct hrtimer *timer; |
141 | ktime_t expires; | 192 | ktime_t expires; |
142 | cputime_t cval, cinterval, nval, ninterval; | ||
143 | 193 | ||
144 | /* | 194 | /* |
145 | * Validate the timevals in value. | 195 | * Validate the timevals in value. |
@@ -171,51 +221,14 @@ again: | |||
171 | } else | 221 | } else |
172 | tsk->signal->it_real_incr.tv64 = 0; | 222 | tsk->signal->it_real_incr.tv64 = 0; |
173 | 223 | ||
224 | trace_itimer_state(ITIMER_REAL, value, 0); | ||
174 | spin_unlock_irq(&tsk->sighand->siglock); | 225 | spin_unlock_irq(&tsk->sighand->siglock); |
175 | break; | 226 | break; |
176 | case ITIMER_VIRTUAL: | 227 | case ITIMER_VIRTUAL: |
177 | nval = timeval_to_cputime(&value->it_value); | 228 | set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue); |
178 | ninterval = timeval_to_cputime(&value->it_interval); | ||
179 | spin_lock_irq(&tsk->sighand->siglock); | ||
180 | cval = tsk->signal->it_virt_expires; | ||
181 | cinterval = tsk->signal->it_virt_incr; | ||
182 | if (!cputime_eq(cval, cputime_zero) || | ||
183 | !cputime_eq(nval, cputime_zero)) { | ||
184 | if (cputime_gt(nval, cputime_zero)) | ||
185 | nval = cputime_add(nval, | ||
186 | jiffies_to_cputime(1)); | ||
187 | set_process_cpu_timer(tsk, CPUCLOCK_VIRT, | ||
188 | &nval, &cval); | ||
189 | } | ||
190 | tsk->signal->it_virt_expires = nval; | ||
191 | tsk->signal->it_virt_incr = ninterval; | ||
192 | spin_unlock_irq(&tsk->sighand->siglock); | ||
193 | if (ovalue) { | ||
194 | cputime_to_timeval(cval, &ovalue->it_value); | ||
195 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
196 | } | ||
197 | break; | 229 | break; |
198 | case ITIMER_PROF: | 230 | case ITIMER_PROF: |
199 | nval = timeval_to_cputime(&value->it_value); | 231 | set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue); |
200 | ninterval = timeval_to_cputime(&value->it_interval); | ||
201 | spin_lock_irq(&tsk->sighand->siglock); | ||
202 | cval = tsk->signal->it_prof_expires; | ||
203 | cinterval = tsk->signal->it_prof_incr; | ||
204 | if (!cputime_eq(cval, cputime_zero) || | ||
205 | !cputime_eq(nval, cputime_zero)) { | ||
206 | if (cputime_gt(nval, cputime_zero)) | ||
207 | nval = cputime_add(nval, | ||
208 | jiffies_to_cputime(1)); | ||
209 | set_process_cpu_timer(tsk, CPUCLOCK_PROF, | ||
210 | &nval, &cval); | ||
211 | } | ||
212 | tsk->signal->it_prof_expires = nval; | ||
213 | tsk->signal->it_prof_incr = ninterval; | ||
214 | spin_unlock_irq(&tsk->sighand->siglock); | ||
215 | if (ovalue) { | ||
216 | cputime_to_timeval(cval, &ovalue->it_value); | ||
217 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
218 | } | ||
219 | break; | 232 | break; |
220 | default: | 233 | default: |
221 | return -EINVAL; | 234 | return -EINVAL; |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 3a29dbe7898e..8b6b8b697c68 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
@@ -59,7 +59,8 @@ static inline int is_kernel_inittext(unsigned long addr) | |||
59 | 59 | ||
60 | static inline int is_kernel_text(unsigned long addr) | 60 | static inline int is_kernel_text(unsigned long addr) |
61 | { | 61 | { |
62 | if (addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) | 62 | if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || |
63 | arch_is_kernel_text(addr)) | ||
63 | return 1; | 64 | return 1; |
64 | return in_gate_area_no_task(addr); | 65 | return in_gate_area_no_task(addr); |
65 | } | 66 | } |
diff --git a/kernel/kfifo.c b/kernel/kfifo.c index 26539e3228e5..3765ff3c1bbe 100644 --- a/kernel/kfifo.c +++ b/kernel/kfifo.c | |||
@@ -117,7 +117,7 @@ EXPORT_SYMBOL(kfifo_free); | |||
117 | * writer, you don't need extra locking to use these functions. | 117 | * writer, you don't need extra locking to use these functions. |
118 | */ | 118 | */ |
119 | unsigned int __kfifo_put(struct kfifo *fifo, | 119 | unsigned int __kfifo_put(struct kfifo *fifo, |
120 | unsigned char *buffer, unsigned int len) | 120 | const unsigned char *buffer, unsigned int len) |
121 | { | 121 | { |
122 | unsigned int l; | 122 | unsigned int l; |
123 | 123 | ||
diff --git a/kernel/kmod.c b/kernel/kmod.c index a92280870e30..689d20f39305 100644 --- a/kernel/kmod.c +++ b/kernel/kmod.c | |||
@@ -80,6 +80,10 @@ int __request_module(bool wait, const char *fmt, ...) | |||
80 | #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ | 80 | #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ |
81 | static int kmod_loop_msg; | 81 | static int kmod_loop_msg; |
82 | 82 | ||
83 | ret = security_kernel_module_request(); | ||
84 | if (ret) | ||
85 | return ret; | ||
86 | |||
83 | va_start(args, fmt); | 87 | va_start(args, fmt); |
84 | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); | 88 | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); |
85 | va_end(args); | 89 | va_end(args); |
@@ -139,6 +143,7 @@ struct subprocess_info { | |||
139 | static int ____call_usermodehelper(void *data) | 143 | static int ____call_usermodehelper(void *data) |
140 | { | 144 | { |
141 | struct subprocess_info *sub_info = data; | 145 | struct subprocess_info *sub_info = data; |
146 | enum umh_wait wait = sub_info->wait; | ||
142 | int retval; | 147 | int retval; |
143 | 148 | ||
144 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); | 149 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); |
@@ -180,10 +185,14 @@ static int ____call_usermodehelper(void *data) | |||
180 | */ | 185 | */ |
181 | set_user_nice(current, 0); | 186 | set_user_nice(current, 0); |
182 | 187 | ||
188 | if (wait == UMH_WAIT_EXEC) | ||
189 | complete(sub_info->complete); | ||
190 | |||
183 | retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp); | 191 | retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp); |
184 | 192 | ||
185 | /* Exec failed? */ | 193 | /* Exec failed? */ |
186 | sub_info->retval = retval; | 194 | if (wait != UMH_WAIT_EXEC) |
195 | sub_info->retval = retval; | ||
187 | do_exit(0); | 196 | do_exit(0); |
188 | } | 197 | } |
189 | 198 | ||
@@ -262,16 +271,14 @@ static void __call_usermodehelper(struct work_struct *work) | |||
262 | 271 | ||
263 | switch (wait) { | 272 | switch (wait) { |
264 | case UMH_NO_WAIT: | 273 | case UMH_NO_WAIT: |
274 | case UMH_WAIT_EXEC: | ||
265 | break; | 275 | break; |
266 | 276 | ||
267 | case UMH_WAIT_PROC: | 277 | case UMH_WAIT_PROC: |
268 | if (pid > 0) | 278 | if (pid > 0) |
269 | break; | 279 | break; |
270 | sub_info->retval = pid; | 280 | sub_info->retval = pid; |
271 | /* FALLTHROUGH */ | 281 | break; |
272 | |||
273 | case UMH_WAIT_EXEC: | ||
274 | complete(sub_info->complete); | ||
275 | } | 282 | } |
276 | } | 283 | } |
277 | 284 | ||
@@ -466,6 +473,7 @@ int call_usermodehelper_exec(struct subprocess_info *sub_info, | |||
466 | int retval = 0; | 473 | int retval = 0; |
467 | 474 | ||
468 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); | 475 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); |
476 | validate_creds(sub_info->cred); | ||
469 | 477 | ||
470 | helper_lock(); | 478 | helper_lock(); |
471 | if (sub_info->path[0] == '\0') | 479 | if (sub_info->path[0] == '\0') |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index b946761f84bd..b466afa4e148 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -1349,7 +1349,7 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) | |||
1349 | return 0; | 1349 | return 0; |
1350 | } | 1350 | } |
1351 | 1351 | ||
1352 | static struct seq_operations kprobes_seq_ops = { | 1352 | static const struct seq_operations kprobes_seq_ops = { |
1353 | .start = kprobe_seq_start, | 1353 | .start = kprobe_seq_start, |
1354 | .next = kprobe_seq_next, | 1354 | .next = kprobe_seq_next, |
1355 | .stop = kprobe_seq_stop, | 1355 | .stop = kprobe_seq_stop, |
diff --git a/kernel/kthread.c b/kernel/kthread.c index eb8751aa0418..5fe709982caa 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c | |||
@@ -16,8 +16,6 @@ | |||
16 | #include <linux/mutex.h> | 16 | #include <linux/mutex.h> |
17 | #include <trace/events/sched.h> | 17 | #include <trace/events/sched.h> |
18 | 18 | ||
19 | #define KTHREAD_NICE_LEVEL (-5) | ||
20 | |||
21 | static DEFINE_SPINLOCK(kthread_create_lock); | 19 | static DEFINE_SPINLOCK(kthread_create_lock); |
22 | static LIST_HEAD(kthread_create_list); | 20 | static LIST_HEAD(kthread_create_list); |
23 | struct task_struct *kthreadd_task; | 21 | struct task_struct *kthreadd_task; |
@@ -145,7 +143,6 @@ struct task_struct *kthread_create(int (*threadfn)(void *data), | |||
145 | * The kernel thread should not inherit these properties. | 143 | * The kernel thread should not inherit these properties. |
146 | */ | 144 | */ |
147 | sched_setscheduler_nocheck(create.result, SCHED_NORMAL, ¶m); | 145 | sched_setscheduler_nocheck(create.result, SCHED_NORMAL, ¶m); |
148 | set_user_nice(create.result, KTHREAD_NICE_LEVEL); | ||
149 | set_cpus_allowed_ptr(create.result, cpu_all_mask); | 146 | set_cpus_allowed_ptr(create.result, cpu_all_mask); |
150 | } | 147 | } |
151 | return create.result; | 148 | return create.result; |
@@ -221,7 +218,6 @@ int kthreadd(void *unused) | |||
221 | /* Setup a clean context for our children to inherit. */ | 218 | /* Setup a clean context for our children to inherit. */ |
222 | set_task_comm(tsk, "kthreadd"); | 219 | set_task_comm(tsk, "kthreadd"); |
223 | ignore_signals(tsk); | 220 | ignore_signals(tsk); |
224 | set_user_nice(tsk, KTHREAD_NICE_LEVEL); | ||
225 | set_cpus_allowed_ptr(tsk, cpu_all_mask); | 221 | set_cpus_allowed_ptr(tsk, cpu_all_mask); |
226 | set_mems_allowed(node_possible_map); | 222 | set_mems_allowed(node_possible_map); |
227 | 223 | ||
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index 8bbeef996c76..3815ac1d58b2 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -42,6 +42,7 @@ | |||
42 | #include <linux/hash.h> | 42 | #include <linux/hash.h> |
43 | #include <linux/ftrace.h> | 43 | #include <linux/ftrace.h> |
44 | #include <linux/stringify.h> | 44 | #include <linux/stringify.h> |
45 | #include <linux/bitops.h> | ||
45 | 46 | ||
46 | #include <asm/sections.h> | 47 | #include <asm/sections.h> |
47 | 48 | ||
@@ -366,11 +367,21 @@ static int save_trace(struct stack_trace *trace) | |||
366 | 367 | ||
367 | save_stack_trace(trace); | 368 | save_stack_trace(trace); |
368 | 369 | ||
370 | /* | ||
371 | * Some daft arches put -1 at the end to indicate its a full trace. | ||
372 | * | ||
373 | * <rant> this is buggy anyway, since it takes a whole extra entry so a | ||
374 | * complete trace that maxes out the entries provided will be reported | ||
375 | * as incomplete, friggin useless </rant> | ||
376 | */ | ||
377 | if (trace->entries[trace->nr_entries-1] == ULONG_MAX) | ||
378 | trace->nr_entries--; | ||
379 | |||
369 | trace->max_entries = trace->nr_entries; | 380 | trace->max_entries = trace->nr_entries; |
370 | 381 | ||
371 | nr_stack_trace_entries += trace->nr_entries; | 382 | nr_stack_trace_entries += trace->nr_entries; |
372 | 383 | ||
373 | if (nr_stack_trace_entries == MAX_STACK_TRACE_ENTRIES) { | 384 | if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { |
374 | if (!debug_locks_off_graph_unlock()) | 385 | if (!debug_locks_off_graph_unlock()) |
375 | return 0; | 386 | return 0; |
376 | 387 | ||
@@ -388,20 +399,6 @@ unsigned int nr_hardirq_chains; | |||
388 | unsigned int nr_softirq_chains; | 399 | unsigned int nr_softirq_chains; |
389 | unsigned int nr_process_chains; | 400 | unsigned int nr_process_chains; |
390 | unsigned int max_lockdep_depth; | 401 | unsigned int max_lockdep_depth; |
391 | unsigned int max_recursion_depth; | ||
392 | |||
393 | static unsigned int lockdep_dependency_gen_id; | ||
394 | |||
395 | static bool lockdep_dependency_visit(struct lock_class *source, | ||
396 | unsigned int depth) | ||
397 | { | ||
398 | if (!depth) | ||
399 | lockdep_dependency_gen_id++; | ||
400 | if (source->dep_gen_id == lockdep_dependency_gen_id) | ||
401 | return true; | ||
402 | source->dep_gen_id = lockdep_dependency_gen_id; | ||
403 | return false; | ||
404 | } | ||
405 | 402 | ||
406 | #ifdef CONFIG_DEBUG_LOCKDEP | 403 | #ifdef CONFIG_DEBUG_LOCKDEP |
407 | /* | 404 | /* |
@@ -431,11 +428,8 @@ atomic_t redundant_softirqs_on; | |||
431 | atomic_t redundant_softirqs_off; | 428 | atomic_t redundant_softirqs_off; |
432 | atomic_t nr_unused_locks; | 429 | atomic_t nr_unused_locks; |
433 | atomic_t nr_cyclic_checks; | 430 | atomic_t nr_cyclic_checks; |
434 | atomic_t nr_cyclic_check_recursions; | ||
435 | atomic_t nr_find_usage_forwards_checks; | 431 | atomic_t nr_find_usage_forwards_checks; |
436 | atomic_t nr_find_usage_forwards_recursions; | ||
437 | atomic_t nr_find_usage_backwards_checks; | 432 | atomic_t nr_find_usage_backwards_checks; |
438 | atomic_t nr_find_usage_backwards_recursions; | ||
439 | #endif | 433 | #endif |
440 | 434 | ||
441 | /* | 435 | /* |
@@ -551,58 +545,6 @@ static void lockdep_print_held_locks(struct task_struct *curr) | |||
551 | } | 545 | } |
552 | } | 546 | } |
553 | 547 | ||
554 | static void print_lock_class_header(struct lock_class *class, int depth) | ||
555 | { | ||
556 | int bit; | ||
557 | |||
558 | printk("%*s->", depth, ""); | ||
559 | print_lock_name(class); | ||
560 | printk(" ops: %lu", class->ops); | ||
561 | printk(" {\n"); | ||
562 | |||
563 | for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { | ||
564 | if (class->usage_mask & (1 << bit)) { | ||
565 | int len = depth; | ||
566 | |||
567 | len += printk("%*s %s", depth, "", usage_str[bit]); | ||
568 | len += printk(" at:\n"); | ||
569 | print_stack_trace(class->usage_traces + bit, len); | ||
570 | } | ||
571 | } | ||
572 | printk("%*s }\n", depth, ""); | ||
573 | |||
574 | printk("%*s ... key at: ",depth,""); | ||
575 | print_ip_sym((unsigned long)class->key); | ||
576 | } | ||
577 | |||
578 | /* | ||
579 | * printk all lock dependencies starting at <entry>: | ||
580 | */ | ||
581 | static void __used | ||
582 | print_lock_dependencies(struct lock_class *class, int depth) | ||
583 | { | ||
584 | struct lock_list *entry; | ||
585 | |||
586 | if (lockdep_dependency_visit(class, depth)) | ||
587 | return; | ||
588 | |||
589 | if (DEBUG_LOCKS_WARN_ON(depth >= 20)) | ||
590 | return; | ||
591 | |||
592 | print_lock_class_header(class, depth); | ||
593 | |||
594 | list_for_each_entry(entry, &class->locks_after, entry) { | ||
595 | if (DEBUG_LOCKS_WARN_ON(!entry->class)) | ||
596 | return; | ||
597 | |||
598 | print_lock_dependencies(entry->class, depth + 1); | ||
599 | |||
600 | printk("%*s ... acquired at:\n",depth,""); | ||
601 | print_stack_trace(&entry->trace, 2); | ||
602 | printk("\n"); | ||
603 | } | ||
604 | } | ||
605 | |||
606 | static void print_kernel_version(void) | 548 | static void print_kernel_version(void) |
607 | { | 549 | { |
608 | printk("%s %.*s\n", init_utsname()->release, | 550 | printk("%s %.*s\n", init_utsname()->release, |
@@ -636,6 +578,9 @@ static int static_obj(void *obj) | |||
636 | if ((addr >= start) && (addr < end)) | 578 | if ((addr >= start) && (addr < end)) |
637 | return 1; | 579 | return 1; |
638 | 580 | ||
581 | if (arch_is_kernel_data(addr)) | ||
582 | return 1; | ||
583 | |||
639 | #ifdef CONFIG_SMP | 584 | #ifdef CONFIG_SMP |
640 | /* | 585 | /* |
641 | * percpu var? | 586 | * percpu var? |
@@ -898,22 +843,203 @@ static int add_lock_to_list(struct lock_class *class, struct lock_class *this, | |||
898 | } | 843 | } |
899 | 844 | ||
900 | /* | 845 | /* |
846 | * For good efficiency of modular, we use power of 2 | ||
847 | */ | ||
848 | #define MAX_CIRCULAR_QUEUE_SIZE 4096UL | ||
849 | #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) | ||
850 | |||
851 | /* | ||
852 | * The circular_queue and helpers is used to implement the | ||
853 | * breadth-first search(BFS)algorithem, by which we can build | ||
854 | * the shortest path from the next lock to be acquired to the | ||
855 | * previous held lock if there is a circular between them. | ||
856 | */ | ||
857 | struct circular_queue { | ||
858 | unsigned long element[MAX_CIRCULAR_QUEUE_SIZE]; | ||
859 | unsigned int front, rear; | ||
860 | }; | ||
861 | |||
862 | static struct circular_queue lock_cq; | ||
863 | |||
864 | unsigned int max_bfs_queue_depth; | ||
865 | |||
866 | static unsigned int lockdep_dependency_gen_id; | ||
867 | |||
868 | static inline void __cq_init(struct circular_queue *cq) | ||
869 | { | ||
870 | cq->front = cq->rear = 0; | ||
871 | lockdep_dependency_gen_id++; | ||
872 | } | ||
873 | |||
874 | static inline int __cq_empty(struct circular_queue *cq) | ||
875 | { | ||
876 | return (cq->front == cq->rear); | ||
877 | } | ||
878 | |||
879 | static inline int __cq_full(struct circular_queue *cq) | ||
880 | { | ||
881 | return ((cq->rear + 1) & CQ_MASK) == cq->front; | ||
882 | } | ||
883 | |||
884 | static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem) | ||
885 | { | ||
886 | if (__cq_full(cq)) | ||
887 | return -1; | ||
888 | |||
889 | cq->element[cq->rear] = elem; | ||
890 | cq->rear = (cq->rear + 1) & CQ_MASK; | ||
891 | return 0; | ||
892 | } | ||
893 | |||
894 | static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem) | ||
895 | { | ||
896 | if (__cq_empty(cq)) | ||
897 | return -1; | ||
898 | |||
899 | *elem = cq->element[cq->front]; | ||
900 | cq->front = (cq->front + 1) & CQ_MASK; | ||
901 | return 0; | ||
902 | } | ||
903 | |||
904 | static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) | ||
905 | { | ||
906 | return (cq->rear - cq->front) & CQ_MASK; | ||
907 | } | ||
908 | |||
909 | static inline void mark_lock_accessed(struct lock_list *lock, | ||
910 | struct lock_list *parent) | ||
911 | { | ||
912 | unsigned long nr; | ||
913 | |||
914 | nr = lock - list_entries; | ||
915 | WARN_ON(nr >= nr_list_entries); | ||
916 | lock->parent = parent; | ||
917 | lock->class->dep_gen_id = lockdep_dependency_gen_id; | ||
918 | } | ||
919 | |||
920 | static inline unsigned long lock_accessed(struct lock_list *lock) | ||
921 | { | ||
922 | unsigned long nr; | ||
923 | |||
924 | nr = lock - list_entries; | ||
925 | WARN_ON(nr >= nr_list_entries); | ||
926 | return lock->class->dep_gen_id == lockdep_dependency_gen_id; | ||
927 | } | ||
928 | |||
929 | static inline struct lock_list *get_lock_parent(struct lock_list *child) | ||
930 | { | ||
931 | return child->parent; | ||
932 | } | ||
933 | |||
934 | static inline int get_lock_depth(struct lock_list *child) | ||
935 | { | ||
936 | int depth = 0; | ||
937 | struct lock_list *parent; | ||
938 | |||
939 | while ((parent = get_lock_parent(child))) { | ||
940 | child = parent; | ||
941 | depth++; | ||
942 | } | ||
943 | return depth; | ||
944 | } | ||
945 | |||
946 | static int __bfs(struct lock_list *source_entry, | ||
947 | void *data, | ||
948 | int (*match)(struct lock_list *entry, void *data), | ||
949 | struct lock_list **target_entry, | ||
950 | int forward) | ||
951 | { | ||
952 | struct lock_list *entry; | ||
953 | struct list_head *head; | ||
954 | struct circular_queue *cq = &lock_cq; | ||
955 | int ret = 1; | ||
956 | |||
957 | if (match(source_entry, data)) { | ||
958 | *target_entry = source_entry; | ||
959 | ret = 0; | ||
960 | goto exit; | ||
961 | } | ||
962 | |||
963 | if (forward) | ||
964 | head = &source_entry->class->locks_after; | ||
965 | else | ||
966 | head = &source_entry->class->locks_before; | ||
967 | |||
968 | if (list_empty(head)) | ||
969 | goto exit; | ||
970 | |||
971 | __cq_init(cq); | ||
972 | __cq_enqueue(cq, (unsigned long)source_entry); | ||
973 | |||
974 | while (!__cq_empty(cq)) { | ||
975 | struct lock_list *lock; | ||
976 | |||
977 | __cq_dequeue(cq, (unsigned long *)&lock); | ||
978 | |||
979 | if (!lock->class) { | ||
980 | ret = -2; | ||
981 | goto exit; | ||
982 | } | ||
983 | |||
984 | if (forward) | ||
985 | head = &lock->class->locks_after; | ||
986 | else | ||
987 | head = &lock->class->locks_before; | ||
988 | |||
989 | list_for_each_entry(entry, head, entry) { | ||
990 | if (!lock_accessed(entry)) { | ||
991 | unsigned int cq_depth; | ||
992 | mark_lock_accessed(entry, lock); | ||
993 | if (match(entry, data)) { | ||
994 | *target_entry = entry; | ||
995 | ret = 0; | ||
996 | goto exit; | ||
997 | } | ||
998 | |||
999 | if (__cq_enqueue(cq, (unsigned long)entry)) { | ||
1000 | ret = -1; | ||
1001 | goto exit; | ||
1002 | } | ||
1003 | cq_depth = __cq_get_elem_count(cq); | ||
1004 | if (max_bfs_queue_depth < cq_depth) | ||
1005 | max_bfs_queue_depth = cq_depth; | ||
1006 | } | ||
1007 | } | ||
1008 | } | ||
1009 | exit: | ||
1010 | return ret; | ||
1011 | } | ||
1012 | |||
1013 | static inline int __bfs_forwards(struct lock_list *src_entry, | ||
1014 | void *data, | ||
1015 | int (*match)(struct lock_list *entry, void *data), | ||
1016 | struct lock_list **target_entry) | ||
1017 | { | ||
1018 | return __bfs(src_entry, data, match, target_entry, 1); | ||
1019 | |||
1020 | } | ||
1021 | |||
1022 | static inline int __bfs_backwards(struct lock_list *src_entry, | ||
1023 | void *data, | ||
1024 | int (*match)(struct lock_list *entry, void *data), | ||
1025 | struct lock_list **target_entry) | ||
1026 | { | ||
1027 | return __bfs(src_entry, data, match, target_entry, 0); | ||
1028 | |||
1029 | } | ||
1030 | |||
1031 | /* | ||
901 | * Recursive, forwards-direction lock-dependency checking, used for | 1032 | * Recursive, forwards-direction lock-dependency checking, used for |
902 | * both noncyclic checking and for hardirq-unsafe/softirq-unsafe | 1033 | * both noncyclic checking and for hardirq-unsafe/softirq-unsafe |
903 | * checking. | 1034 | * checking. |
904 | * | ||
905 | * (to keep the stackframe of the recursive functions small we | ||
906 | * use these global variables, and we also mark various helper | ||
907 | * functions as noinline.) | ||
908 | */ | 1035 | */ |
909 | static struct held_lock *check_source, *check_target; | ||
910 | 1036 | ||
911 | /* | 1037 | /* |
912 | * Print a dependency chain entry (this is only done when a deadlock | 1038 | * Print a dependency chain entry (this is only done when a deadlock |
913 | * has been detected): | 1039 | * has been detected): |
914 | */ | 1040 | */ |
915 | static noinline int | 1041 | static noinline int |
916 | print_circular_bug_entry(struct lock_list *target, unsigned int depth) | 1042 | print_circular_bug_entry(struct lock_list *target, int depth) |
917 | { | 1043 | { |
918 | if (debug_locks_silent) | 1044 | if (debug_locks_silent) |
919 | return 0; | 1045 | return 0; |
@@ -930,11 +1056,13 @@ print_circular_bug_entry(struct lock_list *target, unsigned int depth) | |||
930 | * header first: | 1056 | * header first: |
931 | */ | 1057 | */ |
932 | static noinline int | 1058 | static noinline int |
933 | print_circular_bug_header(struct lock_list *entry, unsigned int depth) | 1059 | print_circular_bug_header(struct lock_list *entry, unsigned int depth, |
1060 | struct held_lock *check_src, | ||
1061 | struct held_lock *check_tgt) | ||
934 | { | 1062 | { |
935 | struct task_struct *curr = current; | 1063 | struct task_struct *curr = current; |
936 | 1064 | ||
937 | if (!debug_locks_off_graph_unlock() || debug_locks_silent) | 1065 | if (debug_locks_silent) |
938 | return 0; | 1066 | return 0; |
939 | 1067 | ||
940 | printk("\n=======================================================\n"); | 1068 | printk("\n=======================================================\n"); |
@@ -943,9 +1071,9 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth) | |||
943 | printk( "-------------------------------------------------------\n"); | 1071 | printk( "-------------------------------------------------------\n"); |
944 | printk("%s/%d is trying to acquire lock:\n", | 1072 | printk("%s/%d is trying to acquire lock:\n", |
945 | curr->comm, task_pid_nr(curr)); | 1073 | curr->comm, task_pid_nr(curr)); |
946 | print_lock(check_source); | 1074 | print_lock(check_src); |
947 | printk("\nbut task is already holding lock:\n"); | 1075 | printk("\nbut task is already holding lock:\n"); |
948 | print_lock(check_target); | 1076 | print_lock(check_tgt); |
949 | printk("\nwhich lock already depends on the new lock.\n\n"); | 1077 | printk("\nwhich lock already depends on the new lock.\n\n"); |
950 | printk("\nthe existing dependency chain (in reverse order) is:\n"); | 1078 | printk("\nthe existing dependency chain (in reverse order) is:\n"); |
951 | 1079 | ||
@@ -954,19 +1082,36 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth) | |||
954 | return 0; | 1082 | return 0; |
955 | } | 1083 | } |
956 | 1084 | ||
957 | static noinline int print_circular_bug_tail(void) | 1085 | static inline int class_equal(struct lock_list *entry, void *data) |
1086 | { | ||
1087 | return entry->class == data; | ||
1088 | } | ||
1089 | |||
1090 | static noinline int print_circular_bug(struct lock_list *this, | ||
1091 | struct lock_list *target, | ||
1092 | struct held_lock *check_src, | ||
1093 | struct held_lock *check_tgt) | ||
958 | { | 1094 | { |
959 | struct task_struct *curr = current; | 1095 | struct task_struct *curr = current; |
960 | struct lock_list this; | 1096 | struct lock_list *parent; |
1097 | int depth; | ||
961 | 1098 | ||
962 | if (debug_locks_silent) | 1099 | if (!debug_locks_off_graph_unlock() || debug_locks_silent) |
963 | return 0; | 1100 | return 0; |
964 | 1101 | ||
965 | this.class = hlock_class(check_source); | 1102 | if (!save_trace(&this->trace)) |
966 | if (!save_trace(&this.trace)) | ||
967 | return 0; | 1103 | return 0; |
968 | 1104 | ||
969 | print_circular_bug_entry(&this, 0); | 1105 | depth = get_lock_depth(target); |
1106 | |||
1107 | print_circular_bug_header(target, depth, check_src, check_tgt); | ||
1108 | |||
1109 | parent = get_lock_parent(target); | ||
1110 | |||
1111 | while (parent) { | ||
1112 | print_circular_bug_entry(parent, --depth); | ||
1113 | parent = get_lock_parent(parent); | ||
1114 | } | ||
970 | 1115 | ||
971 | printk("\nother info that might help us debug this:\n\n"); | 1116 | printk("\nother info that might help us debug this:\n\n"); |
972 | lockdep_print_held_locks(curr); | 1117 | lockdep_print_held_locks(curr); |
@@ -977,73 +1122,69 @@ static noinline int print_circular_bug_tail(void) | |||
977 | return 0; | 1122 | return 0; |
978 | } | 1123 | } |
979 | 1124 | ||
980 | #define RECURSION_LIMIT 40 | 1125 | static noinline int print_bfs_bug(int ret) |
981 | |||
982 | static int noinline print_infinite_recursion_bug(void) | ||
983 | { | 1126 | { |
984 | if (!debug_locks_off_graph_unlock()) | 1127 | if (!debug_locks_off_graph_unlock()) |
985 | return 0; | 1128 | return 0; |
986 | 1129 | ||
987 | WARN_ON(1); | 1130 | WARN(1, "lockdep bfs error:%d\n", ret); |
988 | 1131 | ||
989 | return 0; | 1132 | return 0; |
990 | } | 1133 | } |
991 | 1134 | ||
992 | unsigned long __lockdep_count_forward_deps(struct lock_class *class, | 1135 | static int noop_count(struct lock_list *entry, void *data) |
993 | unsigned int depth) | ||
994 | { | 1136 | { |
995 | struct lock_list *entry; | 1137 | (*(unsigned long *)data)++; |
996 | unsigned long ret = 1; | 1138 | return 0; |
1139 | } | ||
997 | 1140 | ||
998 | if (lockdep_dependency_visit(class, depth)) | 1141 | unsigned long __lockdep_count_forward_deps(struct lock_list *this) |
999 | return 0; | 1142 | { |
1143 | unsigned long count = 0; | ||
1144 | struct lock_list *uninitialized_var(target_entry); | ||
1000 | 1145 | ||
1001 | /* | 1146 | __bfs_forwards(this, (void *)&count, noop_count, &target_entry); |
1002 | * Recurse this class's dependency list: | ||
1003 | */ | ||
1004 | list_for_each_entry(entry, &class->locks_after, entry) | ||
1005 | ret += __lockdep_count_forward_deps(entry->class, depth + 1); | ||
1006 | 1147 | ||
1007 | return ret; | 1148 | return count; |
1008 | } | 1149 | } |
1009 | |||
1010 | unsigned long lockdep_count_forward_deps(struct lock_class *class) | 1150 | unsigned long lockdep_count_forward_deps(struct lock_class *class) |
1011 | { | 1151 | { |
1012 | unsigned long ret, flags; | 1152 | unsigned long ret, flags; |
1153 | struct lock_list this; | ||
1154 | |||
1155 | this.parent = NULL; | ||
1156 | this.class = class; | ||
1013 | 1157 | ||
1014 | local_irq_save(flags); | 1158 | local_irq_save(flags); |
1015 | __raw_spin_lock(&lockdep_lock); | 1159 | __raw_spin_lock(&lockdep_lock); |
1016 | ret = __lockdep_count_forward_deps(class, 0); | 1160 | ret = __lockdep_count_forward_deps(&this); |
1017 | __raw_spin_unlock(&lockdep_lock); | 1161 | __raw_spin_unlock(&lockdep_lock); |
1018 | local_irq_restore(flags); | 1162 | local_irq_restore(flags); |
1019 | 1163 | ||
1020 | return ret; | 1164 | return ret; |
1021 | } | 1165 | } |
1022 | 1166 | ||
1023 | unsigned long __lockdep_count_backward_deps(struct lock_class *class, | 1167 | unsigned long __lockdep_count_backward_deps(struct lock_list *this) |
1024 | unsigned int depth) | ||
1025 | { | 1168 | { |
1026 | struct lock_list *entry; | 1169 | unsigned long count = 0; |
1027 | unsigned long ret = 1; | 1170 | struct lock_list *uninitialized_var(target_entry); |
1028 | 1171 | ||
1029 | if (lockdep_dependency_visit(class, depth)) | 1172 | __bfs_backwards(this, (void *)&count, noop_count, &target_entry); |
1030 | return 0; | ||
1031 | /* | ||
1032 | * Recurse this class's dependency list: | ||
1033 | */ | ||
1034 | list_for_each_entry(entry, &class->locks_before, entry) | ||
1035 | ret += __lockdep_count_backward_deps(entry->class, depth + 1); | ||
1036 | 1173 | ||
1037 | return ret; | 1174 | return count; |
1038 | } | 1175 | } |
1039 | 1176 | ||
1040 | unsigned long lockdep_count_backward_deps(struct lock_class *class) | 1177 | unsigned long lockdep_count_backward_deps(struct lock_class *class) |
1041 | { | 1178 | { |
1042 | unsigned long ret, flags; | 1179 | unsigned long ret, flags; |
1180 | struct lock_list this; | ||
1181 | |||
1182 | this.parent = NULL; | ||
1183 | this.class = class; | ||
1043 | 1184 | ||
1044 | local_irq_save(flags); | 1185 | local_irq_save(flags); |
1045 | __raw_spin_lock(&lockdep_lock); | 1186 | __raw_spin_lock(&lockdep_lock); |
1046 | ret = __lockdep_count_backward_deps(class, 0); | 1187 | ret = __lockdep_count_backward_deps(&this); |
1047 | __raw_spin_unlock(&lockdep_lock); | 1188 | __raw_spin_unlock(&lockdep_lock); |
1048 | local_irq_restore(flags); | 1189 | local_irq_restore(flags); |
1049 | 1190 | ||
@@ -1055,29 +1196,16 @@ unsigned long lockdep_count_backward_deps(struct lock_class *class) | |||
1055 | * lead to <target>. Print an error and return 0 if it does. | 1196 | * lead to <target>. Print an error and return 0 if it does. |
1056 | */ | 1197 | */ |
1057 | static noinline int | 1198 | static noinline int |
1058 | check_noncircular(struct lock_class *source, unsigned int depth) | 1199 | check_noncircular(struct lock_list *root, struct lock_class *target, |
1200 | struct lock_list **target_entry) | ||
1059 | { | 1201 | { |
1060 | struct lock_list *entry; | 1202 | int result; |
1061 | 1203 | ||
1062 | if (lockdep_dependency_visit(source, depth)) | 1204 | debug_atomic_inc(&nr_cyclic_checks); |
1063 | return 1; | ||
1064 | 1205 | ||
1065 | debug_atomic_inc(&nr_cyclic_check_recursions); | 1206 | result = __bfs_forwards(root, target, class_equal, target_entry); |
1066 | if (depth > max_recursion_depth) | 1207 | |
1067 | max_recursion_depth = depth; | 1208 | return result; |
1068 | if (depth >= RECURSION_LIMIT) | ||
1069 | return print_infinite_recursion_bug(); | ||
1070 | /* | ||
1071 | * Check this lock's dependency list: | ||
1072 | */ | ||
1073 | list_for_each_entry(entry, &source->locks_after, entry) { | ||
1074 | if (entry->class == hlock_class(check_target)) | ||
1075 | return print_circular_bug_header(entry, depth+1); | ||
1076 | debug_atomic_inc(&nr_cyclic_checks); | ||
1077 | if (!check_noncircular(entry->class, depth+1)) | ||
1078 | return print_circular_bug_entry(entry, depth+1); | ||
1079 | } | ||
1080 | return 1; | ||
1081 | } | 1209 | } |
1082 | 1210 | ||
1083 | #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) | 1211 | #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) |
@@ -1086,103 +1214,121 @@ check_noncircular(struct lock_class *source, unsigned int depth) | |||
1086 | * proving that two subgraphs can be connected by a new dependency | 1214 | * proving that two subgraphs can be connected by a new dependency |
1087 | * without creating any illegal irq-safe -> irq-unsafe lock dependency. | 1215 | * without creating any illegal irq-safe -> irq-unsafe lock dependency. |
1088 | */ | 1216 | */ |
1089 | static enum lock_usage_bit find_usage_bit; | 1217 | |
1090 | static struct lock_class *forwards_match, *backwards_match; | 1218 | static inline int usage_match(struct lock_list *entry, void *bit) |
1219 | { | ||
1220 | return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit); | ||
1221 | } | ||
1222 | |||
1223 | |||
1091 | 1224 | ||
1092 | /* | 1225 | /* |
1093 | * Find a node in the forwards-direction dependency sub-graph starting | 1226 | * Find a node in the forwards-direction dependency sub-graph starting |
1094 | * at <source> that matches <find_usage_bit>. | 1227 | * at @root->class that matches @bit. |
1095 | * | 1228 | * |
1096 | * Return 2 if such a node exists in the subgraph, and put that node | 1229 | * Return 0 if such a node exists in the subgraph, and put that node |
1097 | * into <forwards_match>. | 1230 | * into *@target_entry. |
1098 | * | 1231 | * |
1099 | * Return 1 otherwise and keep <forwards_match> unchanged. | 1232 | * Return 1 otherwise and keep *@target_entry unchanged. |
1100 | * Return 0 on error. | 1233 | * Return <0 on error. |
1101 | */ | 1234 | */ |
1102 | static noinline int | 1235 | static int |
1103 | find_usage_forwards(struct lock_class *source, unsigned int depth) | 1236 | find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, |
1237 | struct lock_list **target_entry) | ||
1104 | { | 1238 | { |
1105 | struct lock_list *entry; | 1239 | int result; |
1106 | int ret; | ||
1107 | |||
1108 | if (lockdep_dependency_visit(source, depth)) | ||
1109 | return 1; | ||
1110 | |||
1111 | if (depth > max_recursion_depth) | ||
1112 | max_recursion_depth = depth; | ||
1113 | if (depth >= RECURSION_LIMIT) | ||
1114 | return print_infinite_recursion_bug(); | ||
1115 | 1240 | ||
1116 | debug_atomic_inc(&nr_find_usage_forwards_checks); | 1241 | debug_atomic_inc(&nr_find_usage_forwards_checks); |
1117 | if (source->usage_mask & (1 << find_usage_bit)) { | ||
1118 | forwards_match = source; | ||
1119 | return 2; | ||
1120 | } | ||
1121 | 1242 | ||
1122 | /* | 1243 | result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); |
1123 | * Check this lock's dependency list: | 1244 | |
1124 | */ | 1245 | return result; |
1125 | list_for_each_entry(entry, &source->locks_after, entry) { | ||
1126 | debug_atomic_inc(&nr_find_usage_forwards_recursions); | ||
1127 | ret = find_usage_forwards(entry->class, depth+1); | ||
1128 | if (ret == 2 || ret == 0) | ||
1129 | return ret; | ||
1130 | } | ||
1131 | return 1; | ||
1132 | } | 1246 | } |
1133 | 1247 | ||
1134 | /* | 1248 | /* |
1135 | * Find a node in the backwards-direction dependency sub-graph starting | 1249 | * Find a node in the backwards-direction dependency sub-graph starting |
1136 | * at <source> that matches <find_usage_bit>. | 1250 | * at @root->class that matches @bit. |
1137 | * | 1251 | * |
1138 | * Return 2 if such a node exists in the subgraph, and put that node | 1252 | * Return 0 if such a node exists in the subgraph, and put that node |
1139 | * into <backwards_match>. | 1253 | * into *@target_entry. |
1140 | * | 1254 | * |
1141 | * Return 1 otherwise and keep <backwards_match> unchanged. | 1255 | * Return 1 otherwise and keep *@target_entry unchanged. |
1142 | * Return 0 on error. | 1256 | * Return <0 on error. |
1143 | */ | 1257 | */ |
1144 | static noinline int | 1258 | static int |
1145 | find_usage_backwards(struct lock_class *source, unsigned int depth) | 1259 | find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, |
1260 | struct lock_list **target_entry) | ||
1146 | { | 1261 | { |
1147 | struct lock_list *entry; | 1262 | int result; |
1148 | int ret; | ||
1149 | 1263 | ||
1150 | if (lockdep_dependency_visit(source, depth)) | 1264 | debug_atomic_inc(&nr_find_usage_backwards_checks); |
1151 | return 1; | ||
1152 | 1265 | ||
1153 | if (!__raw_spin_is_locked(&lockdep_lock)) | 1266 | result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); |
1154 | return DEBUG_LOCKS_WARN_ON(1); | ||
1155 | 1267 | ||
1156 | if (depth > max_recursion_depth) | 1268 | return result; |
1157 | max_recursion_depth = depth; | 1269 | } |
1158 | if (depth >= RECURSION_LIMIT) | ||
1159 | return print_infinite_recursion_bug(); | ||
1160 | 1270 | ||
1161 | debug_atomic_inc(&nr_find_usage_backwards_checks); | 1271 | static void print_lock_class_header(struct lock_class *class, int depth) |
1162 | if (source->usage_mask & (1 << find_usage_bit)) { | 1272 | { |
1163 | backwards_match = source; | 1273 | int bit; |
1164 | return 2; | ||
1165 | } | ||
1166 | 1274 | ||
1167 | if (!source && debug_locks_off_graph_unlock()) { | 1275 | printk("%*s->", depth, ""); |
1168 | WARN_ON(1); | 1276 | print_lock_name(class); |
1169 | return 0; | 1277 | printk(" ops: %lu", class->ops); |
1170 | } | 1278 | printk(" {\n"); |
1171 | 1279 | ||
1172 | /* | 1280 | for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { |
1173 | * Check this lock's dependency list: | 1281 | if (class->usage_mask & (1 << bit)) { |
1174 | */ | 1282 | int len = depth; |
1175 | list_for_each_entry(entry, &source->locks_before, entry) { | 1283 | |
1176 | debug_atomic_inc(&nr_find_usage_backwards_recursions); | 1284 | len += printk("%*s %s", depth, "", usage_str[bit]); |
1177 | ret = find_usage_backwards(entry->class, depth+1); | 1285 | len += printk(" at:\n"); |
1178 | if (ret == 2 || ret == 0) | 1286 | print_stack_trace(class->usage_traces + bit, len); |
1179 | return ret; | 1287 | } |
1180 | } | 1288 | } |
1181 | return 1; | 1289 | printk("%*s }\n", depth, ""); |
1290 | |||
1291 | printk("%*s ... key at: ",depth,""); | ||
1292 | print_ip_sym((unsigned long)class->key); | ||
1293 | } | ||
1294 | |||
1295 | /* | ||
1296 | * printk the shortest lock dependencies from @start to @end in reverse order: | ||
1297 | */ | ||
1298 | static void __used | ||
1299 | print_shortest_lock_dependencies(struct lock_list *leaf, | ||
1300 | struct lock_list *root) | ||
1301 | { | ||
1302 | struct lock_list *entry = leaf; | ||
1303 | int depth; | ||
1304 | |||
1305 | /*compute depth from generated tree by BFS*/ | ||
1306 | depth = get_lock_depth(leaf); | ||
1307 | |||
1308 | do { | ||
1309 | print_lock_class_header(entry->class, depth); | ||
1310 | printk("%*s ... acquired at:\n", depth, ""); | ||
1311 | print_stack_trace(&entry->trace, 2); | ||
1312 | printk("\n"); | ||
1313 | |||
1314 | if (depth == 0 && (entry != root)) { | ||
1315 | printk("lockdep:%s bad BFS generated tree\n", __func__); | ||
1316 | break; | ||
1317 | } | ||
1318 | |||
1319 | entry = get_lock_parent(entry); | ||
1320 | depth--; | ||
1321 | } while (entry && (depth >= 0)); | ||
1322 | |||
1323 | return; | ||
1182 | } | 1324 | } |
1183 | 1325 | ||
1184 | static int | 1326 | static int |
1185 | print_bad_irq_dependency(struct task_struct *curr, | 1327 | print_bad_irq_dependency(struct task_struct *curr, |
1328 | struct lock_list *prev_root, | ||
1329 | struct lock_list *next_root, | ||
1330 | struct lock_list *backwards_entry, | ||
1331 | struct lock_list *forwards_entry, | ||
1186 | struct held_lock *prev, | 1332 | struct held_lock *prev, |
1187 | struct held_lock *next, | 1333 | struct held_lock *next, |
1188 | enum lock_usage_bit bit1, | 1334 | enum lock_usage_bit bit1, |
@@ -1215,26 +1361,32 @@ print_bad_irq_dependency(struct task_struct *curr, | |||
1215 | 1361 | ||
1216 | printk("\nbut this new dependency connects a %s-irq-safe lock:\n", | 1362 | printk("\nbut this new dependency connects a %s-irq-safe lock:\n", |
1217 | irqclass); | 1363 | irqclass); |
1218 | print_lock_name(backwards_match); | 1364 | print_lock_name(backwards_entry->class); |
1219 | printk("\n... which became %s-irq-safe at:\n", irqclass); | 1365 | printk("\n... which became %s-irq-safe at:\n", irqclass); |
1220 | 1366 | ||
1221 | print_stack_trace(backwards_match->usage_traces + bit1, 1); | 1367 | print_stack_trace(backwards_entry->class->usage_traces + bit1, 1); |
1222 | 1368 | ||
1223 | printk("\nto a %s-irq-unsafe lock:\n", irqclass); | 1369 | printk("\nto a %s-irq-unsafe lock:\n", irqclass); |
1224 | print_lock_name(forwards_match); | 1370 | print_lock_name(forwards_entry->class); |
1225 | printk("\n... which became %s-irq-unsafe at:\n", irqclass); | 1371 | printk("\n... which became %s-irq-unsafe at:\n", irqclass); |
1226 | printk("..."); | 1372 | printk("..."); |
1227 | 1373 | ||
1228 | print_stack_trace(forwards_match->usage_traces + bit2, 1); | 1374 | print_stack_trace(forwards_entry->class->usage_traces + bit2, 1); |
1229 | 1375 | ||
1230 | printk("\nother info that might help us debug this:\n\n"); | 1376 | printk("\nother info that might help us debug this:\n\n"); |
1231 | lockdep_print_held_locks(curr); | 1377 | lockdep_print_held_locks(curr); |
1232 | 1378 | ||
1233 | printk("\nthe %s-irq-safe lock's dependencies:\n", irqclass); | 1379 | printk("\nthe dependencies between %s-irq-safe lock", irqclass); |
1234 | print_lock_dependencies(backwards_match, 0); | 1380 | printk(" and the holding lock:\n"); |
1381 | if (!save_trace(&prev_root->trace)) | ||
1382 | return 0; | ||
1383 | print_shortest_lock_dependencies(backwards_entry, prev_root); | ||
1235 | 1384 | ||
1236 | printk("\nthe %s-irq-unsafe lock's dependencies:\n", irqclass); | 1385 | printk("\nthe dependencies between the lock to be acquired"); |
1237 | print_lock_dependencies(forwards_match, 0); | 1386 | printk(" and %s-irq-unsafe lock:\n", irqclass); |
1387 | if (!save_trace(&next_root->trace)) | ||
1388 | return 0; | ||
1389 | print_shortest_lock_dependencies(forwards_entry, next_root); | ||
1238 | 1390 | ||
1239 | printk("\nstack backtrace:\n"); | 1391 | printk("\nstack backtrace:\n"); |
1240 | dump_stack(); | 1392 | dump_stack(); |
@@ -1248,19 +1400,30 @@ check_usage(struct task_struct *curr, struct held_lock *prev, | |||
1248 | enum lock_usage_bit bit_forwards, const char *irqclass) | 1400 | enum lock_usage_bit bit_forwards, const char *irqclass) |
1249 | { | 1401 | { |
1250 | int ret; | 1402 | int ret; |
1403 | struct lock_list this, that; | ||
1404 | struct lock_list *uninitialized_var(target_entry); | ||
1405 | struct lock_list *uninitialized_var(target_entry1); | ||
1406 | |||
1407 | this.parent = NULL; | ||
1251 | 1408 | ||
1252 | find_usage_bit = bit_backwards; | 1409 | this.class = hlock_class(prev); |
1253 | /* fills in <backwards_match> */ | 1410 | ret = find_usage_backwards(&this, bit_backwards, &target_entry); |
1254 | ret = find_usage_backwards(hlock_class(prev), 0); | 1411 | if (ret < 0) |
1255 | if (!ret || ret == 1) | 1412 | return print_bfs_bug(ret); |
1413 | if (ret == 1) | ||
1256 | return ret; | 1414 | return ret; |
1257 | 1415 | ||
1258 | find_usage_bit = bit_forwards; | 1416 | that.parent = NULL; |
1259 | ret = find_usage_forwards(hlock_class(next), 0); | 1417 | that.class = hlock_class(next); |
1260 | if (!ret || ret == 1) | 1418 | ret = find_usage_forwards(&that, bit_forwards, &target_entry1); |
1419 | if (ret < 0) | ||
1420 | return print_bfs_bug(ret); | ||
1421 | if (ret == 1) | ||
1261 | return ret; | 1422 | return ret; |
1262 | /* ret == 2 */ | 1423 | |
1263 | return print_bad_irq_dependency(curr, prev, next, | 1424 | return print_bad_irq_dependency(curr, &this, &that, |
1425 | target_entry, target_entry1, | ||
1426 | prev, next, | ||
1264 | bit_backwards, bit_forwards, irqclass); | 1427 | bit_backwards, bit_forwards, irqclass); |
1265 | } | 1428 | } |
1266 | 1429 | ||
@@ -1472,6 +1635,8 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev, | |||
1472 | { | 1635 | { |
1473 | struct lock_list *entry; | 1636 | struct lock_list *entry; |
1474 | int ret; | 1637 | int ret; |
1638 | struct lock_list this; | ||
1639 | struct lock_list *uninitialized_var(target_entry); | ||
1475 | 1640 | ||
1476 | /* | 1641 | /* |
1477 | * Prove that the new <prev> -> <next> dependency would not | 1642 | * Prove that the new <prev> -> <next> dependency would not |
@@ -1482,10 +1647,13 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev, | |||
1482 | * We are using global variables to control the recursion, to | 1647 | * We are using global variables to control the recursion, to |
1483 | * keep the stackframe size of the recursive functions low: | 1648 | * keep the stackframe size of the recursive functions low: |
1484 | */ | 1649 | */ |
1485 | check_source = next; | 1650 | this.class = hlock_class(next); |
1486 | check_target = prev; | 1651 | this.parent = NULL; |
1487 | if (!(check_noncircular(hlock_class(next), 0))) | 1652 | ret = check_noncircular(&this, hlock_class(prev), &target_entry); |
1488 | return print_circular_bug_tail(); | 1653 | if (unlikely(!ret)) |
1654 | return print_circular_bug(&this, target_entry, next, prev); | ||
1655 | else if (unlikely(ret < 0)) | ||
1656 | return print_bfs_bug(ret); | ||
1489 | 1657 | ||
1490 | if (!check_prev_add_irq(curr, prev, next)) | 1658 | if (!check_prev_add_irq(curr, prev, next)) |
1491 | return 0; | 1659 | return 0; |
@@ -1884,7 +2052,8 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this, | |||
1884 | * print irq inversion bug: | 2052 | * print irq inversion bug: |
1885 | */ | 2053 | */ |
1886 | static int | 2054 | static int |
1887 | print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other, | 2055 | print_irq_inversion_bug(struct task_struct *curr, |
2056 | struct lock_list *root, struct lock_list *other, | ||
1888 | struct held_lock *this, int forwards, | 2057 | struct held_lock *this, int forwards, |
1889 | const char *irqclass) | 2058 | const char *irqclass) |
1890 | { | 2059 | { |
@@ -1902,17 +2071,16 @@ print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other, | |||
1902 | printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); | 2071 | printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); |
1903 | else | 2072 | else |
1904 | printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); | 2073 | printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); |
1905 | print_lock_name(other); | 2074 | print_lock_name(other->class); |
1906 | printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); | 2075 | printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); |
1907 | 2076 | ||
1908 | printk("\nother info that might help us debug this:\n"); | 2077 | printk("\nother info that might help us debug this:\n"); |
1909 | lockdep_print_held_locks(curr); | 2078 | lockdep_print_held_locks(curr); |
1910 | 2079 | ||
1911 | printk("\nthe first lock's dependencies:\n"); | 2080 | printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); |
1912 | print_lock_dependencies(hlock_class(this), 0); | 2081 | if (!save_trace(&root->trace)) |
1913 | 2082 | return 0; | |
1914 | printk("\nthe second lock's dependencies:\n"); | 2083 | print_shortest_lock_dependencies(other, root); |
1915 | print_lock_dependencies(other, 0); | ||
1916 | 2084 | ||
1917 | printk("\nstack backtrace:\n"); | 2085 | printk("\nstack backtrace:\n"); |
1918 | dump_stack(); | 2086 | dump_stack(); |
@@ -1929,14 +2097,19 @@ check_usage_forwards(struct task_struct *curr, struct held_lock *this, | |||
1929 | enum lock_usage_bit bit, const char *irqclass) | 2097 | enum lock_usage_bit bit, const char *irqclass) |
1930 | { | 2098 | { |
1931 | int ret; | 2099 | int ret; |
1932 | 2100 | struct lock_list root; | |
1933 | find_usage_bit = bit; | 2101 | struct lock_list *uninitialized_var(target_entry); |
1934 | /* fills in <forwards_match> */ | 2102 | |
1935 | ret = find_usage_forwards(hlock_class(this), 0); | 2103 | root.parent = NULL; |
1936 | if (!ret || ret == 1) | 2104 | root.class = hlock_class(this); |
2105 | ret = find_usage_forwards(&root, bit, &target_entry); | ||
2106 | if (ret < 0) | ||
2107 | return print_bfs_bug(ret); | ||
2108 | if (ret == 1) | ||
1937 | return ret; | 2109 | return ret; |
1938 | 2110 | ||
1939 | return print_irq_inversion_bug(curr, forwards_match, this, 1, irqclass); | 2111 | return print_irq_inversion_bug(curr, &root, target_entry, |
2112 | this, 1, irqclass); | ||
1940 | } | 2113 | } |
1941 | 2114 | ||
1942 | /* | 2115 | /* |
@@ -1948,14 +2121,19 @@ check_usage_backwards(struct task_struct *curr, struct held_lock *this, | |||
1948 | enum lock_usage_bit bit, const char *irqclass) | 2121 | enum lock_usage_bit bit, const char *irqclass) |
1949 | { | 2122 | { |
1950 | int ret; | 2123 | int ret; |
1951 | 2124 | struct lock_list root; | |
1952 | find_usage_bit = bit; | 2125 | struct lock_list *uninitialized_var(target_entry); |
1953 | /* fills in <backwards_match> */ | 2126 | |
1954 | ret = find_usage_backwards(hlock_class(this), 0); | 2127 | root.parent = NULL; |
1955 | if (!ret || ret == 1) | 2128 | root.class = hlock_class(this); |
2129 | ret = find_usage_backwards(&root, bit, &target_entry); | ||
2130 | if (ret < 0) | ||
2131 | return print_bfs_bug(ret); | ||
2132 | if (ret == 1) | ||
1956 | return ret; | 2133 | return ret; |
1957 | 2134 | ||
1958 | return print_irq_inversion_bug(curr, backwards_match, this, 0, irqclass); | 2135 | return print_irq_inversion_bug(curr, &root, target_entry, |
2136 | this, 1, irqclass); | ||
1959 | } | 2137 | } |
1960 | 2138 | ||
1961 | void print_irqtrace_events(struct task_struct *curr) | 2139 | void print_irqtrace_events(struct task_struct *curr) |
@@ -2530,13 +2708,15 @@ EXPORT_SYMBOL_GPL(lockdep_init_map); | |||
2530 | */ | 2708 | */ |
2531 | static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | 2709 | static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, |
2532 | int trylock, int read, int check, int hardirqs_off, | 2710 | int trylock, int read, int check, int hardirqs_off, |
2533 | struct lockdep_map *nest_lock, unsigned long ip) | 2711 | struct lockdep_map *nest_lock, unsigned long ip, |
2712 | int references) | ||
2534 | { | 2713 | { |
2535 | struct task_struct *curr = current; | 2714 | struct task_struct *curr = current; |
2536 | struct lock_class *class = NULL; | 2715 | struct lock_class *class = NULL; |
2537 | struct held_lock *hlock; | 2716 | struct held_lock *hlock; |
2538 | unsigned int depth, id; | 2717 | unsigned int depth, id; |
2539 | int chain_head = 0; | 2718 | int chain_head = 0; |
2719 | int class_idx; | ||
2540 | u64 chain_key; | 2720 | u64 chain_key; |
2541 | 2721 | ||
2542 | if (!prove_locking) | 2722 | if (!prove_locking) |
@@ -2584,10 +2764,24 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
2584 | if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) | 2764 | if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) |
2585 | return 0; | 2765 | return 0; |
2586 | 2766 | ||
2767 | class_idx = class - lock_classes + 1; | ||
2768 | |||
2769 | if (depth) { | ||
2770 | hlock = curr->held_locks + depth - 1; | ||
2771 | if (hlock->class_idx == class_idx && nest_lock) { | ||
2772 | if (hlock->references) | ||
2773 | hlock->references++; | ||
2774 | else | ||
2775 | hlock->references = 2; | ||
2776 | |||
2777 | return 1; | ||
2778 | } | ||
2779 | } | ||
2780 | |||
2587 | hlock = curr->held_locks + depth; | 2781 | hlock = curr->held_locks + depth; |
2588 | if (DEBUG_LOCKS_WARN_ON(!class)) | 2782 | if (DEBUG_LOCKS_WARN_ON(!class)) |
2589 | return 0; | 2783 | return 0; |
2590 | hlock->class_idx = class - lock_classes + 1; | 2784 | hlock->class_idx = class_idx; |
2591 | hlock->acquire_ip = ip; | 2785 | hlock->acquire_ip = ip; |
2592 | hlock->instance = lock; | 2786 | hlock->instance = lock; |
2593 | hlock->nest_lock = nest_lock; | 2787 | hlock->nest_lock = nest_lock; |
@@ -2595,6 +2789,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
2595 | hlock->read = read; | 2789 | hlock->read = read; |
2596 | hlock->check = check; | 2790 | hlock->check = check; |
2597 | hlock->hardirqs_off = !!hardirqs_off; | 2791 | hlock->hardirqs_off = !!hardirqs_off; |
2792 | hlock->references = references; | ||
2598 | #ifdef CONFIG_LOCK_STAT | 2793 | #ifdef CONFIG_LOCK_STAT |
2599 | hlock->waittime_stamp = 0; | 2794 | hlock->waittime_stamp = 0; |
2600 | hlock->holdtime_stamp = sched_clock(); | 2795 | hlock->holdtime_stamp = sched_clock(); |
@@ -2703,6 +2898,30 @@ static int check_unlock(struct task_struct *curr, struct lockdep_map *lock, | |||
2703 | return 1; | 2898 | return 1; |
2704 | } | 2899 | } |
2705 | 2900 | ||
2901 | static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock) | ||
2902 | { | ||
2903 | if (hlock->instance == lock) | ||
2904 | return 1; | ||
2905 | |||
2906 | if (hlock->references) { | ||
2907 | struct lock_class *class = lock->class_cache; | ||
2908 | |||
2909 | if (!class) | ||
2910 | class = look_up_lock_class(lock, 0); | ||
2911 | |||
2912 | if (DEBUG_LOCKS_WARN_ON(!class)) | ||
2913 | return 0; | ||
2914 | |||
2915 | if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) | ||
2916 | return 0; | ||
2917 | |||
2918 | if (hlock->class_idx == class - lock_classes + 1) | ||
2919 | return 1; | ||
2920 | } | ||
2921 | |||
2922 | return 0; | ||
2923 | } | ||
2924 | |||
2706 | static int | 2925 | static int |
2707 | __lock_set_class(struct lockdep_map *lock, const char *name, | 2926 | __lock_set_class(struct lockdep_map *lock, const char *name, |
2708 | struct lock_class_key *key, unsigned int subclass, | 2927 | struct lock_class_key *key, unsigned int subclass, |
@@ -2726,7 +2945,7 @@ __lock_set_class(struct lockdep_map *lock, const char *name, | |||
2726 | */ | 2945 | */ |
2727 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 2946 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
2728 | break; | 2947 | break; |
2729 | if (hlock->instance == lock) | 2948 | if (match_held_lock(hlock, lock)) |
2730 | goto found_it; | 2949 | goto found_it; |
2731 | prev_hlock = hlock; | 2950 | prev_hlock = hlock; |
2732 | } | 2951 | } |
@@ -2745,7 +2964,8 @@ found_it: | |||
2745 | if (!__lock_acquire(hlock->instance, | 2964 | if (!__lock_acquire(hlock->instance, |
2746 | hlock_class(hlock)->subclass, hlock->trylock, | 2965 | hlock_class(hlock)->subclass, hlock->trylock, |
2747 | hlock->read, hlock->check, hlock->hardirqs_off, | 2966 | hlock->read, hlock->check, hlock->hardirqs_off, |
2748 | hlock->nest_lock, hlock->acquire_ip)) | 2967 | hlock->nest_lock, hlock->acquire_ip, |
2968 | hlock->references)) | ||
2749 | return 0; | 2969 | return 0; |
2750 | } | 2970 | } |
2751 | 2971 | ||
@@ -2784,20 +3004,34 @@ lock_release_non_nested(struct task_struct *curr, | |||
2784 | */ | 3004 | */ |
2785 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 3005 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
2786 | break; | 3006 | break; |
2787 | if (hlock->instance == lock) | 3007 | if (match_held_lock(hlock, lock)) |
2788 | goto found_it; | 3008 | goto found_it; |
2789 | prev_hlock = hlock; | 3009 | prev_hlock = hlock; |
2790 | } | 3010 | } |
2791 | return print_unlock_inbalance_bug(curr, lock, ip); | 3011 | return print_unlock_inbalance_bug(curr, lock, ip); |
2792 | 3012 | ||
2793 | found_it: | 3013 | found_it: |
2794 | lock_release_holdtime(hlock); | 3014 | if (hlock->instance == lock) |
3015 | lock_release_holdtime(hlock); | ||
3016 | |||
3017 | if (hlock->references) { | ||
3018 | hlock->references--; | ||
3019 | if (hlock->references) { | ||
3020 | /* | ||
3021 | * We had, and after removing one, still have | ||
3022 | * references, the current lock stack is still | ||
3023 | * valid. We're done! | ||
3024 | */ | ||
3025 | return 1; | ||
3026 | } | ||
3027 | } | ||
2795 | 3028 | ||
2796 | /* | 3029 | /* |
2797 | * We have the right lock to unlock, 'hlock' points to it. | 3030 | * We have the right lock to unlock, 'hlock' points to it. |
2798 | * Now we remove it from the stack, and add back the other | 3031 | * Now we remove it from the stack, and add back the other |
2799 | * entries (if any), recalculating the hash along the way: | 3032 | * entries (if any), recalculating the hash along the way: |
2800 | */ | 3033 | */ |
3034 | |||
2801 | curr->lockdep_depth = i; | 3035 | curr->lockdep_depth = i; |
2802 | curr->curr_chain_key = hlock->prev_chain_key; | 3036 | curr->curr_chain_key = hlock->prev_chain_key; |
2803 | 3037 | ||
@@ -2806,7 +3040,8 @@ found_it: | |||
2806 | if (!__lock_acquire(hlock->instance, | 3040 | if (!__lock_acquire(hlock->instance, |
2807 | hlock_class(hlock)->subclass, hlock->trylock, | 3041 | hlock_class(hlock)->subclass, hlock->trylock, |
2808 | hlock->read, hlock->check, hlock->hardirqs_off, | 3042 | hlock->read, hlock->check, hlock->hardirqs_off, |
2809 | hlock->nest_lock, hlock->acquire_ip)) | 3043 | hlock->nest_lock, hlock->acquire_ip, |
3044 | hlock->references)) | ||
2810 | return 0; | 3045 | return 0; |
2811 | } | 3046 | } |
2812 | 3047 | ||
@@ -2836,7 +3071,7 @@ static int lock_release_nested(struct task_struct *curr, | |||
2836 | /* | 3071 | /* |
2837 | * Is the unlock non-nested: | 3072 | * Is the unlock non-nested: |
2838 | */ | 3073 | */ |
2839 | if (hlock->instance != lock) | 3074 | if (hlock->instance != lock || hlock->references) |
2840 | return lock_release_non_nested(curr, lock, ip); | 3075 | return lock_release_non_nested(curr, lock, ip); |
2841 | curr->lockdep_depth--; | 3076 | curr->lockdep_depth--; |
2842 | 3077 | ||
@@ -2881,6 +3116,21 @@ __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) | |||
2881 | check_chain_key(curr); | 3116 | check_chain_key(curr); |
2882 | } | 3117 | } |
2883 | 3118 | ||
3119 | static int __lock_is_held(struct lockdep_map *lock) | ||
3120 | { | ||
3121 | struct task_struct *curr = current; | ||
3122 | int i; | ||
3123 | |||
3124 | for (i = 0; i < curr->lockdep_depth; i++) { | ||
3125 | struct held_lock *hlock = curr->held_locks + i; | ||
3126 | |||
3127 | if (match_held_lock(hlock, lock)) | ||
3128 | return 1; | ||
3129 | } | ||
3130 | |||
3131 | return 0; | ||
3132 | } | ||
3133 | |||
2884 | /* | 3134 | /* |
2885 | * Check whether we follow the irq-flags state precisely: | 3135 | * Check whether we follow the irq-flags state precisely: |
2886 | */ | 3136 | */ |
@@ -2957,7 +3207,7 @@ void lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
2957 | 3207 | ||
2958 | current->lockdep_recursion = 1; | 3208 | current->lockdep_recursion = 1; |
2959 | __lock_acquire(lock, subclass, trylock, read, check, | 3209 | __lock_acquire(lock, subclass, trylock, read, check, |
2960 | irqs_disabled_flags(flags), nest_lock, ip); | 3210 | irqs_disabled_flags(flags), nest_lock, ip, 0); |
2961 | current->lockdep_recursion = 0; | 3211 | current->lockdep_recursion = 0; |
2962 | raw_local_irq_restore(flags); | 3212 | raw_local_irq_restore(flags); |
2963 | } | 3213 | } |
@@ -2982,6 +3232,26 @@ void lock_release(struct lockdep_map *lock, int nested, | |||
2982 | } | 3232 | } |
2983 | EXPORT_SYMBOL_GPL(lock_release); | 3233 | EXPORT_SYMBOL_GPL(lock_release); |
2984 | 3234 | ||
3235 | int lock_is_held(struct lockdep_map *lock) | ||
3236 | { | ||
3237 | unsigned long flags; | ||
3238 | int ret = 0; | ||
3239 | |||
3240 | if (unlikely(current->lockdep_recursion)) | ||
3241 | return ret; | ||
3242 | |||
3243 | raw_local_irq_save(flags); | ||
3244 | check_flags(flags); | ||
3245 | |||
3246 | current->lockdep_recursion = 1; | ||
3247 | ret = __lock_is_held(lock); | ||
3248 | current->lockdep_recursion = 0; | ||
3249 | raw_local_irq_restore(flags); | ||
3250 | |||
3251 | return ret; | ||
3252 | } | ||
3253 | EXPORT_SYMBOL_GPL(lock_is_held); | ||
3254 | |||
2985 | void lockdep_set_current_reclaim_state(gfp_t gfp_mask) | 3255 | void lockdep_set_current_reclaim_state(gfp_t gfp_mask) |
2986 | { | 3256 | { |
2987 | current->lockdep_reclaim_gfp = gfp_mask; | 3257 | current->lockdep_reclaim_gfp = gfp_mask; |
@@ -3041,7 +3311,7 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip) | |||
3041 | */ | 3311 | */ |
3042 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 3312 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
3043 | break; | 3313 | break; |
3044 | if (hlock->instance == lock) | 3314 | if (match_held_lock(hlock, lock)) |
3045 | goto found_it; | 3315 | goto found_it; |
3046 | prev_hlock = hlock; | 3316 | prev_hlock = hlock; |
3047 | } | 3317 | } |
@@ -3049,6 +3319,9 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip) | |||
3049 | return; | 3319 | return; |
3050 | 3320 | ||
3051 | found_it: | 3321 | found_it: |
3322 | if (hlock->instance != lock) | ||
3323 | return; | ||
3324 | |||
3052 | hlock->waittime_stamp = sched_clock(); | 3325 | hlock->waittime_stamp = sched_clock(); |
3053 | 3326 | ||
3054 | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); | 3327 | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); |
@@ -3088,7 +3361,7 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip) | |||
3088 | */ | 3361 | */ |
3089 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 3362 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
3090 | break; | 3363 | break; |
3091 | if (hlock->instance == lock) | 3364 | if (match_held_lock(hlock, lock)) |
3092 | goto found_it; | 3365 | goto found_it; |
3093 | prev_hlock = hlock; | 3366 | prev_hlock = hlock; |
3094 | } | 3367 | } |
@@ -3096,6 +3369,9 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip) | |||
3096 | return; | 3369 | return; |
3097 | 3370 | ||
3098 | found_it: | 3371 | found_it: |
3372 | if (hlock->instance != lock) | ||
3373 | return; | ||
3374 | |||
3099 | cpu = smp_processor_id(); | 3375 | cpu = smp_processor_id(); |
3100 | if (hlock->waittime_stamp) { | 3376 | if (hlock->waittime_stamp) { |
3101 | now = sched_clock(); | 3377 | now = sched_clock(); |
@@ -3326,7 +3602,12 @@ void __init lockdep_info(void) | |||
3326 | sizeof(struct list_head) * CLASSHASH_SIZE + | 3602 | sizeof(struct list_head) * CLASSHASH_SIZE + |
3327 | sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + | 3603 | sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + |
3328 | sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + | 3604 | sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + |
3329 | sizeof(struct list_head) * CHAINHASH_SIZE) / 1024); | 3605 | sizeof(struct list_head) * CHAINHASH_SIZE |
3606 | #ifdef CONFIG_PROVE_LOCKING | ||
3607 | + sizeof(struct circular_queue) | ||
3608 | #endif | ||
3609 | ) / 1024 | ||
3610 | ); | ||
3330 | 3611 | ||
3331 | printk(" per task-struct memory footprint: %lu bytes\n", | 3612 | printk(" per task-struct memory footprint: %lu bytes\n", |
3332 | sizeof(struct held_lock) * MAX_LOCK_DEPTH); | 3613 | sizeof(struct held_lock) * MAX_LOCK_DEPTH); |
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h index 699a2ac3a0d7..a2ee95ad1313 100644 --- a/kernel/lockdep_internals.h +++ b/kernel/lockdep_internals.h | |||
@@ -91,6 +91,8 @@ extern unsigned int nr_process_chains; | |||
91 | extern unsigned int max_lockdep_depth; | 91 | extern unsigned int max_lockdep_depth; |
92 | extern unsigned int max_recursion_depth; | 92 | extern unsigned int max_recursion_depth; |
93 | 93 | ||
94 | extern unsigned int max_bfs_queue_depth; | ||
95 | |||
94 | #ifdef CONFIG_PROVE_LOCKING | 96 | #ifdef CONFIG_PROVE_LOCKING |
95 | extern unsigned long lockdep_count_forward_deps(struct lock_class *); | 97 | extern unsigned long lockdep_count_forward_deps(struct lock_class *); |
96 | extern unsigned long lockdep_count_backward_deps(struct lock_class *); | 98 | extern unsigned long lockdep_count_backward_deps(struct lock_class *); |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index e94caa666dba..d4aba4f3584c 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
@@ -25,38 +25,12 @@ | |||
25 | 25 | ||
26 | static void *l_next(struct seq_file *m, void *v, loff_t *pos) | 26 | static void *l_next(struct seq_file *m, void *v, loff_t *pos) |
27 | { | 27 | { |
28 | struct lock_class *class; | 28 | return seq_list_next(v, &all_lock_classes, pos); |
29 | |||
30 | (*pos)++; | ||
31 | |||
32 | if (v == SEQ_START_TOKEN) | ||
33 | class = m->private; | ||
34 | else { | ||
35 | class = v; | ||
36 | |||
37 | if (class->lock_entry.next != &all_lock_classes) | ||
38 | class = list_entry(class->lock_entry.next, | ||
39 | struct lock_class, lock_entry); | ||
40 | else | ||
41 | class = NULL; | ||
42 | } | ||
43 | |||
44 | return class; | ||
45 | } | 29 | } |
46 | 30 | ||
47 | static void *l_start(struct seq_file *m, loff_t *pos) | 31 | static void *l_start(struct seq_file *m, loff_t *pos) |
48 | { | 32 | { |
49 | struct lock_class *class; | 33 | return seq_list_start_head(&all_lock_classes, *pos); |
50 | loff_t i = 0; | ||
51 | |||
52 | if (*pos == 0) | ||
53 | return SEQ_START_TOKEN; | ||
54 | |||
55 | list_for_each_entry(class, &all_lock_classes, lock_entry) { | ||
56 | if (++i == *pos) | ||
57 | return class; | ||
58 | } | ||
59 | return NULL; | ||
60 | } | 34 | } |
61 | 35 | ||
62 | static void l_stop(struct seq_file *m, void *v) | 36 | static void l_stop(struct seq_file *m, void *v) |
@@ -82,11 +56,11 @@ static void print_name(struct seq_file *m, struct lock_class *class) | |||
82 | 56 | ||
83 | static int l_show(struct seq_file *m, void *v) | 57 | static int l_show(struct seq_file *m, void *v) |
84 | { | 58 | { |
85 | struct lock_class *class = v; | 59 | struct lock_class *class = list_entry(v, struct lock_class, lock_entry); |
86 | struct lock_list *entry; | 60 | struct lock_list *entry; |
87 | char usage[LOCK_USAGE_CHARS]; | 61 | char usage[LOCK_USAGE_CHARS]; |
88 | 62 | ||
89 | if (v == SEQ_START_TOKEN) { | 63 | if (v == &all_lock_classes) { |
90 | seq_printf(m, "all lock classes:\n"); | 64 | seq_printf(m, "all lock classes:\n"); |
91 | return 0; | 65 | return 0; |
92 | } | 66 | } |
@@ -128,17 +102,7 @@ static const struct seq_operations lockdep_ops = { | |||
128 | 102 | ||
129 | static int lockdep_open(struct inode *inode, struct file *file) | 103 | static int lockdep_open(struct inode *inode, struct file *file) |
130 | { | 104 | { |
131 | int res = seq_open(file, &lockdep_ops); | 105 | return seq_open(file, &lockdep_ops); |
132 | if (!res) { | ||
133 | struct seq_file *m = file->private_data; | ||
134 | |||
135 | if (!list_empty(&all_lock_classes)) | ||
136 | m->private = list_entry(all_lock_classes.next, | ||
137 | struct lock_class, lock_entry); | ||
138 | else | ||
139 | m->private = NULL; | ||
140 | } | ||
141 | return res; | ||
142 | } | 106 | } |
143 | 107 | ||
144 | static const struct file_operations proc_lockdep_operations = { | 108 | static const struct file_operations proc_lockdep_operations = { |
@@ -149,37 +113,23 @@ static const struct file_operations proc_lockdep_operations = { | |||
149 | }; | 113 | }; |
150 | 114 | ||
151 | #ifdef CONFIG_PROVE_LOCKING | 115 | #ifdef CONFIG_PROVE_LOCKING |
152 | static void *lc_next(struct seq_file *m, void *v, loff_t *pos) | ||
153 | { | ||
154 | struct lock_chain *chain; | ||
155 | |||
156 | (*pos)++; | ||
157 | |||
158 | if (v == SEQ_START_TOKEN) | ||
159 | chain = m->private; | ||
160 | else { | ||
161 | chain = v; | ||
162 | |||
163 | if (*pos < nr_lock_chains) | ||
164 | chain = lock_chains + *pos; | ||
165 | else | ||
166 | chain = NULL; | ||
167 | } | ||
168 | |||
169 | return chain; | ||
170 | } | ||
171 | |||
172 | static void *lc_start(struct seq_file *m, loff_t *pos) | 116 | static void *lc_start(struct seq_file *m, loff_t *pos) |
173 | { | 117 | { |
174 | if (*pos == 0) | 118 | if (*pos == 0) |
175 | return SEQ_START_TOKEN; | 119 | return SEQ_START_TOKEN; |
176 | 120 | ||
177 | if (*pos < nr_lock_chains) | 121 | if (*pos - 1 < nr_lock_chains) |
178 | return lock_chains + *pos; | 122 | return lock_chains + (*pos - 1); |
179 | 123 | ||
180 | return NULL; | 124 | return NULL; |
181 | } | 125 | } |
182 | 126 | ||
127 | static void *lc_next(struct seq_file *m, void *v, loff_t *pos) | ||
128 | { | ||
129 | (*pos)++; | ||
130 | return lc_start(m, pos); | ||
131 | } | ||
132 | |||
183 | static void lc_stop(struct seq_file *m, void *v) | 133 | static void lc_stop(struct seq_file *m, void *v) |
184 | { | 134 | { |
185 | } | 135 | } |
@@ -220,16 +170,7 @@ static const struct seq_operations lockdep_chains_ops = { | |||
220 | 170 | ||
221 | static int lockdep_chains_open(struct inode *inode, struct file *file) | 171 | static int lockdep_chains_open(struct inode *inode, struct file *file) |
222 | { | 172 | { |
223 | int res = seq_open(file, &lockdep_chains_ops); | 173 | return seq_open(file, &lockdep_chains_ops); |
224 | if (!res) { | ||
225 | struct seq_file *m = file->private_data; | ||
226 | |||
227 | if (nr_lock_chains) | ||
228 | m->private = lock_chains; | ||
229 | else | ||
230 | m->private = NULL; | ||
231 | } | ||
232 | return res; | ||
233 | } | 174 | } |
234 | 175 | ||
235 | static const struct file_operations proc_lockdep_chains_operations = { | 176 | static const struct file_operations proc_lockdep_chains_operations = { |
@@ -258,16 +199,10 @@ static void lockdep_stats_debug_show(struct seq_file *m) | |||
258 | debug_atomic_read(&chain_lookup_hits)); | 199 | debug_atomic_read(&chain_lookup_hits)); |
259 | seq_printf(m, " cyclic checks: %11u\n", | 200 | seq_printf(m, " cyclic checks: %11u\n", |
260 | debug_atomic_read(&nr_cyclic_checks)); | 201 | debug_atomic_read(&nr_cyclic_checks)); |
261 | seq_printf(m, " cyclic-check recursions: %11u\n", | ||
262 | debug_atomic_read(&nr_cyclic_check_recursions)); | ||
263 | seq_printf(m, " find-mask forwards checks: %11u\n", | 202 | seq_printf(m, " find-mask forwards checks: %11u\n", |
264 | debug_atomic_read(&nr_find_usage_forwards_checks)); | 203 | debug_atomic_read(&nr_find_usage_forwards_checks)); |
265 | seq_printf(m, " find-mask forwards recursions: %11u\n", | ||
266 | debug_atomic_read(&nr_find_usage_forwards_recursions)); | ||
267 | seq_printf(m, " find-mask backwards checks: %11u\n", | 204 | seq_printf(m, " find-mask backwards checks: %11u\n", |
268 | debug_atomic_read(&nr_find_usage_backwards_checks)); | 205 | debug_atomic_read(&nr_find_usage_backwards_checks)); |
269 | seq_printf(m, " find-mask backwards recursions:%11u\n", | ||
270 | debug_atomic_read(&nr_find_usage_backwards_recursions)); | ||
271 | 206 | ||
272 | seq_printf(m, " hardirq on events: %11u\n", hi1); | 207 | seq_printf(m, " hardirq on events: %11u\n", hi1); |
273 | seq_printf(m, " hardirq off events: %11u\n", hi2); | 208 | seq_printf(m, " hardirq off events: %11u\n", hi2); |
@@ -409,8 +344,10 @@ static int lockdep_stats_show(struct seq_file *m, void *v) | |||
409 | nr_unused); | 344 | nr_unused); |
410 | seq_printf(m, " max locking depth: %11u\n", | 345 | seq_printf(m, " max locking depth: %11u\n", |
411 | max_lockdep_depth); | 346 | max_lockdep_depth); |
412 | seq_printf(m, " max recursion depth: %11u\n", | 347 | #ifdef CONFIG_PROVE_LOCKING |
413 | max_recursion_depth); | 348 | seq_printf(m, " max bfs queue depth: %11u\n", |
349 | max_bfs_queue_depth); | ||
350 | #endif | ||
414 | lockdep_stats_debug_show(m); | 351 | lockdep_stats_debug_show(m); |
415 | seq_printf(m, " debug_locks: %11u\n", | 352 | seq_printf(m, " debug_locks: %11u\n", |
416 | debug_locks); | 353 | debug_locks); |
@@ -438,7 +375,6 @@ struct lock_stat_data { | |||
438 | }; | 375 | }; |
439 | 376 | ||
440 | struct lock_stat_seq { | 377 | struct lock_stat_seq { |
441 | struct lock_stat_data *iter; | ||
442 | struct lock_stat_data *iter_end; | 378 | struct lock_stat_data *iter_end; |
443 | struct lock_stat_data stats[MAX_LOCKDEP_KEYS]; | 379 | struct lock_stat_data stats[MAX_LOCKDEP_KEYS]; |
444 | }; | 380 | }; |
@@ -626,34 +562,22 @@ static void seq_header(struct seq_file *m) | |||
626 | static void *ls_start(struct seq_file *m, loff_t *pos) | 562 | static void *ls_start(struct seq_file *m, loff_t *pos) |
627 | { | 563 | { |
628 | struct lock_stat_seq *data = m->private; | 564 | struct lock_stat_seq *data = m->private; |
565 | struct lock_stat_data *iter; | ||
629 | 566 | ||
630 | if (*pos == 0) | 567 | if (*pos == 0) |
631 | return SEQ_START_TOKEN; | 568 | return SEQ_START_TOKEN; |
632 | 569 | ||
633 | data->iter = data->stats + *pos; | 570 | iter = data->stats + (*pos - 1); |
634 | if (data->iter >= data->iter_end) | 571 | if (iter >= data->iter_end) |
635 | data->iter = NULL; | 572 | iter = NULL; |
636 | 573 | ||
637 | return data->iter; | 574 | return iter; |
638 | } | 575 | } |
639 | 576 | ||
640 | static void *ls_next(struct seq_file *m, void *v, loff_t *pos) | 577 | static void *ls_next(struct seq_file *m, void *v, loff_t *pos) |
641 | { | 578 | { |
642 | struct lock_stat_seq *data = m->private; | ||
643 | |||
644 | (*pos)++; | 579 | (*pos)++; |
645 | 580 | return ls_start(m, pos); | |
646 | if (v == SEQ_START_TOKEN) | ||
647 | data->iter = data->stats; | ||
648 | else { | ||
649 | data->iter = v; | ||
650 | data->iter++; | ||
651 | } | ||
652 | |||
653 | if (data->iter == data->iter_end) | ||
654 | data->iter = NULL; | ||
655 | |||
656 | return data->iter; | ||
657 | } | 581 | } |
658 | 582 | ||
659 | static void ls_stop(struct seq_file *m, void *v) | 583 | static void ls_stop(struct seq_file *m, void *v) |
@@ -670,7 +594,7 @@ static int ls_show(struct seq_file *m, void *v) | |||
670 | return 0; | 594 | return 0; |
671 | } | 595 | } |
672 | 596 | ||
673 | static struct seq_operations lockstat_ops = { | 597 | static const struct seq_operations lockstat_ops = { |
674 | .start = ls_start, | 598 | .start = ls_start, |
675 | .next = ls_next, | 599 | .next = ls_next, |
676 | .stop = ls_stop, | 600 | .stop = ls_stop, |
@@ -691,7 +615,6 @@ static int lock_stat_open(struct inode *inode, struct file *file) | |||
691 | struct lock_stat_data *iter = data->stats; | 615 | struct lock_stat_data *iter = data->stats; |
692 | struct seq_file *m = file->private_data; | 616 | struct seq_file *m = file->private_data; |
693 | 617 | ||
694 | data->iter = iter; | ||
695 | list_for_each_entry(class, &all_lock_classes, lock_entry) { | 618 | list_for_each_entry(class, &all_lock_classes, lock_entry) { |
696 | iter->class = class; | 619 | iter->class = class; |
697 | iter->stats = lock_stats(class); | 620 | iter->stats = lock_stats(class); |
@@ -699,7 +622,7 @@ static int lock_stat_open(struct inode *inode, struct file *file) | |||
699 | } | 622 | } |
700 | data->iter_end = iter; | 623 | data->iter_end = iter; |
701 | 624 | ||
702 | sort(data->stats, data->iter_end - data->iter, | 625 | sort(data->stats, data->iter_end - data->stats, |
703 | sizeof(struct lock_stat_data), | 626 | sizeof(struct lock_stat_data), |
704 | lock_stat_cmp, NULL); | 627 | lock_stat_cmp, NULL); |
705 | 628 | ||
@@ -734,7 +657,6 @@ static int lock_stat_release(struct inode *inode, struct file *file) | |||
734 | struct seq_file *seq = file->private_data; | 657 | struct seq_file *seq = file->private_data; |
735 | 658 | ||
736 | vfree(seq->private); | 659 | vfree(seq->private); |
737 | seq->private = NULL; | ||
738 | return seq_release(inode, file); | 660 | return seq_release(inode, file); |
739 | } | 661 | } |
740 | 662 | ||
diff --git a/kernel/marker.c b/kernel/marker.c deleted file mode 100644 index ea54f2647868..000000000000 --- a/kernel/marker.c +++ /dev/null | |||
@@ -1,930 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Mathieu Desnoyers | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | */ | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/mutex.h> | ||
20 | #include <linux/types.h> | ||
21 | #include <linux/jhash.h> | ||
22 | #include <linux/list.h> | ||
23 | #include <linux/rcupdate.h> | ||
24 | #include <linux/marker.h> | ||
25 | #include <linux/err.h> | ||
26 | #include <linux/slab.h> | ||
27 | |||
28 | extern struct marker __start___markers[]; | ||
29 | extern struct marker __stop___markers[]; | ||
30 | |||
31 | /* Set to 1 to enable marker debug output */ | ||
32 | static const int marker_debug; | ||
33 | |||
34 | /* | ||
35 | * markers_mutex nests inside module_mutex. Markers mutex protects the builtin | ||
36 | * and module markers and the hash table. | ||
37 | */ | ||
38 | static DEFINE_MUTEX(markers_mutex); | ||
39 | |||
40 | /* | ||
41 | * Marker hash table, containing the active markers. | ||
42 | * Protected by module_mutex. | ||
43 | */ | ||
44 | #define MARKER_HASH_BITS 6 | ||
45 | #define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS) | ||
46 | static struct hlist_head marker_table[MARKER_TABLE_SIZE]; | ||
47 | |||
48 | /* | ||
49 | * Note about RCU : | ||
50 | * It is used to make sure every handler has finished using its private data | ||
51 | * between two consecutive operation (add or remove) on a given marker. It is | ||
52 | * also used to delay the free of multiple probes array until a quiescent state | ||
53 | * is reached. | ||
54 | * marker entries modifications are protected by the markers_mutex. | ||
55 | */ | ||
56 | struct marker_entry { | ||
57 | struct hlist_node hlist; | ||
58 | char *format; | ||
59 | /* Probe wrapper */ | ||
60 | void (*call)(const struct marker *mdata, void *call_private, ...); | ||
61 | struct marker_probe_closure single; | ||
62 | struct marker_probe_closure *multi; | ||
63 | int refcount; /* Number of times armed. 0 if disarmed. */ | ||
64 | struct rcu_head rcu; | ||
65 | void *oldptr; | ||
66 | int rcu_pending; | ||
67 | unsigned char ptype:1; | ||
68 | unsigned char format_allocated:1; | ||
69 | char name[0]; /* Contains name'\0'format'\0' */ | ||
70 | }; | ||
71 | |||
72 | /** | ||
73 | * __mark_empty_function - Empty probe callback | ||
74 | * @probe_private: probe private data | ||
75 | * @call_private: call site private data | ||
76 | * @fmt: format string | ||
77 | * @...: variable argument list | ||
78 | * | ||
79 | * Empty callback provided as a probe to the markers. By providing this to a | ||
80 | * disabled marker, we make sure the execution flow is always valid even | ||
81 | * though the function pointer change and the marker enabling are two distinct | ||
82 | * operations that modifies the execution flow of preemptible code. | ||
83 | */ | ||
84 | notrace void __mark_empty_function(void *probe_private, void *call_private, | ||
85 | const char *fmt, va_list *args) | ||
86 | { | ||
87 | } | ||
88 | EXPORT_SYMBOL_GPL(__mark_empty_function); | ||
89 | |||
90 | /* | ||
91 | * marker_probe_cb Callback that prepares the variable argument list for probes. | ||
92 | * @mdata: pointer of type struct marker | ||
93 | * @call_private: caller site private data | ||
94 | * @...: Variable argument list. | ||
95 | * | ||
96 | * Since we do not use "typical" pointer based RCU in the 1 argument case, we | ||
97 | * need to put a full smp_rmb() in this branch. This is why we do not use | ||
98 | * rcu_dereference() for the pointer read. | ||
99 | */ | ||
100 | notrace void marker_probe_cb(const struct marker *mdata, | ||
101 | void *call_private, ...) | ||
102 | { | ||
103 | va_list args; | ||
104 | char ptype; | ||
105 | |||
106 | /* | ||
107 | * rcu_read_lock_sched does two things : disabling preemption to make | ||
108 | * sure the teardown of the callbacks can be done correctly when they | ||
109 | * are in modules and they insure RCU read coherency. | ||
110 | */ | ||
111 | rcu_read_lock_sched_notrace(); | ||
112 | ptype = mdata->ptype; | ||
113 | if (likely(!ptype)) { | ||
114 | marker_probe_func *func; | ||
115 | /* Must read the ptype before ptr. They are not data dependant, | ||
116 | * so we put an explicit smp_rmb() here. */ | ||
117 | smp_rmb(); | ||
118 | func = mdata->single.func; | ||
119 | /* Must read the ptr before private data. They are not data | ||
120 | * dependant, so we put an explicit smp_rmb() here. */ | ||
121 | smp_rmb(); | ||
122 | va_start(args, call_private); | ||
123 | func(mdata->single.probe_private, call_private, mdata->format, | ||
124 | &args); | ||
125 | va_end(args); | ||
126 | } else { | ||
127 | struct marker_probe_closure *multi; | ||
128 | int i; | ||
129 | /* | ||
130 | * Read mdata->ptype before mdata->multi. | ||
131 | */ | ||
132 | smp_rmb(); | ||
133 | multi = mdata->multi; | ||
134 | /* | ||
135 | * multi points to an array, therefore accessing the array | ||
136 | * depends on reading multi. However, even in this case, | ||
137 | * we must insure that the pointer is read _before_ the array | ||
138 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
139 | * in the fast path, so put the explicit barrier here. | ||
140 | */ | ||
141 | smp_read_barrier_depends(); | ||
142 | for (i = 0; multi[i].func; i++) { | ||
143 | va_start(args, call_private); | ||
144 | multi[i].func(multi[i].probe_private, call_private, | ||
145 | mdata->format, &args); | ||
146 | va_end(args); | ||
147 | } | ||
148 | } | ||
149 | rcu_read_unlock_sched_notrace(); | ||
150 | } | ||
151 | EXPORT_SYMBOL_GPL(marker_probe_cb); | ||
152 | |||
153 | /* | ||
154 | * marker_probe_cb Callback that does not prepare the variable argument list. | ||
155 | * @mdata: pointer of type struct marker | ||
156 | * @call_private: caller site private data | ||
157 | * @...: Variable argument list. | ||
158 | * | ||
159 | * Should be connected to markers "MARK_NOARGS". | ||
160 | */ | ||
161 | static notrace void marker_probe_cb_noarg(const struct marker *mdata, | ||
162 | void *call_private, ...) | ||
163 | { | ||
164 | va_list args; /* not initialized */ | ||
165 | char ptype; | ||
166 | |||
167 | rcu_read_lock_sched_notrace(); | ||
168 | ptype = mdata->ptype; | ||
169 | if (likely(!ptype)) { | ||
170 | marker_probe_func *func; | ||
171 | /* Must read the ptype before ptr. They are not data dependant, | ||
172 | * so we put an explicit smp_rmb() here. */ | ||
173 | smp_rmb(); | ||
174 | func = mdata->single.func; | ||
175 | /* Must read the ptr before private data. They are not data | ||
176 | * dependant, so we put an explicit smp_rmb() here. */ | ||
177 | smp_rmb(); | ||
178 | func(mdata->single.probe_private, call_private, mdata->format, | ||
179 | &args); | ||
180 | } else { | ||
181 | struct marker_probe_closure *multi; | ||
182 | int i; | ||
183 | /* | ||
184 | * Read mdata->ptype before mdata->multi. | ||
185 | */ | ||
186 | smp_rmb(); | ||
187 | multi = mdata->multi; | ||
188 | /* | ||
189 | * multi points to an array, therefore accessing the array | ||
190 | * depends on reading multi. However, even in this case, | ||
191 | * we must insure that the pointer is read _before_ the array | ||
192 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
193 | * in the fast path, so put the explicit barrier here. | ||
194 | */ | ||
195 | smp_read_barrier_depends(); | ||
196 | for (i = 0; multi[i].func; i++) | ||
197 | multi[i].func(multi[i].probe_private, call_private, | ||
198 | mdata->format, &args); | ||
199 | } | ||
200 | rcu_read_unlock_sched_notrace(); | ||
201 | } | ||
202 | |||
203 | static void free_old_closure(struct rcu_head *head) | ||
204 | { | ||
205 | struct marker_entry *entry = container_of(head, | ||
206 | struct marker_entry, rcu); | ||
207 | kfree(entry->oldptr); | ||
208 | /* Make sure we free the data before setting the pending flag to 0 */ | ||
209 | smp_wmb(); | ||
210 | entry->rcu_pending = 0; | ||
211 | } | ||
212 | |||
213 | static void debug_print_probes(struct marker_entry *entry) | ||
214 | { | ||
215 | int i; | ||
216 | |||
217 | if (!marker_debug) | ||
218 | return; | ||
219 | |||
220 | if (!entry->ptype) { | ||
221 | printk(KERN_DEBUG "Single probe : %p %p\n", | ||
222 | entry->single.func, | ||
223 | entry->single.probe_private); | ||
224 | } else { | ||
225 | for (i = 0; entry->multi[i].func; i++) | ||
226 | printk(KERN_DEBUG "Multi probe %d : %p %p\n", i, | ||
227 | entry->multi[i].func, | ||
228 | entry->multi[i].probe_private); | ||
229 | } | ||
230 | } | ||
231 | |||
232 | static struct marker_probe_closure * | ||
233 | marker_entry_add_probe(struct marker_entry *entry, | ||
234 | marker_probe_func *probe, void *probe_private) | ||
235 | { | ||
236 | int nr_probes = 0; | ||
237 | struct marker_probe_closure *old, *new; | ||
238 | |||
239 | WARN_ON(!probe); | ||
240 | |||
241 | debug_print_probes(entry); | ||
242 | old = entry->multi; | ||
243 | if (!entry->ptype) { | ||
244 | if (entry->single.func == probe && | ||
245 | entry->single.probe_private == probe_private) | ||
246 | return ERR_PTR(-EBUSY); | ||
247 | if (entry->single.func == __mark_empty_function) { | ||
248 | /* 0 -> 1 probes */ | ||
249 | entry->single.func = probe; | ||
250 | entry->single.probe_private = probe_private; | ||
251 | entry->refcount = 1; | ||
252 | entry->ptype = 0; | ||
253 | debug_print_probes(entry); | ||
254 | return NULL; | ||
255 | } else { | ||
256 | /* 1 -> 2 probes */ | ||
257 | nr_probes = 1; | ||
258 | old = NULL; | ||
259 | } | ||
260 | } else { | ||
261 | /* (N -> N+1), (N != 0, 1) probes */ | ||
262 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) | ||
263 | if (old[nr_probes].func == probe | ||
264 | && old[nr_probes].probe_private | ||
265 | == probe_private) | ||
266 | return ERR_PTR(-EBUSY); | ||
267 | } | ||
268 | /* + 2 : one for new probe, one for NULL func */ | ||
269 | new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure), | ||
270 | GFP_KERNEL); | ||
271 | if (new == NULL) | ||
272 | return ERR_PTR(-ENOMEM); | ||
273 | if (!old) | ||
274 | new[0] = entry->single; | ||
275 | else | ||
276 | memcpy(new, old, | ||
277 | nr_probes * sizeof(struct marker_probe_closure)); | ||
278 | new[nr_probes].func = probe; | ||
279 | new[nr_probes].probe_private = probe_private; | ||
280 | entry->refcount = nr_probes + 1; | ||
281 | entry->multi = new; | ||
282 | entry->ptype = 1; | ||
283 | debug_print_probes(entry); | ||
284 | return old; | ||
285 | } | ||
286 | |||
287 | static struct marker_probe_closure * | ||
288 | marker_entry_remove_probe(struct marker_entry *entry, | ||
289 | marker_probe_func *probe, void *probe_private) | ||
290 | { | ||
291 | int nr_probes = 0, nr_del = 0, i; | ||
292 | struct marker_probe_closure *old, *new; | ||
293 | |||
294 | old = entry->multi; | ||
295 | |||
296 | debug_print_probes(entry); | ||
297 | if (!entry->ptype) { | ||
298 | /* 0 -> N is an error */ | ||
299 | WARN_ON(entry->single.func == __mark_empty_function); | ||
300 | /* 1 -> 0 probes */ | ||
301 | WARN_ON(probe && entry->single.func != probe); | ||
302 | WARN_ON(entry->single.probe_private != probe_private); | ||
303 | entry->single.func = __mark_empty_function; | ||
304 | entry->refcount = 0; | ||
305 | entry->ptype = 0; | ||
306 | debug_print_probes(entry); | ||
307 | return NULL; | ||
308 | } else { | ||
309 | /* (N -> M), (N > 1, M >= 0) probes */ | ||
310 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) { | ||
311 | if ((!probe || old[nr_probes].func == probe) | ||
312 | && old[nr_probes].probe_private | ||
313 | == probe_private) | ||
314 | nr_del++; | ||
315 | } | ||
316 | } | ||
317 | |||
318 | if (nr_probes - nr_del == 0) { | ||
319 | /* N -> 0, (N > 1) */ | ||
320 | entry->single.func = __mark_empty_function; | ||
321 | entry->refcount = 0; | ||
322 | entry->ptype = 0; | ||
323 | } else if (nr_probes - nr_del == 1) { | ||
324 | /* N -> 1, (N > 1) */ | ||
325 | for (i = 0; old[i].func; i++) | ||
326 | if ((probe && old[i].func != probe) || | ||
327 | old[i].probe_private != probe_private) | ||
328 | entry->single = old[i]; | ||
329 | entry->refcount = 1; | ||
330 | entry->ptype = 0; | ||
331 | } else { | ||
332 | int j = 0; | ||
333 | /* N -> M, (N > 1, M > 1) */ | ||
334 | /* + 1 for NULL */ | ||
335 | new = kzalloc((nr_probes - nr_del + 1) | ||
336 | * sizeof(struct marker_probe_closure), GFP_KERNEL); | ||
337 | if (new == NULL) | ||
338 | return ERR_PTR(-ENOMEM); | ||
339 | for (i = 0; old[i].func; i++) | ||
340 | if ((probe && old[i].func != probe) || | ||
341 | old[i].probe_private != probe_private) | ||
342 | new[j++] = old[i]; | ||
343 | entry->refcount = nr_probes - nr_del; | ||
344 | entry->ptype = 1; | ||
345 | entry->multi = new; | ||
346 | } | ||
347 | debug_print_probes(entry); | ||
348 | return old; | ||
349 | } | ||
350 | |||
351 | /* | ||
352 | * Get marker if the marker is present in the marker hash table. | ||
353 | * Must be called with markers_mutex held. | ||
354 | * Returns NULL if not present. | ||
355 | */ | ||
356 | static struct marker_entry *get_marker(const char *name) | ||
357 | { | ||
358 | struct hlist_head *head; | ||
359 | struct hlist_node *node; | ||
360 | struct marker_entry *e; | ||
361 | u32 hash = jhash(name, strlen(name), 0); | ||
362 | |||
363 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
364 | hlist_for_each_entry(e, node, head, hlist) { | ||
365 | if (!strcmp(name, e->name)) | ||
366 | return e; | ||
367 | } | ||
368 | return NULL; | ||
369 | } | ||
370 | |||
371 | /* | ||
372 | * Add the marker to the marker hash table. Must be called with markers_mutex | ||
373 | * held. | ||
374 | */ | ||
375 | static struct marker_entry *add_marker(const char *name, const char *format) | ||
376 | { | ||
377 | struct hlist_head *head; | ||
378 | struct hlist_node *node; | ||
379 | struct marker_entry *e; | ||
380 | size_t name_len = strlen(name) + 1; | ||
381 | size_t format_len = 0; | ||
382 | u32 hash = jhash(name, name_len-1, 0); | ||
383 | |||
384 | if (format) | ||
385 | format_len = strlen(format) + 1; | ||
386 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
387 | hlist_for_each_entry(e, node, head, hlist) { | ||
388 | if (!strcmp(name, e->name)) { | ||
389 | printk(KERN_NOTICE | ||
390 | "Marker %s busy\n", name); | ||
391 | return ERR_PTR(-EBUSY); /* Already there */ | ||
392 | } | ||
393 | } | ||
394 | /* | ||
395 | * Using kmalloc here to allocate a variable length element. Could | ||
396 | * cause some memory fragmentation if overused. | ||
397 | */ | ||
398 | e = kmalloc(sizeof(struct marker_entry) + name_len + format_len, | ||
399 | GFP_KERNEL); | ||
400 | if (!e) | ||
401 | return ERR_PTR(-ENOMEM); | ||
402 | memcpy(&e->name[0], name, name_len); | ||
403 | if (format) { | ||
404 | e->format = &e->name[name_len]; | ||
405 | memcpy(e->format, format, format_len); | ||
406 | if (strcmp(e->format, MARK_NOARGS) == 0) | ||
407 | e->call = marker_probe_cb_noarg; | ||
408 | else | ||
409 | e->call = marker_probe_cb; | ||
410 | trace_mark(core_marker_format, "name %s format %s", | ||
411 | e->name, e->format); | ||
412 | } else { | ||
413 | e->format = NULL; | ||
414 | e->call = marker_probe_cb; | ||
415 | } | ||
416 | e->single.func = __mark_empty_function; | ||
417 | e->single.probe_private = NULL; | ||
418 | e->multi = NULL; | ||
419 | e->ptype = 0; | ||
420 | e->format_allocated = 0; | ||
421 | e->refcount = 0; | ||
422 | e->rcu_pending = 0; | ||
423 | hlist_add_head(&e->hlist, head); | ||
424 | return e; | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * Remove the marker from the marker hash table. Must be called with mutex_lock | ||
429 | * held. | ||
430 | */ | ||
431 | static int remove_marker(const char *name) | ||
432 | { | ||
433 | struct hlist_head *head; | ||
434 | struct hlist_node *node; | ||
435 | struct marker_entry *e; | ||
436 | int found = 0; | ||
437 | size_t len = strlen(name) + 1; | ||
438 | u32 hash = jhash(name, len-1, 0); | ||
439 | |||
440 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
441 | hlist_for_each_entry(e, node, head, hlist) { | ||
442 | if (!strcmp(name, e->name)) { | ||
443 | found = 1; | ||
444 | break; | ||
445 | } | ||
446 | } | ||
447 | if (!found) | ||
448 | return -ENOENT; | ||
449 | if (e->single.func != __mark_empty_function) | ||
450 | return -EBUSY; | ||
451 | hlist_del(&e->hlist); | ||
452 | if (e->format_allocated) | ||
453 | kfree(e->format); | ||
454 | /* Make sure the call_rcu has been executed */ | ||
455 | if (e->rcu_pending) | ||
456 | rcu_barrier_sched(); | ||
457 | kfree(e); | ||
458 | return 0; | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * Set the mark_entry format to the format found in the element. | ||
463 | */ | ||
464 | static int marker_set_format(struct marker_entry *entry, const char *format) | ||
465 | { | ||
466 | entry->format = kstrdup(format, GFP_KERNEL); | ||
467 | if (!entry->format) | ||
468 | return -ENOMEM; | ||
469 | entry->format_allocated = 1; | ||
470 | |||
471 | trace_mark(core_marker_format, "name %s format %s", | ||
472 | entry->name, entry->format); | ||
473 | return 0; | ||
474 | } | ||
475 | |||
476 | /* | ||
477 | * Sets the probe callback corresponding to one marker. | ||
478 | */ | ||
479 | static int set_marker(struct marker_entry *entry, struct marker *elem, | ||
480 | int active) | ||
481 | { | ||
482 | int ret = 0; | ||
483 | WARN_ON(strcmp(entry->name, elem->name) != 0); | ||
484 | |||
485 | if (entry->format) { | ||
486 | if (strcmp(entry->format, elem->format) != 0) { | ||
487 | printk(KERN_NOTICE | ||
488 | "Format mismatch for probe %s " | ||
489 | "(%s), marker (%s)\n", | ||
490 | entry->name, | ||
491 | entry->format, | ||
492 | elem->format); | ||
493 | return -EPERM; | ||
494 | } | ||
495 | } else { | ||
496 | ret = marker_set_format(entry, elem->format); | ||
497 | if (ret) | ||
498 | return ret; | ||
499 | } | ||
500 | |||
501 | /* | ||
502 | * probe_cb setup (statically known) is done here. It is | ||
503 | * asynchronous with the rest of execution, therefore we only | ||
504 | * pass from a "safe" callback (with argument) to an "unsafe" | ||
505 | * callback (does not set arguments). | ||
506 | */ | ||
507 | elem->call = entry->call; | ||
508 | /* | ||
509 | * Sanity check : | ||
510 | * We only update the single probe private data when the ptr is | ||
511 | * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1) | ||
512 | */ | ||
513 | WARN_ON(elem->single.func != __mark_empty_function | ||
514 | && elem->single.probe_private != entry->single.probe_private | ||
515 | && !elem->ptype); | ||
516 | elem->single.probe_private = entry->single.probe_private; | ||
517 | /* | ||
518 | * Make sure the private data is valid when we update the | ||
519 | * single probe ptr. | ||
520 | */ | ||
521 | smp_wmb(); | ||
522 | elem->single.func = entry->single.func; | ||
523 | /* | ||
524 | * We also make sure that the new probe callbacks array is consistent | ||
525 | * before setting a pointer to it. | ||
526 | */ | ||
527 | rcu_assign_pointer(elem->multi, entry->multi); | ||
528 | /* | ||
529 | * Update the function or multi probe array pointer before setting the | ||
530 | * ptype. | ||
531 | */ | ||
532 | smp_wmb(); | ||
533 | elem->ptype = entry->ptype; | ||
534 | |||
535 | if (elem->tp_name && (active ^ elem->state)) { | ||
536 | WARN_ON(!elem->tp_cb); | ||
537 | /* | ||
538 | * It is ok to directly call the probe registration because type | ||
539 | * checking has been done in the __trace_mark_tp() macro. | ||
540 | */ | ||
541 | |||
542 | if (active) { | ||
543 | /* | ||
544 | * try_module_get should always succeed because we hold | ||
545 | * lock_module() to get the tp_cb address. | ||
546 | */ | ||
547 | ret = try_module_get(__module_text_address( | ||
548 | (unsigned long)elem->tp_cb)); | ||
549 | BUG_ON(!ret); | ||
550 | ret = tracepoint_probe_register_noupdate( | ||
551 | elem->tp_name, | ||
552 | elem->tp_cb); | ||
553 | } else { | ||
554 | ret = tracepoint_probe_unregister_noupdate( | ||
555 | elem->tp_name, | ||
556 | elem->tp_cb); | ||
557 | /* | ||
558 | * tracepoint_probe_update_all() must be called | ||
559 | * before the module containing tp_cb is unloaded. | ||
560 | */ | ||
561 | module_put(__module_text_address( | ||
562 | (unsigned long)elem->tp_cb)); | ||
563 | } | ||
564 | } | ||
565 | elem->state = active; | ||
566 | |||
567 | return ret; | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * Disable a marker and its probe callback. | ||
572 | * Note: only waiting an RCU period after setting elem->call to the empty | ||
573 | * function insures that the original callback is not used anymore. This insured | ||
574 | * by rcu_read_lock_sched around the call site. | ||
575 | */ | ||
576 | static void disable_marker(struct marker *elem) | ||
577 | { | ||
578 | int ret; | ||
579 | |||
580 | /* leave "call" as is. It is known statically. */ | ||
581 | if (elem->tp_name && elem->state) { | ||
582 | WARN_ON(!elem->tp_cb); | ||
583 | /* | ||
584 | * It is ok to directly call the probe registration because type | ||
585 | * checking has been done in the __trace_mark_tp() macro. | ||
586 | */ | ||
587 | ret = tracepoint_probe_unregister_noupdate(elem->tp_name, | ||
588 | elem->tp_cb); | ||
589 | WARN_ON(ret); | ||
590 | /* | ||
591 | * tracepoint_probe_update_all() must be called | ||
592 | * before the module containing tp_cb is unloaded. | ||
593 | */ | ||
594 | module_put(__module_text_address((unsigned long)elem->tp_cb)); | ||
595 | } | ||
596 | elem->state = 0; | ||
597 | elem->single.func = __mark_empty_function; | ||
598 | /* Update the function before setting the ptype */ | ||
599 | smp_wmb(); | ||
600 | elem->ptype = 0; /* single probe */ | ||
601 | /* | ||
602 | * Leave the private data and id there, because removal is racy and | ||
603 | * should be done only after an RCU period. These are never used until | ||
604 | * the next initialization anyway. | ||
605 | */ | ||
606 | } | ||
607 | |||
608 | /** | ||
609 | * marker_update_probe_range - Update a probe range | ||
610 | * @begin: beginning of the range | ||
611 | * @end: end of the range | ||
612 | * | ||
613 | * Updates the probe callback corresponding to a range of markers. | ||
614 | */ | ||
615 | void marker_update_probe_range(struct marker *begin, | ||
616 | struct marker *end) | ||
617 | { | ||
618 | struct marker *iter; | ||
619 | struct marker_entry *mark_entry; | ||
620 | |||
621 | mutex_lock(&markers_mutex); | ||
622 | for (iter = begin; iter < end; iter++) { | ||
623 | mark_entry = get_marker(iter->name); | ||
624 | if (mark_entry) { | ||
625 | set_marker(mark_entry, iter, !!mark_entry->refcount); | ||
626 | /* | ||
627 | * ignore error, continue | ||
628 | */ | ||
629 | } else { | ||
630 | disable_marker(iter); | ||
631 | } | ||
632 | } | ||
633 | mutex_unlock(&markers_mutex); | ||
634 | } | ||
635 | |||
636 | /* | ||
637 | * Update probes, removing the faulty probes. | ||
638 | * | ||
639 | * Internal callback only changed before the first probe is connected to it. | ||
640 | * Single probe private data can only be changed on 0 -> 1 and 2 -> 1 | ||
641 | * transitions. All other transitions will leave the old private data valid. | ||
642 | * This makes the non-atomicity of the callback/private data updates valid. | ||
643 | * | ||
644 | * "special case" updates : | ||
645 | * 0 -> 1 callback | ||
646 | * 1 -> 0 callback | ||
647 | * 1 -> 2 callbacks | ||
648 | * 2 -> 1 callbacks | ||
649 | * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates. | ||
650 | * Site effect : marker_set_format may delete the marker entry (creating a | ||
651 | * replacement). | ||
652 | */ | ||
653 | static void marker_update_probes(void) | ||
654 | { | ||
655 | /* Core kernel markers */ | ||
656 | marker_update_probe_range(__start___markers, __stop___markers); | ||
657 | /* Markers in modules. */ | ||
658 | module_update_markers(); | ||
659 | tracepoint_probe_update_all(); | ||
660 | } | ||
661 | |||
662 | /** | ||
663 | * marker_probe_register - Connect a probe to a marker | ||
664 | * @name: marker name | ||
665 | * @format: format string | ||
666 | * @probe: probe handler | ||
667 | * @probe_private: probe private data | ||
668 | * | ||
669 | * private data must be a valid allocated memory address, or NULL. | ||
670 | * Returns 0 if ok, error value on error. | ||
671 | * The probe address must at least be aligned on the architecture pointer size. | ||
672 | */ | ||
673 | int marker_probe_register(const char *name, const char *format, | ||
674 | marker_probe_func *probe, void *probe_private) | ||
675 | { | ||
676 | struct marker_entry *entry; | ||
677 | int ret = 0; | ||
678 | struct marker_probe_closure *old; | ||
679 | |||
680 | mutex_lock(&markers_mutex); | ||
681 | entry = get_marker(name); | ||
682 | if (!entry) { | ||
683 | entry = add_marker(name, format); | ||
684 | if (IS_ERR(entry)) | ||
685 | ret = PTR_ERR(entry); | ||
686 | } else if (format) { | ||
687 | if (!entry->format) | ||
688 | ret = marker_set_format(entry, format); | ||
689 | else if (strcmp(entry->format, format)) | ||
690 | ret = -EPERM; | ||
691 | } | ||
692 | if (ret) | ||
693 | goto end; | ||
694 | |||
695 | /* | ||
696 | * If we detect that a call_rcu is pending for this marker, | ||
697 | * make sure it's executed now. | ||
698 | */ | ||
699 | if (entry->rcu_pending) | ||
700 | rcu_barrier_sched(); | ||
701 | old = marker_entry_add_probe(entry, probe, probe_private); | ||
702 | if (IS_ERR(old)) { | ||
703 | ret = PTR_ERR(old); | ||
704 | goto end; | ||
705 | } | ||
706 | mutex_unlock(&markers_mutex); | ||
707 | marker_update_probes(); | ||
708 | mutex_lock(&markers_mutex); | ||
709 | entry = get_marker(name); | ||
710 | if (!entry) | ||
711 | goto end; | ||
712 | if (entry->rcu_pending) | ||
713 | rcu_barrier_sched(); | ||
714 | entry->oldptr = old; | ||
715 | entry->rcu_pending = 1; | ||
716 | /* write rcu_pending before calling the RCU callback */ | ||
717 | smp_wmb(); | ||
718 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
719 | end: | ||
720 | mutex_unlock(&markers_mutex); | ||
721 | return ret; | ||
722 | } | ||
723 | EXPORT_SYMBOL_GPL(marker_probe_register); | ||
724 | |||
725 | /** | ||
726 | * marker_probe_unregister - Disconnect a probe from a marker | ||
727 | * @name: marker name | ||
728 | * @probe: probe function pointer | ||
729 | * @probe_private: probe private data | ||
730 | * | ||
731 | * Returns the private data given to marker_probe_register, or an ERR_PTR(). | ||
732 | * We do not need to call a synchronize_sched to make sure the probes have | ||
733 | * finished running before doing a module unload, because the module unload | ||
734 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
735 | * have finished. | ||
736 | */ | ||
737 | int marker_probe_unregister(const char *name, | ||
738 | marker_probe_func *probe, void *probe_private) | ||
739 | { | ||
740 | struct marker_entry *entry; | ||
741 | struct marker_probe_closure *old; | ||
742 | int ret = -ENOENT; | ||
743 | |||
744 | mutex_lock(&markers_mutex); | ||
745 | entry = get_marker(name); | ||
746 | if (!entry) | ||
747 | goto end; | ||
748 | if (entry->rcu_pending) | ||
749 | rcu_barrier_sched(); | ||
750 | old = marker_entry_remove_probe(entry, probe, probe_private); | ||
751 | mutex_unlock(&markers_mutex); | ||
752 | marker_update_probes(); | ||
753 | mutex_lock(&markers_mutex); | ||
754 | entry = get_marker(name); | ||
755 | if (!entry) | ||
756 | goto end; | ||
757 | if (entry->rcu_pending) | ||
758 | rcu_barrier_sched(); | ||
759 | entry->oldptr = old; | ||
760 | entry->rcu_pending = 1; | ||
761 | /* write rcu_pending before calling the RCU callback */ | ||
762 | smp_wmb(); | ||
763 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
764 | remove_marker(name); /* Ignore busy error message */ | ||
765 | ret = 0; | ||
766 | end: | ||
767 | mutex_unlock(&markers_mutex); | ||
768 | return ret; | ||
769 | } | ||
770 | EXPORT_SYMBOL_GPL(marker_probe_unregister); | ||
771 | |||
772 | static struct marker_entry * | ||
773 | get_marker_from_private_data(marker_probe_func *probe, void *probe_private) | ||
774 | { | ||
775 | struct marker_entry *entry; | ||
776 | unsigned int i; | ||
777 | struct hlist_head *head; | ||
778 | struct hlist_node *node; | ||
779 | |||
780 | for (i = 0; i < MARKER_TABLE_SIZE; i++) { | ||
781 | head = &marker_table[i]; | ||
782 | hlist_for_each_entry(entry, node, head, hlist) { | ||
783 | if (!entry->ptype) { | ||
784 | if (entry->single.func == probe | ||
785 | && entry->single.probe_private | ||
786 | == probe_private) | ||
787 | return entry; | ||
788 | } else { | ||
789 | struct marker_probe_closure *closure; | ||
790 | closure = entry->multi; | ||
791 | for (i = 0; closure[i].func; i++) { | ||
792 | if (closure[i].func == probe && | ||
793 | closure[i].probe_private | ||
794 | == probe_private) | ||
795 | return entry; | ||
796 | } | ||
797 | } | ||
798 | } | ||
799 | } | ||
800 | return NULL; | ||
801 | } | ||
802 | |||
803 | /** | ||
804 | * marker_probe_unregister_private_data - Disconnect a probe from a marker | ||
805 | * @probe: probe function | ||
806 | * @probe_private: probe private data | ||
807 | * | ||
808 | * Unregister a probe by providing the registered private data. | ||
809 | * Only removes the first marker found in hash table. | ||
810 | * Return 0 on success or error value. | ||
811 | * We do not need to call a synchronize_sched to make sure the probes have | ||
812 | * finished running before doing a module unload, because the module unload | ||
813 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
814 | * have finished. | ||
815 | */ | ||
816 | int marker_probe_unregister_private_data(marker_probe_func *probe, | ||
817 | void *probe_private) | ||
818 | { | ||
819 | struct marker_entry *entry; | ||
820 | int ret = 0; | ||
821 | struct marker_probe_closure *old; | ||
822 | |||
823 | mutex_lock(&markers_mutex); | ||
824 | entry = get_marker_from_private_data(probe, probe_private); | ||
825 | if (!entry) { | ||
826 | ret = -ENOENT; | ||
827 | goto end; | ||
828 | } | ||
829 | if (entry->rcu_pending) | ||
830 | rcu_barrier_sched(); | ||
831 | old = marker_entry_remove_probe(entry, NULL, probe_private); | ||
832 | mutex_unlock(&markers_mutex); | ||
833 | marker_update_probes(); | ||
834 | mutex_lock(&markers_mutex); | ||
835 | entry = get_marker_from_private_data(probe, probe_private); | ||
836 | if (!entry) | ||
837 | goto end; | ||
838 | if (entry->rcu_pending) | ||
839 | rcu_barrier_sched(); | ||
840 | entry->oldptr = old; | ||
841 | entry->rcu_pending = 1; | ||
842 | /* write rcu_pending before calling the RCU callback */ | ||
843 | smp_wmb(); | ||
844 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
845 | remove_marker(entry->name); /* Ignore busy error message */ | ||
846 | end: | ||
847 | mutex_unlock(&markers_mutex); | ||
848 | return ret; | ||
849 | } | ||
850 | EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data); | ||
851 | |||
852 | /** | ||
853 | * marker_get_private_data - Get a marker's probe private data | ||
854 | * @name: marker name | ||
855 | * @probe: probe to match | ||
856 | * @num: get the nth matching probe's private data | ||
857 | * | ||
858 | * Returns the nth private data pointer (starting from 0) matching, or an | ||
859 | * ERR_PTR. | ||
860 | * Returns the private data pointer, or an ERR_PTR. | ||
861 | * The private data pointer should _only_ be dereferenced if the caller is the | ||
862 | * owner of the data, or its content could vanish. This is mostly used to | ||
863 | * confirm that a caller is the owner of a registered probe. | ||
864 | */ | ||
865 | void *marker_get_private_data(const char *name, marker_probe_func *probe, | ||
866 | int num) | ||
867 | { | ||
868 | struct hlist_head *head; | ||
869 | struct hlist_node *node; | ||
870 | struct marker_entry *e; | ||
871 | size_t name_len = strlen(name) + 1; | ||
872 | u32 hash = jhash(name, name_len-1, 0); | ||
873 | int i; | ||
874 | |||
875 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
876 | hlist_for_each_entry(e, node, head, hlist) { | ||
877 | if (!strcmp(name, e->name)) { | ||
878 | if (!e->ptype) { | ||
879 | if (num == 0 && e->single.func == probe) | ||
880 | return e->single.probe_private; | ||
881 | } else { | ||
882 | struct marker_probe_closure *closure; | ||
883 | int match = 0; | ||
884 | closure = e->multi; | ||
885 | for (i = 0; closure[i].func; i++) { | ||
886 | if (closure[i].func != probe) | ||
887 | continue; | ||
888 | if (match++ == num) | ||
889 | return closure[i].probe_private; | ||
890 | } | ||
891 | } | ||
892 | break; | ||
893 | } | ||
894 | } | ||
895 | return ERR_PTR(-ENOENT); | ||
896 | } | ||
897 | EXPORT_SYMBOL_GPL(marker_get_private_data); | ||
898 | |||
899 | #ifdef CONFIG_MODULES | ||
900 | |||
901 | int marker_module_notify(struct notifier_block *self, | ||
902 | unsigned long val, void *data) | ||
903 | { | ||
904 | struct module *mod = data; | ||
905 | |||
906 | switch (val) { | ||
907 | case MODULE_STATE_COMING: | ||
908 | marker_update_probe_range(mod->markers, | ||
909 | mod->markers + mod->num_markers); | ||
910 | break; | ||
911 | case MODULE_STATE_GOING: | ||
912 | marker_update_probe_range(mod->markers, | ||
913 | mod->markers + mod->num_markers); | ||
914 | break; | ||
915 | } | ||
916 | return 0; | ||
917 | } | ||
918 | |||
919 | struct notifier_block marker_module_nb = { | ||
920 | .notifier_call = marker_module_notify, | ||
921 | .priority = 0, | ||
922 | }; | ||
923 | |||
924 | static int init_markers(void) | ||
925 | { | ||
926 | return register_module_notifier(&marker_module_nb); | ||
927 | } | ||
928 | __initcall(init_markers); | ||
929 | |||
930 | #endif /* CONFIG_MODULES */ | ||
diff --git a/kernel/module.c b/kernel/module.c index 46580edff0cb..e6bc4b28aa62 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -47,6 +47,7 @@ | |||
47 | #include <linux/rculist.h> | 47 | #include <linux/rculist.h> |
48 | #include <asm/uaccess.h> | 48 | #include <asm/uaccess.h> |
49 | #include <asm/cacheflush.h> | 49 | #include <asm/cacheflush.h> |
50 | #include <asm/mmu_context.h> | ||
50 | #include <linux/license.h> | 51 | #include <linux/license.h> |
51 | #include <asm/sections.h> | 52 | #include <asm/sections.h> |
52 | #include <linux/tracepoint.h> | 53 | #include <linux/tracepoint.h> |
@@ -369,7 +370,7 @@ EXPORT_SYMBOL_GPL(find_module); | |||
369 | 370 | ||
370 | #ifdef CONFIG_SMP | 371 | #ifdef CONFIG_SMP |
371 | 372 | ||
372 | #ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | 373 | #ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA |
373 | 374 | ||
374 | static void *percpu_modalloc(unsigned long size, unsigned long align, | 375 | static void *percpu_modalloc(unsigned long size, unsigned long align, |
375 | const char *name) | 376 | const char *name) |
@@ -394,7 +395,7 @@ static void percpu_modfree(void *freeme) | |||
394 | free_percpu(freeme); | 395 | free_percpu(freeme); |
395 | } | 396 | } |
396 | 397 | ||
397 | #else /* ... !CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | 398 | #else /* ... CONFIG_HAVE_LEGACY_PER_CPU_AREA */ |
398 | 399 | ||
399 | /* Number of blocks used and allocated. */ | 400 | /* Number of blocks used and allocated. */ |
400 | static unsigned int pcpu_num_used, pcpu_num_allocated; | 401 | static unsigned int pcpu_num_used, pcpu_num_allocated; |
@@ -540,7 +541,7 @@ static int percpu_modinit(void) | |||
540 | } | 541 | } |
541 | __initcall(percpu_modinit); | 542 | __initcall(percpu_modinit); |
542 | 543 | ||
543 | #endif /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | 544 | #endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */ |
544 | 545 | ||
545 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, | 546 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, |
546 | Elf_Shdr *sechdrs, | 547 | Elf_Shdr *sechdrs, |
@@ -1535,6 +1536,10 @@ static void free_module(struct module *mod) | |||
1535 | 1536 | ||
1536 | /* Finally, free the core (containing the module structure) */ | 1537 | /* Finally, free the core (containing the module structure) */ |
1537 | module_free(mod, mod->module_core); | 1538 | module_free(mod, mod->module_core); |
1539 | |||
1540 | #ifdef CONFIG_MPU | ||
1541 | update_protections(current->mm); | ||
1542 | #endif | ||
1538 | } | 1543 | } |
1539 | 1544 | ||
1540 | void *__symbol_get(const char *symbol) | 1545 | void *__symbol_get(const char *symbol) |
@@ -2237,10 +2242,6 @@ static noinline struct module *load_module(void __user *umod, | |||
2237 | sizeof(*mod->ctors), &mod->num_ctors); | 2242 | sizeof(*mod->ctors), &mod->num_ctors); |
2238 | #endif | 2243 | #endif |
2239 | 2244 | ||
2240 | #ifdef CONFIG_MARKERS | ||
2241 | mod->markers = section_objs(hdr, sechdrs, secstrings, "__markers", | ||
2242 | sizeof(*mod->markers), &mod->num_markers); | ||
2243 | #endif | ||
2244 | #ifdef CONFIG_TRACEPOINTS | 2245 | #ifdef CONFIG_TRACEPOINTS |
2245 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, | 2246 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, |
2246 | "__tracepoints", | 2247 | "__tracepoints", |
@@ -2958,20 +2959,6 @@ void module_layout(struct module *mod, | |||
2958 | EXPORT_SYMBOL(module_layout); | 2959 | EXPORT_SYMBOL(module_layout); |
2959 | #endif | 2960 | #endif |
2960 | 2961 | ||
2961 | #ifdef CONFIG_MARKERS | ||
2962 | void module_update_markers(void) | ||
2963 | { | ||
2964 | struct module *mod; | ||
2965 | |||
2966 | mutex_lock(&module_mutex); | ||
2967 | list_for_each_entry(mod, &modules, list) | ||
2968 | if (!mod->taints) | ||
2969 | marker_update_probe_range(mod->markers, | ||
2970 | mod->markers + mod->num_markers); | ||
2971 | mutex_unlock(&module_mutex); | ||
2972 | } | ||
2973 | #endif | ||
2974 | |||
2975 | #ifdef CONFIG_TRACEPOINTS | 2962 | #ifdef CONFIG_TRACEPOINTS |
2976 | void module_update_tracepoints(void) | 2963 | void module_update_tracepoints(void) |
2977 | { | 2964 | { |
diff --git a/kernel/panic.c b/kernel/panic.c index 512ab73b0ca3..bcdef26e3332 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -177,7 +177,7 @@ static const struct tnt tnts[] = { | |||
177 | * 'W' - Taint on warning. | 177 | * 'W' - Taint on warning. |
178 | * 'C' - modules from drivers/staging are loaded. | 178 | * 'C' - modules from drivers/staging are loaded. |
179 | * | 179 | * |
180 | * The string is overwritten by the next call to print_taint(). | 180 | * The string is overwritten by the next call to print_tainted(). |
181 | */ | 181 | */ |
182 | const char *print_tainted(void) | 182 | const char *print_tainted(void) |
183 | { | 183 | { |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c deleted file mode 100644 index d7cbc579fc80..000000000000 --- a/kernel/perf_counter.c +++ /dev/null | |||
@@ -1,4861 +0,0 @@ | |||
1 | /* | ||
2 | * Performance counter core code | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/rculist.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/syscalls.h> | ||
27 | #include <linux/anon_inodes.h> | ||
28 | #include <linux/kernel_stat.h> | ||
29 | #include <linux/perf_counter.h> | ||
30 | |||
31 | #include <asm/irq_regs.h> | ||
32 | |||
33 | /* | ||
34 | * Each CPU has a list of per CPU counters: | ||
35 | */ | ||
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
37 | |||
38 | int perf_max_counters __read_mostly = 1; | ||
39 | static int perf_reserved_percpu __read_mostly; | ||
40 | static int perf_overcommit __read_mostly = 1; | ||
41 | |||
42 | static atomic_t nr_counters __read_mostly; | ||
43 | static atomic_t nr_mmap_counters __read_mostly; | ||
44 | static atomic_t nr_comm_counters __read_mostly; | ||
45 | static atomic_t nr_task_counters __read_mostly; | ||
46 | |||
47 | /* | ||
48 | * perf counter paranoia level: | ||
49 | * 0 - not paranoid | ||
50 | * 1 - disallow cpu counters to unpriv | ||
51 | * 2 - disallow kernel profiling to unpriv | ||
52 | */ | ||
53 | int sysctl_perf_counter_paranoid __read_mostly = 1; | ||
54 | |||
55 | static inline bool perf_paranoid_cpu(void) | ||
56 | { | ||
57 | return sysctl_perf_counter_paranoid > 0; | ||
58 | } | ||
59 | |||
60 | static inline bool perf_paranoid_kernel(void) | ||
61 | { | ||
62 | return sysctl_perf_counter_paranoid > 1; | ||
63 | } | ||
64 | |||
65 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
66 | |||
67 | /* | ||
68 | * max perf counter sample rate | ||
69 | */ | ||
70 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | ||
71 | |||
72 | static atomic64_t perf_counter_id; | ||
73 | |||
74 | /* | ||
75 | * Lock for (sysadmin-configurable) counter reservations: | ||
76 | */ | ||
77 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
78 | |||
79 | /* | ||
80 | * Architecture provided APIs - weak aliases: | ||
81 | */ | ||
82 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
83 | { | ||
84 | return NULL; | ||
85 | } | ||
86 | |||
87 | void __weak hw_perf_disable(void) { barrier(); } | ||
88 | void __weak hw_perf_enable(void) { barrier(); } | ||
89 | |||
90 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
91 | void __weak hw_perf_counter_setup_online(int cpu) { barrier(); } | ||
92 | |||
93 | int __weak | ||
94 | hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
95 | struct perf_cpu_context *cpuctx, | ||
96 | struct perf_counter_context *ctx, int cpu) | ||
97 | { | ||
98 | return 0; | ||
99 | } | ||
100 | |||
101 | void __weak perf_counter_print_debug(void) { } | ||
102 | |||
103 | static DEFINE_PER_CPU(int, disable_count); | ||
104 | |||
105 | void __perf_disable(void) | ||
106 | { | ||
107 | __get_cpu_var(disable_count)++; | ||
108 | } | ||
109 | |||
110 | bool __perf_enable(void) | ||
111 | { | ||
112 | return !--__get_cpu_var(disable_count); | ||
113 | } | ||
114 | |||
115 | void perf_disable(void) | ||
116 | { | ||
117 | __perf_disable(); | ||
118 | hw_perf_disable(); | ||
119 | } | ||
120 | |||
121 | void perf_enable(void) | ||
122 | { | ||
123 | if (__perf_enable()) | ||
124 | hw_perf_enable(); | ||
125 | } | ||
126 | |||
127 | static void get_ctx(struct perf_counter_context *ctx) | ||
128 | { | ||
129 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
130 | } | ||
131 | |||
132 | static void free_ctx(struct rcu_head *head) | ||
133 | { | ||
134 | struct perf_counter_context *ctx; | ||
135 | |||
136 | ctx = container_of(head, struct perf_counter_context, rcu_head); | ||
137 | kfree(ctx); | ||
138 | } | ||
139 | |||
140 | static void put_ctx(struct perf_counter_context *ctx) | ||
141 | { | ||
142 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
143 | if (ctx->parent_ctx) | ||
144 | put_ctx(ctx->parent_ctx); | ||
145 | if (ctx->task) | ||
146 | put_task_struct(ctx->task); | ||
147 | call_rcu(&ctx->rcu_head, free_ctx); | ||
148 | } | ||
149 | } | ||
150 | |||
151 | static void unclone_ctx(struct perf_counter_context *ctx) | ||
152 | { | ||
153 | if (ctx->parent_ctx) { | ||
154 | put_ctx(ctx->parent_ctx); | ||
155 | ctx->parent_ctx = NULL; | ||
156 | } | ||
157 | } | ||
158 | |||
159 | /* | ||
160 | * If we inherit counters we want to return the parent counter id | ||
161 | * to userspace. | ||
162 | */ | ||
163 | static u64 primary_counter_id(struct perf_counter *counter) | ||
164 | { | ||
165 | u64 id = counter->id; | ||
166 | |||
167 | if (counter->parent) | ||
168 | id = counter->parent->id; | ||
169 | |||
170 | return id; | ||
171 | } | ||
172 | |||
173 | /* | ||
174 | * Get the perf_counter_context for a task and lock it. | ||
175 | * This has to cope with with the fact that until it is locked, | ||
176 | * the context could get moved to another task. | ||
177 | */ | ||
178 | static struct perf_counter_context * | ||
179 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
180 | { | ||
181 | struct perf_counter_context *ctx; | ||
182 | |||
183 | rcu_read_lock(); | ||
184 | retry: | ||
185 | ctx = rcu_dereference(task->perf_counter_ctxp); | ||
186 | if (ctx) { | ||
187 | /* | ||
188 | * If this context is a clone of another, it might | ||
189 | * get swapped for another underneath us by | ||
190 | * perf_counter_task_sched_out, though the | ||
191 | * rcu_read_lock() protects us from any context | ||
192 | * getting freed. Lock the context and check if it | ||
193 | * got swapped before we could get the lock, and retry | ||
194 | * if so. If we locked the right context, then it | ||
195 | * can't get swapped on us any more. | ||
196 | */ | ||
197 | spin_lock_irqsave(&ctx->lock, *flags); | ||
198 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | ||
199 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
200 | goto retry; | ||
201 | } | ||
202 | |||
203 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
204 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
205 | ctx = NULL; | ||
206 | } | ||
207 | } | ||
208 | rcu_read_unlock(); | ||
209 | return ctx; | ||
210 | } | ||
211 | |||
212 | /* | ||
213 | * Get the context for a task and increment its pin_count so it | ||
214 | * can't get swapped to another task. This also increments its | ||
215 | * reference count so that the context can't get freed. | ||
216 | */ | ||
217 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | ||
218 | { | ||
219 | struct perf_counter_context *ctx; | ||
220 | unsigned long flags; | ||
221 | |||
222 | ctx = perf_lock_task_context(task, &flags); | ||
223 | if (ctx) { | ||
224 | ++ctx->pin_count; | ||
225 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
226 | } | ||
227 | return ctx; | ||
228 | } | ||
229 | |||
230 | static void perf_unpin_context(struct perf_counter_context *ctx) | ||
231 | { | ||
232 | unsigned long flags; | ||
233 | |||
234 | spin_lock_irqsave(&ctx->lock, flags); | ||
235 | --ctx->pin_count; | ||
236 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
237 | put_ctx(ctx); | ||
238 | } | ||
239 | |||
240 | /* | ||
241 | * Add a counter from the lists for its context. | ||
242 | * Must be called with ctx->mutex and ctx->lock held. | ||
243 | */ | ||
244 | static void | ||
245 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
246 | { | ||
247 | struct perf_counter *group_leader = counter->group_leader; | ||
248 | |||
249 | /* | ||
250 | * Depending on whether it is a standalone or sibling counter, | ||
251 | * add it straight to the context's counter list, or to the group | ||
252 | * leader's sibling list: | ||
253 | */ | ||
254 | if (group_leader == counter) | ||
255 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
256 | else { | ||
257 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
258 | group_leader->nr_siblings++; | ||
259 | } | ||
260 | |||
261 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
262 | ctx->nr_counters++; | ||
263 | if (counter->attr.inherit_stat) | ||
264 | ctx->nr_stat++; | ||
265 | } | ||
266 | |||
267 | /* | ||
268 | * Remove a counter from the lists for its context. | ||
269 | * Must be called with ctx->mutex and ctx->lock held. | ||
270 | */ | ||
271 | static void | ||
272 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
273 | { | ||
274 | struct perf_counter *sibling, *tmp; | ||
275 | |||
276 | if (list_empty(&counter->list_entry)) | ||
277 | return; | ||
278 | ctx->nr_counters--; | ||
279 | if (counter->attr.inherit_stat) | ||
280 | ctx->nr_stat--; | ||
281 | |||
282 | list_del_init(&counter->list_entry); | ||
283 | list_del_rcu(&counter->event_entry); | ||
284 | |||
285 | if (counter->group_leader != counter) | ||
286 | counter->group_leader->nr_siblings--; | ||
287 | |||
288 | /* | ||
289 | * If this was a group counter with sibling counters then | ||
290 | * upgrade the siblings to singleton counters by adding them | ||
291 | * to the context list directly: | ||
292 | */ | ||
293 | list_for_each_entry_safe(sibling, tmp, | ||
294 | &counter->sibling_list, list_entry) { | ||
295 | |||
296 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
297 | sibling->group_leader = sibling; | ||
298 | } | ||
299 | } | ||
300 | |||
301 | static void | ||
302 | counter_sched_out(struct perf_counter *counter, | ||
303 | struct perf_cpu_context *cpuctx, | ||
304 | struct perf_counter_context *ctx) | ||
305 | { | ||
306 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
307 | return; | ||
308 | |||
309 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
310 | if (counter->pending_disable) { | ||
311 | counter->pending_disable = 0; | ||
312 | counter->state = PERF_COUNTER_STATE_OFF; | ||
313 | } | ||
314 | counter->tstamp_stopped = ctx->time; | ||
315 | counter->pmu->disable(counter); | ||
316 | counter->oncpu = -1; | ||
317 | |||
318 | if (!is_software_counter(counter)) | ||
319 | cpuctx->active_oncpu--; | ||
320 | ctx->nr_active--; | ||
321 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | ||
322 | cpuctx->exclusive = 0; | ||
323 | } | ||
324 | |||
325 | static void | ||
326 | group_sched_out(struct perf_counter *group_counter, | ||
327 | struct perf_cpu_context *cpuctx, | ||
328 | struct perf_counter_context *ctx) | ||
329 | { | ||
330 | struct perf_counter *counter; | ||
331 | |||
332 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
333 | return; | ||
334 | |||
335 | counter_sched_out(group_counter, cpuctx, ctx); | ||
336 | |||
337 | /* | ||
338 | * Schedule out siblings (if any): | ||
339 | */ | ||
340 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
341 | counter_sched_out(counter, cpuctx, ctx); | ||
342 | |||
343 | if (group_counter->attr.exclusive) | ||
344 | cpuctx->exclusive = 0; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Cross CPU call to remove a performance counter | ||
349 | * | ||
350 | * We disable the counter on the hardware level first. After that we | ||
351 | * remove it from the context list. | ||
352 | */ | ||
353 | static void __perf_counter_remove_from_context(void *info) | ||
354 | { | ||
355 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
356 | struct perf_counter *counter = info; | ||
357 | struct perf_counter_context *ctx = counter->ctx; | ||
358 | |||
359 | /* | ||
360 | * If this is a task context, we need to check whether it is | ||
361 | * the current task context of this cpu. If not it has been | ||
362 | * scheduled out before the smp call arrived. | ||
363 | */ | ||
364 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
365 | return; | ||
366 | |||
367 | spin_lock(&ctx->lock); | ||
368 | /* | ||
369 | * Protect the list operation against NMI by disabling the | ||
370 | * counters on a global level. | ||
371 | */ | ||
372 | perf_disable(); | ||
373 | |||
374 | counter_sched_out(counter, cpuctx, ctx); | ||
375 | |||
376 | list_del_counter(counter, ctx); | ||
377 | |||
378 | if (!ctx->task) { | ||
379 | /* | ||
380 | * Allow more per task counters with respect to the | ||
381 | * reservation: | ||
382 | */ | ||
383 | cpuctx->max_pertask = | ||
384 | min(perf_max_counters - ctx->nr_counters, | ||
385 | perf_max_counters - perf_reserved_percpu); | ||
386 | } | ||
387 | |||
388 | perf_enable(); | ||
389 | spin_unlock(&ctx->lock); | ||
390 | } | ||
391 | |||
392 | |||
393 | /* | ||
394 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
395 | * | ||
396 | * Must be called with ctx->mutex held. | ||
397 | * | ||
398 | * CPU counters are removed with a smp call. For task counters we only | ||
399 | * call when the task is on a CPU. | ||
400 | * | ||
401 | * If counter->ctx is a cloned context, callers must make sure that | ||
402 | * every task struct that counter->ctx->task could possibly point to | ||
403 | * remains valid. This is OK when called from perf_release since | ||
404 | * that only calls us on the top-level context, which can't be a clone. | ||
405 | * When called from perf_counter_exit_task, it's OK because the | ||
406 | * context has been detached from its task. | ||
407 | */ | ||
408 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
409 | { | ||
410 | struct perf_counter_context *ctx = counter->ctx; | ||
411 | struct task_struct *task = ctx->task; | ||
412 | |||
413 | if (!task) { | ||
414 | /* | ||
415 | * Per cpu counters are removed via an smp call and | ||
416 | * the removal is always sucessful. | ||
417 | */ | ||
418 | smp_call_function_single(counter->cpu, | ||
419 | __perf_counter_remove_from_context, | ||
420 | counter, 1); | ||
421 | return; | ||
422 | } | ||
423 | |||
424 | retry: | ||
425 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
426 | counter); | ||
427 | |||
428 | spin_lock_irq(&ctx->lock); | ||
429 | /* | ||
430 | * If the context is active we need to retry the smp call. | ||
431 | */ | ||
432 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
433 | spin_unlock_irq(&ctx->lock); | ||
434 | goto retry; | ||
435 | } | ||
436 | |||
437 | /* | ||
438 | * The lock prevents that this context is scheduled in so we | ||
439 | * can remove the counter safely, if the call above did not | ||
440 | * succeed. | ||
441 | */ | ||
442 | if (!list_empty(&counter->list_entry)) { | ||
443 | list_del_counter(counter, ctx); | ||
444 | } | ||
445 | spin_unlock_irq(&ctx->lock); | ||
446 | } | ||
447 | |||
448 | static inline u64 perf_clock(void) | ||
449 | { | ||
450 | return cpu_clock(smp_processor_id()); | ||
451 | } | ||
452 | |||
453 | /* | ||
454 | * Update the record of the current time in a context. | ||
455 | */ | ||
456 | static void update_context_time(struct perf_counter_context *ctx) | ||
457 | { | ||
458 | u64 now = perf_clock(); | ||
459 | |||
460 | ctx->time += now - ctx->timestamp; | ||
461 | ctx->timestamp = now; | ||
462 | } | ||
463 | |||
464 | /* | ||
465 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
466 | */ | ||
467 | static void update_counter_times(struct perf_counter *counter) | ||
468 | { | ||
469 | struct perf_counter_context *ctx = counter->ctx; | ||
470 | u64 run_end; | ||
471 | |||
472 | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | ||
473 | return; | ||
474 | |||
475 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
476 | |||
477 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
478 | run_end = counter->tstamp_stopped; | ||
479 | else | ||
480 | run_end = ctx->time; | ||
481 | |||
482 | counter->total_time_running = run_end - counter->tstamp_running; | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
487 | */ | ||
488 | static void update_group_times(struct perf_counter *leader) | ||
489 | { | ||
490 | struct perf_counter *counter; | ||
491 | |||
492 | update_counter_times(leader); | ||
493 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
494 | update_counter_times(counter); | ||
495 | } | ||
496 | |||
497 | /* | ||
498 | * Cross CPU call to disable a performance counter | ||
499 | */ | ||
500 | static void __perf_counter_disable(void *info) | ||
501 | { | ||
502 | struct perf_counter *counter = info; | ||
503 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
504 | struct perf_counter_context *ctx = counter->ctx; | ||
505 | |||
506 | /* | ||
507 | * If this is a per-task counter, need to check whether this | ||
508 | * counter's task is the current task on this cpu. | ||
509 | */ | ||
510 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
511 | return; | ||
512 | |||
513 | spin_lock(&ctx->lock); | ||
514 | |||
515 | /* | ||
516 | * If the counter is on, turn it off. | ||
517 | * If it is in error state, leave it in error state. | ||
518 | */ | ||
519 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
520 | update_context_time(ctx); | ||
521 | update_counter_times(counter); | ||
522 | if (counter == counter->group_leader) | ||
523 | group_sched_out(counter, cpuctx, ctx); | ||
524 | else | ||
525 | counter_sched_out(counter, cpuctx, ctx); | ||
526 | counter->state = PERF_COUNTER_STATE_OFF; | ||
527 | } | ||
528 | |||
529 | spin_unlock(&ctx->lock); | ||
530 | } | ||
531 | |||
532 | /* | ||
533 | * Disable a counter. | ||
534 | * | ||
535 | * If counter->ctx is a cloned context, callers must make sure that | ||
536 | * every task struct that counter->ctx->task could possibly point to | ||
537 | * remains valid. This condition is satisifed when called through | ||
538 | * perf_counter_for_each_child or perf_counter_for_each because they | ||
539 | * hold the top-level counter's child_mutex, so any descendant that | ||
540 | * goes to exit will block in sync_child_counter. | ||
541 | * When called from perf_pending_counter it's OK because counter->ctx | ||
542 | * is the current context on this CPU and preemption is disabled, | ||
543 | * hence we can't get into perf_counter_task_sched_out for this context. | ||
544 | */ | ||
545 | static void perf_counter_disable(struct perf_counter *counter) | ||
546 | { | ||
547 | struct perf_counter_context *ctx = counter->ctx; | ||
548 | struct task_struct *task = ctx->task; | ||
549 | |||
550 | if (!task) { | ||
551 | /* | ||
552 | * Disable the counter on the cpu that it's on | ||
553 | */ | ||
554 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
555 | counter, 1); | ||
556 | return; | ||
557 | } | ||
558 | |||
559 | retry: | ||
560 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
561 | |||
562 | spin_lock_irq(&ctx->lock); | ||
563 | /* | ||
564 | * If the counter is still active, we need to retry the cross-call. | ||
565 | */ | ||
566 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
567 | spin_unlock_irq(&ctx->lock); | ||
568 | goto retry; | ||
569 | } | ||
570 | |||
571 | /* | ||
572 | * Since we have the lock this context can't be scheduled | ||
573 | * in, so we can change the state safely. | ||
574 | */ | ||
575 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
576 | update_counter_times(counter); | ||
577 | counter->state = PERF_COUNTER_STATE_OFF; | ||
578 | } | ||
579 | |||
580 | spin_unlock_irq(&ctx->lock); | ||
581 | } | ||
582 | |||
583 | static int | ||
584 | counter_sched_in(struct perf_counter *counter, | ||
585 | struct perf_cpu_context *cpuctx, | ||
586 | struct perf_counter_context *ctx, | ||
587 | int cpu) | ||
588 | { | ||
589 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
590 | return 0; | ||
591 | |||
592 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
593 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
594 | /* | ||
595 | * The new state must be visible before we turn it on in the hardware: | ||
596 | */ | ||
597 | smp_wmb(); | ||
598 | |||
599 | if (counter->pmu->enable(counter)) { | ||
600 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
601 | counter->oncpu = -1; | ||
602 | return -EAGAIN; | ||
603 | } | ||
604 | |||
605 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
606 | |||
607 | if (!is_software_counter(counter)) | ||
608 | cpuctx->active_oncpu++; | ||
609 | ctx->nr_active++; | ||
610 | |||
611 | if (counter->attr.exclusive) | ||
612 | cpuctx->exclusive = 1; | ||
613 | |||
614 | return 0; | ||
615 | } | ||
616 | |||
617 | static int | ||
618 | group_sched_in(struct perf_counter *group_counter, | ||
619 | struct perf_cpu_context *cpuctx, | ||
620 | struct perf_counter_context *ctx, | ||
621 | int cpu) | ||
622 | { | ||
623 | struct perf_counter *counter, *partial_group; | ||
624 | int ret; | ||
625 | |||
626 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
627 | return 0; | ||
628 | |||
629 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
630 | if (ret) | ||
631 | return ret < 0 ? ret : 0; | ||
632 | |||
633 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
634 | return -EAGAIN; | ||
635 | |||
636 | /* | ||
637 | * Schedule in siblings as one group (if any): | ||
638 | */ | ||
639 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
640 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
641 | partial_group = counter; | ||
642 | goto group_error; | ||
643 | } | ||
644 | } | ||
645 | |||
646 | return 0; | ||
647 | |||
648 | group_error: | ||
649 | /* | ||
650 | * Groups can be scheduled in as one unit only, so undo any | ||
651 | * partial group before returning: | ||
652 | */ | ||
653 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
654 | if (counter == partial_group) | ||
655 | break; | ||
656 | counter_sched_out(counter, cpuctx, ctx); | ||
657 | } | ||
658 | counter_sched_out(group_counter, cpuctx, ctx); | ||
659 | |||
660 | return -EAGAIN; | ||
661 | } | ||
662 | |||
663 | /* | ||
664 | * Return 1 for a group consisting entirely of software counters, | ||
665 | * 0 if the group contains any hardware counters. | ||
666 | */ | ||
667 | static int is_software_only_group(struct perf_counter *leader) | ||
668 | { | ||
669 | struct perf_counter *counter; | ||
670 | |||
671 | if (!is_software_counter(leader)) | ||
672 | return 0; | ||
673 | |||
674 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
675 | if (!is_software_counter(counter)) | ||
676 | return 0; | ||
677 | |||
678 | return 1; | ||
679 | } | ||
680 | |||
681 | /* | ||
682 | * Work out whether we can put this counter group on the CPU now. | ||
683 | */ | ||
684 | static int group_can_go_on(struct perf_counter *counter, | ||
685 | struct perf_cpu_context *cpuctx, | ||
686 | int can_add_hw) | ||
687 | { | ||
688 | /* | ||
689 | * Groups consisting entirely of software counters can always go on. | ||
690 | */ | ||
691 | if (is_software_only_group(counter)) | ||
692 | return 1; | ||
693 | /* | ||
694 | * If an exclusive group is already on, no other hardware | ||
695 | * counters can go on. | ||
696 | */ | ||
697 | if (cpuctx->exclusive) | ||
698 | return 0; | ||
699 | /* | ||
700 | * If this group is exclusive and there are already | ||
701 | * counters on the CPU, it can't go on. | ||
702 | */ | ||
703 | if (counter->attr.exclusive && cpuctx->active_oncpu) | ||
704 | return 0; | ||
705 | /* | ||
706 | * Otherwise, try to add it if all previous groups were able | ||
707 | * to go on. | ||
708 | */ | ||
709 | return can_add_hw; | ||
710 | } | ||
711 | |||
712 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
713 | struct perf_counter_context *ctx) | ||
714 | { | ||
715 | list_add_counter(counter, ctx); | ||
716 | counter->tstamp_enabled = ctx->time; | ||
717 | counter->tstamp_running = ctx->time; | ||
718 | counter->tstamp_stopped = ctx->time; | ||
719 | } | ||
720 | |||
721 | /* | ||
722 | * Cross CPU call to install and enable a performance counter | ||
723 | * | ||
724 | * Must be called with ctx->mutex held | ||
725 | */ | ||
726 | static void __perf_install_in_context(void *info) | ||
727 | { | ||
728 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
729 | struct perf_counter *counter = info; | ||
730 | struct perf_counter_context *ctx = counter->ctx; | ||
731 | struct perf_counter *leader = counter->group_leader; | ||
732 | int cpu = smp_processor_id(); | ||
733 | int err; | ||
734 | |||
735 | /* | ||
736 | * If this is a task context, we need to check whether it is | ||
737 | * the current task context of this cpu. If not it has been | ||
738 | * scheduled out before the smp call arrived. | ||
739 | * Or possibly this is the right context but it isn't | ||
740 | * on this cpu because it had no counters. | ||
741 | */ | ||
742 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
743 | if (cpuctx->task_ctx || ctx->task != current) | ||
744 | return; | ||
745 | cpuctx->task_ctx = ctx; | ||
746 | } | ||
747 | |||
748 | spin_lock(&ctx->lock); | ||
749 | ctx->is_active = 1; | ||
750 | update_context_time(ctx); | ||
751 | |||
752 | /* | ||
753 | * Protect the list operation against NMI by disabling the | ||
754 | * counters on a global level. NOP for non NMI based counters. | ||
755 | */ | ||
756 | perf_disable(); | ||
757 | |||
758 | add_counter_to_ctx(counter, ctx); | ||
759 | |||
760 | /* | ||
761 | * Don't put the counter on if it is disabled or if | ||
762 | * it is in a group and the group isn't on. | ||
763 | */ | ||
764 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
765 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
766 | goto unlock; | ||
767 | |||
768 | /* | ||
769 | * An exclusive counter can't go on if there are already active | ||
770 | * hardware counters, and no hardware counter can go on if there | ||
771 | * is already an exclusive counter on. | ||
772 | */ | ||
773 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
774 | err = -EEXIST; | ||
775 | else | ||
776 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
777 | |||
778 | if (err) { | ||
779 | /* | ||
780 | * This counter couldn't go on. If it is in a group | ||
781 | * then we have to pull the whole group off. | ||
782 | * If the counter group is pinned then put it in error state. | ||
783 | */ | ||
784 | if (leader != counter) | ||
785 | group_sched_out(leader, cpuctx, ctx); | ||
786 | if (leader->attr.pinned) { | ||
787 | update_group_times(leader); | ||
788 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
789 | } | ||
790 | } | ||
791 | |||
792 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
793 | cpuctx->max_pertask--; | ||
794 | |||
795 | unlock: | ||
796 | perf_enable(); | ||
797 | |||
798 | spin_unlock(&ctx->lock); | ||
799 | } | ||
800 | |||
801 | /* | ||
802 | * Attach a performance counter to a context | ||
803 | * | ||
804 | * First we add the counter to the list with the hardware enable bit | ||
805 | * in counter->hw_config cleared. | ||
806 | * | ||
807 | * If the counter is attached to a task which is on a CPU we use a smp | ||
808 | * call to enable it in the task context. The task might have been | ||
809 | * scheduled away, but we check this in the smp call again. | ||
810 | * | ||
811 | * Must be called with ctx->mutex held. | ||
812 | */ | ||
813 | static void | ||
814 | perf_install_in_context(struct perf_counter_context *ctx, | ||
815 | struct perf_counter *counter, | ||
816 | int cpu) | ||
817 | { | ||
818 | struct task_struct *task = ctx->task; | ||
819 | |||
820 | if (!task) { | ||
821 | /* | ||
822 | * Per cpu counters are installed via an smp call and | ||
823 | * the install is always sucessful. | ||
824 | */ | ||
825 | smp_call_function_single(cpu, __perf_install_in_context, | ||
826 | counter, 1); | ||
827 | return; | ||
828 | } | ||
829 | |||
830 | retry: | ||
831 | task_oncpu_function_call(task, __perf_install_in_context, | ||
832 | counter); | ||
833 | |||
834 | spin_lock_irq(&ctx->lock); | ||
835 | /* | ||
836 | * we need to retry the smp call. | ||
837 | */ | ||
838 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
839 | spin_unlock_irq(&ctx->lock); | ||
840 | goto retry; | ||
841 | } | ||
842 | |||
843 | /* | ||
844 | * The lock prevents that this context is scheduled in so we | ||
845 | * can add the counter safely, if it the call above did not | ||
846 | * succeed. | ||
847 | */ | ||
848 | if (list_empty(&counter->list_entry)) | ||
849 | add_counter_to_ctx(counter, ctx); | ||
850 | spin_unlock_irq(&ctx->lock); | ||
851 | } | ||
852 | |||
853 | /* | ||
854 | * Cross CPU call to enable a performance counter | ||
855 | */ | ||
856 | static void __perf_counter_enable(void *info) | ||
857 | { | ||
858 | struct perf_counter *counter = info; | ||
859 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
860 | struct perf_counter_context *ctx = counter->ctx; | ||
861 | struct perf_counter *leader = counter->group_leader; | ||
862 | int err; | ||
863 | |||
864 | /* | ||
865 | * If this is a per-task counter, need to check whether this | ||
866 | * counter's task is the current task on this cpu. | ||
867 | */ | ||
868 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
869 | if (cpuctx->task_ctx || ctx->task != current) | ||
870 | return; | ||
871 | cpuctx->task_ctx = ctx; | ||
872 | } | ||
873 | |||
874 | spin_lock(&ctx->lock); | ||
875 | ctx->is_active = 1; | ||
876 | update_context_time(ctx); | ||
877 | |||
878 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
879 | goto unlock; | ||
880 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
881 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
882 | |||
883 | /* | ||
884 | * If the counter is in a group and isn't the group leader, | ||
885 | * then don't put it on unless the group is on. | ||
886 | */ | ||
887 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
888 | goto unlock; | ||
889 | |||
890 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
891 | err = -EEXIST; | ||
892 | } else { | ||
893 | perf_disable(); | ||
894 | if (counter == leader) | ||
895 | err = group_sched_in(counter, cpuctx, ctx, | ||
896 | smp_processor_id()); | ||
897 | else | ||
898 | err = counter_sched_in(counter, cpuctx, ctx, | ||
899 | smp_processor_id()); | ||
900 | perf_enable(); | ||
901 | } | ||
902 | |||
903 | if (err) { | ||
904 | /* | ||
905 | * If this counter can't go on and it's part of a | ||
906 | * group, then the whole group has to come off. | ||
907 | */ | ||
908 | if (leader != counter) | ||
909 | group_sched_out(leader, cpuctx, ctx); | ||
910 | if (leader->attr.pinned) { | ||
911 | update_group_times(leader); | ||
912 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
913 | } | ||
914 | } | ||
915 | |||
916 | unlock: | ||
917 | spin_unlock(&ctx->lock); | ||
918 | } | ||
919 | |||
920 | /* | ||
921 | * Enable a counter. | ||
922 | * | ||
923 | * If counter->ctx is a cloned context, callers must make sure that | ||
924 | * every task struct that counter->ctx->task could possibly point to | ||
925 | * remains valid. This condition is satisfied when called through | ||
926 | * perf_counter_for_each_child or perf_counter_for_each as described | ||
927 | * for perf_counter_disable. | ||
928 | */ | ||
929 | static void perf_counter_enable(struct perf_counter *counter) | ||
930 | { | ||
931 | struct perf_counter_context *ctx = counter->ctx; | ||
932 | struct task_struct *task = ctx->task; | ||
933 | |||
934 | if (!task) { | ||
935 | /* | ||
936 | * Enable the counter on the cpu that it's on | ||
937 | */ | ||
938 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
939 | counter, 1); | ||
940 | return; | ||
941 | } | ||
942 | |||
943 | spin_lock_irq(&ctx->lock); | ||
944 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
945 | goto out; | ||
946 | |||
947 | /* | ||
948 | * If the counter is in error state, clear that first. | ||
949 | * That way, if we see the counter in error state below, we | ||
950 | * know that it has gone back into error state, as distinct | ||
951 | * from the task having been scheduled away before the | ||
952 | * cross-call arrived. | ||
953 | */ | ||
954 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
955 | counter->state = PERF_COUNTER_STATE_OFF; | ||
956 | |||
957 | retry: | ||
958 | spin_unlock_irq(&ctx->lock); | ||
959 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
960 | |||
961 | spin_lock_irq(&ctx->lock); | ||
962 | |||
963 | /* | ||
964 | * If the context is active and the counter is still off, | ||
965 | * we need to retry the cross-call. | ||
966 | */ | ||
967 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
968 | goto retry; | ||
969 | |||
970 | /* | ||
971 | * Since we have the lock this context can't be scheduled | ||
972 | * in, so we can change the state safely. | ||
973 | */ | ||
974 | if (counter->state == PERF_COUNTER_STATE_OFF) { | ||
975 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
976 | counter->tstamp_enabled = | ||
977 | ctx->time - counter->total_time_enabled; | ||
978 | } | ||
979 | out: | ||
980 | spin_unlock_irq(&ctx->lock); | ||
981 | } | ||
982 | |||
983 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
984 | { | ||
985 | /* | ||
986 | * not supported on inherited counters | ||
987 | */ | ||
988 | if (counter->attr.inherit) | ||
989 | return -EINVAL; | ||
990 | |||
991 | atomic_add(refresh, &counter->event_limit); | ||
992 | perf_counter_enable(counter); | ||
993 | |||
994 | return 0; | ||
995 | } | ||
996 | |||
997 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
998 | struct perf_cpu_context *cpuctx) | ||
999 | { | ||
1000 | struct perf_counter *counter; | ||
1001 | |||
1002 | spin_lock(&ctx->lock); | ||
1003 | ctx->is_active = 0; | ||
1004 | if (likely(!ctx->nr_counters)) | ||
1005 | goto out; | ||
1006 | update_context_time(ctx); | ||
1007 | |||
1008 | perf_disable(); | ||
1009 | if (ctx->nr_active) { | ||
1010 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1011 | if (counter != counter->group_leader) | ||
1012 | counter_sched_out(counter, cpuctx, ctx); | ||
1013 | else | ||
1014 | group_sched_out(counter, cpuctx, ctx); | ||
1015 | } | ||
1016 | } | ||
1017 | perf_enable(); | ||
1018 | out: | ||
1019 | spin_unlock(&ctx->lock); | ||
1020 | } | ||
1021 | |||
1022 | /* | ||
1023 | * Test whether two contexts are equivalent, i.e. whether they | ||
1024 | * have both been cloned from the same version of the same context | ||
1025 | * and they both have the same number of enabled counters. | ||
1026 | * If the number of enabled counters is the same, then the set | ||
1027 | * of enabled counters should be the same, because these are both | ||
1028 | * inherited contexts, therefore we can't access individual counters | ||
1029 | * in them directly with an fd; we can only enable/disable all | ||
1030 | * counters via prctl, or enable/disable all counters in a family | ||
1031 | * via ioctl, which will have the same effect on both contexts. | ||
1032 | */ | ||
1033 | static int context_equiv(struct perf_counter_context *ctx1, | ||
1034 | struct perf_counter_context *ctx2) | ||
1035 | { | ||
1036 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1037 | && ctx1->parent_gen == ctx2->parent_gen | ||
1038 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1039 | } | ||
1040 | |||
1041 | static void __perf_counter_read(void *counter); | ||
1042 | |||
1043 | static void __perf_counter_sync_stat(struct perf_counter *counter, | ||
1044 | struct perf_counter *next_counter) | ||
1045 | { | ||
1046 | u64 value; | ||
1047 | |||
1048 | if (!counter->attr.inherit_stat) | ||
1049 | return; | ||
1050 | |||
1051 | /* | ||
1052 | * Update the counter value, we cannot use perf_counter_read() | ||
1053 | * because we're in the middle of a context switch and have IRQs | ||
1054 | * disabled, which upsets smp_call_function_single(), however | ||
1055 | * we know the counter must be on the current CPU, therefore we | ||
1056 | * don't need to use it. | ||
1057 | */ | ||
1058 | switch (counter->state) { | ||
1059 | case PERF_COUNTER_STATE_ACTIVE: | ||
1060 | __perf_counter_read(counter); | ||
1061 | break; | ||
1062 | |||
1063 | case PERF_COUNTER_STATE_INACTIVE: | ||
1064 | update_counter_times(counter); | ||
1065 | break; | ||
1066 | |||
1067 | default: | ||
1068 | break; | ||
1069 | } | ||
1070 | |||
1071 | /* | ||
1072 | * In order to keep per-task stats reliable we need to flip the counter | ||
1073 | * values when we flip the contexts. | ||
1074 | */ | ||
1075 | value = atomic64_read(&next_counter->count); | ||
1076 | value = atomic64_xchg(&counter->count, value); | ||
1077 | atomic64_set(&next_counter->count, value); | ||
1078 | |||
1079 | swap(counter->total_time_enabled, next_counter->total_time_enabled); | ||
1080 | swap(counter->total_time_running, next_counter->total_time_running); | ||
1081 | |||
1082 | /* | ||
1083 | * Since we swizzled the values, update the user visible data too. | ||
1084 | */ | ||
1085 | perf_counter_update_userpage(counter); | ||
1086 | perf_counter_update_userpage(next_counter); | ||
1087 | } | ||
1088 | |||
1089 | #define list_next_entry(pos, member) \ | ||
1090 | list_entry(pos->member.next, typeof(*pos), member) | ||
1091 | |||
1092 | static void perf_counter_sync_stat(struct perf_counter_context *ctx, | ||
1093 | struct perf_counter_context *next_ctx) | ||
1094 | { | ||
1095 | struct perf_counter *counter, *next_counter; | ||
1096 | |||
1097 | if (!ctx->nr_stat) | ||
1098 | return; | ||
1099 | |||
1100 | counter = list_first_entry(&ctx->event_list, | ||
1101 | struct perf_counter, event_entry); | ||
1102 | |||
1103 | next_counter = list_first_entry(&next_ctx->event_list, | ||
1104 | struct perf_counter, event_entry); | ||
1105 | |||
1106 | while (&counter->event_entry != &ctx->event_list && | ||
1107 | &next_counter->event_entry != &next_ctx->event_list) { | ||
1108 | |||
1109 | __perf_counter_sync_stat(counter, next_counter); | ||
1110 | |||
1111 | counter = list_next_entry(counter, event_entry); | ||
1112 | next_counter = list_next_entry(next_counter, event_entry); | ||
1113 | } | ||
1114 | } | ||
1115 | |||
1116 | /* | ||
1117 | * Called from scheduler to remove the counters of the current task, | ||
1118 | * with interrupts disabled. | ||
1119 | * | ||
1120 | * We stop each counter and update the counter value in counter->count. | ||
1121 | * | ||
1122 | * This does not protect us against NMI, but disable() | ||
1123 | * sets the disabled bit in the control field of counter _before_ | ||
1124 | * accessing the counter control register. If a NMI hits, then it will | ||
1125 | * not restart the counter. | ||
1126 | */ | ||
1127 | void perf_counter_task_sched_out(struct task_struct *task, | ||
1128 | struct task_struct *next, int cpu) | ||
1129 | { | ||
1130 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1131 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
1132 | struct perf_counter_context *next_ctx; | ||
1133 | struct perf_counter_context *parent; | ||
1134 | struct pt_regs *regs; | ||
1135 | int do_switch = 1; | ||
1136 | |||
1137 | regs = task_pt_regs(task); | ||
1138 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1139 | |||
1140 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1141 | return; | ||
1142 | |||
1143 | update_context_time(ctx); | ||
1144 | |||
1145 | rcu_read_lock(); | ||
1146 | parent = rcu_dereference(ctx->parent_ctx); | ||
1147 | next_ctx = next->perf_counter_ctxp; | ||
1148 | if (parent && next_ctx && | ||
1149 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1150 | /* | ||
1151 | * Looks like the two contexts are clones, so we might be | ||
1152 | * able to optimize the context switch. We lock both | ||
1153 | * contexts and check that they are clones under the | ||
1154 | * lock (including re-checking that neither has been | ||
1155 | * uncloned in the meantime). It doesn't matter which | ||
1156 | * order we take the locks because no other cpu could | ||
1157 | * be trying to lock both of these tasks. | ||
1158 | */ | ||
1159 | spin_lock(&ctx->lock); | ||
1160 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1161 | if (context_equiv(ctx, next_ctx)) { | ||
1162 | /* | ||
1163 | * XXX do we need a memory barrier of sorts | ||
1164 | * wrt to rcu_dereference() of perf_counter_ctxp | ||
1165 | */ | ||
1166 | task->perf_counter_ctxp = next_ctx; | ||
1167 | next->perf_counter_ctxp = ctx; | ||
1168 | ctx->task = next; | ||
1169 | next_ctx->task = task; | ||
1170 | do_switch = 0; | ||
1171 | |||
1172 | perf_counter_sync_stat(ctx, next_ctx); | ||
1173 | } | ||
1174 | spin_unlock(&next_ctx->lock); | ||
1175 | spin_unlock(&ctx->lock); | ||
1176 | } | ||
1177 | rcu_read_unlock(); | ||
1178 | |||
1179 | if (do_switch) { | ||
1180 | __perf_counter_sched_out(ctx, cpuctx); | ||
1181 | cpuctx->task_ctx = NULL; | ||
1182 | } | ||
1183 | } | ||
1184 | |||
1185 | /* | ||
1186 | * Called with IRQs disabled | ||
1187 | */ | ||
1188 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
1189 | { | ||
1190 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1191 | |||
1192 | if (!cpuctx->task_ctx) | ||
1193 | return; | ||
1194 | |||
1195 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1196 | return; | ||
1197 | |||
1198 | __perf_counter_sched_out(ctx, cpuctx); | ||
1199 | cpuctx->task_ctx = NULL; | ||
1200 | } | ||
1201 | |||
1202 | /* | ||
1203 | * Called with IRQs disabled | ||
1204 | */ | ||
1205 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1206 | { | ||
1207 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
1208 | } | ||
1209 | |||
1210 | static void | ||
1211 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
1212 | struct perf_cpu_context *cpuctx, int cpu) | ||
1213 | { | ||
1214 | struct perf_counter *counter; | ||
1215 | int can_add_hw = 1; | ||
1216 | |||
1217 | spin_lock(&ctx->lock); | ||
1218 | ctx->is_active = 1; | ||
1219 | if (likely(!ctx->nr_counters)) | ||
1220 | goto out; | ||
1221 | |||
1222 | ctx->timestamp = perf_clock(); | ||
1223 | |||
1224 | perf_disable(); | ||
1225 | |||
1226 | /* | ||
1227 | * First go through the list and put on any pinned groups | ||
1228 | * in order to give them the best chance of going on. | ||
1229 | */ | ||
1230 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1231 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
1232 | !counter->attr.pinned) | ||
1233 | continue; | ||
1234 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
1235 | continue; | ||
1236 | |||
1237 | if (counter != counter->group_leader) | ||
1238 | counter_sched_in(counter, cpuctx, ctx, cpu); | ||
1239 | else { | ||
1240 | if (group_can_go_on(counter, cpuctx, 1)) | ||
1241 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
1242 | } | ||
1243 | |||
1244 | /* | ||
1245 | * If this pinned group hasn't been scheduled, | ||
1246 | * put it in error state. | ||
1247 | */ | ||
1248 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1249 | update_group_times(counter); | ||
1250 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
1251 | } | ||
1252 | } | ||
1253 | |||
1254 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1255 | /* | ||
1256 | * Ignore counters in OFF or ERROR state, and | ||
1257 | * ignore pinned counters since we did them already. | ||
1258 | */ | ||
1259 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
1260 | counter->attr.pinned) | ||
1261 | continue; | ||
1262 | |||
1263 | /* | ||
1264 | * Listen to the 'cpu' scheduling filter constraint | ||
1265 | * of counters: | ||
1266 | */ | ||
1267 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
1268 | continue; | ||
1269 | |||
1270 | if (counter != counter->group_leader) { | ||
1271 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | ||
1272 | can_add_hw = 0; | ||
1273 | } else { | ||
1274 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
1275 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
1276 | can_add_hw = 0; | ||
1277 | } | ||
1278 | } | ||
1279 | } | ||
1280 | perf_enable(); | ||
1281 | out: | ||
1282 | spin_unlock(&ctx->lock); | ||
1283 | } | ||
1284 | |||
1285 | /* | ||
1286 | * Called from scheduler to add the counters of the current task | ||
1287 | * with interrupts disabled. | ||
1288 | * | ||
1289 | * We restore the counter value and then enable it. | ||
1290 | * | ||
1291 | * This does not protect us against NMI, but enable() | ||
1292 | * sets the enabled bit in the control field of counter _before_ | ||
1293 | * accessing the counter control register. If a NMI hits, then it will | ||
1294 | * keep the counter running. | ||
1295 | */ | ||
1296 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
1297 | { | ||
1298 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1299 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
1300 | |||
1301 | if (likely(!ctx)) | ||
1302 | return; | ||
1303 | if (cpuctx->task_ctx == ctx) | ||
1304 | return; | ||
1305 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
1306 | cpuctx->task_ctx = ctx; | ||
1307 | } | ||
1308 | |||
1309 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1310 | { | ||
1311 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
1312 | |||
1313 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
1314 | } | ||
1315 | |||
1316 | #define MAX_INTERRUPTS (~0ULL) | ||
1317 | |||
1318 | static void perf_log_throttle(struct perf_counter *counter, int enable); | ||
1319 | |||
1320 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | ||
1321 | { | ||
1322 | struct hw_perf_counter *hwc = &counter->hw; | ||
1323 | u64 period, sample_period; | ||
1324 | s64 delta; | ||
1325 | |||
1326 | events *= hwc->sample_period; | ||
1327 | period = div64_u64(events, counter->attr.sample_freq); | ||
1328 | |||
1329 | delta = (s64)(period - hwc->sample_period); | ||
1330 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1331 | |||
1332 | sample_period = hwc->sample_period + delta; | ||
1333 | |||
1334 | if (!sample_period) | ||
1335 | sample_period = 1; | ||
1336 | |||
1337 | hwc->sample_period = sample_period; | ||
1338 | } | ||
1339 | |||
1340 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | ||
1341 | { | ||
1342 | struct perf_counter *counter; | ||
1343 | struct hw_perf_counter *hwc; | ||
1344 | u64 interrupts, freq; | ||
1345 | |||
1346 | spin_lock(&ctx->lock); | ||
1347 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1348 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
1349 | continue; | ||
1350 | |||
1351 | hwc = &counter->hw; | ||
1352 | |||
1353 | interrupts = hwc->interrupts; | ||
1354 | hwc->interrupts = 0; | ||
1355 | |||
1356 | /* | ||
1357 | * unthrottle counters on the tick | ||
1358 | */ | ||
1359 | if (interrupts == MAX_INTERRUPTS) { | ||
1360 | perf_log_throttle(counter, 1); | ||
1361 | counter->pmu->unthrottle(counter); | ||
1362 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | ||
1363 | } | ||
1364 | |||
1365 | if (!counter->attr.freq || !counter->attr.sample_freq) | ||
1366 | continue; | ||
1367 | |||
1368 | /* | ||
1369 | * if the specified freq < HZ then we need to skip ticks | ||
1370 | */ | ||
1371 | if (counter->attr.sample_freq < HZ) { | ||
1372 | freq = counter->attr.sample_freq; | ||
1373 | |||
1374 | hwc->freq_count += freq; | ||
1375 | hwc->freq_interrupts += interrupts; | ||
1376 | |||
1377 | if (hwc->freq_count < HZ) | ||
1378 | continue; | ||
1379 | |||
1380 | interrupts = hwc->freq_interrupts; | ||
1381 | hwc->freq_interrupts = 0; | ||
1382 | hwc->freq_count -= HZ; | ||
1383 | } else | ||
1384 | freq = HZ; | ||
1385 | |||
1386 | perf_adjust_period(counter, freq * interrupts); | ||
1387 | |||
1388 | /* | ||
1389 | * In order to avoid being stalled by an (accidental) huge | ||
1390 | * sample period, force reset the sample period if we didn't | ||
1391 | * get any events in this freq period. | ||
1392 | */ | ||
1393 | if (!interrupts) { | ||
1394 | perf_disable(); | ||
1395 | counter->pmu->disable(counter); | ||
1396 | atomic64_set(&hwc->period_left, 0); | ||
1397 | counter->pmu->enable(counter); | ||
1398 | perf_enable(); | ||
1399 | } | ||
1400 | } | ||
1401 | spin_unlock(&ctx->lock); | ||
1402 | } | ||
1403 | |||
1404 | /* | ||
1405 | * Round-robin a context's counters: | ||
1406 | */ | ||
1407 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
1408 | { | ||
1409 | struct perf_counter *counter; | ||
1410 | |||
1411 | if (!ctx->nr_counters) | ||
1412 | return; | ||
1413 | |||
1414 | spin_lock(&ctx->lock); | ||
1415 | /* | ||
1416 | * Rotate the first entry last (works just fine for group counters too): | ||
1417 | */ | ||
1418 | perf_disable(); | ||
1419 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1420 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
1421 | break; | ||
1422 | } | ||
1423 | perf_enable(); | ||
1424 | |||
1425 | spin_unlock(&ctx->lock); | ||
1426 | } | ||
1427 | |||
1428 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
1429 | { | ||
1430 | struct perf_cpu_context *cpuctx; | ||
1431 | struct perf_counter_context *ctx; | ||
1432 | |||
1433 | if (!atomic_read(&nr_counters)) | ||
1434 | return; | ||
1435 | |||
1436 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1437 | ctx = curr->perf_counter_ctxp; | ||
1438 | |||
1439 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1440 | if (ctx) | ||
1441 | perf_ctx_adjust_freq(ctx); | ||
1442 | |||
1443 | perf_counter_cpu_sched_out(cpuctx); | ||
1444 | if (ctx) | ||
1445 | __perf_counter_task_sched_out(ctx); | ||
1446 | |||
1447 | rotate_ctx(&cpuctx->ctx); | ||
1448 | if (ctx) | ||
1449 | rotate_ctx(ctx); | ||
1450 | |||
1451 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
1452 | if (ctx) | ||
1453 | perf_counter_task_sched_in(curr, cpu); | ||
1454 | } | ||
1455 | |||
1456 | /* | ||
1457 | * Enable all of a task's counters that have been marked enable-on-exec. | ||
1458 | * This expects task == current. | ||
1459 | */ | ||
1460 | static void perf_counter_enable_on_exec(struct task_struct *task) | ||
1461 | { | ||
1462 | struct perf_counter_context *ctx; | ||
1463 | struct perf_counter *counter; | ||
1464 | unsigned long flags; | ||
1465 | int enabled = 0; | ||
1466 | |||
1467 | local_irq_save(flags); | ||
1468 | ctx = task->perf_counter_ctxp; | ||
1469 | if (!ctx || !ctx->nr_counters) | ||
1470 | goto out; | ||
1471 | |||
1472 | __perf_counter_task_sched_out(ctx); | ||
1473 | |||
1474 | spin_lock(&ctx->lock); | ||
1475 | |||
1476 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1477 | if (!counter->attr.enable_on_exec) | ||
1478 | continue; | ||
1479 | counter->attr.enable_on_exec = 0; | ||
1480 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
1481 | continue; | ||
1482 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
1483 | counter->tstamp_enabled = | ||
1484 | ctx->time - counter->total_time_enabled; | ||
1485 | enabled = 1; | ||
1486 | } | ||
1487 | |||
1488 | /* | ||
1489 | * Unclone this context if we enabled any counter. | ||
1490 | */ | ||
1491 | if (enabled) | ||
1492 | unclone_ctx(ctx); | ||
1493 | |||
1494 | spin_unlock(&ctx->lock); | ||
1495 | |||
1496 | perf_counter_task_sched_in(task, smp_processor_id()); | ||
1497 | out: | ||
1498 | local_irq_restore(flags); | ||
1499 | } | ||
1500 | |||
1501 | /* | ||
1502 | * Cross CPU call to read the hardware counter | ||
1503 | */ | ||
1504 | static void __perf_counter_read(void *info) | ||
1505 | { | ||
1506 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1507 | struct perf_counter *counter = info; | ||
1508 | struct perf_counter_context *ctx = counter->ctx; | ||
1509 | unsigned long flags; | ||
1510 | |||
1511 | /* | ||
1512 | * If this is a task context, we need to check whether it is | ||
1513 | * the current task context of this cpu. If not it has been | ||
1514 | * scheduled out before the smp call arrived. In that case | ||
1515 | * counter->count would have been updated to a recent sample | ||
1516 | * when the counter was scheduled out. | ||
1517 | */ | ||
1518 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1519 | return; | ||
1520 | |||
1521 | local_irq_save(flags); | ||
1522 | if (ctx->is_active) | ||
1523 | update_context_time(ctx); | ||
1524 | counter->pmu->read(counter); | ||
1525 | update_counter_times(counter); | ||
1526 | local_irq_restore(flags); | ||
1527 | } | ||
1528 | |||
1529 | static u64 perf_counter_read(struct perf_counter *counter) | ||
1530 | { | ||
1531 | /* | ||
1532 | * If counter is enabled and currently active on a CPU, update the | ||
1533 | * value in the counter structure: | ||
1534 | */ | ||
1535 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
1536 | smp_call_function_single(counter->oncpu, | ||
1537 | __perf_counter_read, counter, 1); | ||
1538 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1539 | update_counter_times(counter); | ||
1540 | } | ||
1541 | |||
1542 | return atomic64_read(&counter->count); | ||
1543 | } | ||
1544 | |||
1545 | /* | ||
1546 | * Initialize the perf_counter context in a task_struct: | ||
1547 | */ | ||
1548 | static void | ||
1549 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
1550 | struct task_struct *task) | ||
1551 | { | ||
1552 | memset(ctx, 0, sizeof(*ctx)); | ||
1553 | spin_lock_init(&ctx->lock); | ||
1554 | mutex_init(&ctx->mutex); | ||
1555 | INIT_LIST_HEAD(&ctx->counter_list); | ||
1556 | INIT_LIST_HEAD(&ctx->event_list); | ||
1557 | atomic_set(&ctx->refcount, 1); | ||
1558 | ctx->task = task; | ||
1559 | } | ||
1560 | |||
1561 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
1562 | { | ||
1563 | struct perf_counter_context *ctx; | ||
1564 | struct perf_cpu_context *cpuctx; | ||
1565 | struct task_struct *task; | ||
1566 | unsigned long flags; | ||
1567 | int err; | ||
1568 | |||
1569 | /* | ||
1570 | * If cpu is not a wildcard then this is a percpu counter: | ||
1571 | */ | ||
1572 | if (cpu != -1) { | ||
1573 | /* Must be root to operate on a CPU counter: */ | ||
1574 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1575 | return ERR_PTR(-EACCES); | ||
1576 | |||
1577 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1578 | return ERR_PTR(-EINVAL); | ||
1579 | |||
1580 | /* | ||
1581 | * We could be clever and allow to attach a counter to an | ||
1582 | * offline CPU and activate it when the CPU comes up, but | ||
1583 | * that's for later. | ||
1584 | */ | ||
1585 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1586 | return ERR_PTR(-ENODEV); | ||
1587 | |||
1588 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1589 | ctx = &cpuctx->ctx; | ||
1590 | get_ctx(ctx); | ||
1591 | |||
1592 | return ctx; | ||
1593 | } | ||
1594 | |||
1595 | rcu_read_lock(); | ||
1596 | if (!pid) | ||
1597 | task = current; | ||
1598 | else | ||
1599 | task = find_task_by_vpid(pid); | ||
1600 | if (task) | ||
1601 | get_task_struct(task); | ||
1602 | rcu_read_unlock(); | ||
1603 | |||
1604 | if (!task) | ||
1605 | return ERR_PTR(-ESRCH); | ||
1606 | |||
1607 | /* | ||
1608 | * Can't attach counters to a dying task. | ||
1609 | */ | ||
1610 | err = -ESRCH; | ||
1611 | if (task->flags & PF_EXITING) | ||
1612 | goto errout; | ||
1613 | |||
1614 | /* Reuse ptrace permission checks for now. */ | ||
1615 | err = -EACCES; | ||
1616 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1617 | goto errout; | ||
1618 | |||
1619 | retry: | ||
1620 | ctx = perf_lock_task_context(task, &flags); | ||
1621 | if (ctx) { | ||
1622 | unclone_ctx(ctx); | ||
1623 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1624 | } | ||
1625 | |||
1626 | if (!ctx) { | ||
1627 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
1628 | err = -ENOMEM; | ||
1629 | if (!ctx) | ||
1630 | goto errout; | ||
1631 | __perf_counter_init_context(ctx, task); | ||
1632 | get_ctx(ctx); | ||
1633 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | ||
1634 | /* | ||
1635 | * We raced with some other task; use | ||
1636 | * the context they set. | ||
1637 | */ | ||
1638 | kfree(ctx); | ||
1639 | goto retry; | ||
1640 | } | ||
1641 | get_task_struct(task); | ||
1642 | } | ||
1643 | |||
1644 | put_task_struct(task); | ||
1645 | return ctx; | ||
1646 | |||
1647 | errout: | ||
1648 | put_task_struct(task); | ||
1649 | return ERR_PTR(err); | ||
1650 | } | ||
1651 | |||
1652 | static void free_counter_rcu(struct rcu_head *head) | ||
1653 | { | ||
1654 | struct perf_counter *counter; | ||
1655 | |||
1656 | counter = container_of(head, struct perf_counter, rcu_head); | ||
1657 | if (counter->ns) | ||
1658 | put_pid_ns(counter->ns); | ||
1659 | kfree(counter); | ||
1660 | } | ||
1661 | |||
1662 | static void perf_pending_sync(struct perf_counter *counter); | ||
1663 | |||
1664 | static void free_counter(struct perf_counter *counter) | ||
1665 | { | ||
1666 | perf_pending_sync(counter); | ||
1667 | |||
1668 | if (!counter->parent) { | ||
1669 | atomic_dec(&nr_counters); | ||
1670 | if (counter->attr.mmap) | ||
1671 | atomic_dec(&nr_mmap_counters); | ||
1672 | if (counter->attr.comm) | ||
1673 | atomic_dec(&nr_comm_counters); | ||
1674 | if (counter->attr.task) | ||
1675 | atomic_dec(&nr_task_counters); | ||
1676 | } | ||
1677 | |||
1678 | if (counter->destroy) | ||
1679 | counter->destroy(counter); | ||
1680 | |||
1681 | put_ctx(counter->ctx); | ||
1682 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
1683 | } | ||
1684 | |||
1685 | /* | ||
1686 | * Called when the last reference to the file is gone. | ||
1687 | */ | ||
1688 | static int perf_release(struct inode *inode, struct file *file) | ||
1689 | { | ||
1690 | struct perf_counter *counter = file->private_data; | ||
1691 | struct perf_counter_context *ctx = counter->ctx; | ||
1692 | |||
1693 | file->private_data = NULL; | ||
1694 | |||
1695 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1696 | mutex_lock(&ctx->mutex); | ||
1697 | perf_counter_remove_from_context(counter); | ||
1698 | mutex_unlock(&ctx->mutex); | ||
1699 | |||
1700 | mutex_lock(&counter->owner->perf_counter_mutex); | ||
1701 | list_del_init(&counter->owner_entry); | ||
1702 | mutex_unlock(&counter->owner->perf_counter_mutex); | ||
1703 | put_task_struct(counter->owner); | ||
1704 | |||
1705 | free_counter(counter); | ||
1706 | |||
1707 | return 0; | ||
1708 | } | ||
1709 | |||
1710 | static int perf_counter_read_size(struct perf_counter *counter) | ||
1711 | { | ||
1712 | int entry = sizeof(u64); /* value */ | ||
1713 | int size = 0; | ||
1714 | int nr = 1; | ||
1715 | |||
1716 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1717 | size += sizeof(u64); | ||
1718 | |||
1719 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1720 | size += sizeof(u64); | ||
1721 | |||
1722 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
1723 | entry += sizeof(u64); | ||
1724 | |||
1725 | if (counter->attr.read_format & PERF_FORMAT_GROUP) { | ||
1726 | nr += counter->group_leader->nr_siblings; | ||
1727 | size += sizeof(u64); | ||
1728 | } | ||
1729 | |||
1730 | size += entry * nr; | ||
1731 | |||
1732 | return size; | ||
1733 | } | ||
1734 | |||
1735 | static u64 perf_counter_read_value(struct perf_counter *counter) | ||
1736 | { | ||
1737 | struct perf_counter *child; | ||
1738 | u64 total = 0; | ||
1739 | |||
1740 | total += perf_counter_read(counter); | ||
1741 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1742 | total += perf_counter_read(child); | ||
1743 | |||
1744 | return total; | ||
1745 | } | ||
1746 | |||
1747 | static int perf_counter_read_entry(struct perf_counter *counter, | ||
1748 | u64 read_format, char __user *buf) | ||
1749 | { | ||
1750 | int n = 0, count = 0; | ||
1751 | u64 values[2]; | ||
1752 | |||
1753 | values[n++] = perf_counter_read_value(counter); | ||
1754 | if (read_format & PERF_FORMAT_ID) | ||
1755 | values[n++] = primary_counter_id(counter); | ||
1756 | |||
1757 | count = n * sizeof(u64); | ||
1758 | |||
1759 | if (copy_to_user(buf, values, count)) | ||
1760 | return -EFAULT; | ||
1761 | |||
1762 | return count; | ||
1763 | } | ||
1764 | |||
1765 | static int perf_counter_read_group(struct perf_counter *counter, | ||
1766 | u64 read_format, char __user *buf) | ||
1767 | { | ||
1768 | struct perf_counter *leader = counter->group_leader, *sub; | ||
1769 | int n = 0, size = 0, err = -EFAULT; | ||
1770 | u64 values[3]; | ||
1771 | |||
1772 | values[n++] = 1 + leader->nr_siblings; | ||
1773 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1774 | values[n++] = leader->total_time_enabled + | ||
1775 | atomic64_read(&leader->child_total_time_enabled); | ||
1776 | } | ||
1777 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1778 | values[n++] = leader->total_time_running + | ||
1779 | atomic64_read(&leader->child_total_time_running); | ||
1780 | } | ||
1781 | |||
1782 | size = n * sizeof(u64); | ||
1783 | |||
1784 | if (copy_to_user(buf, values, size)) | ||
1785 | return -EFAULT; | ||
1786 | |||
1787 | err = perf_counter_read_entry(leader, read_format, buf + size); | ||
1788 | if (err < 0) | ||
1789 | return err; | ||
1790 | |||
1791 | size += err; | ||
1792 | |||
1793 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
1794 | err = perf_counter_read_entry(sub, read_format, | ||
1795 | buf + size); | ||
1796 | if (err < 0) | ||
1797 | return err; | ||
1798 | |||
1799 | size += err; | ||
1800 | } | ||
1801 | |||
1802 | return size; | ||
1803 | } | ||
1804 | |||
1805 | static int perf_counter_read_one(struct perf_counter *counter, | ||
1806 | u64 read_format, char __user *buf) | ||
1807 | { | ||
1808 | u64 values[4]; | ||
1809 | int n = 0; | ||
1810 | |||
1811 | values[n++] = perf_counter_read_value(counter); | ||
1812 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1813 | values[n++] = counter->total_time_enabled + | ||
1814 | atomic64_read(&counter->child_total_time_enabled); | ||
1815 | } | ||
1816 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1817 | values[n++] = counter->total_time_running + | ||
1818 | atomic64_read(&counter->child_total_time_running); | ||
1819 | } | ||
1820 | if (read_format & PERF_FORMAT_ID) | ||
1821 | values[n++] = primary_counter_id(counter); | ||
1822 | |||
1823 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1824 | return -EFAULT; | ||
1825 | |||
1826 | return n * sizeof(u64); | ||
1827 | } | ||
1828 | |||
1829 | /* | ||
1830 | * Read the performance counter - simple non blocking version for now | ||
1831 | */ | ||
1832 | static ssize_t | ||
1833 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
1834 | { | ||
1835 | u64 read_format = counter->attr.read_format; | ||
1836 | int ret; | ||
1837 | |||
1838 | /* | ||
1839 | * Return end-of-file for a read on a counter that is in | ||
1840 | * error state (i.e. because it was pinned but it couldn't be | ||
1841 | * scheduled on to the CPU at some point). | ||
1842 | */ | ||
1843 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
1844 | return 0; | ||
1845 | |||
1846 | if (count < perf_counter_read_size(counter)) | ||
1847 | return -ENOSPC; | ||
1848 | |||
1849 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1850 | mutex_lock(&counter->child_mutex); | ||
1851 | if (read_format & PERF_FORMAT_GROUP) | ||
1852 | ret = perf_counter_read_group(counter, read_format, buf); | ||
1853 | else | ||
1854 | ret = perf_counter_read_one(counter, read_format, buf); | ||
1855 | mutex_unlock(&counter->child_mutex); | ||
1856 | |||
1857 | return ret; | ||
1858 | } | ||
1859 | |||
1860 | static ssize_t | ||
1861 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1862 | { | ||
1863 | struct perf_counter *counter = file->private_data; | ||
1864 | |||
1865 | return perf_read_hw(counter, buf, count); | ||
1866 | } | ||
1867 | |||
1868 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1869 | { | ||
1870 | struct perf_counter *counter = file->private_data; | ||
1871 | struct perf_mmap_data *data; | ||
1872 | unsigned int events = POLL_HUP; | ||
1873 | |||
1874 | rcu_read_lock(); | ||
1875 | data = rcu_dereference(counter->data); | ||
1876 | if (data) | ||
1877 | events = atomic_xchg(&data->poll, 0); | ||
1878 | rcu_read_unlock(); | ||
1879 | |||
1880 | poll_wait(file, &counter->waitq, wait); | ||
1881 | |||
1882 | return events; | ||
1883 | } | ||
1884 | |||
1885 | static void perf_counter_reset(struct perf_counter *counter) | ||
1886 | { | ||
1887 | (void)perf_counter_read(counter); | ||
1888 | atomic64_set(&counter->count, 0); | ||
1889 | perf_counter_update_userpage(counter); | ||
1890 | } | ||
1891 | |||
1892 | /* | ||
1893 | * Holding the top-level counter's child_mutex means that any | ||
1894 | * descendant process that has inherited this counter will block | ||
1895 | * in sync_child_counter if it goes to exit, thus satisfying the | ||
1896 | * task existence requirements of perf_counter_enable/disable. | ||
1897 | */ | ||
1898 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
1899 | void (*func)(struct perf_counter *)) | ||
1900 | { | ||
1901 | struct perf_counter *child; | ||
1902 | |||
1903 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1904 | mutex_lock(&counter->child_mutex); | ||
1905 | func(counter); | ||
1906 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1907 | func(child); | ||
1908 | mutex_unlock(&counter->child_mutex); | ||
1909 | } | ||
1910 | |||
1911 | static void perf_counter_for_each(struct perf_counter *counter, | ||
1912 | void (*func)(struct perf_counter *)) | ||
1913 | { | ||
1914 | struct perf_counter_context *ctx = counter->ctx; | ||
1915 | struct perf_counter *sibling; | ||
1916 | |||
1917 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1918 | mutex_lock(&ctx->mutex); | ||
1919 | counter = counter->group_leader; | ||
1920 | |||
1921 | perf_counter_for_each_child(counter, func); | ||
1922 | func(counter); | ||
1923 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
1924 | perf_counter_for_each_child(counter, func); | ||
1925 | mutex_unlock(&ctx->mutex); | ||
1926 | } | ||
1927 | |||
1928 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | ||
1929 | { | ||
1930 | struct perf_counter_context *ctx = counter->ctx; | ||
1931 | unsigned long size; | ||
1932 | int ret = 0; | ||
1933 | u64 value; | ||
1934 | |||
1935 | if (!counter->attr.sample_period) | ||
1936 | return -EINVAL; | ||
1937 | |||
1938 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1939 | if (size != sizeof(value)) | ||
1940 | return -EFAULT; | ||
1941 | |||
1942 | if (!value) | ||
1943 | return -EINVAL; | ||
1944 | |||
1945 | spin_lock_irq(&ctx->lock); | ||
1946 | if (counter->attr.freq) { | ||
1947 | if (value > sysctl_perf_counter_sample_rate) { | ||
1948 | ret = -EINVAL; | ||
1949 | goto unlock; | ||
1950 | } | ||
1951 | |||
1952 | counter->attr.sample_freq = value; | ||
1953 | } else { | ||
1954 | counter->attr.sample_period = value; | ||
1955 | counter->hw.sample_period = value; | ||
1956 | } | ||
1957 | unlock: | ||
1958 | spin_unlock_irq(&ctx->lock); | ||
1959 | |||
1960 | return ret; | ||
1961 | } | ||
1962 | |||
1963 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1964 | { | ||
1965 | struct perf_counter *counter = file->private_data; | ||
1966 | void (*func)(struct perf_counter *); | ||
1967 | u32 flags = arg; | ||
1968 | |||
1969 | switch (cmd) { | ||
1970 | case PERF_COUNTER_IOC_ENABLE: | ||
1971 | func = perf_counter_enable; | ||
1972 | break; | ||
1973 | case PERF_COUNTER_IOC_DISABLE: | ||
1974 | func = perf_counter_disable; | ||
1975 | break; | ||
1976 | case PERF_COUNTER_IOC_RESET: | ||
1977 | func = perf_counter_reset; | ||
1978 | break; | ||
1979 | |||
1980 | case PERF_COUNTER_IOC_REFRESH: | ||
1981 | return perf_counter_refresh(counter, arg); | ||
1982 | |||
1983 | case PERF_COUNTER_IOC_PERIOD: | ||
1984 | return perf_counter_period(counter, (u64 __user *)arg); | ||
1985 | |||
1986 | default: | ||
1987 | return -ENOTTY; | ||
1988 | } | ||
1989 | |||
1990 | if (flags & PERF_IOC_FLAG_GROUP) | ||
1991 | perf_counter_for_each(counter, func); | ||
1992 | else | ||
1993 | perf_counter_for_each_child(counter, func); | ||
1994 | |||
1995 | return 0; | ||
1996 | } | ||
1997 | |||
1998 | int perf_counter_task_enable(void) | ||
1999 | { | ||
2000 | struct perf_counter *counter; | ||
2001 | |||
2002 | mutex_lock(¤t->perf_counter_mutex); | ||
2003 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
2004 | perf_counter_for_each_child(counter, perf_counter_enable); | ||
2005 | mutex_unlock(¤t->perf_counter_mutex); | ||
2006 | |||
2007 | return 0; | ||
2008 | } | ||
2009 | |||
2010 | int perf_counter_task_disable(void) | ||
2011 | { | ||
2012 | struct perf_counter *counter; | ||
2013 | |||
2014 | mutex_lock(¤t->perf_counter_mutex); | ||
2015 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
2016 | perf_counter_for_each_child(counter, perf_counter_disable); | ||
2017 | mutex_unlock(¤t->perf_counter_mutex); | ||
2018 | |||
2019 | return 0; | ||
2020 | } | ||
2021 | |||
2022 | #ifndef PERF_COUNTER_INDEX_OFFSET | ||
2023 | # define PERF_COUNTER_INDEX_OFFSET 0 | ||
2024 | #endif | ||
2025 | |||
2026 | static int perf_counter_index(struct perf_counter *counter) | ||
2027 | { | ||
2028 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
2029 | return 0; | ||
2030 | |||
2031 | return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET; | ||
2032 | } | ||
2033 | |||
2034 | /* | ||
2035 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
2036 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
2037 | * code calls this from NMI context. | ||
2038 | */ | ||
2039 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
2040 | { | ||
2041 | struct perf_counter_mmap_page *userpg; | ||
2042 | struct perf_mmap_data *data; | ||
2043 | |||
2044 | rcu_read_lock(); | ||
2045 | data = rcu_dereference(counter->data); | ||
2046 | if (!data) | ||
2047 | goto unlock; | ||
2048 | |||
2049 | userpg = data->user_page; | ||
2050 | |||
2051 | /* | ||
2052 | * Disable preemption so as to not let the corresponding user-space | ||
2053 | * spin too long if we get preempted. | ||
2054 | */ | ||
2055 | preempt_disable(); | ||
2056 | ++userpg->lock; | ||
2057 | barrier(); | ||
2058 | userpg->index = perf_counter_index(counter); | ||
2059 | userpg->offset = atomic64_read(&counter->count); | ||
2060 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
2061 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
2062 | |||
2063 | userpg->time_enabled = counter->total_time_enabled + | ||
2064 | atomic64_read(&counter->child_total_time_enabled); | ||
2065 | |||
2066 | userpg->time_running = counter->total_time_running + | ||
2067 | atomic64_read(&counter->child_total_time_running); | ||
2068 | |||
2069 | barrier(); | ||
2070 | ++userpg->lock; | ||
2071 | preempt_enable(); | ||
2072 | unlock: | ||
2073 | rcu_read_unlock(); | ||
2074 | } | ||
2075 | |||
2076 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2077 | { | ||
2078 | struct perf_counter *counter = vma->vm_file->private_data; | ||
2079 | struct perf_mmap_data *data; | ||
2080 | int ret = VM_FAULT_SIGBUS; | ||
2081 | |||
2082 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2083 | if (vmf->pgoff == 0) | ||
2084 | ret = 0; | ||
2085 | return ret; | ||
2086 | } | ||
2087 | |||
2088 | rcu_read_lock(); | ||
2089 | data = rcu_dereference(counter->data); | ||
2090 | if (!data) | ||
2091 | goto unlock; | ||
2092 | |||
2093 | if (vmf->pgoff == 0) { | ||
2094 | vmf->page = virt_to_page(data->user_page); | ||
2095 | } else { | ||
2096 | int nr = vmf->pgoff - 1; | ||
2097 | |||
2098 | if ((unsigned)nr > data->nr_pages) | ||
2099 | goto unlock; | ||
2100 | |||
2101 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
2102 | goto unlock; | ||
2103 | |||
2104 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
2105 | } | ||
2106 | |||
2107 | get_page(vmf->page); | ||
2108 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2109 | vmf->page->index = vmf->pgoff; | ||
2110 | |||
2111 | ret = 0; | ||
2112 | unlock: | ||
2113 | rcu_read_unlock(); | ||
2114 | |||
2115 | return ret; | ||
2116 | } | ||
2117 | |||
2118 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
2119 | { | ||
2120 | struct perf_mmap_data *data; | ||
2121 | unsigned long size; | ||
2122 | int i; | ||
2123 | |||
2124 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
2125 | |||
2126 | size = sizeof(struct perf_mmap_data); | ||
2127 | size += nr_pages * sizeof(void *); | ||
2128 | |||
2129 | data = kzalloc(size, GFP_KERNEL); | ||
2130 | if (!data) | ||
2131 | goto fail; | ||
2132 | |||
2133 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
2134 | if (!data->user_page) | ||
2135 | goto fail_user_page; | ||
2136 | |||
2137 | for (i = 0; i < nr_pages; i++) { | ||
2138 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
2139 | if (!data->data_pages[i]) | ||
2140 | goto fail_data_pages; | ||
2141 | } | ||
2142 | |||
2143 | data->nr_pages = nr_pages; | ||
2144 | atomic_set(&data->lock, -1); | ||
2145 | |||
2146 | rcu_assign_pointer(counter->data, data); | ||
2147 | |||
2148 | return 0; | ||
2149 | |||
2150 | fail_data_pages: | ||
2151 | for (i--; i >= 0; i--) | ||
2152 | free_page((unsigned long)data->data_pages[i]); | ||
2153 | |||
2154 | free_page((unsigned long)data->user_page); | ||
2155 | |||
2156 | fail_user_page: | ||
2157 | kfree(data); | ||
2158 | |||
2159 | fail: | ||
2160 | return -ENOMEM; | ||
2161 | } | ||
2162 | |||
2163 | static void perf_mmap_free_page(unsigned long addr) | ||
2164 | { | ||
2165 | struct page *page = virt_to_page((void *)addr); | ||
2166 | |||
2167 | page->mapping = NULL; | ||
2168 | __free_page(page); | ||
2169 | } | ||
2170 | |||
2171 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
2172 | { | ||
2173 | struct perf_mmap_data *data; | ||
2174 | int i; | ||
2175 | |||
2176 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2177 | |||
2178 | perf_mmap_free_page((unsigned long)data->user_page); | ||
2179 | for (i = 0; i < data->nr_pages; i++) | ||
2180 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
2181 | |||
2182 | kfree(data); | ||
2183 | } | ||
2184 | |||
2185 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
2186 | { | ||
2187 | struct perf_mmap_data *data = counter->data; | ||
2188 | |||
2189 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
2190 | |||
2191 | rcu_assign_pointer(counter->data, NULL); | ||
2192 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
2193 | } | ||
2194 | |||
2195 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
2196 | { | ||
2197 | struct perf_counter *counter = vma->vm_file->private_data; | ||
2198 | |||
2199 | atomic_inc(&counter->mmap_count); | ||
2200 | } | ||
2201 | |||
2202 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
2203 | { | ||
2204 | struct perf_counter *counter = vma->vm_file->private_data; | ||
2205 | |||
2206 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
2207 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | ||
2208 | struct user_struct *user = current_user(); | ||
2209 | |||
2210 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
2211 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
2212 | perf_mmap_data_free(counter); | ||
2213 | mutex_unlock(&counter->mmap_mutex); | ||
2214 | } | ||
2215 | } | ||
2216 | |||
2217 | static struct vm_operations_struct perf_mmap_vmops = { | ||
2218 | .open = perf_mmap_open, | ||
2219 | .close = perf_mmap_close, | ||
2220 | .fault = perf_mmap_fault, | ||
2221 | .page_mkwrite = perf_mmap_fault, | ||
2222 | }; | ||
2223 | |||
2224 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
2225 | { | ||
2226 | struct perf_counter *counter = file->private_data; | ||
2227 | unsigned long user_locked, user_lock_limit; | ||
2228 | struct user_struct *user = current_user(); | ||
2229 | unsigned long locked, lock_limit; | ||
2230 | unsigned long vma_size; | ||
2231 | unsigned long nr_pages; | ||
2232 | long user_extra, extra; | ||
2233 | int ret = 0; | ||
2234 | |||
2235 | if (!(vma->vm_flags & VM_SHARED)) | ||
2236 | return -EINVAL; | ||
2237 | |||
2238 | vma_size = vma->vm_end - vma->vm_start; | ||
2239 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
2240 | |||
2241 | /* | ||
2242 | * If we have data pages ensure they're a power-of-two number, so we | ||
2243 | * can do bitmasks instead of modulo. | ||
2244 | */ | ||
2245 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
2246 | return -EINVAL; | ||
2247 | |||
2248 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
2249 | return -EINVAL; | ||
2250 | |||
2251 | if (vma->vm_pgoff != 0) | ||
2252 | return -EINVAL; | ||
2253 | |||
2254 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
2255 | mutex_lock(&counter->mmap_mutex); | ||
2256 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
2257 | if (nr_pages != counter->data->nr_pages) | ||
2258 | ret = -EINVAL; | ||
2259 | goto unlock; | ||
2260 | } | ||
2261 | |||
2262 | user_extra = nr_pages + 1; | ||
2263 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
2264 | |||
2265 | /* | ||
2266 | * Increase the limit linearly with more CPUs: | ||
2267 | */ | ||
2268 | user_lock_limit *= num_online_cpus(); | ||
2269 | |||
2270 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
2271 | |||
2272 | extra = 0; | ||
2273 | if (user_locked > user_lock_limit) | ||
2274 | extra = user_locked - user_lock_limit; | ||
2275 | |||
2276 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
2277 | lock_limit >>= PAGE_SHIFT; | ||
2278 | locked = vma->vm_mm->locked_vm + extra; | ||
2279 | |||
2280 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
2281 | ret = -EPERM; | ||
2282 | goto unlock; | ||
2283 | } | ||
2284 | |||
2285 | WARN_ON(counter->data); | ||
2286 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
2287 | if (ret) | ||
2288 | goto unlock; | ||
2289 | |||
2290 | atomic_set(&counter->mmap_count, 1); | ||
2291 | atomic_long_add(user_extra, &user->locked_vm); | ||
2292 | vma->vm_mm->locked_vm += extra; | ||
2293 | counter->data->nr_locked = extra; | ||
2294 | if (vma->vm_flags & VM_WRITE) | ||
2295 | counter->data->writable = 1; | ||
2296 | |||
2297 | unlock: | ||
2298 | mutex_unlock(&counter->mmap_mutex); | ||
2299 | |||
2300 | vma->vm_flags |= VM_RESERVED; | ||
2301 | vma->vm_ops = &perf_mmap_vmops; | ||
2302 | |||
2303 | return ret; | ||
2304 | } | ||
2305 | |||
2306 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2307 | { | ||
2308 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2309 | struct perf_counter *counter = filp->private_data; | ||
2310 | int retval; | ||
2311 | |||
2312 | mutex_lock(&inode->i_mutex); | ||
2313 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
2314 | mutex_unlock(&inode->i_mutex); | ||
2315 | |||
2316 | if (retval < 0) | ||
2317 | return retval; | ||
2318 | |||
2319 | return 0; | ||
2320 | } | ||
2321 | |||
2322 | static const struct file_operations perf_fops = { | ||
2323 | .release = perf_release, | ||
2324 | .read = perf_read, | ||
2325 | .poll = perf_poll, | ||
2326 | .unlocked_ioctl = perf_ioctl, | ||
2327 | .compat_ioctl = perf_ioctl, | ||
2328 | .mmap = perf_mmap, | ||
2329 | .fasync = perf_fasync, | ||
2330 | }; | ||
2331 | |||
2332 | /* | ||
2333 | * Perf counter wakeup | ||
2334 | * | ||
2335 | * If there's data, ensure we set the poll() state and publish everything | ||
2336 | * to user-space before waking everybody up. | ||
2337 | */ | ||
2338 | |||
2339 | void perf_counter_wakeup(struct perf_counter *counter) | ||
2340 | { | ||
2341 | wake_up_all(&counter->waitq); | ||
2342 | |||
2343 | if (counter->pending_kill) { | ||
2344 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
2345 | counter->pending_kill = 0; | ||
2346 | } | ||
2347 | } | ||
2348 | |||
2349 | /* | ||
2350 | * Pending wakeups | ||
2351 | * | ||
2352 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2353 | * | ||
2354 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2355 | * single linked list and use cmpxchg() to add entries lockless. | ||
2356 | */ | ||
2357 | |||
2358 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
2359 | { | ||
2360 | struct perf_counter *counter = container_of(entry, | ||
2361 | struct perf_counter, pending); | ||
2362 | |||
2363 | if (counter->pending_disable) { | ||
2364 | counter->pending_disable = 0; | ||
2365 | __perf_counter_disable(counter); | ||
2366 | } | ||
2367 | |||
2368 | if (counter->pending_wakeup) { | ||
2369 | counter->pending_wakeup = 0; | ||
2370 | perf_counter_wakeup(counter); | ||
2371 | } | ||
2372 | } | ||
2373 | |||
2374 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2375 | |||
2376 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2377 | PENDING_TAIL, | ||
2378 | }; | ||
2379 | |||
2380 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2381 | void (*func)(struct perf_pending_entry *)) | ||
2382 | { | ||
2383 | struct perf_pending_entry **head; | ||
2384 | |||
2385 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2386 | return; | ||
2387 | |||
2388 | entry->func = func; | ||
2389 | |||
2390 | head = &get_cpu_var(perf_pending_head); | ||
2391 | |||
2392 | do { | ||
2393 | entry->next = *head; | ||
2394 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2395 | |||
2396 | set_perf_counter_pending(); | ||
2397 | |||
2398 | put_cpu_var(perf_pending_head); | ||
2399 | } | ||
2400 | |||
2401 | static int __perf_pending_run(void) | ||
2402 | { | ||
2403 | struct perf_pending_entry *list; | ||
2404 | int nr = 0; | ||
2405 | |||
2406 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2407 | while (list != PENDING_TAIL) { | ||
2408 | void (*func)(struct perf_pending_entry *); | ||
2409 | struct perf_pending_entry *entry = list; | ||
2410 | |||
2411 | list = list->next; | ||
2412 | |||
2413 | func = entry->func; | ||
2414 | entry->next = NULL; | ||
2415 | /* | ||
2416 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2417 | * so that we won't be waiting forever. | ||
2418 | * -- see perf_not_pending(). | ||
2419 | */ | ||
2420 | smp_wmb(); | ||
2421 | |||
2422 | func(entry); | ||
2423 | nr++; | ||
2424 | } | ||
2425 | |||
2426 | return nr; | ||
2427 | } | ||
2428 | |||
2429 | static inline int perf_not_pending(struct perf_counter *counter) | ||
2430 | { | ||
2431 | /* | ||
2432 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2433 | * need to wait. | ||
2434 | */ | ||
2435 | get_cpu(); | ||
2436 | __perf_pending_run(); | ||
2437 | put_cpu(); | ||
2438 | |||
2439 | /* | ||
2440 | * Ensure we see the proper queue state before going to sleep | ||
2441 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2442 | */ | ||
2443 | smp_rmb(); | ||
2444 | return counter->pending.next == NULL; | ||
2445 | } | ||
2446 | |||
2447 | static void perf_pending_sync(struct perf_counter *counter) | ||
2448 | { | ||
2449 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
2450 | } | ||
2451 | |||
2452 | void perf_counter_do_pending(void) | ||
2453 | { | ||
2454 | __perf_pending_run(); | ||
2455 | } | ||
2456 | |||
2457 | /* | ||
2458 | * Callchain support -- arch specific | ||
2459 | */ | ||
2460 | |||
2461 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2462 | { | ||
2463 | return NULL; | ||
2464 | } | ||
2465 | |||
2466 | /* | ||
2467 | * Output | ||
2468 | */ | ||
2469 | |||
2470 | struct perf_output_handle { | ||
2471 | struct perf_counter *counter; | ||
2472 | struct perf_mmap_data *data; | ||
2473 | unsigned long head; | ||
2474 | unsigned long offset; | ||
2475 | int nmi; | ||
2476 | int sample; | ||
2477 | int locked; | ||
2478 | unsigned long flags; | ||
2479 | }; | ||
2480 | |||
2481 | static bool perf_output_space(struct perf_mmap_data *data, | ||
2482 | unsigned int offset, unsigned int head) | ||
2483 | { | ||
2484 | unsigned long tail; | ||
2485 | unsigned long mask; | ||
2486 | |||
2487 | if (!data->writable) | ||
2488 | return true; | ||
2489 | |||
2490 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
2491 | /* | ||
2492 | * Userspace could choose to issue a mb() before updating the tail | ||
2493 | * pointer. So that all reads will be completed before the write is | ||
2494 | * issued. | ||
2495 | */ | ||
2496 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
2497 | smp_rmb(); | ||
2498 | |||
2499 | offset = (offset - tail) & mask; | ||
2500 | head = (head - tail) & mask; | ||
2501 | |||
2502 | if ((int)(head - offset) < 0) | ||
2503 | return false; | ||
2504 | |||
2505 | return true; | ||
2506 | } | ||
2507 | |||
2508 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2509 | { | ||
2510 | atomic_set(&handle->data->poll, POLL_IN); | ||
2511 | |||
2512 | if (handle->nmi) { | ||
2513 | handle->counter->pending_wakeup = 1; | ||
2514 | perf_pending_queue(&handle->counter->pending, | ||
2515 | perf_pending_counter); | ||
2516 | } else | ||
2517 | perf_counter_wakeup(handle->counter); | ||
2518 | } | ||
2519 | |||
2520 | /* | ||
2521 | * Curious locking construct. | ||
2522 | * | ||
2523 | * We need to ensure a later event doesn't publish a head when a former | ||
2524 | * event isn't done writing. However since we need to deal with NMIs we | ||
2525 | * cannot fully serialize things. | ||
2526 | * | ||
2527 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2528 | * nesting on a single CPU. | ||
2529 | * | ||
2530 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2531 | * event completes. | ||
2532 | */ | ||
2533 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2534 | { | ||
2535 | struct perf_mmap_data *data = handle->data; | ||
2536 | int cpu; | ||
2537 | |||
2538 | handle->locked = 0; | ||
2539 | |||
2540 | local_irq_save(handle->flags); | ||
2541 | cpu = smp_processor_id(); | ||
2542 | |||
2543 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
2544 | return; | ||
2545 | |||
2546 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2547 | cpu_relax(); | ||
2548 | |||
2549 | handle->locked = 1; | ||
2550 | } | ||
2551 | |||
2552 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2553 | { | ||
2554 | struct perf_mmap_data *data = handle->data; | ||
2555 | unsigned long head; | ||
2556 | int cpu; | ||
2557 | |||
2558 | data->done_head = data->head; | ||
2559 | |||
2560 | if (!handle->locked) | ||
2561 | goto out; | ||
2562 | |||
2563 | again: | ||
2564 | /* | ||
2565 | * The xchg implies a full barrier that ensures all writes are done | ||
2566 | * before we publish the new head, matched by a rmb() in userspace when | ||
2567 | * reading this position. | ||
2568 | */ | ||
2569 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2570 | data->user_page->data_head = head; | ||
2571 | |||
2572 | /* | ||
2573 | * NMI can happen here, which means we can miss a done_head update. | ||
2574 | */ | ||
2575 | |||
2576 | cpu = atomic_xchg(&data->lock, -1); | ||
2577 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2578 | |||
2579 | /* | ||
2580 | * Therefore we have to validate we did not indeed do so. | ||
2581 | */ | ||
2582 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2583 | /* | ||
2584 | * Since we had it locked, we can lock it again. | ||
2585 | */ | ||
2586 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2587 | cpu_relax(); | ||
2588 | |||
2589 | goto again; | ||
2590 | } | ||
2591 | |||
2592 | if (atomic_xchg(&data->wakeup, 0)) | ||
2593 | perf_output_wakeup(handle); | ||
2594 | out: | ||
2595 | local_irq_restore(handle->flags); | ||
2596 | } | ||
2597 | |||
2598 | static void perf_output_copy(struct perf_output_handle *handle, | ||
2599 | const void *buf, unsigned int len) | ||
2600 | { | ||
2601 | unsigned int pages_mask; | ||
2602 | unsigned int offset; | ||
2603 | unsigned int size; | ||
2604 | void **pages; | ||
2605 | |||
2606 | offset = handle->offset; | ||
2607 | pages_mask = handle->data->nr_pages - 1; | ||
2608 | pages = handle->data->data_pages; | ||
2609 | |||
2610 | do { | ||
2611 | unsigned int page_offset; | ||
2612 | int nr; | ||
2613 | |||
2614 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2615 | page_offset = offset & (PAGE_SIZE - 1); | ||
2616 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
2617 | |||
2618 | memcpy(pages[nr] + page_offset, buf, size); | ||
2619 | |||
2620 | len -= size; | ||
2621 | buf += size; | ||
2622 | offset += size; | ||
2623 | } while (len); | ||
2624 | |||
2625 | handle->offset = offset; | ||
2626 | |||
2627 | /* | ||
2628 | * Check we didn't copy past our reservation window, taking the | ||
2629 | * possible unsigned int wrap into account. | ||
2630 | */ | ||
2631 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2632 | } | ||
2633 | |||
2634 | #define perf_output_put(handle, x) \ | ||
2635 | perf_output_copy((handle), &(x), sizeof(x)) | ||
2636 | |||
2637 | static int perf_output_begin(struct perf_output_handle *handle, | ||
2638 | struct perf_counter *counter, unsigned int size, | ||
2639 | int nmi, int sample) | ||
2640 | { | ||
2641 | struct perf_mmap_data *data; | ||
2642 | unsigned int offset, head; | ||
2643 | int have_lost; | ||
2644 | struct { | ||
2645 | struct perf_event_header header; | ||
2646 | u64 id; | ||
2647 | u64 lost; | ||
2648 | } lost_event; | ||
2649 | |||
2650 | /* | ||
2651 | * For inherited counters we send all the output towards the parent. | ||
2652 | */ | ||
2653 | if (counter->parent) | ||
2654 | counter = counter->parent; | ||
2655 | |||
2656 | rcu_read_lock(); | ||
2657 | data = rcu_dereference(counter->data); | ||
2658 | if (!data) | ||
2659 | goto out; | ||
2660 | |||
2661 | handle->data = data; | ||
2662 | handle->counter = counter; | ||
2663 | handle->nmi = nmi; | ||
2664 | handle->sample = sample; | ||
2665 | |||
2666 | if (!data->nr_pages) | ||
2667 | goto fail; | ||
2668 | |||
2669 | have_lost = atomic_read(&data->lost); | ||
2670 | if (have_lost) | ||
2671 | size += sizeof(lost_event); | ||
2672 | |||
2673 | perf_output_lock(handle); | ||
2674 | |||
2675 | do { | ||
2676 | offset = head = atomic_long_read(&data->head); | ||
2677 | head += size; | ||
2678 | if (unlikely(!perf_output_space(data, offset, head))) | ||
2679 | goto fail; | ||
2680 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2681 | |||
2682 | handle->offset = offset; | ||
2683 | handle->head = head; | ||
2684 | |||
2685 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
2686 | atomic_set(&data->wakeup, 1); | ||
2687 | |||
2688 | if (have_lost) { | ||
2689 | lost_event.header.type = PERF_EVENT_LOST; | ||
2690 | lost_event.header.misc = 0; | ||
2691 | lost_event.header.size = sizeof(lost_event); | ||
2692 | lost_event.id = counter->id; | ||
2693 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
2694 | |||
2695 | perf_output_put(handle, lost_event); | ||
2696 | } | ||
2697 | |||
2698 | return 0; | ||
2699 | |||
2700 | fail: | ||
2701 | atomic_inc(&data->lost); | ||
2702 | perf_output_unlock(handle); | ||
2703 | out: | ||
2704 | rcu_read_unlock(); | ||
2705 | |||
2706 | return -ENOSPC; | ||
2707 | } | ||
2708 | |||
2709 | static void perf_output_end(struct perf_output_handle *handle) | ||
2710 | { | ||
2711 | struct perf_counter *counter = handle->counter; | ||
2712 | struct perf_mmap_data *data = handle->data; | ||
2713 | |||
2714 | int wakeup_events = counter->attr.wakeup_events; | ||
2715 | |||
2716 | if (handle->sample && wakeup_events) { | ||
2717 | int events = atomic_inc_return(&data->events); | ||
2718 | if (events >= wakeup_events) { | ||
2719 | atomic_sub(wakeup_events, &data->events); | ||
2720 | atomic_set(&data->wakeup, 1); | ||
2721 | } | ||
2722 | } | ||
2723 | |||
2724 | perf_output_unlock(handle); | ||
2725 | rcu_read_unlock(); | ||
2726 | } | ||
2727 | |||
2728 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | ||
2729 | { | ||
2730 | /* | ||
2731 | * only top level counters have the pid namespace they were created in | ||
2732 | */ | ||
2733 | if (counter->parent) | ||
2734 | counter = counter->parent; | ||
2735 | |||
2736 | return task_tgid_nr_ns(p, counter->ns); | ||
2737 | } | ||
2738 | |||
2739 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | ||
2740 | { | ||
2741 | /* | ||
2742 | * only top level counters have the pid namespace they were created in | ||
2743 | */ | ||
2744 | if (counter->parent) | ||
2745 | counter = counter->parent; | ||
2746 | |||
2747 | return task_pid_nr_ns(p, counter->ns); | ||
2748 | } | ||
2749 | |||
2750 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
2751 | struct perf_counter *counter) | ||
2752 | { | ||
2753 | u64 read_format = counter->attr.read_format; | ||
2754 | u64 values[4]; | ||
2755 | int n = 0; | ||
2756 | |||
2757 | values[n++] = atomic64_read(&counter->count); | ||
2758 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2759 | values[n++] = counter->total_time_enabled + | ||
2760 | atomic64_read(&counter->child_total_time_enabled); | ||
2761 | } | ||
2762 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2763 | values[n++] = counter->total_time_running + | ||
2764 | atomic64_read(&counter->child_total_time_running); | ||
2765 | } | ||
2766 | if (read_format & PERF_FORMAT_ID) | ||
2767 | values[n++] = primary_counter_id(counter); | ||
2768 | |||
2769 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2770 | } | ||
2771 | |||
2772 | /* | ||
2773 | * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult. | ||
2774 | */ | ||
2775 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2776 | struct perf_counter *counter) | ||
2777 | { | ||
2778 | struct perf_counter *leader = counter->group_leader, *sub; | ||
2779 | u64 read_format = counter->attr.read_format; | ||
2780 | u64 values[5]; | ||
2781 | int n = 0; | ||
2782 | |||
2783 | values[n++] = 1 + leader->nr_siblings; | ||
2784 | |||
2785 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2786 | values[n++] = leader->total_time_enabled; | ||
2787 | |||
2788 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2789 | values[n++] = leader->total_time_running; | ||
2790 | |||
2791 | if (leader != counter) | ||
2792 | leader->pmu->read(leader); | ||
2793 | |||
2794 | values[n++] = atomic64_read(&leader->count); | ||
2795 | if (read_format & PERF_FORMAT_ID) | ||
2796 | values[n++] = primary_counter_id(leader); | ||
2797 | |||
2798 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2799 | |||
2800 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
2801 | n = 0; | ||
2802 | |||
2803 | if (sub != counter) | ||
2804 | sub->pmu->read(sub); | ||
2805 | |||
2806 | values[n++] = atomic64_read(&sub->count); | ||
2807 | if (read_format & PERF_FORMAT_ID) | ||
2808 | values[n++] = primary_counter_id(sub); | ||
2809 | |||
2810 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2811 | } | ||
2812 | } | ||
2813 | |||
2814 | static void perf_output_read(struct perf_output_handle *handle, | ||
2815 | struct perf_counter *counter) | ||
2816 | { | ||
2817 | if (counter->attr.read_format & PERF_FORMAT_GROUP) | ||
2818 | perf_output_read_group(handle, counter); | ||
2819 | else | ||
2820 | perf_output_read_one(handle, counter); | ||
2821 | } | ||
2822 | |||
2823 | void perf_counter_output(struct perf_counter *counter, int nmi, | ||
2824 | struct perf_sample_data *data) | ||
2825 | { | ||
2826 | int ret; | ||
2827 | u64 sample_type = counter->attr.sample_type; | ||
2828 | struct perf_output_handle handle; | ||
2829 | struct perf_event_header header; | ||
2830 | u64 ip; | ||
2831 | struct { | ||
2832 | u32 pid, tid; | ||
2833 | } tid_entry; | ||
2834 | struct perf_callchain_entry *callchain = NULL; | ||
2835 | int callchain_size = 0; | ||
2836 | u64 time; | ||
2837 | struct { | ||
2838 | u32 cpu, reserved; | ||
2839 | } cpu_entry; | ||
2840 | |||
2841 | header.type = PERF_EVENT_SAMPLE; | ||
2842 | header.size = sizeof(header); | ||
2843 | |||
2844 | header.misc = 0; | ||
2845 | header.misc |= perf_misc_flags(data->regs); | ||
2846 | |||
2847 | if (sample_type & PERF_SAMPLE_IP) { | ||
2848 | ip = perf_instruction_pointer(data->regs); | ||
2849 | header.size += sizeof(ip); | ||
2850 | } | ||
2851 | |||
2852 | if (sample_type & PERF_SAMPLE_TID) { | ||
2853 | /* namespace issues */ | ||
2854 | tid_entry.pid = perf_counter_pid(counter, current); | ||
2855 | tid_entry.tid = perf_counter_tid(counter, current); | ||
2856 | |||
2857 | header.size += sizeof(tid_entry); | ||
2858 | } | ||
2859 | |||
2860 | if (sample_type & PERF_SAMPLE_TIME) { | ||
2861 | /* | ||
2862 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
2863 | */ | ||
2864 | time = sched_clock(); | ||
2865 | |||
2866 | header.size += sizeof(u64); | ||
2867 | } | ||
2868 | |||
2869 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2870 | header.size += sizeof(u64); | ||
2871 | |||
2872 | if (sample_type & PERF_SAMPLE_ID) | ||
2873 | header.size += sizeof(u64); | ||
2874 | |||
2875 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2876 | header.size += sizeof(u64); | ||
2877 | |||
2878 | if (sample_type & PERF_SAMPLE_CPU) { | ||
2879 | header.size += sizeof(cpu_entry); | ||
2880 | |||
2881 | cpu_entry.cpu = raw_smp_processor_id(); | ||
2882 | cpu_entry.reserved = 0; | ||
2883 | } | ||
2884 | |||
2885 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2886 | header.size += sizeof(u64); | ||
2887 | |||
2888 | if (sample_type & PERF_SAMPLE_READ) | ||
2889 | header.size += perf_counter_read_size(counter); | ||
2890 | |||
2891 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2892 | callchain = perf_callchain(data->regs); | ||
2893 | |||
2894 | if (callchain) { | ||
2895 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
2896 | header.size += callchain_size; | ||
2897 | } else | ||
2898 | header.size += sizeof(u64); | ||
2899 | } | ||
2900 | |||
2901 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2902 | int size = sizeof(u32); | ||
2903 | |||
2904 | if (data->raw) | ||
2905 | size += data->raw->size; | ||
2906 | else | ||
2907 | size += sizeof(u32); | ||
2908 | |||
2909 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
2910 | header.size += size; | ||
2911 | } | ||
2912 | |||
2913 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
2914 | if (ret) | ||
2915 | return; | ||
2916 | |||
2917 | perf_output_put(&handle, header); | ||
2918 | |||
2919 | if (sample_type & PERF_SAMPLE_IP) | ||
2920 | perf_output_put(&handle, ip); | ||
2921 | |||
2922 | if (sample_type & PERF_SAMPLE_TID) | ||
2923 | perf_output_put(&handle, tid_entry); | ||
2924 | |||
2925 | if (sample_type & PERF_SAMPLE_TIME) | ||
2926 | perf_output_put(&handle, time); | ||
2927 | |||
2928 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2929 | perf_output_put(&handle, data->addr); | ||
2930 | |||
2931 | if (sample_type & PERF_SAMPLE_ID) { | ||
2932 | u64 id = primary_counter_id(counter); | ||
2933 | |||
2934 | perf_output_put(&handle, id); | ||
2935 | } | ||
2936 | |||
2937 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2938 | perf_output_put(&handle, counter->id); | ||
2939 | |||
2940 | if (sample_type & PERF_SAMPLE_CPU) | ||
2941 | perf_output_put(&handle, cpu_entry); | ||
2942 | |||
2943 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2944 | perf_output_put(&handle, data->period); | ||
2945 | |||
2946 | if (sample_type & PERF_SAMPLE_READ) | ||
2947 | perf_output_read(&handle, counter); | ||
2948 | |||
2949 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2950 | if (callchain) | ||
2951 | perf_output_copy(&handle, callchain, callchain_size); | ||
2952 | else { | ||
2953 | u64 nr = 0; | ||
2954 | perf_output_put(&handle, nr); | ||
2955 | } | ||
2956 | } | ||
2957 | |||
2958 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2959 | if (data->raw) { | ||
2960 | perf_output_put(&handle, data->raw->size); | ||
2961 | perf_output_copy(&handle, data->raw->data, data->raw->size); | ||
2962 | } else { | ||
2963 | struct { | ||
2964 | u32 size; | ||
2965 | u32 data; | ||
2966 | } raw = { | ||
2967 | .size = sizeof(u32), | ||
2968 | .data = 0, | ||
2969 | }; | ||
2970 | perf_output_put(&handle, raw); | ||
2971 | } | ||
2972 | } | ||
2973 | |||
2974 | perf_output_end(&handle); | ||
2975 | } | ||
2976 | |||
2977 | /* | ||
2978 | * read event | ||
2979 | */ | ||
2980 | |||
2981 | struct perf_read_event { | ||
2982 | struct perf_event_header header; | ||
2983 | |||
2984 | u32 pid; | ||
2985 | u32 tid; | ||
2986 | }; | ||
2987 | |||
2988 | static void | ||
2989 | perf_counter_read_event(struct perf_counter *counter, | ||
2990 | struct task_struct *task) | ||
2991 | { | ||
2992 | struct perf_output_handle handle; | ||
2993 | struct perf_read_event event = { | ||
2994 | .header = { | ||
2995 | .type = PERF_EVENT_READ, | ||
2996 | .misc = 0, | ||
2997 | .size = sizeof(event) + perf_counter_read_size(counter), | ||
2998 | }, | ||
2999 | .pid = perf_counter_pid(counter, task), | ||
3000 | .tid = perf_counter_tid(counter, task), | ||
3001 | }; | ||
3002 | int ret; | ||
3003 | |||
3004 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); | ||
3005 | if (ret) | ||
3006 | return; | ||
3007 | |||
3008 | perf_output_put(&handle, event); | ||
3009 | perf_output_read(&handle, counter); | ||
3010 | |||
3011 | perf_output_end(&handle); | ||
3012 | } | ||
3013 | |||
3014 | /* | ||
3015 | * task tracking -- fork/exit | ||
3016 | * | ||
3017 | * enabled by: attr.comm | attr.mmap | attr.task | ||
3018 | */ | ||
3019 | |||
3020 | struct perf_task_event { | ||
3021 | struct task_struct *task; | ||
3022 | struct perf_counter_context *task_ctx; | ||
3023 | |||
3024 | struct { | ||
3025 | struct perf_event_header header; | ||
3026 | |||
3027 | u32 pid; | ||
3028 | u32 ppid; | ||
3029 | u32 tid; | ||
3030 | u32 ptid; | ||
3031 | } event; | ||
3032 | }; | ||
3033 | |||
3034 | static void perf_counter_task_output(struct perf_counter *counter, | ||
3035 | struct perf_task_event *task_event) | ||
3036 | { | ||
3037 | struct perf_output_handle handle; | ||
3038 | int size = task_event->event.header.size; | ||
3039 | struct task_struct *task = task_event->task; | ||
3040 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
3041 | |||
3042 | if (ret) | ||
3043 | return; | ||
3044 | |||
3045 | task_event->event.pid = perf_counter_pid(counter, task); | ||
3046 | task_event->event.ppid = perf_counter_pid(counter, current); | ||
3047 | |||
3048 | task_event->event.tid = perf_counter_tid(counter, task); | ||
3049 | task_event->event.ptid = perf_counter_tid(counter, current); | ||
3050 | |||
3051 | perf_output_put(&handle, task_event->event); | ||
3052 | perf_output_end(&handle); | ||
3053 | } | ||
3054 | |||
3055 | static int perf_counter_task_match(struct perf_counter *counter) | ||
3056 | { | ||
3057 | if (counter->attr.comm || counter->attr.mmap || counter->attr.task) | ||
3058 | return 1; | ||
3059 | |||
3060 | return 0; | ||
3061 | } | ||
3062 | |||
3063 | static void perf_counter_task_ctx(struct perf_counter_context *ctx, | ||
3064 | struct perf_task_event *task_event) | ||
3065 | { | ||
3066 | struct perf_counter *counter; | ||
3067 | |||
3068 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3069 | return; | ||
3070 | |||
3071 | rcu_read_lock(); | ||
3072 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3073 | if (perf_counter_task_match(counter)) | ||
3074 | perf_counter_task_output(counter, task_event); | ||
3075 | } | ||
3076 | rcu_read_unlock(); | ||
3077 | } | ||
3078 | |||
3079 | static void perf_counter_task_event(struct perf_task_event *task_event) | ||
3080 | { | ||
3081 | struct perf_cpu_context *cpuctx; | ||
3082 | struct perf_counter_context *ctx = task_event->task_ctx; | ||
3083 | |||
3084 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3085 | perf_counter_task_ctx(&cpuctx->ctx, task_event); | ||
3086 | put_cpu_var(perf_cpu_context); | ||
3087 | |||
3088 | rcu_read_lock(); | ||
3089 | if (!ctx) | ||
3090 | ctx = rcu_dereference(task_event->task->perf_counter_ctxp); | ||
3091 | if (ctx) | ||
3092 | perf_counter_task_ctx(ctx, task_event); | ||
3093 | rcu_read_unlock(); | ||
3094 | } | ||
3095 | |||
3096 | static void perf_counter_task(struct task_struct *task, | ||
3097 | struct perf_counter_context *task_ctx, | ||
3098 | int new) | ||
3099 | { | ||
3100 | struct perf_task_event task_event; | ||
3101 | |||
3102 | if (!atomic_read(&nr_comm_counters) && | ||
3103 | !atomic_read(&nr_mmap_counters) && | ||
3104 | !atomic_read(&nr_task_counters)) | ||
3105 | return; | ||
3106 | |||
3107 | task_event = (struct perf_task_event){ | ||
3108 | .task = task, | ||
3109 | .task_ctx = task_ctx, | ||
3110 | .event = { | ||
3111 | .header = { | ||
3112 | .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, | ||
3113 | .misc = 0, | ||
3114 | .size = sizeof(task_event.event), | ||
3115 | }, | ||
3116 | /* .pid */ | ||
3117 | /* .ppid */ | ||
3118 | /* .tid */ | ||
3119 | /* .ptid */ | ||
3120 | }, | ||
3121 | }; | ||
3122 | |||
3123 | perf_counter_task_event(&task_event); | ||
3124 | } | ||
3125 | |||
3126 | void perf_counter_fork(struct task_struct *task) | ||
3127 | { | ||
3128 | perf_counter_task(task, NULL, 1); | ||
3129 | } | ||
3130 | |||
3131 | /* | ||
3132 | * comm tracking | ||
3133 | */ | ||
3134 | |||
3135 | struct perf_comm_event { | ||
3136 | struct task_struct *task; | ||
3137 | char *comm; | ||
3138 | int comm_size; | ||
3139 | |||
3140 | struct { | ||
3141 | struct perf_event_header header; | ||
3142 | |||
3143 | u32 pid; | ||
3144 | u32 tid; | ||
3145 | } event; | ||
3146 | }; | ||
3147 | |||
3148 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
3149 | struct perf_comm_event *comm_event) | ||
3150 | { | ||
3151 | struct perf_output_handle handle; | ||
3152 | int size = comm_event->event.header.size; | ||
3153 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
3154 | |||
3155 | if (ret) | ||
3156 | return; | ||
3157 | |||
3158 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | ||
3159 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | ||
3160 | |||
3161 | perf_output_put(&handle, comm_event->event); | ||
3162 | perf_output_copy(&handle, comm_event->comm, | ||
3163 | comm_event->comm_size); | ||
3164 | perf_output_end(&handle); | ||
3165 | } | ||
3166 | |||
3167 | static int perf_counter_comm_match(struct perf_counter *counter) | ||
3168 | { | ||
3169 | if (counter->attr.comm) | ||
3170 | return 1; | ||
3171 | |||
3172 | return 0; | ||
3173 | } | ||
3174 | |||
3175 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
3176 | struct perf_comm_event *comm_event) | ||
3177 | { | ||
3178 | struct perf_counter *counter; | ||
3179 | |||
3180 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3181 | return; | ||
3182 | |||
3183 | rcu_read_lock(); | ||
3184 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3185 | if (perf_counter_comm_match(counter)) | ||
3186 | perf_counter_comm_output(counter, comm_event); | ||
3187 | } | ||
3188 | rcu_read_unlock(); | ||
3189 | } | ||
3190 | |||
3191 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
3192 | { | ||
3193 | struct perf_cpu_context *cpuctx; | ||
3194 | struct perf_counter_context *ctx; | ||
3195 | unsigned int size; | ||
3196 | char comm[TASK_COMM_LEN]; | ||
3197 | |||
3198 | memset(comm, 0, sizeof(comm)); | ||
3199 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
3200 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
3201 | |||
3202 | comm_event->comm = comm; | ||
3203 | comm_event->comm_size = size; | ||
3204 | |||
3205 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
3206 | |||
3207 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3208 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
3209 | put_cpu_var(perf_cpu_context); | ||
3210 | |||
3211 | rcu_read_lock(); | ||
3212 | /* | ||
3213 | * doesn't really matter which of the child contexts the | ||
3214 | * events ends up in. | ||
3215 | */ | ||
3216 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
3217 | if (ctx) | ||
3218 | perf_counter_comm_ctx(ctx, comm_event); | ||
3219 | rcu_read_unlock(); | ||
3220 | } | ||
3221 | |||
3222 | void perf_counter_comm(struct task_struct *task) | ||
3223 | { | ||
3224 | struct perf_comm_event comm_event; | ||
3225 | |||
3226 | if (task->perf_counter_ctxp) | ||
3227 | perf_counter_enable_on_exec(task); | ||
3228 | |||
3229 | if (!atomic_read(&nr_comm_counters)) | ||
3230 | return; | ||
3231 | |||
3232 | comm_event = (struct perf_comm_event){ | ||
3233 | .task = task, | ||
3234 | /* .comm */ | ||
3235 | /* .comm_size */ | ||
3236 | .event = { | ||
3237 | .header = { | ||
3238 | .type = PERF_EVENT_COMM, | ||
3239 | .misc = 0, | ||
3240 | /* .size */ | ||
3241 | }, | ||
3242 | /* .pid */ | ||
3243 | /* .tid */ | ||
3244 | }, | ||
3245 | }; | ||
3246 | |||
3247 | perf_counter_comm_event(&comm_event); | ||
3248 | } | ||
3249 | |||
3250 | /* | ||
3251 | * mmap tracking | ||
3252 | */ | ||
3253 | |||
3254 | struct perf_mmap_event { | ||
3255 | struct vm_area_struct *vma; | ||
3256 | |||
3257 | const char *file_name; | ||
3258 | int file_size; | ||
3259 | |||
3260 | struct { | ||
3261 | struct perf_event_header header; | ||
3262 | |||
3263 | u32 pid; | ||
3264 | u32 tid; | ||
3265 | u64 start; | ||
3266 | u64 len; | ||
3267 | u64 pgoff; | ||
3268 | } event; | ||
3269 | }; | ||
3270 | |||
3271 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
3272 | struct perf_mmap_event *mmap_event) | ||
3273 | { | ||
3274 | struct perf_output_handle handle; | ||
3275 | int size = mmap_event->event.header.size; | ||
3276 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
3277 | |||
3278 | if (ret) | ||
3279 | return; | ||
3280 | |||
3281 | mmap_event->event.pid = perf_counter_pid(counter, current); | ||
3282 | mmap_event->event.tid = perf_counter_tid(counter, current); | ||
3283 | |||
3284 | perf_output_put(&handle, mmap_event->event); | ||
3285 | perf_output_copy(&handle, mmap_event->file_name, | ||
3286 | mmap_event->file_size); | ||
3287 | perf_output_end(&handle); | ||
3288 | } | ||
3289 | |||
3290 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
3291 | struct perf_mmap_event *mmap_event) | ||
3292 | { | ||
3293 | if (counter->attr.mmap) | ||
3294 | return 1; | ||
3295 | |||
3296 | return 0; | ||
3297 | } | ||
3298 | |||
3299 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
3300 | struct perf_mmap_event *mmap_event) | ||
3301 | { | ||
3302 | struct perf_counter *counter; | ||
3303 | |||
3304 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3305 | return; | ||
3306 | |||
3307 | rcu_read_lock(); | ||
3308 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3309 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
3310 | perf_counter_mmap_output(counter, mmap_event); | ||
3311 | } | ||
3312 | rcu_read_unlock(); | ||
3313 | } | ||
3314 | |||
3315 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
3316 | { | ||
3317 | struct perf_cpu_context *cpuctx; | ||
3318 | struct perf_counter_context *ctx; | ||
3319 | struct vm_area_struct *vma = mmap_event->vma; | ||
3320 | struct file *file = vma->vm_file; | ||
3321 | unsigned int size; | ||
3322 | char tmp[16]; | ||
3323 | char *buf = NULL; | ||
3324 | const char *name; | ||
3325 | |||
3326 | memset(tmp, 0, sizeof(tmp)); | ||
3327 | |||
3328 | if (file) { | ||
3329 | /* | ||
3330 | * d_path works from the end of the buffer backwards, so we | ||
3331 | * need to add enough zero bytes after the string to handle | ||
3332 | * the 64bit alignment we do later. | ||
3333 | */ | ||
3334 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3335 | if (!buf) { | ||
3336 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
3337 | goto got_name; | ||
3338 | } | ||
3339 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
3340 | if (IS_ERR(name)) { | ||
3341 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
3342 | goto got_name; | ||
3343 | } | ||
3344 | } else { | ||
3345 | if (arch_vma_name(mmap_event->vma)) { | ||
3346 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
3347 | sizeof(tmp)); | ||
3348 | goto got_name; | ||
3349 | } | ||
3350 | |||
3351 | if (!vma->vm_mm) { | ||
3352 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
3353 | goto got_name; | ||
3354 | } | ||
3355 | |||
3356 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
3357 | goto got_name; | ||
3358 | } | ||
3359 | |||
3360 | got_name: | ||
3361 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
3362 | |||
3363 | mmap_event->file_name = name; | ||
3364 | mmap_event->file_size = size; | ||
3365 | |||
3366 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
3367 | |||
3368 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3369 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
3370 | put_cpu_var(perf_cpu_context); | ||
3371 | |||
3372 | rcu_read_lock(); | ||
3373 | /* | ||
3374 | * doesn't really matter which of the child contexts the | ||
3375 | * events ends up in. | ||
3376 | */ | ||
3377 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
3378 | if (ctx) | ||
3379 | perf_counter_mmap_ctx(ctx, mmap_event); | ||
3380 | rcu_read_unlock(); | ||
3381 | |||
3382 | kfree(buf); | ||
3383 | } | ||
3384 | |||
3385 | void __perf_counter_mmap(struct vm_area_struct *vma) | ||
3386 | { | ||
3387 | struct perf_mmap_event mmap_event; | ||
3388 | |||
3389 | if (!atomic_read(&nr_mmap_counters)) | ||
3390 | return; | ||
3391 | |||
3392 | mmap_event = (struct perf_mmap_event){ | ||
3393 | .vma = vma, | ||
3394 | /* .file_name */ | ||
3395 | /* .file_size */ | ||
3396 | .event = { | ||
3397 | .header = { | ||
3398 | .type = PERF_EVENT_MMAP, | ||
3399 | .misc = 0, | ||
3400 | /* .size */ | ||
3401 | }, | ||
3402 | /* .pid */ | ||
3403 | /* .tid */ | ||
3404 | .start = vma->vm_start, | ||
3405 | .len = vma->vm_end - vma->vm_start, | ||
3406 | .pgoff = vma->vm_pgoff, | ||
3407 | }, | ||
3408 | }; | ||
3409 | |||
3410 | perf_counter_mmap_event(&mmap_event); | ||
3411 | } | ||
3412 | |||
3413 | /* | ||
3414 | * IRQ throttle logging | ||
3415 | */ | ||
3416 | |||
3417 | static void perf_log_throttle(struct perf_counter *counter, int enable) | ||
3418 | { | ||
3419 | struct perf_output_handle handle; | ||
3420 | int ret; | ||
3421 | |||
3422 | struct { | ||
3423 | struct perf_event_header header; | ||
3424 | u64 time; | ||
3425 | u64 id; | ||
3426 | u64 stream_id; | ||
3427 | } throttle_event = { | ||
3428 | .header = { | ||
3429 | .type = PERF_EVENT_THROTTLE, | ||
3430 | .misc = 0, | ||
3431 | .size = sizeof(throttle_event), | ||
3432 | }, | ||
3433 | .time = sched_clock(), | ||
3434 | .id = primary_counter_id(counter), | ||
3435 | .stream_id = counter->id, | ||
3436 | }; | ||
3437 | |||
3438 | if (enable) | ||
3439 | throttle_event.header.type = PERF_EVENT_UNTHROTTLE; | ||
3440 | |||
3441 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | ||
3442 | if (ret) | ||
3443 | return; | ||
3444 | |||
3445 | perf_output_put(&handle, throttle_event); | ||
3446 | perf_output_end(&handle); | ||
3447 | } | ||
3448 | |||
3449 | /* | ||
3450 | * Generic counter overflow handling, sampling. | ||
3451 | */ | ||
3452 | |||
3453 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | ||
3454 | struct perf_sample_data *data) | ||
3455 | { | ||
3456 | int events = atomic_read(&counter->event_limit); | ||
3457 | int throttle = counter->pmu->unthrottle != NULL; | ||
3458 | struct hw_perf_counter *hwc = &counter->hw; | ||
3459 | int ret = 0; | ||
3460 | |||
3461 | if (!throttle) { | ||
3462 | hwc->interrupts++; | ||
3463 | } else { | ||
3464 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
3465 | hwc->interrupts++; | ||
3466 | if (HZ * hwc->interrupts > | ||
3467 | (u64)sysctl_perf_counter_sample_rate) { | ||
3468 | hwc->interrupts = MAX_INTERRUPTS; | ||
3469 | perf_log_throttle(counter, 0); | ||
3470 | ret = 1; | ||
3471 | } | ||
3472 | } else { | ||
3473 | /* | ||
3474 | * Keep re-disabling counters even though on the previous | ||
3475 | * pass we disabled it - just in case we raced with a | ||
3476 | * sched-in and the counter got enabled again: | ||
3477 | */ | ||
3478 | ret = 1; | ||
3479 | } | ||
3480 | } | ||
3481 | |||
3482 | if (counter->attr.freq) { | ||
3483 | u64 now = sched_clock(); | ||
3484 | s64 delta = now - hwc->freq_stamp; | ||
3485 | |||
3486 | hwc->freq_stamp = now; | ||
3487 | |||
3488 | if (delta > 0 && delta < TICK_NSEC) | ||
3489 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | ||
3490 | } | ||
3491 | |||
3492 | /* | ||
3493 | * XXX event_limit might not quite work as expected on inherited | ||
3494 | * counters | ||
3495 | */ | ||
3496 | |||
3497 | counter->pending_kill = POLL_IN; | ||
3498 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
3499 | ret = 1; | ||
3500 | counter->pending_kill = POLL_HUP; | ||
3501 | if (nmi) { | ||
3502 | counter->pending_disable = 1; | ||
3503 | perf_pending_queue(&counter->pending, | ||
3504 | perf_pending_counter); | ||
3505 | } else | ||
3506 | perf_counter_disable(counter); | ||
3507 | } | ||
3508 | |||
3509 | perf_counter_output(counter, nmi, data); | ||
3510 | return ret; | ||
3511 | } | ||
3512 | |||
3513 | /* | ||
3514 | * Generic software counter infrastructure | ||
3515 | */ | ||
3516 | |||
3517 | /* | ||
3518 | * We directly increment counter->count and keep a second value in | ||
3519 | * counter->hw.period_left to count intervals. This period counter | ||
3520 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3521 | * sign as trigger. | ||
3522 | */ | ||
3523 | |||
3524 | static u64 perf_swcounter_set_period(struct perf_counter *counter) | ||
3525 | { | ||
3526 | struct hw_perf_counter *hwc = &counter->hw; | ||
3527 | u64 period = hwc->last_period; | ||
3528 | u64 nr, offset; | ||
3529 | s64 old, val; | ||
3530 | |||
3531 | hwc->last_period = hwc->sample_period; | ||
3532 | |||
3533 | again: | ||
3534 | old = val = atomic64_read(&hwc->period_left); | ||
3535 | if (val < 0) | ||
3536 | return 0; | ||
3537 | |||
3538 | nr = div64_u64(period + val, period); | ||
3539 | offset = nr * period; | ||
3540 | val -= offset; | ||
3541 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3542 | goto again; | ||
3543 | |||
3544 | return nr; | ||
3545 | } | ||
3546 | |||
3547 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
3548 | int nmi, struct perf_sample_data *data) | ||
3549 | { | ||
3550 | struct hw_perf_counter *hwc = &counter->hw; | ||
3551 | u64 overflow; | ||
3552 | |||
3553 | data->period = counter->hw.last_period; | ||
3554 | overflow = perf_swcounter_set_period(counter); | ||
3555 | |||
3556 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
3557 | return; | ||
3558 | |||
3559 | for (; overflow; overflow--) { | ||
3560 | if (perf_counter_overflow(counter, nmi, data)) { | ||
3561 | /* | ||
3562 | * We inhibit the overflow from happening when | ||
3563 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3564 | */ | ||
3565 | break; | ||
3566 | } | ||
3567 | } | ||
3568 | } | ||
3569 | |||
3570 | static void perf_swcounter_unthrottle(struct perf_counter *counter) | ||
3571 | { | ||
3572 | /* | ||
3573 | * Nothing to do, we already reset hwc->interrupts. | ||
3574 | */ | ||
3575 | } | ||
3576 | |||
3577 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
3578 | int nmi, struct perf_sample_data *data) | ||
3579 | { | ||
3580 | struct hw_perf_counter *hwc = &counter->hw; | ||
3581 | |||
3582 | atomic64_add(nr, &counter->count); | ||
3583 | |||
3584 | if (!hwc->sample_period) | ||
3585 | return; | ||
3586 | |||
3587 | if (!data->regs) | ||
3588 | return; | ||
3589 | |||
3590 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
3591 | perf_swcounter_overflow(counter, nmi, data); | ||
3592 | } | ||
3593 | |||
3594 | static int perf_swcounter_is_counting(struct perf_counter *counter) | ||
3595 | { | ||
3596 | /* | ||
3597 | * The counter is active, we're good! | ||
3598 | */ | ||
3599 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
3600 | return 1; | ||
3601 | |||
3602 | /* | ||
3603 | * The counter is off/error, not counting. | ||
3604 | */ | ||
3605 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | ||
3606 | return 0; | ||
3607 | |||
3608 | /* | ||
3609 | * The counter is inactive, if the context is active | ||
3610 | * we're part of a group that didn't make it on the 'pmu', | ||
3611 | * not counting. | ||
3612 | */ | ||
3613 | if (counter->ctx->is_active) | ||
3614 | return 0; | ||
3615 | |||
3616 | /* | ||
3617 | * We're inactive and the context is too, this means the | ||
3618 | * task is scheduled out, we're counting events that happen | ||
3619 | * to us, like migration events. | ||
3620 | */ | ||
3621 | return 1; | ||
3622 | } | ||
3623 | |||
3624 | static int perf_swcounter_match(struct perf_counter *counter, | ||
3625 | enum perf_type_id type, | ||
3626 | u32 event, struct pt_regs *regs) | ||
3627 | { | ||
3628 | if (!perf_swcounter_is_counting(counter)) | ||
3629 | return 0; | ||
3630 | |||
3631 | if (counter->attr.type != type) | ||
3632 | return 0; | ||
3633 | if (counter->attr.config != event) | ||
3634 | return 0; | ||
3635 | |||
3636 | if (regs) { | ||
3637 | if (counter->attr.exclude_user && user_mode(regs)) | ||
3638 | return 0; | ||
3639 | |||
3640 | if (counter->attr.exclude_kernel && !user_mode(regs)) | ||
3641 | return 0; | ||
3642 | } | ||
3643 | |||
3644 | return 1; | ||
3645 | } | ||
3646 | |||
3647 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
3648 | enum perf_type_id type, | ||
3649 | u32 event, u64 nr, int nmi, | ||
3650 | struct perf_sample_data *data) | ||
3651 | { | ||
3652 | struct perf_counter *counter; | ||
3653 | |||
3654 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3655 | return; | ||
3656 | |||
3657 | rcu_read_lock(); | ||
3658 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3659 | if (perf_swcounter_match(counter, type, event, data->regs)) | ||
3660 | perf_swcounter_add(counter, nr, nmi, data); | ||
3661 | } | ||
3662 | rcu_read_unlock(); | ||
3663 | } | ||
3664 | |||
3665 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
3666 | { | ||
3667 | if (in_nmi()) | ||
3668 | return &cpuctx->recursion[3]; | ||
3669 | |||
3670 | if (in_irq()) | ||
3671 | return &cpuctx->recursion[2]; | ||
3672 | |||
3673 | if (in_softirq()) | ||
3674 | return &cpuctx->recursion[1]; | ||
3675 | |||
3676 | return &cpuctx->recursion[0]; | ||
3677 | } | ||
3678 | |||
3679 | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | ||
3680 | u64 nr, int nmi, | ||
3681 | struct perf_sample_data *data) | ||
3682 | { | ||
3683 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3684 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
3685 | struct perf_counter_context *ctx; | ||
3686 | |||
3687 | if (*recursion) | ||
3688 | goto out; | ||
3689 | |||
3690 | (*recursion)++; | ||
3691 | barrier(); | ||
3692 | |||
3693 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
3694 | nr, nmi, data); | ||
3695 | rcu_read_lock(); | ||
3696 | /* | ||
3697 | * doesn't really matter which of the child contexts the | ||
3698 | * events ends up in. | ||
3699 | */ | ||
3700 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
3701 | if (ctx) | ||
3702 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data); | ||
3703 | rcu_read_unlock(); | ||
3704 | |||
3705 | barrier(); | ||
3706 | (*recursion)--; | ||
3707 | |||
3708 | out: | ||
3709 | put_cpu_var(perf_cpu_context); | ||
3710 | } | ||
3711 | |||
3712 | void __perf_swcounter_event(u32 event, u64 nr, int nmi, | ||
3713 | struct pt_regs *regs, u64 addr) | ||
3714 | { | ||
3715 | struct perf_sample_data data = { | ||
3716 | .regs = regs, | ||
3717 | .addr = addr, | ||
3718 | }; | ||
3719 | |||
3720 | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data); | ||
3721 | } | ||
3722 | |||
3723 | static void perf_swcounter_read(struct perf_counter *counter) | ||
3724 | { | ||
3725 | } | ||
3726 | |||
3727 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
3728 | { | ||
3729 | struct hw_perf_counter *hwc = &counter->hw; | ||
3730 | |||
3731 | if (hwc->sample_period) { | ||
3732 | hwc->last_period = hwc->sample_period; | ||
3733 | perf_swcounter_set_period(counter); | ||
3734 | } | ||
3735 | return 0; | ||
3736 | } | ||
3737 | |||
3738 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
3739 | { | ||
3740 | } | ||
3741 | |||
3742 | static const struct pmu perf_ops_generic = { | ||
3743 | .enable = perf_swcounter_enable, | ||
3744 | .disable = perf_swcounter_disable, | ||
3745 | .read = perf_swcounter_read, | ||
3746 | .unthrottle = perf_swcounter_unthrottle, | ||
3747 | }; | ||
3748 | |||
3749 | /* | ||
3750 | * hrtimer based swcounter callback | ||
3751 | */ | ||
3752 | |||
3753 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
3754 | { | ||
3755 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3756 | struct perf_sample_data data; | ||
3757 | struct perf_counter *counter; | ||
3758 | u64 period; | ||
3759 | |||
3760 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
3761 | counter->pmu->read(counter); | ||
3762 | |||
3763 | data.addr = 0; | ||
3764 | data.regs = get_irq_regs(); | ||
3765 | /* | ||
3766 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3767 | * context, provide the next best thing, the user IP. | ||
3768 | */ | ||
3769 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
3770 | !counter->attr.exclude_user) | ||
3771 | data.regs = task_pt_regs(current); | ||
3772 | |||
3773 | if (data.regs) { | ||
3774 | if (perf_counter_overflow(counter, 0, &data)) | ||
3775 | ret = HRTIMER_NORESTART; | ||
3776 | } | ||
3777 | |||
3778 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
3779 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3780 | |||
3781 | return ret; | ||
3782 | } | ||
3783 | |||
3784 | /* | ||
3785 | * Software counter: cpu wall time clock | ||
3786 | */ | ||
3787 | |||
3788 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
3789 | { | ||
3790 | int cpu = raw_smp_processor_id(); | ||
3791 | s64 prev; | ||
3792 | u64 now; | ||
3793 | |||
3794 | now = cpu_clock(cpu); | ||
3795 | prev = atomic64_read(&counter->hw.prev_count); | ||
3796 | atomic64_set(&counter->hw.prev_count, now); | ||
3797 | atomic64_add(now - prev, &counter->count); | ||
3798 | } | ||
3799 | |||
3800 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
3801 | { | ||
3802 | struct hw_perf_counter *hwc = &counter->hw; | ||
3803 | int cpu = raw_smp_processor_id(); | ||
3804 | |||
3805 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
3806 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3807 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
3808 | if (hwc->sample_period) { | ||
3809 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3810 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3811 | ns_to_ktime(period), 0, | ||
3812 | HRTIMER_MODE_REL, 0); | ||
3813 | } | ||
3814 | |||
3815 | return 0; | ||
3816 | } | ||
3817 | |||
3818 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
3819 | { | ||
3820 | if (counter->hw.sample_period) | ||
3821 | hrtimer_cancel(&counter->hw.hrtimer); | ||
3822 | cpu_clock_perf_counter_update(counter); | ||
3823 | } | ||
3824 | |||
3825 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
3826 | { | ||
3827 | cpu_clock_perf_counter_update(counter); | ||
3828 | } | ||
3829 | |||
3830 | static const struct pmu perf_ops_cpu_clock = { | ||
3831 | .enable = cpu_clock_perf_counter_enable, | ||
3832 | .disable = cpu_clock_perf_counter_disable, | ||
3833 | .read = cpu_clock_perf_counter_read, | ||
3834 | }; | ||
3835 | |||
3836 | /* | ||
3837 | * Software counter: task time clock | ||
3838 | */ | ||
3839 | |||
3840 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
3841 | { | ||
3842 | u64 prev; | ||
3843 | s64 delta; | ||
3844 | |||
3845 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
3846 | delta = now - prev; | ||
3847 | atomic64_add(delta, &counter->count); | ||
3848 | } | ||
3849 | |||
3850 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
3851 | { | ||
3852 | struct hw_perf_counter *hwc = &counter->hw; | ||
3853 | u64 now; | ||
3854 | |||
3855 | now = counter->ctx->time; | ||
3856 | |||
3857 | atomic64_set(&hwc->prev_count, now); | ||
3858 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3859 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
3860 | if (hwc->sample_period) { | ||
3861 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3862 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3863 | ns_to_ktime(period), 0, | ||
3864 | HRTIMER_MODE_REL, 0); | ||
3865 | } | ||
3866 | |||
3867 | return 0; | ||
3868 | } | ||
3869 | |||
3870 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
3871 | { | ||
3872 | if (counter->hw.sample_period) | ||
3873 | hrtimer_cancel(&counter->hw.hrtimer); | ||
3874 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
3875 | |||
3876 | } | ||
3877 | |||
3878 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
3879 | { | ||
3880 | u64 time; | ||
3881 | |||
3882 | if (!in_nmi()) { | ||
3883 | update_context_time(counter->ctx); | ||
3884 | time = counter->ctx->time; | ||
3885 | } else { | ||
3886 | u64 now = perf_clock(); | ||
3887 | u64 delta = now - counter->ctx->timestamp; | ||
3888 | time = counter->ctx->time + delta; | ||
3889 | } | ||
3890 | |||
3891 | task_clock_perf_counter_update(counter, time); | ||
3892 | } | ||
3893 | |||
3894 | static const struct pmu perf_ops_task_clock = { | ||
3895 | .enable = task_clock_perf_counter_enable, | ||
3896 | .disable = task_clock_perf_counter_disable, | ||
3897 | .read = task_clock_perf_counter_read, | ||
3898 | }; | ||
3899 | |||
3900 | #ifdef CONFIG_EVENT_PROFILE | ||
3901 | void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | ||
3902 | int entry_size) | ||
3903 | { | ||
3904 | struct perf_raw_record raw = { | ||
3905 | .size = entry_size, | ||
3906 | .data = record, | ||
3907 | }; | ||
3908 | |||
3909 | struct perf_sample_data data = { | ||
3910 | .regs = get_irq_regs(), | ||
3911 | .addr = addr, | ||
3912 | .raw = &raw, | ||
3913 | }; | ||
3914 | |||
3915 | if (!data.regs) | ||
3916 | data.regs = task_pt_regs(current); | ||
3917 | |||
3918 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data); | ||
3919 | } | ||
3920 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
3921 | |||
3922 | extern int ftrace_profile_enable(int); | ||
3923 | extern void ftrace_profile_disable(int); | ||
3924 | |||
3925 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
3926 | { | ||
3927 | ftrace_profile_disable(counter->attr.config); | ||
3928 | } | ||
3929 | |||
3930 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
3931 | { | ||
3932 | /* | ||
3933 | * Raw tracepoint data is a severe data leak, only allow root to | ||
3934 | * have these. | ||
3935 | */ | ||
3936 | if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && | ||
3937 | !capable(CAP_SYS_ADMIN)) | ||
3938 | return ERR_PTR(-EPERM); | ||
3939 | |||
3940 | if (ftrace_profile_enable(counter->attr.config)) | ||
3941 | return NULL; | ||
3942 | |||
3943 | counter->destroy = tp_perf_counter_destroy; | ||
3944 | |||
3945 | return &perf_ops_generic; | ||
3946 | } | ||
3947 | #else | ||
3948 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
3949 | { | ||
3950 | return NULL; | ||
3951 | } | ||
3952 | #endif | ||
3953 | |||
3954 | atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX]; | ||
3955 | |||
3956 | static void sw_perf_counter_destroy(struct perf_counter *counter) | ||
3957 | { | ||
3958 | u64 event = counter->attr.config; | ||
3959 | |||
3960 | WARN_ON(counter->parent); | ||
3961 | |||
3962 | atomic_dec(&perf_swcounter_enabled[event]); | ||
3963 | } | ||
3964 | |||
3965 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
3966 | { | ||
3967 | const struct pmu *pmu = NULL; | ||
3968 | u64 event = counter->attr.config; | ||
3969 | |||
3970 | /* | ||
3971 | * Software counters (currently) can't in general distinguish | ||
3972 | * between user, kernel and hypervisor events. | ||
3973 | * However, context switches and cpu migrations are considered | ||
3974 | * to be kernel events, and page faults are never hypervisor | ||
3975 | * events. | ||
3976 | */ | ||
3977 | switch (event) { | ||
3978 | case PERF_COUNT_SW_CPU_CLOCK: | ||
3979 | pmu = &perf_ops_cpu_clock; | ||
3980 | |||
3981 | break; | ||
3982 | case PERF_COUNT_SW_TASK_CLOCK: | ||
3983 | /* | ||
3984 | * If the user instantiates this as a per-cpu counter, | ||
3985 | * use the cpu_clock counter instead. | ||
3986 | */ | ||
3987 | if (counter->ctx->task) | ||
3988 | pmu = &perf_ops_task_clock; | ||
3989 | else | ||
3990 | pmu = &perf_ops_cpu_clock; | ||
3991 | |||
3992 | break; | ||
3993 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
3994 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
3995 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
3996 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
3997 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
3998 | if (!counter->parent) { | ||
3999 | atomic_inc(&perf_swcounter_enabled[event]); | ||
4000 | counter->destroy = sw_perf_counter_destroy; | ||
4001 | } | ||
4002 | pmu = &perf_ops_generic; | ||
4003 | break; | ||
4004 | } | ||
4005 | |||
4006 | return pmu; | ||
4007 | } | ||
4008 | |||
4009 | /* | ||
4010 | * Allocate and initialize a counter structure | ||
4011 | */ | ||
4012 | static struct perf_counter * | ||
4013 | perf_counter_alloc(struct perf_counter_attr *attr, | ||
4014 | int cpu, | ||
4015 | struct perf_counter_context *ctx, | ||
4016 | struct perf_counter *group_leader, | ||
4017 | struct perf_counter *parent_counter, | ||
4018 | gfp_t gfpflags) | ||
4019 | { | ||
4020 | const struct pmu *pmu; | ||
4021 | struct perf_counter *counter; | ||
4022 | struct hw_perf_counter *hwc; | ||
4023 | long err; | ||
4024 | |||
4025 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
4026 | if (!counter) | ||
4027 | return ERR_PTR(-ENOMEM); | ||
4028 | |||
4029 | /* | ||
4030 | * Single counters are their own group leaders, with an | ||
4031 | * empty sibling list: | ||
4032 | */ | ||
4033 | if (!group_leader) | ||
4034 | group_leader = counter; | ||
4035 | |||
4036 | mutex_init(&counter->child_mutex); | ||
4037 | INIT_LIST_HEAD(&counter->child_list); | ||
4038 | |||
4039 | INIT_LIST_HEAD(&counter->list_entry); | ||
4040 | INIT_LIST_HEAD(&counter->event_entry); | ||
4041 | INIT_LIST_HEAD(&counter->sibling_list); | ||
4042 | init_waitqueue_head(&counter->waitq); | ||
4043 | |||
4044 | mutex_init(&counter->mmap_mutex); | ||
4045 | |||
4046 | counter->cpu = cpu; | ||
4047 | counter->attr = *attr; | ||
4048 | counter->group_leader = group_leader; | ||
4049 | counter->pmu = NULL; | ||
4050 | counter->ctx = ctx; | ||
4051 | counter->oncpu = -1; | ||
4052 | |||
4053 | counter->parent = parent_counter; | ||
4054 | |||
4055 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
4056 | counter->id = atomic64_inc_return(&perf_counter_id); | ||
4057 | |||
4058 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
4059 | |||
4060 | if (attr->disabled) | ||
4061 | counter->state = PERF_COUNTER_STATE_OFF; | ||
4062 | |||
4063 | pmu = NULL; | ||
4064 | |||
4065 | hwc = &counter->hw; | ||
4066 | hwc->sample_period = attr->sample_period; | ||
4067 | if (attr->freq && attr->sample_freq) | ||
4068 | hwc->sample_period = 1; | ||
4069 | hwc->last_period = hwc->sample_period; | ||
4070 | |||
4071 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
4072 | |||
4073 | /* | ||
4074 | * we currently do not support PERF_FORMAT_GROUP on inherited counters | ||
4075 | */ | ||
4076 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
4077 | goto done; | ||
4078 | |||
4079 | switch (attr->type) { | ||
4080 | case PERF_TYPE_RAW: | ||
4081 | case PERF_TYPE_HARDWARE: | ||
4082 | case PERF_TYPE_HW_CACHE: | ||
4083 | pmu = hw_perf_counter_init(counter); | ||
4084 | break; | ||
4085 | |||
4086 | case PERF_TYPE_SOFTWARE: | ||
4087 | pmu = sw_perf_counter_init(counter); | ||
4088 | break; | ||
4089 | |||
4090 | case PERF_TYPE_TRACEPOINT: | ||
4091 | pmu = tp_perf_counter_init(counter); | ||
4092 | break; | ||
4093 | |||
4094 | default: | ||
4095 | break; | ||
4096 | } | ||
4097 | done: | ||
4098 | err = 0; | ||
4099 | if (!pmu) | ||
4100 | err = -EINVAL; | ||
4101 | else if (IS_ERR(pmu)) | ||
4102 | err = PTR_ERR(pmu); | ||
4103 | |||
4104 | if (err) { | ||
4105 | if (counter->ns) | ||
4106 | put_pid_ns(counter->ns); | ||
4107 | kfree(counter); | ||
4108 | return ERR_PTR(err); | ||
4109 | } | ||
4110 | |||
4111 | counter->pmu = pmu; | ||
4112 | |||
4113 | if (!counter->parent) { | ||
4114 | atomic_inc(&nr_counters); | ||
4115 | if (counter->attr.mmap) | ||
4116 | atomic_inc(&nr_mmap_counters); | ||
4117 | if (counter->attr.comm) | ||
4118 | atomic_inc(&nr_comm_counters); | ||
4119 | if (counter->attr.task) | ||
4120 | atomic_inc(&nr_task_counters); | ||
4121 | } | ||
4122 | |||
4123 | return counter; | ||
4124 | } | ||
4125 | |||
4126 | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | ||
4127 | struct perf_counter_attr *attr) | ||
4128 | { | ||
4129 | int ret; | ||
4130 | u32 size; | ||
4131 | |||
4132 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
4133 | return -EFAULT; | ||
4134 | |||
4135 | /* | ||
4136 | * zero the full structure, so that a short copy will be nice. | ||
4137 | */ | ||
4138 | memset(attr, 0, sizeof(*attr)); | ||
4139 | |||
4140 | ret = get_user(size, &uattr->size); | ||
4141 | if (ret) | ||
4142 | return ret; | ||
4143 | |||
4144 | if (size > PAGE_SIZE) /* silly large */ | ||
4145 | goto err_size; | ||
4146 | |||
4147 | if (!size) /* abi compat */ | ||
4148 | size = PERF_ATTR_SIZE_VER0; | ||
4149 | |||
4150 | if (size < PERF_ATTR_SIZE_VER0) | ||
4151 | goto err_size; | ||
4152 | |||
4153 | /* | ||
4154 | * If we're handed a bigger struct than we know of, | ||
4155 | * ensure all the unknown bits are 0. | ||
4156 | */ | ||
4157 | if (size > sizeof(*attr)) { | ||
4158 | unsigned long val; | ||
4159 | unsigned long __user *addr; | ||
4160 | unsigned long __user *end; | ||
4161 | |||
4162 | addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr), | ||
4163 | sizeof(unsigned long)); | ||
4164 | end = PTR_ALIGN((void __user *)uattr + size, | ||
4165 | sizeof(unsigned long)); | ||
4166 | |||
4167 | for (; addr < end; addr += sizeof(unsigned long)) { | ||
4168 | ret = get_user(val, addr); | ||
4169 | if (ret) | ||
4170 | return ret; | ||
4171 | if (val) | ||
4172 | goto err_size; | ||
4173 | } | ||
4174 | } | ||
4175 | |||
4176 | ret = copy_from_user(attr, uattr, size); | ||
4177 | if (ret) | ||
4178 | return -EFAULT; | ||
4179 | |||
4180 | /* | ||
4181 | * If the type exists, the corresponding creation will verify | ||
4182 | * the attr->config. | ||
4183 | */ | ||
4184 | if (attr->type >= PERF_TYPE_MAX) | ||
4185 | return -EINVAL; | ||
4186 | |||
4187 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
4188 | return -EINVAL; | ||
4189 | |||
4190 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
4191 | return -EINVAL; | ||
4192 | |||
4193 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
4194 | return -EINVAL; | ||
4195 | |||
4196 | out: | ||
4197 | return ret; | ||
4198 | |||
4199 | err_size: | ||
4200 | put_user(sizeof(*attr), &uattr->size); | ||
4201 | ret = -E2BIG; | ||
4202 | goto out; | ||
4203 | } | ||
4204 | |||
4205 | /** | ||
4206 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
4207 | * | ||
4208 | * @attr_uptr: event type attributes for monitoring/sampling | ||
4209 | * @pid: target pid | ||
4210 | * @cpu: target cpu | ||
4211 | * @group_fd: group leader counter fd | ||
4212 | */ | ||
4213 | SYSCALL_DEFINE5(perf_counter_open, | ||
4214 | struct perf_counter_attr __user *, attr_uptr, | ||
4215 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
4216 | { | ||
4217 | struct perf_counter *counter, *group_leader; | ||
4218 | struct perf_counter_attr attr; | ||
4219 | struct perf_counter_context *ctx; | ||
4220 | struct file *counter_file = NULL; | ||
4221 | struct file *group_file = NULL; | ||
4222 | int fput_needed = 0; | ||
4223 | int fput_needed2 = 0; | ||
4224 | int ret; | ||
4225 | |||
4226 | /* for future expandability... */ | ||
4227 | if (flags) | ||
4228 | return -EINVAL; | ||
4229 | |||
4230 | ret = perf_copy_attr(attr_uptr, &attr); | ||
4231 | if (ret) | ||
4232 | return ret; | ||
4233 | |||
4234 | if (!attr.exclude_kernel) { | ||
4235 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
4236 | return -EACCES; | ||
4237 | } | ||
4238 | |||
4239 | if (attr.freq) { | ||
4240 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | ||
4241 | return -EINVAL; | ||
4242 | } | ||
4243 | |||
4244 | /* | ||
4245 | * Get the target context (task or percpu): | ||
4246 | */ | ||
4247 | ctx = find_get_context(pid, cpu); | ||
4248 | if (IS_ERR(ctx)) | ||
4249 | return PTR_ERR(ctx); | ||
4250 | |||
4251 | /* | ||
4252 | * Look up the group leader (we will attach this counter to it): | ||
4253 | */ | ||
4254 | group_leader = NULL; | ||
4255 | if (group_fd != -1) { | ||
4256 | ret = -EINVAL; | ||
4257 | group_file = fget_light(group_fd, &fput_needed); | ||
4258 | if (!group_file) | ||
4259 | goto err_put_context; | ||
4260 | if (group_file->f_op != &perf_fops) | ||
4261 | goto err_put_context; | ||
4262 | |||
4263 | group_leader = group_file->private_data; | ||
4264 | /* | ||
4265 | * Do not allow a recursive hierarchy (this new sibling | ||
4266 | * becoming part of another group-sibling): | ||
4267 | */ | ||
4268 | if (group_leader->group_leader != group_leader) | ||
4269 | goto err_put_context; | ||
4270 | /* | ||
4271 | * Do not allow to attach to a group in a different | ||
4272 | * task or CPU context: | ||
4273 | */ | ||
4274 | if (group_leader->ctx != ctx) | ||
4275 | goto err_put_context; | ||
4276 | /* | ||
4277 | * Only a group leader can be exclusive or pinned | ||
4278 | */ | ||
4279 | if (attr.exclusive || attr.pinned) | ||
4280 | goto err_put_context; | ||
4281 | } | ||
4282 | |||
4283 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | ||
4284 | NULL, GFP_KERNEL); | ||
4285 | ret = PTR_ERR(counter); | ||
4286 | if (IS_ERR(counter)) | ||
4287 | goto err_put_context; | ||
4288 | |||
4289 | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
4290 | if (ret < 0) | ||
4291 | goto err_free_put_context; | ||
4292 | |||
4293 | counter_file = fget_light(ret, &fput_needed2); | ||
4294 | if (!counter_file) | ||
4295 | goto err_free_put_context; | ||
4296 | |||
4297 | counter->filp = counter_file; | ||
4298 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4299 | mutex_lock(&ctx->mutex); | ||
4300 | perf_install_in_context(ctx, counter, cpu); | ||
4301 | ++ctx->generation; | ||
4302 | mutex_unlock(&ctx->mutex); | ||
4303 | |||
4304 | counter->owner = current; | ||
4305 | get_task_struct(current); | ||
4306 | mutex_lock(¤t->perf_counter_mutex); | ||
4307 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | ||
4308 | mutex_unlock(¤t->perf_counter_mutex); | ||
4309 | |||
4310 | fput_light(counter_file, fput_needed2); | ||
4311 | |||
4312 | out_fput: | ||
4313 | fput_light(group_file, fput_needed); | ||
4314 | |||
4315 | return ret; | ||
4316 | |||
4317 | err_free_put_context: | ||
4318 | kfree(counter); | ||
4319 | |||
4320 | err_put_context: | ||
4321 | put_ctx(ctx); | ||
4322 | |||
4323 | goto out_fput; | ||
4324 | } | ||
4325 | |||
4326 | /* | ||
4327 | * inherit a counter from parent task to child task: | ||
4328 | */ | ||
4329 | static struct perf_counter * | ||
4330 | inherit_counter(struct perf_counter *parent_counter, | ||
4331 | struct task_struct *parent, | ||
4332 | struct perf_counter_context *parent_ctx, | ||
4333 | struct task_struct *child, | ||
4334 | struct perf_counter *group_leader, | ||
4335 | struct perf_counter_context *child_ctx) | ||
4336 | { | ||
4337 | struct perf_counter *child_counter; | ||
4338 | |||
4339 | /* | ||
4340 | * Instead of creating recursive hierarchies of counters, | ||
4341 | * we link inherited counters back to the original parent, | ||
4342 | * which has a filp for sure, which we use as the reference | ||
4343 | * count: | ||
4344 | */ | ||
4345 | if (parent_counter->parent) | ||
4346 | parent_counter = parent_counter->parent; | ||
4347 | |||
4348 | child_counter = perf_counter_alloc(&parent_counter->attr, | ||
4349 | parent_counter->cpu, child_ctx, | ||
4350 | group_leader, parent_counter, | ||
4351 | GFP_KERNEL); | ||
4352 | if (IS_ERR(child_counter)) | ||
4353 | return child_counter; | ||
4354 | get_ctx(child_ctx); | ||
4355 | |||
4356 | /* | ||
4357 | * Make the child state follow the state of the parent counter, | ||
4358 | * not its attr.disabled bit. We hold the parent's mutex, | ||
4359 | * so we won't race with perf_counter_{en, dis}able_family. | ||
4360 | */ | ||
4361 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
4362 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
4363 | else | ||
4364 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
4365 | |||
4366 | if (parent_counter->attr.freq) | ||
4367 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | ||
4368 | |||
4369 | /* | ||
4370 | * Link it up in the child's context: | ||
4371 | */ | ||
4372 | add_counter_to_ctx(child_counter, child_ctx); | ||
4373 | |||
4374 | /* | ||
4375 | * Get a reference to the parent filp - we will fput it | ||
4376 | * when the child counter exits. This is safe to do because | ||
4377 | * we are in the parent and we know that the filp still | ||
4378 | * exists and has a nonzero count: | ||
4379 | */ | ||
4380 | atomic_long_inc(&parent_counter->filp->f_count); | ||
4381 | |||
4382 | /* | ||
4383 | * Link this into the parent counter's child list | ||
4384 | */ | ||
4385 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
4386 | mutex_lock(&parent_counter->child_mutex); | ||
4387 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
4388 | mutex_unlock(&parent_counter->child_mutex); | ||
4389 | |||
4390 | return child_counter; | ||
4391 | } | ||
4392 | |||
4393 | static int inherit_group(struct perf_counter *parent_counter, | ||
4394 | struct task_struct *parent, | ||
4395 | struct perf_counter_context *parent_ctx, | ||
4396 | struct task_struct *child, | ||
4397 | struct perf_counter_context *child_ctx) | ||
4398 | { | ||
4399 | struct perf_counter *leader; | ||
4400 | struct perf_counter *sub; | ||
4401 | struct perf_counter *child_ctr; | ||
4402 | |||
4403 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
4404 | child, NULL, child_ctx); | ||
4405 | if (IS_ERR(leader)) | ||
4406 | return PTR_ERR(leader); | ||
4407 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
4408 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
4409 | child, leader, child_ctx); | ||
4410 | if (IS_ERR(child_ctr)) | ||
4411 | return PTR_ERR(child_ctr); | ||
4412 | } | ||
4413 | return 0; | ||
4414 | } | ||
4415 | |||
4416 | static void sync_child_counter(struct perf_counter *child_counter, | ||
4417 | struct task_struct *child) | ||
4418 | { | ||
4419 | struct perf_counter *parent_counter = child_counter->parent; | ||
4420 | u64 child_val; | ||
4421 | |||
4422 | if (child_counter->attr.inherit_stat) | ||
4423 | perf_counter_read_event(child_counter, child); | ||
4424 | |||
4425 | child_val = atomic64_read(&child_counter->count); | ||
4426 | |||
4427 | /* | ||
4428 | * Add back the child's count to the parent's count: | ||
4429 | */ | ||
4430 | atomic64_add(child_val, &parent_counter->count); | ||
4431 | atomic64_add(child_counter->total_time_enabled, | ||
4432 | &parent_counter->child_total_time_enabled); | ||
4433 | atomic64_add(child_counter->total_time_running, | ||
4434 | &parent_counter->child_total_time_running); | ||
4435 | |||
4436 | /* | ||
4437 | * Remove this counter from the parent's list | ||
4438 | */ | ||
4439 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
4440 | mutex_lock(&parent_counter->child_mutex); | ||
4441 | list_del_init(&child_counter->child_list); | ||
4442 | mutex_unlock(&parent_counter->child_mutex); | ||
4443 | |||
4444 | /* | ||
4445 | * Release the parent counter, if this was the last | ||
4446 | * reference to it. | ||
4447 | */ | ||
4448 | fput(parent_counter->filp); | ||
4449 | } | ||
4450 | |||
4451 | static void | ||
4452 | __perf_counter_exit_task(struct perf_counter *child_counter, | ||
4453 | struct perf_counter_context *child_ctx, | ||
4454 | struct task_struct *child) | ||
4455 | { | ||
4456 | struct perf_counter *parent_counter; | ||
4457 | |||
4458 | update_counter_times(child_counter); | ||
4459 | perf_counter_remove_from_context(child_counter); | ||
4460 | |||
4461 | parent_counter = child_counter->parent; | ||
4462 | /* | ||
4463 | * It can happen that parent exits first, and has counters | ||
4464 | * that are still around due to the child reference. These | ||
4465 | * counters need to be zapped - but otherwise linger. | ||
4466 | */ | ||
4467 | if (parent_counter) { | ||
4468 | sync_child_counter(child_counter, child); | ||
4469 | free_counter(child_counter); | ||
4470 | } | ||
4471 | } | ||
4472 | |||
4473 | /* | ||
4474 | * When a child task exits, feed back counter values to parent counters. | ||
4475 | */ | ||
4476 | void perf_counter_exit_task(struct task_struct *child) | ||
4477 | { | ||
4478 | struct perf_counter *child_counter, *tmp; | ||
4479 | struct perf_counter_context *child_ctx; | ||
4480 | unsigned long flags; | ||
4481 | |||
4482 | if (likely(!child->perf_counter_ctxp)) { | ||
4483 | perf_counter_task(child, NULL, 0); | ||
4484 | return; | ||
4485 | } | ||
4486 | |||
4487 | local_irq_save(flags); | ||
4488 | /* | ||
4489 | * We can't reschedule here because interrupts are disabled, | ||
4490 | * and either child is current or it is a task that can't be | ||
4491 | * scheduled, so we are now safe from rescheduling changing | ||
4492 | * our context. | ||
4493 | */ | ||
4494 | child_ctx = child->perf_counter_ctxp; | ||
4495 | __perf_counter_task_sched_out(child_ctx); | ||
4496 | |||
4497 | /* | ||
4498 | * Take the context lock here so that if find_get_context is | ||
4499 | * reading child->perf_counter_ctxp, we wait until it has | ||
4500 | * incremented the context's refcount before we do put_ctx below. | ||
4501 | */ | ||
4502 | spin_lock(&child_ctx->lock); | ||
4503 | child->perf_counter_ctxp = NULL; | ||
4504 | /* | ||
4505 | * If this context is a clone; unclone it so it can't get | ||
4506 | * swapped to another process while we're removing all | ||
4507 | * the counters from it. | ||
4508 | */ | ||
4509 | unclone_ctx(child_ctx); | ||
4510 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
4511 | |||
4512 | /* | ||
4513 | * Report the task dead after unscheduling the counters so that we | ||
4514 | * won't get any samples after PERF_EVENT_EXIT. We can however still | ||
4515 | * get a few PERF_EVENT_READ events. | ||
4516 | */ | ||
4517 | perf_counter_task(child, child_ctx, 0); | ||
4518 | |||
4519 | /* | ||
4520 | * We can recurse on the same lock type through: | ||
4521 | * | ||
4522 | * __perf_counter_exit_task() | ||
4523 | * sync_child_counter() | ||
4524 | * fput(parent_counter->filp) | ||
4525 | * perf_release() | ||
4526 | * mutex_lock(&ctx->mutex) | ||
4527 | * | ||
4528 | * But since its the parent context it won't be the same instance. | ||
4529 | */ | ||
4530 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
4531 | |||
4532 | again: | ||
4533 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
4534 | list_entry) | ||
4535 | __perf_counter_exit_task(child_counter, child_ctx, child); | ||
4536 | |||
4537 | /* | ||
4538 | * If the last counter was a group counter, it will have appended all | ||
4539 | * its siblings to the list, but we obtained 'tmp' before that which | ||
4540 | * will still point to the list head terminating the iteration. | ||
4541 | */ | ||
4542 | if (!list_empty(&child_ctx->counter_list)) | ||
4543 | goto again; | ||
4544 | |||
4545 | mutex_unlock(&child_ctx->mutex); | ||
4546 | |||
4547 | put_ctx(child_ctx); | ||
4548 | } | ||
4549 | |||
4550 | /* | ||
4551 | * free an unexposed, unused context as created by inheritance by | ||
4552 | * init_task below, used by fork() in case of fail. | ||
4553 | */ | ||
4554 | void perf_counter_free_task(struct task_struct *task) | ||
4555 | { | ||
4556 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
4557 | struct perf_counter *counter, *tmp; | ||
4558 | |||
4559 | if (!ctx) | ||
4560 | return; | ||
4561 | |||
4562 | mutex_lock(&ctx->mutex); | ||
4563 | again: | ||
4564 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | ||
4565 | struct perf_counter *parent = counter->parent; | ||
4566 | |||
4567 | if (WARN_ON_ONCE(!parent)) | ||
4568 | continue; | ||
4569 | |||
4570 | mutex_lock(&parent->child_mutex); | ||
4571 | list_del_init(&counter->child_list); | ||
4572 | mutex_unlock(&parent->child_mutex); | ||
4573 | |||
4574 | fput(parent->filp); | ||
4575 | |||
4576 | list_del_counter(counter, ctx); | ||
4577 | free_counter(counter); | ||
4578 | } | ||
4579 | |||
4580 | if (!list_empty(&ctx->counter_list)) | ||
4581 | goto again; | ||
4582 | |||
4583 | mutex_unlock(&ctx->mutex); | ||
4584 | |||
4585 | put_ctx(ctx); | ||
4586 | } | ||
4587 | |||
4588 | /* | ||
4589 | * Initialize the perf_counter context in task_struct | ||
4590 | */ | ||
4591 | int perf_counter_init_task(struct task_struct *child) | ||
4592 | { | ||
4593 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
4594 | struct perf_counter_context *cloned_ctx; | ||
4595 | struct perf_counter *counter; | ||
4596 | struct task_struct *parent = current; | ||
4597 | int inherited_all = 1; | ||
4598 | int ret = 0; | ||
4599 | |||
4600 | child->perf_counter_ctxp = NULL; | ||
4601 | |||
4602 | mutex_init(&child->perf_counter_mutex); | ||
4603 | INIT_LIST_HEAD(&child->perf_counter_list); | ||
4604 | |||
4605 | if (likely(!parent->perf_counter_ctxp)) | ||
4606 | return 0; | ||
4607 | |||
4608 | /* | ||
4609 | * This is executed from the parent task context, so inherit | ||
4610 | * counters that have been marked for cloning. | ||
4611 | * First allocate and initialize a context for the child. | ||
4612 | */ | ||
4613 | |||
4614 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
4615 | if (!child_ctx) | ||
4616 | return -ENOMEM; | ||
4617 | |||
4618 | __perf_counter_init_context(child_ctx, child); | ||
4619 | child->perf_counter_ctxp = child_ctx; | ||
4620 | get_task_struct(child); | ||
4621 | |||
4622 | /* | ||
4623 | * If the parent's context is a clone, pin it so it won't get | ||
4624 | * swapped under us. | ||
4625 | */ | ||
4626 | parent_ctx = perf_pin_task_context(parent); | ||
4627 | |||
4628 | /* | ||
4629 | * No need to check if parent_ctx != NULL here; since we saw | ||
4630 | * it non-NULL earlier, the only reason for it to become NULL | ||
4631 | * is if we exit, and since we're currently in the middle of | ||
4632 | * a fork we can't be exiting at the same time. | ||
4633 | */ | ||
4634 | |||
4635 | /* | ||
4636 | * Lock the parent list. No need to lock the child - not PID | ||
4637 | * hashed yet and not running, so nobody can access it. | ||
4638 | */ | ||
4639 | mutex_lock(&parent_ctx->mutex); | ||
4640 | |||
4641 | /* | ||
4642 | * We dont have to disable NMIs - we are only looking at | ||
4643 | * the list, not manipulating it: | ||
4644 | */ | ||
4645 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | ||
4646 | if (counter != counter->group_leader) | ||
4647 | continue; | ||
4648 | |||
4649 | if (!counter->attr.inherit) { | ||
4650 | inherited_all = 0; | ||
4651 | continue; | ||
4652 | } | ||
4653 | |||
4654 | ret = inherit_group(counter, parent, parent_ctx, | ||
4655 | child, child_ctx); | ||
4656 | if (ret) { | ||
4657 | inherited_all = 0; | ||
4658 | break; | ||
4659 | } | ||
4660 | } | ||
4661 | |||
4662 | if (inherited_all) { | ||
4663 | /* | ||
4664 | * Mark the child context as a clone of the parent | ||
4665 | * context, or of whatever the parent is a clone of. | ||
4666 | * Note that if the parent is a clone, it could get | ||
4667 | * uncloned at any point, but that doesn't matter | ||
4668 | * because the list of counters and the generation | ||
4669 | * count can't have changed since we took the mutex. | ||
4670 | */ | ||
4671 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
4672 | if (cloned_ctx) { | ||
4673 | child_ctx->parent_ctx = cloned_ctx; | ||
4674 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
4675 | } else { | ||
4676 | child_ctx->parent_ctx = parent_ctx; | ||
4677 | child_ctx->parent_gen = parent_ctx->generation; | ||
4678 | } | ||
4679 | get_ctx(child_ctx->parent_ctx); | ||
4680 | } | ||
4681 | |||
4682 | mutex_unlock(&parent_ctx->mutex); | ||
4683 | |||
4684 | perf_unpin_context(parent_ctx); | ||
4685 | |||
4686 | return ret; | ||
4687 | } | ||
4688 | |||
4689 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
4690 | { | ||
4691 | struct perf_cpu_context *cpuctx; | ||
4692 | |||
4693 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4694 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
4695 | |||
4696 | spin_lock(&perf_resource_lock); | ||
4697 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
4698 | spin_unlock(&perf_resource_lock); | ||
4699 | |||
4700 | hw_perf_counter_setup(cpu); | ||
4701 | } | ||
4702 | |||
4703 | #ifdef CONFIG_HOTPLUG_CPU | ||
4704 | static void __perf_counter_exit_cpu(void *info) | ||
4705 | { | ||
4706 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4707 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
4708 | struct perf_counter *counter, *tmp; | ||
4709 | |||
4710 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
4711 | __perf_counter_remove_from_context(counter); | ||
4712 | } | ||
4713 | static void perf_counter_exit_cpu(int cpu) | ||
4714 | { | ||
4715 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4716 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
4717 | |||
4718 | mutex_lock(&ctx->mutex); | ||
4719 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
4720 | mutex_unlock(&ctx->mutex); | ||
4721 | } | ||
4722 | #else | ||
4723 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
4724 | #endif | ||
4725 | |||
4726 | static int __cpuinit | ||
4727 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
4728 | { | ||
4729 | unsigned int cpu = (long)hcpu; | ||
4730 | |||
4731 | switch (action) { | ||
4732 | |||
4733 | case CPU_UP_PREPARE: | ||
4734 | case CPU_UP_PREPARE_FROZEN: | ||
4735 | perf_counter_init_cpu(cpu); | ||
4736 | break; | ||
4737 | |||
4738 | case CPU_ONLINE: | ||
4739 | case CPU_ONLINE_FROZEN: | ||
4740 | hw_perf_counter_setup_online(cpu); | ||
4741 | break; | ||
4742 | |||
4743 | case CPU_DOWN_PREPARE: | ||
4744 | case CPU_DOWN_PREPARE_FROZEN: | ||
4745 | perf_counter_exit_cpu(cpu); | ||
4746 | break; | ||
4747 | |||
4748 | default: | ||
4749 | break; | ||
4750 | } | ||
4751 | |||
4752 | return NOTIFY_OK; | ||
4753 | } | ||
4754 | |||
4755 | /* | ||
4756 | * This has to have a higher priority than migration_notifier in sched.c. | ||
4757 | */ | ||
4758 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
4759 | .notifier_call = perf_cpu_notify, | ||
4760 | .priority = 20, | ||
4761 | }; | ||
4762 | |||
4763 | void __init perf_counter_init(void) | ||
4764 | { | ||
4765 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
4766 | (void *)(long)smp_processor_id()); | ||
4767 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
4768 | (void *)(long)smp_processor_id()); | ||
4769 | register_cpu_notifier(&perf_cpu_nb); | ||
4770 | } | ||
4771 | |||
4772 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
4773 | { | ||
4774 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
4775 | } | ||
4776 | |||
4777 | static ssize_t | ||
4778 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
4779 | const char *buf, | ||
4780 | size_t count) | ||
4781 | { | ||
4782 | struct perf_cpu_context *cpuctx; | ||
4783 | unsigned long val; | ||
4784 | int err, cpu, mpt; | ||
4785 | |||
4786 | err = strict_strtoul(buf, 10, &val); | ||
4787 | if (err) | ||
4788 | return err; | ||
4789 | if (val > perf_max_counters) | ||
4790 | return -EINVAL; | ||
4791 | |||
4792 | spin_lock(&perf_resource_lock); | ||
4793 | perf_reserved_percpu = val; | ||
4794 | for_each_online_cpu(cpu) { | ||
4795 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4796 | spin_lock_irq(&cpuctx->ctx.lock); | ||
4797 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
4798 | perf_max_counters - perf_reserved_percpu); | ||
4799 | cpuctx->max_pertask = mpt; | ||
4800 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
4801 | } | ||
4802 | spin_unlock(&perf_resource_lock); | ||
4803 | |||
4804 | return count; | ||
4805 | } | ||
4806 | |||
4807 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
4808 | { | ||
4809 | return sprintf(buf, "%d\n", perf_overcommit); | ||
4810 | } | ||
4811 | |||
4812 | static ssize_t | ||
4813 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
4814 | { | ||
4815 | unsigned long val; | ||
4816 | int err; | ||
4817 | |||
4818 | err = strict_strtoul(buf, 10, &val); | ||
4819 | if (err) | ||
4820 | return err; | ||
4821 | if (val > 1) | ||
4822 | return -EINVAL; | ||
4823 | |||
4824 | spin_lock(&perf_resource_lock); | ||
4825 | perf_overcommit = val; | ||
4826 | spin_unlock(&perf_resource_lock); | ||
4827 | |||
4828 | return count; | ||
4829 | } | ||
4830 | |||
4831 | static SYSDEV_CLASS_ATTR( | ||
4832 | reserve_percpu, | ||
4833 | 0644, | ||
4834 | perf_show_reserve_percpu, | ||
4835 | perf_set_reserve_percpu | ||
4836 | ); | ||
4837 | |||
4838 | static SYSDEV_CLASS_ATTR( | ||
4839 | overcommit, | ||
4840 | 0644, | ||
4841 | perf_show_overcommit, | ||
4842 | perf_set_overcommit | ||
4843 | ); | ||
4844 | |||
4845 | static struct attribute *perfclass_attrs[] = { | ||
4846 | &attr_reserve_percpu.attr, | ||
4847 | &attr_overcommit.attr, | ||
4848 | NULL | ||
4849 | }; | ||
4850 | |||
4851 | static struct attribute_group perfclass_attr_group = { | ||
4852 | .attrs = perfclass_attrs, | ||
4853 | .name = "perf_counters", | ||
4854 | }; | ||
4855 | |||
4856 | static int __init perf_counter_sysfs_init(void) | ||
4857 | { | ||
4858 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
4859 | &perfclass_attr_group); | ||
4860 | } | ||
4861 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..76ac4db405e9 --- /dev/null +++ b/kernel/perf_event.c | |||
@@ -0,0 +1,5000 @@ | |||
1 | /* | ||
2 | * Performance events core code: | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/rculist.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/syscalls.h> | ||
27 | #include <linux/anon_inodes.h> | ||
28 | #include <linux/kernel_stat.h> | ||
29 | #include <linux/perf_event.h> | ||
30 | |||
31 | #include <asm/irq_regs.h> | ||
32 | |||
33 | /* | ||
34 | * Each CPU has a list of per CPU events: | ||
35 | */ | ||
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
37 | |||
38 | int perf_max_events __read_mostly = 1; | ||
39 | static int perf_reserved_percpu __read_mostly; | ||
40 | static int perf_overcommit __read_mostly = 1; | ||
41 | |||
42 | static atomic_t nr_events __read_mostly; | ||
43 | static atomic_t nr_mmap_events __read_mostly; | ||
44 | static atomic_t nr_comm_events __read_mostly; | ||
45 | static atomic_t nr_task_events __read_mostly; | ||
46 | |||
47 | /* | ||
48 | * perf event paranoia level: | ||
49 | * -1 - not paranoid at all | ||
50 | * 0 - disallow raw tracepoint access for unpriv | ||
51 | * 1 - disallow cpu events for unpriv | ||
52 | * 2 - disallow kernel profiling for unpriv | ||
53 | */ | ||
54 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
55 | |||
56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
57 | { | ||
58 | return sysctl_perf_event_paranoid > -1; | ||
59 | } | ||
60 | |||
61 | static inline bool perf_paranoid_cpu(void) | ||
62 | { | ||
63 | return sysctl_perf_event_paranoid > 0; | ||
64 | } | ||
65 | |||
66 | static inline bool perf_paranoid_kernel(void) | ||
67 | { | ||
68 | return sysctl_perf_event_paranoid > 1; | ||
69 | } | ||
70 | |||
71 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
72 | |||
73 | /* | ||
74 | * max perf event sample rate | ||
75 | */ | ||
76 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
77 | |||
78 | static atomic64_t perf_event_id; | ||
79 | |||
80 | /* | ||
81 | * Lock for (sysadmin-configurable) event reservations: | ||
82 | */ | ||
83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
84 | |||
85 | /* | ||
86 | * Architecture provided APIs - weak aliases: | ||
87 | */ | ||
88 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
89 | { | ||
90 | return NULL; | ||
91 | } | ||
92 | |||
93 | void __weak hw_perf_disable(void) { barrier(); } | ||
94 | void __weak hw_perf_enable(void) { barrier(); } | ||
95 | |||
96 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
97 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
98 | |||
99 | int __weak | ||
100 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
101 | struct perf_cpu_context *cpuctx, | ||
102 | struct perf_event_context *ctx, int cpu) | ||
103 | { | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | void __weak perf_event_print_debug(void) { } | ||
108 | |||
109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
110 | |||
111 | void __perf_disable(void) | ||
112 | { | ||
113 | __get_cpu_var(perf_disable_count)++; | ||
114 | } | ||
115 | |||
116 | bool __perf_enable(void) | ||
117 | { | ||
118 | return !--__get_cpu_var(perf_disable_count); | ||
119 | } | ||
120 | |||
121 | void perf_disable(void) | ||
122 | { | ||
123 | __perf_disable(); | ||
124 | hw_perf_disable(); | ||
125 | } | ||
126 | |||
127 | void perf_enable(void) | ||
128 | { | ||
129 | if (__perf_enable()) | ||
130 | hw_perf_enable(); | ||
131 | } | ||
132 | |||
133 | static void get_ctx(struct perf_event_context *ctx) | ||
134 | { | ||
135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
136 | } | ||
137 | |||
138 | static void free_ctx(struct rcu_head *head) | ||
139 | { | ||
140 | struct perf_event_context *ctx; | ||
141 | |||
142 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
143 | kfree(ctx); | ||
144 | } | ||
145 | |||
146 | static void put_ctx(struct perf_event_context *ctx) | ||
147 | { | ||
148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
149 | if (ctx->parent_ctx) | ||
150 | put_ctx(ctx->parent_ctx); | ||
151 | if (ctx->task) | ||
152 | put_task_struct(ctx->task); | ||
153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
154 | } | ||
155 | } | ||
156 | |||
157 | static void unclone_ctx(struct perf_event_context *ctx) | ||
158 | { | ||
159 | if (ctx->parent_ctx) { | ||
160 | put_ctx(ctx->parent_ctx); | ||
161 | ctx->parent_ctx = NULL; | ||
162 | } | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * If we inherit events we want to return the parent event id | ||
167 | * to userspace. | ||
168 | */ | ||
169 | static u64 primary_event_id(struct perf_event *event) | ||
170 | { | ||
171 | u64 id = event->id; | ||
172 | |||
173 | if (event->parent) | ||
174 | id = event->parent->id; | ||
175 | |||
176 | return id; | ||
177 | } | ||
178 | |||
179 | /* | ||
180 | * Get the perf_event_context for a task and lock it. | ||
181 | * This has to cope with with the fact that until it is locked, | ||
182 | * the context could get moved to another task. | ||
183 | */ | ||
184 | static struct perf_event_context * | ||
185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
186 | { | ||
187 | struct perf_event_context *ctx; | ||
188 | |||
189 | rcu_read_lock(); | ||
190 | retry: | ||
191 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
192 | if (ctx) { | ||
193 | /* | ||
194 | * If this context is a clone of another, it might | ||
195 | * get swapped for another underneath us by | ||
196 | * perf_event_task_sched_out, though the | ||
197 | * rcu_read_lock() protects us from any context | ||
198 | * getting freed. Lock the context and check if it | ||
199 | * got swapped before we could get the lock, and retry | ||
200 | * if so. If we locked the right context, then it | ||
201 | * can't get swapped on us any more. | ||
202 | */ | ||
203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
204 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
206 | goto retry; | ||
207 | } | ||
208 | |||
209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
211 | ctx = NULL; | ||
212 | } | ||
213 | } | ||
214 | rcu_read_unlock(); | ||
215 | return ctx; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Get the context for a task and increment its pin_count so it | ||
220 | * can't get swapped to another task. This also increments its | ||
221 | * reference count so that the context can't get freed. | ||
222 | */ | ||
223 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
224 | { | ||
225 | struct perf_event_context *ctx; | ||
226 | unsigned long flags; | ||
227 | |||
228 | ctx = perf_lock_task_context(task, &flags); | ||
229 | if (ctx) { | ||
230 | ++ctx->pin_count; | ||
231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
232 | } | ||
233 | return ctx; | ||
234 | } | ||
235 | |||
236 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
237 | { | ||
238 | unsigned long flags; | ||
239 | |||
240 | spin_lock_irqsave(&ctx->lock, flags); | ||
241 | --ctx->pin_count; | ||
242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
243 | put_ctx(ctx); | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * Add a event from the lists for its context. | ||
248 | * Must be called with ctx->mutex and ctx->lock held. | ||
249 | */ | ||
250 | static void | ||
251 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
252 | { | ||
253 | struct perf_event *group_leader = event->group_leader; | ||
254 | |||
255 | /* | ||
256 | * Depending on whether it is a standalone or sibling event, | ||
257 | * add it straight to the context's event list, or to the group | ||
258 | * leader's sibling list: | ||
259 | */ | ||
260 | if (group_leader == event) | ||
261 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
262 | else { | ||
263 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
264 | group_leader->nr_siblings++; | ||
265 | } | ||
266 | |||
267 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
268 | ctx->nr_events++; | ||
269 | if (event->attr.inherit_stat) | ||
270 | ctx->nr_stat++; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * Remove a event from the lists for its context. | ||
275 | * Must be called with ctx->mutex and ctx->lock held. | ||
276 | */ | ||
277 | static void | ||
278 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
279 | { | ||
280 | struct perf_event *sibling, *tmp; | ||
281 | |||
282 | if (list_empty(&event->group_entry)) | ||
283 | return; | ||
284 | ctx->nr_events--; | ||
285 | if (event->attr.inherit_stat) | ||
286 | ctx->nr_stat--; | ||
287 | |||
288 | list_del_init(&event->group_entry); | ||
289 | list_del_rcu(&event->event_entry); | ||
290 | |||
291 | if (event->group_leader != event) | ||
292 | event->group_leader->nr_siblings--; | ||
293 | |||
294 | /* | ||
295 | * If this was a group event with sibling events then | ||
296 | * upgrade the siblings to singleton events by adding them | ||
297 | * to the context list directly: | ||
298 | */ | ||
299 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
300 | |||
301 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
302 | sibling->group_leader = sibling; | ||
303 | } | ||
304 | } | ||
305 | |||
306 | static void | ||
307 | event_sched_out(struct perf_event *event, | ||
308 | struct perf_cpu_context *cpuctx, | ||
309 | struct perf_event_context *ctx) | ||
310 | { | ||
311 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
312 | return; | ||
313 | |||
314 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
315 | if (event->pending_disable) { | ||
316 | event->pending_disable = 0; | ||
317 | event->state = PERF_EVENT_STATE_OFF; | ||
318 | } | ||
319 | event->tstamp_stopped = ctx->time; | ||
320 | event->pmu->disable(event); | ||
321 | event->oncpu = -1; | ||
322 | |||
323 | if (!is_software_event(event)) | ||
324 | cpuctx->active_oncpu--; | ||
325 | ctx->nr_active--; | ||
326 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
327 | cpuctx->exclusive = 0; | ||
328 | } | ||
329 | |||
330 | static void | ||
331 | group_sched_out(struct perf_event *group_event, | ||
332 | struct perf_cpu_context *cpuctx, | ||
333 | struct perf_event_context *ctx) | ||
334 | { | ||
335 | struct perf_event *event; | ||
336 | |||
337 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
338 | return; | ||
339 | |||
340 | event_sched_out(group_event, cpuctx, ctx); | ||
341 | |||
342 | /* | ||
343 | * Schedule out siblings (if any): | ||
344 | */ | ||
345 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
346 | event_sched_out(event, cpuctx, ctx); | ||
347 | |||
348 | if (group_event->attr.exclusive) | ||
349 | cpuctx->exclusive = 0; | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * Cross CPU call to remove a performance event | ||
354 | * | ||
355 | * We disable the event on the hardware level first. After that we | ||
356 | * remove it from the context list. | ||
357 | */ | ||
358 | static void __perf_event_remove_from_context(void *info) | ||
359 | { | ||
360 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
361 | struct perf_event *event = info; | ||
362 | struct perf_event_context *ctx = event->ctx; | ||
363 | |||
364 | /* | ||
365 | * If this is a task context, we need to check whether it is | ||
366 | * the current task context of this cpu. If not it has been | ||
367 | * scheduled out before the smp call arrived. | ||
368 | */ | ||
369 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
370 | return; | ||
371 | |||
372 | spin_lock(&ctx->lock); | ||
373 | /* | ||
374 | * Protect the list operation against NMI by disabling the | ||
375 | * events on a global level. | ||
376 | */ | ||
377 | perf_disable(); | ||
378 | |||
379 | event_sched_out(event, cpuctx, ctx); | ||
380 | |||
381 | list_del_event(event, ctx); | ||
382 | |||
383 | if (!ctx->task) { | ||
384 | /* | ||
385 | * Allow more per task events with respect to the | ||
386 | * reservation: | ||
387 | */ | ||
388 | cpuctx->max_pertask = | ||
389 | min(perf_max_events - ctx->nr_events, | ||
390 | perf_max_events - perf_reserved_percpu); | ||
391 | } | ||
392 | |||
393 | perf_enable(); | ||
394 | spin_unlock(&ctx->lock); | ||
395 | } | ||
396 | |||
397 | |||
398 | /* | ||
399 | * Remove the event from a task's (or a CPU's) list of events. | ||
400 | * | ||
401 | * Must be called with ctx->mutex held. | ||
402 | * | ||
403 | * CPU events are removed with a smp call. For task events we only | ||
404 | * call when the task is on a CPU. | ||
405 | * | ||
406 | * If event->ctx is a cloned context, callers must make sure that | ||
407 | * every task struct that event->ctx->task could possibly point to | ||
408 | * remains valid. This is OK when called from perf_release since | ||
409 | * that only calls us on the top-level context, which can't be a clone. | ||
410 | * When called from perf_event_exit_task, it's OK because the | ||
411 | * context has been detached from its task. | ||
412 | */ | ||
413 | static void perf_event_remove_from_context(struct perf_event *event) | ||
414 | { | ||
415 | struct perf_event_context *ctx = event->ctx; | ||
416 | struct task_struct *task = ctx->task; | ||
417 | |||
418 | if (!task) { | ||
419 | /* | ||
420 | * Per cpu events are removed via an smp call and | ||
421 | * the removal is always sucessful. | ||
422 | */ | ||
423 | smp_call_function_single(event->cpu, | ||
424 | __perf_event_remove_from_context, | ||
425 | event, 1); | ||
426 | return; | ||
427 | } | ||
428 | |||
429 | retry: | ||
430 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
431 | event); | ||
432 | |||
433 | spin_lock_irq(&ctx->lock); | ||
434 | /* | ||
435 | * If the context is active we need to retry the smp call. | ||
436 | */ | ||
437 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
438 | spin_unlock_irq(&ctx->lock); | ||
439 | goto retry; | ||
440 | } | ||
441 | |||
442 | /* | ||
443 | * The lock prevents that this context is scheduled in so we | ||
444 | * can remove the event safely, if the call above did not | ||
445 | * succeed. | ||
446 | */ | ||
447 | if (!list_empty(&event->group_entry)) { | ||
448 | list_del_event(event, ctx); | ||
449 | } | ||
450 | spin_unlock_irq(&ctx->lock); | ||
451 | } | ||
452 | |||
453 | static inline u64 perf_clock(void) | ||
454 | { | ||
455 | return cpu_clock(smp_processor_id()); | ||
456 | } | ||
457 | |||
458 | /* | ||
459 | * Update the record of the current time in a context. | ||
460 | */ | ||
461 | static void update_context_time(struct perf_event_context *ctx) | ||
462 | { | ||
463 | u64 now = perf_clock(); | ||
464 | |||
465 | ctx->time += now - ctx->timestamp; | ||
466 | ctx->timestamp = now; | ||
467 | } | ||
468 | |||
469 | /* | ||
470 | * Update the total_time_enabled and total_time_running fields for a event. | ||
471 | */ | ||
472 | static void update_event_times(struct perf_event *event) | ||
473 | { | ||
474 | struct perf_event_context *ctx = event->ctx; | ||
475 | u64 run_end; | ||
476 | |||
477 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
478 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
479 | return; | ||
480 | |||
481 | event->total_time_enabled = ctx->time - event->tstamp_enabled; | ||
482 | |||
483 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
484 | run_end = event->tstamp_stopped; | ||
485 | else | ||
486 | run_end = ctx->time; | ||
487 | |||
488 | event->total_time_running = run_end - event->tstamp_running; | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * Update total_time_enabled and total_time_running for all events in a group. | ||
493 | */ | ||
494 | static void update_group_times(struct perf_event *leader) | ||
495 | { | ||
496 | struct perf_event *event; | ||
497 | |||
498 | update_event_times(leader); | ||
499 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
500 | update_event_times(event); | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * Cross CPU call to disable a performance event | ||
505 | */ | ||
506 | static void __perf_event_disable(void *info) | ||
507 | { | ||
508 | struct perf_event *event = info; | ||
509 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
510 | struct perf_event_context *ctx = event->ctx; | ||
511 | |||
512 | /* | ||
513 | * If this is a per-task event, need to check whether this | ||
514 | * event's task is the current task on this cpu. | ||
515 | */ | ||
516 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
517 | return; | ||
518 | |||
519 | spin_lock(&ctx->lock); | ||
520 | |||
521 | /* | ||
522 | * If the event is on, turn it off. | ||
523 | * If it is in error state, leave it in error state. | ||
524 | */ | ||
525 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
526 | update_context_time(ctx); | ||
527 | update_group_times(event); | ||
528 | if (event == event->group_leader) | ||
529 | group_sched_out(event, cpuctx, ctx); | ||
530 | else | ||
531 | event_sched_out(event, cpuctx, ctx); | ||
532 | event->state = PERF_EVENT_STATE_OFF; | ||
533 | } | ||
534 | |||
535 | spin_unlock(&ctx->lock); | ||
536 | } | ||
537 | |||
538 | /* | ||
539 | * Disable a event. | ||
540 | * | ||
541 | * If event->ctx is a cloned context, callers must make sure that | ||
542 | * every task struct that event->ctx->task could possibly point to | ||
543 | * remains valid. This condition is satisifed when called through | ||
544 | * perf_event_for_each_child or perf_event_for_each because they | ||
545 | * hold the top-level event's child_mutex, so any descendant that | ||
546 | * goes to exit will block in sync_child_event. | ||
547 | * When called from perf_pending_event it's OK because event->ctx | ||
548 | * is the current context on this CPU and preemption is disabled, | ||
549 | * hence we can't get into perf_event_task_sched_out for this context. | ||
550 | */ | ||
551 | static void perf_event_disable(struct perf_event *event) | ||
552 | { | ||
553 | struct perf_event_context *ctx = event->ctx; | ||
554 | struct task_struct *task = ctx->task; | ||
555 | |||
556 | if (!task) { | ||
557 | /* | ||
558 | * Disable the event on the cpu that it's on | ||
559 | */ | ||
560 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
561 | event, 1); | ||
562 | return; | ||
563 | } | ||
564 | |||
565 | retry: | ||
566 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
567 | |||
568 | spin_lock_irq(&ctx->lock); | ||
569 | /* | ||
570 | * If the event is still active, we need to retry the cross-call. | ||
571 | */ | ||
572 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
573 | spin_unlock_irq(&ctx->lock); | ||
574 | goto retry; | ||
575 | } | ||
576 | |||
577 | /* | ||
578 | * Since we have the lock this context can't be scheduled | ||
579 | * in, so we can change the state safely. | ||
580 | */ | ||
581 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
582 | update_group_times(event); | ||
583 | event->state = PERF_EVENT_STATE_OFF; | ||
584 | } | ||
585 | |||
586 | spin_unlock_irq(&ctx->lock); | ||
587 | } | ||
588 | |||
589 | static int | ||
590 | event_sched_in(struct perf_event *event, | ||
591 | struct perf_cpu_context *cpuctx, | ||
592 | struct perf_event_context *ctx, | ||
593 | int cpu) | ||
594 | { | ||
595 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
596 | return 0; | ||
597 | |||
598 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
599 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
600 | /* | ||
601 | * The new state must be visible before we turn it on in the hardware: | ||
602 | */ | ||
603 | smp_wmb(); | ||
604 | |||
605 | if (event->pmu->enable(event)) { | ||
606 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
607 | event->oncpu = -1; | ||
608 | return -EAGAIN; | ||
609 | } | ||
610 | |||
611 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
612 | |||
613 | if (!is_software_event(event)) | ||
614 | cpuctx->active_oncpu++; | ||
615 | ctx->nr_active++; | ||
616 | |||
617 | if (event->attr.exclusive) | ||
618 | cpuctx->exclusive = 1; | ||
619 | |||
620 | return 0; | ||
621 | } | ||
622 | |||
623 | static int | ||
624 | group_sched_in(struct perf_event *group_event, | ||
625 | struct perf_cpu_context *cpuctx, | ||
626 | struct perf_event_context *ctx, | ||
627 | int cpu) | ||
628 | { | ||
629 | struct perf_event *event, *partial_group; | ||
630 | int ret; | ||
631 | |||
632 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
633 | return 0; | ||
634 | |||
635 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
636 | if (ret) | ||
637 | return ret < 0 ? ret : 0; | ||
638 | |||
639 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
640 | return -EAGAIN; | ||
641 | |||
642 | /* | ||
643 | * Schedule in siblings as one group (if any): | ||
644 | */ | ||
645 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
646 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
647 | partial_group = event; | ||
648 | goto group_error; | ||
649 | } | ||
650 | } | ||
651 | |||
652 | return 0; | ||
653 | |||
654 | group_error: | ||
655 | /* | ||
656 | * Groups can be scheduled in as one unit only, so undo any | ||
657 | * partial group before returning: | ||
658 | */ | ||
659 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
660 | if (event == partial_group) | ||
661 | break; | ||
662 | event_sched_out(event, cpuctx, ctx); | ||
663 | } | ||
664 | event_sched_out(group_event, cpuctx, ctx); | ||
665 | |||
666 | return -EAGAIN; | ||
667 | } | ||
668 | |||
669 | /* | ||
670 | * Return 1 for a group consisting entirely of software events, | ||
671 | * 0 if the group contains any hardware events. | ||
672 | */ | ||
673 | static int is_software_only_group(struct perf_event *leader) | ||
674 | { | ||
675 | struct perf_event *event; | ||
676 | |||
677 | if (!is_software_event(leader)) | ||
678 | return 0; | ||
679 | |||
680 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
681 | if (!is_software_event(event)) | ||
682 | return 0; | ||
683 | |||
684 | return 1; | ||
685 | } | ||
686 | |||
687 | /* | ||
688 | * Work out whether we can put this event group on the CPU now. | ||
689 | */ | ||
690 | static int group_can_go_on(struct perf_event *event, | ||
691 | struct perf_cpu_context *cpuctx, | ||
692 | int can_add_hw) | ||
693 | { | ||
694 | /* | ||
695 | * Groups consisting entirely of software events can always go on. | ||
696 | */ | ||
697 | if (is_software_only_group(event)) | ||
698 | return 1; | ||
699 | /* | ||
700 | * If an exclusive group is already on, no other hardware | ||
701 | * events can go on. | ||
702 | */ | ||
703 | if (cpuctx->exclusive) | ||
704 | return 0; | ||
705 | /* | ||
706 | * If this group is exclusive and there are already | ||
707 | * events on the CPU, it can't go on. | ||
708 | */ | ||
709 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
710 | return 0; | ||
711 | /* | ||
712 | * Otherwise, try to add it if all previous groups were able | ||
713 | * to go on. | ||
714 | */ | ||
715 | return can_add_hw; | ||
716 | } | ||
717 | |||
718 | static void add_event_to_ctx(struct perf_event *event, | ||
719 | struct perf_event_context *ctx) | ||
720 | { | ||
721 | list_add_event(event, ctx); | ||
722 | event->tstamp_enabled = ctx->time; | ||
723 | event->tstamp_running = ctx->time; | ||
724 | event->tstamp_stopped = ctx->time; | ||
725 | } | ||
726 | |||
727 | /* | ||
728 | * Cross CPU call to install and enable a performance event | ||
729 | * | ||
730 | * Must be called with ctx->mutex held | ||
731 | */ | ||
732 | static void __perf_install_in_context(void *info) | ||
733 | { | ||
734 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
735 | struct perf_event *event = info; | ||
736 | struct perf_event_context *ctx = event->ctx; | ||
737 | struct perf_event *leader = event->group_leader; | ||
738 | int cpu = smp_processor_id(); | ||
739 | int err; | ||
740 | |||
741 | /* | ||
742 | * If this is a task context, we need to check whether it is | ||
743 | * the current task context of this cpu. If not it has been | ||
744 | * scheduled out before the smp call arrived. | ||
745 | * Or possibly this is the right context but it isn't | ||
746 | * on this cpu because it had no events. | ||
747 | */ | ||
748 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
749 | if (cpuctx->task_ctx || ctx->task != current) | ||
750 | return; | ||
751 | cpuctx->task_ctx = ctx; | ||
752 | } | ||
753 | |||
754 | spin_lock(&ctx->lock); | ||
755 | ctx->is_active = 1; | ||
756 | update_context_time(ctx); | ||
757 | |||
758 | /* | ||
759 | * Protect the list operation against NMI by disabling the | ||
760 | * events on a global level. NOP for non NMI based events. | ||
761 | */ | ||
762 | perf_disable(); | ||
763 | |||
764 | add_event_to_ctx(event, ctx); | ||
765 | |||
766 | /* | ||
767 | * Don't put the event on if it is disabled or if | ||
768 | * it is in a group and the group isn't on. | ||
769 | */ | ||
770 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
771 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
772 | goto unlock; | ||
773 | |||
774 | /* | ||
775 | * An exclusive event can't go on if there are already active | ||
776 | * hardware events, and no hardware event can go on if there | ||
777 | * is already an exclusive event on. | ||
778 | */ | ||
779 | if (!group_can_go_on(event, cpuctx, 1)) | ||
780 | err = -EEXIST; | ||
781 | else | ||
782 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
783 | |||
784 | if (err) { | ||
785 | /* | ||
786 | * This event couldn't go on. If it is in a group | ||
787 | * then we have to pull the whole group off. | ||
788 | * If the event group is pinned then put it in error state. | ||
789 | */ | ||
790 | if (leader != event) | ||
791 | group_sched_out(leader, cpuctx, ctx); | ||
792 | if (leader->attr.pinned) { | ||
793 | update_group_times(leader); | ||
794 | leader->state = PERF_EVENT_STATE_ERROR; | ||
795 | } | ||
796 | } | ||
797 | |||
798 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
799 | cpuctx->max_pertask--; | ||
800 | |||
801 | unlock: | ||
802 | perf_enable(); | ||
803 | |||
804 | spin_unlock(&ctx->lock); | ||
805 | } | ||
806 | |||
807 | /* | ||
808 | * Attach a performance event to a context | ||
809 | * | ||
810 | * First we add the event to the list with the hardware enable bit | ||
811 | * in event->hw_config cleared. | ||
812 | * | ||
813 | * If the event is attached to a task which is on a CPU we use a smp | ||
814 | * call to enable it in the task context. The task might have been | ||
815 | * scheduled away, but we check this in the smp call again. | ||
816 | * | ||
817 | * Must be called with ctx->mutex held. | ||
818 | */ | ||
819 | static void | ||
820 | perf_install_in_context(struct perf_event_context *ctx, | ||
821 | struct perf_event *event, | ||
822 | int cpu) | ||
823 | { | ||
824 | struct task_struct *task = ctx->task; | ||
825 | |||
826 | if (!task) { | ||
827 | /* | ||
828 | * Per cpu events are installed via an smp call and | ||
829 | * the install is always sucessful. | ||
830 | */ | ||
831 | smp_call_function_single(cpu, __perf_install_in_context, | ||
832 | event, 1); | ||
833 | return; | ||
834 | } | ||
835 | |||
836 | retry: | ||
837 | task_oncpu_function_call(task, __perf_install_in_context, | ||
838 | event); | ||
839 | |||
840 | spin_lock_irq(&ctx->lock); | ||
841 | /* | ||
842 | * we need to retry the smp call. | ||
843 | */ | ||
844 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
845 | spin_unlock_irq(&ctx->lock); | ||
846 | goto retry; | ||
847 | } | ||
848 | |||
849 | /* | ||
850 | * The lock prevents that this context is scheduled in so we | ||
851 | * can add the event safely, if it the call above did not | ||
852 | * succeed. | ||
853 | */ | ||
854 | if (list_empty(&event->group_entry)) | ||
855 | add_event_to_ctx(event, ctx); | ||
856 | spin_unlock_irq(&ctx->lock); | ||
857 | } | ||
858 | |||
859 | /* | ||
860 | * Put a event into inactive state and update time fields. | ||
861 | * Enabling the leader of a group effectively enables all | ||
862 | * the group members that aren't explicitly disabled, so we | ||
863 | * have to update their ->tstamp_enabled also. | ||
864 | * Note: this works for group members as well as group leaders | ||
865 | * since the non-leader members' sibling_lists will be empty. | ||
866 | */ | ||
867 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
868 | struct perf_event_context *ctx) | ||
869 | { | ||
870 | struct perf_event *sub; | ||
871 | |||
872 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
873 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
874 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
875 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
876 | sub->tstamp_enabled = | ||
877 | ctx->time - sub->total_time_enabled; | ||
878 | } | ||
879 | |||
880 | /* | ||
881 | * Cross CPU call to enable a performance event | ||
882 | */ | ||
883 | static void __perf_event_enable(void *info) | ||
884 | { | ||
885 | struct perf_event *event = info; | ||
886 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
887 | struct perf_event_context *ctx = event->ctx; | ||
888 | struct perf_event *leader = event->group_leader; | ||
889 | int err; | ||
890 | |||
891 | /* | ||
892 | * If this is a per-task event, need to check whether this | ||
893 | * event's task is the current task on this cpu. | ||
894 | */ | ||
895 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
896 | if (cpuctx->task_ctx || ctx->task != current) | ||
897 | return; | ||
898 | cpuctx->task_ctx = ctx; | ||
899 | } | ||
900 | |||
901 | spin_lock(&ctx->lock); | ||
902 | ctx->is_active = 1; | ||
903 | update_context_time(ctx); | ||
904 | |||
905 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
906 | goto unlock; | ||
907 | __perf_event_mark_enabled(event, ctx); | ||
908 | |||
909 | /* | ||
910 | * If the event is in a group and isn't the group leader, | ||
911 | * then don't put it on unless the group is on. | ||
912 | */ | ||
913 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
914 | goto unlock; | ||
915 | |||
916 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
917 | err = -EEXIST; | ||
918 | } else { | ||
919 | perf_disable(); | ||
920 | if (event == leader) | ||
921 | err = group_sched_in(event, cpuctx, ctx, | ||
922 | smp_processor_id()); | ||
923 | else | ||
924 | err = event_sched_in(event, cpuctx, ctx, | ||
925 | smp_processor_id()); | ||
926 | perf_enable(); | ||
927 | } | ||
928 | |||
929 | if (err) { | ||
930 | /* | ||
931 | * If this event can't go on and it's part of a | ||
932 | * group, then the whole group has to come off. | ||
933 | */ | ||
934 | if (leader != event) | ||
935 | group_sched_out(leader, cpuctx, ctx); | ||
936 | if (leader->attr.pinned) { | ||
937 | update_group_times(leader); | ||
938 | leader->state = PERF_EVENT_STATE_ERROR; | ||
939 | } | ||
940 | } | ||
941 | |||
942 | unlock: | ||
943 | spin_unlock(&ctx->lock); | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * Enable a event. | ||
948 | * | ||
949 | * If event->ctx is a cloned context, callers must make sure that | ||
950 | * every task struct that event->ctx->task could possibly point to | ||
951 | * remains valid. This condition is satisfied when called through | ||
952 | * perf_event_for_each_child or perf_event_for_each as described | ||
953 | * for perf_event_disable. | ||
954 | */ | ||
955 | static void perf_event_enable(struct perf_event *event) | ||
956 | { | ||
957 | struct perf_event_context *ctx = event->ctx; | ||
958 | struct task_struct *task = ctx->task; | ||
959 | |||
960 | if (!task) { | ||
961 | /* | ||
962 | * Enable the event on the cpu that it's on | ||
963 | */ | ||
964 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
965 | event, 1); | ||
966 | return; | ||
967 | } | ||
968 | |||
969 | spin_lock_irq(&ctx->lock); | ||
970 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
971 | goto out; | ||
972 | |||
973 | /* | ||
974 | * If the event is in error state, clear that first. | ||
975 | * That way, if we see the event in error state below, we | ||
976 | * know that it has gone back into error state, as distinct | ||
977 | * from the task having been scheduled away before the | ||
978 | * cross-call arrived. | ||
979 | */ | ||
980 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
981 | event->state = PERF_EVENT_STATE_OFF; | ||
982 | |||
983 | retry: | ||
984 | spin_unlock_irq(&ctx->lock); | ||
985 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
986 | |||
987 | spin_lock_irq(&ctx->lock); | ||
988 | |||
989 | /* | ||
990 | * If the context is active and the event is still off, | ||
991 | * we need to retry the cross-call. | ||
992 | */ | ||
993 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
994 | goto retry; | ||
995 | |||
996 | /* | ||
997 | * Since we have the lock this context can't be scheduled | ||
998 | * in, so we can change the state safely. | ||
999 | */ | ||
1000 | if (event->state == PERF_EVENT_STATE_OFF) | ||
1001 | __perf_event_mark_enabled(event, ctx); | ||
1002 | |||
1003 | out: | ||
1004 | spin_unlock_irq(&ctx->lock); | ||
1005 | } | ||
1006 | |||
1007 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
1008 | { | ||
1009 | /* | ||
1010 | * not supported on inherited events | ||
1011 | */ | ||
1012 | if (event->attr.inherit) | ||
1013 | return -EINVAL; | ||
1014 | |||
1015 | atomic_add(refresh, &event->event_limit); | ||
1016 | perf_event_enable(event); | ||
1017 | |||
1018 | return 0; | ||
1019 | } | ||
1020 | |||
1021 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
1022 | struct perf_cpu_context *cpuctx) | ||
1023 | { | ||
1024 | struct perf_event *event; | ||
1025 | |||
1026 | spin_lock(&ctx->lock); | ||
1027 | ctx->is_active = 0; | ||
1028 | if (likely(!ctx->nr_events)) | ||
1029 | goto out; | ||
1030 | update_context_time(ctx); | ||
1031 | |||
1032 | perf_disable(); | ||
1033 | if (ctx->nr_active) { | ||
1034 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1035 | if (event != event->group_leader) | ||
1036 | event_sched_out(event, cpuctx, ctx); | ||
1037 | else | ||
1038 | group_sched_out(event, cpuctx, ctx); | ||
1039 | } | ||
1040 | } | ||
1041 | perf_enable(); | ||
1042 | out: | ||
1043 | spin_unlock(&ctx->lock); | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * Test whether two contexts are equivalent, i.e. whether they | ||
1048 | * have both been cloned from the same version of the same context | ||
1049 | * and they both have the same number of enabled events. | ||
1050 | * If the number of enabled events is the same, then the set | ||
1051 | * of enabled events should be the same, because these are both | ||
1052 | * inherited contexts, therefore we can't access individual events | ||
1053 | * in them directly with an fd; we can only enable/disable all | ||
1054 | * events via prctl, or enable/disable all events in a family | ||
1055 | * via ioctl, which will have the same effect on both contexts. | ||
1056 | */ | ||
1057 | static int context_equiv(struct perf_event_context *ctx1, | ||
1058 | struct perf_event_context *ctx2) | ||
1059 | { | ||
1060 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1061 | && ctx1->parent_gen == ctx2->parent_gen | ||
1062 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1063 | } | ||
1064 | |||
1065 | static void __perf_event_read(void *event); | ||
1066 | |||
1067 | static void __perf_event_sync_stat(struct perf_event *event, | ||
1068 | struct perf_event *next_event) | ||
1069 | { | ||
1070 | u64 value; | ||
1071 | |||
1072 | if (!event->attr.inherit_stat) | ||
1073 | return; | ||
1074 | |||
1075 | /* | ||
1076 | * Update the event value, we cannot use perf_event_read() | ||
1077 | * because we're in the middle of a context switch and have IRQs | ||
1078 | * disabled, which upsets smp_call_function_single(), however | ||
1079 | * we know the event must be on the current CPU, therefore we | ||
1080 | * don't need to use it. | ||
1081 | */ | ||
1082 | switch (event->state) { | ||
1083 | case PERF_EVENT_STATE_ACTIVE: | ||
1084 | __perf_event_read(event); | ||
1085 | break; | ||
1086 | |||
1087 | case PERF_EVENT_STATE_INACTIVE: | ||
1088 | update_event_times(event); | ||
1089 | break; | ||
1090 | |||
1091 | default: | ||
1092 | break; | ||
1093 | } | ||
1094 | |||
1095 | /* | ||
1096 | * In order to keep per-task stats reliable we need to flip the event | ||
1097 | * values when we flip the contexts. | ||
1098 | */ | ||
1099 | value = atomic64_read(&next_event->count); | ||
1100 | value = atomic64_xchg(&event->count, value); | ||
1101 | atomic64_set(&next_event->count, value); | ||
1102 | |||
1103 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
1104 | swap(event->total_time_running, next_event->total_time_running); | ||
1105 | |||
1106 | /* | ||
1107 | * Since we swizzled the values, update the user visible data too. | ||
1108 | */ | ||
1109 | perf_event_update_userpage(event); | ||
1110 | perf_event_update_userpage(next_event); | ||
1111 | } | ||
1112 | |||
1113 | #define list_next_entry(pos, member) \ | ||
1114 | list_entry(pos->member.next, typeof(*pos), member) | ||
1115 | |||
1116 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
1117 | struct perf_event_context *next_ctx) | ||
1118 | { | ||
1119 | struct perf_event *event, *next_event; | ||
1120 | |||
1121 | if (!ctx->nr_stat) | ||
1122 | return; | ||
1123 | |||
1124 | event = list_first_entry(&ctx->event_list, | ||
1125 | struct perf_event, event_entry); | ||
1126 | |||
1127 | next_event = list_first_entry(&next_ctx->event_list, | ||
1128 | struct perf_event, event_entry); | ||
1129 | |||
1130 | while (&event->event_entry != &ctx->event_list && | ||
1131 | &next_event->event_entry != &next_ctx->event_list) { | ||
1132 | |||
1133 | __perf_event_sync_stat(event, next_event); | ||
1134 | |||
1135 | event = list_next_entry(event, event_entry); | ||
1136 | next_event = list_next_entry(next_event, event_entry); | ||
1137 | } | ||
1138 | } | ||
1139 | |||
1140 | /* | ||
1141 | * Called from scheduler to remove the events of the current task, | ||
1142 | * with interrupts disabled. | ||
1143 | * | ||
1144 | * We stop each event and update the event value in event->count. | ||
1145 | * | ||
1146 | * This does not protect us against NMI, but disable() | ||
1147 | * sets the disabled bit in the control field of event _before_ | ||
1148 | * accessing the event control register. If a NMI hits, then it will | ||
1149 | * not restart the event. | ||
1150 | */ | ||
1151 | void perf_event_task_sched_out(struct task_struct *task, | ||
1152 | struct task_struct *next, int cpu) | ||
1153 | { | ||
1154 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1155 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1156 | struct perf_event_context *next_ctx; | ||
1157 | struct perf_event_context *parent; | ||
1158 | struct pt_regs *regs; | ||
1159 | int do_switch = 1; | ||
1160 | |||
1161 | regs = task_pt_regs(task); | ||
1162 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1163 | |||
1164 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1165 | return; | ||
1166 | |||
1167 | update_context_time(ctx); | ||
1168 | |||
1169 | rcu_read_lock(); | ||
1170 | parent = rcu_dereference(ctx->parent_ctx); | ||
1171 | next_ctx = next->perf_event_ctxp; | ||
1172 | if (parent && next_ctx && | ||
1173 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1174 | /* | ||
1175 | * Looks like the two contexts are clones, so we might be | ||
1176 | * able to optimize the context switch. We lock both | ||
1177 | * contexts and check that they are clones under the | ||
1178 | * lock (including re-checking that neither has been | ||
1179 | * uncloned in the meantime). It doesn't matter which | ||
1180 | * order we take the locks because no other cpu could | ||
1181 | * be trying to lock both of these tasks. | ||
1182 | */ | ||
1183 | spin_lock(&ctx->lock); | ||
1184 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1185 | if (context_equiv(ctx, next_ctx)) { | ||
1186 | /* | ||
1187 | * XXX do we need a memory barrier of sorts | ||
1188 | * wrt to rcu_dereference() of perf_event_ctxp | ||
1189 | */ | ||
1190 | task->perf_event_ctxp = next_ctx; | ||
1191 | next->perf_event_ctxp = ctx; | ||
1192 | ctx->task = next; | ||
1193 | next_ctx->task = task; | ||
1194 | do_switch = 0; | ||
1195 | |||
1196 | perf_event_sync_stat(ctx, next_ctx); | ||
1197 | } | ||
1198 | spin_unlock(&next_ctx->lock); | ||
1199 | spin_unlock(&ctx->lock); | ||
1200 | } | ||
1201 | rcu_read_unlock(); | ||
1202 | |||
1203 | if (do_switch) { | ||
1204 | __perf_event_sched_out(ctx, cpuctx); | ||
1205 | cpuctx->task_ctx = NULL; | ||
1206 | } | ||
1207 | } | ||
1208 | |||
1209 | /* | ||
1210 | * Called with IRQs disabled | ||
1211 | */ | ||
1212 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
1213 | { | ||
1214 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1215 | |||
1216 | if (!cpuctx->task_ctx) | ||
1217 | return; | ||
1218 | |||
1219 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1220 | return; | ||
1221 | |||
1222 | __perf_event_sched_out(ctx, cpuctx); | ||
1223 | cpuctx->task_ctx = NULL; | ||
1224 | } | ||
1225 | |||
1226 | /* | ||
1227 | * Called with IRQs disabled | ||
1228 | */ | ||
1229 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1230 | { | ||
1231 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
1232 | } | ||
1233 | |||
1234 | static void | ||
1235 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
1236 | struct perf_cpu_context *cpuctx, int cpu) | ||
1237 | { | ||
1238 | struct perf_event *event; | ||
1239 | int can_add_hw = 1; | ||
1240 | |||
1241 | spin_lock(&ctx->lock); | ||
1242 | ctx->is_active = 1; | ||
1243 | if (likely(!ctx->nr_events)) | ||
1244 | goto out; | ||
1245 | |||
1246 | ctx->timestamp = perf_clock(); | ||
1247 | |||
1248 | perf_disable(); | ||
1249 | |||
1250 | /* | ||
1251 | * First go through the list and put on any pinned groups | ||
1252 | * in order to give them the best chance of going on. | ||
1253 | */ | ||
1254 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1255 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1256 | !event->attr.pinned) | ||
1257 | continue; | ||
1258 | if (event->cpu != -1 && event->cpu != cpu) | ||
1259 | continue; | ||
1260 | |||
1261 | if (event != event->group_leader) | ||
1262 | event_sched_in(event, cpuctx, ctx, cpu); | ||
1263 | else { | ||
1264 | if (group_can_go_on(event, cpuctx, 1)) | ||
1265 | group_sched_in(event, cpuctx, ctx, cpu); | ||
1266 | } | ||
1267 | |||
1268 | /* | ||
1269 | * If this pinned group hasn't been scheduled, | ||
1270 | * put it in error state. | ||
1271 | */ | ||
1272 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1273 | update_group_times(event); | ||
1274 | event->state = PERF_EVENT_STATE_ERROR; | ||
1275 | } | ||
1276 | } | ||
1277 | |||
1278 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1279 | /* | ||
1280 | * Ignore events in OFF or ERROR state, and | ||
1281 | * ignore pinned events since we did them already. | ||
1282 | */ | ||
1283 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1284 | event->attr.pinned) | ||
1285 | continue; | ||
1286 | |||
1287 | /* | ||
1288 | * Listen to the 'cpu' scheduling filter constraint | ||
1289 | * of events: | ||
1290 | */ | ||
1291 | if (event->cpu != -1 && event->cpu != cpu) | ||
1292 | continue; | ||
1293 | |||
1294 | if (event != event->group_leader) { | ||
1295 | if (event_sched_in(event, cpuctx, ctx, cpu)) | ||
1296 | can_add_hw = 0; | ||
1297 | } else { | ||
1298 | if (group_can_go_on(event, cpuctx, can_add_hw)) { | ||
1299 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
1300 | can_add_hw = 0; | ||
1301 | } | ||
1302 | } | ||
1303 | } | ||
1304 | perf_enable(); | ||
1305 | out: | ||
1306 | spin_unlock(&ctx->lock); | ||
1307 | } | ||
1308 | |||
1309 | /* | ||
1310 | * Called from scheduler to add the events of the current task | ||
1311 | * with interrupts disabled. | ||
1312 | * | ||
1313 | * We restore the event value and then enable it. | ||
1314 | * | ||
1315 | * This does not protect us against NMI, but enable() | ||
1316 | * sets the enabled bit in the control field of event _before_ | ||
1317 | * accessing the event control register. If a NMI hits, then it will | ||
1318 | * keep the event running. | ||
1319 | */ | ||
1320 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
1321 | { | ||
1322 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1323 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1324 | |||
1325 | if (likely(!ctx)) | ||
1326 | return; | ||
1327 | if (cpuctx->task_ctx == ctx) | ||
1328 | return; | ||
1329 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1330 | cpuctx->task_ctx = ctx; | ||
1331 | } | ||
1332 | |||
1333 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1334 | { | ||
1335 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
1336 | |||
1337 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1338 | } | ||
1339 | |||
1340 | #define MAX_INTERRUPTS (~0ULL) | ||
1341 | |||
1342 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
1343 | |||
1344 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
1345 | { | ||
1346 | struct hw_perf_event *hwc = &event->hw; | ||
1347 | u64 period, sample_period; | ||
1348 | s64 delta; | ||
1349 | |||
1350 | events *= hwc->sample_period; | ||
1351 | period = div64_u64(events, event->attr.sample_freq); | ||
1352 | |||
1353 | delta = (s64)(period - hwc->sample_period); | ||
1354 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1355 | |||
1356 | sample_period = hwc->sample_period + delta; | ||
1357 | |||
1358 | if (!sample_period) | ||
1359 | sample_period = 1; | ||
1360 | |||
1361 | hwc->sample_period = sample_period; | ||
1362 | } | ||
1363 | |||
1364 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
1365 | { | ||
1366 | struct perf_event *event; | ||
1367 | struct hw_perf_event *hwc; | ||
1368 | u64 interrupts, freq; | ||
1369 | |||
1370 | spin_lock(&ctx->lock); | ||
1371 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1372 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
1373 | continue; | ||
1374 | |||
1375 | hwc = &event->hw; | ||
1376 | |||
1377 | interrupts = hwc->interrupts; | ||
1378 | hwc->interrupts = 0; | ||
1379 | |||
1380 | /* | ||
1381 | * unthrottle events on the tick | ||
1382 | */ | ||
1383 | if (interrupts == MAX_INTERRUPTS) { | ||
1384 | perf_log_throttle(event, 1); | ||
1385 | event->pmu->unthrottle(event); | ||
1386 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
1387 | } | ||
1388 | |||
1389 | if (!event->attr.freq || !event->attr.sample_freq) | ||
1390 | continue; | ||
1391 | |||
1392 | /* | ||
1393 | * if the specified freq < HZ then we need to skip ticks | ||
1394 | */ | ||
1395 | if (event->attr.sample_freq < HZ) { | ||
1396 | freq = event->attr.sample_freq; | ||
1397 | |||
1398 | hwc->freq_count += freq; | ||
1399 | hwc->freq_interrupts += interrupts; | ||
1400 | |||
1401 | if (hwc->freq_count < HZ) | ||
1402 | continue; | ||
1403 | |||
1404 | interrupts = hwc->freq_interrupts; | ||
1405 | hwc->freq_interrupts = 0; | ||
1406 | hwc->freq_count -= HZ; | ||
1407 | } else | ||
1408 | freq = HZ; | ||
1409 | |||
1410 | perf_adjust_period(event, freq * interrupts); | ||
1411 | |||
1412 | /* | ||
1413 | * In order to avoid being stalled by an (accidental) huge | ||
1414 | * sample period, force reset the sample period if we didn't | ||
1415 | * get any events in this freq period. | ||
1416 | */ | ||
1417 | if (!interrupts) { | ||
1418 | perf_disable(); | ||
1419 | event->pmu->disable(event); | ||
1420 | atomic64_set(&hwc->period_left, 0); | ||
1421 | event->pmu->enable(event); | ||
1422 | perf_enable(); | ||
1423 | } | ||
1424 | } | ||
1425 | spin_unlock(&ctx->lock); | ||
1426 | } | ||
1427 | |||
1428 | /* | ||
1429 | * Round-robin a context's events: | ||
1430 | */ | ||
1431 | static void rotate_ctx(struct perf_event_context *ctx) | ||
1432 | { | ||
1433 | struct perf_event *event; | ||
1434 | |||
1435 | if (!ctx->nr_events) | ||
1436 | return; | ||
1437 | |||
1438 | spin_lock(&ctx->lock); | ||
1439 | /* | ||
1440 | * Rotate the first entry last (works just fine for group events too): | ||
1441 | */ | ||
1442 | perf_disable(); | ||
1443 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1444 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
1445 | break; | ||
1446 | } | ||
1447 | perf_enable(); | ||
1448 | |||
1449 | spin_unlock(&ctx->lock); | ||
1450 | } | ||
1451 | |||
1452 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
1453 | { | ||
1454 | struct perf_cpu_context *cpuctx; | ||
1455 | struct perf_event_context *ctx; | ||
1456 | |||
1457 | if (!atomic_read(&nr_events)) | ||
1458 | return; | ||
1459 | |||
1460 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1461 | ctx = curr->perf_event_ctxp; | ||
1462 | |||
1463 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1464 | if (ctx) | ||
1465 | perf_ctx_adjust_freq(ctx); | ||
1466 | |||
1467 | perf_event_cpu_sched_out(cpuctx); | ||
1468 | if (ctx) | ||
1469 | __perf_event_task_sched_out(ctx); | ||
1470 | |||
1471 | rotate_ctx(&cpuctx->ctx); | ||
1472 | if (ctx) | ||
1473 | rotate_ctx(ctx); | ||
1474 | |||
1475 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
1476 | if (ctx) | ||
1477 | perf_event_task_sched_in(curr, cpu); | ||
1478 | } | ||
1479 | |||
1480 | /* | ||
1481 | * Enable all of a task's events that have been marked enable-on-exec. | ||
1482 | * This expects task == current. | ||
1483 | */ | ||
1484 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
1485 | { | ||
1486 | struct perf_event_context *ctx; | ||
1487 | struct perf_event *event; | ||
1488 | unsigned long flags; | ||
1489 | int enabled = 0; | ||
1490 | |||
1491 | local_irq_save(flags); | ||
1492 | ctx = task->perf_event_ctxp; | ||
1493 | if (!ctx || !ctx->nr_events) | ||
1494 | goto out; | ||
1495 | |||
1496 | __perf_event_task_sched_out(ctx); | ||
1497 | |||
1498 | spin_lock(&ctx->lock); | ||
1499 | |||
1500 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1501 | if (!event->attr.enable_on_exec) | ||
1502 | continue; | ||
1503 | event->attr.enable_on_exec = 0; | ||
1504 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
1505 | continue; | ||
1506 | __perf_event_mark_enabled(event, ctx); | ||
1507 | enabled = 1; | ||
1508 | } | ||
1509 | |||
1510 | /* | ||
1511 | * Unclone this context if we enabled any event. | ||
1512 | */ | ||
1513 | if (enabled) | ||
1514 | unclone_ctx(ctx); | ||
1515 | |||
1516 | spin_unlock(&ctx->lock); | ||
1517 | |||
1518 | perf_event_task_sched_in(task, smp_processor_id()); | ||
1519 | out: | ||
1520 | local_irq_restore(flags); | ||
1521 | } | ||
1522 | |||
1523 | /* | ||
1524 | * Cross CPU call to read the hardware event | ||
1525 | */ | ||
1526 | static void __perf_event_read(void *info) | ||
1527 | { | ||
1528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1529 | struct perf_event *event = info; | ||
1530 | struct perf_event_context *ctx = event->ctx; | ||
1531 | unsigned long flags; | ||
1532 | |||
1533 | /* | ||
1534 | * If this is a task context, we need to check whether it is | ||
1535 | * the current task context of this cpu. If not it has been | ||
1536 | * scheduled out before the smp call arrived. In that case | ||
1537 | * event->count would have been updated to a recent sample | ||
1538 | * when the event was scheduled out. | ||
1539 | */ | ||
1540 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1541 | return; | ||
1542 | |||
1543 | local_irq_save(flags); | ||
1544 | if (ctx->is_active) | ||
1545 | update_context_time(ctx); | ||
1546 | event->pmu->read(event); | ||
1547 | update_event_times(event); | ||
1548 | local_irq_restore(flags); | ||
1549 | } | ||
1550 | |||
1551 | static u64 perf_event_read(struct perf_event *event) | ||
1552 | { | ||
1553 | /* | ||
1554 | * If event is enabled and currently active on a CPU, update the | ||
1555 | * value in the event structure: | ||
1556 | */ | ||
1557 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
1558 | smp_call_function_single(event->oncpu, | ||
1559 | __perf_event_read, event, 1); | ||
1560 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1561 | update_event_times(event); | ||
1562 | } | ||
1563 | |||
1564 | return atomic64_read(&event->count); | ||
1565 | } | ||
1566 | |||
1567 | /* | ||
1568 | * Initialize the perf_event context in a task_struct: | ||
1569 | */ | ||
1570 | static void | ||
1571 | __perf_event_init_context(struct perf_event_context *ctx, | ||
1572 | struct task_struct *task) | ||
1573 | { | ||
1574 | memset(ctx, 0, sizeof(*ctx)); | ||
1575 | spin_lock_init(&ctx->lock); | ||
1576 | mutex_init(&ctx->mutex); | ||
1577 | INIT_LIST_HEAD(&ctx->group_list); | ||
1578 | INIT_LIST_HEAD(&ctx->event_list); | ||
1579 | atomic_set(&ctx->refcount, 1); | ||
1580 | ctx->task = task; | ||
1581 | } | ||
1582 | |||
1583 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
1584 | { | ||
1585 | struct perf_event_context *ctx; | ||
1586 | struct perf_cpu_context *cpuctx; | ||
1587 | struct task_struct *task; | ||
1588 | unsigned long flags; | ||
1589 | int err; | ||
1590 | |||
1591 | /* | ||
1592 | * If cpu is not a wildcard then this is a percpu event: | ||
1593 | */ | ||
1594 | if (cpu != -1) { | ||
1595 | /* Must be root to operate on a CPU event: */ | ||
1596 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1597 | return ERR_PTR(-EACCES); | ||
1598 | |||
1599 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1600 | return ERR_PTR(-EINVAL); | ||
1601 | |||
1602 | /* | ||
1603 | * We could be clever and allow to attach a event to an | ||
1604 | * offline CPU and activate it when the CPU comes up, but | ||
1605 | * that's for later. | ||
1606 | */ | ||
1607 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1608 | return ERR_PTR(-ENODEV); | ||
1609 | |||
1610 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1611 | ctx = &cpuctx->ctx; | ||
1612 | get_ctx(ctx); | ||
1613 | |||
1614 | return ctx; | ||
1615 | } | ||
1616 | |||
1617 | rcu_read_lock(); | ||
1618 | if (!pid) | ||
1619 | task = current; | ||
1620 | else | ||
1621 | task = find_task_by_vpid(pid); | ||
1622 | if (task) | ||
1623 | get_task_struct(task); | ||
1624 | rcu_read_unlock(); | ||
1625 | |||
1626 | if (!task) | ||
1627 | return ERR_PTR(-ESRCH); | ||
1628 | |||
1629 | /* | ||
1630 | * Can't attach events to a dying task. | ||
1631 | */ | ||
1632 | err = -ESRCH; | ||
1633 | if (task->flags & PF_EXITING) | ||
1634 | goto errout; | ||
1635 | |||
1636 | /* Reuse ptrace permission checks for now. */ | ||
1637 | err = -EACCES; | ||
1638 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1639 | goto errout; | ||
1640 | |||
1641 | retry: | ||
1642 | ctx = perf_lock_task_context(task, &flags); | ||
1643 | if (ctx) { | ||
1644 | unclone_ctx(ctx); | ||
1645 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1646 | } | ||
1647 | |||
1648 | if (!ctx) { | ||
1649 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
1650 | err = -ENOMEM; | ||
1651 | if (!ctx) | ||
1652 | goto errout; | ||
1653 | __perf_event_init_context(ctx, task); | ||
1654 | get_ctx(ctx); | ||
1655 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
1656 | /* | ||
1657 | * We raced with some other task; use | ||
1658 | * the context they set. | ||
1659 | */ | ||
1660 | kfree(ctx); | ||
1661 | goto retry; | ||
1662 | } | ||
1663 | get_task_struct(task); | ||
1664 | } | ||
1665 | |||
1666 | put_task_struct(task); | ||
1667 | return ctx; | ||
1668 | |||
1669 | errout: | ||
1670 | put_task_struct(task); | ||
1671 | return ERR_PTR(err); | ||
1672 | } | ||
1673 | |||
1674 | static void free_event_rcu(struct rcu_head *head) | ||
1675 | { | ||
1676 | struct perf_event *event; | ||
1677 | |||
1678 | event = container_of(head, struct perf_event, rcu_head); | ||
1679 | if (event->ns) | ||
1680 | put_pid_ns(event->ns); | ||
1681 | kfree(event); | ||
1682 | } | ||
1683 | |||
1684 | static void perf_pending_sync(struct perf_event *event); | ||
1685 | |||
1686 | static void free_event(struct perf_event *event) | ||
1687 | { | ||
1688 | perf_pending_sync(event); | ||
1689 | |||
1690 | if (!event->parent) { | ||
1691 | atomic_dec(&nr_events); | ||
1692 | if (event->attr.mmap) | ||
1693 | atomic_dec(&nr_mmap_events); | ||
1694 | if (event->attr.comm) | ||
1695 | atomic_dec(&nr_comm_events); | ||
1696 | if (event->attr.task) | ||
1697 | atomic_dec(&nr_task_events); | ||
1698 | } | ||
1699 | |||
1700 | if (event->output) { | ||
1701 | fput(event->output->filp); | ||
1702 | event->output = NULL; | ||
1703 | } | ||
1704 | |||
1705 | if (event->destroy) | ||
1706 | event->destroy(event); | ||
1707 | |||
1708 | put_ctx(event->ctx); | ||
1709 | call_rcu(&event->rcu_head, free_event_rcu); | ||
1710 | } | ||
1711 | |||
1712 | /* | ||
1713 | * Called when the last reference to the file is gone. | ||
1714 | */ | ||
1715 | static int perf_release(struct inode *inode, struct file *file) | ||
1716 | { | ||
1717 | struct perf_event *event = file->private_data; | ||
1718 | struct perf_event_context *ctx = event->ctx; | ||
1719 | |||
1720 | file->private_data = NULL; | ||
1721 | |||
1722 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1723 | mutex_lock(&ctx->mutex); | ||
1724 | perf_event_remove_from_context(event); | ||
1725 | mutex_unlock(&ctx->mutex); | ||
1726 | |||
1727 | mutex_lock(&event->owner->perf_event_mutex); | ||
1728 | list_del_init(&event->owner_entry); | ||
1729 | mutex_unlock(&event->owner->perf_event_mutex); | ||
1730 | put_task_struct(event->owner); | ||
1731 | |||
1732 | free_event(event); | ||
1733 | |||
1734 | return 0; | ||
1735 | } | ||
1736 | |||
1737 | static int perf_event_read_size(struct perf_event *event) | ||
1738 | { | ||
1739 | int entry = sizeof(u64); /* value */ | ||
1740 | int size = 0; | ||
1741 | int nr = 1; | ||
1742 | |||
1743 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1744 | size += sizeof(u64); | ||
1745 | |||
1746 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1747 | size += sizeof(u64); | ||
1748 | |||
1749 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
1750 | entry += sizeof(u64); | ||
1751 | |||
1752 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
1753 | nr += event->group_leader->nr_siblings; | ||
1754 | size += sizeof(u64); | ||
1755 | } | ||
1756 | |||
1757 | size += entry * nr; | ||
1758 | |||
1759 | return size; | ||
1760 | } | ||
1761 | |||
1762 | static u64 perf_event_read_value(struct perf_event *event) | ||
1763 | { | ||
1764 | struct perf_event *child; | ||
1765 | u64 total = 0; | ||
1766 | |||
1767 | total += perf_event_read(event); | ||
1768 | list_for_each_entry(child, &event->child_list, child_list) | ||
1769 | total += perf_event_read(child); | ||
1770 | |||
1771 | return total; | ||
1772 | } | ||
1773 | |||
1774 | static int perf_event_read_entry(struct perf_event *event, | ||
1775 | u64 read_format, char __user *buf) | ||
1776 | { | ||
1777 | int n = 0, count = 0; | ||
1778 | u64 values[2]; | ||
1779 | |||
1780 | values[n++] = perf_event_read_value(event); | ||
1781 | if (read_format & PERF_FORMAT_ID) | ||
1782 | values[n++] = primary_event_id(event); | ||
1783 | |||
1784 | count = n * sizeof(u64); | ||
1785 | |||
1786 | if (copy_to_user(buf, values, count)) | ||
1787 | return -EFAULT; | ||
1788 | |||
1789 | return count; | ||
1790 | } | ||
1791 | |||
1792 | static int perf_event_read_group(struct perf_event *event, | ||
1793 | u64 read_format, char __user *buf) | ||
1794 | { | ||
1795 | struct perf_event *leader = event->group_leader, *sub; | ||
1796 | int n = 0, size = 0, err = -EFAULT; | ||
1797 | u64 values[3]; | ||
1798 | |||
1799 | values[n++] = 1 + leader->nr_siblings; | ||
1800 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1801 | values[n++] = leader->total_time_enabled + | ||
1802 | atomic64_read(&leader->child_total_time_enabled); | ||
1803 | } | ||
1804 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1805 | values[n++] = leader->total_time_running + | ||
1806 | atomic64_read(&leader->child_total_time_running); | ||
1807 | } | ||
1808 | |||
1809 | size = n * sizeof(u64); | ||
1810 | |||
1811 | if (copy_to_user(buf, values, size)) | ||
1812 | return -EFAULT; | ||
1813 | |||
1814 | err = perf_event_read_entry(leader, read_format, buf + size); | ||
1815 | if (err < 0) | ||
1816 | return err; | ||
1817 | |||
1818 | size += err; | ||
1819 | |||
1820 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
1821 | err = perf_event_read_entry(sub, read_format, | ||
1822 | buf + size); | ||
1823 | if (err < 0) | ||
1824 | return err; | ||
1825 | |||
1826 | size += err; | ||
1827 | } | ||
1828 | |||
1829 | return size; | ||
1830 | } | ||
1831 | |||
1832 | static int perf_event_read_one(struct perf_event *event, | ||
1833 | u64 read_format, char __user *buf) | ||
1834 | { | ||
1835 | u64 values[4]; | ||
1836 | int n = 0; | ||
1837 | |||
1838 | values[n++] = perf_event_read_value(event); | ||
1839 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1840 | values[n++] = event->total_time_enabled + | ||
1841 | atomic64_read(&event->child_total_time_enabled); | ||
1842 | } | ||
1843 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1844 | values[n++] = event->total_time_running + | ||
1845 | atomic64_read(&event->child_total_time_running); | ||
1846 | } | ||
1847 | if (read_format & PERF_FORMAT_ID) | ||
1848 | values[n++] = primary_event_id(event); | ||
1849 | |||
1850 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1851 | return -EFAULT; | ||
1852 | |||
1853 | return n * sizeof(u64); | ||
1854 | } | ||
1855 | |||
1856 | /* | ||
1857 | * Read the performance event - simple non blocking version for now | ||
1858 | */ | ||
1859 | static ssize_t | ||
1860 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
1861 | { | ||
1862 | u64 read_format = event->attr.read_format; | ||
1863 | int ret; | ||
1864 | |||
1865 | /* | ||
1866 | * Return end-of-file for a read on a event that is in | ||
1867 | * error state (i.e. because it was pinned but it couldn't be | ||
1868 | * scheduled on to the CPU at some point). | ||
1869 | */ | ||
1870 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
1871 | return 0; | ||
1872 | |||
1873 | if (count < perf_event_read_size(event)) | ||
1874 | return -ENOSPC; | ||
1875 | |||
1876 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1877 | mutex_lock(&event->child_mutex); | ||
1878 | if (read_format & PERF_FORMAT_GROUP) | ||
1879 | ret = perf_event_read_group(event, read_format, buf); | ||
1880 | else | ||
1881 | ret = perf_event_read_one(event, read_format, buf); | ||
1882 | mutex_unlock(&event->child_mutex); | ||
1883 | |||
1884 | return ret; | ||
1885 | } | ||
1886 | |||
1887 | static ssize_t | ||
1888 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1889 | { | ||
1890 | struct perf_event *event = file->private_data; | ||
1891 | |||
1892 | return perf_read_hw(event, buf, count); | ||
1893 | } | ||
1894 | |||
1895 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1896 | { | ||
1897 | struct perf_event *event = file->private_data; | ||
1898 | struct perf_mmap_data *data; | ||
1899 | unsigned int events = POLL_HUP; | ||
1900 | |||
1901 | rcu_read_lock(); | ||
1902 | data = rcu_dereference(event->data); | ||
1903 | if (data) | ||
1904 | events = atomic_xchg(&data->poll, 0); | ||
1905 | rcu_read_unlock(); | ||
1906 | |||
1907 | poll_wait(file, &event->waitq, wait); | ||
1908 | |||
1909 | return events; | ||
1910 | } | ||
1911 | |||
1912 | static void perf_event_reset(struct perf_event *event) | ||
1913 | { | ||
1914 | (void)perf_event_read(event); | ||
1915 | atomic64_set(&event->count, 0); | ||
1916 | perf_event_update_userpage(event); | ||
1917 | } | ||
1918 | |||
1919 | /* | ||
1920 | * Holding the top-level event's child_mutex means that any | ||
1921 | * descendant process that has inherited this event will block | ||
1922 | * in sync_child_event if it goes to exit, thus satisfying the | ||
1923 | * task existence requirements of perf_event_enable/disable. | ||
1924 | */ | ||
1925 | static void perf_event_for_each_child(struct perf_event *event, | ||
1926 | void (*func)(struct perf_event *)) | ||
1927 | { | ||
1928 | struct perf_event *child; | ||
1929 | |||
1930 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1931 | mutex_lock(&event->child_mutex); | ||
1932 | func(event); | ||
1933 | list_for_each_entry(child, &event->child_list, child_list) | ||
1934 | func(child); | ||
1935 | mutex_unlock(&event->child_mutex); | ||
1936 | } | ||
1937 | |||
1938 | static void perf_event_for_each(struct perf_event *event, | ||
1939 | void (*func)(struct perf_event *)) | ||
1940 | { | ||
1941 | struct perf_event_context *ctx = event->ctx; | ||
1942 | struct perf_event *sibling; | ||
1943 | |||
1944 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1945 | mutex_lock(&ctx->mutex); | ||
1946 | event = event->group_leader; | ||
1947 | |||
1948 | perf_event_for_each_child(event, func); | ||
1949 | func(event); | ||
1950 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
1951 | perf_event_for_each_child(event, func); | ||
1952 | mutex_unlock(&ctx->mutex); | ||
1953 | } | ||
1954 | |||
1955 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
1956 | { | ||
1957 | struct perf_event_context *ctx = event->ctx; | ||
1958 | unsigned long size; | ||
1959 | int ret = 0; | ||
1960 | u64 value; | ||
1961 | |||
1962 | if (!event->attr.sample_period) | ||
1963 | return -EINVAL; | ||
1964 | |||
1965 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1966 | if (size != sizeof(value)) | ||
1967 | return -EFAULT; | ||
1968 | |||
1969 | if (!value) | ||
1970 | return -EINVAL; | ||
1971 | |||
1972 | spin_lock_irq(&ctx->lock); | ||
1973 | if (event->attr.freq) { | ||
1974 | if (value > sysctl_perf_event_sample_rate) { | ||
1975 | ret = -EINVAL; | ||
1976 | goto unlock; | ||
1977 | } | ||
1978 | |||
1979 | event->attr.sample_freq = value; | ||
1980 | } else { | ||
1981 | event->attr.sample_period = value; | ||
1982 | event->hw.sample_period = value; | ||
1983 | } | ||
1984 | unlock: | ||
1985 | spin_unlock_irq(&ctx->lock); | ||
1986 | |||
1987 | return ret; | ||
1988 | } | ||
1989 | |||
1990 | int perf_event_set_output(struct perf_event *event, int output_fd); | ||
1991 | |||
1992 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1993 | { | ||
1994 | struct perf_event *event = file->private_data; | ||
1995 | void (*func)(struct perf_event *); | ||
1996 | u32 flags = arg; | ||
1997 | |||
1998 | switch (cmd) { | ||
1999 | case PERF_EVENT_IOC_ENABLE: | ||
2000 | func = perf_event_enable; | ||
2001 | break; | ||
2002 | case PERF_EVENT_IOC_DISABLE: | ||
2003 | func = perf_event_disable; | ||
2004 | break; | ||
2005 | case PERF_EVENT_IOC_RESET: | ||
2006 | func = perf_event_reset; | ||
2007 | break; | ||
2008 | |||
2009 | case PERF_EVENT_IOC_REFRESH: | ||
2010 | return perf_event_refresh(event, arg); | ||
2011 | |||
2012 | case PERF_EVENT_IOC_PERIOD: | ||
2013 | return perf_event_period(event, (u64 __user *)arg); | ||
2014 | |||
2015 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
2016 | return perf_event_set_output(event, arg); | ||
2017 | |||
2018 | default: | ||
2019 | return -ENOTTY; | ||
2020 | } | ||
2021 | |||
2022 | if (flags & PERF_IOC_FLAG_GROUP) | ||
2023 | perf_event_for_each(event, func); | ||
2024 | else | ||
2025 | perf_event_for_each_child(event, func); | ||
2026 | |||
2027 | return 0; | ||
2028 | } | ||
2029 | |||
2030 | int perf_event_task_enable(void) | ||
2031 | { | ||
2032 | struct perf_event *event; | ||
2033 | |||
2034 | mutex_lock(¤t->perf_event_mutex); | ||
2035 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2036 | perf_event_for_each_child(event, perf_event_enable); | ||
2037 | mutex_unlock(¤t->perf_event_mutex); | ||
2038 | |||
2039 | return 0; | ||
2040 | } | ||
2041 | |||
2042 | int perf_event_task_disable(void) | ||
2043 | { | ||
2044 | struct perf_event *event; | ||
2045 | |||
2046 | mutex_lock(¤t->perf_event_mutex); | ||
2047 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2048 | perf_event_for_each_child(event, perf_event_disable); | ||
2049 | mutex_unlock(¤t->perf_event_mutex); | ||
2050 | |||
2051 | return 0; | ||
2052 | } | ||
2053 | |||
2054 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
2055 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
2056 | #endif | ||
2057 | |||
2058 | static int perf_event_index(struct perf_event *event) | ||
2059 | { | ||
2060 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
2061 | return 0; | ||
2062 | |||
2063 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
2064 | } | ||
2065 | |||
2066 | /* | ||
2067 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
2068 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
2069 | * code calls this from NMI context. | ||
2070 | */ | ||
2071 | void perf_event_update_userpage(struct perf_event *event) | ||
2072 | { | ||
2073 | struct perf_event_mmap_page *userpg; | ||
2074 | struct perf_mmap_data *data; | ||
2075 | |||
2076 | rcu_read_lock(); | ||
2077 | data = rcu_dereference(event->data); | ||
2078 | if (!data) | ||
2079 | goto unlock; | ||
2080 | |||
2081 | userpg = data->user_page; | ||
2082 | |||
2083 | /* | ||
2084 | * Disable preemption so as to not let the corresponding user-space | ||
2085 | * spin too long if we get preempted. | ||
2086 | */ | ||
2087 | preempt_disable(); | ||
2088 | ++userpg->lock; | ||
2089 | barrier(); | ||
2090 | userpg->index = perf_event_index(event); | ||
2091 | userpg->offset = atomic64_read(&event->count); | ||
2092 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
2093 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
2094 | |||
2095 | userpg->time_enabled = event->total_time_enabled + | ||
2096 | atomic64_read(&event->child_total_time_enabled); | ||
2097 | |||
2098 | userpg->time_running = event->total_time_running + | ||
2099 | atomic64_read(&event->child_total_time_running); | ||
2100 | |||
2101 | barrier(); | ||
2102 | ++userpg->lock; | ||
2103 | preempt_enable(); | ||
2104 | unlock: | ||
2105 | rcu_read_unlock(); | ||
2106 | } | ||
2107 | |||
2108 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2109 | { | ||
2110 | struct perf_event *event = vma->vm_file->private_data; | ||
2111 | struct perf_mmap_data *data; | ||
2112 | int ret = VM_FAULT_SIGBUS; | ||
2113 | |||
2114 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2115 | if (vmf->pgoff == 0) | ||
2116 | ret = 0; | ||
2117 | return ret; | ||
2118 | } | ||
2119 | |||
2120 | rcu_read_lock(); | ||
2121 | data = rcu_dereference(event->data); | ||
2122 | if (!data) | ||
2123 | goto unlock; | ||
2124 | |||
2125 | if (vmf->pgoff == 0) { | ||
2126 | vmf->page = virt_to_page(data->user_page); | ||
2127 | } else { | ||
2128 | int nr = vmf->pgoff - 1; | ||
2129 | |||
2130 | if ((unsigned)nr > data->nr_pages) | ||
2131 | goto unlock; | ||
2132 | |||
2133 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
2134 | goto unlock; | ||
2135 | |||
2136 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
2137 | } | ||
2138 | |||
2139 | get_page(vmf->page); | ||
2140 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2141 | vmf->page->index = vmf->pgoff; | ||
2142 | |||
2143 | ret = 0; | ||
2144 | unlock: | ||
2145 | rcu_read_unlock(); | ||
2146 | |||
2147 | return ret; | ||
2148 | } | ||
2149 | |||
2150 | static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2151 | { | ||
2152 | struct perf_mmap_data *data; | ||
2153 | unsigned long size; | ||
2154 | int i; | ||
2155 | |||
2156 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2157 | |||
2158 | size = sizeof(struct perf_mmap_data); | ||
2159 | size += nr_pages * sizeof(void *); | ||
2160 | |||
2161 | data = kzalloc(size, GFP_KERNEL); | ||
2162 | if (!data) | ||
2163 | goto fail; | ||
2164 | |||
2165 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
2166 | if (!data->user_page) | ||
2167 | goto fail_user_page; | ||
2168 | |||
2169 | for (i = 0; i < nr_pages; i++) { | ||
2170 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
2171 | if (!data->data_pages[i]) | ||
2172 | goto fail_data_pages; | ||
2173 | } | ||
2174 | |||
2175 | data->nr_pages = nr_pages; | ||
2176 | atomic_set(&data->lock, -1); | ||
2177 | |||
2178 | if (event->attr.watermark) { | ||
2179 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | ||
2180 | event->attr.wakeup_watermark); | ||
2181 | } | ||
2182 | if (!data->watermark) | ||
2183 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | ||
2184 | |||
2185 | rcu_assign_pointer(event->data, data); | ||
2186 | |||
2187 | return 0; | ||
2188 | |||
2189 | fail_data_pages: | ||
2190 | for (i--; i >= 0; i--) | ||
2191 | free_page((unsigned long)data->data_pages[i]); | ||
2192 | |||
2193 | free_page((unsigned long)data->user_page); | ||
2194 | |||
2195 | fail_user_page: | ||
2196 | kfree(data); | ||
2197 | |||
2198 | fail: | ||
2199 | return -ENOMEM; | ||
2200 | } | ||
2201 | |||
2202 | static void perf_mmap_free_page(unsigned long addr) | ||
2203 | { | ||
2204 | struct page *page = virt_to_page((void *)addr); | ||
2205 | |||
2206 | page->mapping = NULL; | ||
2207 | __free_page(page); | ||
2208 | } | ||
2209 | |||
2210 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
2211 | { | ||
2212 | struct perf_mmap_data *data; | ||
2213 | int i; | ||
2214 | |||
2215 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2216 | |||
2217 | perf_mmap_free_page((unsigned long)data->user_page); | ||
2218 | for (i = 0; i < data->nr_pages; i++) | ||
2219 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
2220 | |||
2221 | kfree(data); | ||
2222 | } | ||
2223 | |||
2224 | static void perf_mmap_data_free(struct perf_event *event) | ||
2225 | { | ||
2226 | struct perf_mmap_data *data = event->data; | ||
2227 | |||
2228 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2229 | |||
2230 | rcu_assign_pointer(event->data, NULL); | ||
2231 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
2232 | } | ||
2233 | |||
2234 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
2235 | { | ||
2236 | struct perf_event *event = vma->vm_file->private_data; | ||
2237 | |||
2238 | atomic_inc(&event->mmap_count); | ||
2239 | } | ||
2240 | |||
2241 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
2242 | { | ||
2243 | struct perf_event *event = vma->vm_file->private_data; | ||
2244 | |||
2245 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2246 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
2247 | struct user_struct *user = current_user(); | ||
2248 | |||
2249 | atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm); | ||
2250 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
2251 | perf_mmap_data_free(event); | ||
2252 | mutex_unlock(&event->mmap_mutex); | ||
2253 | } | ||
2254 | } | ||
2255 | |||
2256 | static struct vm_operations_struct perf_mmap_vmops = { | ||
2257 | .open = perf_mmap_open, | ||
2258 | .close = perf_mmap_close, | ||
2259 | .fault = perf_mmap_fault, | ||
2260 | .page_mkwrite = perf_mmap_fault, | ||
2261 | }; | ||
2262 | |||
2263 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
2264 | { | ||
2265 | struct perf_event *event = file->private_data; | ||
2266 | unsigned long user_locked, user_lock_limit; | ||
2267 | struct user_struct *user = current_user(); | ||
2268 | unsigned long locked, lock_limit; | ||
2269 | unsigned long vma_size; | ||
2270 | unsigned long nr_pages; | ||
2271 | long user_extra, extra; | ||
2272 | int ret = 0; | ||
2273 | |||
2274 | if (!(vma->vm_flags & VM_SHARED)) | ||
2275 | return -EINVAL; | ||
2276 | |||
2277 | vma_size = vma->vm_end - vma->vm_start; | ||
2278 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
2279 | |||
2280 | /* | ||
2281 | * If we have data pages ensure they're a power-of-two number, so we | ||
2282 | * can do bitmasks instead of modulo. | ||
2283 | */ | ||
2284 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
2285 | return -EINVAL; | ||
2286 | |||
2287 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
2288 | return -EINVAL; | ||
2289 | |||
2290 | if (vma->vm_pgoff != 0) | ||
2291 | return -EINVAL; | ||
2292 | |||
2293 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2294 | mutex_lock(&event->mmap_mutex); | ||
2295 | if (event->output) { | ||
2296 | ret = -EINVAL; | ||
2297 | goto unlock; | ||
2298 | } | ||
2299 | |||
2300 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
2301 | if (nr_pages != event->data->nr_pages) | ||
2302 | ret = -EINVAL; | ||
2303 | goto unlock; | ||
2304 | } | ||
2305 | |||
2306 | user_extra = nr_pages + 1; | ||
2307 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
2308 | |||
2309 | /* | ||
2310 | * Increase the limit linearly with more CPUs: | ||
2311 | */ | ||
2312 | user_lock_limit *= num_online_cpus(); | ||
2313 | |||
2314 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
2315 | |||
2316 | extra = 0; | ||
2317 | if (user_locked > user_lock_limit) | ||
2318 | extra = user_locked - user_lock_limit; | ||
2319 | |||
2320 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
2321 | lock_limit >>= PAGE_SHIFT; | ||
2322 | locked = vma->vm_mm->locked_vm + extra; | ||
2323 | |||
2324 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
2325 | !capable(CAP_IPC_LOCK)) { | ||
2326 | ret = -EPERM; | ||
2327 | goto unlock; | ||
2328 | } | ||
2329 | |||
2330 | WARN_ON(event->data); | ||
2331 | ret = perf_mmap_data_alloc(event, nr_pages); | ||
2332 | if (ret) | ||
2333 | goto unlock; | ||
2334 | |||
2335 | atomic_set(&event->mmap_count, 1); | ||
2336 | atomic_long_add(user_extra, &user->locked_vm); | ||
2337 | vma->vm_mm->locked_vm += extra; | ||
2338 | event->data->nr_locked = extra; | ||
2339 | if (vma->vm_flags & VM_WRITE) | ||
2340 | event->data->writable = 1; | ||
2341 | |||
2342 | unlock: | ||
2343 | mutex_unlock(&event->mmap_mutex); | ||
2344 | |||
2345 | vma->vm_flags |= VM_RESERVED; | ||
2346 | vma->vm_ops = &perf_mmap_vmops; | ||
2347 | |||
2348 | return ret; | ||
2349 | } | ||
2350 | |||
2351 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2352 | { | ||
2353 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2354 | struct perf_event *event = filp->private_data; | ||
2355 | int retval; | ||
2356 | |||
2357 | mutex_lock(&inode->i_mutex); | ||
2358 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
2359 | mutex_unlock(&inode->i_mutex); | ||
2360 | |||
2361 | if (retval < 0) | ||
2362 | return retval; | ||
2363 | |||
2364 | return 0; | ||
2365 | } | ||
2366 | |||
2367 | static const struct file_operations perf_fops = { | ||
2368 | .release = perf_release, | ||
2369 | .read = perf_read, | ||
2370 | .poll = perf_poll, | ||
2371 | .unlocked_ioctl = perf_ioctl, | ||
2372 | .compat_ioctl = perf_ioctl, | ||
2373 | .mmap = perf_mmap, | ||
2374 | .fasync = perf_fasync, | ||
2375 | }; | ||
2376 | |||
2377 | /* | ||
2378 | * Perf event wakeup | ||
2379 | * | ||
2380 | * If there's data, ensure we set the poll() state and publish everything | ||
2381 | * to user-space before waking everybody up. | ||
2382 | */ | ||
2383 | |||
2384 | void perf_event_wakeup(struct perf_event *event) | ||
2385 | { | ||
2386 | wake_up_all(&event->waitq); | ||
2387 | |||
2388 | if (event->pending_kill) { | ||
2389 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
2390 | event->pending_kill = 0; | ||
2391 | } | ||
2392 | } | ||
2393 | |||
2394 | /* | ||
2395 | * Pending wakeups | ||
2396 | * | ||
2397 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2398 | * | ||
2399 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2400 | * single linked list and use cmpxchg() to add entries lockless. | ||
2401 | */ | ||
2402 | |||
2403 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
2404 | { | ||
2405 | struct perf_event *event = container_of(entry, | ||
2406 | struct perf_event, pending); | ||
2407 | |||
2408 | if (event->pending_disable) { | ||
2409 | event->pending_disable = 0; | ||
2410 | __perf_event_disable(event); | ||
2411 | } | ||
2412 | |||
2413 | if (event->pending_wakeup) { | ||
2414 | event->pending_wakeup = 0; | ||
2415 | perf_event_wakeup(event); | ||
2416 | } | ||
2417 | } | ||
2418 | |||
2419 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2420 | |||
2421 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2422 | PENDING_TAIL, | ||
2423 | }; | ||
2424 | |||
2425 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2426 | void (*func)(struct perf_pending_entry *)) | ||
2427 | { | ||
2428 | struct perf_pending_entry **head; | ||
2429 | |||
2430 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2431 | return; | ||
2432 | |||
2433 | entry->func = func; | ||
2434 | |||
2435 | head = &get_cpu_var(perf_pending_head); | ||
2436 | |||
2437 | do { | ||
2438 | entry->next = *head; | ||
2439 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2440 | |||
2441 | set_perf_event_pending(); | ||
2442 | |||
2443 | put_cpu_var(perf_pending_head); | ||
2444 | } | ||
2445 | |||
2446 | static int __perf_pending_run(void) | ||
2447 | { | ||
2448 | struct perf_pending_entry *list; | ||
2449 | int nr = 0; | ||
2450 | |||
2451 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2452 | while (list != PENDING_TAIL) { | ||
2453 | void (*func)(struct perf_pending_entry *); | ||
2454 | struct perf_pending_entry *entry = list; | ||
2455 | |||
2456 | list = list->next; | ||
2457 | |||
2458 | func = entry->func; | ||
2459 | entry->next = NULL; | ||
2460 | /* | ||
2461 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2462 | * so that we won't be waiting forever. | ||
2463 | * -- see perf_not_pending(). | ||
2464 | */ | ||
2465 | smp_wmb(); | ||
2466 | |||
2467 | func(entry); | ||
2468 | nr++; | ||
2469 | } | ||
2470 | |||
2471 | return nr; | ||
2472 | } | ||
2473 | |||
2474 | static inline int perf_not_pending(struct perf_event *event) | ||
2475 | { | ||
2476 | /* | ||
2477 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2478 | * need to wait. | ||
2479 | */ | ||
2480 | get_cpu(); | ||
2481 | __perf_pending_run(); | ||
2482 | put_cpu(); | ||
2483 | |||
2484 | /* | ||
2485 | * Ensure we see the proper queue state before going to sleep | ||
2486 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2487 | */ | ||
2488 | smp_rmb(); | ||
2489 | return event->pending.next == NULL; | ||
2490 | } | ||
2491 | |||
2492 | static void perf_pending_sync(struct perf_event *event) | ||
2493 | { | ||
2494 | wait_event(event->waitq, perf_not_pending(event)); | ||
2495 | } | ||
2496 | |||
2497 | void perf_event_do_pending(void) | ||
2498 | { | ||
2499 | __perf_pending_run(); | ||
2500 | } | ||
2501 | |||
2502 | /* | ||
2503 | * Callchain support -- arch specific | ||
2504 | */ | ||
2505 | |||
2506 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2507 | { | ||
2508 | return NULL; | ||
2509 | } | ||
2510 | |||
2511 | /* | ||
2512 | * Output | ||
2513 | */ | ||
2514 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
2515 | unsigned long offset, unsigned long head) | ||
2516 | { | ||
2517 | unsigned long mask; | ||
2518 | |||
2519 | if (!data->writable) | ||
2520 | return true; | ||
2521 | |||
2522 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
2523 | |||
2524 | offset = (offset - tail) & mask; | ||
2525 | head = (head - tail) & mask; | ||
2526 | |||
2527 | if ((int)(head - offset) < 0) | ||
2528 | return false; | ||
2529 | |||
2530 | return true; | ||
2531 | } | ||
2532 | |||
2533 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2534 | { | ||
2535 | atomic_set(&handle->data->poll, POLL_IN); | ||
2536 | |||
2537 | if (handle->nmi) { | ||
2538 | handle->event->pending_wakeup = 1; | ||
2539 | perf_pending_queue(&handle->event->pending, | ||
2540 | perf_pending_event); | ||
2541 | } else | ||
2542 | perf_event_wakeup(handle->event); | ||
2543 | } | ||
2544 | |||
2545 | /* | ||
2546 | * Curious locking construct. | ||
2547 | * | ||
2548 | * We need to ensure a later event_id doesn't publish a head when a former | ||
2549 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
2550 | * cannot fully serialize things. | ||
2551 | * | ||
2552 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2553 | * nesting on a single CPU. | ||
2554 | * | ||
2555 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2556 | * event_id completes. | ||
2557 | */ | ||
2558 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2559 | { | ||
2560 | struct perf_mmap_data *data = handle->data; | ||
2561 | int cpu; | ||
2562 | |||
2563 | handle->locked = 0; | ||
2564 | |||
2565 | local_irq_save(handle->flags); | ||
2566 | cpu = smp_processor_id(); | ||
2567 | |||
2568 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
2569 | return; | ||
2570 | |||
2571 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2572 | cpu_relax(); | ||
2573 | |||
2574 | handle->locked = 1; | ||
2575 | } | ||
2576 | |||
2577 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2578 | { | ||
2579 | struct perf_mmap_data *data = handle->data; | ||
2580 | unsigned long head; | ||
2581 | int cpu; | ||
2582 | |||
2583 | data->done_head = data->head; | ||
2584 | |||
2585 | if (!handle->locked) | ||
2586 | goto out; | ||
2587 | |||
2588 | again: | ||
2589 | /* | ||
2590 | * The xchg implies a full barrier that ensures all writes are done | ||
2591 | * before we publish the new head, matched by a rmb() in userspace when | ||
2592 | * reading this position. | ||
2593 | */ | ||
2594 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2595 | data->user_page->data_head = head; | ||
2596 | |||
2597 | /* | ||
2598 | * NMI can happen here, which means we can miss a done_head update. | ||
2599 | */ | ||
2600 | |||
2601 | cpu = atomic_xchg(&data->lock, -1); | ||
2602 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2603 | |||
2604 | /* | ||
2605 | * Therefore we have to validate we did not indeed do so. | ||
2606 | */ | ||
2607 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2608 | /* | ||
2609 | * Since we had it locked, we can lock it again. | ||
2610 | */ | ||
2611 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2612 | cpu_relax(); | ||
2613 | |||
2614 | goto again; | ||
2615 | } | ||
2616 | |||
2617 | if (atomic_xchg(&data->wakeup, 0)) | ||
2618 | perf_output_wakeup(handle); | ||
2619 | out: | ||
2620 | local_irq_restore(handle->flags); | ||
2621 | } | ||
2622 | |||
2623 | void perf_output_copy(struct perf_output_handle *handle, | ||
2624 | const void *buf, unsigned int len) | ||
2625 | { | ||
2626 | unsigned int pages_mask; | ||
2627 | unsigned int offset; | ||
2628 | unsigned int size; | ||
2629 | void **pages; | ||
2630 | |||
2631 | offset = handle->offset; | ||
2632 | pages_mask = handle->data->nr_pages - 1; | ||
2633 | pages = handle->data->data_pages; | ||
2634 | |||
2635 | do { | ||
2636 | unsigned int page_offset; | ||
2637 | int nr; | ||
2638 | |||
2639 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2640 | page_offset = offset & (PAGE_SIZE - 1); | ||
2641 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
2642 | |||
2643 | memcpy(pages[nr] + page_offset, buf, size); | ||
2644 | |||
2645 | len -= size; | ||
2646 | buf += size; | ||
2647 | offset += size; | ||
2648 | } while (len); | ||
2649 | |||
2650 | handle->offset = offset; | ||
2651 | |||
2652 | /* | ||
2653 | * Check we didn't copy past our reservation window, taking the | ||
2654 | * possible unsigned int wrap into account. | ||
2655 | */ | ||
2656 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2657 | } | ||
2658 | |||
2659 | int perf_output_begin(struct perf_output_handle *handle, | ||
2660 | struct perf_event *event, unsigned int size, | ||
2661 | int nmi, int sample) | ||
2662 | { | ||
2663 | struct perf_event *output_event; | ||
2664 | struct perf_mmap_data *data; | ||
2665 | unsigned long tail, offset, head; | ||
2666 | int have_lost; | ||
2667 | struct { | ||
2668 | struct perf_event_header header; | ||
2669 | u64 id; | ||
2670 | u64 lost; | ||
2671 | } lost_event; | ||
2672 | |||
2673 | rcu_read_lock(); | ||
2674 | /* | ||
2675 | * For inherited events we send all the output towards the parent. | ||
2676 | */ | ||
2677 | if (event->parent) | ||
2678 | event = event->parent; | ||
2679 | |||
2680 | output_event = rcu_dereference(event->output); | ||
2681 | if (output_event) | ||
2682 | event = output_event; | ||
2683 | |||
2684 | data = rcu_dereference(event->data); | ||
2685 | if (!data) | ||
2686 | goto out; | ||
2687 | |||
2688 | handle->data = data; | ||
2689 | handle->event = event; | ||
2690 | handle->nmi = nmi; | ||
2691 | handle->sample = sample; | ||
2692 | |||
2693 | if (!data->nr_pages) | ||
2694 | goto fail; | ||
2695 | |||
2696 | have_lost = atomic_read(&data->lost); | ||
2697 | if (have_lost) | ||
2698 | size += sizeof(lost_event); | ||
2699 | |||
2700 | perf_output_lock(handle); | ||
2701 | |||
2702 | do { | ||
2703 | /* | ||
2704 | * Userspace could choose to issue a mb() before updating the | ||
2705 | * tail pointer. So that all reads will be completed before the | ||
2706 | * write is issued. | ||
2707 | */ | ||
2708 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
2709 | smp_rmb(); | ||
2710 | offset = head = atomic_long_read(&data->head); | ||
2711 | head += size; | ||
2712 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
2713 | goto fail; | ||
2714 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2715 | |||
2716 | handle->offset = offset; | ||
2717 | handle->head = head; | ||
2718 | |||
2719 | if (head - tail > data->watermark) | ||
2720 | atomic_set(&data->wakeup, 1); | ||
2721 | |||
2722 | if (have_lost) { | ||
2723 | lost_event.header.type = PERF_RECORD_LOST; | ||
2724 | lost_event.header.misc = 0; | ||
2725 | lost_event.header.size = sizeof(lost_event); | ||
2726 | lost_event.id = event->id; | ||
2727 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
2728 | |||
2729 | perf_output_put(handle, lost_event); | ||
2730 | } | ||
2731 | |||
2732 | return 0; | ||
2733 | |||
2734 | fail: | ||
2735 | atomic_inc(&data->lost); | ||
2736 | perf_output_unlock(handle); | ||
2737 | out: | ||
2738 | rcu_read_unlock(); | ||
2739 | |||
2740 | return -ENOSPC; | ||
2741 | } | ||
2742 | |||
2743 | void perf_output_end(struct perf_output_handle *handle) | ||
2744 | { | ||
2745 | struct perf_event *event = handle->event; | ||
2746 | struct perf_mmap_data *data = handle->data; | ||
2747 | |||
2748 | int wakeup_events = event->attr.wakeup_events; | ||
2749 | |||
2750 | if (handle->sample && wakeup_events) { | ||
2751 | int events = atomic_inc_return(&data->events); | ||
2752 | if (events >= wakeup_events) { | ||
2753 | atomic_sub(wakeup_events, &data->events); | ||
2754 | atomic_set(&data->wakeup, 1); | ||
2755 | } | ||
2756 | } | ||
2757 | |||
2758 | perf_output_unlock(handle); | ||
2759 | rcu_read_unlock(); | ||
2760 | } | ||
2761 | |||
2762 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
2763 | { | ||
2764 | /* | ||
2765 | * only top level events have the pid namespace they were created in | ||
2766 | */ | ||
2767 | if (event->parent) | ||
2768 | event = event->parent; | ||
2769 | |||
2770 | return task_tgid_nr_ns(p, event->ns); | ||
2771 | } | ||
2772 | |||
2773 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
2774 | { | ||
2775 | /* | ||
2776 | * only top level events have the pid namespace they were created in | ||
2777 | */ | ||
2778 | if (event->parent) | ||
2779 | event = event->parent; | ||
2780 | |||
2781 | return task_pid_nr_ns(p, event->ns); | ||
2782 | } | ||
2783 | |||
2784 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
2785 | struct perf_event *event) | ||
2786 | { | ||
2787 | u64 read_format = event->attr.read_format; | ||
2788 | u64 values[4]; | ||
2789 | int n = 0; | ||
2790 | |||
2791 | values[n++] = atomic64_read(&event->count); | ||
2792 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2793 | values[n++] = event->total_time_enabled + | ||
2794 | atomic64_read(&event->child_total_time_enabled); | ||
2795 | } | ||
2796 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2797 | values[n++] = event->total_time_running + | ||
2798 | atomic64_read(&event->child_total_time_running); | ||
2799 | } | ||
2800 | if (read_format & PERF_FORMAT_ID) | ||
2801 | values[n++] = primary_event_id(event); | ||
2802 | |||
2803 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2804 | } | ||
2805 | |||
2806 | /* | ||
2807 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
2808 | */ | ||
2809 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2810 | struct perf_event *event) | ||
2811 | { | ||
2812 | struct perf_event *leader = event->group_leader, *sub; | ||
2813 | u64 read_format = event->attr.read_format; | ||
2814 | u64 values[5]; | ||
2815 | int n = 0; | ||
2816 | |||
2817 | values[n++] = 1 + leader->nr_siblings; | ||
2818 | |||
2819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2820 | values[n++] = leader->total_time_enabled; | ||
2821 | |||
2822 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2823 | values[n++] = leader->total_time_running; | ||
2824 | |||
2825 | if (leader != event) | ||
2826 | leader->pmu->read(leader); | ||
2827 | |||
2828 | values[n++] = atomic64_read(&leader->count); | ||
2829 | if (read_format & PERF_FORMAT_ID) | ||
2830 | values[n++] = primary_event_id(leader); | ||
2831 | |||
2832 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2833 | |||
2834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
2835 | n = 0; | ||
2836 | |||
2837 | if (sub != event) | ||
2838 | sub->pmu->read(sub); | ||
2839 | |||
2840 | values[n++] = atomic64_read(&sub->count); | ||
2841 | if (read_format & PERF_FORMAT_ID) | ||
2842 | values[n++] = primary_event_id(sub); | ||
2843 | |||
2844 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2845 | } | ||
2846 | } | ||
2847 | |||
2848 | static void perf_output_read(struct perf_output_handle *handle, | ||
2849 | struct perf_event *event) | ||
2850 | { | ||
2851 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
2852 | perf_output_read_group(handle, event); | ||
2853 | else | ||
2854 | perf_output_read_one(handle, event); | ||
2855 | } | ||
2856 | |||
2857 | void perf_output_sample(struct perf_output_handle *handle, | ||
2858 | struct perf_event_header *header, | ||
2859 | struct perf_sample_data *data, | ||
2860 | struct perf_event *event) | ||
2861 | { | ||
2862 | u64 sample_type = data->type; | ||
2863 | |||
2864 | perf_output_put(handle, *header); | ||
2865 | |||
2866 | if (sample_type & PERF_SAMPLE_IP) | ||
2867 | perf_output_put(handle, data->ip); | ||
2868 | |||
2869 | if (sample_type & PERF_SAMPLE_TID) | ||
2870 | perf_output_put(handle, data->tid_entry); | ||
2871 | |||
2872 | if (sample_type & PERF_SAMPLE_TIME) | ||
2873 | perf_output_put(handle, data->time); | ||
2874 | |||
2875 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2876 | perf_output_put(handle, data->addr); | ||
2877 | |||
2878 | if (sample_type & PERF_SAMPLE_ID) | ||
2879 | perf_output_put(handle, data->id); | ||
2880 | |||
2881 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2882 | perf_output_put(handle, data->stream_id); | ||
2883 | |||
2884 | if (sample_type & PERF_SAMPLE_CPU) | ||
2885 | perf_output_put(handle, data->cpu_entry); | ||
2886 | |||
2887 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2888 | perf_output_put(handle, data->period); | ||
2889 | |||
2890 | if (sample_type & PERF_SAMPLE_READ) | ||
2891 | perf_output_read(handle, event); | ||
2892 | |||
2893 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2894 | if (data->callchain) { | ||
2895 | int size = 1; | ||
2896 | |||
2897 | if (data->callchain) | ||
2898 | size += data->callchain->nr; | ||
2899 | |||
2900 | size *= sizeof(u64); | ||
2901 | |||
2902 | perf_output_copy(handle, data->callchain, size); | ||
2903 | } else { | ||
2904 | u64 nr = 0; | ||
2905 | perf_output_put(handle, nr); | ||
2906 | } | ||
2907 | } | ||
2908 | |||
2909 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2910 | if (data->raw) { | ||
2911 | perf_output_put(handle, data->raw->size); | ||
2912 | perf_output_copy(handle, data->raw->data, | ||
2913 | data->raw->size); | ||
2914 | } else { | ||
2915 | struct { | ||
2916 | u32 size; | ||
2917 | u32 data; | ||
2918 | } raw = { | ||
2919 | .size = sizeof(u32), | ||
2920 | .data = 0, | ||
2921 | }; | ||
2922 | perf_output_put(handle, raw); | ||
2923 | } | ||
2924 | } | ||
2925 | } | ||
2926 | |||
2927 | void perf_prepare_sample(struct perf_event_header *header, | ||
2928 | struct perf_sample_data *data, | ||
2929 | struct perf_event *event, | ||
2930 | struct pt_regs *regs) | ||
2931 | { | ||
2932 | u64 sample_type = event->attr.sample_type; | ||
2933 | |||
2934 | data->type = sample_type; | ||
2935 | |||
2936 | header->type = PERF_RECORD_SAMPLE; | ||
2937 | header->size = sizeof(*header); | ||
2938 | |||
2939 | header->misc = 0; | ||
2940 | header->misc |= perf_misc_flags(regs); | ||
2941 | |||
2942 | if (sample_type & PERF_SAMPLE_IP) { | ||
2943 | data->ip = perf_instruction_pointer(regs); | ||
2944 | |||
2945 | header->size += sizeof(data->ip); | ||
2946 | } | ||
2947 | |||
2948 | if (sample_type & PERF_SAMPLE_TID) { | ||
2949 | /* namespace issues */ | ||
2950 | data->tid_entry.pid = perf_event_pid(event, current); | ||
2951 | data->tid_entry.tid = perf_event_tid(event, current); | ||
2952 | |||
2953 | header->size += sizeof(data->tid_entry); | ||
2954 | } | ||
2955 | |||
2956 | if (sample_type & PERF_SAMPLE_TIME) { | ||
2957 | data->time = perf_clock(); | ||
2958 | |||
2959 | header->size += sizeof(data->time); | ||
2960 | } | ||
2961 | |||
2962 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2963 | header->size += sizeof(data->addr); | ||
2964 | |||
2965 | if (sample_type & PERF_SAMPLE_ID) { | ||
2966 | data->id = primary_event_id(event); | ||
2967 | |||
2968 | header->size += sizeof(data->id); | ||
2969 | } | ||
2970 | |||
2971 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
2972 | data->stream_id = event->id; | ||
2973 | |||
2974 | header->size += sizeof(data->stream_id); | ||
2975 | } | ||
2976 | |||
2977 | if (sample_type & PERF_SAMPLE_CPU) { | ||
2978 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
2979 | data->cpu_entry.reserved = 0; | ||
2980 | |||
2981 | header->size += sizeof(data->cpu_entry); | ||
2982 | } | ||
2983 | |||
2984 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2985 | header->size += sizeof(data->period); | ||
2986 | |||
2987 | if (sample_type & PERF_SAMPLE_READ) | ||
2988 | header->size += perf_event_read_size(event); | ||
2989 | |||
2990 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2991 | int size = 1; | ||
2992 | |||
2993 | data->callchain = perf_callchain(regs); | ||
2994 | |||
2995 | if (data->callchain) | ||
2996 | size += data->callchain->nr; | ||
2997 | |||
2998 | header->size += size * sizeof(u64); | ||
2999 | } | ||
3000 | |||
3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3002 | int size = sizeof(u32); | ||
3003 | |||
3004 | if (data->raw) | ||
3005 | size += data->raw->size; | ||
3006 | else | ||
3007 | size += sizeof(u32); | ||
3008 | |||
3009 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
3010 | header->size += size; | ||
3011 | } | ||
3012 | } | ||
3013 | |||
3014 | static void perf_event_output(struct perf_event *event, int nmi, | ||
3015 | struct perf_sample_data *data, | ||
3016 | struct pt_regs *regs) | ||
3017 | { | ||
3018 | struct perf_output_handle handle; | ||
3019 | struct perf_event_header header; | ||
3020 | |||
3021 | perf_prepare_sample(&header, data, event, regs); | ||
3022 | |||
3023 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
3024 | return; | ||
3025 | |||
3026 | perf_output_sample(&handle, &header, data, event); | ||
3027 | |||
3028 | perf_output_end(&handle); | ||
3029 | } | ||
3030 | |||
3031 | /* | ||
3032 | * read event_id | ||
3033 | */ | ||
3034 | |||
3035 | struct perf_read_event { | ||
3036 | struct perf_event_header header; | ||
3037 | |||
3038 | u32 pid; | ||
3039 | u32 tid; | ||
3040 | }; | ||
3041 | |||
3042 | static void | ||
3043 | perf_event_read_event(struct perf_event *event, | ||
3044 | struct task_struct *task) | ||
3045 | { | ||
3046 | struct perf_output_handle handle; | ||
3047 | struct perf_read_event read_event = { | ||
3048 | .header = { | ||
3049 | .type = PERF_RECORD_READ, | ||
3050 | .misc = 0, | ||
3051 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
3052 | }, | ||
3053 | .pid = perf_event_pid(event, task), | ||
3054 | .tid = perf_event_tid(event, task), | ||
3055 | }; | ||
3056 | int ret; | ||
3057 | |||
3058 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
3059 | if (ret) | ||
3060 | return; | ||
3061 | |||
3062 | perf_output_put(&handle, read_event); | ||
3063 | perf_output_read(&handle, event); | ||
3064 | |||
3065 | perf_output_end(&handle); | ||
3066 | } | ||
3067 | |||
3068 | /* | ||
3069 | * task tracking -- fork/exit | ||
3070 | * | ||
3071 | * enabled by: attr.comm | attr.mmap | attr.task | ||
3072 | */ | ||
3073 | |||
3074 | struct perf_task_event { | ||
3075 | struct task_struct *task; | ||
3076 | struct perf_event_context *task_ctx; | ||
3077 | |||
3078 | struct { | ||
3079 | struct perf_event_header header; | ||
3080 | |||
3081 | u32 pid; | ||
3082 | u32 ppid; | ||
3083 | u32 tid; | ||
3084 | u32 ptid; | ||
3085 | u64 time; | ||
3086 | } event_id; | ||
3087 | }; | ||
3088 | |||
3089 | static void perf_event_task_output(struct perf_event *event, | ||
3090 | struct perf_task_event *task_event) | ||
3091 | { | ||
3092 | struct perf_output_handle handle; | ||
3093 | int size; | ||
3094 | struct task_struct *task = task_event->task; | ||
3095 | int ret; | ||
3096 | |||
3097 | size = task_event->event_id.header.size; | ||
3098 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3099 | |||
3100 | if (ret) | ||
3101 | return; | ||
3102 | |||
3103 | task_event->event_id.pid = perf_event_pid(event, task); | ||
3104 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
3105 | |||
3106 | task_event->event_id.tid = perf_event_tid(event, task); | ||
3107 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
3108 | |||
3109 | task_event->event_id.time = perf_clock(); | ||
3110 | |||
3111 | perf_output_put(&handle, task_event->event_id); | ||
3112 | |||
3113 | perf_output_end(&handle); | ||
3114 | } | ||
3115 | |||
3116 | static int perf_event_task_match(struct perf_event *event) | ||
3117 | { | ||
3118 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
3119 | return 1; | ||
3120 | |||
3121 | return 0; | ||
3122 | } | ||
3123 | |||
3124 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
3125 | struct perf_task_event *task_event) | ||
3126 | { | ||
3127 | struct perf_event *event; | ||
3128 | |||
3129 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3130 | return; | ||
3131 | |||
3132 | rcu_read_lock(); | ||
3133 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3134 | if (perf_event_task_match(event)) | ||
3135 | perf_event_task_output(event, task_event); | ||
3136 | } | ||
3137 | rcu_read_unlock(); | ||
3138 | } | ||
3139 | |||
3140 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
3141 | { | ||
3142 | struct perf_cpu_context *cpuctx; | ||
3143 | struct perf_event_context *ctx = task_event->task_ctx; | ||
3144 | |||
3145 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3146 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
3147 | put_cpu_var(perf_cpu_context); | ||
3148 | |||
3149 | rcu_read_lock(); | ||
3150 | if (!ctx) | ||
3151 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
3152 | if (ctx) | ||
3153 | perf_event_task_ctx(ctx, task_event); | ||
3154 | rcu_read_unlock(); | ||
3155 | } | ||
3156 | |||
3157 | static void perf_event_task(struct task_struct *task, | ||
3158 | struct perf_event_context *task_ctx, | ||
3159 | int new) | ||
3160 | { | ||
3161 | struct perf_task_event task_event; | ||
3162 | |||
3163 | if (!atomic_read(&nr_comm_events) && | ||
3164 | !atomic_read(&nr_mmap_events) && | ||
3165 | !atomic_read(&nr_task_events)) | ||
3166 | return; | ||
3167 | |||
3168 | task_event = (struct perf_task_event){ | ||
3169 | .task = task, | ||
3170 | .task_ctx = task_ctx, | ||
3171 | .event_id = { | ||
3172 | .header = { | ||
3173 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
3174 | .misc = 0, | ||
3175 | .size = sizeof(task_event.event_id), | ||
3176 | }, | ||
3177 | /* .pid */ | ||
3178 | /* .ppid */ | ||
3179 | /* .tid */ | ||
3180 | /* .ptid */ | ||
3181 | }, | ||
3182 | }; | ||
3183 | |||
3184 | perf_event_task_event(&task_event); | ||
3185 | } | ||
3186 | |||
3187 | void perf_event_fork(struct task_struct *task) | ||
3188 | { | ||
3189 | perf_event_task(task, NULL, 1); | ||
3190 | } | ||
3191 | |||
3192 | /* | ||
3193 | * comm tracking | ||
3194 | */ | ||
3195 | |||
3196 | struct perf_comm_event { | ||
3197 | struct task_struct *task; | ||
3198 | char *comm; | ||
3199 | int comm_size; | ||
3200 | |||
3201 | struct { | ||
3202 | struct perf_event_header header; | ||
3203 | |||
3204 | u32 pid; | ||
3205 | u32 tid; | ||
3206 | } event_id; | ||
3207 | }; | ||
3208 | |||
3209 | static void perf_event_comm_output(struct perf_event *event, | ||
3210 | struct perf_comm_event *comm_event) | ||
3211 | { | ||
3212 | struct perf_output_handle handle; | ||
3213 | int size = comm_event->event_id.header.size; | ||
3214 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3215 | |||
3216 | if (ret) | ||
3217 | return; | ||
3218 | |||
3219 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
3220 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
3221 | |||
3222 | perf_output_put(&handle, comm_event->event_id); | ||
3223 | perf_output_copy(&handle, comm_event->comm, | ||
3224 | comm_event->comm_size); | ||
3225 | perf_output_end(&handle); | ||
3226 | } | ||
3227 | |||
3228 | static int perf_event_comm_match(struct perf_event *event) | ||
3229 | { | ||
3230 | if (event->attr.comm) | ||
3231 | return 1; | ||
3232 | |||
3233 | return 0; | ||
3234 | } | ||
3235 | |||
3236 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
3237 | struct perf_comm_event *comm_event) | ||
3238 | { | ||
3239 | struct perf_event *event; | ||
3240 | |||
3241 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3242 | return; | ||
3243 | |||
3244 | rcu_read_lock(); | ||
3245 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3246 | if (perf_event_comm_match(event)) | ||
3247 | perf_event_comm_output(event, comm_event); | ||
3248 | } | ||
3249 | rcu_read_unlock(); | ||
3250 | } | ||
3251 | |||
3252 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
3253 | { | ||
3254 | struct perf_cpu_context *cpuctx; | ||
3255 | struct perf_event_context *ctx; | ||
3256 | unsigned int size; | ||
3257 | char comm[TASK_COMM_LEN]; | ||
3258 | |||
3259 | memset(comm, 0, sizeof(comm)); | ||
3260 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
3261 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
3262 | |||
3263 | comm_event->comm = comm; | ||
3264 | comm_event->comm_size = size; | ||
3265 | |||
3266 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
3267 | |||
3268 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3269 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
3270 | put_cpu_var(perf_cpu_context); | ||
3271 | |||
3272 | rcu_read_lock(); | ||
3273 | /* | ||
3274 | * doesn't really matter which of the child contexts the | ||
3275 | * events ends up in. | ||
3276 | */ | ||
3277 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3278 | if (ctx) | ||
3279 | perf_event_comm_ctx(ctx, comm_event); | ||
3280 | rcu_read_unlock(); | ||
3281 | } | ||
3282 | |||
3283 | void perf_event_comm(struct task_struct *task) | ||
3284 | { | ||
3285 | struct perf_comm_event comm_event; | ||
3286 | |||
3287 | if (task->perf_event_ctxp) | ||
3288 | perf_event_enable_on_exec(task); | ||
3289 | |||
3290 | if (!atomic_read(&nr_comm_events)) | ||
3291 | return; | ||
3292 | |||
3293 | comm_event = (struct perf_comm_event){ | ||
3294 | .task = task, | ||
3295 | /* .comm */ | ||
3296 | /* .comm_size */ | ||
3297 | .event_id = { | ||
3298 | .header = { | ||
3299 | .type = PERF_RECORD_COMM, | ||
3300 | .misc = 0, | ||
3301 | /* .size */ | ||
3302 | }, | ||
3303 | /* .pid */ | ||
3304 | /* .tid */ | ||
3305 | }, | ||
3306 | }; | ||
3307 | |||
3308 | perf_event_comm_event(&comm_event); | ||
3309 | } | ||
3310 | |||
3311 | /* | ||
3312 | * mmap tracking | ||
3313 | */ | ||
3314 | |||
3315 | struct perf_mmap_event { | ||
3316 | struct vm_area_struct *vma; | ||
3317 | |||
3318 | const char *file_name; | ||
3319 | int file_size; | ||
3320 | |||
3321 | struct { | ||
3322 | struct perf_event_header header; | ||
3323 | |||
3324 | u32 pid; | ||
3325 | u32 tid; | ||
3326 | u64 start; | ||
3327 | u64 len; | ||
3328 | u64 pgoff; | ||
3329 | } event_id; | ||
3330 | }; | ||
3331 | |||
3332 | static void perf_event_mmap_output(struct perf_event *event, | ||
3333 | struct perf_mmap_event *mmap_event) | ||
3334 | { | ||
3335 | struct perf_output_handle handle; | ||
3336 | int size = mmap_event->event_id.header.size; | ||
3337 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3338 | |||
3339 | if (ret) | ||
3340 | return; | ||
3341 | |||
3342 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
3343 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
3344 | |||
3345 | perf_output_put(&handle, mmap_event->event_id); | ||
3346 | perf_output_copy(&handle, mmap_event->file_name, | ||
3347 | mmap_event->file_size); | ||
3348 | perf_output_end(&handle); | ||
3349 | } | ||
3350 | |||
3351 | static int perf_event_mmap_match(struct perf_event *event, | ||
3352 | struct perf_mmap_event *mmap_event) | ||
3353 | { | ||
3354 | if (event->attr.mmap) | ||
3355 | return 1; | ||
3356 | |||
3357 | return 0; | ||
3358 | } | ||
3359 | |||
3360 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
3361 | struct perf_mmap_event *mmap_event) | ||
3362 | { | ||
3363 | struct perf_event *event; | ||
3364 | |||
3365 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3366 | return; | ||
3367 | |||
3368 | rcu_read_lock(); | ||
3369 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3370 | if (perf_event_mmap_match(event, mmap_event)) | ||
3371 | perf_event_mmap_output(event, mmap_event); | ||
3372 | } | ||
3373 | rcu_read_unlock(); | ||
3374 | } | ||
3375 | |||
3376 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
3377 | { | ||
3378 | struct perf_cpu_context *cpuctx; | ||
3379 | struct perf_event_context *ctx; | ||
3380 | struct vm_area_struct *vma = mmap_event->vma; | ||
3381 | struct file *file = vma->vm_file; | ||
3382 | unsigned int size; | ||
3383 | char tmp[16]; | ||
3384 | char *buf = NULL; | ||
3385 | const char *name; | ||
3386 | |||
3387 | memset(tmp, 0, sizeof(tmp)); | ||
3388 | |||
3389 | if (file) { | ||
3390 | /* | ||
3391 | * d_path works from the end of the buffer backwards, so we | ||
3392 | * need to add enough zero bytes after the string to handle | ||
3393 | * the 64bit alignment we do later. | ||
3394 | */ | ||
3395 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3396 | if (!buf) { | ||
3397 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
3398 | goto got_name; | ||
3399 | } | ||
3400 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
3401 | if (IS_ERR(name)) { | ||
3402 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
3403 | goto got_name; | ||
3404 | } | ||
3405 | } else { | ||
3406 | if (arch_vma_name(mmap_event->vma)) { | ||
3407 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
3408 | sizeof(tmp)); | ||
3409 | goto got_name; | ||
3410 | } | ||
3411 | |||
3412 | if (!vma->vm_mm) { | ||
3413 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
3414 | goto got_name; | ||
3415 | } | ||
3416 | |||
3417 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
3418 | goto got_name; | ||
3419 | } | ||
3420 | |||
3421 | got_name: | ||
3422 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
3423 | |||
3424 | mmap_event->file_name = name; | ||
3425 | mmap_event->file_size = size; | ||
3426 | |||
3427 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
3428 | |||
3429 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3430 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
3431 | put_cpu_var(perf_cpu_context); | ||
3432 | |||
3433 | rcu_read_lock(); | ||
3434 | /* | ||
3435 | * doesn't really matter which of the child contexts the | ||
3436 | * events ends up in. | ||
3437 | */ | ||
3438 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3439 | if (ctx) | ||
3440 | perf_event_mmap_ctx(ctx, mmap_event); | ||
3441 | rcu_read_unlock(); | ||
3442 | |||
3443 | kfree(buf); | ||
3444 | } | ||
3445 | |||
3446 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
3447 | { | ||
3448 | struct perf_mmap_event mmap_event; | ||
3449 | |||
3450 | if (!atomic_read(&nr_mmap_events)) | ||
3451 | return; | ||
3452 | |||
3453 | mmap_event = (struct perf_mmap_event){ | ||
3454 | .vma = vma, | ||
3455 | /* .file_name */ | ||
3456 | /* .file_size */ | ||
3457 | .event_id = { | ||
3458 | .header = { | ||
3459 | .type = PERF_RECORD_MMAP, | ||
3460 | .misc = 0, | ||
3461 | /* .size */ | ||
3462 | }, | ||
3463 | /* .pid */ | ||
3464 | /* .tid */ | ||
3465 | .start = vma->vm_start, | ||
3466 | .len = vma->vm_end - vma->vm_start, | ||
3467 | .pgoff = vma->vm_pgoff, | ||
3468 | }, | ||
3469 | }; | ||
3470 | |||
3471 | perf_event_mmap_event(&mmap_event); | ||
3472 | } | ||
3473 | |||
3474 | /* | ||
3475 | * IRQ throttle logging | ||
3476 | */ | ||
3477 | |||
3478 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
3479 | { | ||
3480 | struct perf_output_handle handle; | ||
3481 | int ret; | ||
3482 | |||
3483 | struct { | ||
3484 | struct perf_event_header header; | ||
3485 | u64 time; | ||
3486 | u64 id; | ||
3487 | u64 stream_id; | ||
3488 | } throttle_event = { | ||
3489 | .header = { | ||
3490 | .type = PERF_RECORD_THROTTLE, | ||
3491 | .misc = 0, | ||
3492 | .size = sizeof(throttle_event), | ||
3493 | }, | ||
3494 | .time = perf_clock(), | ||
3495 | .id = primary_event_id(event), | ||
3496 | .stream_id = event->id, | ||
3497 | }; | ||
3498 | |||
3499 | if (enable) | ||
3500 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
3501 | |||
3502 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
3503 | if (ret) | ||
3504 | return; | ||
3505 | |||
3506 | perf_output_put(&handle, throttle_event); | ||
3507 | perf_output_end(&handle); | ||
3508 | } | ||
3509 | |||
3510 | /* | ||
3511 | * Generic event overflow handling, sampling. | ||
3512 | */ | ||
3513 | |||
3514 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
3515 | int throttle, struct perf_sample_data *data, | ||
3516 | struct pt_regs *regs) | ||
3517 | { | ||
3518 | int events = atomic_read(&event->event_limit); | ||
3519 | struct hw_perf_event *hwc = &event->hw; | ||
3520 | int ret = 0; | ||
3521 | |||
3522 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
3523 | |||
3524 | if (!throttle) { | ||
3525 | hwc->interrupts++; | ||
3526 | } else { | ||
3527 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
3528 | hwc->interrupts++; | ||
3529 | if (HZ * hwc->interrupts > | ||
3530 | (u64)sysctl_perf_event_sample_rate) { | ||
3531 | hwc->interrupts = MAX_INTERRUPTS; | ||
3532 | perf_log_throttle(event, 0); | ||
3533 | ret = 1; | ||
3534 | } | ||
3535 | } else { | ||
3536 | /* | ||
3537 | * Keep re-disabling events even though on the previous | ||
3538 | * pass we disabled it - just in case we raced with a | ||
3539 | * sched-in and the event got enabled again: | ||
3540 | */ | ||
3541 | ret = 1; | ||
3542 | } | ||
3543 | } | ||
3544 | |||
3545 | if (event->attr.freq) { | ||
3546 | u64 now = perf_clock(); | ||
3547 | s64 delta = now - hwc->freq_stamp; | ||
3548 | |||
3549 | hwc->freq_stamp = now; | ||
3550 | |||
3551 | if (delta > 0 && delta < TICK_NSEC) | ||
3552 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
3553 | } | ||
3554 | |||
3555 | /* | ||
3556 | * XXX event_limit might not quite work as expected on inherited | ||
3557 | * events | ||
3558 | */ | ||
3559 | |||
3560 | event->pending_kill = POLL_IN; | ||
3561 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
3562 | ret = 1; | ||
3563 | event->pending_kill = POLL_HUP; | ||
3564 | if (nmi) { | ||
3565 | event->pending_disable = 1; | ||
3566 | perf_pending_queue(&event->pending, | ||
3567 | perf_pending_event); | ||
3568 | } else | ||
3569 | perf_event_disable(event); | ||
3570 | } | ||
3571 | |||
3572 | perf_event_output(event, nmi, data, regs); | ||
3573 | return ret; | ||
3574 | } | ||
3575 | |||
3576 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
3577 | struct perf_sample_data *data, | ||
3578 | struct pt_regs *regs) | ||
3579 | { | ||
3580 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
3581 | } | ||
3582 | |||
3583 | /* | ||
3584 | * Generic software event infrastructure | ||
3585 | */ | ||
3586 | |||
3587 | /* | ||
3588 | * We directly increment event->count and keep a second value in | ||
3589 | * event->hw.period_left to count intervals. This period event | ||
3590 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3591 | * sign as trigger. | ||
3592 | */ | ||
3593 | |||
3594 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
3595 | { | ||
3596 | struct hw_perf_event *hwc = &event->hw; | ||
3597 | u64 period = hwc->last_period; | ||
3598 | u64 nr, offset; | ||
3599 | s64 old, val; | ||
3600 | |||
3601 | hwc->last_period = hwc->sample_period; | ||
3602 | |||
3603 | again: | ||
3604 | old = val = atomic64_read(&hwc->period_left); | ||
3605 | if (val < 0) | ||
3606 | return 0; | ||
3607 | |||
3608 | nr = div64_u64(period + val, period); | ||
3609 | offset = nr * period; | ||
3610 | val -= offset; | ||
3611 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3612 | goto again; | ||
3613 | |||
3614 | return nr; | ||
3615 | } | ||
3616 | |||
3617 | static void perf_swevent_overflow(struct perf_event *event, | ||
3618 | int nmi, struct perf_sample_data *data, | ||
3619 | struct pt_regs *regs) | ||
3620 | { | ||
3621 | struct hw_perf_event *hwc = &event->hw; | ||
3622 | int throttle = 0; | ||
3623 | u64 overflow; | ||
3624 | |||
3625 | data->period = event->hw.last_period; | ||
3626 | overflow = perf_swevent_set_period(event); | ||
3627 | |||
3628 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
3629 | return; | ||
3630 | |||
3631 | for (; overflow; overflow--) { | ||
3632 | if (__perf_event_overflow(event, nmi, throttle, | ||
3633 | data, regs)) { | ||
3634 | /* | ||
3635 | * We inhibit the overflow from happening when | ||
3636 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3637 | */ | ||
3638 | break; | ||
3639 | } | ||
3640 | throttle = 1; | ||
3641 | } | ||
3642 | } | ||
3643 | |||
3644 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
3645 | { | ||
3646 | /* | ||
3647 | * Nothing to do, we already reset hwc->interrupts. | ||
3648 | */ | ||
3649 | } | ||
3650 | |||
3651 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
3652 | int nmi, struct perf_sample_data *data, | ||
3653 | struct pt_regs *regs) | ||
3654 | { | ||
3655 | struct hw_perf_event *hwc = &event->hw; | ||
3656 | |||
3657 | atomic64_add(nr, &event->count); | ||
3658 | |||
3659 | if (!hwc->sample_period) | ||
3660 | return; | ||
3661 | |||
3662 | if (!regs) | ||
3663 | return; | ||
3664 | |||
3665 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
3666 | perf_swevent_overflow(event, nmi, data, regs); | ||
3667 | } | ||
3668 | |||
3669 | static int perf_swevent_is_counting(struct perf_event *event) | ||
3670 | { | ||
3671 | /* | ||
3672 | * The event is active, we're good! | ||
3673 | */ | ||
3674 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
3675 | return 1; | ||
3676 | |||
3677 | /* | ||
3678 | * The event is off/error, not counting. | ||
3679 | */ | ||
3680 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
3681 | return 0; | ||
3682 | |||
3683 | /* | ||
3684 | * The event is inactive, if the context is active | ||
3685 | * we're part of a group that didn't make it on the 'pmu', | ||
3686 | * not counting. | ||
3687 | */ | ||
3688 | if (event->ctx->is_active) | ||
3689 | return 0; | ||
3690 | |||
3691 | /* | ||
3692 | * We're inactive and the context is too, this means the | ||
3693 | * task is scheduled out, we're counting events that happen | ||
3694 | * to us, like migration events. | ||
3695 | */ | ||
3696 | return 1; | ||
3697 | } | ||
3698 | |||
3699 | static int perf_swevent_match(struct perf_event *event, | ||
3700 | enum perf_type_id type, | ||
3701 | u32 event_id, struct pt_regs *regs) | ||
3702 | { | ||
3703 | if (!perf_swevent_is_counting(event)) | ||
3704 | return 0; | ||
3705 | |||
3706 | if (event->attr.type != type) | ||
3707 | return 0; | ||
3708 | if (event->attr.config != event_id) | ||
3709 | return 0; | ||
3710 | |||
3711 | if (regs) { | ||
3712 | if (event->attr.exclude_user && user_mode(regs)) | ||
3713 | return 0; | ||
3714 | |||
3715 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
3716 | return 0; | ||
3717 | } | ||
3718 | |||
3719 | return 1; | ||
3720 | } | ||
3721 | |||
3722 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
3723 | enum perf_type_id type, | ||
3724 | u32 event_id, u64 nr, int nmi, | ||
3725 | struct perf_sample_data *data, | ||
3726 | struct pt_regs *regs) | ||
3727 | { | ||
3728 | struct perf_event *event; | ||
3729 | |||
3730 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3731 | return; | ||
3732 | |||
3733 | rcu_read_lock(); | ||
3734 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3735 | if (perf_swevent_match(event, type, event_id, regs)) | ||
3736 | perf_swevent_add(event, nr, nmi, data, regs); | ||
3737 | } | ||
3738 | rcu_read_unlock(); | ||
3739 | } | ||
3740 | |||
3741 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | ||
3742 | { | ||
3743 | if (in_nmi()) | ||
3744 | return &cpuctx->recursion[3]; | ||
3745 | |||
3746 | if (in_irq()) | ||
3747 | return &cpuctx->recursion[2]; | ||
3748 | |||
3749 | if (in_softirq()) | ||
3750 | return &cpuctx->recursion[1]; | ||
3751 | |||
3752 | return &cpuctx->recursion[0]; | ||
3753 | } | ||
3754 | |||
3755 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
3756 | u64 nr, int nmi, | ||
3757 | struct perf_sample_data *data, | ||
3758 | struct pt_regs *regs) | ||
3759 | { | ||
3760 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3761 | int *recursion = perf_swevent_recursion_context(cpuctx); | ||
3762 | struct perf_event_context *ctx; | ||
3763 | |||
3764 | if (*recursion) | ||
3765 | goto out; | ||
3766 | |||
3767 | (*recursion)++; | ||
3768 | barrier(); | ||
3769 | |||
3770 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
3771 | nr, nmi, data, regs); | ||
3772 | rcu_read_lock(); | ||
3773 | /* | ||
3774 | * doesn't really matter which of the child contexts the | ||
3775 | * events ends up in. | ||
3776 | */ | ||
3777 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3778 | if (ctx) | ||
3779 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
3780 | rcu_read_unlock(); | ||
3781 | |||
3782 | barrier(); | ||
3783 | (*recursion)--; | ||
3784 | |||
3785 | out: | ||
3786 | put_cpu_var(perf_cpu_context); | ||
3787 | } | ||
3788 | |||
3789 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
3790 | struct pt_regs *regs, u64 addr) | ||
3791 | { | ||
3792 | struct perf_sample_data data = { | ||
3793 | .addr = addr, | ||
3794 | }; | ||
3795 | |||
3796 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | ||
3797 | &data, regs); | ||
3798 | } | ||
3799 | |||
3800 | static void perf_swevent_read(struct perf_event *event) | ||
3801 | { | ||
3802 | } | ||
3803 | |||
3804 | static int perf_swevent_enable(struct perf_event *event) | ||
3805 | { | ||
3806 | struct hw_perf_event *hwc = &event->hw; | ||
3807 | |||
3808 | if (hwc->sample_period) { | ||
3809 | hwc->last_period = hwc->sample_period; | ||
3810 | perf_swevent_set_period(event); | ||
3811 | } | ||
3812 | return 0; | ||
3813 | } | ||
3814 | |||
3815 | static void perf_swevent_disable(struct perf_event *event) | ||
3816 | { | ||
3817 | } | ||
3818 | |||
3819 | static const struct pmu perf_ops_generic = { | ||
3820 | .enable = perf_swevent_enable, | ||
3821 | .disable = perf_swevent_disable, | ||
3822 | .read = perf_swevent_read, | ||
3823 | .unthrottle = perf_swevent_unthrottle, | ||
3824 | }; | ||
3825 | |||
3826 | /* | ||
3827 | * hrtimer based swevent callback | ||
3828 | */ | ||
3829 | |||
3830 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
3831 | { | ||
3832 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3833 | struct perf_sample_data data; | ||
3834 | struct pt_regs *regs; | ||
3835 | struct perf_event *event; | ||
3836 | u64 period; | ||
3837 | |||
3838 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
3839 | event->pmu->read(event); | ||
3840 | |||
3841 | data.addr = 0; | ||
3842 | regs = get_irq_regs(); | ||
3843 | /* | ||
3844 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3845 | * context, provide the next best thing, the user IP. | ||
3846 | */ | ||
3847 | if ((event->attr.exclude_kernel || !regs) && | ||
3848 | !event->attr.exclude_user) | ||
3849 | regs = task_pt_regs(current); | ||
3850 | |||
3851 | if (regs) { | ||
3852 | if (perf_event_overflow(event, 0, &data, regs)) | ||
3853 | ret = HRTIMER_NORESTART; | ||
3854 | } | ||
3855 | |||
3856 | period = max_t(u64, 10000, event->hw.sample_period); | ||
3857 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3858 | |||
3859 | return ret; | ||
3860 | } | ||
3861 | |||
3862 | /* | ||
3863 | * Software event: cpu wall time clock | ||
3864 | */ | ||
3865 | |||
3866 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
3867 | { | ||
3868 | int cpu = raw_smp_processor_id(); | ||
3869 | s64 prev; | ||
3870 | u64 now; | ||
3871 | |||
3872 | now = cpu_clock(cpu); | ||
3873 | prev = atomic64_read(&event->hw.prev_count); | ||
3874 | atomic64_set(&event->hw.prev_count, now); | ||
3875 | atomic64_add(now - prev, &event->count); | ||
3876 | } | ||
3877 | |||
3878 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
3879 | { | ||
3880 | struct hw_perf_event *hwc = &event->hw; | ||
3881 | int cpu = raw_smp_processor_id(); | ||
3882 | |||
3883 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
3884 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3885 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
3886 | if (hwc->sample_period) { | ||
3887 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3888 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3889 | ns_to_ktime(period), 0, | ||
3890 | HRTIMER_MODE_REL, 0); | ||
3891 | } | ||
3892 | |||
3893 | return 0; | ||
3894 | } | ||
3895 | |||
3896 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
3897 | { | ||
3898 | if (event->hw.sample_period) | ||
3899 | hrtimer_cancel(&event->hw.hrtimer); | ||
3900 | cpu_clock_perf_event_update(event); | ||
3901 | } | ||
3902 | |||
3903 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
3904 | { | ||
3905 | cpu_clock_perf_event_update(event); | ||
3906 | } | ||
3907 | |||
3908 | static const struct pmu perf_ops_cpu_clock = { | ||
3909 | .enable = cpu_clock_perf_event_enable, | ||
3910 | .disable = cpu_clock_perf_event_disable, | ||
3911 | .read = cpu_clock_perf_event_read, | ||
3912 | }; | ||
3913 | |||
3914 | /* | ||
3915 | * Software event: task time clock | ||
3916 | */ | ||
3917 | |||
3918 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
3919 | { | ||
3920 | u64 prev; | ||
3921 | s64 delta; | ||
3922 | |||
3923 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
3924 | delta = now - prev; | ||
3925 | atomic64_add(delta, &event->count); | ||
3926 | } | ||
3927 | |||
3928 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
3929 | { | ||
3930 | struct hw_perf_event *hwc = &event->hw; | ||
3931 | u64 now; | ||
3932 | |||
3933 | now = event->ctx->time; | ||
3934 | |||
3935 | atomic64_set(&hwc->prev_count, now); | ||
3936 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3937 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
3938 | if (hwc->sample_period) { | ||
3939 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3940 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3941 | ns_to_ktime(period), 0, | ||
3942 | HRTIMER_MODE_REL, 0); | ||
3943 | } | ||
3944 | |||
3945 | return 0; | ||
3946 | } | ||
3947 | |||
3948 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
3949 | { | ||
3950 | if (event->hw.sample_period) | ||
3951 | hrtimer_cancel(&event->hw.hrtimer); | ||
3952 | task_clock_perf_event_update(event, event->ctx->time); | ||
3953 | |||
3954 | } | ||
3955 | |||
3956 | static void task_clock_perf_event_read(struct perf_event *event) | ||
3957 | { | ||
3958 | u64 time; | ||
3959 | |||
3960 | if (!in_nmi()) { | ||
3961 | update_context_time(event->ctx); | ||
3962 | time = event->ctx->time; | ||
3963 | } else { | ||
3964 | u64 now = perf_clock(); | ||
3965 | u64 delta = now - event->ctx->timestamp; | ||
3966 | time = event->ctx->time + delta; | ||
3967 | } | ||
3968 | |||
3969 | task_clock_perf_event_update(event, time); | ||
3970 | } | ||
3971 | |||
3972 | static const struct pmu perf_ops_task_clock = { | ||
3973 | .enable = task_clock_perf_event_enable, | ||
3974 | .disable = task_clock_perf_event_disable, | ||
3975 | .read = task_clock_perf_event_read, | ||
3976 | }; | ||
3977 | |||
3978 | #ifdef CONFIG_EVENT_PROFILE | ||
3979 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
3980 | int entry_size) | ||
3981 | { | ||
3982 | struct perf_raw_record raw = { | ||
3983 | .size = entry_size, | ||
3984 | .data = record, | ||
3985 | }; | ||
3986 | |||
3987 | struct perf_sample_data data = { | ||
3988 | .addr = addr, | ||
3989 | .raw = &raw, | ||
3990 | }; | ||
3991 | |||
3992 | struct pt_regs *regs = get_irq_regs(); | ||
3993 | |||
3994 | if (!regs) | ||
3995 | regs = task_pt_regs(current); | ||
3996 | |||
3997 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
3998 | &data, regs); | ||
3999 | } | ||
4000 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
4001 | |||
4002 | extern int ftrace_profile_enable(int); | ||
4003 | extern void ftrace_profile_disable(int); | ||
4004 | |||
4005 | static void tp_perf_event_destroy(struct perf_event *event) | ||
4006 | { | ||
4007 | ftrace_profile_disable(event->attr.config); | ||
4008 | } | ||
4009 | |||
4010 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4011 | { | ||
4012 | /* | ||
4013 | * Raw tracepoint data is a severe data leak, only allow root to | ||
4014 | * have these. | ||
4015 | */ | ||
4016 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
4017 | perf_paranoid_tracepoint_raw() && | ||
4018 | !capable(CAP_SYS_ADMIN)) | ||
4019 | return ERR_PTR(-EPERM); | ||
4020 | |||
4021 | if (ftrace_profile_enable(event->attr.config)) | ||
4022 | return NULL; | ||
4023 | |||
4024 | event->destroy = tp_perf_event_destroy; | ||
4025 | |||
4026 | return &perf_ops_generic; | ||
4027 | } | ||
4028 | #else | ||
4029 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4030 | { | ||
4031 | return NULL; | ||
4032 | } | ||
4033 | #endif | ||
4034 | |||
4035 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
4036 | |||
4037 | static void sw_perf_event_destroy(struct perf_event *event) | ||
4038 | { | ||
4039 | u64 event_id = event->attr.config; | ||
4040 | |||
4041 | WARN_ON(event->parent); | ||
4042 | |||
4043 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
4044 | } | ||
4045 | |||
4046 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
4047 | { | ||
4048 | const struct pmu *pmu = NULL; | ||
4049 | u64 event_id = event->attr.config; | ||
4050 | |||
4051 | /* | ||
4052 | * Software events (currently) can't in general distinguish | ||
4053 | * between user, kernel and hypervisor events. | ||
4054 | * However, context switches and cpu migrations are considered | ||
4055 | * to be kernel events, and page faults are never hypervisor | ||
4056 | * events. | ||
4057 | */ | ||
4058 | switch (event_id) { | ||
4059 | case PERF_COUNT_SW_CPU_CLOCK: | ||
4060 | pmu = &perf_ops_cpu_clock; | ||
4061 | |||
4062 | break; | ||
4063 | case PERF_COUNT_SW_TASK_CLOCK: | ||
4064 | /* | ||
4065 | * If the user instantiates this as a per-cpu event, | ||
4066 | * use the cpu_clock event instead. | ||
4067 | */ | ||
4068 | if (event->ctx->task) | ||
4069 | pmu = &perf_ops_task_clock; | ||
4070 | else | ||
4071 | pmu = &perf_ops_cpu_clock; | ||
4072 | |||
4073 | break; | ||
4074 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
4075 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
4076 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
4077 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
4078 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
4079 | if (!event->parent) { | ||
4080 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
4081 | event->destroy = sw_perf_event_destroy; | ||
4082 | } | ||
4083 | pmu = &perf_ops_generic; | ||
4084 | break; | ||
4085 | } | ||
4086 | |||
4087 | return pmu; | ||
4088 | } | ||
4089 | |||
4090 | /* | ||
4091 | * Allocate and initialize a event structure | ||
4092 | */ | ||
4093 | static struct perf_event * | ||
4094 | perf_event_alloc(struct perf_event_attr *attr, | ||
4095 | int cpu, | ||
4096 | struct perf_event_context *ctx, | ||
4097 | struct perf_event *group_leader, | ||
4098 | struct perf_event *parent_event, | ||
4099 | gfp_t gfpflags) | ||
4100 | { | ||
4101 | const struct pmu *pmu; | ||
4102 | struct perf_event *event; | ||
4103 | struct hw_perf_event *hwc; | ||
4104 | long err; | ||
4105 | |||
4106 | event = kzalloc(sizeof(*event), gfpflags); | ||
4107 | if (!event) | ||
4108 | return ERR_PTR(-ENOMEM); | ||
4109 | |||
4110 | /* | ||
4111 | * Single events are their own group leaders, with an | ||
4112 | * empty sibling list: | ||
4113 | */ | ||
4114 | if (!group_leader) | ||
4115 | group_leader = event; | ||
4116 | |||
4117 | mutex_init(&event->child_mutex); | ||
4118 | INIT_LIST_HEAD(&event->child_list); | ||
4119 | |||
4120 | INIT_LIST_HEAD(&event->group_entry); | ||
4121 | INIT_LIST_HEAD(&event->event_entry); | ||
4122 | INIT_LIST_HEAD(&event->sibling_list); | ||
4123 | init_waitqueue_head(&event->waitq); | ||
4124 | |||
4125 | mutex_init(&event->mmap_mutex); | ||
4126 | |||
4127 | event->cpu = cpu; | ||
4128 | event->attr = *attr; | ||
4129 | event->group_leader = group_leader; | ||
4130 | event->pmu = NULL; | ||
4131 | event->ctx = ctx; | ||
4132 | event->oncpu = -1; | ||
4133 | |||
4134 | event->parent = parent_event; | ||
4135 | |||
4136 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
4137 | event->id = atomic64_inc_return(&perf_event_id); | ||
4138 | |||
4139 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
4140 | |||
4141 | if (attr->disabled) | ||
4142 | event->state = PERF_EVENT_STATE_OFF; | ||
4143 | |||
4144 | pmu = NULL; | ||
4145 | |||
4146 | hwc = &event->hw; | ||
4147 | hwc->sample_period = attr->sample_period; | ||
4148 | if (attr->freq && attr->sample_freq) | ||
4149 | hwc->sample_period = 1; | ||
4150 | hwc->last_period = hwc->sample_period; | ||
4151 | |||
4152 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
4153 | |||
4154 | /* | ||
4155 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
4156 | */ | ||
4157 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
4158 | goto done; | ||
4159 | |||
4160 | switch (attr->type) { | ||
4161 | case PERF_TYPE_RAW: | ||
4162 | case PERF_TYPE_HARDWARE: | ||
4163 | case PERF_TYPE_HW_CACHE: | ||
4164 | pmu = hw_perf_event_init(event); | ||
4165 | break; | ||
4166 | |||
4167 | case PERF_TYPE_SOFTWARE: | ||
4168 | pmu = sw_perf_event_init(event); | ||
4169 | break; | ||
4170 | |||
4171 | case PERF_TYPE_TRACEPOINT: | ||
4172 | pmu = tp_perf_event_init(event); | ||
4173 | break; | ||
4174 | |||
4175 | default: | ||
4176 | break; | ||
4177 | } | ||
4178 | done: | ||
4179 | err = 0; | ||
4180 | if (!pmu) | ||
4181 | err = -EINVAL; | ||
4182 | else if (IS_ERR(pmu)) | ||
4183 | err = PTR_ERR(pmu); | ||
4184 | |||
4185 | if (err) { | ||
4186 | if (event->ns) | ||
4187 | put_pid_ns(event->ns); | ||
4188 | kfree(event); | ||
4189 | return ERR_PTR(err); | ||
4190 | } | ||
4191 | |||
4192 | event->pmu = pmu; | ||
4193 | |||
4194 | if (!event->parent) { | ||
4195 | atomic_inc(&nr_events); | ||
4196 | if (event->attr.mmap) | ||
4197 | atomic_inc(&nr_mmap_events); | ||
4198 | if (event->attr.comm) | ||
4199 | atomic_inc(&nr_comm_events); | ||
4200 | if (event->attr.task) | ||
4201 | atomic_inc(&nr_task_events); | ||
4202 | } | ||
4203 | |||
4204 | return event; | ||
4205 | } | ||
4206 | |||
4207 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
4208 | struct perf_event_attr *attr) | ||
4209 | { | ||
4210 | u32 size; | ||
4211 | int ret; | ||
4212 | |||
4213 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
4214 | return -EFAULT; | ||
4215 | |||
4216 | /* | ||
4217 | * zero the full structure, so that a short copy will be nice. | ||
4218 | */ | ||
4219 | memset(attr, 0, sizeof(*attr)); | ||
4220 | |||
4221 | ret = get_user(size, &uattr->size); | ||
4222 | if (ret) | ||
4223 | return ret; | ||
4224 | |||
4225 | if (size > PAGE_SIZE) /* silly large */ | ||
4226 | goto err_size; | ||
4227 | |||
4228 | if (!size) /* abi compat */ | ||
4229 | size = PERF_ATTR_SIZE_VER0; | ||
4230 | |||
4231 | if (size < PERF_ATTR_SIZE_VER0) | ||
4232 | goto err_size; | ||
4233 | |||
4234 | /* | ||
4235 | * If we're handed a bigger struct than we know of, | ||
4236 | * ensure all the unknown bits are 0 - i.e. new | ||
4237 | * user-space does not rely on any kernel feature | ||
4238 | * extensions we dont know about yet. | ||
4239 | */ | ||
4240 | if (size > sizeof(*attr)) { | ||
4241 | unsigned char __user *addr; | ||
4242 | unsigned char __user *end; | ||
4243 | unsigned char val; | ||
4244 | |||
4245 | addr = (void __user *)uattr + sizeof(*attr); | ||
4246 | end = (void __user *)uattr + size; | ||
4247 | |||
4248 | for (; addr < end; addr++) { | ||
4249 | ret = get_user(val, addr); | ||
4250 | if (ret) | ||
4251 | return ret; | ||
4252 | if (val) | ||
4253 | goto err_size; | ||
4254 | } | ||
4255 | size = sizeof(*attr); | ||
4256 | } | ||
4257 | |||
4258 | ret = copy_from_user(attr, uattr, size); | ||
4259 | if (ret) | ||
4260 | return -EFAULT; | ||
4261 | |||
4262 | /* | ||
4263 | * If the type exists, the corresponding creation will verify | ||
4264 | * the attr->config. | ||
4265 | */ | ||
4266 | if (attr->type >= PERF_TYPE_MAX) | ||
4267 | return -EINVAL; | ||
4268 | |||
4269 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
4270 | return -EINVAL; | ||
4271 | |||
4272 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
4273 | return -EINVAL; | ||
4274 | |||
4275 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
4276 | return -EINVAL; | ||
4277 | |||
4278 | out: | ||
4279 | return ret; | ||
4280 | |||
4281 | err_size: | ||
4282 | put_user(sizeof(*attr), &uattr->size); | ||
4283 | ret = -E2BIG; | ||
4284 | goto out; | ||
4285 | } | ||
4286 | |||
4287 | int perf_event_set_output(struct perf_event *event, int output_fd) | ||
4288 | { | ||
4289 | struct perf_event *output_event = NULL; | ||
4290 | struct file *output_file = NULL; | ||
4291 | struct perf_event *old_output; | ||
4292 | int fput_needed = 0; | ||
4293 | int ret = -EINVAL; | ||
4294 | |||
4295 | if (!output_fd) | ||
4296 | goto set; | ||
4297 | |||
4298 | output_file = fget_light(output_fd, &fput_needed); | ||
4299 | if (!output_file) | ||
4300 | return -EBADF; | ||
4301 | |||
4302 | if (output_file->f_op != &perf_fops) | ||
4303 | goto out; | ||
4304 | |||
4305 | output_event = output_file->private_data; | ||
4306 | |||
4307 | /* Don't chain output fds */ | ||
4308 | if (output_event->output) | ||
4309 | goto out; | ||
4310 | |||
4311 | /* Don't set an output fd when we already have an output channel */ | ||
4312 | if (event->data) | ||
4313 | goto out; | ||
4314 | |||
4315 | atomic_long_inc(&output_file->f_count); | ||
4316 | |||
4317 | set: | ||
4318 | mutex_lock(&event->mmap_mutex); | ||
4319 | old_output = event->output; | ||
4320 | rcu_assign_pointer(event->output, output_event); | ||
4321 | mutex_unlock(&event->mmap_mutex); | ||
4322 | |||
4323 | if (old_output) { | ||
4324 | /* | ||
4325 | * we need to make sure no existing perf_output_*() | ||
4326 | * is still referencing this event. | ||
4327 | */ | ||
4328 | synchronize_rcu(); | ||
4329 | fput(old_output->filp); | ||
4330 | } | ||
4331 | |||
4332 | ret = 0; | ||
4333 | out: | ||
4334 | fput_light(output_file, fput_needed); | ||
4335 | return ret; | ||
4336 | } | ||
4337 | |||
4338 | /** | ||
4339 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
4340 | * | ||
4341 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
4342 | * @pid: target pid | ||
4343 | * @cpu: target cpu | ||
4344 | * @group_fd: group leader event fd | ||
4345 | */ | ||
4346 | SYSCALL_DEFINE5(perf_event_open, | ||
4347 | struct perf_event_attr __user *, attr_uptr, | ||
4348 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
4349 | { | ||
4350 | struct perf_event *event, *group_leader; | ||
4351 | struct perf_event_attr attr; | ||
4352 | struct perf_event_context *ctx; | ||
4353 | struct file *event_file = NULL; | ||
4354 | struct file *group_file = NULL; | ||
4355 | int fput_needed = 0; | ||
4356 | int fput_needed2 = 0; | ||
4357 | int err; | ||
4358 | |||
4359 | /* for future expandability... */ | ||
4360 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
4361 | return -EINVAL; | ||
4362 | |||
4363 | err = perf_copy_attr(attr_uptr, &attr); | ||
4364 | if (err) | ||
4365 | return err; | ||
4366 | |||
4367 | if (!attr.exclude_kernel) { | ||
4368 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
4369 | return -EACCES; | ||
4370 | } | ||
4371 | |||
4372 | if (attr.freq) { | ||
4373 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
4374 | return -EINVAL; | ||
4375 | } | ||
4376 | |||
4377 | /* | ||
4378 | * Get the target context (task or percpu): | ||
4379 | */ | ||
4380 | ctx = find_get_context(pid, cpu); | ||
4381 | if (IS_ERR(ctx)) | ||
4382 | return PTR_ERR(ctx); | ||
4383 | |||
4384 | /* | ||
4385 | * Look up the group leader (we will attach this event to it): | ||
4386 | */ | ||
4387 | group_leader = NULL; | ||
4388 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
4389 | err = -EINVAL; | ||
4390 | group_file = fget_light(group_fd, &fput_needed); | ||
4391 | if (!group_file) | ||
4392 | goto err_put_context; | ||
4393 | if (group_file->f_op != &perf_fops) | ||
4394 | goto err_put_context; | ||
4395 | |||
4396 | group_leader = group_file->private_data; | ||
4397 | /* | ||
4398 | * Do not allow a recursive hierarchy (this new sibling | ||
4399 | * becoming part of another group-sibling): | ||
4400 | */ | ||
4401 | if (group_leader->group_leader != group_leader) | ||
4402 | goto err_put_context; | ||
4403 | /* | ||
4404 | * Do not allow to attach to a group in a different | ||
4405 | * task or CPU context: | ||
4406 | */ | ||
4407 | if (group_leader->ctx != ctx) | ||
4408 | goto err_put_context; | ||
4409 | /* | ||
4410 | * Only a group leader can be exclusive or pinned | ||
4411 | */ | ||
4412 | if (attr.exclusive || attr.pinned) | ||
4413 | goto err_put_context; | ||
4414 | } | ||
4415 | |||
4416 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
4417 | NULL, GFP_KERNEL); | ||
4418 | err = PTR_ERR(event); | ||
4419 | if (IS_ERR(event)) | ||
4420 | goto err_put_context; | ||
4421 | |||
4422 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
4423 | if (err < 0) | ||
4424 | goto err_free_put_context; | ||
4425 | |||
4426 | event_file = fget_light(err, &fput_needed2); | ||
4427 | if (!event_file) | ||
4428 | goto err_free_put_context; | ||
4429 | |||
4430 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
4431 | err = perf_event_set_output(event, group_fd); | ||
4432 | if (err) | ||
4433 | goto err_fput_free_put_context; | ||
4434 | } | ||
4435 | |||
4436 | event->filp = event_file; | ||
4437 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4438 | mutex_lock(&ctx->mutex); | ||
4439 | perf_install_in_context(ctx, event, cpu); | ||
4440 | ++ctx->generation; | ||
4441 | mutex_unlock(&ctx->mutex); | ||
4442 | |||
4443 | event->owner = current; | ||
4444 | get_task_struct(current); | ||
4445 | mutex_lock(¤t->perf_event_mutex); | ||
4446 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
4447 | mutex_unlock(¤t->perf_event_mutex); | ||
4448 | |||
4449 | err_fput_free_put_context: | ||
4450 | fput_light(event_file, fput_needed2); | ||
4451 | |||
4452 | err_free_put_context: | ||
4453 | if (err < 0) | ||
4454 | kfree(event); | ||
4455 | |||
4456 | err_put_context: | ||
4457 | if (err < 0) | ||
4458 | put_ctx(ctx); | ||
4459 | |||
4460 | fput_light(group_file, fput_needed); | ||
4461 | |||
4462 | return err; | ||
4463 | } | ||
4464 | |||
4465 | /* | ||
4466 | * inherit a event from parent task to child task: | ||
4467 | */ | ||
4468 | static struct perf_event * | ||
4469 | inherit_event(struct perf_event *parent_event, | ||
4470 | struct task_struct *parent, | ||
4471 | struct perf_event_context *parent_ctx, | ||
4472 | struct task_struct *child, | ||
4473 | struct perf_event *group_leader, | ||
4474 | struct perf_event_context *child_ctx) | ||
4475 | { | ||
4476 | struct perf_event *child_event; | ||
4477 | |||
4478 | /* | ||
4479 | * Instead of creating recursive hierarchies of events, | ||
4480 | * we link inherited events back to the original parent, | ||
4481 | * which has a filp for sure, which we use as the reference | ||
4482 | * count: | ||
4483 | */ | ||
4484 | if (parent_event->parent) | ||
4485 | parent_event = parent_event->parent; | ||
4486 | |||
4487 | child_event = perf_event_alloc(&parent_event->attr, | ||
4488 | parent_event->cpu, child_ctx, | ||
4489 | group_leader, parent_event, | ||
4490 | GFP_KERNEL); | ||
4491 | if (IS_ERR(child_event)) | ||
4492 | return child_event; | ||
4493 | get_ctx(child_ctx); | ||
4494 | |||
4495 | /* | ||
4496 | * Make the child state follow the state of the parent event, | ||
4497 | * not its attr.disabled bit. We hold the parent's mutex, | ||
4498 | * so we won't race with perf_event_{en, dis}able_family. | ||
4499 | */ | ||
4500 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
4501 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
4502 | else | ||
4503 | child_event->state = PERF_EVENT_STATE_OFF; | ||
4504 | |||
4505 | if (parent_event->attr.freq) | ||
4506 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
4507 | |||
4508 | /* | ||
4509 | * Link it up in the child's context: | ||
4510 | */ | ||
4511 | add_event_to_ctx(child_event, child_ctx); | ||
4512 | |||
4513 | /* | ||
4514 | * Get a reference to the parent filp - we will fput it | ||
4515 | * when the child event exits. This is safe to do because | ||
4516 | * we are in the parent and we know that the filp still | ||
4517 | * exists and has a nonzero count: | ||
4518 | */ | ||
4519 | atomic_long_inc(&parent_event->filp->f_count); | ||
4520 | |||
4521 | /* | ||
4522 | * Link this into the parent event's child list | ||
4523 | */ | ||
4524 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4525 | mutex_lock(&parent_event->child_mutex); | ||
4526 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
4527 | mutex_unlock(&parent_event->child_mutex); | ||
4528 | |||
4529 | return child_event; | ||
4530 | } | ||
4531 | |||
4532 | static int inherit_group(struct perf_event *parent_event, | ||
4533 | struct task_struct *parent, | ||
4534 | struct perf_event_context *parent_ctx, | ||
4535 | struct task_struct *child, | ||
4536 | struct perf_event_context *child_ctx) | ||
4537 | { | ||
4538 | struct perf_event *leader; | ||
4539 | struct perf_event *sub; | ||
4540 | struct perf_event *child_ctr; | ||
4541 | |||
4542 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
4543 | child, NULL, child_ctx); | ||
4544 | if (IS_ERR(leader)) | ||
4545 | return PTR_ERR(leader); | ||
4546 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
4547 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
4548 | child, leader, child_ctx); | ||
4549 | if (IS_ERR(child_ctr)) | ||
4550 | return PTR_ERR(child_ctr); | ||
4551 | } | ||
4552 | return 0; | ||
4553 | } | ||
4554 | |||
4555 | static void sync_child_event(struct perf_event *child_event, | ||
4556 | struct task_struct *child) | ||
4557 | { | ||
4558 | struct perf_event *parent_event = child_event->parent; | ||
4559 | u64 child_val; | ||
4560 | |||
4561 | if (child_event->attr.inherit_stat) | ||
4562 | perf_event_read_event(child_event, child); | ||
4563 | |||
4564 | child_val = atomic64_read(&child_event->count); | ||
4565 | |||
4566 | /* | ||
4567 | * Add back the child's count to the parent's count: | ||
4568 | */ | ||
4569 | atomic64_add(child_val, &parent_event->count); | ||
4570 | atomic64_add(child_event->total_time_enabled, | ||
4571 | &parent_event->child_total_time_enabled); | ||
4572 | atomic64_add(child_event->total_time_running, | ||
4573 | &parent_event->child_total_time_running); | ||
4574 | |||
4575 | /* | ||
4576 | * Remove this event from the parent's list | ||
4577 | */ | ||
4578 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4579 | mutex_lock(&parent_event->child_mutex); | ||
4580 | list_del_init(&child_event->child_list); | ||
4581 | mutex_unlock(&parent_event->child_mutex); | ||
4582 | |||
4583 | /* | ||
4584 | * Release the parent event, if this was the last | ||
4585 | * reference to it. | ||
4586 | */ | ||
4587 | fput(parent_event->filp); | ||
4588 | } | ||
4589 | |||
4590 | static void | ||
4591 | __perf_event_exit_task(struct perf_event *child_event, | ||
4592 | struct perf_event_context *child_ctx, | ||
4593 | struct task_struct *child) | ||
4594 | { | ||
4595 | struct perf_event *parent_event; | ||
4596 | |||
4597 | update_event_times(child_event); | ||
4598 | perf_event_remove_from_context(child_event); | ||
4599 | |||
4600 | parent_event = child_event->parent; | ||
4601 | /* | ||
4602 | * It can happen that parent exits first, and has events | ||
4603 | * that are still around due to the child reference. These | ||
4604 | * events need to be zapped - but otherwise linger. | ||
4605 | */ | ||
4606 | if (parent_event) { | ||
4607 | sync_child_event(child_event, child); | ||
4608 | free_event(child_event); | ||
4609 | } | ||
4610 | } | ||
4611 | |||
4612 | /* | ||
4613 | * When a child task exits, feed back event values to parent events. | ||
4614 | */ | ||
4615 | void perf_event_exit_task(struct task_struct *child) | ||
4616 | { | ||
4617 | struct perf_event *child_event, *tmp; | ||
4618 | struct perf_event_context *child_ctx; | ||
4619 | unsigned long flags; | ||
4620 | |||
4621 | if (likely(!child->perf_event_ctxp)) { | ||
4622 | perf_event_task(child, NULL, 0); | ||
4623 | return; | ||
4624 | } | ||
4625 | |||
4626 | local_irq_save(flags); | ||
4627 | /* | ||
4628 | * We can't reschedule here because interrupts are disabled, | ||
4629 | * and either child is current or it is a task that can't be | ||
4630 | * scheduled, so we are now safe from rescheduling changing | ||
4631 | * our context. | ||
4632 | */ | ||
4633 | child_ctx = child->perf_event_ctxp; | ||
4634 | __perf_event_task_sched_out(child_ctx); | ||
4635 | |||
4636 | /* | ||
4637 | * Take the context lock here so that if find_get_context is | ||
4638 | * reading child->perf_event_ctxp, we wait until it has | ||
4639 | * incremented the context's refcount before we do put_ctx below. | ||
4640 | */ | ||
4641 | spin_lock(&child_ctx->lock); | ||
4642 | child->perf_event_ctxp = NULL; | ||
4643 | /* | ||
4644 | * If this context is a clone; unclone it so it can't get | ||
4645 | * swapped to another process while we're removing all | ||
4646 | * the events from it. | ||
4647 | */ | ||
4648 | unclone_ctx(child_ctx); | ||
4649 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
4650 | |||
4651 | /* | ||
4652 | * Report the task dead after unscheduling the events so that we | ||
4653 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
4654 | * get a few PERF_RECORD_READ events. | ||
4655 | */ | ||
4656 | perf_event_task(child, child_ctx, 0); | ||
4657 | |||
4658 | /* | ||
4659 | * We can recurse on the same lock type through: | ||
4660 | * | ||
4661 | * __perf_event_exit_task() | ||
4662 | * sync_child_event() | ||
4663 | * fput(parent_event->filp) | ||
4664 | * perf_release() | ||
4665 | * mutex_lock(&ctx->mutex) | ||
4666 | * | ||
4667 | * But since its the parent context it won't be the same instance. | ||
4668 | */ | ||
4669 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
4670 | |||
4671 | again: | ||
4672 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
4673 | group_entry) | ||
4674 | __perf_event_exit_task(child_event, child_ctx, child); | ||
4675 | |||
4676 | /* | ||
4677 | * If the last event was a group event, it will have appended all | ||
4678 | * its siblings to the list, but we obtained 'tmp' before that which | ||
4679 | * will still point to the list head terminating the iteration. | ||
4680 | */ | ||
4681 | if (!list_empty(&child_ctx->group_list)) | ||
4682 | goto again; | ||
4683 | |||
4684 | mutex_unlock(&child_ctx->mutex); | ||
4685 | |||
4686 | put_ctx(child_ctx); | ||
4687 | } | ||
4688 | |||
4689 | /* | ||
4690 | * free an unexposed, unused context as created by inheritance by | ||
4691 | * init_task below, used by fork() in case of fail. | ||
4692 | */ | ||
4693 | void perf_event_free_task(struct task_struct *task) | ||
4694 | { | ||
4695 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
4696 | struct perf_event *event, *tmp; | ||
4697 | |||
4698 | if (!ctx) | ||
4699 | return; | ||
4700 | |||
4701 | mutex_lock(&ctx->mutex); | ||
4702 | again: | ||
4703 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
4704 | struct perf_event *parent = event->parent; | ||
4705 | |||
4706 | if (WARN_ON_ONCE(!parent)) | ||
4707 | continue; | ||
4708 | |||
4709 | mutex_lock(&parent->child_mutex); | ||
4710 | list_del_init(&event->child_list); | ||
4711 | mutex_unlock(&parent->child_mutex); | ||
4712 | |||
4713 | fput(parent->filp); | ||
4714 | |||
4715 | list_del_event(event, ctx); | ||
4716 | free_event(event); | ||
4717 | } | ||
4718 | |||
4719 | if (!list_empty(&ctx->group_list)) | ||
4720 | goto again; | ||
4721 | |||
4722 | mutex_unlock(&ctx->mutex); | ||
4723 | |||
4724 | put_ctx(ctx); | ||
4725 | } | ||
4726 | |||
4727 | /* | ||
4728 | * Initialize the perf_event context in task_struct | ||
4729 | */ | ||
4730 | int perf_event_init_task(struct task_struct *child) | ||
4731 | { | ||
4732 | struct perf_event_context *child_ctx, *parent_ctx; | ||
4733 | struct perf_event_context *cloned_ctx; | ||
4734 | struct perf_event *event; | ||
4735 | struct task_struct *parent = current; | ||
4736 | int inherited_all = 1; | ||
4737 | int ret = 0; | ||
4738 | |||
4739 | child->perf_event_ctxp = NULL; | ||
4740 | |||
4741 | mutex_init(&child->perf_event_mutex); | ||
4742 | INIT_LIST_HEAD(&child->perf_event_list); | ||
4743 | |||
4744 | if (likely(!parent->perf_event_ctxp)) | ||
4745 | return 0; | ||
4746 | |||
4747 | /* | ||
4748 | * This is executed from the parent task context, so inherit | ||
4749 | * events that have been marked for cloning. | ||
4750 | * First allocate and initialize a context for the child. | ||
4751 | */ | ||
4752 | |||
4753 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
4754 | if (!child_ctx) | ||
4755 | return -ENOMEM; | ||
4756 | |||
4757 | __perf_event_init_context(child_ctx, child); | ||
4758 | child->perf_event_ctxp = child_ctx; | ||
4759 | get_task_struct(child); | ||
4760 | |||
4761 | /* | ||
4762 | * If the parent's context is a clone, pin it so it won't get | ||
4763 | * swapped under us. | ||
4764 | */ | ||
4765 | parent_ctx = perf_pin_task_context(parent); | ||
4766 | |||
4767 | /* | ||
4768 | * No need to check if parent_ctx != NULL here; since we saw | ||
4769 | * it non-NULL earlier, the only reason for it to become NULL | ||
4770 | * is if we exit, and since we're currently in the middle of | ||
4771 | * a fork we can't be exiting at the same time. | ||
4772 | */ | ||
4773 | |||
4774 | /* | ||
4775 | * Lock the parent list. No need to lock the child - not PID | ||
4776 | * hashed yet and not running, so nobody can access it. | ||
4777 | */ | ||
4778 | mutex_lock(&parent_ctx->mutex); | ||
4779 | |||
4780 | /* | ||
4781 | * We dont have to disable NMIs - we are only looking at | ||
4782 | * the list, not manipulating it: | ||
4783 | */ | ||
4784 | list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) { | ||
4785 | if (event != event->group_leader) | ||
4786 | continue; | ||
4787 | |||
4788 | if (!event->attr.inherit) { | ||
4789 | inherited_all = 0; | ||
4790 | continue; | ||
4791 | } | ||
4792 | |||
4793 | ret = inherit_group(event, parent, parent_ctx, | ||
4794 | child, child_ctx); | ||
4795 | if (ret) { | ||
4796 | inherited_all = 0; | ||
4797 | break; | ||
4798 | } | ||
4799 | } | ||
4800 | |||
4801 | if (inherited_all) { | ||
4802 | /* | ||
4803 | * Mark the child context as a clone of the parent | ||
4804 | * context, or of whatever the parent is a clone of. | ||
4805 | * Note that if the parent is a clone, it could get | ||
4806 | * uncloned at any point, but that doesn't matter | ||
4807 | * because the list of events and the generation | ||
4808 | * count can't have changed since we took the mutex. | ||
4809 | */ | ||
4810 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
4811 | if (cloned_ctx) { | ||
4812 | child_ctx->parent_ctx = cloned_ctx; | ||
4813 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
4814 | } else { | ||
4815 | child_ctx->parent_ctx = parent_ctx; | ||
4816 | child_ctx->parent_gen = parent_ctx->generation; | ||
4817 | } | ||
4818 | get_ctx(child_ctx->parent_ctx); | ||
4819 | } | ||
4820 | |||
4821 | mutex_unlock(&parent_ctx->mutex); | ||
4822 | |||
4823 | perf_unpin_context(parent_ctx); | ||
4824 | |||
4825 | return ret; | ||
4826 | } | ||
4827 | |||
4828 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
4829 | { | ||
4830 | struct perf_cpu_context *cpuctx; | ||
4831 | |||
4832 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4833 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
4834 | |||
4835 | spin_lock(&perf_resource_lock); | ||
4836 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
4837 | spin_unlock(&perf_resource_lock); | ||
4838 | |||
4839 | hw_perf_event_setup(cpu); | ||
4840 | } | ||
4841 | |||
4842 | #ifdef CONFIG_HOTPLUG_CPU | ||
4843 | static void __perf_event_exit_cpu(void *info) | ||
4844 | { | ||
4845 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4846 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4847 | struct perf_event *event, *tmp; | ||
4848 | |||
4849 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
4850 | __perf_event_remove_from_context(event); | ||
4851 | } | ||
4852 | static void perf_event_exit_cpu(int cpu) | ||
4853 | { | ||
4854 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4855 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4856 | |||
4857 | mutex_lock(&ctx->mutex); | ||
4858 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
4859 | mutex_unlock(&ctx->mutex); | ||
4860 | } | ||
4861 | #else | ||
4862 | static inline void perf_event_exit_cpu(int cpu) { } | ||
4863 | #endif | ||
4864 | |||
4865 | static int __cpuinit | ||
4866 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
4867 | { | ||
4868 | unsigned int cpu = (long)hcpu; | ||
4869 | |||
4870 | switch (action) { | ||
4871 | |||
4872 | case CPU_UP_PREPARE: | ||
4873 | case CPU_UP_PREPARE_FROZEN: | ||
4874 | perf_event_init_cpu(cpu); | ||
4875 | break; | ||
4876 | |||
4877 | case CPU_ONLINE: | ||
4878 | case CPU_ONLINE_FROZEN: | ||
4879 | hw_perf_event_setup_online(cpu); | ||
4880 | break; | ||
4881 | |||
4882 | case CPU_DOWN_PREPARE: | ||
4883 | case CPU_DOWN_PREPARE_FROZEN: | ||
4884 | perf_event_exit_cpu(cpu); | ||
4885 | break; | ||
4886 | |||
4887 | default: | ||
4888 | break; | ||
4889 | } | ||
4890 | |||
4891 | return NOTIFY_OK; | ||
4892 | } | ||
4893 | |||
4894 | /* | ||
4895 | * This has to have a higher priority than migration_notifier in sched.c. | ||
4896 | */ | ||
4897 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
4898 | .notifier_call = perf_cpu_notify, | ||
4899 | .priority = 20, | ||
4900 | }; | ||
4901 | |||
4902 | void __init perf_event_init(void) | ||
4903 | { | ||
4904 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
4905 | (void *)(long)smp_processor_id()); | ||
4906 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
4907 | (void *)(long)smp_processor_id()); | ||
4908 | register_cpu_notifier(&perf_cpu_nb); | ||
4909 | } | ||
4910 | |||
4911 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
4912 | { | ||
4913 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
4914 | } | ||
4915 | |||
4916 | static ssize_t | ||
4917 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
4918 | const char *buf, | ||
4919 | size_t count) | ||
4920 | { | ||
4921 | struct perf_cpu_context *cpuctx; | ||
4922 | unsigned long val; | ||
4923 | int err, cpu, mpt; | ||
4924 | |||
4925 | err = strict_strtoul(buf, 10, &val); | ||
4926 | if (err) | ||
4927 | return err; | ||
4928 | if (val > perf_max_events) | ||
4929 | return -EINVAL; | ||
4930 | |||
4931 | spin_lock(&perf_resource_lock); | ||
4932 | perf_reserved_percpu = val; | ||
4933 | for_each_online_cpu(cpu) { | ||
4934 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4935 | spin_lock_irq(&cpuctx->ctx.lock); | ||
4936 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
4937 | perf_max_events - perf_reserved_percpu); | ||
4938 | cpuctx->max_pertask = mpt; | ||
4939 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
4940 | } | ||
4941 | spin_unlock(&perf_resource_lock); | ||
4942 | |||
4943 | return count; | ||
4944 | } | ||
4945 | |||
4946 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
4947 | { | ||
4948 | return sprintf(buf, "%d\n", perf_overcommit); | ||
4949 | } | ||
4950 | |||
4951 | static ssize_t | ||
4952 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
4953 | { | ||
4954 | unsigned long val; | ||
4955 | int err; | ||
4956 | |||
4957 | err = strict_strtoul(buf, 10, &val); | ||
4958 | if (err) | ||
4959 | return err; | ||
4960 | if (val > 1) | ||
4961 | return -EINVAL; | ||
4962 | |||
4963 | spin_lock(&perf_resource_lock); | ||
4964 | perf_overcommit = val; | ||
4965 | spin_unlock(&perf_resource_lock); | ||
4966 | |||
4967 | return count; | ||
4968 | } | ||
4969 | |||
4970 | static SYSDEV_CLASS_ATTR( | ||
4971 | reserve_percpu, | ||
4972 | 0644, | ||
4973 | perf_show_reserve_percpu, | ||
4974 | perf_set_reserve_percpu | ||
4975 | ); | ||
4976 | |||
4977 | static SYSDEV_CLASS_ATTR( | ||
4978 | overcommit, | ||
4979 | 0644, | ||
4980 | perf_show_overcommit, | ||
4981 | perf_set_overcommit | ||
4982 | ); | ||
4983 | |||
4984 | static struct attribute *perfclass_attrs[] = { | ||
4985 | &attr_reserve_percpu.attr, | ||
4986 | &attr_overcommit.attr, | ||
4987 | NULL | ||
4988 | }; | ||
4989 | |||
4990 | static struct attribute_group perfclass_attr_group = { | ||
4991 | .attrs = perfclass_attrs, | ||
4992 | .name = "perf_events", | ||
4993 | }; | ||
4994 | |||
4995 | static int __init perf_event_sysfs_init(void) | ||
4996 | { | ||
4997 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
4998 | &perfclass_attr_group); | ||
4999 | } | ||
5000 | device_initcall(perf_event_sysfs_init); | ||
diff --git a/kernel/pid.c b/kernel/pid.c index 31310b5d3f50..d3f722d20f9c 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -40,7 +40,7 @@ | |||
40 | #define pid_hashfn(nr, ns) \ | 40 | #define pid_hashfn(nr, ns) \ |
41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) |
42 | static struct hlist_head *pid_hash; | 42 | static struct hlist_head *pid_hash; |
43 | static int pidhash_shift; | 43 | static unsigned int pidhash_shift = 4; |
44 | struct pid init_struct_pid = INIT_STRUCT_PID; | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
45 | 45 | ||
46 | int pid_max = PID_MAX_DEFAULT; | 46 | int pid_max = PID_MAX_DEFAULT; |
@@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | |||
499 | void __init pidhash_init(void) | 499 | void __init pidhash_init(void) |
500 | { | 500 | { |
501 | int i, pidhash_size; | 501 | int i, pidhash_size; |
502 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
503 | 502 | ||
504 | pidhash_shift = max(4, fls(megabytes * 4)); | 503 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
505 | pidhash_shift = min(12, pidhash_shift); | 504 | HASH_EARLY | HASH_SMALL, |
505 | &pidhash_shift, NULL, 4096); | ||
506 | pidhash_size = 1 << pidhash_shift; | 506 | pidhash_size = 1 << pidhash_shift; |
507 | 507 | ||
508 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
509 | pidhash_size, pidhash_shift, | ||
510 | pidhash_size * sizeof(struct hlist_head)); | ||
511 | |||
512 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | ||
513 | if (!pid_hash) | ||
514 | panic("Could not alloc pidhash!\n"); | ||
515 | for (i = 0; i < pidhash_size; i++) | 508 | for (i = 0; i < pidhash_size; i++) |
516 | INIT_HLIST_HEAD(&pid_hash[i]); | 509 | INIT_HLIST_HEAD(&pid_hash[i]); |
517 | } | 510 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e33a21cb9407..5c9dc228747b 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -8,17 +8,18 @@ | |||
8 | #include <linux/math64.h> | 8 | #include <linux/math64.h> |
9 | #include <asm/uaccess.h> | 9 | #include <asm/uaccess.h> |
10 | #include <linux/kernel_stat.h> | 10 | #include <linux/kernel_stat.h> |
11 | #include <trace/events/timer.h> | ||
11 | 12 | ||
12 | /* | 13 | /* |
13 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. |
14 | */ | 15 | */ |
15 | void update_rlimit_cpu(unsigned long rlim_new) | 16 | void update_rlimit_cpu(unsigned long rlim_new) |
16 | { | 17 | { |
17 | cputime_t cputime; | 18 | cputime_t cputime = secs_to_cputime(rlim_new); |
19 | struct signal_struct *const sig = current->signal; | ||
18 | 20 | ||
19 | cputime = secs_to_cputime(rlim_new); | 21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || |
20 | if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { |
21 | cputime_gt(current->signal->it_prof_expires, cputime)) { | ||
22 | spin_lock_irq(¤t->sighand->siglock); | 23 | spin_lock_irq(¤t->sighand->siglock); |
23 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
24 | spin_unlock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
@@ -542,6 +543,17 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |||
542 | now); | 543 | now); |
543 | } | 544 | } |
544 | 545 | ||
546 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | ||
547 | { | ||
548 | return cputime_eq(expires, cputime_zero) || | ||
549 | cputime_gt(expires, new_exp); | ||
550 | } | ||
551 | |||
552 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
553 | { | ||
554 | return !cputime_eq(expires, cputime_zero) && | ||
555 | cputime_le(expires, new_exp); | ||
556 | } | ||
545 | /* | 557 | /* |
546 | * Insert the timer on the appropriate list before any timers that | 558 | * Insert the timer on the appropriate list before any timers that |
547 | * expire later. This must be called with the tasklist_lock held | 559 | * expire later. This must be called with the tasklist_lock held |
@@ -586,34 +598,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
586 | */ | 598 | */ |
587 | 599 | ||
588 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 600 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
601 | union cpu_time_count *exp = &nt->expires; | ||
602 | |||
589 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 603 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
590 | default: | 604 | default: |
591 | BUG(); | 605 | BUG(); |
592 | case CPUCLOCK_PROF: | 606 | case CPUCLOCK_PROF: |
593 | if (cputime_eq(p->cputime_expires.prof_exp, | 607 | if (expires_gt(p->cputime_expires.prof_exp, |
594 | cputime_zero) || | 608 | exp->cpu)) |
595 | cputime_gt(p->cputime_expires.prof_exp, | 609 | p->cputime_expires.prof_exp = exp->cpu; |
596 | nt->expires.cpu)) | ||
597 | p->cputime_expires.prof_exp = | ||
598 | nt->expires.cpu; | ||
599 | break; | 610 | break; |
600 | case CPUCLOCK_VIRT: | 611 | case CPUCLOCK_VIRT: |
601 | if (cputime_eq(p->cputime_expires.virt_exp, | 612 | if (expires_gt(p->cputime_expires.virt_exp, |
602 | cputime_zero) || | 613 | exp->cpu)) |
603 | cputime_gt(p->cputime_expires.virt_exp, | 614 | p->cputime_expires.virt_exp = exp->cpu; |
604 | nt->expires.cpu)) | ||
605 | p->cputime_expires.virt_exp = | ||
606 | nt->expires.cpu; | ||
607 | break; | 615 | break; |
608 | case CPUCLOCK_SCHED: | 616 | case CPUCLOCK_SCHED: |
609 | if (p->cputime_expires.sched_exp == 0 || | 617 | if (p->cputime_expires.sched_exp == 0 || |
610 | p->cputime_expires.sched_exp > | 618 | p->cputime_expires.sched_exp > exp->sched) |
611 | nt->expires.sched) | ||
612 | p->cputime_expires.sched_exp = | 619 | p->cputime_expires.sched_exp = |
613 | nt->expires.sched; | 620 | exp->sched; |
614 | break; | 621 | break; |
615 | } | 622 | } |
616 | } else { | 623 | } else { |
624 | struct signal_struct *const sig = p->signal; | ||
625 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
626 | |||
617 | /* | 627 | /* |
618 | * For a process timer, set the cached expiration time. | 628 | * For a process timer, set the cached expiration time. |
619 | */ | 629 | */ |
@@ -621,30 +631,23 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
621 | default: | 631 | default: |
622 | BUG(); | 632 | BUG(); |
623 | case CPUCLOCK_VIRT: | 633 | case CPUCLOCK_VIRT: |
624 | if (!cputime_eq(p->signal->it_virt_expires, | 634 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, |
625 | cputime_zero) && | 635 | exp->cpu)) |
626 | cputime_lt(p->signal->it_virt_expires, | ||
627 | timer->it.cpu.expires.cpu)) | ||
628 | break; | 636 | break; |
629 | p->signal->cputime_expires.virt_exp = | 637 | sig->cputime_expires.virt_exp = exp->cpu; |
630 | timer->it.cpu.expires.cpu; | ||
631 | break; | 638 | break; |
632 | case CPUCLOCK_PROF: | 639 | case CPUCLOCK_PROF: |
633 | if (!cputime_eq(p->signal->it_prof_expires, | 640 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, |
634 | cputime_zero) && | 641 | exp->cpu)) |
635 | cputime_lt(p->signal->it_prof_expires, | ||
636 | timer->it.cpu.expires.cpu)) | ||
637 | break; | 642 | break; |
638 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 643 | i = sig->rlim[RLIMIT_CPU].rlim_cur; |
639 | if (i != RLIM_INFINITY && | 644 | if (i != RLIM_INFINITY && |
640 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 645 | i <= cputime_to_secs(exp->cpu)) |
641 | break; | 646 | break; |
642 | p->signal->cputime_expires.prof_exp = | 647 | sig->cputime_expires.prof_exp = exp->cpu; |
643 | timer->it.cpu.expires.cpu; | ||
644 | break; | 648 | break; |
645 | case CPUCLOCK_SCHED: | 649 | case CPUCLOCK_SCHED: |
646 | p->signal->cputime_expires.sched_exp = | 650 | sig->cputime_expires.sched_exp = exp->sched; |
647 | timer->it.cpu.expires.sched; | ||
648 | break; | 651 | break; |
649 | } | 652 | } |
650 | } | 653 | } |
@@ -1071,6 +1074,40 @@ static void stop_process_timers(struct task_struct *tsk) | |||
1071 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1074 | spin_unlock_irqrestore(&cputimer->lock, flags); |
1072 | } | 1075 | } |
1073 | 1076 | ||
1077 | static u32 onecputick; | ||
1078 | |||
1079 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | ||
1080 | cputime_t *expires, cputime_t cur_time, int signo) | ||
1081 | { | ||
1082 | if (cputime_eq(it->expires, cputime_zero)) | ||
1083 | return; | ||
1084 | |||
1085 | if (cputime_ge(cur_time, it->expires)) { | ||
1086 | if (!cputime_eq(it->incr, cputime_zero)) { | ||
1087 | it->expires = cputime_add(it->expires, it->incr); | ||
1088 | it->error += it->incr_error; | ||
1089 | if (it->error >= onecputick) { | ||
1090 | it->expires = cputime_sub(it->expires, | ||
1091 | cputime_one_jiffy); | ||
1092 | it->error -= onecputick; | ||
1093 | } | ||
1094 | } else { | ||
1095 | it->expires = cputime_zero; | ||
1096 | } | ||
1097 | |||
1098 | trace_itimer_expire(signo == SIGPROF ? | ||
1099 | ITIMER_PROF : ITIMER_VIRTUAL, | ||
1100 | tsk->signal->leader_pid, cur_time); | ||
1101 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | ||
1102 | } | ||
1103 | |||
1104 | if (!cputime_eq(it->expires, cputime_zero) && | ||
1105 | (cputime_eq(*expires, cputime_zero) || | ||
1106 | cputime_lt(it->expires, *expires))) { | ||
1107 | *expires = it->expires; | ||
1108 | } | ||
1109 | } | ||
1110 | |||
1074 | /* | 1111 | /* |
1075 | * Check for any per-thread CPU timers that have fired and move them | 1112 | * Check for any per-thread CPU timers that have fired and move them |
1076 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1113 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
@@ -1090,10 +1127,10 @@ static void check_process_timers(struct task_struct *tsk, | |||
1090 | * Don't sample the current process CPU clocks if there are no timers. | 1127 | * Don't sample the current process CPU clocks if there are no timers. |
1091 | */ | 1128 | */ |
1092 | if (list_empty(&timers[CPUCLOCK_PROF]) && | 1129 | if (list_empty(&timers[CPUCLOCK_PROF]) && |
1093 | cputime_eq(sig->it_prof_expires, cputime_zero) && | 1130 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && |
1094 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 1131 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
1095 | list_empty(&timers[CPUCLOCK_VIRT]) && | 1132 | list_empty(&timers[CPUCLOCK_VIRT]) && |
1096 | cputime_eq(sig->it_virt_expires, cputime_zero) && | 1133 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && |
1097 | list_empty(&timers[CPUCLOCK_SCHED])) { | 1134 | list_empty(&timers[CPUCLOCK_SCHED])) { |
1098 | stop_process_timers(tsk); | 1135 | stop_process_timers(tsk); |
1099 | return; | 1136 | return; |
@@ -1153,38 +1190,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
1153 | /* | 1190 | /* |
1154 | * Check for the special case process timers. | 1191 | * Check for the special case process timers. |
1155 | */ | 1192 | */ |
1156 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1193 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
1157 | if (cputime_ge(ptime, sig->it_prof_expires)) { | 1194 | SIGPROF); |
1158 | /* ITIMER_PROF fires and reloads. */ | 1195 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
1159 | sig->it_prof_expires = sig->it_prof_incr; | 1196 | SIGVTALRM); |
1160 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1197 | |
1161 | sig->it_prof_expires = cputime_add( | ||
1162 | sig->it_prof_expires, ptime); | ||
1163 | } | ||
1164 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | ||
1165 | } | ||
1166 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
1167 | (cputime_eq(prof_expires, cputime_zero) || | ||
1168 | cputime_lt(sig->it_prof_expires, prof_expires))) { | ||
1169 | prof_expires = sig->it_prof_expires; | ||
1170 | } | ||
1171 | } | ||
1172 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1173 | if (cputime_ge(utime, sig->it_virt_expires)) { | ||
1174 | /* ITIMER_VIRTUAL fires and reloads. */ | ||
1175 | sig->it_virt_expires = sig->it_virt_incr; | ||
1176 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1177 | sig->it_virt_expires = cputime_add( | ||
1178 | sig->it_virt_expires, utime); | ||
1179 | } | ||
1180 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | ||
1181 | } | ||
1182 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
1183 | (cputime_eq(virt_expires, cputime_zero) || | ||
1184 | cputime_lt(sig->it_virt_expires, virt_expires))) { | ||
1185 | virt_expires = sig->it_virt_expires; | ||
1186 | } | ||
1187 | } | ||
1188 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 1198 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
1189 | unsigned long psecs = cputime_to_secs(ptime); | 1199 | unsigned long psecs = cputime_to_secs(ptime); |
1190 | cputime_t x; | 1200 | cputime_t x; |
@@ -1457,7 +1467,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
1457 | if (!cputime_eq(*oldval, cputime_zero)) { | 1467 | if (!cputime_eq(*oldval, cputime_zero)) { |
1458 | if (cputime_le(*oldval, now.cpu)) { | 1468 | if (cputime_le(*oldval, now.cpu)) { |
1459 | /* Just about to fire. */ | 1469 | /* Just about to fire. */ |
1460 | *oldval = jiffies_to_cputime(1); | 1470 | *oldval = cputime_one_jiffy; |
1461 | } else { | 1471 | } else { |
1462 | *oldval = cputime_sub(*oldval, now.cpu); | 1472 | *oldval = cputime_sub(*oldval, now.cpu); |
1463 | } | 1473 | } |
@@ -1703,10 +1713,15 @@ static __init int init_posix_cpu_timers(void) | |||
1703 | .nsleep = thread_cpu_nsleep, | 1713 | .nsleep = thread_cpu_nsleep, |
1704 | .nsleep_restart = thread_cpu_nsleep_restart, | 1714 | .nsleep_restart = thread_cpu_nsleep_restart, |
1705 | }; | 1715 | }; |
1716 | struct timespec ts; | ||
1706 | 1717 | ||
1707 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 1718 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
1708 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 1719 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
1709 | 1720 | ||
1721 | cputime_to_timespec(cputime_one_jiffy, &ts); | ||
1722 | onecputick = ts.tv_nsec; | ||
1723 | WARN_ON(ts.tv_sec != 0); | ||
1724 | |||
1710 | return 0; | 1725 | return 0; |
1711 | } | 1726 | } |
1712 | __initcall(init_posix_cpu_timers); | 1727 | __initcall(init_posix_cpu_timers); |
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index d089d052c4a9..495440779ce3 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
@@ -242,6 +242,25 @@ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |||
242 | return 0; | 242 | return 0; |
243 | } | 243 | } |
244 | 244 | ||
245 | |||
246 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | ||
247 | { | ||
248 | *tp = current_kernel_time(); | ||
249 | return 0; | ||
250 | } | ||
251 | |||
252 | static int posix_get_monotonic_coarse(clockid_t which_clock, | ||
253 | struct timespec *tp) | ||
254 | { | ||
255 | *tp = get_monotonic_coarse(); | ||
256 | return 0; | ||
257 | } | ||
258 | |||
259 | int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) | ||
260 | { | ||
261 | *tp = ktime_to_timespec(KTIME_LOW_RES); | ||
262 | return 0; | ||
263 | } | ||
245 | /* | 264 | /* |
246 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 265 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
247 | */ | 266 | */ |
@@ -262,10 +281,26 @@ static __init int init_posix_timers(void) | |||
262 | .timer_create = no_timer_create, | 281 | .timer_create = no_timer_create, |
263 | .nsleep = no_nsleep, | 282 | .nsleep = no_nsleep, |
264 | }; | 283 | }; |
284 | struct k_clock clock_realtime_coarse = { | ||
285 | .clock_getres = posix_get_coarse_res, | ||
286 | .clock_get = posix_get_realtime_coarse, | ||
287 | .clock_set = do_posix_clock_nosettime, | ||
288 | .timer_create = no_timer_create, | ||
289 | .nsleep = no_nsleep, | ||
290 | }; | ||
291 | struct k_clock clock_monotonic_coarse = { | ||
292 | .clock_getres = posix_get_coarse_res, | ||
293 | .clock_get = posix_get_monotonic_coarse, | ||
294 | .clock_set = do_posix_clock_nosettime, | ||
295 | .timer_create = no_timer_create, | ||
296 | .nsleep = no_nsleep, | ||
297 | }; | ||
265 | 298 | ||
266 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 299 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
267 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 300 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); |
268 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | 301 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); |
302 | register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | ||
303 | register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | ||
269 | 304 | ||
270 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 305 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
271 | sizeof (struct k_itimer), 0, SLAB_PANIC, | 306 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig index 72067cbdb37f..91e09d3b2eb2 100644 --- a/kernel/power/Kconfig +++ b/kernel/power/Kconfig | |||
@@ -208,3 +208,17 @@ config APM_EMULATION | |||
208 | random kernel OOPSes or reboots that don't seem to be related to | 208 | random kernel OOPSes or reboots that don't seem to be related to |
209 | anything, try disabling/enabling this option (or disabling/enabling | 209 | anything, try disabling/enabling this option (or disabling/enabling |
210 | APM in your BIOS). | 210 | APM in your BIOS). |
211 | |||
212 | config PM_RUNTIME | ||
213 | bool "Run-time PM core functionality" | ||
214 | depends on PM | ||
215 | ---help--- | ||
216 | Enable functionality allowing I/O devices to be put into energy-saving | ||
217 | (low power) states at run time (or autosuspended) after a specified | ||
218 | period of inactivity and woken up in response to a hardware-generated | ||
219 | wake-up event or a driver's request. | ||
220 | |||
221 | Hardware support is generally required for this functionality to work | ||
222 | and the bus type drivers of the buses the devices are on are | ||
223 | responsible for the actual handling of the autosuspend requests and | ||
224 | wake-up events. | ||
diff --git a/kernel/power/console.c b/kernel/power/console.c index a3961b205de7..5187136fe1de 100644 --- a/kernel/power/console.c +++ b/kernel/power/console.c | |||
@@ -14,56 +14,13 @@ | |||
14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) | 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) |
15 | 15 | ||
16 | static int orig_fgconsole, orig_kmsg; | 16 | static int orig_fgconsole, orig_kmsg; |
17 | static int disable_vt_switch; | ||
18 | |||
19 | /* | ||
20 | * Normally during a suspend, we allocate a new console and switch to it. | ||
21 | * When we resume, we switch back to the original console. This switch | ||
22 | * can be slow, so on systems where the framebuffer can handle restoration | ||
23 | * of video registers anyways, there's little point in doing the console | ||
24 | * switch. This function allows you to disable it by passing it '0'. | ||
25 | */ | ||
26 | void pm_set_vt_switch(int do_switch) | ||
27 | { | ||
28 | acquire_console_sem(); | ||
29 | disable_vt_switch = !do_switch; | ||
30 | release_console_sem(); | ||
31 | } | ||
32 | EXPORT_SYMBOL(pm_set_vt_switch); | ||
33 | 17 | ||
34 | int pm_prepare_console(void) | 18 | int pm_prepare_console(void) |
35 | { | 19 | { |
36 | acquire_console_sem(); | 20 | orig_fgconsole = vt_move_to_console(SUSPEND_CONSOLE, 1); |
37 | 21 | if (orig_fgconsole < 0) | |
38 | if (disable_vt_switch) { | ||
39 | release_console_sem(); | ||
40 | return 0; | ||
41 | } | ||
42 | |||
43 | orig_fgconsole = fg_console; | ||
44 | |||
45 | if (vc_allocate(SUSPEND_CONSOLE)) { | ||
46 | /* we can't have a free VC for now. Too bad, | ||
47 | * we don't want to mess the screen for now. */ | ||
48 | release_console_sem(); | ||
49 | return 1; | 22 | return 1; |
50 | } | ||
51 | 23 | ||
52 | if (set_console(SUSPEND_CONSOLE)) { | ||
53 | /* | ||
54 | * We're unable to switch to the SUSPEND_CONSOLE. | ||
55 | * Let the calling function know so it can decide | ||
56 | * what to do. | ||
57 | */ | ||
58 | release_console_sem(); | ||
59 | return 1; | ||
60 | } | ||
61 | release_console_sem(); | ||
62 | |||
63 | if (vt_waitactive(SUSPEND_CONSOLE)) { | ||
64 | pr_debug("Suspend: Can't switch VCs."); | ||
65 | return 1; | ||
66 | } | ||
67 | orig_kmsg = kmsg_redirect; | 24 | orig_kmsg = kmsg_redirect; |
68 | kmsg_redirect = SUSPEND_CONSOLE; | 25 | kmsg_redirect = SUSPEND_CONSOLE; |
69 | return 0; | 26 | return 0; |
@@ -71,19 +28,9 @@ int pm_prepare_console(void) | |||
71 | 28 | ||
72 | void pm_restore_console(void) | 29 | void pm_restore_console(void) |
73 | { | 30 | { |
74 | acquire_console_sem(); | 31 | if (orig_fgconsole >= 0) { |
75 | if (disable_vt_switch) { | 32 | vt_move_to_console(orig_fgconsole, 0); |
76 | release_console_sem(); | 33 | kmsg_redirect = orig_kmsg; |
77 | return; | ||
78 | } | ||
79 | set_console(orig_fgconsole); | ||
80 | release_console_sem(); | ||
81 | |||
82 | if (vt_waitactive(orig_fgconsole)) { | ||
83 | pr_debug("Resume: Can't switch VCs."); | ||
84 | return; | ||
85 | } | 34 | } |
86 | |||
87 | kmsg_redirect = orig_kmsg; | ||
88 | } | 35 | } |
89 | #endif | 36 | #endif |
diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c index 81d2e7464893..04b3a83d686f 100644 --- a/kernel/power/hibernate.c +++ b/kernel/power/hibernate.c | |||
@@ -298,8 +298,8 @@ int hibernation_snapshot(int platform_mode) | |||
298 | if (error) | 298 | if (error) |
299 | return error; | 299 | return error; |
300 | 300 | ||
301 | /* Free memory before shutting down devices. */ | 301 | /* Preallocate image memory before shutting down devices. */ |
302 | error = swsusp_shrink_memory(); | 302 | error = hibernate_preallocate_memory(); |
303 | if (error) | 303 | if (error) |
304 | goto Close; | 304 | goto Close; |
305 | 305 | ||
@@ -315,6 +315,10 @@ int hibernation_snapshot(int platform_mode) | |||
315 | /* Control returns here after successful restore */ | 315 | /* Control returns here after successful restore */ |
316 | 316 | ||
317 | Resume_devices: | 317 | Resume_devices: |
318 | /* We may need to release the preallocated image pages here. */ | ||
319 | if (error || !in_suspend) | ||
320 | swsusp_free(); | ||
321 | |||
318 | dpm_resume_end(in_suspend ? | 322 | dpm_resume_end(in_suspend ? |
319 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); | 323 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); |
320 | resume_console(); | 324 | resume_console(); |
@@ -460,11 +464,11 @@ int hibernation_platform_enter(void) | |||
460 | 464 | ||
461 | error = hibernation_ops->prepare(); | 465 | error = hibernation_ops->prepare(); |
462 | if (error) | 466 | if (error) |
463 | goto Platofrm_finish; | 467 | goto Platform_finish; |
464 | 468 | ||
465 | error = disable_nonboot_cpus(); | 469 | error = disable_nonboot_cpus(); |
466 | if (error) | 470 | if (error) |
467 | goto Platofrm_finish; | 471 | goto Platform_finish; |
468 | 472 | ||
469 | local_irq_disable(); | 473 | local_irq_disable(); |
470 | sysdev_suspend(PMSG_HIBERNATE); | 474 | sysdev_suspend(PMSG_HIBERNATE); |
@@ -476,7 +480,7 @@ int hibernation_platform_enter(void) | |||
476 | * We don't need to reenable the nonboot CPUs or resume consoles, since | 480 | * We don't need to reenable the nonboot CPUs or resume consoles, since |
477 | * the system is going to be halted anyway. | 481 | * the system is going to be halted anyway. |
478 | */ | 482 | */ |
479 | Platofrm_finish: | 483 | Platform_finish: |
480 | hibernation_ops->finish(); | 484 | hibernation_ops->finish(); |
481 | 485 | ||
482 | dpm_suspend_noirq(PMSG_RESTORE); | 486 | dpm_suspend_noirq(PMSG_RESTORE); |
@@ -578,7 +582,10 @@ int hibernate(void) | |||
578 | goto Thaw; | 582 | goto Thaw; |
579 | 583 | ||
580 | error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); | 584 | error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); |
581 | if (in_suspend && !error) { | 585 | if (error) |
586 | goto Thaw; | ||
587 | |||
588 | if (in_suspend) { | ||
582 | unsigned int flags = 0; | 589 | unsigned int flags = 0; |
583 | 590 | ||
584 | if (hibernation_mode == HIBERNATION_PLATFORM) | 591 | if (hibernation_mode == HIBERNATION_PLATFORM) |
@@ -590,8 +597,8 @@ int hibernate(void) | |||
590 | power_down(); | 597 | power_down(); |
591 | } else { | 598 | } else { |
592 | pr_debug("PM: Image restored successfully.\n"); | 599 | pr_debug("PM: Image restored successfully.\n"); |
593 | swsusp_free(); | ||
594 | } | 600 | } |
601 | |||
595 | Thaw: | 602 | Thaw: |
596 | thaw_processes(); | 603 | thaw_processes(); |
597 | Finish: | 604 | Finish: |
diff --git a/kernel/power/main.c b/kernel/power/main.c index f710e36930cc..347d2cc88cd0 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c | |||
@@ -11,6 +11,7 @@ | |||
11 | #include <linux/kobject.h> | 11 | #include <linux/kobject.h> |
12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
13 | #include <linux/resume-trace.h> | 13 | #include <linux/resume-trace.h> |
14 | #include <linux/workqueue.h> | ||
14 | 15 | ||
15 | #include "power.h" | 16 | #include "power.h" |
16 | 17 | ||
@@ -217,8 +218,24 @@ static struct attribute_group attr_group = { | |||
217 | .attrs = g, | 218 | .attrs = g, |
218 | }; | 219 | }; |
219 | 220 | ||
221 | #ifdef CONFIG_PM_RUNTIME | ||
222 | struct workqueue_struct *pm_wq; | ||
223 | |||
224 | static int __init pm_start_workqueue(void) | ||
225 | { | ||
226 | pm_wq = create_freezeable_workqueue("pm"); | ||
227 | |||
228 | return pm_wq ? 0 : -ENOMEM; | ||
229 | } | ||
230 | #else | ||
231 | static inline int pm_start_workqueue(void) { return 0; } | ||
232 | #endif | ||
233 | |||
220 | static int __init pm_init(void) | 234 | static int __init pm_init(void) |
221 | { | 235 | { |
236 | int error = pm_start_workqueue(); | ||
237 | if (error) | ||
238 | return error; | ||
222 | power_kobj = kobject_create_and_add("power", NULL); | 239 | power_kobj = kobject_create_and_add("power", NULL); |
223 | if (!power_kobj) | 240 | if (!power_kobj) |
224 | return -ENOMEM; | 241 | return -ENOMEM; |
diff --git a/kernel/power/power.h b/kernel/power/power.h index 26d5a26f82e3..46c5a26630a3 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h | |||
@@ -74,7 +74,7 @@ extern asmlinkage int swsusp_arch_resume(void); | |||
74 | 74 | ||
75 | extern int create_basic_memory_bitmaps(void); | 75 | extern int create_basic_memory_bitmaps(void); |
76 | extern void free_basic_memory_bitmaps(void); | 76 | extern void free_basic_memory_bitmaps(void); |
77 | extern int swsusp_shrink_memory(void); | 77 | extern int hibernate_preallocate_memory(void); |
78 | 78 | ||
79 | /** | 79 | /** |
80 | * Auxiliary structure used for reading the snapshot image data and | 80 | * Auxiliary structure used for reading the snapshot image data and |
diff --git a/kernel/power/process.c b/kernel/power/process.c index da2072d73811..cc2e55373b68 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
@@ -9,6 +9,7 @@ | |||
9 | #undef DEBUG | 9 | #undef DEBUG |
10 | 10 | ||
11 | #include <linux/interrupt.h> | 11 | #include <linux/interrupt.h> |
12 | #include <linux/oom.h> | ||
12 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
14 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 523a451b45d3..36cb168e4330 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -233,7 +233,7 @@ static void *chain_alloc(struct chain_allocator *ca, unsigned int size) | |||
233 | 233 | ||
234 | #define BM_END_OF_MAP (~0UL) | 234 | #define BM_END_OF_MAP (~0UL) |
235 | 235 | ||
236 | #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) | 236 | #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) |
237 | 237 | ||
238 | struct bm_block { | 238 | struct bm_block { |
239 | struct list_head hook; /* hook into a list of bitmap blocks */ | 239 | struct list_head hook; /* hook into a list of bitmap blocks */ |
@@ -275,7 +275,7 @@ static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); | |||
275 | 275 | ||
276 | /** | 276 | /** |
277 | * create_bm_block_list - create a list of block bitmap objects | 277 | * create_bm_block_list - create a list of block bitmap objects |
278 | * @nr_blocks - number of blocks to allocate | 278 | * @pages - number of pages to track |
279 | * @list - list to put the allocated blocks into | 279 | * @list - list to put the allocated blocks into |
280 | * @ca - chain allocator to be used for allocating memory | 280 | * @ca - chain allocator to be used for allocating memory |
281 | */ | 281 | */ |
@@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, | |||
619 | BUG_ON(!region); | 619 | BUG_ON(!region); |
620 | } else | 620 | } else |
621 | /* This allocation cannot fail */ | 621 | /* This allocation cannot fail */ |
622 | region = alloc_bootmem_low(sizeof(struct nosave_region)); | 622 | region = alloc_bootmem(sizeof(struct nosave_region)); |
623 | region->start_pfn = start_pfn; | 623 | region->start_pfn = start_pfn; |
624 | region->end_pfn = end_pfn; | 624 | region->end_pfn = end_pfn; |
625 | list_add_tail(®ion->list, &nosave_regions); | 625 | list_add_tail(®ion->list, &nosave_regions); |
@@ -853,7 +853,7 @@ static unsigned int count_highmem_pages(void) | |||
853 | struct zone *zone; | 853 | struct zone *zone; |
854 | unsigned int n = 0; | 854 | unsigned int n = 0; |
855 | 855 | ||
856 | for_each_zone(zone) { | 856 | for_each_populated_zone(zone) { |
857 | unsigned long pfn, max_zone_pfn; | 857 | unsigned long pfn, max_zone_pfn; |
858 | 858 | ||
859 | if (!is_highmem(zone)) | 859 | if (!is_highmem(zone)) |
@@ -916,7 +916,7 @@ static unsigned int count_data_pages(void) | |||
916 | unsigned long pfn, max_zone_pfn; | 916 | unsigned long pfn, max_zone_pfn; |
917 | unsigned int n = 0; | 917 | unsigned int n = 0; |
918 | 918 | ||
919 | for_each_zone(zone) { | 919 | for_each_populated_zone(zone) { |
920 | if (is_highmem(zone)) | 920 | if (is_highmem(zone)) |
921 | continue; | 921 | continue; |
922 | 922 | ||
@@ -1010,7 +1010,7 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) | |||
1010 | struct zone *zone; | 1010 | struct zone *zone; |
1011 | unsigned long pfn; | 1011 | unsigned long pfn; |
1012 | 1012 | ||
1013 | for_each_zone(zone) { | 1013 | for_each_populated_zone(zone) { |
1014 | unsigned long max_zone_pfn; | 1014 | unsigned long max_zone_pfn; |
1015 | 1015 | ||
1016 | mark_free_pages(zone); | 1016 | mark_free_pages(zone); |
@@ -1033,6 +1033,25 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) | |||
1033 | static unsigned int nr_copy_pages; | 1033 | static unsigned int nr_copy_pages; |
1034 | /* Number of pages needed for saving the original pfns of the image pages */ | 1034 | /* Number of pages needed for saving the original pfns of the image pages */ |
1035 | static unsigned int nr_meta_pages; | 1035 | static unsigned int nr_meta_pages; |
1036 | /* | ||
1037 | * Numbers of normal and highmem page frames allocated for hibernation image | ||
1038 | * before suspending devices. | ||
1039 | */ | ||
1040 | unsigned int alloc_normal, alloc_highmem; | ||
1041 | /* | ||
1042 | * Memory bitmap used for marking saveable pages (during hibernation) or | ||
1043 | * hibernation image pages (during restore) | ||
1044 | */ | ||
1045 | static struct memory_bitmap orig_bm; | ||
1046 | /* | ||
1047 | * Memory bitmap used during hibernation for marking allocated page frames that | ||
1048 | * will contain copies of saveable pages. During restore it is initially used | ||
1049 | * for marking hibernation image pages, but then the set bits from it are | ||
1050 | * duplicated in @orig_bm and it is released. On highmem systems it is next | ||
1051 | * used for marking "safe" highmem pages, but it has to be reinitialized for | ||
1052 | * this purpose. | ||
1053 | */ | ||
1054 | static struct memory_bitmap copy_bm; | ||
1036 | 1055 | ||
1037 | /** | 1056 | /** |
1038 | * swsusp_free - free pages allocated for the suspend. | 1057 | * swsusp_free - free pages allocated for the suspend. |
@@ -1046,7 +1065,7 @@ void swsusp_free(void) | |||
1046 | struct zone *zone; | 1065 | struct zone *zone; |
1047 | unsigned long pfn, max_zone_pfn; | 1066 | unsigned long pfn, max_zone_pfn; |
1048 | 1067 | ||
1049 | for_each_zone(zone) { | 1068 | for_each_populated_zone(zone) { |
1050 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 1069 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
1051 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 1070 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1052 | if (pfn_valid(pfn)) { | 1071 | if (pfn_valid(pfn)) { |
@@ -1064,74 +1083,286 @@ void swsusp_free(void) | |||
1064 | nr_meta_pages = 0; | 1083 | nr_meta_pages = 0; |
1065 | restore_pblist = NULL; | 1084 | restore_pblist = NULL; |
1066 | buffer = NULL; | 1085 | buffer = NULL; |
1086 | alloc_normal = 0; | ||
1087 | alloc_highmem = 0; | ||
1067 | } | 1088 | } |
1068 | 1089 | ||
1090 | /* Helper functions used for the shrinking of memory. */ | ||
1091 | |||
1092 | #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) | ||
1093 | |||
1069 | /** | 1094 | /** |
1070 | * swsusp_shrink_memory - Try to free as much memory as needed | 1095 | * preallocate_image_pages - Allocate a number of pages for hibernation image |
1071 | * | 1096 | * @nr_pages: Number of page frames to allocate. |
1072 | * ... but do not OOM-kill anyone | 1097 | * @mask: GFP flags to use for the allocation. |
1073 | * | 1098 | * |
1074 | * Notice: all userland should be stopped before it is called, or | 1099 | * Return value: Number of page frames actually allocated |
1075 | * livelock is possible. | 1100 | */ |
1101 | static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) | ||
1102 | { | ||
1103 | unsigned long nr_alloc = 0; | ||
1104 | |||
1105 | while (nr_pages > 0) { | ||
1106 | struct page *page; | ||
1107 | |||
1108 | page = alloc_image_page(mask); | ||
1109 | if (!page) | ||
1110 | break; | ||
1111 | memory_bm_set_bit(©_bm, page_to_pfn(page)); | ||
1112 | if (PageHighMem(page)) | ||
1113 | alloc_highmem++; | ||
1114 | else | ||
1115 | alloc_normal++; | ||
1116 | nr_pages--; | ||
1117 | nr_alloc++; | ||
1118 | } | ||
1119 | |||
1120 | return nr_alloc; | ||
1121 | } | ||
1122 | |||
1123 | static unsigned long preallocate_image_memory(unsigned long nr_pages) | ||
1124 | { | ||
1125 | return preallocate_image_pages(nr_pages, GFP_IMAGE); | ||
1126 | } | ||
1127 | |||
1128 | #ifdef CONFIG_HIGHMEM | ||
1129 | static unsigned long preallocate_image_highmem(unsigned long nr_pages) | ||
1130 | { | ||
1131 | return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); | ||
1132 | } | ||
1133 | |||
1134 | /** | ||
1135 | * __fraction - Compute (an approximation of) x * (multiplier / base) | ||
1076 | */ | 1136 | */ |
1137 | static unsigned long __fraction(u64 x, u64 multiplier, u64 base) | ||
1138 | { | ||
1139 | x *= multiplier; | ||
1140 | do_div(x, base); | ||
1141 | return (unsigned long)x; | ||
1142 | } | ||
1143 | |||
1144 | static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, | ||
1145 | unsigned long highmem, | ||
1146 | unsigned long total) | ||
1147 | { | ||
1148 | unsigned long alloc = __fraction(nr_pages, highmem, total); | ||
1077 | 1149 | ||
1078 | #define SHRINK_BITE 10000 | 1150 | return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); |
1079 | static inline unsigned long __shrink_memory(long tmp) | 1151 | } |
1152 | #else /* CONFIG_HIGHMEM */ | ||
1153 | static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) | ||
1080 | { | 1154 | { |
1081 | if (tmp > SHRINK_BITE) | 1155 | return 0; |
1082 | tmp = SHRINK_BITE; | ||
1083 | return shrink_all_memory(tmp); | ||
1084 | } | 1156 | } |
1085 | 1157 | ||
1086 | int swsusp_shrink_memory(void) | 1158 | static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, |
1159 | unsigned long highmem, | ||
1160 | unsigned long total) | ||
1161 | { | ||
1162 | return 0; | ||
1163 | } | ||
1164 | #endif /* CONFIG_HIGHMEM */ | ||
1165 | |||
1166 | /** | ||
1167 | * free_unnecessary_pages - Release preallocated pages not needed for the image | ||
1168 | */ | ||
1169 | static void free_unnecessary_pages(void) | ||
1170 | { | ||
1171 | unsigned long save_highmem, to_free_normal, to_free_highmem; | ||
1172 | |||
1173 | to_free_normal = alloc_normal - count_data_pages(); | ||
1174 | save_highmem = count_highmem_pages(); | ||
1175 | if (alloc_highmem > save_highmem) { | ||
1176 | to_free_highmem = alloc_highmem - save_highmem; | ||
1177 | } else { | ||
1178 | to_free_highmem = 0; | ||
1179 | to_free_normal -= save_highmem - alloc_highmem; | ||
1180 | } | ||
1181 | |||
1182 | memory_bm_position_reset(©_bm); | ||
1183 | |||
1184 | while (to_free_normal > 0 && to_free_highmem > 0) { | ||
1185 | unsigned long pfn = memory_bm_next_pfn(©_bm); | ||
1186 | struct page *page = pfn_to_page(pfn); | ||
1187 | |||
1188 | if (PageHighMem(page)) { | ||
1189 | if (!to_free_highmem) | ||
1190 | continue; | ||
1191 | to_free_highmem--; | ||
1192 | alloc_highmem--; | ||
1193 | } else { | ||
1194 | if (!to_free_normal) | ||
1195 | continue; | ||
1196 | to_free_normal--; | ||
1197 | alloc_normal--; | ||
1198 | } | ||
1199 | memory_bm_clear_bit(©_bm, pfn); | ||
1200 | swsusp_unset_page_forbidden(page); | ||
1201 | swsusp_unset_page_free(page); | ||
1202 | __free_page(page); | ||
1203 | } | ||
1204 | } | ||
1205 | |||
1206 | /** | ||
1207 | * minimum_image_size - Estimate the minimum acceptable size of an image | ||
1208 | * @saveable: Number of saveable pages in the system. | ||
1209 | * | ||
1210 | * We want to avoid attempting to free too much memory too hard, so estimate the | ||
1211 | * minimum acceptable size of a hibernation image to use as the lower limit for | ||
1212 | * preallocating memory. | ||
1213 | * | ||
1214 | * We assume that the minimum image size should be proportional to | ||
1215 | * | ||
1216 | * [number of saveable pages] - [number of pages that can be freed in theory] | ||
1217 | * | ||
1218 | * where the second term is the sum of (1) reclaimable slab pages, (2) active | ||
1219 | * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, | ||
1220 | * minus mapped file pages. | ||
1221 | */ | ||
1222 | static unsigned long minimum_image_size(unsigned long saveable) | ||
1223 | { | ||
1224 | unsigned long size; | ||
1225 | |||
1226 | size = global_page_state(NR_SLAB_RECLAIMABLE) | ||
1227 | + global_page_state(NR_ACTIVE_ANON) | ||
1228 | + global_page_state(NR_INACTIVE_ANON) | ||
1229 | + global_page_state(NR_ACTIVE_FILE) | ||
1230 | + global_page_state(NR_INACTIVE_FILE) | ||
1231 | - global_page_state(NR_FILE_MAPPED); | ||
1232 | |||
1233 | return saveable <= size ? 0 : saveable - size; | ||
1234 | } | ||
1235 | |||
1236 | /** | ||
1237 | * hibernate_preallocate_memory - Preallocate memory for hibernation image | ||
1238 | * | ||
1239 | * To create a hibernation image it is necessary to make a copy of every page | ||
1240 | * frame in use. We also need a number of page frames to be free during | ||
1241 | * hibernation for allocations made while saving the image and for device | ||
1242 | * drivers, in case they need to allocate memory from their hibernation | ||
1243 | * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES, | ||
1244 | * respectively, both of which are rough estimates). To make this happen, we | ||
1245 | * compute the total number of available page frames and allocate at least | ||
1246 | * | ||
1247 | * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES | ||
1248 | * | ||
1249 | * of them, which corresponds to the maximum size of a hibernation image. | ||
1250 | * | ||
1251 | * If image_size is set below the number following from the above formula, | ||
1252 | * the preallocation of memory is continued until the total number of saveable | ||
1253 | * pages in the system is below the requested image size or the minimum | ||
1254 | * acceptable image size returned by minimum_image_size(), whichever is greater. | ||
1255 | */ | ||
1256 | int hibernate_preallocate_memory(void) | ||
1087 | { | 1257 | { |
1088 | long tmp; | ||
1089 | struct zone *zone; | 1258 | struct zone *zone; |
1090 | unsigned long pages = 0; | 1259 | unsigned long saveable, size, max_size, count, highmem, pages = 0; |
1091 | unsigned int i = 0; | 1260 | unsigned long alloc, save_highmem, pages_highmem; |
1092 | char *p = "-\\|/"; | ||
1093 | struct timeval start, stop; | 1261 | struct timeval start, stop; |
1262 | int error; | ||
1094 | 1263 | ||
1095 | printk(KERN_INFO "PM: Shrinking memory... "); | 1264 | printk(KERN_INFO "PM: Preallocating image memory... "); |
1096 | do_gettimeofday(&start); | 1265 | do_gettimeofday(&start); |
1097 | do { | ||
1098 | long size, highmem_size; | ||
1099 | |||
1100 | highmem_size = count_highmem_pages(); | ||
1101 | size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES; | ||
1102 | tmp = size; | ||
1103 | size += highmem_size; | ||
1104 | for_each_populated_zone(zone) { | ||
1105 | tmp += snapshot_additional_pages(zone); | ||
1106 | if (is_highmem(zone)) { | ||
1107 | highmem_size -= | ||
1108 | zone_page_state(zone, NR_FREE_PAGES); | ||
1109 | } else { | ||
1110 | tmp -= zone_page_state(zone, NR_FREE_PAGES); | ||
1111 | tmp += zone->lowmem_reserve[ZONE_NORMAL]; | ||
1112 | } | ||
1113 | } | ||
1114 | 1266 | ||
1115 | if (highmem_size < 0) | 1267 | error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); |
1116 | highmem_size = 0; | 1268 | if (error) |
1269 | goto err_out; | ||
1117 | 1270 | ||
1118 | tmp += highmem_size; | 1271 | error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); |
1119 | if (tmp > 0) { | 1272 | if (error) |
1120 | tmp = __shrink_memory(tmp); | 1273 | goto err_out; |
1121 | if (!tmp) | 1274 | |
1122 | return -ENOMEM; | 1275 | alloc_normal = 0; |
1123 | pages += tmp; | 1276 | alloc_highmem = 0; |
1124 | } else if (size > image_size / PAGE_SIZE) { | 1277 | |
1125 | tmp = __shrink_memory(size - (image_size / PAGE_SIZE)); | 1278 | /* Count the number of saveable data pages. */ |
1126 | pages += tmp; | 1279 | save_highmem = count_highmem_pages(); |
1127 | } | 1280 | saveable = count_data_pages(); |
1128 | printk("\b%c", p[i++%4]); | 1281 | |
1129 | } while (tmp > 0); | 1282 | /* |
1283 | * Compute the total number of page frames we can use (count) and the | ||
1284 | * number of pages needed for image metadata (size). | ||
1285 | */ | ||
1286 | count = saveable; | ||
1287 | saveable += save_highmem; | ||
1288 | highmem = save_highmem; | ||
1289 | size = 0; | ||
1290 | for_each_populated_zone(zone) { | ||
1291 | size += snapshot_additional_pages(zone); | ||
1292 | if (is_highmem(zone)) | ||
1293 | highmem += zone_page_state(zone, NR_FREE_PAGES); | ||
1294 | else | ||
1295 | count += zone_page_state(zone, NR_FREE_PAGES); | ||
1296 | } | ||
1297 | count += highmem; | ||
1298 | count -= totalreserve_pages; | ||
1299 | |||
1300 | /* Compute the maximum number of saveable pages to leave in memory. */ | ||
1301 | max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES; | ||
1302 | size = DIV_ROUND_UP(image_size, PAGE_SIZE); | ||
1303 | if (size > max_size) | ||
1304 | size = max_size; | ||
1305 | /* | ||
1306 | * If the maximum is not less than the current number of saveable pages | ||
1307 | * in memory, allocate page frames for the image and we're done. | ||
1308 | */ | ||
1309 | if (size >= saveable) { | ||
1310 | pages = preallocate_image_highmem(save_highmem); | ||
1311 | pages += preallocate_image_memory(saveable - pages); | ||
1312 | goto out; | ||
1313 | } | ||
1314 | |||
1315 | /* Estimate the minimum size of the image. */ | ||
1316 | pages = minimum_image_size(saveable); | ||
1317 | if (size < pages) | ||
1318 | size = min_t(unsigned long, pages, max_size); | ||
1319 | |||
1320 | /* | ||
1321 | * Let the memory management subsystem know that we're going to need a | ||
1322 | * large number of page frames to allocate and make it free some memory. | ||
1323 | * NOTE: If this is not done, performance will be hurt badly in some | ||
1324 | * test cases. | ||
1325 | */ | ||
1326 | shrink_all_memory(saveable - size); | ||
1327 | |||
1328 | /* | ||
1329 | * The number of saveable pages in memory was too high, so apply some | ||
1330 | * pressure to decrease it. First, make room for the largest possible | ||
1331 | * image and fail if that doesn't work. Next, try to decrease the size | ||
1332 | * of the image as much as indicated by 'size' using allocations from | ||
1333 | * highmem and non-highmem zones separately. | ||
1334 | */ | ||
1335 | pages_highmem = preallocate_image_highmem(highmem / 2); | ||
1336 | alloc = (count - max_size) - pages_highmem; | ||
1337 | pages = preallocate_image_memory(alloc); | ||
1338 | if (pages < alloc) | ||
1339 | goto err_out; | ||
1340 | size = max_size - size; | ||
1341 | alloc = size; | ||
1342 | size = preallocate_highmem_fraction(size, highmem, count); | ||
1343 | pages_highmem += size; | ||
1344 | alloc -= size; | ||
1345 | pages += preallocate_image_memory(alloc); | ||
1346 | pages += pages_highmem; | ||
1347 | |||
1348 | /* | ||
1349 | * We only need as many page frames for the image as there are saveable | ||
1350 | * pages in memory, but we have allocated more. Release the excessive | ||
1351 | * ones now. | ||
1352 | */ | ||
1353 | free_unnecessary_pages(); | ||
1354 | |||
1355 | out: | ||
1130 | do_gettimeofday(&stop); | 1356 | do_gettimeofday(&stop); |
1131 | printk("\bdone (%lu pages freed)\n", pages); | 1357 | printk(KERN_CONT "done (allocated %lu pages)\n", pages); |
1132 | swsusp_show_speed(&start, &stop, pages, "Freed"); | 1358 | swsusp_show_speed(&start, &stop, pages, "Allocated"); |
1133 | 1359 | ||
1134 | return 0; | 1360 | return 0; |
1361 | |||
1362 | err_out: | ||
1363 | printk(KERN_CONT "\n"); | ||
1364 | swsusp_free(); | ||
1365 | return -ENOMEM; | ||
1135 | } | 1366 | } |
1136 | 1367 | ||
1137 | #ifdef CONFIG_HIGHMEM | 1368 | #ifdef CONFIG_HIGHMEM |
@@ -1142,7 +1373,7 @@ int swsusp_shrink_memory(void) | |||
1142 | 1373 | ||
1143 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) | 1374 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) |
1144 | { | 1375 | { |
1145 | unsigned int free_highmem = count_free_highmem_pages(); | 1376 | unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; |
1146 | 1377 | ||
1147 | if (free_highmem >= nr_highmem) | 1378 | if (free_highmem >= nr_highmem) |
1148 | nr_highmem = 0; | 1379 | nr_highmem = 0; |
@@ -1164,19 +1395,17 @@ count_pages_for_highmem(unsigned int nr_highmem) { return 0; } | |||
1164 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) | 1395 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) |
1165 | { | 1396 | { |
1166 | struct zone *zone; | 1397 | struct zone *zone; |
1167 | unsigned int free = 0, meta = 0; | 1398 | unsigned int free = alloc_normal; |
1168 | 1399 | ||
1169 | for_each_zone(zone) { | 1400 | for_each_populated_zone(zone) |
1170 | meta += snapshot_additional_pages(zone); | ||
1171 | if (!is_highmem(zone)) | 1401 | if (!is_highmem(zone)) |
1172 | free += zone_page_state(zone, NR_FREE_PAGES); | 1402 | free += zone_page_state(zone, NR_FREE_PAGES); |
1173 | } | ||
1174 | 1403 | ||
1175 | nr_pages += count_pages_for_highmem(nr_highmem); | 1404 | nr_pages += count_pages_for_highmem(nr_highmem); |
1176 | pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", | 1405 | pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", |
1177 | nr_pages, PAGES_FOR_IO, meta, free); | 1406 | nr_pages, PAGES_FOR_IO, free); |
1178 | 1407 | ||
1179 | return free > nr_pages + PAGES_FOR_IO + meta; | 1408 | return free > nr_pages + PAGES_FOR_IO; |
1180 | } | 1409 | } |
1181 | 1410 | ||
1182 | #ifdef CONFIG_HIGHMEM | 1411 | #ifdef CONFIG_HIGHMEM |
@@ -1198,7 +1427,7 @@ static inline int get_highmem_buffer(int safe_needed) | |||
1198 | */ | 1427 | */ |
1199 | 1428 | ||
1200 | static inline unsigned int | 1429 | static inline unsigned int |
1201 | alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) | 1430 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) |
1202 | { | 1431 | { |
1203 | unsigned int to_alloc = count_free_highmem_pages(); | 1432 | unsigned int to_alloc = count_free_highmem_pages(); |
1204 | 1433 | ||
@@ -1218,7 +1447,7 @@ alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) | |||
1218 | static inline int get_highmem_buffer(int safe_needed) { return 0; } | 1447 | static inline int get_highmem_buffer(int safe_needed) { return 0; } |
1219 | 1448 | ||
1220 | static inline unsigned int | 1449 | static inline unsigned int |
1221 | alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } | 1450 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } |
1222 | #endif /* CONFIG_HIGHMEM */ | 1451 | #endif /* CONFIG_HIGHMEM */ |
1223 | 1452 | ||
1224 | /** | 1453 | /** |
@@ -1237,51 +1466,36 @@ static int | |||
1237 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, | 1466 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, |
1238 | unsigned int nr_pages, unsigned int nr_highmem) | 1467 | unsigned int nr_pages, unsigned int nr_highmem) |
1239 | { | 1468 | { |
1240 | int error; | 1469 | int error = 0; |
1241 | |||
1242 | error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); | ||
1243 | if (error) | ||
1244 | goto Free; | ||
1245 | |||
1246 | error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); | ||
1247 | if (error) | ||
1248 | goto Free; | ||
1249 | 1470 | ||
1250 | if (nr_highmem > 0) { | 1471 | if (nr_highmem > 0) { |
1251 | error = get_highmem_buffer(PG_ANY); | 1472 | error = get_highmem_buffer(PG_ANY); |
1252 | if (error) | 1473 | if (error) |
1253 | goto Free; | 1474 | goto err_out; |
1254 | 1475 | if (nr_highmem > alloc_highmem) { | |
1255 | nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); | 1476 | nr_highmem -= alloc_highmem; |
1477 | nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); | ||
1478 | } | ||
1256 | } | 1479 | } |
1257 | while (nr_pages-- > 0) { | 1480 | if (nr_pages > alloc_normal) { |
1258 | struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); | 1481 | nr_pages -= alloc_normal; |
1259 | 1482 | while (nr_pages-- > 0) { | |
1260 | if (!page) | 1483 | struct page *page; |
1261 | goto Free; | ||
1262 | 1484 | ||
1263 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); | 1485 | page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); |
1486 | if (!page) | ||
1487 | goto err_out; | ||
1488 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); | ||
1489 | } | ||
1264 | } | 1490 | } |
1491 | |||
1265 | return 0; | 1492 | return 0; |
1266 | 1493 | ||
1267 | Free: | 1494 | err_out: |
1268 | swsusp_free(); | 1495 | swsusp_free(); |
1269 | return -ENOMEM; | 1496 | return error; |
1270 | } | 1497 | } |
1271 | 1498 | ||
1272 | /* Memory bitmap used for marking saveable pages (during suspend) or the | ||
1273 | * suspend image pages (during resume) | ||
1274 | */ | ||
1275 | static struct memory_bitmap orig_bm; | ||
1276 | /* Memory bitmap used on suspend for marking allocated pages that will contain | ||
1277 | * the copies of saveable pages. During resume it is initially used for | ||
1278 | * marking the suspend image pages, but then its set bits are duplicated in | ||
1279 | * @orig_bm and it is released. Next, on systems with high memory, it may be | ||
1280 | * used for marking "safe" highmem pages, but it has to be reinitialized for | ||
1281 | * this purpose. | ||
1282 | */ | ||
1283 | static struct memory_bitmap copy_bm; | ||
1284 | |||
1285 | asmlinkage int swsusp_save(void) | 1499 | asmlinkage int swsusp_save(void) |
1286 | { | 1500 | { |
1287 | unsigned int nr_pages, nr_highmem; | 1501 | unsigned int nr_pages, nr_highmem; |
@@ -1474,7 +1688,7 @@ static int mark_unsafe_pages(struct memory_bitmap *bm) | |||
1474 | unsigned long pfn, max_zone_pfn; | 1688 | unsigned long pfn, max_zone_pfn; |
1475 | 1689 | ||
1476 | /* Clear page flags */ | 1690 | /* Clear page flags */ |
1477 | for_each_zone(zone) { | 1691 | for_each_populated_zone(zone) { |
1478 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 1692 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
1479 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 1693 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1480 | if (pfn_valid(pfn)) | 1694 | if (pfn_valid(pfn)) |
diff --git a/kernel/printk.c b/kernel/printk.c index b4d97b54c1ec..f38b07f78a4e 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -37,6 +37,12 @@ | |||
37 | #include <asm/uaccess.h> | 37 | #include <asm/uaccess.h> |
38 | 38 | ||
39 | /* | 39 | /* |
40 | * for_each_console() allows you to iterate on each console | ||
41 | */ | ||
42 | #define for_each_console(con) \ | ||
43 | for (con = console_drivers; con != NULL; con = con->next) | ||
44 | |||
45 | /* | ||
40 | * Architectures can override it: | 46 | * Architectures can override it: |
41 | */ | 47 | */ |
42 | void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...) | 48 | void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...) |
@@ -61,6 +67,8 @@ int console_printk[4] = { | |||
61 | DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ | 67 | DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ |
62 | }; | 68 | }; |
63 | 69 | ||
70 | static int saved_console_loglevel = -1; | ||
71 | |||
64 | /* | 72 | /* |
65 | * Low level drivers may need that to know if they can schedule in | 73 | * Low level drivers may need that to know if they can schedule in |
66 | * their unblank() callback or not. So let's export it. | 74 | * their unblank() callback or not. So let's export it. |
@@ -198,12 +206,11 @@ __setup("log_buf_len=", log_buf_len_setup); | |||
198 | #ifdef CONFIG_BOOT_PRINTK_DELAY | 206 | #ifdef CONFIG_BOOT_PRINTK_DELAY |
199 | 207 | ||
200 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ | 208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ |
201 | static unsigned long long printk_delay_msec; /* per msec, based on boot_delay */ | 209 | static unsigned long long loops_per_msec; /* based on boot_delay */ |
202 | 210 | ||
203 | static int __init boot_delay_setup(char *str) | 211 | static int __init boot_delay_setup(char *str) |
204 | { | 212 | { |
205 | unsigned long lpj; | 213 | unsigned long lpj; |
206 | unsigned long long loops_per_msec; | ||
207 | 214 | ||
208 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ | 215 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ |
209 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; | 216 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; |
@@ -212,10 +219,9 @@ static int __init boot_delay_setup(char *str) | |||
212 | if (boot_delay > 10 * 1000) | 219 | if (boot_delay > 10 * 1000) |
213 | boot_delay = 0; | 220 | boot_delay = 0; |
214 | 221 | ||
215 | printk_delay_msec = loops_per_msec; | 222 | pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " |
216 | printk(KERN_DEBUG "boot_delay: %u, preset_lpj: %ld, lpj: %lu, " | 223 | "HZ: %d, loops_per_msec: %llu\n", |
217 | "HZ: %d, printk_delay_msec: %llu\n", | 224 | boot_delay, preset_lpj, lpj, HZ, loops_per_msec); |
218 | boot_delay, preset_lpj, lpj, HZ, printk_delay_msec); | ||
219 | return 1; | 225 | return 1; |
220 | } | 226 | } |
221 | __setup("boot_delay=", boot_delay_setup); | 227 | __setup("boot_delay=", boot_delay_setup); |
@@ -228,7 +234,7 @@ static void boot_delay_msec(void) | |||
228 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) | 234 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) |
229 | return; | 235 | return; |
230 | 236 | ||
231 | k = (unsigned long long)printk_delay_msec * boot_delay; | 237 | k = (unsigned long long)loops_per_msec * boot_delay; |
232 | 238 | ||
233 | timeout = jiffies + msecs_to_jiffies(boot_delay); | 239 | timeout = jiffies + msecs_to_jiffies(boot_delay); |
234 | while (k) { | 240 | while (k) { |
@@ -372,10 +378,15 @@ int do_syslog(int type, char __user *buf, int len) | |||
372 | logged_chars = 0; | 378 | logged_chars = 0; |
373 | break; | 379 | break; |
374 | case 6: /* Disable logging to console */ | 380 | case 6: /* Disable logging to console */ |
381 | if (saved_console_loglevel == -1) | ||
382 | saved_console_loglevel = console_loglevel; | ||
375 | console_loglevel = minimum_console_loglevel; | 383 | console_loglevel = minimum_console_loglevel; |
376 | break; | 384 | break; |
377 | case 7: /* Enable logging to console */ | 385 | case 7: /* Enable logging to console */ |
378 | console_loglevel = default_console_loglevel; | 386 | if (saved_console_loglevel != -1) { |
387 | console_loglevel = saved_console_loglevel; | ||
388 | saved_console_loglevel = -1; | ||
389 | } | ||
379 | break; | 390 | break; |
380 | case 8: /* Set level of messages printed to console */ | 391 | case 8: /* Set level of messages printed to console */ |
381 | error = -EINVAL; | 392 | error = -EINVAL; |
@@ -384,6 +395,8 @@ int do_syslog(int type, char __user *buf, int len) | |||
384 | if (len < minimum_console_loglevel) | 395 | if (len < minimum_console_loglevel) |
385 | len = minimum_console_loglevel; | 396 | len = minimum_console_loglevel; |
386 | console_loglevel = len; | 397 | console_loglevel = len; |
398 | /* Implicitly re-enable logging to console */ | ||
399 | saved_console_loglevel = -1; | ||
387 | error = 0; | 400 | error = 0; |
388 | break; | 401 | break; |
389 | case 9: /* Number of chars in the log buffer */ | 402 | case 9: /* Number of chars in the log buffer */ |
@@ -412,7 +425,7 @@ static void __call_console_drivers(unsigned start, unsigned end) | |||
412 | { | 425 | { |
413 | struct console *con; | 426 | struct console *con; |
414 | 427 | ||
415 | for (con = console_drivers; con; con = con->next) { | 428 | for_each_console(con) { |
416 | if ((con->flags & CON_ENABLED) && con->write && | 429 | if ((con->flags & CON_ENABLED) && con->write && |
417 | (cpu_online(smp_processor_id()) || | 430 | (cpu_online(smp_processor_id()) || |
418 | (con->flags & CON_ANYTIME))) | 431 | (con->flags & CON_ANYTIME))) |
@@ -544,7 +557,7 @@ static int have_callable_console(void) | |||
544 | { | 557 | { |
545 | struct console *con; | 558 | struct console *con; |
546 | 559 | ||
547 | for (con = console_drivers; con; con = con->next) | 560 | for_each_console(con) |
548 | if (con->flags & CON_ANYTIME) | 561 | if (con->flags & CON_ANYTIME) |
549 | return 1; | 562 | return 1; |
550 | 563 | ||
@@ -640,6 +653,20 @@ static int recursion_bug; | |||
640 | static int new_text_line = 1; | 653 | static int new_text_line = 1; |
641 | static char printk_buf[1024]; | 654 | static char printk_buf[1024]; |
642 | 655 | ||
656 | int printk_delay_msec __read_mostly; | ||
657 | |||
658 | static inline void printk_delay(void) | ||
659 | { | ||
660 | if (unlikely(printk_delay_msec)) { | ||
661 | int m = printk_delay_msec; | ||
662 | |||
663 | while (m--) { | ||
664 | mdelay(1); | ||
665 | touch_nmi_watchdog(); | ||
666 | } | ||
667 | } | ||
668 | } | ||
669 | |||
643 | asmlinkage int vprintk(const char *fmt, va_list args) | 670 | asmlinkage int vprintk(const char *fmt, va_list args) |
644 | { | 671 | { |
645 | int printed_len = 0; | 672 | int printed_len = 0; |
@@ -649,6 +676,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
649 | char *p; | 676 | char *p; |
650 | 677 | ||
651 | boot_delay_msec(); | 678 | boot_delay_msec(); |
679 | printk_delay(); | ||
652 | 680 | ||
653 | preempt_disable(); | 681 | preempt_disable(); |
654 | /* This stops the holder of console_sem just where we want him */ | 682 | /* This stops the holder of console_sem just where we want him */ |
@@ -1060,12 +1088,6 @@ void __sched console_conditional_schedule(void) | |||
1060 | } | 1088 | } |
1061 | EXPORT_SYMBOL(console_conditional_schedule); | 1089 | EXPORT_SYMBOL(console_conditional_schedule); |
1062 | 1090 | ||
1063 | void console_print(const char *s) | ||
1064 | { | ||
1065 | printk(KERN_EMERG "%s", s); | ||
1066 | } | ||
1067 | EXPORT_SYMBOL(console_print); | ||
1068 | |||
1069 | void console_unblank(void) | 1091 | void console_unblank(void) |
1070 | { | 1092 | { |
1071 | struct console *c; | 1093 | struct console *c; |
@@ -1082,7 +1104,7 @@ void console_unblank(void) | |||
1082 | 1104 | ||
1083 | console_locked = 1; | 1105 | console_locked = 1; |
1084 | console_may_schedule = 0; | 1106 | console_may_schedule = 0; |
1085 | for (c = console_drivers; c != NULL; c = c->next) | 1107 | for_each_console(c) |
1086 | if ((c->flags & CON_ENABLED) && c->unblank) | 1108 | if ((c->flags & CON_ENABLED) && c->unblank) |
1087 | c->unblank(); | 1109 | c->unblank(); |
1088 | release_console_sem(); | 1110 | release_console_sem(); |
@@ -1097,7 +1119,7 @@ struct tty_driver *console_device(int *index) | |||
1097 | struct tty_driver *driver = NULL; | 1119 | struct tty_driver *driver = NULL; |
1098 | 1120 | ||
1099 | acquire_console_sem(); | 1121 | acquire_console_sem(); |
1100 | for (c = console_drivers; c != NULL; c = c->next) { | 1122 | for_each_console(c) { |
1101 | if (!c->device) | 1123 | if (!c->device) |
1102 | continue; | 1124 | continue; |
1103 | driver = c->device(c, index); | 1125 | driver = c->device(c, index); |
@@ -1134,25 +1156,49 @@ EXPORT_SYMBOL(console_start); | |||
1134 | * to register the console printing procedure with printk() and to | 1156 | * to register the console printing procedure with printk() and to |
1135 | * print any messages that were printed by the kernel before the | 1157 | * print any messages that were printed by the kernel before the |
1136 | * console driver was initialized. | 1158 | * console driver was initialized. |
1159 | * | ||
1160 | * This can happen pretty early during the boot process (because of | ||
1161 | * early_printk) - sometimes before setup_arch() completes - be careful | ||
1162 | * of what kernel features are used - they may not be initialised yet. | ||
1163 | * | ||
1164 | * There are two types of consoles - bootconsoles (early_printk) and | ||
1165 | * "real" consoles (everything which is not a bootconsole) which are | ||
1166 | * handled differently. | ||
1167 | * - Any number of bootconsoles can be registered at any time. | ||
1168 | * - As soon as a "real" console is registered, all bootconsoles | ||
1169 | * will be unregistered automatically. | ||
1170 | * - Once a "real" console is registered, any attempt to register a | ||
1171 | * bootconsoles will be rejected | ||
1137 | */ | 1172 | */ |
1138 | void register_console(struct console *console) | 1173 | void register_console(struct console *newcon) |
1139 | { | 1174 | { |
1140 | int i; | 1175 | int i; |
1141 | unsigned long flags; | 1176 | unsigned long flags; |
1142 | struct console *bootconsole = NULL; | 1177 | struct console *bcon = NULL; |
1143 | 1178 | ||
1144 | if (console_drivers) { | 1179 | /* |
1145 | if (console->flags & CON_BOOT) | 1180 | * before we register a new CON_BOOT console, make sure we don't |
1146 | return; | 1181 | * already have a valid console |
1147 | if (console_drivers->flags & CON_BOOT) | 1182 | */ |
1148 | bootconsole = console_drivers; | 1183 | if (console_drivers && newcon->flags & CON_BOOT) { |
1184 | /* find the last or real console */ | ||
1185 | for_each_console(bcon) { | ||
1186 | if (!(bcon->flags & CON_BOOT)) { | ||
1187 | printk(KERN_INFO "Too late to register bootconsole %s%d\n", | ||
1188 | newcon->name, newcon->index); | ||
1189 | return; | ||
1190 | } | ||
1191 | } | ||
1149 | } | 1192 | } |
1150 | 1193 | ||
1151 | if (preferred_console < 0 || bootconsole || !console_drivers) | 1194 | if (console_drivers && console_drivers->flags & CON_BOOT) |
1195 | bcon = console_drivers; | ||
1196 | |||
1197 | if (preferred_console < 0 || bcon || !console_drivers) | ||
1152 | preferred_console = selected_console; | 1198 | preferred_console = selected_console; |
1153 | 1199 | ||
1154 | if (console->early_setup) | 1200 | if (newcon->early_setup) |
1155 | console->early_setup(); | 1201 | newcon->early_setup(); |
1156 | 1202 | ||
1157 | /* | 1203 | /* |
1158 | * See if we want to use this console driver. If we | 1204 | * See if we want to use this console driver. If we |
@@ -1160,13 +1206,13 @@ void register_console(struct console *console) | |||
1160 | * that registers here. | 1206 | * that registers here. |
1161 | */ | 1207 | */ |
1162 | if (preferred_console < 0) { | 1208 | if (preferred_console < 0) { |
1163 | if (console->index < 0) | 1209 | if (newcon->index < 0) |
1164 | console->index = 0; | 1210 | newcon->index = 0; |
1165 | if (console->setup == NULL || | 1211 | if (newcon->setup == NULL || |
1166 | console->setup(console, NULL) == 0) { | 1212 | newcon->setup(newcon, NULL) == 0) { |
1167 | console->flags |= CON_ENABLED; | 1213 | newcon->flags |= CON_ENABLED; |
1168 | if (console->device) { | 1214 | if (newcon->device) { |
1169 | console->flags |= CON_CONSDEV; | 1215 | newcon->flags |= CON_CONSDEV; |
1170 | preferred_console = 0; | 1216 | preferred_console = 0; |
1171 | } | 1217 | } |
1172 | } | 1218 | } |
@@ -1178,64 +1224,62 @@ void register_console(struct console *console) | |||
1178 | */ | 1224 | */ |
1179 | for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; | 1225 | for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; |
1180 | i++) { | 1226 | i++) { |
1181 | if (strcmp(console_cmdline[i].name, console->name) != 0) | 1227 | if (strcmp(console_cmdline[i].name, newcon->name) != 0) |
1182 | continue; | 1228 | continue; |
1183 | if (console->index >= 0 && | 1229 | if (newcon->index >= 0 && |
1184 | console->index != console_cmdline[i].index) | 1230 | newcon->index != console_cmdline[i].index) |
1185 | continue; | 1231 | continue; |
1186 | if (console->index < 0) | 1232 | if (newcon->index < 0) |
1187 | console->index = console_cmdline[i].index; | 1233 | newcon->index = console_cmdline[i].index; |
1188 | #ifdef CONFIG_A11Y_BRAILLE_CONSOLE | 1234 | #ifdef CONFIG_A11Y_BRAILLE_CONSOLE |
1189 | if (console_cmdline[i].brl_options) { | 1235 | if (console_cmdline[i].brl_options) { |
1190 | console->flags |= CON_BRL; | 1236 | newcon->flags |= CON_BRL; |
1191 | braille_register_console(console, | 1237 | braille_register_console(newcon, |
1192 | console_cmdline[i].index, | 1238 | console_cmdline[i].index, |
1193 | console_cmdline[i].options, | 1239 | console_cmdline[i].options, |
1194 | console_cmdline[i].brl_options); | 1240 | console_cmdline[i].brl_options); |
1195 | return; | 1241 | return; |
1196 | } | 1242 | } |
1197 | #endif | 1243 | #endif |
1198 | if (console->setup && | 1244 | if (newcon->setup && |
1199 | console->setup(console, console_cmdline[i].options) != 0) | 1245 | newcon->setup(newcon, console_cmdline[i].options) != 0) |
1200 | break; | 1246 | break; |
1201 | console->flags |= CON_ENABLED; | 1247 | newcon->flags |= CON_ENABLED; |
1202 | console->index = console_cmdline[i].index; | 1248 | newcon->index = console_cmdline[i].index; |
1203 | if (i == selected_console) { | 1249 | if (i == selected_console) { |
1204 | console->flags |= CON_CONSDEV; | 1250 | newcon->flags |= CON_CONSDEV; |
1205 | preferred_console = selected_console; | 1251 | preferred_console = selected_console; |
1206 | } | 1252 | } |
1207 | break; | 1253 | break; |
1208 | } | 1254 | } |
1209 | 1255 | ||
1210 | if (!(console->flags & CON_ENABLED)) | 1256 | if (!(newcon->flags & CON_ENABLED)) |
1211 | return; | 1257 | return; |
1212 | 1258 | ||
1213 | if (bootconsole && (console->flags & CON_CONSDEV)) { | 1259 | /* |
1214 | printk(KERN_INFO "console handover: boot [%s%d] -> real [%s%d]\n", | 1260 | * If we have a bootconsole, and are switching to a real console, |
1215 | bootconsole->name, bootconsole->index, | 1261 | * don't print everything out again, since when the boot console, and |
1216 | console->name, console->index); | 1262 | * the real console are the same physical device, it's annoying to |
1217 | unregister_console(bootconsole); | 1263 | * see the beginning boot messages twice |
1218 | console->flags &= ~CON_PRINTBUFFER; | 1264 | */ |
1219 | } else { | 1265 | if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) |
1220 | printk(KERN_INFO "console [%s%d] enabled\n", | 1266 | newcon->flags &= ~CON_PRINTBUFFER; |
1221 | console->name, console->index); | ||
1222 | } | ||
1223 | 1267 | ||
1224 | /* | 1268 | /* |
1225 | * Put this console in the list - keep the | 1269 | * Put this console in the list - keep the |
1226 | * preferred driver at the head of the list. | 1270 | * preferred driver at the head of the list. |
1227 | */ | 1271 | */ |
1228 | acquire_console_sem(); | 1272 | acquire_console_sem(); |
1229 | if ((console->flags & CON_CONSDEV) || console_drivers == NULL) { | 1273 | if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { |
1230 | console->next = console_drivers; | 1274 | newcon->next = console_drivers; |
1231 | console_drivers = console; | 1275 | console_drivers = newcon; |
1232 | if (console->next) | 1276 | if (newcon->next) |
1233 | console->next->flags &= ~CON_CONSDEV; | 1277 | newcon->next->flags &= ~CON_CONSDEV; |
1234 | } else { | 1278 | } else { |
1235 | console->next = console_drivers->next; | 1279 | newcon->next = console_drivers->next; |
1236 | console_drivers->next = console; | 1280 | console_drivers->next = newcon; |
1237 | } | 1281 | } |
1238 | if (console->flags & CON_PRINTBUFFER) { | 1282 | if (newcon->flags & CON_PRINTBUFFER) { |
1239 | /* | 1283 | /* |
1240 | * release_console_sem() will print out the buffered messages | 1284 | * release_console_sem() will print out the buffered messages |
1241 | * for us. | 1285 | * for us. |
@@ -1245,6 +1289,28 @@ void register_console(struct console *console) | |||
1245 | spin_unlock_irqrestore(&logbuf_lock, flags); | 1289 | spin_unlock_irqrestore(&logbuf_lock, flags); |
1246 | } | 1290 | } |
1247 | release_console_sem(); | 1291 | release_console_sem(); |
1292 | |||
1293 | /* | ||
1294 | * By unregistering the bootconsoles after we enable the real console | ||
1295 | * we get the "console xxx enabled" message on all the consoles - | ||
1296 | * boot consoles, real consoles, etc - this is to ensure that end | ||
1297 | * users know there might be something in the kernel's log buffer that | ||
1298 | * went to the bootconsole (that they do not see on the real console) | ||
1299 | */ | ||
1300 | if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { | ||
1301 | /* we need to iterate through twice, to make sure we print | ||
1302 | * everything out, before we unregister the console(s) | ||
1303 | */ | ||
1304 | printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n", | ||
1305 | newcon->name, newcon->index); | ||
1306 | for_each_console(bcon) | ||
1307 | if (bcon->flags & CON_BOOT) | ||
1308 | unregister_console(bcon); | ||
1309 | } else { | ||
1310 | printk(KERN_INFO "%sconsole [%s%d] enabled\n", | ||
1311 | (newcon->flags & CON_BOOT) ? "boot" : "" , | ||
1312 | newcon->name, newcon->index); | ||
1313 | } | ||
1248 | } | 1314 | } |
1249 | EXPORT_SYMBOL(register_console); | 1315 | EXPORT_SYMBOL(register_console); |
1250 | 1316 | ||
@@ -1287,11 +1353,13 @@ EXPORT_SYMBOL(unregister_console); | |||
1287 | 1353 | ||
1288 | static int __init disable_boot_consoles(void) | 1354 | static int __init disable_boot_consoles(void) |
1289 | { | 1355 | { |
1290 | if (console_drivers != NULL) { | 1356 | struct console *con; |
1291 | if (console_drivers->flags & CON_BOOT) { | 1357 | |
1358 | for_each_console(con) { | ||
1359 | if (con->flags & CON_BOOT) { | ||
1292 | printk(KERN_INFO "turn off boot console %s%d\n", | 1360 | printk(KERN_INFO "turn off boot console %s%d\n", |
1293 | console_drivers->name, console_drivers->index); | 1361 | con->name, con->index); |
1294 | return unregister_console(console_drivers); | 1362 | unregister_console(con); |
1295 | } | 1363 | } |
1296 | } | 1364 | } |
1297 | return 0; | 1365 | return 0; |
diff --git a/kernel/profile.c b/kernel/profile.c index 419250ebec4d..a55d3a367ae8 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
@@ -442,48 +442,51 @@ void profile_tick(int type) | |||
442 | 442 | ||
443 | #ifdef CONFIG_PROC_FS | 443 | #ifdef CONFIG_PROC_FS |
444 | #include <linux/proc_fs.h> | 444 | #include <linux/proc_fs.h> |
445 | #include <linux/seq_file.h> | ||
445 | #include <asm/uaccess.h> | 446 | #include <asm/uaccess.h> |
446 | 447 | ||
447 | static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, | 448 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
448 | int count, int *eof, void *data) | ||
449 | { | 449 | { |
450 | int len = cpumask_scnprintf(page, count, data); | 450 | seq_cpumask(m, prof_cpu_mask); |
451 | if (count - len < 2) | 451 | seq_putc(m, '\n'); |
452 | return -EINVAL; | 452 | return 0; |
453 | len += sprintf(page + len, "\n"); | ||
454 | return len; | ||
455 | } | 453 | } |
456 | 454 | ||
457 | static int prof_cpu_mask_write_proc(struct file *file, | 455 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) |
458 | const char __user *buffer, unsigned long count, void *data) | 456 | { |
457 | return single_open(file, prof_cpu_mask_proc_show, NULL); | ||
458 | } | ||
459 | |||
460 | static ssize_t prof_cpu_mask_proc_write(struct file *file, | ||
461 | const char __user *buffer, size_t count, loff_t *pos) | ||
459 | { | 462 | { |
460 | struct cpumask *mask = data; | ||
461 | unsigned long full_count = count, err; | ||
462 | cpumask_var_t new_value; | 463 | cpumask_var_t new_value; |
464 | int err; | ||
463 | 465 | ||
464 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) | 466 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
465 | return -ENOMEM; | 467 | return -ENOMEM; |
466 | 468 | ||
467 | err = cpumask_parse_user(buffer, count, new_value); | 469 | err = cpumask_parse_user(buffer, count, new_value); |
468 | if (!err) { | 470 | if (!err) { |
469 | cpumask_copy(mask, new_value); | 471 | cpumask_copy(prof_cpu_mask, new_value); |
470 | err = full_count; | 472 | err = count; |
471 | } | 473 | } |
472 | free_cpumask_var(new_value); | 474 | free_cpumask_var(new_value); |
473 | return err; | 475 | return err; |
474 | } | 476 | } |
475 | 477 | ||
478 | static const struct file_operations prof_cpu_mask_proc_fops = { | ||
479 | .open = prof_cpu_mask_proc_open, | ||
480 | .read = seq_read, | ||
481 | .llseek = seq_lseek, | ||
482 | .release = single_release, | ||
483 | .write = prof_cpu_mask_proc_write, | ||
484 | }; | ||
485 | |||
476 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 486 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
477 | { | 487 | { |
478 | struct proc_dir_entry *entry; | ||
479 | |||
480 | /* create /proc/irq/prof_cpu_mask */ | 488 | /* create /proc/irq/prof_cpu_mask */ |
481 | entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); | 489 | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
482 | if (!entry) | ||
483 | return; | ||
484 | entry->data = prof_cpu_mask; | ||
485 | entry->read_proc = prof_cpu_mask_read_proc; | ||
486 | entry->write_proc = prof_cpu_mask_write_proc; | ||
487 | } | 490 | } |
488 | 491 | ||
489 | /* | 492 | /* |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 082c320e4dbf..307c285af59e 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
@@ -152,7 +152,7 @@ int __ptrace_may_access(struct task_struct *task, unsigned int mode) | |||
152 | if (!dumpable && !capable(CAP_SYS_PTRACE)) | 152 | if (!dumpable && !capable(CAP_SYS_PTRACE)) |
153 | return -EPERM; | 153 | return -EPERM; |
154 | 154 | ||
155 | return security_ptrace_may_access(task, mode); | 155 | return security_ptrace_access_check(task, mode); |
156 | } | 156 | } |
157 | 157 | ||
158 | bool ptrace_may_access(struct task_struct *task, unsigned int mode) | 158 | bool ptrace_may_access(struct task_struct *task, unsigned int mode) |
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c deleted file mode 100644 index 0f2b0b311304..000000000000 --- a/kernel/rcuclassic.c +++ /dev/null | |||
@@ -1,807 +0,0 @@ | |||
1 | /* | ||
2 | * Read-Copy Update mechanism for mutual exclusion | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | * | ||
18 | * Copyright IBM Corporation, 2001 | ||
19 | * | ||
20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | ||
21 | * Manfred Spraul <manfred@colorfullife.com> | ||
22 | * | ||
23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | ||
24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | ||
25 | * Papers: | ||
26 | * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf | ||
27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | ||
28 | * | ||
29 | * For detailed explanation of Read-Copy Update mechanism see - | ||
30 | * Documentation/RCU | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/types.h> | ||
34 | #include <linux/kernel.h> | ||
35 | #include <linux/init.h> | ||
36 | #include <linux/spinlock.h> | ||
37 | #include <linux/smp.h> | ||
38 | #include <linux/rcupdate.h> | ||
39 | #include <linux/interrupt.h> | ||
40 | #include <linux/sched.h> | ||
41 | #include <asm/atomic.h> | ||
42 | #include <linux/bitops.h> | ||
43 | #include <linux/module.h> | ||
44 | #include <linux/completion.h> | ||
45 | #include <linux/moduleparam.h> | ||
46 | #include <linux/percpu.h> | ||
47 | #include <linux/notifier.h> | ||
48 | #include <linux/cpu.h> | ||
49 | #include <linux/mutex.h> | ||
50 | #include <linux/time.h> | ||
51 | |||
52 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | ||
53 | static struct lock_class_key rcu_lock_key; | ||
54 | struct lockdep_map rcu_lock_map = | ||
55 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | ||
56 | EXPORT_SYMBOL_GPL(rcu_lock_map); | ||
57 | #endif | ||
58 | |||
59 | |||
60 | /* Definition for rcupdate control block. */ | ||
61 | static struct rcu_ctrlblk rcu_ctrlblk = { | ||
62 | .cur = -300, | ||
63 | .completed = -300, | ||
64 | .pending = -300, | ||
65 | .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock), | ||
66 | .cpumask = CPU_BITS_NONE, | ||
67 | }; | ||
68 | |||
69 | static struct rcu_ctrlblk rcu_bh_ctrlblk = { | ||
70 | .cur = -300, | ||
71 | .completed = -300, | ||
72 | .pending = -300, | ||
73 | .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock), | ||
74 | .cpumask = CPU_BITS_NONE, | ||
75 | }; | ||
76 | |||
77 | static DEFINE_PER_CPU(struct rcu_data, rcu_data); | ||
78 | static DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | ||
79 | |||
80 | /* | ||
81 | * Increment the quiescent state counter. | ||
82 | * The counter is a bit degenerated: We do not need to know | ||
83 | * how many quiescent states passed, just if there was at least | ||
84 | * one since the start of the grace period. Thus just a flag. | ||
85 | */ | ||
86 | void rcu_qsctr_inc(int cpu) | ||
87 | { | ||
88 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | ||
89 | rdp->passed_quiesc = 1; | ||
90 | } | ||
91 | |||
92 | void rcu_bh_qsctr_inc(int cpu) | ||
93 | { | ||
94 | struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); | ||
95 | rdp->passed_quiesc = 1; | ||
96 | } | ||
97 | |||
98 | static int blimit = 10; | ||
99 | static int qhimark = 10000; | ||
100 | static int qlowmark = 100; | ||
101 | |||
102 | #ifdef CONFIG_SMP | ||
103 | static void force_quiescent_state(struct rcu_data *rdp, | ||
104 | struct rcu_ctrlblk *rcp) | ||
105 | { | ||
106 | int cpu; | ||
107 | unsigned long flags; | ||
108 | |||
109 | set_need_resched(); | ||
110 | spin_lock_irqsave(&rcp->lock, flags); | ||
111 | if (unlikely(!rcp->signaled)) { | ||
112 | rcp->signaled = 1; | ||
113 | /* | ||
114 | * Don't send IPI to itself. With irqs disabled, | ||
115 | * rdp->cpu is the current cpu. | ||
116 | * | ||
117 | * cpu_online_mask is updated by the _cpu_down() | ||
118 | * using __stop_machine(). Since we're in irqs disabled | ||
119 | * section, __stop_machine() is not exectuting, hence | ||
120 | * the cpu_online_mask is stable. | ||
121 | * | ||
122 | * However, a cpu might have been offlined _just_ before | ||
123 | * we disabled irqs while entering here. | ||
124 | * And rcu subsystem might not yet have handled the CPU_DEAD | ||
125 | * notification, leading to the offlined cpu's bit | ||
126 | * being set in the rcp->cpumask. | ||
127 | * | ||
128 | * Hence cpumask = (rcp->cpumask & cpu_online_mask) to prevent | ||
129 | * sending smp_reschedule() to an offlined CPU. | ||
130 | */ | ||
131 | for_each_cpu_and(cpu, | ||
132 | to_cpumask(rcp->cpumask), cpu_online_mask) { | ||
133 | if (cpu != rdp->cpu) | ||
134 | smp_send_reschedule(cpu); | ||
135 | } | ||
136 | } | ||
137 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
138 | } | ||
139 | #else | ||
140 | static inline void force_quiescent_state(struct rcu_data *rdp, | ||
141 | struct rcu_ctrlblk *rcp) | ||
142 | { | ||
143 | set_need_resched(); | ||
144 | } | ||
145 | #endif | ||
146 | |||
147 | static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp, | ||
148 | struct rcu_data *rdp) | ||
149 | { | ||
150 | long batch; | ||
151 | |||
152 | head->next = NULL; | ||
153 | smp_mb(); /* Read of rcu->cur must happen after any change by caller. */ | ||
154 | |||
155 | /* | ||
156 | * Determine the batch number of this callback. | ||
157 | * | ||
158 | * Using ACCESS_ONCE to avoid the following error when gcc eliminates | ||
159 | * local variable "batch" and emits codes like this: | ||
160 | * 1) rdp->batch = rcp->cur + 1 # gets old value | ||
161 | * ...... | ||
162 | * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value | ||
163 | * then [*nxttail[0], *nxttail[1]) may contain callbacks | ||
164 | * that batch# = rdp->batch, see the comment of struct rcu_data. | ||
165 | */ | ||
166 | batch = ACCESS_ONCE(rcp->cur) + 1; | ||
167 | |||
168 | if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) { | ||
169 | /* process callbacks */ | ||
170 | rdp->nxttail[0] = rdp->nxttail[1]; | ||
171 | rdp->nxttail[1] = rdp->nxttail[2]; | ||
172 | if (rcu_batch_after(batch - 1, rdp->batch)) | ||
173 | rdp->nxttail[0] = rdp->nxttail[2]; | ||
174 | } | ||
175 | |||
176 | rdp->batch = batch; | ||
177 | *rdp->nxttail[2] = head; | ||
178 | rdp->nxttail[2] = &head->next; | ||
179 | |||
180 | if (unlikely(++rdp->qlen > qhimark)) { | ||
181 | rdp->blimit = INT_MAX; | ||
182 | force_quiescent_state(rdp, &rcu_ctrlblk); | ||
183 | } | ||
184 | } | ||
185 | |||
186 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
187 | |||
188 | static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp) | ||
189 | { | ||
190 | rcp->gp_start = jiffies; | ||
191 | rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; | ||
192 | } | ||
193 | |||
194 | static void print_other_cpu_stall(struct rcu_ctrlblk *rcp) | ||
195 | { | ||
196 | int cpu; | ||
197 | long delta; | ||
198 | unsigned long flags; | ||
199 | |||
200 | /* Only let one CPU complain about others per time interval. */ | ||
201 | |||
202 | spin_lock_irqsave(&rcp->lock, flags); | ||
203 | delta = jiffies - rcp->jiffies_stall; | ||
204 | if (delta < 2 || rcp->cur != rcp->completed) { | ||
205 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
206 | return; | ||
207 | } | ||
208 | rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | ||
209 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
210 | |||
211 | /* OK, time to rat on our buddy... */ | ||
212 | |||
213 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | ||
214 | for_each_possible_cpu(cpu) { | ||
215 | if (cpumask_test_cpu(cpu, to_cpumask(rcp->cpumask))) | ||
216 | printk(" %d", cpu); | ||
217 | } | ||
218 | printk(" (detected by %d, t=%ld jiffies)\n", | ||
219 | smp_processor_id(), (long)(jiffies - rcp->gp_start)); | ||
220 | } | ||
221 | |||
222 | static void print_cpu_stall(struct rcu_ctrlblk *rcp) | ||
223 | { | ||
224 | unsigned long flags; | ||
225 | |||
226 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu/%lu jiffies)\n", | ||
227 | smp_processor_id(), jiffies, | ||
228 | jiffies - rcp->gp_start); | ||
229 | dump_stack(); | ||
230 | spin_lock_irqsave(&rcp->lock, flags); | ||
231 | if ((long)(jiffies - rcp->jiffies_stall) >= 0) | ||
232 | rcp->jiffies_stall = | ||
233 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | ||
234 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
235 | set_need_resched(); /* kick ourselves to get things going. */ | ||
236 | } | ||
237 | |||
238 | static void check_cpu_stall(struct rcu_ctrlblk *rcp) | ||
239 | { | ||
240 | long delta; | ||
241 | |||
242 | delta = jiffies - rcp->jiffies_stall; | ||
243 | if (cpumask_test_cpu(smp_processor_id(), to_cpumask(rcp->cpumask)) && | ||
244 | delta >= 0) { | ||
245 | |||
246 | /* We haven't checked in, so go dump stack. */ | ||
247 | print_cpu_stall(rcp); | ||
248 | |||
249 | } else if (rcp->cur != rcp->completed && delta >= 2) { | ||
250 | |||
251 | /* They had two seconds to dump stack, so complain. */ | ||
252 | print_other_cpu_stall(rcp); | ||
253 | } | ||
254 | } | ||
255 | |||
256 | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
257 | |||
258 | static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp) | ||
259 | { | ||
260 | } | ||
261 | |||
262 | static inline void check_cpu_stall(struct rcu_ctrlblk *rcp) | ||
263 | { | ||
264 | } | ||
265 | |||
266 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
267 | |||
268 | /** | ||
269 | * call_rcu - Queue an RCU callback for invocation after a grace period. | ||
270 | * @head: structure to be used for queueing the RCU updates. | ||
271 | * @func: actual update function to be invoked after the grace period | ||
272 | * | ||
273 | * The update function will be invoked some time after a full grace | ||
274 | * period elapses, in other words after all currently executing RCU | ||
275 | * read-side critical sections have completed. RCU read-side critical | ||
276 | * sections are delimited by rcu_read_lock() and rcu_read_unlock(), | ||
277 | * and may be nested. | ||
278 | */ | ||
279 | void call_rcu(struct rcu_head *head, | ||
280 | void (*func)(struct rcu_head *rcu)) | ||
281 | { | ||
282 | unsigned long flags; | ||
283 | |||
284 | head->func = func; | ||
285 | local_irq_save(flags); | ||
286 | __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data)); | ||
287 | local_irq_restore(flags); | ||
288 | } | ||
289 | EXPORT_SYMBOL_GPL(call_rcu); | ||
290 | |||
291 | /** | ||
292 | * call_rcu_bh - Queue an RCU for invocation after a quicker grace period. | ||
293 | * @head: structure to be used for queueing the RCU updates. | ||
294 | * @func: actual update function to be invoked after the grace period | ||
295 | * | ||
296 | * The update function will be invoked some time after a full grace | ||
297 | * period elapses, in other words after all currently executing RCU | ||
298 | * read-side critical sections have completed. call_rcu_bh() assumes | ||
299 | * that the read-side critical sections end on completion of a softirq | ||
300 | * handler. This means that read-side critical sections in process | ||
301 | * context must not be interrupted by softirqs. This interface is to be | ||
302 | * used when most of the read-side critical sections are in softirq context. | ||
303 | * RCU read-side critical sections are delimited by rcu_read_lock() and | ||
304 | * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh() | ||
305 | * and rcu_read_unlock_bh(), if in process context. These may be nested. | ||
306 | */ | ||
307 | void call_rcu_bh(struct rcu_head *head, | ||
308 | void (*func)(struct rcu_head *rcu)) | ||
309 | { | ||
310 | unsigned long flags; | ||
311 | |||
312 | head->func = func; | ||
313 | local_irq_save(flags); | ||
314 | __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); | ||
315 | local_irq_restore(flags); | ||
316 | } | ||
317 | EXPORT_SYMBOL_GPL(call_rcu_bh); | ||
318 | |||
319 | /* | ||
320 | * Return the number of RCU batches processed thus far. Useful | ||
321 | * for debug and statistics. | ||
322 | */ | ||
323 | long rcu_batches_completed(void) | ||
324 | { | ||
325 | return rcu_ctrlblk.completed; | ||
326 | } | ||
327 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
328 | |||
329 | /* | ||
330 | * Return the number of RCU batches processed thus far. Useful | ||
331 | * for debug and statistics. | ||
332 | */ | ||
333 | long rcu_batches_completed_bh(void) | ||
334 | { | ||
335 | return rcu_bh_ctrlblk.completed; | ||
336 | } | ||
337 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | ||
338 | |||
339 | /* Raises the softirq for processing rcu_callbacks. */ | ||
340 | static inline void raise_rcu_softirq(void) | ||
341 | { | ||
342 | raise_softirq(RCU_SOFTIRQ); | ||
343 | } | ||
344 | |||
345 | /* | ||
346 | * Invoke the completed RCU callbacks. They are expected to be in | ||
347 | * a per-cpu list. | ||
348 | */ | ||
349 | static void rcu_do_batch(struct rcu_data *rdp) | ||
350 | { | ||
351 | unsigned long flags; | ||
352 | struct rcu_head *next, *list; | ||
353 | int count = 0; | ||
354 | |||
355 | list = rdp->donelist; | ||
356 | while (list) { | ||
357 | next = list->next; | ||
358 | prefetch(next); | ||
359 | list->func(list); | ||
360 | list = next; | ||
361 | if (++count >= rdp->blimit) | ||
362 | break; | ||
363 | } | ||
364 | rdp->donelist = list; | ||
365 | |||
366 | local_irq_save(flags); | ||
367 | rdp->qlen -= count; | ||
368 | local_irq_restore(flags); | ||
369 | if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark) | ||
370 | rdp->blimit = blimit; | ||
371 | |||
372 | if (!rdp->donelist) | ||
373 | rdp->donetail = &rdp->donelist; | ||
374 | else | ||
375 | raise_rcu_softirq(); | ||
376 | } | ||
377 | |||
378 | /* | ||
379 | * Grace period handling: | ||
380 | * The grace period handling consists out of two steps: | ||
381 | * - A new grace period is started. | ||
382 | * This is done by rcu_start_batch. The start is not broadcasted to | ||
383 | * all cpus, they must pick this up by comparing rcp->cur with | ||
384 | * rdp->quiescbatch. All cpus are recorded in the | ||
385 | * rcu_ctrlblk.cpumask bitmap. | ||
386 | * - All cpus must go through a quiescent state. | ||
387 | * Since the start of the grace period is not broadcasted, at least two | ||
388 | * calls to rcu_check_quiescent_state are required: | ||
389 | * The first call just notices that a new grace period is running. The | ||
390 | * following calls check if there was a quiescent state since the beginning | ||
391 | * of the grace period. If so, it updates rcu_ctrlblk.cpumask. If | ||
392 | * the bitmap is empty, then the grace period is completed. | ||
393 | * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace | ||
394 | * period (if necessary). | ||
395 | */ | ||
396 | |||
397 | /* | ||
398 | * Register a new batch of callbacks, and start it up if there is currently no | ||
399 | * active batch and the batch to be registered has not already occurred. | ||
400 | * Caller must hold rcu_ctrlblk.lock. | ||
401 | */ | ||
402 | static void rcu_start_batch(struct rcu_ctrlblk *rcp) | ||
403 | { | ||
404 | if (rcp->cur != rcp->pending && | ||
405 | rcp->completed == rcp->cur) { | ||
406 | rcp->cur++; | ||
407 | record_gp_stall_check_time(rcp); | ||
408 | |||
409 | /* | ||
410 | * Accessing nohz_cpu_mask before incrementing rcp->cur needs a | ||
411 | * Barrier Otherwise it can cause tickless idle CPUs to be | ||
412 | * included in rcp->cpumask, which will extend graceperiods | ||
413 | * unnecessarily. | ||
414 | */ | ||
415 | smp_mb(); | ||
416 | cpumask_andnot(to_cpumask(rcp->cpumask), | ||
417 | cpu_online_mask, nohz_cpu_mask); | ||
418 | |||
419 | rcp->signaled = 0; | ||
420 | } | ||
421 | } | ||
422 | |||
423 | /* | ||
424 | * cpu went through a quiescent state since the beginning of the grace period. | ||
425 | * Clear it from the cpu mask and complete the grace period if it was the last | ||
426 | * cpu. Start another grace period if someone has further entries pending | ||
427 | */ | ||
428 | static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp) | ||
429 | { | ||
430 | cpumask_clear_cpu(cpu, to_cpumask(rcp->cpumask)); | ||
431 | if (cpumask_empty(to_cpumask(rcp->cpumask))) { | ||
432 | /* batch completed ! */ | ||
433 | rcp->completed = rcp->cur; | ||
434 | rcu_start_batch(rcp); | ||
435 | } | ||
436 | } | ||
437 | |||
438 | /* | ||
439 | * Check if the cpu has gone through a quiescent state (say context | ||
440 | * switch). If so and if it already hasn't done so in this RCU | ||
441 | * quiescent cycle, then indicate that it has done so. | ||
442 | */ | ||
443 | static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp, | ||
444 | struct rcu_data *rdp) | ||
445 | { | ||
446 | unsigned long flags; | ||
447 | |||
448 | if (rdp->quiescbatch != rcp->cur) { | ||
449 | /* start new grace period: */ | ||
450 | rdp->qs_pending = 1; | ||
451 | rdp->passed_quiesc = 0; | ||
452 | rdp->quiescbatch = rcp->cur; | ||
453 | return; | ||
454 | } | ||
455 | |||
456 | /* Grace period already completed for this cpu? | ||
457 | * qs_pending is checked instead of the actual bitmap to avoid | ||
458 | * cacheline trashing. | ||
459 | */ | ||
460 | if (!rdp->qs_pending) | ||
461 | return; | ||
462 | |||
463 | /* | ||
464 | * Was there a quiescent state since the beginning of the grace | ||
465 | * period? If no, then exit and wait for the next call. | ||
466 | */ | ||
467 | if (!rdp->passed_quiesc) | ||
468 | return; | ||
469 | rdp->qs_pending = 0; | ||
470 | |||
471 | spin_lock_irqsave(&rcp->lock, flags); | ||
472 | /* | ||
473 | * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync | ||
474 | * during cpu startup. Ignore the quiescent state. | ||
475 | */ | ||
476 | if (likely(rdp->quiescbatch == rcp->cur)) | ||
477 | cpu_quiet(rdp->cpu, rcp); | ||
478 | |||
479 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
480 | } | ||
481 | |||
482 | |||
483 | #ifdef CONFIG_HOTPLUG_CPU | ||
484 | |||
485 | /* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing | ||
486 | * locking requirements, the list it's pulling from has to belong to a cpu | ||
487 | * which is dead and hence not processing interrupts. | ||
488 | */ | ||
489 | static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list, | ||
490 | struct rcu_head **tail, long batch) | ||
491 | { | ||
492 | unsigned long flags; | ||
493 | |||
494 | if (list) { | ||
495 | local_irq_save(flags); | ||
496 | this_rdp->batch = batch; | ||
497 | *this_rdp->nxttail[2] = list; | ||
498 | this_rdp->nxttail[2] = tail; | ||
499 | local_irq_restore(flags); | ||
500 | } | ||
501 | } | ||
502 | |||
503 | static void __rcu_offline_cpu(struct rcu_data *this_rdp, | ||
504 | struct rcu_ctrlblk *rcp, struct rcu_data *rdp) | ||
505 | { | ||
506 | unsigned long flags; | ||
507 | |||
508 | /* | ||
509 | * if the cpu going offline owns the grace period | ||
510 | * we can block indefinitely waiting for it, so flush | ||
511 | * it here | ||
512 | */ | ||
513 | spin_lock_irqsave(&rcp->lock, flags); | ||
514 | if (rcp->cur != rcp->completed) | ||
515 | cpu_quiet(rdp->cpu, rcp); | ||
516 | rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1); | ||
517 | rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1); | ||
518 | spin_unlock(&rcp->lock); | ||
519 | |||
520 | this_rdp->qlen += rdp->qlen; | ||
521 | local_irq_restore(flags); | ||
522 | } | ||
523 | |||
524 | static void rcu_offline_cpu(int cpu) | ||
525 | { | ||
526 | struct rcu_data *this_rdp = &get_cpu_var(rcu_data); | ||
527 | struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data); | ||
528 | |||
529 | __rcu_offline_cpu(this_rdp, &rcu_ctrlblk, | ||
530 | &per_cpu(rcu_data, cpu)); | ||
531 | __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk, | ||
532 | &per_cpu(rcu_bh_data, cpu)); | ||
533 | put_cpu_var(rcu_data); | ||
534 | put_cpu_var(rcu_bh_data); | ||
535 | } | ||
536 | |||
537 | #else | ||
538 | |||
539 | static void rcu_offline_cpu(int cpu) | ||
540 | { | ||
541 | } | ||
542 | |||
543 | #endif | ||
544 | |||
545 | /* | ||
546 | * This does the RCU processing work from softirq context. | ||
547 | */ | ||
548 | static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, | ||
549 | struct rcu_data *rdp) | ||
550 | { | ||
551 | unsigned long flags; | ||
552 | long completed_snap; | ||
553 | |||
554 | if (rdp->nxtlist) { | ||
555 | local_irq_save(flags); | ||
556 | completed_snap = ACCESS_ONCE(rcp->completed); | ||
557 | |||
558 | /* | ||
559 | * move the other grace-period-completed entries to | ||
560 | * [rdp->nxtlist, *rdp->nxttail[0]) temporarily | ||
561 | */ | ||
562 | if (!rcu_batch_before(completed_snap, rdp->batch)) | ||
563 | rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2]; | ||
564 | else if (!rcu_batch_before(completed_snap, rdp->batch - 1)) | ||
565 | rdp->nxttail[0] = rdp->nxttail[1]; | ||
566 | |||
567 | /* | ||
568 | * the grace period for entries in | ||
569 | * [rdp->nxtlist, *rdp->nxttail[0]) has completed and | ||
570 | * move these entries to donelist | ||
571 | */ | ||
572 | if (rdp->nxttail[0] != &rdp->nxtlist) { | ||
573 | *rdp->donetail = rdp->nxtlist; | ||
574 | rdp->donetail = rdp->nxttail[0]; | ||
575 | rdp->nxtlist = *rdp->nxttail[0]; | ||
576 | *rdp->donetail = NULL; | ||
577 | |||
578 | if (rdp->nxttail[1] == rdp->nxttail[0]) | ||
579 | rdp->nxttail[1] = &rdp->nxtlist; | ||
580 | if (rdp->nxttail[2] == rdp->nxttail[0]) | ||
581 | rdp->nxttail[2] = &rdp->nxtlist; | ||
582 | rdp->nxttail[0] = &rdp->nxtlist; | ||
583 | } | ||
584 | |||
585 | local_irq_restore(flags); | ||
586 | |||
587 | if (rcu_batch_after(rdp->batch, rcp->pending)) { | ||
588 | unsigned long flags2; | ||
589 | |||
590 | /* and start it/schedule start if it's a new batch */ | ||
591 | spin_lock_irqsave(&rcp->lock, flags2); | ||
592 | if (rcu_batch_after(rdp->batch, rcp->pending)) { | ||
593 | rcp->pending = rdp->batch; | ||
594 | rcu_start_batch(rcp); | ||
595 | } | ||
596 | spin_unlock_irqrestore(&rcp->lock, flags2); | ||
597 | } | ||
598 | } | ||
599 | |||
600 | rcu_check_quiescent_state(rcp, rdp); | ||
601 | if (rdp->donelist) | ||
602 | rcu_do_batch(rdp); | ||
603 | } | ||
604 | |||
605 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
606 | { | ||
607 | /* | ||
608 | * Memory references from any prior RCU read-side critical sections | ||
609 | * executed by the interrupted code must be see before any RCU | ||
610 | * grace-period manupulations below. | ||
611 | */ | ||
612 | |||
613 | smp_mb(); /* See above block comment. */ | ||
614 | |||
615 | __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data)); | ||
616 | __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); | ||
617 | |||
618 | /* | ||
619 | * Memory references from any later RCU read-side critical sections | ||
620 | * executed by the interrupted code must be see after any RCU | ||
621 | * grace-period manupulations above. | ||
622 | */ | ||
623 | |||
624 | smp_mb(); /* See above block comment. */ | ||
625 | } | ||
626 | |||
627 | static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp) | ||
628 | { | ||
629 | /* Check for CPU stalls, if enabled. */ | ||
630 | check_cpu_stall(rcp); | ||
631 | |||
632 | if (rdp->nxtlist) { | ||
633 | long completed_snap = ACCESS_ONCE(rcp->completed); | ||
634 | |||
635 | /* | ||
636 | * This cpu has pending rcu entries and the grace period | ||
637 | * for them has completed. | ||
638 | */ | ||
639 | if (!rcu_batch_before(completed_snap, rdp->batch)) | ||
640 | return 1; | ||
641 | if (!rcu_batch_before(completed_snap, rdp->batch - 1) && | ||
642 | rdp->nxttail[0] != rdp->nxttail[1]) | ||
643 | return 1; | ||
644 | if (rdp->nxttail[0] != &rdp->nxtlist) | ||
645 | return 1; | ||
646 | |||
647 | /* | ||
648 | * This cpu has pending rcu entries and the new batch | ||
649 | * for then hasn't been started nor scheduled start | ||
650 | */ | ||
651 | if (rcu_batch_after(rdp->batch, rcp->pending)) | ||
652 | return 1; | ||
653 | } | ||
654 | |||
655 | /* This cpu has finished callbacks to invoke */ | ||
656 | if (rdp->donelist) | ||
657 | return 1; | ||
658 | |||
659 | /* The rcu core waits for a quiescent state from the cpu */ | ||
660 | if (rdp->quiescbatch != rcp->cur || rdp->qs_pending) | ||
661 | return 1; | ||
662 | |||
663 | /* nothing to do */ | ||
664 | return 0; | ||
665 | } | ||
666 | |||
667 | /* | ||
668 | * Check to see if there is any immediate RCU-related work to be done | ||
669 | * by the current CPU, returning 1 if so. This function is part of the | ||
670 | * RCU implementation; it is -not- an exported member of the RCU API. | ||
671 | */ | ||
672 | int rcu_pending(int cpu) | ||
673 | { | ||
674 | return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu)) || | ||
675 | __rcu_pending(&rcu_bh_ctrlblk, &per_cpu(rcu_bh_data, cpu)); | ||
676 | } | ||
677 | |||
678 | /* | ||
679 | * Check to see if any future RCU-related work will need to be done | ||
680 | * by the current CPU, even if none need be done immediately, returning | ||
681 | * 1 if so. This function is part of the RCU implementation; it is -not- | ||
682 | * an exported member of the RCU API. | ||
683 | */ | ||
684 | int rcu_needs_cpu(int cpu) | ||
685 | { | ||
686 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | ||
687 | struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu); | ||
688 | |||
689 | return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu); | ||
690 | } | ||
691 | |||
692 | /* | ||
693 | * Top-level function driving RCU grace-period detection, normally | ||
694 | * invoked from the scheduler-clock interrupt. This function simply | ||
695 | * increments counters that are read only from softirq by this same | ||
696 | * CPU, so there are no memory barriers required. | ||
697 | */ | ||
698 | void rcu_check_callbacks(int cpu, int user) | ||
699 | { | ||
700 | if (user || | ||
701 | (idle_cpu(cpu) && rcu_scheduler_active && | ||
702 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | ||
703 | |||
704 | /* | ||
705 | * Get here if this CPU took its interrupt from user | ||
706 | * mode or from the idle loop, and if this is not a | ||
707 | * nested interrupt. In this case, the CPU is in | ||
708 | * a quiescent state, so count it. | ||
709 | * | ||
710 | * Also do a memory barrier. This is needed to handle | ||
711 | * the case where writes from a preempt-disable section | ||
712 | * of code get reordered into schedule() by this CPU's | ||
713 | * write buffer. The memory barrier makes sure that | ||
714 | * the rcu_qsctr_inc() and rcu_bh_qsctr_inc() are see | ||
715 | * by other CPUs to happen after any such write. | ||
716 | */ | ||
717 | |||
718 | smp_mb(); /* See above block comment. */ | ||
719 | rcu_qsctr_inc(cpu); | ||
720 | rcu_bh_qsctr_inc(cpu); | ||
721 | |||
722 | } else if (!in_softirq()) { | ||
723 | |||
724 | /* | ||
725 | * Get here if this CPU did not take its interrupt from | ||
726 | * softirq, in other words, if it is not interrupting | ||
727 | * a rcu_bh read-side critical section. This is an _bh | ||
728 | * critical section, so count it. The memory barrier | ||
729 | * is needed for the same reason as is the above one. | ||
730 | */ | ||
731 | |||
732 | smp_mb(); /* See above block comment. */ | ||
733 | rcu_bh_qsctr_inc(cpu); | ||
734 | } | ||
735 | raise_rcu_softirq(); | ||
736 | } | ||
737 | |||
738 | static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp, | ||
739 | struct rcu_data *rdp) | ||
740 | { | ||
741 | unsigned long flags; | ||
742 | |||
743 | spin_lock_irqsave(&rcp->lock, flags); | ||
744 | memset(rdp, 0, sizeof(*rdp)); | ||
745 | rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist; | ||
746 | rdp->donetail = &rdp->donelist; | ||
747 | rdp->quiescbatch = rcp->completed; | ||
748 | rdp->qs_pending = 0; | ||
749 | rdp->cpu = cpu; | ||
750 | rdp->blimit = blimit; | ||
751 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
752 | } | ||
753 | |||
754 | static void __cpuinit rcu_online_cpu(int cpu) | ||
755 | { | ||
756 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | ||
757 | struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu); | ||
758 | |||
759 | rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp); | ||
760 | rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp); | ||
761 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
762 | } | ||
763 | |||
764 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | ||
765 | unsigned long action, void *hcpu) | ||
766 | { | ||
767 | long cpu = (long)hcpu; | ||
768 | |||
769 | switch (action) { | ||
770 | case CPU_UP_PREPARE: | ||
771 | case CPU_UP_PREPARE_FROZEN: | ||
772 | rcu_online_cpu(cpu); | ||
773 | break; | ||
774 | case CPU_DEAD: | ||
775 | case CPU_DEAD_FROZEN: | ||
776 | rcu_offline_cpu(cpu); | ||
777 | break; | ||
778 | default: | ||
779 | break; | ||
780 | } | ||
781 | return NOTIFY_OK; | ||
782 | } | ||
783 | |||
784 | static struct notifier_block __cpuinitdata rcu_nb = { | ||
785 | .notifier_call = rcu_cpu_notify, | ||
786 | }; | ||
787 | |||
788 | /* | ||
789 | * Initializes rcu mechanism. Assumed to be called early. | ||
790 | * That is before local timer(SMP) or jiffie timer (uniproc) is setup. | ||
791 | * Note that rcu_qsctr and friends are implicitly | ||
792 | * initialized due to the choice of ``0'' for RCU_CTR_INVALID. | ||
793 | */ | ||
794 | void __init __rcu_init(void) | ||
795 | { | ||
796 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
797 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | ||
798 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
799 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, | ||
800 | (void *)(long)smp_processor_id()); | ||
801 | /* Register notifier for non-boot CPUs */ | ||
802 | register_cpu_notifier(&rcu_nb); | ||
803 | } | ||
804 | |||
805 | module_param(blimit, int, 0); | ||
806 | module_param(qhimark, int, 0); | ||
807 | module_param(qlowmark, int, 0); | ||
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index a967c9feb90a..37ac45483082 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
@@ -19,7 +19,7 @@ | |||
19 | * | 19 | * |
20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
21 | * Manfred Spraul <manfred@colorfullife.com> | 21 | * Manfred Spraul <manfred@colorfullife.com> |
22 | * | 22 | * |
23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
25 | * Papers: | 25 | * Papers: |
@@ -27,7 +27,7 @@ | |||
27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
28 | * | 28 | * |
29 | * For detailed explanation of Read-Copy Update mechanism see - | 29 | * For detailed explanation of Read-Copy Update mechanism see - |
30 | * http://lse.sourceforge.net/locking/rcupdate.html | 30 | * http://lse.sourceforge.net/locking/rcupdate.html |
31 | * | 31 | * |
32 | */ | 32 | */ |
33 | #include <linux/types.h> | 33 | #include <linux/types.h> |
@@ -74,6 +74,8 @@ void wakeme_after_rcu(struct rcu_head *head) | |||
74 | complete(&rcu->completion); | 74 | complete(&rcu->completion); |
75 | } | 75 | } |
76 | 76 | ||
77 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
78 | |||
77 | /** | 79 | /** |
78 | * synchronize_rcu - wait until a grace period has elapsed. | 80 | * synchronize_rcu - wait until a grace period has elapsed. |
79 | * | 81 | * |
@@ -87,7 +89,7 @@ void synchronize_rcu(void) | |||
87 | { | 89 | { |
88 | struct rcu_synchronize rcu; | 90 | struct rcu_synchronize rcu; |
89 | 91 | ||
90 | if (rcu_blocking_is_gp()) | 92 | if (!rcu_scheduler_active) |
91 | return; | 93 | return; |
92 | 94 | ||
93 | init_completion(&rcu.completion); | 95 | init_completion(&rcu.completion); |
@@ -98,6 +100,70 @@ void synchronize_rcu(void) | |||
98 | } | 100 | } |
99 | EXPORT_SYMBOL_GPL(synchronize_rcu); | 101 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
100 | 102 | ||
103 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
104 | |||
105 | /** | ||
106 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | ||
107 | * | ||
108 | * Control will return to the caller some time after a full rcu-sched | ||
109 | * grace period has elapsed, in other words after all currently executing | ||
110 | * rcu-sched read-side critical sections have completed. These read-side | ||
111 | * critical sections are delimited by rcu_read_lock_sched() and | ||
112 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), | ||
113 | * local_irq_disable(), and so on may be used in place of | ||
114 | * rcu_read_lock_sched(). | ||
115 | * | ||
116 | * This means that all preempt_disable code sequences, including NMI and | ||
117 | * hardware-interrupt handlers, in progress on entry will have completed | ||
118 | * before this primitive returns. However, this does not guarantee that | ||
119 | * softirq handlers will have completed, since in some kernels, these | ||
120 | * handlers can run in process context, and can block. | ||
121 | * | ||
122 | * This primitive provides the guarantees made by the (now removed) | ||
123 | * synchronize_kernel() API. In contrast, synchronize_rcu() only | ||
124 | * guarantees that rcu_read_lock() sections will have completed. | ||
125 | * In "classic RCU", these two guarantees happen to be one and | ||
126 | * the same, but can differ in realtime RCU implementations. | ||
127 | */ | ||
128 | void synchronize_sched(void) | ||
129 | { | ||
130 | struct rcu_synchronize rcu; | ||
131 | |||
132 | if (rcu_blocking_is_gp()) | ||
133 | return; | ||
134 | |||
135 | init_completion(&rcu.completion); | ||
136 | /* Will wake me after RCU finished. */ | ||
137 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
138 | /* Wait for it. */ | ||
139 | wait_for_completion(&rcu.completion); | ||
140 | } | ||
141 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
142 | |||
143 | /** | ||
144 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | ||
145 | * | ||
146 | * Control will return to the caller some time after a full rcu_bh grace | ||
147 | * period has elapsed, in other words after all currently executing rcu_bh | ||
148 | * read-side critical sections have completed. RCU read-side critical | ||
149 | * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), | ||
150 | * and may be nested. | ||
151 | */ | ||
152 | void synchronize_rcu_bh(void) | ||
153 | { | ||
154 | struct rcu_synchronize rcu; | ||
155 | |||
156 | if (rcu_blocking_is_gp()) | ||
157 | return; | ||
158 | |||
159 | init_completion(&rcu.completion); | ||
160 | /* Will wake me after RCU finished. */ | ||
161 | call_rcu_bh(&rcu.head, wakeme_after_rcu); | ||
162 | /* Wait for it. */ | ||
163 | wait_for_completion(&rcu.completion); | ||
164 | } | ||
165 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | ||
166 | |||
101 | static void rcu_barrier_callback(struct rcu_head *notused) | 167 | static void rcu_barrier_callback(struct rcu_head *notused) |
102 | { | 168 | { |
103 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | 169 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) |
@@ -129,6 +195,7 @@ static void rcu_barrier_func(void *type) | |||
129 | static inline void wait_migrated_callbacks(void) | 195 | static inline void wait_migrated_callbacks(void) |
130 | { | 196 | { |
131 | wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); | 197 | wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); |
198 | smp_mb(); /* In case we didn't sleep. */ | ||
132 | } | 199 | } |
133 | 200 | ||
134 | /* | 201 | /* |
@@ -192,9 +259,13 @@ static void rcu_migrate_callback(struct rcu_head *notused) | |||
192 | wake_up(&rcu_migrate_wq); | 259 | wake_up(&rcu_migrate_wq); |
193 | } | 260 | } |
194 | 261 | ||
262 | extern int rcu_cpu_notify(struct notifier_block *self, | ||
263 | unsigned long action, void *hcpu); | ||
264 | |||
195 | static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | 265 | static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, |
196 | unsigned long action, void *hcpu) | 266 | unsigned long action, void *hcpu) |
197 | { | 267 | { |
268 | rcu_cpu_notify(self, action, hcpu); | ||
198 | if (action == CPU_DYING) { | 269 | if (action == CPU_DYING) { |
199 | /* | 270 | /* |
200 | * preempt_disable() in on_each_cpu() prevents stop_machine(), | 271 | * preempt_disable() in on_each_cpu() prevents stop_machine(), |
@@ -209,7 +280,8 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | |||
209 | call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); | 280 | call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); |
210 | call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); | 281 | call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); |
211 | call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); | 282 | call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); |
212 | } else if (action == CPU_POST_DEAD) { | 283 | } else if (action == CPU_DOWN_PREPARE) { |
284 | /* Don't need to wait until next removal operation. */ | ||
213 | /* rcu_migrate_head is protected by cpu_add_remove_lock */ | 285 | /* rcu_migrate_head is protected by cpu_add_remove_lock */ |
214 | wait_migrated_callbacks(); | 286 | wait_migrated_callbacks(); |
215 | } | 287 | } |
@@ -219,8 +291,18 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | |||
219 | 291 | ||
220 | void __init rcu_init(void) | 292 | void __init rcu_init(void) |
221 | { | 293 | { |
294 | int i; | ||
295 | |||
222 | __rcu_init(); | 296 | __rcu_init(); |
223 | hotcpu_notifier(rcu_barrier_cpu_hotplug, 0); | 297 | cpu_notifier(rcu_barrier_cpu_hotplug, 0); |
298 | |||
299 | /* | ||
300 | * We don't need protection against CPU-hotplug here because | ||
301 | * this is called early in boot, before either interrupts | ||
302 | * or the scheduler are operational. | ||
303 | */ | ||
304 | for_each_online_cpu(i) | ||
305 | rcu_barrier_cpu_hotplug(NULL, CPU_UP_PREPARE, (void *)(long)i); | ||
224 | } | 306 | } |
225 | 307 | ||
226 | void rcu_scheduler_starting(void) | 308 | void rcu_scheduler_starting(void) |
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c deleted file mode 100644 index beb0e659adcc..000000000000 --- a/kernel/rcupreempt.c +++ /dev/null | |||
@@ -1,1539 +0,0 @@ | |||
1 | /* | ||
2 | * Read-Copy Update mechanism for mutual exclusion, realtime implementation | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | * | ||
18 | * Copyright IBM Corporation, 2006 | ||
19 | * | ||
20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | ||
21 | * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar | ||
22 | * for pushing me away from locks and towards counters, and | ||
23 | * to Suparna Bhattacharya for pushing me completely away | ||
24 | * from atomic instructions on the read side. | ||
25 | * | ||
26 | * - Added handling of Dynamic Ticks | ||
27 | * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com> | ||
28 | * - Steven Rostedt <srostedt@redhat.com> | ||
29 | * | ||
30 | * Papers: http://www.rdrop.com/users/paulmck/RCU | ||
31 | * | ||
32 | * Design Document: http://lwn.net/Articles/253651/ | ||
33 | * | ||
34 | * For detailed explanation of Read-Copy Update mechanism see - | ||
35 | * Documentation/RCU/ *.txt | ||
36 | * | ||
37 | */ | ||
38 | #include <linux/types.h> | ||
39 | #include <linux/kernel.h> | ||
40 | #include <linux/init.h> | ||
41 | #include <linux/spinlock.h> | ||
42 | #include <linux/smp.h> | ||
43 | #include <linux/rcupdate.h> | ||
44 | #include <linux/interrupt.h> | ||
45 | #include <linux/sched.h> | ||
46 | #include <asm/atomic.h> | ||
47 | #include <linux/bitops.h> | ||
48 | #include <linux/module.h> | ||
49 | #include <linux/kthread.h> | ||
50 | #include <linux/completion.h> | ||
51 | #include <linux/moduleparam.h> | ||
52 | #include <linux/percpu.h> | ||
53 | #include <linux/notifier.h> | ||
54 | #include <linux/cpu.h> | ||
55 | #include <linux/random.h> | ||
56 | #include <linux/delay.h> | ||
57 | #include <linux/cpumask.h> | ||
58 | #include <linux/rcupreempt_trace.h> | ||
59 | #include <asm/byteorder.h> | ||
60 | |||
61 | /* | ||
62 | * PREEMPT_RCU data structures. | ||
63 | */ | ||
64 | |||
65 | /* | ||
66 | * GP_STAGES specifies the number of times the state machine has | ||
67 | * to go through the all the rcu_try_flip_states (see below) | ||
68 | * in a single Grace Period. | ||
69 | * | ||
70 | * GP in GP_STAGES stands for Grace Period ;) | ||
71 | */ | ||
72 | #define GP_STAGES 2 | ||
73 | struct rcu_data { | ||
74 | spinlock_t lock; /* Protect rcu_data fields. */ | ||
75 | long completed; /* Number of last completed batch. */ | ||
76 | int waitlistcount; | ||
77 | struct rcu_head *nextlist; | ||
78 | struct rcu_head **nexttail; | ||
79 | struct rcu_head *waitlist[GP_STAGES]; | ||
80 | struct rcu_head **waittail[GP_STAGES]; | ||
81 | struct rcu_head *donelist; /* from waitlist & waitschedlist */ | ||
82 | struct rcu_head **donetail; | ||
83 | long rcu_flipctr[2]; | ||
84 | struct rcu_head *nextschedlist; | ||
85 | struct rcu_head **nextschedtail; | ||
86 | struct rcu_head *waitschedlist; | ||
87 | struct rcu_head **waitschedtail; | ||
88 | int rcu_sched_sleeping; | ||
89 | #ifdef CONFIG_RCU_TRACE | ||
90 | struct rcupreempt_trace trace; | ||
91 | #endif /* #ifdef CONFIG_RCU_TRACE */ | ||
92 | }; | ||
93 | |||
94 | /* | ||
95 | * States for rcu_try_flip() and friends. | ||
96 | */ | ||
97 | |||
98 | enum rcu_try_flip_states { | ||
99 | |||
100 | /* | ||
101 | * Stay here if nothing is happening. Flip the counter if somthing | ||
102 | * starts happening. Denoted by "I" | ||
103 | */ | ||
104 | rcu_try_flip_idle_state, | ||
105 | |||
106 | /* | ||
107 | * Wait here for all CPUs to notice that the counter has flipped. This | ||
108 | * prevents the old set of counters from ever being incremented once | ||
109 | * we leave this state, which in turn is necessary because we cannot | ||
110 | * test any individual counter for zero -- we can only check the sum. | ||
111 | * Denoted by "A". | ||
112 | */ | ||
113 | rcu_try_flip_waitack_state, | ||
114 | |||
115 | /* | ||
116 | * Wait here for the sum of the old per-CPU counters to reach zero. | ||
117 | * Denoted by "Z". | ||
118 | */ | ||
119 | rcu_try_flip_waitzero_state, | ||
120 | |||
121 | /* | ||
122 | * Wait here for each of the other CPUs to execute a memory barrier. | ||
123 | * This is necessary to ensure that these other CPUs really have | ||
124 | * completed executing their RCU read-side critical sections, despite | ||
125 | * their CPUs wildly reordering memory. Denoted by "M". | ||
126 | */ | ||
127 | rcu_try_flip_waitmb_state, | ||
128 | }; | ||
129 | |||
130 | /* | ||
131 | * States for rcu_ctrlblk.rcu_sched_sleep. | ||
132 | */ | ||
133 | |||
134 | enum rcu_sched_sleep_states { | ||
135 | rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */ | ||
136 | rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */ | ||
137 | rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */ | ||
138 | }; | ||
139 | |||
140 | struct rcu_ctrlblk { | ||
141 | spinlock_t fliplock; /* Protect state-machine transitions. */ | ||
142 | long completed; /* Number of last completed batch. */ | ||
143 | enum rcu_try_flip_states rcu_try_flip_state; /* The current state of | ||
144 | the rcu state machine */ | ||
145 | spinlock_t schedlock; /* Protect rcu_sched sleep state. */ | ||
146 | enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */ | ||
147 | wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */ | ||
148 | }; | ||
149 | |||
150 | struct rcu_dyntick_sched { | ||
151 | int dynticks; | ||
152 | int dynticks_snap; | ||
153 | int sched_qs; | ||
154 | int sched_qs_snap; | ||
155 | int sched_dynticks_snap; | ||
156 | }; | ||
157 | |||
158 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = { | ||
159 | .dynticks = 1, | ||
160 | }; | ||
161 | |||
162 | void rcu_qsctr_inc(int cpu) | ||
163 | { | ||
164 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
165 | |||
166 | rdssp->sched_qs++; | ||
167 | } | ||
168 | |||
169 | #ifdef CONFIG_NO_HZ | ||
170 | |||
171 | void rcu_enter_nohz(void) | ||
172 | { | ||
173 | static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1); | ||
174 | |||
175 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | ||
176 | __get_cpu_var(rcu_dyntick_sched).dynticks++; | ||
177 | WARN_ON_RATELIMIT(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1, &rs); | ||
178 | } | ||
179 | |||
180 | void rcu_exit_nohz(void) | ||
181 | { | ||
182 | static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1); | ||
183 | |||
184 | __get_cpu_var(rcu_dyntick_sched).dynticks++; | ||
185 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | ||
186 | WARN_ON_RATELIMIT(!(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1), | ||
187 | &rs); | ||
188 | } | ||
189 | |||
190 | #endif /* CONFIG_NO_HZ */ | ||
191 | |||
192 | |||
193 | static DEFINE_PER_CPU(struct rcu_data, rcu_data); | ||
194 | |||
195 | static struct rcu_ctrlblk rcu_ctrlblk = { | ||
196 | .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock), | ||
197 | .completed = 0, | ||
198 | .rcu_try_flip_state = rcu_try_flip_idle_state, | ||
199 | .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock), | ||
200 | .sched_sleep = rcu_sched_not_sleeping, | ||
201 | .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq), | ||
202 | }; | ||
203 | |||
204 | static struct task_struct *rcu_sched_grace_period_task; | ||
205 | |||
206 | #ifdef CONFIG_RCU_TRACE | ||
207 | static char *rcu_try_flip_state_names[] = | ||
208 | { "idle", "waitack", "waitzero", "waitmb" }; | ||
209 | #endif /* #ifdef CONFIG_RCU_TRACE */ | ||
210 | |||
211 | static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly | ||
212 | = CPU_BITS_NONE; | ||
213 | |||
214 | /* | ||
215 | * Enum and per-CPU flag to determine when each CPU has seen | ||
216 | * the most recent counter flip. | ||
217 | */ | ||
218 | |||
219 | enum rcu_flip_flag_values { | ||
220 | rcu_flip_seen, /* Steady/initial state, last flip seen. */ | ||
221 | /* Only GP detector can update. */ | ||
222 | rcu_flipped /* Flip just completed, need confirmation. */ | ||
223 | /* Only corresponding CPU can update. */ | ||
224 | }; | ||
225 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag) | ||
226 | = rcu_flip_seen; | ||
227 | |||
228 | /* | ||
229 | * Enum and per-CPU flag to determine when each CPU has executed the | ||
230 | * needed memory barrier to fence in memory references from its last RCU | ||
231 | * read-side critical section in the just-completed grace period. | ||
232 | */ | ||
233 | |||
234 | enum rcu_mb_flag_values { | ||
235 | rcu_mb_done, /* Steady/initial state, no mb()s required. */ | ||
236 | /* Only GP detector can update. */ | ||
237 | rcu_mb_needed /* Flip just completed, need an mb(). */ | ||
238 | /* Only corresponding CPU can update. */ | ||
239 | }; | ||
240 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag) | ||
241 | = rcu_mb_done; | ||
242 | |||
243 | /* | ||
244 | * RCU_DATA_ME: find the current CPU's rcu_data structure. | ||
245 | * RCU_DATA_CPU: find the specified CPU's rcu_data structure. | ||
246 | */ | ||
247 | #define RCU_DATA_ME() (&__get_cpu_var(rcu_data)) | ||
248 | #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu)) | ||
249 | |||
250 | /* | ||
251 | * Helper macro for tracing when the appropriate rcu_data is not | ||
252 | * cached in a local variable, but where the CPU number is so cached. | ||
253 | */ | ||
254 | #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace)); | ||
255 | |||
256 | /* | ||
257 | * Helper macro for tracing when the appropriate rcu_data is not | ||
258 | * cached in a local variable. | ||
259 | */ | ||
260 | #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace)); | ||
261 | |||
262 | /* | ||
263 | * Helper macro for tracing when the appropriate rcu_data is pointed | ||
264 | * to by a local variable. | ||
265 | */ | ||
266 | #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace)); | ||
267 | |||
268 | #define RCU_SCHED_BATCH_TIME (HZ / 50) | ||
269 | |||
270 | /* | ||
271 | * Return the number of RCU batches processed thus far. Useful | ||
272 | * for debug and statistics. | ||
273 | */ | ||
274 | long rcu_batches_completed(void) | ||
275 | { | ||
276 | return rcu_ctrlblk.completed; | ||
277 | } | ||
278 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
279 | |||
280 | void __rcu_read_lock(void) | ||
281 | { | ||
282 | int idx; | ||
283 | struct task_struct *t = current; | ||
284 | int nesting; | ||
285 | |||
286 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); | ||
287 | if (nesting != 0) { | ||
288 | |||
289 | /* An earlier rcu_read_lock() covers us, just count it. */ | ||
290 | |||
291 | t->rcu_read_lock_nesting = nesting + 1; | ||
292 | |||
293 | } else { | ||
294 | unsigned long flags; | ||
295 | |||
296 | /* | ||
297 | * We disable interrupts for the following reasons: | ||
298 | * - If we get scheduling clock interrupt here, and we | ||
299 | * end up acking the counter flip, it's like a promise | ||
300 | * that we will never increment the old counter again. | ||
301 | * Thus we will break that promise if that | ||
302 | * scheduling clock interrupt happens between the time | ||
303 | * we pick the .completed field and the time that we | ||
304 | * increment our counter. | ||
305 | * | ||
306 | * - We don't want to be preempted out here. | ||
307 | * | ||
308 | * NMIs can still occur, of course, and might themselves | ||
309 | * contain rcu_read_lock(). | ||
310 | */ | ||
311 | |||
312 | local_irq_save(flags); | ||
313 | |||
314 | /* | ||
315 | * Outermost nesting of rcu_read_lock(), so increment | ||
316 | * the current counter for the current CPU. Use volatile | ||
317 | * casts to prevent the compiler from reordering. | ||
318 | */ | ||
319 | |||
320 | idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1; | ||
321 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++; | ||
322 | |||
323 | /* | ||
324 | * Now that the per-CPU counter has been incremented, we | ||
325 | * are protected from races with rcu_read_lock() invoked | ||
326 | * from NMI handlers on this CPU. We can therefore safely | ||
327 | * increment the nesting counter, relieving further NMIs | ||
328 | * of the need to increment the per-CPU counter. | ||
329 | */ | ||
330 | |||
331 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1; | ||
332 | |||
333 | /* | ||
334 | * Now that we have preventing any NMIs from storing | ||
335 | * to the ->rcu_flipctr_idx, we can safely use it to | ||
336 | * remember which counter to decrement in the matching | ||
337 | * rcu_read_unlock(). | ||
338 | */ | ||
339 | |||
340 | ACCESS_ONCE(t->rcu_flipctr_idx) = idx; | ||
341 | local_irq_restore(flags); | ||
342 | } | ||
343 | } | ||
344 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | ||
345 | |||
346 | void __rcu_read_unlock(void) | ||
347 | { | ||
348 | int idx; | ||
349 | struct task_struct *t = current; | ||
350 | int nesting; | ||
351 | |||
352 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); | ||
353 | if (nesting > 1) { | ||
354 | |||
355 | /* | ||
356 | * We are still protected by the enclosing rcu_read_lock(), | ||
357 | * so simply decrement the counter. | ||
358 | */ | ||
359 | |||
360 | t->rcu_read_lock_nesting = nesting - 1; | ||
361 | |||
362 | } else { | ||
363 | unsigned long flags; | ||
364 | |||
365 | /* | ||
366 | * Disable local interrupts to prevent the grace-period | ||
367 | * detection state machine from seeing us half-done. | ||
368 | * NMIs can still occur, of course, and might themselves | ||
369 | * contain rcu_read_lock() and rcu_read_unlock(). | ||
370 | */ | ||
371 | |||
372 | local_irq_save(flags); | ||
373 | |||
374 | /* | ||
375 | * Outermost nesting of rcu_read_unlock(), so we must | ||
376 | * decrement the current counter for the current CPU. | ||
377 | * This must be done carefully, because NMIs can | ||
378 | * occur at any point in this code, and any rcu_read_lock() | ||
379 | * and rcu_read_unlock() pairs in the NMI handlers | ||
380 | * must interact non-destructively with this code. | ||
381 | * Lots of volatile casts, and -very- careful ordering. | ||
382 | * | ||
383 | * Changes to this code, including this one, must be | ||
384 | * inspected, validated, and tested extremely carefully!!! | ||
385 | */ | ||
386 | |||
387 | /* | ||
388 | * First, pick up the index. | ||
389 | */ | ||
390 | |||
391 | idx = ACCESS_ONCE(t->rcu_flipctr_idx); | ||
392 | |||
393 | /* | ||
394 | * Now that we have fetched the counter index, it is | ||
395 | * safe to decrement the per-task RCU nesting counter. | ||
396 | * After this, any interrupts or NMIs will increment and | ||
397 | * decrement the per-CPU counters. | ||
398 | */ | ||
399 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1; | ||
400 | |||
401 | /* | ||
402 | * It is now safe to decrement this task's nesting count. | ||
403 | * NMIs that occur after this statement will route their | ||
404 | * rcu_read_lock() calls through this "else" clause, and | ||
405 | * will thus start incrementing the per-CPU counter on | ||
406 | * their own. They will also clobber ->rcu_flipctr_idx, | ||
407 | * but that is OK, since we have already fetched it. | ||
408 | */ | ||
409 | |||
410 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--; | ||
411 | local_irq_restore(flags); | ||
412 | } | ||
413 | } | ||
414 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | ||
415 | |||
416 | /* | ||
417 | * If a global counter flip has occurred since the last time that we | ||
418 | * advanced callbacks, advance them. Hardware interrupts must be | ||
419 | * disabled when calling this function. | ||
420 | */ | ||
421 | static void __rcu_advance_callbacks(struct rcu_data *rdp) | ||
422 | { | ||
423 | int cpu; | ||
424 | int i; | ||
425 | int wlc = 0; | ||
426 | |||
427 | if (rdp->completed != rcu_ctrlblk.completed) { | ||
428 | if (rdp->waitlist[GP_STAGES - 1] != NULL) { | ||
429 | *rdp->donetail = rdp->waitlist[GP_STAGES - 1]; | ||
430 | rdp->donetail = rdp->waittail[GP_STAGES - 1]; | ||
431 | RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp); | ||
432 | } | ||
433 | for (i = GP_STAGES - 2; i >= 0; i--) { | ||
434 | if (rdp->waitlist[i] != NULL) { | ||
435 | rdp->waitlist[i + 1] = rdp->waitlist[i]; | ||
436 | rdp->waittail[i + 1] = rdp->waittail[i]; | ||
437 | wlc++; | ||
438 | } else { | ||
439 | rdp->waitlist[i + 1] = NULL; | ||
440 | rdp->waittail[i + 1] = | ||
441 | &rdp->waitlist[i + 1]; | ||
442 | } | ||
443 | } | ||
444 | if (rdp->nextlist != NULL) { | ||
445 | rdp->waitlist[0] = rdp->nextlist; | ||
446 | rdp->waittail[0] = rdp->nexttail; | ||
447 | wlc++; | ||
448 | rdp->nextlist = NULL; | ||
449 | rdp->nexttail = &rdp->nextlist; | ||
450 | RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp); | ||
451 | } else { | ||
452 | rdp->waitlist[0] = NULL; | ||
453 | rdp->waittail[0] = &rdp->waitlist[0]; | ||
454 | } | ||
455 | rdp->waitlistcount = wlc; | ||
456 | rdp->completed = rcu_ctrlblk.completed; | ||
457 | } | ||
458 | |||
459 | /* | ||
460 | * Check to see if this CPU needs to report that it has seen | ||
461 | * the most recent counter flip, thereby declaring that all | ||
462 | * subsequent rcu_read_lock() invocations will respect this flip. | ||
463 | */ | ||
464 | |||
465 | cpu = raw_smp_processor_id(); | ||
466 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { | ||
467 | smp_mb(); /* Subsequent counter accesses must see new value */ | ||
468 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; | ||
469 | smp_mb(); /* Subsequent RCU read-side critical sections */ | ||
470 | /* seen -after- acknowledgement. */ | ||
471 | } | ||
472 | } | ||
473 | |||
474 | #ifdef CONFIG_NO_HZ | ||
475 | static DEFINE_PER_CPU(int, rcu_update_flag); | ||
476 | |||
477 | /** | ||
478 | * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI. | ||
479 | * | ||
480 | * If the CPU was idle with dynamic ticks active, this updates the | ||
481 | * rcu_dyntick_sched.dynticks to let the RCU handling know that the | ||
482 | * CPU is active. | ||
483 | */ | ||
484 | void rcu_irq_enter(void) | ||
485 | { | ||
486 | int cpu = smp_processor_id(); | ||
487 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
488 | |||
489 | if (per_cpu(rcu_update_flag, cpu)) | ||
490 | per_cpu(rcu_update_flag, cpu)++; | ||
491 | |||
492 | /* | ||
493 | * Only update if we are coming from a stopped ticks mode | ||
494 | * (rcu_dyntick_sched.dynticks is even). | ||
495 | */ | ||
496 | if (!in_interrupt() && | ||
497 | (rdssp->dynticks & 0x1) == 0) { | ||
498 | /* | ||
499 | * The following might seem like we could have a race | ||
500 | * with NMI/SMIs. But this really isn't a problem. | ||
501 | * Here we do a read/modify/write, and the race happens | ||
502 | * when an NMI/SMI comes in after the read and before | ||
503 | * the write. But NMI/SMIs will increment this counter | ||
504 | * twice before returning, so the zero bit will not | ||
505 | * be corrupted by the NMI/SMI which is the most important | ||
506 | * part. | ||
507 | * | ||
508 | * The only thing is that we would bring back the counter | ||
509 | * to a postion that it was in during the NMI/SMI. | ||
510 | * But the zero bit would be set, so the rest of the | ||
511 | * counter would again be ignored. | ||
512 | * | ||
513 | * On return from the IRQ, the counter may have the zero | ||
514 | * bit be 0 and the counter the same as the return from | ||
515 | * the NMI/SMI. If the state machine was so unlucky to | ||
516 | * see that, it still doesn't matter, since all | ||
517 | * RCU read-side critical sections on this CPU would | ||
518 | * have already completed. | ||
519 | */ | ||
520 | rdssp->dynticks++; | ||
521 | /* | ||
522 | * The following memory barrier ensures that any | ||
523 | * rcu_read_lock() primitives in the irq handler | ||
524 | * are seen by other CPUs to follow the above | ||
525 | * increment to rcu_dyntick_sched.dynticks. This is | ||
526 | * required in order for other CPUs to correctly | ||
527 | * determine when it is safe to advance the RCU | ||
528 | * grace-period state machine. | ||
529 | */ | ||
530 | smp_mb(); /* see above block comment. */ | ||
531 | /* | ||
532 | * Since we can't determine the dynamic tick mode from | ||
533 | * the rcu_dyntick_sched.dynticks after this routine, | ||
534 | * we use a second flag to acknowledge that we came | ||
535 | * from an idle state with ticks stopped. | ||
536 | */ | ||
537 | per_cpu(rcu_update_flag, cpu)++; | ||
538 | /* | ||
539 | * If we take an NMI/SMI now, they will also increment | ||
540 | * the rcu_update_flag, and will not update the | ||
541 | * rcu_dyntick_sched.dynticks on exit. That is for | ||
542 | * this IRQ to do. | ||
543 | */ | ||
544 | } | ||
545 | } | ||
546 | |||
547 | /** | ||
548 | * rcu_irq_exit - Called from exiting Hard irq context. | ||
549 | * | ||
550 | * If the CPU was idle with dynamic ticks active, update the | ||
551 | * rcu_dyntick_sched.dynticks to put let the RCU handling be | ||
552 | * aware that the CPU is going back to idle with no ticks. | ||
553 | */ | ||
554 | void rcu_irq_exit(void) | ||
555 | { | ||
556 | int cpu = smp_processor_id(); | ||
557 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
558 | |||
559 | /* | ||
560 | * rcu_update_flag is set if we interrupted the CPU | ||
561 | * when it was idle with ticks stopped. | ||
562 | * Once this occurs, we keep track of interrupt nesting | ||
563 | * because a NMI/SMI could also come in, and we still | ||
564 | * only want the IRQ that started the increment of the | ||
565 | * rcu_dyntick_sched.dynticks to be the one that modifies | ||
566 | * it on exit. | ||
567 | */ | ||
568 | if (per_cpu(rcu_update_flag, cpu)) { | ||
569 | if (--per_cpu(rcu_update_flag, cpu)) | ||
570 | return; | ||
571 | |||
572 | /* This must match the interrupt nesting */ | ||
573 | WARN_ON(in_interrupt()); | ||
574 | |||
575 | /* | ||
576 | * If an NMI/SMI happens now we are still | ||
577 | * protected by the rcu_dyntick_sched.dynticks being odd. | ||
578 | */ | ||
579 | |||
580 | /* | ||
581 | * The following memory barrier ensures that any | ||
582 | * rcu_read_unlock() primitives in the irq handler | ||
583 | * are seen by other CPUs to preceed the following | ||
584 | * increment to rcu_dyntick_sched.dynticks. This | ||
585 | * is required in order for other CPUs to determine | ||
586 | * when it is safe to advance the RCU grace-period | ||
587 | * state machine. | ||
588 | */ | ||
589 | smp_mb(); /* see above block comment. */ | ||
590 | rdssp->dynticks++; | ||
591 | WARN_ON(rdssp->dynticks & 0x1); | ||
592 | } | ||
593 | } | ||
594 | |||
595 | void rcu_nmi_enter(void) | ||
596 | { | ||
597 | rcu_irq_enter(); | ||
598 | } | ||
599 | |||
600 | void rcu_nmi_exit(void) | ||
601 | { | ||
602 | rcu_irq_exit(); | ||
603 | } | ||
604 | |||
605 | static void dyntick_save_progress_counter(int cpu) | ||
606 | { | ||
607 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
608 | |||
609 | rdssp->dynticks_snap = rdssp->dynticks; | ||
610 | } | ||
611 | |||
612 | static inline int | ||
613 | rcu_try_flip_waitack_needed(int cpu) | ||
614 | { | ||
615 | long curr; | ||
616 | long snap; | ||
617 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
618 | |||
619 | curr = rdssp->dynticks; | ||
620 | snap = rdssp->dynticks_snap; | ||
621 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
622 | |||
623 | /* | ||
624 | * If the CPU remained in dynticks mode for the entire time | ||
625 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
626 | * then it cannot be in the middle of an rcu_read_lock(), so | ||
627 | * the next rcu_read_lock() it executes must use the new value | ||
628 | * of the counter. So we can safely pretend that this CPU | ||
629 | * already acknowledged the counter. | ||
630 | */ | ||
631 | |||
632 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
633 | return 0; | ||
634 | |||
635 | /* | ||
636 | * If the CPU passed through or entered a dynticks idle phase with | ||
637 | * no active irq handlers, then, as above, we can safely pretend | ||
638 | * that this CPU already acknowledged the counter. | ||
639 | */ | ||
640 | |||
641 | if ((curr - snap) > 2 || (curr & 0x1) == 0) | ||
642 | return 0; | ||
643 | |||
644 | /* We need this CPU to explicitly acknowledge the counter flip. */ | ||
645 | |||
646 | return 1; | ||
647 | } | ||
648 | |||
649 | static inline int | ||
650 | rcu_try_flip_waitmb_needed(int cpu) | ||
651 | { | ||
652 | long curr; | ||
653 | long snap; | ||
654 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
655 | |||
656 | curr = rdssp->dynticks; | ||
657 | snap = rdssp->dynticks_snap; | ||
658 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
659 | |||
660 | /* | ||
661 | * If the CPU remained in dynticks mode for the entire time | ||
662 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
663 | * then it cannot have executed an RCU read-side critical section | ||
664 | * during that time, so there is no need for it to execute a | ||
665 | * memory barrier. | ||
666 | */ | ||
667 | |||
668 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
669 | return 0; | ||
670 | |||
671 | /* | ||
672 | * If the CPU either entered or exited an outermost interrupt, | ||
673 | * SMI, NMI, or whatever handler, then we know that it executed | ||
674 | * a memory barrier when doing so. So we don't need another one. | ||
675 | */ | ||
676 | if (curr != snap) | ||
677 | return 0; | ||
678 | |||
679 | /* We need the CPU to execute a memory barrier. */ | ||
680 | |||
681 | return 1; | ||
682 | } | ||
683 | |||
684 | static void dyntick_save_progress_counter_sched(int cpu) | ||
685 | { | ||
686 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
687 | |||
688 | rdssp->sched_dynticks_snap = rdssp->dynticks; | ||
689 | } | ||
690 | |||
691 | static int rcu_qsctr_inc_needed_dyntick(int cpu) | ||
692 | { | ||
693 | long curr; | ||
694 | long snap; | ||
695 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
696 | |||
697 | curr = rdssp->dynticks; | ||
698 | snap = rdssp->sched_dynticks_snap; | ||
699 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
700 | |||
701 | /* | ||
702 | * If the CPU remained in dynticks mode for the entire time | ||
703 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
704 | * then it cannot be in the middle of an rcu_read_lock(), so | ||
705 | * the next rcu_read_lock() it executes must use the new value | ||
706 | * of the counter. Therefore, this CPU has been in a quiescent | ||
707 | * state the entire time, and we don't need to wait for it. | ||
708 | */ | ||
709 | |||
710 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
711 | return 0; | ||
712 | |||
713 | /* | ||
714 | * If the CPU passed through or entered a dynticks idle phase with | ||
715 | * no active irq handlers, then, as above, this CPU has already | ||
716 | * passed through a quiescent state. | ||
717 | */ | ||
718 | |||
719 | if ((curr - snap) > 2 || (snap & 0x1) == 0) | ||
720 | return 0; | ||
721 | |||
722 | /* We need this CPU to go through a quiescent state. */ | ||
723 | |||
724 | return 1; | ||
725 | } | ||
726 | |||
727 | #else /* !CONFIG_NO_HZ */ | ||
728 | |||
729 | # define dyntick_save_progress_counter(cpu) do { } while (0) | ||
730 | # define rcu_try_flip_waitack_needed(cpu) (1) | ||
731 | # define rcu_try_flip_waitmb_needed(cpu) (1) | ||
732 | |||
733 | # define dyntick_save_progress_counter_sched(cpu) do { } while (0) | ||
734 | # define rcu_qsctr_inc_needed_dyntick(cpu) (1) | ||
735 | |||
736 | #endif /* CONFIG_NO_HZ */ | ||
737 | |||
738 | static void save_qsctr_sched(int cpu) | ||
739 | { | ||
740 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
741 | |||
742 | rdssp->sched_qs_snap = rdssp->sched_qs; | ||
743 | } | ||
744 | |||
745 | static inline int rcu_qsctr_inc_needed(int cpu) | ||
746 | { | ||
747 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
748 | |||
749 | /* | ||
750 | * If there has been a quiescent state, no more need to wait | ||
751 | * on this CPU. | ||
752 | */ | ||
753 | |||
754 | if (rdssp->sched_qs != rdssp->sched_qs_snap) { | ||
755 | smp_mb(); /* force ordering with cpu entering schedule(). */ | ||
756 | return 0; | ||
757 | } | ||
758 | |||
759 | /* We need this CPU to go through a quiescent state. */ | ||
760 | |||
761 | return 1; | ||
762 | } | ||
763 | |||
764 | /* | ||
765 | * Get here when RCU is idle. Decide whether we need to | ||
766 | * move out of idle state, and return non-zero if so. | ||
767 | * "Straightforward" approach for the moment, might later | ||
768 | * use callback-list lengths, grace-period duration, or | ||
769 | * some such to determine when to exit idle state. | ||
770 | * Might also need a pre-idle test that does not acquire | ||
771 | * the lock, but let's get the simple case working first... | ||
772 | */ | ||
773 | |||
774 | static int | ||
775 | rcu_try_flip_idle(void) | ||
776 | { | ||
777 | int cpu; | ||
778 | |||
779 | RCU_TRACE_ME(rcupreempt_trace_try_flip_i1); | ||
780 | if (!rcu_pending(smp_processor_id())) { | ||
781 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1); | ||
782 | return 0; | ||
783 | } | ||
784 | |||
785 | /* | ||
786 | * Do the flip. | ||
787 | */ | ||
788 | |||
789 | RCU_TRACE_ME(rcupreempt_trace_try_flip_g1); | ||
790 | rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */ | ||
791 | |||
792 | /* | ||
793 | * Need a memory barrier so that other CPUs see the new | ||
794 | * counter value before they see the subsequent change of all | ||
795 | * the rcu_flip_flag instances to rcu_flipped. | ||
796 | */ | ||
797 | |||
798 | smp_mb(); /* see above block comment. */ | ||
799 | |||
800 | /* Now ask each CPU for acknowledgement of the flip. */ | ||
801 | |||
802 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { | ||
803 | per_cpu(rcu_flip_flag, cpu) = rcu_flipped; | ||
804 | dyntick_save_progress_counter(cpu); | ||
805 | } | ||
806 | |||
807 | return 1; | ||
808 | } | ||
809 | |||
810 | /* | ||
811 | * Wait for CPUs to acknowledge the flip. | ||
812 | */ | ||
813 | |||
814 | static int | ||
815 | rcu_try_flip_waitack(void) | ||
816 | { | ||
817 | int cpu; | ||
818 | |||
819 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a1); | ||
820 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
821 | if (rcu_try_flip_waitack_needed(cpu) && | ||
822 | per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) { | ||
823 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1); | ||
824 | return 0; | ||
825 | } | ||
826 | |||
827 | /* | ||
828 | * Make sure our checks above don't bleed into subsequent | ||
829 | * waiting for the sum of the counters to reach zero. | ||
830 | */ | ||
831 | |||
832 | smp_mb(); /* see above block comment. */ | ||
833 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a2); | ||
834 | return 1; | ||
835 | } | ||
836 | |||
837 | /* | ||
838 | * Wait for collective ``last'' counter to reach zero, | ||
839 | * then tell all CPUs to do an end-of-grace-period memory barrier. | ||
840 | */ | ||
841 | |||
842 | static int | ||
843 | rcu_try_flip_waitzero(void) | ||
844 | { | ||
845 | int cpu; | ||
846 | int lastidx = !(rcu_ctrlblk.completed & 0x1); | ||
847 | int sum = 0; | ||
848 | |||
849 | /* Check to see if the sum of the "last" counters is zero. */ | ||
850 | |||
851 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z1); | ||
852 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
853 | sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx]; | ||
854 | if (sum != 0) { | ||
855 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1); | ||
856 | return 0; | ||
857 | } | ||
858 | |||
859 | /* | ||
860 | * This ensures that the other CPUs see the call for | ||
861 | * memory barriers -after- the sum to zero has been | ||
862 | * detected here | ||
863 | */ | ||
864 | smp_mb(); /* ^^^^^^^^^^^^ */ | ||
865 | |||
866 | /* Call for a memory barrier from each CPU. */ | ||
867 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { | ||
868 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed; | ||
869 | dyntick_save_progress_counter(cpu); | ||
870 | } | ||
871 | |||
872 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z2); | ||
873 | return 1; | ||
874 | } | ||
875 | |||
876 | /* | ||
877 | * Wait for all CPUs to do their end-of-grace-period memory barrier. | ||
878 | * Return 0 once all CPUs have done so. | ||
879 | */ | ||
880 | |||
881 | static int | ||
882 | rcu_try_flip_waitmb(void) | ||
883 | { | ||
884 | int cpu; | ||
885 | |||
886 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m1); | ||
887 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
888 | if (rcu_try_flip_waitmb_needed(cpu) && | ||
889 | per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) { | ||
890 | RCU_TRACE_ME(rcupreempt_trace_try_flip_me1); | ||
891 | return 0; | ||
892 | } | ||
893 | |||
894 | smp_mb(); /* Ensure that the above checks precede any following flip. */ | ||
895 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m2); | ||
896 | return 1; | ||
897 | } | ||
898 | |||
899 | /* | ||
900 | * Attempt a single flip of the counters. Remember, a single flip does | ||
901 | * -not- constitute a grace period. Instead, the interval between | ||
902 | * at least GP_STAGES consecutive flips is a grace period. | ||
903 | * | ||
904 | * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation | ||
905 | * on a large SMP, they might want to use a hierarchical organization of | ||
906 | * the per-CPU-counter pairs. | ||
907 | */ | ||
908 | static void rcu_try_flip(void) | ||
909 | { | ||
910 | unsigned long flags; | ||
911 | |||
912 | RCU_TRACE_ME(rcupreempt_trace_try_flip_1); | ||
913 | if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) { | ||
914 | RCU_TRACE_ME(rcupreempt_trace_try_flip_e1); | ||
915 | return; | ||
916 | } | ||
917 | |||
918 | /* | ||
919 | * Take the next transition(s) through the RCU grace-period | ||
920 | * flip-counter state machine. | ||
921 | */ | ||
922 | |||
923 | switch (rcu_ctrlblk.rcu_try_flip_state) { | ||
924 | case rcu_try_flip_idle_state: | ||
925 | if (rcu_try_flip_idle()) | ||
926 | rcu_ctrlblk.rcu_try_flip_state = | ||
927 | rcu_try_flip_waitack_state; | ||
928 | break; | ||
929 | case rcu_try_flip_waitack_state: | ||
930 | if (rcu_try_flip_waitack()) | ||
931 | rcu_ctrlblk.rcu_try_flip_state = | ||
932 | rcu_try_flip_waitzero_state; | ||
933 | break; | ||
934 | case rcu_try_flip_waitzero_state: | ||
935 | if (rcu_try_flip_waitzero()) | ||
936 | rcu_ctrlblk.rcu_try_flip_state = | ||
937 | rcu_try_flip_waitmb_state; | ||
938 | break; | ||
939 | case rcu_try_flip_waitmb_state: | ||
940 | if (rcu_try_flip_waitmb()) | ||
941 | rcu_ctrlblk.rcu_try_flip_state = | ||
942 | rcu_try_flip_idle_state; | ||
943 | } | ||
944 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
945 | } | ||
946 | |||
947 | /* | ||
948 | * Check to see if this CPU needs to do a memory barrier in order to | ||
949 | * ensure that any prior RCU read-side critical sections have committed | ||
950 | * their counter manipulations and critical-section memory references | ||
951 | * before declaring the grace period to be completed. | ||
952 | */ | ||
953 | static void rcu_check_mb(int cpu) | ||
954 | { | ||
955 | if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) { | ||
956 | smp_mb(); /* Ensure RCU read-side accesses are visible. */ | ||
957 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_done; | ||
958 | } | ||
959 | } | ||
960 | |||
961 | void rcu_check_callbacks(int cpu, int user) | ||
962 | { | ||
963 | unsigned long flags; | ||
964 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
965 | |||
966 | /* | ||
967 | * If this CPU took its interrupt from user mode or from the | ||
968 | * idle loop, and this is not a nested interrupt, then | ||
969 | * this CPU has to have exited all prior preept-disable | ||
970 | * sections of code. So increment the counter to note this. | ||
971 | * | ||
972 | * The memory barrier is needed to handle the case where | ||
973 | * writes from a preempt-disable section of code get reordered | ||
974 | * into schedule() by this CPU's write buffer. So the memory | ||
975 | * barrier makes sure that the rcu_qsctr_inc() is seen by other | ||
976 | * CPUs to happen after any such write. | ||
977 | */ | ||
978 | |||
979 | if (user || | ||
980 | (idle_cpu(cpu) && !in_softirq() && | ||
981 | hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | ||
982 | smp_mb(); /* Guard against aggressive schedule(). */ | ||
983 | rcu_qsctr_inc(cpu); | ||
984 | } | ||
985 | |||
986 | rcu_check_mb(cpu); | ||
987 | if (rcu_ctrlblk.completed == rdp->completed) | ||
988 | rcu_try_flip(); | ||
989 | spin_lock_irqsave(&rdp->lock, flags); | ||
990 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); | ||
991 | __rcu_advance_callbacks(rdp); | ||
992 | if (rdp->donelist == NULL) { | ||
993 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
994 | } else { | ||
995 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
996 | raise_softirq(RCU_SOFTIRQ); | ||
997 | } | ||
998 | } | ||
999 | |||
1000 | /* | ||
1001 | * Needed by dynticks, to make sure all RCU processing has finished | ||
1002 | * when we go idle: | ||
1003 | */ | ||
1004 | void rcu_advance_callbacks(int cpu, int user) | ||
1005 | { | ||
1006 | unsigned long flags; | ||
1007 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
1008 | |||
1009 | if (rcu_ctrlblk.completed == rdp->completed) { | ||
1010 | rcu_try_flip(); | ||
1011 | if (rcu_ctrlblk.completed == rdp->completed) | ||
1012 | return; | ||
1013 | } | ||
1014 | spin_lock_irqsave(&rdp->lock, flags); | ||
1015 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); | ||
1016 | __rcu_advance_callbacks(rdp); | ||
1017 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1018 | } | ||
1019 | |||
1020 | #ifdef CONFIG_HOTPLUG_CPU | ||
1021 | #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \ | ||
1022 | *dsttail = srclist; \ | ||
1023 | if (srclist != NULL) { \ | ||
1024 | dsttail = srctail; \ | ||
1025 | srclist = NULL; \ | ||
1026 | srctail = &srclist;\ | ||
1027 | } \ | ||
1028 | } while (0) | ||
1029 | |||
1030 | void rcu_offline_cpu(int cpu) | ||
1031 | { | ||
1032 | int i; | ||
1033 | struct rcu_head *list = NULL; | ||
1034 | unsigned long flags; | ||
1035 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
1036 | struct rcu_head *schedlist = NULL; | ||
1037 | struct rcu_head **schedtail = &schedlist; | ||
1038 | struct rcu_head **tail = &list; | ||
1039 | |||
1040 | /* | ||
1041 | * Remove all callbacks from the newly dead CPU, retaining order. | ||
1042 | * Otherwise rcu_barrier() will fail | ||
1043 | */ | ||
1044 | |||
1045 | spin_lock_irqsave(&rdp->lock, flags); | ||
1046 | rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail); | ||
1047 | for (i = GP_STAGES - 1; i >= 0; i--) | ||
1048 | rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i], | ||
1049 | list, tail); | ||
1050 | rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail); | ||
1051 | rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail, | ||
1052 | schedlist, schedtail); | ||
1053 | rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail, | ||
1054 | schedlist, schedtail); | ||
1055 | rdp->rcu_sched_sleeping = 0; | ||
1056 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1057 | rdp->waitlistcount = 0; | ||
1058 | |||
1059 | /* Disengage the newly dead CPU from the grace-period computation. */ | ||
1060 | |||
1061 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); | ||
1062 | rcu_check_mb(cpu); | ||
1063 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { | ||
1064 | smp_mb(); /* Subsequent counter accesses must see new value */ | ||
1065 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; | ||
1066 | smp_mb(); /* Subsequent RCU read-side critical sections */ | ||
1067 | /* seen -after- acknowledgement. */ | ||
1068 | } | ||
1069 | |||
1070 | RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0]; | ||
1071 | RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1]; | ||
1072 | |||
1073 | RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0; | ||
1074 | RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0; | ||
1075 | |||
1076 | cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map)); | ||
1077 | |||
1078 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
1079 | |||
1080 | /* | ||
1081 | * Place the removed callbacks on the current CPU's queue. | ||
1082 | * Make them all start a new grace period: simple approach, | ||
1083 | * in theory could starve a given set of callbacks, but | ||
1084 | * you would need to be doing some serious CPU hotplugging | ||
1085 | * to make this happen. If this becomes a problem, adding | ||
1086 | * a synchronize_rcu() to the hotplug path would be a simple | ||
1087 | * fix. | ||
1088 | */ | ||
1089 | |||
1090 | local_irq_save(flags); /* disable preempt till we know what lock. */ | ||
1091 | rdp = RCU_DATA_ME(); | ||
1092 | spin_lock(&rdp->lock); | ||
1093 | *rdp->nexttail = list; | ||
1094 | if (list) | ||
1095 | rdp->nexttail = tail; | ||
1096 | *rdp->nextschedtail = schedlist; | ||
1097 | if (schedlist) | ||
1098 | rdp->nextschedtail = schedtail; | ||
1099 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1100 | } | ||
1101 | |||
1102 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
1103 | |||
1104 | void rcu_offline_cpu(int cpu) | ||
1105 | { | ||
1106 | } | ||
1107 | |||
1108 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | ||
1109 | |||
1110 | void __cpuinit rcu_online_cpu(int cpu) | ||
1111 | { | ||
1112 | unsigned long flags; | ||
1113 | struct rcu_data *rdp; | ||
1114 | |||
1115 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); | ||
1116 | cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map)); | ||
1117 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
1118 | |||
1119 | /* | ||
1120 | * The rcu_sched grace-period processing might have bypassed | ||
1121 | * this CPU, given that it was not in the rcu_cpu_online_map | ||
1122 | * when the grace-period scan started. This means that the | ||
1123 | * grace-period task might sleep. So make sure that if this | ||
1124 | * should happen, the first callback posted to this CPU will | ||
1125 | * wake up the grace-period task if need be. | ||
1126 | */ | ||
1127 | |||
1128 | rdp = RCU_DATA_CPU(cpu); | ||
1129 | spin_lock_irqsave(&rdp->lock, flags); | ||
1130 | rdp->rcu_sched_sleeping = 1; | ||
1131 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1132 | } | ||
1133 | |||
1134 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
1135 | { | ||
1136 | unsigned long flags; | ||
1137 | struct rcu_head *next, *list; | ||
1138 | struct rcu_data *rdp; | ||
1139 | |||
1140 | local_irq_save(flags); | ||
1141 | rdp = RCU_DATA_ME(); | ||
1142 | spin_lock(&rdp->lock); | ||
1143 | list = rdp->donelist; | ||
1144 | if (list == NULL) { | ||
1145 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1146 | return; | ||
1147 | } | ||
1148 | rdp->donelist = NULL; | ||
1149 | rdp->donetail = &rdp->donelist; | ||
1150 | RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp); | ||
1151 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1152 | while (list) { | ||
1153 | next = list->next; | ||
1154 | list->func(list); | ||
1155 | list = next; | ||
1156 | RCU_TRACE_ME(rcupreempt_trace_invoke); | ||
1157 | } | ||
1158 | } | ||
1159 | |||
1160 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
1161 | { | ||
1162 | unsigned long flags; | ||
1163 | struct rcu_data *rdp; | ||
1164 | |||
1165 | head->func = func; | ||
1166 | head->next = NULL; | ||
1167 | local_irq_save(flags); | ||
1168 | rdp = RCU_DATA_ME(); | ||
1169 | spin_lock(&rdp->lock); | ||
1170 | __rcu_advance_callbacks(rdp); | ||
1171 | *rdp->nexttail = head; | ||
1172 | rdp->nexttail = &head->next; | ||
1173 | RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp); | ||
1174 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1175 | } | ||
1176 | EXPORT_SYMBOL_GPL(call_rcu); | ||
1177 | |||
1178 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
1179 | { | ||
1180 | unsigned long flags; | ||
1181 | struct rcu_data *rdp; | ||
1182 | int wake_gp = 0; | ||
1183 | |||
1184 | head->func = func; | ||
1185 | head->next = NULL; | ||
1186 | local_irq_save(flags); | ||
1187 | rdp = RCU_DATA_ME(); | ||
1188 | spin_lock(&rdp->lock); | ||
1189 | *rdp->nextschedtail = head; | ||
1190 | rdp->nextschedtail = &head->next; | ||
1191 | if (rdp->rcu_sched_sleeping) { | ||
1192 | |||
1193 | /* Grace-period processing might be sleeping... */ | ||
1194 | |||
1195 | rdp->rcu_sched_sleeping = 0; | ||
1196 | wake_gp = 1; | ||
1197 | } | ||
1198 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1199 | if (wake_gp) { | ||
1200 | |||
1201 | /* Wake up grace-period processing, unless someone beat us. */ | ||
1202 | |||
1203 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
1204 | if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping) | ||
1205 | wake_gp = 0; | ||
1206 | rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping; | ||
1207 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
1208 | if (wake_gp) | ||
1209 | wake_up_interruptible(&rcu_ctrlblk.sched_wq); | ||
1210 | } | ||
1211 | } | ||
1212 | EXPORT_SYMBOL_GPL(call_rcu_sched); | ||
1213 | |||
1214 | /* | ||
1215 | * Wait until all currently running preempt_disable() code segments | ||
1216 | * (including hardware-irq-disable segments) complete. Note that | ||
1217 | * in -rt this does -not- necessarily result in all currently executing | ||
1218 | * interrupt -handlers- having completed. | ||
1219 | */ | ||
1220 | void __synchronize_sched(void) | ||
1221 | { | ||
1222 | struct rcu_synchronize rcu; | ||
1223 | |||
1224 | if (num_online_cpus() == 1) | ||
1225 | return; /* blocking is gp if only one CPU! */ | ||
1226 | |||
1227 | init_completion(&rcu.completion); | ||
1228 | /* Will wake me after RCU finished. */ | ||
1229 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
1230 | /* Wait for it. */ | ||
1231 | wait_for_completion(&rcu.completion); | ||
1232 | } | ||
1233 | EXPORT_SYMBOL_GPL(__synchronize_sched); | ||
1234 | |||
1235 | /* | ||
1236 | * kthread function that manages call_rcu_sched grace periods. | ||
1237 | */ | ||
1238 | static int rcu_sched_grace_period(void *arg) | ||
1239 | { | ||
1240 | int couldsleep; /* might sleep after current pass. */ | ||
1241 | int couldsleepnext = 0; /* might sleep after next pass. */ | ||
1242 | int cpu; | ||
1243 | unsigned long flags; | ||
1244 | struct rcu_data *rdp; | ||
1245 | int ret; | ||
1246 | |||
1247 | /* | ||
1248 | * Each pass through the following loop handles one | ||
1249 | * rcu_sched grace period cycle. | ||
1250 | */ | ||
1251 | do { | ||
1252 | /* Save each CPU's current state. */ | ||
1253 | |||
1254 | for_each_online_cpu(cpu) { | ||
1255 | dyntick_save_progress_counter_sched(cpu); | ||
1256 | save_qsctr_sched(cpu); | ||
1257 | } | ||
1258 | |||
1259 | /* | ||
1260 | * Sleep for about an RCU grace-period's worth to | ||
1261 | * allow better batching and to consume less CPU. | ||
1262 | */ | ||
1263 | schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME); | ||
1264 | |||
1265 | /* | ||
1266 | * If there was nothing to do last time, prepare to | ||
1267 | * sleep at the end of the current grace period cycle. | ||
1268 | */ | ||
1269 | couldsleep = couldsleepnext; | ||
1270 | couldsleepnext = 1; | ||
1271 | if (couldsleep) { | ||
1272 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
1273 | rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep; | ||
1274 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
1275 | } | ||
1276 | |||
1277 | /* | ||
1278 | * Wait on each CPU in turn to have either visited | ||
1279 | * a quiescent state or been in dynticks-idle mode. | ||
1280 | */ | ||
1281 | for_each_online_cpu(cpu) { | ||
1282 | while (rcu_qsctr_inc_needed(cpu) && | ||
1283 | rcu_qsctr_inc_needed_dyntick(cpu)) { | ||
1284 | /* resched_cpu(cpu); @@@ */ | ||
1285 | schedule_timeout_interruptible(1); | ||
1286 | } | ||
1287 | } | ||
1288 | |||
1289 | /* Advance callbacks for each CPU. */ | ||
1290 | |||
1291 | for_each_online_cpu(cpu) { | ||
1292 | |||
1293 | rdp = RCU_DATA_CPU(cpu); | ||
1294 | spin_lock_irqsave(&rdp->lock, flags); | ||
1295 | |||
1296 | /* | ||
1297 | * We are running on this CPU irq-disabled, so no | ||
1298 | * CPU can go offline until we re-enable irqs. | ||
1299 | * The current CPU might have already gone | ||
1300 | * offline (between the for_each_offline_cpu and | ||
1301 | * the spin_lock_irqsave), but in that case all its | ||
1302 | * callback lists will be empty, so no harm done. | ||
1303 | * | ||
1304 | * Advance the callbacks! We share normal RCU's | ||
1305 | * donelist, since callbacks are invoked the | ||
1306 | * same way in either case. | ||
1307 | */ | ||
1308 | if (rdp->waitschedlist != NULL) { | ||
1309 | *rdp->donetail = rdp->waitschedlist; | ||
1310 | rdp->donetail = rdp->waitschedtail; | ||
1311 | |||
1312 | /* | ||
1313 | * Next rcu_check_callbacks() will | ||
1314 | * do the required raise_softirq(). | ||
1315 | */ | ||
1316 | } | ||
1317 | if (rdp->nextschedlist != NULL) { | ||
1318 | rdp->waitschedlist = rdp->nextschedlist; | ||
1319 | rdp->waitschedtail = rdp->nextschedtail; | ||
1320 | couldsleep = 0; | ||
1321 | couldsleepnext = 0; | ||
1322 | } else { | ||
1323 | rdp->waitschedlist = NULL; | ||
1324 | rdp->waitschedtail = &rdp->waitschedlist; | ||
1325 | } | ||
1326 | rdp->nextschedlist = NULL; | ||
1327 | rdp->nextschedtail = &rdp->nextschedlist; | ||
1328 | |||
1329 | /* Mark sleep intention. */ | ||
1330 | |||
1331 | rdp->rcu_sched_sleeping = couldsleep; | ||
1332 | |||
1333 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
1334 | } | ||
1335 | |||
1336 | /* If we saw callbacks on the last scan, go deal with them. */ | ||
1337 | |||
1338 | if (!couldsleep) | ||
1339 | continue; | ||
1340 | |||
1341 | /* Attempt to block... */ | ||
1342 | |||
1343 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
1344 | if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) { | ||
1345 | |||
1346 | /* | ||
1347 | * Someone posted a callback after we scanned. | ||
1348 | * Go take care of it. | ||
1349 | */ | ||
1350 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
1351 | couldsleepnext = 0; | ||
1352 | continue; | ||
1353 | } | ||
1354 | |||
1355 | /* Block until the next person posts a callback. */ | ||
1356 | |||
1357 | rcu_ctrlblk.sched_sleep = rcu_sched_sleeping; | ||
1358 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
1359 | ret = 0; /* unused */ | ||
1360 | __wait_event_interruptible(rcu_ctrlblk.sched_wq, | ||
1361 | rcu_ctrlblk.sched_sleep != rcu_sched_sleeping, | ||
1362 | ret); | ||
1363 | |||
1364 | couldsleepnext = 0; | ||
1365 | |||
1366 | } while (!kthread_should_stop()); | ||
1367 | |||
1368 | return (0); | ||
1369 | } | ||
1370 | |||
1371 | /* | ||
1372 | * Check to see if any future RCU-related work will need to be done | ||
1373 | * by the current CPU, even if none need be done immediately, returning | ||
1374 | * 1 if so. Assumes that notifiers would take care of handling any | ||
1375 | * outstanding requests from the RCU core. | ||
1376 | * | ||
1377 | * This function is part of the RCU implementation; it is -not- | ||
1378 | * an exported member of the RCU API. | ||
1379 | */ | ||
1380 | int rcu_needs_cpu(int cpu) | ||
1381 | { | ||
1382 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
1383 | |||
1384 | return (rdp->donelist != NULL || | ||
1385 | !!rdp->waitlistcount || | ||
1386 | rdp->nextlist != NULL || | ||
1387 | rdp->nextschedlist != NULL || | ||
1388 | rdp->waitschedlist != NULL); | ||
1389 | } | ||
1390 | |||
1391 | int rcu_pending(int cpu) | ||
1392 | { | ||
1393 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
1394 | |||
1395 | /* The CPU has at least one callback queued somewhere. */ | ||
1396 | |||
1397 | if (rdp->donelist != NULL || | ||
1398 | !!rdp->waitlistcount || | ||
1399 | rdp->nextlist != NULL || | ||
1400 | rdp->nextschedlist != NULL || | ||
1401 | rdp->waitschedlist != NULL) | ||
1402 | return 1; | ||
1403 | |||
1404 | /* The RCU core needs an acknowledgement from this CPU. */ | ||
1405 | |||
1406 | if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) || | ||
1407 | (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed)) | ||
1408 | return 1; | ||
1409 | |||
1410 | /* This CPU has fallen behind the global grace-period number. */ | ||
1411 | |||
1412 | if (rdp->completed != rcu_ctrlblk.completed) | ||
1413 | return 1; | ||
1414 | |||
1415 | /* Nothing needed from this CPU. */ | ||
1416 | |||
1417 | return 0; | ||
1418 | } | ||
1419 | |||
1420 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | ||
1421 | unsigned long action, void *hcpu) | ||
1422 | { | ||
1423 | long cpu = (long)hcpu; | ||
1424 | |||
1425 | switch (action) { | ||
1426 | case CPU_UP_PREPARE: | ||
1427 | case CPU_UP_PREPARE_FROZEN: | ||
1428 | rcu_online_cpu(cpu); | ||
1429 | break; | ||
1430 | case CPU_UP_CANCELED: | ||
1431 | case CPU_UP_CANCELED_FROZEN: | ||
1432 | case CPU_DEAD: | ||
1433 | case CPU_DEAD_FROZEN: | ||
1434 | rcu_offline_cpu(cpu); | ||
1435 | break; | ||
1436 | default: | ||
1437 | break; | ||
1438 | } | ||
1439 | return NOTIFY_OK; | ||
1440 | } | ||
1441 | |||
1442 | static struct notifier_block __cpuinitdata rcu_nb = { | ||
1443 | .notifier_call = rcu_cpu_notify, | ||
1444 | }; | ||
1445 | |||
1446 | void __init __rcu_init(void) | ||
1447 | { | ||
1448 | int cpu; | ||
1449 | int i; | ||
1450 | struct rcu_data *rdp; | ||
1451 | |||
1452 | printk(KERN_NOTICE "Preemptible RCU implementation.\n"); | ||
1453 | for_each_possible_cpu(cpu) { | ||
1454 | rdp = RCU_DATA_CPU(cpu); | ||
1455 | spin_lock_init(&rdp->lock); | ||
1456 | rdp->completed = 0; | ||
1457 | rdp->waitlistcount = 0; | ||
1458 | rdp->nextlist = NULL; | ||
1459 | rdp->nexttail = &rdp->nextlist; | ||
1460 | for (i = 0; i < GP_STAGES; i++) { | ||
1461 | rdp->waitlist[i] = NULL; | ||
1462 | rdp->waittail[i] = &rdp->waitlist[i]; | ||
1463 | } | ||
1464 | rdp->donelist = NULL; | ||
1465 | rdp->donetail = &rdp->donelist; | ||
1466 | rdp->rcu_flipctr[0] = 0; | ||
1467 | rdp->rcu_flipctr[1] = 0; | ||
1468 | rdp->nextschedlist = NULL; | ||
1469 | rdp->nextschedtail = &rdp->nextschedlist; | ||
1470 | rdp->waitschedlist = NULL; | ||
1471 | rdp->waitschedtail = &rdp->waitschedlist; | ||
1472 | rdp->rcu_sched_sleeping = 0; | ||
1473 | } | ||
1474 | register_cpu_notifier(&rcu_nb); | ||
1475 | |||
1476 | /* | ||
1477 | * We don't need protection against CPU-Hotplug here | ||
1478 | * since | ||
1479 | * a) If a CPU comes online while we are iterating over the | ||
1480 | * cpu_online_mask below, we would only end up making a | ||
1481 | * duplicate call to rcu_online_cpu() which sets the corresponding | ||
1482 | * CPU's mask in the rcu_cpu_online_map. | ||
1483 | * | ||
1484 | * b) A CPU cannot go offline at this point in time since the user | ||
1485 | * does not have access to the sysfs interface, nor do we | ||
1486 | * suspend the system. | ||
1487 | */ | ||
1488 | for_each_online_cpu(cpu) | ||
1489 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu); | ||
1490 | |||
1491 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
1492 | } | ||
1493 | |||
1494 | /* | ||
1495 | * Late-boot-time RCU initialization that must wait until after scheduler | ||
1496 | * has been initialized. | ||
1497 | */ | ||
1498 | void __init rcu_init_sched(void) | ||
1499 | { | ||
1500 | rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period, | ||
1501 | NULL, | ||
1502 | "rcu_sched_grace_period"); | ||
1503 | WARN_ON(IS_ERR(rcu_sched_grace_period_task)); | ||
1504 | } | ||
1505 | |||
1506 | #ifdef CONFIG_RCU_TRACE | ||
1507 | long *rcupreempt_flipctr(int cpu) | ||
1508 | { | ||
1509 | return &RCU_DATA_CPU(cpu)->rcu_flipctr[0]; | ||
1510 | } | ||
1511 | EXPORT_SYMBOL_GPL(rcupreempt_flipctr); | ||
1512 | |||
1513 | int rcupreempt_flip_flag(int cpu) | ||
1514 | { | ||
1515 | return per_cpu(rcu_flip_flag, cpu); | ||
1516 | } | ||
1517 | EXPORT_SYMBOL_GPL(rcupreempt_flip_flag); | ||
1518 | |||
1519 | int rcupreempt_mb_flag(int cpu) | ||
1520 | { | ||
1521 | return per_cpu(rcu_mb_flag, cpu); | ||
1522 | } | ||
1523 | EXPORT_SYMBOL_GPL(rcupreempt_mb_flag); | ||
1524 | |||
1525 | char *rcupreempt_try_flip_state_name(void) | ||
1526 | { | ||
1527 | return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state]; | ||
1528 | } | ||
1529 | EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name); | ||
1530 | |||
1531 | struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu) | ||
1532 | { | ||
1533 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
1534 | |||
1535 | return &rdp->trace; | ||
1536 | } | ||
1537 | EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu); | ||
1538 | |||
1539 | #endif /* #ifdef RCU_TRACE */ | ||
diff --git a/kernel/rcupreempt_trace.c b/kernel/rcupreempt_trace.c deleted file mode 100644 index 7c2665cac172..000000000000 --- a/kernel/rcupreempt_trace.c +++ /dev/null | |||
@@ -1,334 +0,0 @@ | |||
1 | /* | ||
2 | * Read-Copy Update tracing for realtime implementation | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | * | ||
18 | * Copyright IBM Corporation, 2006 | ||
19 | * | ||
20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | ||
21 | * | ||
22 | * For detailed explanation of Read-Copy Update mechanism see - | ||
23 | * Documentation/RCU/ *.txt | ||
24 | * | ||
25 | */ | ||
26 | #include <linux/types.h> | ||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/smp.h> | ||
31 | #include <linux/rcupdate.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/sched.h> | ||
34 | #include <asm/atomic.h> | ||
35 | #include <linux/bitops.h> | ||
36 | #include <linux/module.h> | ||
37 | #include <linux/completion.h> | ||
38 | #include <linux/moduleparam.h> | ||
39 | #include <linux/percpu.h> | ||
40 | #include <linux/notifier.h> | ||
41 | #include <linux/cpu.h> | ||
42 | #include <linux/mutex.h> | ||
43 | #include <linux/rcupreempt_trace.h> | ||
44 | #include <linux/debugfs.h> | ||
45 | |||
46 | static struct mutex rcupreempt_trace_mutex; | ||
47 | static char *rcupreempt_trace_buf; | ||
48 | #define RCUPREEMPT_TRACE_BUF_SIZE 4096 | ||
49 | |||
50 | void rcupreempt_trace_move2done(struct rcupreempt_trace *trace) | ||
51 | { | ||
52 | trace->done_length += trace->wait_length; | ||
53 | trace->done_add += trace->wait_length; | ||
54 | trace->wait_length = 0; | ||
55 | } | ||
56 | void rcupreempt_trace_move2wait(struct rcupreempt_trace *trace) | ||
57 | { | ||
58 | trace->wait_length += trace->next_length; | ||
59 | trace->wait_add += trace->next_length; | ||
60 | trace->next_length = 0; | ||
61 | } | ||
62 | void rcupreempt_trace_try_flip_1(struct rcupreempt_trace *trace) | ||
63 | { | ||
64 | atomic_inc(&trace->rcu_try_flip_1); | ||
65 | } | ||
66 | void rcupreempt_trace_try_flip_e1(struct rcupreempt_trace *trace) | ||
67 | { | ||
68 | atomic_inc(&trace->rcu_try_flip_e1); | ||
69 | } | ||
70 | void rcupreempt_trace_try_flip_i1(struct rcupreempt_trace *trace) | ||
71 | { | ||
72 | trace->rcu_try_flip_i1++; | ||
73 | } | ||
74 | void rcupreempt_trace_try_flip_ie1(struct rcupreempt_trace *trace) | ||
75 | { | ||
76 | trace->rcu_try_flip_ie1++; | ||
77 | } | ||
78 | void rcupreempt_trace_try_flip_g1(struct rcupreempt_trace *trace) | ||
79 | { | ||
80 | trace->rcu_try_flip_g1++; | ||
81 | } | ||
82 | void rcupreempt_trace_try_flip_a1(struct rcupreempt_trace *trace) | ||
83 | { | ||
84 | trace->rcu_try_flip_a1++; | ||
85 | } | ||
86 | void rcupreempt_trace_try_flip_ae1(struct rcupreempt_trace *trace) | ||
87 | { | ||
88 | trace->rcu_try_flip_ae1++; | ||
89 | } | ||
90 | void rcupreempt_trace_try_flip_a2(struct rcupreempt_trace *trace) | ||
91 | { | ||
92 | trace->rcu_try_flip_a2++; | ||
93 | } | ||
94 | void rcupreempt_trace_try_flip_z1(struct rcupreempt_trace *trace) | ||
95 | { | ||
96 | trace->rcu_try_flip_z1++; | ||
97 | } | ||
98 | void rcupreempt_trace_try_flip_ze1(struct rcupreempt_trace *trace) | ||
99 | { | ||
100 | trace->rcu_try_flip_ze1++; | ||
101 | } | ||
102 | void rcupreempt_trace_try_flip_z2(struct rcupreempt_trace *trace) | ||
103 | { | ||
104 | trace->rcu_try_flip_z2++; | ||
105 | } | ||
106 | void rcupreempt_trace_try_flip_m1(struct rcupreempt_trace *trace) | ||
107 | { | ||
108 | trace->rcu_try_flip_m1++; | ||
109 | } | ||
110 | void rcupreempt_trace_try_flip_me1(struct rcupreempt_trace *trace) | ||
111 | { | ||
112 | trace->rcu_try_flip_me1++; | ||
113 | } | ||
114 | void rcupreempt_trace_try_flip_m2(struct rcupreempt_trace *trace) | ||
115 | { | ||
116 | trace->rcu_try_flip_m2++; | ||
117 | } | ||
118 | void rcupreempt_trace_check_callbacks(struct rcupreempt_trace *trace) | ||
119 | { | ||
120 | trace->rcu_check_callbacks++; | ||
121 | } | ||
122 | void rcupreempt_trace_done_remove(struct rcupreempt_trace *trace) | ||
123 | { | ||
124 | trace->done_remove += trace->done_length; | ||
125 | trace->done_length = 0; | ||
126 | } | ||
127 | void rcupreempt_trace_invoke(struct rcupreempt_trace *trace) | ||
128 | { | ||
129 | atomic_inc(&trace->done_invoked); | ||
130 | } | ||
131 | void rcupreempt_trace_next_add(struct rcupreempt_trace *trace) | ||
132 | { | ||
133 | trace->next_add++; | ||
134 | trace->next_length++; | ||
135 | } | ||
136 | |||
137 | static void rcupreempt_trace_sum(struct rcupreempt_trace *sp) | ||
138 | { | ||
139 | struct rcupreempt_trace *cp; | ||
140 | int cpu; | ||
141 | |||
142 | memset(sp, 0, sizeof(*sp)); | ||
143 | for_each_possible_cpu(cpu) { | ||
144 | cp = rcupreempt_trace_cpu(cpu); | ||
145 | sp->next_length += cp->next_length; | ||
146 | sp->next_add += cp->next_add; | ||
147 | sp->wait_length += cp->wait_length; | ||
148 | sp->wait_add += cp->wait_add; | ||
149 | sp->done_length += cp->done_length; | ||
150 | sp->done_add += cp->done_add; | ||
151 | sp->done_remove += cp->done_remove; | ||
152 | atomic_add(atomic_read(&cp->done_invoked), &sp->done_invoked); | ||
153 | sp->rcu_check_callbacks += cp->rcu_check_callbacks; | ||
154 | atomic_add(atomic_read(&cp->rcu_try_flip_1), | ||
155 | &sp->rcu_try_flip_1); | ||
156 | atomic_add(atomic_read(&cp->rcu_try_flip_e1), | ||
157 | &sp->rcu_try_flip_e1); | ||
158 | sp->rcu_try_flip_i1 += cp->rcu_try_flip_i1; | ||
159 | sp->rcu_try_flip_ie1 += cp->rcu_try_flip_ie1; | ||
160 | sp->rcu_try_flip_g1 += cp->rcu_try_flip_g1; | ||
161 | sp->rcu_try_flip_a1 += cp->rcu_try_flip_a1; | ||
162 | sp->rcu_try_flip_ae1 += cp->rcu_try_flip_ae1; | ||
163 | sp->rcu_try_flip_a2 += cp->rcu_try_flip_a2; | ||
164 | sp->rcu_try_flip_z1 += cp->rcu_try_flip_z1; | ||
165 | sp->rcu_try_flip_ze1 += cp->rcu_try_flip_ze1; | ||
166 | sp->rcu_try_flip_z2 += cp->rcu_try_flip_z2; | ||
167 | sp->rcu_try_flip_m1 += cp->rcu_try_flip_m1; | ||
168 | sp->rcu_try_flip_me1 += cp->rcu_try_flip_me1; | ||
169 | sp->rcu_try_flip_m2 += cp->rcu_try_flip_m2; | ||
170 | } | ||
171 | } | ||
172 | |||
173 | static ssize_t rcustats_read(struct file *filp, char __user *buffer, | ||
174 | size_t count, loff_t *ppos) | ||
175 | { | ||
176 | struct rcupreempt_trace trace; | ||
177 | ssize_t bcount; | ||
178 | int cnt = 0; | ||
179 | |||
180 | rcupreempt_trace_sum(&trace); | ||
181 | mutex_lock(&rcupreempt_trace_mutex); | ||
182 | snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
183 | "ggp=%ld rcc=%ld\n", | ||
184 | rcu_batches_completed(), | ||
185 | trace.rcu_check_callbacks); | ||
186 | snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
187 | "na=%ld nl=%ld wa=%ld wl=%ld da=%ld dl=%ld dr=%ld di=%d\n" | ||
188 | "1=%d e1=%d i1=%ld ie1=%ld g1=%ld a1=%ld ae1=%ld a2=%ld\n" | ||
189 | "z1=%ld ze1=%ld z2=%ld m1=%ld me1=%ld m2=%ld\n", | ||
190 | |||
191 | trace.next_add, trace.next_length, | ||
192 | trace.wait_add, trace.wait_length, | ||
193 | trace.done_add, trace.done_length, | ||
194 | trace.done_remove, atomic_read(&trace.done_invoked), | ||
195 | atomic_read(&trace.rcu_try_flip_1), | ||
196 | atomic_read(&trace.rcu_try_flip_e1), | ||
197 | trace.rcu_try_flip_i1, trace.rcu_try_flip_ie1, | ||
198 | trace.rcu_try_flip_g1, | ||
199 | trace.rcu_try_flip_a1, trace.rcu_try_flip_ae1, | ||
200 | trace.rcu_try_flip_a2, | ||
201 | trace.rcu_try_flip_z1, trace.rcu_try_flip_ze1, | ||
202 | trace.rcu_try_flip_z2, | ||
203 | trace.rcu_try_flip_m1, trace.rcu_try_flip_me1, | ||
204 | trace.rcu_try_flip_m2); | ||
205 | bcount = simple_read_from_buffer(buffer, count, ppos, | ||
206 | rcupreempt_trace_buf, strlen(rcupreempt_trace_buf)); | ||
207 | mutex_unlock(&rcupreempt_trace_mutex); | ||
208 | return bcount; | ||
209 | } | ||
210 | |||
211 | static ssize_t rcugp_read(struct file *filp, char __user *buffer, | ||
212 | size_t count, loff_t *ppos) | ||
213 | { | ||
214 | long oldgp = rcu_batches_completed(); | ||
215 | ssize_t bcount; | ||
216 | |||
217 | mutex_lock(&rcupreempt_trace_mutex); | ||
218 | synchronize_rcu(); | ||
219 | snprintf(rcupreempt_trace_buf, RCUPREEMPT_TRACE_BUF_SIZE, | ||
220 | "oldggp=%ld newggp=%ld\n", oldgp, rcu_batches_completed()); | ||
221 | bcount = simple_read_from_buffer(buffer, count, ppos, | ||
222 | rcupreempt_trace_buf, strlen(rcupreempt_trace_buf)); | ||
223 | mutex_unlock(&rcupreempt_trace_mutex); | ||
224 | return bcount; | ||
225 | } | ||
226 | |||
227 | static ssize_t rcuctrs_read(struct file *filp, char __user *buffer, | ||
228 | size_t count, loff_t *ppos) | ||
229 | { | ||
230 | int cnt = 0; | ||
231 | int cpu; | ||
232 | int f = rcu_batches_completed() & 0x1; | ||
233 | ssize_t bcount; | ||
234 | |||
235 | mutex_lock(&rcupreempt_trace_mutex); | ||
236 | |||
237 | cnt += snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE, | ||
238 | "CPU last cur F M\n"); | ||
239 | for_each_online_cpu(cpu) { | ||
240 | long *flipctr = rcupreempt_flipctr(cpu); | ||
241 | cnt += snprintf(&rcupreempt_trace_buf[cnt], | ||
242 | RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
243 | "%3d %4ld %3ld %d %d\n", | ||
244 | cpu, | ||
245 | flipctr[!f], | ||
246 | flipctr[f], | ||
247 | rcupreempt_flip_flag(cpu), | ||
248 | rcupreempt_mb_flag(cpu)); | ||
249 | } | ||
250 | cnt += snprintf(&rcupreempt_trace_buf[cnt], | ||
251 | RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
252 | "ggp = %ld, state = %s\n", | ||
253 | rcu_batches_completed(), | ||
254 | rcupreempt_try_flip_state_name()); | ||
255 | cnt += snprintf(&rcupreempt_trace_buf[cnt], | ||
256 | RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
257 | "\n"); | ||
258 | bcount = simple_read_from_buffer(buffer, count, ppos, | ||
259 | rcupreempt_trace_buf, strlen(rcupreempt_trace_buf)); | ||
260 | mutex_unlock(&rcupreempt_trace_mutex); | ||
261 | return bcount; | ||
262 | } | ||
263 | |||
264 | static struct file_operations rcustats_fops = { | ||
265 | .owner = THIS_MODULE, | ||
266 | .read = rcustats_read, | ||
267 | }; | ||
268 | |||
269 | static struct file_operations rcugp_fops = { | ||
270 | .owner = THIS_MODULE, | ||
271 | .read = rcugp_read, | ||
272 | }; | ||
273 | |||
274 | static struct file_operations rcuctrs_fops = { | ||
275 | .owner = THIS_MODULE, | ||
276 | .read = rcuctrs_read, | ||
277 | }; | ||
278 | |||
279 | static struct dentry *rcudir, *statdir, *ctrsdir, *gpdir; | ||
280 | static int rcupreempt_debugfs_init(void) | ||
281 | { | ||
282 | rcudir = debugfs_create_dir("rcu", NULL); | ||
283 | if (!rcudir) | ||
284 | goto out; | ||
285 | statdir = debugfs_create_file("rcustats", 0444, rcudir, | ||
286 | NULL, &rcustats_fops); | ||
287 | if (!statdir) | ||
288 | goto free_out; | ||
289 | |||
290 | gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); | ||
291 | if (!gpdir) | ||
292 | goto free_out; | ||
293 | |||
294 | ctrsdir = debugfs_create_file("rcuctrs", 0444, rcudir, | ||
295 | NULL, &rcuctrs_fops); | ||
296 | if (!ctrsdir) | ||
297 | goto free_out; | ||
298 | return 0; | ||
299 | free_out: | ||
300 | if (statdir) | ||
301 | debugfs_remove(statdir); | ||
302 | if (gpdir) | ||
303 | debugfs_remove(gpdir); | ||
304 | debugfs_remove(rcudir); | ||
305 | out: | ||
306 | return 1; | ||
307 | } | ||
308 | |||
309 | static int __init rcupreempt_trace_init(void) | ||
310 | { | ||
311 | int ret; | ||
312 | |||
313 | mutex_init(&rcupreempt_trace_mutex); | ||
314 | rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL); | ||
315 | if (!rcupreempt_trace_buf) | ||
316 | return 1; | ||
317 | ret = rcupreempt_debugfs_init(); | ||
318 | if (ret) | ||
319 | kfree(rcupreempt_trace_buf); | ||
320 | return ret; | ||
321 | } | ||
322 | |||
323 | static void __exit rcupreempt_trace_cleanup(void) | ||
324 | { | ||
325 | debugfs_remove(statdir); | ||
326 | debugfs_remove(gpdir); | ||
327 | debugfs_remove(ctrsdir); | ||
328 | debugfs_remove(rcudir); | ||
329 | kfree(rcupreempt_trace_buf); | ||
330 | } | ||
331 | |||
332 | |||
333 | module_init(rcupreempt_trace_init); | ||
334 | module_exit(rcupreempt_trace_cleanup); | ||
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 9b4a975a4b4a..233768f21f97 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -18,7 +18,7 @@ | |||
18 | * Copyright (C) IBM Corporation, 2005, 2006 | 18 | * Copyright (C) IBM Corporation, 2005, 2006 |
19 | * | 19 | * |
20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> |
21 | * Josh Triplett <josh@freedesktop.org> | 21 | * Josh Triplett <josh@freedesktop.org> |
22 | * | 22 | * |
23 | * See also: Documentation/RCU/torture.txt | 23 | * See also: Documentation/RCU/torture.txt |
24 | */ | 24 | */ |
@@ -50,7 +50,7 @@ | |||
50 | 50 | ||
51 | MODULE_LICENSE("GPL"); | 51 | MODULE_LICENSE("GPL"); |
52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " | 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " |
53 | "Josh Triplett <josh@freedesktop.org>"); | 53 | "Josh Triplett <josh@freedesktop.org>"); |
54 | 54 | ||
55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ | 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ |
56 | static int nfakewriters = 4; /* # fake writer threads */ | 56 | static int nfakewriters = 4; /* # fake writer threads */ |
@@ -110,8 +110,8 @@ struct rcu_torture { | |||
110 | }; | 110 | }; |
111 | 111 | ||
112 | static LIST_HEAD(rcu_torture_freelist); | 112 | static LIST_HEAD(rcu_torture_freelist); |
113 | static struct rcu_torture *rcu_torture_current = NULL; | 113 | static struct rcu_torture *rcu_torture_current; |
114 | static long rcu_torture_current_version = 0; | 114 | static long rcu_torture_current_version; |
115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; | 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; |
116 | static DEFINE_SPINLOCK(rcu_torture_lock); | 116 | static DEFINE_SPINLOCK(rcu_torture_lock); |
117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = | 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = |
@@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail; | |||
124 | static atomic_t n_rcu_torture_free; | 124 | static atomic_t n_rcu_torture_free; |
125 | static atomic_t n_rcu_torture_mberror; | 125 | static atomic_t n_rcu_torture_mberror; |
126 | static atomic_t n_rcu_torture_error; | 126 | static atomic_t n_rcu_torture_error; |
127 | static long n_rcu_torture_timers = 0; | 127 | static long n_rcu_torture_timers; |
128 | static struct list_head rcu_torture_removed; | 128 | static struct list_head rcu_torture_removed; |
129 | static cpumask_var_t shuffle_tmp_mask; | 129 | static cpumask_var_t shuffle_tmp_mask; |
130 | 130 | ||
131 | static int stutter_pause_test = 0; | 131 | static int stutter_pause_test; |
132 | 132 | ||
133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) | 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) |
134 | #define RCUTORTURE_RUNNABLE_INIT 1 | 134 | #define RCUTORTURE_RUNNABLE_INIT 1 |
@@ -257,17 +257,18 @@ struct rcu_torture_ops { | |||
257 | void (*init)(void); | 257 | void (*init)(void); |
258 | void (*cleanup)(void); | 258 | void (*cleanup)(void); |
259 | int (*readlock)(void); | 259 | int (*readlock)(void); |
260 | void (*readdelay)(struct rcu_random_state *rrsp); | 260 | void (*read_delay)(struct rcu_random_state *rrsp); |
261 | void (*readunlock)(int idx); | 261 | void (*readunlock)(int idx); |
262 | int (*completed)(void); | 262 | int (*completed)(void); |
263 | void (*deferredfree)(struct rcu_torture *p); | 263 | void (*deferred_free)(struct rcu_torture *p); |
264 | void (*sync)(void); | 264 | void (*sync)(void); |
265 | void (*cb_barrier)(void); | 265 | void (*cb_barrier)(void); |
266 | int (*stats)(char *page); | 266 | int (*stats)(char *page); |
267 | int irqcapable; | 267 | int irq_capable; |
268 | char *name; | 268 | char *name; |
269 | }; | 269 | }; |
270 | static struct rcu_torture_ops *cur_ops = NULL; | 270 | |
271 | static struct rcu_torture_ops *cur_ops; | ||
271 | 272 | ||
272 | /* | 273 | /* |
273 | * Definitions for rcu torture testing. | 274 | * Definitions for rcu torture testing. |
@@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU) | |||
281 | 282 | ||
282 | static void rcu_read_delay(struct rcu_random_state *rrsp) | 283 | static void rcu_read_delay(struct rcu_random_state *rrsp) |
283 | { | 284 | { |
284 | long delay; | 285 | const unsigned long shortdelay_us = 200; |
285 | const long longdelay = 200; | 286 | const unsigned long longdelay_ms = 50; |
286 | 287 | ||
287 | /* We want there to be long-running readers, but not all the time. */ | 288 | /* We want a short delay sometimes to make a reader delay the grace |
289 | * period, and we want a long delay occasionally to trigger | ||
290 | * force_quiescent_state. */ | ||
288 | 291 | ||
289 | delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay); | 292 | if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) |
290 | if (!delay) | 293 | mdelay(longdelay_ms); |
291 | udelay(longdelay); | 294 | if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) |
295 | udelay(shortdelay_us); | ||
292 | } | 296 | } |
293 | 297 | ||
294 | static void rcu_torture_read_unlock(int idx) __releases(RCU) | 298 | static void rcu_torture_read_unlock(int idx) __releases(RCU) |
@@ -320,7 +324,7 @@ rcu_torture_cb(struct rcu_head *p) | |||
320 | rp->rtort_mbtest = 0; | 324 | rp->rtort_mbtest = 0; |
321 | rcu_torture_free(rp); | 325 | rcu_torture_free(rp); |
322 | } else | 326 | } else |
323 | cur_ops->deferredfree(rp); | 327 | cur_ops->deferred_free(rp); |
324 | } | 328 | } |
325 | 329 | ||
326 | static void rcu_torture_deferred_free(struct rcu_torture *p) | 330 | static void rcu_torture_deferred_free(struct rcu_torture *p) |
@@ -329,18 +333,18 @@ static void rcu_torture_deferred_free(struct rcu_torture *p) | |||
329 | } | 333 | } |
330 | 334 | ||
331 | static struct rcu_torture_ops rcu_ops = { | 335 | static struct rcu_torture_ops rcu_ops = { |
332 | .init = NULL, | 336 | .init = NULL, |
333 | .cleanup = NULL, | 337 | .cleanup = NULL, |
334 | .readlock = rcu_torture_read_lock, | 338 | .readlock = rcu_torture_read_lock, |
335 | .readdelay = rcu_read_delay, | 339 | .read_delay = rcu_read_delay, |
336 | .readunlock = rcu_torture_read_unlock, | 340 | .readunlock = rcu_torture_read_unlock, |
337 | .completed = rcu_torture_completed, | 341 | .completed = rcu_torture_completed, |
338 | .deferredfree = rcu_torture_deferred_free, | 342 | .deferred_free = rcu_torture_deferred_free, |
339 | .sync = synchronize_rcu, | 343 | .sync = synchronize_rcu, |
340 | .cb_barrier = rcu_barrier, | 344 | .cb_barrier = rcu_barrier, |
341 | .stats = NULL, | 345 | .stats = NULL, |
342 | .irqcapable = 1, | 346 | .irq_capable = 1, |
343 | .name = "rcu" | 347 | .name = "rcu" |
344 | }; | 348 | }; |
345 | 349 | ||
346 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) | 350 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) |
@@ -370,18 +374,18 @@ static void rcu_sync_torture_init(void) | |||
370 | } | 374 | } |
371 | 375 | ||
372 | static struct rcu_torture_ops rcu_sync_ops = { | 376 | static struct rcu_torture_ops rcu_sync_ops = { |
373 | .init = rcu_sync_torture_init, | 377 | .init = rcu_sync_torture_init, |
374 | .cleanup = NULL, | 378 | .cleanup = NULL, |
375 | .readlock = rcu_torture_read_lock, | 379 | .readlock = rcu_torture_read_lock, |
376 | .readdelay = rcu_read_delay, | 380 | .read_delay = rcu_read_delay, |
377 | .readunlock = rcu_torture_read_unlock, | 381 | .readunlock = rcu_torture_read_unlock, |
378 | .completed = rcu_torture_completed, | 382 | .completed = rcu_torture_completed, |
379 | .deferredfree = rcu_sync_torture_deferred_free, | 383 | .deferred_free = rcu_sync_torture_deferred_free, |
380 | .sync = synchronize_rcu, | 384 | .sync = synchronize_rcu, |
381 | .cb_barrier = NULL, | 385 | .cb_barrier = NULL, |
382 | .stats = NULL, | 386 | .stats = NULL, |
383 | .irqcapable = 1, | 387 | .irq_capable = 1, |
384 | .name = "rcu_sync" | 388 | .name = "rcu_sync" |
385 | }; | 389 | }; |
386 | 390 | ||
387 | /* | 391 | /* |
@@ -432,33 +436,33 @@ static void rcu_bh_torture_synchronize(void) | |||
432 | } | 436 | } |
433 | 437 | ||
434 | static struct rcu_torture_ops rcu_bh_ops = { | 438 | static struct rcu_torture_ops rcu_bh_ops = { |
435 | .init = NULL, | 439 | .init = NULL, |
436 | .cleanup = NULL, | 440 | .cleanup = NULL, |
437 | .readlock = rcu_bh_torture_read_lock, | 441 | .readlock = rcu_bh_torture_read_lock, |
438 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 442 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
439 | .readunlock = rcu_bh_torture_read_unlock, | 443 | .readunlock = rcu_bh_torture_read_unlock, |
440 | .completed = rcu_bh_torture_completed, | 444 | .completed = rcu_bh_torture_completed, |
441 | .deferredfree = rcu_bh_torture_deferred_free, | 445 | .deferred_free = rcu_bh_torture_deferred_free, |
442 | .sync = rcu_bh_torture_synchronize, | 446 | .sync = rcu_bh_torture_synchronize, |
443 | .cb_barrier = rcu_barrier_bh, | 447 | .cb_barrier = rcu_barrier_bh, |
444 | .stats = NULL, | 448 | .stats = NULL, |
445 | .irqcapable = 1, | 449 | .irq_capable = 1, |
446 | .name = "rcu_bh" | 450 | .name = "rcu_bh" |
447 | }; | 451 | }; |
448 | 452 | ||
449 | static struct rcu_torture_ops rcu_bh_sync_ops = { | 453 | static struct rcu_torture_ops rcu_bh_sync_ops = { |
450 | .init = rcu_sync_torture_init, | 454 | .init = rcu_sync_torture_init, |
451 | .cleanup = NULL, | 455 | .cleanup = NULL, |
452 | .readlock = rcu_bh_torture_read_lock, | 456 | .readlock = rcu_bh_torture_read_lock, |
453 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 457 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
454 | .readunlock = rcu_bh_torture_read_unlock, | 458 | .readunlock = rcu_bh_torture_read_unlock, |
455 | .completed = rcu_bh_torture_completed, | 459 | .completed = rcu_bh_torture_completed, |
456 | .deferredfree = rcu_sync_torture_deferred_free, | 460 | .deferred_free = rcu_sync_torture_deferred_free, |
457 | .sync = rcu_bh_torture_synchronize, | 461 | .sync = rcu_bh_torture_synchronize, |
458 | .cb_barrier = NULL, | 462 | .cb_barrier = NULL, |
459 | .stats = NULL, | 463 | .stats = NULL, |
460 | .irqcapable = 1, | 464 | .irq_capable = 1, |
461 | .name = "rcu_bh_sync" | 465 | .name = "rcu_bh_sync" |
462 | }; | 466 | }; |
463 | 467 | ||
464 | /* | 468 | /* |
@@ -530,17 +534,17 @@ static int srcu_torture_stats(char *page) | |||
530 | } | 534 | } |
531 | 535 | ||
532 | static struct rcu_torture_ops srcu_ops = { | 536 | static struct rcu_torture_ops srcu_ops = { |
533 | .init = srcu_torture_init, | 537 | .init = srcu_torture_init, |
534 | .cleanup = srcu_torture_cleanup, | 538 | .cleanup = srcu_torture_cleanup, |
535 | .readlock = srcu_torture_read_lock, | 539 | .readlock = srcu_torture_read_lock, |
536 | .readdelay = srcu_read_delay, | 540 | .read_delay = srcu_read_delay, |
537 | .readunlock = srcu_torture_read_unlock, | 541 | .readunlock = srcu_torture_read_unlock, |
538 | .completed = srcu_torture_completed, | 542 | .completed = srcu_torture_completed, |
539 | .deferredfree = rcu_sync_torture_deferred_free, | 543 | .deferred_free = rcu_sync_torture_deferred_free, |
540 | .sync = srcu_torture_synchronize, | 544 | .sync = srcu_torture_synchronize, |
541 | .cb_barrier = NULL, | 545 | .cb_barrier = NULL, |
542 | .stats = srcu_torture_stats, | 546 | .stats = srcu_torture_stats, |
543 | .name = "srcu" | 547 | .name = "srcu" |
544 | }; | 548 | }; |
545 | 549 | ||
546 | /* | 550 | /* |
@@ -574,32 +578,49 @@ static void sched_torture_synchronize(void) | |||
574 | } | 578 | } |
575 | 579 | ||
576 | static struct rcu_torture_ops sched_ops = { | 580 | static struct rcu_torture_ops sched_ops = { |
577 | .init = rcu_sync_torture_init, | 581 | .init = rcu_sync_torture_init, |
578 | .cleanup = NULL, | 582 | .cleanup = NULL, |
579 | .readlock = sched_torture_read_lock, | 583 | .readlock = sched_torture_read_lock, |
580 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 584 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
581 | .readunlock = sched_torture_read_unlock, | 585 | .readunlock = sched_torture_read_unlock, |
582 | .completed = sched_torture_completed, | 586 | .completed = sched_torture_completed, |
583 | .deferredfree = rcu_sched_torture_deferred_free, | 587 | .deferred_free = rcu_sched_torture_deferred_free, |
584 | .sync = sched_torture_synchronize, | 588 | .sync = sched_torture_synchronize, |
585 | .cb_barrier = rcu_barrier_sched, | 589 | .cb_barrier = rcu_barrier_sched, |
586 | .stats = NULL, | 590 | .stats = NULL, |
587 | .irqcapable = 1, | 591 | .irq_capable = 1, |
588 | .name = "sched" | 592 | .name = "sched" |
589 | }; | 593 | }; |
590 | 594 | ||
591 | static struct rcu_torture_ops sched_ops_sync = { | 595 | static struct rcu_torture_ops sched_ops_sync = { |
592 | .init = rcu_sync_torture_init, | 596 | .init = rcu_sync_torture_init, |
593 | .cleanup = NULL, | 597 | .cleanup = NULL, |
594 | .readlock = sched_torture_read_lock, | 598 | .readlock = sched_torture_read_lock, |
595 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 599 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
596 | .readunlock = sched_torture_read_unlock, | 600 | .readunlock = sched_torture_read_unlock, |
597 | .completed = sched_torture_completed, | 601 | .completed = sched_torture_completed, |
598 | .deferredfree = rcu_sync_torture_deferred_free, | 602 | .deferred_free = rcu_sync_torture_deferred_free, |
599 | .sync = sched_torture_synchronize, | 603 | .sync = sched_torture_synchronize, |
600 | .cb_barrier = NULL, | 604 | .cb_barrier = NULL, |
601 | .stats = NULL, | 605 | .stats = NULL, |
602 | .name = "sched_sync" | 606 | .name = "sched_sync" |
607 | }; | ||
608 | |||
609 | extern int rcu_expedited_torture_stats(char *page); | ||
610 | |||
611 | static struct rcu_torture_ops sched_expedited_ops = { | ||
612 | .init = rcu_sync_torture_init, | ||
613 | .cleanup = NULL, | ||
614 | .readlock = sched_torture_read_lock, | ||
615 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ | ||
616 | .readunlock = sched_torture_read_unlock, | ||
617 | .completed = sched_torture_completed, | ||
618 | .deferred_free = rcu_sync_torture_deferred_free, | ||
619 | .sync = synchronize_sched_expedited, | ||
620 | .cb_barrier = NULL, | ||
621 | .stats = rcu_expedited_torture_stats, | ||
622 | .irq_capable = 1, | ||
623 | .name = "sched_expedited" | ||
603 | }; | 624 | }; |
604 | 625 | ||
605 | /* | 626 | /* |
@@ -621,7 +642,8 @@ rcu_torture_writer(void *arg) | |||
621 | 642 | ||
622 | do { | 643 | do { |
623 | schedule_timeout_uninterruptible(1); | 644 | schedule_timeout_uninterruptible(1); |
624 | if ((rp = rcu_torture_alloc()) == NULL) | 645 | rp = rcu_torture_alloc(); |
646 | if (rp == NULL) | ||
625 | continue; | 647 | continue; |
626 | rp->rtort_pipe_count = 0; | 648 | rp->rtort_pipe_count = 0; |
627 | udelay(rcu_random(&rand) & 0x3ff); | 649 | udelay(rcu_random(&rand) & 0x3ff); |
@@ -635,7 +657,7 @@ rcu_torture_writer(void *arg) | |||
635 | i = RCU_TORTURE_PIPE_LEN; | 657 | i = RCU_TORTURE_PIPE_LEN; |
636 | atomic_inc(&rcu_torture_wcount[i]); | 658 | atomic_inc(&rcu_torture_wcount[i]); |
637 | old_rp->rtort_pipe_count++; | 659 | old_rp->rtort_pipe_count++; |
638 | cur_ops->deferredfree(old_rp); | 660 | cur_ops->deferred_free(old_rp); |
639 | } | 661 | } |
640 | rcu_torture_current_version++; | 662 | rcu_torture_current_version++; |
641 | oldbatch = cur_ops->completed(); | 663 | oldbatch = cur_ops->completed(); |
@@ -700,7 +722,7 @@ static void rcu_torture_timer(unsigned long unused) | |||
700 | if (p->rtort_mbtest == 0) | 722 | if (p->rtort_mbtest == 0) |
701 | atomic_inc(&n_rcu_torture_mberror); | 723 | atomic_inc(&n_rcu_torture_mberror); |
702 | spin_lock(&rand_lock); | 724 | spin_lock(&rand_lock); |
703 | cur_ops->readdelay(&rand); | 725 | cur_ops->read_delay(&rand); |
704 | n_rcu_torture_timers++; | 726 | n_rcu_torture_timers++; |
705 | spin_unlock(&rand_lock); | 727 | spin_unlock(&rand_lock); |
706 | preempt_disable(); | 728 | preempt_disable(); |
@@ -738,11 +760,11 @@ rcu_torture_reader(void *arg) | |||
738 | 760 | ||
739 | VERBOSE_PRINTK_STRING("rcu_torture_reader task started"); | 761 | VERBOSE_PRINTK_STRING("rcu_torture_reader task started"); |
740 | set_user_nice(current, 19); | 762 | set_user_nice(current, 19); |
741 | if (irqreader && cur_ops->irqcapable) | 763 | if (irqreader && cur_ops->irq_capable) |
742 | setup_timer_on_stack(&t, rcu_torture_timer, 0); | 764 | setup_timer_on_stack(&t, rcu_torture_timer, 0); |
743 | 765 | ||
744 | do { | 766 | do { |
745 | if (irqreader && cur_ops->irqcapable) { | 767 | if (irqreader && cur_ops->irq_capable) { |
746 | if (!timer_pending(&t)) | 768 | if (!timer_pending(&t)) |
747 | mod_timer(&t, 1); | 769 | mod_timer(&t, 1); |
748 | } | 770 | } |
@@ -757,7 +779,7 @@ rcu_torture_reader(void *arg) | |||
757 | } | 779 | } |
758 | if (p->rtort_mbtest == 0) | 780 | if (p->rtort_mbtest == 0) |
759 | atomic_inc(&n_rcu_torture_mberror); | 781 | atomic_inc(&n_rcu_torture_mberror); |
760 | cur_ops->readdelay(&rand); | 782 | cur_ops->read_delay(&rand); |
761 | preempt_disable(); | 783 | preempt_disable(); |
762 | pipe_count = p->rtort_pipe_count; | 784 | pipe_count = p->rtort_pipe_count; |
763 | if (pipe_count > RCU_TORTURE_PIPE_LEN) { | 785 | if (pipe_count > RCU_TORTURE_PIPE_LEN) { |
@@ -778,7 +800,7 @@ rcu_torture_reader(void *arg) | |||
778 | } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); | 800 | } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); |
779 | VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); | 801 | VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); |
780 | rcutorture_shutdown_absorb("rcu_torture_reader"); | 802 | rcutorture_shutdown_absorb("rcu_torture_reader"); |
781 | if (irqreader && cur_ops->irqcapable) | 803 | if (irqreader && cur_ops->irq_capable) |
782 | del_timer_sync(&t); | 804 | del_timer_sync(&t); |
783 | while (!kthread_should_stop()) | 805 | while (!kthread_should_stop()) |
784 | schedule_timeout_uninterruptible(1); | 806 | schedule_timeout_uninterruptible(1); |
@@ -1078,6 +1100,7 @@ rcu_torture_init(void) | |||
1078 | int firsterr = 0; | 1100 | int firsterr = 0; |
1079 | static struct rcu_torture_ops *torture_ops[] = | 1101 | static struct rcu_torture_ops *torture_ops[] = |
1080 | { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, | 1102 | { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, |
1103 | &sched_expedited_ops, | ||
1081 | &srcu_ops, &sched_ops, &sched_ops_sync, }; | 1104 | &srcu_ops, &sched_ops, &sched_ops_sync, }; |
1082 | 1105 | ||
1083 | mutex_lock(&fullstop_mutex); | 1106 | mutex_lock(&fullstop_mutex); |
@@ -1092,7 +1115,7 @@ rcu_torture_init(void) | |||
1092 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", | 1115 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", |
1093 | torture_type); | 1116 | torture_type); |
1094 | mutex_unlock(&fullstop_mutex); | 1117 | mutex_unlock(&fullstop_mutex); |
1095 | return (-EINVAL); | 1118 | return -EINVAL; |
1096 | } | 1119 | } |
1097 | if (cur_ops->init) | 1120 | if (cur_ops->init) |
1098 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ | 1121 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ |
@@ -1143,7 +1166,7 @@ rcu_torture_init(void) | |||
1143 | goto unwind; | 1166 | goto unwind; |
1144 | } | 1167 | } |
1145 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), | 1168 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), |
1146 | GFP_KERNEL); | 1169 | GFP_KERNEL); |
1147 | if (fakewriter_tasks == NULL) { | 1170 | if (fakewriter_tasks == NULL) { |
1148 | VERBOSE_PRINTK_ERRSTRING("out of memory"); | 1171 | VERBOSE_PRINTK_ERRSTRING("out of memory"); |
1149 | firsterr = -ENOMEM; | 1172 | firsterr = -ENOMEM; |
@@ -1152,7 +1175,7 @@ rcu_torture_init(void) | |||
1152 | for (i = 0; i < nfakewriters; i++) { | 1175 | for (i = 0; i < nfakewriters; i++) { |
1153 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); | 1176 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); |
1154 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, | 1177 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, |
1155 | "rcu_torture_fakewriter"); | 1178 | "rcu_torture_fakewriter"); |
1156 | if (IS_ERR(fakewriter_tasks[i])) { | 1179 | if (IS_ERR(fakewriter_tasks[i])) { |
1157 | firsterr = PTR_ERR(fakewriter_tasks[i]); | 1180 | firsterr = PTR_ERR(fakewriter_tasks[i]); |
1158 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); | 1181 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 7717b95c2027..52b06f6e158c 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c | |||
@@ -25,7 +25,7 @@ | |||
25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
26 | * | 26 | * |
27 | * For detailed explanation of Read-Copy Update mechanism see - | 27 | * For detailed explanation of Read-Copy Update mechanism see - |
28 | * Documentation/RCU | 28 | * Documentation/RCU |
29 | */ | 29 | */ |
30 | #include <linux/types.h> | 30 | #include <linux/types.h> |
31 | #include <linux/kernel.h> | 31 | #include <linux/kernel.h> |
@@ -35,6 +35,7 @@ | |||
35 | #include <linux/rcupdate.h> | 35 | #include <linux/rcupdate.h> |
36 | #include <linux/interrupt.h> | 36 | #include <linux/interrupt.h> |
37 | #include <linux/sched.h> | 37 | #include <linux/sched.h> |
38 | #include <linux/nmi.h> | ||
38 | #include <asm/atomic.h> | 39 | #include <asm/atomic.h> |
39 | #include <linux/bitops.h> | 40 | #include <linux/bitops.h> |
40 | #include <linux/module.h> | 41 | #include <linux/module.h> |
@@ -46,6 +47,8 @@ | |||
46 | #include <linux/mutex.h> | 47 | #include <linux/mutex.h> |
47 | #include <linux/time.h> | 48 | #include <linux/time.h> |
48 | 49 | ||
50 | #include "rcutree.h" | ||
51 | |||
49 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 52 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
50 | static struct lock_class_key rcu_lock_key; | 53 | static struct lock_class_key rcu_lock_key; |
51 | struct lockdep_map rcu_lock_map = | 54 | struct lockdep_map rcu_lock_map = |
@@ -72,30 +75,55 @@ EXPORT_SYMBOL_GPL(rcu_lock_map); | |||
72 | .n_force_qs_ngp = 0, \ | 75 | .n_force_qs_ngp = 0, \ |
73 | } | 76 | } |
74 | 77 | ||
75 | struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state); | 78 | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); |
76 | DEFINE_PER_CPU(struct rcu_data, rcu_data); | 79 | DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); |
77 | 80 | ||
78 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); | 81 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); |
79 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | 82 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); |
80 | 83 | ||
84 | extern long rcu_batches_completed_sched(void); | ||
85 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp); | ||
86 | static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, | ||
87 | struct rcu_node *rnp, unsigned long flags); | ||
88 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags); | ||
89 | #ifdef CONFIG_HOTPLUG_CPU | ||
90 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp); | ||
91 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
92 | static void __rcu_process_callbacks(struct rcu_state *rsp, | ||
93 | struct rcu_data *rdp); | ||
94 | static void __call_rcu(struct rcu_head *head, | ||
95 | void (*func)(struct rcu_head *rcu), | ||
96 | struct rcu_state *rsp); | ||
97 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp); | ||
98 | static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | ||
99 | int preemptable); | ||
100 | |||
101 | #include "rcutree_plugin.h" | ||
102 | |||
81 | /* | 103 | /* |
82 | * Increment the quiescent state counter. | 104 | * Note a quiescent state. Because we do not need to know |
83 | * The counter is a bit degenerated: We do not need to know | ||
84 | * how many quiescent states passed, just if there was at least | 105 | * how many quiescent states passed, just if there was at least |
85 | * one since the start of the grace period. Thus just a flag. | 106 | * one since the start of the grace period, this just sets a flag. |
86 | */ | 107 | */ |
87 | void rcu_qsctr_inc(int cpu) | 108 | void rcu_sched_qs(int cpu) |
88 | { | 109 | { |
89 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | 110 | struct rcu_data *rdp; |
90 | rdp->passed_quiesc = 1; | 111 | |
112 | rdp = &per_cpu(rcu_sched_data, cpu); | ||
91 | rdp->passed_quiesc_completed = rdp->completed; | 113 | rdp->passed_quiesc_completed = rdp->completed; |
114 | barrier(); | ||
115 | rdp->passed_quiesc = 1; | ||
116 | rcu_preempt_note_context_switch(cpu); | ||
92 | } | 117 | } |
93 | 118 | ||
94 | void rcu_bh_qsctr_inc(int cpu) | 119 | void rcu_bh_qs(int cpu) |
95 | { | 120 | { |
96 | struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); | 121 | struct rcu_data *rdp; |
97 | rdp->passed_quiesc = 1; | 122 | |
123 | rdp = &per_cpu(rcu_bh_data, cpu); | ||
98 | rdp->passed_quiesc_completed = rdp->completed; | 124 | rdp->passed_quiesc_completed = rdp->completed; |
125 | barrier(); | ||
126 | rdp->passed_quiesc = 1; | ||
99 | } | 127 | } |
100 | 128 | ||
101 | #ifdef CONFIG_NO_HZ | 129 | #ifdef CONFIG_NO_HZ |
@@ -110,15 +138,16 @@ static int qhimark = 10000; /* If this many pending, ignore blimit. */ | |||
110 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ | 138 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ |
111 | 139 | ||
112 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); | 140 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); |
141 | static int rcu_pending(int cpu); | ||
113 | 142 | ||
114 | /* | 143 | /* |
115 | * Return the number of RCU batches processed thus far for debug & stats. | 144 | * Return the number of RCU-sched batches processed thus far for debug & stats. |
116 | */ | 145 | */ |
117 | long rcu_batches_completed(void) | 146 | long rcu_batches_completed_sched(void) |
118 | { | 147 | { |
119 | return rcu_state.completed; | 148 | return rcu_sched_state.completed; |
120 | } | 149 | } |
121 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | 150 | EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); |
122 | 151 | ||
123 | /* | 152 | /* |
124 | * Return the number of RCU BH batches processed thus far for debug & stats. | 153 | * Return the number of RCU BH batches processed thus far for debug & stats. |
@@ -181,6 +210,10 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp) | |||
181 | return 1; | 210 | return 1; |
182 | } | 211 | } |
183 | 212 | ||
213 | /* If preemptable RCU, no point in sending reschedule IPI. */ | ||
214 | if (rdp->preemptable) | ||
215 | return 0; | ||
216 | |||
184 | /* The CPU is online, so send it a reschedule IPI. */ | 217 | /* The CPU is online, so send it a reschedule IPI. */ |
185 | if (rdp->cpu != smp_processor_id()) | 218 | if (rdp->cpu != smp_processor_id()) |
186 | smp_send_reschedule(rdp->cpu); | 219 | smp_send_reschedule(rdp->cpu); |
@@ -193,7 +226,6 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp) | |||
193 | #endif /* #ifdef CONFIG_SMP */ | 226 | #endif /* #ifdef CONFIG_SMP */ |
194 | 227 | ||
195 | #ifdef CONFIG_NO_HZ | 228 | #ifdef CONFIG_NO_HZ |
196 | static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5); | ||
197 | 229 | ||
198 | /** | 230 | /** |
199 | * rcu_enter_nohz - inform RCU that current CPU is entering nohz | 231 | * rcu_enter_nohz - inform RCU that current CPU is entering nohz |
@@ -213,7 +245,7 @@ void rcu_enter_nohz(void) | |||
213 | rdtp = &__get_cpu_var(rcu_dynticks); | 245 | rdtp = &__get_cpu_var(rcu_dynticks); |
214 | rdtp->dynticks++; | 246 | rdtp->dynticks++; |
215 | rdtp->dynticks_nesting--; | 247 | rdtp->dynticks_nesting--; |
216 | WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); | 248 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
217 | local_irq_restore(flags); | 249 | local_irq_restore(flags); |
218 | } | 250 | } |
219 | 251 | ||
@@ -232,7 +264,7 @@ void rcu_exit_nohz(void) | |||
232 | rdtp = &__get_cpu_var(rcu_dynticks); | 264 | rdtp = &__get_cpu_var(rcu_dynticks); |
233 | rdtp->dynticks++; | 265 | rdtp->dynticks++; |
234 | rdtp->dynticks_nesting++; | 266 | rdtp->dynticks_nesting++; |
235 | WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); | 267 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
236 | local_irq_restore(flags); | 268 | local_irq_restore(flags); |
237 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 269 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
238 | } | 270 | } |
@@ -251,7 +283,7 @@ void rcu_nmi_enter(void) | |||
251 | if (rdtp->dynticks & 0x1) | 283 | if (rdtp->dynticks & 0x1) |
252 | return; | 284 | return; |
253 | rdtp->dynticks_nmi++; | 285 | rdtp->dynticks_nmi++; |
254 | WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs); | 286 | WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1)); |
255 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 287 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
256 | } | 288 | } |
257 | 289 | ||
@@ -270,7 +302,7 @@ void rcu_nmi_exit(void) | |||
270 | return; | 302 | return; |
271 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | 303 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ |
272 | rdtp->dynticks_nmi++; | 304 | rdtp->dynticks_nmi++; |
273 | WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs); | 305 | WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1); |
274 | } | 306 | } |
275 | 307 | ||
276 | /** | 308 | /** |
@@ -286,7 +318,7 @@ void rcu_irq_enter(void) | |||
286 | if (rdtp->dynticks_nesting++) | 318 | if (rdtp->dynticks_nesting++) |
287 | return; | 319 | return; |
288 | rdtp->dynticks++; | 320 | rdtp->dynticks++; |
289 | WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); | 321 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
290 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 322 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
291 | } | 323 | } |
292 | 324 | ||
@@ -305,10 +337,10 @@ void rcu_irq_exit(void) | |||
305 | return; | 337 | return; |
306 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | 338 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ |
307 | rdtp->dynticks++; | 339 | rdtp->dynticks++; |
308 | WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); | 340 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
309 | 341 | ||
310 | /* If the interrupt queued a callback, get out of dyntick mode. */ | 342 | /* If the interrupt queued a callback, get out of dyntick mode. */ |
311 | if (__get_cpu_var(rcu_data).nxtlist || | 343 | if (__get_cpu_var(rcu_sched_data).nxtlist || |
312 | __get_cpu_var(rcu_bh_data).nxtlist) | 344 | __get_cpu_var(rcu_bh_data).nxtlist) |
313 | set_need_resched(); | 345 | set_need_resched(); |
314 | } | 346 | } |
@@ -461,6 +493,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp) | |||
461 | 493 | ||
462 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | 494 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); |
463 | for (; rnp_cur < rnp_end; rnp_cur++) { | 495 | for (; rnp_cur < rnp_end; rnp_cur++) { |
496 | rcu_print_task_stall(rnp); | ||
464 | if (rnp_cur->qsmask == 0) | 497 | if (rnp_cur->qsmask == 0) |
465 | continue; | 498 | continue; |
466 | for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) | 499 | for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) |
@@ -469,6 +502,8 @@ static void print_other_cpu_stall(struct rcu_state *rsp) | |||
469 | } | 502 | } |
470 | printk(" (detected by %d, t=%ld jiffies)\n", | 503 | printk(" (detected by %d, t=%ld jiffies)\n", |
471 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | 504 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); |
505 | trigger_all_cpu_backtrace(); | ||
506 | |||
472 | force_quiescent_state(rsp, 0); /* Kick them all. */ | 507 | force_quiescent_state(rsp, 0); /* Kick them all. */ |
473 | } | 508 | } |
474 | 509 | ||
@@ -479,12 +514,14 @@ static void print_cpu_stall(struct rcu_state *rsp) | |||
479 | 514 | ||
480 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", | 515 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", |
481 | smp_processor_id(), jiffies - rsp->gp_start); | 516 | smp_processor_id(), jiffies - rsp->gp_start); |
482 | dump_stack(); | 517 | trigger_all_cpu_backtrace(); |
518 | |||
483 | spin_lock_irqsave(&rnp->lock, flags); | 519 | spin_lock_irqsave(&rnp->lock, flags); |
484 | if ((long)(jiffies - rsp->jiffies_stall) >= 0) | 520 | if ((long)(jiffies - rsp->jiffies_stall) >= 0) |
485 | rsp->jiffies_stall = | 521 | rsp->jiffies_stall = |
486 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | 522 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; |
487 | spin_unlock_irqrestore(&rnp->lock, flags); | 523 | spin_unlock_irqrestore(&rnp->lock, flags); |
524 | |||
488 | set_need_resched(); /* kick ourselves to get things going. */ | 525 | set_need_resched(); /* kick ourselves to get things going. */ |
489 | } | 526 | } |
490 | 527 | ||
@@ -564,8 +601,6 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
564 | { | 601 | { |
565 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | 602 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
566 | struct rcu_node *rnp = rcu_get_root(rsp); | 603 | struct rcu_node *rnp = rcu_get_root(rsp); |
567 | struct rcu_node *rnp_cur; | ||
568 | struct rcu_node *rnp_end; | ||
569 | 604 | ||
570 | if (!cpu_needs_another_gp(rsp, rdp)) { | 605 | if (!cpu_needs_another_gp(rsp, rdp)) { |
571 | spin_unlock_irqrestore(&rnp->lock, flags); | 606 | spin_unlock_irqrestore(&rnp->lock, flags); |
@@ -574,6 +609,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
574 | 609 | ||
575 | /* Advance to a new grace period and initialize state. */ | 610 | /* Advance to a new grace period and initialize state. */ |
576 | rsp->gpnum++; | 611 | rsp->gpnum++; |
612 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); | ||
577 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 613 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
578 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 614 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
579 | record_gp_stall_check_time(rsp); | 615 | record_gp_stall_check_time(rsp); |
@@ -590,7 +626,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
590 | 626 | ||
591 | /* Special-case the common single-level case. */ | 627 | /* Special-case the common single-level case. */ |
592 | if (NUM_RCU_NODES == 1) { | 628 | if (NUM_RCU_NODES == 1) { |
629 | rcu_preempt_check_blocked_tasks(rnp); | ||
593 | rnp->qsmask = rnp->qsmaskinit; | 630 | rnp->qsmask = rnp->qsmaskinit; |
631 | rnp->gpnum = rsp->gpnum; | ||
594 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ | 632 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
595 | spin_unlock_irqrestore(&rnp->lock, flags); | 633 | spin_unlock_irqrestore(&rnp->lock, flags); |
596 | return; | 634 | return; |
@@ -603,42 +641,28 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
603 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | 641 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
604 | 642 | ||
605 | /* | 643 | /* |
606 | * Set the quiescent-state-needed bits in all the non-leaf RCU | 644 | * Set the quiescent-state-needed bits in all the rcu_node |
607 | * nodes for all currently online CPUs. This operation relies | 645 | * structures for all currently online CPUs in breadth-first |
608 | * on the layout of the hierarchy within the rsp->node[] array. | 646 | * order, starting from the root rcu_node structure. This |
609 | * Note that other CPUs will access only the leaves of the | 647 | * operation relies on the layout of the hierarchy within the |
610 | * hierarchy, which still indicate that no grace period is in | 648 | * rsp->node[] array. Note that other CPUs will access only |
611 | * progress. In addition, we have excluded CPU-hotplug operations. | 649 | * the leaves of the hierarchy, which still indicate that no |
612 | * | 650 | * grace period is in progress, at least until the corresponding |
613 | * We therefore do not need to hold any locks. Any required | 651 | * leaf node has been initialized. In addition, we have excluded |
614 | * memory barriers will be supplied by the locks guarding the | 652 | * CPU-hotplug operations. |
615 | * leaf rcu_nodes in the hierarchy. | ||
616 | */ | ||
617 | |||
618 | rnp_end = rsp->level[NUM_RCU_LVLS - 1]; | ||
619 | for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) | ||
620 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
621 | |||
622 | /* | ||
623 | * Now set up the leaf nodes. Here we must be careful. First, | ||
624 | * we need to hold the lock in order to exclude other CPUs, which | ||
625 | * might be contending for the leaf nodes' locks. Second, as | ||
626 | * soon as we initialize a given leaf node, its CPUs might run | ||
627 | * up the rest of the hierarchy. We must therefore acquire locks | ||
628 | * for each node that we touch during this stage. (But we still | ||
629 | * are excluding CPU-hotplug operations.) | ||
630 | * | 653 | * |
631 | * Note that the grace period cannot complete until we finish | 654 | * Note that the grace period cannot complete until we finish |
632 | * the initialization process, as there will be at least one | 655 | * the initialization process, as there will be at least one |
633 | * qsmask bit set in the root node until that time, namely the | 656 | * qsmask bit set in the root node until that time, namely the |
634 | * one corresponding to this CPU. | 657 | * one corresponding to this CPU, due to the fact that we have |
658 | * irqs disabled. | ||
635 | */ | 659 | */ |
636 | rnp_end = &rsp->node[NUM_RCU_NODES]; | 660 | for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) { |
637 | rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 661 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
638 | for (; rnp_cur < rnp_end; rnp_cur++) { | 662 | rcu_preempt_check_blocked_tasks(rnp); |
639 | spin_lock(&rnp_cur->lock); /* irqs already disabled. */ | 663 | rnp->qsmask = rnp->qsmaskinit; |
640 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | 664 | rnp->gpnum = rsp->gpnum; |
641 | spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ | 665 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
642 | } | 666 | } |
643 | 667 | ||
644 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 668 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
@@ -674,6 +698,20 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | |||
674 | } | 698 | } |
675 | 699 | ||
676 | /* | 700 | /* |
701 | * Clean up after the prior grace period and let rcu_start_gp() start up | ||
702 | * the next grace period if one is needed. Note that the caller must | ||
703 | * hold rnp->lock, as required by rcu_start_gp(), which will release it. | ||
704 | */ | ||
705 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | ||
706 | __releases(rnp->lock) | ||
707 | { | ||
708 | WARN_ON_ONCE(rsp->completed == rsp->gpnum); | ||
709 | rsp->completed = rsp->gpnum; | ||
710 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | ||
711 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ | ||
712 | } | ||
713 | |||
714 | /* | ||
677 | * Similar to cpu_quiet(), for which it is a helper function. Allows | 715 | * Similar to cpu_quiet(), for which it is a helper function. Allows |
678 | * a group of CPUs to be quieted at one go, though all the CPUs in the | 716 | * a group of CPUs to be quieted at one go, though all the CPUs in the |
679 | * group must be represented by the same leaf rcu_node structure. | 717 | * group must be represented by the same leaf rcu_node structure. |
@@ -685,6 +723,8 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
685 | unsigned long flags) | 723 | unsigned long flags) |
686 | __releases(rnp->lock) | 724 | __releases(rnp->lock) |
687 | { | 725 | { |
726 | struct rcu_node *rnp_c; | ||
727 | |||
688 | /* Walk up the rcu_node hierarchy. */ | 728 | /* Walk up the rcu_node hierarchy. */ |
689 | for (;;) { | 729 | for (;;) { |
690 | if (!(rnp->qsmask & mask)) { | 730 | if (!(rnp->qsmask & mask)) { |
@@ -694,7 +734,7 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
694 | return; | 734 | return; |
695 | } | 735 | } |
696 | rnp->qsmask &= ~mask; | 736 | rnp->qsmask &= ~mask; |
697 | if (rnp->qsmask != 0) { | 737 | if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { |
698 | 738 | ||
699 | /* Other bits still set at this level, so done. */ | 739 | /* Other bits still set at this level, so done. */ |
700 | spin_unlock_irqrestore(&rnp->lock, flags); | 740 | spin_unlock_irqrestore(&rnp->lock, flags); |
@@ -708,28 +748,26 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
708 | break; | 748 | break; |
709 | } | 749 | } |
710 | spin_unlock_irqrestore(&rnp->lock, flags); | 750 | spin_unlock_irqrestore(&rnp->lock, flags); |
751 | rnp_c = rnp; | ||
711 | rnp = rnp->parent; | 752 | rnp = rnp->parent; |
712 | spin_lock_irqsave(&rnp->lock, flags); | 753 | spin_lock_irqsave(&rnp->lock, flags); |
754 | WARN_ON_ONCE(rnp_c->qsmask); | ||
713 | } | 755 | } |
714 | 756 | ||
715 | /* | 757 | /* |
716 | * Get here if we are the last CPU to pass through a quiescent | 758 | * Get here if we are the last CPU to pass through a quiescent |
717 | * state for this grace period. Clean up and let rcu_start_gp() | 759 | * state for this grace period. Invoke cpu_quiet_msk_finish() |
718 | * start up the next grace period if one is needed. Note that | 760 | * to clean up and start the next grace period if one is needed. |
719 | * we still hold rnp->lock, as required by rcu_start_gp(), which | ||
720 | * will release it. | ||
721 | */ | 761 | */ |
722 | rsp->completed = rsp->gpnum; | 762 | cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */ |
723 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | ||
724 | rcu_start_gp(rsp, flags); /* releases rnp->lock. */ | ||
725 | } | 763 | } |
726 | 764 | ||
727 | /* | 765 | /* |
728 | * Record a quiescent state for the specified CPU, which must either be | 766 | * Record a quiescent state for the specified CPU, which must either be |
729 | * the current CPU or an offline CPU. The lastcomp argument is used to | 767 | * the current CPU. The lastcomp argument is used to make sure we are |
730 | * make sure we are still in the grace period of interest. We don't want | 768 | * still in the grace period of interest. We don't want to end the current |
731 | * to end the current grace period based on quiescent states detected in | 769 | * grace period based on quiescent states detected in an earlier grace |
732 | * an earlier grace period! | 770 | * period! |
733 | */ | 771 | */ |
734 | static void | 772 | static void |
735 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | 773 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) |
@@ -764,7 +802,6 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |||
764 | * This GP can't end until cpu checks in, so all of our | 802 | * This GP can't end until cpu checks in, so all of our |
765 | * callbacks can be processed during the next GP. | 803 | * callbacks can be processed during the next GP. |
766 | */ | 804 | */ |
767 | rdp = rsp->rda[smp_processor_id()]; | ||
768 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 805 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
769 | 806 | ||
770 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | 807 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ |
@@ -822,30 +859,28 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
822 | spin_lock_irqsave(&rsp->onofflock, flags); | 859 | spin_lock_irqsave(&rsp->onofflock, flags); |
823 | 860 | ||
824 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 861 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ |
825 | rnp = rdp->mynode; | 862 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
826 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | 863 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
827 | do { | 864 | do { |
828 | spin_lock(&rnp->lock); /* irqs already disabled. */ | 865 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
829 | rnp->qsmaskinit &= ~mask; | 866 | rnp->qsmaskinit &= ~mask; |
830 | if (rnp->qsmaskinit != 0) { | 867 | if (rnp->qsmaskinit != 0) { |
831 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | 868 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
832 | break; | 869 | break; |
833 | } | 870 | } |
871 | rcu_preempt_offline_tasks(rsp, rnp, rdp); | ||
834 | mask = rnp->grpmask; | 872 | mask = rnp->grpmask; |
835 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | 873 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
836 | rnp = rnp->parent; | 874 | rnp = rnp->parent; |
837 | } while (rnp != NULL); | 875 | } while (rnp != NULL); |
838 | lastcomp = rsp->completed; | 876 | lastcomp = rsp->completed; |
839 | 877 | ||
840 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 878 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ |
841 | 879 | ||
842 | /* Being offline is a quiescent state, so go record it. */ | ||
843 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
844 | |||
845 | /* | 880 | /* |
846 | * Move callbacks from the outgoing CPU to the running CPU. | 881 | * Move callbacks from the outgoing CPU to the running CPU. |
847 | * Note that the outgoing CPU is now quiscent, so it is now | 882 | * Note that the outgoing CPU is now quiscent, so it is now |
848 | * (uncharacteristically) safe to access it rcu_data structure. | 883 | * (uncharacteristically) safe to access its rcu_data structure. |
849 | * Note also that we must carefully retain the order of the | 884 | * Note also that we must carefully retain the order of the |
850 | * outgoing CPU's callbacks in order for rcu_barrier() to work | 885 | * outgoing CPU's callbacks in order for rcu_barrier() to work |
851 | * correctly. Finally, note that we start all the callbacks | 886 | * correctly. Finally, note that we start all the callbacks |
@@ -876,8 +911,9 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
876 | */ | 911 | */ |
877 | static void rcu_offline_cpu(int cpu) | 912 | static void rcu_offline_cpu(int cpu) |
878 | { | 913 | { |
879 | __rcu_offline_cpu(cpu, &rcu_state); | 914 | __rcu_offline_cpu(cpu, &rcu_sched_state); |
880 | __rcu_offline_cpu(cpu, &rcu_bh_state); | 915 | __rcu_offline_cpu(cpu, &rcu_bh_state); |
916 | rcu_preempt_offline_cpu(cpu); | ||
881 | } | 917 | } |
882 | 918 | ||
883 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | 919 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ |
@@ -963,6 +999,8 @@ static void rcu_do_batch(struct rcu_data *rdp) | |||
963 | */ | 999 | */ |
964 | void rcu_check_callbacks(int cpu, int user) | 1000 | void rcu_check_callbacks(int cpu, int user) |
965 | { | 1001 | { |
1002 | if (!rcu_pending(cpu)) | ||
1003 | return; /* if nothing for RCU to do. */ | ||
966 | if (user || | 1004 | if (user || |
967 | (idle_cpu(cpu) && rcu_scheduler_active && | 1005 | (idle_cpu(cpu) && rcu_scheduler_active && |
968 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | 1006 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { |
@@ -971,17 +1009,16 @@ void rcu_check_callbacks(int cpu, int user) | |||
971 | * Get here if this CPU took its interrupt from user | 1009 | * Get here if this CPU took its interrupt from user |
972 | * mode or from the idle loop, and if this is not a | 1010 | * mode or from the idle loop, and if this is not a |
973 | * nested interrupt. In this case, the CPU is in | 1011 | * nested interrupt. In this case, the CPU is in |
974 | * a quiescent state, so count it. | 1012 | * a quiescent state, so note it. |
975 | * | 1013 | * |
976 | * No memory barrier is required here because both | 1014 | * No memory barrier is required here because both |
977 | * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference | 1015 | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local |
978 | * only CPU-local variables that other CPUs neither | 1016 | * variables that other CPUs neither access nor modify, |
979 | * access nor modify, at least not while the corresponding | 1017 | * at least not while the corresponding CPU is online. |
980 | * CPU is online. | ||
981 | */ | 1018 | */ |
982 | 1019 | ||
983 | rcu_qsctr_inc(cpu); | 1020 | rcu_sched_qs(cpu); |
984 | rcu_bh_qsctr_inc(cpu); | 1021 | rcu_bh_qs(cpu); |
985 | 1022 | ||
986 | } else if (!in_softirq()) { | 1023 | } else if (!in_softirq()) { |
987 | 1024 | ||
@@ -989,11 +1026,12 @@ void rcu_check_callbacks(int cpu, int user) | |||
989 | * Get here if this CPU did not take its interrupt from | 1026 | * Get here if this CPU did not take its interrupt from |
990 | * softirq, in other words, if it is not interrupting | 1027 | * softirq, in other words, if it is not interrupting |
991 | * a rcu_bh read-side critical section. This is an _bh | 1028 | * a rcu_bh read-side critical section. This is an _bh |
992 | * critical section, so count it. | 1029 | * critical section, so note it. |
993 | */ | 1030 | */ |
994 | 1031 | ||
995 | rcu_bh_qsctr_inc(cpu); | 1032 | rcu_bh_qs(cpu); |
996 | } | 1033 | } |
1034 | rcu_preempt_check_callbacks(cpu); | ||
997 | raise_softirq(RCU_SOFTIRQ); | 1035 | raise_softirq(RCU_SOFTIRQ); |
998 | } | 1036 | } |
999 | 1037 | ||
@@ -1132,6 +1170,8 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | |||
1132 | { | 1170 | { |
1133 | unsigned long flags; | 1171 | unsigned long flags; |
1134 | 1172 | ||
1173 | WARN_ON_ONCE(rdp->beenonline == 0); | ||
1174 | |||
1135 | /* | 1175 | /* |
1136 | * If an RCU GP has gone long enough, go check for dyntick | 1176 | * If an RCU GP has gone long enough, go check for dyntick |
1137 | * idle CPUs and, if needed, send resched IPIs. | 1177 | * idle CPUs and, if needed, send resched IPIs. |
@@ -1170,8 +1210,10 @@ static void rcu_process_callbacks(struct softirq_action *unused) | |||
1170 | */ | 1210 | */ |
1171 | smp_mb(); /* See above block comment. */ | 1211 | smp_mb(); /* See above block comment. */ |
1172 | 1212 | ||
1173 | __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data)); | 1213 | __rcu_process_callbacks(&rcu_sched_state, |
1214 | &__get_cpu_var(rcu_sched_data)); | ||
1174 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | 1215 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); |
1216 | rcu_preempt_process_callbacks(); | ||
1175 | 1217 | ||
1176 | /* | 1218 | /* |
1177 | * Memory references from any later RCU read-side critical sections | 1219 | * Memory references from any later RCU read-side critical sections |
@@ -1227,13 +1269,13 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | |||
1227 | } | 1269 | } |
1228 | 1270 | ||
1229 | /* | 1271 | /* |
1230 | * Queue an RCU callback for invocation after a grace period. | 1272 | * Queue an RCU-sched callback for invocation after a grace period. |
1231 | */ | 1273 | */ |
1232 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 1274 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
1233 | { | 1275 | { |
1234 | __call_rcu(head, func, &rcu_state); | 1276 | __call_rcu(head, func, &rcu_sched_state); |
1235 | } | 1277 | } |
1236 | EXPORT_SYMBOL_GPL(call_rcu); | 1278 | EXPORT_SYMBOL_GPL(call_rcu_sched); |
1237 | 1279 | ||
1238 | /* | 1280 | /* |
1239 | * Queue an RCU for invocation after a quicker grace period. | 1281 | * Queue an RCU for invocation after a quicker grace period. |
@@ -1305,10 +1347,11 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | |||
1305 | * by the current CPU, returning 1 if so. This function is part of the | 1347 | * by the current CPU, returning 1 if so. This function is part of the |
1306 | * RCU implementation; it is -not- an exported member of the RCU API. | 1348 | * RCU implementation; it is -not- an exported member of the RCU API. |
1307 | */ | 1349 | */ |
1308 | int rcu_pending(int cpu) | 1350 | static int rcu_pending(int cpu) |
1309 | { | 1351 | { |
1310 | return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) || | 1352 | return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || |
1311 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)); | 1353 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || |
1354 | rcu_preempt_pending(cpu); | ||
1312 | } | 1355 | } |
1313 | 1356 | ||
1314 | /* | 1357 | /* |
@@ -1320,27 +1363,46 @@ int rcu_pending(int cpu) | |||
1320 | int rcu_needs_cpu(int cpu) | 1363 | int rcu_needs_cpu(int cpu) |
1321 | { | 1364 | { |
1322 | /* RCU callbacks either ready or pending? */ | 1365 | /* RCU callbacks either ready or pending? */ |
1323 | return per_cpu(rcu_data, cpu).nxtlist || | 1366 | return per_cpu(rcu_sched_data, cpu).nxtlist || |
1324 | per_cpu(rcu_bh_data, cpu).nxtlist; | 1367 | per_cpu(rcu_bh_data, cpu).nxtlist || |
1368 | rcu_preempt_needs_cpu(cpu); | ||
1325 | } | 1369 | } |
1326 | 1370 | ||
1327 | /* | 1371 | /* |
1328 | * Initialize a CPU's per-CPU RCU data. We take this "scorched earth" | 1372 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
1329 | * approach so that we don't have to worry about how long the CPU has | ||
1330 | * been gone, or whether it ever was online previously. We do trust the | ||
1331 | * ->mynode field, as it is constant for a given struct rcu_data and | ||
1332 | * initialized during early boot. | ||
1333 | * | ||
1334 | * Note that only one online or offline event can be happening at a given | ||
1335 | * time. Note also that we can accept some slop in the rsp->completed | ||
1336 | * access due to the fact that this CPU cannot possibly have any RCU | ||
1337 | * callbacks in flight yet. | ||
1338 | */ | 1373 | */ |
1339 | static void __cpuinit | 1374 | static void __init |
1340 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp) | 1375 | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) |
1341 | { | 1376 | { |
1342 | unsigned long flags; | 1377 | unsigned long flags; |
1343 | int i; | 1378 | int i; |
1379 | struct rcu_data *rdp = rsp->rda[cpu]; | ||
1380 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
1381 | |||
1382 | /* Set up local state, ensuring consistent view of global state. */ | ||
1383 | spin_lock_irqsave(&rnp->lock, flags); | ||
1384 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | ||
1385 | rdp->nxtlist = NULL; | ||
1386 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
1387 | rdp->nxttail[i] = &rdp->nxtlist; | ||
1388 | rdp->qlen = 0; | ||
1389 | #ifdef CONFIG_NO_HZ | ||
1390 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | ||
1391 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
1392 | rdp->cpu = cpu; | ||
1393 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
1394 | } | ||
1395 | |||
1396 | /* | ||
1397 | * Initialize a CPU's per-CPU RCU data. Note that only one online or | ||
1398 | * offline event can be happening at a given time. Note also that we | ||
1399 | * can accept some slop in the rsp->completed access due to the fact | ||
1400 | * that this CPU cannot possibly have any RCU callbacks in flight yet. | ||
1401 | */ | ||
1402 | static void __cpuinit | ||
1403 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | ||
1404 | { | ||
1405 | unsigned long flags; | ||
1344 | long lastcomp; | 1406 | long lastcomp; |
1345 | unsigned long mask; | 1407 | unsigned long mask; |
1346 | struct rcu_data *rdp = rsp->rda[cpu]; | 1408 | struct rcu_data *rdp = rsp->rda[cpu]; |
@@ -1354,17 +1416,9 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp) | |||
1354 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ | 1416 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ |
1355 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ | 1417 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ |
1356 | rdp->beenonline = 1; /* We have now been online. */ | 1418 | rdp->beenonline = 1; /* We have now been online. */ |
1419 | rdp->preemptable = preemptable; | ||
1357 | rdp->passed_quiesc_completed = lastcomp - 1; | 1420 | rdp->passed_quiesc_completed = lastcomp - 1; |
1358 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | ||
1359 | rdp->nxtlist = NULL; | ||
1360 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
1361 | rdp->nxttail[i] = &rdp->nxtlist; | ||
1362 | rdp->qlen = 0; | ||
1363 | rdp->blimit = blimit; | 1421 | rdp->blimit = blimit; |
1364 | #ifdef CONFIG_NO_HZ | ||
1365 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | ||
1366 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
1367 | rdp->cpu = cpu; | ||
1368 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 1422 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
1369 | 1423 | ||
1370 | /* | 1424 | /* |
@@ -1387,34 +1441,21 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp) | |||
1387 | rnp = rnp->parent; | 1441 | rnp = rnp->parent; |
1388 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 1442 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); |
1389 | 1443 | ||
1390 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 1444 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
1391 | |||
1392 | /* | ||
1393 | * A new grace period might start here. If so, we will be part of | ||
1394 | * it, and its gpnum will be greater than ours, so we will | ||
1395 | * participate. It is also possible for the gpnum to have been | ||
1396 | * incremented before this function was called, and the bitmasks | ||
1397 | * to not be filled out until now, in which case we will also | ||
1398 | * participate due to our gpnum being behind. | ||
1399 | */ | ||
1400 | |||
1401 | /* Since it is coming online, the CPU is in a quiescent state. */ | ||
1402 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
1403 | local_irq_restore(flags); | ||
1404 | } | 1445 | } |
1405 | 1446 | ||
1406 | static void __cpuinit rcu_online_cpu(int cpu) | 1447 | static void __cpuinit rcu_online_cpu(int cpu) |
1407 | { | 1448 | { |
1408 | rcu_init_percpu_data(cpu, &rcu_state); | 1449 | rcu_init_percpu_data(cpu, &rcu_sched_state, 0); |
1409 | rcu_init_percpu_data(cpu, &rcu_bh_state); | 1450 | rcu_init_percpu_data(cpu, &rcu_bh_state, 0); |
1410 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | 1451 | rcu_preempt_init_percpu_data(cpu); |
1411 | } | 1452 | } |
1412 | 1453 | ||
1413 | /* | 1454 | /* |
1414 | * Handle CPU online/offline notifcation events. | 1455 | * Handle CPU online/offline notification events. |
1415 | */ | 1456 | */ |
1416 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | 1457 | int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
1417 | unsigned long action, void *hcpu) | 1458 | unsigned long action, void *hcpu) |
1418 | { | 1459 | { |
1419 | long cpu = (long)hcpu; | 1460 | long cpu = (long)hcpu; |
1420 | 1461 | ||
@@ -1486,6 +1527,7 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
1486 | rnp = rsp->level[i]; | 1527 | rnp = rsp->level[i]; |
1487 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | 1528 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { |
1488 | spin_lock_init(&rnp->lock); | 1529 | spin_lock_init(&rnp->lock); |
1530 | rnp->gpnum = 0; | ||
1489 | rnp->qsmask = 0; | 1531 | rnp->qsmask = 0; |
1490 | rnp->qsmaskinit = 0; | 1532 | rnp->qsmaskinit = 0; |
1491 | rnp->grplo = j * cpustride; | 1533 | rnp->grplo = j * cpustride; |
@@ -1503,16 +1545,20 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
1503 | j / rsp->levelspread[i - 1]; | 1545 | j / rsp->levelspread[i - 1]; |
1504 | } | 1546 | } |
1505 | rnp->level = i; | 1547 | rnp->level = i; |
1548 | INIT_LIST_HEAD(&rnp->blocked_tasks[0]); | ||
1549 | INIT_LIST_HEAD(&rnp->blocked_tasks[1]); | ||
1506 | } | 1550 | } |
1507 | } | 1551 | } |
1508 | } | 1552 | } |
1509 | 1553 | ||
1510 | /* | 1554 | /* |
1511 | * Helper macro for __rcu_init(). To be used nowhere else! | 1555 | * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used |
1512 | * Assigns leaf node pointers into each CPU's rcu_data structure. | 1556 | * nowhere else! Assigns leaf node pointers into each CPU's rcu_data |
1557 | * structure. | ||
1513 | */ | 1558 | */ |
1514 | #define RCU_DATA_PTR_INIT(rsp, rcu_data) \ | 1559 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ |
1515 | do { \ | 1560 | do { \ |
1561 | rcu_init_one(rsp); \ | ||
1516 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ | 1562 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ |
1517 | j = 0; \ | 1563 | j = 0; \ |
1518 | for_each_possible_cpu(i) { \ | 1564 | for_each_possible_cpu(i) { \ |
@@ -1520,32 +1566,43 @@ do { \ | |||
1520 | j++; \ | 1566 | j++; \ |
1521 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ | 1567 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ |
1522 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ | 1568 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ |
1569 | rcu_boot_init_percpu_data(i, rsp); \ | ||
1523 | } \ | 1570 | } \ |
1524 | } while (0) | 1571 | } while (0) |
1525 | 1572 | ||
1526 | static struct notifier_block __cpuinitdata rcu_nb = { | 1573 | #ifdef CONFIG_TREE_PREEMPT_RCU |
1527 | .notifier_call = rcu_cpu_notify, | 1574 | |
1528 | }; | 1575 | void __init __rcu_init_preempt(void) |
1576 | { | ||
1577 | int i; /* All used by RCU_INIT_FLAVOR(). */ | ||
1578 | int j; | ||
1579 | struct rcu_node *rnp; | ||
1580 | |||
1581 | RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data); | ||
1582 | } | ||
1583 | |||
1584 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
1585 | |||
1586 | void __init __rcu_init_preempt(void) | ||
1587 | { | ||
1588 | } | ||
1589 | |||
1590 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
1529 | 1591 | ||
1530 | void __init __rcu_init(void) | 1592 | void __init __rcu_init(void) |
1531 | { | 1593 | { |
1532 | int i; /* All used by RCU_DATA_PTR_INIT(). */ | 1594 | int i; /* All used by RCU_INIT_FLAVOR(). */ |
1533 | int j; | 1595 | int j; |
1534 | struct rcu_node *rnp; | 1596 | struct rcu_node *rnp; |
1535 | 1597 | ||
1536 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | 1598 | rcu_bootup_announce(); |
1537 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | 1599 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
1538 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | 1600 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); |
1539 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 1601 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
1540 | rcu_init_one(&rcu_state); | 1602 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); |
1541 | RCU_DATA_PTR_INIT(&rcu_state, rcu_data); | 1603 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); |
1542 | rcu_init_one(&rcu_bh_state); | 1604 | __rcu_init_preempt(); |
1543 | RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data); | 1605 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
1544 | |||
1545 | for_each_online_cpu(i) | ||
1546 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i); | ||
1547 | /* Register notifier for non-boot CPUs */ | ||
1548 | register_cpu_notifier(&rcu_nb); | ||
1549 | } | 1606 | } |
1550 | 1607 | ||
1551 | module_param(blimit, int, 0); | 1608 | module_param(blimit, int, 0); |
diff --git a/kernel/rcutree.h b/kernel/rcutree.h index 5e872bbf07f5..8e8287a983c2 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h | |||
@@ -1,10 +1,259 @@ | |||
1 | /* | ||
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | ||
3 | * Internal non-public definitions. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
18 | * | ||
19 | * Copyright IBM Corporation, 2008 | ||
20 | * | ||
21 | * Author: Ingo Molnar <mingo@elte.hu> | ||
22 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> | ||
23 | */ | ||
24 | |||
25 | #include <linux/cache.h> | ||
26 | #include <linux/spinlock.h> | ||
27 | #include <linux/threads.h> | ||
28 | #include <linux/cpumask.h> | ||
29 | #include <linux/seqlock.h> | ||
30 | |||
31 | /* | ||
32 | * Define shape of hierarchy based on NR_CPUS and CONFIG_RCU_FANOUT. | ||
33 | * In theory, it should be possible to add more levels straightforwardly. | ||
34 | * In practice, this has not been tested, so there is probably some | ||
35 | * bug somewhere. | ||
36 | */ | ||
37 | #define MAX_RCU_LVLS 3 | ||
38 | #define RCU_FANOUT (CONFIG_RCU_FANOUT) | ||
39 | #define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT) | ||
40 | #define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT) | ||
41 | |||
42 | #if NR_CPUS <= RCU_FANOUT | ||
43 | # define NUM_RCU_LVLS 1 | ||
44 | # define NUM_RCU_LVL_0 1 | ||
45 | # define NUM_RCU_LVL_1 (NR_CPUS) | ||
46 | # define NUM_RCU_LVL_2 0 | ||
47 | # define NUM_RCU_LVL_3 0 | ||
48 | #elif NR_CPUS <= RCU_FANOUT_SQ | ||
49 | # define NUM_RCU_LVLS 2 | ||
50 | # define NUM_RCU_LVL_0 1 | ||
51 | # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT - 1) / RCU_FANOUT) | ||
52 | # define NUM_RCU_LVL_2 (NR_CPUS) | ||
53 | # define NUM_RCU_LVL_3 0 | ||
54 | #elif NR_CPUS <= RCU_FANOUT_CUBE | ||
55 | # define NUM_RCU_LVLS 3 | ||
56 | # define NUM_RCU_LVL_0 1 | ||
57 | # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT_SQ - 1) / RCU_FANOUT_SQ) | ||
58 | # define NUM_RCU_LVL_2 (((NR_CPUS) + (RCU_FANOUT) - 1) / (RCU_FANOUT)) | ||
59 | # define NUM_RCU_LVL_3 NR_CPUS | ||
60 | #else | ||
61 | # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS" | ||
62 | #endif /* #if (NR_CPUS) <= RCU_FANOUT */ | ||
63 | |||
64 | #define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3) | ||
65 | #define NUM_RCU_NODES (RCU_SUM - NR_CPUS) | ||
66 | |||
67 | /* | ||
68 | * Dynticks per-CPU state. | ||
69 | */ | ||
70 | struct rcu_dynticks { | ||
71 | int dynticks_nesting; /* Track nesting level, sort of. */ | ||
72 | int dynticks; /* Even value for dynticks-idle, else odd. */ | ||
73 | int dynticks_nmi; /* Even value for either dynticks-idle or */ | ||
74 | /* not in nmi handler, else odd. So this */ | ||
75 | /* remains even for nmi from irq handler. */ | ||
76 | }; | ||
77 | |||
78 | /* | ||
79 | * Definition for node within the RCU grace-period-detection hierarchy. | ||
80 | */ | ||
81 | struct rcu_node { | ||
82 | spinlock_t lock; | ||
83 | long gpnum; /* Current grace period for this node. */ | ||
84 | /* This will either be equal to or one */ | ||
85 | /* behind the root rcu_node's gpnum. */ | ||
86 | unsigned long qsmask; /* CPUs or groups that need to switch in */ | ||
87 | /* order for current grace period to proceed.*/ | ||
88 | unsigned long qsmaskinit; | ||
89 | /* Per-GP initialization for qsmask. */ | ||
90 | unsigned long grpmask; /* Mask to apply to parent qsmask. */ | ||
91 | int grplo; /* lowest-numbered CPU or group here. */ | ||
92 | int grphi; /* highest-numbered CPU or group here. */ | ||
93 | u8 grpnum; /* CPU/group number for next level up. */ | ||
94 | u8 level; /* root is at level 0. */ | ||
95 | struct rcu_node *parent; | ||
96 | struct list_head blocked_tasks[2]; | ||
97 | /* Tasks blocked in RCU read-side critsect. */ | ||
98 | } ____cacheline_internodealigned_in_smp; | ||
99 | |||
100 | /* Index values for nxttail array in struct rcu_data. */ | ||
101 | #define RCU_DONE_TAIL 0 /* Also RCU_WAIT head. */ | ||
102 | #define RCU_WAIT_TAIL 1 /* Also RCU_NEXT_READY head. */ | ||
103 | #define RCU_NEXT_READY_TAIL 2 /* Also RCU_NEXT head. */ | ||
104 | #define RCU_NEXT_TAIL 3 | ||
105 | #define RCU_NEXT_SIZE 4 | ||
106 | |||
107 | /* Per-CPU data for read-copy update. */ | ||
108 | struct rcu_data { | ||
109 | /* 1) quiescent-state and grace-period handling : */ | ||
110 | long completed; /* Track rsp->completed gp number */ | ||
111 | /* in order to detect GP end. */ | ||
112 | long gpnum; /* Highest gp number that this CPU */ | ||
113 | /* is aware of having started. */ | ||
114 | long passed_quiesc_completed; | ||
115 | /* Value of completed at time of qs. */ | ||
116 | bool passed_quiesc; /* User-mode/idle loop etc. */ | ||
117 | bool qs_pending; /* Core waits for quiesc state. */ | ||
118 | bool beenonline; /* CPU online at least once. */ | ||
119 | bool preemptable; /* Preemptable RCU? */ | ||
120 | struct rcu_node *mynode; /* This CPU's leaf of hierarchy */ | ||
121 | unsigned long grpmask; /* Mask to apply to leaf qsmask. */ | ||
122 | |||
123 | /* 2) batch handling */ | ||
124 | /* | ||
125 | * If nxtlist is not NULL, it is partitioned as follows. | ||
126 | * Any of the partitions might be empty, in which case the | ||
127 | * pointer to that partition will be equal to the pointer for | ||
128 | * the following partition. When the list is empty, all of | ||
129 | * the nxttail elements point to nxtlist, which is NULL. | ||
130 | * | ||
131 | * [*nxttail[RCU_NEXT_READY_TAIL], NULL = *nxttail[RCU_NEXT_TAIL]): | ||
132 | * Entries that might have arrived after current GP ended | ||
133 | * [*nxttail[RCU_WAIT_TAIL], *nxttail[RCU_NEXT_READY_TAIL]): | ||
134 | * Entries known to have arrived before current GP ended | ||
135 | * [*nxttail[RCU_DONE_TAIL], *nxttail[RCU_WAIT_TAIL]): | ||
136 | * Entries that batch # <= ->completed - 1: waiting for current GP | ||
137 | * [nxtlist, *nxttail[RCU_DONE_TAIL]): | ||
138 | * Entries that batch # <= ->completed | ||
139 | * The grace period for these entries has completed, and | ||
140 | * the other grace-period-completed entries may be moved | ||
141 | * here temporarily in rcu_process_callbacks(). | ||
142 | */ | ||
143 | struct rcu_head *nxtlist; | ||
144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; | ||
145 | long qlen; /* # of queued callbacks */ | ||
146 | long blimit; /* Upper limit on a processed batch */ | ||
147 | |||
148 | #ifdef CONFIG_NO_HZ | ||
149 | /* 3) dynticks interface. */ | ||
150 | struct rcu_dynticks *dynticks; /* Shared per-CPU dynticks state. */ | ||
151 | int dynticks_snap; /* Per-GP tracking for dynticks. */ | ||
152 | int dynticks_nmi_snap; /* Per-GP tracking for dynticks_nmi. */ | ||
153 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
154 | |||
155 | /* 4) reasons this CPU needed to be kicked by force_quiescent_state */ | ||
156 | #ifdef CONFIG_NO_HZ | ||
157 | unsigned long dynticks_fqs; /* Kicked due to dynticks idle. */ | ||
158 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
159 | unsigned long offline_fqs; /* Kicked due to being offline. */ | ||
160 | unsigned long resched_ipi; /* Sent a resched IPI. */ | ||
161 | |||
162 | /* 5) __rcu_pending() statistics. */ | ||
163 | long n_rcu_pending; /* rcu_pending() calls since boot. */ | ||
164 | long n_rp_qs_pending; | ||
165 | long n_rp_cb_ready; | ||
166 | long n_rp_cpu_needs_gp; | ||
167 | long n_rp_gp_completed; | ||
168 | long n_rp_gp_started; | ||
169 | long n_rp_need_fqs; | ||
170 | long n_rp_need_nothing; | ||
171 | |||
172 | int cpu; | ||
173 | }; | ||
174 | |||
175 | /* Values for signaled field in struct rcu_state. */ | ||
176 | #define RCU_GP_INIT 0 /* Grace period being initialized. */ | ||
177 | #define RCU_SAVE_DYNTICK 1 /* Need to scan dyntick state. */ | ||
178 | #define RCU_FORCE_QS 2 /* Need to force quiescent state. */ | ||
179 | #ifdef CONFIG_NO_HZ | ||
180 | #define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK | ||
181 | #else /* #ifdef CONFIG_NO_HZ */ | ||
182 | #define RCU_SIGNAL_INIT RCU_FORCE_QS | ||
183 | #endif /* #else #ifdef CONFIG_NO_HZ */ | ||
184 | |||
185 | #define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */ | ||
186 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
187 | #define RCU_SECONDS_TILL_STALL_CHECK (10 * HZ) /* for rsp->jiffies_stall */ | ||
188 | #define RCU_SECONDS_TILL_STALL_RECHECK (30 * HZ) /* for rsp->jiffies_stall */ | ||
189 | #define RCU_STALL_RAT_DELAY 2 /* Allow other CPUs time */ | ||
190 | /* to take at least one */ | ||
191 | /* scheduling clock irq */ | ||
192 | /* before ratting on them. */ | ||
193 | |||
194 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
195 | |||
196 | /* | ||
197 | * RCU global state, including node hierarchy. This hierarchy is | ||
198 | * represented in "heap" form in a dense array. The root (first level) | ||
199 | * of the hierarchy is in ->node[0] (referenced by ->level[0]), the second | ||
200 | * level in ->node[1] through ->node[m] (->node[1] referenced by ->level[1]), | ||
201 | * and the third level in ->node[m+1] and following (->node[m+1] referenced | ||
202 | * by ->level[2]). The number of levels is determined by the number of | ||
203 | * CPUs and by CONFIG_RCU_FANOUT. Small systems will have a "hierarchy" | ||
204 | * consisting of a single rcu_node. | ||
205 | */ | ||
206 | struct rcu_state { | ||
207 | struct rcu_node node[NUM_RCU_NODES]; /* Hierarchy. */ | ||
208 | struct rcu_node *level[NUM_RCU_LVLS]; /* Hierarchy levels. */ | ||
209 | u32 levelcnt[MAX_RCU_LVLS + 1]; /* # nodes in each level. */ | ||
210 | u8 levelspread[NUM_RCU_LVLS]; /* kids/node in each level. */ | ||
211 | struct rcu_data *rda[NR_CPUS]; /* array of rdp pointers. */ | ||
212 | |||
213 | /* The following fields are guarded by the root rcu_node's lock. */ | ||
214 | |||
215 | u8 signaled ____cacheline_internodealigned_in_smp; | ||
216 | /* Force QS state. */ | ||
217 | long gpnum; /* Current gp number. */ | ||
218 | long completed; /* # of last completed gp. */ | ||
219 | spinlock_t onofflock; /* exclude on/offline and */ | ||
220 | /* starting new GP. */ | ||
221 | spinlock_t fqslock; /* Only one task forcing */ | ||
222 | /* quiescent states. */ | ||
223 | unsigned long jiffies_force_qs; /* Time at which to invoke */ | ||
224 | /* force_quiescent_state(). */ | ||
225 | unsigned long n_force_qs; /* Number of calls to */ | ||
226 | /* force_quiescent_state(). */ | ||
227 | unsigned long n_force_qs_lh; /* ~Number of calls leaving */ | ||
228 | /* due to lock unavailable. */ | ||
229 | unsigned long n_force_qs_ngp; /* Number of calls leaving */ | ||
230 | /* due to no GP active. */ | ||
231 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
232 | unsigned long gp_start; /* Time at which GP started, */ | ||
233 | /* but in jiffies. */ | ||
234 | unsigned long jiffies_stall; /* Time at which to check */ | ||
235 | /* for CPU stalls. */ | ||
236 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
237 | #ifdef CONFIG_NO_HZ | ||
238 | long dynticks_completed; /* Value of completed @ snap. */ | ||
239 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
240 | }; | ||
241 | |||
242 | #ifdef RCU_TREE_NONCORE | ||
1 | 243 | ||
2 | /* | 244 | /* |
3 | * RCU implementation internal declarations: | 245 | * RCU implementation internal declarations: |
4 | */ | 246 | */ |
5 | extern struct rcu_state rcu_state; | 247 | extern struct rcu_state rcu_sched_state; |
6 | DECLARE_PER_CPU(struct rcu_data, rcu_data); | 248 | DECLARE_PER_CPU(struct rcu_data, rcu_sched_data); |
7 | 249 | ||
8 | extern struct rcu_state rcu_bh_state; | 250 | extern struct rcu_state rcu_bh_state; |
9 | DECLARE_PER_CPU(struct rcu_data, rcu_bh_data); | 251 | DECLARE_PER_CPU(struct rcu_data, rcu_bh_data); |
10 | 252 | ||
253 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
254 | extern struct rcu_state rcu_preempt_state; | ||
255 | DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data); | ||
256 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
257 | |||
258 | #endif /* #ifdef RCU_TREE_NONCORE */ | ||
259 | |||
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h new file mode 100644 index 000000000000..1cee04f627eb --- /dev/null +++ b/kernel/rcutree_plugin.h | |||
@@ -0,0 +1,566 @@ | |||
1 | /* | ||
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | ||
3 | * Internal non-public definitions that provide either classic | ||
4 | * or preemptable semantics. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; either version 2 of the License, or | ||
9 | * (at your option) any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | * | ||
20 | * Copyright Red Hat, 2009 | ||
21 | * Copyright IBM Corporation, 2009 | ||
22 | * | ||
23 | * Author: Ingo Molnar <mingo@elte.hu> | ||
24 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> | ||
25 | */ | ||
26 | |||
27 | |||
28 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
29 | |||
30 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); | ||
31 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); | ||
32 | |||
33 | /* | ||
34 | * Tell them what RCU they are running. | ||
35 | */ | ||
36 | static inline void rcu_bootup_announce(void) | ||
37 | { | ||
38 | printk(KERN_INFO | ||
39 | "Experimental preemptable hierarchical RCU implementation.\n"); | ||
40 | } | ||
41 | |||
42 | /* | ||
43 | * Return the number of RCU-preempt batches processed thus far | ||
44 | * for debug and statistics. | ||
45 | */ | ||
46 | long rcu_batches_completed_preempt(void) | ||
47 | { | ||
48 | return rcu_preempt_state.completed; | ||
49 | } | ||
50 | EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); | ||
51 | |||
52 | /* | ||
53 | * Return the number of RCU batches processed thus far for debug & stats. | ||
54 | */ | ||
55 | long rcu_batches_completed(void) | ||
56 | { | ||
57 | return rcu_batches_completed_preempt(); | ||
58 | } | ||
59 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
60 | |||
61 | /* | ||
62 | * Record a preemptable-RCU quiescent state for the specified CPU. Note | ||
63 | * that this just means that the task currently running on the CPU is | ||
64 | * not in a quiescent state. There might be any number of tasks blocked | ||
65 | * while in an RCU read-side critical section. | ||
66 | */ | ||
67 | static void rcu_preempt_qs(int cpu) | ||
68 | { | ||
69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | ||
70 | rdp->passed_quiesc_completed = rdp->completed; | ||
71 | barrier(); | ||
72 | rdp->passed_quiesc = 1; | ||
73 | } | ||
74 | |||
75 | /* | ||
76 | * We have entered the scheduler, and the current task might soon be | ||
77 | * context-switched away from. If this task is in an RCU read-side | ||
78 | * critical section, we will no longer be able to rely on the CPU to | ||
79 | * record that fact, so we enqueue the task on the appropriate entry | ||
80 | * of the blocked_tasks[] array. The task will dequeue itself when | ||
81 | * it exits the outermost enclosing RCU read-side critical section. | ||
82 | * Therefore, the current grace period cannot be permitted to complete | ||
83 | * until the blocked_tasks[] entry indexed by the low-order bit of | ||
84 | * rnp->gpnum empties. | ||
85 | * | ||
86 | * Caller must disable preemption. | ||
87 | */ | ||
88 | static void rcu_preempt_note_context_switch(int cpu) | ||
89 | { | ||
90 | struct task_struct *t = current; | ||
91 | unsigned long flags; | ||
92 | int phase; | ||
93 | struct rcu_data *rdp; | ||
94 | struct rcu_node *rnp; | ||
95 | |||
96 | if (t->rcu_read_lock_nesting && | ||
97 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { | ||
98 | |||
99 | /* Possibly blocking in an RCU read-side critical section. */ | ||
100 | rdp = rcu_preempt_state.rda[cpu]; | ||
101 | rnp = rdp->mynode; | ||
102 | spin_lock_irqsave(&rnp->lock, flags); | ||
103 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | ||
104 | t->rcu_blocked_node = rnp; | ||
105 | |||
106 | /* | ||
107 | * If this CPU has already checked in, then this task | ||
108 | * will hold up the next grace period rather than the | ||
109 | * current grace period. Queue the task accordingly. | ||
110 | * If the task is queued for the current grace period | ||
111 | * (i.e., this CPU has not yet passed through a quiescent | ||
112 | * state for the current grace period), then as long | ||
113 | * as that task remains queued, the current grace period | ||
114 | * cannot end. | ||
115 | * | ||
116 | * But first, note that the current CPU must still be | ||
117 | * on line! | ||
118 | */ | ||
119 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); | ||
120 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | ||
121 | phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; | ||
122 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | ||
123 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
124 | } | ||
125 | |||
126 | /* | ||
127 | * Either we were not in an RCU read-side critical section to | ||
128 | * begin with, or we have now recorded that critical section | ||
129 | * globally. Either way, we can now note a quiescent state | ||
130 | * for this CPU. Again, if we were in an RCU read-side critical | ||
131 | * section, and if that critical section was blocking the current | ||
132 | * grace period, then the fact that the task has been enqueued | ||
133 | * means that we continue to block the current grace period. | ||
134 | */ | ||
135 | rcu_preempt_qs(cpu); | ||
136 | local_irq_save(flags); | ||
137 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
138 | local_irq_restore(flags); | ||
139 | } | ||
140 | |||
141 | /* | ||
142 | * Tree-preemptable RCU implementation for rcu_read_lock(). | ||
143 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | ||
144 | * if we block. | ||
145 | */ | ||
146 | void __rcu_read_lock(void) | ||
147 | { | ||
148 | ACCESS_ONCE(current->rcu_read_lock_nesting)++; | ||
149 | barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */ | ||
150 | } | ||
151 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | ||
152 | |||
153 | static void rcu_read_unlock_special(struct task_struct *t) | ||
154 | { | ||
155 | int empty; | ||
156 | unsigned long flags; | ||
157 | unsigned long mask; | ||
158 | struct rcu_node *rnp; | ||
159 | int special; | ||
160 | |||
161 | /* NMI handlers cannot block and cannot safely manipulate state. */ | ||
162 | if (in_nmi()) | ||
163 | return; | ||
164 | |||
165 | local_irq_save(flags); | ||
166 | |||
167 | /* | ||
168 | * If RCU core is waiting for this CPU to exit critical section, | ||
169 | * let it know that we have done so. | ||
170 | */ | ||
171 | special = t->rcu_read_unlock_special; | ||
172 | if (special & RCU_READ_UNLOCK_NEED_QS) { | ||
173 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
174 | rcu_preempt_qs(smp_processor_id()); | ||
175 | } | ||
176 | |||
177 | /* Hardware IRQ handlers cannot block. */ | ||
178 | if (in_irq()) { | ||
179 | local_irq_restore(flags); | ||
180 | return; | ||
181 | } | ||
182 | |||
183 | /* Clean up if blocked during RCU read-side critical section. */ | ||
184 | if (special & RCU_READ_UNLOCK_BLOCKED) { | ||
185 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; | ||
186 | |||
187 | /* | ||
188 | * Remove this task from the list it blocked on. The | ||
189 | * task can migrate while we acquire the lock, but at | ||
190 | * most one time. So at most two passes through loop. | ||
191 | */ | ||
192 | for (;;) { | ||
193 | rnp = t->rcu_blocked_node; | ||
194 | spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
195 | if (rnp == t->rcu_blocked_node) | ||
196 | break; | ||
197 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
198 | } | ||
199 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | ||
200 | list_del_init(&t->rcu_node_entry); | ||
201 | t->rcu_blocked_node = NULL; | ||
202 | |||
203 | /* | ||
204 | * If this was the last task on the current list, and if | ||
205 | * we aren't waiting on any CPUs, report the quiescent state. | ||
206 | * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk() | ||
207 | * drop rnp->lock and restore irq. | ||
208 | */ | ||
209 | if (!empty && rnp->qsmask == 0 && | ||
210 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | ||
211 | struct rcu_node *rnp_p; | ||
212 | |||
213 | if (rnp->parent == NULL) { | ||
214 | /* Only one rcu_node in the tree. */ | ||
215 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | ||
216 | return; | ||
217 | } | ||
218 | /* Report up the rest of the hierarchy. */ | ||
219 | mask = rnp->grpmask; | ||
220 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
221 | rnp_p = rnp->parent; | ||
222 | spin_lock_irqsave(&rnp_p->lock, flags); | ||
223 | WARN_ON_ONCE(rnp->qsmask); | ||
224 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags); | ||
225 | return; | ||
226 | } | ||
227 | spin_unlock(&rnp->lock); | ||
228 | } | ||
229 | local_irq_restore(flags); | ||
230 | } | ||
231 | |||
232 | /* | ||
233 | * Tree-preemptable RCU implementation for rcu_read_unlock(). | ||
234 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost | ||
235 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | ||
236 | * invoke rcu_read_unlock_special() to clean up after a context switch | ||
237 | * in an RCU read-side critical section and other special cases. | ||
238 | */ | ||
239 | void __rcu_read_unlock(void) | ||
240 | { | ||
241 | struct task_struct *t = current; | ||
242 | |||
243 | barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ | ||
244 | if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && | ||
245 | unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) | ||
246 | rcu_read_unlock_special(t); | ||
247 | } | ||
248 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | ||
249 | |||
250 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
251 | |||
252 | /* | ||
253 | * Scan the current list of tasks blocked within RCU read-side critical | ||
254 | * sections, printing out the tid of each. | ||
255 | */ | ||
256 | static void rcu_print_task_stall(struct rcu_node *rnp) | ||
257 | { | ||
258 | unsigned long flags; | ||
259 | struct list_head *lp; | ||
260 | int phase = rnp->gpnum & 0x1; | ||
261 | struct task_struct *t; | ||
262 | |||
263 | if (!list_empty(&rnp->blocked_tasks[phase])) { | ||
264 | spin_lock_irqsave(&rnp->lock, flags); | ||
265 | phase = rnp->gpnum & 0x1; /* re-read under lock. */ | ||
266 | lp = &rnp->blocked_tasks[phase]; | ||
267 | list_for_each_entry(t, lp, rcu_node_entry) | ||
268 | printk(" P%d", t->pid); | ||
269 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
270 | } | ||
271 | } | ||
272 | |||
273 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
274 | |||
275 | /* | ||
276 | * Check that the list of blocked tasks for the newly completed grace | ||
277 | * period is in fact empty. It is a serious bug to complete a grace | ||
278 | * period that still has RCU readers blocked! This function must be | ||
279 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | ||
280 | * must be held by the caller. | ||
281 | */ | ||
282 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
283 | { | ||
284 | WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])); | ||
285 | WARN_ON_ONCE(rnp->qsmask); | ||
286 | } | ||
287 | |||
288 | /* | ||
289 | * Check for preempted RCU readers for the specified rcu_node structure. | ||
290 | * If the caller needs a reliable answer, it must hold the rcu_node's | ||
291 | * >lock. | ||
292 | */ | ||
293 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
294 | { | ||
295 | return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | ||
296 | } | ||
297 | |||
298 | #ifdef CONFIG_HOTPLUG_CPU | ||
299 | |||
300 | /* | ||
301 | * Handle tasklist migration for case in which all CPUs covered by the | ||
302 | * specified rcu_node have gone offline. Move them up to the root | ||
303 | * rcu_node. The reason for not just moving them to the immediate | ||
304 | * parent is to remove the need for rcu_read_unlock_special() to | ||
305 | * make more than two attempts to acquire the target rcu_node's lock. | ||
306 | * | ||
307 | * The caller must hold rnp->lock with irqs disabled. | ||
308 | */ | ||
309 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | ||
310 | struct rcu_node *rnp, | ||
311 | struct rcu_data *rdp) | ||
312 | { | ||
313 | int i; | ||
314 | struct list_head *lp; | ||
315 | struct list_head *lp_root; | ||
316 | struct rcu_node *rnp_root = rcu_get_root(rsp); | ||
317 | struct task_struct *tp; | ||
318 | |||
319 | if (rnp == rnp_root) { | ||
320 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | ||
321 | return; /* Shouldn't happen: at least one CPU online. */ | ||
322 | } | ||
323 | WARN_ON_ONCE(rnp != rdp->mynode && | ||
324 | (!list_empty(&rnp->blocked_tasks[0]) || | ||
325 | !list_empty(&rnp->blocked_tasks[1]))); | ||
326 | |||
327 | /* | ||
328 | * Move tasks up to root rcu_node. Rely on the fact that the | ||
329 | * root rcu_node can be at most one ahead of the rest of the | ||
330 | * rcu_nodes in terms of gp_num value. This fact allows us to | ||
331 | * move the blocked_tasks[] array directly, element by element. | ||
332 | */ | ||
333 | for (i = 0; i < 2; i++) { | ||
334 | lp = &rnp->blocked_tasks[i]; | ||
335 | lp_root = &rnp_root->blocked_tasks[i]; | ||
336 | while (!list_empty(lp)) { | ||
337 | tp = list_entry(lp->next, typeof(*tp), rcu_node_entry); | ||
338 | spin_lock(&rnp_root->lock); /* irqs already disabled */ | ||
339 | list_del(&tp->rcu_node_entry); | ||
340 | tp->rcu_blocked_node = rnp_root; | ||
341 | list_add(&tp->rcu_node_entry, lp_root); | ||
342 | spin_unlock(&rnp_root->lock); /* irqs remain disabled */ | ||
343 | } | ||
344 | } | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Do CPU-offline processing for preemptable RCU. | ||
349 | */ | ||
350 | static void rcu_preempt_offline_cpu(int cpu) | ||
351 | { | ||
352 | __rcu_offline_cpu(cpu, &rcu_preempt_state); | ||
353 | } | ||
354 | |||
355 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
356 | |||
357 | /* | ||
358 | * Check for a quiescent state from the current CPU. When a task blocks, | ||
359 | * the task is recorded in the corresponding CPU's rcu_node structure, | ||
360 | * which is checked elsewhere. | ||
361 | * | ||
362 | * Caller must disable hard irqs. | ||
363 | */ | ||
364 | static void rcu_preempt_check_callbacks(int cpu) | ||
365 | { | ||
366 | struct task_struct *t = current; | ||
367 | |||
368 | if (t->rcu_read_lock_nesting == 0) { | ||
369 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
370 | rcu_preempt_qs(cpu); | ||
371 | return; | ||
372 | } | ||
373 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) | ||
374 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | ||
375 | } | ||
376 | |||
377 | /* | ||
378 | * Process callbacks for preemptable RCU. | ||
379 | */ | ||
380 | static void rcu_preempt_process_callbacks(void) | ||
381 | { | ||
382 | __rcu_process_callbacks(&rcu_preempt_state, | ||
383 | &__get_cpu_var(rcu_preempt_data)); | ||
384 | } | ||
385 | |||
386 | /* | ||
387 | * Queue a preemptable-RCU callback for invocation after a grace period. | ||
388 | */ | ||
389 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
390 | { | ||
391 | __call_rcu(head, func, &rcu_preempt_state); | ||
392 | } | ||
393 | EXPORT_SYMBOL_GPL(call_rcu); | ||
394 | |||
395 | /* | ||
396 | * Check to see if there is any immediate preemptable-RCU-related work | ||
397 | * to be done. | ||
398 | */ | ||
399 | static int rcu_preempt_pending(int cpu) | ||
400 | { | ||
401 | return __rcu_pending(&rcu_preempt_state, | ||
402 | &per_cpu(rcu_preempt_data, cpu)); | ||
403 | } | ||
404 | |||
405 | /* | ||
406 | * Does preemptable RCU need the CPU to stay out of dynticks mode? | ||
407 | */ | ||
408 | static int rcu_preempt_needs_cpu(int cpu) | ||
409 | { | ||
410 | return !!per_cpu(rcu_preempt_data, cpu).nxtlist; | ||
411 | } | ||
412 | |||
413 | /* | ||
414 | * Initialize preemptable RCU's per-CPU data. | ||
415 | */ | ||
416 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | ||
417 | { | ||
418 | rcu_init_percpu_data(cpu, &rcu_preempt_state, 1); | ||
419 | } | ||
420 | |||
421 | /* | ||
422 | * Check for a task exiting while in a preemptable-RCU read-side | ||
423 | * critical section, clean up if so. No need to issue warnings, | ||
424 | * as debug_check_no_locks_held() already does this if lockdep | ||
425 | * is enabled. | ||
426 | */ | ||
427 | void exit_rcu(void) | ||
428 | { | ||
429 | struct task_struct *t = current; | ||
430 | |||
431 | if (t->rcu_read_lock_nesting == 0) | ||
432 | return; | ||
433 | t->rcu_read_lock_nesting = 1; | ||
434 | rcu_read_unlock(); | ||
435 | } | ||
436 | |||
437 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
438 | |||
439 | /* | ||
440 | * Tell them what RCU they are running. | ||
441 | */ | ||
442 | static inline void rcu_bootup_announce(void) | ||
443 | { | ||
444 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * Return the number of RCU batches processed thus far for debug & stats. | ||
449 | */ | ||
450 | long rcu_batches_completed(void) | ||
451 | { | ||
452 | return rcu_batches_completed_sched(); | ||
453 | } | ||
454 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
455 | |||
456 | /* | ||
457 | * Because preemptable RCU does not exist, we never have to check for | ||
458 | * CPUs being in quiescent states. | ||
459 | */ | ||
460 | static void rcu_preempt_note_context_switch(int cpu) | ||
461 | { | ||
462 | } | ||
463 | |||
464 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
465 | |||
466 | /* | ||
467 | * Because preemptable RCU does not exist, we never have to check for | ||
468 | * tasks blocked within RCU read-side critical sections. | ||
469 | */ | ||
470 | static void rcu_print_task_stall(struct rcu_node *rnp) | ||
471 | { | ||
472 | } | ||
473 | |||
474 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
475 | |||
476 | /* | ||
477 | * Because there is no preemptable RCU, there can be no readers blocked, | ||
478 | * so there is no need to check for blocked tasks. So check only for | ||
479 | * bogus qsmask values. | ||
480 | */ | ||
481 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
482 | { | ||
483 | WARN_ON_ONCE(rnp->qsmask); | ||
484 | } | ||
485 | |||
486 | /* | ||
487 | * Because preemptable RCU does not exist, there are never any preempted | ||
488 | * RCU readers. | ||
489 | */ | ||
490 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
491 | { | ||
492 | return 0; | ||
493 | } | ||
494 | |||
495 | #ifdef CONFIG_HOTPLUG_CPU | ||
496 | |||
497 | /* | ||
498 | * Because preemptable RCU does not exist, it never needs to migrate | ||
499 | * tasks that were blocked within RCU read-side critical sections. | ||
500 | */ | ||
501 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | ||
502 | struct rcu_node *rnp, | ||
503 | struct rcu_data *rdp) | ||
504 | { | ||
505 | } | ||
506 | |||
507 | /* | ||
508 | * Because preemptable RCU does not exist, it never needs CPU-offline | ||
509 | * processing. | ||
510 | */ | ||
511 | static void rcu_preempt_offline_cpu(int cpu) | ||
512 | { | ||
513 | } | ||
514 | |||
515 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
516 | |||
517 | /* | ||
518 | * Because preemptable RCU does not exist, it never has any callbacks | ||
519 | * to check. | ||
520 | */ | ||
521 | void rcu_preempt_check_callbacks(int cpu) | ||
522 | { | ||
523 | } | ||
524 | |||
525 | /* | ||
526 | * Because preemptable RCU does not exist, it never has any callbacks | ||
527 | * to process. | ||
528 | */ | ||
529 | void rcu_preempt_process_callbacks(void) | ||
530 | { | ||
531 | } | ||
532 | |||
533 | /* | ||
534 | * In classic RCU, call_rcu() is just call_rcu_sched(). | ||
535 | */ | ||
536 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
537 | { | ||
538 | call_rcu_sched(head, func); | ||
539 | } | ||
540 | EXPORT_SYMBOL_GPL(call_rcu); | ||
541 | |||
542 | /* | ||
543 | * Because preemptable RCU does not exist, it never has any work to do. | ||
544 | */ | ||
545 | static int rcu_preempt_pending(int cpu) | ||
546 | { | ||
547 | return 0; | ||
548 | } | ||
549 | |||
550 | /* | ||
551 | * Because preemptable RCU does not exist, it never needs any CPU. | ||
552 | */ | ||
553 | static int rcu_preempt_needs_cpu(int cpu) | ||
554 | { | ||
555 | return 0; | ||
556 | } | ||
557 | |||
558 | /* | ||
559 | * Because preemptable RCU does not exist, there is no per-CPU | ||
560 | * data to initialize. | ||
561 | */ | ||
562 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | ||
563 | { | ||
564 | } | ||
565 | |||
566 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index fe1dcdbf1ca3..c89f5e9fd173 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c | |||
@@ -20,7 +20,7 @@ | |||
20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU |
21 | * | 21 | * |
22 | * For detailed explanation of Read-Copy Update mechanism see - | 22 | * For detailed explanation of Read-Copy Update mechanism see - |
23 | * Documentation/RCU | 23 | * Documentation/RCU |
24 | * | 24 | * |
25 | */ | 25 | */ |
26 | #include <linux/types.h> | 26 | #include <linux/types.h> |
@@ -43,6 +43,7 @@ | |||
43 | #include <linux/debugfs.h> | 43 | #include <linux/debugfs.h> |
44 | #include <linux/seq_file.h> | 44 | #include <linux/seq_file.h> |
45 | 45 | ||
46 | #define RCU_TREE_NONCORE | ||
46 | #include "rcutree.h" | 47 | #include "rcutree.h" |
47 | 48 | ||
48 | static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) | 49 | static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) |
@@ -76,8 +77,12 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) | |||
76 | 77 | ||
77 | static int show_rcudata(struct seq_file *m, void *unused) | 78 | static int show_rcudata(struct seq_file *m, void *unused) |
78 | { | 79 | { |
79 | seq_puts(m, "rcu:\n"); | 80 | #ifdef CONFIG_TREE_PREEMPT_RCU |
80 | PRINT_RCU_DATA(rcu_data, print_one_rcu_data, m); | 81 | seq_puts(m, "rcu_preempt:\n"); |
82 | PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data, m); | ||
83 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
84 | seq_puts(m, "rcu_sched:\n"); | ||
85 | PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data, m); | ||
81 | seq_puts(m, "rcu_bh:\n"); | 86 | seq_puts(m, "rcu_bh:\n"); |
82 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m); | 87 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m); |
83 | return 0; | 88 | return 0; |
@@ -102,7 +107,7 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp) | |||
102 | return; | 107 | return; |
103 | seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", | 108 | seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", |
104 | rdp->cpu, | 109 | rdp->cpu, |
105 | cpu_is_offline(rdp->cpu) ? "\"Y\"" : "\"N\"", | 110 | cpu_is_offline(rdp->cpu) ? "\"N\"" : "\"Y\"", |
106 | rdp->completed, rdp->gpnum, | 111 | rdp->completed, rdp->gpnum, |
107 | rdp->passed_quiesc, rdp->passed_quiesc_completed, | 112 | rdp->passed_quiesc, rdp->passed_quiesc_completed, |
108 | rdp->qs_pending); | 113 | rdp->qs_pending); |
@@ -124,8 +129,12 @@ static int show_rcudata_csv(struct seq_file *m, void *unused) | |||
124 | seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); | 129 | seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); |
125 | #endif /* #ifdef CONFIG_NO_HZ */ | 130 | #endif /* #ifdef CONFIG_NO_HZ */ |
126 | seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n"); | 131 | seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n"); |
127 | seq_puts(m, "\"rcu:\"\n"); | 132 | #ifdef CONFIG_TREE_PREEMPT_RCU |
128 | PRINT_RCU_DATA(rcu_data, print_one_rcu_data_csv, m); | 133 | seq_puts(m, "\"rcu_preempt:\"\n"); |
134 | PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data_csv, m); | ||
135 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
136 | seq_puts(m, "\"rcu_sched:\"\n"); | ||
137 | PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data_csv, m); | ||
129 | seq_puts(m, "\"rcu_bh:\"\n"); | 138 | seq_puts(m, "\"rcu_bh:\"\n"); |
130 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m); | 139 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m); |
131 | return 0; | 140 | return 0; |
@@ -171,8 +180,12 @@ static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp) | |||
171 | 180 | ||
172 | static int show_rcuhier(struct seq_file *m, void *unused) | 181 | static int show_rcuhier(struct seq_file *m, void *unused) |
173 | { | 182 | { |
174 | seq_puts(m, "rcu:\n"); | 183 | #ifdef CONFIG_TREE_PREEMPT_RCU |
175 | print_one_rcu_state(m, &rcu_state); | 184 | seq_puts(m, "rcu_preempt:\n"); |
185 | print_one_rcu_state(m, &rcu_preempt_state); | ||
186 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
187 | seq_puts(m, "rcu_sched:\n"); | ||
188 | print_one_rcu_state(m, &rcu_sched_state); | ||
176 | seq_puts(m, "rcu_bh:\n"); | 189 | seq_puts(m, "rcu_bh:\n"); |
177 | print_one_rcu_state(m, &rcu_bh_state); | 190 | print_one_rcu_state(m, &rcu_bh_state); |
178 | return 0; | 191 | return 0; |
@@ -193,8 +206,12 @@ static struct file_operations rcuhier_fops = { | |||
193 | 206 | ||
194 | static int show_rcugp(struct seq_file *m, void *unused) | 207 | static int show_rcugp(struct seq_file *m, void *unused) |
195 | { | 208 | { |
196 | seq_printf(m, "rcu: completed=%ld gpnum=%ld\n", | 209 | #ifdef CONFIG_TREE_PREEMPT_RCU |
197 | rcu_state.completed, rcu_state.gpnum); | 210 | seq_printf(m, "rcu_preempt: completed=%ld gpnum=%ld\n", |
211 | rcu_preempt_state.completed, rcu_preempt_state.gpnum); | ||
212 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
213 | seq_printf(m, "rcu_sched: completed=%ld gpnum=%ld\n", | ||
214 | rcu_sched_state.completed, rcu_sched_state.gpnum); | ||
198 | seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", | 215 | seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", |
199 | rcu_bh_state.completed, rcu_bh_state.gpnum); | 216 | rcu_bh_state.completed, rcu_bh_state.gpnum); |
200 | return 0; | 217 | return 0; |
@@ -243,8 +260,12 @@ static void print_rcu_pendings(struct seq_file *m, struct rcu_state *rsp) | |||
243 | 260 | ||
244 | static int show_rcu_pending(struct seq_file *m, void *unused) | 261 | static int show_rcu_pending(struct seq_file *m, void *unused) |
245 | { | 262 | { |
246 | seq_puts(m, "rcu:\n"); | 263 | #ifdef CONFIG_TREE_PREEMPT_RCU |
247 | print_rcu_pendings(m, &rcu_state); | 264 | seq_puts(m, "rcu_preempt:\n"); |
265 | print_rcu_pendings(m, &rcu_preempt_state); | ||
266 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
267 | seq_puts(m, "rcu_sched:\n"); | ||
268 | print_rcu_pendings(m, &rcu_sched_state); | ||
248 | seq_puts(m, "rcu_bh:\n"); | 269 | seq_puts(m, "rcu_bh:\n"); |
249 | print_rcu_pendings(m, &rcu_bh_state); | 270 | print_rcu_pendings(m, &rcu_bh_state); |
250 | return 0; | 271 | return 0; |
@@ -264,62 +285,47 @@ static struct file_operations rcu_pending_fops = { | |||
264 | }; | 285 | }; |
265 | 286 | ||
266 | static struct dentry *rcudir; | 287 | static struct dentry *rcudir; |
267 | static struct dentry *datadir; | ||
268 | static struct dentry *datadir_csv; | ||
269 | static struct dentry *gpdir; | ||
270 | static struct dentry *hierdir; | ||
271 | static struct dentry *rcu_pendingdir; | ||
272 | 288 | ||
273 | static int __init rcuclassic_trace_init(void) | 289 | static int __init rcuclassic_trace_init(void) |
274 | { | 290 | { |
291 | struct dentry *retval; | ||
292 | |||
275 | rcudir = debugfs_create_dir("rcu", NULL); | 293 | rcudir = debugfs_create_dir("rcu", NULL); |
276 | if (!rcudir) | 294 | if (!rcudir) |
277 | goto out; | 295 | goto free_out; |
278 | 296 | ||
279 | datadir = debugfs_create_file("rcudata", 0444, rcudir, | 297 | retval = debugfs_create_file("rcudata", 0444, rcudir, |
280 | NULL, &rcudata_fops); | 298 | NULL, &rcudata_fops); |
281 | if (!datadir) | 299 | if (!retval) |
282 | goto free_out; | 300 | goto free_out; |
283 | 301 | ||
284 | datadir_csv = debugfs_create_file("rcudata.csv", 0444, rcudir, | 302 | retval = debugfs_create_file("rcudata.csv", 0444, rcudir, |
285 | NULL, &rcudata_csv_fops); | 303 | NULL, &rcudata_csv_fops); |
286 | if (!datadir_csv) | 304 | if (!retval) |
287 | goto free_out; | 305 | goto free_out; |
288 | 306 | ||
289 | gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); | 307 | retval = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); |
290 | if (!gpdir) | 308 | if (!retval) |
291 | goto free_out; | 309 | goto free_out; |
292 | 310 | ||
293 | hierdir = debugfs_create_file("rcuhier", 0444, rcudir, | 311 | retval = debugfs_create_file("rcuhier", 0444, rcudir, |
294 | NULL, &rcuhier_fops); | 312 | NULL, &rcuhier_fops); |
295 | if (!hierdir) | 313 | if (!retval) |
296 | goto free_out; | 314 | goto free_out; |
297 | 315 | ||
298 | rcu_pendingdir = debugfs_create_file("rcu_pending", 0444, rcudir, | 316 | retval = debugfs_create_file("rcu_pending", 0444, rcudir, |
299 | NULL, &rcu_pending_fops); | 317 | NULL, &rcu_pending_fops); |
300 | if (!rcu_pendingdir) | 318 | if (!retval) |
301 | goto free_out; | 319 | goto free_out; |
302 | return 0; | 320 | return 0; |
303 | free_out: | 321 | free_out: |
304 | if (datadir) | 322 | debugfs_remove_recursive(rcudir); |
305 | debugfs_remove(datadir); | ||
306 | if (datadir_csv) | ||
307 | debugfs_remove(datadir_csv); | ||
308 | if (gpdir) | ||
309 | debugfs_remove(gpdir); | ||
310 | debugfs_remove(rcudir); | ||
311 | out: | ||
312 | return 1; | 323 | return 1; |
313 | } | 324 | } |
314 | 325 | ||
315 | static void __exit rcuclassic_trace_cleanup(void) | 326 | static void __exit rcuclassic_trace_cleanup(void) |
316 | { | 327 | { |
317 | debugfs_remove(datadir); | 328 | debugfs_remove_recursive(rcudir); |
318 | debugfs_remove(datadir_csv); | ||
319 | debugfs_remove(gpdir); | ||
320 | debugfs_remove(hierdir); | ||
321 | debugfs_remove(rcu_pendingdir); | ||
322 | debugfs_remove(rcudir); | ||
323 | } | 329 | } |
324 | 330 | ||
325 | 331 | ||
diff --git a/kernel/resource.c b/kernel/resource.c index 78b087221c15..fb11a58b9594 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
@@ -223,13 +223,13 @@ int release_resource(struct resource *old) | |||
223 | 223 | ||
224 | EXPORT_SYMBOL(release_resource); | 224 | EXPORT_SYMBOL(release_resource); |
225 | 225 | ||
226 | #if defined(CONFIG_MEMORY_HOTPLUG) && !defined(CONFIG_ARCH_HAS_WALK_MEMORY) | 226 | #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) |
227 | /* | 227 | /* |
228 | * Finds the lowest memory reosurce exists within [res->start.res->end) | 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) |
229 | * the caller must specify res->start, res->end, res->flags. | 229 | * the caller must specify res->start, res->end, res->flags and "name". |
230 | * If found, returns 0, res is overwritten, if not found, returns -1. | 230 | * If found, returns 0, res is overwritten, if not found, returns -1. |
231 | */ | 231 | */ |
232 | static int find_next_system_ram(struct resource *res) | 232 | static int find_next_system_ram(struct resource *res, char *name) |
233 | { | 233 | { |
234 | resource_size_t start, end; | 234 | resource_size_t start, end; |
235 | struct resource *p; | 235 | struct resource *p; |
@@ -245,6 +245,8 @@ static int find_next_system_ram(struct resource *res) | |||
245 | /* system ram is just marked as IORESOURCE_MEM */ | 245 | /* system ram is just marked as IORESOURCE_MEM */ |
246 | if (p->flags != res->flags) | 246 | if (p->flags != res->flags) |
247 | continue; | 247 | continue; |
248 | if (name && strcmp(p->name, name)) | ||
249 | continue; | ||
248 | if (p->start > end) { | 250 | if (p->start > end) { |
249 | p = NULL; | 251 | p = NULL; |
250 | break; | 252 | break; |
@@ -262,19 +264,26 @@ static int find_next_system_ram(struct resource *res) | |||
262 | res->end = p->end; | 264 | res->end = p->end; |
263 | return 0; | 265 | return 0; |
264 | } | 266 | } |
265 | int | 267 | |
266 | walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg, | 268 | /* |
267 | int (*func)(unsigned long, unsigned long, void *)) | 269 | * This function calls callback against all memory range of "System RAM" |
270 | * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. | ||
271 | * Now, this function is only for "System RAM". | ||
272 | */ | ||
273 | int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, | ||
274 | void *arg, int (*func)(unsigned long, unsigned long, void *)) | ||
268 | { | 275 | { |
269 | struct resource res; | 276 | struct resource res; |
270 | unsigned long pfn, len; | 277 | unsigned long pfn, len; |
271 | u64 orig_end; | 278 | u64 orig_end; |
272 | int ret = -1; | 279 | int ret = -1; |
280 | |||
273 | res.start = (u64) start_pfn << PAGE_SHIFT; | 281 | res.start = (u64) start_pfn << PAGE_SHIFT; |
274 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; | 282 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; |
275 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 283 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
276 | orig_end = res.end; | 284 | orig_end = res.end; |
277 | while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) { | 285 | while ((res.start < res.end) && |
286 | (find_next_system_ram(&res, "System RAM") >= 0)) { | ||
278 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); | 287 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); |
279 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); | 288 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); |
280 | ret = (*func)(pfn, len, arg); | 289 | ret = (*func)(pfn, len, arg); |
diff --git a/kernel/sched.c b/kernel/sched.c index 1b59e265273b..2f76e06bea58 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -39,7 +39,7 @@ | |||
39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
42 | #include <linux/perf_counter.h> | 42 | #include <linux/perf_event.h> |
43 | #include <linux/security.h> | 43 | #include <linux/security.h> |
44 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
@@ -64,7 +64,6 @@ | |||
64 | #include <linux/tsacct_kern.h> | 64 | #include <linux/tsacct_kern.h> |
65 | #include <linux/kprobes.h> | 65 | #include <linux/kprobes.h> |
66 | #include <linux/delayacct.h> | 66 | #include <linux/delayacct.h> |
67 | #include <linux/reciprocal_div.h> | ||
68 | #include <linux/unistd.h> | 67 | #include <linux/unistd.h> |
69 | #include <linux/pagemap.h> | 68 | #include <linux/pagemap.h> |
70 | #include <linux/hrtimer.h> | 69 | #include <linux/hrtimer.h> |
@@ -120,30 +119,6 @@ | |||
120 | */ | 119 | */ |
121 | #define RUNTIME_INF ((u64)~0ULL) | 120 | #define RUNTIME_INF ((u64)~0ULL) |
122 | 121 | ||
123 | #ifdef CONFIG_SMP | ||
124 | |||
125 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
126 | |||
127 | /* | ||
128 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | ||
129 | * Since cpu_power is a 'constant', we can use a reciprocal divide. | ||
130 | */ | ||
131 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | ||
132 | { | ||
133 | return reciprocal_divide(load, sg->reciprocal_cpu_power); | ||
134 | } | ||
135 | |||
136 | /* | ||
137 | * Each time a sched group cpu_power is changed, | ||
138 | * we must compute its reciprocal value | ||
139 | */ | ||
140 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | ||
141 | { | ||
142 | sg->__cpu_power += val; | ||
143 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | ||
144 | } | ||
145 | #endif | ||
146 | |||
147 | static inline int rt_policy(int policy) | 122 | static inline int rt_policy(int policy) |
148 | { | 123 | { |
149 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 124 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
@@ -309,8 +284,8 @@ void set_tg_uid(struct user_struct *user) | |||
309 | 284 | ||
310 | /* | 285 | /* |
311 | * Root task group. | 286 | * Root task group. |
312 | * Every UID task group (including init_task_group aka UID-0) will | 287 | * Every UID task group (including init_task_group aka UID-0) will |
313 | * be a child to this group. | 288 | * be a child to this group. |
314 | */ | 289 | */ |
315 | struct task_group root_task_group; | 290 | struct task_group root_task_group; |
316 | 291 | ||
@@ -318,12 +293,12 @@ struct task_group root_task_group; | |||
318 | /* Default task group's sched entity on each cpu */ | 293 | /* Default task group's sched entity on each cpu */ |
319 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | 294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); |
320 | /* Default task group's cfs_rq on each cpu */ | 295 | /* Default task group's cfs_rq on each cpu */ |
321 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | 296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); |
322 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
323 | 298 | ||
324 | #ifdef CONFIG_RT_GROUP_SCHED | 299 | #ifdef CONFIG_RT_GROUP_SCHED |
325 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | 300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); |
326 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | 301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); |
327 | #endif /* CONFIG_RT_GROUP_SCHED */ | 302 | #endif /* CONFIG_RT_GROUP_SCHED */ |
328 | #else /* !CONFIG_USER_SCHED */ | 303 | #else /* !CONFIG_USER_SCHED */ |
329 | #define root_task_group init_task_group | 304 | #define root_task_group init_task_group |
@@ -401,13 +376,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
401 | 376 | ||
402 | #else | 377 | #else |
403 | 378 | ||
404 | #ifdef CONFIG_SMP | ||
405 | static int root_task_group_empty(void) | ||
406 | { | ||
407 | return 1; | ||
408 | } | ||
409 | #endif | ||
410 | |||
411 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 379 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
412 | static inline struct task_group *task_group(struct task_struct *p) | 380 | static inline struct task_group *task_group(struct task_struct *p) |
413 | { | 381 | { |
@@ -537,14 +505,6 @@ struct root_domain { | |||
537 | #ifdef CONFIG_SMP | 505 | #ifdef CONFIG_SMP |
538 | struct cpupri cpupri; | 506 | struct cpupri cpupri; |
539 | #endif | 507 | #endif |
540 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
541 | /* | ||
542 | * Preferred wake up cpu nominated by sched_mc balance that will be | ||
543 | * used when most cpus are idle in the system indicating overall very | ||
544 | * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) | ||
545 | */ | ||
546 | unsigned int sched_mc_preferred_wakeup_cpu; | ||
547 | #endif | ||
548 | }; | 508 | }; |
549 | 509 | ||
550 | /* | 510 | /* |
@@ -616,6 +576,7 @@ struct rq { | |||
616 | 576 | ||
617 | unsigned char idle_at_tick; | 577 | unsigned char idle_at_tick; |
618 | /* For active balancing */ | 578 | /* For active balancing */ |
579 | int post_schedule; | ||
619 | int active_balance; | 580 | int active_balance; |
620 | int push_cpu; | 581 | int push_cpu; |
621 | /* cpu of this runqueue: */ | 582 | /* cpu of this runqueue: */ |
@@ -626,6 +587,9 @@ struct rq { | |||
626 | 587 | ||
627 | struct task_struct *migration_thread; | 588 | struct task_struct *migration_thread; |
628 | struct list_head migration_queue; | 589 | struct list_head migration_queue; |
590 | |||
591 | u64 rt_avg; | ||
592 | u64 age_stamp; | ||
629 | #endif | 593 | #endif |
630 | 594 | ||
631 | /* calc_load related fields */ | 595 | /* calc_load related fields */ |
@@ -665,9 +629,10 @@ struct rq { | |||
665 | 629 | ||
666 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 630 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
667 | 631 | ||
668 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) | 632 | static inline |
633 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
669 | { | 634 | { |
670 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); | 635 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
671 | } | 636 | } |
672 | 637 | ||
673 | static inline int cpu_of(struct rq *rq) | 638 | static inline int cpu_of(struct rq *rq) |
@@ -693,6 +658,7 @@ static inline int cpu_of(struct rq *rq) | |||
693 | #define this_rq() (&__get_cpu_var(runqueues)) | 658 | #define this_rq() (&__get_cpu_var(runqueues)) |
694 | #define task_rq(p) cpu_rq(task_cpu(p)) | 659 | #define task_rq(p) cpu_rq(task_cpu(p)) |
695 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | 660 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
661 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | ||
696 | 662 | ||
697 | inline void update_rq_clock(struct rq *rq) | 663 | inline void update_rq_clock(struct rq *rq) |
698 | { | 664 | { |
@@ -715,15 +681,9 @@ inline void update_rq_clock(struct rq *rq) | |||
715 | * This interface allows printk to be called with the runqueue lock | 681 | * This interface allows printk to be called with the runqueue lock |
716 | * held and know whether or not it is OK to wake up the klogd. | 682 | * held and know whether or not it is OK to wake up the klogd. |
717 | */ | 683 | */ |
718 | int runqueue_is_locked(void) | 684 | int runqueue_is_locked(int cpu) |
719 | { | 685 | { |
720 | int cpu = get_cpu(); | 686 | return spin_is_locked(&cpu_rq(cpu)->lock); |
721 | struct rq *rq = cpu_rq(cpu); | ||
722 | int ret; | ||
723 | |||
724 | ret = spin_is_locked(&rq->lock); | ||
725 | put_cpu(); | ||
726 | return ret; | ||
727 | } | 687 | } |
728 | 688 | ||
729 | /* | 689 | /* |
@@ -861,6 +821,14 @@ unsigned int sysctl_sched_shares_ratelimit = 250000; | |||
861 | unsigned int sysctl_sched_shares_thresh = 4; | 821 | unsigned int sysctl_sched_shares_thresh = 4; |
862 | 822 | ||
863 | /* | 823 | /* |
824 | * period over which we average the RT time consumption, measured | ||
825 | * in ms. | ||
826 | * | ||
827 | * default: 1s | ||
828 | */ | ||
829 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | ||
830 | |||
831 | /* | ||
864 | * period over which we measure -rt task cpu usage in us. | 832 | * period over which we measure -rt task cpu usage in us. |
865 | * default: 1s | 833 | * default: 1s |
866 | */ | 834 | */ |
@@ -1278,12 +1246,37 @@ void wake_up_idle_cpu(int cpu) | |||
1278 | } | 1246 | } |
1279 | #endif /* CONFIG_NO_HZ */ | 1247 | #endif /* CONFIG_NO_HZ */ |
1280 | 1248 | ||
1249 | static u64 sched_avg_period(void) | ||
1250 | { | ||
1251 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||
1252 | } | ||
1253 | |||
1254 | static void sched_avg_update(struct rq *rq) | ||
1255 | { | ||
1256 | s64 period = sched_avg_period(); | ||
1257 | |||
1258 | while ((s64)(rq->clock - rq->age_stamp) > period) { | ||
1259 | rq->age_stamp += period; | ||
1260 | rq->rt_avg /= 2; | ||
1261 | } | ||
1262 | } | ||
1263 | |||
1264 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
1265 | { | ||
1266 | rq->rt_avg += rt_delta; | ||
1267 | sched_avg_update(rq); | ||
1268 | } | ||
1269 | |||
1281 | #else /* !CONFIG_SMP */ | 1270 | #else /* !CONFIG_SMP */ |
1282 | static void resched_task(struct task_struct *p) | 1271 | static void resched_task(struct task_struct *p) |
1283 | { | 1272 | { |
1284 | assert_spin_locked(&task_rq(p)->lock); | 1273 | assert_spin_locked(&task_rq(p)->lock); |
1285 | set_tsk_need_resched(p); | 1274 | set_tsk_need_resched(p); |
1286 | } | 1275 | } |
1276 | |||
1277 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
1278 | { | ||
1279 | } | ||
1287 | #endif /* CONFIG_SMP */ | 1280 | #endif /* CONFIG_SMP */ |
1288 | 1281 | ||
1289 | #if BITS_PER_LONG == 32 | 1282 | #if BITS_PER_LONG == 32 |
@@ -1494,8 +1487,65 @@ static int tg_nop(struct task_group *tg, void *data) | |||
1494 | #endif | 1487 | #endif |
1495 | 1488 | ||
1496 | #ifdef CONFIG_SMP | 1489 | #ifdef CONFIG_SMP |
1497 | static unsigned long source_load(int cpu, int type); | 1490 | /* Used instead of source_load when we know the type == 0 */ |
1498 | static unsigned long target_load(int cpu, int type); | 1491 | static unsigned long weighted_cpuload(const int cpu) |
1492 | { | ||
1493 | return cpu_rq(cpu)->load.weight; | ||
1494 | } | ||
1495 | |||
1496 | /* | ||
1497 | * Return a low guess at the load of a migration-source cpu weighted | ||
1498 | * according to the scheduling class and "nice" value. | ||
1499 | * | ||
1500 | * We want to under-estimate the load of migration sources, to | ||
1501 | * balance conservatively. | ||
1502 | */ | ||
1503 | static unsigned long source_load(int cpu, int type) | ||
1504 | { | ||
1505 | struct rq *rq = cpu_rq(cpu); | ||
1506 | unsigned long total = weighted_cpuload(cpu); | ||
1507 | |||
1508 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
1509 | return total; | ||
1510 | |||
1511 | return min(rq->cpu_load[type-1], total); | ||
1512 | } | ||
1513 | |||
1514 | /* | ||
1515 | * Return a high guess at the load of a migration-target cpu weighted | ||
1516 | * according to the scheduling class and "nice" value. | ||
1517 | */ | ||
1518 | static unsigned long target_load(int cpu, int type) | ||
1519 | { | ||
1520 | struct rq *rq = cpu_rq(cpu); | ||
1521 | unsigned long total = weighted_cpuload(cpu); | ||
1522 | |||
1523 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
1524 | return total; | ||
1525 | |||
1526 | return max(rq->cpu_load[type-1], total); | ||
1527 | } | ||
1528 | |||
1529 | static struct sched_group *group_of(int cpu) | ||
1530 | { | ||
1531 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
1532 | |||
1533 | if (!sd) | ||
1534 | return NULL; | ||
1535 | |||
1536 | return sd->groups; | ||
1537 | } | ||
1538 | |||
1539 | static unsigned long power_of(int cpu) | ||
1540 | { | ||
1541 | struct sched_group *group = group_of(cpu); | ||
1542 | |||
1543 | if (!group) | ||
1544 | return SCHED_LOAD_SCALE; | ||
1545 | |||
1546 | return group->cpu_power; | ||
1547 | } | ||
1548 | |||
1499 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1549 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1500 | 1550 | ||
1501 | static unsigned long cpu_avg_load_per_task(int cpu) | 1551 | static unsigned long cpu_avg_load_per_task(int cpu) |
@@ -1513,28 +1563,35 @@ static unsigned long cpu_avg_load_per_task(int cpu) | |||
1513 | 1563 | ||
1514 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1564 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1515 | 1565 | ||
1566 | struct update_shares_data { | ||
1567 | unsigned long rq_weight[NR_CPUS]; | ||
1568 | }; | ||
1569 | |||
1570 | static DEFINE_PER_CPU(struct update_shares_data, update_shares_data); | ||
1571 | |||
1516 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1572 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1517 | 1573 | ||
1518 | /* | 1574 | /* |
1519 | * Calculate and set the cpu's group shares. | 1575 | * Calculate and set the cpu's group shares. |
1520 | */ | 1576 | */ |
1521 | static void | 1577 | static void update_group_shares_cpu(struct task_group *tg, int cpu, |
1522 | update_group_shares_cpu(struct task_group *tg, int cpu, | 1578 | unsigned long sd_shares, |
1523 | unsigned long sd_shares, unsigned long sd_rq_weight) | 1579 | unsigned long sd_rq_weight, |
1580 | struct update_shares_data *usd) | ||
1524 | { | 1581 | { |
1525 | unsigned long shares; | 1582 | unsigned long shares, rq_weight; |
1526 | unsigned long rq_weight; | 1583 | int boost = 0; |
1527 | |||
1528 | if (!tg->se[cpu]) | ||
1529 | return; | ||
1530 | 1584 | ||
1531 | rq_weight = tg->cfs_rq[cpu]->rq_weight; | 1585 | rq_weight = usd->rq_weight[cpu]; |
1586 | if (!rq_weight) { | ||
1587 | boost = 1; | ||
1588 | rq_weight = NICE_0_LOAD; | ||
1589 | } | ||
1532 | 1590 | ||
1533 | /* | 1591 | /* |
1534 | * \Sum shares * rq_weight | 1592 | * \Sum_j shares_j * rq_weight_i |
1535 | * shares = ----------------------- | 1593 | * shares_i = ----------------------------- |
1536 | * \Sum rq_weight | 1594 | * \Sum_j rq_weight_j |
1537 | * | ||
1538 | */ | 1595 | */ |
1539 | shares = (sd_shares * rq_weight) / sd_rq_weight; | 1596 | shares = (sd_shares * rq_weight) / sd_rq_weight; |
1540 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); | 1597 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
@@ -1545,8 +1602,8 @@ update_group_shares_cpu(struct task_group *tg, int cpu, | |||
1545 | unsigned long flags; | 1602 | unsigned long flags; |
1546 | 1603 | ||
1547 | spin_lock_irqsave(&rq->lock, flags); | 1604 | spin_lock_irqsave(&rq->lock, flags); |
1548 | tg->cfs_rq[cpu]->shares = shares; | 1605 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; |
1549 | 1606 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; | |
1550 | __set_se_shares(tg->se[cpu], shares); | 1607 | __set_se_shares(tg->se[cpu], shares); |
1551 | spin_unlock_irqrestore(&rq->lock, flags); | 1608 | spin_unlock_irqrestore(&rq->lock, flags); |
1552 | } | 1609 | } |
@@ -1559,22 +1616,30 @@ update_group_shares_cpu(struct task_group *tg, int cpu, | |||
1559 | */ | 1616 | */ |
1560 | static int tg_shares_up(struct task_group *tg, void *data) | 1617 | static int tg_shares_up(struct task_group *tg, void *data) |
1561 | { | 1618 | { |
1562 | unsigned long weight, rq_weight = 0; | 1619 | unsigned long weight, rq_weight = 0, shares = 0; |
1563 | unsigned long shares = 0; | 1620 | struct update_shares_data *usd; |
1564 | struct sched_domain *sd = data; | 1621 | struct sched_domain *sd = data; |
1622 | unsigned long flags; | ||
1565 | int i; | 1623 | int i; |
1566 | 1624 | ||
1625 | if (!tg->se[0]) | ||
1626 | return 0; | ||
1627 | |||
1628 | local_irq_save(flags); | ||
1629 | usd = &__get_cpu_var(update_shares_data); | ||
1630 | |||
1567 | for_each_cpu(i, sched_domain_span(sd)) { | 1631 | for_each_cpu(i, sched_domain_span(sd)) { |
1632 | weight = tg->cfs_rq[i]->load.weight; | ||
1633 | usd->rq_weight[i] = weight; | ||
1634 | |||
1568 | /* | 1635 | /* |
1569 | * If there are currently no tasks on the cpu pretend there | 1636 | * If there are currently no tasks on the cpu pretend there |
1570 | * is one of average load so that when a new task gets to | 1637 | * is one of average load so that when a new task gets to |
1571 | * run here it will not get delayed by group starvation. | 1638 | * run here it will not get delayed by group starvation. |
1572 | */ | 1639 | */ |
1573 | weight = tg->cfs_rq[i]->load.weight; | ||
1574 | if (!weight) | 1640 | if (!weight) |
1575 | weight = NICE_0_LOAD; | 1641 | weight = NICE_0_LOAD; |
1576 | 1642 | ||
1577 | tg->cfs_rq[i]->rq_weight = weight; | ||
1578 | rq_weight += weight; | 1643 | rq_weight += weight; |
1579 | shares += tg->cfs_rq[i]->shares; | 1644 | shares += tg->cfs_rq[i]->shares; |
1580 | } | 1645 | } |
@@ -1586,7 +1651,9 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1586 | shares = tg->shares; | 1651 | shares = tg->shares; |
1587 | 1652 | ||
1588 | for_each_cpu(i, sched_domain_span(sd)) | 1653 | for_each_cpu(i, sched_domain_span(sd)) |
1589 | update_group_shares_cpu(tg, i, shares, rq_weight); | 1654 | update_group_shares_cpu(tg, i, shares, rq_weight, usd); |
1655 | |||
1656 | local_irq_restore(flags); | ||
1590 | 1657 | ||
1591 | return 0; | 1658 | return 0; |
1592 | } | 1659 | } |
@@ -1616,8 +1683,14 @@ static int tg_load_down(struct task_group *tg, void *data) | |||
1616 | 1683 | ||
1617 | static void update_shares(struct sched_domain *sd) | 1684 | static void update_shares(struct sched_domain *sd) |
1618 | { | 1685 | { |
1619 | u64 now = cpu_clock(raw_smp_processor_id()); | 1686 | s64 elapsed; |
1620 | s64 elapsed = now - sd->last_update; | 1687 | u64 now; |
1688 | |||
1689 | if (root_task_group_empty()) | ||
1690 | return; | ||
1691 | |||
1692 | now = cpu_clock(raw_smp_processor_id()); | ||
1693 | elapsed = now - sd->last_update; | ||
1621 | 1694 | ||
1622 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | 1695 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { |
1623 | sd->last_update = now; | 1696 | sd->last_update = now; |
@@ -1627,6 +1700,9 @@ static void update_shares(struct sched_domain *sd) | |||
1627 | 1700 | ||
1628 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | 1701 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1629 | { | 1702 | { |
1703 | if (root_task_group_empty()) | ||
1704 | return; | ||
1705 | |||
1630 | spin_unlock(&rq->lock); | 1706 | spin_unlock(&rq->lock); |
1631 | update_shares(sd); | 1707 | update_shares(sd); |
1632 | spin_lock(&rq->lock); | 1708 | spin_lock(&rq->lock); |
@@ -1634,6 +1710,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
1634 | 1710 | ||
1635 | static void update_h_load(long cpu) | 1711 | static void update_h_load(long cpu) |
1636 | { | 1712 | { |
1713 | if (root_task_group_empty()) | ||
1714 | return; | ||
1715 | |||
1637 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | 1716 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
1638 | } | 1717 | } |
1639 | 1718 | ||
@@ -1651,6 +1730,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
1651 | 1730 | ||
1652 | #ifdef CONFIG_PREEMPT | 1731 | #ifdef CONFIG_PREEMPT |
1653 | 1732 | ||
1733 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
1734 | |||
1654 | /* | 1735 | /* |
1655 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | 1736 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1656 | * way at the expense of forcing extra atomic operations in all | 1737 | * way at the expense of forcing extra atomic operations in all |
@@ -1915,13 +1996,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
1915 | } | 1996 | } |
1916 | 1997 | ||
1917 | #ifdef CONFIG_SMP | 1998 | #ifdef CONFIG_SMP |
1918 | |||
1919 | /* Used instead of source_load when we know the type == 0 */ | ||
1920 | static unsigned long weighted_cpuload(const int cpu) | ||
1921 | { | ||
1922 | return cpu_rq(cpu)->load.weight; | ||
1923 | } | ||
1924 | |||
1925 | /* | 1999 | /* |
1926 | * Is this task likely cache-hot: | 2000 | * Is this task likely cache-hot: |
1927 | */ | 2001 | */ |
@@ -1979,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
1979 | if (task_hot(p, old_rq->clock, NULL)) | 2053 | if (task_hot(p, old_rq->clock, NULL)) |
1980 | schedstat_inc(p, se.nr_forced2_migrations); | 2054 | schedstat_inc(p, se.nr_forced2_migrations); |
1981 | #endif | 2055 | #endif |
1982 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2056 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
1983 | 1, 1, NULL, 0); | 2057 | 1, 1, NULL, 0); |
1984 | } | 2058 | } |
1985 | p->se.vruntime -= old_cfsrq->min_vruntime - | 2059 | p->se.vruntime -= old_cfsrq->min_vruntime - |
@@ -2195,186 +2269,6 @@ void kick_process(struct task_struct *p) | |||
2195 | preempt_enable(); | 2269 | preempt_enable(); |
2196 | } | 2270 | } |
2197 | EXPORT_SYMBOL_GPL(kick_process); | 2271 | EXPORT_SYMBOL_GPL(kick_process); |
2198 | |||
2199 | /* | ||
2200 | * Return a low guess at the load of a migration-source cpu weighted | ||
2201 | * according to the scheduling class and "nice" value. | ||
2202 | * | ||
2203 | * We want to under-estimate the load of migration sources, to | ||
2204 | * balance conservatively. | ||
2205 | */ | ||
2206 | static unsigned long source_load(int cpu, int type) | ||
2207 | { | ||
2208 | struct rq *rq = cpu_rq(cpu); | ||
2209 | unsigned long total = weighted_cpuload(cpu); | ||
2210 | |||
2211 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2212 | return total; | ||
2213 | |||
2214 | return min(rq->cpu_load[type-1], total); | ||
2215 | } | ||
2216 | |||
2217 | /* | ||
2218 | * Return a high guess at the load of a migration-target cpu weighted | ||
2219 | * according to the scheduling class and "nice" value. | ||
2220 | */ | ||
2221 | static unsigned long target_load(int cpu, int type) | ||
2222 | { | ||
2223 | struct rq *rq = cpu_rq(cpu); | ||
2224 | unsigned long total = weighted_cpuload(cpu); | ||
2225 | |||
2226 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2227 | return total; | ||
2228 | |||
2229 | return max(rq->cpu_load[type-1], total); | ||
2230 | } | ||
2231 | |||
2232 | /* | ||
2233 | * find_idlest_group finds and returns the least busy CPU group within the | ||
2234 | * domain. | ||
2235 | */ | ||
2236 | static struct sched_group * | ||
2237 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | ||
2238 | { | ||
2239 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | ||
2240 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
2241 | int load_idx = sd->forkexec_idx; | ||
2242 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
2243 | |||
2244 | do { | ||
2245 | unsigned long load, avg_load; | ||
2246 | int local_group; | ||
2247 | int i; | ||
2248 | |||
2249 | /* Skip over this group if it has no CPUs allowed */ | ||
2250 | if (!cpumask_intersects(sched_group_cpus(group), | ||
2251 | &p->cpus_allowed)) | ||
2252 | continue; | ||
2253 | |||
2254 | local_group = cpumask_test_cpu(this_cpu, | ||
2255 | sched_group_cpus(group)); | ||
2256 | |||
2257 | /* Tally up the load of all CPUs in the group */ | ||
2258 | avg_load = 0; | ||
2259 | |||
2260 | for_each_cpu(i, sched_group_cpus(group)) { | ||
2261 | /* Bias balancing toward cpus of our domain */ | ||
2262 | if (local_group) | ||
2263 | load = source_load(i, load_idx); | ||
2264 | else | ||
2265 | load = target_load(i, load_idx); | ||
2266 | |||
2267 | avg_load += load; | ||
2268 | } | ||
2269 | |||
2270 | /* Adjust by relative CPU power of the group */ | ||
2271 | avg_load = sg_div_cpu_power(group, | ||
2272 | avg_load * SCHED_LOAD_SCALE); | ||
2273 | |||
2274 | if (local_group) { | ||
2275 | this_load = avg_load; | ||
2276 | this = group; | ||
2277 | } else if (avg_load < min_load) { | ||
2278 | min_load = avg_load; | ||
2279 | idlest = group; | ||
2280 | } | ||
2281 | } while (group = group->next, group != sd->groups); | ||
2282 | |||
2283 | if (!idlest || 100*this_load < imbalance*min_load) | ||
2284 | return NULL; | ||
2285 | return idlest; | ||
2286 | } | ||
2287 | |||
2288 | /* | ||
2289 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
2290 | */ | ||
2291 | static int | ||
2292 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
2293 | { | ||
2294 | unsigned long load, min_load = ULONG_MAX; | ||
2295 | int idlest = -1; | ||
2296 | int i; | ||
2297 | |||
2298 | /* Traverse only the allowed CPUs */ | ||
2299 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
2300 | load = weighted_cpuload(i); | ||
2301 | |||
2302 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
2303 | min_load = load; | ||
2304 | idlest = i; | ||
2305 | } | ||
2306 | } | ||
2307 | |||
2308 | return idlest; | ||
2309 | } | ||
2310 | |||
2311 | /* | ||
2312 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
2313 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
2314 | * SD_BALANCE_EXEC. | ||
2315 | * | ||
2316 | * Balance, ie. select the least loaded group. | ||
2317 | * | ||
2318 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
2319 | * | ||
2320 | * preempt must be disabled. | ||
2321 | */ | ||
2322 | static int sched_balance_self(int cpu, int flag) | ||
2323 | { | ||
2324 | struct task_struct *t = current; | ||
2325 | struct sched_domain *tmp, *sd = NULL; | ||
2326 | |||
2327 | for_each_domain(cpu, tmp) { | ||
2328 | /* | ||
2329 | * If power savings logic is enabled for a domain, stop there. | ||
2330 | */ | ||
2331 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
2332 | break; | ||
2333 | if (tmp->flags & flag) | ||
2334 | sd = tmp; | ||
2335 | } | ||
2336 | |||
2337 | if (sd) | ||
2338 | update_shares(sd); | ||
2339 | |||
2340 | while (sd) { | ||
2341 | struct sched_group *group; | ||
2342 | int new_cpu, weight; | ||
2343 | |||
2344 | if (!(sd->flags & flag)) { | ||
2345 | sd = sd->child; | ||
2346 | continue; | ||
2347 | } | ||
2348 | |||
2349 | group = find_idlest_group(sd, t, cpu); | ||
2350 | if (!group) { | ||
2351 | sd = sd->child; | ||
2352 | continue; | ||
2353 | } | ||
2354 | |||
2355 | new_cpu = find_idlest_cpu(group, t, cpu); | ||
2356 | if (new_cpu == -1 || new_cpu == cpu) { | ||
2357 | /* Now try balancing at a lower domain level of cpu */ | ||
2358 | sd = sd->child; | ||
2359 | continue; | ||
2360 | } | ||
2361 | |||
2362 | /* Now try balancing at a lower domain level of new_cpu */ | ||
2363 | cpu = new_cpu; | ||
2364 | weight = cpumask_weight(sched_domain_span(sd)); | ||
2365 | sd = NULL; | ||
2366 | for_each_domain(cpu, tmp) { | ||
2367 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
2368 | break; | ||
2369 | if (tmp->flags & flag) | ||
2370 | sd = tmp; | ||
2371 | } | ||
2372 | /* while loop will break here if sd == NULL */ | ||
2373 | } | ||
2374 | |||
2375 | return cpu; | ||
2376 | } | ||
2377 | |||
2378 | #endif /* CONFIG_SMP */ | 2272 | #endif /* CONFIG_SMP */ |
2379 | 2273 | ||
2380 | /** | 2274 | /** |
@@ -2412,37 +2306,22 @@ void task_oncpu_function_call(struct task_struct *p, | |||
2412 | * | 2306 | * |
2413 | * returns failure only if the task is already active. | 2307 | * returns failure only if the task is already active. |
2414 | */ | 2308 | */ |
2415 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 2309 | static int try_to_wake_up(struct task_struct *p, unsigned int state, |
2310 | int wake_flags) | ||
2416 | { | 2311 | { |
2417 | int cpu, orig_cpu, this_cpu, success = 0; | 2312 | int cpu, orig_cpu, this_cpu, success = 0; |
2418 | unsigned long flags; | 2313 | unsigned long flags; |
2419 | long old_state; | ||
2420 | struct rq *rq; | 2314 | struct rq *rq; |
2421 | 2315 | ||
2422 | if (!sched_feat(SYNC_WAKEUPS)) | 2316 | if (!sched_feat(SYNC_WAKEUPS)) |
2423 | sync = 0; | 2317 | wake_flags &= ~WF_SYNC; |
2424 | |||
2425 | #ifdef CONFIG_SMP | ||
2426 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { | ||
2427 | struct sched_domain *sd; | ||
2428 | 2318 | ||
2429 | this_cpu = raw_smp_processor_id(); | 2319 | this_cpu = get_cpu(); |
2430 | cpu = task_cpu(p); | ||
2431 | |||
2432 | for_each_domain(this_cpu, sd) { | ||
2433 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | ||
2434 | update_shares(sd); | ||
2435 | break; | ||
2436 | } | ||
2437 | } | ||
2438 | } | ||
2439 | #endif | ||
2440 | 2320 | ||
2441 | smp_wmb(); | 2321 | smp_wmb(); |
2442 | rq = task_rq_lock(p, &flags); | 2322 | rq = task_rq_lock(p, &flags); |
2443 | update_rq_clock(rq); | 2323 | update_rq_clock(rq); |
2444 | old_state = p->state; | 2324 | if (!(p->state & state)) |
2445 | if (!(old_state & state)) | ||
2446 | goto out; | 2325 | goto out; |
2447 | 2326 | ||
2448 | if (p->se.on_rq) | 2327 | if (p->se.on_rq) |
@@ -2450,27 +2329,29 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
2450 | 2329 | ||
2451 | cpu = task_cpu(p); | 2330 | cpu = task_cpu(p); |
2452 | orig_cpu = cpu; | 2331 | orig_cpu = cpu; |
2453 | this_cpu = smp_processor_id(); | ||
2454 | 2332 | ||
2455 | #ifdef CONFIG_SMP | 2333 | #ifdef CONFIG_SMP |
2456 | if (unlikely(task_running(rq, p))) | 2334 | if (unlikely(task_running(rq, p))) |
2457 | goto out_activate; | 2335 | goto out_activate; |
2458 | 2336 | ||
2459 | cpu = p->sched_class->select_task_rq(p, sync); | 2337 | /* |
2460 | if (cpu != orig_cpu) { | 2338 | * In order to handle concurrent wakeups and release the rq->lock |
2339 | * we put the task in TASK_WAKING state. | ||
2340 | * | ||
2341 | * First fix up the nr_uninterruptible count: | ||
2342 | */ | ||
2343 | if (task_contributes_to_load(p)) | ||
2344 | rq->nr_uninterruptible--; | ||
2345 | p->state = TASK_WAKING; | ||
2346 | task_rq_unlock(rq, &flags); | ||
2347 | |||
2348 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
2349 | if (cpu != orig_cpu) | ||
2461 | set_task_cpu(p, cpu); | 2350 | set_task_cpu(p, cpu); |
2462 | task_rq_unlock(rq, &flags); | ||
2463 | /* might preempt at this point */ | ||
2464 | rq = task_rq_lock(p, &flags); | ||
2465 | old_state = p->state; | ||
2466 | if (!(old_state & state)) | ||
2467 | goto out; | ||
2468 | if (p->se.on_rq) | ||
2469 | goto out_running; | ||
2470 | 2351 | ||
2471 | this_cpu = smp_processor_id(); | 2352 | rq = task_rq_lock(p, &flags); |
2472 | cpu = task_cpu(p); | 2353 | WARN_ON(p->state != TASK_WAKING); |
2473 | } | 2354 | cpu = task_cpu(p); |
2474 | 2355 | ||
2475 | #ifdef CONFIG_SCHEDSTATS | 2356 | #ifdef CONFIG_SCHEDSTATS |
2476 | schedstat_inc(rq, ttwu_count); | 2357 | schedstat_inc(rq, ttwu_count); |
@@ -2490,7 +2371,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
2490 | out_activate: | 2371 | out_activate: |
2491 | #endif /* CONFIG_SMP */ | 2372 | #endif /* CONFIG_SMP */ |
2492 | schedstat_inc(p, se.nr_wakeups); | 2373 | schedstat_inc(p, se.nr_wakeups); |
2493 | if (sync) | 2374 | if (wake_flags & WF_SYNC) |
2494 | schedstat_inc(p, se.nr_wakeups_sync); | 2375 | schedstat_inc(p, se.nr_wakeups_sync); |
2495 | if (orig_cpu != cpu) | 2376 | if (orig_cpu != cpu) |
2496 | schedstat_inc(p, se.nr_wakeups_migrate); | 2377 | schedstat_inc(p, se.nr_wakeups_migrate); |
@@ -2519,7 +2400,7 @@ out_activate: | |||
2519 | 2400 | ||
2520 | out_running: | 2401 | out_running: |
2521 | trace_sched_wakeup(rq, p, success); | 2402 | trace_sched_wakeup(rq, p, success); |
2522 | check_preempt_curr(rq, p, sync); | 2403 | check_preempt_curr(rq, p, wake_flags); |
2523 | 2404 | ||
2524 | p->state = TASK_RUNNING; | 2405 | p->state = TASK_RUNNING; |
2525 | #ifdef CONFIG_SMP | 2406 | #ifdef CONFIG_SMP |
@@ -2528,6 +2409,7 @@ out_running: | |||
2528 | #endif | 2409 | #endif |
2529 | out: | 2410 | out: |
2530 | task_rq_unlock(rq, &flags); | 2411 | task_rq_unlock(rq, &flags); |
2412 | put_cpu(); | ||
2531 | 2413 | ||
2532 | return success; | 2414 | return success; |
2533 | } | 2415 | } |
@@ -2570,6 +2452,7 @@ static void __sched_fork(struct task_struct *p) | |||
2570 | p->se.avg_overlap = 0; | 2452 | p->se.avg_overlap = 0; |
2571 | p->se.start_runtime = 0; | 2453 | p->se.start_runtime = 0; |
2572 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2454 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
2455 | p->se.avg_running = 0; | ||
2573 | 2456 | ||
2574 | #ifdef CONFIG_SCHEDSTATS | 2457 | #ifdef CONFIG_SCHEDSTATS |
2575 | p->se.wait_start = 0; | 2458 | p->se.wait_start = 0; |
@@ -2631,18 +2514,41 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2631 | 2514 | ||
2632 | __sched_fork(p); | 2515 | __sched_fork(p); |
2633 | 2516 | ||
2634 | #ifdef CONFIG_SMP | ||
2635 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | ||
2636 | #endif | ||
2637 | set_task_cpu(p, cpu); | ||
2638 | |||
2639 | /* | 2517 | /* |
2640 | * Make sure we do not leak PI boosting priority to the child: | 2518 | * Make sure we do not leak PI boosting priority to the child. |
2641 | */ | 2519 | */ |
2642 | p->prio = current->normal_prio; | 2520 | p->prio = current->normal_prio; |
2521 | |||
2522 | /* | ||
2523 | * Revert to default priority/policy on fork if requested. | ||
2524 | */ | ||
2525 | if (unlikely(p->sched_reset_on_fork)) { | ||
2526 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) | ||
2527 | p->policy = SCHED_NORMAL; | ||
2528 | |||
2529 | if (p->normal_prio < DEFAULT_PRIO) | ||
2530 | p->prio = DEFAULT_PRIO; | ||
2531 | |||
2532 | if (PRIO_TO_NICE(p->static_prio) < 0) { | ||
2533 | p->static_prio = NICE_TO_PRIO(0); | ||
2534 | set_load_weight(p); | ||
2535 | } | ||
2536 | |||
2537 | /* | ||
2538 | * We don't need the reset flag anymore after the fork. It has | ||
2539 | * fulfilled its duty: | ||
2540 | */ | ||
2541 | p->sched_reset_on_fork = 0; | ||
2542 | } | ||
2543 | |||
2643 | if (!rt_prio(p->prio)) | 2544 | if (!rt_prio(p->prio)) |
2644 | p->sched_class = &fair_sched_class; | 2545 | p->sched_class = &fair_sched_class; |
2645 | 2546 | ||
2547 | #ifdef CONFIG_SMP | ||
2548 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | ||
2549 | #endif | ||
2550 | set_task_cpu(p, cpu); | ||
2551 | |||
2646 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2552 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
2647 | if (likely(sched_info_on())) | 2553 | if (likely(sched_info_on())) |
2648 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 2554 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
@@ -2688,7 +2594,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2688 | inc_nr_running(rq); | 2594 | inc_nr_running(rq); |
2689 | } | 2595 | } |
2690 | trace_sched_wakeup_new(rq, p, 1); | 2596 | trace_sched_wakeup_new(rq, p, 1); |
2691 | check_preempt_curr(rq, p, 0); | 2597 | check_preempt_curr(rq, p, WF_FORK); |
2692 | #ifdef CONFIG_SMP | 2598 | #ifdef CONFIG_SMP |
2693 | if (p->sched_class->task_wake_up) | 2599 | if (p->sched_class->task_wake_up) |
2694 | p->sched_class->task_wake_up(rq, p); | 2600 | p->sched_class->task_wake_up(rq, p); |
@@ -2796,12 +2702,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2796 | { | 2702 | { |
2797 | struct mm_struct *mm = rq->prev_mm; | 2703 | struct mm_struct *mm = rq->prev_mm; |
2798 | long prev_state; | 2704 | long prev_state; |
2799 | #ifdef CONFIG_SMP | ||
2800 | int post_schedule = 0; | ||
2801 | |||
2802 | if (current->sched_class->needs_post_schedule) | ||
2803 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
2804 | #endif | ||
2805 | 2705 | ||
2806 | rq->prev_mm = NULL; | 2706 | rq->prev_mm = NULL; |
2807 | 2707 | ||
@@ -2818,12 +2718,8 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2818 | */ | 2718 | */ |
2819 | prev_state = prev->state; | 2719 | prev_state = prev->state; |
2820 | finish_arch_switch(prev); | 2720 | finish_arch_switch(prev); |
2821 | perf_counter_task_sched_in(current, cpu_of(rq)); | 2721 | perf_event_task_sched_in(current, cpu_of(rq)); |
2822 | finish_lock_switch(rq, prev); | 2722 | finish_lock_switch(rq, prev); |
2823 | #ifdef CONFIG_SMP | ||
2824 | if (post_schedule) | ||
2825 | current->sched_class->post_schedule(rq); | ||
2826 | #endif | ||
2827 | 2723 | ||
2828 | fire_sched_in_preempt_notifiers(current); | 2724 | fire_sched_in_preempt_notifiers(current); |
2829 | if (mm) | 2725 | if (mm) |
@@ -2838,6 +2734,42 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2838 | } | 2734 | } |
2839 | } | 2735 | } |
2840 | 2736 | ||
2737 | #ifdef CONFIG_SMP | ||
2738 | |||
2739 | /* assumes rq->lock is held */ | ||
2740 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | ||
2741 | { | ||
2742 | if (prev->sched_class->pre_schedule) | ||
2743 | prev->sched_class->pre_schedule(rq, prev); | ||
2744 | } | ||
2745 | |||
2746 | /* rq->lock is NOT held, but preemption is disabled */ | ||
2747 | static inline void post_schedule(struct rq *rq) | ||
2748 | { | ||
2749 | if (rq->post_schedule) { | ||
2750 | unsigned long flags; | ||
2751 | |||
2752 | spin_lock_irqsave(&rq->lock, flags); | ||
2753 | if (rq->curr->sched_class->post_schedule) | ||
2754 | rq->curr->sched_class->post_schedule(rq); | ||
2755 | spin_unlock_irqrestore(&rq->lock, flags); | ||
2756 | |||
2757 | rq->post_schedule = 0; | ||
2758 | } | ||
2759 | } | ||
2760 | |||
2761 | #else | ||
2762 | |||
2763 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) | ||
2764 | { | ||
2765 | } | ||
2766 | |||
2767 | static inline void post_schedule(struct rq *rq) | ||
2768 | { | ||
2769 | } | ||
2770 | |||
2771 | #endif | ||
2772 | |||
2841 | /** | 2773 | /** |
2842 | * schedule_tail - first thing a freshly forked thread must call. | 2774 | * schedule_tail - first thing a freshly forked thread must call. |
2843 | * @prev: the thread we just switched away from. | 2775 | * @prev: the thread we just switched away from. |
@@ -2848,6 +2780,13 @@ asmlinkage void schedule_tail(struct task_struct *prev) | |||
2848 | struct rq *rq = this_rq(); | 2780 | struct rq *rq = this_rq(); |
2849 | 2781 | ||
2850 | finish_task_switch(rq, prev); | 2782 | finish_task_switch(rq, prev); |
2783 | |||
2784 | /* | ||
2785 | * FIXME: do we need to worry about rq being invalidated by the | ||
2786 | * task_switch? | ||
2787 | */ | ||
2788 | post_schedule(rq); | ||
2789 | |||
2851 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 2790 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
2852 | /* In this case, finish_task_switch does not reenable preemption */ | 2791 | /* In this case, finish_task_switch does not reenable preemption */ |
2853 | preempt_enable(); | 2792 | preempt_enable(); |
@@ -2965,6 +2904,19 @@ unsigned long nr_iowait(void) | |||
2965 | return sum; | 2904 | return sum; |
2966 | } | 2905 | } |
2967 | 2906 | ||
2907 | unsigned long nr_iowait_cpu(void) | ||
2908 | { | ||
2909 | struct rq *this = this_rq(); | ||
2910 | return atomic_read(&this->nr_iowait); | ||
2911 | } | ||
2912 | |||
2913 | unsigned long this_cpu_load(void) | ||
2914 | { | ||
2915 | struct rq *this = this_rq(); | ||
2916 | return this->cpu_load[0]; | ||
2917 | } | ||
2918 | |||
2919 | |||
2968 | /* Variables and functions for calc_load */ | 2920 | /* Variables and functions for calc_load */ |
2969 | static atomic_long_t calc_load_tasks; | 2921 | static atomic_long_t calc_load_tasks; |
2970 | static unsigned long calc_load_update; | 2922 | static unsigned long calc_load_update; |
@@ -3164,7 +3116,7 @@ out: | |||
3164 | void sched_exec(void) | 3116 | void sched_exec(void) |
3165 | { | 3117 | { |
3166 | int new_cpu, this_cpu = get_cpu(); | 3118 | int new_cpu, this_cpu = get_cpu(); |
3167 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 3119 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); |
3168 | put_cpu(); | 3120 | put_cpu(); |
3169 | if (new_cpu != this_cpu) | 3121 | if (new_cpu != this_cpu) |
3170 | sched_migrate_task(current, new_cpu); | 3122 | sched_migrate_task(current, new_cpu); |
@@ -3379,9 +3331,10 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3379 | { | 3331 | { |
3380 | const struct sched_class *class; | 3332 | const struct sched_class *class; |
3381 | 3333 | ||
3382 | for (class = sched_class_highest; class; class = class->next) | 3334 | for_each_class(class) { |
3383 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | 3335 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
3384 | return 1; | 3336 | return 1; |
3337 | } | ||
3385 | 3338 | ||
3386 | return 0; | 3339 | return 0; |
3387 | } | 3340 | } |
@@ -3544,7 +3497,7 @@ static inline void update_sd_power_savings_stats(struct sched_group *group, | |||
3544 | * capacity but still has some space to pick up some load | 3497 | * capacity but still has some space to pick up some load |
3545 | * from other group and save more power | 3498 | * from other group and save more power |
3546 | */ | 3499 | */ |
3547 | if (sgs->sum_nr_running > sgs->group_capacity - 1) | 3500 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) |
3548 | return; | 3501 | return; |
3549 | 3502 | ||
3550 | if (sgs->sum_nr_running > sds->leader_nr_running || | 3503 | if (sgs->sum_nr_running > sds->leader_nr_running || |
@@ -3583,11 +3536,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
3583 | *imbalance = sds->min_load_per_task; | 3536 | *imbalance = sds->min_load_per_task; |
3584 | sds->busiest = sds->group_min; | 3537 | sds->busiest = sds->group_min; |
3585 | 3538 | ||
3586 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | ||
3587 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | ||
3588 | group_first_cpu(sds->group_leader); | ||
3589 | } | ||
3590 | |||
3591 | return 1; | 3539 | return 1; |
3592 | 3540 | ||
3593 | } | 3541 | } |
@@ -3612,6 +3560,102 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
3612 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 3560 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
3613 | 3561 | ||
3614 | 3562 | ||
3563 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3564 | { | ||
3565 | return SCHED_LOAD_SCALE; | ||
3566 | } | ||
3567 | |||
3568 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3569 | { | ||
3570 | return default_scale_freq_power(sd, cpu); | ||
3571 | } | ||
3572 | |||
3573 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3574 | { | ||
3575 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3576 | unsigned long smt_gain = sd->smt_gain; | ||
3577 | |||
3578 | smt_gain /= weight; | ||
3579 | |||
3580 | return smt_gain; | ||
3581 | } | ||
3582 | |||
3583 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3584 | { | ||
3585 | return default_scale_smt_power(sd, cpu); | ||
3586 | } | ||
3587 | |||
3588 | unsigned long scale_rt_power(int cpu) | ||
3589 | { | ||
3590 | struct rq *rq = cpu_rq(cpu); | ||
3591 | u64 total, available; | ||
3592 | |||
3593 | sched_avg_update(rq); | ||
3594 | |||
3595 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
3596 | available = total - rq->rt_avg; | ||
3597 | |||
3598 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
3599 | total = SCHED_LOAD_SCALE; | ||
3600 | |||
3601 | total >>= SCHED_LOAD_SHIFT; | ||
3602 | |||
3603 | return div_u64(available, total); | ||
3604 | } | ||
3605 | |||
3606 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
3607 | { | ||
3608 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3609 | unsigned long power = SCHED_LOAD_SCALE; | ||
3610 | struct sched_group *sdg = sd->groups; | ||
3611 | |||
3612 | if (sched_feat(ARCH_POWER)) | ||
3613 | power *= arch_scale_freq_power(sd, cpu); | ||
3614 | else | ||
3615 | power *= default_scale_freq_power(sd, cpu); | ||
3616 | |||
3617 | power >>= SCHED_LOAD_SHIFT; | ||
3618 | |||
3619 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
3620 | if (sched_feat(ARCH_POWER)) | ||
3621 | power *= arch_scale_smt_power(sd, cpu); | ||
3622 | else | ||
3623 | power *= default_scale_smt_power(sd, cpu); | ||
3624 | |||
3625 | power >>= SCHED_LOAD_SHIFT; | ||
3626 | } | ||
3627 | |||
3628 | power *= scale_rt_power(cpu); | ||
3629 | power >>= SCHED_LOAD_SHIFT; | ||
3630 | |||
3631 | if (!power) | ||
3632 | power = 1; | ||
3633 | |||
3634 | sdg->cpu_power = power; | ||
3635 | } | ||
3636 | |||
3637 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
3638 | { | ||
3639 | struct sched_domain *child = sd->child; | ||
3640 | struct sched_group *group, *sdg = sd->groups; | ||
3641 | unsigned long power; | ||
3642 | |||
3643 | if (!child) { | ||
3644 | update_cpu_power(sd, cpu); | ||
3645 | return; | ||
3646 | } | ||
3647 | |||
3648 | power = 0; | ||
3649 | |||
3650 | group = child->groups; | ||
3651 | do { | ||
3652 | power += group->cpu_power; | ||
3653 | group = group->next; | ||
3654 | } while (group != child->groups); | ||
3655 | |||
3656 | sdg->cpu_power = power; | ||
3657 | } | ||
3658 | |||
3615 | /** | 3659 | /** |
3616 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 3660 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. |
3617 | * @group: sched_group whose statistics are to be updated. | 3661 | * @group: sched_group whose statistics are to be updated. |
@@ -3624,7 +3668,8 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
3624 | * @balance: Should we balance. | 3668 | * @balance: Should we balance. |
3625 | * @sgs: variable to hold the statistics for this group. | 3669 | * @sgs: variable to hold the statistics for this group. |
3626 | */ | 3670 | */ |
3627 | static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | 3671 | static inline void update_sg_lb_stats(struct sched_domain *sd, |
3672 | struct sched_group *group, int this_cpu, | ||
3628 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | 3673 | enum cpu_idle_type idle, int load_idx, int *sd_idle, |
3629 | int local_group, const struct cpumask *cpus, | 3674 | int local_group, const struct cpumask *cpus, |
3630 | int *balance, struct sg_lb_stats *sgs) | 3675 | int *balance, struct sg_lb_stats *sgs) |
@@ -3635,8 +3680,11 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | |||
3635 | unsigned long sum_avg_load_per_task; | 3680 | unsigned long sum_avg_load_per_task; |
3636 | unsigned long avg_load_per_task; | 3681 | unsigned long avg_load_per_task; |
3637 | 3682 | ||
3638 | if (local_group) | 3683 | if (local_group) { |
3639 | balance_cpu = group_first_cpu(group); | 3684 | balance_cpu = group_first_cpu(group); |
3685 | if (balance_cpu == this_cpu) | ||
3686 | update_group_power(sd, this_cpu); | ||
3687 | } | ||
3640 | 3688 | ||
3641 | /* Tally up the load of all CPUs in the group */ | 3689 | /* Tally up the load of all CPUs in the group */ |
3642 | sum_avg_load_per_task = avg_load_per_task = 0; | 3690 | sum_avg_load_per_task = avg_load_per_task = 0; |
@@ -3685,8 +3733,7 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | |||
3685 | } | 3733 | } |
3686 | 3734 | ||
3687 | /* Adjust by relative CPU power of the group */ | 3735 | /* Adjust by relative CPU power of the group */ |
3688 | sgs->avg_load = sg_div_cpu_power(group, | 3736 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; |
3689 | sgs->group_load * SCHED_LOAD_SCALE); | ||
3690 | 3737 | ||
3691 | 3738 | ||
3692 | /* | 3739 | /* |
@@ -3698,14 +3745,14 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | |||
3698 | * normalized nr_running number somewhere that negates | 3745 | * normalized nr_running number somewhere that negates |
3699 | * the hierarchy? | 3746 | * the hierarchy? |
3700 | */ | 3747 | */ |
3701 | avg_load_per_task = sg_div_cpu_power(group, | 3748 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / |
3702 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | 3749 | group->cpu_power; |
3703 | 3750 | ||
3704 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3751 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) |
3705 | sgs->group_imb = 1; | 3752 | sgs->group_imb = 1; |
3706 | 3753 | ||
3707 | sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 3754 | sgs->group_capacity = |
3708 | 3755 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | |
3709 | } | 3756 | } |
3710 | 3757 | ||
3711 | /** | 3758 | /** |
@@ -3723,9 +3770,13 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | |||
3723 | const struct cpumask *cpus, int *balance, | 3770 | const struct cpumask *cpus, int *balance, |
3724 | struct sd_lb_stats *sds) | 3771 | struct sd_lb_stats *sds) |
3725 | { | 3772 | { |
3773 | struct sched_domain *child = sd->child; | ||
3726 | struct sched_group *group = sd->groups; | 3774 | struct sched_group *group = sd->groups; |
3727 | struct sg_lb_stats sgs; | 3775 | struct sg_lb_stats sgs; |
3728 | int load_idx; | 3776 | int load_idx, prefer_sibling = 0; |
3777 | |||
3778 | if (child && child->flags & SD_PREFER_SIBLING) | ||
3779 | prefer_sibling = 1; | ||
3729 | 3780 | ||
3730 | init_sd_power_savings_stats(sd, sds, idle); | 3781 | init_sd_power_savings_stats(sd, sds, idle); |
3731 | load_idx = get_sd_load_idx(sd, idle); | 3782 | load_idx = get_sd_load_idx(sd, idle); |
@@ -3736,14 +3787,22 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | |||
3736 | local_group = cpumask_test_cpu(this_cpu, | 3787 | local_group = cpumask_test_cpu(this_cpu, |
3737 | sched_group_cpus(group)); | 3788 | sched_group_cpus(group)); |
3738 | memset(&sgs, 0, sizeof(sgs)); | 3789 | memset(&sgs, 0, sizeof(sgs)); |
3739 | update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, | 3790 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, |
3740 | local_group, cpus, balance, &sgs); | 3791 | local_group, cpus, balance, &sgs); |
3741 | 3792 | ||
3742 | if (local_group && balance && !(*balance)) | 3793 | if (local_group && balance && !(*balance)) |
3743 | return; | 3794 | return; |
3744 | 3795 | ||
3745 | sds->total_load += sgs.group_load; | 3796 | sds->total_load += sgs.group_load; |
3746 | sds->total_pwr += group->__cpu_power; | 3797 | sds->total_pwr += group->cpu_power; |
3798 | |||
3799 | /* | ||
3800 | * In case the child domain prefers tasks go to siblings | ||
3801 | * first, lower the group capacity to one so that we'll try | ||
3802 | * and move all the excess tasks away. | ||
3803 | */ | ||
3804 | if (prefer_sibling) | ||
3805 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
3747 | 3806 | ||
3748 | if (local_group) { | 3807 | if (local_group) { |
3749 | sds->this_load = sgs.avg_load; | 3808 | sds->this_load = sgs.avg_load; |
@@ -3763,7 +3822,6 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | |||
3763 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | 3822 | update_sd_power_savings_stats(group, sds, local_group, &sgs); |
3764 | group = group->next; | 3823 | group = group->next; |
3765 | } while (group != sd->groups); | 3824 | } while (group != sd->groups); |
3766 | |||
3767 | } | 3825 | } |
3768 | 3826 | ||
3769 | /** | 3827 | /** |
@@ -3801,28 +3859,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds, | |||
3801 | * moving them. | 3859 | * moving them. |
3802 | */ | 3860 | */ |
3803 | 3861 | ||
3804 | pwr_now += sds->busiest->__cpu_power * | 3862 | pwr_now += sds->busiest->cpu_power * |
3805 | min(sds->busiest_load_per_task, sds->max_load); | 3863 | min(sds->busiest_load_per_task, sds->max_load); |
3806 | pwr_now += sds->this->__cpu_power * | 3864 | pwr_now += sds->this->cpu_power * |
3807 | min(sds->this_load_per_task, sds->this_load); | 3865 | min(sds->this_load_per_task, sds->this_load); |
3808 | pwr_now /= SCHED_LOAD_SCALE; | 3866 | pwr_now /= SCHED_LOAD_SCALE; |
3809 | 3867 | ||
3810 | /* Amount of load we'd subtract */ | 3868 | /* Amount of load we'd subtract */ |
3811 | tmp = sg_div_cpu_power(sds->busiest, | 3869 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
3812 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | 3870 | sds->busiest->cpu_power; |
3813 | if (sds->max_load > tmp) | 3871 | if (sds->max_load > tmp) |
3814 | pwr_move += sds->busiest->__cpu_power * | 3872 | pwr_move += sds->busiest->cpu_power * |
3815 | min(sds->busiest_load_per_task, sds->max_load - tmp); | 3873 | min(sds->busiest_load_per_task, sds->max_load - tmp); |
3816 | 3874 | ||
3817 | /* Amount of load we'd add */ | 3875 | /* Amount of load we'd add */ |
3818 | if (sds->max_load * sds->busiest->__cpu_power < | 3876 | if (sds->max_load * sds->busiest->cpu_power < |
3819 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | 3877 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) |
3820 | tmp = sg_div_cpu_power(sds->this, | 3878 | tmp = (sds->max_load * sds->busiest->cpu_power) / |
3821 | sds->max_load * sds->busiest->__cpu_power); | 3879 | sds->this->cpu_power; |
3822 | else | 3880 | else |
3823 | tmp = sg_div_cpu_power(sds->this, | 3881 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
3824 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | 3882 | sds->this->cpu_power; |
3825 | pwr_move += sds->this->__cpu_power * | 3883 | pwr_move += sds->this->cpu_power * |
3826 | min(sds->this_load_per_task, sds->this_load + tmp); | 3884 | min(sds->this_load_per_task, sds->this_load + tmp); |
3827 | pwr_move /= SCHED_LOAD_SCALE; | 3885 | pwr_move /= SCHED_LOAD_SCALE; |
3828 | 3886 | ||
@@ -3857,8 +3915,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | |||
3857 | sds->max_load - sds->busiest_load_per_task); | 3915 | sds->max_load - sds->busiest_load_per_task); |
3858 | 3916 | ||
3859 | /* How much load to actually move to equalise the imbalance */ | 3917 | /* How much load to actually move to equalise the imbalance */ |
3860 | *imbalance = min(max_pull * sds->busiest->__cpu_power, | 3918 | *imbalance = min(max_pull * sds->busiest->cpu_power, |
3861 | (sds->avg_load - sds->this_load) * sds->this->__cpu_power) | 3919 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) |
3862 | / SCHED_LOAD_SCALE; | 3920 | / SCHED_LOAD_SCALE; |
3863 | 3921 | ||
3864 | /* | 3922 | /* |
@@ -3988,15 +4046,18 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | |||
3988 | int i; | 4046 | int i; |
3989 | 4047 | ||
3990 | for_each_cpu(i, sched_group_cpus(group)) { | 4048 | for_each_cpu(i, sched_group_cpus(group)) { |
4049 | unsigned long power = power_of(i); | ||
4050 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
3991 | unsigned long wl; | 4051 | unsigned long wl; |
3992 | 4052 | ||
3993 | if (!cpumask_test_cpu(i, cpus)) | 4053 | if (!cpumask_test_cpu(i, cpus)) |
3994 | continue; | 4054 | continue; |
3995 | 4055 | ||
3996 | rq = cpu_rq(i); | 4056 | rq = cpu_rq(i); |
3997 | wl = weighted_cpuload(i); | 4057 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; |
4058 | wl /= power; | ||
3998 | 4059 | ||
3999 | if (rq->nr_running == 1 && wl > imbalance) | 4060 | if (capacity && rq->nr_running == 1 && wl > imbalance) |
4000 | continue; | 4061 | continue; |
4001 | 4062 | ||
4002 | if (wl > max_load) { | 4063 | if (wl > max_load) { |
@@ -5031,17 +5092,16 @@ void account_idle_time(cputime_t cputime) | |||
5031 | */ | 5092 | */ |
5032 | void account_process_tick(struct task_struct *p, int user_tick) | 5093 | void account_process_tick(struct task_struct *p, int user_tick) |
5033 | { | 5094 | { |
5034 | cputime_t one_jiffy = jiffies_to_cputime(1); | 5095 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
5035 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | ||
5036 | struct rq *rq = this_rq(); | 5096 | struct rq *rq = this_rq(); |
5037 | 5097 | ||
5038 | if (user_tick) | 5098 | if (user_tick) |
5039 | account_user_time(p, one_jiffy, one_jiffy_scaled); | 5099 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
5040 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 5100 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
5041 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, | 5101 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
5042 | one_jiffy_scaled); | 5102 | one_jiffy_scaled); |
5043 | else | 5103 | else |
5044 | account_idle_time(one_jiffy); | 5104 | account_idle_time(cputime_one_jiffy); |
5045 | } | 5105 | } |
5046 | 5106 | ||
5047 | /* | 5107 | /* |
@@ -5145,7 +5205,7 @@ void scheduler_tick(void) | |||
5145 | curr->sched_class->task_tick(rq, curr, 0); | 5205 | curr->sched_class->task_tick(rq, curr, 0); |
5146 | spin_unlock(&rq->lock); | 5206 | spin_unlock(&rq->lock); |
5147 | 5207 | ||
5148 | perf_counter_task_tick(curr, cpu); | 5208 | perf_event_task_tick(curr, cpu); |
5149 | 5209 | ||
5150 | #ifdef CONFIG_SMP | 5210 | #ifdef CONFIG_SMP |
5151 | rq->idle_at_tick = idle_cpu(cpu); | 5211 | rq->idle_at_tick = idle_cpu(cpu); |
@@ -5257,14 +5317,13 @@ static inline void schedule_debug(struct task_struct *prev) | |||
5257 | #endif | 5317 | #endif |
5258 | } | 5318 | } |
5259 | 5319 | ||
5260 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 5320 | static void put_prev_task(struct rq *rq, struct task_struct *p) |
5261 | { | 5321 | { |
5262 | if (prev->state == TASK_RUNNING) { | 5322 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; |
5263 | u64 runtime = prev->se.sum_exec_runtime; | ||
5264 | 5323 | ||
5265 | runtime -= prev->se.prev_sum_exec_runtime; | 5324 | update_avg(&p->se.avg_running, runtime); |
5266 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
5267 | 5325 | ||
5326 | if (p->state == TASK_RUNNING) { | ||
5268 | /* | 5327 | /* |
5269 | * In order to avoid avg_overlap growing stale when we are | 5328 | * In order to avoid avg_overlap growing stale when we are |
5270 | * indeed overlapping and hence not getting put to sleep, grow | 5329 | * indeed overlapping and hence not getting put to sleep, grow |
@@ -5274,9 +5333,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
5274 | * correlates to the amount of cache footprint a task can | 5333 | * correlates to the amount of cache footprint a task can |
5275 | * build up. | 5334 | * build up. |
5276 | */ | 5335 | */ |
5277 | update_avg(&prev->se.avg_overlap, runtime); | 5336 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); |
5337 | update_avg(&p->se.avg_overlap, runtime); | ||
5338 | } else { | ||
5339 | update_avg(&p->se.avg_running, 0); | ||
5278 | } | 5340 | } |
5279 | prev->sched_class->put_prev_task(rq, prev); | 5341 | p->sched_class->put_prev_task(rq, p); |
5280 | } | 5342 | } |
5281 | 5343 | ||
5282 | /* | 5344 | /* |
@@ -5325,7 +5387,7 @@ need_resched: | |||
5325 | preempt_disable(); | 5387 | preempt_disable(); |
5326 | cpu = smp_processor_id(); | 5388 | cpu = smp_processor_id(); |
5327 | rq = cpu_rq(cpu); | 5389 | rq = cpu_rq(cpu); |
5328 | rcu_qsctr_inc(cpu); | 5390 | rcu_sched_qs(cpu); |
5329 | prev = rq->curr; | 5391 | prev = rq->curr; |
5330 | switch_count = &prev->nivcsw; | 5392 | switch_count = &prev->nivcsw; |
5331 | 5393 | ||
@@ -5349,10 +5411,7 @@ need_resched_nonpreemptible: | |||
5349 | switch_count = &prev->nvcsw; | 5411 | switch_count = &prev->nvcsw; |
5350 | } | 5412 | } |
5351 | 5413 | ||
5352 | #ifdef CONFIG_SMP | 5414 | pre_schedule(rq, prev); |
5353 | if (prev->sched_class->pre_schedule) | ||
5354 | prev->sched_class->pre_schedule(rq, prev); | ||
5355 | #endif | ||
5356 | 5415 | ||
5357 | if (unlikely(!rq->nr_running)) | 5416 | if (unlikely(!rq->nr_running)) |
5358 | idle_balance(cpu, rq); | 5417 | idle_balance(cpu, rq); |
@@ -5362,7 +5421,7 @@ need_resched_nonpreemptible: | |||
5362 | 5421 | ||
5363 | if (likely(prev != next)) { | 5422 | if (likely(prev != next)) { |
5364 | sched_info_switch(prev, next); | 5423 | sched_info_switch(prev, next); |
5365 | perf_counter_task_sched_out(prev, next, cpu); | 5424 | perf_event_task_sched_out(prev, next, cpu); |
5366 | 5425 | ||
5367 | rq->nr_switches++; | 5426 | rq->nr_switches++; |
5368 | rq->curr = next; | 5427 | rq->curr = next; |
@@ -5378,6 +5437,8 @@ need_resched_nonpreemptible: | |||
5378 | } else | 5437 | } else |
5379 | spin_unlock_irq(&rq->lock); | 5438 | spin_unlock_irq(&rq->lock); |
5380 | 5439 | ||
5440 | post_schedule(rq); | ||
5441 | |||
5381 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 5442 | if (unlikely(reacquire_kernel_lock(current) < 0)) |
5382 | goto need_resched_nonpreemptible; | 5443 | goto need_resched_nonpreemptible; |
5383 | 5444 | ||
@@ -5509,10 +5570,10 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
5509 | 5570 | ||
5510 | #endif /* CONFIG_PREEMPT */ | 5571 | #endif /* CONFIG_PREEMPT */ |
5511 | 5572 | ||
5512 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 5573 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
5513 | void *key) | 5574 | void *key) |
5514 | { | 5575 | { |
5515 | return try_to_wake_up(curr->private, mode, sync); | 5576 | return try_to_wake_up(curr->private, mode, wake_flags); |
5516 | } | 5577 | } |
5517 | EXPORT_SYMBOL(default_wake_function); | 5578 | EXPORT_SYMBOL(default_wake_function); |
5518 | 5579 | ||
@@ -5526,14 +5587,14 @@ EXPORT_SYMBOL(default_wake_function); | |||
5526 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 5587 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
5527 | */ | 5588 | */ |
5528 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 5589 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
5529 | int nr_exclusive, int sync, void *key) | 5590 | int nr_exclusive, int wake_flags, void *key) |
5530 | { | 5591 | { |
5531 | wait_queue_t *curr, *next; | 5592 | wait_queue_t *curr, *next; |
5532 | 5593 | ||
5533 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 5594 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
5534 | unsigned flags = curr->flags; | 5595 | unsigned flags = curr->flags; |
5535 | 5596 | ||
5536 | if (curr->func(curr, mode, sync, key) && | 5597 | if (curr->func(curr, mode, wake_flags, key) && |
5537 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 5598 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
5538 | break; | 5599 | break; |
5539 | } | 5600 | } |
@@ -5594,16 +5655,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | |||
5594 | int nr_exclusive, void *key) | 5655 | int nr_exclusive, void *key) |
5595 | { | 5656 | { |
5596 | unsigned long flags; | 5657 | unsigned long flags; |
5597 | int sync = 1; | 5658 | int wake_flags = WF_SYNC; |
5598 | 5659 | ||
5599 | if (unlikely(!q)) | 5660 | if (unlikely(!q)) |
5600 | return; | 5661 | return; |
5601 | 5662 | ||
5602 | if (unlikely(!nr_exclusive)) | 5663 | if (unlikely(!nr_exclusive)) |
5603 | sync = 0; | 5664 | wake_flags = 0; |
5604 | 5665 | ||
5605 | spin_lock_irqsave(&q->lock, flags); | 5666 | spin_lock_irqsave(&q->lock, flags); |
5606 | __wake_up_common(q, mode, nr_exclusive, sync, key); | 5667 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
5607 | spin_unlock_irqrestore(&q->lock, flags); | 5668 | spin_unlock_irqrestore(&q->lock, flags); |
5608 | } | 5669 | } |
5609 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 5670 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
@@ -6123,17 +6184,25 @@ static int __sched_setscheduler(struct task_struct *p, int policy, | |||
6123 | unsigned long flags; | 6184 | unsigned long flags; |
6124 | const struct sched_class *prev_class = p->sched_class; | 6185 | const struct sched_class *prev_class = p->sched_class; |
6125 | struct rq *rq; | 6186 | struct rq *rq; |
6187 | int reset_on_fork; | ||
6126 | 6188 | ||
6127 | /* may grab non-irq protected spin_locks */ | 6189 | /* may grab non-irq protected spin_locks */ |
6128 | BUG_ON(in_interrupt()); | 6190 | BUG_ON(in_interrupt()); |
6129 | recheck: | 6191 | recheck: |
6130 | /* double check policy once rq lock held */ | 6192 | /* double check policy once rq lock held */ |
6131 | if (policy < 0) | 6193 | if (policy < 0) { |
6194 | reset_on_fork = p->sched_reset_on_fork; | ||
6132 | policy = oldpolicy = p->policy; | 6195 | policy = oldpolicy = p->policy; |
6133 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 6196 | } else { |
6134 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | 6197 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); |
6135 | policy != SCHED_IDLE) | 6198 | policy &= ~SCHED_RESET_ON_FORK; |
6136 | return -EINVAL; | 6199 | |
6200 | if (policy != SCHED_FIFO && policy != SCHED_RR && | ||
6201 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | ||
6202 | policy != SCHED_IDLE) | ||
6203 | return -EINVAL; | ||
6204 | } | ||
6205 | |||
6137 | /* | 6206 | /* |
6138 | * Valid priorities for SCHED_FIFO and SCHED_RR are | 6207 | * Valid priorities for SCHED_FIFO and SCHED_RR are |
6139 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 6208 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
@@ -6177,6 +6246,10 @@ recheck: | |||
6177 | /* can't change other user's priorities */ | 6246 | /* can't change other user's priorities */ |
6178 | if (!check_same_owner(p)) | 6247 | if (!check_same_owner(p)) |
6179 | return -EPERM; | 6248 | return -EPERM; |
6249 | |||
6250 | /* Normal users shall not reset the sched_reset_on_fork flag */ | ||
6251 | if (p->sched_reset_on_fork && !reset_on_fork) | ||
6252 | return -EPERM; | ||
6180 | } | 6253 | } |
6181 | 6254 | ||
6182 | if (user) { | 6255 | if (user) { |
@@ -6220,6 +6293,8 @@ recheck: | |||
6220 | if (running) | 6293 | if (running) |
6221 | p->sched_class->put_prev_task(rq, p); | 6294 | p->sched_class->put_prev_task(rq, p); |
6222 | 6295 | ||
6296 | p->sched_reset_on_fork = reset_on_fork; | ||
6297 | |||
6223 | oldprio = p->prio; | 6298 | oldprio = p->prio; |
6224 | __setscheduler(rq, p, policy, param->sched_priority); | 6299 | __setscheduler(rq, p, policy, param->sched_priority); |
6225 | 6300 | ||
@@ -6336,14 +6411,15 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
6336 | if (p) { | 6411 | if (p) { |
6337 | retval = security_task_getscheduler(p); | 6412 | retval = security_task_getscheduler(p); |
6338 | if (!retval) | 6413 | if (!retval) |
6339 | retval = p->policy; | 6414 | retval = p->policy |
6415 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | ||
6340 | } | 6416 | } |
6341 | read_unlock(&tasklist_lock); | 6417 | read_unlock(&tasklist_lock); |
6342 | return retval; | 6418 | return retval; |
6343 | } | 6419 | } |
6344 | 6420 | ||
6345 | /** | 6421 | /** |
6346 | * sys_sched_getscheduler - get the RT priority of a thread | 6422 | * sys_sched_getparam - get the RT priority of a thread |
6347 | * @pid: the pid in question. | 6423 | * @pid: the pid in question. |
6348 | * @param: structure containing the RT priority. | 6424 | * @param: structure containing the RT priority. |
6349 | */ | 6425 | */ |
@@ -6571,19 +6647,9 @@ static inline int should_resched(void) | |||
6571 | 6647 | ||
6572 | static void __cond_resched(void) | 6648 | static void __cond_resched(void) |
6573 | { | 6649 | { |
6574 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 6650 | add_preempt_count(PREEMPT_ACTIVE); |
6575 | __might_sleep(__FILE__, __LINE__); | 6651 | schedule(); |
6576 | #endif | 6652 | sub_preempt_count(PREEMPT_ACTIVE); |
6577 | /* | ||
6578 | * The BKS might be reacquired before we have dropped | ||
6579 | * PREEMPT_ACTIVE, which could trigger a second | ||
6580 | * cond_resched() call. | ||
6581 | */ | ||
6582 | do { | ||
6583 | add_preempt_count(PREEMPT_ACTIVE); | ||
6584 | schedule(); | ||
6585 | sub_preempt_count(PREEMPT_ACTIVE); | ||
6586 | } while (need_resched()); | ||
6587 | } | 6653 | } |
6588 | 6654 | ||
6589 | int __sched _cond_resched(void) | 6655 | int __sched _cond_resched(void) |
@@ -6597,18 +6663,20 @@ int __sched _cond_resched(void) | |||
6597 | EXPORT_SYMBOL(_cond_resched); | 6663 | EXPORT_SYMBOL(_cond_resched); |
6598 | 6664 | ||
6599 | /* | 6665 | /* |
6600 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 6666 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
6601 | * call schedule, and on return reacquire the lock. | 6667 | * call schedule, and on return reacquire the lock. |
6602 | * | 6668 | * |
6603 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | 6669 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
6604 | * operations here to prevent schedule() from being called twice (once via | 6670 | * operations here to prevent schedule() from being called twice (once via |
6605 | * spin_unlock(), once by hand). | 6671 | * spin_unlock(), once by hand). |
6606 | */ | 6672 | */ |
6607 | int cond_resched_lock(spinlock_t *lock) | 6673 | int __cond_resched_lock(spinlock_t *lock) |
6608 | { | 6674 | { |
6609 | int resched = should_resched(); | 6675 | int resched = should_resched(); |
6610 | int ret = 0; | 6676 | int ret = 0; |
6611 | 6677 | ||
6678 | lockdep_assert_held(lock); | ||
6679 | |||
6612 | if (spin_needbreak(lock) || resched) { | 6680 | if (spin_needbreak(lock) || resched) { |
6613 | spin_unlock(lock); | 6681 | spin_unlock(lock); |
6614 | if (resched) | 6682 | if (resched) |
@@ -6620,9 +6688,9 @@ int cond_resched_lock(spinlock_t *lock) | |||
6620 | } | 6688 | } |
6621 | return ret; | 6689 | return ret; |
6622 | } | 6690 | } |
6623 | EXPORT_SYMBOL(cond_resched_lock); | 6691 | EXPORT_SYMBOL(__cond_resched_lock); |
6624 | 6692 | ||
6625 | int __sched cond_resched_softirq(void) | 6693 | int __sched __cond_resched_softirq(void) |
6626 | { | 6694 | { |
6627 | BUG_ON(!in_softirq()); | 6695 | BUG_ON(!in_softirq()); |
6628 | 6696 | ||
@@ -6634,7 +6702,7 @@ int __sched cond_resched_softirq(void) | |||
6634 | } | 6702 | } |
6635 | return 0; | 6703 | return 0; |
6636 | } | 6704 | } |
6637 | EXPORT_SYMBOL(cond_resched_softirq); | 6705 | EXPORT_SYMBOL(__cond_resched_softirq); |
6638 | 6706 | ||
6639 | /** | 6707 | /** |
6640 | * yield - yield the current processor to other threads. | 6708 | * yield - yield the current processor to other threads. |
@@ -6658,11 +6726,13 @@ EXPORT_SYMBOL(yield); | |||
6658 | */ | 6726 | */ |
6659 | void __sched io_schedule(void) | 6727 | void __sched io_schedule(void) |
6660 | { | 6728 | { |
6661 | struct rq *rq = &__raw_get_cpu_var(runqueues); | 6729 | struct rq *rq = raw_rq(); |
6662 | 6730 | ||
6663 | delayacct_blkio_start(); | 6731 | delayacct_blkio_start(); |
6664 | atomic_inc(&rq->nr_iowait); | 6732 | atomic_inc(&rq->nr_iowait); |
6733 | current->in_iowait = 1; | ||
6665 | schedule(); | 6734 | schedule(); |
6735 | current->in_iowait = 0; | ||
6666 | atomic_dec(&rq->nr_iowait); | 6736 | atomic_dec(&rq->nr_iowait); |
6667 | delayacct_blkio_end(); | 6737 | delayacct_blkio_end(); |
6668 | } | 6738 | } |
@@ -6670,12 +6740,14 @@ EXPORT_SYMBOL(io_schedule); | |||
6670 | 6740 | ||
6671 | long __sched io_schedule_timeout(long timeout) | 6741 | long __sched io_schedule_timeout(long timeout) |
6672 | { | 6742 | { |
6673 | struct rq *rq = &__raw_get_cpu_var(runqueues); | 6743 | struct rq *rq = raw_rq(); |
6674 | long ret; | 6744 | long ret; |
6675 | 6745 | ||
6676 | delayacct_blkio_start(); | 6746 | delayacct_blkio_start(); |
6677 | atomic_inc(&rq->nr_iowait); | 6747 | atomic_inc(&rq->nr_iowait); |
6748 | current->in_iowait = 1; | ||
6678 | ret = schedule_timeout(timeout); | 6749 | ret = schedule_timeout(timeout); |
6750 | current->in_iowait = 0; | ||
6679 | atomic_dec(&rq->nr_iowait); | 6751 | atomic_dec(&rq->nr_iowait); |
6680 | delayacct_blkio_end(); | 6752 | delayacct_blkio_end(); |
6681 | return ret; | 6753 | return ret; |
@@ -6759,23 +6831,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6759 | if (retval) | 6831 | if (retval) |
6760 | goto out_unlock; | 6832 | goto out_unlock; |
6761 | 6833 | ||
6762 | /* | 6834 | time_slice = p->sched_class->get_rr_interval(p); |
6763 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | ||
6764 | * tasks that are on an otherwise idle runqueue: | ||
6765 | */ | ||
6766 | time_slice = 0; | ||
6767 | if (p->policy == SCHED_RR) { | ||
6768 | time_slice = DEF_TIMESLICE; | ||
6769 | } else if (p->policy != SCHED_FIFO) { | ||
6770 | struct sched_entity *se = &p->se; | ||
6771 | unsigned long flags; | ||
6772 | struct rq *rq; | ||
6773 | 6835 | ||
6774 | rq = task_rq_lock(p, &flags); | ||
6775 | if (rq->cfs.load.weight) | ||
6776 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
6777 | task_rq_unlock(rq, &flags); | ||
6778 | } | ||
6779 | read_unlock(&tasklist_lock); | 6836 | read_unlock(&tasklist_lock); |
6780 | jiffies_to_timespec(time_slice, &t); | 6837 | jiffies_to_timespec(time_slice, &t); |
6781 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 6838 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
@@ -6992,8 +7049,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
6992 | 7049 | ||
6993 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { | 7050 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { |
6994 | /* Need help from migration thread: drop lock and wait. */ | 7051 | /* Need help from migration thread: drop lock and wait. */ |
7052 | struct task_struct *mt = rq->migration_thread; | ||
7053 | |||
7054 | get_task_struct(mt); | ||
6995 | task_rq_unlock(rq, &flags); | 7055 | task_rq_unlock(rq, &flags); |
6996 | wake_up_process(rq->migration_thread); | 7056 | wake_up_process(rq->migration_thread); |
7057 | put_task_struct(mt); | ||
6997 | wait_for_completion(&req.done); | 7058 | wait_for_completion(&req.done); |
6998 | tlb_migrate_finish(p->mm); | 7059 | tlb_migrate_finish(p->mm); |
6999 | return 0; | 7060 | return 0; |
@@ -7051,6 +7112,11 @@ fail: | |||
7051 | return ret; | 7112 | return ret; |
7052 | } | 7113 | } |
7053 | 7114 | ||
7115 | #define RCU_MIGRATION_IDLE 0 | ||
7116 | #define RCU_MIGRATION_NEED_QS 1 | ||
7117 | #define RCU_MIGRATION_GOT_QS 2 | ||
7118 | #define RCU_MIGRATION_MUST_SYNC 3 | ||
7119 | |||
7054 | /* | 7120 | /* |
7055 | * migration_thread - this is a highprio system thread that performs | 7121 | * migration_thread - this is a highprio system thread that performs |
7056 | * thread migration by bumping thread off CPU then 'pushing' onto | 7122 | * thread migration by bumping thread off CPU then 'pushing' onto |
@@ -7058,6 +7124,7 @@ fail: | |||
7058 | */ | 7124 | */ |
7059 | static int migration_thread(void *data) | 7125 | static int migration_thread(void *data) |
7060 | { | 7126 | { |
7127 | int badcpu; | ||
7061 | int cpu = (long)data; | 7128 | int cpu = (long)data; |
7062 | struct rq *rq; | 7129 | struct rq *rq; |
7063 | 7130 | ||
@@ -7092,8 +7159,17 @@ static int migration_thread(void *data) | |||
7092 | req = list_entry(head->next, struct migration_req, list); | 7159 | req = list_entry(head->next, struct migration_req, list); |
7093 | list_del_init(head->next); | 7160 | list_del_init(head->next); |
7094 | 7161 | ||
7095 | spin_unlock(&rq->lock); | 7162 | if (req->task != NULL) { |
7096 | __migrate_task(req->task, cpu, req->dest_cpu); | 7163 | spin_unlock(&rq->lock); |
7164 | __migrate_task(req->task, cpu, req->dest_cpu); | ||
7165 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { | ||
7166 | req->dest_cpu = RCU_MIGRATION_GOT_QS; | ||
7167 | spin_unlock(&rq->lock); | ||
7168 | } else { | ||
7169 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | ||
7170 | spin_unlock(&rq->lock); | ||
7171 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | ||
7172 | } | ||
7097 | local_irq_enable(); | 7173 | local_irq_enable(); |
7098 | 7174 | ||
7099 | complete(&req->done); | 7175 | complete(&req->done); |
@@ -7607,7 +7683,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7607 | /* | 7683 | /* |
7608 | * Register at high priority so that task migration (migrate_all_tasks) | 7684 | * Register at high priority so that task migration (migrate_all_tasks) |
7609 | * happens before everything else. This has to be lower priority than | 7685 | * happens before everything else. This has to be lower priority than |
7610 | * the notifier in the perf_counter subsystem, though. | 7686 | * the notifier in the perf_event subsystem, though. |
7611 | */ | 7687 | */ |
7612 | static struct notifier_block __cpuinitdata migration_notifier = { | 7688 | static struct notifier_block __cpuinitdata migration_notifier = { |
7613 | .notifier_call = migration_call, | 7689 | .notifier_call = migration_call, |
@@ -7625,7 +7701,7 @@ static int __init migration_init(void) | |||
7625 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 7701 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
7626 | register_cpu_notifier(&migration_notifier); | 7702 | register_cpu_notifier(&migration_notifier); |
7627 | 7703 | ||
7628 | return err; | 7704 | return 0; |
7629 | } | 7705 | } |
7630 | early_initcall(migration_init); | 7706 | early_initcall(migration_init); |
7631 | #endif | 7707 | #endif |
@@ -7672,7 +7748,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | |||
7672 | break; | 7748 | break; |
7673 | } | 7749 | } |
7674 | 7750 | ||
7675 | if (!group->__cpu_power) { | 7751 | if (!group->cpu_power) { |
7676 | printk(KERN_CONT "\n"); | 7752 | printk(KERN_CONT "\n"); |
7677 | printk(KERN_ERR "ERROR: domain->cpu_power not " | 7753 | printk(KERN_ERR "ERROR: domain->cpu_power not " |
7678 | "set\n"); | 7754 | "set\n"); |
@@ -7696,9 +7772,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | |||
7696 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); | 7772 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
7697 | 7773 | ||
7698 | printk(KERN_CONT " %s", str); | 7774 | printk(KERN_CONT " %s", str); |
7699 | if (group->__cpu_power != SCHED_LOAD_SCALE) { | 7775 | if (group->cpu_power != SCHED_LOAD_SCALE) { |
7700 | printk(KERN_CONT " (__cpu_power = %d)", | 7776 | printk(KERN_CONT " (cpu_power = %d)", |
7701 | group->__cpu_power); | 7777 | group->cpu_power); |
7702 | } | 7778 | } |
7703 | 7779 | ||
7704 | group = group->next; | 7780 | group = group->next; |
@@ -7763,9 +7839,7 @@ static int sd_degenerate(struct sched_domain *sd) | |||
7763 | } | 7839 | } |
7764 | 7840 | ||
7765 | /* Following flags don't use groups */ | 7841 | /* Following flags don't use groups */ |
7766 | if (sd->flags & (SD_WAKE_IDLE | | 7842 | if (sd->flags & (SD_WAKE_AFFINE)) |
7767 | SD_WAKE_AFFINE | | ||
7768 | SD_WAKE_BALANCE)) | ||
7769 | return 0; | 7843 | return 0; |
7770 | 7844 | ||
7771 | return 1; | 7845 | return 1; |
@@ -7782,10 +7856,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
7782 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 7856 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
7783 | return 0; | 7857 | return 0; |
7784 | 7858 | ||
7785 | /* Does parent contain flags not in child? */ | ||
7786 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | ||
7787 | if (cflags & SD_WAKE_AFFINE) | ||
7788 | pflags &= ~SD_WAKE_BALANCE; | ||
7789 | /* Flags needing groups don't count if only 1 group in parent */ | 7859 | /* Flags needing groups don't count if only 1 group in parent */ |
7790 | if (parent->groups == parent->groups->next) { | 7860 | if (parent->groups == parent->groups->next) { |
7791 | pflags &= ~(SD_LOAD_BALANCE | | 7861 | pflags &= ~(SD_LOAD_BALANCE | |
@@ -7841,7 +7911,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |||
7841 | rq->rd = rd; | 7911 | rq->rd = rd; |
7842 | 7912 | ||
7843 | cpumask_set_cpu(rq->cpu, rd->span); | 7913 | cpumask_set_cpu(rq->cpu, rd->span); |
7844 | if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) | 7914 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
7845 | set_rq_online(rq); | 7915 | set_rq_online(rq); |
7846 | 7916 | ||
7847 | spin_unlock_irqrestore(&rq->lock, flags); | 7917 | spin_unlock_irqrestore(&rq->lock, flags); |
@@ -7983,7 +8053,7 @@ init_sched_build_groups(const struct cpumask *span, | |||
7983 | continue; | 8053 | continue; |
7984 | 8054 | ||
7985 | cpumask_clear(sched_group_cpus(sg)); | 8055 | cpumask_clear(sched_group_cpus(sg)); |
7986 | sg->__cpu_power = 0; | 8056 | sg->cpu_power = 0; |
7987 | 8057 | ||
7988 | for_each_cpu(j, span) { | 8058 | for_each_cpu(j, span) { |
7989 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) | 8059 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
@@ -8091,6 +8161,39 @@ struct static_sched_domain { | |||
8091 | DECLARE_BITMAP(span, CONFIG_NR_CPUS); | 8161 | DECLARE_BITMAP(span, CONFIG_NR_CPUS); |
8092 | }; | 8162 | }; |
8093 | 8163 | ||
8164 | struct s_data { | ||
8165 | #ifdef CONFIG_NUMA | ||
8166 | int sd_allnodes; | ||
8167 | cpumask_var_t domainspan; | ||
8168 | cpumask_var_t covered; | ||
8169 | cpumask_var_t notcovered; | ||
8170 | #endif | ||
8171 | cpumask_var_t nodemask; | ||
8172 | cpumask_var_t this_sibling_map; | ||
8173 | cpumask_var_t this_core_map; | ||
8174 | cpumask_var_t send_covered; | ||
8175 | cpumask_var_t tmpmask; | ||
8176 | struct sched_group **sched_group_nodes; | ||
8177 | struct root_domain *rd; | ||
8178 | }; | ||
8179 | |||
8180 | enum s_alloc { | ||
8181 | sa_sched_groups = 0, | ||
8182 | sa_rootdomain, | ||
8183 | sa_tmpmask, | ||
8184 | sa_send_covered, | ||
8185 | sa_this_core_map, | ||
8186 | sa_this_sibling_map, | ||
8187 | sa_nodemask, | ||
8188 | sa_sched_group_nodes, | ||
8189 | #ifdef CONFIG_NUMA | ||
8190 | sa_notcovered, | ||
8191 | sa_covered, | ||
8192 | sa_domainspan, | ||
8193 | #endif | ||
8194 | sa_none, | ||
8195 | }; | ||
8196 | |||
8094 | /* | 8197 | /* |
8095 | * SMT sched-domains: | 8198 | * SMT sched-domains: |
8096 | */ | 8199 | */ |
@@ -8208,11 +8311,76 @@ static void init_numa_sched_groups_power(struct sched_group *group_head) | |||
8208 | continue; | 8311 | continue; |
8209 | } | 8312 | } |
8210 | 8313 | ||
8211 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); | 8314 | sg->cpu_power += sd->groups->cpu_power; |
8212 | } | 8315 | } |
8213 | sg = sg->next; | 8316 | sg = sg->next; |
8214 | } while (sg != group_head); | 8317 | } while (sg != group_head); |
8215 | } | 8318 | } |
8319 | |||
8320 | static int build_numa_sched_groups(struct s_data *d, | ||
8321 | const struct cpumask *cpu_map, int num) | ||
8322 | { | ||
8323 | struct sched_domain *sd; | ||
8324 | struct sched_group *sg, *prev; | ||
8325 | int n, j; | ||
8326 | |||
8327 | cpumask_clear(d->covered); | ||
8328 | cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); | ||
8329 | if (cpumask_empty(d->nodemask)) { | ||
8330 | d->sched_group_nodes[num] = NULL; | ||
8331 | goto out; | ||
8332 | } | ||
8333 | |||
8334 | sched_domain_node_span(num, d->domainspan); | ||
8335 | cpumask_and(d->domainspan, d->domainspan, cpu_map); | ||
8336 | |||
8337 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | ||
8338 | GFP_KERNEL, num); | ||
8339 | if (!sg) { | ||
8340 | printk(KERN_WARNING "Can not alloc domain group for node %d\n", | ||
8341 | num); | ||
8342 | return -ENOMEM; | ||
8343 | } | ||
8344 | d->sched_group_nodes[num] = sg; | ||
8345 | |||
8346 | for_each_cpu(j, d->nodemask) { | ||
8347 | sd = &per_cpu(node_domains, j).sd; | ||
8348 | sd->groups = sg; | ||
8349 | } | ||
8350 | |||
8351 | sg->cpu_power = 0; | ||
8352 | cpumask_copy(sched_group_cpus(sg), d->nodemask); | ||
8353 | sg->next = sg; | ||
8354 | cpumask_or(d->covered, d->covered, d->nodemask); | ||
8355 | |||
8356 | prev = sg; | ||
8357 | for (j = 0; j < nr_node_ids; j++) { | ||
8358 | n = (num + j) % nr_node_ids; | ||
8359 | cpumask_complement(d->notcovered, d->covered); | ||
8360 | cpumask_and(d->tmpmask, d->notcovered, cpu_map); | ||
8361 | cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); | ||
8362 | if (cpumask_empty(d->tmpmask)) | ||
8363 | break; | ||
8364 | cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); | ||
8365 | if (cpumask_empty(d->tmpmask)) | ||
8366 | continue; | ||
8367 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | ||
8368 | GFP_KERNEL, num); | ||
8369 | if (!sg) { | ||
8370 | printk(KERN_WARNING | ||
8371 | "Can not alloc domain group for node %d\n", j); | ||
8372 | return -ENOMEM; | ||
8373 | } | ||
8374 | sg->cpu_power = 0; | ||
8375 | cpumask_copy(sched_group_cpus(sg), d->tmpmask); | ||
8376 | sg->next = prev->next; | ||
8377 | cpumask_or(d->covered, d->covered, d->tmpmask); | ||
8378 | prev->next = sg; | ||
8379 | prev = sg; | ||
8380 | } | ||
8381 | out: | ||
8382 | return 0; | ||
8383 | } | ||
8216 | #endif /* CONFIG_NUMA */ | 8384 | #endif /* CONFIG_NUMA */ |
8217 | 8385 | ||
8218 | #ifdef CONFIG_NUMA | 8386 | #ifdef CONFIG_NUMA |
@@ -8266,15 +8434,13 @@ static void free_sched_groups(const struct cpumask *cpu_map, | |||
8266 | * there are asymmetries in the topology. If there are asymmetries, group | 8434 | * there are asymmetries in the topology. If there are asymmetries, group |
8267 | * having more cpu_power will pickup more load compared to the group having | 8435 | * having more cpu_power will pickup more load compared to the group having |
8268 | * less cpu_power. | 8436 | * less cpu_power. |
8269 | * | ||
8270 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | ||
8271 | * the maximum number of tasks a group can handle in the presence of other idle | ||
8272 | * or lightly loaded groups in the same sched domain. | ||
8273 | */ | 8437 | */ |
8274 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | 8438 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) |
8275 | { | 8439 | { |
8276 | struct sched_domain *child; | 8440 | struct sched_domain *child; |
8277 | struct sched_group *group; | 8441 | struct sched_group *group; |
8442 | long power; | ||
8443 | int weight; | ||
8278 | 8444 | ||
8279 | WARN_ON(!sd || !sd->groups); | 8445 | WARN_ON(!sd || !sd->groups); |
8280 | 8446 | ||
@@ -8283,28 +8449,32 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |||
8283 | 8449 | ||
8284 | child = sd->child; | 8450 | child = sd->child; |
8285 | 8451 | ||
8286 | sd->groups->__cpu_power = 0; | 8452 | sd->groups->cpu_power = 0; |
8287 | 8453 | ||
8288 | /* | 8454 | if (!child) { |
8289 | * For perf policy, if the groups in child domain share resources | 8455 | power = SCHED_LOAD_SCALE; |
8290 | * (for example cores sharing some portions of the cache hierarchy | 8456 | weight = cpumask_weight(sched_domain_span(sd)); |
8291 | * or SMT), then set this domain groups cpu_power such that each group | 8457 | /* |
8292 | * can handle only one task, when there are other idle groups in the | 8458 | * SMT siblings share the power of a single core. |
8293 | * same sched domain. | 8459 | * Usually multiple threads get a better yield out of |
8294 | */ | 8460 | * that one core than a single thread would have, |
8295 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | 8461 | * reflect that in sd->smt_gain. |
8296 | (child->flags & | 8462 | */ |
8297 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | 8463 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
8298 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); | 8464 | power *= sd->smt_gain; |
8465 | power /= weight; | ||
8466 | power >>= SCHED_LOAD_SHIFT; | ||
8467 | } | ||
8468 | sd->groups->cpu_power += power; | ||
8299 | return; | 8469 | return; |
8300 | } | 8470 | } |
8301 | 8471 | ||
8302 | /* | 8472 | /* |
8303 | * add cpu_power of each child group to this groups cpu_power | 8473 | * Add cpu_power of each child group to this groups cpu_power. |
8304 | */ | 8474 | */ |
8305 | group = child->groups; | 8475 | group = child->groups; |
8306 | do { | 8476 | do { |
8307 | sg_inc_cpu_power(sd->groups, group->__cpu_power); | 8477 | sd->groups->cpu_power += group->cpu_power; |
8308 | group = group->next; | 8478 | group = group->next; |
8309 | } while (group != child->groups); | 8479 | } while (group != child->groups); |
8310 | } | 8480 | } |
@@ -8371,287 +8541,292 @@ static void set_domain_attribute(struct sched_domain *sd, | |||
8371 | request = attr->relax_domain_level; | 8541 | request = attr->relax_domain_level; |
8372 | if (request < sd->level) { | 8542 | if (request < sd->level) { |
8373 | /* turn off idle balance on this domain */ | 8543 | /* turn off idle balance on this domain */ |
8374 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | 8544 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
8375 | } else { | 8545 | } else { |
8376 | /* turn on idle balance on this domain */ | 8546 | /* turn on idle balance on this domain */ |
8377 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | 8547 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
8548 | } | ||
8549 | } | ||
8550 | |||
8551 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, | ||
8552 | const struct cpumask *cpu_map) | ||
8553 | { | ||
8554 | switch (what) { | ||
8555 | case sa_sched_groups: | ||
8556 | free_sched_groups(cpu_map, d->tmpmask); /* fall through */ | ||
8557 | d->sched_group_nodes = NULL; | ||
8558 | case sa_rootdomain: | ||
8559 | free_rootdomain(d->rd); /* fall through */ | ||
8560 | case sa_tmpmask: | ||
8561 | free_cpumask_var(d->tmpmask); /* fall through */ | ||
8562 | case sa_send_covered: | ||
8563 | free_cpumask_var(d->send_covered); /* fall through */ | ||
8564 | case sa_this_core_map: | ||
8565 | free_cpumask_var(d->this_core_map); /* fall through */ | ||
8566 | case sa_this_sibling_map: | ||
8567 | free_cpumask_var(d->this_sibling_map); /* fall through */ | ||
8568 | case sa_nodemask: | ||
8569 | free_cpumask_var(d->nodemask); /* fall through */ | ||
8570 | case sa_sched_group_nodes: | ||
8571 | #ifdef CONFIG_NUMA | ||
8572 | kfree(d->sched_group_nodes); /* fall through */ | ||
8573 | case sa_notcovered: | ||
8574 | free_cpumask_var(d->notcovered); /* fall through */ | ||
8575 | case sa_covered: | ||
8576 | free_cpumask_var(d->covered); /* fall through */ | ||
8577 | case sa_domainspan: | ||
8578 | free_cpumask_var(d->domainspan); /* fall through */ | ||
8579 | #endif | ||
8580 | case sa_none: | ||
8581 | break; | ||
8378 | } | 8582 | } |
8379 | } | 8583 | } |
8380 | 8584 | ||
8381 | /* | 8585 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, |
8382 | * Build sched domains for a given set of cpus and attach the sched domains | 8586 | const struct cpumask *cpu_map) |
8383 | * to the individual cpus | ||
8384 | */ | ||
8385 | static int __build_sched_domains(const struct cpumask *cpu_map, | ||
8386 | struct sched_domain_attr *attr) | ||
8387 | { | 8587 | { |
8388 | int i, err = -ENOMEM; | ||
8389 | struct root_domain *rd; | ||
8390 | cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, | ||
8391 | tmpmask; | ||
8392 | #ifdef CONFIG_NUMA | 8588 | #ifdef CONFIG_NUMA |
8393 | cpumask_var_t domainspan, covered, notcovered; | 8589 | if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) |
8394 | struct sched_group **sched_group_nodes = NULL; | 8590 | return sa_none; |
8395 | int sd_allnodes = 0; | 8591 | if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) |
8396 | 8592 | return sa_domainspan; | |
8397 | if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) | 8593 | if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) |
8398 | goto out; | 8594 | return sa_covered; |
8399 | if (!alloc_cpumask_var(&covered, GFP_KERNEL)) | 8595 | /* Allocate the per-node list of sched groups */ |
8400 | goto free_domainspan; | 8596 | d->sched_group_nodes = kcalloc(nr_node_ids, |
8401 | if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) | 8597 | sizeof(struct sched_group *), GFP_KERNEL); |
8402 | goto free_covered; | 8598 | if (!d->sched_group_nodes) { |
8403 | #endif | ||
8404 | |||
8405 | if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) | ||
8406 | goto free_notcovered; | ||
8407 | if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) | ||
8408 | goto free_nodemask; | ||
8409 | if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) | ||
8410 | goto free_this_sibling_map; | ||
8411 | if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) | ||
8412 | goto free_this_core_map; | ||
8413 | if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) | ||
8414 | goto free_send_covered; | ||
8415 | |||
8416 | #ifdef CONFIG_NUMA | ||
8417 | /* | ||
8418 | * Allocate the per-node list of sched groups | ||
8419 | */ | ||
8420 | sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), | ||
8421 | GFP_KERNEL); | ||
8422 | if (!sched_group_nodes) { | ||
8423 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | 8599 | printk(KERN_WARNING "Can not alloc sched group node list\n"); |
8424 | goto free_tmpmask; | 8600 | return sa_notcovered; |
8425 | } | 8601 | } |
8426 | #endif | 8602 | sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; |
8427 | 8603 | #endif | |
8428 | rd = alloc_rootdomain(); | 8604 | if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) |
8429 | if (!rd) { | 8605 | return sa_sched_group_nodes; |
8606 | if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) | ||
8607 | return sa_nodemask; | ||
8608 | if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) | ||
8609 | return sa_this_sibling_map; | ||
8610 | if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) | ||
8611 | return sa_this_core_map; | ||
8612 | if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) | ||
8613 | return sa_send_covered; | ||
8614 | d->rd = alloc_rootdomain(); | ||
8615 | if (!d->rd) { | ||
8430 | printk(KERN_WARNING "Cannot alloc root domain\n"); | 8616 | printk(KERN_WARNING "Cannot alloc root domain\n"); |
8431 | goto free_sched_groups; | 8617 | return sa_tmpmask; |
8432 | } | 8618 | } |
8619 | return sa_rootdomain; | ||
8620 | } | ||
8433 | 8621 | ||
8622 | static struct sched_domain *__build_numa_sched_domains(struct s_data *d, | ||
8623 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) | ||
8624 | { | ||
8625 | struct sched_domain *sd = NULL; | ||
8434 | #ifdef CONFIG_NUMA | 8626 | #ifdef CONFIG_NUMA |
8435 | sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; | 8627 | struct sched_domain *parent; |
8436 | #endif | ||
8437 | |||
8438 | /* | ||
8439 | * Set up domains for cpus specified by the cpu_map. | ||
8440 | */ | ||
8441 | for_each_cpu(i, cpu_map) { | ||
8442 | struct sched_domain *sd = NULL, *p; | ||
8443 | |||
8444 | cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); | ||
8445 | |||
8446 | #ifdef CONFIG_NUMA | ||
8447 | if (cpumask_weight(cpu_map) > | ||
8448 | SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { | ||
8449 | sd = &per_cpu(allnodes_domains, i).sd; | ||
8450 | SD_INIT(sd, ALLNODES); | ||
8451 | set_domain_attribute(sd, attr); | ||
8452 | cpumask_copy(sched_domain_span(sd), cpu_map); | ||
8453 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); | ||
8454 | p = sd; | ||
8455 | sd_allnodes = 1; | ||
8456 | } else | ||
8457 | p = NULL; | ||
8458 | 8628 | ||
8459 | sd = &per_cpu(node_domains, i).sd; | 8629 | d->sd_allnodes = 0; |
8460 | SD_INIT(sd, NODE); | 8630 | if (cpumask_weight(cpu_map) > |
8631 | SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { | ||
8632 | sd = &per_cpu(allnodes_domains, i).sd; | ||
8633 | SD_INIT(sd, ALLNODES); | ||
8461 | set_domain_attribute(sd, attr); | 8634 | set_domain_attribute(sd, attr); |
8462 | sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | 8635 | cpumask_copy(sched_domain_span(sd), cpu_map); |
8463 | sd->parent = p; | 8636 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); |
8464 | if (p) | 8637 | d->sd_allnodes = 1; |
8465 | p->child = sd; | 8638 | } |
8466 | cpumask_and(sched_domain_span(sd), | 8639 | parent = sd; |
8467 | sched_domain_span(sd), cpu_map); | 8640 | |
8641 | sd = &per_cpu(node_domains, i).sd; | ||
8642 | SD_INIT(sd, NODE); | ||
8643 | set_domain_attribute(sd, attr); | ||
8644 | sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | ||
8645 | sd->parent = parent; | ||
8646 | if (parent) | ||
8647 | parent->child = sd; | ||
8648 | cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); | ||
8468 | #endif | 8649 | #endif |
8650 | return sd; | ||
8651 | } | ||
8469 | 8652 | ||
8470 | p = sd; | 8653 | static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, |
8471 | sd = &per_cpu(phys_domains, i).sd; | 8654 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, |
8472 | SD_INIT(sd, CPU); | 8655 | struct sched_domain *parent, int i) |
8473 | set_domain_attribute(sd, attr); | 8656 | { |
8474 | cpumask_copy(sched_domain_span(sd), nodemask); | 8657 | struct sched_domain *sd; |
8475 | sd->parent = p; | 8658 | sd = &per_cpu(phys_domains, i).sd; |
8476 | if (p) | 8659 | SD_INIT(sd, CPU); |
8477 | p->child = sd; | 8660 | set_domain_attribute(sd, attr); |
8478 | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); | 8661 | cpumask_copy(sched_domain_span(sd), d->nodemask); |
8662 | sd->parent = parent; | ||
8663 | if (parent) | ||
8664 | parent->child = sd; | ||
8665 | cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); | ||
8666 | return sd; | ||
8667 | } | ||
8479 | 8668 | ||
8669 | static struct sched_domain *__build_mc_sched_domain(struct s_data *d, | ||
8670 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | ||
8671 | struct sched_domain *parent, int i) | ||
8672 | { | ||
8673 | struct sched_domain *sd = parent; | ||
8480 | #ifdef CONFIG_SCHED_MC | 8674 | #ifdef CONFIG_SCHED_MC |
8481 | p = sd; | 8675 | sd = &per_cpu(core_domains, i).sd; |
8482 | sd = &per_cpu(core_domains, i).sd; | 8676 | SD_INIT(sd, MC); |
8483 | SD_INIT(sd, MC); | 8677 | set_domain_attribute(sd, attr); |
8484 | set_domain_attribute(sd, attr); | 8678 | cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); |
8485 | cpumask_and(sched_domain_span(sd), cpu_map, | 8679 | sd->parent = parent; |
8486 | cpu_coregroup_mask(i)); | 8680 | parent->child = sd; |
8487 | sd->parent = p; | 8681 | cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); |
8488 | p->child = sd; | ||
8489 | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); | ||
8490 | #endif | 8682 | #endif |
8683 | return sd; | ||
8684 | } | ||
8491 | 8685 | ||
8686 | static struct sched_domain *__build_smt_sched_domain(struct s_data *d, | ||
8687 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | ||
8688 | struct sched_domain *parent, int i) | ||
8689 | { | ||
8690 | struct sched_domain *sd = parent; | ||
8492 | #ifdef CONFIG_SCHED_SMT | 8691 | #ifdef CONFIG_SCHED_SMT |
8493 | p = sd; | 8692 | sd = &per_cpu(cpu_domains, i).sd; |
8494 | sd = &per_cpu(cpu_domains, i).sd; | 8693 | SD_INIT(sd, SIBLING); |
8495 | SD_INIT(sd, SIBLING); | 8694 | set_domain_attribute(sd, attr); |
8496 | set_domain_attribute(sd, attr); | 8695 | cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); |
8497 | cpumask_and(sched_domain_span(sd), | 8696 | sd->parent = parent; |
8498 | topology_thread_cpumask(i), cpu_map); | 8697 | parent->child = sd; |
8499 | sd->parent = p; | 8698 | cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); |
8500 | p->child = sd; | ||
8501 | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); | ||
8502 | #endif | 8699 | #endif |
8503 | } | 8700 | return sd; |
8701 | } | ||
8504 | 8702 | ||
8703 | static void build_sched_groups(struct s_data *d, enum sched_domain_level l, | ||
8704 | const struct cpumask *cpu_map, int cpu) | ||
8705 | { | ||
8706 | switch (l) { | ||
8505 | #ifdef CONFIG_SCHED_SMT | 8707 | #ifdef CONFIG_SCHED_SMT |
8506 | /* Set up CPU (sibling) groups */ | 8708 | case SD_LV_SIBLING: /* set up CPU (sibling) groups */ |
8507 | for_each_cpu(i, cpu_map) { | 8709 | cpumask_and(d->this_sibling_map, cpu_map, |
8508 | cpumask_and(this_sibling_map, | 8710 | topology_thread_cpumask(cpu)); |
8509 | topology_thread_cpumask(i), cpu_map); | 8711 | if (cpu == cpumask_first(d->this_sibling_map)) |
8510 | if (i != cpumask_first(this_sibling_map)) | 8712 | init_sched_build_groups(d->this_sibling_map, cpu_map, |
8511 | continue; | 8713 | &cpu_to_cpu_group, |
8512 | 8714 | d->send_covered, d->tmpmask); | |
8513 | init_sched_build_groups(this_sibling_map, cpu_map, | 8715 | break; |
8514 | &cpu_to_cpu_group, | ||
8515 | send_covered, tmpmask); | ||
8516 | } | ||
8517 | #endif | 8716 | #endif |
8518 | |||
8519 | #ifdef CONFIG_SCHED_MC | 8717 | #ifdef CONFIG_SCHED_MC |
8520 | /* Set up multi-core groups */ | 8718 | case SD_LV_MC: /* set up multi-core groups */ |
8521 | for_each_cpu(i, cpu_map) { | 8719 | cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); |
8522 | cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); | 8720 | if (cpu == cpumask_first(d->this_core_map)) |
8523 | if (i != cpumask_first(this_core_map)) | 8721 | init_sched_build_groups(d->this_core_map, cpu_map, |
8524 | continue; | 8722 | &cpu_to_core_group, |
8525 | 8723 | d->send_covered, d->tmpmask); | |
8526 | init_sched_build_groups(this_core_map, cpu_map, | 8724 | break; |
8527 | &cpu_to_core_group, | ||
8528 | send_covered, tmpmask); | ||
8529 | } | ||
8530 | #endif | 8725 | #endif |
8531 | 8726 | case SD_LV_CPU: /* set up physical groups */ | |
8532 | /* Set up physical groups */ | 8727 | cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); |
8533 | for (i = 0; i < nr_node_ids; i++) { | 8728 | if (!cpumask_empty(d->nodemask)) |
8534 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); | 8729 | init_sched_build_groups(d->nodemask, cpu_map, |
8535 | if (cpumask_empty(nodemask)) | 8730 | &cpu_to_phys_group, |
8536 | continue; | 8731 | d->send_covered, d->tmpmask); |
8537 | 8732 | break; | |
8538 | init_sched_build_groups(nodemask, cpu_map, | ||
8539 | &cpu_to_phys_group, | ||
8540 | send_covered, tmpmask); | ||
8541 | } | ||
8542 | |||
8543 | #ifdef CONFIG_NUMA | 8733 | #ifdef CONFIG_NUMA |
8544 | /* Set up node groups */ | 8734 | case SD_LV_ALLNODES: |
8545 | if (sd_allnodes) { | 8735 | init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, |
8546 | init_sched_build_groups(cpu_map, cpu_map, | 8736 | d->send_covered, d->tmpmask); |
8547 | &cpu_to_allnodes_group, | 8737 | break; |
8548 | send_covered, tmpmask); | 8738 | #endif |
8739 | default: | ||
8740 | break; | ||
8549 | } | 8741 | } |
8742 | } | ||
8550 | 8743 | ||
8551 | for (i = 0; i < nr_node_ids; i++) { | 8744 | /* |
8552 | /* Set up node groups */ | 8745 | * Build sched domains for a given set of cpus and attach the sched domains |
8553 | struct sched_group *sg, *prev; | 8746 | * to the individual cpus |
8554 | int j; | 8747 | */ |
8555 | 8748 | static int __build_sched_domains(const struct cpumask *cpu_map, | |
8556 | cpumask_clear(covered); | 8749 | struct sched_domain_attr *attr) |
8557 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); | 8750 | { |
8558 | if (cpumask_empty(nodemask)) { | 8751 | enum s_alloc alloc_state = sa_none; |
8559 | sched_group_nodes[i] = NULL; | 8752 | struct s_data d; |
8560 | continue; | 8753 | struct sched_domain *sd; |
8561 | } | 8754 | int i; |
8755 | #ifdef CONFIG_NUMA | ||
8756 | d.sd_allnodes = 0; | ||
8757 | #endif | ||
8562 | 8758 | ||
8563 | sched_domain_node_span(i, domainspan); | 8759 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
8564 | cpumask_and(domainspan, domainspan, cpu_map); | 8760 | if (alloc_state != sa_rootdomain) |
8761 | goto error; | ||
8762 | alloc_state = sa_sched_groups; | ||
8565 | 8763 | ||
8566 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | 8764 | /* |
8567 | GFP_KERNEL, i); | 8765 | * Set up domains for cpus specified by the cpu_map. |
8568 | if (!sg) { | 8766 | */ |
8569 | printk(KERN_WARNING "Can not alloc domain group for " | 8767 | for_each_cpu(i, cpu_map) { |
8570 | "node %d\n", i); | 8768 | cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), |
8571 | goto error; | 8769 | cpu_map); |
8572 | } | ||
8573 | sched_group_nodes[i] = sg; | ||
8574 | for_each_cpu(j, nodemask) { | ||
8575 | struct sched_domain *sd; | ||
8576 | 8770 | ||
8577 | sd = &per_cpu(node_domains, j).sd; | 8771 | sd = __build_numa_sched_domains(&d, cpu_map, attr, i); |
8578 | sd->groups = sg; | 8772 | sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); |
8579 | } | 8773 | sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); |
8580 | sg->__cpu_power = 0; | 8774 | sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); |
8581 | cpumask_copy(sched_group_cpus(sg), nodemask); | 8775 | } |
8582 | sg->next = sg; | ||
8583 | cpumask_or(covered, covered, nodemask); | ||
8584 | prev = sg; | ||
8585 | 8776 | ||
8586 | for (j = 0; j < nr_node_ids; j++) { | 8777 | for_each_cpu(i, cpu_map) { |
8587 | int n = (i + j) % nr_node_ids; | 8778 | build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); |
8779 | build_sched_groups(&d, SD_LV_MC, cpu_map, i); | ||
8780 | } | ||
8588 | 8781 | ||
8589 | cpumask_complement(notcovered, covered); | 8782 | /* Set up physical groups */ |
8590 | cpumask_and(tmpmask, notcovered, cpu_map); | 8783 | for (i = 0; i < nr_node_ids; i++) |
8591 | cpumask_and(tmpmask, tmpmask, domainspan); | 8784 | build_sched_groups(&d, SD_LV_CPU, cpu_map, i); |
8592 | if (cpumask_empty(tmpmask)) | ||
8593 | break; | ||
8594 | 8785 | ||
8595 | cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); | 8786 | #ifdef CONFIG_NUMA |
8596 | if (cpumask_empty(tmpmask)) | 8787 | /* Set up node groups */ |
8597 | continue; | 8788 | if (d.sd_allnodes) |
8789 | build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); | ||
8598 | 8790 | ||
8599 | sg = kmalloc_node(sizeof(struct sched_group) + | 8791 | for (i = 0; i < nr_node_ids; i++) |
8600 | cpumask_size(), | 8792 | if (build_numa_sched_groups(&d, cpu_map, i)) |
8601 | GFP_KERNEL, i); | 8793 | goto error; |
8602 | if (!sg) { | ||
8603 | printk(KERN_WARNING | ||
8604 | "Can not alloc domain group for node %d\n", j); | ||
8605 | goto error; | ||
8606 | } | ||
8607 | sg->__cpu_power = 0; | ||
8608 | cpumask_copy(sched_group_cpus(sg), tmpmask); | ||
8609 | sg->next = prev->next; | ||
8610 | cpumask_or(covered, covered, tmpmask); | ||
8611 | prev->next = sg; | ||
8612 | prev = sg; | ||
8613 | } | ||
8614 | } | ||
8615 | #endif | 8794 | #endif |
8616 | 8795 | ||
8617 | /* Calculate CPU power for physical packages and nodes */ | 8796 | /* Calculate CPU power for physical packages and nodes */ |
8618 | #ifdef CONFIG_SCHED_SMT | 8797 | #ifdef CONFIG_SCHED_SMT |
8619 | for_each_cpu(i, cpu_map) { | 8798 | for_each_cpu(i, cpu_map) { |
8620 | struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; | 8799 | sd = &per_cpu(cpu_domains, i).sd; |
8621 | |||
8622 | init_sched_groups_power(i, sd); | 8800 | init_sched_groups_power(i, sd); |
8623 | } | 8801 | } |
8624 | #endif | 8802 | #endif |
8625 | #ifdef CONFIG_SCHED_MC | 8803 | #ifdef CONFIG_SCHED_MC |
8626 | for_each_cpu(i, cpu_map) { | 8804 | for_each_cpu(i, cpu_map) { |
8627 | struct sched_domain *sd = &per_cpu(core_domains, i).sd; | 8805 | sd = &per_cpu(core_domains, i).sd; |
8628 | |||
8629 | init_sched_groups_power(i, sd); | 8806 | init_sched_groups_power(i, sd); |
8630 | } | 8807 | } |
8631 | #endif | 8808 | #endif |
8632 | 8809 | ||
8633 | for_each_cpu(i, cpu_map) { | 8810 | for_each_cpu(i, cpu_map) { |
8634 | struct sched_domain *sd = &per_cpu(phys_domains, i).sd; | 8811 | sd = &per_cpu(phys_domains, i).sd; |
8635 | |||
8636 | init_sched_groups_power(i, sd); | 8812 | init_sched_groups_power(i, sd); |
8637 | } | 8813 | } |
8638 | 8814 | ||
8639 | #ifdef CONFIG_NUMA | 8815 | #ifdef CONFIG_NUMA |
8640 | for (i = 0; i < nr_node_ids; i++) | 8816 | for (i = 0; i < nr_node_ids; i++) |
8641 | init_numa_sched_groups_power(sched_group_nodes[i]); | 8817 | init_numa_sched_groups_power(d.sched_group_nodes[i]); |
8642 | 8818 | ||
8643 | if (sd_allnodes) { | 8819 | if (d.sd_allnodes) { |
8644 | struct sched_group *sg; | 8820 | struct sched_group *sg; |
8645 | 8821 | ||
8646 | cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, | 8822 | cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, |
8647 | tmpmask); | 8823 | d.tmpmask); |
8648 | init_numa_sched_groups_power(sg); | 8824 | init_numa_sched_groups_power(sg); |
8649 | } | 8825 | } |
8650 | #endif | 8826 | #endif |
8651 | 8827 | ||
8652 | /* Attach the domains */ | 8828 | /* Attach the domains */ |
8653 | for_each_cpu(i, cpu_map) { | 8829 | for_each_cpu(i, cpu_map) { |
8654 | struct sched_domain *sd; | ||
8655 | #ifdef CONFIG_SCHED_SMT | 8830 | #ifdef CONFIG_SCHED_SMT |
8656 | sd = &per_cpu(cpu_domains, i).sd; | 8831 | sd = &per_cpu(cpu_domains, i).sd; |
8657 | #elif defined(CONFIG_SCHED_MC) | 8832 | #elif defined(CONFIG_SCHED_MC) |
@@ -8659,44 +8834,16 @@ static int __build_sched_domains(const struct cpumask *cpu_map, | |||
8659 | #else | 8834 | #else |
8660 | sd = &per_cpu(phys_domains, i).sd; | 8835 | sd = &per_cpu(phys_domains, i).sd; |
8661 | #endif | 8836 | #endif |
8662 | cpu_attach_domain(sd, rd, i); | 8837 | cpu_attach_domain(sd, d.rd, i); |
8663 | } | 8838 | } |
8664 | 8839 | ||
8665 | err = 0; | 8840 | d.sched_group_nodes = NULL; /* don't free this we still need it */ |
8666 | 8841 | __free_domain_allocs(&d, sa_tmpmask, cpu_map); | |
8667 | free_tmpmask: | 8842 | return 0; |
8668 | free_cpumask_var(tmpmask); | ||
8669 | free_send_covered: | ||
8670 | free_cpumask_var(send_covered); | ||
8671 | free_this_core_map: | ||
8672 | free_cpumask_var(this_core_map); | ||
8673 | free_this_sibling_map: | ||
8674 | free_cpumask_var(this_sibling_map); | ||
8675 | free_nodemask: | ||
8676 | free_cpumask_var(nodemask); | ||
8677 | free_notcovered: | ||
8678 | #ifdef CONFIG_NUMA | ||
8679 | free_cpumask_var(notcovered); | ||
8680 | free_covered: | ||
8681 | free_cpumask_var(covered); | ||
8682 | free_domainspan: | ||
8683 | free_cpumask_var(domainspan); | ||
8684 | out: | ||
8685 | #endif | ||
8686 | return err; | ||
8687 | |||
8688 | free_sched_groups: | ||
8689 | #ifdef CONFIG_NUMA | ||
8690 | kfree(sched_group_nodes); | ||
8691 | #endif | ||
8692 | goto free_tmpmask; | ||
8693 | 8843 | ||
8694 | #ifdef CONFIG_NUMA | ||
8695 | error: | 8844 | error: |
8696 | free_sched_groups(cpu_map, tmpmask); | 8845 | __free_domain_allocs(&d, alloc_state, cpu_map); |
8697 | free_rootdomain(rd); | 8846 | return -ENOMEM; |
8698 | goto free_tmpmask; | ||
8699 | #endif | ||
8700 | } | 8847 | } |
8701 | 8848 | ||
8702 | static int build_sched_domains(const struct cpumask *cpu_map) | 8849 | static int build_sched_domains(const struct cpumask *cpu_map) |
@@ -9015,6 +9162,7 @@ void __init sched_init_smp(void) | |||
9015 | cpumask_var_t non_isolated_cpus; | 9162 | cpumask_var_t non_isolated_cpus; |
9016 | 9163 | ||
9017 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 9164 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
9165 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
9018 | 9166 | ||
9019 | #if defined(CONFIG_NUMA) | 9167 | #if defined(CONFIG_NUMA) |
9020 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 9168 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
@@ -9046,7 +9194,6 @@ void __init sched_init_smp(void) | |||
9046 | sched_init_granularity(); | 9194 | sched_init_granularity(); |
9047 | free_cpumask_var(non_isolated_cpus); | 9195 | free_cpumask_var(non_isolated_cpus); |
9048 | 9196 | ||
9049 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
9050 | init_sched_rt_class(); | 9197 | init_sched_rt_class(); |
9051 | } | 9198 | } |
9052 | #else | 9199 | #else |
@@ -9304,11 +9451,11 @@ void __init sched_init(void) | |||
9304 | * system cpu resource, based on the weight assigned to root | 9451 | * system cpu resource, based on the weight assigned to root |
9305 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | 9452 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished |
9306 | * by letting tasks of init_task_group sit in a separate cfs_rq | 9453 | * by letting tasks of init_task_group sit in a separate cfs_rq |
9307 | * (init_cfs_rq) and having one entity represent this group of | 9454 | * (init_tg_cfs_rq) and having one entity represent this group of |
9308 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | 9455 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). |
9309 | */ | 9456 | */ |
9310 | init_tg_cfs_entry(&init_task_group, | 9457 | init_tg_cfs_entry(&init_task_group, |
9311 | &per_cpu(init_cfs_rq, i), | 9458 | &per_cpu(init_tg_cfs_rq, i), |
9312 | &per_cpu(init_sched_entity, i), i, 1, | 9459 | &per_cpu(init_sched_entity, i), i, 1, |
9313 | root_task_group.se[i]); | 9460 | root_task_group.se[i]); |
9314 | 9461 | ||
@@ -9334,6 +9481,7 @@ void __init sched_init(void) | |||
9334 | #ifdef CONFIG_SMP | 9481 | #ifdef CONFIG_SMP |
9335 | rq->sd = NULL; | 9482 | rq->sd = NULL; |
9336 | rq->rd = NULL; | 9483 | rq->rd = NULL; |
9484 | rq->post_schedule = 0; | ||
9337 | rq->active_balance = 0; | 9485 | rq->active_balance = 0; |
9338 | rq->next_balance = jiffies; | 9486 | rq->next_balance = jiffies; |
9339 | rq->push_cpu = 0; | 9487 | rq->push_cpu = 0; |
@@ -9392,19 +9540,26 @@ void __init sched_init(void) | |||
9392 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9540 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
9393 | #endif /* SMP */ | 9541 | #endif /* SMP */ |
9394 | 9542 | ||
9395 | perf_counter_init(); | 9543 | perf_event_init(); |
9396 | 9544 | ||
9397 | scheduler_running = 1; | 9545 | scheduler_running = 1; |
9398 | } | 9546 | } |
9399 | 9547 | ||
9400 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 9548 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
9401 | void __might_sleep(char *file, int line) | 9549 | static inline int preempt_count_equals(int preempt_offset) |
9550 | { | ||
9551 | int nested = preempt_count() & ~PREEMPT_ACTIVE; | ||
9552 | |||
9553 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | ||
9554 | } | ||
9555 | |||
9556 | void __might_sleep(char *file, int line, int preempt_offset) | ||
9402 | { | 9557 | { |
9403 | #ifdef in_atomic | 9558 | #ifdef in_atomic |
9404 | static unsigned long prev_jiffy; /* ratelimiting */ | 9559 | static unsigned long prev_jiffy; /* ratelimiting */ |
9405 | 9560 | ||
9406 | if ((!in_atomic() && !irqs_disabled()) || | 9561 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || |
9407 | system_state != SYSTEM_RUNNING || oops_in_progress) | 9562 | system_state != SYSTEM_RUNNING || oops_in_progress) |
9408 | return; | 9563 | return; |
9409 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 9564 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
9410 | return; | 9565 | return; |
@@ -10581,3 +10736,113 @@ struct cgroup_subsys cpuacct_subsys = { | |||
10581 | .subsys_id = cpuacct_subsys_id, | 10736 | .subsys_id = cpuacct_subsys_id, |
10582 | }; | 10737 | }; |
10583 | #endif /* CONFIG_CGROUP_CPUACCT */ | 10738 | #endif /* CONFIG_CGROUP_CPUACCT */ |
10739 | |||
10740 | #ifndef CONFIG_SMP | ||
10741 | |||
10742 | int rcu_expedited_torture_stats(char *page) | ||
10743 | { | ||
10744 | return 0; | ||
10745 | } | ||
10746 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
10747 | |||
10748 | void synchronize_sched_expedited(void) | ||
10749 | { | ||
10750 | } | ||
10751 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | ||
10752 | |||
10753 | #else /* #ifndef CONFIG_SMP */ | ||
10754 | |||
10755 | static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); | ||
10756 | static DEFINE_MUTEX(rcu_sched_expedited_mutex); | ||
10757 | |||
10758 | #define RCU_EXPEDITED_STATE_POST -2 | ||
10759 | #define RCU_EXPEDITED_STATE_IDLE -1 | ||
10760 | |||
10761 | static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
10762 | |||
10763 | int rcu_expedited_torture_stats(char *page) | ||
10764 | { | ||
10765 | int cnt = 0; | ||
10766 | int cpu; | ||
10767 | |||
10768 | cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); | ||
10769 | for_each_online_cpu(cpu) { | ||
10770 | cnt += sprintf(&page[cnt], " %d:%d", | ||
10771 | cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); | ||
10772 | } | ||
10773 | cnt += sprintf(&page[cnt], "\n"); | ||
10774 | return cnt; | ||
10775 | } | ||
10776 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
10777 | |||
10778 | static long synchronize_sched_expedited_count; | ||
10779 | |||
10780 | /* | ||
10781 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" | ||
10782 | * approach to force grace period to end quickly. This consumes | ||
10783 | * significant time on all CPUs, and is thus not recommended for | ||
10784 | * any sort of common-case code. | ||
10785 | * | ||
10786 | * Note that it is illegal to call this function while holding any | ||
10787 | * lock that is acquired by a CPU-hotplug notifier. Failing to | ||
10788 | * observe this restriction will result in deadlock. | ||
10789 | */ | ||
10790 | void synchronize_sched_expedited(void) | ||
10791 | { | ||
10792 | int cpu; | ||
10793 | unsigned long flags; | ||
10794 | bool need_full_sync = 0; | ||
10795 | struct rq *rq; | ||
10796 | struct migration_req *req; | ||
10797 | long snap; | ||
10798 | int trycount = 0; | ||
10799 | |||
10800 | smp_mb(); /* ensure prior mod happens before capturing snap. */ | ||
10801 | snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; | ||
10802 | get_online_cpus(); | ||
10803 | while (!mutex_trylock(&rcu_sched_expedited_mutex)) { | ||
10804 | put_online_cpus(); | ||
10805 | if (trycount++ < 10) | ||
10806 | udelay(trycount * num_online_cpus()); | ||
10807 | else { | ||
10808 | synchronize_sched(); | ||
10809 | return; | ||
10810 | } | ||
10811 | if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { | ||
10812 | smp_mb(); /* ensure test happens before caller kfree */ | ||
10813 | return; | ||
10814 | } | ||
10815 | get_online_cpus(); | ||
10816 | } | ||
10817 | rcu_expedited_state = RCU_EXPEDITED_STATE_POST; | ||
10818 | for_each_online_cpu(cpu) { | ||
10819 | rq = cpu_rq(cpu); | ||
10820 | req = &per_cpu(rcu_migration_req, cpu); | ||
10821 | init_completion(&req->done); | ||
10822 | req->task = NULL; | ||
10823 | req->dest_cpu = RCU_MIGRATION_NEED_QS; | ||
10824 | spin_lock_irqsave(&rq->lock, flags); | ||
10825 | list_add(&req->list, &rq->migration_queue); | ||
10826 | spin_unlock_irqrestore(&rq->lock, flags); | ||
10827 | wake_up_process(rq->migration_thread); | ||
10828 | } | ||
10829 | for_each_online_cpu(cpu) { | ||
10830 | rcu_expedited_state = cpu; | ||
10831 | req = &per_cpu(rcu_migration_req, cpu); | ||
10832 | rq = cpu_rq(cpu); | ||
10833 | wait_for_completion(&req->done); | ||
10834 | spin_lock_irqsave(&rq->lock, flags); | ||
10835 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | ||
10836 | need_full_sync = 1; | ||
10837 | req->dest_cpu = RCU_MIGRATION_IDLE; | ||
10838 | spin_unlock_irqrestore(&rq->lock, flags); | ||
10839 | } | ||
10840 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
10841 | mutex_unlock(&rcu_sched_expedited_mutex); | ||
10842 | put_online_cpus(); | ||
10843 | if (need_full_sync) | ||
10844 | synchronize_sched(); | ||
10845 | } | ||
10846 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | ||
10847 | |||
10848 | #endif /* #else #ifndef CONFIG_SMP */ | ||
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index e1d16c9a7680..ac2e1dc708bd 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -48,13 +48,6 @@ static __read_mostly int sched_clock_running; | |||
48 | __read_mostly int sched_clock_stable; | 48 | __read_mostly int sched_clock_stable; |
49 | 49 | ||
50 | struct sched_clock_data { | 50 | struct sched_clock_data { |
51 | /* | ||
52 | * Raw spinlock - this is a special case: this might be called | ||
53 | * from within instrumentation code so we dont want to do any | ||
54 | * instrumentation ourselves. | ||
55 | */ | ||
56 | raw_spinlock_t lock; | ||
57 | |||
58 | u64 tick_raw; | 51 | u64 tick_raw; |
59 | u64 tick_gtod; | 52 | u64 tick_gtod; |
60 | u64 clock; | 53 | u64 clock; |
@@ -80,7 +73,6 @@ void sched_clock_init(void) | |||
80 | for_each_possible_cpu(cpu) { | 73 | for_each_possible_cpu(cpu) { |
81 | struct sched_clock_data *scd = cpu_sdc(cpu); | 74 | struct sched_clock_data *scd = cpu_sdc(cpu); |
82 | 75 | ||
83 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | ||
84 | scd->tick_raw = 0; | 76 | scd->tick_raw = 0; |
85 | scd->tick_gtod = ktime_now; | 77 | scd->tick_gtod = ktime_now; |
86 | scd->clock = ktime_now; | 78 | scd->clock = ktime_now; |
@@ -109,14 +101,19 @@ static inline u64 wrap_max(u64 x, u64 y) | |||
109 | * - filter out backward motion | 101 | * - filter out backward motion |
110 | * - use the GTOD tick value to create a window to filter crazy TSC values | 102 | * - use the GTOD tick value to create a window to filter crazy TSC values |
111 | */ | 103 | */ |
112 | static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | 104 | static u64 sched_clock_local(struct sched_clock_data *scd) |
113 | { | 105 | { |
114 | s64 delta = now - scd->tick_raw; | 106 | u64 now, clock, old_clock, min_clock, max_clock; |
115 | u64 clock, min_clock, max_clock; | 107 | s64 delta; |
116 | 108 | ||
109 | again: | ||
110 | now = sched_clock(); | ||
111 | delta = now - scd->tick_raw; | ||
117 | if (unlikely(delta < 0)) | 112 | if (unlikely(delta < 0)) |
118 | delta = 0; | 113 | delta = 0; |
119 | 114 | ||
115 | old_clock = scd->clock; | ||
116 | |||
120 | /* | 117 | /* |
121 | * scd->clock = clamp(scd->tick_gtod + delta, | 118 | * scd->clock = clamp(scd->tick_gtod + delta, |
122 | * max(scd->tick_gtod, scd->clock), | 119 | * max(scd->tick_gtod, scd->clock), |
@@ -124,84 +121,73 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
124 | */ | 121 | */ |
125 | 122 | ||
126 | clock = scd->tick_gtod + delta; | 123 | clock = scd->tick_gtod + delta; |
127 | min_clock = wrap_max(scd->tick_gtod, scd->clock); | 124 | min_clock = wrap_max(scd->tick_gtod, old_clock); |
128 | max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); | 125 | max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); |
129 | 126 | ||
130 | clock = wrap_max(clock, min_clock); | 127 | clock = wrap_max(clock, min_clock); |
131 | clock = wrap_min(clock, max_clock); | 128 | clock = wrap_min(clock, max_clock); |
132 | 129 | ||
133 | scd->clock = clock; | 130 | if (cmpxchg(&scd->clock, old_clock, clock) != old_clock) |
131 | goto again; | ||
134 | 132 | ||
135 | return scd->clock; | 133 | return clock; |
136 | } | 134 | } |
137 | 135 | ||
138 | static void lock_double_clock(struct sched_clock_data *data1, | 136 | static u64 sched_clock_remote(struct sched_clock_data *scd) |
139 | struct sched_clock_data *data2) | ||
140 | { | 137 | { |
141 | if (data1 < data2) { | 138 | struct sched_clock_data *my_scd = this_scd(); |
142 | __raw_spin_lock(&data1->lock); | 139 | u64 this_clock, remote_clock; |
143 | __raw_spin_lock(&data2->lock); | 140 | u64 *ptr, old_val, val; |
141 | |||
142 | sched_clock_local(my_scd); | ||
143 | again: | ||
144 | this_clock = my_scd->clock; | ||
145 | remote_clock = scd->clock; | ||
146 | |||
147 | /* | ||
148 | * Use the opportunity that we have both locks | ||
149 | * taken to couple the two clocks: we take the | ||
150 | * larger time as the latest time for both | ||
151 | * runqueues. (this creates monotonic movement) | ||
152 | */ | ||
153 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
154 | ptr = &scd->clock; | ||
155 | old_val = remote_clock; | ||
156 | val = this_clock; | ||
144 | } else { | 157 | } else { |
145 | __raw_spin_lock(&data2->lock); | 158 | /* |
146 | __raw_spin_lock(&data1->lock); | 159 | * Should be rare, but possible: |
160 | */ | ||
161 | ptr = &my_scd->clock; | ||
162 | old_val = this_clock; | ||
163 | val = remote_clock; | ||
147 | } | 164 | } |
165 | |||
166 | if (cmpxchg(ptr, old_val, val) != old_val) | ||
167 | goto again; | ||
168 | |||
169 | return val; | ||
148 | } | 170 | } |
149 | 171 | ||
150 | u64 sched_clock_cpu(int cpu) | 172 | u64 sched_clock_cpu(int cpu) |
151 | { | 173 | { |
152 | u64 now, clock, this_clock, remote_clock; | ||
153 | struct sched_clock_data *scd; | 174 | struct sched_clock_data *scd; |
175 | u64 clock; | ||
176 | |||
177 | WARN_ON_ONCE(!irqs_disabled()); | ||
154 | 178 | ||
155 | if (sched_clock_stable) | 179 | if (sched_clock_stable) |
156 | return sched_clock(); | 180 | return sched_clock(); |
157 | 181 | ||
158 | scd = cpu_sdc(cpu); | ||
159 | |||
160 | /* | ||
161 | * Normally this is not called in NMI context - but if it is, | ||
162 | * trying to do any locking here is totally lethal. | ||
163 | */ | ||
164 | if (unlikely(in_nmi())) | ||
165 | return scd->clock; | ||
166 | |||
167 | if (unlikely(!sched_clock_running)) | 182 | if (unlikely(!sched_clock_running)) |
168 | return 0ull; | 183 | return 0ull; |
169 | 184 | ||
170 | WARN_ON_ONCE(!irqs_disabled()); | 185 | scd = cpu_sdc(cpu); |
171 | now = sched_clock(); | ||
172 | |||
173 | if (cpu != raw_smp_processor_id()) { | ||
174 | struct sched_clock_data *my_scd = this_scd(); | ||
175 | |||
176 | lock_double_clock(scd, my_scd); | ||
177 | |||
178 | this_clock = __update_sched_clock(my_scd, now); | ||
179 | remote_clock = scd->clock; | ||
180 | |||
181 | /* | ||
182 | * Use the opportunity that we have both locks | ||
183 | * taken to couple the two clocks: we take the | ||
184 | * larger time as the latest time for both | ||
185 | * runqueues. (this creates monotonic movement) | ||
186 | */ | ||
187 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
188 | clock = this_clock; | ||
189 | scd->clock = clock; | ||
190 | } else { | ||
191 | /* | ||
192 | * Should be rare, but possible: | ||
193 | */ | ||
194 | clock = remote_clock; | ||
195 | my_scd->clock = remote_clock; | ||
196 | } | ||
197 | |||
198 | __raw_spin_unlock(&my_scd->lock); | ||
199 | } else { | ||
200 | __raw_spin_lock(&scd->lock); | ||
201 | clock = __update_sched_clock(scd, now); | ||
202 | } | ||
203 | 186 | ||
204 | __raw_spin_unlock(&scd->lock); | 187 | if (cpu != smp_processor_id()) |
188 | clock = sched_clock_remote(scd); | ||
189 | else | ||
190 | clock = sched_clock_local(scd); | ||
205 | 191 | ||
206 | return clock; | 192 | return clock; |
207 | } | 193 | } |
@@ -223,11 +209,9 @@ void sched_clock_tick(void) | |||
223 | now_gtod = ktime_to_ns(ktime_get()); | 209 | now_gtod = ktime_to_ns(ktime_get()); |
224 | now = sched_clock(); | 210 | now = sched_clock(); |
225 | 211 | ||
226 | __raw_spin_lock(&scd->lock); | ||
227 | scd->tick_raw = now; | 212 | scd->tick_raw = now; |
228 | scd->tick_gtod = now_gtod; | 213 | scd->tick_gtod = now_gtod; |
229 | __update_sched_clock(scd, now); | 214 | sched_clock_local(scd); |
230 | __raw_spin_unlock(&scd->lock); | ||
231 | } | 215 | } |
232 | 216 | ||
233 | /* | 217 | /* |
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c index d014efbf947a..0f052fc674d5 100644 --- a/kernel/sched_cpupri.c +++ b/kernel/sched_cpupri.c | |||
@@ -127,21 +127,11 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri) | |||
127 | 127 | ||
128 | /* | 128 | /* |
129 | * If the cpu was currently mapped to a different value, we | 129 | * If the cpu was currently mapped to a different value, we |
130 | * first need to unmap the old value | 130 | * need to map it to the new value then remove the old value. |
131 | * Note, we must add the new value first, otherwise we risk the | ||
132 | * cpu being cleared from pri_active, and this cpu could be | ||
133 | * missed for a push or pull. | ||
131 | */ | 134 | */ |
132 | if (likely(oldpri != CPUPRI_INVALID)) { | ||
133 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | ||
134 | |||
135 | spin_lock_irqsave(&vec->lock, flags); | ||
136 | |||
137 | vec->count--; | ||
138 | if (!vec->count) | ||
139 | clear_bit(oldpri, cp->pri_active); | ||
140 | cpumask_clear_cpu(cpu, vec->mask); | ||
141 | |||
142 | spin_unlock_irqrestore(&vec->lock, flags); | ||
143 | } | ||
144 | |||
145 | if (likely(newpri != CPUPRI_INVALID)) { | 135 | if (likely(newpri != CPUPRI_INVALID)) { |
146 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; | 136 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; |
147 | 137 | ||
@@ -154,6 +144,18 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri) | |||
154 | 144 | ||
155 | spin_unlock_irqrestore(&vec->lock, flags); | 145 | spin_unlock_irqrestore(&vec->lock, flags); |
156 | } | 146 | } |
147 | if (likely(oldpri != CPUPRI_INVALID)) { | ||
148 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | ||
149 | |||
150 | spin_lock_irqsave(&vec->lock, flags); | ||
151 | |||
152 | vec->count--; | ||
153 | if (!vec->count) | ||
154 | clear_bit(oldpri, cp->pri_active); | ||
155 | cpumask_clear_cpu(cpu, vec->mask); | ||
156 | |||
157 | spin_unlock_irqrestore(&vec->lock, flags); | ||
158 | } | ||
157 | 159 | ||
158 | *currpri = newpri; | 160 | *currpri = newpri; |
159 | } | 161 | } |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 70c7e0b79946..efb84409bc43 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -395,6 +395,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
395 | PN(se.sum_exec_runtime); | 395 | PN(se.sum_exec_runtime); |
396 | PN(se.avg_overlap); | 396 | PN(se.avg_overlap); |
397 | PN(se.avg_wakeup); | 397 | PN(se.avg_wakeup); |
398 | PN(se.avg_running); | ||
398 | 399 | ||
399 | nr_switches = p->nvcsw + p->nivcsw; | 400 | nr_switches = p->nvcsw + p->nivcsw; |
400 | 401 | ||
@@ -409,6 +410,8 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
409 | PN(se.wait_max); | 410 | PN(se.wait_max); |
410 | PN(se.wait_sum); | 411 | PN(se.wait_sum); |
411 | P(se.wait_count); | 412 | P(se.wait_count); |
413 | PN(se.iowait_sum); | ||
414 | P(se.iowait_count); | ||
412 | P(sched_info.bkl_count); | 415 | P(sched_info.bkl_count); |
413 | P(se.nr_migrations); | 416 | P(se.nr_migrations); |
414 | P(se.nr_migrations_cold); | 417 | P(se.nr_migrations_cold); |
@@ -479,6 +482,8 @@ void proc_sched_set_task(struct task_struct *p) | |||
479 | p->se.wait_max = 0; | 482 | p->se.wait_max = 0; |
480 | p->se.wait_sum = 0; | 483 | p->se.wait_sum = 0; |
481 | p->se.wait_count = 0; | 484 | p->se.wait_count = 0; |
485 | p->se.iowait_sum = 0; | ||
486 | p->se.iowait_count = 0; | ||
482 | p->se.sleep_max = 0; | 487 | p->se.sleep_max = 0; |
483 | p->se.sum_sleep_runtime = 0; | 488 | p->se.sum_sleep_runtime = 0; |
484 | p->se.block_max = 0; | 489 | p->se.block_max = 0; |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 652e8bdef9aa..ecc637a0d591 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -24,7 +24,7 @@ | |||
24 | 24 | ||
25 | /* | 25 | /* |
26 | * Targeted preemption latency for CPU-bound tasks: | 26 | * Targeted preemption latency for CPU-bound tasks: |
27 | * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) | 27 | * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds) |
28 | * | 28 | * |
29 | * NOTE: this latency value is not the same as the concept of | 29 | * NOTE: this latency value is not the same as the concept of |
30 | * 'timeslice length' - timeslices in CFS are of variable length | 30 | * 'timeslice length' - timeslices in CFS are of variable length |
@@ -34,13 +34,13 @@ | |||
34 | * (to see the precise effective timeslice length of your workload, | 34 | * (to see the precise effective timeslice length of your workload, |
35 | * run vmstat and monitor the context-switches (cs) field) | 35 | * run vmstat and monitor the context-switches (cs) field) |
36 | */ | 36 | */ |
37 | unsigned int sysctl_sched_latency = 20000000ULL; | 37 | unsigned int sysctl_sched_latency = 5000000ULL; |
38 | 38 | ||
39 | /* | 39 | /* |
40 | * Minimal preemption granularity for CPU-bound tasks: | 40 | * Minimal preemption granularity for CPU-bound tasks: |
41 | * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) | 41 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
42 | */ | 42 | */ |
43 | unsigned int sysctl_sched_min_granularity = 4000000ULL; | 43 | unsigned int sysctl_sched_min_granularity = 1000000ULL; |
44 | 44 | ||
45 | /* | 45 | /* |
46 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 46 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
@@ -48,10 +48,10 @@ unsigned int sysctl_sched_min_granularity = 4000000ULL; | |||
48 | static unsigned int sched_nr_latency = 5; | 48 | static unsigned int sched_nr_latency = 5; |
49 | 49 | ||
50 | /* | 50 | /* |
51 | * After fork, child runs first. (default) If set to 0 then | 51 | * After fork, child runs first. If set to 0 (default) then |
52 | * parent will (try to) run first. | 52 | * parent will (try to) run first. |
53 | */ | 53 | */ |
54 | const_debug unsigned int sysctl_sched_child_runs_first = 1; | 54 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
55 | 55 | ||
56 | /* | 56 | /* |
57 | * sys_sched_yield() compat mode | 57 | * sys_sched_yield() compat mode |
@@ -63,13 +63,13 @@ unsigned int __read_mostly sysctl_sched_compat_yield; | |||
63 | 63 | ||
64 | /* | 64 | /* |
65 | * SCHED_OTHER wake-up granularity. | 65 | * SCHED_OTHER wake-up granularity. |
66 | * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds) | 66 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
67 | * | 67 | * |
68 | * This option delays the preemption effects of decoupled workloads | 68 | * This option delays the preemption effects of decoupled workloads |
69 | * and reduces their over-scheduling. Synchronous workloads will still | 69 | * and reduces their over-scheduling. Synchronous workloads will still |
70 | * have immediate wakeup/sleep latencies. | 70 | * have immediate wakeup/sleep latencies. |
71 | */ | 71 | */ |
72 | unsigned int sysctl_sched_wakeup_granularity = 5000000UL; | 72 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
73 | 73 | ||
74 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 74 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
75 | 75 | ||
@@ -79,11 +79,6 @@ static const struct sched_class fair_sched_class; | |||
79 | * CFS operations on generic schedulable entities: | 79 | * CFS operations on generic schedulable entities: |
80 | */ | 80 | */ |
81 | 81 | ||
82 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
83 | { | ||
84 | return container_of(se, struct task_struct, se); | ||
85 | } | ||
86 | |||
87 | #ifdef CONFIG_FAIR_GROUP_SCHED | 82 | #ifdef CONFIG_FAIR_GROUP_SCHED |
88 | 83 | ||
89 | /* cpu runqueue to which this cfs_rq is attached */ | 84 | /* cpu runqueue to which this cfs_rq is attached */ |
@@ -95,6 +90,14 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | |||
95 | /* An entity is a task if it doesn't "own" a runqueue */ | 90 | /* An entity is a task if it doesn't "own" a runqueue */ |
96 | #define entity_is_task(se) (!se->my_q) | 91 | #define entity_is_task(se) (!se->my_q) |
97 | 92 | ||
93 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
94 | { | ||
95 | #ifdef CONFIG_SCHED_DEBUG | ||
96 | WARN_ON_ONCE(!entity_is_task(se)); | ||
97 | #endif | ||
98 | return container_of(se, struct task_struct, se); | ||
99 | } | ||
100 | |||
98 | /* Walk up scheduling entities hierarchy */ | 101 | /* Walk up scheduling entities hierarchy */ |
99 | #define for_each_sched_entity(se) \ | 102 | #define for_each_sched_entity(se) \ |
100 | for (; se; se = se->parent) | 103 | for (; se; se = se->parent) |
@@ -186,7 +189,12 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |||
186 | } | 189 | } |
187 | } | 190 | } |
188 | 191 | ||
189 | #else /* CONFIG_FAIR_GROUP_SCHED */ | 192 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
193 | |||
194 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
195 | { | ||
196 | return container_of(se, struct task_struct, se); | ||
197 | } | ||
190 | 198 | ||
191 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 199 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
192 | { | 200 | { |
@@ -505,6 +513,7 @@ static void update_curr(struct cfs_rq *cfs_rq) | |||
505 | if (entity_is_task(curr)) { | 513 | if (entity_is_task(curr)) { |
506 | struct task_struct *curtask = task_of(curr); | 514 | struct task_struct *curtask = task_of(curr); |
507 | 515 | ||
516 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
508 | cpuacct_charge(curtask, delta_exec); | 517 | cpuacct_charge(curtask, delta_exec); |
509 | account_group_exec_runtime(curtask, delta_exec); | 518 | account_group_exec_runtime(curtask, delta_exec); |
510 | } | 519 | } |
@@ -537,6 +546,12 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
537 | schedstat_set(se->wait_count, se->wait_count + 1); | 546 | schedstat_set(se->wait_count, se->wait_count + 1); |
538 | schedstat_set(se->wait_sum, se->wait_sum + | 547 | schedstat_set(se->wait_sum, se->wait_sum + |
539 | rq_of(cfs_rq)->clock - se->wait_start); | 548 | rq_of(cfs_rq)->clock - se->wait_start); |
549 | #ifdef CONFIG_SCHEDSTATS | ||
550 | if (entity_is_task(se)) { | ||
551 | trace_sched_stat_wait(task_of(se), | ||
552 | rq_of(cfs_rq)->clock - se->wait_start); | ||
553 | } | ||
554 | #endif | ||
540 | schedstat_set(se->wait_start, 0); | 555 | schedstat_set(se->wait_start, 0); |
541 | } | 556 | } |
542 | 557 | ||
@@ -628,8 +643,10 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
628 | se->sleep_start = 0; | 643 | se->sleep_start = 0; |
629 | se->sum_sleep_runtime += delta; | 644 | se->sum_sleep_runtime += delta; |
630 | 645 | ||
631 | if (tsk) | 646 | if (tsk) { |
632 | account_scheduler_latency(tsk, delta >> 10, 1); | 647 | account_scheduler_latency(tsk, delta >> 10, 1); |
648 | trace_sched_stat_sleep(tsk, delta); | ||
649 | } | ||
633 | } | 650 | } |
634 | if (se->block_start) { | 651 | if (se->block_start) { |
635 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 652 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; |
@@ -644,6 +661,12 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
644 | se->sum_sleep_runtime += delta; | 661 | se->sum_sleep_runtime += delta; |
645 | 662 | ||
646 | if (tsk) { | 663 | if (tsk) { |
664 | if (tsk->in_iowait) { | ||
665 | se->iowait_sum += delta; | ||
666 | se->iowait_count++; | ||
667 | trace_sched_stat_iowait(tsk, delta); | ||
668 | } | ||
669 | |||
647 | /* | 670 | /* |
648 | * Blocking time is in units of nanosecs, so shift by | 671 | * Blocking time is in units of nanosecs, so shift by |
649 | * 20 to get a milliseconds-range estimation of the | 672 | * 20 to get a milliseconds-range estimation of the |
@@ -687,29 +710,33 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
687 | if (initial && sched_feat(START_DEBIT)) | 710 | if (initial && sched_feat(START_DEBIT)) |
688 | vruntime += sched_vslice(cfs_rq, se); | 711 | vruntime += sched_vslice(cfs_rq, se); |
689 | 712 | ||
690 | if (!initial) { | 713 | /* sleeps up to a single latency don't count. */ |
691 | /* sleeps upto a single latency don't count. */ | 714 | if (!initial && sched_feat(FAIR_SLEEPERS)) { |
692 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 715 | unsigned long thresh = sysctl_sched_latency; |
693 | unsigned long thresh = sysctl_sched_latency; | ||
694 | 716 | ||
695 | /* | 717 | /* |
696 | * Convert the sleeper threshold into virtual time. | 718 | * Convert the sleeper threshold into virtual time. |
697 | * SCHED_IDLE is a special sub-class. We care about | 719 | * SCHED_IDLE is a special sub-class. We care about |
698 | * fairness only relative to other SCHED_IDLE tasks, | 720 | * fairness only relative to other SCHED_IDLE tasks, |
699 | * all of which have the same weight. | 721 | * all of which have the same weight. |
700 | */ | 722 | */ |
701 | if (sched_feat(NORMALIZED_SLEEPER) && | 723 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || |
702 | (!entity_is_task(se) || | 724 | task_of(se)->policy != SCHED_IDLE)) |
703 | task_of(se)->policy != SCHED_IDLE)) | 725 | thresh = calc_delta_fair(thresh, se); |
704 | thresh = calc_delta_fair(thresh, se); | ||
705 | 726 | ||
706 | vruntime -= thresh; | 727 | /* |
707 | } | 728 | * Halve their sleep time's effect, to allow |
729 | * for a gentler effect of sleepers: | ||
730 | */ | ||
731 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
732 | thresh >>= 1; | ||
708 | 733 | ||
709 | /* ensure we never gain time by being placed backwards. */ | 734 | vruntime -= thresh; |
710 | vruntime = max_vruntime(se->vruntime, vruntime); | ||
711 | } | 735 | } |
712 | 736 | ||
737 | /* ensure we never gain time by being placed backwards. */ | ||
738 | vruntime = max_vruntime(se->vruntime, vruntime); | ||
739 | |||
713 | se->vruntime = vruntime; | 740 | se->vruntime = vruntime; |
714 | } | 741 | } |
715 | 742 | ||
@@ -735,10 +762,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | |||
735 | 762 | ||
736 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 763 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
737 | { | 764 | { |
738 | if (cfs_rq->last == se) | 765 | if (!se || cfs_rq->last == se) |
739 | cfs_rq->last = NULL; | 766 | cfs_rq->last = NULL; |
740 | 767 | ||
741 | if (cfs_rq->next == se) | 768 | if (!se || cfs_rq->next == se) |
742 | cfs_rq->next = NULL; | 769 | cfs_rq->next = NULL; |
743 | } | 770 | } |
744 | 771 | ||
@@ -1040,79 +1067,6 @@ static void yield_task_fair(struct rq *rq) | |||
1040 | se->vruntime = rightmost->vruntime + 1; | 1067 | se->vruntime = rightmost->vruntime + 1; |
1041 | } | 1068 | } |
1042 | 1069 | ||
1043 | /* | ||
1044 | * wake_idle() will wake a task on an idle cpu if task->cpu is | ||
1045 | * not idle and an idle cpu is available. The span of cpus to | ||
1046 | * search starts with cpus closest then further out as needed, | ||
1047 | * so we always favor a closer, idle cpu. | ||
1048 | * Domains may include CPUs that are not usable for migration, | ||
1049 | * hence we need to mask them out (cpu_active_mask) | ||
1050 | * | ||
1051 | * Returns the CPU we should wake onto. | ||
1052 | */ | ||
1053 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | ||
1054 | static int wake_idle(int cpu, struct task_struct *p) | ||
1055 | { | ||
1056 | struct sched_domain *sd; | ||
1057 | int i; | ||
1058 | unsigned int chosen_wakeup_cpu; | ||
1059 | int this_cpu; | ||
1060 | |||
1061 | /* | ||
1062 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | ||
1063 | * are idle and this is not a kernel thread and this task's affinity | ||
1064 | * allows it to be moved to preferred cpu, then just move! | ||
1065 | */ | ||
1066 | |||
1067 | this_cpu = smp_processor_id(); | ||
1068 | chosen_wakeup_cpu = | ||
1069 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | ||
1070 | |||
1071 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | ||
1072 | idle_cpu(cpu) && idle_cpu(this_cpu) && | ||
1073 | p->mm && !(p->flags & PF_KTHREAD) && | ||
1074 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | ||
1075 | return chosen_wakeup_cpu; | ||
1076 | |||
1077 | /* | ||
1078 | * If it is idle, then it is the best cpu to run this task. | ||
1079 | * | ||
1080 | * This cpu is also the best, if it has more than one task already. | ||
1081 | * Siblings must be also busy(in most cases) as they didn't already | ||
1082 | * pickup the extra load from this cpu and hence we need not check | ||
1083 | * sibling runqueue info. This will avoid the checks and cache miss | ||
1084 | * penalities associated with that. | ||
1085 | */ | ||
1086 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | ||
1087 | return cpu; | ||
1088 | |||
1089 | for_each_domain(cpu, sd) { | ||
1090 | if ((sd->flags & SD_WAKE_IDLE) | ||
1091 | || ((sd->flags & SD_WAKE_IDLE_FAR) | ||
1092 | && !task_hot(p, task_rq(p)->clock, sd))) { | ||
1093 | for_each_cpu_and(i, sched_domain_span(sd), | ||
1094 | &p->cpus_allowed) { | ||
1095 | if (cpu_active(i) && idle_cpu(i)) { | ||
1096 | if (i != task_cpu(p)) { | ||
1097 | schedstat_inc(p, | ||
1098 | se.nr_wakeups_idle); | ||
1099 | } | ||
1100 | return i; | ||
1101 | } | ||
1102 | } | ||
1103 | } else { | ||
1104 | break; | ||
1105 | } | ||
1106 | } | ||
1107 | return cpu; | ||
1108 | } | ||
1109 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | ||
1110 | static inline int wake_idle(int cpu, struct task_struct *p) | ||
1111 | { | ||
1112 | return cpu; | ||
1113 | } | ||
1114 | #endif | ||
1115 | |||
1116 | #ifdef CONFIG_SMP | 1070 | #ifdef CONFIG_SMP |
1117 | 1071 | ||
1118 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1072 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1199,25 +1153,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
1199 | 1153 | ||
1200 | #endif | 1154 | #endif |
1201 | 1155 | ||
1202 | static int | 1156 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
1203 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | ||
1204 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | ||
1205 | int idx, unsigned long load, unsigned long this_load, | ||
1206 | unsigned int imbalance) | ||
1207 | { | 1157 | { |
1208 | struct task_struct *curr = this_rq->curr; | 1158 | struct task_struct *curr = current; |
1209 | struct task_group *tg; | 1159 | unsigned long this_load, load; |
1210 | unsigned long tl = this_load; | 1160 | int idx, this_cpu, prev_cpu; |
1211 | unsigned long tl_per_task; | 1161 | unsigned long tl_per_task; |
1162 | unsigned int imbalance; | ||
1163 | struct task_group *tg; | ||
1212 | unsigned long weight; | 1164 | unsigned long weight; |
1213 | int balanced; | 1165 | int balanced; |
1214 | 1166 | ||
1215 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 1167 | idx = sd->wake_idx; |
1216 | return 0; | 1168 | this_cpu = smp_processor_id(); |
1169 | prev_cpu = task_cpu(p); | ||
1170 | load = source_load(prev_cpu, idx); | ||
1171 | this_load = target_load(this_cpu, idx); | ||
1217 | 1172 | ||
1218 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 1173 | if (sync) { |
1219 | p->se.avg_overlap > sysctl_sched_migration_cost)) | 1174 | if (sched_feat(SYNC_LESS) && |
1220 | sync = 0; | 1175 | (curr->se.avg_overlap > sysctl_sched_migration_cost || |
1176 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
1177 | sync = 0; | ||
1178 | } else { | ||
1179 | if (sched_feat(SYNC_MORE) && | ||
1180 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
1181 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
1182 | sync = 1; | ||
1183 | } | ||
1221 | 1184 | ||
1222 | /* | 1185 | /* |
1223 | * If sync wakeup then subtract the (maximum possible) | 1186 | * If sync wakeup then subtract the (maximum possible) |
@@ -1228,14 +1191,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1228 | tg = task_group(current); | 1191 | tg = task_group(current); |
1229 | weight = current->se.load.weight; | 1192 | weight = current->se.load.weight; |
1230 | 1193 | ||
1231 | tl += effective_load(tg, this_cpu, -weight, -weight); | 1194 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
1232 | load += effective_load(tg, prev_cpu, 0, -weight); | 1195 | load += effective_load(tg, prev_cpu, 0, -weight); |
1233 | } | 1196 | } |
1234 | 1197 | ||
1235 | tg = task_group(p); | 1198 | tg = task_group(p); |
1236 | weight = p->se.load.weight; | 1199 | weight = p->se.load.weight; |
1237 | 1200 | ||
1238 | balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 1201 | imbalance = 100 + (sd->imbalance_pct - 100) / 2; |
1202 | |||
1203 | /* | ||
1204 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | ||
1205 | * due to the sync cause above having dropped this_load to 0, we'll | ||
1206 | * always have an imbalance, but there's really nothing you can do | ||
1207 | * about that, so that's good too. | ||
1208 | * | ||
1209 | * Otherwise check if either cpus are near enough in load to allow this | ||
1210 | * task to be woken on this_cpu. | ||
1211 | */ | ||
1212 | balanced = !this_load || | ||
1213 | 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <= | ||
1239 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 1214 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
1240 | 1215 | ||
1241 | /* | 1216 | /* |
@@ -1249,14 +1224,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1249 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1224 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
1250 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1225 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1251 | 1226 | ||
1252 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 1227 | if (balanced || |
1253 | tl_per_task)) { | 1228 | (this_load <= load && |
1229 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
1254 | /* | 1230 | /* |
1255 | * This domain has SD_WAKE_AFFINE and | 1231 | * This domain has SD_WAKE_AFFINE and |
1256 | * p is cache cold in this domain, and | 1232 | * p is cache cold in this domain, and |
1257 | * there is no bad imbalance. | 1233 | * there is no bad imbalance. |
1258 | */ | 1234 | */ |
1259 | schedstat_inc(this_sd, ttwu_move_affine); | 1235 | schedstat_inc(sd, ttwu_move_affine); |
1260 | schedstat_inc(p, se.nr_wakeups_affine); | 1236 | schedstat_inc(p, se.nr_wakeups_affine); |
1261 | 1237 | ||
1262 | return 1; | 1238 | return 1; |
@@ -1264,67 +1240,216 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1264 | return 0; | 1240 | return 0; |
1265 | } | 1241 | } |
1266 | 1242 | ||
1267 | static int select_task_rq_fair(struct task_struct *p, int sync) | 1243 | /* |
1244 | * find_idlest_group finds and returns the least busy CPU group within the | ||
1245 | * domain. | ||
1246 | */ | ||
1247 | static struct sched_group * | ||
1248 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
1249 | int this_cpu, int load_idx) | ||
1268 | { | 1250 | { |
1269 | struct sched_domain *sd, *this_sd = NULL; | 1251 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
1270 | int prev_cpu, this_cpu, new_cpu; | 1252 | unsigned long min_load = ULONG_MAX, this_load = 0; |
1271 | unsigned long load, this_load; | 1253 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
1272 | struct rq *this_rq; | ||
1273 | unsigned int imbalance; | ||
1274 | int idx; | ||
1275 | 1254 | ||
1276 | prev_cpu = task_cpu(p); | 1255 | do { |
1277 | this_cpu = smp_processor_id(); | 1256 | unsigned long load, avg_load; |
1278 | this_rq = cpu_rq(this_cpu); | 1257 | int local_group; |
1279 | new_cpu = prev_cpu; | 1258 | int i; |
1280 | 1259 | ||
1281 | if (prev_cpu == this_cpu) | 1260 | /* Skip over this group if it has no CPUs allowed */ |
1282 | goto out; | 1261 | if (!cpumask_intersects(sched_group_cpus(group), |
1283 | /* | 1262 | &p->cpus_allowed)) |
1284 | * 'this_sd' is the first domain that both | 1263 | continue; |
1285 | * this_cpu and prev_cpu are present in: | 1264 | |
1286 | */ | 1265 | local_group = cpumask_test_cpu(this_cpu, |
1287 | for_each_domain(this_cpu, sd) { | 1266 | sched_group_cpus(group)); |
1288 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 1267 | |
1289 | this_sd = sd; | 1268 | /* Tally up the load of all CPUs in the group */ |
1290 | break; | 1269 | avg_load = 0; |
1270 | |||
1271 | for_each_cpu(i, sched_group_cpus(group)) { | ||
1272 | /* Bias balancing toward cpus of our domain */ | ||
1273 | if (local_group) | ||
1274 | load = source_load(i, load_idx); | ||
1275 | else | ||
1276 | load = target_load(i, load_idx); | ||
1277 | |||
1278 | avg_load += load; | ||
1279 | } | ||
1280 | |||
1281 | /* Adjust by relative CPU power of the group */ | ||
1282 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
1283 | |||
1284 | if (local_group) { | ||
1285 | this_load = avg_load; | ||
1286 | this = group; | ||
1287 | } else if (avg_load < min_load) { | ||
1288 | min_load = avg_load; | ||
1289 | idlest = group; | ||
1290 | } | ||
1291 | } while (group = group->next, group != sd->groups); | ||
1292 | |||
1293 | if (!idlest || 100*this_load < imbalance*min_load) | ||
1294 | return NULL; | ||
1295 | return idlest; | ||
1296 | } | ||
1297 | |||
1298 | /* | ||
1299 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
1300 | */ | ||
1301 | static int | ||
1302 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
1303 | { | ||
1304 | unsigned long load, min_load = ULONG_MAX; | ||
1305 | int idlest = -1; | ||
1306 | int i; | ||
1307 | |||
1308 | /* Traverse only the allowed CPUs */ | ||
1309 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
1310 | load = weighted_cpuload(i); | ||
1311 | |||
1312 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
1313 | min_load = load; | ||
1314 | idlest = i; | ||
1291 | } | 1315 | } |
1292 | } | 1316 | } |
1293 | 1317 | ||
1294 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 1318 | return idlest; |
1295 | goto out; | 1319 | } |
1296 | 1320 | ||
1297 | /* | 1321 | /* |
1298 | * Check for affine wakeup and passive balancing possibilities. | 1322 | * sched_balance_self: balance the current task (running on cpu) in domains |
1299 | */ | 1323 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
1300 | if (!this_sd) | 1324 | * SD_BALANCE_EXEC. |
1325 | * | ||
1326 | * Balance, ie. select the least loaded group. | ||
1327 | * | ||
1328 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
1329 | * | ||
1330 | * preempt must be disabled. | ||
1331 | */ | ||
1332 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
1333 | { | ||
1334 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
1335 | int cpu = smp_processor_id(); | ||
1336 | int prev_cpu = task_cpu(p); | ||
1337 | int new_cpu = cpu; | ||
1338 | int want_affine = 0; | ||
1339 | int want_sd = 1; | ||
1340 | int sync = wake_flags & WF_SYNC; | ||
1341 | |||
1342 | if (sd_flag & SD_BALANCE_WAKE) { | ||
1343 | if (sched_feat(AFFINE_WAKEUPS) && | ||
1344 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
1345 | want_affine = 1; | ||
1346 | new_cpu = prev_cpu; | ||
1347 | } | ||
1348 | |||
1349 | rcu_read_lock(); | ||
1350 | for_each_domain(cpu, tmp) { | ||
1351 | /* | ||
1352 | * If power savings logic is enabled for a domain, see if we | ||
1353 | * are not overloaded, if so, don't balance wider. | ||
1354 | */ | ||
1355 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
1356 | unsigned long power = 0; | ||
1357 | unsigned long nr_running = 0; | ||
1358 | unsigned long capacity; | ||
1359 | int i; | ||
1360 | |||
1361 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
1362 | power += power_of(i); | ||
1363 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
1364 | } | ||
1365 | |||
1366 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
1367 | |||
1368 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
1369 | nr_running /= 2; | ||
1370 | |||
1371 | if (nr_running < capacity) | ||
1372 | want_sd = 0; | ||
1373 | } | ||
1374 | |||
1375 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
1376 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
1377 | |||
1378 | affine_sd = tmp; | ||
1379 | want_affine = 0; | ||
1380 | } | ||
1381 | |||
1382 | if (!want_sd && !want_affine) | ||
1383 | break; | ||
1384 | |||
1385 | if (!(tmp->flags & sd_flag)) | ||
1386 | continue; | ||
1387 | |||
1388 | if (want_sd) | ||
1389 | sd = tmp; | ||
1390 | } | ||
1391 | |||
1392 | if (sched_feat(LB_SHARES_UPDATE)) { | ||
1393 | /* | ||
1394 | * Pick the largest domain to update shares over | ||
1395 | */ | ||
1396 | tmp = sd; | ||
1397 | if (affine_sd && (!tmp || | ||
1398 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
1399 | cpumask_weight(sched_domain_span(sd)))) | ||
1400 | tmp = affine_sd; | ||
1401 | |||
1402 | if (tmp) | ||
1403 | update_shares(tmp); | ||
1404 | } | ||
1405 | |||
1406 | if (affine_sd && wake_affine(affine_sd, p, sync)) { | ||
1407 | new_cpu = cpu; | ||
1301 | goto out; | 1408 | goto out; |
1409 | } | ||
1410 | |||
1411 | while (sd) { | ||
1412 | int load_idx = sd->forkexec_idx; | ||
1413 | struct sched_group *group; | ||
1414 | int weight; | ||
1302 | 1415 | ||
1303 | idx = this_sd->wake_idx; | 1416 | if (!(sd->flags & sd_flag)) { |
1417 | sd = sd->child; | ||
1418 | continue; | ||
1419 | } | ||
1304 | 1420 | ||
1305 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 1421 | if (sd_flag & SD_BALANCE_WAKE) |
1422 | load_idx = sd->wake_idx; | ||
1306 | 1423 | ||
1307 | load = source_load(prev_cpu, idx); | 1424 | group = find_idlest_group(sd, p, cpu, load_idx); |
1308 | this_load = target_load(this_cpu, idx); | 1425 | if (!group) { |
1426 | sd = sd->child; | ||
1427 | continue; | ||
1428 | } | ||
1309 | 1429 | ||
1310 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 1430 | new_cpu = find_idlest_cpu(group, p, cpu); |
1311 | load, this_load, imbalance)) | 1431 | if (new_cpu == -1 || new_cpu == cpu) { |
1312 | return this_cpu; | 1432 | /* Now try balancing at a lower domain level of cpu */ |
1433 | sd = sd->child; | ||
1434 | continue; | ||
1435 | } | ||
1313 | 1436 | ||
1314 | /* | 1437 | /* Now try balancing at a lower domain level of new_cpu */ |
1315 | * Start passive balancing when half the imbalance_pct | 1438 | cpu = new_cpu; |
1316 | * limit is reached. | 1439 | weight = cpumask_weight(sched_domain_span(sd)); |
1317 | */ | 1440 | sd = NULL; |
1318 | if (this_sd->flags & SD_WAKE_BALANCE) { | 1441 | for_each_domain(cpu, tmp) { |
1319 | if (imbalance*this_load <= 100*load) { | 1442 | if (weight <= cpumask_weight(sched_domain_span(tmp))) |
1320 | schedstat_inc(this_sd, ttwu_move_balance); | 1443 | break; |
1321 | schedstat_inc(p, se.nr_wakeups_passive); | 1444 | if (tmp->flags & sd_flag) |
1322 | return this_cpu; | 1445 | sd = tmp; |
1323 | } | 1446 | } |
1447 | /* while loop will break here if sd == NULL */ | ||
1324 | } | 1448 | } |
1325 | 1449 | ||
1326 | out: | 1450 | out: |
1327 | return wake_idle(new_cpu, p); | 1451 | rcu_read_unlock(); |
1452 | return new_cpu; | ||
1328 | } | 1453 | } |
1329 | #endif /* CONFIG_SMP */ | 1454 | #endif /* CONFIG_SMP */ |
1330 | 1455 | ||
@@ -1437,11 +1562,12 @@ static void set_next_buddy(struct sched_entity *se) | |||
1437 | /* | 1562 | /* |
1438 | * Preempt the current task with a newly woken task if needed: | 1563 | * Preempt the current task with a newly woken task if needed: |
1439 | */ | 1564 | */ |
1440 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 1565 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
1441 | { | 1566 | { |
1442 | struct task_struct *curr = rq->curr; | 1567 | struct task_struct *curr = rq->curr; |
1443 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1568 | struct sched_entity *se = &curr->se, *pse = &p->se; |
1444 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1569 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1570 | int sync = wake_flags & WF_SYNC; | ||
1445 | 1571 | ||
1446 | update_curr(cfs_rq); | 1572 | update_curr(cfs_rq); |
1447 | 1573 | ||
@@ -1467,7 +1593,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
1467 | */ | 1593 | */ |
1468 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | 1594 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) |
1469 | set_last_buddy(se); | 1595 | set_last_buddy(se); |
1470 | set_next_buddy(pse); | 1596 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) |
1597 | set_next_buddy(pse); | ||
1471 | 1598 | ||
1472 | /* | 1599 | /* |
1473 | * We can come here with TIF_NEED_RESCHED already set from new task | 1600 | * We can come here with TIF_NEED_RESCHED already set from new task |
@@ -1489,16 +1616,25 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
1489 | return; | 1616 | return; |
1490 | } | 1617 | } |
1491 | 1618 | ||
1492 | if (!sched_feat(WAKEUP_PREEMPT)) | 1619 | if ((sched_feat(WAKEUP_SYNC) && sync) || |
1493 | return; | 1620 | (sched_feat(WAKEUP_OVERLAP) && |
1494 | 1621 | (se->avg_overlap < sysctl_sched_migration_cost && | |
1495 | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 1622 | pse->avg_overlap < sysctl_sched_migration_cost))) { |
1496 | (se->avg_overlap < sysctl_sched_migration_cost && | ||
1497 | pse->avg_overlap < sysctl_sched_migration_cost))) { | ||
1498 | resched_task(curr); | 1623 | resched_task(curr); |
1499 | return; | 1624 | return; |
1500 | } | 1625 | } |
1501 | 1626 | ||
1627 | if (sched_feat(WAKEUP_RUNNING)) { | ||
1628 | if (pse->avg_running < se->avg_running) { | ||
1629 | set_next_buddy(pse); | ||
1630 | resched_task(curr); | ||
1631 | return; | ||
1632 | } | ||
1633 | } | ||
1634 | |||
1635 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
1636 | return; | ||
1637 | |||
1502 | find_matching_se(&se, &pse); | 1638 | find_matching_se(&se, &pse); |
1503 | 1639 | ||
1504 | BUG_ON(!pse); | 1640 | BUG_ON(!pse); |
@@ -1521,8 +1657,13 @@ static struct task_struct *pick_next_task_fair(struct rq *rq) | |||
1521 | /* | 1657 | /* |
1522 | * If se was a buddy, clear it so that it will have to earn | 1658 | * If se was a buddy, clear it so that it will have to earn |
1523 | * the favour again. | 1659 | * the favour again. |
1660 | * | ||
1661 | * If se was not a buddy, clear the buddies because neither | ||
1662 | * was elegible to run, let them earn it again. | ||
1663 | * | ||
1664 | * IOW. unconditionally clear buddies. | ||
1524 | */ | 1665 | */ |
1525 | __clear_buddies(cfs_rq, se); | 1666 | __clear_buddies(cfs_rq, NULL); |
1526 | set_next_entity(cfs_rq, se); | 1667 | set_next_entity(cfs_rq, se); |
1527 | cfs_rq = group_cfs_rq(se); | 1668 | cfs_rq = group_cfs_rq(se); |
1528 | } while (cfs_rq); | 1669 | } while (cfs_rq); |
@@ -1721,6 +1862,8 @@ static void task_new_fair(struct rq *rq, struct task_struct *p) | |||
1721 | sched_info_queued(p); | 1862 | sched_info_queued(p); |
1722 | 1863 | ||
1723 | update_curr(cfs_rq); | 1864 | update_curr(cfs_rq); |
1865 | if (curr) | ||
1866 | se->vruntime = curr->vruntime; | ||
1724 | place_entity(cfs_rq, se, 1); | 1867 | place_entity(cfs_rq, se, 1); |
1725 | 1868 | ||
1726 | /* 'curr' will be NULL if the child belongs to a different group */ | 1869 | /* 'curr' will be NULL if the child belongs to a different group */ |
@@ -1796,6 +1939,25 @@ static void moved_group_fair(struct task_struct *p) | |||
1796 | } | 1939 | } |
1797 | #endif | 1940 | #endif |
1798 | 1941 | ||
1942 | unsigned int get_rr_interval_fair(struct task_struct *task) | ||
1943 | { | ||
1944 | struct sched_entity *se = &task->se; | ||
1945 | unsigned long flags; | ||
1946 | struct rq *rq; | ||
1947 | unsigned int rr_interval = 0; | ||
1948 | |||
1949 | /* | ||
1950 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
1951 | * idle runqueue: | ||
1952 | */ | ||
1953 | rq = task_rq_lock(task, &flags); | ||
1954 | if (rq->cfs.load.weight) | ||
1955 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
1956 | task_rq_unlock(rq, &flags); | ||
1957 | |||
1958 | return rr_interval; | ||
1959 | } | ||
1960 | |||
1799 | /* | 1961 | /* |
1800 | * All the scheduling class methods: | 1962 | * All the scheduling class methods: |
1801 | */ | 1963 | */ |
@@ -1824,6 +1986,8 @@ static const struct sched_class fair_sched_class = { | |||
1824 | .prio_changed = prio_changed_fair, | 1986 | .prio_changed = prio_changed_fair, |
1825 | .switched_to = switched_to_fair, | 1987 | .switched_to = switched_to_fair, |
1826 | 1988 | ||
1989 | .get_rr_interval = get_rr_interval_fair, | ||
1990 | |||
1827 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1991 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1828 | .moved_group = moved_group_fair, | 1992 | .moved_group = moved_group_fair, |
1829 | #endif | 1993 | #endif |
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index 4569bfa7df9b..0d94083582c7 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
@@ -1,17 +1,123 @@ | |||
1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) | 1 | /* |
2 | * Disregards a certain amount of sleep time (sched_latency_ns) and | ||
3 | * considers the task to be running during that period. This gives it | ||
4 | * a service deficit on wakeup, allowing it to run sooner. | ||
5 | */ | ||
6 | SCHED_FEAT(FAIR_SLEEPERS, 1) | ||
7 | |||
8 | /* | ||
9 | * Only give sleepers 50% of their service deficit. This allows | ||
10 | * them to run sooner, but does not allow tons of sleepers to | ||
11 | * rip the spread apart. | ||
12 | */ | ||
13 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | ||
14 | |||
15 | /* | ||
16 | * By not normalizing the sleep time, heavy tasks get an effective | ||
17 | * longer period, and lighter task an effective shorter period they | ||
18 | * are considered running. | ||
19 | */ | ||
2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) | 20 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | 21 | |
4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 22 | /* |
23 | * Place new tasks ahead so that they do not starve already running | ||
24 | * tasks | ||
25 | */ | ||
5 | SCHED_FEAT(START_DEBIT, 1) | 26 | SCHED_FEAT(START_DEBIT, 1) |
27 | |||
28 | /* | ||
29 | * Should wakeups try to preempt running tasks. | ||
30 | */ | ||
31 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | ||
32 | |||
33 | /* | ||
34 | * Compute wakeup_gran based on task behaviour, clipped to | ||
35 | * [0, sched_wakeup_gran_ns] | ||
36 | */ | ||
37 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
38 | |||
39 | /* | ||
40 | * When converting the wakeup granularity to virtual time, do it such | ||
41 | * that heavier tasks preempting a lighter task have an edge. | ||
42 | */ | ||
43 | SCHED_FEAT(ASYM_GRAN, 1) | ||
44 | |||
45 | /* | ||
46 | * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. | ||
47 | */ | ||
48 | SCHED_FEAT(WAKEUP_SYNC, 0) | ||
49 | |||
50 | /* | ||
51 | * Wakeup preempt based on task behaviour. Tasks that do not overlap | ||
52 | * don't get preempted. | ||
53 | */ | ||
54 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | ||
55 | |||
56 | /* | ||
57 | * Wakeup preemption towards tasks that run short | ||
58 | */ | ||
59 | SCHED_FEAT(WAKEUP_RUNNING, 0) | ||
60 | |||
61 | /* | ||
62 | * Use the SYNC wakeup hint, pipes and the likes use this to indicate | ||
63 | * the remote end is likely to consume the data we just wrote, and | ||
64 | * therefore has cache benefit from being placed on the same cpu, see | ||
65 | * also AFFINE_WAKEUPS. | ||
66 | */ | ||
67 | SCHED_FEAT(SYNC_WAKEUPS, 1) | ||
68 | |||
69 | /* | ||
70 | * Based on load and program behaviour, see if it makes sense to place | ||
71 | * a newly woken task on the same cpu as the task that woke it -- | ||
72 | * improve cache locality. Typically used with SYNC wakeups as | ||
73 | * generated by pipes and the like, see also SYNC_WAKEUPS. | ||
74 | */ | ||
6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 75 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
76 | |||
77 | /* | ||
78 | * Weaken SYNC hint based on overlap | ||
79 | */ | ||
80 | SCHED_FEAT(SYNC_LESS, 1) | ||
81 | |||
82 | /* | ||
83 | * Add SYNC hint based on overlap | ||
84 | */ | ||
85 | SCHED_FEAT(SYNC_MORE, 0) | ||
86 | |||
87 | /* | ||
88 | * Prefer to schedule the task we woke last (assuming it failed | ||
89 | * wakeup-preemption), since its likely going to consume data we | ||
90 | * touched, increases cache locality. | ||
91 | */ | ||
92 | SCHED_FEAT(NEXT_BUDDY, 0) | ||
93 | |||
94 | /* | ||
95 | * Prefer to schedule the task that ran last (when we did | ||
96 | * wake-preempt) as that likely will touch the same data, increases | ||
97 | * cache locality. | ||
98 | */ | ||
99 | SCHED_FEAT(LAST_BUDDY, 1) | ||
100 | |||
101 | /* | ||
102 | * Consider buddies to be cache hot, decreases the likelyness of a | ||
103 | * cache buddy being migrated away, increases cache locality. | ||
104 | */ | ||
7 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) | 105 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) |
8 | SCHED_FEAT(SYNC_WAKEUPS, 1) | 106 | |
107 | /* | ||
108 | * Use arch dependent cpu power functions | ||
109 | */ | ||
110 | SCHED_FEAT(ARCH_POWER, 0) | ||
111 | |||
9 | SCHED_FEAT(HRTICK, 0) | 112 | SCHED_FEAT(HRTICK, 0) |
10 | SCHED_FEAT(DOUBLE_TICK, 0) | 113 | SCHED_FEAT(DOUBLE_TICK, 0) |
11 | SCHED_FEAT(ASYM_GRAN, 1) | ||
12 | SCHED_FEAT(LB_BIAS, 1) | 114 | SCHED_FEAT(LB_BIAS, 1) |
13 | SCHED_FEAT(LB_WAKEUP_UPDATE, 1) | 115 | SCHED_FEAT(LB_SHARES_UPDATE, 1) |
14 | SCHED_FEAT(ASYM_EFF_LOAD, 1) | 116 | SCHED_FEAT(ASYM_EFF_LOAD, 1) |
15 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | 117 | |
16 | SCHED_FEAT(LAST_BUDDY, 1) | 118 | /* |
119 | * Spin-wait on mutex acquisition when the mutex owner is running on | ||
120 | * another cpu -- assumes that when the owner is running, it will soon | ||
121 | * release the lock. Decreases scheduling overhead. | ||
122 | */ | ||
17 | SCHED_FEAT(OWNER_SPIN, 1) | 123 | SCHED_FEAT(OWNER_SPIN, 1) |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index 499672c10cbd..b133a28fcde3 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
@@ -6,7 +6,7 @@ | |||
6 | */ | 6 | */ |
7 | 7 | ||
8 | #ifdef CONFIG_SMP | 8 | #ifdef CONFIG_SMP |
9 | static int select_task_rq_idle(struct task_struct *p, int sync) | 9 | static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) |
10 | { | 10 | { |
11 | return task_cpu(p); /* IDLE tasks as never migrated */ | 11 | return task_cpu(p); /* IDLE tasks as never migrated */ |
12 | } | 12 | } |
@@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync) | |||
14 | /* | 14 | /* |
15 | * Idle tasks are unconditionally rescheduled: | 15 | * Idle tasks are unconditionally rescheduled: |
16 | */ | 16 | */ |
17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync) | 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) |
18 | { | 18 | { |
19 | resched_task(rq->idle); | 19 | resched_task(rq->idle); |
20 | } | 20 | } |
@@ -97,6 +97,11 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p, | |||
97 | check_preempt_curr(rq, p, 0); | 97 | check_preempt_curr(rq, p, 0); |
98 | } | 98 | } |
99 | 99 | ||
100 | unsigned int get_rr_interval_idle(struct task_struct *task) | ||
101 | { | ||
102 | return 0; | ||
103 | } | ||
104 | |||
100 | /* | 105 | /* |
101 | * Simple, special scheduling class for the per-CPU idle tasks: | 106 | * Simple, special scheduling class for the per-CPU idle tasks: |
102 | */ | 107 | */ |
@@ -122,6 +127,8 @@ static const struct sched_class idle_sched_class = { | |||
122 | .set_curr_task = set_curr_task_idle, | 127 | .set_curr_task = set_curr_task_idle, |
123 | .task_tick = task_tick_idle, | 128 | .task_tick = task_tick_idle, |
124 | 129 | ||
130 | .get_rr_interval = get_rr_interval_idle, | ||
131 | |||
125 | .prio_changed = prio_changed_idle, | 132 | .prio_changed = prio_changed_idle, |
126 | .switched_to = switched_to_idle, | 133 | .switched_to = switched_to_idle, |
127 | 134 | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 3918e01994e0..a4d790cddb19 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -3,15 +3,18 @@ | |||
3 | * policies) | 3 | * policies) |
4 | */ | 4 | */ |
5 | 5 | ||
6 | #ifdef CONFIG_RT_GROUP_SCHED | ||
7 | |||
8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | ||
9 | |||
6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 10 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
7 | { | 11 | { |
12 | #ifdef CONFIG_SCHED_DEBUG | ||
13 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | ||
14 | #endif | ||
8 | return container_of(rt_se, struct task_struct, rt); | 15 | return container_of(rt_se, struct task_struct, rt); |
9 | } | 16 | } |
10 | 17 | ||
11 | #ifdef CONFIG_RT_GROUP_SCHED | ||
12 | |||
13 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | ||
14 | |||
15 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 18 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
16 | { | 19 | { |
17 | return rt_rq->rq; | 20 | return rt_rq->rq; |
@@ -26,6 +29,11 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |||
26 | 29 | ||
27 | #define rt_entity_is_task(rt_se) (1) | 30 | #define rt_entity_is_task(rt_se) (1) |
28 | 31 | ||
32 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
33 | { | ||
34 | return container_of(rt_se, struct task_struct, rt); | ||
35 | } | ||
36 | |||
29 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 37 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
30 | { | 38 | { |
31 | return container_of(rt_rq, struct rq, rt); | 39 | return container_of(rt_rq, struct rq, rt); |
@@ -128,6 +136,11 @@ static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |||
128 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 136 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); |
129 | } | 137 | } |
130 | 138 | ||
139 | static inline int has_pushable_tasks(struct rq *rq) | ||
140 | { | ||
141 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
142 | } | ||
143 | |||
131 | #else | 144 | #else |
132 | 145 | ||
133 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 146 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
@@ -602,6 +615,8 @@ static void update_curr_rt(struct rq *rq) | |||
602 | curr->se.exec_start = rq->clock; | 615 | curr->se.exec_start = rq->clock; |
603 | cpuacct_charge(curr, delta_exec); | 616 | cpuacct_charge(curr, delta_exec); |
604 | 617 | ||
618 | sched_rt_avg_update(rq, delta_exec); | ||
619 | |||
605 | if (!rt_bandwidth_enabled()) | 620 | if (!rt_bandwidth_enabled()) |
606 | return; | 621 | return; |
607 | 622 | ||
@@ -874,8 +889,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
874 | 889 | ||
875 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | 890 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) |
876 | enqueue_pushable_task(rq, p); | 891 | enqueue_pushable_task(rq, p); |
877 | |||
878 | inc_cpu_load(rq, p->se.load.weight); | ||
879 | } | 892 | } |
880 | 893 | ||
881 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 894 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
@@ -886,8 +899,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
886 | dequeue_rt_entity(rt_se); | 899 | dequeue_rt_entity(rt_se); |
887 | 900 | ||
888 | dequeue_pushable_task(rq, p); | 901 | dequeue_pushable_task(rq, p); |
889 | |||
890 | dec_cpu_load(rq, p->se.load.weight); | ||
891 | } | 902 | } |
892 | 903 | ||
893 | /* | 904 | /* |
@@ -927,10 +938,13 @@ static void yield_task_rt(struct rq *rq) | |||
927 | #ifdef CONFIG_SMP | 938 | #ifdef CONFIG_SMP |
928 | static int find_lowest_rq(struct task_struct *task); | 939 | static int find_lowest_rq(struct task_struct *task); |
929 | 940 | ||
930 | static int select_task_rq_rt(struct task_struct *p, int sync) | 941 | static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) |
931 | { | 942 | { |
932 | struct rq *rq = task_rq(p); | 943 | struct rq *rq = task_rq(p); |
933 | 944 | ||
945 | if (sd_flag != SD_BALANCE_WAKE) | ||
946 | return smp_processor_id(); | ||
947 | |||
934 | /* | 948 | /* |
935 | * If the current task is an RT task, then | 949 | * If the current task is an RT task, then |
936 | * try to see if we can wake this RT task up on another | 950 | * try to see if we can wake this RT task up on another |
@@ -988,7 +1002,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |||
988 | /* | 1002 | /* |
989 | * Preempt the current task with a newly woken task if needed: | 1003 | * Preempt the current task with a newly woken task if needed: |
990 | */ | 1004 | */ |
991 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) | 1005 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
992 | { | 1006 | { |
993 | if (p->prio < rq->curr->prio) { | 1007 | if (p->prio < rq->curr->prio) { |
994 | resched_task(rq->curr); | 1008 | resched_task(rq->curr); |
@@ -1064,6 +1078,14 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
1064 | if (p) | 1078 | if (p) |
1065 | dequeue_pushable_task(rq, p); | 1079 | dequeue_pushable_task(rq, p); |
1066 | 1080 | ||
1081 | #ifdef CONFIG_SMP | ||
1082 | /* | ||
1083 | * We detect this state here so that we can avoid taking the RQ | ||
1084 | * lock again later if there is no need to push | ||
1085 | */ | ||
1086 | rq->post_schedule = has_pushable_tasks(rq); | ||
1087 | #endif | ||
1088 | |||
1067 | return p; | 1089 | return p; |
1068 | } | 1090 | } |
1069 | 1091 | ||
@@ -1162,13 +1184,6 @@ static int find_lowest_rq(struct task_struct *task) | |||
1162 | return -1; /* No targets found */ | 1184 | return -1; /* No targets found */ |
1163 | 1185 | ||
1164 | /* | 1186 | /* |
1165 | * Only consider CPUs that are usable for migration. | ||
1166 | * I guess we might want to change cpupri_find() to ignore those | ||
1167 | * in the first place. | ||
1168 | */ | ||
1169 | cpumask_and(lowest_mask, lowest_mask, cpu_active_mask); | ||
1170 | |||
1171 | /* | ||
1172 | * At this point we have built a mask of cpus representing the | 1187 | * At this point we have built a mask of cpus representing the |
1173 | * lowest priority tasks in the system. Now we want to elect | 1188 | * lowest priority tasks in the system. Now we want to elect |
1174 | * the best one based on our affinity and topology. | 1189 | * the best one based on our affinity and topology. |
@@ -1262,11 +1277,6 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1262 | return lowest_rq; | 1277 | return lowest_rq; |
1263 | } | 1278 | } |
1264 | 1279 | ||
1265 | static inline int has_pushable_tasks(struct rq *rq) | ||
1266 | { | ||
1267 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
1268 | } | ||
1269 | |||
1270 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | 1280 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
1271 | { | 1281 | { |
1272 | struct task_struct *p; | 1282 | struct task_struct *p; |
@@ -1466,23 +1476,9 @@ static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | |||
1466 | pull_rt_task(rq); | 1476 | pull_rt_task(rq); |
1467 | } | 1477 | } |
1468 | 1478 | ||
1469 | /* | ||
1470 | * assumes rq->lock is held | ||
1471 | */ | ||
1472 | static int needs_post_schedule_rt(struct rq *rq) | ||
1473 | { | ||
1474 | return has_pushable_tasks(rq); | ||
1475 | } | ||
1476 | |||
1477 | static void post_schedule_rt(struct rq *rq) | 1479 | static void post_schedule_rt(struct rq *rq) |
1478 | { | 1480 | { |
1479 | /* | ||
1480 | * This is only called if needs_post_schedule_rt() indicates that | ||
1481 | * we need to push tasks away | ||
1482 | */ | ||
1483 | spin_lock_irq(&rq->lock); | ||
1484 | push_rt_tasks(rq); | 1481 | push_rt_tasks(rq); |
1485 | spin_unlock_irq(&rq->lock); | ||
1486 | } | 1482 | } |
1487 | 1483 | ||
1488 | /* | 1484 | /* |
@@ -1738,6 +1734,17 @@ static void set_curr_task_rt(struct rq *rq) | |||
1738 | dequeue_pushable_task(rq, p); | 1734 | dequeue_pushable_task(rq, p); |
1739 | } | 1735 | } |
1740 | 1736 | ||
1737 | unsigned int get_rr_interval_rt(struct task_struct *task) | ||
1738 | { | ||
1739 | /* | ||
1740 | * Time slice is 0 for SCHED_FIFO tasks | ||
1741 | */ | ||
1742 | if (task->policy == SCHED_RR) | ||
1743 | return DEF_TIMESLICE; | ||
1744 | else | ||
1745 | return 0; | ||
1746 | } | ||
1747 | |||
1741 | static const struct sched_class rt_sched_class = { | 1748 | static const struct sched_class rt_sched_class = { |
1742 | .next = &fair_sched_class, | 1749 | .next = &fair_sched_class, |
1743 | .enqueue_task = enqueue_task_rt, | 1750 | .enqueue_task = enqueue_task_rt, |
@@ -1758,7 +1765,6 @@ static const struct sched_class rt_sched_class = { | |||
1758 | .rq_online = rq_online_rt, | 1765 | .rq_online = rq_online_rt, |
1759 | .rq_offline = rq_offline_rt, | 1766 | .rq_offline = rq_offline_rt, |
1760 | .pre_schedule = pre_schedule_rt, | 1767 | .pre_schedule = pre_schedule_rt, |
1761 | .needs_post_schedule = needs_post_schedule_rt, | ||
1762 | .post_schedule = post_schedule_rt, | 1768 | .post_schedule = post_schedule_rt, |
1763 | .task_wake_up = task_wake_up_rt, | 1769 | .task_wake_up = task_wake_up_rt, |
1764 | .switched_from = switched_from_rt, | 1770 | .switched_from = switched_from_rt, |
@@ -1767,6 +1773,8 @@ static const struct sched_class rt_sched_class = { | |||
1767 | .set_curr_task = set_curr_task_rt, | 1773 | .set_curr_task = set_curr_task_rt, |
1768 | .task_tick = task_tick_rt, | 1774 | .task_tick = task_tick_rt, |
1769 | 1775 | ||
1776 | .get_rr_interval = get_rr_interval_rt, | ||
1777 | |||
1770 | .prio_changed = prio_changed_rt, | 1778 | .prio_changed = prio_changed_rt, |
1771 | .switched_to = switched_to_rt, | 1779 | .switched_to = switched_to_rt, |
1772 | }; | 1780 | }; |
diff --git a/kernel/smp.c b/kernel/smp.c index 94188b8ecc33..fd47a256a24e 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
@@ -29,8 +29,7 @@ enum { | |||
29 | 29 | ||
30 | struct call_function_data { | 30 | struct call_function_data { |
31 | struct call_single_data csd; | 31 | struct call_single_data csd; |
32 | spinlock_t lock; | 32 | atomic_t refs; |
33 | unsigned int refs; | ||
34 | cpumask_var_t cpumask; | 33 | cpumask_var_t cpumask; |
35 | }; | 34 | }; |
36 | 35 | ||
@@ -39,9 +38,7 @@ struct call_single_queue { | |||
39 | spinlock_t lock; | 38 | spinlock_t lock; |
40 | }; | 39 | }; |
41 | 40 | ||
42 | static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { | 41 | static DEFINE_PER_CPU(struct call_function_data, cfd_data); |
43 | .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock), | ||
44 | }; | ||
45 | 42 | ||
46 | static int | 43 | static int |
47 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | 44 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) |
@@ -177,6 +174,11 @@ void generic_smp_call_function_interrupt(void) | |||
177 | int cpu = get_cpu(); | 174 | int cpu = get_cpu(); |
178 | 175 | ||
179 | /* | 176 | /* |
177 | * Shouldn't receive this interrupt on a cpu that is not yet online. | ||
178 | */ | ||
179 | WARN_ON_ONCE(!cpu_online(cpu)); | ||
180 | |||
181 | /* | ||
180 | * Ensure entry is visible on call_function_queue after we have | 182 | * Ensure entry is visible on call_function_queue after we have |
181 | * entered the IPI. See comment in smp_call_function_many. | 183 | * entered the IPI. See comment in smp_call_function_many. |
182 | * If we don't have this, then we may miss an entry on the list | 184 | * If we don't have this, then we may miss an entry on the list |
@@ -191,25 +193,18 @@ void generic_smp_call_function_interrupt(void) | |||
191 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { | 193 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { |
192 | int refs; | 194 | int refs; |
193 | 195 | ||
194 | spin_lock(&data->lock); | 196 | if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) |
195 | if (!cpumask_test_cpu(cpu, data->cpumask)) { | ||
196 | spin_unlock(&data->lock); | ||
197 | continue; | 197 | continue; |
198 | } | ||
199 | cpumask_clear_cpu(cpu, data->cpumask); | ||
200 | spin_unlock(&data->lock); | ||
201 | 198 | ||
202 | data->csd.func(data->csd.info); | 199 | data->csd.func(data->csd.info); |
203 | 200 | ||
204 | spin_lock(&data->lock); | 201 | refs = atomic_dec_return(&data->refs); |
205 | WARN_ON(data->refs == 0); | 202 | WARN_ON(refs < 0); |
206 | refs = --data->refs; | ||
207 | if (!refs) { | 203 | if (!refs) { |
208 | spin_lock(&call_function.lock); | 204 | spin_lock(&call_function.lock); |
209 | list_del_rcu(&data->csd.list); | 205 | list_del_rcu(&data->csd.list); |
210 | spin_unlock(&call_function.lock); | 206 | spin_unlock(&call_function.lock); |
211 | } | 207 | } |
212 | spin_unlock(&data->lock); | ||
213 | 208 | ||
214 | if (refs) | 209 | if (refs) |
215 | continue; | 210 | continue; |
@@ -230,6 +225,11 @@ void generic_smp_call_function_single_interrupt(void) | |||
230 | unsigned int data_flags; | 225 | unsigned int data_flags; |
231 | LIST_HEAD(list); | 226 | LIST_HEAD(list); |
232 | 227 | ||
228 | /* | ||
229 | * Shouldn't receive this interrupt on a cpu that is not yet online. | ||
230 | */ | ||
231 | WARN_ON_ONCE(!cpu_online(smp_processor_id())); | ||
232 | |||
233 | spin_lock(&q->lock); | 233 | spin_lock(&q->lock); |
234 | list_replace_init(&q->list, &list); | 234 | list_replace_init(&q->list, &list); |
235 | spin_unlock(&q->lock); | 235 | spin_unlock(&q->lock); |
@@ -285,8 +285,14 @@ int smp_call_function_single(int cpu, void (*func) (void *info), void *info, | |||
285 | */ | 285 | */ |
286 | this_cpu = get_cpu(); | 286 | this_cpu = get_cpu(); |
287 | 287 | ||
288 | /* Can deadlock when called with interrupts disabled */ | 288 | /* |
289 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); | 289 | * Can deadlock when called with interrupts disabled. |
290 | * We allow cpu's that are not yet online though, as no one else can | ||
291 | * send smp call function interrupt to this cpu and as such deadlocks | ||
292 | * can't happen. | ||
293 | */ | ||
294 | WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() | ||
295 | && !oops_in_progress); | ||
290 | 296 | ||
291 | if (cpu == this_cpu) { | 297 | if (cpu == this_cpu) { |
292 | local_irq_save(flags); | 298 | local_irq_save(flags); |
@@ -329,8 +335,14 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
329 | { | 335 | { |
330 | csd_lock(data); | 336 | csd_lock(data); |
331 | 337 | ||
332 | /* Can deadlock when called with interrupts disabled */ | 338 | /* |
333 | WARN_ON_ONCE(wait && irqs_disabled() && !oops_in_progress); | 339 | * Can deadlock when called with interrupts disabled. |
340 | * We allow cpu's that are not yet online though, as no one else can | ||
341 | * send smp call function interrupt to this cpu and as such deadlocks | ||
342 | * can't happen. | ||
343 | */ | ||
344 | WARN_ON_ONCE(cpu_online(smp_processor_id()) && wait && irqs_disabled() | ||
345 | && !oops_in_progress); | ||
334 | 346 | ||
335 | generic_exec_single(cpu, data, wait); | 347 | generic_exec_single(cpu, data, wait); |
336 | } | 348 | } |
@@ -365,8 +377,14 @@ void smp_call_function_many(const struct cpumask *mask, | |||
365 | unsigned long flags; | 377 | unsigned long flags; |
366 | int cpu, next_cpu, this_cpu = smp_processor_id(); | 378 | int cpu, next_cpu, this_cpu = smp_processor_id(); |
367 | 379 | ||
368 | /* Can deadlock when called with interrupts disabled */ | 380 | /* |
369 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); | 381 | * Can deadlock when called with interrupts disabled. |
382 | * We allow cpu's that are not yet online though, as no one else can | ||
383 | * send smp call function interrupt to this cpu and as such deadlocks | ||
384 | * can't happen. | ||
385 | */ | ||
386 | WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() | ||
387 | && !oops_in_progress); | ||
370 | 388 | ||
371 | /* So, what's a CPU they want? Ignoring this one. */ | 389 | /* So, what's a CPU they want? Ignoring this one. */ |
372 | cpu = cpumask_first_and(mask, cpu_online_mask); | 390 | cpu = cpumask_first_and(mask, cpu_online_mask); |
@@ -391,23 +409,20 @@ void smp_call_function_many(const struct cpumask *mask, | |||
391 | data = &__get_cpu_var(cfd_data); | 409 | data = &__get_cpu_var(cfd_data); |
392 | csd_lock(&data->csd); | 410 | csd_lock(&data->csd); |
393 | 411 | ||
394 | spin_lock_irqsave(&data->lock, flags); | ||
395 | data->csd.func = func; | 412 | data->csd.func = func; |
396 | data->csd.info = info; | 413 | data->csd.info = info; |
397 | cpumask_and(data->cpumask, mask, cpu_online_mask); | 414 | cpumask_and(data->cpumask, mask, cpu_online_mask); |
398 | cpumask_clear_cpu(this_cpu, data->cpumask); | 415 | cpumask_clear_cpu(this_cpu, data->cpumask); |
399 | data->refs = cpumask_weight(data->cpumask); | 416 | atomic_set(&data->refs, cpumask_weight(data->cpumask)); |
400 | 417 | ||
401 | spin_lock(&call_function.lock); | 418 | spin_lock_irqsave(&call_function.lock, flags); |
402 | /* | 419 | /* |
403 | * Place entry at the _HEAD_ of the list, so that any cpu still | 420 | * Place entry at the _HEAD_ of the list, so that any cpu still |
404 | * observing the entry in generic_smp_call_function_interrupt() | 421 | * observing the entry in generic_smp_call_function_interrupt() |
405 | * will not miss any other list entries: | 422 | * will not miss any other list entries: |
406 | */ | 423 | */ |
407 | list_add_rcu(&data->csd.list, &call_function.queue); | 424 | list_add_rcu(&data->csd.list, &call_function.queue); |
408 | spin_unlock(&call_function.lock); | 425 | spin_unlock_irqrestore(&call_function.lock, flags); |
409 | |||
410 | spin_unlock_irqrestore(&data->lock, flags); | ||
411 | 426 | ||
412 | /* | 427 | /* |
413 | * Make the list addition visible before sending the ipi. | 428 | * Make the list addition visible before sending the ipi. |
diff --git a/kernel/softirq.c b/kernel/softirq.c index eb5e131a0485..f8749e5216e0 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
@@ -57,7 +57,7 @@ static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp | |||
57 | static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); | 57 | static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); |
58 | 58 | ||
59 | char *softirq_to_name[NR_SOFTIRQS] = { | 59 | char *softirq_to_name[NR_SOFTIRQS] = { |
60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", | 60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL", |
61 | "TASKLET", "SCHED", "HRTIMER", "RCU" | 61 | "TASKLET", "SCHED", "HRTIMER", "RCU" |
62 | }; | 62 | }; |
63 | 63 | ||
@@ -227,7 +227,7 @@ restart: | |||
227 | preempt_count() = prev_count; | 227 | preempt_count() = prev_count; |
228 | } | 228 | } |
229 | 229 | ||
230 | rcu_bh_qsctr_inc(cpu); | 230 | rcu_bh_qs(cpu); |
231 | } | 231 | } |
232 | h++; | 232 | h++; |
233 | pending >>= 1; | 233 | pending >>= 1; |
@@ -721,7 +721,7 @@ static int ksoftirqd(void * __bind_cpu) | |||
721 | preempt_enable_no_resched(); | 721 | preempt_enable_no_resched(); |
722 | cond_resched(); | 722 | cond_resched(); |
723 | preempt_disable(); | 723 | preempt_disable(); |
724 | rcu_qsctr_inc((long)__bind_cpu); | 724 | rcu_sched_qs((long)__bind_cpu); |
725 | } | 725 | } |
726 | preempt_enable(); | 726 | preempt_enable(); |
727 | set_current_state(TASK_INTERRUPTIBLE); | 727 | set_current_state(TASK_INTERRUPTIBLE); |
diff --git a/kernel/spinlock.c b/kernel/spinlock.c index 7932653c4ebd..5ddab730cb2f 100644 --- a/kernel/spinlock.c +++ b/kernel/spinlock.c | |||
@@ -21,44 +21,29 @@ | |||
21 | #include <linux/debug_locks.h> | 21 | #include <linux/debug_locks.h> |
22 | #include <linux/module.h> | 22 | #include <linux/module.h> |
23 | 23 | ||
24 | #ifndef _spin_trylock | ||
24 | int __lockfunc _spin_trylock(spinlock_t *lock) | 25 | int __lockfunc _spin_trylock(spinlock_t *lock) |
25 | { | 26 | { |
26 | preempt_disable(); | 27 | return __spin_trylock(lock); |
27 | if (_raw_spin_trylock(lock)) { | ||
28 | spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); | ||
29 | return 1; | ||
30 | } | ||
31 | |||
32 | preempt_enable(); | ||
33 | return 0; | ||
34 | } | 28 | } |
35 | EXPORT_SYMBOL(_spin_trylock); | 29 | EXPORT_SYMBOL(_spin_trylock); |
30 | #endif | ||
36 | 31 | ||
32 | #ifndef _read_trylock | ||
37 | int __lockfunc _read_trylock(rwlock_t *lock) | 33 | int __lockfunc _read_trylock(rwlock_t *lock) |
38 | { | 34 | { |
39 | preempt_disable(); | 35 | return __read_trylock(lock); |
40 | if (_raw_read_trylock(lock)) { | ||
41 | rwlock_acquire_read(&lock->dep_map, 0, 1, _RET_IP_); | ||
42 | return 1; | ||
43 | } | ||
44 | |||
45 | preempt_enable(); | ||
46 | return 0; | ||
47 | } | 36 | } |
48 | EXPORT_SYMBOL(_read_trylock); | 37 | EXPORT_SYMBOL(_read_trylock); |
38 | #endif | ||
49 | 39 | ||
40 | #ifndef _write_trylock | ||
50 | int __lockfunc _write_trylock(rwlock_t *lock) | 41 | int __lockfunc _write_trylock(rwlock_t *lock) |
51 | { | 42 | { |
52 | preempt_disable(); | 43 | return __write_trylock(lock); |
53 | if (_raw_write_trylock(lock)) { | ||
54 | rwlock_acquire(&lock->dep_map, 0, 1, _RET_IP_); | ||
55 | return 1; | ||
56 | } | ||
57 | |||
58 | preempt_enable(); | ||
59 | return 0; | ||
60 | } | 44 | } |
61 | EXPORT_SYMBOL(_write_trylock); | 45 | EXPORT_SYMBOL(_write_trylock); |
46 | #endif | ||
62 | 47 | ||
63 | /* | 48 | /* |
64 | * If lockdep is enabled then we use the non-preemption spin-ops | 49 | * If lockdep is enabled then we use the non-preemption spin-ops |
@@ -67,132 +52,101 @@ EXPORT_SYMBOL(_write_trylock); | |||
67 | */ | 52 | */ |
68 | #if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) | 53 | #if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) |
69 | 54 | ||
55 | #ifndef _read_lock | ||
70 | void __lockfunc _read_lock(rwlock_t *lock) | 56 | void __lockfunc _read_lock(rwlock_t *lock) |
71 | { | 57 | { |
72 | preempt_disable(); | 58 | __read_lock(lock); |
73 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
74 | LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock); | ||
75 | } | 59 | } |
76 | EXPORT_SYMBOL(_read_lock); | 60 | EXPORT_SYMBOL(_read_lock); |
61 | #endif | ||
77 | 62 | ||
63 | #ifndef _spin_lock_irqsave | ||
78 | unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) | 64 | unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) |
79 | { | 65 | { |
80 | unsigned long flags; | 66 | return __spin_lock_irqsave(lock); |
81 | |||
82 | local_irq_save(flags); | ||
83 | preempt_disable(); | ||
84 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
85 | /* | ||
86 | * On lockdep we dont want the hand-coded irq-enable of | ||
87 | * _raw_spin_lock_flags() code, because lockdep assumes | ||
88 | * that interrupts are not re-enabled during lock-acquire: | ||
89 | */ | ||
90 | #ifdef CONFIG_LOCKDEP | ||
91 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
92 | #else | ||
93 | _raw_spin_lock_flags(lock, &flags); | ||
94 | #endif | ||
95 | return flags; | ||
96 | } | 67 | } |
97 | EXPORT_SYMBOL(_spin_lock_irqsave); | 68 | EXPORT_SYMBOL(_spin_lock_irqsave); |
69 | #endif | ||
98 | 70 | ||
71 | #ifndef _spin_lock_irq | ||
99 | void __lockfunc _spin_lock_irq(spinlock_t *lock) | 72 | void __lockfunc _spin_lock_irq(spinlock_t *lock) |
100 | { | 73 | { |
101 | local_irq_disable(); | 74 | __spin_lock_irq(lock); |
102 | preempt_disable(); | ||
103 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
104 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
105 | } | 75 | } |
106 | EXPORT_SYMBOL(_spin_lock_irq); | 76 | EXPORT_SYMBOL(_spin_lock_irq); |
77 | #endif | ||
107 | 78 | ||
79 | #ifndef _spin_lock_bh | ||
108 | void __lockfunc _spin_lock_bh(spinlock_t *lock) | 80 | void __lockfunc _spin_lock_bh(spinlock_t *lock) |
109 | { | 81 | { |
110 | local_bh_disable(); | 82 | __spin_lock_bh(lock); |
111 | preempt_disable(); | ||
112 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
113 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
114 | } | 83 | } |
115 | EXPORT_SYMBOL(_spin_lock_bh); | 84 | EXPORT_SYMBOL(_spin_lock_bh); |
85 | #endif | ||
116 | 86 | ||
87 | #ifndef _read_lock_irqsave | ||
117 | unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) | 88 | unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) |
118 | { | 89 | { |
119 | unsigned long flags; | 90 | return __read_lock_irqsave(lock); |
120 | |||
121 | local_irq_save(flags); | ||
122 | preempt_disable(); | ||
123 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
124 | LOCK_CONTENDED_FLAGS(lock, _raw_read_trylock, _raw_read_lock, | ||
125 | _raw_read_lock_flags, &flags); | ||
126 | return flags; | ||
127 | } | 91 | } |
128 | EXPORT_SYMBOL(_read_lock_irqsave); | 92 | EXPORT_SYMBOL(_read_lock_irqsave); |
93 | #endif | ||
129 | 94 | ||
95 | #ifndef _read_lock_irq | ||
130 | void __lockfunc _read_lock_irq(rwlock_t *lock) | 96 | void __lockfunc _read_lock_irq(rwlock_t *lock) |
131 | { | 97 | { |
132 | local_irq_disable(); | 98 | __read_lock_irq(lock); |
133 | preempt_disable(); | ||
134 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
135 | LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock); | ||
136 | } | 99 | } |
137 | EXPORT_SYMBOL(_read_lock_irq); | 100 | EXPORT_SYMBOL(_read_lock_irq); |
101 | #endif | ||
138 | 102 | ||
103 | #ifndef _read_lock_bh | ||
139 | void __lockfunc _read_lock_bh(rwlock_t *lock) | 104 | void __lockfunc _read_lock_bh(rwlock_t *lock) |
140 | { | 105 | { |
141 | local_bh_disable(); | 106 | __read_lock_bh(lock); |
142 | preempt_disable(); | ||
143 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
144 | LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock); | ||
145 | } | 107 | } |
146 | EXPORT_SYMBOL(_read_lock_bh); | 108 | EXPORT_SYMBOL(_read_lock_bh); |
109 | #endif | ||
147 | 110 | ||
111 | #ifndef _write_lock_irqsave | ||
148 | unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) | 112 | unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) |
149 | { | 113 | { |
150 | unsigned long flags; | 114 | return __write_lock_irqsave(lock); |
151 | |||
152 | local_irq_save(flags); | ||
153 | preempt_disable(); | ||
154 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
155 | LOCK_CONTENDED_FLAGS(lock, _raw_write_trylock, _raw_write_lock, | ||
156 | _raw_write_lock_flags, &flags); | ||
157 | return flags; | ||
158 | } | 115 | } |
159 | EXPORT_SYMBOL(_write_lock_irqsave); | 116 | EXPORT_SYMBOL(_write_lock_irqsave); |
117 | #endif | ||
160 | 118 | ||
119 | #ifndef _write_lock_irq | ||
161 | void __lockfunc _write_lock_irq(rwlock_t *lock) | 120 | void __lockfunc _write_lock_irq(rwlock_t *lock) |
162 | { | 121 | { |
163 | local_irq_disable(); | 122 | __write_lock_irq(lock); |
164 | preempt_disable(); | ||
165 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
166 | LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock); | ||
167 | } | 123 | } |
168 | EXPORT_SYMBOL(_write_lock_irq); | 124 | EXPORT_SYMBOL(_write_lock_irq); |
125 | #endif | ||
169 | 126 | ||
127 | #ifndef _write_lock_bh | ||
170 | void __lockfunc _write_lock_bh(rwlock_t *lock) | 128 | void __lockfunc _write_lock_bh(rwlock_t *lock) |
171 | { | 129 | { |
172 | local_bh_disable(); | 130 | __write_lock_bh(lock); |
173 | preempt_disable(); | ||
174 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
175 | LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock); | ||
176 | } | 131 | } |
177 | EXPORT_SYMBOL(_write_lock_bh); | 132 | EXPORT_SYMBOL(_write_lock_bh); |
133 | #endif | ||
178 | 134 | ||
135 | #ifndef _spin_lock | ||
179 | void __lockfunc _spin_lock(spinlock_t *lock) | 136 | void __lockfunc _spin_lock(spinlock_t *lock) |
180 | { | 137 | { |
181 | preempt_disable(); | 138 | __spin_lock(lock); |
182 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
183 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
184 | } | 139 | } |
185 | |||
186 | EXPORT_SYMBOL(_spin_lock); | 140 | EXPORT_SYMBOL(_spin_lock); |
141 | #endif | ||
187 | 142 | ||
143 | #ifndef _write_lock | ||
188 | void __lockfunc _write_lock(rwlock_t *lock) | 144 | void __lockfunc _write_lock(rwlock_t *lock) |
189 | { | 145 | { |
190 | preempt_disable(); | 146 | __write_lock(lock); |
191 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
192 | LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock); | ||
193 | } | 147 | } |
194 | |||
195 | EXPORT_SYMBOL(_write_lock); | 148 | EXPORT_SYMBOL(_write_lock); |
149 | #endif | ||
196 | 150 | ||
197 | #else /* CONFIG_PREEMPT: */ | 151 | #else /* CONFIG_PREEMPT: */ |
198 | 152 | ||
@@ -318,125 +272,109 @@ EXPORT_SYMBOL(_spin_lock_nest_lock); | |||
318 | 272 | ||
319 | #endif | 273 | #endif |
320 | 274 | ||
275 | #ifndef _spin_unlock | ||
321 | void __lockfunc _spin_unlock(spinlock_t *lock) | 276 | void __lockfunc _spin_unlock(spinlock_t *lock) |
322 | { | 277 | { |
323 | spin_release(&lock->dep_map, 1, _RET_IP_); | 278 | __spin_unlock(lock); |
324 | _raw_spin_unlock(lock); | ||
325 | preempt_enable(); | ||
326 | } | 279 | } |
327 | EXPORT_SYMBOL(_spin_unlock); | 280 | EXPORT_SYMBOL(_spin_unlock); |
281 | #endif | ||
328 | 282 | ||
283 | #ifndef _write_unlock | ||
329 | void __lockfunc _write_unlock(rwlock_t *lock) | 284 | void __lockfunc _write_unlock(rwlock_t *lock) |
330 | { | 285 | { |
331 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 286 | __write_unlock(lock); |
332 | _raw_write_unlock(lock); | ||
333 | preempt_enable(); | ||
334 | } | 287 | } |
335 | EXPORT_SYMBOL(_write_unlock); | 288 | EXPORT_SYMBOL(_write_unlock); |
289 | #endif | ||
336 | 290 | ||
291 | #ifndef _read_unlock | ||
337 | void __lockfunc _read_unlock(rwlock_t *lock) | 292 | void __lockfunc _read_unlock(rwlock_t *lock) |
338 | { | 293 | { |
339 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 294 | __read_unlock(lock); |
340 | _raw_read_unlock(lock); | ||
341 | preempt_enable(); | ||
342 | } | 295 | } |
343 | EXPORT_SYMBOL(_read_unlock); | 296 | EXPORT_SYMBOL(_read_unlock); |
297 | #endif | ||
344 | 298 | ||
299 | #ifndef _spin_unlock_irqrestore | ||
345 | void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) | 300 | void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) |
346 | { | 301 | { |
347 | spin_release(&lock->dep_map, 1, _RET_IP_); | 302 | __spin_unlock_irqrestore(lock, flags); |
348 | _raw_spin_unlock(lock); | ||
349 | local_irq_restore(flags); | ||
350 | preempt_enable(); | ||
351 | } | 303 | } |
352 | EXPORT_SYMBOL(_spin_unlock_irqrestore); | 304 | EXPORT_SYMBOL(_spin_unlock_irqrestore); |
305 | #endif | ||
353 | 306 | ||
307 | #ifndef _spin_unlock_irq | ||
354 | void __lockfunc _spin_unlock_irq(spinlock_t *lock) | 308 | void __lockfunc _spin_unlock_irq(spinlock_t *lock) |
355 | { | 309 | { |
356 | spin_release(&lock->dep_map, 1, _RET_IP_); | 310 | __spin_unlock_irq(lock); |
357 | _raw_spin_unlock(lock); | ||
358 | local_irq_enable(); | ||
359 | preempt_enable(); | ||
360 | } | 311 | } |
361 | EXPORT_SYMBOL(_spin_unlock_irq); | 312 | EXPORT_SYMBOL(_spin_unlock_irq); |
313 | #endif | ||
362 | 314 | ||
315 | #ifndef _spin_unlock_bh | ||
363 | void __lockfunc _spin_unlock_bh(spinlock_t *lock) | 316 | void __lockfunc _spin_unlock_bh(spinlock_t *lock) |
364 | { | 317 | { |
365 | spin_release(&lock->dep_map, 1, _RET_IP_); | 318 | __spin_unlock_bh(lock); |
366 | _raw_spin_unlock(lock); | ||
367 | preempt_enable_no_resched(); | ||
368 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
369 | } | 319 | } |
370 | EXPORT_SYMBOL(_spin_unlock_bh); | 320 | EXPORT_SYMBOL(_spin_unlock_bh); |
321 | #endif | ||
371 | 322 | ||
323 | #ifndef _read_unlock_irqrestore | ||
372 | void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | 324 | void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) |
373 | { | 325 | { |
374 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 326 | __read_unlock_irqrestore(lock, flags); |
375 | _raw_read_unlock(lock); | ||
376 | local_irq_restore(flags); | ||
377 | preempt_enable(); | ||
378 | } | 327 | } |
379 | EXPORT_SYMBOL(_read_unlock_irqrestore); | 328 | EXPORT_SYMBOL(_read_unlock_irqrestore); |
329 | #endif | ||
380 | 330 | ||
331 | #ifndef _read_unlock_irq | ||
381 | void __lockfunc _read_unlock_irq(rwlock_t *lock) | 332 | void __lockfunc _read_unlock_irq(rwlock_t *lock) |
382 | { | 333 | { |
383 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 334 | __read_unlock_irq(lock); |
384 | _raw_read_unlock(lock); | ||
385 | local_irq_enable(); | ||
386 | preempt_enable(); | ||
387 | } | 335 | } |
388 | EXPORT_SYMBOL(_read_unlock_irq); | 336 | EXPORT_SYMBOL(_read_unlock_irq); |
337 | #endif | ||
389 | 338 | ||
339 | #ifndef _read_unlock_bh | ||
390 | void __lockfunc _read_unlock_bh(rwlock_t *lock) | 340 | void __lockfunc _read_unlock_bh(rwlock_t *lock) |
391 | { | 341 | { |
392 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 342 | __read_unlock_bh(lock); |
393 | _raw_read_unlock(lock); | ||
394 | preempt_enable_no_resched(); | ||
395 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
396 | } | 343 | } |
397 | EXPORT_SYMBOL(_read_unlock_bh); | 344 | EXPORT_SYMBOL(_read_unlock_bh); |
345 | #endif | ||
398 | 346 | ||
347 | #ifndef _write_unlock_irqrestore | ||
399 | void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | 348 | void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) |
400 | { | 349 | { |
401 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 350 | __write_unlock_irqrestore(lock, flags); |
402 | _raw_write_unlock(lock); | ||
403 | local_irq_restore(flags); | ||
404 | preempt_enable(); | ||
405 | } | 351 | } |
406 | EXPORT_SYMBOL(_write_unlock_irqrestore); | 352 | EXPORT_SYMBOL(_write_unlock_irqrestore); |
353 | #endif | ||
407 | 354 | ||
355 | #ifndef _write_unlock_irq | ||
408 | void __lockfunc _write_unlock_irq(rwlock_t *lock) | 356 | void __lockfunc _write_unlock_irq(rwlock_t *lock) |
409 | { | 357 | { |
410 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 358 | __write_unlock_irq(lock); |
411 | _raw_write_unlock(lock); | ||
412 | local_irq_enable(); | ||
413 | preempt_enable(); | ||
414 | } | 359 | } |
415 | EXPORT_SYMBOL(_write_unlock_irq); | 360 | EXPORT_SYMBOL(_write_unlock_irq); |
361 | #endif | ||
416 | 362 | ||
363 | #ifndef _write_unlock_bh | ||
417 | void __lockfunc _write_unlock_bh(rwlock_t *lock) | 364 | void __lockfunc _write_unlock_bh(rwlock_t *lock) |
418 | { | 365 | { |
419 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 366 | __write_unlock_bh(lock); |
420 | _raw_write_unlock(lock); | ||
421 | preempt_enable_no_resched(); | ||
422 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
423 | } | 367 | } |
424 | EXPORT_SYMBOL(_write_unlock_bh); | 368 | EXPORT_SYMBOL(_write_unlock_bh); |
369 | #endif | ||
425 | 370 | ||
371 | #ifndef _spin_trylock_bh | ||
426 | int __lockfunc _spin_trylock_bh(spinlock_t *lock) | 372 | int __lockfunc _spin_trylock_bh(spinlock_t *lock) |
427 | { | 373 | { |
428 | local_bh_disable(); | 374 | return __spin_trylock_bh(lock); |
429 | preempt_disable(); | ||
430 | if (_raw_spin_trylock(lock)) { | ||
431 | spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); | ||
432 | return 1; | ||
433 | } | ||
434 | |||
435 | preempt_enable_no_resched(); | ||
436 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
437 | return 0; | ||
438 | } | 375 | } |
439 | EXPORT_SYMBOL(_spin_trylock_bh); | 376 | EXPORT_SYMBOL(_spin_trylock_bh); |
377 | #endif | ||
440 | 378 | ||
441 | notrace int in_lock_functions(unsigned long addr) | 379 | notrace int in_lock_functions(unsigned long addr) |
442 | { | 380 | { |
diff --git a/kernel/sys.c b/kernel/sys.c index b3f1097c76fa..ebcb15611728 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -14,7 +14,7 @@ | |||
14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
17 | #include <linux/perf_counter.h> | 17 | #include <linux/perf_event.h> |
18 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
19 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
20 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
@@ -1338,6 +1338,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1338 | unsigned long flags; | 1338 | unsigned long flags; |
1339 | cputime_t utime, stime; | 1339 | cputime_t utime, stime; |
1340 | struct task_cputime cputime; | 1340 | struct task_cputime cputime; |
1341 | unsigned long maxrss = 0; | ||
1341 | 1342 | ||
1342 | memset((char *) r, 0, sizeof *r); | 1343 | memset((char *) r, 0, sizeof *r); |
1343 | utime = stime = cputime_zero; | 1344 | utime = stime = cputime_zero; |
@@ -1346,6 +1347,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1346 | utime = task_utime(current); | 1347 | utime = task_utime(current); |
1347 | stime = task_stime(current); | 1348 | stime = task_stime(current); |
1348 | accumulate_thread_rusage(p, r); | 1349 | accumulate_thread_rusage(p, r); |
1350 | maxrss = p->signal->maxrss; | ||
1349 | goto out; | 1351 | goto out; |
1350 | } | 1352 | } |
1351 | 1353 | ||
@@ -1363,6 +1365,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1363 | r->ru_majflt = p->signal->cmaj_flt; | 1365 | r->ru_majflt = p->signal->cmaj_flt; |
1364 | r->ru_inblock = p->signal->cinblock; | 1366 | r->ru_inblock = p->signal->cinblock; |
1365 | r->ru_oublock = p->signal->coublock; | 1367 | r->ru_oublock = p->signal->coublock; |
1368 | maxrss = p->signal->cmaxrss; | ||
1366 | 1369 | ||
1367 | if (who == RUSAGE_CHILDREN) | 1370 | if (who == RUSAGE_CHILDREN) |
1368 | break; | 1371 | break; |
@@ -1377,6 +1380,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1377 | r->ru_majflt += p->signal->maj_flt; | 1380 | r->ru_majflt += p->signal->maj_flt; |
1378 | r->ru_inblock += p->signal->inblock; | 1381 | r->ru_inblock += p->signal->inblock; |
1379 | r->ru_oublock += p->signal->oublock; | 1382 | r->ru_oublock += p->signal->oublock; |
1383 | if (maxrss < p->signal->maxrss) | ||
1384 | maxrss = p->signal->maxrss; | ||
1380 | t = p; | 1385 | t = p; |
1381 | do { | 1386 | do { |
1382 | accumulate_thread_rusage(t, r); | 1387 | accumulate_thread_rusage(t, r); |
@@ -1392,6 +1397,15 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1392 | out: | 1397 | out: |
1393 | cputime_to_timeval(utime, &r->ru_utime); | 1398 | cputime_to_timeval(utime, &r->ru_utime); |
1394 | cputime_to_timeval(stime, &r->ru_stime); | 1399 | cputime_to_timeval(stime, &r->ru_stime); |
1400 | |||
1401 | if (who != RUSAGE_CHILDREN) { | ||
1402 | struct mm_struct *mm = get_task_mm(p); | ||
1403 | if (mm) { | ||
1404 | setmax_mm_hiwater_rss(&maxrss, mm); | ||
1405 | mmput(mm); | ||
1406 | } | ||
1407 | } | ||
1408 | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | ||
1395 | } | 1409 | } |
1396 | 1410 | ||
1397 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 1411 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
@@ -1511,11 +1525,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1511 | case PR_SET_TSC: | 1525 | case PR_SET_TSC: |
1512 | error = SET_TSC_CTL(arg2); | 1526 | error = SET_TSC_CTL(arg2); |
1513 | break; | 1527 | break; |
1514 | case PR_TASK_PERF_COUNTERS_DISABLE: | 1528 | case PR_TASK_PERF_EVENTS_DISABLE: |
1515 | error = perf_counter_task_disable(); | 1529 | error = perf_event_task_disable(); |
1516 | break; | 1530 | break; |
1517 | case PR_TASK_PERF_COUNTERS_ENABLE: | 1531 | case PR_TASK_PERF_EVENTS_ENABLE: |
1518 | error = perf_counter_task_enable(); | 1532 | error = perf_event_task_enable(); |
1519 | break; | 1533 | break; |
1520 | case PR_GET_TIMERSLACK: | 1534 | case PR_GET_TIMERSLACK: |
1521 | error = current->timer_slack_ns; | 1535 | error = current->timer_slack_ns; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 68320f6b07b5..515bc230ac2a 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
@@ -177,4 +177,4 @@ cond_syscall(sys_eventfd); | |||
177 | cond_syscall(sys_eventfd2); | 177 | cond_syscall(sys_eventfd2); |
178 | 178 | ||
179 | /* performance counters: */ | 179 | /* performance counters: */ |
180 | cond_syscall(sys_perf_counter_open); | 180 | cond_syscall(sys_perf_event_open); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 58be76017fd0..0dfaa47d7cb6 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -49,9 +49,8 @@ | |||
49 | #include <linux/acpi.h> | 49 | #include <linux/acpi.h> |
50 | #include <linux/reboot.h> | 50 | #include <linux/reboot.h> |
51 | #include <linux/ftrace.h> | 51 | #include <linux/ftrace.h> |
52 | #include <linux/security.h> | ||
53 | #include <linux/slow-work.h> | 52 | #include <linux/slow-work.h> |
54 | #include <linux/perf_counter.h> | 53 | #include <linux/perf_event.h> |
55 | 54 | ||
56 | #include <asm/uaccess.h> | 55 | #include <asm/uaccess.h> |
57 | #include <asm/processor.h> | 56 | #include <asm/processor.h> |
@@ -92,6 +91,9 @@ extern int sysctl_nr_trim_pages; | |||
92 | #ifdef CONFIG_RCU_TORTURE_TEST | 91 | #ifdef CONFIG_RCU_TORTURE_TEST |
93 | extern int rcutorture_runnable; | 92 | extern int rcutorture_runnable; |
94 | #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ | 93 | #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ |
94 | #ifdef CONFIG_BLOCK | ||
95 | extern int blk_iopoll_enabled; | ||
96 | #endif | ||
95 | 97 | ||
96 | /* Constants used for minimum and maximum */ | 98 | /* Constants used for minimum and maximum */ |
97 | #ifdef CONFIG_DETECT_SOFTLOCKUP | 99 | #ifdef CONFIG_DETECT_SOFTLOCKUP |
@@ -104,6 +106,9 @@ static int __maybe_unused one = 1; | |||
104 | static int __maybe_unused two = 2; | 106 | static int __maybe_unused two = 2; |
105 | static unsigned long one_ul = 1; | 107 | static unsigned long one_ul = 1; |
106 | static int one_hundred = 100; | 108 | static int one_hundred = 100; |
109 | #ifdef CONFIG_PRINTK | ||
110 | static int ten_thousand = 10000; | ||
111 | #endif | ||
107 | 112 | ||
108 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ | 113 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
109 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; | 114 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
@@ -246,6 +251,14 @@ static int max_wakeup_granularity_ns = NSEC_PER_SEC; /* 1 second */ | |||
246 | #endif | 251 | #endif |
247 | 252 | ||
248 | static struct ctl_table kern_table[] = { | 253 | static struct ctl_table kern_table[] = { |
254 | { | ||
255 | .ctl_name = CTL_UNNUMBERED, | ||
256 | .procname = "sched_child_runs_first", | ||
257 | .data = &sysctl_sched_child_runs_first, | ||
258 | .maxlen = sizeof(unsigned int), | ||
259 | .mode = 0644, | ||
260 | .proc_handler = &proc_dointvec, | ||
261 | }, | ||
249 | #ifdef CONFIG_SCHED_DEBUG | 262 | #ifdef CONFIG_SCHED_DEBUG |
250 | { | 263 | { |
251 | .ctl_name = CTL_UNNUMBERED, | 264 | .ctl_name = CTL_UNNUMBERED, |
@@ -300,14 +313,6 @@ static struct ctl_table kern_table[] = { | |||
300 | }, | 313 | }, |
301 | { | 314 | { |
302 | .ctl_name = CTL_UNNUMBERED, | 315 | .ctl_name = CTL_UNNUMBERED, |
303 | .procname = "sched_child_runs_first", | ||
304 | .data = &sysctl_sched_child_runs_first, | ||
305 | .maxlen = sizeof(unsigned int), | ||
306 | .mode = 0644, | ||
307 | .proc_handler = &proc_dointvec, | ||
308 | }, | ||
309 | { | ||
310 | .ctl_name = CTL_UNNUMBERED, | ||
311 | .procname = "sched_features", | 316 | .procname = "sched_features", |
312 | .data = &sysctl_sched_features, | 317 | .data = &sysctl_sched_features, |
313 | .maxlen = sizeof(unsigned int), | 318 | .maxlen = sizeof(unsigned int), |
@@ -332,6 +337,14 @@ static struct ctl_table kern_table[] = { | |||
332 | }, | 337 | }, |
333 | { | 338 | { |
334 | .ctl_name = CTL_UNNUMBERED, | 339 | .ctl_name = CTL_UNNUMBERED, |
340 | .procname = "sched_time_avg", | ||
341 | .data = &sysctl_sched_time_avg, | ||
342 | .maxlen = sizeof(unsigned int), | ||
343 | .mode = 0644, | ||
344 | .proc_handler = &proc_dointvec, | ||
345 | }, | ||
346 | { | ||
347 | .ctl_name = CTL_UNNUMBERED, | ||
335 | .procname = "timer_migration", | 348 | .procname = "timer_migration", |
336 | .data = &sysctl_timer_migration, | 349 | .data = &sysctl_timer_migration, |
337 | .maxlen = sizeof(unsigned int), | 350 | .maxlen = sizeof(unsigned int), |
@@ -712,6 +725,17 @@ static struct ctl_table kern_table[] = { | |||
712 | .mode = 0644, | 725 | .mode = 0644, |
713 | .proc_handler = &proc_dointvec, | 726 | .proc_handler = &proc_dointvec, |
714 | }, | 727 | }, |
728 | { | ||
729 | .ctl_name = CTL_UNNUMBERED, | ||
730 | .procname = "printk_delay", | ||
731 | .data = &printk_delay_msec, | ||
732 | .maxlen = sizeof(int), | ||
733 | .mode = 0644, | ||
734 | .proc_handler = &proc_dointvec_minmax, | ||
735 | .strategy = &sysctl_intvec, | ||
736 | .extra1 = &zero, | ||
737 | .extra2 = &ten_thousand, | ||
738 | }, | ||
715 | #endif | 739 | #endif |
716 | { | 740 | { |
717 | .ctl_name = KERN_NGROUPS_MAX, | 741 | .ctl_name = KERN_NGROUPS_MAX, |
@@ -954,28 +978,28 @@ static struct ctl_table kern_table[] = { | |||
954 | .child = slow_work_sysctls, | 978 | .child = slow_work_sysctls, |
955 | }, | 979 | }, |
956 | #endif | 980 | #endif |
957 | #ifdef CONFIG_PERF_COUNTERS | 981 | #ifdef CONFIG_PERF_EVENTS |
958 | { | 982 | { |
959 | .ctl_name = CTL_UNNUMBERED, | 983 | .ctl_name = CTL_UNNUMBERED, |
960 | .procname = "perf_counter_paranoid", | 984 | .procname = "perf_event_paranoid", |
961 | .data = &sysctl_perf_counter_paranoid, | 985 | .data = &sysctl_perf_event_paranoid, |
962 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | 986 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
963 | .mode = 0644, | 987 | .mode = 0644, |
964 | .proc_handler = &proc_dointvec, | 988 | .proc_handler = &proc_dointvec, |
965 | }, | 989 | }, |
966 | { | 990 | { |
967 | .ctl_name = CTL_UNNUMBERED, | 991 | .ctl_name = CTL_UNNUMBERED, |
968 | .procname = "perf_counter_mlock_kb", | 992 | .procname = "perf_event_mlock_kb", |
969 | .data = &sysctl_perf_counter_mlock, | 993 | .data = &sysctl_perf_event_mlock, |
970 | .maxlen = sizeof(sysctl_perf_counter_mlock), | 994 | .maxlen = sizeof(sysctl_perf_event_mlock), |
971 | .mode = 0644, | 995 | .mode = 0644, |
972 | .proc_handler = &proc_dointvec, | 996 | .proc_handler = &proc_dointvec, |
973 | }, | 997 | }, |
974 | { | 998 | { |
975 | .ctl_name = CTL_UNNUMBERED, | 999 | .ctl_name = CTL_UNNUMBERED, |
976 | .procname = "perf_counter_max_sample_rate", | 1000 | .procname = "perf_event_max_sample_rate", |
977 | .data = &sysctl_perf_counter_sample_rate, | 1001 | .data = &sysctl_perf_event_sample_rate, |
978 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | 1002 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
979 | .mode = 0644, | 1003 | .mode = 0644, |
980 | .proc_handler = &proc_dointvec, | 1004 | .proc_handler = &proc_dointvec, |
981 | }, | 1005 | }, |
@@ -990,7 +1014,16 @@ static struct ctl_table kern_table[] = { | |||
990 | .proc_handler = &proc_dointvec, | 1014 | .proc_handler = &proc_dointvec, |
991 | }, | 1015 | }, |
992 | #endif | 1016 | #endif |
993 | 1017 | #ifdef CONFIG_BLOCK | |
1018 | { | ||
1019 | .ctl_name = CTL_UNNUMBERED, | ||
1020 | .procname = "blk_iopoll", | ||
1021 | .data = &blk_iopoll_enabled, | ||
1022 | .maxlen = sizeof(int), | ||
1023 | .mode = 0644, | ||
1024 | .proc_handler = &proc_dointvec, | ||
1025 | }, | ||
1026 | #endif | ||
994 | /* | 1027 | /* |
995 | * NOTE: do not add new entries to this table unless you have read | 1028 | * NOTE: do not add new entries to this table unless you have read |
996 | * Documentation/sysctl/ctl_unnumbered.txt | 1029 | * Documentation/sysctl/ctl_unnumbered.txt |
diff --git a/kernel/taskstats.c b/kernel/taskstats.c index 888adbcca30c..ea8384d3caa7 100644 --- a/kernel/taskstats.c +++ b/kernel/taskstats.c | |||
@@ -108,7 +108,7 @@ static int prepare_reply(struct genl_info *info, u8 cmd, struct sk_buff **skbp, | |||
108 | /* | 108 | /* |
109 | * Send taskstats data in @skb to listener with nl_pid @pid | 109 | * Send taskstats data in @skb to listener with nl_pid @pid |
110 | */ | 110 | */ |
111 | static int send_reply(struct sk_buff *skb, pid_t pid) | 111 | static int send_reply(struct sk_buff *skb, struct genl_info *info) |
112 | { | 112 | { |
113 | struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); | 113 | struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); |
114 | void *reply = genlmsg_data(genlhdr); | 114 | void *reply = genlmsg_data(genlhdr); |
@@ -120,7 +120,7 @@ static int send_reply(struct sk_buff *skb, pid_t pid) | |||
120 | return rc; | 120 | return rc; |
121 | } | 121 | } |
122 | 122 | ||
123 | return genlmsg_unicast(skb, pid); | 123 | return genlmsg_reply(skb, info); |
124 | } | 124 | } |
125 | 125 | ||
126 | /* | 126 | /* |
@@ -150,7 +150,7 @@ static void send_cpu_listeners(struct sk_buff *skb, | |||
150 | if (!skb_next) | 150 | if (!skb_next) |
151 | break; | 151 | break; |
152 | } | 152 | } |
153 | rc = genlmsg_unicast(skb_cur, s->pid); | 153 | rc = genlmsg_unicast(&init_net, skb_cur, s->pid); |
154 | if (rc == -ECONNREFUSED) { | 154 | if (rc == -ECONNREFUSED) { |
155 | s->valid = 0; | 155 | s->valid = 0; |
156 | delcount++; | 156 | delcount++; |
@@ -418,7 +418,7 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info) | |||
418 | goto err; | 418 | goto err; |
419 | } | 419 | } |
420 | 420 | ||
421 | rc = send_reply(rep_skb, info->snd_pid); | 421 | rc = send_reply(rep_skb, info); |
422 | 422 | ||
423 | err: | 423 | err: |
424 | fput_light(file, fput_needed); | 424 | fput_light(file, fput_needed); |
@@ -487,7 +487,7 @@ free_return_rc: | |||
487 | } else | 487 | } else |
488 | goto err; | 488 | goto err; |
489 | 489 | ||
490 | return send_reply(rep_skb, info->snd_pid); | 490 | return send_reply(rep_skb, info); |
491 | err: | 491 | err: |
492 | nlmsg_free(rep_skb); | 492 | nlmsg_free(rep_skb); |
493 | return rc; | 493 | return rc; |
diff --git a/kernel/time.c b/kernel/time.c index 29511943871a..2e2e469a7fec 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
@@ -370,13 +370,20 @@ EXPORT_SYMBOL(mktime); | |||
370 | * 0 <= tv_nsec < NSEC_PER_SEC | 370 | * 0 <= tv_nsec < NSEC_PER_SEC |
371 | * For negative values only the tv_sec field is negative ! | 371 | * For negative values only the tv_sec field is negative ! |
372 | */ | 372 | */ |
373 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) |
374 | { | 374 | { |
375 | while (nsec >= NSEC_PER_SEC) { | 375 | while (nsec >= NSEC_PER_SEC) { |
376 | /* | ||
377 | * The following asm() prevents the compiler from | ||
378 | * optimising this loop into a modulo operation. See | ||
379 | * also __iter_div_u64_rem() in include/linux/time.h | ||
380 | */ | ||
381 | asm("" : "+rm"(nsec)); | ||
376 | nsec -= NSEC_PER_SEC; | 382 | nsec -= NSEC_PER_SEC; |
377 | ++sec; | 383 | ++sec; |
378 | } | 384 | } |
379 | while (nsec < 0) { | 385 | while (nsec < 0) { |
386 | asm("" : "+rm"(nsec)); | ||
380 | nsec += NSEC_PER_SEC; | 387 | nsec += NSEC_PER_SEC; |
381 | --sec; | 388 | --sec; |
382 | } | 389 | } |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 7466cb811251..09113347d328 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
@@ -21,7 +21,6 @@ | |||
21 | * | 21 | * |
22 | * TODO WishList: | 22 | * TODO WishList: |
23 | * o Allow clocksource drivers to be unregistered | 23 | * o Allow clocksource drivers to be unregistered |
24 | * o get rid of clocksource_jiffies extern | ||
25 | */ | 24 | */ |
26 | 25 | ||
27 | #include <linux/clocksource.h> | 26 | #include <linux/clocksource.h> |
@@ -30,6 +29,7 @@ | |||
30 | #include <linux/module.h> | 29 | #include <linux/module.h> |
31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 30 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
32 | #include <linux/tick.h> | 31 | #include <linux/tick.h> |
32 | #include <linux/kthread.h> | ||
33 | 33 | ||
34 | void timecounter_init(struct timecounter *tc, | 34 | void timecounter_init(struct timecounter *tc, |
35 | const struct cyclecounter *cc, | 35 | const struct cyclecounter *cc, |
@@ -107,50 +107,35 @@ u64 timecounter_cyc2time(struct timecounter *tc, | |||
107 | } | 107 | } |
108 | EXPORT_SYMBOL(timecounter_cyc2time); | 108 | EXPORT_SYMBOL(timecounter_cyc2time); |
109 | 109 | ||
110 | /* XXX - Would like a better way for initializing curr_clocksource */ | ||
111 | extern struct clocksource clocksource_jiffies; | ||
112 | |||
113 | /*[Clocksource internal variables]--------- | 110 | /*[Clocksource internal variables]--------- |
114 | * curr_clocksource: | 111 | * curr_clocksource: |
115 | * currently selected clocksource. Initialized to clocksource_jiffies. | 112 | * currently selected clocksource. |
116 | * next_clocksource: | ||
117 | * pending next selected clocksource. | ||
118 | * clocksource_list: | 113 | * clocksource_list: |
119 | * linked list with the registered clocksources | 114 | * linked list with the registered clocksources |
120 | * clocksource_lock: | 115 | * clocksource_mutex: |
121 | * protects manipulations to curr_clocksource and next_clocksource | 116 | * protects manipulations to curr_clocksource and the clocksource_list |
122 | * and the clocksource_list | ||
123 | * override_name: | 117 | * override_name: |
124 | * Name of the user-specified clocksource. | 118 | * Name of the user-specified clocksource. |
125 | */ | 119 | */ |
126 | static struct clocksource *curr_clocksource = &clocksource_jiffies; | 120 | static struct clocksource *curr_clocksource; |
127 | static struct clocksource *next_clocksource; | ||
128 | static struct clocksource *clocksource_override; | ||
129 | static LIST_HEAD(clocksource_list); | 121 | static LIST_HEAD(clocksource_list); |
130 | static DEFINE_SPINLOCK(clocksource_lock); | 122 | static DEFINE_MUTEX(clocksource_mutex); |
131 | static char override_name[32]; | 123 | static char override_name[32]; |
132 | static int finished_booting; | 124 | static int finished_booting; |
133 | 125 | ||
134 | /* clocksource_done_booting - Called near the end of core bootup | ||
135 | * | ||
136 | * Hack to avoid lots of clocksource churn at boot time. | ||
137 | * We use fs_initcall because we want this to start before | ||
138 | * device_initcall but after subsys_initcall. | ||
139 | */ | ||
140 | static int __init clocksource_done_booting(void) | ||
141 | { | ||
142 | finished_booting = 1; | ||
143 | return 0; | ||
144 | } | ||
145 | fs_initcall(clocksource_done_booting); | ||
146 | |||
147 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG | 126 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG |
127 | static void clocksource_watchdog_work(struct work_struct *work); | ||
128 | |||
148 | static LIST_HEAD(watchdog_list); | 129 | static LIST_HEAD(watchdog_list); |
149 | static struct clocksource *watchdog; | 130 | static struct clocksource *watchdog; |
150 | static struct timer_list watchdog_timer; | 131 | static struct timer_list watchdog_timer; |
132 | static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); | ||
151 | static DEFINE_SPINLOCK(watchdog_lock); | 133 | static DEFINE_SPINLOCK(watchdog_lock); |
152 | static cycle_t watchdog_last; | 134 | static cycle_t watchdog_last; |
153 | static unsigned long watchdog_resumed; | 135 | static int watchdog_running; |
136 | |||
137 | static int clocksource_watchdog_kthread(void *data); | ||
138 | static void __clocksource_change_rating(struct clocksource *cs, int rating); | ||
154 | 139 | ||
155 | /* | 140 | /* |
156 | * Interval: 0.5sec Threshold: 0.0625s | 141 | * Interval: 0.5sec Threshold: 0.0625s |
@@ -158,135 +143,249 @@ static unsigned long watchdog_resumed; | |||
158 | #define WATCHDOG_INTERVAL (HZ >> 1) | 143 | #define WATCHDOG_INTERVAL (HZ >> 1) |
159 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) | 144 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) |
160 | 145 | ||
161 | static void clocksource_ratewd(struct clocksource *cs, int64_t delta) | 146 | static void clocksource_watchdog_work(struct work_struct *work) |
162 | { | 147 | { |
163 | if (delta > -WATCHDOG_THRESHOLD && delta < WATCHDOG_THRESHOLD) | 148 | /* |
164 | return; | 149 | * If kthread_run fails the next watchdog scan over the |
150 | * watchdog_list will find the unstable clock again. | ||
151 | */ | ||
152 | kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); | ||
153 | } | ||
165 | 154 | ||
155 | static void __clocksource_unstable(struct clocksource *cs) | ||
156 | { | ||
157 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | ||
158 | cs->flags |= CLOCK_SOURCE_UNSTABLE; | ||
159 | if (finished_booting) | ||
160 | schedule_work(&watchdog_work); | ||
161 | } | ||
162 | |||
163 | static void clocksource_unstable(struct clocksource *cs, int64_t delta) | ||
164 | { | ||
166 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", | 165 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", |
167 | cs->name, delta); | 166 | cs->name, delta); |
168 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | 167 | __clocksource_unstable(cs); |
169 | clocksource_change_rating(cs, 0); | 168 | } |
170 | list_del(&cs->wd_list); | 169 | |
170 | /** | ||
171 | * clocksource_mark_unstable - mark clocksource unstable via watchdog | ||
172 | * @cs: clocksource to be marked unstable | ||
173 | * | ||
174 | * This function is called instead of clocksource_change_rating from | ||
175 | * cpu hotplug code to avoid a deadlock between the clocksource mutex | ||
176 | * and the cpu hotplug mutex. It defers the update of the clocksource | ||
177 | * to the watchdog thread. | ||
178 | */ | ||
179 | void clocksource_mark_unstable(struct clocksource *cs) | ||
180 | { | ||
181 | unsigned long flags; | ||
182 | |||
183 | spin_lock_irqsave(&watchdog_lock, flags); | ||
184 | if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { | ||
185 | if (list_empty(&cs->wd_list)) | ||
186 | list_add(&cs->wd_list, &watchdog_list); | ||
187 | __clocksource_unstable(cs); | ||
188 | } | ||
189 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
171 | } | 190 | } |
172 | 191 | ||
173 | static void clocksource_watchdog(unsigned long data) | 192 | static void clocksource_watchdog(unsigned long data) |
174 | { | 193 | { |
175 | struct clocksource *cs, *tmp; | 194 | struct clocksource *cs; |
176 | cycle_t csnow, wdnow; | 195 | cycle_t csnow, wdnow; |
177 | int64_t wd_nsec, cs_nsec; | 196 | int64_t wd_nsec, cs_nsec; |
178 | int resumed; | 197 | int next_cpu; |
179 | 198 | ||
180 | spin_lock(&watchdog_lock); | 199 | spin_lock(&watchdog_lock); |
181 | 200 | if (!watchdog_running) | |
182 | resumed = test_and_clear_bit(0, &watchdog_resumed); | 201 | goto out; |
183 | 202 | ||
184 | wdnow = watchdog->read(watchdog); | 203 | wdnow = watchdog->read(watchdog); |
185 | wd_nsec = cyc2ns(watchdog, (wdnow - watchdog_last) & watchdog->mask); | 204 | wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask, |
205 | watchdog->mult, watchdog->shift); | ||
186 | watchdog_last = wdnow; | 206 | watchdog_last = wdnow; |
187 | 207 | ||
188 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { | 208 | list_for_each_entry(cs, &watchdog_list, wd_list) { |
189 | csnow = cs->read(cs); | ||
190 | 209 | ||
191 | if (unlikely(resumed)) { | 210 | /* Clocksource already marked unstable? */ |
192 | cs->wd_last = csnow; | 211 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
212 | if (finished_booting) | ||
213 | schedule_work(&watchdog_work); | ||
193 | continue; | 214 | continue; |
194 | } | 215 | } |
195 | 216 | ||
196 | /* Initialized ? */ | 217 | csnow = cs->read(cs); |
218 | |||
219 | /* Clocksource initialized ? */ | ||
197 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { | 220 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { |
198 | if ((cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && | ||
199 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { | ||
200 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | ||
201 | /* | ||
202 | * We just marked the clocksource as | ||
203 | * highres-capable, notify the rest of the | ||
204 | * system as well so that we transition | ||
205 | * into high-res mode: | ||
206 | */ | ||
207 | tick_clock_notify(); | ||
208 | } | ||
209 | cs->flags |= CLOCK_SOURCE_WATCHDOG; | 221 | cs->flags |= CLOCK_SOURCE_WATCHDOG; |
210 | cs->wd_last = csnow; | 222 | cs->wd_last = csnow; |
211 | } else { | 223 | continue; |
212 | cs_nsec = cyc2ns(cs, (csnow - cs->wd_last) & cs->mask); | ||
213 | cs->wd_last = csnow; | ||
214 | /* Check the delta. Might remove from the list ! */ | ||
215 | clocksource_ratewd(cs, cs_nsec - wd_nsec); | ||
216 | } | 224 | } |
217 | } | ||
218 | 225 | ||
219 | if (!list_empty(&watchdog_list)) { | 226 | /* Check the deviation from the watchdog clocksource. */ |
220 | /* | 227 | cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) & |
221 | * Cycle through CPUs to check if the CPUs stay | 228 | cs->mask, cs->mult, cs->shift); |
222 | * synchronized to each other. | 229 | cs->wd_last = csnow; |
223 | */ | 230 | if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { |
224 | int next_cpu = cpumask_next(raw_smp_processor_id(), | 231 | clocksource_unstable(cs, cs_nsec - wd_nsec); |
225 | cpu_online_mask); | 232 | continue; |
233 | } | ||
226 | 234 | ||
227 | if (next_cpu >= nr_cpu_ids) | 235 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && |
228 | next_cpu = cpumask_first(cpu_online_mask); | 236 | (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && |
229 | watchdog_timer.expires += WATCHDOG_INTERVAL; | 237 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { |
230 | add_timer_on(&watchdog_timer, next_cpu); | 238 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
239 | /* | ||
240 | * We just marked the clocksource as highres-capable, | ||
241 | * notify the rest of the system as well so that we | ||
242 | * transition into high-res mode: | ||
243 | */ | ||
244 | tick_clock_notify(); | ||
245 | } | ||
231 | } | 246 | } |
247 | |||
248 | /* | ||
249 | * Cycle through CPUs to check if the CPUs stay synchronized | ||
250 | * to each other. | ||
251 | */ | ||
252 | next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); | ||
253 | if (next_cpu >= nr_cpu_ids) | ||
254 | next_cpu = cpumask_first(cpu_online_mask); | ||
255 | watchdog_timer.expires += WATCHDOG_INTERVAL; | ||
256 | add_timer_on(&watchdog_timer, next_cpu); | ||
257 | out: | ||
232 | spin_unlock(&watchdog_lock); | 258 | spin_unlock(&watchdog_lock); |
233 | } | 259 | } |
260 | |||
261 | static inline void clocksource_start_watchdog(void) | ||
262 | { | ||
263 | if (watchdog_running || !watchdog || list_empty(&watchdog_list)) | ||
264 | return; | ||
265 | init_timer(&watchdog_timer); | ||
266 | watchdog_timer.function = clocksource_watchdog; | ||
267 | watchdog_last = watchdog->read(watchdog); | ||
268 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
269 | add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); | ||
270 | watchdog_running = 1; | ||
271 | } | ||
272 | |||
273 | static inline void clocksource_stop_watchdog(void) | ||
274 | { | ||
275 | if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) | ||
276 | return; | ||
277 | del_timer(&watchdog_timer); | ||
278 | watchdog_running = 0; | ||
279 | } | ||
280 | |||
281 | static inline void clocksource_reset_watchdog(void) | ||
282 | { | ||
283 | struct clocksource *cs; | ||
284 | |||
285 | list_for_each_entry(cs, &watchdog_list, wd_list) | ||
286 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
287 | } | ||
288 | |||
234 | static void clocksource_resume_watchdog(void) | 289 | static void clocksource_resume_watchdog(void) |
235 | { | 290 | { |
236 | set_bit(0, &watchdog_resumed); | 291 | unsigned long flags; |
292 | |||
293 | spin_lock_irqsave(&watchdog_lock, flags); | ||
294 | clocksource_reset_watchdog(); | ||
295 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
237 | } | 296 | } |
238 | 297 | ||
239 | static void clocksource_check_watchdog(struct clocksource *cs) | 298 | static void clocksource_enqueue_watchdog(struct clocksource *cs) |
240 | { | 299 | { |
241 | struct clocksource *cse; | ||
242 | unsigned long flags; | 300 | unsigned long flags; |
243 | 301 | ||
244 | spin_lock_irqsave(&watchdog_lock, flags); | 302 | spin_lock_irqsave(&watchdog_lock, flags); |
245 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | 303 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
246 | int started = !list_empty(&watchdog_list); | 304 | /* cs is a clocksource to be watched. */ |
247 | |||
248 | list_add(&cs->wd_list, &watchdog_list); | 305 | list_add(&cs->wd_list, &watchdog_list); |
249 | if (!started && watchdog) { | 306 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
250 | watchdog_last = watchdog->read(watchdog); | ||
251 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
252 | add_timer_on(&watchdog_timer, | ||
253 | cpumask_first(cpu_online_mask)); | ||
254 | } | ||
255 | } else { | 307 | } else { |
308 | /* cs is a watchdog. */ | ||
256 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 309 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
257 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 310 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
258 | 311 | /* Pick the best watchdog. */ | |
259 | if (!watchdog || cs->rating > watchdog->rating) { | 312 | if (!watchdog || cs->rating > watchdog->rating) { |
260 | if (watchdog) | ||
261 | del_timer(&watchdog_timer); | ||
262 | watchdog = cs; | 313 | watchdog = cs; |
263 | init_timer(&watchdog_timer); | ||
264 | watchdog_timer.function = clocksource_watchdog; | ||
265 | |||
266 | /* Reset watchdog cycles */ | 314 | /* Reset watchdog cycles */ |
267 | list_for_each_entry(cse, &watchdog_list, wd_list) | 315 | clocksource_reset_watchdog(); |
268 | cse->flags &= ~CLOCK_SOURCE_WATCHDOG; | 316 | } |
269 | /* Start if list is not empty */ | 317 | } |
270 | if (!list_empty(&watchdog_list)) { | 318 | /* Check if the watchdog timer needs to be started. */ |
271 | watchdog_last = watchdog->read(watchdog); | 319 | clocksource_start_watchdog(); |
272 | watchdog_timer.expires = | 320 | spin_unlock_irqrestore(&watchdog_lock, flags); |
273 | jiffies + WATCHDOG_INTERVAL; | 321 | } |
274 | add_timer_on(&watchdog_timer, | 322 | |
275 | cpumask_first(cpu_online_mask)); | 323 | static void clocksource_dequeue_watchdog(struct clocksource *cs) |
276 | } | 324 | { |
325 | struct clocksource *tmp; | ||
326 | unsigned long flags; | ||
327 | |||
328 | spin_lock_irqsave(&watchdog_lock, flags); | ||
329 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | ||
330 | /* cs is a watched clocksource. */ | ||
331 | list_del_init(&cs->wd_list); | ||
332 | } else if (cs == watchdog) { | ||
333 | /* Reset watchdog cycles */ | ||
334 | clocksource_reset_watchdog(); | ||
335 | /* Current watchdog is removed. Find an alternative. */ | ||
336 | watchdog = NULL; | ||
337 | list_for_each_entry(tmp, &clocksource_list, list) { | ||
338 | if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY) | ||
339 | continue; | ||
340 | if (!watchdog || tmp->rating > watchdog->rating) | ||
341 | watchdog = tmp; | ||
277 | } | 342 | } |
278 | } | 343 | } |
344 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
345 | /* Check if the watchdog timer needs to be stopped. */ | ||
346 | clocksource_stop_watchdog(); | ||
279 | spin_unlock_irqrestore(&watchdog_lock, flags); | 347 | spin_unlock_irqrestore(&watchdog_lock, flags); |
280 | } | 348 | } |
281 | #else | 349 | |
282 | static void clocksource_check_watchdog(struct clocksource *cs) | 350 | static int clocksource_watchdog_kthread(void *data) |
351 | { | ||
352 | struct clocksource *cs, *tmp; | ||
353 | unsigned long flags; | ||
354 | LIST_HEAD(unstable); | ||
355 | |||
356 | mutex_lock(&clocksource_mutex); | ||
357 | spin_lock_irqsave(&watchdog_lock, flags); | ||
358 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) | ||
359 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { | ||
360 | list_del_init(&cs->wd_list); | ||
361 | list_add(&cs->wd_list, &unstable); | ||
362 | } | ||
363 | /* Check if the watchdog timer needs to be stopped. */ | ||
364 | clocksource_stop_watchdog(); | ||
365 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
366 | |||
367 | /* Needs to be done outside of watchdog lock */ | ||
368 | list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { | ||
369 | list_del_init(&cs->wd_list); | ||
370 | __clocksource_change_rating(cs, 0); | ||
371 | } | ||
372 | mutex_unlock(&clocksource_mutex); | ||
373 | return 0; | ||
374 | } | ||
375 | |||
376 | #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
377 | |||
378 | static void clocksource_enqueue_watchdog(struct clocksource *cs) | ||
283 | { | 379 | { |
284 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 380 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
285 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 381 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
286 | } | 382 | } |
287 | 383 | ||
384 | static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } | ||
288 | static inline void clocksource_resume_watchdog(void) { } | 385 | static inline void clocksource_resume_watchdog(void) { } |
289 | #endif | 386 | static inline int clocksource_watchdog_kthread(void *data) { return 0; } |
387 | |||
388 | #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
290 | 389 | ||
291 | /** | 390 | /** |
292 | * clocksource_resume - resume the clocksource(s) | 391 | * clocksource_resume - resume the clocksource(s) |
@@ -294,18 +393,16 @@ static inline void clocksource_resume_watchdog(void) { } | |||
294 | void clocksource_resume(void) | 393 | void clocksource_resume(void) |
295 | { | 394 | { |
296 | struct clocksource *cs; | 395 | struct clocksource *cs; |
297 | unsigned long flags; | ||
298 | 396 | ||
299 | spin_lock_irqsave(&clocksource_lock, flags); | 397 | mutex_lock(&clocksource_mutex); |
300 | 398 | ||
301 | list_for_each_entry(cs, &clocksource_list, list) { | 399 | list_for_each_entry(cs, &clocksource_list, list) |
302 | if (cs->resume) | 400 | if (cs->resume) |
303 | cs->resume(); | 401 | cs->resume(); |
304 | } | ||
305 | 402 | ||
306 | clocksource_resume_watchdog(); | 403 | clocksource_resume_watchdog(); |
307 | 404 | ||
308 | spin_unlock_irqrestore(&clocksource_lock, flags); | 405 | mutex_unlock(&clocksource_mutex); |
309 | } | 406 | } |
310 | 407 | ||
311 | /** | 408 | /** |
@@ -320,75 +417,94 @@ void clocksource_touch_watchdog(void) | |||
320 | clocksource_resume_watchdog(); | 417 | clocksource_resume_watchdog(); |
321 | } | 418 | } |
322 | 419 | ||
420 | #ifdef CONFIG_GENERIC_TIME | ||
421 | |||
323 | /** | 422 | /** |
324 | * clocksource_get_next - Returns the selected clocksource | 423 | * clocksource_select - Select the best clocksource available |
424 | * | ||
425 | * Private function. Must hold clocksource_mutex when called. | ||
325 | * | 426 | * |
427 | * Select the clocksource with the best rating, or the clocksource, | ||
428 | * which is selected by userspace override. | ||
326 | */ | 429 | */ |
327 | struct clocksource *clocksource_get_next(void) | 430 | static void clocksource_select(void) |
328 | { | 431 | { |
329 | unsigned long flags; | 432 | struct clocksource *best, *cs; |
330 | 433 | ||
331 | spin_lock_irqsave(&clocksource_lock, flags); | 434 | if (!finished_booting || list_empty(&clocksource_list)) |
332 | if (next_clocksource && finished_booting) { | 435 | return; |
333 | curr_clocksource = next_clocksource; | 436 | /* First clocksource on the list has the best rating. */ |
334 | next_clocksource = NULL; | 437 | best = list_first_entry(&clocksource_list, struct clocksource, list); |
438 | /* Check for the override clocksource. */ | ||
439 | list_for_each_entry(cs, &clocksource_list, list) { | ||
440 | if (strcmp(cs->name, override_name) != 0) | ||
441 | continue; | ||
442 | /* | ||
443 | * Check to make sure we don't switch to a non-highres | ||
444 | * capable clocksource if the tick code is in oneshot | ||
445 | * mode (highres or nohz) | ||
446 | */ | ||
447 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && | ||
448 | tick_oneshot_mode_active()) { | ||
449 | /* Override clocksource cannot be used. */ | ||
450 | printk(KERN_WARNING "Override clocksource %s is not " | ||
451 | "HRT compatible. Cannot switch while in " | ||
452 | "HRT/NOHZ mode\n", cs->name); | ||
453 | override_name[0] = 0; | ||
454 | } else | ||
455 | /* Override clocksource can be used. */ | ||
456 | best = cs; | ||
457 | break; | ||
458 | } | ||
459 | if (curr_clocksource != best) { | ||
460 | printk(KERN_INFO "Switching to clocksource %s\n", best->name); | ||
461 | curr_clocksource = best; | ||
462 | timekeeping_notify(curr_clocksource); | ||
335 | } | 463 | } |
336 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
337 | |||
338 | return curr_clocksource; | ||
339 | } | 464 | } |
340 | 465 | ||
341 | /** | 466 | #else /* CONFIG_GENERIC_TIME */ |
342 | * select_clocksource - Selects the best registered clocksource. | 467 | |
343 | * | 468 | static inline void clocksource_select(void) { } |
344 | * Private function. Must hold clocksource_lock when called. | 469 | |
470 | #endif | ||
471 | |||
472 | /* | ||
473 | * clocksource_done_booting - Called near the end of core bootup | ||
345 | * | 474 | * |
346 | * Select the clocksource with the best rating, or the clocksource, | 475 | * Hack to avoid lots of clocksource churn at boot time. |
347 | * which is selected by userspace override. | 476 | * We use fs_initcall because we want this to start before |
477 | * device_initcall but after subsys_initcall. | ||
348 | */ | 478 | */ |
349 | static struct clocksource *select_clocksource(void) | 479 | static int __init clocksource_done_booting(void) |
350 | { | 480 | { |
351 | struct clocksource *next; | 481 | finished_booting = 1; |
352 | |||
353 | if (list_empty(&clocksource_list)) | ||
354 | return NULL; | ||
355 | |||
356 | if (clocksource_override) | ||
357 | next = clocksource_override; | ||
358 | else | ||
359 | next = list_entry(clocksource_list.next, struct clocksource, | ||
360 | list); | ||
361 | 482 | ||
362 | if (next == curr_clocksource) | 483 | /* |
363 | return NULL; | 484 | * Run the watchdog first to eliminate unstable clock sources |
485 | */ | ||
486 | clocksource_watchdog_kthread(NULL); | ||
364 | 487 | ||
365 | return next; | 488 | mutex_lock(&clocksource_mutex); |
489 | clocksource_select(); | ||
490 | mutex_unlock(&clocksource_mutex); | ||
491 | return 0; | ||
366 | } | 492 | } |
493 | fs_initcall(clocksource_done_booting); | ||
367 | 494 | ||
368 | /* | 495 | /* |
369 | * Enqueue the clocksource sorted by rating | 496 | * Enqueue the clocksource sorted by rating |
370 | */ | 497 | */ |
371 | static int clocksource_enqueue(struct clocksource *c) | 498 | static void clocksource_enqueue(struct clocksource *cs) |
372 | { | 499 | { |
373 | struct list_head *tmp, *entry = &clocksource_list; | 500 | struct list_head *entry = &clocksource_list; |
501 | struct clocksource *tmp; | ||
374 | 502 | ||
375 | list_for_each(tmp, &clocksource_list) { | 503 | list_for_each_entry(tmp, &clocksource_list, list) |
376 | struct clocksource *cs; | ||
377 | |||
378 | cs = list_entry(tmp, struct clocksource, list); | ||
379 | if (cs == c) | ||
380 | return -EBUSY; | ||
381 | /* Keep track of the place, where to insert */ | 504 | /* Keep track of the place, where to insert */ |
382 | if (cs->rating >= c->rating) | 505 | if (tmp->rating >= cs->rating) |
383 | entry = tmp; | 506 | entry = &tmp->list; |
384 | } | 507 | list_add(&cs->list, entry); |
385 | list_add(&c->list, entry); | ||
386 | |||
387 | if (strlen(c->name) == strlen(override_name) && | ||
388 | !strcmp(c->name, override_name)) | ||
389 | clocksource_override = c; | ||
390 | |||
391 | return 0; | ||
392 | } | 508 | } |
393 | 509 | ||
394 | /** | 510 | /** |
@@ -397,52 +513,48 @@ static int clocksource_enqueue(struct clocksource *c) | |||
397 | * | 513 | * |
398 | * Returns -EBUSY if registration fails, zero otherwise. | 514 | * Returns -EBUSY if registration fails, zero otherwise. |
399 | */ | 515 | */ |
400 | int clocksource_register(struct clocksource *c) | 516 | int clocksource_register(struct clocksource *cs) |
401 | { | 517 | { |
402 | unsigned long flags; | 518 | mutex_lock(&clocksource_mutex); |
403 | int ret; | 519 | clocksource_enqueue(cs); |
404 | 520 | clocksource_select(); | |
405 | spin_lock_irqsave(&clocksource_lock, flags); | 521 | clocksource_enqueue_watchdog(cs); |
406 | ret = clocksource_enqueue(c); | 522 | mutex_unlock(&clocksource_mutex); |
407 | if (!ret) | 523 | return 0; |
408 | next_clocksource = select_clocksource(); | ||
409 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
410 | if (!ret) | ||
411 | clocksource_check_watchdog(c); | ||
412 | return ret; | ||
413 | } | 524 | } |
414 | EXPORT_SYMBOL(clocksource_register); | 525 | EXPORT_SYMBOL(clocksource_register); |
415 | 526 | ||
527 | static void __clocksource_change_rating(struct clocksource *cs, int rating) | ||
528 | { | ||
529 | list_del(&cs->list); | ||
530 | cs->rating = rating; | ||
531 | clocksource_enqueue(cs); | ||
532 | clocksource_select(); | ||
533 | } | ||
534 | |||
416 | /** | 535 | /** |
417 | * clocksource_change_rating - Change the rating of a registered clocksource | 536 | * clocksource_change_rating - Change the rating of a registered clocksource |
418 | * | ||
419 | */ | 537 | */ |
420 | void clocksource_change_rating(struct clocksource *cs, int rating) | 538 | void clocksource_change_rating(struct clocksource *cs, int rating) |
421 | { | 539 | { |
422 | unsigned long flags; | 540 | mutex_lock(&clocksource_mutex); |
423 | 541 | __clocksource_change_rating(cs, rating); | |
424 | spin_lock_irqsave(&clocksource_lock, flags); | 542 | mutex_unlock(&clocksource_mutex); |
425 | list_del(&cs->list); | ||
426 | cs->rating = rating; | ||
427 | clocksource_enqueue(cs); | ||
428 | next_clocksource = select_clocksource(); | ||
429 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
430 | } | 543 | } |
544 | EXPORT_SYMBOL(clocksource_change_rating); | ||
431 | 545 | ||
432 | /** | 546 | /** |
433 | * clocksource_unregister - remove a registered clocksource | 547 | * clocksource_unregister - remove a registered clocksource |
434 | */ | 548 | */ |
435 | void clocksource_unregister(struct clocksource *cs) | 549 | void clocksource_unregister(struct clocksource *cs) |
436 | { | 550 | { |
437 | unsigned long flags; | 551 | mutex_lock(&clocksource_mutex); |
438 | 552 | clocksource_dequeue_watchdog(cs); | |
439 | spin_lock_irqsave(&clocksource_lock, flags); | ||
440 | list_del(&cs->list); | 553 | list_del(&cs->list); |
441 | if (clocksource_override == cs) | 554 | clocksource_select(); |
442 | clocksource_override = NULL; | 555 | mutex_unlock(&clocksource_mutex); |
443 | next_clocksource = select_clocksource(); | ||
444 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
445 | } | 556 | } |
557 | EXPORT_SYMBOL(clocksource_unregister); | ||
446 | 558 | ||
447 | #ifdef CONFIG_SYSFS | 559 | #ifdef CONFIG_SYSFS |
448 | /** | 560 | /** |
@@ -458,9 +570,9 @@ sysfs_show_current_clocksources(struct sys_device *dev, | |||
458 | { | 570 | { |
459 | ssize_t count = 0; | 571 | ssize_t count = 0; |
460 | 572 | ||
461 | spin_lock_irq(&clocksource_lock); | 573 | mutex_lock(&clocksource_mutex); |
462 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); | 574 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); |
463 | spin_unlock_irq(&clocksource_lock); | 575 | mutex_unlock(&clocksource_mutex); |
464 | 576 | ||
465 | return count; | 577 | return count; |
466 | } | 578 | } |
@@ -478,9 +590,7 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
478 | struct sysdev_attribute *attr, | 590 | struct sysdev_attribute *attr, |
479 | const char *buf, size_t count) | 591 | const char *buf, size_t count) |
480 | { | 592 | { |
481 | struct clocksource *ovr = NULL; | ||
482 | size_t ret = count; | 593 | size_t ret = count; |
483 | int len; | ||
484 | 594 | ||
485 | /* strings from sysfs write are not 0 terminated! */ | 595 | /* strings from sysfs write are not 0 terminated! */ |
486 | if (count >= sizeof(override_name)) | 596 | if (count >= sizeof(override_name)) |
@@ -490,44 +600,14 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
490 | if (buf[count-1] == '\n') | 600 | if (buf[count-1] == '\n') |
491 | count--; | 601 | count--; |
492 | 602 | ||
493 | spin_lock_irq(&clocksource_lock); | 603 | mutex_lock(&clocksource_mutex); |
494 | 604 | ||
495 | if (count > 0) | 605 | if (count > 0) |
496 | memcpy(override_name, buf, count); | 606 | memcpy(override_name, buf, count); |
497 | override_name[count] = 0; | 607 | override_name[count] = 0; |
608 | clocksource_select(); | ||
498 | 609 | ||
499 | len = strlen(override_name); | 610 | mutex_unlock(&clocksource_mutex); |
500 | if (len) { | ||
501 | struct clocksource *cs; | ||
502 | |||
503 | ovr = clocksource_override; | ||
504 | /* try to select it: */ | ||
505 | list_for_each_entry(cs, &clocksource_list, list) { | ||
506 | if (strlen(cs->name) == len && | ||
507 | !strcmp(cs->name, override_name)) | ||
508 | ovr = cs; | ||
509 | } | ||
510 | } | ||
511 | |||
512 | /* | ||
513 | * Check to make sure we don't switch to a non-highres capable | ||
514 | * clocksource if the tick code is in oneshot mode (highres or nohz) | ||
515 | */ | ||
516 | if (tick_oneshot_mode_active() && ovr && | ||
517 | !(ovr->flags & CLOCK_SOURCE_VALID_FOR_HRES)) { | ||
518 | printk(KERN_WARNING "%s clocksource is not HRT compatible. " | ||
519 | "Cannot switch while in HRT/NOHZ mode\n", ovr->name); | ||
520 | ovr = NULL; | ||
521 | override_name[0] = 0; | ||
522 | } | ||
523 | |||
524 | /* Reselect, when the override name has changed */ | ||
525 | if (ovr != clocksource_override) { | ||
526 | clocksource_override = ovr; | ||
527 | next_clocksource = select_clocksource(); | ||
528 | } | ||
529 | |||
530 | spin_unlock_irq(&clocksource_lock); | ||
531 | 611 | ||
532 | return ret; | 612 | return ret; |
533 | } | 613 | } |
@@ -547,7 +627,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
547 | struct clocksource *src; | 627 | struct clocksource *src; |
548 | ssize_t count = 0; | 628 | ssize_t count = 0; |
549 | 629 | ||
550 | spin_lock_irq(&clocksource_lock); | 630 | mutex_lock(&clocksource_mutex); |
551 | list_for_each_entry(src, &clocksource_list, list) { | 631 | list_for_each_entry(src, &clocksource_list, list) { |
552 | /* | 632 | /* |
553 | * Don't show non-HRES clocksource if the tick code is | 633 | * Don't show non-HRES clocksource if the tick code is |
@@ -559,7 +639,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
559 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), | 639 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), |
560 | "%s ", src->name); | 640 | "%s ", src->name); |
561 | } | 641 | } |
562 | spin_unlock_irq(&clocksource_lock); | 642 | mutex_unlock(&clocksource_mutex); |
563 | 643 | ||
564 | count += snprintf(buf + count, | 644 | count += snprintf(buf + count, |
565 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); | 645 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); |
@@ -614,11 +694,10 @@ device_initcall(init_clocksource_sysfs); | |||
614 | */ | 694 | */ |
615 | static int __init boot_override_clocksource(char* str) | 695 | static int __init boot_override_clocksource(char* str) |
616 | { | 696 | { |
617 | unsigned long flags; | 697 | mutex_lock(&clocksource_mutex); |
618 | spin_lock_irqsave(&clocksource_lock, flags); | ||
619 | if (str) | 698 | if (str) |
620 | strlcpy(override_name, str, sizeof(override_name)); | 699 | strlcpy(override_name, str, sizeof(override_name)); |
621 | spin_unlock_irqrestore(&clocksource_lock, flags); | 700 | mutex_unlock(&clocksource_mutex); |
622 | return 1; | 701 | return 1; |
623 | } | 702 | } |
624 | 703 | ||
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c index c3f6c30816e3..5404a8456909 100644 --- a/kernel/time/jiffies.c +++ b/kernel/time/jiffies.c | |||
@@ -61,7 +61,6 @@ struct clocksource clocksource_jiffies = { | |||
61 | .read = jiffies_read, | 61 | .read = jiffies_read, |
62 | .mask = 0xffffffff, /*32bits*/ | 62 | .mask = 0xffffffff, /*32bits*/ |
63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ | 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ |
64 | .mult_orig = NSEC_PER_JIFFY << JIFFIES_SHIFT, | ||
65 | .shift = JIFFIES_SHIFT, | 64 | .shift = JIFFIES_SHIFT, |
66 | }; | 65 | }; |
67 | 66 | ||
@@ -71,3 +70,8 @@ static int __init init_jiffies_clocksource(void) | |||
71 | } | 70 | } |
72 | 71 | ||
73 | core_initcall(init_jiffies_clocksource); | 72 | core_initcall(init_jiffies_clocksource); |
73 | |||
74 | struct clocksource * __init __weak clocksource_default_clock(void) | ||
75 | { | ||
76 | return &clocksource_jiffies; | ||
77 | } | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 7fc64375ff43..4800f933910e 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -194,8 +194,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
194 | case TIME_OK: | 194 | case TIME_OK: |
195 | break; | 195 | break; |
196 | case TIME_INS: | 196 | case TIME_INS: |
197 | xtime.tv_sec--; | 197 | timekeeping_leap_insert(-1); |
198 | wall_to_monotonic.tv_sec++; | ||
199 | time_state = TIME_OOP; | 198 | time_state = TIME_OOP; |
200 | printk(KERN_NOTICE | 199 | printk(KERN_NOTICE |
201 | "Clock: inserting leap second 23:59:60 UTC\n"); | 200 | "Clock: inserting leap second 23:59:60 UTC\n"); |
@@ -203,9 +202,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
203 | res = HRTIMER_RESTART; | 202 | res = HRTIMER_RESTART; |
204 | break; | 203 | break; |
205 | case TIME_DEL: | 204 | case TIME_DEL: |
206 | xtime.tv_sec++; | 205 | timekeeping_leap_insert(1); |
207 | time_tai--; | 206 | time_tai--; |
208 | wall_to_monotonic.tv_sec--; | ||
209 | time_state = TIME_WAIT; | 207 | time_state = TIME_WAIT; |
210 | printk(KERN_NOTICE | 208 | printk(KERN_NOTICE |
211 | "Clock: deleting leap second 23:59:59 UTC\n"); | 209 | "Clock: deleting leap second 23:59:59 UTC\n"); |
@@ -219,7 +217,6 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
219 | time_state = TIME_OK; | 217 | time_state = TIME_OK; |
220 | break; | 218 | break; |
221 | } | 219 | } |
222 | update_vsyscall(&xtime, clock); | ||
223 | 220 | ||
224 | write_sequnlock(&xtime_lock); | 221 | write_sequnlock(&xtime_lock); |
225 | 222 | ||
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index e8c77d9c633a..fb0f46fa1ecd 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
@@ -18,7 +18,117 @@ | |||
18 | #include <linux/jiffies.h> | 18 | #include <linux/jiffies.h> |
19 | #include <linux/time.h> | 19 | #include <linux/time.h> |
20 | #include <linux/tick.h> | 20 | #include <linux/tick.h> |
21 | #include <linux/stop_machine.h> | ||
22 | |||
23 | /* Structure holding internal timekeeping values. */ | ||
24 | struct timekeeper { | ||
25 | /* Current clocksource used for timekeeping. */ | ||
26 | struct clocksource *clock; | ||
27 | /* The shift value of the current clocksource. */ | ||
28 | int shift; | ||
29 | |||
30 | /* Number of clock cycles in one NTP interval. */ | ||
31 | cycle_t cycle_interval; | ||
32 | /* Number of clock shifted nano seconds in one NTP interval. */ | ||
33 | u64 xtime_interval; | ||
34 | /* Raw nano seconds accumulated per NTP interval. */ | ||
35 | u32 raw_interval; | ||
36 | |||
37 | /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ | ||
38 | u64 xtime_nsec; | ||
39 | /* Difference between accumulated time and NTP time in ntp | ||
40 | * shifted nano seconds. */ | ||
41 | s64 ntp_error; | ||
42 | /* Shift conversion between clock shifted nano seconds and | ||
43 | * ntp shifted nano seconds. */ | ||
44 | int ntp_error_shift; | ||
45 | /* NTP adjusted clock multiplier */ | ||
46 | u32 mult; | ||
47 | }; | ||
48 | |||
49 | struct timekeeper timekeeper; | ||
50 | |||
51 | /** | ||
52 | * timekeeper_setup_internals - Set up internals to use clocksource clock. | ||
53 | * | ||
54 | * @clock: Pointer to clocksource. | ||
55 | * | ||
56 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | ||
57 | * pair and interval request. | ||
58 | * | ||
59 | * Unless you're the timekeeping code, you should not be using this! | ||
60 | */ | ||
61 | static void timekeeper_setup_internals(struct clocksource *clock) | ||
62 | { | ||
63 | cycle_t interval; | ||
64 | u64 tmp; | ||
65 | |||
66 | timekeeper.clock = clock; | ||
67 | clock->cycle_last = clock->read(clock); | ||
21 | 68 | ||
69 | /* Do the ns -> cycle conversion first, using original mult */ | ||
70 | tmp = NTP_INTERVAL_LENGTH; | ||
71 | tmp <<= clock->shift; | ||
72 | tmp += clock->mult/2; | ||
73 | do_div(tmp, clock->mult); | ||
74 | if (tmp == 0) | ||
75 | tmp = 1; | ||
76 | |||
77 | interval = (cycle_t) tmp; | ||
78 | timekeeper.cycle_interval = interval; | ||
79 | |||
80 | /* Go back from cycles -> shifted ns */ | ||
81 | timekeeper.xtime_interval = (u64) interval * clock->mult; | ||
82 | timekeeper.raw_interval = | ||
83 | ((u64) interval * clock->mult) >> clock->shift; | ||
84 | |||
85 | timekeeper.xtime_nsec = 0; | ||
86 | timekeeper.shift = clock->shift; | ||
87 | |||
88 | timekeeper.ntp_error = 0; | ||
89 | timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | ||
90 | |||
91 | /* | ||
92 | * The timekeeper keeps its own mult values for the currently | ||
93 | * active clocksource. These value will be adjusted via NTP | ||
94 | * to counteract clock drifting. | ||
95 | */ | ||
96 | timekeeper.mult = clock->mult; | ||
97 | } | ||
98 | |||
99 | /* Timekeeper helper functions. */ | ||
100 | static inline s64 timekeeping_get_ns(void) | ||
101 | { | ||
102 | cycle_t cycle_now, cycle_delta; | ||
103 | struct clocksource *clock; | ||
104 | |||
105 | /* read clocksource: */ | ||
106 | clock = timekeeper.clock; | ||
107 | cycle_now = clock->read(clock); | ||
108 | |||
109 | /* calculate the delta since the last update_wall_time: */ | ||
110 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
111 | |||
112 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
113 | return clocksource_cyc2ns(cycle_delta, timekeeper.mult, | ||
114 | timekeeper.shift); | ||
115 | } | ||
116 | |||
117 | static inline s64 timekeeping_get_ns_raw(void) | ||
118 | { | ||
119 | cycle_t cycle_now, cycle_delta; | ||
120 | struct clocksource *clock; | ||
121 | |||
122 | /* read clocksource: */ | ||
123 | clock = timekeeper.clock; | ||
124 | cycle_now = clock->read(clock); | ||
125 | |||
126 | /* calculate the delta since the last update_wall_time: */ | ||
127 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
128 | |||
129 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
130 | return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); | ||
131 | } | ||
22 | 132 | ||
23 | /* | 133 | /* |
24 | * This read-write spinlock protects us from races in SMP while | 134 | * This read-write spinlock protects us from races in SMP while |
@@ -44,7 +154,12 @@ __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); | |||
44 | */ | 154 | */ |
45 | struct timespec xtime __attribute__ ((aligned (16))); | 155 | struct timespec xtime __attribute__ ((aligned (16))); |
46 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 156 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
47 | static unsigned long total_sleep_time; /* seconds */ | 157 | static struct timespec total_sleep_time; |
158 | |||
159 | /* | ||
160 | * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. | ||
161 | */ | ||
162 | struct timespec raw_time; | ||
48 | 163 | ||
49 | /* flag for if timekeeping is suspended */ | 164 | /* flag for if timekeeping is suspended */ |
50 | int __read_mostly timekeeping_suspended; | 165 | int __read_mostly timekeeping_suspended; |
@@ -56,35 +171,44 @@ void update_xtime_cache(u64 nsec) | |||
56 | timespec_add_ns(&xtime_cache, nsec); | 171 | timespec_add_ns(&xtime_cache, nsec); |
57 | } | 172 | } |
58 | 173 | ||
59 | struct clocksource *clock; | 174 | /* must hold xtime_lock */ |
60 | 175 | void timekeeping_leap_insert(int leapsecond) | |
176 | { | ||
177 | xtime.tv_sec += leapsecond; | ||
178 | wall_to_monotonic.tv_sec -= leapsecond; | ||
179 | update_vsyscall(&xtime, timekeeper.clock); | ||
180 | } | ||
61 | 181 | ||
62 | #ifdef CONFIG_GENERIC_TIME | 182 | #ifdef CONFIG_GENERIC_TIME |
183 | |||
63 | /** | 184 | /** |
64 | * clocksource_forward_now - update clock to the current time | 185 | * timekeeping_forward_now - update clock to the current time |
65 | * | 186 | * |
66 | * Forward the current clock to update its state since the last call to | 187 | * Forward the current clock to update its state since the last call to |
67 | * update_wall_time(). This is useful before significant clock changes, | 188 | * update_wall_time(). This is useful before significant clock changes, |
68 | * as it avoids having to deal with this time offset explicitly. | 189 | * as it avoids having to deal with this time offset explicitly. |
69 | */ | 190 | */ |
70 | static void clocksource_forward_now(void) | 191 | static void timekeeping_forward_now(void) |
71 | { | 192 | { |
72 | cycle_t cycle_now, cycle_delta; | 193 | cycle_t cycle_now, cycle_delta; |
194 | struct clocksource *clock; | ||
73 | s64 nsec; | 195 | s64 nsec; |
74 | 196 | ||
75 | cycle_now = clocksource_read(clock); | 197 | clock = timekeeper.clock; |
198 | cycle_now = clock->read(clock); | ||
76 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 199 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
77 | clock->cycle_last = cycle_now; | 200 | clock->cycle_last = cycle_now; |
78 | 201 | ||
79 | nsec = cyc2ns(clock, cycle_delta); | 202 | nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
203 | timekeeper.shift); | ||
80 | 204 | ||
81 | /* If arch requires, add in gettimeoffset() */ | 205 | /* If arch requires, add in gettimeoffset() */ |
82 | nsec += arch_gettimeoffset(); | 206 | nsec += arch_gettimeoffset(); |
83 | 207 | ||
84 | timespec_add_ns(&xtime, nsec); | 208 | timespec_add_ns(&xtime, nsec); |
85 | 209 | ||
86 | nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | 210 | nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
87 | clock->raw_time.tv_nsec += nsec; | 211 | timespec_add_ns(&raw_time, nsec); |
88 | } | 212 | } |
89 | 213 | ||
90 | /** | 214 | /** |
@@ -95,7 +219,6 @@ static void clocksource_forward_now(void) | |||
95 | */ | 219 | */ |
96 | void getnstimeofday(struct timespec *ts) | 220 | void getnstimeofday(struct timespec *ts) |
97 | { | 221 | { |
98 | cycle_t cycle_now, cycle_delta; | ||
99 | unsigned long seq; | 222 | unsigned long seq; |
100 | s64 nsecs; | 223 | s64 nsecs; |
101 | 224 | ||
@@ -105,15 +228,7 @@ void getnstimeofday(struct timespec *ts) | |||
105 | seq = read_seqbegin(&xtime_lock); | 228 | seq = read_seqbegin(&xtime_lock); |
106 | 229 | ||
107 | *ts = xtime; | 230 | *ts = xtime; |
108 | 231 | nsecs = timekeeping_get_ns(); | |
109 | /* read clocksource: */ | ||
110 | cycle_now = clocksource_read(clock); | ||
111 | |||
112 | /* calculate the delta since the last update_wall_time: */ | ||
113 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
114 | |||
115 | /* convert to nanoseconds: */ | ||
116 | nsecs = cyc2ns(clock, cycle_delta); | ||
117 | 232 | ||
118 | /* If arch requires, add in gettimeoffset() */ | 233 | /* If arch requires, add in gettimeoffset() */ |
119 | nsecs += arch_gettimeoffset(); | 234 | nsecs += arch_gettimeoffset(); |
@@ -125,6 +240,57 @@ void getnstimeofday(struct timespec *ts) | |||
125 | 240 | ||
126 | EXPORT_SYMBOL(getnstimeofday); | 241 | EXPORT_SYMBOL(getnstimeofday); |
127 | 242 | ||
243 | ktime_t ktime_get(void) | ||
244 | { | ||
245 | unsigned int seq; | ||
246 | s64 secs, nsecs; | ||
247 | |||
248 | WARN_ON(timekeeping_suspended); | ||
249 | |||
250 | do { | ||
251 | seq = read_seqbegin(&xtime_lock); | ||
252 | secs = xtime.tv_sec + wall_to_monotonic.tv_sec; | ||
253 | nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; | ||
254 | nsecs += timekeeping_get_ns(); | ||
255 | |||
256 | } while (read_seqretry(&xtime_lock, seq)); | ||
257 | /* | ||
258 | * Use ktime_set/ktime_add_ns to create a proper ktime on | ||
259 | * 32-bit architectures without CONFIG_KTIME_SCALAR. | ||
260 | */ | ||
261 | return ktime_add_ns(ktime_set(secs, 0), nsecs); | ||
262 | } | ||
263 | EXPORT_SYMBOL_GPL(ktime_get); | ||
264 | |||
265 | /** | ||
266 | * ktime_get_ts - get the monotonic clock in timespec format | ||
267 | * @ts: pointer to timespec variable | ||
268 | * | ||
269 | * The function calculates the monotonic clock from the realtime | ||
270 | * clock and the wall_to_monotonic offset and stores the result | ||
271 | * in normalized timespec format in the variable pointed to by @ts. | ||
272 | */ | ||
273 | void ktime_get_ts(struct timespec *ts) | ||
274 | { | ||
275 | struct timespec tomono; | ||
276 | unsigned int seq; | ||
277 | s64 nsecs; | ||
278 | |||
279 | WARN_ON(timekeeping_suspended); | ||
280 | |||
281 | do { | ||
282 | seq = read_seqbegin(&xtime_lock); | ||
283 | *ts = xtime; | ||
284 | tomono = wall_to_monotonic; | ||
285 | nsecs = timekeeping_get_ns(); | ||
286 | |||
287 | } while (read_seqretry(&xtime_lock, seq)); | ||
288 | |||
289 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
290 | ts->tv_nsec + tomono.tv_nsec + nsecs); | ||
291 | } | ||
292 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
293 | |||
128 | /** | 294 | /** |
129 | * do_gettimeofday - Returns the time of day in a timeval | 295 | * do_gettimeofday - Returns the time of day in a timeval |
130 | * @tv: pointer to the timeval to be set | 296 | * @tv: pointer to the timeval to be set |
@@ -157,7 +323,7 @@ int do_settimeofday(struct timespec *tv) | |||
157 | 323 | ||
158 | write_seqlock_irqsave(&xtime_lock, flags); | 324 | write_seqlock_irqsave(&xtime_lock, flags); |
159 | 325 | ||
160 | clocksource_forward_now(); | 326 | timekeeping_forward_now(); |
161 | 327 | ||
162 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; | 328 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; |
163 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; | 329 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; |
@@ -167,10 +333,10 @@ int do_settimeofday(struct timespec *tv) | |||
167 | 333 | ||
168 | update_xtime_cache(0); | 334 | update_xtime_cache(0); |
169 | 335 | ||
170 | clock->error = 0; | 336 | timekeeper.ntp_error = 0; |
171 | ntp_clear(); | 337 | ntp_clear(); |
172 | 338 | ||
173 | update_vsyscall(&xtime, clock); | 339 | update_vsyscall(&xtime, timekeeper.clock); |
174 | 340 | ||
175 | write_sequnlock_irqrestore(&xtime_lock, flags); | 341 | write_sequnlock_irqrestore(&xtime_lock, flags); |
176 | 342 | ||
@@ -187,44 +353,97 @@ EXPORT_SYMBOL(do_settimeofday); | |||
187 | * | 353 | * |
188 | * Accumulates current time interval and initializes new clocksource | 354 | * Accumulates current time interval and initializes new clocksource |
189 | */ | 355 | */ |
190 | static void change_clocksource(void) | 356 | static int change_clocksource(void *data) |
191 | { | 357 | { |
192 | struct clocksource *new, *old; | 358 | struct clocksource *new, *old; |
193 | 359 | ||
194 | new = clocksource_get_next(); | 360 | new = (struct clocksource *) data; |
361 | |||
362 | timekeeping_forward_now(); | ||
363 | if (!new->enable || new->enable(new) == 0) { | ||
364 | old = timekeeper.clock; | ||
365 | timekeeper_setup_internals(new); | ||
366 | if (old->disable) | ||
367 | old->disable(old); | ||
368 | } | ||
369 | return 0; | ||
370 | } | ||
195 | 371 | ||
196 | if (clock == new) | 372 | /** |
373 | * timekeeping_notify - Install a new clock source | ||
374 | * @clock: pointer to the clock source | ||
375 | * | ||
376 | * This function is called from clocksource.c after a new, better clock | ||
377 | * source has been registered. The caller holds the clocksource_mutex. | ||
378 | */ | ||
379 | void timekeeping_notify(struct clocksource *clock) | ||
380 | { | ||
381 | if (timekeeper.clock == clock) | ||
197 | return; | 382 | return; |
383 | stop_machine(change_clocksource, clock, NULL); | ||
384 | tick_clock_notify(); | ||
385 | } | ||
198 | 386 | ||
199 | clocksource_forward_now(); | 387 | #else /* GENERIC_TIME */ |
200 | 388 | ||
201 | if (clocksource_enable(new)) | 389 | static inline void timekeeping_forward_now(void) { } |
202 | return; | ||
203 | 390 | ||
204 | new->raw_time = clock->raw_time; | 391 | /** |
205 | old = clock; | 392 | * ktime_get - get the monotonic time in ktime_t format |
206 | clock = new; | 393 | * |
207 | clocksource_disable(old); | 394 | * returns the time in ktime_t format |
395 | */ | ||
396 | ktime_t ktime_get(void) | ||
397 | { | ||
398 | struct timespec now; | ||
208 | 399 | ||
209 | clock->cycle_last = 0; | 400 | ktime_get_ts(&now); |
210 | clock->cycle_last = clocksource_read(clock); | ||
211 | clock->error = 0; | ||
212 | clock->xtime_nsec = 0; | ||
213 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | ||
214 | 401 | ||
215 | tick_clock_notify(); | 402 | return timespec_to_ktime(now); |
403 | } | ||
404 | EXPORT_SYMBOL_GPL(ktime_get); | ||
216 | 405 | ||
217 | /* | 406 | /** |
218 | * We're holding xtime lock and waking up klogd would deadlock | 407 | * ktime_get_ts - get the monotonic clock in timespec format |
219 | * us on enqueue. So no printing! | 408 | * @ts: pointer to timespec variable |
220 | printk(KERN_INFO "Time: %s clocksource has been installed.\n", | 409 | * |
221 | clock->name); | 410 | * The function calculates the monotonic clock from the realtime |
222 | */ | 411 | * clock and the wall_to_monotonic offset and stores the result |
412 | * in normalized timespec format in the variable pointed to by @ts. | ||
413 | */ | ||
414 | void ktime_get_ts(struct timespec *ts) | ||
415 | { | ||
416 | struct timespec tomono; | ||
417 | unsigned long seq; | ||
418 | |||
419 | do { | ||
420 | seq = read_seqbegin(&xtime_lock); | ||
421 | getnstimeofday(ts); | ||
422 | tomono = wall_to_monotonic; | ||
423 | |||
424 | } while (read_seqretry(&xtime_lock, seq)); | ||
425 | |||
426 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
427 | ts->tv_nsec + tomono.tv_nsec); | ||
223 | } | 428 | } |
224 | #else | 429 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
225 | static inline void clocksource_forward_now(void) { } | 430 | |
226 | static inline void change_clocksource(void) { } | 431 | #endif /* !GENERIC_TIME */ |
227 | #endif | 432 | |
433 | /** | ||
434 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
435 | * | ||
436 | * returns the time in ktime_t format | ||
437 | */ | ||
438 | ktime_t ktime_get_real(void) | ||
439 | { | ||
440 | struct timespec now; | ||
441 | |||
442 | getnstimeofday(&now); | ||
443 | |||
444 | return timespec_to_ktime(now); | ||
445 | } | ||
446 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
228 | 447 | ||
229 | /** | 448 | /** |
230 | * getrawmonotonic - Returns the raw monotonic time in a timespec | 449 | * getrawmonotonic - Returns the raw monotonic time in a timespec |
@@ -236,21 +455,11 @@ void getrawmonotonic(struct timespec *ts) | |||
236 | { | 455 | { |
237 | unsigned long seq; | 456 | unsigned long seq; |
238 | s64 nsecs; | 457 | s64 nsecs; |
239 | cycle_t cycle_now, cycle_delta; | ||
240 | 458 | ||
241 | do { | 459 | do { |
242 | seq = read_seqbegin(&xtime_lock); | 460 | seq = read_seqbegin(&xtime_lock); |
243 | 461 | nsecs = timekeeping_get_ns_raw(); | |
244 | /* read clocksource: */ | 462 | *ts = raw_time; |
245 | cycle_now = clocksource_read(clock); | ||
246 | |||
247 | /* calculate the delta since the last update_wall_time: */ | ||
248 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
249 | |||
250 | /* convert to nanoseconds: */ | ||
251 | nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | ||
252 | |||
253 | *ts = clock->raw_time; | ||
254 | 463 | ||
255 | } while (read_seqretry(&xtime_lock, seq)); | 464 | } while (read_seqretry(&xtime_lock, seq)); |
256 | 465 | ||
@@ -270,7 +479,7 @@ int timekeeping_valid_for_hres(void) | |||
270 | do { | 479 | do { |
271 | seq = read_seqbegin(&xtime_lock); | 480 | seq = read_seqbegin(&xtime_lock); |
272 | 481 | ||
273 | ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 482 | ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
274 | 483 | ||
275 | } while (read_seqretry(&xtime_lock, seq)); | 484 | } while (read_seqretry(&xtime_lock, seq)); |
276 | 485 | ||
@@ -278,17 +487,33 @@ int timekeeping_valid_for_hres(void) | |||
278 | } | 487 | } |
279 | 488 | ||
280 | /** | 489 | /** |
281 | * read_persistent_clock - Return time in seconds from the persistent clock. | 490 | * read_persistent_clock - Return time from the persistent clock. |
282 | * | 491 | * |
283 | * Weak dummy function for arches that do not yet support it. | 492 | * Weak dummy function for arches that do not yet support it. |
284 | * Returns seconds from epoch using the battery backed persistent clock. | 493 | * Reads the time from the battery backed persistent clock. |
285 | * Returns zero if unsupported. | 494 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
286 | * | 495 | * |
287 | * XXX - Do be sure to remove it once all arches implement it. | 496 | * XXX - Do be sure to remove it once all arches implement it. |
288 | */ | 497 | */ |
289 | unsigned long __attribute__((weak)) read_persistent_clock(void) | 498 | void __attribute__((weak)) read_persistent_clock(struct timespec *ts) |
290 | { | 499 | { |
291 | return 0; | 500 | ts->tv_sec = 0; |
501 | ts->tv_nsec = 0; | ||
502 | } | ||
503 | |||
504 | /** | ||
505 | * read_boot_clock - Return time of the system start. | ||
506 | * | ||
507 | * Weak dummy function for arches that do not yet support it. | ||
508 | * Function to read the exact time the system has been started. | ||
509 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | ||
510 | * | ||
511 | * XXX - Do be sure to remove it once all arches implement it. | ||
512 | */ | ||
513 | void __attribute__((weak)) read_boot_clock(struct timespec *ts) | ||
514 | { | ||
515 | ts->tv_sec = 0; | ||
516 | ts->tv_nsec = 0; | ||
292 | } | 517 | } |
293 | 518 | ||
294 | /* | 519 | /* |
@@ -296,29 +521,40 @@ unsigned long __attribute__((weak)) read_persistent_clock(void) | |||
296 | */ | 521 | */ |
297 | void __init timekeeping_init(void) | 522 | void __init timekeeping_init(void) |
298 | { | 523 | { |
524 | struct clocksource *clock; | ||
299 | unsigned long flags; | 525 | unsigned long flags; |
300 | unsigned long sec = read_persistent_clock(); | 526 | struct timespec now, boot; |
527 | |||
528 | read_persistent_clock(&now); | ||
529 | read_boot_clock(&boot); | ||
301 | 530 | ||
302 | write_seqlock_irqsave(&xtime_lock, flags); | 531 | write_seqlock_irqsave(&xtime_lock, flags); |
303 | 532 | ||
304 | ntp_init(); | 533 | ntp_init(); |
305 | 534 | ||
306 | clock = clocksource_get_next(); | 535 | clock = clocksource_default_clock(); |
307 | clocksource_enable(clock); | 536 | if (clock->enable) |
308 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | 537 | clock->enable(clock); |
309 | clock->cycle_last = clocksource_read(clock); | 538 | timekeeper_setup_internals(clock); |
310 | 539 | ||
311 | xtime.tv_sec = sec; | 540 | xtime.tv_sec = now.tv_sec; |
312 | xtime.tv_nsec = 0; | 541 | xtime.tv_nsec = now.tv_nsec; |
542 | raw_time.tv_sec = 0; | ||
543 | raw_time.tv_nsec = 0; | ||
544 | if (boot.tv_sec == 0 && boot.tv_nsec == 0) { | ||
545 | boot.tv_sec = xtime.tv_sec; | ||
546 | boot.tv_nsec = xtime.tv_nsec; | ||
547 | } | ||
313 | set_normalized_timespec(&wall_to_monotonic, | 548 | set_normalized_timespec(&wall_to_monotonic, |
314 | -xtime.tv_sec, -xtime.tv_nsec); | 549 | -boot.tv_sec, -boot.tv_nsec); |
315 | update_xtime_cache(0); | 550 | update_xtime_cache(0); |
316 | total_sleep_time = 0; | 551 | total_sleep_time.tv_sec = 0; |
552 | total_sleep_time.tv_nsec = 0; | ||
317 | write_sequnlock_irqrestore(&xtime_lock, flags); | 553 | write_sequnlock_irqrestore(&xtime_lock, flags); |
318 | } | 554 | } |
319 | 555 | ||
320 | /* time in seconds when suspend began */ | 556 | /* time in seconds when suspend began */ |
321 | static unsigned long timekeeping_suspend_time; | 557 | static struct timespec timekeeping_suspend_time; |
322 | 558 | ||
323 | /** | 559 | /** |
324 | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 560 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
@@ -331,24 +567,24 @@ static unsigned long timekeeping_suspend_time; | |||
331 | static int timekeeping_resume(struct sys_device *dev) | 567 | static int timekeeping_resume(struct sys_device *dev) |
332 | { | 568 | { |
333 | unsigned long flags; | 569 | unsigned long flags; |
334 | unsigned long now = read_persistent_clock(); | 570 | struct timespec ts; |
571 | |||
572 | read_persistent_clock(&ts); | ||
335 | 573 | ||
336 | clocksource_resume(); | 574 | clocksource_resume(); |
337 | 575 | ||
338 | write_seqlock_irqsave(&xtime_lock, flags); | 576 | write_seqlock_irqsave(&xtime_lock, flags); |
339 | 577 | ||
340 | if (now && (now > timekeeping_suspend_time)) { | 578 | if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { |
341 | unsigned long sleep_length = now - timekeeping_suspend_time; | 579 | ts = timespec_sub(ts, timekeeping_suspend_time); |
342 | 580 | xtime = timespec_add_safe(xtime, ts); | |
343 | xtime.tv_sec += sleep_length; | 581 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
344 | wall_to_monotonic.tv_sec -= sleep_length; | 582 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); |
345 | total_sleep_time += sleep_length; | ||
346 | } | 583 | } |
347 | update_xtime_cache(0); | 584 | update_xtime_cache(0); |
348 | /* re-base the last cycle value */ | 585 | /* re-base the last cycle value */ |
349 | clock->cycle_last = 0; | 586 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
350 | clock->cycle_last = clocksource_read(clock); | 587 | timekeeper.ntp_error = 0; |
351 | clock->error = 0; | ||
352 | timekeeping_suspended = 0; | 588 | timekeeping_suspended = 0; |
353 | write_sequnlock_irqrestore(&xtime_lock, flags); | 589 | write_sequnlock_irqrestore(&xtime_lock, flags); |
354 | 590 | ||
@@ -366,10 +602,10 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) | |||
366 | { | 602 | { |
367 | unsigned long flags; | 603 | unsigned long flags; |
368 | 604 | ||
369 | timekeeping_suspend_time = read_persistent_clock(); | 605 | read_persistent_clock(&timekeeping_suspend_time); |
370 | 606 | ||
371 | write_seqlock_irqsave(&xtime_lock, flags); | 607 | write_seqlock_irqsave(&xtime_lock, flags); |
372 | clocksource_forward_now(); | 608 | timekeeping_forward_now(); |
373 | timekeeping_suspended = 1; | 609 | timekeeping_suspended = 1; |
374 | write_sequnlock_irqrestore(&xtime_lock, flags); | 610 | write_sequnlock_irqrestore(&xtime_lock, flags); |
375 | 611 | ||
@@ -404,7 +640,7 @@ device_initcall(timekeeping_init_device); | |||
404 | * If the error is already larger, we look ahead even further | 640 | * If the error is already larger, we look ahead even further |
405 | * to compensate for late or lost adjustments. | 641 | * to compensate for late or lost adjustments. |
406 | */ | 642 | */ |
407 | static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | 643 | static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, |
408 | s64 *offset) | 644 | s64 *offset) |
409 | { | 645 | { |
410 | s64 tick_error, i; | 646 | s64 tick_error, i; |
@@ -420,7 +656,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
420 | * here. This is tuned so that an error of about 1 msec is adjusted | 656 | * here. This is tuned so that an error of about 1 msec is adjusted |
421 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | 657 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
422 | */ | 658 | */ |
423 | error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); | 659 | error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
424 | error2 = abs(error2); | 660 | error2 = abs(error2); |
425 | for (look_ahead = 0; error2 > 0; look_ahead++) | 661 | for (look_ahead = 0; error2 > 0; look_ahead++) |
426 | error2 >>= 2; | 662 | error2 >>= 2; |
@@ -429,8 +665,8 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
429 | * Now calculate the error in (1 << look_ahead) ticks, but first | 665 | * Now calculate the error in (1 << look_ahead) ticks, but first |
430 | * remove the single look ahead already included in the error. | 666 | * remove the single look ahead already included in the error. |
431 | */ | 667 | */ |
432 | tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); | 668 | tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); |
433 | tick_error -= clock->xtime_interval >> 1; | 669 | tick_error -= timekeeper.xtime_interval >> 1; |
434 | error = ((error - tick_error) >> look_ahead) + tick_error; | 670 | error = ((error - tick_error) >> look_ahead) + tick_error; |
435 | 671 | ||
436 | /* Finally calculate the adjustment shift value. */ | 672 | /* Finally calculate the adjustment shift value. */ |
@@ -455,18 +691,18 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
455 | * this is optimized for the most common adjustments of -1,0,1, | 691 | * this is optimized for the most common adjustments of -1,0,1, |
456 | * for other values we can do a bit more work. | 692 | * for other values we can do a bit more work. |
457 | */ | 693 | */ |
458 | static void clocksource_adjust(s64 offset) | 694 | static void timekeeping_adjust(s64 offset) |
459 | { | 695 | { |
460 | s64 error, interval = clock->cycle_interval; | 696 | s64 error, interval = timekeeper.cycle_interval; |
461 | int adj; | 697 | int adj; |
462 | 698 | ||
463 | error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); | 699 | error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); |
464 | if (error > interval) { | 700 | if (error > interval) { |
465 | error >>= 2; | 701 | error >>= 2; |
466 | if (likely(error <= interval)) | 702 | if (likely(error <= interval)) |
467 | adj = 1; | 703 | adj = 1; |
468 | else | 704 | else |
469 | adj = clocksource_bigadjust(error, &interval, &offset); | 705 | adj = timekeeping_bigadjust(error, &interval, &offset); |
470 | } else if (error < -interval) { | 706 | } else if (error < -interval) { |
471 | error >>= 2; | 707 | error >>= 2; |
472 | if (likely(error >= -interval)) { | 708 | if (likely(error >= -interval)) { |
@@ -474,15 +710,15 @@ static void clocksource_adjust(s64 offset) | |||
474 | interval = -interval; | 710 | interval = -interval; |
475 | offset = -offset; | 711 | offset = -offset; |
476 | } else | 712 | } else |
477 | adj = clocksource_bigadjust(error, &interval, &offset); | 713 | adj = timekeeping_bigadjust(error, &interval, &offset); |
478 | } else | 714 | } else |
479 | return; | 715 | return; |
480 | 716 | ||
481 | clock->mult += adj; | 717 | timekeeper.mult += adj; |
482 | clock->xtime_interval += interval; | 718 | timekeeper.xtime_interval += interval; |
483 | clock->xtime_nsec -= offset; | 719 | timekeeper.xtime_nsec -= offset; |
484 | clock->error -= (interval - offset) << | 720 | timekeeper.ntp_error -= (interval - offset) << |
485 | (NTP_SCALE_SHIFT - clock->shift); | 721 | timekeeper.ntp_error_shift; |
486 | } | 722 | } |
487 | 723 | ||
488 | /** | 724 | /** |
@@ -492,53 +728,59 @@ static void clocksource_adjust(s64 offset) | |||
492 | */ | 728 | */ |
493 | void update_wall_time(void) | 729 | void update_wall_time(void) |
494 | { | 730 | { |
731 | struct clocksource *clock; | ||
495 | cycle_t offset; | 732 | cycle_t offset; |
733 | u64 nsecs; | ||
496 | 734 | ||
497 | /* Make sure we're fully resumed: */ | 735 | /* Make sure we're fully resumed: */ |
498 | if (unlikely(timekeeping_suspended)) | 736 | if (unlikely(timekeeping_suspended)) |
499 | return; | 737 | return; |
500 | 738 | ||
739 | clock = timekeeper.clock; | ||
501 | #ifdef CONFIG_GENERIC_TIME | 740 | #ifdef CONFIG_GENERIC_TIME |
502 | offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; | 741 | offset = (clock->read(clock) - clock->cycle_last) & clock->mask; |
503 | #else | 742 | #else |
504 | offset = clock->cycle_interval; | 743 | offset = timekeeper.cycle_interval; |
505 | #endif | 744 | #endif |
506 | clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift; | 745 | timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; |
507 | 746 | ||
508 | /* normally this loop will run just once, however in the | 747 | /* normally this loop will run just once, however in the |
509 | * case of lost or late ticks, it will accumulate correctly. | 748 | * case of lost or late ticks, it will accumulate correctly. |
510 | */ | 749 | */ |
511 | while (offset >= clock->cycle_interval) { | 750 | while (offset >= timekeeper.cycle_interval) { |
751 | u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; | ||
752 | |||
512 | /* accumulate one interval */ | 753 | /* accumulate one interval */ |
513 | offset -= clock->cycle_interval; | 754 | offset -= timekeeper.cycle_interval; |
514 | clock->cycle_last += clock->cycle_interval; | 755 | clock->cycle_last += timekeeper.cycle_interval; |
515 | 756 | ||
516 | clock->xtime_nsec += clock->xtime_interval; | 757 | timekeeper.xtime_nsec += timekeeper.xtime_interval; |
517 | if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { | 758 | if (timekeeper.xtime_nsec >= nsecps) { |
518 | clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; | 759 | timekeeper.xtime_nsec -= nsecps; |
519 | xtime.tv_sec++; | 760 | xtime.tv_sec++; |
520 | second_overflow(); | 761 | second_overflow(); |
521 | } | 762 | } |
522 | 763 | ||
523 | clock->raw_time.tv_nsec += clock->raw_interval; | 764 | raw_time.tv_nsec += timekeeper.raw_interval; |
524 | if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) { | 765 | if (raw_time.tv_nsec >= NSEC_PER_SEC) { |
525 | clock->raw_time.tv_nsec -= NSEC_PER_SEC; | 766 | raw_time.tv_nsec -= NSEC_PER_SEC; |
526 | clock->raw_time.tv_sec++; | 767 | raw_time.tv_sec++; |
527 | } | 768 | } |
528 | 769 | ||
529 | /* accumulate error between NTP and clock interval */ | 770 | /* accumulate error between NTP and clock interval */ |
530 | clock->error += tick_length; | 771 | timekeeper.ntp_error += tick_length; |
531 | clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); | 772 | timekeeper.ntp_error -= timekeeper.xtime_interval << |
773 | timekeeper.ntp_error_shift; | ||
532 | } | 774 | } |
533 | 775 | ||
534 | /* correct the clock when NTP error is too big */ | 776 | /* correct the clock when NTP error is too big */ |
535 | clocksource_adjust(offset); | 777 | timekeeping_adjust(offset); |
536 | 778 | ||
537 | /* | 779 | /* |
538 | * Since in the loop above, we accumulate any amount of time | 780 | * Since in the loop above, we accumulate any amount of time |
539 | * in xtime_nsec over a second into xtime.tv_sec, its possible for | 781 | * in xtime_nsec over a second into xtime.tv_sec, its possible for |
540 | * xtime_nsec to be fairly small after the loop. Further, if we're | 782 | * xtime_nsec to be fairly small after the loop. Further, if we're |
541 | * slightly speeding the clocksource up in clocksource_adjust(), | 783 | * slightly speeding the clocksource up in timekeeping_adjust(), |
542 | * its possible the required corrective factor to xtime_nsec could | 784 | * its possible the required corrective factor to xtime_nsec could |
543 | * cause it to underflow. | 785 | * cause it to underflow. |
544 | * | 786 | * |
@@ -550,24 +792,25 @@ void update_wall_time(void) | |||
550 | * We'll correct this error next time through this function, when | 792 | * We'll correct this error next time through this function, when |
551 | * xtime_nsec is not as small. | 793 | * xtime_nsec is not as small. |
552 | */ | 794 | */ |
553 | if (unlikely((s64)clock->xtime_nsec < 0)) { | 795 | if (unlikely((s64)timekeeper.xtime_nsec < 0)) { |
554 | s64 neg = -(s64)clock->xtime_nsec; | 796 | s64 neg = -(s64)timekeeper.xtime_nsec; |
555 | clock->xtime_nsec = 0; | 797 | timekeeper.xtime_nsec = 0; |
556 | clock->error += neg << (NTP_SCALE_SHIFT - clock->shift); | 798 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
557 | } | 799 | } |
558 | 800 | ||
559 | /* store full nanoseconds into xtime after rounding it up and | 801 | /* store full nanoseconds into xtime after rounding it up and |
560 | * add the remainder to the error difference. | 802 | * add the remainder to the error difference. |
561 | */ | 803 | */ |
562 | xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1; | 804 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
563 | clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; | 805 | timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; |
564 | clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift); | 806 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
807 | timekeeper.ntp_error_shift; | ||
565 | 808 | ||
566 | update_xtime_cache(cyc2ns(clock, offset)); | 809 | nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); |
810 | update_xtime_cache(nsecs); | ||
567 | 811 | ||
568 | /* check to see if there is a new clocksource to use */ | 812 | /* check to see if there is a new clocksource to use */ |
569 | change_clocksource(); | 813 | update_vsyscall(&xtime, timekeeper.clock); |
570 | update_vsyscall(&xtime, clock); | ||
571 | } | 814 | } |
572 | 815 | ||
573 | /** | 816 | /** |
@@ -583,9 +826,12 @@ void update_wall_time(void) | |||
583 | */ | 826 | */ |
584 | void getboottime(struct timespec *ts) | 827 | void getboottime(struct timespec *ts) |
585 | { | 828 | { |
586 | set_normalized_timespec(ts, | 829 | struct timespec boottime = { |
587 | - (wall_to_monotonic.tv_sec + total_sleep_time), | 830 | .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, |
588 | - wall_to_monotonic.tv_nsec); | 831 | .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec |
832 | }; | ||
833 | |||
834 | set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); | ||
589 | } | 835 | } |
590 | 836 | ||
591 | /** | 837 | /** |
@@ -594,7 +840,7 @@ void getboottime(struct timespec *ts) | |||
594 | */ | 840 | */ |
595 | void monotonic_to_bootbased(struct timespec *ts) | 841 | void monotonic_to_bootbased(struct timespec *ts) |
596 | { | 842 | { |
597 | ts->tv_sec += total_sleep_time; | 843 | *ts = timespec_add_safe(*ts, total_sleep_time); |
598 | } | 844 | } |
599 | 845 | ||
600 | unsigned long get_seconds(void) | 846 | unsigned long get_seconds(void) |
@@ -603,6 +849,10 @@ unsigned long get_seconds(void) | |||
603 | } | 849 | } |
604 | EXPORT_SYMBOL(get_seconds); | 850 | EXPORT_SYMBOL(get_seconds); |
605 | 851 | ||
852 | struct timespec __current_kernel_time(void) | ||
853 | { | ||
854 | return xtime_cache; | ||
855 | } | ||
606 | 856 | ||
607 | struct timespec current_kernel_time(void) | 857 | struct timespec current_kernel_time(void) |
608 | { | 858 | { |
@@ -618,3 +868,20 @@ struct timespec current_kernel_time(void) | |||
618 | return now; | 868 | return now; |
619 | } | 869 | } |
620 | EXPORT_SYMBOL(current_kernel_time); | 870 | EXPORT_SYMBOL(current_kernel_time); |
871 | |||
872 | struct timespec get_monotonic_coarse(void) | ||
873 | { | ||
874 | struct timespec now, mono; | ||
875 | unsigned long seq; | ||
876 | |||
877 | do { | ||
878 | seq = read_seqbegin(&xtime_lock); | ||
879 | |||
880 | now = xtime_cache; | ||
881 | mono = wall_to_monotonic; | ||
882 | } while (read_seqretry(&xtime_lock, seq)); | ||
883 | |||
884 | set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, | ||
885 | now.tv_nsec + mono.tv_nsec); | ||
886 | return now; | ||
887 | } | ||
diff --git a/kernel/timer.c b/kernel/timer.c index a7f07d5a6241..5db5a8d26811 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -37,7 +37,7 @@ | |||
37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
40 | #include <linux/perf_counter.h> | 40 | #include <linux/perf_event.h> |
41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
42 | 42 | ||
43 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
@@ -46,6 +46,9 @@ | |||
46 | #include <asm/timex.h> | 46 | #include <asm/timex.h> |
47 | #include <asm/io.h> | 47 | #include <asm/io.h> |
48 | 48 | ||
49 | #define CREATE_TRACE_POINTS | ||
50 | #include <trace/events/timer.h> | ||
51 | |||
49 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 52 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
50 | 53 | ||
51 | EXPORT_SYMBOL(jiffies_64); | 54 | EXPORT_SYMBOL(jiffies_64); |
@@ -72,6 +75,7 @@ struct tvec_base { | |||
72 | spinlock_t lock; | 75 | spinlock_t lock; |
73 | struct timer_list *running_timer; | 76 | struct timer_list *running_timer; |
74 | unsigned long timer_jiffies; | 77 | unsigned long timer_jiffies; |
78 | unsigned long next_timer; | ||
75 | struct tvec_root tv1; | 79 | struct tvec_root tv1; |
76 | struct tvec tv2; | 80 | struct tvec tv2; |
77 | struct tvec tv3; | 81 | struct tvec tv3; |
@@ -520,6 +524,25 @@ static inline void debug_timer_activate(struct timer_list *timer) { } | |||
520 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | 524 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
521 | #endif | 525 | #endif |
522 | 526 | ||
527 | static inline void debug_init(struct timer_list *timer) | ||
528 | { | ||
529 | debug_timer_init(timer); | ||
530 | trace_timer_init(timer); | ||
531 | } | ||
532 | |||
533 | static inline void | ||
534 | debug_activate(struct timer_list *timer, unsigned long expires) | ||
535 | { | ||
536 | debug_timer_activate(timer); | ||
537 | trace_timer_start(timer, expires); | ||
538 | } | ||
539 | |||
540 | static inline void debug_deactivate(struct timer_list *timer) | ||
541 | { | ||
542 | debug_timer_deactivate(timer); | ||
543 | trace_timer_cancel(timer); | ||
544 | } | ||
545 | |||
523 | static void __init_timer(struct timer_list *timer, | 546 | static void __init_timer(struct timer_list *timer, |
524 | const char *name, | 547 | const char *name, |
525 | struct lock_class_key *key) | 548 | struct lock_class_key *key) |
@@ -548,7 +571,7 @@ void init_timer_key(struct timer_list *timer, | |||
548 | const char *name, | 571 | const char *name, |
549 | struct lock_class_key *key) | 572 | struct lock_class_key *key) |
550 | { | 573 | { |
551 | debug_timer_init(timer); | 574 | debug_init(timer); |
552 | __init_timer(timer, name, key); | 575 | __init_timer(timer, name, key); |
553 | } | 576 | } |
554 | EXPORT_SYMBOL(init_timer_key); | 577 | EXPORT_SYMBOL(init_timer_key); |
@@ -567,7 +590,7 @@ static inline void detach_timer(struct timer_list *timer, | |||
567 | { | 590 | { |
568 | struct list_head *entry = &timer->entry; | 591 | struct list_head *entry = &timer->entry; |
569 | 592 | ||
570 | debug_timer_deactivate(timer); | 593 | debug_deactivate(timer); |
571 | 594 | ||
572 | __list_del(entry->prev, entry->next); | 595 | __list_del(entry->prev, entry->next); |
573 | if (clear_pending) | 596 | if (clear_pending) |
@@ -622,13 +645,16 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
622 | 645 | ||
623 | if (timer_pending(timer)) { | 646 | if (timer_pending(timer)) { |
624 | detach_timer(timer, 0); | 647 | detach_timer(timer, 0); |
648 | if (timer->expires == base->next_timer && | ||
649 | !tbase_get_deferrable(timer->base)) | ||
650 | base->next_timer = base->timer_jiffies; | ||
625 | ret = 1; | 651 | ret = 1; |
626 | } else { | 652 | } else { |
627 | if (pending_only) | 653 | if (pending_only) |
628 | goto out_unlock; | 654 | goto out_unlock; |
629 | } | 655 | } |
630 | 656 | ||
631 | debug_timer_activate(timer); | 657 | debug_activate(timer, expires); |
632 | 658 | ||
633 | new_base = __get_cpu_var(tvec_bases); | 659 | new_base = __get_cpu_var(tvec_bases); |
634 | 660 | ||
@@ -663,6 +689,9 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
663 | } | 689 | } |
664 | 690 | ||
665 | timer->expires = expires; | 691 | timer->expires = expires; |
692 | if (time_before(timer->expires, base->next_timer) && | ||
693 | !tbase_get_deferrable(timer->base)) | ||
694 | base->next_timer = timer->expires; | ||
666 | internal_add_timer(base, timer); | 695 | internal_add_timer(base, timer); |
667 | 696 | ||
668 | out_unlock: | 697 | out_unlock: |
@@ -780,7 +809,10 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
780 | BUG_ON(timer_pending(timer) || !timer->function); | 809 | BUG_ON(timer_pending(timer) || !timer->function); |
781 | spin_lock_irqsave(&base->lock, flags); | 810 | spin_lock_irqsave(&base->lock, flags); |
782 | timer_set_base(timer, base); | 811 | timer_set_base(timer, base); |
783 | debug_timer_activate(timer); | 812 | debug_activate(timer, timer->expires); |
813 | if (time_before(timer->expires, base->next_timer) && | ||
814 | !tbase_get_deferrable(timer->base)) | ||
815 | base->next_timer = timer->expires; | ||
784 | internal_add_timer(base, timer); | 816 | internal_add_timer(base, timer); |
785 | /* | 817 | /* |
786 | * Check whether the other CPU is idle and needs to be | 818 | * Check whether the other CPU is idle and needs to be |
@@ -817,6 +849,9 @@ int del_timer(struct timer_list *timer) | |||
817 | base = lock_timer_base(timer, &flags); | 849 | base = lock_timer_base(timer, &flags); |
818 | if (timer_pending(timer)) { | 850 | if (timer_pending(timer)) { |
819 | detach_timer(timer, 1); | 851 | detach_timer(timer, 1); |
852 | if (timer->expires == base->next_timer && | ||
853 | !tbase_get_deferrable(timer->base)) | ||
854 | base->next_timer = base->timer_jiffies; | ||
820 | ret = 1; | 855 | ret = 1; |
821 | } | 856 | } |
822 | spin_unlock_irqrestore(&base->lock, flags); | 857 | spin_unlock_irqrestore(&base->lock, flags); |
@@ -850,6 +885,9 @@ int try_to_del_timer_sync(struct timer_list *timer) | |||
850 | ret = 0; | 885 | ret = 0; |
851 | if (timer_pending(timer)) { | 886 | if (timer_pending(timer)) { |
852 | detach_timer(timer, 1); | 887 | detach_timer(timer, 1); |
888 | if (timer->expires == base->next_timer && | ||
889 | !tbase_get_deferrable(timer->base)) | ||
890 | base->next_timer = base->timer_jiffies; | ||
853 | ret = 1; | 891 | ret = 1; |
854 | } | 892 | } |
855 | out: | 893 | out: |
@@ -984,7 +1022,9 @@ static inline void __run_timers(struct tvec_base *base) | |||
984 | */ | 1022 | */ |
985 | lock_map_acquire(&lockdep_map); | 1023 | lock_map_acquire(&lockdep_map); |
986 | 1024 | ||
1025 | trace_timer_expire_entry(timer); | ||
987 | fn(data); | 1026 | fn(data); |
1027 | trace_timer_expire_exit(timer); | ||
988 | 1028 | ||
989 | lock_map_release(&lockdep_map); | 1029 | lock_map_release(&lockdep_map); |
990 | 1030 | ||
@@ -1007,8 +1047,8 @@ static inline void __run_timers(struct tvec_base *base) | |||
1007 | #ifdef CONFIG_NO_HZ | 1047 | #ifdef CONFIG_NO_HZ |
1008 | /* | 1048 | /* |
1009 | * Find out when the next timer event is due to happen. This | 1049 | * Find out when the next timer event is due to happen. This |
1010 | * is used on S/390 to stop all activity when a cpus is idle. | 1050 | * is used on S/390 to stop all activity when a CPU is idle. |
1011 | * This functions needs to be called disabled. | 1051 | * This function needs to be called with interrupts disabled. |
1012 | */ | 1052 | */ |
1013 | static unsigned long __next_timer_interrupt(struct tvec_base *base) | 1053 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1014 | { | 1054 | { |
@@ -1134,7 +1174,9 @@ unsigned long get_next_timer_interrupt(unsigned long now) | |||
1134 | unsigned long expires; | 1174 | unsigned long expires; |
1135 | 1175 | ||
1136 | spin_lock(&base->lock); | 1176 | spin_lock(&base->lock); |
1137 | expires = __next_timer_interrupt(base); | 1177 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
1178 | base->next_timer = __next_timer_interrupt(base); | ||
1179 | expires = base->next_timer; | ||
1138 | spin_unlock(&base->lock); | 1180 | spin_unlock(&base->lock); |
1139 | 1181 | ||
1140 | if (time_before_eq(expires, now)) | 1182 | if (time_before_eq(expires, now)) |
@@ -1156,8 +1198,7 @@ void update_process_times(int user_tick) | |||
1156 | /* Note: this timer irq context must be accounted for as well. */ | 1198 | /* Note: this timer irq context must be accounted for as well. */ |
1157 | account_process_tick(p, user_tick); | 1199 | account_process_tick(p, user_tick); |
1158 | run_local_timers(); | 1200 | run_local_timers(); |
1159 | if (rcu_pending(cpu)) | 1201 | rcu_check_callbacks(cpu, user_tick); |
1160 | rcu_check_callbacks(cpu, user_tick); | ||
1161 | printk_tick(); | 1202 | printk_tick(); |
1162 | scheduler_tick(); | 1203 | scheduler_tick(); |
1163 | run_posix_cpu_timers(p); | 1204 | run_posix_cpu_timers(p); |
@@ -1170,7 +1211,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
1170 | { | 1211 | { |
1171 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1212 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1172 | 1213 | ||
1173 | perf_counter_do_pending(); | 1214 | perf_event_do_pending(); |
1174 | 1215 | ||
1175 | hrtimer_run_pending(); | 1216 | hrtimer_run_pending(); |
1176 | 1217 | ||
@@ -1523,6 +1564,7 @@ static int __cpuinit init_timers_cpu(int cpu) | |||
1523 | INIT_LIST_HEAD(base->tv1.vec + j); | 1564 | INIT_LIST_HEAD(base->tv1.vec + j); |
1524 | 1565 | ||
1525 | base->timer_jiffies = jiffies; | 1566 | base->timer_jiffies = jiffies; |
1567 | base->next_timer = base->timer_jiffies; | ||
1526 | return 0; | 1568 | return 0; |
1527 | } | 1569 | } |
1528 | 1570 | ||
@@ -1535,6 +1577,9 @@ static void migrate_timer_list(struct tvec_base *new_base, struct list_head *hea | |||
1535 | timer = list_first_entry(head, struct timer_list, entry); | 1577 | timer = list_first_entry(head, struct timer_list, entry); |
1536 | detach_timer(timer, 0); | 1578 | detach_timer(timer, 0); |
1537 | timer_set_base(timer, new_base); | 1579 | timer_set_base(timer, new_base); |
1580 | if (time_before(timer->expires, new_base->next_timer) && | ||
1581 | !tbase_get_deferrable(timer->base)) | ||
1582 | new_base->next_timer = timer->expires; | ||
1538 | internal_add_timer(new_base, timer); | 1583 | internal_add_timer(new_base, timer); |
1539 | } | 1584 | } |
1540 | } | 1585 | } |
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index e78dcbde1a81..15372a9f2399 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
@@ -11,12 +11,18 @@ config NOP_TRACER | |||
11 | 11 | ||
12 | config HAVE_FTRACE_NMI_ENTER | 12 | config HAVE_FTRACE_NMI_ENTER |
13 | bool | 13 | bool |
14 | help | ||
15 | See Documentation/trace/ftrace-implementation.txt | ||
14 | 16 | ||
15 | config HAVE_FUNCTION_TRACER | 17 | config HAVE_FUNCTION_TRACER |
16 | bool | 18 | bool |
19 | help | ||
20 | See Documentation/trace/ftrace-implementation.txt | ||
17 | 21 | ||
18 | config HAVE_FUNCTION_GRAPH_TRACER | 22 | config HAVE_FUNCTION_GRAPH_TRACER |
19 | bool | 23 | bool |
24 | help | ||
25 | See Documentation/trace/ftrace-implementation.txt | ||
20 | 26 | ||
21 | config HAVE_FUNCTION_GRAPH_FP_TEST | 27 | config HAVE_FUNCTION_GRAPH_FP_TEST |
22 | bool | 28 | bool |
@@ -28,21 +34,25 @@ config HAVE_FUNCTION_GRAPH_FP_TEST | |||
28 | config HAVE_FUNCTION_TRACE_MCOUNT_TEST | 34 | config HAVE_FUNCTION_TRACE_MCOUNT_TEST |
29 | bool | 35 | bool |
30 | help | 36 | help |
31 | This gets selected when the arch tests the function_trace_stop | 37 | See Documentation/trace/ftrace-implementation.txt |
32 | variable at the mcount call site. Otherwise, this variable | ||
33 | is tested by the called function. | ||
34 | 38 | ||
35 | config HAVE_DYNAMIC_FTRACE | 39 | config HAVE_DYNAMIC_FTRACE |
36 | bool | 40 | bool |
41 | help | ||
42 | See Documentation/trace/ftrace-implementation.txt | ||
37 | 43 | ||
38 | config HAVE_FTRACE_MCOUNT_RECORD | 44 | config HAVE_FTRACE_MCOUNT_RECORD |
39 | bool | 45 | bool |
46 | help | ||
47 | See Documentation/trace/ftrace-implementation.txt | ||
40 | 48 | ||
41 | config HAVE_HW_BRANCH_TRACER | 49 | config HAVE_HW_BRANCH_TRACER |
42 | bool | 50 | bool |
43 | 51 | ||
44 | config HAVE_SYSCALL_TRACEPOINTS | 52 | config HAVE_SYSCALL_TRACEPOINTS |
45 | bool | 53 | bool |
54 | help | ||
55 | See Documentation/trace/ftrace-implementation.txt | ||
46 | 56 | ||
47 | config TRACER_MAX_TRACE | 57 | config TRACER_MAX_TRACE |
48 | bool | 58 | bool |
@@ -73,7 +83,7 @@ config RING_BUFFER_ALLOW_SWAP | |||
73 | # This allows those options to appear when no other tracer is selected. But the | 83 | # This allows those options to appear when no other tracer is selected. But the |
74 | # options do not appear when something else selects it. We need the two options | 84 | # options do not appear when something else selects it. We need the two options |
75 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the | 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the |
76 | # hidding of the automatic options options. | 86 | # hidding of the automatic options. |
77 | 87 | ||
78 | config TRACING | 88 | config TRACING |
79 | bool | 89 | bool |
@@ -481,6 +491,18 @@ config FTRACE_STARTUP_TEST | |||
481 | functioning properly. It will do tests on all the configured | 491 | functioning properly. It will do tests on all the configured |
482 | tracers of ftrace. | 492 | tracers of ftrace. |
483 | 493 | ||
494 | config EVENT_TRACE_TEST_SYSCALLS | ||
495 | bool "Run selftest on syscall events" | ||
496 | depends on FTRACE_STARTUP_TEST | ||
497 | help | ||
498 | This option will also enable testing every syscall event. | ||
499 | It only enables the event and disables it and runs various loads | ||
500 | with the event enabled. This adds a bit more time for kernel boot | ||
501 | up since it runs this on every system call defined. | ||
502 | |||
503 | TBD - enable a way to actually call the syscalls as we test their | ||
504 | events | ||
505 | |||
484 | config MMIOTRACE | 506 | config MMIOTRACE |
485 | bool "Memory mapped IO tracing" | 507 | bool "Memory mapped IO tracing" |
486 | depends on HAVE_MMIOTRACE_SUPPORT && PCI | 508 | depends on HAVE_MMIOTRACE_SUPPORT && PCI |
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile index 7c00a1ec1496..c8cb75d7f280 100644 --- a/kernel/trace/Makefile +++ b/kernel/trace/Makefile | |||
@@ -42,7 +42,6 @@ obj-$(CONFIG_BOOT_TRACER) += trace_boot.o | |||
42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o | 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o |
43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o | 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o |
44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o | 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o |
45 | obj-$(CONFIG_POWER_TRACER) += trace_power.o | ||
46 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o | 45 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o |
47 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o | 46 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o |
48 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o | 47 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o |
@@ -55,5 +54,6 @@ obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o | |||
55 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o | 54 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o |
56 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o | 55 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o |
57 | obj-$(CONFIG_KPROBE_TRACER) += trace_kprobe.o | 56 | obj-$(CONFIG_KPROBE_TRACER) += trace_kprobe.o |
57 | obj-$(CONFIG_EVENT_TRACING) += power-traces.o | ||
58 | 58 | ||
59 | libftrace-y := ftrace.o | 59 | libftrace-y := ftrace.o |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index 8c804e24f96f..23df7771c937 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
@@ -1323,11 +1323,10 @@ static int __init ftrace_dyn_table_alloc(unsigned long num_to_init) | |||
1323 | 1323 | ||
1324 | enum { | 1324 | enum { |
1325 | FTRACE_ITER_FILTER = (1 << 0), | 1325 | FTRACE_ITER_FILTER = (1 << 0), |
1326 | FTRACE_ITER_CONT = (1 << 1), | 1326 | FTRACE_ITER_NOTRACE = (1 << 1), |
1327 | FTRACE_ITER_NOTRACE = (1 << 2), | 1327 | FTRACE_ITER_FAILURES = (1 << 2), |
1328 | FTRACE_ITER_FAILURES = (1 << 3), | 1328 | FTRACE_ITER_PRINTALL = (1 << 3), |
1329 | FTRACE_ITER_PRINTALL = (1 << 4), | 1329 | FTRACE_ITER_HASH = (1 << 4), |
1330 | FTRACE_ITER_HASH = (1 << 5), | ||
1331 | }; | 1330 | }; |
1332 | 1331 | ||
1333 | #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ | 1332 | #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ |
@@ -1337,8 +1336,7 @@ struct ftrace_iterator { | |||
1337 | int hidx; | 1336 | int hidx; |
1338 | int idx; | 1337 | int idx; |
1339 | unsigned flags; | 1338 | unsigned flags; |
1340 | unsigned char buffer[FTRACE_BUFF_MAX+1]; | 1339 | struct trace_parser parser; |
1341 | unsigned buffer_idx; | ||
1342 | }; | 1340 | }; |
1343 | 1341 | ||
1344 | static void * | 1342 | static void * |
@@ -1407,7 +1405,7 @@ static int t_hash_show(struct seq_file *m, void *v) | |||
1407 | if (rec->ops->print) | 1405 | if (rec->ops->print) |
1408 | return rec->ops->print(m, rec->ip, rec->ops, rec->data); | 1406 | return rec->ops->print(m, rec->ip, rec->ops, rec->data); |
1409 | 1407 | ||
1410 | seq_printf(m, "%pf:%pf", (void *)rec->ip, (void *)rec->ops->func); | 1408 | seq_printf(m, "%ps:%ps", (void *)rec->ip, (void *)rec->ops->func); |
1411 | 1409 | ||
1412 | if (rec->data) | 1410 | if (rec->data) |
1413 | seq_printf(m, ":%p", rec->data); | 1411 | seq_printf(m, ":%p", rec->data); |
@@ -1517,12 +1515,12 @@ static int t_show(struct seq_file *m, void *v) | |||
1517 | if (!rec) | 1515 | if (!rec) |
1518 | return 0; | 1516 | return 0; |
1519 | 1517 | ||
1520 | seq_printf(m, "%pf\n", (void *)rec->ip); | 1518 | seq_printf(m, "%ps\n", (void *)rec->ip); |
1521 | 1519 | ||
1522 | return 0; | 1520 | return 0; |
1523 | } | 1521 | } |
1524 | 1522 | ||
1525 | static struct seq_operations show_ftrace_seq_ops = { | 1523 | static const struct seq_operations show_ftrace_seq_ops = { |
1526 | .start = t_start, | 1524 | .start = t_start, |
1527 | .next = t_next, | 1525 | .next = t_next, |
1528 | .stop = t_stop, | 1526 | .stop = t_stop, |
@@ -1604,6 +1602,11 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable) | |||
1604 | if (!iter) | 1602 | if (!iter) |
1605 | return -ENOMEM; | 1603 | return -ENOMEM; |
1606 | 1604 | ||
1605 | if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) { | ||
1606 | kfree(iter); | ||
1607 | return -ENOMEM; | ||
1608 | } | ||
1609 | |||
1607 | mutex_lock(&ftrace_regex_lock); | 1610 | mutex_lock(&ftrace_regex_lock); |
1608 | if ((file->f_mode & FMODE_WRITE) && | 1611 | if ((file->f_mode & FMODE_WRITE) && |
1609 | (file->f_flags & O_TRUNC)) | 1612 | (file->f_flags & O_TRUNC)) |
@@ -2059,9 +2062,9 @@ __unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops, | |||
2059 | int i, len = 0; | 2062 | int i, len = 0; |
2060 | char *search; | 2063 | char *search; |
2061 | 2064 | ||
2062 | if (glob && (strcmp(glob, "*") || !strlen(glob))) | 2065 | if (glob && (strcmp(glob, "*") == 0 || !strlen(glob))) |
2063 | glob = NULL; | 2066 | glob = NULL; |
2064 | else { | 2067 | else if (glob) { |
2065 | int not; | 2068 | int not; |
2066 | 2069 | ||
2067 | type = ftrace_setup_glob(glob, strlen(glob), &search, ¬); | 2070 | type = ftrace_setup_glob(glob, strlen(glob), &search, ¬); |
@@ -2196,9 +2199,8 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
2196 | size_t cnt, loff_t *ppos, int enable) | 2199 | size_t cnt, loff_t *ppos, int enable) |
2197 | { | 2200 | { |
2198 | struct ftrace_iterator *iter; | 2201 | struct ftrace_iterator *iter; |
2199 | char ch; | 2202 | struct trace_parser *parser; |
2200 | size_t read = 0; | 2203 | ssize_t ret, read; |
2201 | ssize_t ret; | ||
2202 | 2204 | ||
2203 | if (!cnt || cnt < 0) | 2205 | if (!cnt || cnt < 0) |
2204 | return 0; | 2206 | return 0; |
@@ -2211,72 +2213,23 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
2211 | } else | 2213 | } else |
2212 | iter = file->private_data; | 2214 | iter = file->private_data; |
2213 | 2215 | ||
2214 | if (!*ppos) { | 2216 | parser = &iter->parser; |
2215 | iter->flags &= ~FTRACE_ITER_CONT; | 2217 | read = trace_get_user(parser, ubuf, cnt, ppos); |
2216 | iter->buffer_idx = 0; | ||
2217 | } | ||
2218 | 2218 | ||
2219 | ret = get_user(ch, ubuf++); | 2219 | if (trace_parser_loaded(parser) && |
2220 | if (ret) | 2220 | !trace_parser_cont(parser)) { |
2221 | goto out; | 2221 | ret = ftrace_process_regex(parser->buffer, |
2222 | read++; | 2222 | parser->idx, enable); |
2223 | cnt--; | ||
2224 | |||
2225 | /* | ||
2226 | * If the parser haven't finished with the last write, | ||
2227 | * continue reading the user input without skipping spaces. | ||
2228 | */ | ||
2229 | if (!(iter->flags & FTRACE_ITER_CONT)) { | ||
2230 | /* skip white space */ | ||
2231 | while (cnt && isspace(ch)) { | ||
2232 | ret = get_user(ch, ubuf++); | ||
2233 | if (ret) | ||
2234 | goto out; | ||
2235 | read++; | ||
2236 | cnt--; | ||
2237 | } | ||
2238 | |||
2239 | /* only spaces were written */ | ||
2240 | if (isspace(ch)) { | ||
2241 | *ppos += read; | ||
2242 | ret = read; | ||
2243 | goto out; | ||
2244 | } | ||
2245 | |||
2246 | iter->buffer_idx = 0; | ||
2247 | } | ||
2248 | |||
2249 | while (cnt && !isspace(ch)) { | ||
2250 | if (iter->buffer_idx < FTRACE_BUFF_MAX) | ||
2251 | iter->buffer[iter->buffer_idx++] = ch; | ||
2252 | else { | ||
2253 | ret = -EINVAL; | ||
2254 | goto out; | ||
2255 | } | ||
2256 | ret = get_user(ch, ubuf++); | ||
2257 | if (ret) | 2223 | if (ret) |
2258 | goto out; | 2224 | goto out; |
2259 | read++; | ||
2260 | cnt--; | ||
2261 | } | ||
2262 | 2225 | ||
2263 | if (isspace(ch)) { | 2226 | trace_parser_clear(parser); |
2264 | iter->buffer[iter->buffer_idx] = 0; | ||
2265 | ret = ftrace_process_regex(iter->buffer, | ||
2266 | iter->buffer_idx, enable); | ||
2267 | if (ret) | ||
2268 | goto out; | ||
2269 | iter->buffer_idx = 0; | ||
2270 | } else { | ||
2271 | iter->flags |= FTRACE_ITER_CONT; | ||
2272 | iter->buffer[iter->buffer_idx++] = ch; | ||
2273 | } | 2227 | } |
2274 | 2228 | ||
2275 | *ppos += read; | ||
2276 | ret = read; | 2229 | ret = read; |
2277 | out: | ||
2278 | mutex_unlock(&ftrace_regex_lock); | ||
2279 | 2230 | ||
2231 | mutex_unlock(&ftrace_regex_lock); | ||
2232 | out: | ||
2280 | return ret; | 2233 | return ret; |
2281 | } | 2234 | } |
2282 | 2235 | ||
@@ -2381,6 +2334,7 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
2381 | { | 2334 | { |
2382 | struct seq_file *m = (struct seq_file *)file->private_data; | 2335 | struct seq_file *m = (struct seq_file *)file->private_data; |
2383 | struct ftrace_iterator *iter; | 2336 | struct ftrace_iterator *iter; |
2337 | struct trace_parser *parser; | ||
2384 | 2338 | ||
2385 | mutex_lock(&ftrace_regex_lock); | 2339 | mutex_lock(&ftrace_regex_lock); |
2386 | if (file->f_mode & FMODE_READ) { | 2340 | if (file->f_mode & FMODE_READ) { |
@@ -2390,9 +2344,10 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
2390 | } else | 2344 | } else |
2391 | iter = file->private_data; | 2345 | iter = file->private_data; |
2392 | 2346 | ||
2393 | if (iter->buffer_idx) { | 2347 | parser = &iter->parser; |
2394 | iter->buffer[iter->buffer_idx] = 0; | 2348 | if (trace_parser_loaded(parser)) { |
2395 | ftrace_match_records(iter->buffer, iter->buffer_idx, enable); | 2349 | parser->buffer[parser->idx] = 0; |
2350 | ftrace_match_records(parser->buffer, parser->idx, enable); | ||
2396 | } | 2351 | } |
2397 | 2352 | ||
2398 | mutex_lock(&ftrace_lock); | 2353 | mutex_lock(&ftrace_lock); |
@@ -2400,7 +2355,9 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
2400 | ftrace_run_update_code(FTRACE_ENABLE_CALLS); | 2355 | ftrace_run_update_code(FTRACE_ENABLE_CALLS); |
2401 | mutex_unlock(&ftrace_lock); | 2356 | mutex_unlock(&ftrace_lock); |
2402 | 2357 | ||
2358 | trace_parser_put(parser); | ||
2403 | kfree(iter); | 2359 | kfree(iter); |
2360 | |||
2404 | mutex_unlock(&ftrace_regex_lock); | 2361 | mutex_unlock(&ftrace_regex_lock); |
2405 | return 0; | 2362 | return 0; |
2406 | } | 2363 | } |
@@ -2457,11 +2414,9 @@ unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; | |||
2457 | static void * | 2414 | static void * |
2458 | __g_next(struct seq_file *m, loff_t *pos) | 2415 | __g_next(struct seq_file *m, loff_t *pos) |
2459 | { | 2416 | { |
2460 | unsigned long *array = m->private; | ||
2461 | |||
2462 | if (*pos >= ftrace_graph_count) | 2417 | if (*pos >= ftrace_graph_count) |
2463 | return NULL; | 2418 | return NULL; |
2464 | return &array[*pos]; | 2419 | return &ftrace_graph_funcs[*pos]; |
2465 | } | 2420 | } |
2466 | 2421 | ||
2467 | static void * | 2422 | static void * |
@@ -2499,12 +2454,12 @@ static int g_show(struct seq_file *m, void *v) | |||
2499 | return 0; | 2454 | return 0; |
2500 | } | 2455 | } |
2501 | 2456 | ||
2502 | seq_printf(m, "%pf\n", v); | 2457 | seq_printf(m, "%ps\n", (void *)*ptr); |
2503 | 2458 | ||
2504 | return 0; | 2459 | return 0; |
2505 | } | 2460 | } |
2506 | 2461 | ||
2507 | static struct seq_operations ftrace_graph_seq_ops = { | 2462 | static const struct seq_operations ftrace_graph_seq_ops = { |
2508 | .start = g_start, | 2463 | .start = g_start, |
2509 | .next = g_next, | 2464 | .next = g_next, |
2510 | .stop = g_stop, | 2465 | .stop = g_stop, |
@@ -2525,16 +2480,10 @@ ftrace_graph_open(struct inode *inode, struct file *file) | |||
2525 | ftrace_graph_count = 0; | 2480 | ftrace_graph_count = 0; |
2526 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); | 2481 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); |
2527 | } | 2482 | } |
2483 | mutex_unlock(&graph_lock); | ||
2528 | 2484 | ||
2529 | if (file->f_mode & FMODE_READ) { | 2485 | if (file->f_mode & FMODE_READ) |
2530 | ret = seq_open(file, &ftrace_graph_seq_ops); | 2486 | ret = seq_open(file, &ftrace_graph_seq_ops); |
2531 | if (!ret) { | ||
2532 | struct seq_file *m = file->private_data; | ||
2533 | m->private = ftrace_graph_funcs; | ||
2534 | } | ||
2535 | } else | ||
2536 | file->private_data = ftrace_graph_funcs; | ||
2537 | mutex_unlock(&graph_lock); | ||
2538 | 2487 | ||
2539 | return ret; | 2488 | return ret; |
2540 | } | 2489 | } |
@@ -2602,12 +2551,9 @@ static ssize_t | |||
2602 | ftrace_graph_write(struct file *file, const char __user *ubuf, | 2551 | ftrace_graph_write(struct file *file, const char __user *ubuf, |
2603 | size_t cnt, loff_t *ppos) | 2552 | size_t cnt, loff_t *ppos) |
2604 | { | 2553 | { |
2605 | unsigned char buffer[FTRACE_BUFF_MAX+1]; | 2554 | struct trace_parser parser; |
2606 | unsigned long *array; | ||
2607 | size_t read = 0; | 2555 | size_t read = 0; |
2608 | ssize_t ret; | 2556 | ssize_t ret; |
2609 | int index = 0; | ||
2610 | char ch; | ||
2611 | 2557 | ||
2612 | if (!cnt || cnt < 0) | 2558 | if (!cnt || cnt < 0) |
2613 | return 0; | 2559 | return 0; |
@@ -2619,57 +2565,26 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2619 | goto out; | 2565 | goto out; |
2620 | } | 2566 | } |
2621 | 2567 | ||
2622 | if (file->f_mode & FMODE_READ) { | 2568 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { |
2623 | struct seq_file *m = file->private_data; | 2569 | ret = -ENOMEM; |
2624 | array = m->private; | ||
2625 | } else | ||
2626 | array = file->private_data; | ||
2627 | |||
2628 | ret = get_user(ch, ubuf++); | ||
2629 | if (ret) | ||
2630 | goto out; | 2570 | goto out; |
2631 | read++; | ||
2632 | cnt--; | ||
2633 | |||
2634 | /* skip white space */ | ||
2635 | while (cnt && isspace(ch)) { | ||
2636 | ret = get_user(ch, ubuf++); | ||
2637 | if (ret) | ||
2638 | goto out; | ||
2639 | read++; | ||
2640 | cnt--; | ||
2641 | } | 2571 | } |
2642 | 2572 | ||
2643 | if (isspace(ch)) { | 2573 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
2644 | *ppos += read; | ||
2645 | ret = read; | ||
2646 | goto out; | ||
2647 | } | ||
2648 | 2574 | ||
2649 | while (cnt && !isspace(ch)) { | 2575 | if (trace_parser_loaded((&parser))) { |
2650 | if (index < FTRACE_BUFF_MAX) | 2576 | parser.buffer[parser.idx] = 0; |
2651 | buffer[index++] = ch; | 2577 | |
2652 | else { | 2578 | /* we allow only one expression at a time */ |
2653 | ret = -EINVAL; | 2579 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, |
2654 | goto out; | 2580 | parser.buffer); |
2655 | } | ||
2656 | ret = get_user(ch, ubuf++); | ||
2657 | if (ret) | 2581 | if (ret) |
2658 | goto out; | 2582 | goto out; |
2659 | read++; | ||
2660 | cnt--; | ||
2661 | } | 2583 | } |
2662 | buffer[index] = 0; | ||
2663 | |||
2664 | /* we allow only one expression at a time */ | ||
2665 | ret = ftrace_set_func(array, &ftrace_graph_count, buffer); | ||
2666 | if (ret) | ||
2667 | goto out; | ||
2668 | |||
2669 | file->f_pos += read; | ||
2670 | 2584 | ||
2671 | ret = read; | 2585 | ret = read; |
2672 | out: | 2586 | out: |
2587 | trace_parser_put(&parser); | ||
2673 | mutex_unlock(&graph_lock); | 2588 | mutex_unlock(&graph_lock); |
2674 | 2589 | ||
2675 | return ret; | 2590 | return ret; |
diff --git a/kernel/trace/power-traces.c b/kernel/trace/power-traces.c new file mode 100644 index 000000000000..e06c6e3d56a3 --- /dev/null +++ b/kernel/trace/power-traces.c | |||
@@ -0,0 +1,20 @@ | |||
1 | /* | ||
2 | * Power trace points | ||
3 | * | ||
4 | * Copyright (C) 2009 Arjan van de Ven <arjan@linux.intel.com> | ||
5 | */ | ||
6 | |||
7 | #include <linux/string.h> | ||
8 | #include <linux/types.h> | ||
9 | #include <linux/workqueue.h> | ||
10 | #include <linux/sched.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/slab.h> | ||
13 | |||
14 | #define CREATE_TRACE_POINTS | ||
15 | #include <trace/events/power.h> | ||
16 | |||
17 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_start); | ||
18 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_end); | ||
19 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_frequency); | ||
20 | |||
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 454e74e718cf..d4ff01970547 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c | |||
@@ -201,8 +201,6 @@ int tracing_is_on(void) | |||
201 | } | 201 | } |
202 | EXPORT_SYMBOL_GPL(tracing_is_on); | 202 | EXPORT_SYMBOL_GPL(tracing_is_on); |
203 | 203 | ||
204 | #include "trace.h" | ||
205 | |||
206 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) | 204 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) |
207 | #define RB_ALIGNMENT 4U | 205 | #define RB_ALIGNMENT 4U |
208 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) | 206 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) |
@@ -701,8 +699,8 @@ static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, | |||
701 | 699 | ||
702 | val &= ~RB_FLAG_MASK; | 700 | val &= ~RB_FLAG_MASK; |
703 | 701 | ||
704 | ret = (unsigned long)cmpxchg(&list->next, | 702 | ret = cmpxchg((unsigned long *)&list->next, |
705 | val | old_flag, val | new_flag); | 703 | val | old_flag, val | new_flag); |
706 | 704 | ||
707 | /* check if the reader took the page */ | 705 | /* check if the reader took the page */ |
708 | if ((ret & ~RB_FLAG_MASK) != val) | 706 | if ((ret & ~RB_FLAG_MASK) != val) |
@@ -794,7 +792,7 @@ static int rb_head_page_replace(struct buffer_page *old, | |||
794 | val = *ptr & ~RB_FLAG_MASK; | 792 | val = *ptr & ~RB_FLAG_MASK; |
795 | val |= RB_PAGE_HEAD; | 793 | val |= RB_PAGE_HEAD; |
796 | 794 | ||
797 | ret = cmpxchg(ptr, val, &new->list); | 795 | ret = cmpxchg(ptr, val, (unsigned long)&new->list); |
798 | 796 | ||
799 | return ret == val; | 797 | return ret == val; |
800 | } | 798 | } |
@@ -2997,15 +2995,12 @@ static void rb_advance_iter(struct ring_buffer_iter *iter) | |||
2997 | } | 2995 | } |
2998 | 2996 | ||
2999 | static struct ring_buffer_event * | 2997 | static struct ring_buffer_event * |
3000 | rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | 2998 | rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) |
3001 | { | 2999 | { |
3002 | struct ring_buffer_per_cpu *cpu_buffer; | ||
3003 | struct ring_buffer_event *event; | 3000 | struct ring_buffer_event *event; |
3004 | struct buffer_page *reader; | 3001 | struct buffer_page *reader; |
3005 | int nr_loops = 0; | 3002 | int nr_loops = 0; |
3006 | 3003 | ||
3007 | cpu_buffer = buffer->buffers[cpu]; | ||
3008 | |||
3009 | again: | 3004 | again: |
3010 | /* | 3005 | /* |
3011 | * We repeat when a timestamp is encountered. It is possible | 3006 | * We repeat when a timestamp is encountered. It is possible |
@@ -3049,7 +3044,7 @@ rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
3049 | case RINGBUF_TYPE_DATA: | 3044 | case RINGBUF_TYPE_DATA: |
3050 | if (ts) { | 3045 | if (ts) { |
3051 | *ts = cpu_buffer->read_stamp + event->time_delta; | 3046 | *ts = cpu_buffer->read_stamp + event->time_delta; |
3052 | ring_buffer_normalize_time_stamp(buffer, | 3047 | ring_buffer_normalize_time_stamp(cpu_buffer->buffer, |
3053 | cpu_buffer->cpu, ts); | 3048 | cpu_buffer->cpu, ts); |
3054 | } | 3049 | } |
3055 | return event; | 3050 | return event; |
@@ -3168,7 +3163,7 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
3168 | local_irq_save(flags); | 3163 | local_irq_save(flags); |
3169 | if (dolock) | 3164 | if (dolock) |
3170 | spin_lock(&cpu_buffer->reader_lock); | 3165 | spin_lock(&cpu_buffer->reader_lock); |
3171 | event = rb_buffer_peek(buffer, cpu, ts); | 3166 | event = rb_buffer_peek(cpu_buffer, ts); |
3172 | if (event && event->type_len == RINGBUF_TYPE_PADDING) | 3167 | if (event && event->type_len == RINGBUF_TYPE_PADDING) |
3173 | rb_advance_reader(cpu_buffer); | 3168 | rb_advance_reader(cpu_buffer); |
3174 | if (dolock) | 3169 | if (dolock) |
@@ -3237,7 +3232,7 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
3237 | if (dolock) | 3232 | if (dolock) |
3238 | spin_lock(&cpu_buffer->reader_lock); | 3233 | spin_lock(&cpu_buffer->reader_lock); |
3239 | 3234 | ||
3240 | event = rb_buffer_peek(buffer, cpu, ts); | 3235 | event = rb_buffer_peek(cpu_buffer, ts); |
3241 | if (event) | 3236 | if (event) |
3242 | rb_advance_reader(cpu_buffer); | 3237 | rb_advance_reader(cpu_buffer); |
3243 | 3238 | ||
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index 5c75deeefe30..6c0f6a8a22eb 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
@@ -125,13 +125,13 @@ int ftrace_dump_on_oops; | |||
125 | 125 | ||
126 | static int tracing_set_tracer(const char *buf); | 126 | static int tracing_set_tracer(const char *buf); |
127 | 127 | ||
128 | #define BOOTUP_TRACER_SIZE 100 | 128 | #define MAX_TRACER_SIZE 100 |
129 | static char bootup_tracer_buf[BOOTUP_TRACER_SIZE] __initdata; | 129 | static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata; |
130 | static char *default_bootup_tracer; | 130 | static char *default_bootup_tracer; |
131 | 131 | ||
132 | static int __init set_ftrace(char *str) | 132 | static int __init set_ftrace(char *str) |
133 | { | 133 | { |
134 | strncpy(bootup_tracer_buf, str, BOOTUP_TRACER_SIZE); | 134 | strncpy(bootup_tracer_buf, str, MAX_TRACER_SIZE); |
135 | default_bootup_tracer = bootup_tracer_buf; | 135 | default_bootup_tracer = bootup_tracer_buf; |
136 | /* We are using ftrace early, expand it */ | 136 | /* We are using ftrace early, expand it */ |
137 | ring_buffer_expanded = 1; | 137 | ring_buffer_expanded = 1; |
@@ -242,13 +242,6 @@ static struct tracer *trace_types __read_mostly; | |||
242 | static struct tracer *current_trace __read_mostly; | 242 | static struct tracer *current_trace __read_mostly; |
243 | 243 | ||
244 | /* | 244 | /* |
245 | * max_tracer_type_len is used to simplify the allocating of | ||
246 | * buffers to read userspace tracer names. We keep track of | ||
247 | * the longest tracer name registered. | ||
248 | */ | ||
249 | static int max_tracer_type_len; | ||
250 | |||
251 | /* | ||
252 | * trace_types_lock is used to protect the trace_types list. | 245 | * trace_types_lock is used to protect the trace_types list. |
253 | * This lock is also used to keep user access serialized. | 246 | * This lock is also used to keep user access serialized. |
254 | * Accesses from userspace will grab this lock while userspace | 247 | * Accesses from userspace will grab this lock while userspace |
@@ -275,12 +268,18 @@ static DEFINE_SPINLOCK(tracing_start_lock); | |||
275 | */ | 268 | */ |
276 | void trace_wake_up(void) | 269 | void trace_wake_up(void) |
277 | { | 270 | { |
271 | int cpu; | ||
272 | |||
273 | if (trace_flags & TRACE_ITER_BLOCK) | ||
274 | return; | ||
278 | /* | 275 | /* |
279 | * The runqueue_is_locked() can fail, but this is the best we | 276 | * The runqueue_is_locked() can fail, but this is the best we |
280 | * have for now: | 277 | * have for now: |
281 | */ | 278 | */ |
282 | if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) | 279 | cpu = get_cpu(); |
280 | if (!runqueue_is_locked(cpu)) | ||
283 | wake_up(&trace_wait); | 281 | wake_up(&trace_wait); |
282 | put_cpu(); | ||
284 | } | 283 | } |
285 | 284 | ||
286 | static int __init set_buf_size(char *str) | 285 | static int __init set_buf_size(char *str) |
@@ -339,6 +338,112 @@ static struct { | |||
339 | 338 | ||
340 | int trace_clock_id; | 339 | int trace_clock_id; |
341 | 340 | ||
341 | /* | ||
342 | * trace_parser_get_init - gets the buffer for trace parser | ||
343 | */ | ||
344 | int trace_parser_get_init(struct trace_parser *parser, int size) | ||
345 | { | ||
346 | memset(parser, 0, sizeof(*parser)); | ||
347 | |||
348 | parser->buffer = kmalloc(size, GFP_KERNEL); | ||
349 | if (!parser->buffer) | ||
350 | return 1; | ||
351 | |||
352 | parser->size = size; | ||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | /* | ||
357 | * trace_parser_put - frees the buffer for trace parser | ||
358 | */ | ||
359 | void trace_parser_put(struct trace_parser *parser) | ||
360 | { | ||
361 | kfree(parser->buffer); | ||
362 | } | ||
363 | |||
364 | /* | ||
365 | * trace_get_user - reads the user input string separated by space | ||
366 | * (matched by isspace(ch)) | ||
367 | * | ||
368 | * For each string found the 'struct trace_parser' is updated, | ||
369 | * and the function returns. | ||
370 | * | ||
371 | * Returns number of bytes read. | ||
372 | * | ||
373 | * See kernel/trace/trace.h for 'struct trace_parser' details. | ||
374 | */ | ||
375 | int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | ||
376 | size_t cnt, loff_t *ppos) | ||
377 | { | ||
378 | char ch; | ||
379 | size_t read = 0; | ||
380 | ssize_t ret; | ||
381 | |||
382 | if (!*ppos) | ||
383 | trace_parser_clear(parser); | ||
384 | |||
385 | ret = get_user(ch, ubuf++); | ||
386 | if (ret) | ||
387 | goto out; | ||
388 | |||
389 | read++; | ||
390 | cnt--; | ||
391 | |||
392 | /* | ||
393 | * The parser is not finished with the last write, | ||
394 | * continue reading the user input without skipping spaces. | ||
395 | */ | ||
396 | if (!parser->cont) { | ||
397 | /* skip white space */ | ||
398 | while (cnt && isspace(ch)) { | ||
399 | ret = get_user(ch, ubuf++); | ||
400 | if (ret) | ||
401 | goto out; | ||
402 | read++; | ||
403 | cnt--; | ||
404 | } | ||
405 | |||
406 | /* only spaces were written */ | ||
407 | if (isspace(ch)) { | ||
408 | *ppos += read; | ||
409 | ret = read; | ||
410 | goto out; | ||
411 | } | ||
412 | |||
413 | parser->idx = 0; | ||
414 | } | ||
415 | |||
416 | /* read the non-space input */ | ||
417 | while (cnt && !isspace(ch)) { | ||
418 | if (parser->idx < parser->size) | ||
419 | parser->buffer[parser->idx++] = ch; | ||
420 | else { | ||
421 | ret = -EINVAL; | ||
422 | goto out; | ||
423 | } | ||
424 | ret = get_user(ch, ubuf++); | ||
425 | if (ret) | ||
426 | goto out; | ||
427 | read++; | ||
428 | cnt--; | ||
429 | } | ||
430 | |||
431 | /* We either got finished input or we have to wait for another call. */ | ||
432 | if (isspace(ch)) { | ||
433 | parser->buffer[parser->idx] = 0; | ||
434 | parser->cont = false; | ||
435 | } else { | ||
436 | parser->cont = true; | ||
437 | parser->buffer[parser->idx++] = ch; | ||
438 | } | ||
439 | |||
440 | *ppos += read; | ||
441 | ret = read; | ||
442 | |||
443 | out: | ||
444 | return ret; | ||
445 | } | ||
446 | |||
342 | ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) | 447 | ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) |
343 | { | 448 | { |
344 | int len; | 449 | int len; |
@@ -513,7 +618,6 @@ __releases(kernel_lock) | |||
513 | __acquires(kernel_lock) | 618 | __acquires(kernel_lock) |
514 | { | 619 | { |
515 | struct tracer *t; | 620 | struct tracer *t; |
516 | int len; | ||
517 | int ret = 0; | 621 | int ret = 0; |
518 | 622 | ||
519 | if (!type->name) { | 623 | if (!type->name) { |
@@ -521,6 +625,11 @@ __acquires(kernel_lock) | |||
521 | return -1; | 625 | return -1; |
522 | } | 626 | } |
523 | 627 | ||
628 | if (strlen(type->name) > MAX_TRACER_SIZE) { | ||
629 | pr_info("Tracer has a name longer than %d\n", MAX_TRACER_SIZE); | ||
630 | return -1; | ||
631 | } | ||
632 | |||
524 | /* | 633 | /* |
525 | * When this gets called we hold the BKL which means that | 634 | * When this gets called we hold the BKL which means that |
526 | * preemption is disabled. Various trace selftests however | 635 | * preemption is disabled. Various trace selftests however |
@@ -535,7 +644,7 @@ __acquires(kernel_lock) | |||
535 | for (t = trace_types; t; t = t->next) { | 644 | for (t = trace_types; t; t = t->next) { |
536 | if (strcmp(type->name, t->name) == 0) { | 645 | if (strcmp(type->name, t->name) == 0) { |
537 | /* already found */ | 646 | /* already found */ |
538 | pr_info("Trace %s already registered\n", | 647 | pr_info("Tracer %s already registered\n", |
539 | type->name); | 648 | type->name); |
540 | ret = -1; | 649 | ret = -1; |
541 | goto out; | 650 | goto out; |
@@ -586,9 +695,6 @@ __acquires(kernel_lock) | |||
586 | 695 | ||
587 | type->next = trace_types; | 696 | type->next = trace_types; |
588 | trace_types = type; | 697 | trace_types = type; |
589 | len = strlen(type->name); | ||
590 | if (len > max_tracer_type_len) | ||
591 | max_tracer_type_len = len; | ||
592 | 698 | ||
593 | out: | 699 | out: |
594 | tracing_selftest_running = false; | 700 | tracing_selftest_running = false; |
@@ -597,7 +703,7 @@ __acquires(kernel_lock) | |||
597 | if (ret || !default_bootup_tracer) | 703 | if (ret || !default_bootup_tracer) |
598 | goto out_unlock; | 704 | goto out_unlock; |
599 | 705 | ||
600 | if (strncmp(default_bootup_tracer, type->name, BOOTUP_TRACER_SIZE)) | 706 | if (strncmp(default_bootup_tracer, type->name, MAX_TRACER_SIZE)) |
601 | goto out_unlock; | 707 | goto out_unlock; |
602 | 708 | ||
603 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); | 709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); |
@@ -619,14 +725,13 @@ __acquires(kernel_lock) | |||
619 | void unregister_tracer(struct tracer *type) | 725 | void unregister_tracer(struct tracer *type) |
620 | { | 726 | { |
621 | struct tracer **t; | 727 | struct tracer **t; |
622 | int len; | ||
623 | 728 | ||
624 | mutex_lock(&trace_types_lock); | 729 | mutex_lock(&trace_types_lock); |
625 | for (t = &trace_types; *t; t = &(*t)->next) { | 730 | for (t = &trace_types; *t; t = &(*t)->next) { |
626 | if (*t == type) | 731 | if (*t == type) |
627 | goto found; | 732 | goto found; |
628 | } | 733 | } |
629 | pr_info("Trace %s not registered\n", type->name); | 734 | pr_info("Tracer %s not registered\n", type->name); |
630 | goto out; | 735 | goto out; |
631 | 736 | ||
632 | found: | 737 | found: |
@@ -639,17 +744,7 @@ void unregister_tracer(struct tracer *type) | |||
639 | current_trace->stop(&global_trace); | 744 | current_trace->stop(&global_trace); |
640 | current_trace = &nop_trace; | 745 | current_trace = &nop_trace; |
641 | } | 746 | } |
642 | 747 | out: | |
643 | if (strlen(type->name) != max_tracer_type_len) | ||
644 | goto out; | ||
645 | |||
646 | max_tracer_type_len = 0; | ||
647 | for (t = &trace_types; *t; t = &(*t)->next) { | ||
648 | len = strlen((*t)->name); | ||
649 | if (len > max_tracer_type_len) | ||
650 | max_tracer_type_len = len; | ||
651 | } | ||
652 | out: | ||
653 | mutex_unlock(&trace_types_lock); | 748 | mutex_unlock(&trace_types_lock); |
654 | } | 749 | } |
655 | 750 | ||
@@ -719,6 +814,11 @@ static void trace_init_cmdlines(void) | |||
719 | cmdline_idx = 0; | 814 | cmdline_idx = 0; |
720 | } | 815 | } |
721 | 816 | ||
817 | int is_tracing_stopped(void) | ||
818 | { | ||
819 | return trace_stop_count; | ||
820 | } | ||
821 | |||
722 | /** | 822 | /** |
723 | * ftrace_off_permanent - disable all ftrace code permanently | 823 | * ftrace_off_permanent - disable all ftrace code permanently |
724 | * | 824 | * |
@@ -886,7 +986,7 @@ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags, | |||
886 | 986 | ||
887 | entry->preempt_count = pc & 0xff; | 987 | entry->preempt_count = pc & 0xff; |
888 | entry->pid = (tsk) ? tsk->pid : 0; | 988 | entry->pid = (tsk) ? tsk->pid : 0; |
889 | entry->tgid = (tsk) ? tsk->tgid : 0; | 989 | entry->lock_depth = (tsk) ? tsk->lock_depth : 0; |
890 | entry->flags = | 990 | entry->flags = |
891 | #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT | 991 | #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT |
892 | (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | | 992 | (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | |
@@ -1068,6 +1168,7 @@ ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags, int pc) | |||
1068 | return; | 1168 | return; |
1069 | entry = ring_buffer_event_data(event); | 1169 | entry = ring_buffer_event_data(event); |
1070 | 1170 | ||
1171 | entry->tgid = current->tgid; | ||
1071 | memset(&entry->caller, 0, sizeof(entry->caller)); | 1172 | memset(&entry->caller, 0, sizeof(entry->caller)); |
1072 | 1173 | ||
1073 | trace.nr_entries = 0; | 1174 | trace.nr_entries = 0; |
@@ -1094,6 +1195,7 @@ ftrace_trace_special(void *__tr, | |||
1094 | unsigned long arg1, unsigned long arg2, unsigned long arg3, | 1195 | unsigned long arg1, unsigned long arg2, unsigned long arg3, |
1095 | int pc) | 1196 | int pc) |
1096 | { | 1197 | { |
1198 | struct ftrace_event_call *call = &event_special; | ||
1097 | struct ring_buffer_event *event; | 1199 | struct ring_buffer_event *event; |
1098 | struct trace_array *tr = __tr; | 1200 | struct trace_array *tr = __tr; |
1099 | struct ring_buffer *buffer = tr->buffer; | 1201 | struct ring_buffer *buffer = tr->buffer; |
@@ -1107,7 +1209,9 @@ ftrace_trace_special(void *__tr, | |||
1107 | entry->arg1 = arg1; | 1209 | entry->arg1 = arg1; |
1108 | entry->arg2 = arg2; | 1210 | entry->arg2 = arg2; |
1109 | entry->arg3 = arg3; | 1211 | entry->arg3 = arg3; |
1110 | trace_buffer_unlock_commit(buffer, event, 0, pc); | 1212 | |
1213 | if (!filter_check_discard(call, entry, buffer, event)) | ||
1214 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
1111 | } | 1215 | } |
1112 | 1216 | ||
1113 | void | 1217 | void |
@@ -1530,10 +1634,10 @@ static void print_lat_help_header(struct seq_file *m) | |||
1530 | seq_puts(m, "# | / _----=> need-resched \n"); | 1634 | seq_puts(m, "# | / _----=> need-resched \n"); |
1531 | seq_puts(m, "# || / _---=> hardirq/softirq \n"); | 1635 | seq_puts(m, "# || / _---=> hardirq/softirq \n"); |
1532 | seq_puts(m, "# ||| / _--=> preempt-depth \n"); | 1636 | seq_puts(m, "# ||| / _--=> preempt-depth \n"); |
1533 | seq_puts(m, "# |||| / \n"); | 1637 | seq_puts(m, "# |||| /_--=> lock-depth \n"); |
1534 | seq_puts(m, "# ||||| delay \n"); | 1638 | seq_puts(m, "# |||||/ delay \n"); |
1535 | seq_puts(m, "# cmd pid ||||| time | caller \n"); | 1639 | seq_puts(m, "# cmd pid |||||| time | caller \n"); |
1536 | seq_puts(m, "# \\ / ||||| \\ | / \n"); | 1640 | seq_puts(m, "# \\ / |||||| \\ | / \n"); |
1537 | } | 1641 | } |
1538 | 1642 | ||
1539 | static void print_func_help_header(struct seq_file *m) | 1643 | static void print_func_help_header(struct seq_file *m) |
@@ -1845,7 +1949,7 @@ static int s_show(struct seq_file *m, void *v) | |||
1845 | return 0; | 1949 | return 0; |
1846 | } | 1950 | } |
1847 | 1951 | ||
1848 | static struct seq_operations tracer_seq_ops = { | 1952 | static const struct seq_operations tracer_seq_ops = { |
1849 | .start = s_start, | 1953 | .start = s_start, |
1850 | .next = s_next, | 1954 | .next = s_next, |
1851 | .stop = s_stop, | 1955 | .stop = s_stop, |
@@ -2059,7 +2163,7 @@ static int t_show(struct seq_file *m, void *v) | |||
2059 | return 0; | 2163 | return 0; |
2060 | } | 2164 | } |
2061 | 2165 | ||
2062 | static struct seq_operations show_traces_seq_ops = { | 2166 | static const struct seq_operations show_traces_seq_ops = { |
2063 | .start = t_start, | 2167 | .start = t_start, |
2064 | .next = t_next, | 2168 | .next = t_next, |
2065 | .stop = t_stop, | 2169 | .stop = t_stop, |
@@ -2489,7 +2593,7 @@ static ssize_t | |||
2489 | tracing_set_trace_read(struct file *filp, char __user *ubuf, | 2593 | tracing_set_trace_read(struct file *filp, char __user *ubuf, |
2490 | size_t cnt, loff_t *ppos) | 2594 | size_t cnt, loff_t *ppos) |
2491 | { | 2595 | { |
2492 | char buf[max_tracer_type_len+2]; | 2596 | char buf[MAX_TRACER_SIZE+2]; |
2493 | int r; | 2597 | int r; |
2494 | 2598 | ||
2495 | mutex_lock(&trace_types_lock); | 2599 | mutex_lock(&trace_types_lock); |
@@ -2639,15 +2743,15 @@ static ssize_t | |||
2639 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, | 2743 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, |
2640 | size_t cnt, loff_t *ppos) | 2744 | size_t cnt, loff_t *ppos) |
2641 | { | 2745 | { |
2642 | char buf[max_tracer_type_len+1]; | 2746 | char buf[MAX_TRACER_SIZE+1]; |
2643 | int i; | 2747 | int i; |
2644 | size_t ret; | 2748 | size_t ret; |
2645 | int err; | 2749 | int err; |
2646 | 2750 | ||
2647 | ret = cnt; | 2751 | ret = cnt; |
2648 | 2752 | ||
2649 | if (cnt > max_tracer_type_len) | 2753 | if (cnt > MAX_TRACER_SIZE) |
2650 | cnt = max_tracer_type_len; | 2754 | cnt = MAX_TRACER_SIZE; |
2651 | 2755 | ||
2652 | if (copy_from_user(&buf, ubuf, cnt)) | 2756 | if (copy_from_user(&buf, ubuf, cnt)) |
2653 | return -EFAULT; | 2757 | return -EFAULT; |
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index 821064914c80..104c1a72418f 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h | |||
@@ -7,10 +7,10 @@ | |||
7 | #include <linux/clocksource.h> | 7 | #include <linux/clocksource.h> |
8 | #include <linux/ring_buffer.h> | 8 | #include <linux/ring_buffer.h> |
9 | #include <linux/mmiotrace.h> | 9 | #include <linux/mmiotrace.h> |
10 | #include <linux/tracepoint.h> | ||
10 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
11 | #include <trace/boot.h> | 12 | #include <trace/boot.h> |
12 | #include <linux/kmemtrace.h> | 13 | #include <linux/kmemtrace.h> |
13 | #include <trace/power.h> | ||
14 | 14 | ||
15 | #include <linux/trace_seq.h> | 15 | #include <linux/trace_seq.h> |
16 | #include <linux/ftrace_event.h> | 16 | #include <linux/ftrace_event.h> |
@@ -36,163 +36,59 @@ enum trace_type { | |||
36 | TRACE_HW_BRANCHES, | 36 | TRACE_HW_BRANCHES, |
37 | TRACE_KMEM_ALLOC, | 37 | TRACE_KMEM_ALLOC, |
38 | TRACE_KMEM_FREE, | 38 | TRACE_KMEM_FREE, |
39 | TRACE_POWER, | ||
40 | TRACE_BLK, | 39 | TRACE_BLK, |
41 | 40 | ||
42 | __TRACE_LAST_TYPE, | 41 | __TRACE_LAST_TYPE, |
43 | }; | 42 | }; |
44 | 43 | ||
45 | /* | 44 | enum kmemtrace_type_id { |
46 | * Function trace entry - function address and parent function addres: | 45 | KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */ |
47 | */ | 46 | KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */ |
48 | struct ftrace_entry { | 47 | KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */ |
49 | struct trace_entry ent; | ||
50 | unsigned long ip; | ||
51 | unsigned long parent_ip; | ||
52 | }; | ||
53 | |||
54 | /* Function call entry */ | ||
55 | struct ftrace_graph_ent_entry { | ||
56 | struct trace_entry ent; | ||
57 | struct ftrace_graph_ent graph_ent; | ||
58 | }; | 48 | }; |
59 | 49 | ||
60 | /* Function return entry */ | ||
61 | struct ftrace_graph_ret_entry { | ||
62 | struct trace_entry ent; | ||
63 | struct ftrace_graph_ret ret; | ||
64 | }; | ||
65 | extern struct tracer boot_tracer; | 50 | extern struct tracer boot_tracer; |
66 | 51 | ||
67 | /* | 52 | #undef __field |
68 | * Context switch trace entry - which task (and prio) we switched from/to: | 53 | #define __field(type, item) type item; |
69 | */ | ||
70 | struct ctx_switch_entry { | ||
71 | struct trace_entry ent; | ||
72 | unsigned int prev_pid; | ||
73 | unsigned char prev_prio; | ||
74 | unsigned char prev_state; | ||
75 | unsigned int next_pid; | ||
76 | unsigned char next_prio; | ||
77 | unsigned char next_state; | ||
78 | unsigned int next_cpu; | ||
79 | }; | ||
80 | |||
81 | /* | ||
82 | * Special (free-form) trace entry: | ||
83 | */ | ||
84 | struct special_entry { | ||
85 | struct trace_entry ent; | ||
86 | unsigned long arg1; | ||
87 | unsigned long arg2; | ||
88 | unsigned long arg3; | ||
89 | }; | ||
90 | |||
91 | /* | ||
92 | * Stack-trace entry: | ||
93 | */ | ||
94 | |||
95 | #define FTRACE_STACK_ENTRIES 8 | ||
96 | 54 | ||
97 | struct stack_entry { | 55 | #undef __field_struct |
98 | struct trace_entry ent; | 56 | #define __field_struct(type, item) __field(type, item) |
99 | unsigned long caller[FTRACE_STACK_ENTRIES]; | ||
100 | }; | ||
101 | 57 | ||
102 | struct userstack_entry { | 58 | #undef __field_desc |
103 | struct trace_entry ent; | 59 | #define __field_desc(type, container, item) |
104 | unsigned long caller[FTRACE_STACK_ENTRIES]; | ||
105 | }; | ||
106 | 60 | ||
107 | /* | 61 | #undef __array |
108 | * trace_printk entry: | 62 | #define __array(type, item, size) type item[size]; |
109 | */ | ||
110 | struct bprint_entry { | ||
111 | struct trace_entry ent; | ||
112 | unsigned long ip; | ||
113 | const char *fmt; | ||
114 | u32 buf[]; | ||
115 | }; | ||
116 | 63 | ||
117 | struct print_entry { | 64 | #undef __array_desc |
118 | struct trace_entry ent; | 65 | #define __array_desc(type, container, item, size) |
119 | unsigned long ip; | ||
120 | char buf[]; | ||
121 | }; | ||
122 | |||
123 | #define TRACE_OLD_SIZE 88 | ||
124 | |||
125 | struct trace_field_cont { | ||
126 | unsigned char type; | ||
127 | /* Temporary till we get rid of this completely */ | ||
128 | char buf[TRACE_OLD_SIZE - 1]; | ||
129 | }; | ||
130 | 66 | ||
131 | struct trace_mmiotrace_rw { | 67 | #undef __dynamic_array |
132 | struct trace_entry ent; | 68 | #define __dynamic_array(type, item) type item[]; |
133 | struct mmiotrace_rw rw; | ||
134 | }; | ||
135 | 69 | ||
136 | struct trace_mmiotrace_map { | 70 | #undef F_STRUCT |
137 | struct trace_entry ent; | 71 | #define F_STRUCT(args...) args |
138 | struct mmiotrace_map map; | ||
139 | }; | ||
140 | |||
141 | struct trace_boot_call { | ||
142 | struct trace_entry ent; | ||
143 | struct boot_trace_call boot_call; | ||
144 | }; | ||
145 | 72 | ||
146 | struct trace_boot_ret { | 73 | #undef FTRACE_ENTRY |
147 | struct trace_entry ent; | 74 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
148 | struct boot_trace_ret boot_ret; | 75 | struct struct_name { \ |
149 | }; | 76 | struct trace_entry ent; \ |
77 | tstruct \ | ||
78 | } | ||
150 | 79 | ||
151 | #define TRACE_FUNC_SIZE 30 | 80 | #undef TP_ARGS |
152 | #define TRACE_FILE_SIZE 20 | 81 | #define TP_ARGS(args...) args |
153 | struct trace_branch { | ||
154 | struct trace_entry ent; | ||
155 | unsigned line; | ||
156 | char func[TRACE_FUNC_SIZE+1]; | ||
157 | char file[TRACE_FILE_SIZE+1]; | ||
158 | char correct; | ||
159 | }; | ||
160 | 82 | ||
161 | struct hw_branch_entry { | 83 | #undef FTRACE_ENTRY_DUP |
162 | struct trace_entry ent; | 84 | #define FTRACE_ENTRY_DUP(name, name_struct, id, tstruct, printk) |
163 | u64 from; | ||
164 | u64 to; | ||
165 | }; | ||
166 | 85 | ||
167 | struct trace_power { | 86 | #include "trace_entries.h" |
168 | struct trace_entry ent; | ||
169 | struct power_trace state_data; | ||
170 | }; | ||
171 | |||
172 | enum kmemtrace_type_id { | ||
173 | KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */ | ||
174 | KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */ | ||
175 | KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */ | ||
176 | }; | ||
177 | |||
178 | struct kmemtrace_alloc_entry { | ||
179 | struct trace_entry ent; | ||
180 | enum kmemtrace_type_id type_id; | ||
181 | unsigned long call_site; | ||
182 | const void *ptr; | ||
183 | size_t bytes_req; | ||
184 | size_t bytes_alloc; | ||
185 | gfp_t gfp_flags; | ||
186 | int node; | ||
187 | }; | ||
188 | |||
189 | struct kmemtrace_free_entry { | ||
190 | struct trace_entry ent; | ||
191 | enum kmemtrace_type_id type_id; | ||
192 | unsigned long call_site; | ||
193 | const void *ptr; | ||
194 | }; | ||
195 | 87 | ||
88 | /* | ||
89 | * syscalls are special, and need special handling, this is why | ||
90 | * they are not included in trace_entries.h | ||
91 | */ | ||
196 | struct syscall_trace_enter { | 92 | struct syscall_trace_enter { |
197 | struct trace_entry ent; | 93 | struct trace_entry ent; |
198 | int nr; | 94 | int nr; |
@@ -228,14 +124,12 @@ struct kretprobe_trace_entry { | |||
228 | (offsetof(struct kretprobe_trace_entry, args) + \ | 124 | (offsetof(struct kretprobe_trace_entry, args) + \ |
229 | (sizeof(unsigned long) * (n))) | 125 | (sizeof(unsigned long) * (n))) |
230 | 126 | ||
231 | |||
232 | |||
233 | /* | 127 | /* |
234 | * trace_flag_type is an enumeration that holds different | 128 | * trace_flag_type is an enumeration that holds different |
235 | * states when a trace occurs. These are: | 129 | * states when a trace occurs. These are: |
236 | * IRQS_OFF - interrupts were disabled | 130 | * IRQS_OFF - interrupts were disabled |
237 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags | 131 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags |
238 | * NEED_RESCED - reschedule is requested | 132 | * NEED_RESCHED - reschedule is requested |
239 | * HARDIRQ - inside an interrupt handler | 133 | * HARDIRQ - inside an interrupt handler |
240 | * SOFTIRQ - inside a softirq handler | 134 | * SOFTIRQ - inside a softirq handler |
241 | */ | 135 | */ |
@@ -334,7 +228,6 @@ extern void __ftrace_bad_type(void); | |||
334 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ | 228 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ |
335 | TRACE_GRAPH_RET); \ | 229 | TRACE_GRAPH_RET); \ |
336 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ | 230 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ |
337 | IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \ | ||
338 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ | 231 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ |
339 | TRACE_KMEM_ALLOC); \ | 232 | TRACE_KMEM_ALLOC); \ |
340 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ | 233 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ |
@@ -414,7 +307,6 @@ struct tracer { | |||
414 | struct tracer *next; | 307 | struct tracer *next; |
415 | int print_max; | 308 | int print_max; |
416 | struct tracer_flags *flags; | 309 | struct tracer_flags *flags; |
417 | struct tracer_stat *stats; | ||
418 | }; | 310 | }; |
419 | 311 | ||
420 | 312 | ||
@@ -493,6 +385,7 @@ void tracing_stop_sched_switch_record(void); | |||
493 | void tracing_start_sched_switch_record(void); | 385 | void tracing_start_sched_switch_record(void); |
494 | int register_tracer(struct tracer *type); | 386 | int register_tracer(struct tracer *type); |
495 | void unregister_tracer(struct tracer *type); | 387 | void unregister_tracer(struct tracer *type); |
388 | int is_tracing_stopped(void); | ||
496 | 389 | ||
497 | extern unsigned long nsecs_to_usecs(unsigned long nsecs); | 390 | extern unsigned long nsecs_to_usecs(unsigned long nsecs); |
498 | 391 | ||
@@ -533,20 +426,6 @@ static inline void __trace_stack(struct trace_array *tr, unsigned long flags, | |||
533 | 426 | ||
534 | extern cycle_t ftrace_now(int cpu); | 427 | extern cycle_t ftrace_now(int cpu); |
535 | 428 | ||
536 | #ifdef CONFIG_CONTEXT_SWITCH_TRACER | ||
537 | typedef void | ||
538 | (*tracer_switch_func_t)(void *private, | ||
539 | void *__rq, | ||
540 | struct task_struct *prev, | ||
541 | struct task_struct *next); | ||
542 | |||
543 | struct tracer_switch_ops { | ||
544 | tracer_switch_func_t func; | ||
545 | void *private; | ||
546 | struct tracer_switch_ops *next; | ||
547 | }; | ||
548 | #endif /* CONFIG_CONTEXT_SWITCH_TRACER */ | ||
549 | |||
550 | extern void trace_find_cmdline(int pid, char comm[]); | 429 | extern void trace_find_cmdline(int pid, char comm[]); |
551 | 430 | ||
552 | #ifdef CONFIG_DYNAMIC_FTRACE | 431 | #ifdef CONFIG_DYNAMIC_FTRACE |
@@ -662,6 +541,41 @@ static inline int ftrace_trace_task(struct task_struct *task) | |||
662 | #endif | 541 | #endif |
663 | 542 | ||
664 | /* | 543 | /* |
544 | * struct trace_parser - servers for reading the user input separated by spaces | ||
545 | * @cont: set if the input is not complete - no final space char was found | ||
546 | * @buffer: holds the parsed user input | ||
547 | * @idx: user input lenght | ||
548 | * @size: buffer size | ||
549 | */ | ||
550 | struct trace_parser { | ||
551 | bool cont; | ||
552 | char *buffer; | ||
553 | unsigned idx; | ||
554 | unsigned size; | ||
555 | }; | ||
556 | |||
557 | static inline bool trace_parser_loaded(struct trace_parser *parser) | ||
558 | { | ||
559 | return (parser->idx != 0); | ||
560 | } | ||
561 | |||
562 | static inline bool trace_parser_cont(struct trace_parser *parser) | ||
563 | { | ||
564 | return parser->cont; | ||
565 | } | ||
566 | |||
567 | static inline void trace_parser_clear(struct trace_parser *parser) | ||
568 | { | ||
569 | parser->cont = false; | ||
570 | parser->idx = 0; | ||
571 | } | ||
572 | |||
573 | extern int trace_parser_get_init(struct trace_parser *parser, int size); | ||
574 | extern void trace_parser_put(struct trace_parser *parser); | ||
575 | extern int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | ||
576 | size_t cnt, loff_t *ppos); | ||
577 | |||
578 | /* | ||
665 | * trace_iterator_flags is an enumeration that defines bit | 579 | * trace_iterator_flags is an enumeration that defines bit |
666 | * positions into trace_flags that controls the output. | 580 | * positions into trace_flags that controls the output. |
667 | * | 581 | * |
@@ -847,58 +761,18 @@ filter_check_discard(struct ftrace_event_call *call, void *rec, | |||
847 | return 0; | 761 | return 0; |
848 | } | 762 | } |
849 | 763 | ||
850 | #define DEFINE_COMPARISON_PRED(type) \ | ||
851 | static int filter_pred_##type(struct filter_pred *pred, void *event, \ | ||
852 | int val1, int val2) \ | ||
853 | { \ | ||
854 | type *addr = (type *)(event + pred->offset); \ | ||
855 | type val = (type)pred->val; \ | ||
856 | int match = 0; \ | ||
857 | \ | ||
858 | switch (pred->op) { \ | ||
859 | case OP_LT: \ | ||
860 | match = (*addr < val); \ | ||
861 | break; \ | ||
862 | case OP_LE: \ | ||
863 | match = (*addr <= val); \ | ||
864 | break; \ | ||
865 | case OP_GT: \ | ||
866 | match = (*addr > val); \ | ||
867 | break; \ | ||
868 | case OP_GE: \ | ||
869 | match = (*addr >= val); \ | ||
870 | break; \ | ||
871 | default: \ | ||
872 | break; \ | ||
873 | } \ | ||
874 | \ | ||
875 | return match; \ | ||
876 | } | ||
877 | |||
878 | #define DEFINE_EQUALITY_PRED(size) \ | ||
879 | static int filter_pred_##size(struct filter_pred *pred, void *event, \ | ||
880 | int val1, int val2) \ | ||
881 | { \ | ||
882 | u##size *addr = (u##size *)(event + pred->offset); \ | ||
883 | u##size val = (u##size)pred->val; \ | ||
884 | int match; \ | ||
885 | \ | ||
886 | match = (val == *addr) ^ pred->not; \ | ||
887 | \ | ||
888 | return match; \ | ||
889 | } | ||
890 | |||
891 | extern struct mutex event_mutex; | 764 | extern struct mutex event_mutex; |
892 | extern struct list_head ftrace_events; | 765 | extern struct list_head ftrace_events; |
893 | 766 | ||
894 | extern const char *__start___trace_bprintk_fmt[]; | 767 | extern const char *__start___trace_bprintk_fmt[]; |
895 | extern const char *__stop___trace_bprintk_fmt[]; | 768 | extern const char *__stop___trace_bprintk_fmt[]; |
896 | 769 | ||
897 | #undef TRACE_EVENT_FORMAT | 770 | #undef FTRACE_ENTRY |
898 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 771 | #define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \ |
899 | extern struct ftrace_event_call event_##call; | 772 | extern struct ftrace_event_call event_##call; |
900 | #undef TRACE_EVENT_FORMAT_NOFILTER | 773 | #undef FTRACE_ENTRY_DUP |
901 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, tpfmt) | 774 | #define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \ |
902 | #include "trace_event_types.h" | 775 | FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) |
776 | #include "trace_entries.h" | ||
903 | 777 | ||
904 | #endif /* _LINUX_KERNEL_TRACE_H */ | 778 | #endif /* _LINUX_KERNEL_TRACE_H */ |
diff --git a/kernel/trace/trace_boot.c b/kernel/trace/trace_boot.c index 19bfc75d467e..c21d5f3956ad 100644 --- a/kernel/trace/trace_boot.c +++ b/kernel/trace/trace_boot.c | |||
@@ -129,6 +129,7 @@ struct tracer boot_tracer __read_mostly = | |||
129 | 129 | ||
130 | void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) | 130 | void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) |
131 | { | 131 | { |
132 | struct ftrace_event_call *call = &event_boot_call; | ||
132 | struct ring_buffer_event *event; | 133 | struct ring_buffer_event *event; |
133 | struct ring_buffer *buffer; | 134 | struct ring_buffer *buffer; |
134 | struct trace_boot_call *entry; | 135 | struct trace_boot_call *entry; |
@@ -150,13 +151,15 @@ void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) | |||
150 | goto out; | 151 | goto out; |
151 | entry = ring_buffer_event_data(event); | 152 | entry = ring_buffer_event_data(event); |
152 | entry->boot_call = *bt; | 153 | entry->boot_call = *bt; |
153 | trace_buffer_unlock_commit(buffer, event, 0, 0); | 154 | if (!filter_check_discard(call, entry, buffer, event)) |
155 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
154 | out: | 156 | out: |
155 | preempt_enable(); | 157 | preempt_enable(); |
156 | } | 158 | } |
157 | 159 | ||
158 | void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) | 160 | void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) |
159 | { | 161 | { |
162 | struct ftrace_event_call *call = &event_boot_ret; | ||
160 | struct ring_buffer_event *event; | 163 | struct ring_buffer_event *event; |
161 | struct ring_buffer *buffer; | 164 | struct ring_buffer *buffer; |
162 | struct trace_boot_ret *entry; | 165 | struct trace_boot_ret *entry; |
@@ -175,7 +178,8 @@ void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) | |||
175 | goto out; | 178 | goto out; |
176 | entry = ring_buffer_event_data(event); | 179 | entry = ring_buffer_event_data(event); |
177 | entry->boot_ret = *bt; | 180 | entry->boot_ret = *bt; |
178 | trace_buffer_unlock_commit(buffer, event, 0, 0); | 181 | if (!filter_check_discard(call, entry, buffer, event)) |
182 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
179 | out: | 183 | out: |
180 | preempt_enable(); | 184 | preempt_enable(); |
181 | } | 185 | } |
diff --git a/kernel/trace/trace_clock.c b/kernel/trace/trace_clock.c index b588fd81f7f9..20c5f92e28a8 100644 --- a/kernel/trace/trace_clock.c +++ b/kernel/trace/trace_clock.c | |||
@@ -66,10 +66,14 @@ u64 notrace trace_clock(void) | |||
66 | * Used by plugins that need globally coherent timestamps. | 66 | * Used by plugins that need globally coherent timestamps. |
67 | */ | 67 | */ |
68 | 68 | ||
69 | static u64 prev_trace_clock_time; | 69 | /* keep prev_time and lock in the same cacheline. */ |
70 | 70 | static struct { | |
71 | static raw_spinlock_t trace_clock_lock ____cacheline_aligned_in_smp = | 71 | u64 prev_time; |
72 | (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 72 | raw_spinlock_t lock; |
73 | } trace_clock_struct ____cacheline_aligned_in_smp = | ||
74 | { | ||
75 | .lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED, | ||
76 | }; | ||
73 | 77 | ||
74 | u64 notrace trace_clock_global(void) | 78 | u64 notrace trace_clock_global(void) |
75 | { | 79 | { |
@@ -88,19 +92,19 @@ u64 notrace trace_clock_global(void) | |||
88 | if (unlikely(in_nmi())) | 92 | if (unlikely(in_nmi())) |
89 | goto out; | 93 | goto out; |
90 | 94 | ||
91 | __raw_spin_lock(&trace_clock_lock); | 95 | __raw_spin_lock(&trace_clock_struct.lock); |
92 | 96 | ||
93 | /* | 97 | /* |
94 | * TODO: if this happens often then maybe we should reset | 98 | * TODO: if this happens often then maybe we should reset |
95 | * my_scd->clock to prev_trace_clock_time+1, to make sure | 99 | * my_scd->clock to prev_time+1, to make sure |
96 | * we start ticking with the local clock from now on? | 100 | * we start ticking with the local clock from now on? |
97 | */ | 101 | */ |
98 | if ((s64)(now - prev_trace_clock_time) < 0) | 102 | if ((s64)(now - trace_clock_struct.prev_time) < 0) |
99 | now = prev_trace_clock_time + 1; | 103 | now = trace_clock_struct.prev_time + 1; |
100 | 104 | ||
101 | prev_trace_clock_time = now; | 105 | trace_clock_struct.prev_time = now; |
102 | 106 | ||
103 | __raw_spin_unlock(&trace_clock_lock); | 107 | __raw_spin_unlock(&trace_clock_struct.lock); |
104 | 108 | ||
105 | out: | 109 | out: |
106 | raw_local_irq_restore(flags); | 110 | raw_local_irq_restore(flags); |
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h new file mode 100644 index 000000000000..ead3d724599d --- /dev/null +++ b/kernel/trace/trace_entries.h | |||
@@ -0,0 +1,366 @@ | |||
1 | /* | ||
2 | * This file defines the trace event structures that go into the ring | ||
3 | * buffer directly. They are created via macros so that changes for them | ||
4 | * appear in the format file. Using macros will automate this process. | ||
5 | * | ||
6 | * The macro used to create a ftrace data structure is: | ||
7 | * | ||
8 | * FTRACE_ENTRY( name, struct_name, id, structure, print ) | ||
9 | * | ||
10 | * @name: the name used the event name, as well as the name of | ||
11 | * the directory that holds the format file. | ||
12 | * | ||
13 | * @struct_name: the name of the structure that is created. | ||
14 | * | ||
15 | * @id: The event identifier that is used to detect what event | ||
16 | * this is from the ring buffer. | ||
17 | * | ||
18 | * @structure: the structure layout | ||
19 | * | ||
20 | * - __field( type, item ) | ||
21 | * This is equivalent to declaring | ||
22 | * type item; | ||
23 | * in the structure. | ||
24 | * - __array( type, item, size ) | ||
25 | * This is equivalent to declaring | ||
26 | * type item[size]; | ||
27 | * in the structure. | ||
28 | * | ||
29 | * * for structures within structures, the format of the internal | ||
30 | * structure is layed out. This allows the internal structure | ||
31 | * to be deciphered for the format file. Although these macros | ||
32 | * may become out of sync with the internal structure, they | ||
33 | * will create a compile error if it happens. Since the | ||
34 | * internel structures are just tracing helpers, this is not | ||
35 | * an issue. | ||
36 | * | ||
37 | * When an internal structure is used, it should use: | ||
38 | * | ||
39 | * __field_struct( type, item ) | ||
40 | * | ||
41 | * instead of __field. This will prevent it from being shown in | ||
42 | * the output file. The fields in the structure should use. | ||
43 | * | ||
44 | * __field_desc( type, container, item ) | ||
45 | * __array_desc( type, container, item, len ) | ||
46 | * | ||
47 | * type, item and len are the same as __field and __array, but | ||
48 | * container is added. This is the name of the item in | ||
49 | * __field_struct that this is describing. | ||
50 | * | ||
51 | * | ||
52 | * @print: the print format shown to users in the format file. | ||
53 | */ | ||
54 | |||
55 | /* | ||
56 | * Function trace entry - function address and parent function addres: | ||
57 | */ | ||
58 | FTRACE_ENTRY(function, ftrace_entry, | ||
59 | |||
60 | TRACE_FN, | ||
61 | |||
62 | F_STRUCT( | ||
63 | __field( unsigned long, ip ) | ||
64 | __field( unsigned long, parent_ip ) | ||
65 | ), | ||
66 | |||
67 | F_printk(" %lx <-- %lx", __entry->ip, __entry->parent_ip) | ||
68 | ); | ||
69 | |||
70 | /* Function call entry */ | ||
71 | FTRACE_ENTRY(funcgraph_entry, ftrace_graph_ent_entry, | ||
72 | |||
73 | TRACE_GRAPH_ENT, | ||
74 | |||
75 | F_STRUCT( | ||
76 | __field_struct( struct ftrace_graph_ent, graph_ent ) | ||
77 | __field_desc( unsigned long, graph_ent, func ) | ||
78 | __field_desc( int, graph_ent, depth ) | ||
79 | ), | ||
80 | |||
81 | F_printk("--> %lx (%d)", __entry->func, __entry->depth) | ||
82 | ); | ||
83 | |||
84 | /* Function return entry */ | ||
85 | FTRACE_ENTRY(funcgraph_exit, ftrace_graph_ret_entry, | ||
86 | |||
87 | TRACE_GRAPH_RET, | ||
88 | |||
89 | F_STRUCT( | ||
90 | __field_struct( struct ftrace_graph_ret, ret ) | ||
91 | __field_desc( unsigned long, ret, func ) | ||
92 | __field_desc( unsigned long long, ret, calltime) | ||
93 | __field_desc( unsigned long long, ret, rettime ) | ||
94 | __field_desc( unsigned long, ret, overrun ) | ||
95 | __field_desc( int, ret, depth ) | ||
96 | ), | ||
97 | |||
98 | F_printk("<-- %lx (%d) (start: %llx end: %llx) over: %d", | ||
99 | __entry->func, __entry->depth, | ||
100 | __entry->calltime, __entry->rettime, | ||
101 | __entry->depth) | ||
102 | ); | ||
103 | |||
104 | /* | ||
105 | * Context switch trace entry - which task (and prio) we switched from/to: | ||
106 | * | ||
107 | * This is used for both wakeup and context switches. We only want | ||
108 | * to create one structure, but we need two outputs for it. | ||
109 | */ | ||
110 | #define FTRACE_CTX_FIELDS \ | ||
111 | __field( unsigned int, prev_pid ) \ | ||
112 | __field( unsigned char, prev_prio ) \ | ||
113 | __field( unsigned char, prev_state ) \ | ||
114 | __field( unsigned int, next_pid ) \ | ||
115 | __field( unsigned char, next_prio ) \ | ||
116 | __field( unsigned char, next_state ) \ | ||
117 | __field( unsigned int, next_cpu ) | ||
118 | |||
119 | FTRACE_ENTRY(context_switch, ctx_switch_entry, | ||
120 | |||
121 | TRACE_CTX, | ||
122 | |||
123 | F_STRUCT( | ||
124 | FTRACE_CTX_FIELDS | ||
125 | ), | ||
126 | |||
127 | F_printk("%u:%u:%u ==> %u:%u:%u [%03u]", | ||
128 | __entry->prev_pid, __entry->prev_prio, __entry->prev_state, | ||
129 | __entry->next_pid, __entry->next_prio, __entry->next_state, | ||
130 | __entry->next_cpu | ||
131 | ) | ||
132 | ); | ||
133 | |||
134 | /* | ||
135 | * FTRACE_ENTRY_DUP only creates the format file, it will not | ||
136 | * create another structure. | ||
137 | */ | ||
138 | FTRACE_ENTRY_DUP(wakeup, ctx_switch_entry, | ||
139 | |||
140 | TRACE_WAKE, | ||
141 | |||
142 | F_STRUCT( | ||
143 | FTRACE_CTX_FIELDS | ||
144 | ), | ||
145 | |||
146 | F_printk("%u:%u:%u ==+ %u:%u:%u [%03u]", | ||
147 | __entry->prev_pid, __entry->prev_prio, __entry->prev_state, | ||
148 | __entry->next_pid, __entry->next_prio, __entry->next_state, | ||
149 | __entry->next_cpu | ||
150 | ) | ||
151 | ); | ||
152 | |||
153 | /* | ||
154 | * Special (free-form) trace entry: | ||
155 | */ | ||
156 | FTRACE_ENTRY(special, special_entry, | ||
157 | |||
158 | TRACE_SPECIAL, | ||
159 | |||
160 | F_STRUCT( | ||
161 | __field( unsigned long, arg1 ) | ||
162 | __field( unsigned long, arg2 ) | ||
163 | __field( unsigned long, arg3 ) | ||
164 | ), | ||
165 | |||
166 | F_printk("(%08lx) (%08lx) (%08lx)", | ||
167 | __entry->arg1, __entry->arg2, __entry->arg3) | ||
168 | ); | ||
169 | |||
170 | /* | ||
171 | * Stack-trace entry: | ||
172 | */ | ||
173 | |||
174 | #define FTRACE_STACK_ENTRIES 8 | ||
175 | |||
176 | FTRACE_ENTRY(kernel_stack, stack_entry, | ||
177 | |||
178 | TRACE_STACK, | ||
179 | |||
180 | F_STRUCT( | ||
181 | __array( unsigned long, caller, FTRACE_STACK_ENTRIES ) | ||
182 | ), | ||
183 | |||
184 | F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
185 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n", | ||
186 | __entry->caller[0], __entry->caller[1], __entry->caller[2], | ||
187 | __entry->caller[3], __entry->caller[4], __entry->caller[5], | ||
188 | __entry->caller[6], __entry->caller[7]) | ||
189 | ); | ||
190 | |||
191 | FTRACE_ENTRY(user_stack, userstack_entry, | ||
192 | |||
193 | TRACE_USER_STACK, | ||
194 | |||
195 | F_STRUCT( | ||
196 | __field( unsigned int, tgid ) | ||
197 | __array( unsigned long, caller, FTRACE_STACK_ENTRIES ) | ||
198 | ), | ||
199 | |||
200 | F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
201 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n", | ||
202 | __entry->caller[0], __entry->caller[1], __entry->caller[2], | ||
203 | __entry->caller[3], __entry->caller[4], __entry->caller[5], | ||
204 | __entry->caller[6], __entry->caller[7]) | ||
205 | ); | ||
206 | |||
207 | /* | ||
208 | * trace_printk entry: | ||
209 | */ | ||
210 | FTRACE_ENTRY(bprint, bprint_entry, | ||
211 | |||
212 | TRACE_BPRINT, | ||
213 | |||
214 | F_STRUCT( | ||
215 | __field( unsigned long, ip ) | ||
216 | __field( const char *, fmt ) | ||
217 | __dynamic_array( u32, buf ) | ||
218 | ), | ||
219 | |||
220 | F_printk("%08lx fmt:%p", | ||
221 | __entry->ip, __entry->fmt) | ||
222 | ); | ||
223 | |||
224 | FTRACE_ENTRY(print, print_entry, | ||
225 | |||
226 | TRACE_PRINT, | ||
227 | |||
228 | F_STRUCT( | ||
229 | __field( unsigned long, ip ) | ||
230 | __dynamic_array( char, buf ) | ||
231 | ), | ||
232 | |||
233 | F_printk("%08lx %s", | ||
234 | __entry->ip, __entry->buf) | ||
235 | ); | ||
236 | |||
237 | FTRACE_ENTRY(mmiotrace_rw, trace_mmiotrace_rw, | ||
238 | |||
239 | TRACE_MMIO_RW, | ||
240 | |||
241 | F_STRUCT( | ||
242 | __field_struct( struct mmiotrace_rw, rw ) | ||
243 | __field_desc( resource_size_t, rw, phys ) | ||
244 | __field_desc( unsigned long, rw, value ) | ||
245 | __field_desc( unsigned long, rw, pc ) | ||
246 | __field_desc( int, rw, map_id ) | ||
247 | __field_desc( unsigned char, rw, opcode ) | ||
248 | __field_desc( unsigned char, rw, width ) | ||
249 | ), | ||
250 | |||
251 | F_printk("%lx %lx %lx %d %x %x", | ||
252 | (unsigned long)__entry->phys, __entry->value, __entry->pc, | ||
253 | __entry->map_id, __entry->opcode, __entry->width) | ||
254 | ); | ||
255 | |||
256 | FTRACE_ENTRY(mmiotrace_map, trace_mmiotrace_map, | ||
257 | |||
258 | TRACE_MMIO_MAP, | ||
259 | |||
260 | F_STRUCT( | ||
261 | __field_struct( struct mmiotrace_map, map ) | ||
262 | __field_desc( resource_size_t, map, phys ) | ||
263 | __field_desc( unsigned long, map, virt ) | ||
264 | __field_desc( unsigned long, map, len ) | ||
265 | __field_desc( int, map, map_id ) | ||
266 | __field_desc( unsigned char, map, opcode ) | ||
267 | ), | ||
268 | |||
269 | F_printk("%lx %lx %lx %d %x", | ||
270 | (unsigned long)__entry->phys, __entry->virt, __entry->len, | ||
271 | __entry->map_id, __entry->opcode) | ||
272 | ); | ||
273 | |||
274 | FTRACE_ENTRY(boot_call, trace_boot_call, | ||
275 | |||
276 | TRACE_BOOT_CALL, | ||
277 | |||
278 | F_STRUCT( | ||
279 | __field_struct( struct boot_trace_call, boot_call ) | ||
280 | __field_desc( pid_t, boot_call, caller ) | ||
281 | __array_desc( char, boot_call, func, KSYM_SYMBOL_LEN) | ||
282 | ), | ||
283 | |||
284 | F_printk("%d %s", __entry->caller, __entry->func) | ||
285 | ); | ||
286 | |||
287 | FTRACE_ENTRY(boot_ret, trace_boot_ret, | ||
288 | |||
289 | TRACE_BOOT_RET, | ||
290 | |||
291 | F_STRUCT( | ||
292 | __field_struct( struct boot_trace_ret, boot_ret ) | ||
293 | __array_desc( char, boot_ret, func, KSYM_SYMBOL_LEN) | ||
294 | __field_desc( int, boot_ret, result ) | ||
295 | __field_desc( unsigned long, boot_ret, duration ) | ||
296 | ), | ||
297 | |||
298 | F_printk("%s %d %lx", | ||
299 | __entry->func, __entry->result, __entry->duration) | ||
300 | ); | ||
301 | |||
302 | #define TRACE_FUNC_SIZE 30 | ||
303 | #define TRACE_FILE_SIZE 20 | ||
304 | |||
305 | FTRACE_ENTRY(branch, trace_branch, | ||
306 | |||
307 | TRACE_BRANCH, | ||
308 | |||
309 | F_STRUCT( | ||
310 | __field( unsigned int, line ) | ||
311 | __array( char, func, TRACE_FUNC_SIZE+1 ) | ||
312 | __array( char, file, TRACE_FILE_SIZE+1 ) | ||
313 | __field( char, correct ) | ||
314 | ), | ||
315 | |||
316 | F_printk("%u:%s:%s (%u)", | ||
317 | __entry->line, | ||
318 | __entry->func, __entry->file, __entry->correct) | ||
319 | ); | ||
320 | |||
321 | FTRACE_ENTRY(hw_branch, hw_branch_entry, | ||
322 | |||
323 | TRACE_HW_BRANCHES, | ||
324 | |||
325 | F_STRUCT( | ||
326 | __field( u64, from ) | ||
327 | __field( u64, to ) | ||
328 | ), | ||
329 | |||
330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) | ||
331 | ); | ||
332 | |||
333 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, | ||
334 | |||
335 | TRACE_KMEM_ALLOC, | ||
336 | |||
337 | F_STRUCT( | ||
338 | __field( enum kmemtrace_type_id, type_id ) | ||
339 | __field( unsigned long, call_site ) | ||
340 | __field( const void *, ptr ) | ||
341 | __field( size_t, bytes_req ) | ||
342 | __field( size_t, bytes_alloc ) | ||
343 | __field( gfp_t, gfp_flags ) | ||
344 | __field( int, node ) | ||
345 | ), | ||
346 | |||
347 | F_printk("type:%u call_site:%lx ptr:%p req:%zi alloc:%zi" | ||
348 | " flags:%x node:%d", | ||
349 | __entry->type_id, __entry->call_site, __entry->ptr, | ||
350 | __entry->bytes_req, __entry->bytes_alloc, | ||
351 | __entry->gfp_flags, __entry->node) | ||
352 | ); | ||
353 | |||
354 | FTRACE_ENTRY(kmem_free, kmemtrace_free_entry, | ||
355 | |||
356 | TRACE_KMEM_FREE, | ||
357 | |||
358 | F_STRUCT( | ||
359 | __field( enum kmemtrace_type_id, type_id ) | ||
360 | __field( unsigned long, call_site ) | ||
361 | __field( const void *, ptr ) | ||
362 | ), | ||
363 | |||
364 | F_printk("type:%u call_site:%lx ptr:%p", | ||
365 | __entry->type_id, __entry->call_site, __entry->ptr) | ||
366 | ); | ||
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c index 11ba5bb4ed0a..e812f1c1264c 100644 --- a/kernel/trace/trace_event_profile.c +++ b/kernel/trace/trace_event_profile.c | |||
@@ -5,8 +5,60 @@ | |||
5 | * | 5 | * |
6 | */ | 6 | */ |
7 | 7 | ||
8 | #include <linux/module.h> | ||
8 | #include "trace.h" | 9 | #include "trace.h" |
9 | 10 | ||
11 | /* | ||
12 | * We can't use a size but a type in alloc_percpu() | ||
13 | * So let's create a dummy type that matches the desired size | ||
14 | */ | ||
15 | typedef struct {char buf[FTRACE_MAX_PROFILE_SIZE];} profile_buf_t; | ||
16 | |||
17 | char *trace_profile_buf; | ||
18 | EXPORT_SYMBOL_GPL(trace_profile_buf); | ||
19 | |||
20 | char *trace_profile_buf_nmi; | ||
21 | EXPORT_SYMBOL_GPL(trace_profile_buf_nmi); | ||
22 | |||
23 | /* Count the events in use (per event id, not per instance) */ | ||
24 | static int total_profile_count; | ||
25 | |||
26 | static int ftrace_profile_enable_event(struct ftrace_event_call *event) | ||
27 | { | ||
28 | char *buf; | ||
29 | int ret = -ENOMEM; | ||
30 | |||
31 | if (atomic_inc_return(&event->profile_count)) | ||
32 | return 0; | ||
33 | |||
34 | if (!total_profile_count++) { | ||
35 | buf = (char *)alloc_percpu(profile_buf_t); | ||
36 | if (!buf) | ||
37 | goto fail_buf; | ||
38 | |||
39 | rcu_assign_pointer(trace_profile_buf, buf); | ||
40 | |||
41 | buf = (char *)alloc_percpu(profile_buf_t); | ||
42 | if (!buf) | ||
43 | goto fail_buf_nmi; | ||
44 | |||
45 | rcu_assign_pointer(trace_profile_buf_nmi, buf); | ||
46 | } | ||
47 | |||
48 | ret = event->profile_enable(event); | ||
49 | if (!ret) | ||
50 | return 0; | ||
51 | |||
52 | kfree(trace_profile_buf_nmi); | ||
53 | fail_buf_nmi: | ||
54 | kfree(trace_profile_buf); | ||
55 | fail_buf: | ||
56 | total_profile_count--; | ||
57 | atomic_dec(&event->profile_count); | ||
58 | |||
59 | return ret; | ||
60 | } | ||
61 | |||
10 | int ftrace_profile_enable(int event_id) | 62 | int ftrace_profile_enable(int event_id) |
11 | { | 63 | { |
12 | struct ftrace_event_call *event; | 64 | struct ftrace_event_call *event; |
@@ -14,8 +66,9 @@ int ftrace_profile_enable(int event_id) | |||
14 | 66 | ||
15 | mutex_lock(&event_mutex); | 67 | mutex_lock(&event_mutex); |
16 | list_for_each_entry(event, &ftrace_events, list) { | 68 | list_for_each_entry(event, &ftrace_events, list) { |
17 | if (event->id == event_id && event->profile_enable) { | 69 | if (event->id == event_id && event->profile_enable && |
18 | ret = event->profile_enable(event); | 70 | try_module_get(event->mod)) { |
71 | ret = ftrace_profile_enable_event(event); | ||
19 | break; | 72 | break; |
20 | } | 73 | } |
21 | } | 74 | } |
@@ -24,6 +77,33 @@ int ftrace_profile_enable(int event_id) | |||
24 | return ret; | 77 | return ret; |
25 | } | 78 | } |
26 | 79 | ||
80 | static void ftrace_profile_disable_event(struct ftrace_event_call *event) | ||
81 | { | ||
82 | char *buf, *nmi_buf; | ||
83 | |||
84 | if (!atomic_add_negative(-1, &event->profile_count)) | ||
85 | return; | ||
86 | |||
87 | event->profile_disable(event); | ||
88 | |||
89 | if (!--total_profile_count) { | ||
90 | buf = trace_profile_buf; | ||
91 | rcu_assign_pointer(trace_profile_buf, NULL); | ||
92 | |||
93 | nmi_buf = trace_profile_buf_nmi; | ||
94 | rcu_assign_pointer(trace_profile_buf_nmi, NULL); | ||
95 | |||
96 | /* | ||
97 | * Ensure every events in profiling have finished before | ||
98 | * releasing the buffers | ||
99 | */ | ||
100 | synchronize_sched(); | ||
101 | |||
102 | free_percpu(buf); | ||
103 | free_percpu(nmi_buf); | ||
104 | } | ||
105 | } | ||
106 | |||
27 | void ftrace_profile_disable(int event_id) | 107 | void ftrace_profile_disable(int event_id) |
28 | { | 108 | { |
29 | struct ftrace_event_call *event; | 109 | struct ftrace_event_call *event; |
@@ -31,7 +111,8 @@ void ftrace_profile_disable(int event_id) | |||
31 | mutex_lock(&event_mutex); | 111 | mutex_lock(&event_mutex); |
32 | list_for_each_entry(event, &ftrace_events, list) { | 112 | list_for_each_entry(event, &ftrace_events, list) { |
33 | if (event->id == event_id) { | 113 | if (event->id == event_id) { |
34 | event->profile_disable(event); | 114 | ftrace_profile_disable_event(event); |
115 | module_put(event->mod); | ||
35 | break; | 116 | break; |
36 | } | 117 | } |
37 | } | 118 | } |
diff --git a/kernel/trace/trace_event_types.h b/kernel/trace/trace_event_types.h deleted file mode 100644 index e74f0906ab1a..000000000000 --- a/kernel/trace/trace_event_types.h +++ /dev/null | |||
@@ -1,178 +0,0 @@ | |||
1 | #undef TRACE_SYSTEM | ||
2 | #define TRACE_SYSTEM ftrace | ||
3 | |||
4 | /* | ||
5 | * We cheat and use the proto type field as the ID | ||
6 | * and args as the entry type (minus 'struct') | ||
7 | */ | ||
8 | TRACE_EVENT_FORMAT(function, TRACE_FN, ftrace_entry, ignore, | ||
9 | TRACE_STRUCT( | ||
10 | TRACE_FIELD(unsigned long, ip, ip) | ||
11 | TRACE_FIELD(unsigned long, parent_ip, parent_ip) | ||
12 | ), | ||
13 | TP_RAW_FMT(" %lx <-- %lx") | ||
14 | ); | ||
15 | |||
16 | TRACE_EVENT_FORMAT(funcgraph_entry, TRACE_GRAPH_ENT, | ||
17 | ftrace_graph_ent_entry, ignore, | ||
18 | TRACE_STRUCT( | ||
19 | TRACE_FIELD(unsigned long, graph_ent.func, func) | ||
20 | TRACE_FIELD(int, graph_ent.depth, depth) | ||
21 | ), | ||
22 | TP_RAW_FMT("--> %lx (%d)") | ||
23 | ); | ||
24 | |||
25 | TRACE_EVENT_FORMAT(funcgraph_exit, TRACE_GRAPH_RET, | ||
26 | ftrace_graph_ret_entry, ignore, | ||
27 | TRACE_STRUCT( | ||
28 | TRACE_FIELD(unsigned long, ret.func, func) | ||
29 | TRACE_FIELD(unsigned long long, ret.calltime, calltime) | ||
30 | TRACE_FIELD(unsigned long long, ret.rettime, rettime) | ||
31 | TRACE_FIELD(unsigned long, ret.overrun, overrun) | ||
32 | TRACE_FIELD(int, ret.depth, depth) | ||
33 | ), | ||
34 | TP_RAW_FMT("<-- %lx (%d)") | ||
35 | ); | ||
36 | |||
37 | TRACE_EVENT_FORMAT(wakeup, TRACE_WAKE, ctx_switch_entry, ignore, | ||
38 | TRACE_STRUCT( | ||
39 | TRACE_FIELD(unsigned int, prev_pid, prev_pid) | ||
40 | TRACE_FIELD(unsigned char, prev_prio, prev_prio) | ||
41 | TRACE_FIELD(unsigned char, prev_state, prev_state) | ||
42 | TRACE_FIELD(unsigned int, next_pid, next_pid) | ||
43 | TRACE_FIELD(unsigned char, next_prio, next_prio) | ||
44 | TRACE_FIELD(unsigned char, next_state, next_state) | ||
45 | TRACE_FIELD(unsigned int, next_cpu, next_cpu) | ||
46 | ), | ||
47 | TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]") | ||
48 | ); | ||
49 | |||
50 | TRACE_EVENT_FORMAT(context_switch, TRACE_CTX, ctx_switch_entry, ignore, | ||
51 | TRACE_STRUCT( | ||
52 | TRACE_FIELD(unsigned int, prev_pid, prev_pid) | ||
53 | TRACE_FIELD(unsigned char, prev_prio, prev_prio) | ||
54 | TRACE_FIELD(unsigned char, prev_state, prev_state) | ||
55 | TRACE_FIELD(unsigned int, next_pid, next_pid) | ||
56 | TRACE_FIELD(unsigned char, next_prio, next_prio) | ||
57 | TRACE_FIELD(unsigned char, next_state, next_state) | ||
58 | TRACE_FIELD(unsigned int, next_cpu, next_cpu) | ||
59 | ), | ||
60 | TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]") | ||
61 | ); | ||
62 | |||
63 | TRACE_EVENT_FORMAT_NOFILTER(special, TRACE_SPECIAL, special_entry, ignore, | ||
64 | TRACE_STRUCT( | ||
65 | TRACE_FIELD(unsigned long, arg1, arg1) | ||
66 | TRACE_FIELD(unsigned long, arg2, arg2) | ||
67 | TRACE_FIELD(unsigned long, arg3, arg3) | ||
68 | ), | ||
69 | TP_RAW_FMT("(%08lx) (%08lx) (%08lx)") | ||
70 | ); | ||
71 | |||
72 | /* | ||
73 | * Stack-trace entry: | ||
74 | */ | ||
75 | |||
76 | /* #define FTRACE_STACK_ENTRIES 8 */ | ||
77 | |||
78 | TRACE_EVENT_FORMAT(kernel_stack, TRACE_STACK, stack_entry, ignore, | ||
79 | TRACE_STRUCT( | ||
80 | TRACE_FIELD(unsigned long, caller[0], stack0) | ||
81 | TRACE_FIELD(unsigned long, caller[1], stack1) | ||
82 | TRACE_FIELD(unsigned long, caller[2], stack2) | ||
83 | TRACE_FIELD(unsigned long, caller[3], stack3) | ||
84 | TRACE_FIELD(unsigned long, caller[4], stack4) | ||
85 | TRACE_FIELD(unsigned long, caller[5], stack5) | ||
86 | TRACE_FIELD(unsigned long, caller[6], stack6) | ||
87 | TRACE_FIELD(unsigned long, caller[7], stack7) | ||
88 | ), | ||
89 | TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
90 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n") | ||
91 | ); | ||
92 | |||
93 | TRACE_EVENT_FORMAT(user_stack, TRACE_USER_STACK, userstack_entry, ignore, | ||
94 | TRACE_STRUCT( | ||
95 | TRACE_FIELD(unsigned long, caller[0], stack0) | ||
96 | TRACE_FIELD(unsigned long, caller[1], stack1) | ||
97 | TRACE_FIELD(unsigned long, caller[2], stack2) | ||
98 | TRACE_FIELD(unsigned long, caller[3], stack3) | ||
99 | TRACE_FIELD(unsigned long, caller[4], stack4) | ||
100 | TRACE_FIELD(unsigned long, caller[5], stack5) | ||
101 | TRACE_FIELD(unsigned long, caller[6], stack6) | ||
102 | TRACE_FIELD(unsigned long, caller[7], stack7) | ||
103 | ), | ||
104 | TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
105 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n") | ||
106 | ); | ||
107 | |||
108 | TRACE_EVENT_FORMAT(bprint, TRACE_BPRINT, bprint_entry, ignore, | ||
109 | TRACE_STRUCT( | ||
110 | TRACE_FIELD(unsigned long, ip, ip) | ||
111 | TRACE_FIELD(char *, fmt, fmt) | ||
112 | TRACE_FIELD_ZERO(char, buf) | ||
113 | ), | ||
114 | TP_RAW_FMT("%08lx (%d) fmt:%p %s") | ||
115 | ); | ||
116 | |||
117 | TRACE_EVENT_FORMAT(print, TRACE_PRINT, print_entry, ignore, | ||
118 | TRACE_STRUCT( | ||
119 | TRACE_FIELD(unsigned long, ip, ip) | ||
120 | TRACE_FIELD_ZERO(char, buf) | ||
121 | ), | ||
122 | TP_RAW_FMT("%08lx (%d) fmt:%p %s") | ||
123 | ); | ||
124 | |||
125 | TRACE_EVENT_FORMAT(branch, TRACE_BRANCH, trace_branch, ignore, | ||
126 | TRACE_STRUCT( | ||
127 | TRACE_FIELD(unsigned int, line, line) | ||
128 | TRACE_FIELD_SPECIAL(char func[TRACE_FUNC_SIZE+1], func, | ||
129 | TRACE_FUNC_SIZE+1, func) | ||
130 | TRACE_FIELD_SPECIAL(char file[TRACE_FUNC_SIZE+1], file, | ||
131 | TRACE_FUNC_SIZE+1, file) | ||
132 | TRACE_FIELD(char, correct, correct) | ||
133 | ), | ||
134 | TP_RAW_FMT("%u:%s:%s (%u)") | ||
135 | ); | ||
136 | |||
137 | TRACE_EVENT_FORMAT(hw_branch, TRACE_HW_BRANCHES, hw_branch_entry, ignore, | ||
138 | TRACE_STRUCT( | ||
139 | TRACE_FIELD(u64, from, from) | ||
140 | TRACE_FIELD(u64, to, to) | ||
141 | ), | ||
142 | TP_RAW_FMT("from: %llx to: %llx") | ||
143 | ); | ||
144 | |||
145 | TRACE_EVENT_FORMAT(power, TRACE_POWER, trace_power, ignore, | ||
146 | TRACE_STRUCT( | ||
147 | TRACE_FIELD_SIGN(ktime_t, state_data.stamp, stamp, 1) | ||
148 | TRACE_FIELD_SIGN(ktime_t, state_data.end, end, 1) | ||
149 | TRACE_FIELD(int, state_data.type, type) | ||
150 | TRACE_FIELD(int, state_data.state, state) | ||
151 | ), | ||
152 | TP_RAW_FMT("%llx->%llx type:%u state:%u") | ||
153 | ); | ||
154 | |||
155 | TRACE_EVENT_FORMAT(kmem_alloc, TRACE_KMEM_ALLOC, kmemtrace_alloc_entry, ignore, | ||
156 | TRACE_STRUCT( | ||
157 | TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id) | ||
158 | TRACE_FIELD(unsigned long, call_site, call_site) | ||
159 | TRACE_FIELD(const void *, ptr, ptr) | ||
160 | TRACE_FIELD(size_t, bytes_req, bytes_req) | ||
161 | TRACE_FIELD(size_t, bytes_alloc, bytes_alloc) | ||
162 | TRACE_FIELD(gfp_t, gfp_flags, gfp_flags) | ||
163 | TRACE_FIELD(int, node, node) | ||
164 | ), | ||
165 | TP_RAW_FMT("type:%u call_site:%lx ptr:%p req:%lu alloc:%lu" | ||
166 | " flags:%x node:%d") | ||
167 | ); | ||
168 | |||
169 | TRACE_EVENT_FORMAT(kmem_free, TRACE_KMEM_FREE, kmemtrace_free_entry, ignore, | ||
170 | TRACE_STRUCT( | ||
171 | TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id) | ||
172 | TRACE_FIELD(unsigned long, call_site, call_site) | ||
173 | TRACE_FIELD(const void *, ptr, ptr) | ||
174 | ), | ||
175 | TP_RAW_FMT("type:%u call_site:%lx ptr:%p") | ||
176 | ); | ||
177 | |||
178 | #undef TRACE_SYSTEM | ||
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index f85b0f1cb942..a4b7c9a9130c 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
@@ -21,6 +21,7 @@ | |||
21 | 21 | ||
22 | #include "trace_output.h" | 22 | #include "trace_output.h" |
23 | 23 | ||
24 | #undef TRACE_SYSTEM | ||
24 | #define TRACE_SYSTEM "TRACE_SYSTEM" | 25 | #define TRACE_SYSTEM "TRACE_SYSTEM" |
25 | 26 | ||
26 | DEFINE_MUTEX(event_mutex); | 27 | DEFINE_MUTEX(event_mutex); |
@@ -86,7 +87,7 @@ int trace_define_common_fields(struct ftrace_event_call *call) | |||
86 | __common_field(unsigned char, flags); | 87 | __common_field(unsigned char, flags); |
87 | __common_field(unsigned char, preempt_count); | 88 | __common_field(unsigned char, preempt_count); |
88 | __common_field(int, pid); | 89 | __common_field(int, pid); |
89 | __common_field(int, tgid); | 90 | __common_field(int, lock_depth); |
90 | 91 | ||
91 | return ret; | 92 | return ret; |
92 | } | 93 | } |
@@ -226,11 +227,9 @@ static ssize_t | |||
226 | ftrace_event_write(struct file *file, const char __user *ubuf, | 227 | ftrace_event_write(struct file *file, const char __user *ubuf, |
227 | size_t cnt, loff_t *ppos) | 228 | size_t cnt, loff_t *ppos) |
228 | { | 229 | { |
230 | struct trace_parser parser; | ||
229 | size_t read = 0; | 231 | size_t read = 0; |
230 | int i, set = 1; | ||
231 | ssize_t ret; | 232 | ssize_t ret; |
232 | char *buf; | ||
233 | char ch; | ||
234 | 233 | ||
235 | if (!cnt || cnt < 0) | 234 | if (!cnt || cnt < 0) |
236 | return 0; | 235 | return 0; |
@@ -239,60 +238,28 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
239 | if (ret < 0) | 238 | if (ret < 0) |
240 | return ret; | 239 | return ret; |
241 | 240 | ||
242 | ret = get_user(ch, ubuf++); | 241 | if (trace_parser_get_init(&parser, EVENT_BUF_SIZE + 1)) |
243 | if (ret) | ||
244 | return ret; | ||
245 | read++; | ||
246 | cnt--; | ||
247 | |||
248 | /* skip white space */ | ||
249 | while (cnt && isspace(ch)) { | ||
250 | ret = get_user(ch, ubuf++); | ||
251 | if (ret) | ||
252 | return ret; | ||
253 | read++; | ||
254 | cnt--; | ||
255 | } | ||
256 | |||
257 | /* Only white space found? */ | ||
258 | if (isspace(ch)) { | ||
259 | file->f_pos += read; | ||
260 | ret = read; | ||
261 | return ret; | ||
262 | } | ||
263 | |||
264 | buf = kmalloc(EVENT_BUF_SIZE+1, GFP_KERNEL); | ||
265 | if (!buf) | ||
266 | return -ENOMEM; | 242 | return -ENOMEM; |
267 | 243 | ||
268 | if (cnt > EVENT_BUF_SIZE) | 244 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
269 | cnt = EVENT_BUF_SIZE; | 245 | |
246 | if (trace_parser_loaded((&parser))) { | ||
247 | int set = 1; | ||
270 | 248 | ||
271 | i = 0; | 249 | if (*parser.buffer == '!') |
272 | while (cnt && !isspace(ch)) { | ||
273 | if (!i && ch == '!') | ||
274 | set = 0; | 250 | set = 0; |
275 | else | ||
276 | buf[i++] = ch; | ||
277 | 251 | ||
278 | ret = get_user(ch, ubuf++); | 252 | parser.buffer[parser.idx] = 0; |
253 | |||
254 | ret = ftrace_set_clr_event(parser.buffer + !set, set); | ||
279 | if (ret) | 255 | if (ret) |
280 | goto out_free; | 256 | goto out_put; |
281 | read++; | ||
282 | cnt--; | ||
283 | } | 257 | } |
284 | buf[i] = 0; | ||
285 | |||
286 | file->f_pos += read; | ||
287 | |||
288 | ret = ftrace_set_clr_event(buf, set); | ||
289 | if (ret) | ||
290 | goto out_free; | ||
291 | 258 | ||
292 | ret = read; | 259 | ret = read; |
293 | 260 | ||
294 | out_free: | 261 | out_put: |
295 | kfree(buf); | 262 | trace_parser_put(&parser); |
296 | 263 | ||
297 | return ret; | 264 | return ret; |
298 | } | 265 | } |
@@ -300,42 +267,32 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
300 | static void * | 267 | static void * |
301 | t_next(struct seq_file *m, void *v, loff_t *pos) | 268 | t_next(struct seq_file *m, void *v, loff_t *pos) |
302 | { | 269 | { |
303 | struct list_head *list = m->private; | 270 | struct ftrace_event_call *call = v; |
304 | struct ftrace_event_call *call; | ||
305 | 271 | ||
306 | (*pos)++; | 272 | (*pos)++; |
307 | 273 | ||
308 | for (;;) { | 274 | list_for_each_entry_continue(call, &ftrace_events, list) { |
309 | if (list == &ftrace_events) | ||
310 | return NULL; | ||
311 | |||
312 | call = list_entry(list, struct ftrace_event_call, list); | ||
313 | |||
314 | /* | 275 | /* |
315 | * The ftrace subsystem is for showing formats only. | 276 | * The ftrace subsystem is for showing formats only. |
316 | * They can not be enabled or disabled via the event files. | 277 | * They can not be enabled or disabled via the event files. |
317 | */ | 278 | */ |
318 | if (call->regfunc) | 279 | if (call->regfunc) |
319 | break; | 280 | return call; |
320 | |||
321 | list = list->next; | ||
322 | } | 281 | } |
323 | 282 | ||
324 | m->private = list->next; | 283 | return NULL; |
325 | |||
326 | return call; | ||
327 | } | 284 | } |
328 | 285 | ||
329 | static void *t_start(struct seq_file *m, loff_t *pos) | 286 | static void *t_start(struct seq_file *m, loff_t *pos) |
330 | { | 287 | { |
331 | struct ftrace_event_call *call = NULL; | 288 | struct ftrace_event_call *call; |
332 | loff_t l; | 289 | loff_t l; |
333 | 290 | ||
334 | mutex_lock(&event_mutex); | 291 | mutex_lock(&event_mutex); |
335 | 292 | ||
336 | m->private = ftrace_events.next; | 293 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
337 | for (l = 0; l <= *pos; ) { | 294 | for (l = 0; l <= *pos; ) { |
338 | call = t_next(m, NULL, &l); | 295 | call = t_next(m, call, &l); |
339 | if (!call) | 296 | if (!call) |
340 | break; | 297 | break; |
341 | } | 298 | } |
@@ -345,37 +302,28 @@ static void *t_start(struct seq_file *m, loff_t *pos) | |||
345 | static void * | 302 | static void * |
346 | s_next(struct seq_file *m, void *v, loff_t *pos) | 303 | s_next(struct seq_file *m, void *v, loff_t *pos) |
347 | { | 304 | { |
348 | struct list_head *list = m->private; | 305 | struct ftrace_event_call *call = v; |
349 | struct ftrace_event_call *call; | ||
350 | 306 | ||
351 | (*pos)++; | 307 | (*pos)++; |
352 | 308 | ||
353 | retry: | 309 | list_for_each_entry_continue(call, &ftrace_events, list) { |
354 | if (list == &ftrace_events) | 310 | if (call->enabled) |
355 | return NULL; | 311 | return call; |
356 | |||
357 | call = list_entry(list, struct ftrace_event_call, list); | ||
358 | |||
359 | if (!call->enabled) { | ||
360 | list = list->next; | ||
361 | goto retry; | ||
362 | } | 312 | } |
363 | 313 | ||
364 | m->private = list->next; | 314 | return NULL; |
365 | |||
366 | return call; | ||
367 | } | 315 | } |
368 | 316 | ||
369 | static void *s_start(struct seq_file *m, loff_t *pos) | 317 | static void *s_start(struct seq_file *m, loff_t *pos) |
370 | { | 318 | { |
371 | struct ftrace_event_call *call = NULL; | 319 | struct ftrace_event_call *call; |
372 | loff_t l; | 320 | loff_t l; |
373 | 321 | ||
374 | mutex_lock(&event_mutex); | 322 | mutex_lock(&event_mutex); |
375 | 323 | ||
376 | m->private = ftrace_events.next; | 324 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
377 | for (l = 0; l <= *pos; ) { | 325 | for (l = 0; l <= *pos; ) { |
378 | call = s_next(m, NULL, &l); | 326 | call = s_next(m, call, &l); |
379 | if (!call) | 327 | if (!call) |
380 | break; | 328 | break; |
381 | } | 329 | } |
@@ -574,7 +522,7 @@ static int trace_write_header(struct trace_seq *s) | |||
574 | FIELD(unsigned char, flags), | 522 | FIELD(unsigned char, flags), |
575 | FIELD(unsigned char, preempt_count), | 523 | FIELD(unsigned char, preempt_count), |
576 | FIELD(int, pid), | 524 | FIELD(int, pid), |
577 | FIELD(int, tgid)); | 525 | FIELD(int, lock_depth)); |
578 | } | 526 | } |
579 | 527 | ||
580 | static ssize_t | 528 | static ssize_t |
@@ -1242,7 +1190,7 @@ static int trace_module_notify(struct notifier_block *self, | |||
1242 | } | 1190 | } |
1243 | #endif /* CONFIG_MODULES */ | 1191 | #endif /* CONFIG_MODULES */ |
1244 | 1192 | ||
1245 | struct notifier_block trace_module_nb = { | 1193 | static struct notifier_block trace_module_nb = { |
1246 | .notifier_call = trace_module_notify, | 1194 | .notifier_call = trace_module_notify, |
1247 | .priority = 0, | 1195 | .priority = 0, |
1248 | }; | 1196 | }; |
@@ -1414,6 +1362,18 @@ static __init void event_trace_self_tests(void) | |||
1414 | if (!call->regfunc) | 1362 | if (!call->regfunc) |
1415 | continue; | 1363 | continue; |
1416 | 1364 | ||
1365 | /* | ||
1366 | * Testing syscall events here is pretty useless, but | ||
1367 | * we still do it if configured. But this is time consuming. | ||
1368 | * What we really need is a user thread to perform the | ||
1369 | * syscalls as we test. | ||
1370 | */ | ||
1371 | #ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS | ||
1372 | if (call->system && | ||
1373 | strcmp(call->system, "syscalls") == 0) | ||
1374 | continue; | ||
1375 | #endif | ||
1376 | |||
1417 | pr_info("Testing event %s: ", call->name); | 1377 | pr_info("Testing event %s: ", call->name); |
1418 | 1378 | ||
1419 | /* | 1379 | /* |
@@ -1487,7 +1447,7 @@ static __init void event_trace_self_tests(void) | |||
1487 | 1447 | ||
1488 | #ifdef CONFIG_FUNCTION_TRACER | 1448 | #ifdef CONFIG_FUNCTION_TRACER |
1489 | 1449 | ||
1490 | static DEFINE_PER_CPU(atomic_t, test_event_disable); | 1450 | static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable); |
1491 | 1451 | ||
1492 | static void | 1452 | static void |
1493 | function_test_events_call(unsigned long ip, unsigned long parent_ip) | 1453 | function_test_events_call(unsigned long ip, unsigned long parent_ip) |
@@ -1504,7 +1464,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip) | |||
1504 | pc = preempt_count(); | 1464 | pc = preempt_count(); |
1505 | resched = ftrace_preempt_disable(); | 1465 | resched = ftrace_preempt_disable(); |
1506 | cpu = raw_smp_processor_id(); | 1466 | cpu = raw_smp_processor_id(); |
1507 | disabled = atomic_inc_return(&per_cpu(test_event_disable, cpu)); | 1467 | disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu)); |
1508 | 1468 | ||
1509 | if (disabled != 1) | 1469 | if (disabled != 1) |
1510 | goto out; | 1470 | goto out; |
@@ -1523,7 +1483,7 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip) | |||
1523 | trace_nowake_buffer_unlock_commit(buffer, event, flags, pc); | 1483 | trace_nowake_buffer_unlock_commit(buffer, event, flags, pc); |
1524 | 1484 | ||
1525 | out: | 1485 | out: |
1526 | atomic_dec(&per_cpu(test_event_disable, cpu)); | 1486 | atomic_dec(&per_cpu(ftrace_test_event_disable, cpu)); |
1527 | ftrace_preempt_enable(resched); | 1487 | ftrace_preempt_enable(resched); |
1528 | } | 1488 | } |
1529 | 1489 | ||
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c index 93660fbbf629..23245785927f 100644 --- a/kernel/trace/trace_events_filter.c +++ b/kernel/trace/trace_events_filter.c | |||
@@ -121,6 +121,47 @@ struct filter_parse_state { | |||
121 | } operand; | 121 | } operand; |
122 | }; | 122 | }; |
123 | 123 | ||
124 | #define DEFINE_COMPARISON_PRED(type) \ | ||
125 | static int filter_pred_##type(struct filter_pred *pred, void *event, \ | ||
126 | int val1, int val2) \ | ||
127 | { \ | ||
128 | type *addr = (type *)(event + pred->offset); \ | ||
129 | type val = (type)pred->val; \ | ||
130 | int match = 0; \ | ||
131 | \ | ||
132 | switch (pred->op) { \ | ||
133 | case OP_LT: \ | ||
134 | match = (*addr < val); \ | ||
135 | break; \ | ||
136 | case OP_LE: \ | ||
137 | match = (*addr <= val); \ | ||
138 | break; \ | ||
139 | case OP_GT: \ | ||
140 | match = (*addr > val); \ | ||
141 | break; \ | ||
142 | case OP_GE: \ | ||
143 | match = (*addr >= val); \ | ||
144 | break; \ | ||
145 | default: \ | ||
146 | break; \ | ||
147 | } \ | ||
148 | \ | ||
149 | return match; \ | ||
150 | } | ||
151 | |||
152 | #define DEFINE_EQUALITY_PRED(size) \ | ||
153 | static int filter_pred_##size(struct filter_pred *pred, void *event, \ | ||
154 | int val1, int val2) \ | ||
155 | { \ | ||
156 | u##size *addr = (u##size *)(event + pred->offset); \ | ||
157 | u##size val = (u##size)pred->val; \ | ||
158 | int match; \ | ||
159 | \ | ||
160 | match = (val == *addr) ^ pred->not; \ | ||
161 | \ | ||
162 | return match; \ | ||
163 | } | ||
164 | |||
124 | DEFINE_COMPARISON_PRED(s64); | 165 | DEFINE_COMPARISON_PRED(s64); |
125 | DEFINE_COMPARISON_PRED(u64); | 166 | DEFINE_COMPARISON_PRED(u64); |
126 | DEFINE_COMPARISON_PRED(s32); | 167 | DEFINE_COMPARISON_PRED(s32); |
diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c index a79ef6f193c0..ed7d48083520 100644 --- a/kernel/trace/trace_export.c +++ b/kernel/trace/trace_export.c | |||
@@ -15,147 +15,124 @@ | |||
15 | 15 | ||
16 | #include "trace_output.h" | 16 | #include "trace_output.h" |
17 | 17 | ||
18 | #undef TRACE_SYSTEM | ||
19 | #define TRACE_SYSTEM ftrace | ||
18 | 20 | ||
19 | #undef TRACE_STRUCT | 21 | /* not needed for this file */ |
20 | #define TRACE_STRUCT(args...) args | 22 | #undef __field_struct |
23 | #define __field_struct(type, item) | ||
21 | 24 | ||
22 | extern void __bad_type_size(void); | 25 | #undef __field |
26 | #define __field(type, item) type item; | ||
23 | 27 | ||
24 | #undef TRACE_FIELD | 28 | #undef __field_desc |
25 | #define TRACE_FIELD(type, item, assign) \ | 29 | #define __field_desc(type, container, item) type item; |
26 | if (sizeof(type) != sizeof(field.item)) \ | 30 | |
27 | __bad_type_size(); \ | 31 | #undef __array |
32 | #define __array(type, item, size) type item[size]; | ||
33 | |||
34 | #undef __array_desc | ||
35 | #define __array_desc(type, container, item, size) type item[size]; | ||
36 | |||
37 | #undef __dynamic_array | ||
38 | #define __dynamic_array(type, item) type item[]; | ||
39 | |||
40 | #undef F_STRUCT | ||
41 | #define F_STRUCT(args...) args | ||
42 | |||
43 | #undef F_printk | ||
44 | #define F_printk(fmt, args...) fmt, args | ||
45 | |||
46 | #undef FTRACE_ENTRY | ||
47 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ | ||
48 | struct ____ftrace_##name { \ | ||
49 | tstruct \ | ||
50 | }; \ | ||
51 | static void __used ____ftrace_check_##name(void) \ | ||
52 | { \ | ||
53 | struct ____ftrace_##name *__entry = NULL; \ | ||
54 | \ | ||
55 | /* force cmpile-time check on F_printk() */ \ | ||
56 | printk(print); \ | ||
57 | } | ||
58 | |||
59 | #undef FTRACE_ENTRY_DUP | ||
60 | #define FTRACE_ENTRY_DUP(name, struct_name, id, tstruct, print) \ | ||
61 | FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print)) | ||
62 | |||
63 | #include "trace_entries.h" | ||
64 | |||
65 | |||
66 | #undef __field | ||
67 | #define __field(type, item) \ | ||
28 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ | 68 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ |
29 | "offset:%u;\tsize:%u;\n", \ | 69 | "offset:%zu;\tsize:%zu;\n", \ |
30 | (unsigned int)offsetof(typeof(field), item), \ | 70 | offsetof(typeof(field), item), \ |
31 | (unsigned int)sizeof(field.item)); \ | 71 | sizeof(field.item)); \ |
32 | if (!ret) \ | 72 | if (!ret) \ |
33 | return 0; | 73 | return 0; |
34 | 74 | ||
75 | #undef __field_desc | ||
76 | #define __field_desc(type, container, item) \ | ||
77 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ | ||
78 | "offset:%zu;\tsize:%zu;\n", \ | ||
79 | offsetof(typeof(field), container.item), \ | ||
80 | sizeof(field.container.item)); \ | ||
81 | if (!ret) \ | ||
82 | return 0; | ||
35 | 83 | ||
36 | #undef TRACE_FIELD_SPECIAL | 84 | #undef __array |
37 | #define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \ | 85 | #define __array(type, item, len) \ |
38 | ret = trace_seq_printf(s, "\tfield special:" #type_item ";\t" \ | 86 | ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ |
39 | "offset:%u;\tsize:%u;\n", \ | 87 | "offset:%zu;\tsize:%zu;\n", \ |
40 | (unsigned int)offsetof(typeof(field), item), \ | 88 | offsetof(typeof(field), item), \ |
41 | (unsigned int)sizeof(field.item)); \ | 89 | sizeof(field.item)); \ |
42 | if (!ret) \ | 90 | if (!ret) \ |
43 | return 0; | 91 | return 0; |
44 | 92 | ||
45 | #undef TRACE_FIELD_ZERO | 93 | #undef __array_desc |
46 | #define TRACE_FIELD_ZERO(type, item) \ | 94 | #define __array_desc(type, container, item, len) \ |
47 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ | 95 | ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ |
48 | "offset:%u;\tsize:0;\n", \ | 96 | "offset:%zu;\tsize:%zu;\n", \ |
49 | (unsigned int)offsetof(typeof(field), item)); \ | 97 | offsetof(typeof(field), container.item), \ |
98 | sizeof(field.container.item)); \ | ||
50 | if (!ret) \ | 99 | if (!ret) \ |
51 | return 0; | 100 | return 0; |
52 | 101 | ||
53 | #undef TRACE_FIELD_SIGN | 102 | #undef __dynamic_array |
54 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | 103 | #define __dynamic_array(type, item) \ |
55 | TRACE_FIELD(type, item, assign) | 104 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ |
105 | "offset:%zu;\tsize:0;\n", \ | ||
106 | offsetof(typeof(field), item)); \ | ||
107 | if (!ret) \ | ||
108 | return 0; | ||
56 | 109 | ||
57 | #undef TP_RAW_FMT | 110 | #undef F_printk |
58 | #define TP_RAW_FMT(args...) args | 111 | #define F_printk(fmt, args...) "%s, %s\n", #fmt, __stringify(args) |
59 | 112 | ||
60 | #undef TRACE_EVENT_FORMAT | 113 | #undef __entry |
61 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 114 | #define __entry REC |
62 | static int \ | ||
63 | ftrace_format_##call(struct ftrace_event_call *unused, \ | ||
64 | struct trace_seq *s) \ | ||
65 | { \ | ||
66 | struct args field; \ | ||
67 | int ret; \ | ||
68 | \ | ||
69 | tstruct; \ | ||
70 | \ | ||
71 | trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \ | ||
72 | \ | ||
73 | return ret; \ | ||
74 | } | ||
75 | 115 | ||
76 | #undef TRACE_EVENT_FORMAT_NOFILTER | 116 | #undef FTRACE_ENTRY |
77 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | 117 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
78 | tpfmt) \ | ||
79 | static int \ | 118 | static int \ |
80 | ftrace_format_##call(struct ftrace_event_call *unused, \ | 119 | ftrace_format_##name(struct ftrace_event_call *unused, \ |
81 | struct trace_seq *s) \ | 120 | struct trace_seq *s) \ |
82 | { \ | 121 | { \ |
83 | struct args field; \ | 122 | struct struct_name field __attribute__((unused)); \ |
84 | int ret; \ | 123 | int ret = 0; \ |
85 | \ | 124 | \ |
86 | tstruct; \ | 125 | tstruct; \ |
87 | \ | 126 | \ |
88 | trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \ | 127 | trace_seq_printf(s, "\nprint fmt: " print); \ |
89 | \ | 128 | \ |
90 | return ret; \ | 129 | return ret; \ |
91 | } | 130 | } |
92 | 131 | ||
93 | #include "trace_event_types.h" | 132 | #include "trace_entries.h" |
94 | |||
95 | #undef TRACE_FIELD | ||
96 | #define TRACE_FIELD(type, item, assign)\ | ||
97 | entry->item = assign; | ||
98 | |||
99 | #undef TRACE_FIELD | ||
100 | #define TRACE_FIELD(type, item, assign)\ | ||
101 | entry->item = assign; | ||
102 | |||
103 | #undef TRACE_FIELD_SIGN | ||
104 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | ||
105 | TRACE_FIELD(type, item, assign) | ||
106 | |||
107 | #undef TRACE_FIELD_ZERO | ||
108 | #define TRACE_FIELD_ZERO(type, item) | ||
109 | |||
110 | #undef TP_CMD | ||
111 | #define TP_CMD(cmd...) cmd | ||
112 | |||
113 | #undef TRACE_ENTRY | ||
114 | #define TRACE_ENTRY entry | ||
115 | |||
116 | #undef TRACE_FIELD_SPECIAL | ||
117 | #define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \ | ||
118 | cmd; | ||
119 | |||
120 | static int ftrace_raw_init_event(struct ftrace_event_call *event_call) | ||
121 | { | ||
122 | INIT_LIST_HEAD(&event_call->fields); | ||
123 | |||
124 | return 0; | ||
125 | } | ||
126 | |||
127 | #undef TRACE_EVENT_FORMAT | ||
128 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | ||
129 | int ftrace_define_fields_##call(struct ftrace_event_call *event_call); \ | ||
130 | \ | ||
131 | struct ftrace_event_call __used \ | ||
132 | __attribute__((__aligned__(4))) \ | ||
133 | __attribute__((section("_ftrace_events"))) event_##call = { \ | ||
134 | .name = #call, \ | ||
135 | .id = proto, \ | ||
136 | .system = __stringify(TRACE_SYSTEM), \ | ||
137 | .raw_init = ftrace_raw_init_event, \ | ||
138 | .show_format = ftrace_format_##call, \ | ||
139 | .define_fields = ftrace_define_fields_##call, \ | ||
140 | }; \ | ||
141 | |||
142 | #undef TRACE_EVENT_FORMAT_NOFILTER | ||
143 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | ||
144 | tpfmt) \ | ||
145 | \ | ||
146 | struct ftrace_event_call __used \ | ||
147 | __attribute__((__aligned__(4))) \ | ||
148 | __attribute__((section("_ftrace_events"))) event_##call = { \ | ||
149 | .name = #call, \ | ||
150 | .id = proto, \ | ||
151 | .system = __stringify(TRACE_SYSTEM), \ | ||
152 | .show_format = ftrace_format_##call, \ | ||
153 | }; | ||
154 | |||
155 | #include "trace_event_types.h" | ||
156 | 133 | ||
157 | #undef TRACE_FIELD | 134 | #undef __field |
158 | #define TRACE_FIELD(type, item, assign) \ | 135 | #define __field(type, item) \ |
159 | ret = trace_define_field(event_call, #type, #item, \ | 136 | ret = trace_define_field(event_call, #type, #item, \ |
160 | offsetof(typeof(field), item), \ | 137 | offsetof(typeof(field), item), \ |
161 | sizeof(field.item), \ | 138 | sizeof(field.item), \ |
@@ -163,32 +140,45 @@ __attribute__((section("_ftrace_events"))) event_##call = { \ | |||
163 | if (ret) \ | 140 | if (ret) \ |
164 | return ret; | 141 | return ret; |
165 | 142 | ||
166 | #undef TRACE_FIELD_SPECIAL | 143 | #undef __field_desc |
167 | #define TRACE_FIELD_SPECIAL(type, item, len, cmd) \ | 144 | #define __field_desc(type, container, item) \ |
145 | ret = trace_define_field(event_call, #type, #item, \ | ||
146 | offsetof(typeof(field), \ | ||
147 | container.item), \ | ||
148 | sizeof(field.container.item), \ | ||
149 | is_signed_type(type), FILTER_OTHER); \ | ||
150 | if (ret) \ | ||
151 | return ret; | ||
152 | |||
153 | #undef __array | ||
154 | #define __array(type, item, len) \ | ||
155 | BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \ | ||
168 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ | 156 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ |
169 | offsetof(typeof(field), item), \ | 157 | offsetof(typeof(field), item), \ |
170 | sizeof(field.item), 0, FILTER_OTHER); \ | 158 | sizeof(field.item), 0, FILTER_OTHER); \ |
171 | if (ret) \ | 159 | if (ret) \ |
172 | return ret; | 160 | return ret; |
173 | 161 | ||
174 | #undef TRACE_FIELD_SIGN | 162 | #undef __array_desc |
175 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | 163 | #define __array_desc(type, container, item, len) \ |
176 | ret = trace_define_field(event_call, #type, #item, \ | 164 | BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \ |
177 | offsetof(typeof(field), item), \ | 165 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ |
178 | sizeof(field.item), is_signed, \ | 166 | offsetof(typeof(field), \ |
167 | container.item), \ | ||
168 | sizeof(field.container.item), 0, \ | ||
179 | FILTER_OTHER); \ | 169 | FILTER_OTHER); \ |
180 | if (ret) \ | 170 | if (ret) \ |
181 | return ret; | 171 | return ret; |
182 | 172 | ||
183 | #undef TRACE_FIELD_ZERO | 173 | #undef __dynamic_array |
184 | #define TRACE_FIELD_ZERO(type, item) | 174 | #define __dynamic_array(type, item) |
185 | 175 | ||
186 | #undef TRACE_EVENT_FORMAT | 176 | #undef FTRACE_ENTRY |
187 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 177 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
188 | int \ | 178 | int \ |
189 | ftrace_define_fields_##call(struct ftrace_event_call *event_call) \ | 179 | ftrace_define_fields_##name(struct ftrace_event_call *event_call) \ |
190 | { \ | 180 | { \ |
191 | struct args field; \ | 181 | struct struct_name field; \ |
192 | int ret; \ | 182 | int ret; \ |
193 | \ | 183 | \ |
194 | ret = trace_define_common_fields(event_call); \ | 184 | ret = trace_define_common_fields(event_call); \ |
@@ -200,8 +190,41 @@ ftrace_define_fields_##call(struct ftrace_event_call *event_call) \ | |||
200 | return ret; \ | 190 | return ret; \ |
201 | } | 191 | } |
202 | 192 | ||
203 | #undef TRACE_EVENT_FORMAT_NOFILTER | 193 | #include "trace_entries.h" |
204 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | 194 | |
205 | tpfmt) | 195 | static int ftrace_raw_init_event(struct ftrace_event_call *call) |
196 | { | ||
197 | INIT_LIST_HEAD(&call->fields); | ||
198 | return 0; | ||
199 | } | ||
200 | |||
201 | #undef __field | ||
202 | #define __field(type, item) | ||
203 | |||
204 | #undef __field_desc | ||
205 | #define __field_desc(type, container, item) | ||
206 | |||
207 | #undef __array | ||
208 | #define __array(type, item, len) | ||
209 | |||
210 | #undef __array_desc | ||
211 | #define __array_desc(type, container, item, len) | ||
212 | |||
213 | #undef __dynamic_array | ||
214 | #define __dynamic_array(type, item) | ||
215 | |||
216 | #undef FTRACE_ENTRY | ||
217 | #define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \ | ||
218 | \ | ||
219 | struct ftrace_event_call __used \ | ||
220 | __attribute__((__aligned__(4))) \ | ||
221 | __attribute__((section("_ftrace_events"))) event_##call = { \ | ||
222 | .name = #call, \ | ||
223 | .id = type, \ | ||
224 | .system = __stringify(TRACE_SYSTEM), \ | ||
225 | .raw_init = ftrace_raw_init_event, \ | ||
226 | .show_format = ftrace_format_##call, \ | ||
227 | .define_fields = ftrace_define_fields_##call, \ | ||
228 | }; \ | ||
206 | 229 | ||
207 | #include "trace_event_types.h" | 230 | #include "trace_entries.h" |
diff --git a/kernel/trace/trace_functions.c b/kernel/trace/trace_functions.c index 5b01b94518fc..b3f3776b0cd6 100644 --- a/kernel/trace/trace_functions.c +++ b/kernel/trace/trace_functions.c | |||
@@ -290,7 +290,7 @@ ftrace_trace_onoff_print(struct seq_file *m, unsigned long ip, | |||
290 | { | 290 | { |
291 | long count = (long)data; | 291 | long count = (long)data; |
292 | 292 | ||
293 | seq_printf(m, "%pf:", (void *)ip); | 293 | seq_printf(m, "%ps:", (void *)ip); |
294 | 294 | ||
295 | if (ops == &traceon_probe_ops) | 295 | if (ops == &traceon_probe_ops) |
296 | seq_printf(m, "traceon"); | 296 | seq_printf(m, "traceon"); |
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index b3749a2c3132..45e6c01b2e4d 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c | |||
@@ -124,7 +124,7 @@ ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret, | |||
124 | if (unlikely(current->ret_stack[index].fp != frame_pointer)) { | 124 | if (unlikely(current->ret_stack[index].fp != frame_pointer)) { |
125 | ftrace_graph_stop(); | 125 | ftrace_graph_stop(); |
126 | WARN(1, "Bad frame pointer: expected %lx, received %lx\n" | 126 | WARN(1, "Bad frame pointer: expected %lx, received %lx\n" |
127 | " from func %pF return to %lx\n", | 127 | " from func %ps return to %lx\n", |
128 | current->ret_stack[index].fp, | 128 | current->ret_stack[index].fp, |
129 | frame_pointer, | 129 | frame_pointer, |
130 | (void *)current->ret_stack[index].func, | 130 | (void *)current->ret_stack[index].func, |
@@ -364,6 +364,15 @@ print_graph_proc(struct trace_seq *s, pid_t pid) | |||
364 | } | 364 | } |
365 | 365 | ||
366 | 366 | ||
367 | static enum print_line_t | ||
368 | print_graph_lat_fmt(struct trace_seq *s, struct trace_entry *entry) | ||
369 | { | ||
370 | if (!trace_seq_putc(s, ' ')) | ||
371 | return 0; | ||
372 | |||
373 | return trace_print_lat_fmt(s, entry); | ||
374 | } | ||
375 | |||
367 | /* If the pid changed since the last trace, output this event */ | 376 | /* If the pid changed since the last trace, output this event */ |
368 | static enum print_line_t | 377 | static enum print_line_t |
369 | verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data) | 378 | verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data) |
@@ -521,6 +530,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr, | |||
521 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 530 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
522 | return TRACE_TYPE_PARTIAL_LINE; | 531 | return TRACE_TYPE_PARTIAL_LINE; |
523 | } | 532 | } |
533 | |||
524 | /* Proc */ | 534 | /* Proc */ |
525 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { | 535 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { |
526 | ret = print_graph_proc(s, pid); | 536 | ret = print_graph_proc(s, pid); |
@@ -659,7 +669,7 @@ print_graph_entry_leaf(struct trace_iterator *iter, | |||
659 | return TRACE_TYPE_PARTIAL_LINE; | 669 | return TRACE_TYPE_PARTIAL_LINE; |
660 | } | 670 | } |
661 | 671 | ||
662 | ret = trace_seq_printf(s, "%pf();\n", (void *)call->func); | 672 | ret = trace_seq_printf(s, "%ps();\n", (void *)call->func); |
663 | if (!ret) | 673 | if (!ret) |
664 | return TRACE_TYPE_PARTIAL_LINE; | 674 | return TRACE_TYPE_PARTIAL_LINE; |
665 | 675 | ||
@@ -702,7 +712,7 @@ print_graph_entry_nested(struct trace_iterator *iter, | |||
702 | return TRACE_TYPE_PARTIAL_LINE; | 712 | return TRACE_TYPE_PARTIAL_LINE; |
703 | } | 713 | } |
704 | 714 | ||
705 | ret = trace_seq_printf(s, "%pf() {\n", (void *)call->func); | 715 | ret = trace_seq_printf(s, "%ps() {\n", (void *)call->func); |
706 | if (!ret) | 716 | if (!ret) |
707 | return TRACE_TYPE_PARTIAL_LINE; | 717 | return TRACE_TYPE_PARTIAL_LINE; |
708 | 718 | ||
@@ -758,6 +768,13 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, | |||
758 | return TRACE_TYPE_PARTIAL_LINE; | 768 | return TRACE_TYPE_PARTIAL_LINE; |
759 | } | 769 | } |
760 | 770 | ||
771 | /* Latency format */ | ||
772 | if (trace_flags & TRACE_ITER_LATENCY_FMT) { | ||
773 | ret = print_graph_lat_fmt(s, ent); | ||
774 | if (ret == TRACE_TYPE_PARTIAL_LINE) | ||
775 | return TRACE_TYPE_PARTIAL_LINE; | ||
776 | } | ||
777 | |||
761 | return 0; | 778 | return 0; |
762 | } | 779 | } |
763 | 780 | ||
@@ -952,28 +969,59 @@ print_graph_function(struct trace_iterator *iter) | |||
952 | return TRACE_TYPE_HANDLED; | 969 | return TRACE_TYPE_HANDLED; |
953 | } | 970 | } |
954 | 971 | ||
972 | static void print_lat_header(struct seq_file *s) | ||
973 | { | ||
974 | static const char spaces[] = " " /* 16 spaces */ | ||
975 | " " /* 4 spaces */ | ||
976 | " "; /* 17 spaces */ | ||
977 | int size = 0; | ||
978 | |||
979 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | ||
980 | size += 16; | ||
981 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | ||
982 | size += 4; | ||
983 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | ||
984 | size += 17; | ||
985 | |||
986 | seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces); | ||
987 | seq_printf(s, "#%.*s / _----=> need-resched \n", size, spaces); | ||
988 | seq_printf(s, "#%.*s| / _---=> hardirq/softirq \n", size, spaces); | ||
989 | seq_printf(s, "#%.*s|| / _--=> preempt-depth \n", size, spaces); | ||
990 | seq_printf(s, "#%.*s||| / _-=> lock-depth \n", size, spaces); | ||
991 | seq_printf(s, "#%.*s|||| / \n", size, spaces); | ||
992 | } | ||
993 | |||
955 | static void print_graph_headers(struct seq_file *s) | 994 | static void print_graph_headers(struct seq_file *s) |
956 | { | 995 | { |
996 | int lat = trace_flags & TRACE_ITER_LATENCY_FMT; | ||
997 | |||
998 | if (lat) | ||
999 | print_lat_header(s); | ||
1000 | |||
957 | /* 1st line */ | 1001 | /* 1st line */ |
958 | seq_printf(s, "# "); | 1002 | seq_printf(s, "#"); |
959 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1003 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) |
960 | seq_printf(s, " TIME "); | 1004 | seq_printf(s, " TIME "); |
961 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1005 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) |
962 | seq_printf(s, "CPU"); | 1006 | seq_printf(s, " CPU"); |
963 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1007 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) |
964 | seq_printf(s, " TASK/PID "); | 1008 | seq_printf(s, " TASK/PID "); |
1009 | if (lat) | ||
1010 | seq_printf(s, "|||||"); | ||
965 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1011 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) |
966 | seq_printf(s, " DURATION "); | 1012 | seq_printf(s, " DURATION "); |
967 | seq_printf(s, " FUNCTION CALLS\n"); | 1013 | seq_printf(s, " FUNCTION CALLS\n"); |
968 | 1014 | ||
969 | /* 2nd line */ | 1015 | /* 2nd line */ |
970 | seq_printf(s, "# "); | 1016 | seq_printf(s, "#"); |
971 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1017 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) |
972 | seq_printf(s, " | "); | 1018 | seq_printf(s, " | "); |
973 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1019 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) |
974 | seq_printf(s, "| "); | 1020 | seq_printf(s, " | "); |
975 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1021 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) |
976 | seq_printf(s, " | | "); | 1022 | seq_printf(s, " | | "); |
1023 | if (lat) | ||
1024 | seq_printf(s, "|||||"); | ||
977 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1025 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) |
978 | seq_printf(s, " | | "); | 1026 | seq_printf(s, " | | "); |
979 | seq_printf(s, " | | | |\n"); | 1027 | seq_printf(s, " | | | |\n"); |
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c index ca7d7c4d0c2a..23b63859130e 100644 --- a/kernel/trace/trace_hw_branches.c +++ b/kernel/trace/trace_hw_branches.c | |||
@@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | |||
155 | seq_print_ip_sym(seq, it->from, symflags) && | 155 | seq_print_ip_sym(seq, it->from, symflags) && |
156 | trace_seq_printf(seq, "\n")) | 156 | trace_seq_printf(seq, "\n")) |
157 | return TRACE_TYPE_HANDLED; | 157 | return TRACE_TYPE_HANDLED; |
158 | return TRACE_TYPE_PARTIAL_LINE;; | 158 | return TRACE_TYPE_PARTIAL_LINE; |
159 | } | 159 | } |
160 | return TRACE_TYPE_UNHANDLED; | 160 | return TRACE_TYPE_UNHANDLED; |
161 | } | 161 | } |
diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c index 5555b75a0d12..3aa7eaa2114c 100644 --- a/kernel/trace/trace_irqsoff.c +++ b/kernel/trace/trace_irqsoff.c | |||
@@ -129,15 +129,10 @@ check_critical_timing(struct trace_array *tr, | |||
129 | unsigned long parent_ip, | 129 | unsigned long parent_ip, |
130 | int cpu) | 130 | int cpu) |
131 | { | 131 | { |
132 | unsigned long latency, t0, t1; | ||
133 | cycle_t T0, T1, delta; | 132 | cycle_t T0, T1, delta; |
134 | unsigned long flags; | 133 | unsigned long flags; |
135 | int pc; | 134 | int pc; |
136 | 135 | ||
137 | /* | ||
138 | * usecs conversion is slow so we try to delay the conversion | ||
139 | * as long as possible: | ||
140 | */ | ||
141 | T0 = data->preempt_timestamp; | 136 | T0 = data->preempt_timestamp; |
142 | T1 = ftrace_now(cpu); | 137 | T1 = ftrace_now(cpu); |
143 | delta = T1-T0; | 138 | delta = T1-T0; |
@@ -157,18 +152,15 @@ check_critical_timing(struct trace_array *tr, | |||
157 | 152 | ||
158 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); | 153 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); |
159 | 154 | ||
160 | latency = nsecs_to_usecs(delta); | ||
161 | |||
162 | if (data->critical_sequence != max_sequence) | 155 | if (data->critical_sequence != max_sequence) |
163 | goto out_unlock; | 156 | goto out_unlock; |
164 | 157 | ||
165 | tracing_max_latency = delta; | ||
166 | t0 = nsecs_to_usecs(T0); | ||
167 | t1 = nsecs_to_usecs(T1); | ||
168 | |||
169 | data->critical_end = parent_ip; | 158 | data->critical_end = parent_ip; |
170 | 159 | ||
171 | update_max_tr_single(tr, current, cpu); | 160 | if (likely(!is_tracing_stopped())) { |
161 | tracing_max_latency = delta; | ||
162 | update_max_tr_single(tr, current, cpu); | ||
163 | } | ||
172 | 164 | ||
173 | max_sequence++; | 165 | max_sequence++; |
174 | 166 | ||
diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c index f6821f16227e..09cba270392d 100644 --- a/kernel/trace/trace_kprobe.c +++ b/kernel/trace/trace_kprobe.c | |||
@@ -28,7 +28,7 @@ | |||
28 | #include <linux/string.h> | 28 | #include <linux/string.h> |
29 | #include <linux/ctype.h> | 29 | #include <linux/ctype.h> |
30 | #include <linux/ptrace.h> | 30 | #include <linux/ptrace.h> |
31 | #include <linux/perf_counter.h> | 31 | #include <linux/perf_event.h> |
32 | 32 | ||
33 | #include "trace.h" | 33 | #include "trace.h" |
34 | #include "trace_output.h" | 34 | #include "trace_output.h" |
@@ -1176,7 +1176,7 @@ static __kprobes int kprobe_profile_func(struct kprobe *kp, | |||
1176 | entry->ip = (unsigned long)kp->addr; | 1176 | entry->ip = (unsigned long)kp->addr; |
1177 | for (i = 0; i < tp->nr_args; i++) | 1177 | for (i = 0; i < tp->nr_args; i++) |
1178 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | 1178 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); |
1179 | perf_tpcounter_event(call->id, entry->ip, 1, entry, size); | 1179 | perf_tp_event(call->id, entry->ip, 1, entry, size); |
1180 | } while (0); | 1180 | } while (0); |
1181 | return 0; | 1181 | return 0; |
1182 | } | 1182 | } |
@@ -1213,7 +1213,7 @@ static __kprobes int kretprobe_profile_func(struct kretprobe_instance *ri, | |||
1213 | entry->ret_ip = (unsigned long)ri->ret_addr; | 1213 | entry->ret_ip = (unsigned long)ri->ret_addr; |
1214 | for (i = 0; i < tp->nr_args; i++) | 1214 | for (i = 0; i < tp->nr_args; i++) |
1215 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); | 1215 | entry->args[i] = call_fetch(&tp->args[i].fetch, regs); |
1216 | perf_tpcounter_event(call->id, entry->ret_ip, 1, entry, size); | 1216 | perf_tp_event(call->id, entry->ret_ip, 1, entry, size); |
1217 | } while (0); | 1217 | } while (0); |
1218 | return 0; | 1218 | return 0; |
1219 | } | 1219 | } |
@@ -1222,10 +1222,8 @@ static int probe_profile_enable(struct ftrace_event_call *call) | |||
1222 | { | 1222 | { |
1223 | struct trace_probe *tp = (struct trace_probe *)call->data; | 1223 | struct trace_probe *tp = (struct trace_probe *)call->data; |
1224 | 1224 | ||
1225 | if (atomic_inc_return(&call->profile_count)) | ||
1226 | return 0; | ||
1227 | |||
1228 | tp->flags |= TP_FLAG_PROFILE; | 1225 | tp->flags |= TP_FLAG_PROFILE; |
1226 | |||
1229 | if (probe_is_return(tp)) | 1227 | if (probe_is_return(tp)) |
1230 | return enable_kretprobe(&tp->rp); | 1228 | return enable_kretprobe(&tp->rp); |
1231 | else | 1229 | else |
@@ -1236,10 +1234,9 @@ static void probe_profile_disable(struct ftrace_event_call *call) | |||
1236 | { | 1234 | { |
1237 | struct trace_probe *tp = (struct trace_probe *)call->data; | 1235 | struct trace_probe *tp = (struct trace_probe *)call->data; |
1238 | 1236 | ||
1239 | if (atomic_add_negative(-1, &call->profile_count)) | 1237 | tp->flags &= ~TP_FLAG_PROFILE; |
1240 | tp->flags &= ~TP_FLAG_PROFILE; | ||
1241 | 1238 | ||
1242 | if (!(tp->flags & (TP_FLAG_TRACE | TP_FLAG_PROFILE))) { | 1239 | if (!(tp->flags & TP_FLAG_TRACE)) { |
1243 | if (probe_is_return(tp)) | 1240 | if (probe_is_return(tp)) |
1244 | disable_kretprobe(&tp->rp); | 1241 | disable_kretprobe(&tp->rp); |
1245 | else | 1242 | else |
diff --git a/kernel/trace/trace_mmiotrace.c b/kernel/trace/trace_mmiotrace.c index c4c9bbda53d3..0acd834659ed 100644 --- a/kernel/trace/trace_mmiotrace.c +++ b/kernel/trace/trace_mmiotrace.c | |||
@@ -307,6 +307,7 @@ static void __trace_mmiotrace_rw(struct trace_array *tr, | |||
307 | struct trace_array_cpu *data, | 307 | struct trace_array_cpu *data, |
308 | struct mmiotrace_rw *rw) | 308 | struct mmiotrace_rw *rw) |
309 | { | 309 | { |
310 | struct ftrace_event_call *call = &event_mmiotrace_rw; | ||
310 | struct ring_buffer *buffer = tr->buffer; | 311 | struct ring_buffer *buffer = tr->buffer; |
311 | struct ring_buffer_event *event; | 312 | struct ring_buffer_event *event; |
312 | struct trace_mmiotrace_rw *entry; | 313 | struct trace_mmiotrace_rw *entry; |
@@ -320,7 +321,9 @@ static void __trace_mmiotrace_rw(struct trace_array *tr, | |||
320 | } | 321 | } |
321 | entry = ring_buffer_event_data(event); | 322 | entry = ring_buffer_event_data(event); |
322 | entry->rw = *rw; | 323 | entry->rw = *rw; |
323 | trace_buffer_unlock_commit(buffer, event, 0, pc); | 324 | |
325 | if (!filter_check_discard(call, entry, buffer, event)) | ||
326 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
324 | } | 327 | } |
325 | 328 | ||
326 | void mmio_trace_rw(struct mmiotrace_rw *rw) | 329 | void mmio_trace_rw(struct mmiotrace_rw *rw) |
@@ -334,6 +337,7 @@ static void __trace_mmiotrace_map(struct trace_array *tr, | |||
334 | struct trace_array_cpu *data, | 337 | struct trace_array_cpu *data, |
335 | struct mmiotrace_map *map) | 338 | struct mmiotrace_map *map) |
336 | { | 339 | { |
340 | struct ftrace_event_call *call = &event_mmiotrace_map; | ||
337 | struct ring_buffer *buffer = tr->buffer; | 341 | struct ring_buffer *buffer = tr->buffer; |
338 | struct ring_buffer_event *event; | 342 | struct ring_buffer_event *event; |
339 | struct trace_mmiotrace_map *entry; | 343 | struct trace_mmiotrace_map *entry; |
@@ -347,7 +351,9 @@ static void __trace_mmiotrace_map(struct trace_array *tr, | |||
347 | } | 351 | } |
348 | entry = ring_buffer_event_data(event); | 352 | entry = ring_buffer_event_data(event); |
349 | entry->map = *map; | 353 | entry->map = *map; |
350 | trace_buffer_unlock_commit(buffer, event, 0, pc); | 354 | |
355 | if (!filter_check_discard(call, entry, buffer, event)) | ||
356 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
351 | } | 357 | } |
352 | 358 | ||
353 | void mmio_trace_mapping(struct mmiotrace_map *map) | 359 | void mmio_trace_mapping(struct mmiotrace_map *map) |
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index e0c2545622e8..f572f44c6e1e 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c | |||
@@ -407,7 +407,7 @@ seq_print_userip_objs(const struct userstack_entry *entry, struct trace_seq *s, | |||
407 | * since individual threads might have already quit! | 407 | * since individual threads might have already quit! |
408 | */ | 408 | */ |
409 | rcu_read_lock(); | 409 | rcu_read_lock(); |
410 | task = find_task_by_vpid(entry->ent.tgid); | 410 | task = find_task_by_vpid(entry->tgid); |
411 | if (task) | 411 | if (task) |
412 | mm = get_task_mm(task); | 412 | mm = get_task_mm(task); |
413 | rcu_read_unlock(); | 413 | rcu_read_unlock(); |
@@ -460,18 +460,23 @@ seq_print_ip_sym(struct trace_seq *s, unsigned long ip, unsigned long sym_flags) | |||
460 | return ret; | 460 | return ret; |
461 | } | 461 | } |
462 | 462 | ||
463 | static int | 463 | /** |
464 | lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | 464 | * trace_print_lat_fmt - print the irq, preempt and lockdep fields |
465 | * @s: trace seq struct to write to | ||
466 | * @entry: The trace entry field from the ring buffer | ||
467 | * | ||
468 | * Prints the generic fields of irqs off, in hard or softirq, preempt | ||
469 | * count and lock depth. | ||
470 | */ | ||
471 | int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry) | ||
465 | { | 472 | { |
466 | int hardirq, softirq; | 473 | int hardirq, softirq; |
467 | char comm[TASK_COMM_LEN]; | 474 | int ret; |
468 | 475 | ||
469 | trace_find_cmdline(entry->pid, comm); | ||
470 | hardirq = entry->flags & TRACE_FLAG_HARDIRQ; | 476 | hardirq = entry->flags & TRACE_FLAG_HARDIRQ; |
471 | softirq = entry->flags & TRACE_FLAG_SOFTIRQ; | 477 | softirq = entry->flags & TRACE_FLAG_SOFTIRQ; |
472 | 478 | ||
473 | if (!trace_seq_printf(s, "%8.8s-%-5d %3d%c%c%c", | 479 | if (!trace_seq_printf(s, "%c%c%c", |
474 | comm, entry->pid, cpu, | ||
475 | (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : | 480 | (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : |
476 | (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? | 481 | (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? |
477 | 'X' : '.', | 482 | 'X' : '.', |
@@ -481,9 +486,30 @@ lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | |||
481 | hardirq ? 'h' : softirq ? 's' : '.')) | 486 | hardirq ? 'h' : softirq ? 's' : '.')) |
482 | return 0; | 487 | return 0; |
483 | 488 | ||
489 | if (entry->lock_depth < 0) | ||
490 | ret = trace_seq_putc(s, '.'); | ||
491 | else | ||
492 | ret = trace_seq_printf(s, "%d", entry->lock_depth); | ||
493 | if (!ret) | ||
494 | return 0; | ||
495 | |||
484 | if (entry->preempt_count) | 496 | if (entry->preempt_count) |
485 | return trace_seq_printf(s, "%x", entry->preempt_count); | 497 | return trace_seq_printf(s, "%x", entry->preempt_count); |
486 | return trace_seq_puts(s, "."); | 498 | return trace_seq_putc(s, '.'); |
499 | } | ||
500 | |||
501 | static int | ||
502 | lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | ||
503 | { | ||
504 | char comm[TASK_COMM_LEN]; | ||
505 | |||
506 | trace_find_cmdline(entry->pid, comm); | ||
507 | |||
508 | if (!trace_seq_printf(s, "%8.8s-%-5d %3d", | ||
509 | comm, entry->pid, cpu)) | ||
510 | return 0; | ||
511 | |||
512 | return trace_print_lat_fmt(s, entry); | ||
487 | } | 513 | } |
488 | 514 | ||
489 | static unsigned long preempt_mark_thresh = 100; | 515 | static unsigned long preempt_mark_thresh = 100; |
diff --git a/kernel/trace/trace_output.h b/kernel/trace/trace_output.h index d38bec4a9c30..9d91c72ba38b 100644 --- a/kernel/trace/trace_output.h +++ b/kernel/trace/trace_output.h | |||
@@ -26,6 +26,8 @@ extern struct trace_event *ftrace_find_event(int type); | |||
26 | 26 | ||
27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, | 27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, |
28 | int flags); | 28 | int flags); |
29 | extern int | ||
30 | trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry); | ||
29 | 31 | ||
30 | /* used by module unregistering */ | 32 | /* used by module unregistering */ |
31 | extern int __unregister_ftrace_event(struct trace_event *event); | 33 | extern int __unregister_ftrace_event(struct trace_event *event); |
diff --git a/kernel/trace/trace_power.c b/kernel/trace/trace_power.c deleted file mode 100644 index fe1a00f1445a..000000000000 --- a/kernel/trace/trace_power.c +++ /dev/null | |||
@@ -1,218 +0,0 @@ | |||
1 | /* | ||
2 | * ring buffer based C-state tracer | ||
3 | * | ||
4 | * Arjan van de Ven <arjan@linux.intel.com> | ||
5 | * Copyright (C) 2008 Intel Corporation | ||
6 | * | ||
7 | * Much is borrowed from trace_boot.c which is | ||
8 | * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com> | ||
9 | * | ||
10 | */ | ||
11 | |||
12 | #include <linux/init.h> | ||
13 | #include <linux/debugfs.h> | ||
14 | #include <trace/power.h> | ||
15 | #include <linux/kallsyms.h> | ||
16 | #include <linux/module.h> | ||
17 | |||
18 | #include "trace.h" | ||
19 | #include "trace_output.h" | ||
20 | |||
21 | static struct trace_array *power_trace; | ||
22 | static int __read_mostly trace_power_enabled; | ||
23 | |||
24 | static void probe_power_start(struct power_trace *it, unsigned int type, | ||
25 | unsigned int level) | ||
26 | { | ||
27 | if (!trace_power_enabled) | ||
28 | return; | ||
29 | |||
30 | memset(it, 0, sizeof(struct power_trace)); | ||
31 | it->state = level; | ||
32 | it->type = type; | ||
33 | it->stamp = ktime_get(); | ||
34 | } | ||
35 | |||
36 | |||
37 | static void probe_power_end(struct power_trace *it) | ||
38 | { | ||
39 | struct ftrace_event_call *call = &event_power; | ||
40 | struct ring_buffer_event *event; | ||
41 | struct ring_buffer *buffer; | ||
42 | struct trace_power *entry; | ||
43 | struct trace_array_cpu *data; | ||
44 | struct trace_array *tr = power_trace; | ||
45 | |||
46 | if (!trace_power_enabled) | ||
47 | return; | ||
48 | |||
49 | buffer = tr->buffer; | ||
50 | |||
51 | preempt_disable(); | ||
52 | it->end = ktime_get(); | ||
53 | data = tr->data[smp_processor_id()]; | ||
54 | |||
55 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
56 | sizeof(*entry), 0, 0); | ||
57 | if (!event) | ||
58 | goto out; | ||
59 | entry = ring_buffer_event_data(event); | ||
60 | entry->state_data = *it; | ||
61 | if (!filter_check_discard(call, entry, buffer, event)) | ||
62 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
63 | out: | ||
64 | preempt_enable(); | ||
65 | } | ||
66 | |||
67 | static void probe_power_mark(struct power_trace *it, unsigned int type, | ||
68 | unsigned int level) | ||
69 | { | ||
70 | struct ftrace_event_call *call = &event_power; | ||
71 | struct ring_buffer_event *event; | ||
72 | struct ring_buffer *buffer; | ||
73 | struct trace_power *entry; | ||
74 | struct trace_array_cpu *data; | ||
75 | struct trace_array *tr = power_trace; | ||
76 | |||
77 | if (!trace_power_enabled) | ||
78 | return; | ||
79 | |||
80 | buffer = tr->buffer; | ||
81 | |||
82 | memset(it, 0, sizeof(struct power_trace)); | ||
83 | it->state = level; | ||
84 | it->type = type; | ||
85 | it->stamp = ktime_get(); | ||
86 | preempt_disable(); | ||
87 | it->end = it->stamp; | ||
88 | data = tr->data[smp_processor_id()]; | ||
89 | |||
90 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
91 | sizeof(*entry), 0, 0); | ||
92 | if (!event) | ||
93 | goto out; | ||
94 | entry = ring_buffer_event_data(event); | ||
95 | entry->state_data = *it; | ||
96 | if (!filter_check_discard(call, entry, buffer, event)) | ||
97 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
98 | out: | ||
99 | preempt_enable(); | ||
100 | } | ||
101 | |||
102 | static int tracing_power_register(void) | ||
103 | { | ||
104 | int ret; | ||
105 | |||
106 | ret = register_trace_power_start(probe_power_start); | ||
107 | if (ret) { | ||
108 | pr_info("power trace: Couldn't activate tracepoint" | ||
109 | " probe to trace_power_start\n"); | ||
110 | return ret; | ||
111 | } | ||
112 | ret = register_trace_power_end(probe_power_end); | ||
113 | if (ret) { | ||
114 | pr_info("power trace: Couldn't activate tracepoint" | ||
115 | " probe to trace_power_end\n"); | ||
116 | goto fail_start; | ||
117 | } | ||
118 | ret = register_trace_power_mark(probe_power_mark); | ||
119 | if (ret) { | ||
120 | pr_info("power trace: Couldn't activate tracepoint" | ||
121 | " probe to trace_power_mark\n"); | ||
122 | goto fail_end; | ||
123 | } | ||
124 | return ret; | ||
125 | fail_end: | ||
126 | unregister_trace_power_end(probe_power_end); | ||
127 | fail_start: | ||
128 | unregister_trace_power_start(probe_power_start); | ||
129 | return ret; | ||
130 | } | ||
131 | |||
132 | static void start_power_trace(struct trace_array *tr) | ||
133 | { | ||
134 | trace_power_enabled = 1; | ||
135 | } | ||
136 | |||
137 | static void stop_power_trace(struct trace_array *tr) | ||
138 | { | ||
139 | trace_power_enabled = 0; | ||
140 | } | ||
141 | |||
142 | static void power_trace_reset(struct trace_array *tr) | ||
143 | { | ||
144 | trace_power_enabled = 0; | ||
145 | unregister_trace_power_start(probe_power_start); | ||
146 | unregister_trace_power_end(probe_power_end); | ||
147 | unregister_trace_power_mark(probe_power_mark); | ||
148 | } | ||
149 | |||
150 | |||
151 | static int power_trace_init(struct trace_array *tr) | ||
152 | { | ||
153 | power_trace = tr; | ||
154 | |||
155 | trace_power_enabled = 1; | ||
156 | tracing_power_register(); | ||
157 | |||
158 | tracing_reset_online_cpus(tr); | ||
159 | return 0; | ||
160 | } | ||
161 | |||
162 | static enum print_line_t power_print_line(struct trace_iterator *iter) | ||
163 | { | ||
164 | int ret = 0; | ||
165 | struct trace_entry *entry = iter->ent; | ||
166 | struct trace_power *field ; | ||
167 | struct power_trace *it; | ||
168 | struct trace_seq *s = &iter->seq; | ||
169 | struct timespec stamp; | ||
170 | struct timespec duration; | ||
171 | |||
172 | trace_assign_type(field, entry); | ||
173 | it = &field->state_data; | ||
174 | stamp = ktime_to_timespec(it->stamp); | ||
175 | duration = ktime_to_timespec(ktime_sub(it->end, it->stamp)); | ||
176 | |||
177 | if (entry->type == TRACE_POWER) { | ||
178 | if (it->type == POWER_CSTATE) | ||
179 | ret = trace_seq_printf(s, "[%5ld.%09ld] CSTATE: Going to C%i on cpu %i for %ld.%09ld\n", | ||
180 | stamp.tv_sec, | ||
181 | stamp.tv_nsec, | ||
182 | it->state, iter->cpu, | ||
183 | duration.tv_sec, | ||
184 | duration.tv_nsec); | ||
185 | if (it->type == POWER_PSTATE) | ||
186 | ret = trace_seq_printf(s, "[%5ld.%09ld] PSTATE: Going to P%i on cpu %i\n", | ||
187 | stamp.tv_sec, | ||
188 | stamp.tv_nsec, | ||
189 | it->state, iter->cpu); | ||
190 | if (!ret) | ||
191 | return TRACE_TYPE_PARTIAL_LINE; | ||
192 | return TRACE_TYPE_HANDLED; | ||
193 | } | ||
194 | return TRACE_TYPE_UNHANDLED; | ||
195 | } | ||
196 | |||
197 | static void power_print_header(struct seq_file *s) | ||
198 | { | ||
199 | seq_puts(s, "# TIMESTAMP STATE EVENT\n"); | ||
200 | seq_puts(s, "# | | |\n"); | ||
201 | } | ||
202 | |||
203 | static struct tracer power_tracer __read_mostly = | ||
204 | { | ||
205 | .name = "power", | ||
206 | .init = power_trace_init, | ||
207 | .start = start_power_trace, | ||
208 | .stop = stop_power_trace, | ||
209 | .reset = power_trace_reset, | ||
210 | .print_line = power_print_line, | ||
211 | .print_header = power_print_header, | ||
212 | }; | ||
213 | |||
214 | static int init_power_trace(void) | ||
215 | { | ||
216 | return register_tracer(&power_tracer); | ||
217 | } | ||
218 | device_initcall(init_power_trace); | ||
diff --git a/kernel/trace/trace_printk.c b/kernel/trace/trace_printk.c index 687699d365ae..2547d8813cf0 100644 --- a/kernel/trace/trace_printk.c +++ b/kernel/trace/trace_printk.c | |||
@@ -11,7 +11,6 @@ | |||
11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
13 | #include <linux/module.h> | 13 | #include <linux/module.h> |
14 | #include <linux/marker.h> | ||
15 | #include <linux/mutex.h> | 14 | #include <linux/mutex.h> |
16 | #include <linux/ctype.h> | 15 | #include <linux/ctype.h> |
17 | #include <linux/list.h> | 16 | #include <linux/list.h> |
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index ad69f105a7c6..26185d727676 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c | |||
@@ -24,6 +24,7 @@ static int __read_mostly tracer_enabled; | |||
24 | 24 | ||
25 | static struct task_struct *wakeup_task; | 25 | static struct task_struct *wakeup_task; |
26 | static int wakeup_cpu; | 26 | static int wakeup_cpu; |
27 | static int wakeup_current_cpu; | ||
27 | static unsigned wakeup_prio = -1; | 28 | static unsigned wakeup_prio = -1; |
28 | static int wakeup_rt; | 29 | static int wakeup_rt; |
29 | 30 | ||
@@ -56,33 +57,23 @@ wakeup_tracer_call(unsigned long ip, unsigned long parent_ip) | |||
56 | resched = ftrace_preempt_disable(); | 57 | resched = ftrace_preempt_disable(); |
57 | 58 | ||
58 | cpu = raw_smp_processor_id(); | 59 | cpu = raw_smp_processor_id(); |
60 | if (cpu != wakeup_current_cpu) | ||
61 | goto out_enable; | ||
62 | |||
59 | data = tr->data[cpu]; | 63 | data = tr->data[cpu]; |
60 | disabled = atomic_inc_return(&data->disabled); | 64 | disabled = atomic_inc_return(&data->disabled); |
61 | if (unlikely(disabled != 1)) | 65 | if (unlikely(disabled != 1)) |
62 | goto out; | 66 | goto out; |
63 | 67 | ||
64 | local_irq_save(flags); | 68 | local_irq_save(flags); |
65 | __raw_spin_lock(&wakeup_lock); | ||
66 | |||
67 | if (unlikely(!wakeup_task)) | ||
68 | goto unlock; | ||
69 | |||
70 | /* | ||
71 | * The task can't disappear because it needs to | ||
72 | * wake up first, and we have the wakeup_lock. | ||
73 | */ | ||
74 | if (task_cpu(wakeup_task) != cpu) | ||
75 | goto unlock; | ||
76 | 69 | ||
77 | trace_function(tr, ip, parent_ip, flags, pc); | 70 | trace_function(tr, ip, parent_ip, flags, pc); |
78 | 71 | ||
79 | unlock: | ||
80 | __raw_spin_unlock(&wakeup_lock); | ||
81 | local_irq_restore(flags); | 72 | local_irq_restore(flags); |
82 | 73 | ||
83 | out: | 74 | out: |
84 | atomic_dec(&data->disabled); | 75 | atomic_dec(&data->disabled); |
85 | 76 | out_enable: | |
86 | ftrace_preempt_enable(resched); | 77 | ftrace_preempt_enable(resched); |
87 | } | 78 | } |
88 | 79 | ||
@@ -107,11 +98,18 @@ static int report_latency(cycle_t delta) | |||
107 | return 1; | 98 | return 1; |
108 | } | 99 | } |
109 | 100 | ||
101 | static void probe_wakeup_migrate_task(struct task_struct *task, int cpu) | ||
102 | { | ||
103 | if (task != wakeup_task) | ||
104 | return; | ||
105 | |||
106 | wakeup_current_cpu = cpu; | ||
107 | } | ||
108 | |||
110 | static void notrace | 109 | static void notrace |
111 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | 110 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, |
112 | struct task_struct *next) | 111 | struct task_struct *next) |
113 | { | 112 | { |
114 | unsigned long latency = 0, t0 = 0, t1 = 0; | ||
115 | struct trace_array_cpu *data; | 113 | struct trace_array_cpu *data; |
116 | cycle_t T0, T1, delta; | 114 | cycle_t T0, T1, delta; |
117 | unsigned long flags; | 115 | unsigned long flags; |
@@ -157,10 +155,6 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | |||
157 | trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); | 155 | trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); |
158 | tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); | 156 | tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); |
159 | 157 | ||
160 | /* | ||
161 | * usecs conversion is slow so we try to delay the conversion | ||
162 | * as long as possible: | ||
163 | */ | ||
164 | T0 = data->preempt_timestamp; | 158 | T0 = data->preempt_timestamp; |
165 | T1 = ftrace_now(cpu); | 159 | T1 = ftrace_now(cpu); |
166 | delta = T1-T0; | 160 | delta = T1-T0; |
@@ -168,13 +162,10 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | |||
168 | if (!report_latency(delta)) | 162 | if (!report_latency(delta)) |
169 | goto out_unlock; | 163 | goto out_unlock; |
170 | 164 | ||
171 | latency = nsecs_to_usecs(delta); | 165 | if (likely(!is_tracing_stopped())) { |
172 | 166 | tracing_max_latency = delta; | |
173 | tracing_max_latency = delta; | 167 | update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu); |
174 | t0 = nsecs_to_usecs(T0); | 168 | } |
175 | t1 = nsecs_to_usecs(T1); | ||
176 | |||
177 | update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu); | ||
178 | 169 | ||
179 | out_unlock: | 170 | out_unlock: |
180 | __wakeup_reset(wakeup_trace); | 171 | __wakeup_reset(wakeup_trace); |
@@ -244,6 +235,7 @@ probe_wakeup(struct rq *rq, struct task_struct *p, int success) | |||
244 | __wakeup_reset(wakeup_trace); | 235 | __wakeup_reset(wakeup_trace); |
245 | 236 | ||
246 | wakeup_cpu = task_cpu(p); | 237 | wakeup_cpu = task_cpu(p); |
238 | wakeup_current_cpu = wakeup_cpu; | ||
247 | wakeup_prio = p->prio; | 239 | wakeup_prio = p->prio; |
248 | 240 | ||
249 | wakeup_task = p; | 241 | wakeup_task = p; |
@@ -293,6 +285,13 @@ static void start_wakeup_tracer(struct trace_array *tr) | |||
293 | goto fail_deprobe_wake_new; | 285 | goto fail_deprobe_wake_new; |
294 | } | 286 | } |
295 | 287 | ||
288 | ret = register_trace_sched_migrate_task(probe_wakeup_migrate_task); | ||
289 | if (ret) { | ||
290 | pr_info("wakeup trace: Couldn't activate tracepoint" | ||
291 | " probe to kernel_sched_migrate_task\n"); | ||
292 | return; | ||
293 | } | ||
294 | |||
296 | wakeup_reset(tr); | 295 | wakeup_reset(tr); |
297 | 296 | ||
298 | /* | 297 | /* |
@@ -325,6 +324,7 @@ static void stop_wakeup_tracer(struct trace_array *tr) | |||
325 | unregister_trace_sched_switch(probe_wakeup_sched_switch); | 324 | unregister_trace_sched_switch(probe_wakeup_sched_switch); |
326 | unregister_trace_sched_wakeup_new(probe_wakeup); | 325 | unregister_trace_sched_wakeup_new(probe_wakeup); |
327 | unregister_trace_sched_wakeup(probe_wakeup); | 326 | unregister_trace_sched_wakeup(probe_wakeup); |
327 | unregister_trace_sched_migrate_task(probe_wakeup_migrate_task); | ||
328 | } | 328 | } |
329 | 329 | ||
330 | static int __wakeup_tracer_init(struct trace_array *tr) | 330 | static int __wakeup_tracer_init(struct trace_array *tr) |
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index dfc55fed2099..1b050ab47120 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
@@ -2,7 +2,7 @@ | |||
2 | #include <trace/events/syscalls.h> | 2 | #include <trace/events/syscalls.h> |
3 | #include <linux/kernel.h> | 3 | #include <linux/kernel.h> |
4 | #include <linux/ftrace.h> | 4 | #include <linux/ftrace.h> |
5 | #include <linux/perf_counter.h> | 5 | #include <linux/perf_event.h> |
6 | #include <asm/syscall.h> | 6 | #include <asm/syscall.h> |
7 | 7 | ||
8 | #include "trace_output.h" | 8 | #include "trace_output.h" |
@@ -384,10 +384,13 @@ static int sys_prof_refcount_exit; | |||
384 | 384 | ||
385 | static void prof_syscall_enter(struct pt_regs *regs, long id) | 385 | static void prof_syscall_enter(struct pt_regs *regs, long id) |
386 | { | 386 | { |
387 | struct syscall_trace_enter *rec; | ||
388 | struct syscall_metadata *sys_data; | 387 | struct syscall_metadata *sys_data; |
388 | struct syscall_trace_enter *rec; | ||
389 | unsigned long flags; | ||
390 | char *raw_data; | ||
389 | int syscall_nr; | 391 | int syscall_nr; |
390 | int size; | 392 | int size; |
393 | int cpu; | ||
391 | 394 | ||
392 | syscall_nr = syscall_get_nr(current, regs); | 395 | syscall_nr = syscall_get_nr(current, regs); |
393 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) | 396 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) |
@@ -402,20 +405,38 @@ static void prof_syscall_enter(struct pt_regs *regs, long id) | |||
402 | size = ALIGN(size + sizeof(u32), sizeof(u64)); | 405 | size = ALIGN(size + sizeof(u32), sizeof(u64)); |
403 | size -= sizeof(u32); | 406 | size -= sizeof(u32); |
404 | 407 | ||
405 | do { | 408 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, |
406 | char raw_data[size]; | 409 | "profile buffer not large enough")) |
410 | return; | ||
411 | |||
412 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
413 | local_irq_save(flags); | ||
407 | 414 | ||
408 | /* zero the dead bytes from align to not leak stack to user */ | 415 | cpu = smp_processor_id(); |
409 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | 416 | |
417 | if (in_nmi()) | ||
418 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
419 | else | ||
420 | raw_data = rcu_dereference(trace_profile_buf); | ||
421 | |||
422 | if (!raw_data) | ||
423 | goto end; | ||
410 | 424 | ||
411 | rec = (struct syscall_trace_enter *) raw_data; | 425 | raw_data = per_cpu_ptr(raw_data, cpu); |
412 | tracing_generic_entry_update(&rec->ent, 0, 0); | 426 | |
413 | rec->ent.type = sys_data->enter_id; | 427 | /* zero the dead bytes from align to not leak stack to user */ |
414 | rec->nr = syscall_nr; | 428 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; |
415 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | 429 | |
416 | (unsigned long *)&rec->args); | 430 | rec = (struct syscall_trace_enter *) raw_data; |
417 | perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size); | 431 | tracing_generic_entry_update(&rec->ent, 0, 0); |
418 | } while(0); | 432 | rec->ent.type = sys_data->enter_id; |
433 | rec->nr = syscall_nr; | ||
434 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | ||
435 | (unsigned long *)&rec->args); | ||
436 | perf_tp_event(sys_data->enter_id, 0, 1, rec, size); | ||
437 | |||
438 | end: | ||
439 | local_irq_restore(flags); | ||
419 | } | 440 | } |
420 | 441 | ||
421 | int reg_prof_syscall_enter(char *name) | 442 | int reg_prof_syscall_enter(char *name) |
@@ -460,8 +481,12 @@ void unreg_prof_syscall_enter(char *name) | |||
460 | static void prof_syscall_exit(struct pt_regs *regs, long ret) | 481 | static void prof_syscall_exit(struct pt_regs *regs, long ret) |
461 | { | 482 | { |
462 | struct syscall_metadata *sys_data; | 483 | struct syscall_metadata *sys_data; |
463 | struct syscall_trace_exit rec; | 484 | struct syscall_trace_exit *rec; |
485 | unsigned long flags; | ||
464 | int syscall_nr; | 486 | int syscall_nr; |
487 | char *raw_data; | ||
488 | int size; | ||
489 | int cpu; | ||
465 | 490 | ||
466 | syscall_nr = syscall_get_nr(current, regs); | 491 | syscall_nr = syscall_get_nr(current, regs); |
467 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) | 492 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) |
@@ -471,12 +496,46 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret) | |||
471 | if (!sys_data) | 496 | if (!sys_data) |
472 | return; | 497 | return; |
473 | 498 | ||
474 | tracing_generic_entry_update(&rec.ent, 0, 0); | 499 | /* We can probably do that at build time */ |
475 | rec.ent.type = sys_data->exit_id; | 500 | size = ALIGN(sizeof(*rec) + sizeof(u32), sizeof(u64)); |
476 | rec.nr = syscall_nr; | 501 | size -= sizeof(u32); |
477 | rec.ret = syscall_get_return_value(current, regs); | ||
478 | 502 | ||
479 | perf_tpcounter_event(sys_data->exit_id, 0, 1, &rec, sizeof(rec)); | 503 | /* |
504 | * Impossible, but be paranoid with the future | ||
505 | * How to put this check outside runtime? | ||
506 | */ | ||
507 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
508 | "exit event has grown above profile buffer size")) | ||
509 | return; | ||
510 | |||
511 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
512 | local_irq_save(flags); | ||
513 | cpu = smp_processor_id(); | ||
514 | |||
515 | if (in_nmi()) | ||
516 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
517 | else | ||
518 | raw_data = rcu_dereference(trace_profile_buf); | ||
519 | |||
520 | if (!raw_data) | ||
521 | goto end; | ||
522 | |||
523 | raw_data = per_cpu_ptr(raw_data, cpu); | ||
524 | |||
525 | /* zero the dead bytes from align to not leak stack to user */ | ||
526 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
527 | |||
528 | rec = (struct syscall_trace_exit *)raw_data; | ||
529 | |||
530 | tracing_generic_entry_update(&rec->ent, 0, 0); | ||
531 | rec->ent.type = sys_data->exit_id; | ||
532 | rec->nr = syscall_nr; | ||
533 | rec->ret = syscall_get_return_value(current, regs); | ||
534 | |||
535 | perf_tp_event(sys_data->exit_id, 0, 1, rec, size); | ||
536 | |||
537 | end: | ||
538 | local_irq_restore(flags); | ||
480 | } | 539 | } |
481 | 540 | ||
482 | int reg_prof_syscall_exit(char *name) | 541 | int reg_prof_syscall_exit(char *name) |
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index 9489a0a9b1be..cc89be5bc0f8 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
@@ -48,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
48 | 48 | ||
49 | /* | 49 | /* |
50 | * Note about RCU : | 50 | * Note about RCU : |
51 | * It is used to to delay the free of multiple probes array until a quiescent | 51 | * It is used to delay the free of multiple probes array until a quiescent |
52 | * state is reached. | 52 | * state is reached. |
53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. | 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. |
54 | */ | 54 | */ |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 0668795d8818..addfe2df93b1 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -317,8 +317,6 @@ static int worker_thread(void *__cwq) | |||
317 | if (cwq->wq->freezeable) | 317 | if (cwq->wq->freezeable) |
318 | set_freezable(); | 318 | set_freezable(); |
319 | 319 | ||
320 | set_user_nice(current, -5); | ||
321 | |||
322 | for (;;) { | 320 | for (;;) { |
323 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); | 321 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); |
324 | if (!freezing(current) && | 322 | if (!freezing(current) && |
@@ -600,7 +598,12 @@ static struct workqueue_struct *keventd_wq __read_mostly; | |||
600 | * schedule_work - put work task in global workqueue | 598 | * schedule_work - put work task in global workqueue |
601 | * @work: job to be done | 599 | * @work: job to be done |
602 | * | 600 | * |
603 | * This puts a job in the kernel-global workqueue. | 601 | * Returns zero if @work was already on the kernel-global workqueue and |
602 | * non-zero otherwise. | ||
603 | * | ||
604 | * This puts a job in the kernel-global workqueue if it was not already | ||
605 | * queued and leaves it in the same position on the kernel-global | ||
606 | * workqueue otherwise. | ||
604 | */ | 607 | */ |
605 | int schedule_work(struct work_struct *work) | 608 | int schedule_work(struct work_struct *work) |
606 | { | 609 | { |