diff options
Diffstat (limited to 'kernel')
89 files changed, 8962 insertions, 8544 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 3d9c7e27e3f9..b8d4cd8ac0b9 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
| @@ -58,7 +58,6 @@ obj-$(CONFIG_KEXEC) += kexec.o | |||
| 58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o | 58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o |
| 59 | obj-$(CONFIG_COMPAT) += compat.o | 59 | obj-$(CONFIG_COMPAT) += compat.o |
| 60 | obj-$(CONFIG_CGROUPS) += cgroup.o | 60 | obj-$(CONFIG_CGROUPS) += cgroup.o |
| 61 | obj-$(CONFIG_CGROUP_DEBUG) += cgroup_debug.o | ||
| 62 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o | 61 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o |
| 63 | obj-$(CONFIG_CPUSETS) += cpuset.o | 62 | obj-$(CONFIG_CPUSETS) += cpuset.o |
| 64 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o | 63 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o |
| @@ -87,7 +86,6 @@ obj-$(CONFIG_RELAY) += relay.o | |||
| 87 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o | 86 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o |
| 88 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | 87 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o |
| 89 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o | 88 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o |
| 90 | obj-$(CONFIG_MARKERS) += marker.o | ||
| 91 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o | 89 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o |
| 92 | obj-$(CONFIG_LATENCYTOP) += latencytop.o | 90 | obj-$(CONFIG_LATENCYTOP) += latencytop.o |
| 93 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ | 91 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ |
| @@ -96,7 +94,7 @@ obj-$(CONFIG_X86_DS) += trace/ | |||
| 96 | obj-$(CONFIG_RING_BUFFER) += trace/ | 94 | obj-$(CONFIG_RING_BUFFER) += trace/ |
| 97 | obj-$(CONFIG_SMP) += sched_cpupri.o | 95 | obj-$(CONFIG_SMP) += sched_cpupri.o |
| 98 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 96 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
| 99 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | 97 | obj-$(CONFIG_PERF_EVENTS) += perf_event.o |
| 100 | 98 | ||
| 101 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 99 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
| 102 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 100 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/audit.c b/kernel/audit.c index defc2e6f1e3b..5feed232be9d 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
| @@ -855,18 +855,24 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
| 855 | break; | 855 | break; |
| 856 | } | 856 | } |
| 857 | case AUDIT_SIGNAL_INFO: | 857 | case AUDIT_SIGNAL_INFO: |
| 858 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); | 858 | len = 0; |
| 859 | if (err) | 859 | if (audit_sig_sid) { |
| 860 | return err; | 860 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
| 861 | if (err) | ||
| 862 | return err; | ||
| 863 | } | ||
| 861 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 864 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
| 862 | if (!sig_data) { | 865 | if (!sig_data) { |
| 863 | security_release_secctx(ctx, len); | 866 | if (audit_sig_sid) |
| 867 | security_release_secctx(ctx, len); | ||
| 864 | return -ENOMEM; | 868 | return -ENOMEM; |
| 865 | } | 869 | } |
| 866 | sig_data->uid = audit_sig_uid; | 870 | sig_data->uid = audit_sig_uid; |
| 867 | sig_data->pid = audit_sig_pid; | 871 | sig_data->pid = audit_sig_pid; |
| 868 | memcpy(sig_data->ctx, ctx, len); | 872 | if (audit_sig_sid) { |
| 869 | security_release_secctx(ctx, len); | 873 | memcpy(sig_data->ctx, ctx, len); |
| 874 | security_release_secctx(ctx, len); | ||
| 875 | } | ||
| 870 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 876 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
| 871 | 0, 0, sig_data, sizeof(*sig_data) + len); | 877 | 0, 0, sig_data, sizeof(*sig_data) + len); |
| 872 | kfree(sig_data); | 878 | kfree(sig_data); |
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c index 0e96dbc60ea9..cc7e87936cbc 100644 --- a/kernel/audit_watch.c +++ b/kernel/audit_watch.c | |||
| @@ -45,8 +45,8 @@ | |||
| 45 | 45 | ||
| 46 | struct audit_watch { | 46 | struct audit_watch { |
| 47 | atomic_t count; /* reference count */ | 47 | atomic_t count; /* reference count */ |
| 48 | char *path; /* insertion path */ | ||
| 49 | dev_t dev; /* associated superblock device */ | 48 | dev_t dev; /* associated superblock device */ |
| 49 | char *path; /* insertion path */ | ||
| 50 | unsigned long ino; /* associated inode number */ | 50 | unsigned long ino; /* associated inode number */ |
| 51 | struct audit_parent *parent; /* associated parent */ | 51 | struct audit_parent *parent; /* associated parent */ |
| 52 | struct list_head wlist; /* entry in parent->watches list */ | 52 | struct list_head wlist; /* entry in parent->watches list */ |
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index 68d3c6a0ecd6..267e484f0198 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
| @@ -168,12 +168,12 @@ struct audit_context { | |||
| 168 | int in_syscall; /* 1 if task is in a syscall */ | 168 | int in_syscall; /* 1 if task is in a syscall */ |
| 169 | enum audit_state state, current_state; | 169 | enum audit_state state, current_state; |
| 170 | unsigned int serial; /* serial number for record */ | 170 | unsigned int serial; /* serial number for record */ |
| 171 | struct timespec ctime; /* time of syscall entry */ | ||
| 172 | int major; /* syscall number */ | 171 | int major; /* syscall number */ |
| 172 | struct timespec ctime; /* time of syscall entry */ | ||
| 173 | unsigned long argv[4]; /* syscall arguments */ | 173 | unsigned long argv[4]; /* syscall arguments */ |
| 174 | int return_valid; /* return code is valid */ | ||
| 175 | long return_code;/* syscall return code */ | 174 | long return_code;/* syscall return code */ |
| 176 | u64 prio; | 175 | u64 prio; |
| 176 | int return_valid; /* return code is valid */ | ||
| 177 | int name_count; | 177 | int name_count; |
| 178 | struct audit_names names[AUDIT_NAMES]; | 178 | struct audit_names names[AUDIT_NAMES]; |
| 179 | char * filterkey; /* key for rule that triggered record */ | 179 | char * filterkey; /* key for rule that triggered record */ |
| @@ -198,8 +198,8 @@ struct audit_context { | |||
| 198 | char target_comm[TASK_COMM_LEN]; | 198 | char target_comm[TASK_COMM_LEN]; |
| 199 | 199 | ||
| 200 | struct audit_tree_refs *trees, *first_trees; | 200 | struct audit_tree_refs *trees, *first_trees; |
| 201 | int tree_count; | ||
| 202 | struct list_head killed_trees; | 201 | struct list_head killed_trees; |
| 202 | int tree_count; | ||
| 203 | 203 | ||
| 204 | int type; | 204 | int type; |
| 205 | union { | 205 | union { |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index c7ece8f027f2..7ccba4bc5e3b 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
| @@ -23,6 +23,7 @@ | |||
| 23 | */ | 23 | */ |
| 24 | 24 | ||
| 25 | #include <linux/cgroup.h> | 25 | #include <linux/cgroup.h> |
| 26 | #include <linux/ctype.h> | ||
| 26 | #include <linux/errno.h> | 27 | #include <linux/errno.h> |
| 27 | #include <linux/fs.h> | 28 | #include <linux/fs.h> |
| 28 | #include <linux/kernel.h> | 29 | #include <linux/kernel.h> |
| @@ -48,6 +49,8 @@ | |||
| 48 | #include <linux/namei.h> | 49 | #include <linux/namei.h> |
| 49 | #include <linux/smp_lock.h> | 50 | #include <linux/smp_lock.h> |
| 50 | #include <linux/pid_namespace.h> | 51 | #include <linux/pid_namespace.h> |
| 52 | #include <linux/idr.h> | ||
| 53 | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ | ||
| 51 | 54 | ||
| 52 | #include <asm/atomic.h> | 55 | #include <asm/atomic.h> |
| 53 | 56 | ||
| @@ -60,6 +63,8 @@ static struct cgroup_subsys *subsys[] = { | |||
| 60 | #include <linux/cgroup_subsys.h> | 63 | #include <linux/cgroup_subsys.h> |
| 61 | }; | 64 | }; |
| 62 | 65 | ||
| 66 | #define MAX_CGROUP_ROOT_NAMELEN 64 | ||
| 67 | |||
| 63 | /* | 68 | /* |
| 64 | * A cgroupfs_root represents the root of a cgroup hierarchy, | 69 | * A cgroupfs_root represents the root of a cgroup hierarchy, |
| 65 | * and may be associated with a superblock to form an active | 70 | * and may be associated with a superblock to form an active |
| @@ -74,6 +79,9 @@ struct cgroupfs_root { | |||
| 74 | */ | 79 | */ |
| 75 | unsigned long subsys_bits; | 80 | unsigned long subsys_bits; |
| 76 | 81 | ||
| 82 | /* Unique id for this hierarchy. */ | ||
| 83 | int hierarchy_id; | ||
| 84 | |||
| 77 | /* The bitmask of subsystems currently attached to this hierarchy */ | 85 | /* The bitmask of subsystems currently attached to this hierarchy */ |
| 78 | unsigned long actual_subsys_bits; | 86 | unsigned long actual_subsys_bits; |
| 79 | 87 | ||
| @@ -94,6 +102,9 @@ struct cgroupfs_root { | |||
| 94 | 102 | ||
| 95 | /* The path to use for release notifications. */ | 103 | /* The path to use for release notifications. */ |
| 96 | char release_agent_path[PATH_MAX]; | 104 | char release_agent_path[PATH_MAX]; |
| 105 | |||
| 106 | /* The name for this hierarchy - may be empty */ | ||
| 107 | char name[MAX_CGROUP_ROOT_NAMELEN]; | ||
| 97 | }; | 108 | }; |
| 98 | 109 | ||
| 99 | /* | 110 | /* |
| @@ -141,6 +152,10 @@ struct css_id { | |||
| 141 | static LIST_HEAD(roots); | 152 | static LIST_HEAD(roots); |
| 142 | static int root_count; | 153 | static int root_count; |
| 143 | 154 | ||
| 155 | static DEFINE_IDA(hierarchy_ida); | ||
| 156 | static int next_hierarchy_id; | ||
| 157 | static DEFINE_SPINLOCK(hierarchy_id_lock); | ||
| 158 | |||
| 144 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 159 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |
| 145 | #define dummytop (&rootnode.top_cgroup) | 160 | #define dummytop (&rootnode.top_cgroup) |
| 146 | 161 | ||
| @@ -201,6 +216,7 @@ struct cg_cgroup_link { | |||
| 201 | * cgroup, anchored on cgroup->css_sets | 216 | * cgroup, anchored on cgroup->css_sets |
| 202 | */ | 217 | */ |
| 203 | struct list_head cgrp_link_list; | 218 | struct list_head cgrp_link_list; |
| 219 | struct cgroup *cgrp; | ||
| 204 | /* | 220 | /* |
| 205 | * List running through cg_cgroup_links pointing at a | 221 | * List running through cg_cgroup_links pointing at a |
| 206 | * single css_set object, anchored on css_set->cg_links | 222 | * single css_set object, anchored on css_set->cg_links |
| @@ -227,8 +243,11 @@ static int cgroup_subsys_init_idr(struct cgroup_subsys *ss); | |||
| 227 | static DEFINE_RWLOCK(css_set_lock); | 243 | static DEFINE_RWLOCK(css_set_lock); |
| 228 | static int css_set_count; | 244 | static int css_set_count; |
| 229 | 245 | ||
| 230 | /* hash table for cgroup groups. This improves the performance to | 246 | /* |
| 231 | * find an existing css_set */ | 247 | * hash table for cgroup groups. This improves the performance to find |
| 248 | * an existing css_set. This hash doesn't (currently) take into | ||
| 249 | * account cgroups in empty hierarchies. | ||
| 250 | */ | ||
| 232 | #define CSS_SET_HASH_BITS 7 | 251 | #define CSS_SET_HASH_BITS 7 |
| 233 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) | 252 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) |
| 234 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | 253 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; |
| @@ -248,48 +267,22 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | |||
| 248 | return &css_set_table[index]; | 267 | return &css_set_table[index]; |
| 249 | } | 268 | } |
| 250 | 269 | ||
| 270 | static void free_css_set_rcu(struct rcu_head *obj) | ||
| 271 | { | ||
| 272 | struct css_set *cg = container_of(obj, struct css_set, rcu_head); | ||
| 273 | kfree(cg); | ||
| 274 | } | ||
| 275 | |||
| 251 | /* We don't maintain the lists running through each css_set to its | 276 | /* We don't maintain the lists running through each css_set to its |
| 252 | * task until after the first call to cgroup_iter_start(). This | 277 | * task until after the first call to cgroup_iter_start(). This |
| 253 | * reduces the fork()/exit() overhead for people who have cgroups | 278 | * reduces the fork()/exit() overhead for people who have cgroups |
| 254 | * compiled into their kernel but not actually in use */ | 279 | * compiled into their kernel but not actually in use */ |
| 255 | static int use_task_css_set_links __read_mostly; | 280 | static int use_task_css_set_links __read_mostly; |
| 256 | 281 | ||
| 257 | /* When we create or destroy a css_set, the operation simply | 282 | static void __put_css_set(struct css_set *cg, int taskexit) |
| 258 | * takes/releases a reference count on all the cgroups referenced | ||
| 259 | * by subsystems in this css_set. This can end up multiple-counting | ||
| 260 | * some cgroups, but that's OK - the ref-count is just a | ||
| 261 | * busy/not-busy indicator; ensuring that we only count each cgroup | ||
| 262 | * once would require taking a global lock to ensure that no | ||
| 263 | * subsystems moved between hierarchies while we were doing so. | ||
| 264 | * | ||
| 265 | * Possible TODO: decide at boot time based on the number of | ||
| 266 | * registered subsystems and the number of CPUs or NUMA nodes whether | ||
| 267 | * it's better for performance to ref-count every subsystem, or to | ||
| 268 | * take a global lock and only add one ref count to each hierarchy. | ||
| 269 | */ | ||
| 270 | |||
| 271 | /* | ||
| 272 | * unlink a css_set from the list and free it | ||
| 273 | */ | ||
| 274 | static void unlink_css_set(struct css_set *cg) | ||
| 275 | { | 283 | { |
| 276 | struct cg_cgroup_link *link; | 284 | struct cg_cgroup_link *link; |
| 277 | struct cg_cgroup_link *saved_link; | 285 | struct cg_cgroup_link *saved_link; |
| 278 | |||
| 279 | hlist_del(&cg->hlist); | ||
| 280 | css_set_count--; | ||
| 281 | |||
| 282 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
| 283 | cg_link_list) { | ||
| 284 | list_del(&link->cg_link_list); | ||
| 285 | list_del(&link->cgrp_link_list); | ||
| 286 | kfree(link); | ||
| 287 | } | ||
| 288 | } | ||
| 289 | |||
| 290 | static void __put_css_set(struct css_set *cg, int taskexit) | ||
| 291 | { | ||
| 292 | int i; | ||
| 293 | /* | 286 | /* |
| 294 | * Ensure that the refcount doesn't hit zero while any readers | 287 | * Ensure that the refcount doesn't hit zero while any readers |
| 295 | * can see it. Similar to atomic_dec_and_lock(), but for an | 288 | * can see it. Similar to atomic_dec_and_lock(), but for an |
| @@ -302,21 +295,28 @@ static void __put_css_set(struct css_set *cg, int taskexit) | |||
| 302 | write_unlock(&css_set_lock); | 295 | write_unlock(&css_set_lock); |
| 303 | return; | 296 | return; |
| 304 | } | 297 | } |
| 305 | unlink_css_set(cg); | ||
| 306 | write_unlock(&css_set_lock); | ||
| 307 | 298 | ||
| 308 | rcu_read_lock(); | 299 | /* This css_set is dead. unlink it and release cgroup refcounts */ |
| 309 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 300 | hlist_del(&cg->hlist); |
| 310 | struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup); | 301 | css_set_count--; |
| 302 | |||
| 303 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
| 304 | cg_link_list) { | ||
| 305 | struct cgroup *cgrp = link->cgrp; | ||
| 306 | list_del(&link->cg_link_list); | ||
| 307 | list_del(&link->cgrp_link_list); | ||
| 311 | if (atomic_dec_and_test(&cgrp->count) && | 308 | if (atomic_dec_and_test(&cgrp->count) && |
| 312 | notify_on_release(cgrp)) { | 309 | notify_on_release(cgrp)) { |
| 313 | if (taskexit) | 310 | if (taskexit) |
| 314 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 311 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
| 315 | check_for_release(cgrp); | 312 | check_for_release(cgrp); |
| 316 | } | 313 | } |
| 314 | |||
| 315 | kfree(link); | ||
| 317 | } | 316 | } |
| 318 | rcu_read_unlock(); | 317 | |
| 319 | kfree(cg); | 318 | write_unlock(&css_set_lock); |
| 319 | call_rcu(&cg->rcu_head, free_css_set_rcu); | ||
| 320 | } | 320 | } |
| 321 | 321 | ||
| 322 | /* | 322 | /* |
| @@ -338,6 +338,78 @@ static inline void put_css_set_taskexit(struct css_set *cg) | |||
| 338 | } | 338 | } |
| 339 | 339 | ||
| 340 | /* | 340 | /* |
| 341 | * compare_css_sets - helper function for find_existing_css_set(). | ||
| 342 | * @cg: candidate css_set being tested | ||
| 343 | * @old_cg: existing css_set for a task | ||
| 344 | * @new_cgrp: cgroup that's being entered by the task | ||
| 345 | * @template: desired set of css pointers in css_set (pre-calculated) | ||
| 346 | * | ||
| 347 | * Returns true if "cg" matches "old_cg" except for the hierarchy | ||
| 348 | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | ||
| 349 | */ | ||
| 350 | static bool compare_css_sets(struct css_set *cg, | ||
| 351 | struct css_set *old_cg, | ||
| 352 | struct cgroup *new_cgrp, | ||
| 353 | struct cgroup_subsys_state *template[]) | ||
| 354 | { | ||
| 355 | struct list_head *l1, *l2; | ||
| 356 | |||
| 357 | if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { | ||
| 358 | /* Not all subsystems matched */ | ||
| 359 | return false; | ||
| 360 | } | ||
| 361 | |||
| 362 | /* | ||
| 363 | * Compare cgroup pointers in order to distinguish between | ||
| 364 | * different cgroups in heirarchies with no subsystems. We | ||
| 365 | * could get by with just this check alone (and skip the | ||
| 366 | * memcmp above) but on most setups the memcmp check will | ||
| 367 | * avoid the need for this more expensive check on almost all | ||
| 368 | * candidates. | ||
| 369 | */ | ||
| 370 | |||
| 371 | l1 = &cg->cg_links; | ||
| 372 | l2 = &old_cg->cg_links; | ||
| 373 | while (1) { | ||
| 374 | struct cg_cgroup_link *cgl1, *cgl2; | ||
| 375 | struct cgroup *cg1, *cg2; | ||
| 376 | |||
| 377 | l1 = l1->next; | ||
| 378 | l2 = l2->next; | ||
| 379 | /* See if we reached the end - both lists are equal length. */ | ||
| 380 | if (l1 == &cg->cg_links) { | ||
| 381 | BUG_ON(l2 != &old_cg->cg_links); | ||
| 382 | break; | ||
| 383 | } else { | ||
| 384 | BUG_ON(l2 == &old_cg->cg_links); | ||
| 385 | } | ||
| 386 | /* Locate the cgroups associated with these links. */ | ||
| 387 | cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); | ||
| 388 | cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); | ||
| 389 | cg1 = cgl1->cgrp; | ||
| 390 | cg2 = cgl2->cgrp; | ||
| 391 | /* Hierarchies should be linked in the same order. */ | ||
| 392 | BUG_ON(cg1->root != cg2->root); | ||
| 393 | |||
| 394 | /* | ||
| 395 | * If this hierarchy is the hierarchy of the cgroup | ||
| 396 | * that's changing, then we need to check that this | ||
| 397 | * css_set points to the new cgroup; if it's any other | ||
| 398 | * hierarchy, then this css_set should point to the | ||
| 399 | * same cgroup as the old css_set. | ||
| 400 | */ | ||
| 401 | if (cg1->root == new_cgrp->root) { | ||
| 402 | if (cg1 != new_cgrp) | ||
| 403 | return false; | ||
| 404 | } else { | ||
| 405 | if (cg1 != cg2) | ||
| 406 | return false; | ||
| 407 | } | ||
| 408 | } | ||
| 409 | return true; | ||
| 410 | } | ||
| 411 | |||
| 412 | /* | ||
| 341 | * find_existing_css_set() is a helper for | 413 | * find_existing_css_set() is a helper for |
| 342 | * find_css_set(), and checks to see whether an existing | 414 | * find_css_set(), and checks to see whether an existing |
| 343 | * css_set is suitable. | 415 | * css_set is suitable. |
| @@ -378,10 +450,11 @@ static struct css_set *find_existing_css_set( | |||
| 378 | 450 | ||
| 379 | hhead = css_set_hash(template); | 451 | hhead = css_set_hash(template); |
| 380 | hlist_for_each_entry(cg, node, hhead, hlist) { | 452 | hlist_for_each_entry(cg, node, hhead, hlist) { |
| 381 | if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 453 | if (!compare_css_sets(cg, oldcg, cgrp, template)) |
| 382 | /* All subsystems matched */ | 454 | continue; |
| 383 | return cg; | 455 | |
| 384 | } | 456 | /* This css_set matches what we need */ |
| 457 | return cg; | ||
| 385 | } | 458 | } |
| 386 | 459 | ||
| 387 | /* No existing cgroup group matched */ | 460 | /* No existing cgroup group matched */ |
| @@ -435,8 +508,14 @@ static void link_css_set(struct list_head *tmp_cg_links, | |||
| 435 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, | 508 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, |
| 436 | cgrp_link_list); | 509 | cgrp_link_list); |
| 437 | link->cg = cg; | 510 | link->cg = cg; |
| 511 | link->cgrp = cgrp; | ||
| 512 | atomic_inc(&cgrp->count); | ||
| 438 | list_move(&link->cgrp_link_list, &cgrp->css_sets); | 513 | list_move(&link->cgrp_link_list, &cgrp->css_sets); |
| 439 | list_add(&link->cg_link_list, &cg->cg_links); | 514 | /* |
| 515 | * Always add links to the tail of the list so that the list | ||
| 516 | * is sorted by order of hierarchy creation | ||
| 517 | */ | ||
| 518 | list_add_tail(&link->cg_link_list, &cg->cg_links); | ||
| 440 | } | 519 | } |
| 441 | 520 | ||
| 442 | /* | 521 | /* |
| @@ -451,11 +530,11 @@ static struct css_set *find_css_set( | |||
| 451 | { | 530 | { |
| 452 | struct css_set *res; | 531 | struct css_set *res; |
| 453 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 532 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; |
| 454 | int i; | ||
| 455 | 533 | ||
| 456 | struct list_head tmp_cg_links; | 534 | struct list_head tmp_cg_links; |
| 457 | 535 | ||
| 458 | struct hlist_head *hhead; | 536 | struct hlist_head *hhead; |
| 537 | struct cg_cgroup_link *link; | ||
| 459 | 538 | ||
| 460 | /* First see if we already have a cgroup group that matches | 539 | /* First see if we already have a cgroup group that matches |
| 461 | * the desired set */ | 540 | * the desired set */ |
| @@ -489,20 +568,12 @@ static struct css_set *find_css_set( | |||
| 489 | 568 | ||
| 490 | write_lock(&css_set_lock); | 569 | write_lock(&css_set_lock); |
| 491 | /* Add reference counts and links from the new css_set. */ | 570 | /* Add reference counts and links from the new css_set. */ |
| 492 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 571 | list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { |
| 493 | struct cgroup *cgrp = res->subsys[i]->cgroup; | 572 | struct cgroup *c = link->cgrp; |
| 494 | struct cgroup_subsys *ss = subsys[i]; | 573 | if (c->root == cgrp->root) |
| 495 | atomic_inc(&cgrp->count); | 574 | c = cgrp; |
| 496 | /* | 575 | link_css_set(&tmp_cg_links, res, c); |
| 497 | * We want to add a link once per cgroup, so we | ||
| 498 | * only do it for the first subsystem in each | ||
| 499 | * hierarchy | ||
| 500 | */ | ||
| 501 | if (ss->root->subsys_list.next == &ss->sibling) | ||
| 502 | link_css_set(&tmp_cg_links, res, cgrp); | ||
| 503 | } | 576 | } |
| 504 | if (list_empty(&rootnode.subsys_list)) | ||
| 505 | link_css_set(&tmp_cg_links, res, dummytop); | ||
| 506 | 577 | ||
| 507 | BUG_ON(!list_empty(&tmp_cg_links)); | 578 | BUG_ON(!list_empty(&tmp_cg_links)); |
| 508 | 579 | ||
| @@ -518,6 +589,41 @@ static struct css_set *find_css_set( | |||
| 518 | } | 589 | } |
| 519 | 590 | ||
| 520 | /* | 591 | /* |
| 592 | * Return the cgroup for "task" from the given hierarchy. Must be | ||
| 593 | * called with cgroup_mutex held. | ||
| 594 | */ | ||
| 595 | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | ||
| 596 | struct cgroupfs_root *root) | ||
| 597 | { | ||
| 598 | struct css_set *css; | ||
| 599 | struct cgroup *res = NULL; | ||
| 600 | |||
| 601 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | ||
| 602 | read_lock(&css_set_lock); | ||
| 603 | /* | ||
| 604 | * No need to lock the task - since we hold cgroup_mutex the | ||
| 605 | * task can't change groups, so the only thing that can happen | ||
| 606 | * is that it exits and its css is set back to init_css_set. | ||
| 607 | */ | ||
| 608 | css = task->cgroups; | ||
| 609 | if (css == &init_css_set) { | ||
| 610 | res = &root->top_cgroup; | ||
| 611 | } else { | ||
| 612 | struct cg_cgroup_link *link; | ||
| 613 | list_for_each_entry(link, &css->cg_links, cg_link_list) { | ||
| 614 | struct cgroup *c = link->cgrp; | ||
| 615 | if (c->root == root) { | ||
| 616 | res = c; | ||
| 617 | break; | ||
| 618 | } | ||
| 619 | } | ||
| 620 | } | ||
| 621 | read_unlock(&css_set_lock); | ||
| 622 | BUG_ON(!res); | ||
| 623 | return res; | ||
| 624 | } | ||
| 625 | |||
| 626 | /* | ||
| 521 | * There is one global cgroup mutex. We also require taking | 627 | * There is one global cgroup mutex. We also require taking |
| 522 | * task_lock() when dereferencing a task's cgroup subsys pointers. | 628 | * task_lock() when dereferencing a task's cgroup subsys pointers. |
| 523 | * See "The task_lock() exception", at the end of this comment. | 629 | * See "The task_lock() exception", at the end of this comment. |
| @@ -596,7 +702,7 @@ void cgroup_unlock(void) | |||
| 596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 702 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
| 597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 703 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
| 598 | static int cgroup_populate_dir(struct cgroup *cgrp); | 704 | static int cgroup_populate_dir(struct cgroup *cgrp); |
| 599 | static struct inode_operations cgroup_dir_inode_operations; | 705 | static const struct inode_operations cgroup_dir_inode_operations; |
| 600 | static struct file_operations proc_cgroupstats_operations; | 706 | static struct file_operations proc_cgroupstats_operations; |
| 601 | 707 | ||
| 602 | static struct backing_dev_info cgroup_backing_dev_info = { | 708 | static struct backing_dev_info cgroup_backing_dev_info = { |
| @@ -677,6 +783,12 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode) | |||
| 677 | */ | 783 | */ |
| 678 | deactivate_super(cgrp->root->sb); | 784 | deactivate_super(cgrp->root->sb); |
| 679 | 785 | ||
| 786 | /* | ||
| 787 | * if we're getting rid of the cgroup, refcount should ensure | ||
| 788 | * that there are no pidlists left. | ||
| 789 | */ | ||
| 790 | BUG_ON(!list_empty(&cgrp->pidlists)); | ||
| 791 | |||
| 680 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); | 792 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); |
| 681 | } | 793 | } |
| 682 | iput(inode); | 794 | iput(inode); |
| @@ -841,6 +953,8 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | |||
| 841 | seq_puts(seq, ",noprefix"); | 953 | seq_puts(seq, ",noprefix"); |
| 842 | if (strlen(root->release_agent_path)) | 954 | if (strlen(root->release_agent_path)) |
| 843 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 955 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); |
| 956 | if (strlen(root->name)) | ||
| 957 | seq_printf(seq, ",name=%s", root->name); | ||
| 844 | mutex_unlock(&cgroup_mutex); | 958 | mutex_unlock(&cgroup_mutex); |
| 845 | return 0; | 959 | return 0; |
| 846 | } | 960 | } |
| @@ -849,6 +963,12 @@ struct cgroup_sb_opts { | |||
| 849 | unsigned long subsys_bits; | 963 | unsigned long subsys_bits; |
| 850 | unsigned long flags; | 964 | unsigned long flags; |
| 851 | char *release_agent; | 965 | char *release_agent; |
| 966 | char *name; | ||
| 967 | /* User explicitly requested empty subsystem */ | ||
| 968 | bool none; | ||
| 969 | |||
| 970 | struct cgroupfs_root *new_root; | ||
| 971 | |||
| 852 | }; | 972 | }; |
| 853 | 973 | ||
| 854 | /* Convert a hierarchy specifier into a bitmask of subsystems and | 974 | /* Convert a hierarchy specifier into a bitmask of subsystems and |
| @@ -863,9 +983,7 @@ static int parse_cgroupfs_options(char *data, | |||
| 863 | mask = ~(1UL << cpuset_subsys_id); | 983 | mask = ~(1UL << cpuset_subsys_id); |
| 864 | #endif | 984 | #endif |
| 865 | 985 | ||
| 866 | opts->subsys_bits = 0; | 986 | memset(opts, 0, sizeof(*opts)); |
| 867 | opts->flags = 0; | ||
| 868 | opts->release_agent = NULL; | ||
| 869 | 987 | ||
| 870 | while ((token = strsep(&o, ",")) != NULL) { | 988 | while ((token = strsep(&o, ",")) != NULL) { |
| 871 | if (!*token) | 989 | if (!*token) |
| @@ -879,17 +997,42 @@ static int parse_cgroupfs_options(char *data, | |||
| 879 | if (!ss->disabled) | 997 | if (!ss->disabled) |
| 880 | opts->subsys_bits |= 1ul << i; | 998 | opts->subsys_bits |= 1ul << i; |
| 881 | } | 999 | } |
| 1000 | } else if (!strcmp(token, "none")) { | ||
| 1001 | /* Explicitly have no subsystems */ | ||
| 1002 | opts->none = true; | ||
| 882 | } else if (!strcmp(token, "noprefix")) { | 1003 | } else if (!strcmp(token, "noprefix")) { |
| 883 | set_bit(ROOT_NOPREFIX, &opts->flags); | 1004 | set_bit(ROOT_NOPREFIX, &opts->flags); |
| 884 | } else if (!strncmp(token, "release_agent=", 14)) { | 1005 | } else if (!strncmp(token, "release_agent=", 14)) { |
| 885 | /* Specifying two release agents is forbidden */ | 1006 | /* Specifying two release agents is forbidden */ |
| 886 | if (opts->release_agent) | 1007 | if (opts->release_agent) |
| 887 | return -EINVAL; | 1008 | return -EINVAL; |
| 888 | opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); | 1009 | opts->release_agent = |
| 1010 | kstrndup(token + 14, PATH_MAX, GFP_KERNEL); | ||
| 889 | if (!opts->release_agent) | 1011 | if (!opts->release_agent) |
| 890 | return -ENOMEM; | 1012 | return -ENOMEM; |
| 891 | strncpy(opts->release_agent, token + 14, PATH_MAX - 1); | 1013 | } else if (!strncmp(token, "name=", 5)) { |
| 892 | opts->release_agent[PATH_MAX - 1] = 0; | 1014 | int i; |
| 1015 | const char *name = token + 5; | ||
| 1016 | /* Can't specify an empty name */ | ||
| 1017 | if (!strlen(name)) | ||
| 1018 | return -EINVAL; | ||
| 1019 | /* Must match [\w.-]+ */ | ||
| 1020 | for (i = 0; i < strlen(name); i++) { | ||
| 1021 | char c = name[i]; | ||
| 1022 | if (isalnum(c)) | ||
| 1023 | continue; | ||
| 1024 | if ((c == '.') || (c == '-') || (c == '_')) | ||
| 1025 | continue; | ||
| 1026 | return -EINVAL; | ||
| 1027 | } | ||
| 1028 | /* Specifying two names is forbidden */ | ||
| 1029 | if (opts->name) | ||
| 1030 | return -EINVAL; | ||
| 1031 | opts->name = kstrndup(name, | ||
| 1032 | MAX_CGROUP_ROOT_NAMELEN, | ||
| 1033 | GFP_KERNEL); | ||
| 1034 | if (!opts->name) | ||
| 1035 | return -ENOMEM; | ||
| 893 | } else { | 1036 | } else { |
| 894 | struct cgroup_subsys *ss; | 1037 | struct cgroup_subsys *ss; |
| 895 | int i; | 1038 | int i; |
| @@ -906,6 +1049,8 @@ static int parse_cgroupfs_options(char *data, | |||
| 906 | } | 1049 | } |
| 907 | } | 1050 | } |
| 908 | 1051 | ||
| 1052 | /* Consistency checks */ | ||
| 1053 | |||
| 909 | /* | 1054 | /* |
| 910 | * Option noprefix was introduced just for backward compatibility | 1055 | * Option noprefix was introduced just for backward compatibility |
| 911 | * with the old cpuset, so we allow noprefix only if mounting just | 1056 | * with the old cpuset, so we allow noprefix only if mounting just |
| @@ -915,8 +1060,16 @@ static int parse_cgroupfs_options(char *data, | |||
| 915 | (opts->subsys_bits & mask)) | 1060 | (opts->subsys_bits & mask)) |
| 916 | return -EINVAL; | 1061 | return -EINVAL; |
| 917 | 1062 | ||
| 918 | /* We can't have an empty hierarchy */ | 1063 | |
| 919 | if (!opts->subsys_bits) | 1064 | /* Can't specify "none" and some subsystems */ |
| 1065 | if (opts->subsys_bits && opts->none) | ||
| 1066 | return -EINVAL; | ||
| 1067 | |||
| 1068 | /* | ||
| 1069 | * We either have to specify by name or by subsystems. (So all | ||
| 1070 | * empty hierarchies must have a name). | ||
| 1071 | */ | ||
| 1072 | if (!opts->subsys_bits && !opts->name) | ||
| 920 | return -EINVAL; | 1073 | return -EINVAL; |
| 921 | 1074 | ||
| 922 | return 0; | 1075 | return 0; |
| @@ -944,6 +1097,12 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
| 944 | goto out_unlock; | 1097 | goto out_unlock; |
| 945 | } | 1098 | } |
| 946 | 1099 | ||
| 1100 | /* Don't allow name to change at remount */ | ||
| 1101 | if (opts.name && strcmp(opts.name, root->name)) { | ||
| 1102 | ret = -EINVAL; | ||
| 1103 | goto out_unlock; | ||
| 1104 | } | ||
| 1105 | |||
| 947 | ret = rebind_subsystems(root, opts.subsys_bits); | 1106 | ret = rebind_subsystems(root, opts.subsys_bits); |
| 948 | if (ret) | 1107 | if (ret) |
| 949 | goto out_unlock; | 1108 | goto out_unlock; |
| @@ -955,13 +1114,14 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
| 955 | strcpy(root->release_agent_path, opts.release_agent); | 1114 | strcpy(root->release_agent_path, opts.release_agent); |
| 956 | out_unlock: | 1115 | out_unlock: |
| 957 | kfree(opts.release_agent); | 1116 | kfree(opts.release_agent); |
| 1117 | kfree(opts.name); | ||
| 958 | mutex_unlock(&cgroup_mutex); | 1118 | mutex_unlock(&cgroup_mutex); |
| 959 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 1119 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
| 960 | unlock_kernel(); | 1120 | unlock_kernel(); |
| 961 | return ret; | 1121 | return ret; |
| 962 | } | 1122 | } |
| 963 | 1123 | ||
| 964 | static struct super_operations cgroup_ops = { | 1124 | static const struct super_operations cgroup_ops = { |
| 965 | .statfs = simple_statfs, | 1125 | .statfs = simple_statfs, |
| 966 | .drop_inode = generic_delete_inode, | 1126 | .drop_inode = generic_delete_inode, |
| 967 | .show_options = cgroup_show_options, | 1127 | .show_options = cgroup_show_options, |
| @@ -974,9 +1134,10 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp) | |||
| 974 | INIT_LIST_HEAD(&cgrp->children); | 1134 | INIT_LIST_HEAD(&cgrp->children); |
| 975 | INIT_LIST_HEAD(&cgrp->css_sets); | 1135 | INIT_LIST_HEAD(&cgrp->css_sets); |
| 976 | INIT_LIST_HEAD(&cgrp->release_list); | 1136 | INIT_LIST_HEAD(&cgrp->release_list); |
| 977 | INIT_LIST_HEAD(&cgrp->pids_list); | 1137 | INIT_LIST_HEAD(&cgrp->pidlists); |
| 978 | init_rwsem(&cgrp->pids_mutex); | 1138 | mutex_init(&cgrp->pidlist_mutex); |
| 979 | } | 1139 | } |
| 1140 | |||
| 980 | static void init_cgroup_root(struct cgroupfs_root *root) | 1141 | static void init_cgroup_root(struct cgroupfs_root *root) |
| 981 | { | 1142 | { |
| 982 | struct cgroup *cgrp = &root->top_cgroup; | 1143 | struct cgroup *cgrp = &root->top_cgroup; |
| @@ -988,33 +1149,106 @@ static void init_cgroup_root(struct cgroupfs_root *root) | |||
| 988 | init_cgroup_housekeeping(cgrp); | 1149 | init_cgroup_housekeeping(cgrp); |
| 989 | } | 1150 | } |
| 990 | 1151 | ||
| 1152 | static bool init_root_id(struct cgroupfs_root *root) | ||
| 1153 | { | ||
| 1154 | int ret = 0; | ||
| 1155 | |||
| 1156 | do { | ||
| 1157 | if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) | ||
| 1158 | return false; | ||
| 1159 | spin_lock(&hierarchy_id_lock); | ||
| 1160 | /* Try to allocate the next unused ID */ | ||
| 1161 | ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, | ||
| 1162 | &root->hierarchy_id); | ||
| 1163 | if (ret == -ENOSPC) | ||
| 1164 | /* Try again starting from 0 */ | ||
| 1165 | ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); | ||
| 1166 | if (!ret) { | ||
| 1167 | next_hierarchy_id = root->hierarchy_id + 1; | ||
| 1168 | } else if (ret != -EAGAIN) { | ||
| 1169 | /* Can only get here if the 31-bit IDR is full ... */ | ||
| 1170 | BUG_ON(ret); | ||
| 1171 | } | ||
| 1172 | spin_unlock(&hierarchy_id_lock); | ||
| 1173 | } while (ret); | ||
| 1174 | return true; | ||
| 1175 | } | ||
| 1176 | |||
| 991 | static int cgroup_test_super(struct super_block *sb, void *data) | 1177 | static int cgroup_test_super(struct super_block *sb, void *data) |
| 992 | { | 1178 | { |
| 993 | struct cgroupfs_root *new = data; | 1179 | struct cgroup_sb_opts *opts = data; |
| 994 | struct cgroupfs_root *root = sb->s_fs_info; | 1180 | struct cgroupfs_root *root = sb->s_fs_info; |
| 995 | 1181 | ||
| 996 | /* First check subsystems */ | 1182 | /* If we asked for a name then it must match */ |
| 997 | if (new->subsys_bits != root->subsys_bits) | 1183 | if (opts->name && strcmp(opts->name, root->name)) |
| 998 | return 0; | 1184 | return 0; |
| 999 | 1185 | ||
| 1000 | /* Next check flags */ | 1186 | /* |
| 1001 | if (new->flags != root->flags) | 1187 | * If we asked for subsystems (or explicitly for no |
| 1188 | * subsystems) then they must match | ||
| 1189 | */ | ||
| 1190 | if ((opts->subsys_bits || opts->none) | ||
| 1191 | && (opts->subsys_bits != root->subsys_bits)) | ||
| 1002 | return 0; | 1192 | return 0; |
| 1003 | 1193 | ||
| 1004 | return 1; | 1194 | return 1; |
| 1005 | } | 1195 | } |
| 1006 | 1196 | ||
| 1197 | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) | ||
| 1198 | { | ||
| 1199 | struct cgroupfs_root *root; | ||
| 1200 | |||
| 1201 | if (!opts->subsys_bits && !opts->none) | ||
| 1202 | return NULL; | ||
| 1203 | |||
| 1204 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
| 1205 | if (!root) | ||
| 1206 | return ERR_PTR(-ENOMEM); | ||
| 1207 | |||
| 1208 | if (!init_root_id(root)) { | ||
| 1209 | kfree(root); | ||
| 1210 | return ERR_PTR(-ENOMEM); | ||
| 1211 | } | ||
| 1212 | init_cgroup_root(root); | ||
| 1213 | |||
| 1214 | root->subsys_bits = opts->subsys_bits; | ||
| 1215 | root->flags = opts->flags; | ||
| 1216 | if (opts->release_agent) | ||
| 1217 | strcpy(root->release_agent_path, opts->release_agent); | ||
| 1218 | if (opts->name) | ||
| 1219 | strcpy(root->name, opts->name); | ||
| 1220 | return root; | ||
| 1221 | } | ||
| 1222 | |||
| 1223 | static void cgroup_drop_root(struct cgroupfs_root *root) | ||
| 1224 | { | ||
| 1225 | if (!root) | ||
| 1226 | return; | ||
| 1227 | |||
| 1228 | BUG_ON(!root->hierarchy_id); | ||
| 1229 | spin_lock(&hierarchy_id_lock); | ||
| 1230 | ida_remove(&hierarchy_ida, root->hierarchy_id); | ||
| 1231 | spin_unlock(&hierarchy_id_lock); | ||
| 1232 | kfree(root); | ||
| 1233 | } | ||
| 1234 | |||
| 1007 | static int cgroup_set_super(struct super_block *sb, void *data) | 1235 | static int cgroup_set_super(struct super_block *sb, void *data) |
| 1008 | { | 1236 | { |
| 1009 | int ret; | 1237 | int ret; |
| 1010 | struct cgroupfs_root *root = data; | 1238 | struct cgroup_sb_opts *opts = data; |
| 1239 | |||
| 1240 | /* If we don't have a new root, we can't set up a new sb */ | ||
| 1241 | if (!opts->new_root) | ||
| 1242 | return -EINVAL; | ||
| 1243 | |||
| 1244 | BUG_ON(!opts->subsys_bits && !opts->none); | ||
| 1011 | 1245 | ||
| 1012 | ret = set_anon_super(sb, NULL); | 1246 | ret = set_anon_super(sb, NULL); |
| 1013 | if (ret) | 1247 | if (ret) |
| 1014 | return ret; | 1248 | return ret; |
| 1015 | 1249 | ||
| 1016 | sb->s_fs_info = root; | 1250 | sb->s_fs_info = opts->new_root; |
| 1017 | root->sb = sb; | 1251 | opts->new_root->sb = sb; |
| 1018 | 1252 | ||
| 1019 | sb->s_blocksize = PAGE_CACHE_SIZE; | 1253 | sb->s_blocksize = PAGE_CACHE_SIZE; |
| 1020 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 1254 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
| @@ -1051,48 +1285,43 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1051 | void *data, struct vfsmount *mnt) | 1285 | void *data, struct vfsmount *mnt) |
| 1052 | { | 1286 | { |
| 1053 | struct cgroup_sb_opts opts; | 1287 | struct cgroup_sb_opts opts; |
| 1288 | struct cgroupfs_root *root; | ||
| 1054 | int ret = 0; | 1289 | int ret = 0; |
| 1055 | struct super_block *sb; | 1290 | struct super_block *sb; |
| 1056 | struct cgroupfs_root *root; | 1291 | struct cgroupfs_root *new_root; |
| 1057 | struct list_head tmp_cg_links; | ||
| 1058 | 1292 | ||
| 1059 | /* First find the desired set of subsystems */ | 1293 | /* First find the desired set of subsystems */ |
| 1060 | ret = parse_cgroupfs_options(data, &opts); | 1294 | ret = parse_cgroupfs_options(data, &opts); |
| 1061 | if (ret) { | 1295 | if (ret) |
| 1062 | kfree(opts.release_agent); | 1296 | goto out_err; |
| 1063 | return ret; | ||
| 1064 | } | ||
| 1065 | |||
| 1066 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
| 1067 | if (!root) { | ||
| 1068 | kfree(opts.release_agent); | ||
| 1069 | return -ENOMEM; | ||
| 1070 | } | ||
| 1071 | 1297 | ||
| 1072 | init_cgroup_root(root); | 1298 | /* |
| 1073 | root->subsys_bits = opts.subsys_bits; | 1299 | * Allocate a new cgroup root. We may not need it if we're |
| 1074 | root->flags = opts.flags; | 1300 | * reusing an existing hierarchy. |
| 1075 | if (opts.release_agent) { | 1301 | */ |
| 1076 | strcpy(root->release_agent_path, opts.release_agent); | 1302 | new_root = cgroup_root_from_opts(&opts); |
| 1077 | kfree(opts.release_agent); | 1303 | if (IS_ERR(new_root)) { |
| 1304 | ret = PTR_ERR(new_root); | ||
| 1305 | goto out_err; | ||
| 1078 | } | 1306 | } |
| 1307 | opts.new_root = new_root; | ||
| 1079 | 1308 | ||
| 1080 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); | 1309 | /* Locate an existing or new sb for this hierarchy */ |
| 1081 | 1310 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); | |
| 1082 | if (IS_ERR(sb)) { | 1311 | if (IS_ERR(sb)) { |
| 1083 | kfree(root); | 1312 | ret = PTR_ERR(sb); |
| 1084 | return PTR_ERR(sb); | 1313 | cgroup_drop_root(opts.new_root); |
| 1314 | goto out_err; | ||
| 1085 | } | 1315 | } |
| 1086 | 1316 | ||
| 1087 | if (sb->s_fs_info != root) { | 1317 | root = sb->s_fs_info; |
| 1088 | /* Reusing an existing superblock */ | 1318 | BUG_ON(!root); |
| 1089 | BUG_ON(sb->s_root == NULL); | 1319 | if (root == opts.new_root) { |
| 1090 | kfree(root); | 1320 | /* We used the new root structure, so this is a new hierarchy */ |
| 1091 | root = NULL; | 1321 | struct list_head tmp_cg_links; |
| 1092 | } else { | ||
| 1093 | /* New superblock */ | ||
| 1094 | struct cgroup *root_cgrp = &root->top_cgroup; | 1322 | struct cgroup *root_cgrp = &root->top_cgroup; |
| 1095 | struct inode *inode; | 1323 | struct inode *inode; |
| 1324 | struct cgroupfs_root *existing_root; | ||
| 1096 | int i; | 1325 | int i; |
| 1097 | 1326 | ||
| 1098 | BUG_ON(sb->s_root != NULL); | 1327 | BUG_ON(sb->s_root != NULL); |
| @@ -1105,6 +1334,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1105 | mutex_lock(&inode->i_mutex); | 1334 | mutex_lock(&inode->i_mutex); |
| 1106 | mutex_lock(&cgroup_mutex); | 1335 | mutex_lock(&cgroup_mutex); |
| 1107 | 1336 | ||
| 1337 | if (strlen(root->name)) { | ||
| 1338 | /* Check for name clashes with existing mounts */ | ||
| 1339 | for_each_active_root(existing_root) { | ||
| 1340 | if (!strcmp(existing_root->name, root->name)) { | ||
| 1341 | ret = -EBUSY; | ||
| 1342 | mutex_unlock(&cgroup_mutex); | ||
| 1343 | mutex_unlock(&inode->i_mutex); | ||
| 1344 | goto drop_new_super; | ||
| 1345 | } | ||
| 1346 | } | ||
| 1347 | } | ||
| 1348 | |||
| 1108 | /* | 1349 | /* |
| 1109 | * We're accessing css_set_count without locking | 1350 | * We're accessing css_set_count without locking |
| 1110 | * css_set_lock here, but that's OK - it can only be | 1351 | * css_set_lock here, but that's OK - it can only be |
| @@ -1123,7 +1364,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1123 | if (ret == -EBUSY) { | 1364 | if (ret == -EBUSY) { |
| 1124 | mutex_unlock(&cgroup_mutex); | 1365 | mutex_unlock(&cgroup_mutex); |
| 1125 | mutex_unlock(&inode->i_mutex); | 1366 | mutex_unlock(&inode->i_mutex); |
| 1126 | goto free_cg_links; | 1367 | free_cg_links(&tmp_cg_links); |
| 1368 | goto drop_new_super; | ||
| 1127 | } | 1369 | } |
| 1128 | 1370 | ||
| 1129 | /* EBUSY should be the only error here */ | 1371 | /* EBUSY should be the only error here */ |
| @@ -1155,17 +1397,27 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
| 1155 | BUG_ON(root->number_of_cgroups != 1); | 1397 | BUG_ON(root->number_of_cgroups != 1); |
| 1156 | 1398 | ||
| 1157 | cgroup_populate_dir(root_cgrp); | 1399 | cgroup_populate_dir(root_cgrp); |
| 1158 | mutex_unlock(&inode->i_mutex); | ||
| 1159 | mutex_unlock(&cgroup_mutex); | 1400 | mutex_unlock(&cgroup_mutex); |
| 1401 | mutex_unlock(&inode->i_mutex); | ||
| 1402 | } else { | ||
| 1403 | /* | ||
| 1404 | * We re-used an existing hierarchy - the new root (if | ||
| 1405 | * any) is not needed | ||
| 1406 | */ | ||
| 1407 | cgroup_drop_root(opts.new_root); | ||
| 1160 | } | 1408 | } |
| 1161 | 1409 | ||
| 1162 | simple_set_mnt(mnt, sb); | 1410 | simple_set_mnt(mnt, sb); |
| 1411 | kfree(opts.release_agent); | ||
| 1412 | kfree(opts.name); | ||
| 1163 | return 0; | 1413 | return 0; |
| 1164 | 1414 | ||
| 1165 | free_cg_links: | ||
| 1166 | free_cg_links(&tmp_cg_links); | ||
| 1167 | drop_new_super: | 1415 | drop_new_super: |
| 1168 | deactivate_locked_super(sb); | 1416 | deactivate_locked_super(sb); |
| 1417 | out_err: | ||
| 1418 | kfree(opts.release_agent); | ||
| 1419 | kfree(opts.name); | ||
| 1420 | |||
| 1169 | return ret; | 1421 | return ret; |
| 1170 | } | 1422 | } |
| 1171 | 1423 | ||
| @@ -1211,7 +1463,7 @@ static void cgroup_kill_sb(struct super_block *sb) { | |||
| 1211 | mutex_unlock(&cgroup_mutex); | 1463 | mutex_unlock(&cgroup_mutex); |
| 1212 | 1464 | ||
| 1213 | kill_litter_super(sb); | 1465 | kill_litter_super(sb); |
| 1214 | kfree(root); | 1466 | cgroup_drop_root(root); |
| 1215 | } | 1467 | } |
| 1216 | 1468 | ||
| 1217 | static struct file_system_type cgroup_fs_type = { | 1469 | static struct file_system_type cgroup_fs_type = { |
| @@ -1276,27 +1528,6 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | |||
| 1276 | return 0; | 1528 | return 0; |
| 1277 | } | 1529 | } |
| 1278 | 1530 | ||
| 1279 | /* | ||
| 1280 | * Return the first subsystem attached to a cgroup's hierarchy, and | ||
| 1281 | * its subsystem id. | ||
| 1282 | */ | ||
| 1283 | |||
| 1284 | static void get_first_subsys(const struct cgroup *cgrp, | ||
| 1285 | struct cgroup_subsys_state **css, int *subsys_id) | ||
| 1286 | { | ||
| 1287 | const struct cgroupfs_root *root = cgrp->root; | ||
| 1288 | const struct cgroup_subsys *test_ss; | ||
| 1289 | BUG_ON(list_empty(&root->subsys_list)); | ||
| 1290 | test_ss = list_entry(root->subsys_list.next, | ||
| 1291 | struct cgroup_subsys, sibling); | ||
| 1292 | if (css) { | ||
| 1293 | *css = cgrp->subsys[test_ss->subsys_id]; | ||
| 1294 | BUG_ON(!*css); | ||
| 1295 | } | ||
| 1296 | if (subsys_id) | ||
| 1297 | *subsys_id = test_ss->subsys_id; | ||
| 1298 | } | ||
| 1299 | |||
| 1300 | /** | 1531 | /** |
| 1301 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 1532 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' |
| 1302 | * @cgrp: the cgroup the task is attaching to | 1533 | * @cgrp: the cgroup the task is attaching to |
| @@ -1313,18 +1544,15 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
| 1313 | struct css_set *cg; | 1544 | struct css_set *cg; |
| 1314 | struct css_set *newcg; | 1545 | struct css_set *newcg; |
| 1315 | struct cgroupfs_root *root = cgrp->root; | 1546 | struct cgroupfs_root *root = cgrp->root; |
| 1316 | int subsys_id; | ||
| 1317 | |||
| 1318 | get_first_subsys(cgrp, NULL, &subsys_id); | ||
| 1319 | 1547 | ||
| 1320 | /* Nothing to do if the task is already in that cgroup */ | 1548 | /* Nothing to do if the task is already in that cgroup */ |
| 1321 | oldcgrp = task_cgroup(tsk, subsys_id); | 1549 | oldcgrp = task_cgroup_from_root(tsk, root); |
| 1322 | if (cgrp == oldcgrp) | 1550 | if (cgrp == oldcgrp) |
| 1323 | return 0; | 1551 | return 0; |
| 1324 | 1552 | ||
| 1325 | for_each_subsys(root, ss) { | 1553 | for_each_subsys(root, ss) { |
| 1326 | if (ss->can_attach) { | 1554 | if (ss->can_attach) { |
| 1327 | retval = ss->can_attach(ss, cgrp, tsk); | 1555 | retval = ss->can_attach(ss, cgrp, tsk, false); |
| 1328 | if (retval) | 1556 | if (retval) |
| 1329 | return retval; | 1557 | return retval; |
| 1330 | } | 1558 | } |
| @@ -1362,7 +1590,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
| 1362 | 1590 | ||
| 1363 | for_each_subsys(root, ss) { | 1591 | for_each_subsys(root, ss) { |
| 1364 | if (ss->attach) | 1592 | if (ss->attach) |
| 1365 | ss->attach(ss, cgrp, oldcgrp, tsk); | 1593 | ss->attach(ss, cgrp, oldcgrp, tsk, false); |
| 1366 | } | 1594 | } |
| 1367 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 1595 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); |
| 1368 | synchronize_rcu(); | 1596 | synchronize_rcu(); |
| @@ -1423,15 +1651,6 @@ static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | |||
| 1423 | return ret; | 1651 | return ret; |
| 1424 | } | 1652 | } |
| 1425 | 1653 | ||
| 1426 | /* The various types of files and directories in a cgroup file system */ | ||
| 1427 | enum cgroup_filetype { | ||
| 1428 | FILE_ROOT, | ||
| 1429 | FILE_DIR, | ||
| 1430 | FILE_TASKLIST, | ||
| 1431 | FILE_NOTIFY_ON_RELEASE, | ||
| 1432 | FILE_RELEASE_AGENT, | ||
| 1433 | }; | ||
| 1434 | |||
| 1435 | /** | 1654 | /** |
| 1436 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 1655 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. |
| 1437 | * @cgrp: the cgroup to be checked for liveness | 1656 | * @cgrp: the cgroup to be checked for liveness |
| @@ -1711,7 +1930,7 @@ static struct file_operations cgroup_file_operations = { | |||
| 1711 | .release = cgroup_file_release, | 1930 | .release = cgroup_file_release, |
| 1712 | }; | 1931 | }; |
| 1713 | 1932 | ||
| 1714 | static struct inode_operations cgroup_dir_inode_operations = { | 1933 | static const struct inode_operations cgroup_dir_inode_operations = { |
| 1715 | .lookup = simple_lookup, | 1934 | .lookup = simple_lookup, |
| 1716 | .mkdir = cgroup_mkdir, | 1935 | .mkdir = cgroup_mkdir, |
| 1717 | .rmdir = cgroup_rmdir, | 1936 | .rmdir = cgroup_rmdir, |
| @@ -1876,7 +2095,7 @@ int cgroup_task_count(const struct cgroup *cgrp) | |||
| 1876 | * the start of a css_set | 2095 | * the start of a css_set |
| 1877 | */ | 2096 | */ |
| 1878 | static void cgroup_advance_iter(struct cgroup *cgrp, | 2097 | static void cgroup_advance_iter(struct cgroup *cgrp, |
| 1879 | struct cgroup_iter *it) | 2098 | struct cgroup_iter *it) |
| 1880 | { | 2099 | { |
| 1881 | struct list_head *l = it->cg_link; | 2100 | struct list_head *l = it->cg_link; |
| 1882 | struct cg_cgroup_link *link; | 2101 | struct cg_cgroup_link *link; |
| @@ -2129,7 +2348,7 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
| 2129 | } | 2348 | } |
| 2130 | 2349 | ||
| 2131 | /* | 2350 | /* |
| 2132 | * Stuff for reading the 'tasks' file. | 2351 | * Stuff for reading the 'tasks'/'procs' files. |
| 2133 | * | 2352 | * |
| 2134 | * Reading this file can return large amounts of data if a cgroup has | 2353 | * Reading this file can return large amounts of data if a cgroup has |
| 2135 | * *lots* of attached tasks. So it may need several calls to read(), | 2354 | * *lots* of attached tasks. So it may need several calls to read(), |
| @@ -2139,27 +2358,196 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
| 2139 | */ | 2358 | */ |
| 2140 | 2359 | ||
| 2141 | /* | 2360 | /* |
| 2142 | * Load into 'pidarray' up to 'npids' of the tasks using cgroup | 2361 | * The following two functions "fix" the issue where there are more pids |
| 2143 | * 'cgrp'. Return actual number of pids loaded. No need to | 2362 | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
| 2144 | * task_lock(p) when reading out p->cgroup, since we're in an RCU | 2363 | * TODO: replace with a kernel-wide solution to this problem |
| 2145 | * read section, so the css_set can't go away, and is | 2364 | */ |
| 2146 | * immutable after creation. | 2365 | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
| 2366 | static void *pidlist_allocate(int count) | ||
| 2367 | { | ||
| 2368 | if (PIDLIST_TOO_LARGE(count)) | ||
| 2369 | return vmalloc(count * sizeof(pid_t)); | ||
| 2370 | else | ||
| 2371 | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | ||
| 2372 | } | ||
| 2373 | static void pidlist_free(void *p) | ||
| 2374 | { | ||
| 2375 | if (is_vmalloc_addr(p)) | ||
| 2376 | vfree(p); | ||
| 2377 | else | ||
| 2378 | kfree(p); | ||
| 2379 | } | ||
| 2380 | static void *pidlist_resize(void *p, int newcount) | ||
| 2381 | { | ||
| 2382 | void *newlist; | ||
| 2383 | /* note: if new alloc fails, old p will still be valid either way */ | ||
| 2384 | if (is_vmalloc_addr(p)) { | ||
| 2385 | newlist = vmalloc(newcount * sizeof(pid_t)); | ||
| 2386 | if (!newlist) | ||
| 2387 | return NULL; | ||
| 2388 | memcpy(newlist, p, newcount * sizeof(pid_t)); | ||
| 2389 | vfree(p); | ||
| 2390 | } else { | ||
| 2391 | newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); | ||
| 2392 | } | ||
| 2393 | return newlist; | ||
| 2394 | } | ||
| 2395 | |||
| 2396 | /* | ||
| 2397 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries | ||
| 2398 | * If the new stripped list is sufficiently smaller and there's enough memory | ||
| 2399 | * to allocate a new buffer, will let go of the unneeded memory. Returns the | ||
| 2400 | * number of unique elements. | ||
| 2401 | */ | ||
| 2402 | /* is the size difference enough that we should re-allocate the array? */ | ||
| 2403 | #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) | ||
| 2404 | static int pidlist_uniq(pid_t **p, int length) | ||
| 2405 | { | ||
| 2406 | int src, dest = 1; | ||
| 2407 | pid_t *list = *p; | ||
| 2408 | pid_t *newlist; | ||
| 2409 | |||
| 2410 | /* | ||
| 2411 | * we presume the 0th element is unique, so i starts at 1. trivial | ||
| 2412 | * edge cases first; no work needs to be done for either | ||
| 2413 | */ | ||
| 2414 | if (length == 0 || length == 1) | ||
| 2415 | return length; | ||
| 2416 | /* src and dest walk down the list; dest counts unique elements */ | ||
| 2417 | for (src = 1; src < length; src++) { | ||
| 2418 | /* find next unique element */ | ||
| 2419 | while (list[src] == list[src-1]) { | ||
| 2420 | src++; | ||
| 2421 | if (src == length) | ||
| 2422 | goto after; | ||
| 2423 | } | ||
| 2424 | /* dest always points to where the next unique element goes */ | ||
| 2425 | list[dest] = list[src]; | ||
| 2426 | dest++; | ||
| 2427 | } | ||
| 2428 | after: | ||
| 2429 | /* | ||
| 2430 | * if the length difference is large enough, we want to allocate a | ||
| 2431 | * smaller buffer to save memory. if this fails due to out of memory, | ||
| 2432 | * we'll just stay with what we've got. | ||
| 2433 | */ | ||
| 2434 | if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { | ||
| 2435 | newlist = pidlist_resize(list, dest); | ||
| 2436 | if (newlist) | ||
| 2437 | *p = newlist; | ||
| 2438 | } | ||
| 2439 | return dest; | ||
| 2440 | } | ||
| 2441 | |||
| 2442 | static int cmppid(const void *a, const void *b) | ||
| 2443 | { | ||
| 2444 | return *(pid_t *)a - *(pid_t *)b; | ||
| 2445 | } | ||
| 2446 | |||
| 2447 | /* | ||
| 2448 | * find the appropriate pidlist for our purpose (given procs vs tasks) | ||
| 2449 | * returns with the lock on that pidlist already held, and takes care | ||
| 2450 | * of the use count, or returns NULL with no locks held if we're out of | ||
| 2451 | * memory. | ||
| 2147 | */ | 2452 | */ |
| 2148 | static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) | 2453 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
| 2454 | enum cgroup_filetype type) | ||
| 2149 | { | 2455 | { |
| 2150 | int n = 0, pid; | 2456 | struct cgroup_pidlist *l; |
| 2457 | /* don't need task_nsproxy() if we're looking at ourself */ | ||
| 2458 | struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 2459 | /* | ||
| 2460 | * We can't drop the pidlist_mutex before taking the l->mutex in case | ||
| 2461 | * the last ref-holder is trying to remove l from the list at the same | ||
| 2462 | * time. Holding the pidlist_mutex precludes somebody taking whichever | ||
| 2463 | * list we find out from under us - compare release_pid_array(). | ||
| 2464 | */ | ||
| 2465 | mutex_lock(&cgrp->pidlist_mutex); | ||
| 2466 | list_for_each_entry(l, &cgrp->pidlists, links) { | ||
| 2467 | if (l->key.type == type && l->key.ns == ns) { | ||
| 2468 | /* found a matching list - drop the extra refcount */ | ||
| 2469 | put_pid_ns(ns); | ||
| 2470 | /* make sure l doesn't vanish out from under us */ | ||
| 2471 | down_write(&l->mutex); | ||
| 2472 | mutex_unlock(&cgrp->pidlist_mutex); | ||
| 2473 | l->use_count++; | ||
| 2474 | return l; | ||
| 2475 | } | ||
| 2476 | } | ||
| 2477 | /* entry not found; create a new one */ | ||
| 2478 | l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | ||
| 2479 | if (!l) { | ||
| 2480 | mutex_unlock(&cgrp->pidlist_mutex); | ||
| 2481 | put_pid_ns(ns); | ||
| 2482 | return l; | ||
| 2483 | } | ||
| 2484 | init_rwsem(&l->mutex); | ||
| 2485 | down_write(&l->mutex); | ||
| 2486 | l->key.type = type; | ||
| 2487 | l->key.ns = ns; | ||
| 2488 | l->use_count = 0; /* don't increment here */ | ||
| 2489 | l->list = NULL; | ||
| 2490 | l->owner = cgrp; | ||
| 2491 | list_add(&l->links, &cgrp->pidlists); | ||
| 2492 | mutex_unlock(&cgrp->pidlist_mutex); | ||
| 2493 | return l; | ||
| 2494 | } | ||
| 2495 | |||
| 2496 | /* | ||
| 2497 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | ||
| 2498 | */ | ||
| 2499 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, | ||
| 2500 | struct cgroup_pidlist **lp) | ||
| 2501 | { | ||
| 2502 | pid_t *array; | ||
| 2503 | int length; | ||
| 2504 | int pid, n = 0; /* used for populating the array */ | ||
| 2151 | struct cgroup_iter it; | 2505 | struct cgroup_iter it; |
| 2152 | struct task_struct *tsk; | 2506 | struct task_struct *tsk; |
| 2507 | struct cgroup_pidlist *l; | ||
| 2508 | |||
| 2509 | /* | ||
| 2510 | * If cgroup gets more users after we read count, we won't have | ||
| 2511 | * enough space - tough. This race is indistinguishable to the | ||
| 2512 | * caller from the case that the additional cgroup users didn't | ||
| 2513 | * show up until sometime later on. | ||
| 2514 | */ | ||
| 2515 | length = cgroup_task_count(cgrp); | ||
| 2516 | array = pidlist_allocate(length); | ||
| 2517 | if (!array) | ||
| 2518 | return -ENOMEM; | ||
| 2519 | /* now, populate the array */ | ||
| 2153 | cgroup_iter_start(cgrp, &it); | 2520 | cgroup_iter_start(cgrp, &it); |
| 2154 | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 2521 | while ((tsk = cgroup_iter_next(cgrp, &it))) { |
| 2155 | if (unlikely(n == npids)) | 2522 | if (unlikely(n == length)) |
| 2156 | break; | 2523 | break; |
| 2157 | pid = task_pid_vnr(tsk); | 2524 | /* get tgid or pid for procs or tasks file respectively */ |
| 2158 | if (pid > 0) | 2525 | if (type == CGROUP_FILE_PROCS) |
| 2159 | pidarray[n++] = pid; | 2526 | pid = task_tgid_vnr(tsk); |
| 2527 | else | ||
| 2528 | pid = task_pid_vnr(tsk); | ||
| 2529 | if (pid > 0) /* make sure to only use valid results */ | ||
| 2530 | array[n++] = pid; | ||
| 2160 | } | 2531 | } |
| 2161 | cgroup_iter_end(cgrp, &it); | 2532 | cgroup_iter_end(cgrp, &it); |
| 2162 | return n; | 2533 | length = n; |
| 2534 | /* now sort & (if procs) strip out duplicates */ | ||
| 2535 | sort(array, length, sizeof(pid_t), cmppid, NULL); | ||
| 2536 | if (type == CGROUP_FILE_PROCS) | ||
| 2537 | length = pidlist_uniq(&array, length); | ||
| 2538 | l = cgroup_pidlist_find(cgrp, type); | ||
| 2539 | if (!l) { | ||
| 2540 | pidlist_free(array); | ||
| 2541 | return -ENOMEM; | ||
| 2542 | } | ||
| 2543 | /* store array, freeing old if necessary - lock already held */ | ||
| 2544 | pidlist_free(l->list); | ||
| 2545 | l->list = array; | ||
| 2546 | l->length = length; | ||
| 2547 | l->use_count++; | ||
| 2548 | up_write(&l->mutex); | ||
| 2549 | *lp = l; | ||
| 2550 | return 0; | ||
| 2163 | } | 2551 | } |
| 2164 | 2552 | ||
| 2165 | /** | 2553 | /** |
| @@ -2216,37 +2604,14 @@ err: | |||
| 2216 | return ret; | 2604 | return ret; |
| 2217 | } | 2605 | } |
| 2218 | 2606 | ||
| 2219 | /* | ||
| 2220 | * Cache pids for all threads in the same pid namespace that are | ||
| 2221 | * opening the same "tasks" file. | ||
| 2222 | */ | ||
| 2223 | struct cgroup_pids { | ||
| 2224 | /* The node in cgrp->pids_list */ | ||
| 2225 | struct list_head list; | ||
| 2226 | /* The cgroup those pids belong to */ | ||
| 2227 | struct cgroup *cgrp; | ||
| 2228 | /* The namepsace those pids belong to */ | ||
| 2229 | struct pid_namespace *ns; | ||
| 2230 | /* Array of process ids in the cgroup */ | ||
| 2231 | pid_t *tasks_pids; | ||
| 2232 | /* How many files are using the this tasks_pids array */ | ||
| 2233 | int use_count; | ||
| 2234 | /* Length of the current tasks_pids array */ | ||
| 2235 | int length; | ||
| 2236 | }; | ||
| 2237 | |||
| 2238 | static int cmppid(const void *a, const void *b) | ||
| 2239 | { | ||
| 2240 | return *(pid_t *)a - *(pid_t *)b; | ||
| 2241 | } | ||
| 2242 | 2607 | ||
| 2243 | /* | 2608 | /* |
| 2244 | * seq_file methods for the "tasks" file. The seq_file position is the | 2609 | * seq_file methods for the tasks/procs files. The seq_file position is the |
| 2245 | * next pid to display; the seq_file iterator is a pointer to the pid | 2610 | * next pid to display; the seq_file iterator is a pointer to the pid |
| 2246 | * in the cgroup->tasks_pids array. | 2611 | * in the cgroup->l->list array. |
| 2247 | */ | 2612 | */ |
| 2248 | 2613 | ||
| 2249 | static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | 2614 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
| 2250 | { | 2615 | { |
| 2251 | /* | 2616 | /* |
| 2252 | * Initially we receive a position value that corresponds to | 2617 | * Initially we receive a position value that corresponds to |
| @@ -2254,48 +2619,45 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | |||
| 2254 | * after a seek to the start). Use a binary-search to find the | 2619 | * after a seek to the start). Use a binary-search to find the |
| 2255 | * next pid to display, if any | 2620 | * next pid to display, if any |
| 2256 | */ | 2621 | */ |
| 2257 | struct cgroup_pids *cp = s->private; | 2622 | struct cgroup_pidlist *l = s->private; |
| 2258 | struct cgroup *cgrp = cp->cgrp; | ||
| 2259 | int index = 0, pid = *pos; | 2623 | int index = 0, pid = *pos; |
| 2260 | int *iter; | 2624 | int *iter; |
| 2261 | 2625 | ||
| 2262 | down_read(&cgrp->pids_mutex); | 2626 | down_read(&l->mutex); |
| 2263 | if (pid) { | 2627 | if (pid) { |
| 2264 | int end = cp->length; | 2628 | int end = l->length; |
| 2265 | 2629 | ||
| 2266 | while (index < end) { | 2630 | while (index < end) { |
| 2267 | int mid = (index + end) / 2; | 2631 | int mid = (index + end) / 2; |
| 2268 | if (cp->tasks_pids[mid] == pid) { | 2632 | if (l->list[mid] == pid) { |
| 2269 | index = mid; | 2633 | index = mid; |
| 2270 | break; | 2634 | break; |
| 2271 | } else if (cp->tasks_pids[mid] <= pid) | 2635 | } else if (l->list[mid] <= pid) |
| 2272 | index = mid + 1; | 2636 | index = mid + 1; |
| 2273 | else | 2637 | else |
| 2274 | end = mid; | 2638 | end = mid; |
| 2275 | } | 2639 | } |
| 2276 | } | 2640 | } |
| 2277 | /* If we're off the end of the array, we're done */ | 2641 | /* If we're off the end of the array, we're done */ |
| 2278 | if (index >= cp->length) | 2642 | if (index >= l->length) |
| 2279 | return NULL; | 2643 | return NULL; |
| 2280 | /* Update the abstract position to be the actual pid that we found */ | 2644 | /* Update the abstract position to be the actual pid that we found */ |
| 2281 | iter = cp->tasks_pids + index; | 2645 | iter = l->list + index; |
| 2282 | *pos = *iter; | 2646 | *pos = *iter; |
| 2283 | return iter; | 2647 | return iter; |
| 2284 | } | 2648 | } |
| 2285 | 2649 | ||
| 2286 | static void cgroup_tasks_stop(struct seq_file *s, void *v) | 2650 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
| 2287 | { | 2651 | { |
| 2288 | struct cgroup_pids *cp = s->private; | 2652 | struct cgroup_pidlist *l = s->private; |
| 2289 | struct cgroup *cgrp = cp->cgrp; | 2653 | up_read(&l->mutex); |
| 2290 | up_read(&cgrp->pids_mutex); | ||
| 2291 | } | 2654 | } |
| 2292 | 2655 | ||
| 2293 | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | 2656 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
| 2294 | { | 2657 | { |
| 2295 | struct cgroup_pids *cp = s->private; | 2658 | struct cgroup_pidlist *l = s->private; |
| 2296 | int *p = v; | 2659 | pid_t *p = v; |
| 2297 | int *end = cp->tasks_pids + cp->length; | 2660 | pid_t *end = l->list + l->length; |
| 2298 | |||
| 2299 | /* | 2661 | /* |
| 2300 | * Advance to the next pid in the array. If this goes off the | 2662 | * Advance to the next pid in the array. If this goes off the |
| 2301 | * end, we're done | 2663 | * end, we're done |
| @@ -2309,124 +2671,107 @@ static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | |||
| 2309 | } | 2671 | } |
| 2310 | } | 2672 | } |
| 2311 | 2673 | ||
| 2312 | static int cgroup_tasks_show(struct seq_file *s, void *v) | 2674 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
| 2313 | { | 2675 | { |
| 2314 | return seq_printf(s, "%d\n", *(int *)v); | 2676 | return seq_printf(s, "%d\n", *(int *)v); |
| 2315 | } | 2677 | } |
| 2316 | 2678 | ||
| 2317 | static struct seq_operations cgroup_tasks_seq_operations = { | 2679 | /* |
| 2318 | .start = cgroup_tasks_start, | 2680 | * seq_operations functions for iterating on pidlists through seq_file - |
| 2319 | .stop = cgroup_tasks_stop, | 2681 | * independent of whether it's tasks or procs |
| 2320 | .next = cgroup_tasks_next, | 2682 | */ |
| 2321 | .show = cgroup_tasks_show, | 2683 | static const struct seq_operations cgroup_pidlist_seq_operations = { |
| 2684 | .start = cgroup_pidlist_start, | ||
| 2685 | .stop = cgroup_pidlist_stop, | ||
| 2686 | .next = cgroup_pidlist_next, | ||
| 2687 | .show = cgroup_pidlist_show, | ||
| 2322 | }; | 2688 | }; |
| 2323 | 2689 | ||
| 2324 | static void release_cgroup_pid_array(struct cgroup_pids *cp) | 2690 | static void cgroup_release_pid_array(struct cgroup_pidlist *l) |
| 2325 | { | 2691 | { |
| 2326 | struct cgroup *cgrp = cp->cgrp; | 2692 | /* |
| 2327 | 2693 | * the case where we're the last user of this particular pidlist will | |
| 2328 | down_write(&cgrp->pids_mutex); | 2694 | * have us remove it from the cgroup's list, which entails taking the |
| 2329 | BUG_ON(!cp->use_count); | 2695 | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> |
| 2330 | if (!--cp->use_count) { | 2696 | * pidlist_mutex, we have to take pidlist_mutex first. |
| 2331 | list_del(&cp->list); | 2697 | */ |
| 2332 | put_pid_ns(cp->ns); | 2698 | mutex_lock(&l->owner->pidlist_mutex); |
| 2333 | kfree(cp->tasks_pids); | 2699 | down_write(&l->mutex); |
| 2334 | kfree(cp); | 2700 | BUG_ON(!l->use_count); |
| 2701 | if (!--l->use_count) { | ||
| 2702 | /* we're the last user if refcount is 0; remove and free */ | ||
| 2703 | list_del(&l->links); | ||
| 2704 | mutex_unlock(&l->owner->pidlist_mutex); | ||
| 2705 | pidlist_free(l->list); | ||
| 2706 | put_pid_ns(l->key.ns); | ||
| 2707 | up_write(&l->mutex); | ||
| 2708 | kfree(l); | ||
| 2709 | return; | ||
| 2335 | } | 2710 | } |
| 2336 | up_write(&cgrp->pids_mutex); | 2711 | mutex_unlock(&l->owner->pidlist_mutex); |
| 2712 | up_write(&l->mutex); | ||
| 2337 | } | 2713 | } |
| 2338 | 2714 | ||
| 2339 | static int cgroup_tasks_release(struct inode *inode, struct file *file) | 2715 | static int cgroup_pidlist_release(struct inode *inode, struct file *file) |
| 2340 | { | 2716 | { |
| 2341 | struct seq_file *seq; | 2717 | struct cgroup_pidlist *l; |
| 2342 | struct cgroup_pids *cp; | ||
| 2343 | |||
| 2344 | if (!(file->f_mode & FMODE_READ)) | 2718 | if (!(file->f_mode & FMODE_READ)) |
| 2345 | return 0; | 2719 | return 0; |
| 2346 | 2720 | /* | |
| 2347 | seq = file->private_data; | 2721 | * the seq_file will only be initialized if the file was opened for |
| 2348 | cp = seq->private; | 2722 | * reading; hence we check if it's not null only in that case. |
| 2349 | 2723 | */ | |
| 2350 | release_cgroup_pid_array(cp); | 2724 | l = ((struct seq_file *)file->private_data)->private; |
| 2725 | cgroup_release_pid_array(l); | ||
| 2351 | return seq_release(inode, file); | 2726 | return seq_release(inode, file); |
| 2352 | } | 2727 | } |
| 2353 | 2728 | ||
| 2354 | static struct file_operations cgroup_tasks_operations = { | 2729 | static const struct file_operations cgroup_pidlist_operations = { |
| 2355 | .read = seq_read, | 2730 | .read = seq_read, |
| 2356 | .llseek = seq_lseek, | 2731 | .llseek = seq_lseek, |
| 2357 | .write = cgroup_file_write, | 2732 | .write = cgroup_file_write, |
| 2358 | .release = cgroup_tasks_release, | 2733 | .release = cgroup_pidlist_release, |
| 2359 | }; | 2734 | }; |
| 2360 | 2735 | ||
| 2361 | /* | 2736 | /* |
| 2362 | * Handle an open on 'tasks' file. Prepare an array containing the | 2737 | * The following functions handle opens on a file that displays a pidlist |
| 2363 | * process id's of tasks currently attached to the cgroup being opened. | 2738 | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's |
| 2739 | * in the cgroup. | ||
| 2364 | */ | 2740 | */ |
| 2365 | 2741 | /* helper function for the two below it */ | |
| 2366 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 2742 | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) |
| 2367 | { | 2743 | { |
| 2368 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 2744 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
| 2369 | struct pid_namespace *ns = current->nsproxy->pid_ns; | 2745 | struct cgroup_pidlist *l; |
| 2370 | struct cgroup_pids *cp; | ||
| 2371 | pid_t *pidarray; | ||
| 2372 | int npids; | ||
| 2373 | int retval; | 2746 | int retval; |
| 2374 | 2747 | ||
| 2375 | /* Nothing to do for write-only files */ | 2748 | /* Nothing to do for write-only files */ |
| 2376 | if (!(file->f_mode & FMODE_READ)) | 2749 | if (!(file->f_mode & FMODE_READ)) |
| 2377 | return 0; | 2750 | return 0; |
| 2378 | 2751 | ||
| 2379 | /* | 2752 | /* have the array populated */ |
| 2380 | * If cgroup gets more users after we read count, we won't have | 2753 | retval = pidlist_array_load(cgrp, type, &l); |
| 2381 | * enough space - tough. This race is indistinguishable to the | 2754 | if (retval) |
| 2382 | * caller from the case that the additional cgroup users didn't | 2755 | return retval; |
| 2383 | * show up until sometime later on. | 2756 | /* configure file information */ |
| 2384 | */ | 2757 | file->f_op = &cgroup_pidlist_operations; |
| 2385 | npids = cgroup_task_count(cgrp); | ||
| 2386 | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | ||
| 2387 | if (!pidarray) | ||
| 2388 | return -ENOMEM; | ||
| 2389 | npids = pid_array_load(pidarray, npids, cgrp); | ||
| 2390 | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | ||
| 2391 | |||
| 2392 | /* | ||
| 2393 | * Store the array in the cgroup, freeing the old | ||
| 2394 | * array if necessary | ||
| 2395 | */ | ||
| 2396 | down_write(&cgrp->pids_mutex); | ||
| 2397 | |||
| 2398 | list_for_each_entry(cp, &cgrp->pids_list, list) { | ||
| 2399 | if (ns == cp->ns) | ||
| 2400 | goto found; | ||
| 2401 | } | ||
| 2402 | |||
| 2403 | cp = kzalloc(sizeof(*cp), GFP_KERNEL); | ||
| 2404 | if (!cp) { | ||
| 2405 | up_write(&cgrp->pids_mutex); | ||
| 2406 | kfree(pidarray); | ||
| 2407 | return -ENOMEM; | ||
| 2408 | } | ||
| 2409 | cp->cgrp = cgrp; | ||
| 2410 | cp->ns = ns; | ||
| 2411 | get_pid_ns(ns); | ||
| 2412 | list_add(&cp->list, &cgrp->pids_list); | ||
| 2413 | found: | ||
| 2414 | kfree(cp->tasks_pids); | ||
| 2415 | cp->tasks_pids = pidarray; | ||
| 2416 | cp->length = npids; | ||
| 2417 | cp->use_count++; | ||
| 2418 | up_write(&cgrp->pids_mutex); | ||
| 2419 | |||
| 2420 | file->f_op = &cgroup_tasks_operations; | ||
| 2421 | 2758 | ||
| 2422 | retval = seq_open(file, &cgroup_tasks_seq_operations); | 2759 | retval = seq_open(file, &cgroup_pidlist_seq_operations); |
| 2423 | if (retval) { | 2760 | if (retval) { |
| 2424 | release_cgroup_pid_array(cp); | 2761 | cgroup_release_pid_array(l); |
| 2425 | return retval; | 2762 | return retval; |
| 2426 | } | 2763 | } |
| 2427 | ((struct seq_file *)file->private_data)->private = cp; | 2764 | ((struct seq_file *)file->private_data)->private = l; |
| 2428 | return 0; | 2765 | return 0; |
| 2429 | } | 2766 | } |
| 2767 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | ||
| 2768 | { | ||
| 2769 | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); | ||
| 2770 | } | ||
| 2771 | static int cgroup_procs_open(struct inode *unused, struct file *file) | ||
| 2772 | { | ||
| 2773 | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); | ||
| 2774 | } | ||
| 2430 | 2775 | ||
| 2431 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 2776 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, |
| 2432 | struct cftype *cft) | 2777 | struct cftype *cft) |
| @@ -2449,21 +2794,27 @@ static int cgroup_write_notify_on_release(struct cgroup *cgrp, | |||
| 2449 | /* | 2794 | /* |
| 2450 | * for the common functions, 'private' gives the type of file | 2795 | * for the common functions, 'private' gives the type of file |
| 2451 | */ | 2796 | */ |
| 2797 | /* for hysterical raisins, we can't put this on the older files */ | ||
| 2798 | #define CGROUP_FILE_GENERIC_PREFIX "cgroup." | ||
| 2452 | static struct cftype files[] = { | 2799 | static struct cftype files[] = { |
| 2453 | { | 2800 | { |
| 2454 | .name = "tasks", | 2801 | .name = "tasks", |
| 2455 | .open = cgroup_tasks_open, | 2802 | .open = cgroup_tasks_open, |
| 2456 | .write_u64 = cgroup_tasks_write, | 2803 | .write_u64 = cgroup_tasks_write, |
| 2457 | .release = cgroup_tasks_release, | 2804 | .release = cgroup_pidlist_release, |
| 2458 | .private = FILE_TASKLIST, | ||
| 2459 | .mode = S_IRUGO | S_IWUSR, | 2805 | .mode = S_IRUGO | S_IWUSR, |
| 2460 | }, | 2806 | }, |
| 2461 | 2807 | { | |
| 2808 | .name = CGROUP_FILE_GENERIC_PREFIX "procs", | ||
| 2809 | .open = cgroup_procs_open, | ||
| 2810 | /* .write_u64 = cgroup_procs_write, TODO */ | ||
| 2811 | .release = cgroup_pidlist_release, | ||
| 2812 | .mode = S_IRUGO, | ||
| 2813 | }, | ||
| 2462 | { | 2814 | { |
| 2463 | .name = "notify_on_release", | 2815 | .name = "notify_on_release", |
| 2464 | .read_u64 = cgroup_read_notify_on_release, | 2816 | .read_u64 = cgroup_read_notify_on_release, |
| 2465 | .write_u64 = cgroup_write_notify_on_release, | 2817 | .write_u64 = cgroup_write_notify_on_release, |
| 2466 | .private = FILE_NOTIFY_ON_RELEASE, | ||
| 2467 | }, | 2818 | }, |
| 2468 | }; | 2819 | }; |
| 2469 | 2820 | ||
| @@ -2472,7 +2823,6 @@ static struct cftype cft_release_agent = { | |||
| 2472 | .read_seq_string = cgroup_release_agent_show, | 2823 | .read_seq_string = cgroup_release_agent_show, |
| 2473 | .write_string = cgroup_release_agent_write, | 2824 | .write_string = cgroup_release_agent_write, |
| 2474 | .max_write_len = PATH_MAX, | 2825 | .max_write_len = PATH_MAX, |
| 2475 | .private = FILE_RELEASE_AGENT, | ||
| 2476 | }; | 2826 | }; |
| 2477 | 2827 | ||
| 2478 | static int cgroup_populate_dir(struct cgroup *cgrp) | 2828 | static int cgroup_populate_dir(struct cgroup *cgrp) |
| @@ -2879,6 +3229,7 @@ int __init cgroup_init_early(void) | |||
| 2879 | init_task.cgroups = &init_css_set; | 3229 | init_task.cgroups = &init_css_set; |
| 2880 | 3230 | ||
| 2881 | init_css_set_link.cg = &init_css_set; | 3231 | init_css_set_link.cg = &init_css_set; |
| 3232 | init_css_set_link.cgrp = dummytop; | ||
| 2882 | list_add(&init_css_set_link.cgrp_link_list, | 3233 | list_add(&init_css_set_link.cgrp_link_list, |
| 2883 | &rootnode.top_cgroup.css_sets); | 3234 | &rootnode.top_cgroup.css_sets); |
| 2884 | list_add(&init_css_set_link.cg_link_list, | 3235 | list_add(&init_css_set_link.cg_link_list, |
| @@ -2933,7 +3284,7 @@ int __init cgroup_init(void) | |||
| 2933 | /* Add init_css_set to the hash table */ | 3284 | /* Add init_css_set to the hash table */ |
| 2934 | hhead = css_set_hash(init_css_set.subsys); | 3285 | hhead = css_set_hash(init_css_set.subsys); |
| 2935 | hlist_add_head(&init_css_set.hlist, hhead); | 3286 | hlist_add_head(&init_css_set.hlist, hhead); |
| 2936 | 3287 | BUG_ON(!init_root_id(&rootnode)); | |
| 2937 | err = register_filesystem(&cgroup_fs_type); | 3288 | err = register_filesystem(&cgroup_fs_type); |
| 2938 | if (err < 0) | 3289 | if (err < 0) |
| 2939 | goto out; | 3290 | goto out; |
| @@ -2986,15 +3337,16 @@ static int proc_cgroup_show(struct seq_file *m, void *v) | |||
| 2986 | for_each_active_root(root) { | 3337 | for_each_active_root(root) { |
| 2987 | struct cgroup_subsys *ss; | 3338 | struct cgroup_subsys *ss; |
| 2988 | struct cgroup *cgrp; | 3339 | struct cgroup *cgrp; |
| 2989 | int subsys_id; | ||
| 2990 | int count = 0; | 3340 | int count = 0; |
| 2991 | 3341 | ||
| 2992 | seq_printf(m, "%lu:", root->subsys_bits); | 3342 | seq_printf(m, "%d:", root->hierarchy_id); |
| 2993 | for_each_subsys(root, ss) | 3343 | for_each_subsys(root, ss) |
| 2994 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 3344 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); |
| 3345 | if (strlen(root->name)) | ||
| 3346 | seq_printf(m, "%sname=%s", count ? "," : "", | ||
| 3347 | root->name); | ||
| 2995 | seq_putc(m, ':'); | 3348 | seq_putc(m, ':'); |
| 2996 | get_first_subsys(&root->top_cgroup, NULL, &subsys_id); | 3349 | cgrp = task_cgroup_from_root(tsk, root); |
| 2997 | cgrp = task_cgroup(tsk, subsys_id); | ||
| 2998 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 3350 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); |
| 2999 | if (retval < 0) | 3351 | if (retval < 0) |
| 3000 | goto out_unlock; | 3352 | goto out_unlock; |
| @@ -3033,8 +3385,8 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v) | |||
| 3033 | mutex_lock(&cgroup_mutex); | 3385 | mutex_lock(&cgroup_mutex); |
| 3034 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 3386 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
| 3035 | struct cgroup_subsys *ss = subsys[i]; | 3387 | struct cgroup_subsys *ss = subsys[i]; |
| 3036 | seq_printf(m, "%s\t%lu\t%d\t%d\n", | 3388 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
| 3037 | ss->name, ss->root->subsys_bits, | 3389 | ss->name, ss->root->hierarchy_id, |
| 3038 | ss->root->number_of_cgroups, !ss->disabled); | 3390 | ss->root->number_of_cgroups, !ss->disabled); |
| 3039 | } | 3391 | } |
| 3040 | mutex_unlock(&cgroup_mutex); | 3392 | mutex_unlock(&cgroup_mutex); |
| @@ -3320,13 +3672,11 @@ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) | |||
| 3320 | { | 3672 | { |
| 3321 | int ret; | 3673 | int ret; |
| 3322 | struct cgroup *target; | 3674 | struct cgroup *target; |
| 3323 | int subsys_id; | ||
| 3324 | 3675 | ||
| 3325 | if (cgrp == dummytop) | 3676 | if (cgrp == dummytop) |
| 3326 | return 1; | 3677 | return 1; |
| 3327 | 3678 | ||
| 3328 | get_first_subsys(cgrp, NULL, &subsys_id); | 3679 | target = task_cgroup_from_root(task, cgrp->root); |
| 3329 | target = task_cgroup(task, subsys_id); | ||
| 3330 | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 3680 | while (cgrp != target && cgrp!= cgrp->top_cgroup) |
| 3331 | cgrp = cgrp->parent; | 3681 | cgrp = cgrp->parent; |
| 3332 | ret = (cgrp == target); | 3682 | ret = (cgrp == target); |
| @@ -3693,3 +4043,154 @@ css_get_next(struct cgroup_subsys *ss, int id, | |||
| 3693 | return ret; | 4043 | return ret; |
| 3694 | } | 4044 | } |
| 3695 | 4045 | ||
| 4046 | #ifdef CONFIG_CGROUP_DEBUG | ||
| 4047 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
| 4048 | struct cgroup *cont) | ||
| 4049 | { | ||
| 4050 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
| 4051 | |||
| 4052 | if (!css) | ||
| 4053 | return ERR_PTR(-ENOMEM); | ||
| 4054 | |||
| 4055 | return css; | ||
| 4056 | } | ||
| 4057 | |||
| 4058 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 4059 | { | ||
| 4060 | kfree(cont->subsys[debug_subsys_id]); | ||
| 4061 | } | ||
| 4062 | |||
| 4063 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 4064 | { | ||
| 4065 | return atomic_read(&cont->count); | ||
| 4066 | } | ||
| 4067 | |||
| 4068 | static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 4069 | { | ||
| 4070 | return cgroup_task_count(cont); | ||
| 4071 | } | ||
| 4072 | |||
| 4073 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
| 4074 | { | ||
| 4075 | return (u64)(unsigned long)current->cgroups; | ||
| 4076 | } | ||
| 4077 | |||
| 4078 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
| 4079 | struct cftype *cft) | ||
| 4080 | { | ||
| 4081 | u64 count; | ||
| 4082 | |||
| 4083 | rcu_read_lock(); | ||
| 4084 | count = atomic_read(¤t->cgroups->refcount); | ||
| 4085 | rcu_read_unlock(); | ||
| 4086 | return count; | ||
| 4087 | } | ||
| 4088 | |||
| 4089 | static int current_css_set_cg_links_read(struct cgroup *cont, | ||
| 4090 | struct cftype *cft, | ||
| 4091 | struct seq_file *seq) | ||
| 4092 | { | ||
| 4093 | struct cg_cgroup_link *link; | ||
| 4094 | struct css_set *cg; | ||
| 4095 | |||
| 4096 | read_lock(&css_set_lock); | ||
| 4097 | rcu_read_lock(); | ||
| 4098 | cg = rcu_dereference(current->cgroups); | ||
| 4099 | list_for_each_entry(link, &cg->cg_links, cg_link_list) { | ||
| 4100 | struct cgroup *c = link->cgrp; | ||
| 4101 | const char *name; | ||
| 4102 | |||
| 4103 | if (c->dentry) | ||
| 4104 | name = c->dentry->d_name.name; | ||
| 4105 | else | ||
| 4106 | name = "?"; | ||
| 4107 | seq_printf(seq, "Root %d group %s\n", | ||
| 4108 | c->root->hierarchy_id, name); | ||
| 4109 | } | ||
| 4110 | rcu_read_unlock(); | ||
| 4111 | read_unlock(&css_set_lock); | ||
| 4112 | return 0; | ||
| 4113 | } | ||
| 4114 | |||
| 4115 | #define MAX_TASKS_SHOWN_PER_CSS 25 | ||
| 4116 | static int cgroup_css_links_read(struct cgroup *cont, | ||
| 4117 | struct cftype *cft, | ||
| 4118 | struct seq_file *seq) | ||
| 4119 | { | ||
| 4120 | struct cg_cgroup_link *link; | ||
| 4121 | |||
| 4122 | read_lock(&css_set_lock); | ||
| 4123 | list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { | ||
| 4124 | struct css_set *cg = link->cg; | ||
| 4125 | struct task_struct *task; | ||
| 4126 | int count = 0; | ||
| 4127 | seq_printf(seq, "css_set %p\n", cg); | ||
| 4128 | list_for_each_entry(task, &cg->tasks, cg_list) { | ||
| 4129 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | ||
| 4130 | seq_puts(seq, " ...\n"); | ||
| 4131 | break; | ||
| 4132 | } else { | ||
| 4133 | seq_printf(seq, " task %d\n", | ||
| 4134 | task_pid_vnr(task)); | ||
| 4135 | } | ||
| 4136 | } | ||
| 4137 | } | ||
| 4138 | read_unlock(&css_set_lock); | ||
| 4139 | return 0; | ||
| 4140 | } | ||
| 4141 | |||
| 4142 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
| 4143 | { | ||
| 4144 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
| 4145 | } | ||
| 4146 | |||
| 4147 | static struct cftype debug_files[] = { | ||
| 4148 | { | ||
| 4149 | .name = "cgroup_refcount", | ||
| 4150 | .read_u64 = cgroup_refcount_read, | ||
| 4151 | }, | ||
| 4152 | { | ||
| 4153 | .name = "taskcount", | ||
| 4154 | .read_u64 = debug_taskcount_read, | ||
| 4155 | }, | ||
| 4156 | |||
| 4157 | { | ||
| 4158 | .name = "current_css_set", | ||
| 4159 | .read_u64 = current_css_set_read, | ||
| 4160 | }, | ||
| 4161 | |||
| 4162 | { | ||
| 4163 | .name = "current_css_set_refcount", | ||
| 4164 | .read_u64 = current_css_set_refcount_read, | ||
| 4165 | }, | ||
| 4166 | |||
| 4167 | { | ||
| 4168 | .name = "current_css_set_cg_links", | ||
| 4169 | .read_seq_string = current_css_set_cg_links_read, | ||
| 4170 | }, | ||
| 4171 | |||
| 4172 | { | ||
| 4173 | .name = "cgroup_css_links", | ||
| 4174 | .read_seq_string = cgroup_css_links_read, | ||
| 4175 | }, | ||
| 4176 | |||
| 4177 | { | ||
| 4178 | .name = "releasable", | ||
| 4179 | .read_u64 = releasable_read, | ||
| 4180 | }, | ||
| 4181 | }; | ||
| 4182 | |||
| 4183 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 4184 | { | ||
| 4185 | return cgroup_add_files(cont, ss, debug_files, | ||
| 4186 | ARRAY_SIZE(debug_files)); | ||
| 4187 | } | ||
| 4188 | |||
| 4189 | struct cgroup_subsys debug_subsys = { | ||
| 4190 | .name = "debug", | ||
| 4191 | .create = debug_create, | ||
| 4192 | .destroy = debug_destroy, | ||
| 4193 | .populate = debug_populate, | ||
| 4194 | .subsys_id = debug_subsys_id, | ||
| 4195 | }; | ||
| 4196 | #endif /* CONFIG_CGROUP_DEBUG */ | ||
diff --git a/kernel/cgroup_debug.c b/kernel/cgroup_debug.c deleted file mode 100644 index 0c92d797baa6..000000000000 --- a/kernel/cgroup_debug.c +++ /dev/null | |||
| @@ -1,105 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * kernel/cgroup_debug.c - Example cgroup subsystem that | ||
| 3 | * exposes debug info | ||
| 4 | * | ||
| 5 | * Copyright (C) Google Inc, 2007 | ||
| 6 | * | ||
| 7 | * Developed by Paul Menage (menage@google.com) | ||
| 8 | * | ||
| 9 | */ | ||
| 10 | |||
| 11 | #include <linux/cgroup.h> | ||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/slab.h> | ||
| 14 | #include <linux/rcupdate.h> | ||
| 15 | |||
| 16 | #include <asm/atomic.h> | ||
| 17 | |||
| 18 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
| 19 | struct cgroup *cont) | ||
| 20 | { | ||
| 21 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
| 22 | |||
| 23 | if (!css) | ||
| 24 | return ERR_PTR(-ENOMEM); | ||
| 25 | |||
| 26 | return css; | ||
| 27 | } | ||
| 28 | |||
| 29 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 30 | { | ||
| 31 | kfree(cont->subsys[debug_subsys_id]); | ||
| 32 | } | ||
| 33 | |||
| 34 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 35 | { | ||
| 36 | return atomic_read(&cont->count); | ||
| 37 | } | ||
| 38 | |||
| 39 | static u64 taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
| 40 | { | ||
| 41 | u64 count; | ||
| 42 | |||
| 43 | count = cgroup_task_count(cont); | ||
| 44 | return count; | ||
| 45 | } | ||
| 46 | |||
| 47 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
| 48 | { | ||
| 49 | return (u64)(long)current->cgroups; | ||
| 50 | } | ||
| 51 | |||
| 52 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
| 53 | struct cftype *cft) | ||
| 54 | { | ||
| 55 | u64 count; | ||
| 56 | |||
| 57 | rcu_read_lock(); | ||
| 58 | count = atomic_read(¤t->cgroups->refcount); | ||
| 59 | rcu_read_unlock(); | ||
| 60 | return count; | ||
| 61 | } | ||
| 62 | |||
| 63 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
| 64 | { | ||
| 65 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
| 66 | } | ||
| 67 | |||
| 68 | static struct cftype files[] = { | ||
| 69 | { | ||
| 70 | .name = "cgroup_refcount", | ||
| 71 | .read_u64 = cgroup_refcount_read, | ||
| 72 | }, | ||
| 73 | { | ||
| 74 | .name = "taskcount", | ||
| 75 | .read_u64 = taskcount_read, | ||
| 76 | }, | ||
| 77 | |||
| 78 | { | ||
| 79 | .name = "current_css_set", | ||
| 80 | .read_u64 = current_css_set_read, | ||
| 81 | }, | ||
| 82 | |||
| 83 | { | ||
| 84 | .name = "current_css_set_refcount", | ||
| 85 | .read_u64 = current_css_set_refcount_read, | ||
| 86 | }, | ||
| 87 | |||
| 88 | { | ||
| 89 | .name = "releasable", | ||
| 90 | .read_u64 = releasable_read, | ||
| 91 | }, | ||
| 92 | }; | ||
| 93 | |||
| 94 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
| 95 | { | ||
| 96 | return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | ||
| 97 | } | ||
| 98 | |||
| 99 | struct cgroup_subsys debug_subsys = { | ||
| 100 | .name = "debug", | ||
| 101 | .create = debug_create, | ||
| 102 | .destroy = debug_destroy, | ||
| 103 | .populate = debug_populate, | ||
| 104 | .subsys_id = debug_subsys_id, | ||
| 105 | }; | ||
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index fb249e2bcada..59e9ef6aab40 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c | |||
| @@ -159,7 +159,7 @@ static bool is_task_frozen_enough(struct task_struct *task) | |||
| 159 | */ | 159 | */ |
| 160 | static int freezer_can_attach(struct cgroup_subsys *ss, | 160 | static int freezer_can_attach(struct cgroup_subsys *ss, |
| 161 | struct cgroup *new_cgroup, | 161 | struct cgroup *new_cgroup, |
| 162 | struct task_struct *task) | 162 | struct task_struct *task, bool threadgroup) |
| 163 | { | 163 | { |
| 164 | struct freezer *freezer; | 164 | struct freezer *freezer; |
| 165 | 165 | ||
| @@ -177,6 +177,19 @@ static int freezer_can_attach(struct cgroup_subsys *ss, | |||
| 177 | if (freezer->state == CGROUP_FROZEN) | 177 | if (freezer->state == CGROUP_FROZEN) |
| 178 | return -EBUSY; | 178 | return -EBUSY; |
| 179 | 179 | ||
| 180 | if (threadgroup) { | ||
| 181 | struct task_struct *c; | ||
| 182 | |||
| 183 | rcu_read_lock(); | ||
| 184 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
| 185 | if (is_task_frozen_enough(c)) { | ||
| 186 | rcu_read_unlock(); | ||
| 187 | return -EBUSY; | ||
| 188 | } | ||
| 189 | } | ||
| 190 | rcu_read_unlock(); | ||
| 191 | } | ||
| 192 | |||
| 180 | return 0; | 193 | return 0; |
| 181 | } | 194 | } |
| 182 | 195 | ||
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 7e75a41bd508..b5cb469d2545 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
| @@ -1324,9 +1324,10 @@ static int fmeter_getrate(struct fmeter *fmp) | |||
| 1324 | static cpumask_var_t cpus_attach; | 1324 | static cpumask_var_t cpus_attach; |
| 1325 | 1325 | ||
| 1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
| 1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, | 1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
| 1328 | struct cgroup *cont, struct task_struct *tsk) | 1328 | struct task_struct *tsk, bool threadgroup) |
| 1329 | { | 1329 | { |
| 1330 | int ret; | ||
| 1330 | struct cpuset *cs = cgroup_cs(cont); | 1331 | struct cpuset *cs = cgroup_cs(cont); |
| 1331 | 1332 | ||
| 1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 1333 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
| @@ -1343,18 +1344,51 @@ static int cpuset_can_attach(struct cgroup_subsys *ss, | |||
| 1343 | if (tsk->flags & PF_THREAD_BOUND) | 1344 | if (tsk->flags & PF_THREAD_BOUND) |
| 1344 | return -EINVAL; | 1345 | return -EINVAL; |
| 1345 | 1346 | ||
| 1346 | return security_task_setscheduler(tsk, 0, NULL); | 1347 | ret = security_task_setscheduler(tsk, 0, NULL); |
| 1348 | if (ret) | ||
| 1349 | return ret; | ||
| 1350 | if (threadgroup) { | ||
| 1351 | struct task_struct *c; | ||
| 1352 | |||
| 1353 | rcu_read_lock(); | ||
| 1354 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 1355 | ret = security_task_setscheduler(c, 0, NULL); | ||
| 1356 | if (ret) { | ||
| 1357 | rcu_read_unlock(); | ||
| 1358 | return ret; | ||
| 1359 | } | ||
| 1360 | } | ||
| 1361 | rcu_read_unlock(); | ||
| 1362 | } | ||
| 1363 | return 0; | ||
| 1364 | } | ||
| 1365 | |||
| 1366 | static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, | ||
| 1367 | struct cpuset *cs) | ||
| 1368 | { | ||
| 1369 | int err; | ||
| 1370 | /* | ||
| 1371 | * can_attach beforehand should guarantee that this doesn't fail. | ||
| 1372 | * TODO: have a better way to handle failure here | ||
| 1373 | */ | ||
| 1374 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
| 1375 | WARN_ON_ONCE(err); | ||
| 1376 | |||
| 1377 | task_lock(tsk); | ||
| 1378 | cpuset_change_task_nodemask(tsk, to); | ||
| 1379 | task_unlock(tsk); | ||
| 1380 | cpuset_update_task_spread_flag(cs, tsk); | ||
| 1381 | |||
| 1347 | } | 1382 | } |
| 1348 | 1383 | ||
| 1349 | static void cpuset_attach(struct cgroup_subsys *ss, | 1384 | static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
| 1350 | struct cgroup *cont, struct cgroup *oldcont, | 1385 | struct cgroup *oldcont, struct task_struct *tsk, |
| 1351 | struct task_struct *tsk) | 1386 | bool threadgroup) |
| 1352 | { | 1387 | { |
| 1353 | nodemask_t from, to; | 1388 | nodemask_t from, to; |
| 1354 | struct mm_struct *mm; | 1389 | struct mm_struct *mm; |
| 1355 | struct cpuset *cs = cgroup_cs(cont); | 1390 | struct cpuset *cs = cgroup_cs(cont); |
| 1356 | struct cpuset *oldcs = cgroup_cs(oldcont); | 1391 | struct cpuset *oldcs = cgroup_cs(oldcont); |
| 1357 | int err; | ||
| 1358 | 1392 | ||
| 1359 | if (cs == &top_cpuset) { | 1393 | if (cs == &top_cpuset) { |
| 1360 | cpumask_copy(cpus_attach, cpu_possible_mask); | 1394 | cpumask_copy(cpus_attach, cpu_possible_mask); |
| @@ -1363,15 +1397,19 @@ static void cpuset_attach(struct cgroup_subsys *ss, | |||
| 1363 | guarantee_online_cpus(cs, cpus_attach); | 1397 | guarantee_online_cpus(cs, cpus_attach); |
| 1364 | guarantee_online_mems(cs, &to); | 1398 | guarantee_online_mems(cs, &to); |
| 1365 | } | 1399 | } |
| 1366 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
| 1367 | if (err) | ||
| 1368 | return; | ||
| 1369 | 1400 | ||
| 1370 | task_lock(tsk); | 1401 | /* do per-task migration stuff possibly for each in the threadgroup */ |
| 1371 | cpuset_change_task_nodemask(tsk, &to); | 1402 | cpuset_attach_task(tsk, &to, cs); |
| 1372 | task_unlock(tsk); | 1403 | if (threadgroup) { |
| 1373 | cpuset_update_task_spread_flag(cs, tsk); | 1404 | struct task_struct *c; |
| 1405 | rcu_read_lock(); | ||
| 1406 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 1407 | cpuset_attach_task(c, &to, cs); | ||
| 1408 | } | ||
| 1409 | rcu_read_unlock(); | ||
| 1410 | } | ||
| 1374 | 1411 | ||
| 1412 | /* change mm; only needs to be done once even if threadgroup */ | ||
| 1375 | from = oldcs->mems_allowed; | 1413 | from = oldcs->mems_allowed; |
| 1376 | to = cs->mems_allowed; | 1414 | to = cs->mems_allowed; |
| 1377 | mm = get_task_mm(tsk); | 1415 | mm = get_task_mm(tsk); |
diff --git a/kernel/cred.c b/kernel/cred.c index d7f7a01082eb..dd76cfe5f5b0 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
| @@ -782,6 +782,25 @@ EXPORT_SYMBOL(set_create_files_as); | |||
| 782 | 782 | ||
| 783 | #ifdef CONFIG_DEBUG_CREDENTIALS | 783 | #ifdef CONFIG_DEBUG_CREDENTIALS |
| 784 | 784 | ||
| 785 | bool creds_are_invalid(const struct cred *cred) | ||
| 786 | { | ||
| 787 | if (cred->magic != CRED_MAGIC) | ||
| 788 | return true; | ||
| 789 | if (atomic_read(&cred->usage) < atomic_read(&cred->subscribers)) | ||
| 790 | return true; | ||
| 791 | #ifdef CONFIG_SECURITY_SELINUX | ||
| 792 | if (selinux_is_enabled()) { | ||
| 793 | if ((unsigned long) cred->security < PAGE_SIZE) | ||
| 794 | return true; | ||
| 795 | if ((*(u32 *)cred->security & 0xffffff00) == | ||
| 796 | (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8)) | ||
| 797 | return true; | ||
| 798 | } | ||
| 799 | #endif | ||
| 800 | return false; | ||
| 801 | } | ||
| 802 | EXPORT_SYMBOL(creds_are_invalid); | ||
| 803 | |||
| 785 | /* | 804 | /* |
| 786 | * dump invalid credentials | 805 | * dump invalid credentials |
| 787 | */ | 806 | */ |
diff --git a/kernel/delayacct.c b/kernel/delayacct.c index abb6e17505e2..ead9b610aa71 100644 --- a/kernel/delayacct.c +++ b/kernel/delayacct.c | |||
| @@ -15,6 +15,7 @@ | |||
| 15 | 15 | ||
| 16 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
| 17 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
| 18 | #include <linux/taskstats.h> | ||
| 18 | #include <linux/time.h> | 19 | #include <linux/time.h> |
| 19 | #include <linux/sysctl.h> | 20 | #include <linux/sysctl.h> |
| 20 | #include <linux/delayacct.h> | 21 | #include <linux/delayacct.h> |
diff --git a/kernel/exit.c b/kernel/exit.c index ae5d8660ddff..5859f598c951 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
| @@ -47,7 +47,7 @@ | |||
| 47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
| 48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
| 49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
| 50 | #include <linux/perf_counter.h> | 50 | #include <linux/perf_event.h> |
| 51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
| 52 | 52 | ||
| 53 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
| @@ -154,8 +154,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
| 154 | { | 154 | { |
| 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
| 156 | 156 | ||
| 157 | #ifdef CONFIG_PERF_COUNTERS | 157 | #ifdef CONFIG_PERF_EVENTS |
| 158 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | 158 | WARN_ON_ONCE(tsk->perf_event_ctxp); |
| 159 | #endif | 159 | #endif |
| 160 | trace_sched_process_free(tsk); | 160 | trace_sched_process_free(tsk); |
| 161 | put_task_struct(tsk); | 161 | put_task_struct(tsk); |
| @@ -359,8 +359,10 @@ void __set_special_pids(struct pid *pid) | |||
| 359 | { | 359 | { |
| 360 | struct task_struct *curr = current->group_leader; | 360 | struct task_struct *curr = current->group_leader; |
| 361 | 361 | ||
| 362 | if (task_session(curr) != pid) | 362 | if (task_session(curr) != pid) { |
| 363 | change_pid(curr, PIDTYPE_SID, pid); | 363 | change_pid(curr, PIDTYPE_SID, pid); |
| 364 | proc_sid_connector(curr); | ||
| 365 | } | ||
| 364 | 366 | ||
| 365 | if (task_pgrp(curr) != pid) | 367 | if (task_pgrp(curr) != pid) |
| 366 | change_pid(curr, PIDTYPE_PGID, pid); | 368 | change_pid(curr, PIDTYPE_PGID, pid); |
| @@ -945,6 +947,8 @@ NORET_TYPE void do_exit(long code) | |||
| 945 | if (group_dead) { | 947 | if (group_dead) { |
| 946 | hrtimer_cancel(&tsk->signal->real_timer); | 948 | hrtimer_cancel(&tsk->signal->real_timer); |
| 947 | exit_itimers(tsk->signal); | 949 | exit_itimers(tsk->signal); |
| 950 | if (tsk->mm) | ||
| 951 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | ||
| 948 | } | 952 | } |
| 949 | acct_collect(code, group_dead); | 953 | acct_collect(code, group_dead); |
| 950 | if (group_dead) | 954 | if (group_dead) |
| @@ -972,8 +976,6 @@ NORET_TYPE void do_exit(long code) | |||
| 972 | disassociate_ctty(1); | 976 | disassociate_ctty(1); |
| 973 | 977 | ||
| 974 | module_put(task_thread_info(tsk)->exec_domain->module); | 978 | module_put(task_thread_info(tsk)->exec_domain->module); |
| 975 | if (tsk->binfmt) | ||
| 976 | module_put(tsk->binfmt->module); | ||
| 977 | 979 | ||
| 978 | proc_exit_connector(tsk); | 980 | proc_exit_connector(tsk); |
| 979 | 981 | ||
| @@ -981,7 +983,7 @@ NORET_TYPE void do_exit(long code) | |||
| 981 | * Flush inherited counters to the parent - before the parent | 983 | * Flush inherited counters to the parent - before the parent |
| 982 | * gets woken up by child-exit notifications. | 984 | * gets woken up by child-exit notifications. |
| 983 | */ | 985 | */ |
| 984 | perf_counter_exit_task(tsk); | 986 | perf_event_exit_task(tsk); |
| 985 | 987 | ||
| 986 | exit_notify(tsk, group_dead); | 988 | exit_notify(tsk, group_dead); |
| 987 | #ifdef CONFIG_NUMA | 989 | #ifdef CONFIG_NUMA |
| @@ -1093,28 +1095,28 @@ struct wait_opts { | |||
| 1093 | int __user *wo_stat; | 1095 | int __user *wo_stat; |
| 1094 | struct rusage __user *wo_rusage; | 1096 | struct rusage __user *wo_rusage; |
| 1095 | 1097 | ||
| 1098 | wait_queue_t child_wait; | ||
| 1096 | int notask_error; | 1099 | int notask_error; |
| 1097 | }; | 1100 | }; |
| 1098 | 1101 | ||
| 1099 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 1102 | static inline |
| 1103 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | ||
| 1100 | { | 1104 | { |
| 1101 | struct pid *pid = NULL; | 1105 | if (type != PIDTYPE_PID) |
| 1102 | if (type == PIDTYPE_PID) | 1106 | task = task->group_leader; |
| 1103 | pid = task->pids[type].pid; | 1107 | return task->pids[type].pid; |
| 1104 | else if (type < PIDTYPE_MAX) | ||
| 1105 | pid = task->group_leader->pids[type].pid; | ||
| 1106 | return pid; | ||
| 1107 | } | 1108 | } |
| 1108 | 1109 | ||
| 1109 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 1110 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
| 1110 | { | 1111 | { |
| 1111 | int err; | 1112 | return wo->wo_type == PIDTYPE_MAX || |
| 1112 | 1113 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
| 1113 | if (wo->wo_type < PIDTYPE_MAX) { | 1114 | } |
| 1114 | if (task_pid_type(p, wo->wo_type) != wo->wo_pid) | ||
| 1115 | return 0; | ||
| 1116 | } | ||
| 1117 | 1115 | ||
| 1116 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | ||
| 1117 | { | ||
| 1118 | if (!eligible_pid(wo, p)) | ||
| 1119 | return 0; | ||
| 1118 | /* Wait for all children (clone and not) if __WALL is set; | 1120 | /* Wait for all children (clone and not) if __WALL is set; |
| 1119 | * otherwise, wait for clone children *only* if __WCLONE is | 1121 | * otherwise, wait for clone children *only* if __WCLONE is |
| 1120 | * set; otherwise, wait for non-clone children *only*. (Note: | 1122 | * set; otherwise, wait for non-clone children *only*. (Note: |
| @@ -1124,10 +1126,6 @@ static int eligible_child(struct wait_opts *wo, struct task_struct *p) | |||
| 1124 | && !(wo->wo_flags & __WALL)) | 1126 | && !(wo->wo_flags & __WALL)) |
| 1125 | return 0; | 1127 | return 0; |
| 1126 | 1128 | ||
| 1127 | err = security_task_wait(p); | ||
| 1128 | if (err) | ||
| 1129 | return err; | ||
| 1130 | |||
| 1131 | return 1; | 1129 | return 1; |
| 1132 | } | 1130 | } |
| 1133 | 1131 | ||
| @@ -1140,18 +1138,20 @@ static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | |||
| 1140 | 1138 | ||
| 1141 | put_task_struct(p); | 1139 | put_task_struct(p); |
| 1142 | infop = wo->wo_info; | 1140 | infop = wo->wo_info; |
| 1143 | if (!retval) | 1141 | if (infop) { |
| 1144 | retval = put_user(SIGCHLD, &infop->si_signo); | 1142 | if (!retval) |
| 1145 | if (!retval) | 1143 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 1146 | retval = put_user(0, &infop->si_errno); | 1144 | if (!retval) |
| 1147 | if (!retval) | 1145 | retval = put_user(0, &infop->si_errno); |
| 1148 | retval = put_user((short)why, &infop->si_code); | 1146 | if (!retval) |
| 1149 | if (!retval) | 1147 | retval = put_user((short)why, &infop->si_code); |
| 1150 | retval = put_user(pid, &infop->si_pid); | 1148 | if (!retval) |
| 1151 | if (!retval) | 1149 | retval = put_user(pid, &infop->si_pid); |
| 1152 | retval = put_user(uid, &infop->si_uid); | 1150 | if (!retval) |
| 1153 | if (!retval) | 1151 | retval = put_user(uid, &infop->si_uid); |
| 1154 | retval = put_user(status, &infop->si_status); | 1152 | if (!retval) |
| 1153 | retval = put_user(status, &infop->si_status); | ||
| 1154 | } | ||
| 1155 | if (!retval) | 1155 | if (!retval) |
| 1156 | retval = pid; | 1156 | retval = pid; |
| 1157 | return retval; | 1157 | return retval; |
| @@ -1208,6 +1208,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
| 1208 | if (likely(!traced) && likely(!task_detached(p))) { | 1208 | if (likely(!traced) && likely(!task_detached(p))) { |
| 1209 | struct signal_struct *psig; | 1209 | struct signal_struct *psig; |
| 1210 | struct signal_struct *sig; | 1210 | struct signal_struct *sig; |
| 1211 | unsigned long maxrss; | ||
| 1211 | 1212 | ||
| 1212 | /* | 1213 | /* |
| 1213 | * The resource counters for the group leader are in its | 1214 | * The resource counters for the group leader are in its |
| @@ -1256,6 +1257,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
| 1256 | psig->coublock += | 1257 | psig->coublock += |
| 1257 | task_io_get_oublock(p) + | 1258 | task_io_get_oublock(p) + |
| 1258 | sig->oublock + sig->coublock; | 1259 | sig->oublock + sig->coublock; |
| 1260 | maxrss = max(sig->maxrss, sig->cmaxrss); | ||
| 1261 | if (psig->cmaxrss < maxrss) | ||
| 1262 | psig->cmaxrss = maxrss; | ||
| 1259 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1263 | task_io_accounting_add(&psig->ioac, &p->ioac); |
| 1260 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1264 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
| 1261 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1265 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
| @@ -1477,13 +1481,14 @@ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | |||
| 1477 | * then ->notask_error is 0 if @p is an eligible child, | 1481 | * then ->notask_error is 0 if @p is an eligible child, |
| 1478 | * or another error from security_task_wait(), or still -ECHILD. | 1482 | * or another error from security_task_wait(), or still -ECHILD. |
| 1479 | */ | 1483 | */ |
| 1480 | static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, | 1484 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
| 1481 | int ptrace, struct task_struct *p) | 1485 | struct task_struct *p) |
| 1482 | { | 1486 | { |
| 1483 | int ret = eligible_child(wo, p); | 1487 | int ret = eligible_child(wo, p); |
| 1484 | if (!ret) | 1488 | if (!ret) |
| 1485 | return ret; | 1489 | return ret; |
| 1486 | 1490 | ||
| 1491 | ret = security_task_wait(p); | ||
| 1487 | if (unlikely(ret < 0)) { | 1492 | if (unlikely(ret < 0)) { |
| 1488 | /* | 1493 | /* |
| 1489 | * If we have not yet seen any eligible child, | 1494 | * If we have not yet seen any eligible child, |
| @@ -1545,7 +1550,7 @@ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | |||
| 1545 | * Do not consider detached threads. | 1550 | * Do not consider detached threads. |
| 1546 | */ | 1551 | */ |
| 1547 | if (!task_detached(p)) { | 1552 | if (!task_detached(p)) { |
| 1548 | int ret = wait_consider_task(wo, tsk, 0, p); | 1553 | int ret = wait_consider_task(wo, 0, p); |
| 1549 | if (ret) | 1554 | if (ret) |
| 1550 | return ret; | 1555 | return ret; |
| 1551 | } | 1556 | } |
| @@ -1559,7 +1564,7 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
| 1559 | struct task_struct *p; | 1564 | struct task_struct *p; |
| 1560 | 1565 | ||
| 1561 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 1566 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
| 1562 | int ret = wait_consider_task(wo, tsk, 1, p); | 1567 | int ret = wait_consider_task(wo, 1, p); |
| 1563 | if (ret) | 1568 | if (ret) |
| 1564 | return ret; | 1569 | return ret; |
| 1565 | } | 1570 | } |
| @@ -1567,15 +1572,38 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
| 1567 | return 0; | 1572 | return 0; |
| 1568 | } | 1573 | } |
| 1569 | 1574 | ||
| 1575 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | ||
| 1576 | int sync, void *key) | ||
| 1577 | { | ||
| 1578 | struct wait_opts *wo = container_of(wait, struct wait_opts, | ||
| 1579 | child_wait); | ||
| 1580 | struct task_struct *p = key; | ||
| 1581 | |||
| 1582 | if (!eligible_pid(wo, p)) | ||
| 1583 | return 0; | ||
| 1584 | |||
| 1585 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | ||
| 1586 | return 0; | ||
| 1587 | |||
| 1588 | return default_wake_function(wait, mode, sync, key); | ||
| 1589 | } | ||
| 1590 | |||
| 1591 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | ||
| 1592 | { | ||
| 1593 | __wake_up_sync_key(&parent->signal->wait_chldexit, | ||
| 1594 | TASK_INTERRUPTIBLE, 1, p); | ||
| 1595 | } | ||
| 1596 | |||
| 1570 | static long do_wait(struct wait_opts *wo) | 1597 | static long do_wait(struct wait_opts *wo) |
| 1571 | { | 1598 | { |
| 1572 | DECLARE_WAITQUEUE(wait, current); | ||
| 1573 | struct task_struct *tsk; | 1599 | struct task_struct *tsk; |
| 1574 | int retval; | 1600 | int retval; |
| 1575 | 1601 | ||
| 1576 | trace_sched_process_wait(wo->wo_pid); | 1602 | trace_sched_process_wait(wo->wo_pid); |
| 1577 | 1603 | ||
| 1578 | add_wait_queue(¤t->signal->wait_chldexit,&wait); | 1604 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
| 1605 | wo->child_wait.private = current; | ||
| 1606 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | ||
| 1579 | repeat: | 1607 | repeat: |
| 1580 | /* | 1608 | /* |
| 1581 | * If there is nothing that can match our critiera just get out. | 1609 | * If there is nothing that can match our critiera just get out. |
| @@ -1616,32 +1644,7 @@ notask: | |||
| 1616 | } | 1644 | } |
| 1617 | end: | 1645 | end: |
| 1618 | __set_current_state(TASK_RUNNING); | 1646 | __set_current_state(TASK_RUNNING); |
| 1619 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | 1647 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
| 1620 | if (wo->wo_info) { | ||
| 1621 | struct siginfo __user *infop = wo->wo_info; | ||
| 1622 | |||
| 1623 | if (retval > 0) | ||
| 1624 | retval = 0; | ||
| 1625 | else { | ||
| 1626 | /* | ||
| 1627 | * For a WNOHANG return, clear out all the fields | ||
| 1628 | * we would set so the user can easily tell the | ||
| 1629 | * difference. | ||
| 1630 | */ | ||
| 1631 | if (!retval) | ||
| 1632 | retval = put_user(0, &infop->si_signo); | ||
| 1633 | if (!retval) | ||
| 1634 | retval = put_user(0, &infop->si_errno); | ||
| 1635 | if (!retval) | ||
| 1636 | retval = put_user(0, &infop->si_code); | ||
| 1637 | if (!retval) | ||
| 1638 | retval = put_user(0, &infop->si_pid); | ||
| 1639 | if (!retval) | ||
| 1640 | retval = put_user(0, &infop->si_uid); | ||
| 1641 | if (!retval) | ||
| 1642 | retval = put_user(0, &infop->si_status); | ||
| 1643 | } | ||
| 1644 | } | ||
| 1645 | return retval; | 1648 | return retval; |
| 1646 | } | 1649 | } |
| 1647 | 1650 | ||
| @@ -1686,6 +1689,29 @@ SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | |||
| 1686 | wo.wo_stat = NULL; | 1689 | wo.wo_stat = NULL; |
| 1687 | wo.wo_rusage = ru; | 1690 | wo.wo_rusage = ru; |
| 1688 | ret = do_wait(&wo); | 1691 | ret = do_wait(&wo); |
| 1692 | |||
| 1693 | if (ret > 0) { | ||
| 1694 | ret = 0; | ||
| 1695 | } else if (infop) { | ||
| 1696 | /* | ||
| 1697 | * For a WNOHANG return, clear out all the fields | ||
| 1698 | * we would set so the user can easily tell the | ||
| 1699 | * difference. | ||
| 1700 | */ | ||
| 1701 | if (!ret) | ||
| 1702 | ret = put_user(0, &infop->si_signo); | ||
| 1703 | if (!ret) | ||
| 1704 | ret = put_user(0, &infop->si_errno); | ||
| 1705 | if (!ret) | ||
| 1706 | ret = put_user(0, &infop->si_code); | ||
| 1707 | if (!ret) | ||
| 1708 | ret = put_user(0, &infop->si_pid); | ||
| 1709 | if (!ret) | ||
| 1710 | ret = put_user(0, &infop->si_uid); | ||
| 1711 | if (!ret) | ||
| 1712 | ret = put_user(0, &infop->si_status); | ||
| 1713 | } | ||
| 1714 | |||
| 1689 | put_pid(pid); | 1715 | put_pid(pid); |
| 1690 | 1716 | ||
| 1691 | /* avoid REGPARM breakage on x86: */ | 1717 | /* avoid REGPARM breakage on x86: */ |
diff --git a/kernel/fork.c b/kernel/fork.c index bfee931ee3fb..266c6af6ef1b 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
| @@ -49,6 +49,7 @@ | |||
| 49 | #include <linux/ftrace.h> | 49 | #include <linux/ftrace.h> |
| 50 | #include <linux/profile.h> | 50 | #include <linux/profile.h> |
| 51 | #include <linux/rmap.h> | 51 | #include <linux/rmap.h> |
| 52 | #include <linux/ksm.h> | ||
| 52 | #include <linux/acct.h> | 53 | #include <linux/acct.h> |
| 53 | #include <linux/tsacct_kern.h> | 54 | #include <linux/tsacct_kern.h> |
| 54 | #include <linux/cn_proc.h> | 55 | #include <linux/cn_proc.h> |
| @@ -61,7 +62,8 @@ | |||
| 61 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
| 62 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
| 63 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
| 64 | #include <linux/perf_counter.h> | 65 | #include <linux/perf_event.h> |
| 66 | #include <linux/posix-timers.h> | ||
| 65 | 67 | ||
| 66 | #include <asm/pgtable.h> | 68 | #include <asm/pgtable.h> |
| 67 | #include <asm/pgalloc.h> | 69 | #include <asm/pgalloc.h> |
| @@ -136,9 +138,17 @@ struct kmem_cache *vm_area_cachep; | |||
| 136 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 138 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
| 137 | static struct kmem_cache *mm_cachep; | 139 | static struct kmem_cache *mm_cachep; |
| 138 | 140 | ||
| 141 | static void account_kernel_stack(struct thread_info *ti, int account) | ||
| 142 | { | ||
| 143 | struct zone *zone = page_zone(virt_to_page(ti)); | ||
| 144 | |||
| 145 | mod_zone_page_state(zone, NR_KERNEL_STACK, account); | ||
| 146 | } | ||
| 147 | |||
| 139 | void free_task(struct task_struct *tsk) | 148 | void free_task(struct task_struct *tsk) |
| 140 | { | 149 | { |
| 141 | prop_local_destroy_single(&tsk->dirties); | 150 | prop_local_destroy_single(&tsk->dirties); |
| 151 | account_kernel_stack(tsk->stack, -1); | ||
| 142 | free_thread_info(tsk->stack); | 152 | free_thread_info(tsk->stack); |
| 143 | rt_mutex_debug_task_free(tsk); | 153 | rt_mutex_debug_task_free(tsk); |
| 144 | ftrace_graph_exit_task(tsk); | 154 | ftrace_graph_exit_task(tsk); |
| @@ -253,6 +263,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
| 253 | tsk->btrace_seq = 0; | 263 | tsk->btrace_seq = 0; |
| 254 | #endif | 264 | #endif |
| 255 | tsk->splice_pipe = NULL; | 265 | tsk->splice_pipe = NULL; |
| 266 | |||
| 267 | account_kernel_stack(ti, 1); | ||
| 268 | |||
| 256 | return tsk; | 269 | return tsk; |
| 257 | 270 | ||
| 258 | out: | 271 | out: |
| @@ -288,6 +301,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
| 288 | rb_link = &mm->mm_rb.rb_node; | 301 | rb_link = &mm->mm_rb.rb_node; |
| 289 | rb_parent = NULL; | 302 | rb_parent = NULL; |
| 290 | pprev = &mm->mmap; | 303 | pprev = &mm->mmap; |
| 304 | retval = ksm_fork(mm, oldmm); | ||
| 305 | if (retval) | ||
| 306 | goto out; | ||
| 291 | 307 | ||
| 292 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 308 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
| 293 | struct file *file; | 309 | struct file *file; |
| @@ -418,22 +434,30 @@ __setup("coredump_filter=", coredump_filter_setup); | |||
| 418 | 434 | ||
| 419 | #include <linux/init_task.h> | 435 | #include <linux/init_task.h> |
| 420 | 436 | ||
| 437 | static void mm_init_aio(struct mm_struct *mm) | ||
| 438 | { | ||
| 439 | #ifdef CONFIG_AIO | ||
| 440 | spin_lock_init(&mm->ioctx_lock); | ||
| 441 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
| 442 | #endif | ||
| 443 | } | ||
| 444 | |||
| 421 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | 445 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) |
| 422 | { | 446 | { |
| 423 | atomic_set(&mm->mm_users, 1); | 447 | atomic_set(&mm->mm_users, 1); |
| 424 | atomic_set(&mm->mm_count, 1); | 448 | atomic_set(&mm->mm_count, 1); |
| 425 | init_rwsem(&mm->mmap_sem); | 449 | init_rwsem(&mm->mmap_sem); |
| 426 | INIT_LIST_HEAD(&mm->mmlist); | 450 | INIT_LIST_HEAD(&mm->mmlist); |
| 427 | mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; | 451 | mm->flags = (current->mm) ? |
| 452 | (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; | ||
| 428 | mm->core_state = NULL; | 453 | mm->core_state = NULL; |
| 429 | mm->nr_ptes = 0; | 454 | mm->nr_ptes = 0; |
| 430 | set_mm_counter(mm, file_rss, 0); | 455 | set_mm_counter(mm, file_rss, 0); |
| 431 | set_mm_counter(mm, anon_rss, 0); | 456 | set_mm_counter(mm, anon_rss, 0); |
| 432 | spin_lock_init(&mm->page_table_lock); | 457 | spin_lock_init(&mm->page_table_lock); |
| 433 | spin_lock_init(&mm->ioctx_lock); | ||
| 434 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
| 435 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 458 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
| 436 | mm->cached_hole_size = ~0UL; | 459 | mm->cached_hole_size = ~0UL; |
| 460 | mm_init_aio(mm); | ||
| 437 | mm_init_owner(mm, p); | 461 | mm_init_owner(mm, p); |
| 438 | 462 | ||
| 439 | if (likely(!mm_alloc_pgd(mm))) { | 463 | if (likely(!mm_alloc_pgd(mm))) { |
| @@ -485,6 +509,7 @@ void mmput(struct mm_struct *mm) | |||
| 485 | 509 | ||
| 486 | if (atomic_dec_and_test(&mm->mm_users)) { | 510 | if (atomic_dec_and_test(&mm->mm_users)) { |
| 487 | exit_aio(mm); | 511 | exit_aio(mm); |
| 512 | ksm_exit(mm); | ||
| 488 | exit_mmap(mm); | 513 | exit_mmap(mm); |
| 489 | set_mm_exe_file(mm, NULL); | 514 | set_mm_exe_file(mm, NULL); |
| 490 | if (!list_empty(&mm->mmlist)) { | 515 | if (!list_empty(&mm->mmlist)) { |
| @@ -493,6 +518,8 @@ void mmput(struct mm_struct *mm) | |||
| 493 | spin_unlock(&mmlist_lock); | 518 | spin_unlock(&mmlist_lock); |
| 494 | } | 519 | } |
| 495 | put_swap_token(mm); | 520 | put_swap_token(mm); |
| 521 | if (mm->binfmt) | ||
| 522 | module_put(mm->binfmt->module); | ||
| 496 | mmdrop(mm); | 523 | mmdrop(mm); |
| 497 | } | 524 | } |
| 498 | } | 525 | } |
| @@ -618,9 +645,14 @@ struct mm_struct *dup_mm(struct task_struct *tsk) | |||
| 618 | mm->hiwater_rss = get_mm_rss(mm); | 645 | mm->hiwater_rss = get_mm_rss(mm); |
| 619 | mm->hiwater_vm = mm->total_vm; | 646 | mm->hiwater_vm = mm->total_vm; |
| 620 | 647 | ||
| 648 | if (mm->binfmt && !try_module_get(mm->binfmt->module)) | ||
| 649 | goto free_pt; | ||
| 650 | |||
| 621 | return mm; | 651 | return mm; |
| 622 | 652 | ||
| 623 | free_pt: | 653 | free_pt: |
| 654 | /* don't put binfmt in mmput, we haven't got module yet */ | ||
| 655 | mm->binfmt = NULL; | ||
| 624 | mmput(mm); | 656 | mmput(mm); |
| 625 | 657 | ||
| 626 | fail_nomem: | 658 | fail_nomem: |
| @@ -788,10 +820,10 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig) | |||
| 788 | thread_group_cputime_init(sig); | 820 | thread_group_cputime_init(sig); |
| 789 | 821 | ||
| 790 | /* Expiration times and increments. */ | 822 | /* Expiration times and increments. */ |
| 791 | sig->it_virt_expires = cputime_zero; | 823 | sig->it[CPUCLOCK_PROF].expires = cputime_zero; |
| 792 | sig->it_virt_incr = cputime_zero; | 824 | sig->it[CPUCLOCK_PROF].incr = cputime_zero; |
| 793 | sig->it_prof_expires = cputime_zero; | 825 | sig->it[CPUCLOCK_VIRT].expires = cputime_zero; |
| 794 | sig->it_prof_incr = cputime_zero; | 826 | sig->it[CPUCLOCK_VIRT].incr = cputime_zero; |
| 795 | 827 | ||
| 796 | /* Cached expiration times. */ | 828 | /* Cached expiration times. */ |
| 797 | sig->cputime_expires.prof_exp = cputime_zero; | 829 | sig->cputime_expires.prof_exp = cputime_zero; |
| @@ -849,6 +881,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
| 849 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 881 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
| 850 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 882 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
| 851 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 883 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; |
| 884 | sig->maxrss = sig->cmaxrss = 0; | ||
| 852 | task_io_accounting_init(&sig->ioac); | 885 | task_io_accounting_init(&sig->ioac); |
| 853 | sig->sum_sched_runtime = 0; | 886 | sig->sum_sched_runtime = 0; |
| 854 | taskstats_tgid_init(sig); | 887 | taskstats_tgid_init(sig); |
| @@ -863,6 +896,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
| 863 | 896 | ||
| 864 | tty_audit_fork(sig); | 897 | tty_audit_fork(sig); |
| 865 | 898 | ||
| 899 | sig->oom_adj = current->signal->oom_adj; | ||
| 900 | |||
| 866 | return 0; | 901 | return 0; |
| 867 | } | 902 | } |
| 868 | 903 | ||
| @@ -958,6 +993,16 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 958 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 993 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) |
| 959 | return ERR_PTR(-EINVAL); | 994 | return ERR_PTR(-EINVAL); |
| 960 | 995 | ||
| 996 | /* | ||
| 997 | * Siblings of global init remain as zombies on exit since they are | ||
| 998 | * not reaped by their parent (swapper). To solve this and to avoid | ||
| 999 | * multi-rooted process trees, prevent global and container-inits | ||
| 1000 | * from creating siblings. | ||
| 1001 | */ | ||
| 1002 | if ((clone_flags & CLONE_PARENT) && | ||
| 1003 | current->signal->flags & SIGNAL_UNKILLABLE) | ||
| 1004 | return ERR_PTR(-EINVAL); | ||
| 1005 | |||
| 961 | retval = security_task_create(clone_flags); | 1006 | retval = security_task_create(clone_flags); |
| 962 | if (retval) | 1007 | if (retval) |
| 963 | goto fork_out; | 1008 | goto fork_out; |
| @@ -999,9 +1044,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 999 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) | 1044 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
| 1000 | goto bad_fork_cleanup_count; | 1045 | goto bad_fork_cleanup_count; |
| 1001 | 1046 | ||
| 1002 | if (p->binfmt && !try_module_get(p->binfmt->module)) | ||
| 1003 | goto bad_fork_cleanup_put_domain; | ||
| 1004 | |||
| 1005 | p->did_exec = 0; | 1047 | p->did_exec = 0; |
| 1006 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ | 1048 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ |
| 1007 | copy_flags(clone_flags, p); | 1049 | copy_flags(clone_flags, p); |
| @@ -1075,10 +1117,12 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1075 | 1117 | ||
| 1076 | p->bts = NULL; | 1118 | p->bts = NULL; |
| 1077 | 1119 | ||
| 1120 | p->stack_start = stack_start; | ||
| 1121 | |||
| 1078 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1122 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
| 1079 | sched_fork(p, clone_flags); | 1123 | sched_fork(p, clone_flags); |
| 1080 | 1124 | ||
| 1081 | retval = perf_counter_init_task(p); | 1125 | retval = perf_event_init_task(p); |
| 1082 | if (retval) | 1126 | if (retval) |
| 1083 | goto bad_fork_cleanup_policy; | 1127 | goto bad_fork_cleanup_policy; |
| 1084 | 1128 | ||
| @@ -1253,7 +1297,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1253 | write_unlock_irq(&tasklist_lock); | 1297 | write_unlock_irq(&tasklist_lock); |
| 1254 | proc_fork_connector(p); | 1298 | proc_fork_connector(p); |
| 1255 | cgroup_post_fork(p); | 1299 | cgroup_post_fork(p); |
| 1256 | perf_counter_fork(p); | 1300 | perf_event_fork(p); |
| 1257 | return p; | 1301 | return p; |
| 1258 | 1302 | ||
| 1259 | bad_fork_free_pid: | 1303 | bad_fork_free_pid: |
| @@ -1280,16 +1324,13 @@ bad_fork_cleanup_semundo: | |||
| 1280 | bad_fork_cleanup_audit: | 1324 | bad_fork_cleanup_audit: |
| 1281 | audit_free(p); | 1325 | audit_free(p); |
| 1282 | bad_fork_cleanup_policy: | 1326 | bad_fork_cleanup_policy: |
| 1283 | perf_counter_free_task(p); | 1327 | perf_event_free_task(p); |
| 1284 | #ifdef CONFIG_NUMA | 1328 | #ifdef CONFIG_NUMA |
| 1285 | mpol_put(p->mempolicy); | 1329 | mpol_put(p->mempolicy); |
| 1286 | bad_fork_cleanup_cgroup: | 1330 | bad_fork_cleanup_cgroup: |
| 1287 | #endif | 1331 | #endif |
| 1288 | cgroup_exit(p, cgroup_callbacks_done); | 1332 | cgroup_exit(p, cgroup_callbacks_done); |
| 1289 | delayacct_tsk_free(p); | 1333 | delayacct_tsk_free(p); |
| 1290 | if (p->binfmt) | ||
| 1291 | module_put(p->binfmt->module); | ||
| 1292 | bad_fork_cleanup_put_domain: | ||
| 1293 | module_put(task_thread_info(p)->exec_domain->module); | 1334 | module_put(task_thread_info(p)->exec_domain->module); |
| 1294 | bad_fork_cleanup_count: | 1335 | bad_fork_cleanup_count: |
| 1295 | atomic_dec(&p->cred->user->processes); | 1336 | atomic_dec(&p->cred->user->processes); |
diff --git a/kernel/futex.c b/kernel/futex.c index 248dd119a86e..b911adceb2c4 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
| @@ -89,36 +89,36 @@ struct futex_pi_state { | |||
| 89 | union futex_key key; | 89 | union futex_key key; |
| 90 | }; | 90 | }; |
| 91 | 91 | ||
| 92 | /* | 92 | /** |
| 93 | * We use this hashed waitqueue instead of a normal wait_queue_t, so | 93 | * struct futex_q - The hashed futex queue entry, one per waiting task |
| 94 | * @task: the task waiting on the futex | ||
| 95 | * @lock_ptr: the hash bucket lock | ||
| 96 | * @key: the key the futex is hashed on | ||
| 97 | * @pi_state: optional priority inheritance state | ||
| 98 | * @rt_waiter: rt_waiter storage for use with requeue_pi | ||
| 99 | * @requeue_pi_key: the requeue_pi target futex key | ||
| 100 | * @bitset: bitset for the optional bitmasked wakeup | ||
| 101 | * | ||
| 102 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | ||
| 94 | * we can wake only the relevant ones (hashed queues may be shared). | 103 | * we can wake only the relevant ones (hashed queues may be shared). |
| 95 | * | 104 | * |
| 96 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | 105 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
| 97 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. | 106 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
| 98 | * The order of wakup is always to make the first condition true, then | 107 | * The order of wakup is always to make the first condition true, then |
| 99 | * wake up q->waiter, then make the second condition true. | 108 | * the second. |
| 109 | * | ||
| 110 | * PI futexes are typically woken before they are removed from the hash list via | ||
| 111 | * the rt_mutex code. See unqueue_me_pi(). | ||
| 100 | */ | 112 | */ |
| 101 | struct futex_q { | 113 | struct futex_q { |
| 102 | struct plist_node list; | 114 | struct plist_node list; |
| 103 | /* Waiter reference */ | ||
| 104 | struct task_struct *task; | ||
| 105 | 115 | ||
| 106 | /* Which hash list lock to use: */ | 116 | struct task_struct *task; |
| 107 | spinlock_t *lock_ptr; | 117 | spinlock_t *lock_ptr; |
| 108 | |||
| 109 | /* Key which the futex is hashed on: */ | ||
| 110 | union futex_key key; | 118 | union futex_key key; |
| 111 | |||
| 112 | /* Optional priority inheritance state: */ | ||
| 113 | struct futex_pi_state *pi_state; | 119 | struct futex_pi_state *pi_state; |
| 114 | |||
| 115 | /* rt_waiter storage for requeue_pi: */ | ||
| 116 | struct rt_mutex_waiter *rt_waiter; | 120 | struct rt_mutex_waiter *rt_waiter; |
| 117 | |||
| 118 | /* The expected requeue pi target futex key: */ | ||
| 119 | union futex_key *requeue_pi_key; | 121 | union futex_key *requeue_pi_key; |
| 120 | |||
| 121 | /* Bitset for the optional bitmasked wakeup */ | ||
| 122 | u32 bitset; | 122 | u32 bitset; |
| 123 | }; | 123 | }; |
| 124 | 124 | ||
| @@ -198,11 +198,12 @@ static void drop_futex_key_refs(union futex_key *key) | |||
| 198 | } | 198 | } |
| 199 | 199 | ||
| 200 | /** | 200 | /** |
| 201 | * get_futex_key - Get parameters which are the keys for a futex. | 201 | * get_futex_key() - Get parameters which are the keys for a futex |
| 202 | * @uaddr: virtual address of the futex | 202 | * @uaddr: virtual address of the futex |
| 203 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | 203 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED |
| 204 | * @key: address where result is stored. | 204 | * @key: address where result is stored. |
| 205 | * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE) | 205 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
| 206 | * VERIFY_WRITE) | ||
| 206 | * | 207 | * |
| 207 | * Returns a negative error code or 0 | 208 | * Returns a negative error code or 0 |
| 208 | * The key words are stored in *key on success. | 209 | * The key words are stored in *key on success. |
| @@ -288,8 +289,8 @@ void put_futex_key(int fshared, union futex_key *key) | |||
| 288 | drop_futex_key_refs(key); | 289 | drop_futex_key_refs(key); |
| 289 | } | 290 | } |
| 290 | 291 | ||
| 291 | /* | 292 | /** |
| 292 | * fault_in_user_writeable - fault in user address and verify RW access | 293 | * fault_in_user_writeable() - Fault in user address and verify RW access |
| 293 | * @uaddr: pointer to faulting user space address | 294 | * @uaddr: pointer to faulting user space address |
| 294 | * | 295 | * |
| 295 | * Slow path to fixup the fault we just took in the atomic write | 296 | * Slow path to fixup the fault we just took in the atomic write |
| @@ -309,8 +310,8 @@ static int fault_in_user_writeable(u32 __user *uaddr) | |||
| 309 | 310 | ||
| 310 | /** | 311 | /** |
| 311 | * futex_top_waiter() - Return the highest priority waiter on a futex | 312 | * futex_top_waiter() - Return the highest priority waiter on a futex |
| 312 | * @hb: the hash bucket the futex_q's reside in | 313 | * @hb: the hash bucket the futex_q's reside in |
| 313 | * @key: the futex key (to distinguish it from other futex futex_q's) | 314 | * @key: the futex key (to distinguish it from other futex futex_q's) |
| 314 | * | 315 | * |
| 315 | * Must be called with the hb lock held. | 316 | * Must be called with the hb lock held. |
| 316 | */ | 317 | */ |
| @@ -588,7 +589,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, | |||
| 588 | } | 589 | } |
| 589 | 590 | ||
| 590 | /** | 591 | /** |
| 591 | * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex | 592 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
| 592 | * @uaddr: the pi futex user address | 593 | * @uaddr: the pi futex user address |
| 593 | * @hb: the pi futex hash bucket | 594 | * @hb: the pi futex hash bucket |
| 594 | * @key: the futex key associated with uaddr and hb | 595 | * @key: the futex key associated with uaddr and hb |
| @@ -1011,9 +1012,9 @@ void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |||
| 1011 | 1012 | ||
| 1012 | /** | 1013 | /** |
| 1013 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | 1014 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue |
| 1014 | * q: the futex_q | 1015 | * @q: the futex_q |
| 1015 | * key: the key of the requeue target futex | 1016 | * @key: the key of the requeue target futex |
| 1016 | * hb: the hash_bucket of the requeue target futex | 1017 | * @hb: the hash_bucket of the requeue target futex |
| 1017 | * | 1018 | * |
| 1018 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | 1019 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the |
| 1019 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | 1020 | * target futex if it is uncontended or via a lock steal. Set the futex_q key |
| @@ -1350,6 +1351,25 @@ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) | |||
| 1350 | return hb; | 1351 | return hb; |
| 1351 | } | 1352 | } |
| 1352 | 1353 | ||
| 1354 | static inline void | ||
| 1355 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | ||
| 1356 | { | ||
| 1357 | spin_unlock(&hb->lock); | ||
| 1358 | drop_futex_key_refs(&q->key); | ||
| 1359 | } | ||
| 1360 | |||
| 1361 | /** | ||
| 1362 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | ||
| 1363 | * @q: The futex_q to enqueue | ||
| 1364 | * @hb: The destination hash bucket | ||
| 1365 | * | ||
| 1366 | * The hb->lock must be held by the caller, and is released here. A call to | ||
| 1367 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | ||
| 1368 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | ||
| 1369 | * or nothing if the unqueue is done as part of the wake process and the unqueue | ||
| 1370 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | ||
| 1371 | * an example). | ||
| 1372 | */ | ||
| 1353 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) | 1373 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
| 1354 | { | 1374 | { |
| 1355 | int prio; | 1375 | int prio; |
| @@ -1373,19 +1393,17 @@ static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) | |||
| 1373 | spin_unlock(&hb->lock); | 1393 | spin_unlock(&hb->lock); |
| 1374 | } | 1394 | } |
| 1375 | 1395 | ||
| 1376 | static inline void | 1396 | /** |
| 1377 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | 1397 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket |
| 1378 | { | 1398 | * @q: The futex_q to unqueue |
| 1379 | spin_unlock(&hb->lock); | 1399 | * |
| 1380 | drop_futex_key_refs(&q->key); | 1400 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must |
| 1381 | } | 1401 | * be paired with exactly one earlier call to queue_me(). |
| 1382 | 1402 | * | |
| 1383 | /* | 1403 | * Returns: |
| 1384 | * queue_me and unqueue_me must be called as a pair, each | 1404 | * 1 - if the futex_q was still queued (and we removed unqueued it) |
| 1385 | * exactly once. They are called with the hashed spinlock held. | 1405 | * 0 - if the futex_q was already removed by the waking thread |
| 1386 | */ | 1406 | */ |
| 1387 | |||
| 1388 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ | ||
| 1389 | static int unqueue_me(struct futex_q *q) | 1407 | static int unqueue_me(struct futex_q *q) |
| 1390 | { | 1408 | { |
| 1391 | spinlock_t *lock_ptr; | 1409 | spinlock_t *lock_ptr; |
| @@ -1638,17 +1656,14 @@ out: | |||
| 1638 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | 1656 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, |
| 1639 | struct hrtimer_sleeper *timeout) | 1657 | struct hrtimer_sleeper *timeout) |
| 1640 | { | 1658 | { |
| 1641 | queue_me(q, hb); | ||
| 1642 | |||
| 1643 | /* | 1659 | /* |
| 1644 | * There might have been scheduling since the queue_me(), as we | 1660 | * The task state is guaranteed to be set before another task can |
| 1645 | * cannot hold a spinlock across the get_user() in case it | 1661 | * wake it. set_current_state() is implemented using set_mb() and |
| 1646 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when | 1662 | * queue_me() calls spin_unlock() upon completion, both serializing |
| 1647 | * queueing ourselves into the futex hash. This code thus has to | 1663 | * access to the hash list and forcing another memory barrier. |
| 1648 | * rely on the futex_wake() code removing us from hash when it | ||
| 1649 | * wakes us up. | ||
| 1650 | */ | 1664 | */ |
| 1651 | set_current_state(TASK_INTERRUPTIBLE); | 1665 | set_current_state(TASK_INTERRUPTIBLE); |
| 1666 | queue_me(q, hb); | ||
| 1652 | 1667 | ||
| 1653 | /* Arm the timer */ | 1668 | /* Arm the timer */ |
| 1654 | if (timeout) { | 1669 | if (timeout) { |
| @@ -1658,8 +1673,8 @@ static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |||
| 1658 | } | 1673 | } |
| 1659 | 1674 | ||
| 1660 | /* | 1675 | /* |
| 1661 | * !plist_node_empty() is safe here without any lock. | 1676 | * If we have been removed from the hash list, then another task |
| 1662 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. | 1677 | * has tried to wake us, and we can skip the call to schedule(). |
| 1663 | */ | 1678 | */ |
| 1664 | if (likely(!plist_node_empty(&q->list))) { | 1679 | if (likely(!plist_node_empty(&q->list))) { |
| 1665 | /* | 1680 | /* |
| @@ -2114,12 +2129,12 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
| 2114 | 2129 | ||
| 2115 | /** | 2130 | /** |
| 2116 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | 2131 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 |
| 2117 | * @uaddr: the futex we initialyl wait on (non-pi) | 2132 | * @uaddr: the futex we initially wait on (non-pi) |
| 2118 | * @fshared: whether the futexes are shared (1) or not (0). They must be | 2133 | * @fshared: whether the futexes are shared (1) or not (0). They must be |
| 2119 | * the same type, no requeueing from private to shared, etc. | 2134 | * the same type, no requeueing from private to shared, etc. |
| 2120 | * @val: the expected value of uaddr | 2135 | * @val: the expected value of uaddr |
| 2121 | * @abs_time: absolute timeout | 2136 | * @abs_time: absolute timeout |
| 2122 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all. | 2137 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
| 2123 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) | 2138 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) |
| 2124 | * @uaddr2: the pi futex we will take prior to returning to user-space | 2139 | * @uaddr2: the pi futex we will take prior to returning to user-space |
| 2125 | * | 2140 | * |
| @@ -2246,7 +2261,7 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared, | |||
| 2246 | res = fixup_owner(uaddr2, fshared, &q, !ret); | 2261 | res = fixup_owner(uaddr2, fshared, &q, !ret); |
| 2247 | /* | 2262 | /* |
| 2248 | * If fixup_owner() returned an error, proprogate that. If it | 2263 | * If fixup_owner() returned an error, proprogate that. If it |
| 2249 | * acquired the lock, clear our -ETIMEDOUT or -EINTR. | 2264 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
| 2250 | */ | 2265 | */ |
| 2251 | if (res) | 2266 | if (res) |
| 2252 | ret = (res < 0) ? res : 0; | 2267 | ret = (res < 0) ? res : 0; |
| @@ -2302,9 +2317,9 @@ out: | |||
| 2302 | */ | 2317 | */ |
| 2303 | 2318 | ||
| 2304 | /** | 2319 | /** |
| 2305 | * sys_set_robust_list - set the robust-futex list head of a task | 2320 | * sys_set_robust_list() - Set the robust-futex list head of a task |
| 2306 | * @head: pointer to the list-head | 2321 | * @head: pointer to the list-head |
| 2307 | * @len: length of the list-head, as userspace expects | 2322 | * @len: length of the list-head, as userspace expects |
| 2308 | */ | 2323 | */ |
| 2309 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, | 2324 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
| 2310 | size_t, len) | 2325 | size_t, len) |
| @@ -2323,10 +2338,10 @@ SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, | |||
| 2323 | } | 2338 | } |
| 2324 | 2339 | ||
| 2325 | /** | 2340 | /** |
| 2326 | * sys_get_robust_list - get the robust-futex list head of a task | 2341 | * sys_get_robust_list() - Get the robust-futex list head of a task |
| 2327 | * @pid: pid of the process [zero for current task] | 2342 | * @pid: pid of the process [zero for current task] |
| 2328 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | 2343 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in |
| 2329 | * @len_ptr: pointer to a length field, the kernel fills in the header size | 2344 | * @len_ptr: pointer to a length field, the kernel fills in the header size |
| 2330 | */ | 2345 | */ |
| 2331 | SYSCALL_DEFINE3(get_robust_list, int, pid, | 2346 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
| 2332 | struct robust_list_head __user * __user *, head_ptr, | 2347 | struct robust_list_head __user * __user *, head_ptr, |
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig index 654efd09f6a9..70a298d6da71 100644 --- a/kernel/gcov/Kconfig +++ b/kernel/gcov/Kconfig | |||
| @@ -34,7 +34,7 @@ config GCOV_KERNEL | |||
| 34 | config GCOV_PROFILE_ALL | 34 | config GCOV_PROFILE_ALL |
| 35 | bool "Profile entire Kernel" | 35 | bool "Profile entire Kernel" |
| 36 | depends on GCOV_KERNEL | 36 | depends on GCOV_KERNEL |
| 37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) | 37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) || MICROBLAZE |
| 38 | default n | 38 | default n |
| 39 | ---help--- | 39 | ---help--- |
| 40 | This options activates profiling for the entire kernel. | 40 | This options activates profiling for the entire kernel. |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 05071bf6a37b..6d7020490f94 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
| @@ -48,36 +48,7 @@ | |||
| 48 | 48 | ||
| 49 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
| 50 | 50 | ||
| 51 | /** | 51 | #include <trace/events/timer.h> |
| 52 | * ktime_get - get the monotonic time in ktime_t format | ||
| 53 | * | ||
| 54 | * returns the time in ktime_t format | ||
| 55 | */ | ||
| 56 | ktime_t ktime_get(void) | ||
| 57 | { | ||
| 58 | struct timespec now; | ||
| 59 | |||
| 60 | ktime_get_ts(&now); | ||
| 61 | |||
| 62 | return timespec_to_ktime(now); | ||
| 63 | } | ||
| 64 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 65 | |||
| 66 | /** | ||
| 67 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
| 68 | * | ||
| 69 | * returns the time in ktime_t format | ||
| 70 | */ | ||
| 71 | ktime_t ktime_get_real(void) | ||
| 72 | { | ||
| 73 | struct timespec now; | ||
| 74 | |||
| 75 | getnstimeofday(&now); | ||
| 76 | |||
| 77 | return timespec_to_ktime(now); | ||
| 78 | } | ||
| 79 | |||
| 80 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
| 81 | 52 | ||
| 82 | /* | 53 | /* |
| 83 | * The timer bases: | 54 | * The timer bases: |
| @@ -106,31 +77,6 @@ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | |||
| 106 | } | 77 | } |
| 107 | }; | 78 | }; |
| 108 | 79 | ||
| 109 | /** | ||
| 110 | * ktime_get_ts - get the monotonic clock in timespec format | ||
| 111 | * @ts: pointer to timespec variable | ||
| 112 | * | ||
| 113 | * The function calculates the monotonic clock from the realtime | ||
| 114 | * clock and the wall_to_monotonic offset and stores the result | ||
| 115 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 116 | */ | ||
| 117 | void ktime_get_ts(struct timespec *ts) | ||
| 118 | { | ||
| 119 | struct timespec tomono; | ||
| 120 | unsigned long seq; | ||
| 121 | |||
| 122 | do { | ||
| 123 | seq = read_seqbegin(&xtime_lock); | ||
| 124 | getnstimeofday(ts); | ||
| 125 | tomono = wall_to_monotonic; | ||
| 126 | |||
| 127 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 128 | |||
| 129 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 130 | ts->tv_nsec + tomono.tv_nsec); | ||
| 131 | } | ||
| 132 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
| 133 | |||
| 134 | /* | 80 | /* |
| 135 | * Get the coarse grained time at the softirq based on xtime and | 81 | * Get the coarse grained time at the softirq based on xtime and |
| 136 | * wall_to_monotonic. | 82 | * wall_to_monotonic. |
| @@ -498,6 +444,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |||
| 498 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 444 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
| 499 | #endif | 445 | #endif |
| 500 | 446 | ||
| 447 | static inline void | ||
| 448 | debug_init(struct hrtimer *timer, clockid_t clockid, | ||
| 449 | enum hrtimer_mode mode) | ||
| 450 | { | ||
| 451 | debug_hrtimer_init(timer); | ||
| 452 | trace_hrtimer_init(timer, clockid, mode); | ||
| 453 | } | ||
| 454 | |||
| 455 | static inline void debug_activate(struct hrtimer *timer) | ||
| 456 | { | ||
| 457 | debug_hrtimer_activate(timer); | ||
| 458 | trace_hrtimer_start(timer); | ||
| 459 | } | ||
| 460 | |||
| 461 | static inline void debug_deactivate(struct hrtimer *timer) | ||
| 462 | { | ||
| 463 | debug_hrtimer_deactivate(timer); | ||
| 464 | trace_hrtimer_cancel(timer); | ||
| 465 | } | ||
| 466 | |||
| 501 | /* High resolution timer related functions */ | 467 | /* High resolution timer related functions */ |
| 502 | #ifdef CONFIG_HIGH_RES_TIMERS | 468 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 503 | 469 | ||
| @@ -543,13 +509,14 @@ static inline int hrtimer_hres_active(void) | |||
| 543 | * next event | 509 | * next event |
| 544 | * Called with interrupts disabled and base->lock held | 510 | * Called with interrupts disabled and base->lock held |
| 545 | */ | 511 | */ |
| 546 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | 512 | static void |
| 513 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | ||
| 547 | { | 514 | { |
| 548 | int i; | 515 | int i; |
| 549 | struct hrtimer_clock_base *base = cpu_base->clock_base; | 516 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
| 550 | ktime_t expires; | 517 | ktime_t expires, expires_next; |
| 551 | 518 | ||
| 552 | cpu_base->expires_next.tv64 = KTIME_MAX; | 519 | expires_next.tv64 = KTIME_MAX; |
| 553 | 520 | ||
| 554 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 521 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { |
| 555 | struct hrtimer *timer; | 522 | struct hrtimer *timer; |
| @@ -565,10 +532,15 @@ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | |||
| 565 | */ | 532 | */ |
| 566 | if (expires.tv64 < 0) | 533 | if (expires.tv64 < 0) |
| 567 | expires.tv64 = 0; | 534 | expires.tv64 = 0; |
| 568 | if (expires.tv64 < cpu_base->expires_next.tv64) | 535 | if (expires.tv64 < expires_next.tv64) |
| 569 | cpu_base->expires_next = expires; | 536 | expires_next = expires; |
| 570 | } | 537 | } |
| 571 | 538 | ||
| 539 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) | ||
| 540 | return; | ||
| 541 | |||
| 542 | cpu_base->expires_next.tv64 = expires_next.tv64; | ||
| 543 | |||
| 572 | if (cpu_base->expires_next.tv64 != KTIME_MAX) | 544 | if (cpu_base->expires_next.tv64 != KTIME_MAX) |
| 573 | tick_program_event(cpu_base->expires_next, 1); | 545 | tick_program_event(cpu_base->expires_next, 1); |
| 574 | } | 546 | } |
| @@ -651,7 +623,7 @@ static void retrigger_next_event(void *arg) | |||
| 651 | base->clock_base[CLOCK_REALTIME].offset = | 623 | base->clock_base[CLOCK_REALTIME].offset = |
| 652 | timespec_to_ktime(realtime_offset); | 624 | timespec_to_ktime(realtime_offset); |
| 653 | 625 | ||
| 654 | hrtimer_force_reprogram(base); | 626 | hrtimer_force_reprogram(base, 0); |
| 655 | spin_unlock(&base->lock); | 627 | spin_unlock(&base->lock); |
| 656 | } | 628 | } |
| 657 | 629 | ||
| @@ -764,7 +736,8 @@ static int hrtimer_switch_to_hres(void) | |||
| 764 | static inline int hrtimer_hres_active(void) { return 0; } | 736 | static inline int hrtimer_hres_active(void) { return 0; } |
| 765 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 737 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
| 766 | static inline int hrtimer_switch_to_hres(void) { return 0; } | 738 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
| 767 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | 739 | static inline void |
| 740 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } | ||
| 768 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 741 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
| 769 | struct hrtimer_clock_base *base, | 742 | struct hrtimer_clock_base *base, |
| 770 | int wakeup) | 743 | int wakeup) |
| @@ -854,7 +827,7 @@ static int enqueue_hrtimer(struct hrtimer *timer, | |||
| 854 | struct hrtimer *entry; | 827 | struct hrtimer *entry; |
| 855 | int leftmost = 1; | 828 | int leftmost = 1; |
| 856 | 829 | ||
| 857 | debug_hrtimer_activate(timer); | 830 | debug_activate(timer); |
| 858 | 831 | ||
| 859 | /* | 832 | /* |
| 860 | * Find the right place in the rbtree: | 833 | * Find the right place in the rbtree: |
| @@ -907,19 +880,29 @@ static void __remove_hrtimer(struct hrtimer *timer, | |||
| 907 | struct hrtimer_clock_base *base, | 880 | struct hrtimer_clock_base *base, |
| 908 | unsigned long newstate, int reprogram) | 881 | unsigned long newstate, int reprogram) |
| 909 | { | 882 | { |
| 910 | if (timer->state & HRTIMER_STATE_ENQUEUED) { | 883 | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) |
| 911 | /* | 884 | goto out; |
| 912 | * Remove the timer from the rbtree and replace the | 885 | |
| 913 | * first entry pointer if necessary. | 886 | /* |
| 914 | */ | 887 | * Remove the timer from the rbtree and replace the first |
| 915 | if (base->first == &timer->node) { | 888 | * entry pointer if necessary. |
| 916 | base->first = rb_next(&timer->node); | 889 | */ |
| 917 | /* Reprogram the clock event device. if enabled */ | 890 | if (base->first == &timer->node) { |
| 918 | if (reprogram && hrtimer_hres_active()) | 891 | base->first = rb_next(&timer->node); |
| 919 | hrtimer_force_reprogram(base->cpu_base); | 892 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 893 | /* Reprogram the clock event device. if enabled */ | ||
| 894 | if (reprogram && hrtimer_hres_active()) { | ||
| 895 | ktime_t expires; | ||
| 896 | |||
| 897 | expires = ktime_sub(hrtimer_get_expires(timer), | ||
| 898 | base->offset); | ||
| 899 | if (base->cpu_base->expires_next.tv64 == expires.tv64) | ||
| 900 | hrtimer_force_reprogram(base->cpu_base, 1); | ||
| 920 | } | 901 | } |
| 921 | rb_erase(&timer->node, &base->active); | 902 | #endif |
| 922 | } | 903 | } |
| 904 | rb_erase(&timer->node, &base->active); | ||
| 905 | out: | ||
| 923 | timer->state = newstate; | 906 | timer->state = newstate; |
| 924 | } | 907 | } |
| 925 | 908 | ||
| @@ -940,7 +923,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | |||
| 940 | * reprogramming happens in the interrupt handler. This is a | 923 | * reprogramming happens in the interrupt handler. This is a |
| 941 | * rare case and less expensive than a smp call. | 924 | * rare case and less expensive than a smp call. |
| 942 | */ | 925 | */ |
| 943 | debug_hrtimer_deactivate(timer); | 926 | debug_deactivate(timer); |
| 944 | timer_stats_hrtimer_clear_start_info(timer); | 927 | timer_stats_hrtimer_clear_start_info(timer); |
| 945 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 928 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
| 946 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 929 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, |
| @@ -1155,7 +1138,6 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
| 1155 | clock_id = CLOCK_MONOTONIC; | 1138 | clock_id = CLOCK_MONOTONIC; |
| 1156 | 1139 | ||
| 1157 | timer->base = &cpu_base->clock_base[clock_id]; | 1140 | timer->base = &cpu_base->clock_base[clock_id]; |
| 1158 | INIT_LIST_HEAD(&timer->cb_entry); | ||
| 1159 | hrtimer_init_timer_hres(timer); | 1141 | hrtimer_init_timer_hres(timer); |
| 1160 | 1142 | ||
| 1161 | #ifdef CONFIG_TIMER_STATS | 1143 | #ifdef CONFIG_TIMER_STATS |
| @@ -1174,7 +1156,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
| 1174 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 1156 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
| 1175 | enum hrtimer_mode mode) | 1157 | enum hrtimer_mode mode) |
| 1176 | { | 1158 | { |
| 1177 | debug_hrtimer_init(timer); | 1159 | debug_init(timer, clock_id, mode); |
| 1178 | __hrtimer_init(timer, clock_id, mode); | 1160 | __hrtimer_init(timer, clock_id, mode); |
| 1179 | } | 1161 | } |
| 1180 | EXPORT_SYMBOL_GPL(hrtimer_init); | 1162 | EXPORT_SYMBOL_GPL(hrtimer_init); |
| @@ -1198,7 +1180,7 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
| 1198 | } | 1180 | } |
| 1199 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 1181 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
| 1200 | 1182 | ||
| 1201 | static void __run_hrtimer(struct hrtimer *timer) | 1183 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
| 1202 | { | 1184 | { |
| 1203 | struct hrtimer_clock_base *base = timer->base; | 1185 | struct hrtimer_clock_base *base = timer->base; |
| 1204 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 1186 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
| @@ -1207,7 +1189,7 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
| 1207 | 1189 | ||
| 1208 | WARN_ON(!irqs_disabled()); | 1190 | WARN_ON(!irqs_disabled()); |
| 1209 | 1191 | ||
| 1210 | debug_hrtimer_deactivate(timer); | 1192 | debug_deactivate(timer); |
| 1211 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 1193 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
| 1212 | timer_stats_account_hrtimer(timer); | 1194 | timer_stats_account_hrtimer(timer); |
| 1213 | fn = timer->function; | 1195 | fn = timer->function; |
| @@ -1218,7 +1200,9 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
| 1218 | * the timer base. | 1200 | * the timer base. |
| 1219 | */ | 1201 | */ |
| 1220 | spin_unlock(&cpu_base->lock); | 1202 | spin_unlock(&cpu_base->lock); |
| 1203 | trace_hrtimer_expire_entry(timer, now); | ||
| 1221 | restart = fn(timer); | 1204 | restart = fn(timer); |
| 1205 | trace_hrtimer_expire_exit(timer); | ||
| 1222 | spin_lock(&cpu_base->lock); | 1206 | spin_lock(&cpu_base->lock); |
| 1223 | 1207 | ||
| 1224 | /* | 1208 | /* |
| @@ -1329,7 +1313,7 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
| 1329 | break; | 1313 | break; |
| 1330 | } | 1314 | } |
| 1331 | 1315 | ||
| 1332 | __run_hrtimer(timer); | 1316 | __run_hrtimer(timer, &basenow); |
| 1333 | } | 1317 | } |
| 1334 | base++; | 1318 | base++; |
| 1335 | } | 1319 | } |
| @@ -1451,7 +1435,7 @@ void hrtimer_run_queues(void) | |||
| 1451 | hrtimer_get_expires_tv64(timer)) | 1435 | hrtimer_get_expires_tv64(timer)) |
| 1452 | break; | 1436 | break; |
| 1453 | 1437 | ||
| 1454 | __run_hrtimer(timer); | 1438 | __run_hrtimer(timer, &base->softirq_time); |
| 1455 | } | 1439 | } |
| 1456 | spin_unlock(&cpu_base->lock); | 1440 | spin_unlock(&cpu_base->lock); |
| 1457 | } | 1441 | } |
| @@ -1628,7 +1612,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | |||
| 1628 | while ((node = rb_first(&old_base->active))) { | 1612 | while ((node = rb_first(&old_base->active))) { |
| 1629 | timer = rb_entry(node, struct hrtimer, node); | 1613 | timer = rb_entry(node, struct hrtimer, node); |
| 1630 | BUG_ON(hrtimer_callback_running(timer)); | 1614 | BUG_ON(hrtimer_callback_running(timer)); |
| 1631 | debug_hrtimer_deactivate(timer); | 1615 | debug_deactivate(timer); |
| 1632 | 1616 | ||
| 1633 | /* | 1617 | /* |
| 1634 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 1618 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the |
diff --git a/kernel/hung_task.c b/kernel/hung_task.c index 022a4927b785..d4e841747400 100644 --- a/kernel/hung_task.c +++ b/kernel/hung_task.c | |||
| @@ -171,12 +171,12 @@ static unsigned long timeout_jiffies(unsigned long timeout) | |||
| 171 | * Process updating of timeout sysctl | 171 | * Process updating of timeout sysctl |
| 172 | */ | 172 | */ |
| 173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, | 173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, |
| 174 | struct file *filp, void __user *buffer, | 174 | void __user *buffer, |
| 175 | size_t *lenp, loff_t *ppos) | 175 | size_t *lenp, loff_t *ppos) |
| 176 | { | 176 | { |
| 177 | int ret; | 177 | int ret; |
| 178 | 178 | ||
| 179 | ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); | 179 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
| 180 | 180 | ||
| 181 | if (ret || !write) | 181 | if (ret || !write) |
| 182 | goto out; | 182 | goto out; |
diff --git a/kernel/itimer.c b/kernel/itimer.c index 58762f7077ec..b03451ede528 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
| @@ -12,6 +12,7 @@ | |||
| 12 | #include <linux/time.h> | 12 | #include <linux/time.h> |
| 13 | #include <linux/posix-timers.h> | 13 | #include <linux/posix-timers.h> |
| 14 | #include <linux/hrtimer.h> | 14 | #include <linux/hrtimer.h> |
| 15 | #include <trace/events/timer.h> | ||
| 15 | 16 | ||
| 16 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
| 17 | 18 | ||
| @@ -41,10 +42,43 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer) | |||
| 41 | return ktime_to_timeval(rem); | 42 | return ktime_to_timeval(rem); |
| 42 | } | 43 | } |
| 43 | 44 | ||
| 45 | static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
| 46 | struct itimerval *const value) | ||
| 47 | { | ||
| 48 | cputime_t cval, cinterval; | ||
| 49 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
| 50 | |||
| 51 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 52 | |||
| 53 | cval = it->expires; | ||
| 54 | cinterval = it->incr; | ||
| 55 | if (!cputime_eq(cval, cputime_zero)) { | ||
| 56 | struct task_cputime cputime; | ||
| 57 | cputime_t t; | ||
| 58 | |||
| 59 | thread_group_cputimer(tsk, &cputime); | ||
| 60 | if (clock_id == CPUCLOCK_PROF) | ||
| 61 | t = cputime_add(cputime.utime, cputime.stime); | ||
| 62 | else | ||
| 63 | /* CPUCLOCK_VIRT */ | ||
| 64 | t = cputime.utime; | ||
| 65 | |||
| 66 | if (cputime_le(cval, t)) | ||
| 67 | /* about to fire */ | ||
| 68 | cval = cputime_one_jiffy; | ||
| 69 | else | ||
| 70 | cval = cputime_sub(cval, t); | ||
| 71 | } | ||
| 72 | |||
| 73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 74 | |||
| 75 | cputime_to_timeval(cval, &value->it_value); | ||
| 76 | cputime_to_timeval(cinterval, &value->it_interval); | ||
| 77 | } | ||
| 78 | |||
| 44 | int do_getitimer(int which, struct itimerval *value) | 79 | int do_getitimer(int which, struct itimerval *value) |
| 45 | { | 80 | { |
| 46 | struct task_struct *tsk = current; | 81 | struct task_struct *tsk = current; |
| 47 | cputime_t cinterval, cval; | ||
| 48 | 82 | ||
| 49 | switch (which) { | 83 | switch (which) { |
| 50 | case ITIMER_REAL: | 84 | case ITIMER_REAL: |
| @@ -55,44 +89,10 @@ int do_getitimer(int which, struct itimerval *value) | |||
| 55 | spin_unlock_irq(&tsk->sighand->siglock); | 89 | spin_unlock_irq(&tsk->sighand->siglock); |
| 56 | break; | 90 | break; |
| 57 | case ITIMER_VIRTUAL: | 91 | case ITIMER_VIRTUAL: |
| 58 | spin_lock_irq(&tsk->sighand->siglock); | 92 | get_cpu_itimer(tsk, CPUCLOCK_VIRT, value); |
| 59 | cval = tsk->signal->it_virt_expires; | ||
| 60 | cinterval = tsk->signal->it_virt_incr; | ||
| 61 | if (!cputime_eq(cval, cputime_zero)) { | ||
| 62 | struct task_cputime cputime; | ||
| 63 | cputime_t utime; | ||
| 64 | |||
| 65 | thread_group_cputimer(tsk, &cputime); | ||
| 66 | utime = cputime.utime; | ||
| 67 | if (cputime_le(cval, utime)) { /* about to fire */ | ||
| 68 | cval = jiffies_to_cputime(1); | ||
| 69 | } else { | ||
| 70 | cval = cputime_sub(cval, utime); | ||
| 71 | } | ||
| 72 | } | ||
| 73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 74 | cputime_to_timeval(cval, &value->it_value); | ||
| 75 | cputime_to_timeval(cinterval, &value->it_interval); | ||
| 76 | break; | 93 | break; |
| 77 | case ITIMER_PROF: | 94 | case ITIMER_PROF: |
| 78 | spin_lock_irq(&tsk->sighand->siglock); | 95 | get_cpu_itimer(tsk, CPUCLOCK_PROF, value); |
| 79 | cval = tsk->signal->it_prof_expires; | ||
| 80 | cinterval = tsk->signal->it_prof_incr; | ||
| 81 | if (!cputime_eq(cval, cputime_zero)) { | ||
| 82 | struct task_cputime times; | ||
| 83 | cputime_t ptime; | ||
| 84 | |||
| 85 | thread_group_cputimer(tsk, ×); | ||
| 86 | ptime = cputime_add(times.utime, times.stime); | ||
| 87 | if (cputime_le(cval, ptime)) { /* about to fire */ | ||
| 88 | cval = jiffies_to_cputime(1); | ||
| 89 | } else { | ||
| 90 | cval = cputime_sub(cval, ptime); | ||
| 91 | } | ||
| 92 | } | ||
| 93 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 94 | cputime_to_timeval(cval, &value->it_value); | ||
| 95 | cputime_to_timeval(cinterval, &value->it_interval); | ||
| 96 | break; | 96 | break; |
| 97 | default: | 97 | default: |
| 98 | return(-EINVAL); | 98 | return(-EINVAL); |
| @@ -123,11 +123,62 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer) | |||
| 123 | struct signal_struct *sig = | 123 | struct signal_struct *sig = |
| 124 | container_of(timer, struct signal_struct, real_timer); | 124 | container_of(timer, struct signal_struct, real_timer); |
| 125 | 125 | ||
| 126 | trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0); | ||
| 126 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); | 127 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); |
| 127 | 128 | ||
| 128 | return HRTIMER_NORESTART; | 129 | return HRTIMER_NORESTART; |
| 129 | } | 130 | } |
| 130 | 131 | ||
| 132 | static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns) | ||
| 133 | { | ||
| 134 | struct timespec ts; | ||
| 135 | s64 cpu_ns; | ||
| 136 | |||
| 137 | cputime_to_timespec(ct, &ts); | ||
| 138 | cpu_ns = timespec_to_ns(&ts); | ||
| 139 | |||
| 140 | return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns; | ||
| 141 | } | ||
| 142 | |||
| 143 | static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
| 144 | const struct itimerval *const value, | ||
| 145 | struct itimerval *const ovalue) | ||
| 146 | { | ||
| 147 | cputime_t cval, nval, cinterval, ninterval; | ||
| 148 | s64 ns_ninterval, ns_nval; | ||
| 149 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
| 150 | |||
| 151 | nval = timeval_to_cputime(&value->it_value); | ||
| 152 | ns_nval = timeval_to_ns(&value->it_value); | ||
| 153 | ninterval = timeval_to_cputime(&value->it_interval); | ||
| 154 | ns_ninterval = timeval_to_ns(&value->it_interval); | ||
| 155 | |||
| 156 | it->incr_error = cputime_sub_ns(ninterval, ns_ninterval); | ||
| 157 | it->error = cputime_sub_ns(nval, ns_nval); | ||
| 158 | |||
| 159 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 160 | |||
| 161 | cval = it->expires; | ||
| 162 | cinterval = it->incr; | ||
| 163 | if (!cputime_eq(cval, cputime_zero) || | ||
| 164 | !cputime_eq(nval, cputime_zero)) { | ||
| 165 | if (cputime_gt(nval, cputime_zero)) | ||
| 166 | nval = cputime_add(nval, cputime_one_jiffy); | ||
| 167 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); | ||
| 168 | } | ||
| 169 | it->expires = nval; | ||
| 170 | it->incr = ninterval; | ||
| 171 | trace_itimer_state(clock_id == CPUCLOCK_VIRT ? | ||
| 172 | ITIMER_VIRTUAL : ITIMER_PROF, value, nval); | ||
| 173 | |||
| 174 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 175 | |||
| 176 | if (ovalue) { | ||
| 177 | cputime_to_timeval(cval, &ovalue->it_value); | ||
| 178 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
| 179 | } | ||
| 180 | } | ||
| 181 | |||
| 131 | /* | 182 | /* |
| 132 | * Returns true if the timeval is in canonical form | 183 | * Returns true if the timeval is in canonical form |
| 133 | */ | 184 | */ |
| @@ -139,7 +190,6 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | |||
| 139 | struct task_struct *tsk = current; | 190 | struct task_struct *tsk = current; |
| 140 | struct hrtimer *timer; | 191 | struct hrtimer *timer; |
| 141 | ktime_t expires; | 192 | ktime_t expires; |
| 142 | cputime_t cval, cinterval, nval, ninterval; | ||
| 143 | 193 | ||
| 144 | /* | 194 | /* |
| 145 | * Validate the timevals in value. | 195 | * Validate the timevals in value. |
| @@ -171,51 +221,14 @@ again: | |||
| 171 | } else | 221 | } else |
| 172 | tsk->signal->it_real_incr.tv64 = 0; | 222 | tsk->signal->it_real_incr.tv64 = 0; |
| 173 | 223 | ||
| 224 | trace_itimer_state(ITIMER_REAL, value, 0); | ||
| 174 | spin_unlock_irq(&tsk->sighand->siglock); | 225 | spin_unlock_irq(&tsk->sighand->siglock); |
| 175 | break; | 226 | break; |
| 176 | case ITIMER_VIRTUAL: | 227 | case ITIMER_VIRTUAL: |
| 177 | nval = timeval_to_cputime(&value->it_value); | 228 | set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue); |
| 178 | ninterval = timeval_to_cputime(&value->it_interval); | ||
| 179 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 180 | cval = tsk->signal->it_virt_expires; | ||
| 181 | cinterval = tsk->signal->it_virt_incr; | ||
| 182 | if (!cputime_eq(cval, cputime_zero) || | ||
| 183 | !cputime_eq(nval, cputime_zero)) { | ||
| 184 | if (cputime_gt(nval, cputime_zero)) | ||
| 185 | nval = cputime_add(nval, | ||
| 186 | jiffies_to_cputime(1)); | ||
| 187 | set_process_cpu_timer(tsk, CPUCLOCK_VIRT, | ||
| 188 | &nval, &cval); | ||
| 189 | } | ||
| 190 | tsk->signal->it_virt_expires = nval; | ||
| 191 | tsk->signal->it_virt_incr = ninterval; | ||
| 192 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 193 | if (ovalue) { | ||
| 194 | cputime_to_timeval(cval, &ovalue->it_value); | ||
| 195 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
| 196 | } | ||
| 197 | break; | 229 | break; |
| 198 | case ITIMER_PROF: | 230 | case ITIMER_PROF: |
| 199 | nval = timeval_to_cputime(&value->it_value); | 231 | set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue); |
| 200 | ninterval = timeval_to_cputime(&value->it_interval); | ||
| 201 | spin_lock_irq(&tsk->sighand->siglock); | ||
| 202 | cval = tsk->signal->it_prof_expires; | ||
| 203 | cinterval = tsk->signal->it_prof_incr; | ||
| 204 | if (!cputime_eq(cval, cputime_zero) || | ||
| 205 | !cputime_eq(nval, cputime_zero)) { | ||
| 206 | if (cputime_gt(nval, cputime_zero)) | ||
| 207 | nval = cputime_add(nval, | ||
| 208 | jiffies_to_cputime(1)); | ||
| 209 | set_process_cpu_timer(tsk, CPUCLOCK_PROF, | ||
| 210 | &nval, &cval); | ||
| 211 | } | ||
| 212 | tsk->signal->it_prof_expires = nval; | ||
| 213 | tsk->signal->it_prof_incr = ninterval; | ||
| 214 | spin_unlock_irq(&tsk->sighand->siglock); | ||
| 215 | if (ovalue) { | ||
| 216 | cputime_to_timeval(cval, &ovalue->it_value); | ||
| 217 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
| 218 | } | ||
| 219 | break; | 232 | break; |
| 220 | default: | 233 | default: |
| 221 | return -EINVAL; | 234 | return -EINVAL; |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 3a29dbe7898e..8b6b8b697c68 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
| @@ -59,7 +59,8 @@ static inline int is_kernel_inittext(unsigned long addr) | |||
| 59 | 59 | ||
| 60 | static inline int is_kernel_text(unsigned long addr) | 60 | static inline int is_kernel_text(unsigned long addr) |
| 61 | { | 61 | { |
| 62 | if (addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) | 62 | if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || |
| 63 | arch_is_kernel_text(addr)) | ||
| 63 | return 1; | 64 | return 1; |
| 64 | return in_gate_area_no_task(addr); | 65 | return in_gate_area_no_task(addr); |
| 65 | } | 66 | } |
diff --git a/kernel/kfifo.c b/kernel/kfifo.c index 26539e3228e5..3765ff3c1bbe 100644 --- a/kernel/kfifo.c +++ b/kernel/kfifo.c | |||
| @@ -117,7 +117,7 @@ EXPORT_SYMBOL(kfifo_free); | |||
| 117 | * writer, you don't need extra locking to use these functions. | 117 | * writer, you don't need extra locking to use these functions. |
| 118 | */ | 118 | */ |
| 119 | unsigned int __kfifo_put(struct kfifo *fifo, | 119 | unsigned int __kfifo_put(struct kfifo *fifo, |
| 120 | unsigned char *buffer, unsigned int len) | 120 | const unsigned char *buffer, unsigned int len) |
| 121 | { | 121 | { |
| 122 | unsigned int l; | 122 | unsigned int l; |
| 123 | 123 | ||
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index ef177d653b2c..cfadc1291d0b 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
| @@ -1321,7 +1321,7 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) | |||
| 1321 | return 0; | 1321 | return 0; |
| 1322 | } | 1322 | } |
| 1323 | 1323 | ||
| 1324 | static struct seq_operations kprobes_seq_ops = { | 1324 | static const struct seq_operations kprobes_seq_ops = { |
| 1325 | .start = kprobe_seq_start, | 1325 | .start = kprobe_seq_start, |
| 1326 | .next = kprobe_seq_next, | 1326 | .next = kprobe_seq_next, |
| 1327 | .stop = kprobe_seq_stop, | 1327 | .stop = kprobe_seq_stop, |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index f74d2d7aa605..3815ac1d58b2 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
| @@ -578,6 +578,9 @@ static int static_obj(void *obj) | |||
| 578 | if ((addr >= start) && (addr < end)) | 578 | if ((addr >= start) && (addr < end)) |
| 579 | return 1; | 579 | return 1; |
| 580 | 580 | ||
| 581 | if (arch_is_kernel_data(addr)) | ||
| 582 | return 1; | ||
| 583 | |||
| 581 | #ifdef CONFIG_SMP | 584 | #ifdef CONFIG_SMP |
| 582 | /* | 585 | /* |
| 583 | * percpu var? | 586 | * percpu var? |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index d4b3dbc79fdb..d4aba4f3584c 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
| @@ -594,7 +594,7 @@ static int ls_show(struct seq_file *m, void *v) | |||
| 594 | return 0; | 594 | return 0; |
| 595 | } | 595 | } |
| 596 | 596 | ||
| 597 | static struct seq_operations lockstat_ops = { | 597 | static const struct seq_operations lockstat_ops = { |
| 598 | .start = ls_start, | 598 | .start = ls_start, |
| 599 | .next = ls_next, | 599 | .next = ls_next, |
| 600 | .stop = ls_stop, | 600 | .stop = ls_stop, |
diff --git a/kernel/marker.c b/kernel/marker.c deleted file mode 100644 index ea54f2647868..000000000000 --- a/kernel/marker.c +++ /dev/null | |||
| @@ -1,930 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2007 Mathieu Desnoyers | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | */ | ||
| 18 | #include <linux/module.h> | ||
| 19 | #include <linux/mutex.h> | ||
| 20 | #include <linux/types.h> | ||
| 21 | #include <linux/jhash.h> | ||
| 22 | #include <linux/list.h> | ||
| 23 | #include <linux/rcupdate.h> | ||
| 24 | #include <linux/marker.h> | ||
| 25 | #include <linux/err.h> | ||
| 26 | #include <linux/slab.h> | ||
| 27 | |||
| 28 | extern struct marker __start___markers[]; | ||
| 29 | extern struct marker __stop___markers[]; | ||
| 30 | |||
| 31 | /* Set to 1 to enable marker debug output */ | ||
| 32 | static const int marker_debug; | ||
| 33 | |||
| 34 | /* | ||
| 35 | * markers_mutex nests inside module_mutex. Markers mutex protects the builtin | ||
| 36 | * and module markers and the hash table. | ||
| 37 | */ | ||
| 38 | static DEFINE_MUTEX(markers_mutex); | ||
| 39 | |||
| 40 | /* | ||
| 41 | * Marker hash table, containing the active markers. | ||
| 42 | * Protected by module_mutex. | ||
| 43 | */ | ||
| 44 | #define MARKER_HASH_BITS 6 | ||
| 45 | #define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS) | ||
| 46 | static struct hlist_head marker_table[MARKER_TABLE_SIZE]; | ||
| 47 | |||
| 48 | /* | ||
| 49 | * Note about RCU : | ||
| 50 | * It is used to make sure every handler has finished using its private data | ||
| 51 | * between two consecutive operation (add or remove) on a given marker. It is | ||
| 52 | * also used to delay the free of multiple probes array until a quiescent state | ||
| 53 | * is reached. | ||
| 54 | * marker entries modifications are protected by the markers_mutex. | ||
| 55 | */ | ||
| 56 | struct marker_entry { | ||
| 57 | struct hlist_node hlist; | ||
| 58 | char *format; | ||
| 59 | /* Probe wrapper */ | ||
| 60 | void (*call)(const struct marker *mdata, void *call_private, ...); | ||
| 61 | struct marker_probe_closure single; | ||
| 62 | struct marker_probe_closure *multi; | ||
| 63 | int refcount; /* Number of times armed. 0 if disarmed. */ | ||
| 64 | struct rcu_head rcu; | ||
| 65 | void *oldptr; | ||
| 66 | int rcu_pending; | ||
| 67 | unsigned char ptype:1; | ||
| 68 | unsigned char format_allocated:1; | ||
| 69 | char name[0]; /* Contains name'\0'format'\0' */ | ||
| 70 | }; | ||
| 71 | |||
| 72 | /** | ||
| 73 | * __mark_empty_function - Empty probe callback | ||
| 74 | * @probe_private: probe private data | ||
| 75 | * @call_private: call site private data | ||
| 76 | * @fmt: format string | ||
| 77 | * @...: variable argument list | ||
| 78 | * | ||
| 79 | * Empty callback provided as a probe to the markers. By providing this to a | ||
| 80 | * disabled marker, we make sure the execution flow is always valid even | ||
| 81 | * though the function pointer change and the marker enabling are two distinct | ||
| 82 | * operations that modifies the execution flow of preemptible code. | ||
| 83 | */ | ||
| 84 | notrace void __mark_empty_function(void *probe_private, void *call_private, | ||
| 85 | const char *fmt, va_list *args) | ||
| 86 | { | ||
| 87 | } | ||
| 88 | EXPORT_SYMBOL_GPL(__mark_empty_function); | ||
| 89 | |||
| 90 | /* | ||
| 91 | * marker_probe_cb Callback that prepares the variable argument list for probes. | ||
| 92 | * @mdata: pointer of type struct marker | ||
| 93 | * @call_private: caller site private data | ||
| 94 | * @...: Variable argument list. | ||
| 95 | * | ||
| 96 | * Since we do not use "typical" pointer based RCU in the 1 argument case, we | ||
| 97 | * need to put a full smp_rmb() in this branch. This is why we do not use | ||
| 98 | * rcu_dereference() for the pointer read. | ||
| 99 | */ | ||
| 100 | notrace void marker_probe_cb(const struct marker *mdata, | ||
| 101 | void *call_private, ...) | ||
| 102 | { | ||
| 103 | va_list args; | ||
| 104 | char ptype; | ||
| 105 | |||
| 106 | /* | ||
| 107 | * rcu_read_lock_sched does two things : disabling preemption to make | ||
| 108 | * sure the teardown of the callbacks can be done correctly when they | ||
| 109 | * are in modules and they insure RCU read coherency. | ||
| 110 | */ | ||
| 111 | rcu_read_lock_sched_notrace(); | ||
| 112 | ptype = mdata->ptype; | ||
| 113 | if (likely(!ptype)) { | ||
| 114 | marker_probe_func *func; | ||
| 115 | /* Must read the ptype before ptr. They are not data dependant, | ||
| 116 | * so we put an explicit smp_rmb() here. */ | ||
| 117 | smp_rmb(); | ||
| 118 | func = mdata->single.func; | ||
| 119 | /* Must read the ptr before private data. They are not data | ||
| 120 | * dependant, so we put an explicit smp_rmb() here. */ | ||
| 121 | smp_rmb(); | ||
| 122 | va_start(args, call_private); | ||
| 123 | func(mdata->single.probe_private, call_private, mdata->format, | ||
| 124 | &args); | ||
| 125 | va_end(args); | ||
| 126 | } else { | ||
| 127 | struct marker_probe_closure *multi; | ||
| 128 | int i; | ||
| 129 | /* | ||
| 130 | * Read mdata->ptype before mdata->multi. | ||
| 131 | */ | ||
| 132 | smp_rmb(); | ||
| 133 | multi = mdata->multi; | ||
| 134 | /* | ||
| 135 | * multi points to an array, therefore accessing the array | ||
| 136 | * depends on reading multi. However, even in this case, | ||
| 137 | * we must insure that the pointer is read _before_ the array | ||
| 138 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
| 139 | * in the fast path, so put the explicit barrier here. | ||
| 140 | */ | ||
| 141 | smp_read_barrier_depends(); | ||
| 142 | for (i = 0; multi[i].func; i++) { | ||
| 143 | va_start(args, call_private); | ||
| 144 | multi[i].func(multi[i].probe_private, call_private, | ||
| 145 | mdata->format, &args); | ||
| 146 | va_end(args); | ||
| 147 | } | ||
| 148 | } | ||
| 149 | rcu_read_unlock_sched_notrace(); | ||
| 150 | } | ||
| 151 | EXPORT_SYMBOL_GPL(marker_probe_cb); | ||
| 152 | |||
| 153 | /* | ||
| 154 | * marker_probe_cb Callback that does not prepare the variable argument list. | ||
| 155 | * @mdata: pointer of type struct marker | ||
| 156 | * @call_private: caller site private data | ||
| 157 | * @...: Variable argument list. | ||
| 158 | * | ||
| 159 | * Should be connected to markers "MARK_NOARGS". | ||
| 160 | */ | ||
| 161 | static notrace void marker_probe_cb_noarg(const struct marker *mdata, | ||
| 162 | void *call_private, ...) | ||
| 163 | { | ||
| 164 | va_list args; /* not initialized */ | ||
| 165 | char ptype; | ||
| 166 | |||
| 167 | rcu_read_lock_sched_notrace(); | ||
| 168 | ptype = mdata->ptype; | ||
| 169 | if (likely(!ptype)) { | ||
| 170 | marker_probe_func *func; | ||
| 171 | /* Must read the ptype before ptr. They are not data dependant, | ||
| 172 | * so we put an explicit smp_rmb() here. */ | ||
| 173 | smp_rmb(); | ||
| 174 | func = mdata->single.func; | ||
| 175 | /* Must read the ptr before private data. They are not data | ||
| 176 | * dependant, so we put an explicit smp_rmb() here. */ | ||
| 177 | smp_rmb(); | ||
| 178 | func(mdata->single.probe_private, call_private, mdata->format, | ||
| 179 | &args); | ||
| 180 | } else { | ||
| 181 | struct marker_probe_closure *multi; | ||
| 182 | int i; | ||
| 183 | /* | ||
| 184 | * Read mdata->ptype before mdata->multi. | ||
| 185 | */ | ||
| 186 | smp_rmb(); | ||
| 187 | multi = mdata->multi; | ||
| 188 | /* | ||
| 189 | * multi points to an array, therefore accessing the array | ||
| 190 | * depends on reading multi. However, even in this case, | ||
| 191 | * we must insure that the pointer is read _before_ the array | ||
| 192 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
| 193 | * in the fast path, so put the explicit barrier here. | ||
| 194 | */ | ||
| 195 | smp_read_barrier_depends(); | ||
| 196 | for (i = 0; multi[i].func; i++) | ||
| 197 | multi[i].func(multi[i].probe_private, call_private, | ||
| 198 | mdata->format, &args); | ||
| 199 | } | ||
| 200 | rcu_read_unlock_sched_notrace(); | ||
| 201 | } | ||
| 202 | |||
| 203 | static void free_old_closure(struct rcu_head *head) | ||
| 204 | { | ||
| 205 | struct marker_entry *entry = container_of(head, | ||
| 206 | struct marker_entry, rcu); | ||
| 207 | kfree(entry->oldptr); | ||
| 208 | /* Make sure we free the data before setting the pending flag to 0 */ | ||
| 209 | smp_wmb(); | ||
| 210 | entry->rcu_pending = 0; | ||
| 211 | } | ||
| 212 | |||
| 213 | static void debug_print_probes(struct marker_entry *entry) | ||
| 214 | { | ||
| 215 | int i; | ||
| 216 | |||
| 217 | if (!marker_debug) | ||
| 218 | return; | ||
| 219 | |||
| 220 | if (!entry->ptype) { | ||
| 221 | printk(KERN_DEBUG "Single probe : %p %p\n", | ||
| 222 | entry->single.func, | ||
| 223 | entry->single.probe_private); | ||
| 224 | } else { | ||
| 225 | for (i = 0; entry->multi[i].func; i++) | ||
| 226 | printk(KERN_DEBUG "Multi probe %d : %p %p\n", i, | ||
| 227 | entry->multi[i].func, | ||
| 228 | entry->multi[i].probe_private); | ||
| 229 | } | ||
| 230 | } | ||
| 231 | |||
| 232 | static struct marker_probe_closure * | ||
| 233 | marker_entry_add_probe(struct marker_entry *entry, | ||
| 234 | marker_probe_func *probe, void *probe_private) | ||
| 235 | { | ||
| 236 | int nr_probes = 0; | ||
| 237 | struct marker_probe_closure *old, *new; | ||
| 238 | |||
| 239 | WARN_ON(!probe); | ||
| 240 | |||
| 241 | debug_print_probes(entry); | ||
| 242 | old = entry->multi; | ||
| 243 | if (!entry->ptype) { | ||
| 244 | if (entry->single.func == probe && | ||
| 245 | entry->single.probe_private == probe_private) | ||
| 246 | return ERR_PTR(-EBUSY); | ||
| 247 | if (entry->single.func == __mark_empty_function) { | ||
| 248 | /* 0 -> 1 probes */ | ||
| 249 | entry->single.func = probe; | ||
| 250 | entry->single.probe_private = probe_private; | ||
| 251 | entry->refcount = 1; | ||
| 252 | entry->ptype = 0; | ||
| 253 | debug_print_probes(entry); | ||
| 254 | return NULL; | ||
| 255 | } else { | ||
| 256 | /* 1 -> 2 probes */ | ||
| 257 | nr_probes = 1; | ||
| 258 | old = NULL; | ||
| 259 | } | ||
| 260 | } else { | ||
| 261 | /* (N -> N+1), (N != 0, 1) probes */ | ||
| 262 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) | ||
| 263 | if (old[nr_probes].func == probe | ||
| 264 | && old[nr_probes].probe_private | ||
| 265 | == probe_private) | ||
| 266 | return ERR_PTR(-EBUSY); | ||
| 267 | } | ||
| 268 | /* + 2 : one for new probe, one for NULL func */ | ||
| 269 | new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure), | ||
| 270 | GFP_KERNEL); | ||
| 271 | if (new == NULL) | ||
| 272 | return ERR_PTR(-ENOMEM); | ||
| 273 | if (!old) | ||
| 274 | new[0] = entry->single; | ||
| 275 | else | ||
| 276 | memcpy(new, old, | ||
| 277 | nr_probes * sizeof(struct marker_probe_closure)); | ||
| 278 | new[nr_probes].func = probe; | ||
| 279 | new[nr_probes].probe_private = probe_private; | ||
| 280 | entry->refcount = nr_probes + 1; | ||
| 281 | entry->multi = new; | ||
| 282 | entry->ptype = 1; | ||
| 283 | debug_print_probes(entry); | ||
| 284 | return old; | ||
| 285 | } | ||
| 286 | |||
| 287 | static struct marker_probe_closure * | ||
| 288 | marker_entry_remove_probe(struct marker_entry *entry, | ||
| 289 | marker_probe_func *probe, void *probe_private) | ||
| 290 | { | ||
| 291 | int nr_probes = 0, nr_del = 0, i; | ||
| 292 | struct marker_probe_closure *old, *new; | ||
| 293 | |||
| 294 | old = entry->multi; | ||
| 295 | |||
| 296 | debug_print_probes(entry); | ||
| 297 | if (!entry->ptype) { | ||
| 298 | /* 0 -> N is an error */ | ||
| 299 | WARN_ON(entry->single.func == __mark_empty_function); | ||
| 300 | /* 1 -> 0 probes */ | ||
| 301 | WARN_ON(probe && entry->single.func != probe); | ||
| 302 | WARN_ON(entry->single.probe_private != probe_private); | ||
| 303 | entry->single.func = __mark_empty_function; | ||
| 304 | entry->refcount = 0; | ||
| 305 | entry->ptype = 0; | ||
| 306 | debug_print_probes(entry); | ||
| 307 | return NULL; | ||
| 308 | } else { | ||
| 309 | /* (N -> M), (N > 1, M >= 0) probes */ | ||
| 310 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) { | ||
| 311 | if ((!probe || old[nr_probes].func == probe) | ||
| 312 | && old[nr_probes].probe_private | ||
| 313 | == probe_private) | ||
| 314 | nr_del++; | ||
| 315 | } | ||
| 316 | } | ||
| 317 | |||
| 318 | if (nr_probes - nr_del == 0) { | ||
| 319 | /* N -> 0, (N > 1) */ | ||
| 320 | entry->single.func = __mark_empty_function; | ||
| 321 | entry->refcount = 0; | ||
| 322 | entry->ptype = 0; | ||
| 323 | } else if (nr_probes - nr_del == 1) { | ||
| 324 | /* N -> 1, (N > 1) */ | ||
| 325 | for (i = 0; old[i].func; i++) | ||
| 326 | if ((probe && old[i].func != probe) || | ||
| 327 | old[i].probe_private != probe_private) | ||
| 328 | entry->single = old[i]; | ||
| 329 | entry->refcount = 1; | ||
| 330 | entry->ptype = 0; | ||
| 331 | } else { | ||
| 332 | int j = 0; | ||
| 333 | /* N -> M, (N > 1, M > 1) */ | ||
| 334 | /* + 1 for NULL */ | ||
| 335 | new = kzalloc((nr_probes - nr_del + 1) | ||
| 336 | * sizeof(struct marker_probe_closure), GFP_KERNEL); | ||
| 337 | if (new == NULL) | ||
| 338 | return ERR_PTR(-ENOMEM); | ||
| 339 | for (i = 0; old[i].func; i++) | ||
| 340 | if ((probe && old[i].func != probe) || | ||
| 341 | old[i].probe_private != probe_private) | ||
| 342 | new[j++] = old[i]; | ||
| 343 | entry->refcount = nr_probes - nr_del; | ||
| 344 | entry->ptype = 1; | ||
| 345 | entry->multi = new; | ||
| 346 | } | ||
| 347 | debug_print_probes(entry); | ||
| 348 | return old; | ||
| 349 | } | ||
| 350 | |||
| 351 | /* | ||
| 352 | * Get marker if the marker is present in the marker hash table. | ||
| 353 | * Must be called with markers_mutex held. | ||
| 354 | * Returns NULL if not present. | ||
| 355 | */ | ||
| 356 | static struct marker_entry *get_marker(const char *name) | ||
| 357 | { | ||
| 358 | struct hlist_head *head; | ||
| 359 | struct hlist_node *node; | ||
| 360 | struct marker_entry *e; | ||
| 361 | u32 hash = jhash(name, strlen(name), 0); | ||
| 362 | |||
| 363 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 364 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 365 | if (!strcmp(name, e->name)) | ||
| 366 | return e; | ||
| 367 | } | ||
| 368 | return NULL; | ||
| 369 | } | ||
| 370 | |||
| 371 | /* | ||
| 372 | * Add the marker to the marker hash table. Must be called with markers_mutex | ||
| 373 | * held. | ||
| 374 | */ | ||
| 375 | static struct marker_entry *add_marker(const char *name, const char *format) | ||
| 376 | { | ||
| 377 | struct hlist_head *head; | ||
| 378 | struct hlist_node *node; | ||
| 379 | struct marker_entry *e; | ||
| 380 | size_t name_len = strlen(name) + 1; | ||
| 381 | size_t format_len = 0; | ||
| 382 | u32 hash = jhash(name, name_len-1, 0); | ||
| 383 | |||
| 384 | if (format) | ||
| 385 | format_len = strlen(format) + 1; | ||
| 386 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 387 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 388 | if (!strcmp(name, e->name)) { | ||
| 389 | printk(KERN_NOTICE | ||
| 390 | "Marker %s busy\n", name); | ||
| 391 | return ERR_PTR(-EBUSY); /* Already there */ | ||
| 392 | } | ||
| 393 | } | ||
| 394 | /* | ||
| 395 | * Using kmalloc here to allocate a variable length element. Could | ||
| 396 | * cause some memory fragmentation if overused. | ||
| 397 | */ | ||
| 398 | e = kmalloc(sizeof(struct marker_entry) + name_len + format_len, | ||
| 399 | GFP_KERNEL); | ||
| 400 | if (!e) | ||
| 401 | return ERR_PTR(-ENOMEM); | ||
| 402 | memcpy(&e->name[0], name, name_len); | ||
| 403 | if (format) { | ||
| 404 | e->format = &e->name[name_len]; | ||
| 405 | memcpy(e->format, format, format_len); | ||
| 406 | if (strcmp(e->format, MARK_NOARGS) == 0) | ||
| 407 | e->call = marker_probe_cb_noarg; | ||
| 408 | else | ||
| 409 | e->call = marker_probe_cb; | ||
| 410 | trace_mark(core_marker_format, "name %s format %s", | ||
| 411 | e->name, e->format); | ||
| 412 | } else { | ||
| 413 | e->format = NULL; | ||
| 414 | e->call = marker_probe_cb; | ||
| 415 | } | ||
| 416 | e->single.func = __mark_empty_function; | ||
| 417 | e->single.probe_private = NULL; | ||
| 418 | e->multi = NULL; | ||
| 419 | e->ptype = 0; | ||
| 420 | e->format_allocated = 0; | ||
| 421 | e->refcount = 0; | ||
| 422 | e->rcu_pending = 0; | ||
| 423 | hlist_add_head(&e->hlist, head); | ||
| 424 | return e; | ||
| 425 | } | ||
| 426 | |||
| 427 | /* | ||
| 428 | * Remove the marker from the marker hash table. Must be called with mutex_lock | ||
| 429 | * held. | ||
| 430 | */ | ||
| 431 | static int remove_marker(const char *name) | ||
| 432 | { | ||
| 433 | struct hlist_head *head; | ||
| 434 | struct hlist_node *node; | ||
| 435 | struct marker_entry *e; | ||
| 436 | int found = 0; | ||
| 437 | size_t len = strlen(name) + 1; | ||
| 438 | u32 hash = jhash(name, len-1, 0); | ||
| 439 | |||
| 440 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 441 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 442 | if (!strcmp(name, e->name)) { | ||
| 443 | found = 1; | ||
| 444 | break; | ||
| 445 | } | ||
| 446 | } | ||
| 447 | if (!found) | ||
| 448 | return -ENOENT; | ||
| 449 | if (e->single.func != __mark_empty_function) | ||
| 450 | return -EBUSY; | ||
| 451 | hlist_del(&e->hlist); | ||
| 452 | if (e->format_allocated) | ||
| 453 | kfree(e->format); | ||
| 454 | /* Make sure the call_rcu has been executed */ | ||
| 455 | if (e->rcu_pending) | ||
| 456 | rcu_barrier_sched(); | ||
| 457 | kfree(e); | ||
| 458 | return 0; | ||
| 459 | } | ||
| 460 | |||
| 461 | /* | ||
| 462 | * Set the mark_entry format to the format found in the element. | ||
| 463 | */ | ||
| 464 | static int marker_set_format(struct marker_entry *entry, const char *format) | ||
| 465 | { | ||
| 466 | entry->format = kstrdup(format, GFP_KERNEL); | ||
| 467 | if (!entry->format) | ||
| 468 | return -ENOMEM; | ||
| 469 | entry->format_allocated = 1; | ||
| 470 | |||
| 471 | trace_mark(core_marker_format, "name %s format %s", | ||
| 472 | entry->name, entry->format); | ||
| 473 | return 0; | ||
| 474 | } | ||
| 475 | |||
| 476 | /* | ||
| 477 | * Sets the probe callback corresponding to one marker. | ||
| 478 | */ | ||
| 479 | static int set_marker(struct marker_entry *entry, struct marker *elem, | ||
| 480 | int active) | ||
| 481 | { | ||
| 482 | int ret = 0; | ||
| 483 | WARN_ON(strcmp(entry->name, elem->name) != 0); | ||
| 484 | |||
| 485 | if (entry->format) { | ||
| 486 | if (strcmp(entry->format, elem->format) != 0) { | ||
| 487 | printk(KERN_NOTICE | ||
| 488 | "Format mismatch for probe %s " | ||
| 489 | "(%s), marker (%s)\n", | ||
| 490 | entry->name, | ||
| 491 | entry->format, | ||
| 492 | elem->format); | ||
| 493 | return -EPERM; | ||
| 494 | } | ||
| 495 | } else { | ||
| 496 | ret = marker_set_format(entry, elem->format); | ||
| 497 | if (ret) | ||
| 498 | return ret; | ||
| 499 | } | ||
| 500 | |||
| 501 | /* | ||
| 502 | * probe_cb setup (statically known) is done here. It is | ||
| 503 | * asynchronous with the rest of execution, therefore we only | ||
| 504 | * pass from a "safe" callback (with argument) to an "unsafe" | ||
| 505 | * callback (does not set arguments). | ||
| 506 | */ | ||
| 507 | elem->call = entry->call; | ||
| 508 | /* | ||
| 509 | * Sanity check : | ||
| 510 | * We only update the single probe private data when the ptr is | ||
| 511 | * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1) | ||
| 512 | */ | ||
| 513 | WARN_ON(elem->single.func != __mark_empty_function | ||
| 514 | && elem->single.probe_private != entry->single.probe_private | ||
| 515 | && !elem->ptype); | ||
| 516 | elem->single.probe_private = entry->single.probe_private; | ||
| 517 | /* | ||
| 518 | * Make sure the private data is valid when we update the | ||
| 519 | * single probe ptr. | ||
| 520 | */ | ||
| 521 | smp_wmb(); | ||
| 522 | elem->single.func = entry->single.func; | ||
| 523 | /* | ||
| 524 | * We also make sure that the new probe callbacks array is consistent | ||
| 525 | * before setting a pointer to it. | ||
| 526 | */ | ||
| 527 | rcu_assign_pointer(elem->multi, entry->multi); | ||
| 528 | /* | ||
| 529 | * Update the function or multi probe array pointer before setting the | ||
| 530 | * ptype. | ||
| 531 | */ | ||
| 532 | smp_wmb(); | ||
| 533 | elem->ptype = entry->ptype; | ||
| 534 | |||
| 535 | if (elem->tp_name && (active ^ elem->state)) { | ||
| 536 | WARN_ON(!elem->tp_cb); | ||
| 537 | /* | ||
| 538 | * It is ok to directly call the probe registration because type | ||
| 539 | * checking has been done in the __trace_mark_tp() macro. | ||
| 540 | */ | ||
| 541 | |||
| 542 | if (active) { | ||
| 543 | /* | ||
| 544 | * try_module_get should always succeed because we hold | ||
| 545 | * lock_module() to get the tp_cb address. | ||
| 546 | */ | ||
| 547 | ret = try_module_get(__module_text_address( | ||
| 548 | (unsigned long)elem->tp_cb)); | ||
| 549 | BUG_ON(!ret); | ||
| 550 | ret = tracepoint_probe_register_noupdate( | ||
| 551 | elem->tp_name, | ||
| 552 | elem->tp_cb); | ||
| 553 | } else { | ||
| 554 | ret = tracepoint_probe_unregister_noupdate( | ||
| 555 | elem->tp_name, | ||
| 556 | elem->tp_cb); | ||
| 557 | /* | ||
| 558 | * tracepoint_probe_update_all() must be called | ||
| 559 | * before the module containing tp_cb is unloaded. | ||
| 560 | */ | ||
| 561 | module_put(__module_text_address( | ||
| 562 | (unsigned long)elem->tp_cb)); | ||
| 563 | } | ||
| 564 | } | ||
| 565 | elem->state = active; | ||
| 566 | |||
| 567 | return ret; | ||
| 568 | } | ||
| 569 | |||
| 570 | /* | ||
| 571 | * Disable a marker and its probe callback. | ||
| 572 | * Note: only waiting an RCU period after setting elem->call to the empty | ||
| 573 | * function insures that the original callback is not used anymore. This insured | ||
| 574 | * by rcu_read_lock_sched around the call site. | ||
| 575 | */ | ||
| 576 | static void disable_marker(struct marker *elem) | ||
| 577 | { | ||
| 578 | int ret; | ||
| 579 | |||
| 580 | /* leave "call" as is. It is known statically. */ | ||
| 581 | if (elem->tp_name && elem->state) { | ||
| 582 | WARN_ON(!elem->tp_cb); | ||
| 583 | /* | ||
| 584 | * It is ok to directly call the probe registration because type | ||
| 585 | * checking has been done in the __trace_mark_tp() macro. | ||
| 586 | */ | ||
| 587 | ret = tracepoint_probe_unregister_noupdate(elem->tp_name, | ||
| 588 | elem->tp_cb); | ||
| 589 | WARN_ON(ret); | ||
| 590 | /* | ||
| 591 | * tracepoint_probe_update_all() must be called | ||
| 592 | * before the module containing tp_cb is unloaded. | ||
| 593 | */ | ||
| 594 | module_put(__module_text_address((unsigned long)elem->tp_cb)); | ||
| 595 | } | ||
| 596 | elem->state = 0; | ||
| 597 | elem->single.func = __mark_empty_function; | ||
| 598 | /* Update the function before setting the ptype */ | ||
| 599 | smp_wmb(); | ||
| 600 | elem->ptype = 0; /* single probe */ | ||
| 601 | /* | ||
| 602 | * Leave the private data and id there, because removal is racy and | ||
| 603 | * should be done only after an RCU period. These are never used until | ||
| 604 | * the next initialization anyway. | ||
| 605 | */ | ||
| 606 | } | ||
| 607 | |||
| 608 | /** | ||
| 609 | * marker_update_probe_range - Update a probe range | ||
| 610 | * @begin: beginning of the range | ||
| 611 | * @end: end of the range | ||
| 612 | * | ||
| 613 | * Updates the probe callback corresponding to a range of markers. | ||
| 614 | */ | ||
| 615 | void marker_update_probe_range(struct marker *begin, | ||
| 616 | struct marker *end) | ||
| 617 | { | ||
| 618 | struct marker *iter; | ||
| 619 | struct marker_entry *mark_entry; | ||
| 620 | |||
| 621 | mutex_lock(&markers_mutex); | ||
| 622 | for (iter = begin; iter < end; iter++) { | ||
| 623 | mark_entry = get_marker(iter->name); | ||
| 624 | if (mark_entry) { | ||
| 625 | set_marker(mark_entry, iter, !!mark_entry->refcount); | ||
| 626 | /* | ||
| 627 | * ignore error, continue | ||
| 628 | */ | ||
| 629 | } else { | ||
| 630 | disable_marker(iter); | ||
| 631 | } | ||
| 632 | } | ||
| 633 | mutex_unlock(&markers_mutex); | ||
| 634 | } | ||
| 635 | |||
| 636 | /* | ||
| 637 | * Update probes, removing the faulty probes. | ||
| 638 | * | ||
| 639 | * Internal callback only changed before the first probe is connected to it. | ||
| 640 | * Single probe private data can only be changed on 0 -> 1 and 2 -> 1 | ||
| 641 | * transitions. All other transitions will leave the old private data valid. | ||
| 642 | * This makes the non-atomicity of the callback/private data updates valid. | ||
| 643 | * | ||
| 644 | * "special case" updates : | ||
| 645 | * 0 -> 1 callback | ||
| 646 | * 1 -> 0 callback | ||
| 647 | * 1 -> 2 callbacks | ||
| 648 | * 2 -> 1 callbacks | ||
| 649 | * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates. | ||
| 650 | * Site effect : marker_set_format may delete the marker entry (creating a | ||
| 651 | * replacement). | ||
| 652 | */ | ||
| 653 | static void marker_update_probes(void) | ||
| 654 | { | ||
| 655 | /* Core kernel markers */ | ||
| 656 | marker_update_probe_range(__start___markers, __stop___markers); | ||
| 657 | /* Markers in modules. */ | ||
| 658 | module_update_markers(); | ||
| 659 | tracepoint_probe_update_all(); | ||
| 660 | } | ||
| 661 | |||
| 662 | /** | ||
| 663 | * marker_probe_register - Connect a probe to a marker | ||
| 664 | * @name: marker name | ||
| 665 | * @format: format string | ||
| 666 | * @probe: probe handler | ||
| 667 | * @probe_private: probe private data | ||
| 668 | * | ||
| 669 | * private data must be a valid allocated memory address, or NULL. | ||
| 670 | * Returns 0 if ok, error value on error. | ||
| 671 | * The probe address must at least be aligned on the architecture pointer size. | ||
| 672 | */ | ||
| 673 | int marker_probe_register(const char *name, const char *format, | ||
| 674 | marker_probe_func *probe, void *probe_private) | ||
| 675 | { | ||
| 676 | struct marker_entry *entry; | ||
| 677 | int ret = 0; | ||
| 678 | struct marker_probe_closure *old; | ||
| 679 | |||
| 680 | mutex_lock(&markers_mutex); | ||
| 681 | entry = get_marker(name); | ||
| 682 | if (!entry) { | ||
| 683 | entry = add_marker(name, format); | ||
| 684 | if (IS_ERR(entry)) | ||
| 685 | ret = PTR_ERR(entry); | ||
| 686 | } else if (format) { | ||
| 687 | if (!entry->format) | ||
| 688 | ret = marker_set_format(entry, format); | ||
| 689 | else if (strcmp(entry->format, format)) | ||
| 690 | ret = -EPERM; | ||
| 691 | } | ||
| 692 | if (ret) | ||
| 693 | goto end; | ||
| 694 | |||
| 695 | /* | ||
| 696 | * If we detect that a call_rcu is pending for this marker, | ||
| 697 | * make sure it's executed now. | ||
| 698 | */ | ||
| 699 | if (entry->rcu_pending) | ||
| 700 | rcu_barrier_sched(); | ||
| 701 | old = marker_entry_add_probe(entry, probe, probe_private); | ||
| 702 | if (IS_ERR(old)) { | ||
| 703 | ret = PTR_ERR(old); | ||
| 704 | goto end; | ||
| 705 | } | ||
| 706 | mutex_unlock(&markers_mutex); | ||
| 707 | marker_update_probes(); | ||
| 708 | mutex_lock(&markers_mutex); | ||
| 709 | entry = get_marker(name); | ||
| 710 | if (!entry) | ||
| 711 | goto end; | ||
| 712 | if (entry->rcu_pending) | ||
| 713 | rcu_barrier_sched(); | ||
| 714 | entry->oldptr = old; | ||
| 715 | entry->rcu_pending = 1; | ||
| 716 | /* write rcu_pending before calling the RCU callback */ | ||
| 717 | smp_wmb(); | ||
| 718 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 719 | end: | ||
| 720 | mutex_unlock(&markers_mutex); | ||
| 721 | return ret; | ||
| 722 | } | ||
| 723 | EXPORT_SYMBOL_GPL(marker_probe_register); | ||
| 724 | |||
| 725 | /** | ||
| 726 | * marker_probe_unregister - Disconnect a probe from a marker | ||
| 727 | * @name: marker name | ||
| 728 | * @probe: probe function pointer | ||
| 729 | * @probe_private: probe private data | ||
| 730 | * | ||
| 731 | * Returns the private data given to marker_probe_register, or an ERR_PTR(). | ||
| 732 | * We do not need to call a synchronize_sched to make sure the probes have | ||
| 733 | * finished running before doing a module unload, because the module unload | ||
| 734 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
| 735 | * have finished. | ||
| 736 | */ | ||
| 737 | int marker_probe_unregister(const char *name, | ||
| 738 | marker_probe_func *probe, void *probe_private) | ||
| 739 | { | ||
| 740 | struct marker_entry *entry; | ||
| 741 | struct marker_probe_closure *old; | ||
| 742 | int ret = -ENOENT; | ||
| 743 | |||
| 744 | mutex_lock(&markers_mutex); | ||
| 745 | entry = get_marker(name); | ||
| 746 | if (!entry) | ||
| 747 | goto end; | ||
| 748 | if (entry->rcu_pending) | ||
| 749 | rcu_barrier_sched(); | ||
| 750 | old = marker_entry_remove_probe(entry, probe, probe_private); | ||
| 751 | mutex_unlock(&markers_mutex); | ||
| 752 | marker_update_probes(); | ||
| 753 | mutex_lock(&markers_mutex); | ||
| 754 | entry = get_marker(name); | ||
| 755 | if (!entry) | ||
| 756 | goto end; | ||
| 757 | if (entry->rcu_pending) | ||
| 758 | rcu_barrier_sched(); | ||
| 759 | entry->oldptr = old; | ||
| 760 | entry->rcu_pending = 1; | ||
| 761 | /* write rcu_pending before calling the RCU callback */ | ||
| 762 | smp_wmb(); | ||
| 763 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 764 | remove_marker(name); /* Ignore busy error message */ | ||
| 765 | ret = 0; | ||
| 766 | end: | ||
| 767 | mutex_unlock(&markers_mutex); | ||
| 768 | return ret; | ||
| 769 | } | ||
| 770 | EXPORT_SYMBOL_GPL(marker_probe_unregister); | ||
| 771 | |||
| 772 | static struct marker_entry * | ||
| 773 | get_marker_from_private_data(marker_probe_func *probe, void *probe_private) | ||
| 774 | { | ||
| 775 | struct marker_entry *entry; | ||
| 776 | unsigned int i; | ||
| 777 | struct hlist_head *head; | ||
| 778 | struct hlist_node *node; | ||
| 779 | |||
| 780 | for (i = 0; i < MARKER_TABLE_SIZE; i++) { | ||
| 781 | head = &marker_table[i]; | ||
| 782 | hlist_for_each_entry(entry, node, head, hlist) { | ||
| 783 | if (!entry->ptype) { | ||
| 784 | if (entry->single.func == probe | ||
| 785 | && entry->single.probe_private | ||
| 786 | == probe_private) | ||
| 787 | return entry; | ||
| 788 | } else { | ||
| 789 | struct marker_probe_closure *closure; | ||
| 790 | closure = entry->multi; | ||
| 791 | for (i = 0; closure[i].func; i++) { | ||
| 792 | if (closure[i].func == probe && | ||
| 793 | closure[i].probe_private | ||
| 794 | == probe_private) | ||
| 795 | return entry; | ||
| 796 | } | ||
| 797 | } | ||
| 798 | } | ||
| 799 | } | ||
| 800 | return NULL; | ||
| 801 | } | ||
| 802 | |||
| 803 | /** | ||
| 804 | * marker_probe_unregister_private_data - Disconnect a probe from a marker | ||
| 805 | * @probe: probe function | ||
| 806 | * @probe_private: probe private data | ||
| 807 | * | ||
| 808 | * Unregister a probe by providing the registered private data. | ||
| 809 | * Only removes the first marker found in hash table. | ||
| 810 | * Return 0 on success or error value. | ||
| 811 | * We do not need to call a synchronize_sched to make sure the probes have | ||
| 812 | * finished running before doing a module unload, because the module unload | ||
| 813 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
| 814 | * have finished. | ||
| 815 | */ | ||
| 816 | int marker_probe_unregister_private_data(marker_probe_func *probe, | ||
| 817 | void *probe_private) | ||
| 818 | { | ||
| 819 | struct marker_entry *entry; | ||
| 820 | int ret = 0; | ||
| 821 | struct marker_probe_closure *old; | ||
| 822 | |||
| 823 | mutex_lock(&markers_mutex); | ||
| 824 | entry = get_marker_from_private_data(probe, probe_private); | ||
| 825 | if (!entry) { | ||
| 826 | ret = -ENOENT; | ||
| 827 | goto end; | ||
| 828 | } | ||
| 829 | if (entry->rcu_pending) | ||
| 830 | rcu_barrier_sched(); | ||
| 831 | old = marker_entry_remove_probe(entry, NULL, probe_private); | ||
| 832 | mutex_unlock(&markers_mutex); | ||
| 833 | marker_update_probes(); | ||
| 834 | mutex_lock(&markers_mutex); | ||
| 835 | entry = get_marker_from_private_data(probe, probe_private); | ||
| 836 | if (!entry) | ||
| 837 | goto end; | ||
| 838 | if (entry->rcu_pending) | ||
| 839 | rcu_barrier_sched(); | ||
| 840 | entry->oldptr = old; | ||
| 841 | entry->rcu_pending = 1; | ||
| 842 | /* write rcu_pending before calling the RCU callback */ | ||
| 843 | smp_wmb(); | ||
| 844 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 845 | remove_marker(entry->name); /* Ignore busy error message */ | ||
| 846 | end: | ||
| 847 | mutex_unlock(&markers_mutex); | ||
| 848 | return ret; | ||
| 849 | } | ||
| 850 | EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data); | ||
| 851 | |||
| 852 | /** | ||
| 853 | * marker_get_private_data - Get a marker's probe private data | ||
| 854 | * @name: marker name | ||
| 855 | * @probe: probe to match | ||
| 856 | * @num: get the nth matching probe's private data | ||
| 857 | * | ||
| 858 | * Returns the nth private data pointer (starting from 0) matching, or an | ||
| 859 | * ERR_PTR. | ||
| 860 | * Returns the private data pointer, or an ERR_PTR. | ||
| 861 | * The private data pointer should _only_ be dereferenced if the caller is the | ||
| 862 | * owner of the data, or its content could vanish. This is mostly used to | ||
| 863 | * confirm that a caller is the owner of a registered probe. | ||
| 864 | */ | ||
| 865 | void *marker_get_private_data(const char *name, marker_probe_func *probe, | ||
| 866 | int num) | ||
| 867 | { | ||
| 868 | struct hlist_head *head; | ||
| 869 | struct hlist_node *node; | ||
| 870 | struct marker_entry *e; | ||
| 871 | size_t name_len = strlen(name) + 1; | ||
| 872 | u32 hash = jhash(name, name_len-1, 0); | ||
| 873 | int i; | ||
| 874 | |||
| 875 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 876 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 877 | if (!strcmp(name, e->name)) { | ||
| 878 | if (!e->ptype) { | ||
| 879 | if (num == 0 && e->single.func == probe) | ||
| 880 | return e->single.probe_private; | ||
| 881 | } else { | ||
| 882 | struct marker_probe_closure *closure; | ||
| 883 | int match = 0; | ||
| 884 | closure = e->multi; | ||
| 885 | for (i = 0; closure[i].func; i++) { | ||
| 886 | if (closure[i].func != probe) | ||
| 887 | continue; | ||
| 888 | if (match++ == num) | ||
| 889 | return closure[i].probe_private; | ||
| 890 | } | ||
| 891 | } | ||
| 892 | break; | ||
| 893 | } | ||
| 894 | } | ||
| 895 | return ERR_PTR(-ENOENT); | ||
| 896 | } | ||
| 897 | EXPORT_SYMBOL_GPL(marker_get_private_data); | ||
| 898 | |||
| 899 | #ifdef CONFIG_MODULES | ||
| 900 | |||
| 901 | int marker_module_notify(struct notifier_block *self, | ||
| 902 | unsigned long val, void *data) | ||
| 903 | { | ||
| 904 | struct module *mod = data; | ||
| 905 | |||
| 906 | switch (val) { | ||
| 907 | case MODULE_STATE_COMING: | ||
| 908 | marker_update_probe_range(mod->markers, | ||
| 909 | mod->markers + mod->num_markers); | ||
| 910 | break; | ||
| 911 | case MODULE_STATE_GOING: | ||
| 912 | marker_update_probe_range(mod->markers, | ||
| 913 | mod->markers + mod->num_markers); | ||
| 914 | break; | ||
| 915 | } | ||
| 916 | return 0; | ||
| 917 | } | ||
| 918 | |||
| 919 | struct notifier_block marker_module_nb = { | ||
| 920 | .notifier_call = marker_module_notify, | ||
| 921 | .priority = 0, | ||
| 922 | }; | ||
| 923 | |||
| 924 | static int init_markers(void) | ||
| 925 | { | ||
| 926 | return register_module_notifier(&marker_module_nb); | ||
| 927 | } | ||
| 928 | __initcall(init_markers); | ||
| 929 | |||
| 930 | #endif /* CONFIG_MODULES */ | ||
diff --git a/kernel/module.c b/kernel/module.c index 05ce49ced8f6..fe748a86d452 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
| @@ -47,6 +47,7 @@ | |||
| 47 | #include <linux/rculist.h> | 47 | #include <linux/rculist.h> |
| 48 | #include <asm/uaccess.h> | 48 | #include <asm/uaccess.h> |
| 49 | #include <asm/cacheflush.h> | 49 | #include <asm/cacheflush.h> |
| 50 | #include <asm/mmu_context.h> | ||
| 50 | #include <linux/license.h> | 51 | #include <linux/license.h> |
| 51 | #include <asm/sections.h> | 52 | #include <asm/sections.h> |
| 52 | #include <linux/tracepoint.h> | 53 | #include <linux/tracepoint.h> |
| @@ -1535,6 +1536,10 @@ static void free_module(struct module *mod) | |||
| 1535 | 1536 | ||
| 1536 | /* Finally, free the core (containing the module structure) */ | 1537 | /* Finally, free the core (containing the module structure) */ |
| 1537 | module_free(mod, mod->module_core); | 1538 | module_free(mod, mod->module_core); |
| 1539 | |||
| 1540 | #ifdef CONFIG_MPU | ||
| 1541 | update_protections(current->mm); | ||
| 1542 | #endif | ||
| 1538 | } | 1543 | } |
| 1539 | 1544 | ||
| 1540 | void *__symbol_get(const char *symbol) | 1545 | void *__symbol_get(const char *symbol) |
| @@ -1792,6 +1797,17 @@ static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs, | |||
| 1792 | } | 1797 | } |
| 1793 | } | 1798 | } |
| 1794 | 1799 | ||
| 1800 | static void free_modinfo(struct module *mod) | ||
| 1801 | { | ||
| 1802 | struct module_attribute *attr; | ||
| 1803 | int i; | ||
| 1804 | |||
| 1805 | for (i = 0; (attr = modinfo_attrs[i]); i++) { | ||
| 1806 | if (attr->free) | ||
| 1807 | attr->free(mod); | ||
| 1808 | } | ||
| 1809 | } | ||
| 1810 | |||
| 1795 | #ifdef CONFIG_KALLSYMS | 1811 | #ifdef CONFIG_KALLSYMS |
| 1796 | 1812 | ||
| 1797 | /* lookup symbol in given range of kernel_symbols */ | 1813 | /* lookup symbol in given range of kernel_symbols */ |
| @@ -1857,13 +1873,93 @@ static char elf_type(const Elf_Sym *sym, | |||
| 1857 | return '?'; | 1873 | return '?'; |
| 1858 | } | 1874 | } |
| 1859 | 1875 | ||
| 1876 | static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs, | ||
| 1877 | unsigned int shnum) | ||
| 1878 | { | ||
| 1879 | const Elf_Shdr *sec; | ||
| 1880 | |||
| 1881 | if (src->st_shndx == SHN_UNDEF | ||
| 1882 | || src->st_shndx >= shnum | ||
| 1883 | || !src->st_name) | ||
| 1884 | return false; | ||
| 1885 | |||
| 1886 | sec = sechdrs + src->st_shndx; | ||
| 1887 | if (!(sec->sh_flags & SHF_ALLOC) | ||
| 1888 | #ifndef CONFIG_KALLSYMS_ALL | ||
| 1889 | || !(sec->sh_flags & SHF_EXECINSTR) | ||
| 1890 | #endif | ||
| 1891 | || (sec->sh_entsize & INIT_OFFSET_MASK)) | ||
| 1892 | return false; | ||
| 1893 | |||
| 1894 | return true; | ||
| 1895 | } | ||
| 1896 | |||
| 1897 | static unsigned long layout_symtab(struct module *mod, | ||
| 1898 | Elf_Shdr *sechdrs, | ||
| 1899 | unsigned int symindex, | ||
| 1900 | unsigned int strindex, | ||
| 1901 | const Elf_Ehdr *hdr, | ||
| 1902 | const char *secstrings, | ||
| 1903 | unsigned long *pstroffs, | ||
| 1904 | unsigned long *strmap) | ||
| 1905 | { | ||
| 1906 | unsigned long symoffs; | ||
| 1907 | Elf_Shdr *symsect = sechdrs + symindex; | ||
| 1908 | Elf_Shdr *strsect = sechdrs + strindex; | ||
| 1909 | const Elf_Sym *src; | ||
| 1910 | const char *strtab; | ||
| 1911 | unsigned int i, nsrc, ndst; | ||
| 1912 | |||
| 1913 | /* Put symbol section at end of init part of module. */ | ||
| 1914 | symsect->sh_flags |= SHF_ALLOC; | ||
| 1915 | symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect, | ||
| 1916 | symindex) | INIT_OFFSET_MASK; | ||
| 1917 | DEBUGP("\t%s\n", secstrings + symsect->sh_name); | ||
| 1918 | |||
| 1919 | src = (void *)hdr + symsect->sh_offset; | ||
| 1920 | nsrc = symsect->sh_size / sizeof(*src); | ||
| 1921 | strtab = (void *)hdr + strsect->sh_offset; | ||
| 1922 | for (ndst = i = 1; i < nsrc; ++i, ++src) | ||
| 1923 | if (is_core_symbol(src, sechdrs, hdr->e_shnum)) { | ||
| 1924 | unsigned int j = src->st_name; | ||
| 1925 | |||
| 1926 | while(!__test_and_set_bit(j, strmap) && strtab[j]) | ||
| 1927 | ++j; | ||
| 1928 | ++ndst; | ||
| 1929 | } | ||
| 1930 | |||
| 1931 | /* Append room for core symbols at end of core part. */ | ||
| 1932 | symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1); | ||
| 1933 | mod->core_size = symoffs + ndst * sizeof(Elf_Sym); | ||
| 1934 | |||
| 1935 | /* Put string table section at end of init part of module. */ | ||
| 1936 | strsect->sh_flags |= SHF_ALLOC; | ||
| 1937 | strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect, | ||
| 1938 | strindex) | INIT_OFFSET_MASK; | ||
| 1939 | DEBUGP("\t%s\n", secstrings + strsect->sh_name); | ||
| 1940 | |||
| 1941 | /* Append room for core symbols' strings at end of core part. */ | ||
| 1942 | *pstroffs = mod->core_size; | ||
| 1943 | __set_bit(0, strmap); | ||
| 1944 | mod->core_size += bitmap_weight(strmap, strsect->sh_size); | ||
| 1945 | |||
| 1946 | return symoffs; | ||
| 1947 | } | ||
| 1948 | |||
| 1860 | static void add_kallsyms(struct module *mod, | 1949 | static void add_kallsyms(struct module *mod, |
| 1861 | Elf_Shdr *sechdrs, | 1950 | Elf_Shdr *sechdrs, |
| 1951 | unsigned int shnum, | ||
| 1862 | unsigned int symindex, | 1952 | unsigned int symindex, |
| 1863 | unsigned int strindex, | 1953 | unsigned int strindex, |
| 1864 | const char *secstrings) | 1954 | unsigned long symoffs, |
| 1955 | unsigned long stroffs, | ||
| 1956 | const char *secstrings, | ||
| 1957 | unsigned long *strmap) | ||
| 1865 | { | 1958 | { |
| 1866 | unsigned int i; | 1959 | unsigned int i, ndst; |
| 1960 | const Elf_Sym *src; | ||
| 1961 | Elf_Sym *dst; | ||
| 1962 | char *s; | ||
| 1867 | 1963 | ||
| 1868 | mod->symtab = (void *)sechdrs[symindex].sh_addr; | 1964 | mod->symtab = (void *)sechdrs[symindex].sh_addr; |
| 1869 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); | 1965 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
| @@ -1873,13 +1969,44 @@ static void add_kallsyms(struct module *mod, | |||
| 1873 | for (i = 0; i < mod->num_symtab; i++) | 1969 | for (i = 0; i < mod->num_symtab; i++) |
| 1874 | mod->symtab[i].st_info | 1970 | mod->symtab[i].st_info |
| 1875 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); | 1971 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); |
| 1972 | |||
| 1973 | mod->core_symtab = dst = mod->module_core + symoffs; | ||
| 1974 | src = mod->symtab; | ||
| 1975 | *dst = *src; | ||
| 1976 | for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) { | ||
| 1977 | if (!is_core_symbol(src, sechdrs, shnum)) | ||
| 1978 | continue; | ||
| 1979 | dst[ndst] = *src; | ||
| 1980 | dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name); | ||
| 1981 | ++ndst; | ||
| 1982 | } | ||
| 1983 | mod->core_num_syms = ndst; | ||
| 1984 | |||
| 1985 | mod->core_strtab = s = mod->module_core + stroffs; | ||
| 1986 | for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i) | ||
| 1987 | if (test_bit(i, strmap)) | ||
| 1988 | *++s = mod->strtab[i]; | ||
| 1876 | } | 1989 | } |
| 1877 | #else | 1990 | #else |
| 1991 | static inline unsigned long layout_symtab(struct module *mod, | ||
| 1992 | Elf_Shdr *sechdrs, | ||
| 1993 | unsigned int symindex, | ||
| 1994 | unsigned int strindex, | ||
| 1995 | const Elf_Hdr *hdr, | ||
| 1996 | const char *secstrings, | ||
| 1997 | unsigned long *pstroffs, | ||
| 1998 | unsigned long *strmap) | ||
| 1999 | { | ||
| 2000 | } | ||
| 1878 | static inline void add_kallsyms(struct module *mod, | 2001 | static inline void add_kallsyms(struct module *mod, |
| 1879 | Elf_Shdr *sechdrs, | 2002 | Elf_Shdr *sechdrs, |
| 2003 | unsigned int shnum, | ||
| 1880 | unsigned int symindex, | 2004 | unsigned int symindex, |
| 1881 | unsigned int strindex, | 2005 | unsigned int strindex, |
| 1882 | const char *secstrings) | 2006 | unsigned long symoffs, |
| 2007 | unsigned long stroffs, | ||
| 2008 | const char *secstrings, | ||
| 2009 | const unsigned long *strmap) | ||
| 1883 | { | 2010 | { |
| 1884 | } | 2011 | } |
| 1885 | #endif /* CONFIG_KALLSYMS */ | 2012 | #endif /* CONFIG_KALLSYMS */ |
| @@ -1954,6 +2081,9 @@ static noinline struct module *load_module(void __user *umod, | |||
| 1954 | struct module *mod; | 2081 | struct module *mod; |
| 1955 | long err = 0; | 2082 | long err = 0; |
| 1956 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ | 2083 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ |
| 2084 | #ifdef CONFIG_KALLSYMS | ||
| 2085 | unsigned long symoffs, stroffs, *strmap; | ||
| 2086 | #endif | ||
| 1957 | mm_segment_t old_fs; | 2087 | mm_segment_t old_fs; |
| 1958 | 2088 | ||
| 1959 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", | 2089 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", |
| @@ -2035,11 +2165,6 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2035 | /* Don't keep modinfo and version sections. */ | 2165 | /* Don't keep modinfo and version sections. */ |
| 2036 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2166 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
| 2037 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2167 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
| 2038 | #ifdef CONFIG_KALLSYMS | ||
| 2039 | /* Keep symbol and string tables for decoding later. */ | ||
| 2040 | sechdrs[symindex].sh_flags |= SHF_ALLOC; | ||
| 2041 | sechdrs[strindex].sh_flags |= SHF_ALLOC; | ||
| 2042 | #endif | ||
| 2043 | 2168 | ||
| 2044 | /* Check module struct version now, before we try to use module. */ | 2169 | /* Check module struct version now, before we try to use module. */ |
| 2045 | if (!check_modstruct_version(sechdrs, versindex, mod)) { | 2170 | if (!check_modstruct_version(sechdrs, versindex, mod)) { |
| @@ -2075,6 +2200,13 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2075 | goto free_hdr; | 2200 | goto free_hdr; |
| 2076 | } | 2201 | } |
| 2077 | 2202 | ||
| 2203 | strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size) | ||
| 2204 | * sizeof(long), GFP_KERNEL); | ||
| 2205 | if (!strmap) { | ||
| 2206 | err = -ENOMEM; | ||
| 2207 | goto free_mod; | ||
| 2208 | } | ||
| 2209 | |||
| 2078 | if (find_module(mod->name)) { | 2210 | if (find_module(mod->name)) { |
| 2079 | err = -EEXIST; | 2211 | err = -EEXIST; |
| 2080 | goto free_mod; | 2212 | goto free_mod; |
| @@ -2104,6 +2236,8 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2104 | this is done generically; there doesn't appear to be any | 2236 | this is done generically; there doesn't appear to be any |
| 2105 | special cases for the architectures. */ | 2237 | special cases for the architectures. */ |
| 2106 | layout_sections(mod, hdr, sechdrs, secstrings); | 2238 | layout_sections(mod, hdr, sechdrs, secstrings); |
| 2239 | symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr, | ||
| 2240 | secstrings, &stroffs, strmap); | ||
| 2107 | 2241 | ||
| 2108 | /* Do the allocs. */ | 2242 | /* Do the allocs. */ |
| 2109 | ptr = module_alloc_update_bounds(mod->core_size); | 2243 | ptr = module_alloc_update_bounds(mod->core_size); |
| @@ -2237,10 +2371,6 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2237 | sizeof(*mod->ctors), &mod->num_ctors); | 2371 | sizeof(*mod->ctors), &mod->num_ctors); |
| 2238 | #endif | 2372 | #endif |
| 2239 | 2373 | ||
| 2240 | #ifdef CONFIG_MARKERS | ||
| 2241 | mod->markers = section_objs(hdr, sechdrs, secstrings, "__markers", | ||
| 2242 | sizeof(*mod->markers), &mod->num_markers); | ||
| 2243 | #endif | ||
| 2244 | #ifdef CONFIG_TRACEPOINTS | 2374 | #ifdef CONFIG_TRACEPOINTS |
| 2245 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, | 2375 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, |
| 2246 | "__tracepoints", | 2376 | "__tracepoints", |
| @@ -2312,7 +2442,10 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2312 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, | 2442 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, |
| 2313 | sechdrs[pcpuindex].sh_size); | 2443 | sechdrs[pcpuindex].sh_size); |
| 2314 | 2444 | ||
| 2315 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); | 2445 | add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex, |
| 2446 | symoffs, stroffs, secstrings, strmap); | ||
| 2447 | kfree(strmap); | ||
| 2448 | strmap = NULL; | ||
| 2316 | 2449 | ||
| 2317 | if (!mod->taints) { | 2450 | if (!mod->taints) { |
| 2318 | struct _ddebug *debug; | 2451 | struct _ddebug *debug; |
| @@ -2384,13 +2517,14 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2384 | synchronize_sched(); | 2517 | synchronize_sched(); |
| 2385 | module_arch_cleanup(mod); | 2518 | module_arch_cleanup(mod); |
| 2386 | cleanup: | 2519 | cleanup: |
| 2520 | free_modinfo(mod); | ||
| 2387 | kobject_del(&mod->mkobj.kobj); | 2521 | kobject_del(&mod->mkobj.kobj); |
| 2388 | kobject_put(&mod->mkobj.kobj); | 2522 | kobject_put(&mod->mkobj.kobj); |
| 2389 | free_unload: | 2523 | free_unload: |
| 2390 | module_unload_free(mod); | 2524 | module_unload_free(mod); |
| 2391 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) | 2525 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) |
| 2392 | free_init: | ||
| 2393 | percpu_modfree(mod->refptr); | 2526 | percpu_modfree(mod->refptr); |
| 2527 | free_init: | ||
| 2394 | #endif | 2528 | #endif |
| 2395 | module_free(mod, mod->module_init); | 2529 | module_free(mod, mod->module_init); |
| 2396 | free_core: | 2530 | free_core: |
| @@ -2401,6 +2535,7 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2401 | percpu_modfree(percpu); | 2535 | percpu_modfree(percpu); |
| 2402 | free_mod: | 2536 | free_mod: |
| 2403 | kfree(args); | 2537 | kfree(args); |
| 2538 | kfree(strmap); | ||
| 2404 | free_hdr: | 2539 | free_hdr: |
| 2405 | vfree(hdr); | 2540 | vfree(hdr); |
| 2406 | return ERR_PTR(err); | 2541 | return ERR_PTR(err); |
| @@ -2490,6 +2625,11 @@ SYSCALL_DEFINE3(init_module, void __user *, umod, | |||
| 2490 | /* Drop initial reference. */ | 2625 | /* Drop initial reference. */ |
| 2491 | module_put(mod); | 2626 | module_put(mod); |
| 2492 | trim_init_extable(mod); | 2627 | trim_init_extable(mod); |
| 2628 | #ifdef CONFIG_KALLSYMS | ||
| 2629 | mod->num_symtab = mod->core_num_syms; | ||
| 2630 | mod->symtab = mod->core_symtab; | ||
| 2631 | mod->strtab = mod->core_strtab; | ||
| 2632 | #endif | ||
| 2493 | module_free(mod, mod->module_init); | 2633 | module_free(mod, mod->module_init); |
| 2494 | mod->module_init = NULL; | 2634 | mod->module_init = NULL; |
| 2495 | mod->init_size = 0; | 2635 | mod->init_size = 0; |
| @@ -2951,27 +3091,12 @@ void module_layout(struct module *mod, | |||
| 2951 | struct modversion_info *ver, | 3091 | struct modversion_info *ver, |
| 2952 | struct kernel_param *kp, | 3092 | struct kernel_param *kp, |
| 2953 | struct kernel_symbol *ks, | 3093 | struct kernel_symbol *ks, |
| 2954 | struct marker *marker, | ||
| 2955 | struct tracepoint *tp) | 3094 | struct tracepoint *tp) |
| 2956 | { | 3095 | { |
| 2957 | } | 3096 | } |
| 2958 | EXPORT_SYMBOL(module_layout); | 3097 | EXPORT_SYMBOL(module_layout); |
| 2959 | #endif | 3098 | #endif |
| 2960 | 3099 | ||
| 2961 | #ifdef CONFIG_MARKERS | ||
| 2962 | void module_update_markers(void) | ||
| 2963 | { | ||
| 2964 | struct module *mod; | ||
| 2965 | |||
| 2966 | mutex_lock(&module_mutex); | ||
| 2967 | list_for_each_entry(mod, &modules, list) | ||
| 2968 | if (!mod->taints) | ||
| 2969 | marker_update_probe_range(mod->markers, | ||
| 2970 | mod->markers + mod->num_markers); | ||
| 2971 | mutex_unlock(&module_mutex); | ||
| 2972 | } | ||
| 2973 | #endif | ||
| 2974 | |||
| 2975 | #ifdef CONFIG_TRACEPOINTS | 3100 | #ifdef CONFIG_TRACEPOINTS |
| 2976 | void module_update_tracepoints(void) | 3101 | void module_update_tracepoints(void) |
| 2977 | { | 3102 | { |
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c index 5aa854f9e5ae..2a5dfec8efe0 100644 --- a/kernel/ns_cgroup.c +++ b/kernel/ns_cgroup.c | |||
| @@ -42,8 +42,8 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid) | |||
| 42 | * (hence either you are in the same cgroup as task, or in an | 42 | * (hence either you are in the same cgroup as task, or in an |
| 43 | * ancestor cgroup thereof) | 43 | * ancestor cgroup thereof) |
| 44 | */ | 44 | */ |
| 45 | static int ns_can_attach(struct cgroup_subsys *ss, | 45 | static int ns_can_attach(struct cgroup_subsys *ss, struct cgroup *new_cgroup, |
| 46 | struct cgroup *new_cgroup, struct task_struct *task) | 46 | struct task_struct *task, bool threadgroup) |
| 47 | { | 47 | { |
| 48 | if (current != task) { | 48 | if (current != task) { |
| 49 | if (!capable(CAP_SYS_ADMIN)) | 49 | if (!capable(CAP_SYS_ADMIN)) |
| @@ -56,6 +56,18 @@ static int ns_can_attach(struct cgroup_subsys *ss, | |||
| 56 | if (!cgroup_is_descendant(new_cgroup, task)) | 56 | if (!cgroup_is_descendant(new_cgroup, task)) |
| 57 | return -EPERM; | 57 | return -EPERM; |
| 58 | 58 | ||
| 59 | if (threadgroup) { | ||
| 60 | struct task_struct *c; | ||
| 61 | rcu_read_lock(); | ||
| 62 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
| 63 | if (!cgroup_is_descendant(new_cgroup, c)) { | ||
| 64 | rcu_read_unlock(); | ||
| 65 | return -EPERM; | ||
| 66 | } | ||
| 67 | } | ||
| 68 | rcu_read_unlock(); | ||
| 69 | } | ||
| 70 | |||
| 59 | return 0; | 71 | return 0; |
| 60 | } | 72 | } |
| 61 | 73 | ||
diff --git a/kernel/panic.c b/kernel/panic.c index 512ab73b0ca3..bcdef26e3332 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
| @@ -177,7 +177,7 @@ static const struct tnt tnts[] = { | |||
| 177 | * 'W' - Taint on warning. | 177 | * 'W' - Taint on warning. |
| 178 | * 'C' - modules from drivers/staging are loaded. | 178 | * 'C' - modules from drivers/staging are loaded. |
| 179 | * | 179 | * |
| 180 | * The string is overwritten by the next call to print_taint(). | 180 | * The string is overwritten by the next call to print_tainted(). |
| 181 | */ | 181 | */ |
| 182 | const char *print_tainted(void) | 182 | const char *print_tainted(void) |
| 183 | { | 183 | { |
diff --git a/kernel/params.c b/kernel/params.c index 7f6912ced2ba..9da58eabdcb2 100644 --- a/kernel/params.c +++ b/kernel/params.c | |||
| @@ -23,6 +23,7 @@ | |||
| 23 | #include <linux/device.h> | 23 | #include <linux/device.h> |
| 24 | #include <linux/err.h> | 24 | #include <linux/err.h> |
| 25 | #include <linux/slab.h> | 25 | #include <linux/slab.h> |
| 26 | #include <linux/ctype.h> | ||
| 26 | 27 | ||
| 27 | #if 0 | 28 | #if 0 |
| 28 | #define DEBUGP printk | 29 | #define DEBUGP printk |
| @@ -87,7 +88,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
| 87 | } | 88 | } |
| 88 | 89 | ||
| 89 | for (i = 0; args[i]; i++) { | 90 | for (i = 0; args[i]; i++) { |
| 90 | if (args[i] == ' ' && !in_quote) | 91 | if (isspace(args[i]) && !in_quote) |
| 91 | break; | 92 | break; |
| 92 | if (equals == 0) { | 93 | if (equals == 0) { |
| 93 | if (args[i] == '=') | 94 | if (args[i] == '=') |
| @@ -121,7 +122,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
| 121 | next = args + i; | 122 | next = args + i; |
| 122 | 123 | ||
| 123 | /* Chew up trailing spaces. */ | 124 | /* Chew up trailing spaces. */ |
| 124 | while (*next == ' ') | 125 | while (isspace(*next)) |
| 125 | next++; | 126 | next++; |
| 126 | return next; | 127 | return next; |
| 127 | } | 128 | } |
| @@ -138,7 +139,7 @@ int parse_args(const char *name, | |||
| 138 | DEBUGP("Parsing ARGS: %s\n", args); | 139 | DEBUGP("Parsing ARGS: %s\n", args); |
| 139 | 140 | ||
| 140 | /* Chew leading spaces */ | 141 | /* Chew leading spaces */ |
| 141 | while (*args == ' ') | 142 | while (isspace(*args)) |
| 142 | args++; | 143 | args++; |
| 143 | 144 | ||
| 144 | while (*args) { | 145 | while (*args) { |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c deleted file mode 100644 index 8cb94a52d1bb..000000000000 --- a/kernel/perf_counter.c +++ /dev/null | |||
| @@ -1,4963 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Performance counter core code | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/hardirq.h> | ||
| 24 | #include <linux/rculist.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/anon_inodes.h> | ||
| 28 | #include <linux/kernel_stat.h> | ||
| 29 | #include <linux/perf_counter.h> | ||
| 30 | |||
| 31 | #include <asm/irq_regs.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Each CPU has a list of per CPU counters: | ||
| 35 | */ | ||
| 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 37 | |||
| 38 | int perf_max_counters __read_mostly = 1; | ||
| 39 | static int perf_reserved_percpu __read_mostly; | ||
| 40 | static int perf_overcommit __read_mostly = 1; | ||
| 41 | |||
| 42 | static atomic_t nr_counters __read_mostly; | ||
| 43 | static atomic_t nr_mmap_counters __read_mostly; | ||
| 44 | static atomic_t nr_comm_counters __read_mostly; | ||
| 45 | static atomic_t nr_task_counters __read_mostly; | ||
| 46 | |||
| 47 | /* | ||
| 48 | * perf counter paranoia level: | ||
| 49 | * -1 - not paranoid at all | ||
| 50 | * 0 - disallow raw tracepoint access for unpriv | ||
| 51 | * 1 - disallow cpu counters for unpriv | ||
| 52 | * 2 - disallow kernel profiling for unpriv | ||
| 53 | */ | ||
| 54 | int sysctl_perf_counter_paranoid __read_mostly = 1; | ||
| 55 | |||
| 56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
| 57 | { | ||
| 58 | return sysctl_perf_counter_paranoid > -1; | ||
| 59 | } | ||
| 60 | |||
| 61 | static inline bool perf_paranoid_cpu(void) | ||
| 62 | { | ||
| 63 | return sysctl_perf_counter_paranoid > 0; | ||
| 64 | } | ||
| 65 | |||
| 66 | static inline bool perf_paranoid_kernel(void) | ||
| 67 | { | ||
| 68 | return sysctl_perf_counter_paranoid > 1; | ||
| 69 | } | ||
| 70 | |||
| 71 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 72 | |||
| 73 | /* | ||
| 74 | * max perf counter sample rate | ||
| 75 | */ | ||
| 76 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | ||
| 77 | |||
| 78 | static atomic64_t perf_counter_id; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * Lock for (sysadmin-configurable) counter reservations: | ||
| 82 | */ | ||
| 83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 84 | |||
| 85 | /* | ||
| 86 | * Architecture provided APIs - weak aliases: | ||
| 87 | */ | ||
| 88 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
| 89 | { | ||
| 90 | return NULL; | ||
| 91 | } | ||
| 92 | |||
| 93 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 94 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 95 | |||
| 96 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
| 97 | void __weak hw_perf_counter_setup_online(int cpu) { barrier(); } | ||
| 98 | |||
| 99 | int __weak | ||
| 100 | hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
| 101 | struct perf_cpu_context *cpuctx, | ||
| 102 | struct perf_counter_context *ctx, int cpu) | ||
| 103 | { | ||
| 104 | return 0; | ||
| 105 | } | ||
| 106 | |||
| 107 | void __weak perf_counter_print_debug(void) { } | ||
| 108 | |||
| 109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
| 110 | |||
| 111 | void __perf_disable(void) | ||
| 112 | { | ||
| 113 | __get_cpu_var(perf_disable_count)++; | ||
| 114 | } | ||
| 115 | |||
| 116 | bool __perf_enable(void) | ||
| 117 | { | ||
| 118 | return !--__get_cpu_var(perf_disable_count); | ||
| 119 | } | ||
| 120 | |||
| 121 | void perf_disable(void) | ||
| 122 | { | ||
| 123 | __perf_disable(); | ||
| 124 | hw_perf_disable(); | ||
| 125 | } | ||
| 126 | |||
| 127 | void perf_enable(void) | ||
| 128 | { | ||
| 129 | if (__perf_enable()) | ||
| 130 | hw_perf_enable(); | ||
| 131 | } | ||
| 132 | |||
| 133 | static void get_ctx(struct perf_counter_context *ctx) | ||
| 134 | { | ||
| 135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
| 136 | } | ||
| 137 | |||
| 138 | static void free_ctx(struct rcu_head *head) | ||
| 139 | { | ||
| 140 | struct perf_counter_context *ctx; | ||
| 141 | |||
| 142 | ctx = container_of(head, struct perf_counter_context, rcu_head); | ||
| 143 | kfree(ctx); | ||
| 144 | } | ||
| 145 | |||
| 146 | static void put_ctx(struct perf_counter_context *ctx) | ||
| 147 | { | ||
| 148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 149 | if (ctx->parent_ctx) | ||
| 150 | put_ctx(ctx->parent_ctx); | ||
| 151 | if (ctx->task) | ||
| 152 | put_task_struct(ctx->task); | ||
| 153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 154 | } | ||
| 155 | } | ||
| 156 | |||
| 157 | static void unclone_ctx(struct perf_counter_context *ctx) | ||
| 158 | { | ||
| 159 | if (ctx->parent_ctx) { | ||
| 160 | put_ctx(ctx->parent_ctx); | ||
| 161 | ctx->parent_ctx = NULL; | ||
| 162 | } | ||
| 163 | } | ||
| 164 | |||
| 165 | /* | ||
| 166 | * If we inherit counters we want to return the parent counter id | ||
| 167 | * to userspace. | ||
| 168 | */ | ||
| 169 | static u64 primary_counter_id(struct perf_counter *counter) | ||
| 170 | { | ||
| 171 | u64 id = counter->id; | ||
| 172 | |||
| 173 | if (counter->parent) | ||
| 174 | id = counter->parent->id; | ||
| 175 | |||
| 176 | return id; | ||
| 177 | } | ||
| 178 | |||
| 179 | /* | ||
| 180 | * Get the perf_counter_context for a task and lock it. | ||
| 181 | * This has to cope with with the fact that until it is locked, | ||
| 182 | * the context could get moved to another task. | ||
| 183 | */ | ||
| 184 | static struct perf_counter_context * | ||
| 185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 186 | { | ||
| 187 | struct perf_counter_context *ctx; | ||
| 188 | |||
| 189 | rcu_read_lock(); | ||
| 190 | retry: | ||
| 191 | ctx = rcu_dereference(task->perf_counter_ctxp); | ||
| 192 | if (ctx) { | ||
| 193 | /* | ||
| 194 | * If this context is a clone of another, it might | ||
| 195 | * get swapped for another underneath us by | ||
| 196 | * perf_counter_task_sched_out, though the | ||
| 197 | * rcu_read_lock() protects us from any context | ||
| 198 | * getting freed. Lock the context and check if it | ||
| 199 | * got swapped before we could get the lock, and retry | ||
| 200 | * if so. If we locked the right context, then it | ||
| 201 | * can't get swapped on us any more. | ||
| 202 | */ | ||
| 203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 204 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | ||
| 205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 206 | goto retry; | ||
| 207 | } | ||
| 208 | |||
| 209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
| 210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 211 | ctx = NULL; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | rcu_read_unlock(); | ||
| 215 | return ctx; | ||
| 216 | } | ||
| 217 | |||
| 218 | /* | ||
| 219 | * Get the context for a task and increment its pin_count so it | ||
| 220 | * can't get swapped to another task. This also increments its | ||
| 221 | * reference count so that the context can't get freed. | ||
| 222 | */ | ||
| 223 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | ||
| 224 | { | ||
| 225 | struct perf_counter_context *ctx; | ||
| 226 | unsigned long flags; | ||
| 227 | |||
| 228 | ctx = perf_lock_task_context(task, &flags); | ||
| 229 | if (ctx) { | ||
| 230 | ++ctx->pin_count; | ||
| 231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 232 | } | ||
| 233 | return ctx; | ||
| 234 | } | ||
| 235 | |||
| 236 | static void perf_unpin_context(struct perf_counter_context *ctx) | ||
| 237 | { | ||
| 238 | unsigned long flags; | ||
| 239 | |||
| 240 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 241 | --ctx->pin_count; | ||
| 242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 243 | put_ctx(ctx); | ||
| 244 | } | ||
| 245 | |||
| 246 | /* | ||
| 247 | * Add a counter from the lists for its context. | ||
| 248 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 249 | */ | ||
| 250 | static void | ||
| 251 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 252 | { | ||
| 253 | struct perf_counter *group_leader = counter->group_leader; | ||
| 254 | |||
| 255 | /* | ||
| 256 | * Depending on whether it is a standalone or sibling counter, | ||
| 257 | * add it straight to the context's counter list, or to the group | ||
| 258 | * leader's sibling list: | ||
| 259 | */ | ||
| 260 | if (group_leader == counter) | ||
| 261 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
| 262 | else { | ||
| 263 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
| 264 | group_leader->nr_siblings++; | ||
| 265 | } | ||
| 266 | |||
| 267 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
| 268 | ctx->nr_counters++; | ||
| 269 | if (counter->attr.inherit_stat) | ||
| 270 | ctx->nr_stat++; | ||
| 271 | } | ||
| 272 | |||
| 273 | /* | ||
| 274 | * Remove a counter from the lists for its context. | ||
| 275 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 276 | */ | ||
| 277 | static void | ||
| 278 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 279 | { | ||
| 280 | struct perf_counter *sibling, *tmp; | ||
| 281 | |||
| 282 | if (list_empty(&counter->list_entry)) | ||
| 283 | return; | ||
| 284 | ctx->nr_counters--; | ||
| 285 | if (counter->attr.inherit_stat) | ||
| 286 | ctx->nr_stat--; | ||
| 287 | |||
| 288 | list_del_init(&counter->list_entry); | ||
| 289 | list_del_rcu(&counter->event_entry); | ||
| 290 | |||
| 291 | if (counter->group_leader != counter) | ||
| 292 | counter->group_leader->nr_siblings--; | ||
| 293 | |||
| 294 | /* | ||
| 295 | * If this was a group counter with sibling counters then | ||
| 296 | * upgrade the siblings to singleton counters by adding them | ||
| 297 | * to the context list directly: | ||
| 298 | */ | ||
| 299 | list_for_each_entry_safe(sibling, tmp, | ||
| 300 | &counter->sibling_list, list_entry) { | ||
| 301 | |||
| 302 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
| 303 | sibling->group_leader = sibling; | ||
| 304 | } | ||
| 305 | } | ||
| 306 | |||
| 307 | static void | ||
| 308 | counter_sched_out(struct perf_counter *counter, | ||
| 309 | struct perf_cpu_context *cpuctx, | ||
| 310 | struct perf_counter_context *ctx) | ||
| 311 | { | ||
| 312 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 313 | return; | ||
| 314 | |||
| 315 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 316 | if (counter->pending_disable) { | ||
| 317 | counter->pending_disable = 0; | ||
| 318 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 319 | } | ||
| 320 | counter->tstamp_stopped = ctx->time; | ||
| 321 | counter->pmu->disable(counter); | ||
| 322 | counter->oncpu = -1; | ||
| 323 | |||
| 324 | if (!is_software_counter(counter)) | ||
| 325 | cpuctx->active_oncpu--; | ||
| 326 | ctx->nr_active--; | ||
| 327 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | ||
| 328 | cpuctx->exclusive = 0; | ||
| 329 | } | ||
| 330 | |||
| 331 | static void | ||
| 332 | group_sched_out(struct perf_counter *group_counter, | ||
| 333 | struct perf_cpu_context *cpuctx, | ||
| 334 | struct perf_counter_context *ctx) | ||
| 335 | { | ||
| 336 | struct perf_counter *counter; | ||
| 337 | |||
| 338 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 339 | return; | ||
| 340 | |||
| 341 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 342 | |||
| 343 | /* | ||
| 344 | * Schedule out siblings (if any): | ||
| 345 | */ | ||
| 346 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
| 347 | counter_sched_out(counter, cpuctx, ctx); | ||
| 348 | |||
| 349 | if (group_counter->attr.exclusive) | ||
| 350 | cpuctx->exclusive = 0; | ||
| 351 | } | ||
| 352 | |||
| 353 | /* | ||
| 354 | * Cross CPU call to remove a performance counter | ||
| 355 | * | ||
| 356 | * We disable the counter on the hardware level first. After that we | ||
| 357 | * remove it from the context list. | ||
| 358 | */ | ||
| 359 | static void __perf_counter_remove_from_context(void *info) | ||
| 360 | { | ||
| 361 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 362 | struct perf_counter *counter = info; | ||
| 363 | struct perf_counter_context *ctx = counter->ctx; | ||
| 364 | |||
| 365 | /* | ||
| 366 | * If this is a task context, we need to check whether it is | ||
| 367 | * the current task context of this cpu. If not it has been | ||
| 368 | * scheduled out before the smp call arrived. | ||
| 369 | */ | ||
| 370 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 371 | return; | ||
| 372 | |||
| 373 | spin_lock(&ctx->lock); | ||
| 374 | /* | ||
| 375 | * Protect the list operation against NMI by disabling the | ||
| 376 | * counters on a global level. | ||
| 377 | */ | ||
| 378 | perf_disable(); | ||
| 379 | |||
| 380 | counter_sched_out(counter, cpuctx, ctx); | ||
| 381 | |||
| 382 | list_del_counter(counter, ctx); | ||
| 383 | |||
| 384 | if (!ctx->task) { | ||
| 385 | /* | ||
| 386 | * Allow more per task counters with respect to the | ||
| 387 | * reservation: | ||
| 388 | */ | ||
| 389 | cpuctx->max_pertask = | ||
| 390 | min(perf_max_counters - ctx->nr_counters, | ||
| 391 | perf_max_counters - perf_reserved_percpu); | ||
| 392 | } | ||
| 393 | |||
| 394 | perf_enable(); | ||
| 395 | spin_unlock(&ctx->lock); | ||
| 396 | } | ||
| 397 | |||
| 398 | |||
| 399 | /* | ||
| 400 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
| 401 | * | ||
| 402 | * Must be called with ctx->mutex held. | ||
| 403 | * | ||
| 404 | * CPU counters are removed with a smp call. For task counters we only | ||
| 405 | * call when the task is on a CPU. | ||
| 406 | * | ||
| 407 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 408 | * every task struct that counter->ctx->task could possibly point to | ||
| 409 | * remains valid. This is OK when called from perf_release since | ||
| 410 | * that only calls us on the top-level context, which can't be a clone. | ||
| 411 | * When called from perf_counter_exit_task, it's OK because the | ||
| 412 | * context has been detached from its task. | ||
| 413 | */ | ||
| 414 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
| 415 | { | ||
| 416 | struct perf_counter_context *ctx = counter->ctx; | ||
| 417 | struct task_struct *task = ctx->task; | ||
| 418 | |||
| 419 | if (!task) { | ||
| 420 | /* | ||
| 421 | * Per cpu counters are removed via an smp call and | ||
| 422 | * the removal is always sucessful. | ||
| 423 | */ | ||
| 424 | smp_call_function_single(counter->cpu, | ||
| 425 | __perf_counter_remove_from_context, | ||
| 426 | counter, 1); | ||
| 427 | return; | ||
| 428 | } | ||
| 429 | |||
| 430 | retry: | ||
| 431 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
| 432 | counter); | ||
| 433 | |||
| 434 | spin_lock_irq(&ctx->lock); | ||
| 435 | /* | ||
| 436 | * If the context is active we need to retry the smp call. | ||
| 437 | */ | ||
| 438 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
| 439 | spin_unlock_irq(&ctx->lock); | ||
| 440 | goto retry; | ||
| 441 | } | ||
| 442 | |||
| 443 | /* | ||
| 444 | * The lock prevents that this context is scheduled in so we | ||
| 445 | * can remove the counter safely, if the call above did not | ||
| 446 | * succeed. | ||
| 447 | */ | ||
| 448 | if (!list_empty(&counter->list_entry)) { | ||
| 449 | list_del_counter(counter, ctx); | ||
| 450 | } | ||
| 451 | spin_unlock_irq(&ctx->lock); | ||
| 452 | } | ||
| 453 | |||
| 454 | static inline u64 perf_clock(void) | ||
| 455 | { | ||
| 456 | return cpu_clock(smp_processor_id()); | ||
| 457 | } | ||
| 458 | |||
| 459 | /* | ||
| 460 | * Update the record of the current time in a context. | ||
| 461 | */ | ||
| 462 | static void update_context_time(struct perf_counter_context *ctx) | ||
| 463 | { | ||
| 464 | u64 now = perf_clock(); | ||
| 465 | |||
| 466 | ctx->time += now - ctx->timestamp; | ||
| 467 | ctx->timestamp = now; | ||
| 468 | } | ||
| 469 | |||
| 470 | /* | ||
| 471 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
| 472 | */ | ||
| 473 | static void update_counter_times(struct perf_counter *counter) | ||
| 474 | { | ||
| 475 | struct perf_counter_context *ctx = counter->ctx; | ||
| 476 | u64 run_end; | ||
| 477 | |||
| 478 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | ||
| 479 | counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE) | ||
| 480 | return; | ||
| 481 | |||
| 482 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
| 483 | |||
| 484 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
| 485 | run_end = counter->tstamp_stopped; | ||
| 486 | else | ||
| 487 | run_end = ctx->time; | ||
| 488 | |||
| 489 | counter->total_time_running = run_end - counter->tstamp_running; | ||
| 490 | } | ||
| 491 | |||
| 492 | /* | ||
| 493 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
| 494 | */ | ||
| 495 | static void update_group_times(struct perf_counter *leader) | ||
| 496 | { | ||
| 497 | struct perf_counter *counter; | ||
| 498 | |||
| 499 | update_counter_times(leader); | ||
| 500 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 501 | update_counter_times(counter); | ||
| 502 | } | ||
| 503 | |||
| 504 | /* | ||
| 505 | * Cross CPU call to disable a performance counter | ||
| 506 | */ | ||
| 507 | static void __perf_counter_disable(void *info) | ||
| 508 | { | ||
| 509 | struct perf_counter *counter = info; | ||
| 510 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 511 | struct perf_counter_context *ctx = counter->ctx; | ||
| 512 | |||
| 513 | /* | ||
| 514 | * If this is a per-task counter, need to check whether this | ||
| 515 | * counter's task is the current task on this cpu. | ||
| 516 | */ | ||
| 517 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 518 | return; | ||
| 519 | |||
| 520 | spin_lock(&ctx->lock); | ||
| 521 | |||
| 522 | /* | ||
| 523 | * If the counter is on, turn it off. | ||
| 524 | * If it is in error state, leave it in error state. | ||
| 525 | */ | ||
| 526 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
| 527 | update_context_time(ctx); | ||
| 528 | update_group_times(counter); | ||
| 529 | if (counter == counter->group_leader) | ||
| 530 | group_sched_out(counter, cpuctx, ctx); | ||
| 531 | else | ||
| 532 | counter_sched_out(counter, cpuctx, ctx); | ||
| 533 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 534 | } | ||
| 535 | |||
| 536 | spin_unlock(&ctx->lock); | ||
| 537 | } | ||
| 538 | |||
| 539 | /* | ||
| 540 | * Disable a counter. | ||
| 541 | * | ||
| 542 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 543 | * every task struct that counter->ctx->task could possibly point to | ||
| 544 | * remains valid. This condition is satisifed when called through | ||
| 545 | * perf_counter_for_each_child or perf_counter_for_each because they | ||
| 546 | * hold the top-level counter's child_mutex, so any descendant that | ||
| 547 | * goes to exit will block in sync_child_counter. | ||
| 548 | * When called from perf_pending_counter it's OK because counter->ctx | ||
| 549 | * is the current context on this CPU and preemption is disabled, | ||
| 550 | * hence we can't get into perf_counter_task_sched_out for this context. | ||
| 551 | */ | ||
| 552 | static void perf_counter_disable(struct perf_counter *counter) | ||
| 553 | { | ||
| 554 | struct perf_counter_context *ctx = counter->ctx; | ||
| 555 | struct task_struct *task = ctx->task; | ||
| 556 | |||
| 557 | if (!task) { | ||
| 558 | /* | ||
| 559 | * Disable the counter on the cpu that it's on | ||
| 560 | */ | ||
| 561 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
| 562 | counter, 1); | ||
| 563 | return; | ||
| 564 | } | ||
| 565 | |||
| 566 | retry: | ||
| 567 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
| 568 | |||
| 569 | spin_lock_irq(&ctx->lock); | ||
| 570 | /* | ||
| 571 | * If the counter is still active, we need to retry the cross-call. | ||
| 572 | */ | ||
| 573 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 574 | spin_unlock_irq(&ctx->lock); | ||
| 575 | goto retry; | ||
| 576 | } | ||
| 577 | |||
| 578 | /* | ||
| 579 | * Since we have the lock this context can't be scheduled | ||
| 580 | * in, so we can change the state safely. | ||
| 581 | */ | ||
| 582 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 583 | update_group_times(counter); | ||
| 584 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 585 | } | ||
| 586 | |||
| 587 | spin_unlock_irq(&ctx->lock); | ||
| 588 | } | ||
| 589 | |||
| 590 | static int | ||
| 591 | counter_sched_in(struct perf_counter *counter, | ||
| 592 | struct perf_cpu_context *cpuctx, | ||
| 593 | struct perf_counter_context *ctx, | ||
| 594 | int cpu) | ||
| 595 | { | ||
| 596 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
| 597 | return 0; | ||
| 598 | |||
| 599 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
| 600 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 601 | /* | ||
| 602 | * The new state must be visible before we turn it on in the hardware: | ||
| 603 | */ | ||
| 604 | smp_wmb(); | ||
| 605 | |||
| 606 | if (counter->pmu->enable(counter)) { | ||
| 607 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 608 | counter->oncpu = -1; | ||
| 609 | return -EAGAIN; | ||
| 610 | } | ||
| 611 | |||
| 612 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
| 613 | |||
| 614 | if (!is_software_counter(counter)) | ||
| 615 | cpuctx->active_oncpu++; | ||
| 616 | ctx->nr_active++; | ||
| 617 | |||
| 618 | if (counter->attr.exclusive) | ||
| 619 | cpuctx->exclusive = 1; | ||
| 620 | |||
| 621 | return 0; | ||
| 622 | } | ||
| 623 | |||
| 624 | static int | ||
| 625 | group_sched_in(struct perf_counter *group_counter, | ||
| 626 | struct perf_cpu_context *cpuctx, | ||
| 627 | struct perf_counter_context *ctx, | ||
| 628 | int cpu) | ||
| 629 | { | ||
| 630 | struct perf_counter *counter, *partial_group; | ||
| 631 | int ret; | ||
| 632 | |||
| 633 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
| 634 | return 0; | ||
| 635 | |||
| 636 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
| 637 | if (ret) | ||
| 638 | return ret < 0 ? ret : 0; | ||
| 639 | |||
| 640 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
| 641 | return -EAGAIN; | ||
| 642 | |||
| 643 | /* | ||
| 644 | * Schedule in siblings as one group (if any): | ||
| 645 | */ | ||
| 646 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 647 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
| 648 | partial_group = counter; | ||
| 649 | goto group_error; | ||
| 650 | } | ||
| 651 | } | ||
| 652 | |||
| 653 | return 0; | ||
| 654 | |||
| 655 | group_error: | ||
| 656 | /* | ||
| 657 | * Groups can be scheduled in as one unit only, so undo any | ||
| 658 | * partial group before returning: | ||
| 659 | */ | ||
| 660 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 661 | if (counter == partial_group) | ||
| 662 | break; | ||
| 663 | counter_sched_out(counter, cpuctx, ctx); | ||
| 664 | } | ||
| 665 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 666 | |||
| 667 | return -EAGAIN; | ||
| 668 | } | ||
| 669 | |||
| 670 | /* | ||
| 671 | * Return 1 for a group consisting entirely of software counters, | ||
| 672 | * 0 if the group contains any hardware counters. | ||
| 673 | */ | ||
| 674 | static int is_software_only_group(struct perf_counter *leader) | ||
| 675 | { | ||
| 676 | struct perf_counter *counter; | ||
| 677 | |||
| 678 | if (!is_software_counter(leader)) | ||
| 679 | return 0; | ||
| 680 | |||
| 681 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 682 | if (!is_software_counter(counter)) | ||
| 683 | return 0; | ||
| 684 | |||
| 685 | return 1; | ||
| 686 | } | ||
| 687 | |||
| 688 | /* | ||
| 689 | * Work out whether we can put this counter group on the CPU now. | ||
| 690 | */ | ||
| 691 | static int group_can_go_on(struct perf_counter *counter, | ||
| 692 | struct perf_cpu_context *cpuctx, | ||
| 693 | int can_add_hw) | ||
| 694 | { | ||
| 695 | /* | ||
| 696 | * Groups consisting entirely of software counters can always go on. | ||
| 697 | */ | ||
| 698 | if (is_software_only_group(counter)) | ||
| 699 | return 1; | ||
| 700 | /* | ||
| 701 | * If an exclusive group is already on, no other hardware | ||
| 702 | * counters can go on. | ||
| 703 | */ | ||
| 704 | if (cpuctx->exclusive) | ||
| 705 | return 0; | ||
| 706 | /* | ||
| 707 | * If this group is exclusive and there are already | ||
| 708 | * counters on the CPU, it can't go on. | ||
| 709 | */ | ||
| 710 | if (counter->attr.exclusive && cpuctx->active_oncpu) | ||
| 711 | return 0; | ||
| 712 | /* | ||
| 713 | * Otherwise, try to add it if all previous groups were able | ||
| 714 | * to go on. | ||
| 715 | */ | ||
| 716 | return can_add_hw; | ||
| 717 | } | ||
| 718 | |||
| 719 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
| 720 | struct perf_counter_context *ctx) | ||
| 721 | { | ||
| 722 | list_add_counter(counter, ctx); | ||
| 723 | counter->tstamp_enabled = ctx->time; | ||
| 724 | counter->tstamp_running = ctx->time; | ||
| 725 | counter->tstamp_stopped = ctx->time; | ||
| 726 | } | ||
| 727 | |||
| 728 | /* | ||
| 729 | * Cross CPU call to install and enable a performance counter | ||
| 730 | * | ||
| 731 | * Must be called with ctx->mutex held | ||
| 732 | */ | ||
| 733 | static void __perf_install_in_context(void *info) | ||
| 734 | { | ||
| 735 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 736 | struct perf_counter *counter = info; | ||
| 737 | struct perf_counter_context *ctx = counter->ctx; | ||
| 738 | struct perf_counter *leader = counter->group_leader; | ||
| 739 | int cpu = smp_processor_id(); | ||
| 740 | int err; | ||
| 741 | |||
| 742 | /* | ||
| 743 | * If this is a task context, we need to check whether it is | ||
| 744 | * the current task context of this cpu. If not it has been | ||
| 745 | * scheduled out before the smp call arrived. | ||
| 746 | * Or possibly this is the right context but it isn't | ||
| 747 | * on this cpu because it had no counters. | ||
| 748 | */ | ||
| 749 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 750 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 751 | return; | ||
| 752 | cpuctx->task_ctx = ctx; | ||
| 753 | } | ||
| 754 | |||
| 755 | spin_lock(&ctx->lock); | ||
| 756 | ctx->is_active = 1; | ||
| 757 | update_context_time(ctx); | ||
| 758 | |||
| 759 | /* | ||
| 760 | * Protect the list operation against NMI by disabling the | ||
| 761 | * counters on a global level. NOP for non NMI based counters. | ||
| 762 | */ | ||
| 763 | perf_disable(); | ||
| 764 | |||
| 765 | add_counter_to_ctx(counter, ctx); | ||
| 766 | |||
| 767 | /* | ||
| 768 | * Don't put the counter on if it is disabled or if | ||
| 769 | * it is in a group and the group isn't on. | ||
| 770 | */ | ||
| 771 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
| 772 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
| 773 | goto unlock; | ||
| 774 | |||
| 775 | /* | ||
| 776 | * An exclusive counter can't go on if there are already active | ||
| 777 | * hardware counters, and no hardware counter can go on if there | ||
| 778 | * is already an exclusive counter on. | ||
| 779 | */ | ||
| 780 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
| 781 | err = -EEXIST; | ||
| 782 | else | ||
| 783 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 784 | |||
| 785 | if (err) { | ||
| 786 | /* | ||
| 787 | * This counter couldn't go on. If it is in a group | ||
| 788 | * then we have to pull the whole group off. | ||
| 789 | * If the counter group is pinned then put it in error state. | ||
| 790 | */ | ||
| 791 | if (leader != counter) | ||
| 792 | group_sched_out(leader, cpuctx, ctx); | ||
| 793 | if (leader->attr.pinned) { | ||
| 794 | update_group_times(leader); | ||
| 795 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 796 | } | ||
| 797 | } | ||
| 798 | |||
| 799 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 800 | cpuctx->max_pertask--; | ||
| 801 | |||
| 802 | unlock: | ||
| 803 | perf_enable(); | ||
| 804 | |||
| 805 | spin_unlock(&ctx->lock); | ||
| 806 | } | ||
| 807 | |||
| 808 | /* | ||
| 809 | * Attach a performance counter to a context | ||
| 810 | * | ||
| 811 | * First we add the counter to the list with the hardware enable bit | ||
| 812 | * in counter->hw_config cleared. | ||
| 813 | * | ||
| 814 | * If the counter is attached to a task which is on a CPU we use a smp | ||
| 815 | * call to enable it in the task context. The task might have been | ||
| 816 | * scheduled away, but we check this in the smp call again. | ||
| 817 | * | ||
| 818 | * Must be called with ctx->mutex held. | ||
| 819 | */ | ||
| 820 | static void | ||
| 821 | perf_install_in_context(struct perf_counter_context *ctx, | ||
| 822 | struct perf_counter *counter, | ||
| 823 | int cpu) | ||
| 824 | { | ||
| 825 | struct task_struct *task = ctx->task; | ||
| 826 | |||
| 827 | if (!task) { | ||
| 828 | /* | ||
| 829 | * Per cpu counters are installed via an smp call and | ||
| 830 | * the install is always sucessful. | ||
| 831 | */ | ||
| 832 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 833 | counter, 1); | ||
| 834 | return; | ||
| 835 | } | ||
| 836 | |||
| 837 | retry: | ||
| 838 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 839 | counter); | ||
| 840 | |||
| 841 | spin_lock_irq(&ctx->lock); | ||
| 842 | /* | ||
| 843 | * we need to retry the smp call. | ||
| 844 | */ | ||
| 845 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
| 846 | spin_unlock_irq(&ctx->lock); | ||
| 847 | goto retry; | ||
| 848 | } | ||
| 849 | |||
| 850 | /* | ||
| 851 | * The lock prevents that this context is scheduled in so we | ||
| 852 | * can add the counter safely, if it the call above did not | ||
| 853 | * succeed. | ||
| 854 | */ | ||
| 855 | if (list_empty(&counter->list_entry)) | ||
| 856 | add_counter_to_ctx(counter, ctx); | ||
| 857 | spin_unlock_irq(&ctx->lock); | ||
| 858 | } | ||
| 859 | |||
| 860 | /* | ||
| 861 | * Put a counter into inactive state and update time fields. | ||
| 862 | * Enabling the leader of a group effectively enables all | ||
| 863 | * the group members that aren't explicitly disabled, so we | ||
| 864 | * have to update their ->tstamp_enabled also. | ||
| 865 | * Note: this works for group members as well as group leaders | ||
| 866 | * since the non-leader members' sibling_lists will be empty. | ||
| 867 | */ | ||
| 868 | static void __perf_counter_mark_enabled(struct perf_counter *counter, | ||
| 869 | struct perf_counter_context *ctx) | ||
| 870 | { | ||
| 871 | struct perf_counter *sub; | ||
| 872 | |||
| 873 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 874 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
| 875 | list_for_each_entry(sub, &counter->sibling_list, list_entry) | ||
| 876 | if (sub->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 877 | sub->tstamp_enabled = | ||
| 878 | ctx->time - sub->total_time_enabled; | ||
| 879 | } | ||
| 880 | |||
| 881 | /* | ||
| 882 | * Cross CPU call to enable a performance counter | ||
| 883 | */ | ||
| 884 | static void __perf_counter_enable(void *info) | ||
| 885 | { | ||
| 886 | struct perf_counter *counter = info; | ||
| 887 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 888 | struct perf_counter_context *ctx = counter->ctx; | ||
| 889 | struct perf_counter *leader = counter->group_leader; | ||
| 890 | int err; | ||
| 891 | |||
| 892 | /* | ||
| 893 | * If this is a per-task counter, need to check whether this | ||
| 894 | * counter's task is the current task on this cpu. | ||
| 895 | */ | ||
| 896 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 897 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 898 | return; | ||
| 899 | cpuctx->task_ctx = ctx; | ||
| 900 | } | ||
| 901 | |||
| 902 | spin_lock(&ctx->lock); | ||
| 903 | ctx->is_active = 1; | ||
| 904 | update_context_time(ctx); | ||
| 905 | |||
| 906 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 907 | goto unlock; | ||
| 908 | __perf_counter_mark_enabled(counter, ctx); | ||
| 909 | |||
| 910 | /* | ||
| 911 | * If the counter is in a group and isn't the group leader, | ||
| 912 | * then don't put it on unless the group is on. | ||
| 913 | */ | ||
| 914 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 915 | goto unlock; | ||
| 916 | |||
| 917 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
| 918 | err = -EEXIST; | ||
| 919 | } else { | ||
| 920 | perf_disable(); | ||
| 921 | if (counter == leader) | ||
| 922 | err = group_sched_in(counter, cpuctx, ctx, | ||
| 923 | smp_processor_id()); | ||
| 924 | else | ||
| 925 | err = counter_sched_in(counter, cpuctx, ctx, | ||
| 926 | smp_processor_id()); | ||
| 927 | perf_enable(); | ||
| 928 | } | ||
| 929 | |||
| 930 | if (err) { | ||
| 931 | /* | ||
| 932 | * If this counter can't go on and it's part of a | ||
| 933 | * group, then the whole group has to come off. | ||
| 934 | */ | ||
| 935 | if (leader != counter) | ||
| 936 | group_sched_out(leader, cpuctx, ctx); | ||
| 937 | if (leader->attr.pinned) { | ||
| 938 | update_group_times(leader); | ||
| 939 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 940 | } | ||
| 941 | } | ||
| 942 | |||
| 943 | unlock: | ||
| 944 | spin_unlock(&ctx->lock); | ||
| 945 | } | ||
| 946 | |||
| 947 | /* | ||
| 948 | * Enable a counter. | ||
| 949 | * | ||
| 950 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 951 | * every task struct that counter->ctx->task could possibly point to | ||
| 952 | * remains valid. This condition is satisfied when called through | ||
| 953 | * perf_counter_for_each_child or perf_counter_for_each as described | ||
| 954 | * for perf_counter_disable. | ||
| 955 | */ | ||
| 956 | static void perf_counter_enable(struct perf_counter *counter) | ||
| 957 | { | ||
| 958 | struct perf_counter_context *ctx = counter->ctx; | ||
| 959 | struct task_struct *task = ctx->task; | ||
| 960 | |||
| 961 | if (!task) { | ||
| 962 | /* | ||
| 963 | * Enable the counter on the cpu that it's on | ||
| 964 | */ | ||
| 965 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
| 966 | counter, 1); | ||
| 967 | return; | ||
| 968 | } | ||
| 969 | |||
| 970 | spin_lock_irq(&ctx->lock); | ||
| 971 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 972 | goto out; | ||
| 973 | |||
| 974 | /* | ||
| 975 | * If the counter is in error state, clear that first. | ||
| 976 | * That way, if we see the counter in error state below, we | ||
| 977 | * know that it has gone back into error state, as distinct | ||
| 978 | * from the task having been scheduled away before the | ||
| 979 | * cross-call arrived. | ||
| 980 | */ | ||
| 981 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 982 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 983 | |||
| 984 | retry: | ||
| 985 | spin_unlock_irq(&ctx->lock); | ||
| 986 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
| 987 | |||
| 988 | spin_lock_irq(&ctx->lock); | ||
| 989 | |||
| 990 | /* | ||
| 991 | * If the context is active and the counter is still off, | ||
| 992 | * we need to retry the cross-call. | ||
| 993 | */ | ||
| 994 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
| 995 | goto retry; | ||
| 996 | |||
| 997 | /* | ||
| 998 | * Since we have the lock this context can't be scheduled | ||
| 999 | * in, so we can change the state safely. | ||
| 1000 | */ | ||
| 1001 | if (counter->state == PERF_COUNTER_STATE_OFF) | ||
| 1002 | __perf_counter_mark_enabled(counter, ctx); | ||
| 1003 | |||
| 1004 | out: | ||
| 1005 | spin_unlock_irq(&ctx->lock); | ||
| 1006 | } | ||
| 1007 | |||
| 1008 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
| 1009 | { | ||
| 1010 | /* | ||
| 1011 | * not supported on inherited counters | ||
| 1012 | */ | ||
| 1013 | if (counter->attr.inherit) | ||
| 1014 | return -EINVAL; | ||
| 1015 | |||
| 1016 | atomic_add(refresh, &counter->event_limit); | ||
| 1017 | perf_counter_enable(counter); | ||
| 1018 | |||
| 1019 | return 0; | ||
| 1020 | } | ||
| 1021 | |||
| 1022 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
| 1023 | struct perf_cpu_context *cpuctx) | ||
| 1024 | { | ||
| 1025 | struct perf_counter *counter; | ||
| 1026 | |||
| 1027 | spin_lock(&ctx->lock); | ||
| 1028 | ctx->is_active = 0; | ||
| 1029 | if (likely(!ctx->nr_counters)) | ||
| 1030 | goto out; | ||
| 1031 | update_context_time(ctx); | ||
| 1032 | |||
| 1033 | perf_disable(); | ||
| 1034 | if (ctx->nr_active) { | ||
| 1035 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1036 | if (counter != counter->group_leader) | ||
| 1037 | counter_sched_out(counter, cpuctx, ctx); | ||
| 1038 | else | ||
| 1039 | group_sched_out(counter, cpuctx, ctx); | ||
| 1040 | } | ||
| 1041 | } | ||
| 1042 | perf_enable(); | ||
| 1043 | out: | ||
| 1044 | spin_unlock(&ctx->lock); | ||
| 1045 | } | ||
| 1046 | |||
| 1047 | /* | ||
| 1048 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 1049 | * have both been cloned from the same version of the same context | ||
| 1050 | * and they both have the same number of enabled counters. | ||
| 1051 | * If the number of enabled counters is the same, then the set | ||
| 1052 | * of enabled counters should be the same, because these are both | ||
| 1053 | * inherited contexts, therefore we can't access individual counters | ||
| 1054 | * in them directly with an fd; we can only enable/disable all | ||
| 1055 | * counters via prctl, or enable/disable all counters in a family | ||
| 1056 | * via ioctl, which will have the same effect on both contexts. | ||
| 1057 | */ | ||
| 1058 | static int context_equiv(struct perf_counter_context *ctx1, | ||
| 1059 | struct perf_counter_context *ctx2) | ||
| 1060 | { | ||
| 1061 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1062 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1063 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1064 | } | ||
| 1065 | |||
| 1066 | static void __perf_counter_read(void *counter); | ||
| 1067 | |||
| 1068 | static void __perf_counter_sync_stat(struct perf_counter *counter, | ||
| 1069 | struct perf_counter *next_counter) | ||
| 1070 | { | ||
| 1071 | u64 value; | ||
| 1072 | |||
| 1073 | if (!counter->attr.inherit_stat) | ||
| 1074 | return; | ||
| 1075 | |||
| 1076 | /* | ||
| 1077 | * Update the counter value, we cannot use perf_counter_read() | ||
| 1078 | * because we're in the middle of a context switch and have IRQs | ||
| 1079 | * disabled, which upsets smp_call_function_single(), however | ||
| 1080 | * we know the counter must be on the current CPU, therefore we | ||
| 1081 | * don't need to use it. | ||
| 1082 | */ | ||
| 1083 | switch (counter->state) { | ||
| 1084 | case PERF_COUNTER_STATE_ACTIVE: | ||
| 1085 | __perf_counter_read(counter); | ||
| 1086 | break; | ||
| 1087 | |||
| 1088 | case PERF_COUNTER_STATE_INACTIVE: | ||
| 1089 | update_counter_times(counter); | ||
| 1090 | break; | ||
| 1091 | |||
| 1092 | default: | ||
| 1093 | break; | ||
| 1094 | } | ||
| 1095 | |||
| 1096 | /* | ||
| 1097 | * In order to keep per-task stats reliable we need to flip the counter | ||
| 1098 | * values when we flip the contexts. | ||
| 1099 | */ | ||
| 1100 | value = atomic64_read(&next_counter->count); | ||
| 1101 | value = atomic64_xchg(&counter->count, value); | ||
| 1102 | atomic64_set(&next_counter->count, value); | ||
| 1103 | |||
| 1104 | swap(counter->total_time_enabled, next_counter->total_time_enabled); | ||
| 1105 | swap(counter->total_time_running, next_counter->total_time_running); | ||
| 1106 | |||
| 1107 | /* | ||
| 1108 | * Since we swizzled the values, update the user visible data too. | ||
| 1109 | */ | ||
| 1110 | perf_counter_update_userpage(counter); | ||
| 1111 | perf_counter_update_userpage(next_counter); | ||
| 1112 | } | ||
| 1113 | |||
| 1114 | #define list_next_entry(pos, member) \ | ||
| 1115 | list_entry(pos->member.next, typeof(*pos), member) | ||
| 1116 | |||
| 1117 | static void perf_counter_sync_stat(struct perf_counter_context *ctx, | ||
| 1118 | struct perf_counter_context *next_ctx) | ||
| 1119 | { | ||
| 1120 | struct perf_counter *counter, *next_counter; | ||
| 1121 | |||
| 1122 | if (!ctx->nr_stat) | ||
| 1123 | return; | ||
| 1124 | |||
| 1125 | counter = list_first_entry(&ctx->event_list, | ||
| 1126 | struct perf_counter, event_entry); | ||
| 1127 | |||
| 1128 | next_counter = list_first_entry(&next_ctx->event_list, | ||
| 1129 | struct perf_counter, event_entry); | ||
| 1130 | |||
| 1131 | while (&counter->event_entry != &ctx->event_list && | ||
| 1132 | &next_counter->event_entry != &next_ctx->event_list) { | ||
| 1133 | |||
| 1134 | __perf_counter_sync_stat(counter, next_counter); | ||
| 1135 | |||
| 1136 | counter = list_next_entry(counter, event_entry); | ||
| 1137 | next_counter = list_next_entry(next_counter, event_entry); | ||
| 1138 | } | ||
| 1139 | } | ||
| 1140 | |||
| 1141 | /* | ||
| 1142 | * Called from scheduler to remove the counters of the current task, | ||
| 1143 | * with interrupts disabled. | ||
| 1144 | * | ||
| 1145 | * We stop each counter and update the counter value in counter->count. | ||
| 1146 | * | ||
| 1147 | * This does not protect us against NMI, but disable() | ||
| 1148 | * sets the disabled bit in the control field of counter _before_ | ||
| 1149 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1150 | * not restart the counter. | ||
| 1151 | */ | ||
| 1152 | void perf_counter_task_sched_out(struct task_struct *task, | ||
| 1153 | struct task_struct *next, int cpu) | ||
| 1154 | { | ||
| 1155 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1156 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1157 | struct perf_counter_context *next_ctx; | ||
| 1158 | struct perf_counter_context *parent; | ||
| 1159 | struct pt_regs *regs; | ||
| 1160 | int do_switch = 1; | ||
| 1161 | |||
| 1162 | regs = task_pt_regs(task); | ||
| 1163 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1164 | |||
| 1165 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1166 | return; | ||
| 1167 | |||
| 1168 | update_context_time(ctx); | ||
| 1169 | |||
| 1170 | rcu_read_lock(); | ||
| 1171 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1172 | next_ctx = next->perf_counter_ctxp; | ||
| 1173 | if (parent && next_ctx && | ||
| 1174 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1175 | /* | ||
| 1176 | * Looks like the two contexts are clones, so we might be | ||
| 1177 | * able to optimize the context switch. We lock both | ||
| 1178 | * contexts and check that they are clones under the | ||
| 1179 | * lock (including re-checking that neither has been | ||
| 1180 | * uncloned in the meantime). It doesn't matter which | ||
| 1181 | * order we take the locks because no other cpu could | ||
| 1182 | * be trying to lock both of these tasks. | ||
| 1183 | */ | ||
| 1184 | spin_lock(&ctx->lock); | ||
| 1185 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1186 | if (context_equiv(ctx, next_ctx)) { | ||
| 1187 | /* | ||
| 1188 | * XXX do we need a memory barrier of sorts | ||
| 1189 | * wrt to rcu_dereference() of perf_counter_ctxp | ||
| 1190 | */ | ||
| 1191 | task->perf_counter_ctxp = next_ctx; | ||
| 1192 | next->perf_counter_ctxp = ctx; | ||
| 1193 | ctx->task = next; | ||
| 1194 | next_ctx->task = task; | ||
| 1195 | do_switch = 0; | ||
| 1196 | |||
| 1197 | perf_counter_sync_stat(ctx, next_ctx); | ||
| 1198 | } | ||
| 1199 | spin_unlock(&next_ctx->lock); | ||
| 1200 | spin_unlock(&ctx->lock); | ||
| 1201 | } | ||
| 1202 | rcu_read_unlock(); | ||
| 1203 | |||
| 1204 | if (do_switch) { | ||
| 1205 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1206 | cpuctx->task_ctx = NULL; | ||
| 1207 | } | ||
| 1208 | } | ||
| 1209 | |||
| 1210 | /* | ||
| 1211 | * Called with IRQs disabled | ||
| 1212 | */ | ||
| 1213 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
| 1214 | { | ||
| 1215 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1216 | |||
| 1217 | if (!cpuctx->task_ctx) | ||
| 1218 | return; | ||
| 1219 | |||
| 1220 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1221 | return; | ||
| 1222 | |||
| 1223 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1224 | cpuctx->task_ctx = NULL; | ||
| 1225 | } | ||
| 1226 | |||
| 1227 | /* | ||
| 1228 | * Called with IRQs disabled | ||
| 1229 | */ | ||
| 1230 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1231 | { | ||
| 1232 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | static void | ||
| 1236 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
| 1237 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1238 | { | ||
| 1239 | struct perf_counter *counter; | ||
| 1240 | int can_add_hw = 1; | ||
| 1241 | |||
| 1242 | spin_lock(&ctx->lock); | ||
| 1243 | ctx->is_active = 1; | ||
| 1244 | if (likely(!ctx->nr_counters)) | ||
| 1245 | goto out; | ||
| 1246 | |||
| 1247 | ctx->timestamp = perf_clock(); | ||
| 1248 | |||
| 1249 | perf_disable(); | ||
| 1250 | |||
| 1251 | /* | ||
| 1252 | * First go through the list and put on any pinned groups | ||
| 1253 | * in order to give them the best chance of going on. | ||
| 1254 | */ | ||
| 1255 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1256 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1257 | !counter->attr.pinned) | ||
| 1258 | continue; | ||
| 1259 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1260 | continue; | ||
| 1261 | |||
| 1262 | if (counter != counter->group_leader) | ||
| 1263 | counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1264 | else { | ||
| 1265 | if (group_can_go_on(counter, cpuctx, 1)) | ||
| 1266 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1267 | } | ||
| 1268 | |||
| 1269 | /* | ||
| 1270 | * If this pinned group hasn't been scheduled, | ||
| 1271 | * put it in error state. | ||
| 1272 | */ | ||
| 1273 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1274 | update_group_times(counter); | ||
| 1275 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
| 1276 | } | ||
| 1277 | } | ||
| 1278 | |||
| 1279 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1280 | /* | ||
| 1281 | * Ignore counters in OFF or ERROR state, and | ||
| 1282 | * ignore pinned counters since we did them already. | ||
| 1283 | */ | ||
| 1284 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1285 | counter->attr.pinned) | ||
| 1286 | continue; | ||
| 1287 | |||
| 1288 | /* | ||
| 1289 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1290 | * of counters: | ||
| 1291 | */ | ||
| 1292 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1293 | continue; | ||
| 1294 | |||
| 1295 | if (counter != counter->group_leader) { | ||
| 1296 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1297 | can_add_hw = 0; | ||
| 1298 | } else { | ||
| 1299 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
| 1300 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1301 | can_add_hw = 0; | ||
| 1302 | } | ||
| 1303 | } | ||
| 1304 | } | ||
| 1305 | perf_enable(); | ||
| 1306 | out: | ||
| 1307 | spin_unlock(&ctx->lock); | ||
| 1308 | } | ||
| 1309 | |||
| 1310 | /* | ||
| 1311 | * Called from scheduler to add the counters of the current task | ||
| 1312 | * with interrupts disabled. | ||
| 1313 | * | ||
| 1314 | * We restore the counter value and then enable it. | ||
| 1315 | * | ||
| 1316 | * This does not protect us against NMI, but enable() | ||
| 1317 | * sets the enabled bit in the control field of counter _before_ | ||
| 1318 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1319 | * keep the counter running. | ||
| 1320 | */ | ||
| 1321 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
| 1322 | { | ||
| 1323 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1324 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1325 | |||
| 1326 | if (likely(!ctx)) | ||
| 1327 | return; | ||
| 1328 | if (cpuctx->task_ctx == ctx) | ||
| 1329 | return; | ||
| 1330 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1331 | cpuctx->task_ctx = ctx; | ||
| 1332 | } | ||
| 1333 | |||
| 1334 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1335 | { | ||
| 1336 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 1337 | |||
| 1338 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1339 | } | ||
| 1340 | |||
| 1341 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1342 | |||
| 1343 | static void perf_log_throttle(struct perf_counter *counter, int enable); | ||
| 1344 | |||
| 1345 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | ||
| 1346 | { | ||
| 1347 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 1348 | u64 period, sample_period; | ||
| 1349 | s64 delta; | ||
| 1350 | |||
| 1351 | events *= hwc->sample_period; | ||
| 1352 | period = div64_u64(events, counter->attr.sample_freq); | ||
| 1353 | |||
| 1354 | delta = (s64)(period - hwc->sample_period); | ||
| 1355 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1356 | |||
| 1357 | sample_period = hwc->sample_period + delta; | ||
| 1358 | |||
| 1359 | if (!sample_period) | ||
| 1360 | sample_period = 1; | ||
| 1361 | |||
| 1362 | hwc->sample_period = sample_period; | ||
| 1363 | } | ||
| 1364 | |||
| 1365 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | ||
| 1366 | { | ||
| 1367 | struct perf_counter *counter; | ||
| 1368 | struct hw_perf_counter *hwc; | ||
| 1369 | u64 interrupts, freq; | ||
| 1370 | |||
| 1371 | spin_lock(&ctx->lock); | ||
| 1372 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1373 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 1374 | continue; | ||
| 1375 | |||
| 1376 | hwc = &counter->hw; | ||
| 1377 | |||
| 1378 | interrupts = hwc->interrupts; | ||
| 1379 | hwc->interrupts = 0; | ||
| 1380 | |||
| 1381 | /* | ||
| 1382 | * unthrottle counters on the tick | ||
| 1383 | */ | ||
| 1384 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1385 | perf_log_throttle(counter, 1); | ||
| 1386 | counter->pmu->unthrottle(counter); | ||
| 1387 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | ||
| 1388 | } | ||
| 1389 | |||
| 1390 | if (!counter->attr.freq || !counter->attr.sample_freq) | ||
| 1391 | continue; | ||
| 1392 | |||
| 1393 | /* | ||
| 1394 | * if the specified freq < HZ then we need to skip ticks | ||
| 1395 | */ | ||
| 1396 | if (counter->attr.sample_freq < HZ) { | ||
| 1397 | freq = counter->attr.sample_freq; | ||
| 1398 | |||
| 1399 | hwc->freq_count += freq; | ||
| 1400 | hwc->freq_interrupts += interrupts; | ||
| 1401 | |||
| 1402 | if (hwc->freq_count < HZ) | ||
| 1403 | continue; | ||
| 1404 | |||
| 1405 | interrupts = hwc->freq_interrupts; | ||
| 1406 | hwc->freq_interrupts = 0; | ||
| 1407 | hwc->freq_count -= HZ; | ||
| 1408 | } else | ||
| 1409 | freq = HZ; | ||
| 1410 | |||
| 1411 | perf_adjust_period(counter, freq * interrupts); | ||
| 1412 | |||
| 1413 | /* | ||
| 1414 | * In order to avoid being stalled by an (accidental) huge | ||
| 1415 | * sample period, force reset the sample period if we didn't | ||
| 1416 | * get any events in this freq period. | ||
| 1417 | */ | ||
| 1418 | if (!interrupts) { | ||
| 1419 | perf_disable(); | ||
| 1420 | counter->pmu->disable(counter); | ||
| 1421 | atomic64_set(&hwc->period_left, 0); | ||
| 1422 | counter->pmu->enable(counter); | ||
| 1423 | perf_enable(); | ||
| 1424 | } | ||
| 1425 | } | ||
| 1426 | spin_unlock(&ctx->lock); | ||
| 1427 | } | ||
| 1428 | |||
| 1429 | /* | ||
| 1430 | * Round-robin a context's counters: | ||
| 1431 | */ | ||
| 1432 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
| 1433 | { | ||
| 1434 | struct perf_counter *counter; | ||
| 1435 | |||
| 1436 | if (!ctx->nr_counters) | ||
| 1437 | return; | ||
| 1438 | |||
| 1439 | spin_lock(&ctx->lock); | ||
| 1440 | /* | ||
| 1441 | * Rotate the first entry last (works just fine for group counters too): | ||
| 1442 | */ | ||
| 1443 | perf_disable(); | ||
| 1444 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1445 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
| 1446 | break; | ||
| 1447 | } | ||
| 1448 | perf_enable(); | ||
| 1449 | |||
| 1450 | spin_unlock(&ctx->lock); | ||
| 1451 | } | ||
| 1452 | |||
| 1453 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
| 1454 | { | ||
| 1455 | struct perf_cpu_context *cpuctx; | ||
| 1456 | struct perf_counter_context *ctx; | ||
| 1457 | |||
| 1458 | if (!atomic_read(&nr_counters)) | ||
| 1459 | return; | ||
| 1460 | |||
| 1461 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1462 | ctx = curr->perf_counter_ctxp; | ||
| 1463 | |||
| 1464 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1465 | if (ctx) | ||
| 1466 | perf_ctx_adjust_freq(ctx); | ||
| 1467 | |||
| 1468 | perf_counter_cpu_sched_out(cpuctx); | ||
| 1469 | if (ctx) | ||
| 1470 | __perf_counter_task_sched_out(ctx); | ||
| 1471 | |||
| 1472 | rotate_ctx(&cpuctx->ctx); | ||
| 1473 | if (ctx) | ||
| 1474 | rotate_ctx(ctx); | ||
| 1475 | |||
| 1476 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
| 1477 | if (ctx) | ||
| 1478 | perf_counter_task_sched_in(curr, cpu); | ||
| 1479 | } | ||
| 1480 | |||
| 1481 | /* | ||
| 1482 | * Enable all of a task's counters that have been marked enable-on-exec. | ||
| 1483 | * This expects task == current. | ||
| 1484 | */ | ||
| 1485 | static void perf_counter_enable_on_exec(struct task_struct *task) | ||
| 1486 | { | ||
| 1487 | struct perf_counter_context *ctx; | ||
| 1488 | struct perf_counter *counter; | ||
| 1489 | unsigned long flags; | ||
| 1490 | int enabled = 0; | ||
| 1491 | |||
| 1492 | local_irq_save(flags); | ||
| 1493 | ctx = task->perf_counter_ctxp; | ||
| 1494 | if (!ctx || !ctx->nr_counters) | ||
| 1495 | goto out; | ||
| 1496 | |||
| 1497 | __perf_counter_task_sched_out(ctx); | ||
| 1498 | |||
| 1499 | spin_lock(&ctx->lock); | ||
| 1500 | |||
| 1501 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1502 | if (!counter->attr.enable_on_exec) | ||
| 1503 | continue; | ||
| 1504 | counter->attr.enable_on_exec = 0; | ||
| 1505 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 1506 | continue; | ||
| 1507 | __perf_counter_mark_enabled(counter, ctx); | ||
| 1508 | enabled = 1; | ||
| 1509 | } | ||
| 1510 | |||
| 1511 | /* | ||
| 1512 | * Unclone this context if we enabled any counter. | ||
| 1513 | */ | ||
| 1514 | if (enabled) | ||
| 1515 | unclone_ctx(ctx); | ||
| 1516 | |||
| 1517 | spin_unlock(&ctx->lock); | ||
| 1518 | |||
| 1519 | perf_counter_task_sched_in(task, smp_processor_id()); | ||
| 1520 | out: | ||
| 1521 | local_irq_restore(flags); | ||
| 1522 | } | ||
| 1523 | |||
| 1524 | /* | ||
| 1525 | * Cross CPU call to read the hardware counter | ||
| 1526 | */ | ||
| 1527 | static void __perf_counter_read(void *info) | ||
| 1528 | { | ||
| 1529 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1530 | struct perf_counter *counter = info; | ||
| 1531 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1532 | unsigned long flags; | ||
| 1533 | |||
| 1534 | /* | ||
| 1535 | * If this is a task context, we need to check whether it is | ||
| 1536 | * the current task context of this cpu. If not it has been | ||
| 1537 | * scheduled out before the smp call arrived. In that case | ||
| 1538 | * counter->count would have been updated to a recent sample | ||
| 1539 | * when the counter was scheduled out. | ||
| 1540 | */ | ||
| 1541 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 1542 | return; | ||
| 1543 | |||
| 1544 | local_irq_save(flags); | ||
| 1545 | if (ctx->is_active) | ||
| 1546 | update_context_time(ctx); | ||
| 1547 | counter->pmu->read(counter); | ||
| 1548 | update_counter_times(counter); | ||
| 1549 | local_irq_restore(flags); | ||
| 1550 | } | ||
| 1551 | |||
| 1552 | static u64 perf_counter_read(struct perf_counter *counter) | ||
| 1553 | { | ||
| 1554 | /* | ||
| 1555 | * If counter is enabled and currently active on a CPU, update the | ||
| 1556 | * value in the counter structure: | ||
| 1557 | */ | ||
| 1558 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 1559 | smp_call_function_single(counter->oncpu, | ||
| 1560 | __perf_counter_read, counter, 1); | ||
| 1561 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1562 | update_counter_times(counter); | ||
| 1563 | } | ||
| 1564 | |||
| 1565 | return atomic64_read(&counter->count); | ||
| 1566 | } | ||
| 1567 | |||
| 1568 | /* | ||
| 1569 | * Initialize the perf_counter context in a task_struct: | ||
| 1570 | */ | ||
| 1571 | static void | ||
| 1572 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
| 1573 | struct task_struct *task) | ||
| 1574 | { | ||
| 1575 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1576 | spin_lock_init(&ctx->lock); | ||
| 1577 | mutex_init(&ctx->mutex); | ||
| 1578 | INIT_LIST_HEAD(&ctx->counter_list); | ||
| 1579 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1580 | atomic_set(&ctx->refcount, 1); | ||
| 1581 | ctx->task = task; | ||
| 1582 | } | ||
| 1583 | |||
| 1584 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
| 1585 | { | ||
| 1586 | struct perf_counter_context *ctx; | ||
| 1587 | struct perf_cpu_context *cpuctx; | ||
| 1588 | struct task_struct *task; | ||
| 1589 | unsigned long flags; | ||
| 1590 | int err; | ||
| 1591 | |||
| 1592 | /* | ||
| 1593 | * If cpu is not a wildcard then this is a percpu counter: | ||
| 1594 | */ | ||
| 1595 | if (cpu != -1) { | ||
| 1596 | /* Must be root to operate on a CPU counter: */ | ||
| 1597 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1598 | return ERR_PTR(-EACCES); | ||
| 1599 | |||
| 1600 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1601 | return ERR_PTR(-EINVAL); | ||
| 1602 | |||
| 1603 | /* | ||
| 1604 | * We could be clever and allow to attach a counter to an | ||
| 1605 | * offline CPU and activate it when the CPU comes up, but | ||
| 1606 | * that's for later. | ||
| 1607 | */ | ||
| 1608 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1609 | return ERR_PTR(-ENODEV); | ||
| 1610 | |||
| 1611 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1612 | ctx = &cpuctx->ctx; | ||
| 1613 | get_ctx(ctx); | ||
| 1614 | |||
| 1615 | return ctx; | ||
| 1616 | } | ||
| 1617 | |||
| 1618 | rcu_read_lock(); | ||
| 1619 | if (!pid) | ||
| 1620 | task = current; | ||
| 1621 | else | ||
| 1622 | task = find_task_by_vpid(pid); | ||
| 1623 | if (task) | ||
| 1624 | get_task_struct(task); | ||
| 1625 | rcu_read_unlock(); | ||
| 1626 | |||
| 1627 | if (!task) | ||
| 1628 | return ERR_PTR(-ESRCH); | ||
| 1629 | |||
| 1630 | /* | ||
| 1631 | * Can't attach counters to a dying task. | ||
| 1632 | */ | ||
| 1633 | err = -ESRCH; | ||
| 1634 | if (task->flags & PF_EXITING) | ||
| 1635 | goto errout; | ||
| 1636 | |||
| 1637 | /* Reuse ptrace permission checks for now. */ | ||
| 1638 | err = -EACCES; | ||
| 1639 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1640 | goto errout; | ||
| 1641 | |||
| 1642 | retry: | ||
| 1643 | ctx = perf_lock_task_context(task, &flags); | ||
| 1644 | if (ctx) { | ||
| 1645 | unclone_ctx(ctx); | ||
| 1646 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1647 | } | ||
| 1648 | |||
| 1649 | if (!ctx) { | ||
| 1650 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 1651 | err = -ENOMEM; | ||
| 1652 | if (!ctx) | ||
| 1653 | goto errout; | ||
| 1654 | __perf_counter_init_context(ctx, task); | ||
| 1655 | get_ctx(ctx); | ||
| 1656 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | ||
| 1657 | /* | ||
| 1658 | * We raced with some other task; use | ||
| 1659 | * the context they set. | ||
| 1660 | */ | ||
| 1661 | kfree(ctx); | ||
| 1662 | goto retry; | ||
| 1663 | } | ||
| 1664 | get_task_struct(task); | ||
| 1665 | } | ||
| 1666 | |||
| 1667 | put_task_struct(task); | ||
| 1668 | return ctx; | ||
| 1669 | |||
| 1670 | errout: | ||
| 1671 | put_task_struct(task); | ||
| 1672 | return ERR_PTR(err); | ||
| 1673 | } | ||
| 1674 | |||
| 1675 | static void free_counter_rcu(struct rcu_head *head) | ||
| 1676 | { | ||
| 1677 | struct perf_counter *counter; | ||
| 1678 | |||
| 1679 | counter = container_of(head, struct perf_counter, rcu_head); | ||
| 1680 | if (counter->ns) | ||
| 1681 | put_pid_ns(counter->ns); | ||
| 1682 | kfree(counter); | ||
| 1683 | } | ||
| 1684 | |||
| 1685 | static void perf_pending_sync(struct perf_counter *counter); | ||
| 1686 | |||
| 1687 | static void free_counter(struct perf_counter *counter) | ||
| 1688 | { | ||
| 1689 | perf_pending_sync(counter); | ||
| 1690 | |||
| 1691 | if (!counter->parent) { | ||
| 1692 | atomic_dec(&nr_counters); | ||
| 1693 | if (counter->attr.mmap) | ||
| 1694 | atomic_dec(&nr_mmap_counters); | ||
| 1695 | if (counter->attr.comm) | ||
| 1696 | atomic_dec(&nr_comm_counters); | ||
| 1697 | if (counter->attr.task) | ||
| 1698 | atomic_dec(&nr_task_counters); | ||
| 1699 | } | ||
| 1700 | |||
| 1701 | if (counter->output) { | ||
| 1702 | fput(counter->output->filp); | ||
| 1703 | counter->output = NULL; | ||
| 1704 | } | ||
| 1705 | |||
| 1706 | if (counter->destroy) | ||
| 1707 | counter->destroy(counter); | ||
| 1708 | |||
| 1709 | put_ctx(counter->ctx); | ||
| 1710 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
| 1711 | } | ||
| 1712 | |||
| 1713 | /* | ||
| 1714 | * Called when the last reference to the file is gone. | ||
| 1715 | */ | ||
| 1716 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1717 | { | ||
| 1718 | struct perf_counter *counter = file->private_data; | ||
| 1719 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1720 | |||
| 1721 | file->private_data = NULL; | ||
| 1722 | |||
| 1723 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1724 | mutex_lock(&ctx->mutex); | ||
| 1725 | perf_counter_remove_from_context(counter); | ||
| 1726 | mutex_unlock(&ctx->mutex); | ||
| 1727 | |||
| 1728 | mutex_lock(&counter->owner->perf_counter_mutex); | ||
| 1729 | list_del_init(&counter->owner_entry); | ||
| 1730 | mutex_unlock(&counter->owner->perf_counter_mutex); | ||
| 1731 | put_task_struct(counter->owner); | ||
| 1732 | |||
| 1733 | free_counter(counter); | ||
| 1734 | |||
| 1735 | return 0; | ||
| 1736 | } | ||
| 1737 | |||
| 1738 | static int perf_counter_read_size(struct perf_counter *counter) | ||
| 1739 | { | ||
| 1740 | int entry = sizeof(u64); /* value */ | ||
| 1741 | int size = 0; | ||
| 1742 | int nr = 1; | ||
| 1743 | |||
| 1744 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1745 | size += sizeof(u64); | ||
| 1746 | |||
| 1747 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1748 | size += sizeof(u64); | ||
| 1749 | |||
| 1750 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
| 1751 | entry += sizeof(u64); | ||
| 1752 | |||
| 1753 | if (counter->attr.read_format & PERF_FORMAT_GROUP) { | ||
| 1754 | nr += counter->group_leader->nr_siblings; | ||
| 1755 | size += sizeof(u64); | ||
| 1756 | } | ||
| 1757 | |||
| 1758 | size += entry * nr; | ||
| 1759 | |||
| 1760 | return size; | ||
| 1761 | } | ||
| 1762 | |||
| 1763 | static u64 perf_counter_read_value(struct perf_counter *counter) | ||
| 1764 | { | ||
| 1765 | struct perf_counter *child; | ||
| 1766 | u64 total = 0; | ||
| 1767 | |||
| 1768 | total += perf_counter_read(counter); | ||
| 1769 | list_for_each_entry(child, &counter->child_list, child_list) | ||
| 1770 | total += perf_counter_read(child); | ||
| 1771 | |||
| 1772 | return total; | ||
| 1773 | } | ||
| 1774 | |||
| 1775 | static int perf_counter_read_entry(struct perf_counter *counter, | ||
| 1776 | u64 read_format, char __user *buf) | ||
| 1777 | { | ||
| 1778 | int n = 0, count = 0; | ||
| 1779 | u64 values[2]; | ||
| 1780 | |||
| 1781 | values[n++] = perf_counter_read_value(counter); | ||
| 1782 | if (read_format & PERF_FORMAT_ID) | ||
| 1783 | values[n++] = primary_counter_id(counter); | ||
| 1784 | |||
| 1785 | count = n * sizeof(u64); | ||
| 1786 | |||
| 1787 | if (copy_to_user(buf, values, count)) | ||
| 1788 | return -EFAULT; | ||
| 1789 | |||
| 1790 | return count; | ||
| 1791 | } | ||
| 1792 | |||
| 1793 | static int perf_counter_read_group(struct perf_counter *counter, | ||
| 1794 | u64 read_format, char __user *buf) | ||
| 1795 | { | ||
| 1796 | struct perf_counter *leader = counter->group_leader, *sub; | ||
| 1797 | int n = 0, size = 0, err = -EFAULT; | ||
| 1798 | u64 values[3]; | ||
| 1799 | |||
| 1800 | values[n++] = 1 + leader->nr_siblings; | ||
| 1801 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1802 | values[n++] = leader->total_time_enabled + | ||
| 1803 | atomic64_read(&leader->child_total_time_enabled); | ||
| 1804 | } | ||
| 1805 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1806 | values[n++] = leader->total_time_running + | ||
| 1807 | atomic64_read(&leader->child_total_time_running); | ||
| 1808 | } | ||
| 1809 | |||
| 1810 | size = n * sizeof(u64); | ||
| 1811 | |||
| 1812 | if (copy_to_user(buf, values, size)) | ||
| 1813 | return -EFAULT; | ||
| 1814 | |||
| 1815 | err = perf_counter_read_entry(leader, read_format, buf + size); | ||
| 1816 | if (err < 0) | ||
| 1817 | return err; | ||
| 1818 | |||
| 1819 | size += err; | ||
| 1820 | |||
| 1821 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
| 1822 | err = perf_counter_read_entry(sub, read_format, | ||
| 1823 | buf + size); | ||
| 1824 | if (err < 0) | ||
| 1825 | return err; | ||
| 1826 | |||
| 1827 | size += err; | ||
| 1828 | } | ||
| 1829 | |||
| 1830 | return size; | ||
| 1831 | } | ||
| 1832 | |||
| 1833 | static int perf_counter_read_one(struct perf_counter *counter, | ||
| 1834 | u64 read_format, char __user *buf) | ||
| 1835 | { | ||
| 1836 | u64 values[4]; | ||
| 1837 | int n = 0; | ||
| 1838 | |||
| 1839 | values[n++] = perf_counter_read_value(counter); | ||
| 1840 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1841 | values[n++] = counter->total_time_enabled + | ||
| 1842 | atomic64_read(&counter->child_total_time_enabled); | ||
| 1843 | } | ||
| 1844 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1845 | values[n++] = counter->total_time_running + | ||
| 1846 | atomic64_read(&counter->child_total_time_running); | ||
| 1847 | } | ||
| 1848 | if (read_format & PERF_FORMAT_ID) | ||
| 1849 | values[n++] = primary_counter_id(counter); | ||
| 1850 | |||
| 1851 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
| 1852 | return -EFAULT; | ||
| 1853 | |||
| 1854 | return n * sizeof(u64); | ||
| 1855 | } | ||
| 1856 | |||
| 1857 | /* | ||
| 1858 | * Read the performance counter - simple non blocking version for now | ||
| 1859 | */ | ||
| 1860 | static ssize_t | ||
| 1861 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
| 1862 | { | ||
| 1863 | u64 read_format = counter->attr.read_format; | ||
| 1864 | int ret; | ||
| 1865 | |||
| 1866 | /* | ||
| 1867 | * Return end-of-file for a read on a counter that is in | ||
| 1868 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1869 | * scheduled on to the CPU at some point). | ||
| 1870 | */ | ||
| 1871 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 1872 | return 0; | ||
| 1873 | |||
| 1874 | if (count < perf_counter_read_size(counter)) | ||
| 1875 | return -ENOSPC; | ||
| 1876 | |||
| 1877 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1878 | mutex_lock(&counter->child_mutex); | ||
| 1879 | if (read_format & PERF_FORMAT_GROUP) | ||
| 1880 | ret = perf_counter_read_group(counter, read_format, buf); | ||
| 1881 | else | ||
| 1882 | ret = perf_counter_read_one(counter, read_format, buf); | ||
| 1883 | mutex_unlock(&counter->child_mutex); | ||
| 1884 | |||
| 1885 | return ret; | ||
| 1886 | } | ||
| 1887 | |||
| 1888 | static ssize_t | ||
| 1889 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1890 | { | ||
| 1891 | struct perf_counter *counter = file->private_data; | ||
| 1892 | |||
| 1893 | return perf_read_hw(counter, buf, count); | ||
| 1894 | } | ||
| 1895 | |||
| 1896 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1897 | { | ||
| 1898 | struct perf_counter *counter = file->private_data; | ||
| 1899 | struct perf_mmap_data *data; | ||
| 1900 | unsigned int events = POLL_HUP; | ||
| 1901 | |||
| 1902 | rcu_read_lock(); | ||
| 1903 | data = rcu_dereference(counter->data); | ||
| 1904 | if (data) | ||
| 1905 | events = atomic_xchg(&data->poll, 0); | ||
| 1906 | rcu_read_unlock(); | ||
| 1907 | |||
| 1908 | poll_wait(file, &counter->waitq, wait); | ||
| 1909 | |||
| 1910 | return events; | ||
| 1911 | } | ||
| 1912 | |||
| 1913 | static void perf_counter_reset(struct perf_counter *counter) | ||
| 1914 | { | ||
| 1915 | (void)perf_counter_read(counter); | ||
| 1916 | atomic64_set(&counter->count, 0); | ||
| 1917 | perf_counter_update_userpage(counter); | ||
| 1918 | } | ||
| 1919 | |||
| 1920 | /* | ||
| 1921 | * Holding the top-level counter's child_mutex means that any | ||
| 1922 | * descendant process that has inherited this counter will block | ||
| 1923 | * in sync_child_counter if it goes to exit, thus satisfying the | ||
| 1924 | * task existence requirements of perf_counter_enable/disable. | ||
| 1925 | */ | ||
| 1926 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
| 1927 | void (*func)(struct perf_counter *)) | ||
| 1928 | { | ||
| 1929 | struct perf_counter *child; | ||
| 1930 | |||
| 1931 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1932 | mutex_lock(&counter->child_mutex); | ||
| 1933 | func(counter); | ||
| 1934 | list_for_each_entry(child, &counter->child_list, child_list) | ||
| 1935 | func(child); | ||
| 1936 | mutex_unlock(&counter->child_mutex); | ||
| 1937 | } | ||
| 1938 | |||
| 1939 | static void perf_counter_for_each(struct perf_counter *counter, | ||
| 1940 | void (*func)(struct perf_counter *)) | ||
| 1941 | { | ||
| 1942 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1943 | struct perf_counter *sibling; | ||
| 1944 | |||
| 1945 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1946 | mutex_lock(&ctx->mutex); | ||
| 1947 | counter = counter->group_leader; | ||
| 1948 | |||
| 1949 | perf_counter_for_each_child(counter, func); | ||
| 1950 | func(counter); | ||
| 1951 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
| 1952 | perf_counter_for_each_child(counter, func); | ||
| 1953 | mutex_unlock(&ctx->mutex); | ||
| 1954 | } | ||
| 1955 | |||
| 1956 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | ||
| 1957 | { | ||
| 1958 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1959 | unsigned long size; | ||
| 1960 | int ret = 0; | ||
| 1961 | u64 value; | ||
| 1962 | |||
| 1963 | if (!counter->attr.sample_period) | ||
| 1964 | return -EINVAL; | ||
| 1965 | |||
| 1966 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1967 | if (size != sizeof(value)) | ||
| 1968 | return -EFAULT; | ||
| 1969 | |||
| 1970 | if (!value) | ||
| 1971 | return -EINVAL; | ||
| 1972 | |||
| 1973 | spin_lock_irq(&ctx->lock); | ||
| 1974 | if (counter->attr.freq) { | ||
| 1975 | if (value > sysctl_perf_counter_sample_rate) { | ||
| 1976 | ret = -EINVAL; | ||
| 1977 | goto unlock; | ||
| 1978 | } | ||
| 1979 | |||
| 1980 | counter->attr.sample_freq = value; | ||
| 1981 | } else { | ||
| 1982 | counter->attr.sample_period = value; | ||
| 1983 | counter->hw.sample_period = value; | ||
| 1984 | } | ||
| 1985 | unlock: | ||
| 1986 | spin_unlock_irq(&ctx->lock); | ||
| 1987 | |||
| 1988 | return ret; | ||
| 1989 | } | ||
| 1990 | |||
| 1991 | int perf_counter_set_output(struct perf_counter *counter, int output_fd); | ||
| 1992 | |||
| 1993 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 1994 | { | ||
| 1995 | struct perf_counter *counter = file->private_data; | ||
| 1996 | void (*func)(struct perf_counter *); | ||
| 1997 | u32 flags = arg; | ||
| 1998 | |||
| 1999 | switch (cmd) { | ||
| 2000 | case PERF_COUNTER_IOC_ENABLE: | ||
| 2001 | func = perf_counter_enable; | ||
| 2002 | break; | ||
| 2003 | case PERF_COUNTER_IOC_DISABLE: | ||
| 2004 | func = perf_counter_disable; | ||
| 2005 | break; | ||
| 2006 | case PERF_COUNTER_IOC_RESET: | ||
| 2007 | func = perf_counter_reset; | ||
| 2008 | break; | ||
| 2009 | |||
| 2010 | case PERF_COUNTER_IOC_REFRESH: | ||
| 2011 | return perf_counter_refresh(counter, arg); | ||
| 2012 | |||
| 2013 | case PERF_COUNTER_IOC_PERIOD: | ||
| 2014 | return perf_counter_period(counter, (u64 __user *)arg); | ||
| 2015 | |||
| 2016 | case PERF_COUNTER_IOC_SET_OUTPUT: | ||
| 2017 | return perf_counter_set_output(counter, arg); | ||
| 2018 | |||
| 2019 | default: | ||
| 2020 | return -ENOTTY; | ||
| 2021 | } | ||
| 2022 | |||
| 2023 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 2024 | perf_counter_for_each(counter, func); | ||
| 2025 | else | ||
| 2026 | perf_counter_for_each_child(counter, func); | ||
| 2027 | |||
| 2028 | return 0; | ||
| 2029 | } | ||
| 2030 | |||
| 2031 | int perf_counter_task_enable(void) | ||
| 2032 | { | ||
| 2033 | struct perf_counter *counter; | ||
| 2034 | |||
| 2035 | mutex_lock(¤t->perf_counter_mutex); | ||
| 2036 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 2037 | perf_counter_for_each_child(counter, perf_counter_enable); | ||
| 2038 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 2039 | |||
| 2040 | return 0; | ||
| 2041 | } | ||
| 2042 | |||
| 2043 | int perf_counter_task_disable(void) | ||
| 2044 | { | ||
| 2045 | struct perf_counter *counter; | ||
| 2046 | |||
| 2047 | mutex_lock(¤t->perf_counter_mutex); | ||
| 2048 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 2049 | perf_counter_for_each_child(counter, perf_counter_disable); | ||
| 2050 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 2051 | |||
| 2052 | return 0; | ||
| 2053 | } | ||
| 2054 | |||
| 2055 | #ifndef PERF_COUNTER_INDEX_OFFSET | ||
| 2056 | # define PERF_COUNTER_INDEX_OFFSET 0 | ||
| 2057 | #endif | ||
| 2058 | |||
| 2059 | static int perf_counter_index(struct perf_counter *counter) | ||
| 2060 | { | ||
| 2061 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 2062 | return 0; | ||
| 2063 | |||
| 2064 | return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET; | ||
| 2065 | } | ||
| 2066 | |||
| 2067 | /* | ||
| 2068 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 2069 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 2070 | * code calls this from NMI context. | ||
| 2071 | */ | ||
| 2072 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
| 2073 | { | ||
| 2074 | struct perf_counter_mmap_page *userpg; | ||
| 2075 | struct perf_mmap_data *data; | ||
| 2076 | |||
| 2077 | rcu_read_lock(); | ||
| 2078 | data = rcu_dereference(counter->data); | ||
| 2079 | if (!data) | ||
| 2080 | goto unlock; | ||
| 2081 | |||
| 2082 | userpg = data->user_page; | ||
| 2083 | |||
| 2084 | /* | ||
| 2085 | * Disable preemption so as to not let the corresponding user-space | ||
| 2086 | * spin too long if we get preempted. | ||
| 2087 | */ | ||
| 2088 | preempt_disable(); | ||
| 2089 | ++userpg->lock; | ||
| 2090 | barrier(); | ||
| 2091 | userpg->index = perf_counter_index(counter); | ||
| 2092 | userpg->offset = atomic64_read(&counter->count); | ||
| 2093 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 2094 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
| 2095 | |||
| 2096 | userpg->time_enabled = counter->total_time_enabled + | ||
| 2097 | atomic64_read(&counter->child_total_time_enabled); | ||
| 2098 | |||
| 2099 | userpg->time_running = counter->total_time_running + | ||
| 2100 | atomic64_read(&counter->child_total_time_running); | ||
| 2101 | |||
| 2102 | barrier(); | ||
| 2103 | ++userpg->lock; | ||
| 2104 | preempt_enable(); | ||
| 2105 | unlock: | ||
| 2106 | rcu_read_unlock(); | ||
| 2107 | } | ||
| 2108 | |||
| 2109 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 2110 | { | ||
| 2111 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 2112 | struct perf_mmap_data *data; | ||
| 2113 | int ret = VM_FAULT_SIGBUS; | ||
| 2114 | |||
| 2115 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
| 2116 | if (vmf->pgoff == 0) | ||
| 2117 | ret = 0; | ||
| 2118 | return ret; | ||
| 2119 | } | ||
| 2120 | |||
| 2121 | rcu_read_lock(); | ||
| 2122 | data = rcu_dereference(counter->data); | ||
| 2123 | if (!data) | ||
| 2124 | goto unlock; | ||
| 2125 | |||
| 2126 | if (vmf->pgoff == 0) { | ||
| 2127 | vmf->page = virt_to_page(data->user_page); | ||
| 2128 | } else { | ||
| 2129 | int nr = vmf->pgoff - 1; | ||
| 2130 | |||
| 2131 | if ((unsigned)nr > data->nr_pages) | ||
| 2132 | goto unlock; | ||
| 2133 | |||
| 2134 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
| 2135 | goto unlock; | ||
| 2136 | |||
| 2137 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
| 2138 | } | ||
| 2139 | |||
| 2140 | get_page(vmf->page); | ||
| 2141 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
| 2142 | vmf->page->index = vmf->pgoff; | ||
| 2143 | |||
| 2144 | ret = 0; | ||
| 2145 | unlock: | ||
| 2146 | rcu_read_unlock(); | ||
| 2147 | |||
| 2148 | return ret; | ||
| 2149 | } | ||
| 2150 | |||
| 2151 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
| 2152 | { | ||
| 2153 | struct perf_mmap_data *data; | ||
| 2154 | unsigned long size; | ||
| 2155 | int i; | ||
| 2156 | |||
| 2157 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 2158 | |||
| 2159 | size = sizeof(struct perf_mmap_data); | ||
| 2160 | size += nr_pages * sizeof(void *); | ||
| 2161 | |||
| 2162 | data = kzalloc(size, GFP_KERNEL); | ||
| 2163 | if (!data) | ||
| 2164 | goto fail; | ||
| 2165 | |||
| 2166 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2167 | if (!data->user_page) | ||
| 2168 | goto fail_user_page; | ||
| 2169 | |||
| 2170 | for (i = 0; i < nr_pages; i++) { | ||
| 2171 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2172 | if (!data->data_pages[i]) | ||
| 2173 | goto fail_data_pages; | ||
| 2174 | } | ||
| 2175 | |||
| 2176 | data->nr_pages = nr_pages; | ||
| 2177 | atomic_set(&data->lock, -1); | ||
| 2178 | |||
| 2179 | rcu_assign_pointer(counter->data, data); | ||
| 2180 | |||
| 2181 | return 0; | ||
| 2182 | |||
| 2183 | fail_data_pages: | ||
| 2184 | for (i--; i >= 0; i--) | ||
| 2185 | free_page((unsigned long)data->data_pages[i]); | ||
| 2186 | |||
| 2187 | free_page((unsigned long)data->user_page); | ||
| 2188 | |||
| 2189 | fail_user_page: | ||
| 2190 | kfree(data); | ||
| 2191 | |||
| 2192 | fail: | ||
| 2193 | return -ENOMEM; | ||
| 2194 | } | ||
| 2195 | |||
| 2196 | static void perf_mmap_free_page(unsigned long addr) | ||
| 2197 | { | ||
| 2198 | struct page *page = virt_to_page((void *)addr); | ||
| 2199 | |||
| 2200 | page->mapping = NULL; | ||
| 2201 | __free_page(page); | ||
| 2202 | } | ||
| 2203 | |||
| 2204 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
| 2205 | { | ||
| 2206 | struct perf_mmap_data *data; | ||
| 2207 | int i; | ||
| 2208 | |||
| 2209 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 2210 | |||
| 2211 | perf_mmap_free_page((unsigned long)data->user_page); | ||
| 2212 | for (i = 0; i < data->nr_pages; i++) | ||
| 2213 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
| 2214 | |||
| 2215 | kfree(data); | ||
| 2216 | } | ||
| 2217 | |||
| 2218 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
| 2219 | { | ||
| 2220 | struct perf_mmap_data *data = counter->data; | ||
| 2221 | |||
| 2222 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 2223 | |||
| 2224 | rcu_assign_pointer(counter->data, NULL); | ||
| 2225 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
| 2226 | } | ||
| 2227 | |||
| 2228 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 2229 | { | ||
| 2230 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 2231 | |||
| 2232 | atomic_inc(&counter->mmap_count); | ||
| 2233 | } | ||
| 2234 | |||
| 2235 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 2236 | { | ||
| 2237 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 2238 | |||
| 2239 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 2240 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | ||
| 2241 | struct user_struct *user = current_user(); | ||
| 2242 | |||
| 2243 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
| 2244 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
| 2245 | perf_mmap_data_free(counter); | ||
| 2246 | mutex_unlock(&counter->mmap_mutex); | ||
| 2247 | } | ||
| 2248 | } | ||
| 2249 | |||
| 2250 | static struct vm_operations_struct perf_mmap_vmops = { | ||
| 2251 | .open = perf_mmap_open, | ||
| 2252 | .close = perf_mmap_close, | ||
| 2253 | .fault = perf_mmap_fault, | ||
| 2254 | .page_mkwrite = perf_mmap_fault, | ||
| 2255 | }; | ||
| 2256 | |||
| 2257 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 2258 | { | ||
| 2259 | struct perf_counter *counter = file->private_data; | ||
| 2260 | unsigned long user_locked, user_lock_limit; | ||
| 2261 | struct user_struct *user = current_user(); | ||
| 2262 | unsigned long locked, lock_limit; | ||
| 2263 | unsigned long vma_size; | ||
| 2264 | unsigned long nr_pages; | ||
| 2265 | long user_extra, extra; | ||
| 2266 | int ret = 0; | ||
| 2267 | |||
| 2268 | if (!(vma->vm_flags & VM_SHARED)) | ||
| 2269 | return -EINVAL; | ||
| 2270 | |||
| 2271 | vma_size = vma->vm_end - vma->vm_start; | ||
| 2272 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 2273 | |||
| 2274 | /* | ||
| 2275 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 2276 | * can do bitmasks instead of modulo. | ||
| 2277 | */ | ||
| 2278 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 2279 | return -EINVAL; | ||
| 2280 | |||
| 2281 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 2282 | return -EINVAL; | ||
| 2283 | |||
| 2284 | if (vma->vm_pgoff != 0) | ||
| 2285 | return -EINVAL; | ||
| 2286 | |||
| 2287 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 2288 | mutex_lock(&counter->mmap_mutex); | ||
| 2289 | if (counter->output) { | ||
| 2290 | ret = -EINVAL; | ||
| 2291 | goto unlock; | ||
| 2292 | } | ||
| 2293 | |||
| 2294 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
| 2295 | if (nr_pages != counter->data->nr_pages) | ||
| 2296 | ret = -EINVAL; | ||
| 2297 | goto unlock; | ||
| 2298 | } | ||
| 2299 | |||
| 2300 | user_extra = nr_pages + 1; | ||
| 2301 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
| 2302 | |||
| 2303 | /* | ||
| 2304 | * Increase the limit linearly with more CPUs: | ||
| 2305 | */ | ||
| 2306 | user_lock_limit *= num_online_cpus(); | ||
| 2307 | |||
| 2308 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 2309 | |||
| 2310 | extra = 0; | ||
| 2311 | if (user_locked > user_lock_limit) | ||
| 2312 | extra = user_locked - user_lock_limit; | ||
| 2313 | |||
| 2314 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 2315 | lock_limit >>= PAGE_SHIFT; | ||
| 2316 | locked = vma->vm_mm->locked_vm + extra; | ||
| 2317 | |||
| 2318 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
| 2319 | ret = -EPERM; | ||
| 2320 | goto unlock; | ||
| 2321 | } | ||
| 2322 | |||
| 2323 | WARN_ON(counter->data); | ||
| 2324 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
| 2325 | if (ret) | ||
| 2326 | goto unlock; | ||
| 2327 | |||
| 2328 | atomic_set(&counter->mmap_count, 1); | ||
| 2329 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 2330 | vma->vm_mm->locked_vm += extra; | ||
| 2331 | counter->data->nr_locked = extra; | ||
| 2332 | if (vma->vm_flags & VM_WRITE) | ||
| 2333 | counter->data->writable = 1; | ||
| 2334 | |||
| 2335 | unlock: | ||
| 2336 | mutex_unlock(&counter->mmap_mutex); | ||
| 2337 | |||
| 2338 | vma->vm_flags |= VM_RESERVED; | ||
| 2339 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2340 | |||
| 2341 | return ret; | ||
| 2342 | } | ||
| 2343 | |||
| 2344 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2345 | { | ||
| 2346 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2347 | struct perf_counter *counter = filp->private_data; | ||
| 2348 | int retval; | ||
| 2349 | |||
| 2350 | mutex_lock(&inode->i_mutex); | ||
| 2351 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
| 2352 | mutex_unlock(&inode->i_mutex); | ||
| 2353 | |||
| 2354 | if (retval < 0) | ||
| 2355 | return retval; | ||
| 2356 | |||
| 2357 | return 0; | ||
| 2358 | } | ||
| 2359 | |||
| 2360 | static const struct file_operations perf_fops = { | ||
| 2361 | .release = perf_release, | ||
| 2362 | .read = perf_read, | ||
| 2363 | .poll = perf_poll, | ||
| 2364 | .unlocked_ioctl = perf_ioctl, | ||
| 2365 | .compat_ioctl = perf_ioctl, | ||
| 2366 | .mmap = perf_mmap, | ||
| 2367 | .fasync = perf_fasync, | ||
| 2368 | }; | ||
| 2369 | |||
| 2370 | /* | ||
| 2371 | * Perf counter wakeup | ||
| 2372 | * | ||
| 2373 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2374 | * to user-space before waking everybody up. | ||
| 2375 | */ | ||
| 2376 | |||
| 2377 | void perf_counter_wakeup(struct perf_counter *counter) | ||
| 2378 | { | ||
| 2379 | wake_up_all(&counter->waitq); | ||
| 2380 | |||
| 2381 | if (counter->pending_kill) { | ||
| 2382 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
| 2383 | counter->pending_kill = 0; | ||
| 2384 | } | ||
| 2385 | } | ||
| 2386 | |||
| 2387 | /* | ||
| 2388 | * Pending wakeups | ||
| 2389 | * | ||
| 2390 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2391 | * | ||
| 2392 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2393 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2394 | */ | ||
| 2395 | |||
| 2396 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
| 2397 | { | ||
| 2398 | struct perf_counter *counter = container_of(entry, | ||
| 2399 | struct perf_counter, pending); | ||
| 2400 | |||
| 2401 | if (counter->pending_disable) { | ||
| 2402 | counter->pending_disable = 0; | ||
| 2403 | __perf_counter_disable(counter); | ||
| 2404 | } | ||
| 2405 | |||
| 2406 | if (counter->pending_wakeup) { | ||
| 2407 | counter->pending_wakeup = 0; | ||
| 2408 | perf_counter_wakeup(counter); | ||
| 2409 | } | ||
| 2410 | } | ||
| 2411 | |||
| 2412 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2413 | |||
| 2414 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2415 | PENDING_TAIL, | ||
| 2416 | }; | ||
| 2417 | |||
| 2418 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2419 | void (*func)(struct perf_pending_entry *)) | ||
| 2420 | { | ||
| 2421 | struct perf_pending_entry **head; | ||
| 2422 | |||
| 2423 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2424 | return; | ||
| 2425 | |||
| 2426 | entry->func = func; | ||
| 2427 | |||
| 2428 | head = &get_cpu_var(perf_pending_head); | ||
| 2429 | |||
| 2430 | do { | ||
| 2431 | entry->next = *head; | ||
| 2432 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2433 | |||
| 2434 | set_perf_counter_pending(); | ||
| 2435 | |||
| 2436 | put_cpu_var(perf_pending_head); | ||
| 2437 | } | ||
| 2438 | |||
| 2439 | static int __perf_pending_run(void) | ||
| 2440 | { | ||
| 2441 | struct perf_pending_entry *list; | ||
| 2442 | int nr = 0; | ||
| 2443 | |||
| 2444 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2445 | while (list != PENDING_TAIL) { | ||
| 2446 | void (*func)(struct perf_pending_entry *); | ||
| 2447 | struct perf_pending_entry *entry = list; | ||
| 2448 | |||
| 2449 | list = list->next; | ||
| 2450 | |||
| 2451 | func = entry->func; | ||
| 2452 | entry->next = NULL; | ||
| 2453 | /* | ||
| 2454 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2455 | * so that we won't be waiting forever. | ||
| 2456 | * -- see perf_not_pending(). | ||
| 2457 | */ | ||
| 2458 | smp_wmb(); | ||
| 2459 | |||
| 2460 | func(entry); | ||
| 2461 | nr++; | ||
| 2462 | } | ||
| 2463 | |||
| 2464 | return nr; | ||
| 2465 | } | ||
| 2466 | |||
| 2467 | static inline int perf_not_pending(struct perf_counter *counter) | ||
| 2468 | { | ||
| 2469 | /* | ||
| 2470 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2471 | * need to wait. | ||
| 2472 | */ | ||
| 2473 | get_cpu(); | ||
| 2474 | __perf_pending_run(); | ||
| 2475 | put_cpu(); | ||
| 2476 | |||
| 2477 | /* | ||
| 2478 | * Ensure we see the proper queue state before going to sleep | ||
| 2479 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2480 | */ | ||
| 2481 | smp_rmb(); | ||
| 2482 | return counter->pending.next == NULL; | ||
| 2483 | } | ||
| 2484 | |||
| 2485 | static void perf_pending_sync(struct perf_counter *counter) | ||
| 2486 | { | ||
| 2487 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
| 2488 | } | ||
| 2489 | |||
| 2490 | void perf_counter_do_pending(void) | ||
| 2491 | { | ||
| 2492 | __perf_pending_run(); | ||
| 2493 | } | ||
| 2494 | |||
| 2495 | /* | ||
| 2496 | * Callchain support -- arch specific | ||
| 2497 | */ | ||
| 2498 | |||
| 2499 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2500 | { | ||
| 2501 | return NULL; | ||
| 2502 | } | ||
| 2503 | |||
| 2504 | /* | ||
| 2505 | * Output | ||
| 2506 | */ | ||
| 2507 | |||
| 2508 | struct perf_output_handle { | ||
| 2509 | struct perf_counter *counter; | ||
| 2510 | struct perf_mmap_data *data; | ||
| 2511 | unsigned long head; | ||
| 2512 | unsigned long offset; | ||
| 2513 | int nmi; | ||
| 2514 | int sample; | ||
| 2515 | int locked; | ||
| 2516 | unsigned long flags; | ||
| 2517 | }; | ||
| 2518 | |||
| 2519 | static bool perf_output_space(struct perf_mmap_data *data, | ||
| 2520 | unsigned int offset, unsigned int head) | ||
| 2521 | { | ||
| 2522 | unsigned long tail; | ||
| 2523 | unsigned long mask; | ||
| 2524 | |||
| 2525 | if (!data->writable) | ||
| 2526 | return true; | ||
| 2527 | |||
| 2528 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
| 2529 | /* | ||
| 2530 | * Userspace could choose to issue a mb() before updating the tail | ||
| 2531 | * pointer. So that all reads will be completed before the write is | ||
| 2532 | * issued. | ||
| 2533 | */ | ||
| 2534 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
| 2535 | smp_rmb(); | ||
| 2536 | |||
| 2537 | offset = (offset - tail) & mask; | ||
| 2538 | head = (head - tail) & mask; | ||
| 2539 | |||
| 2540 | if ((int)(head - offset) < 0) | ||
| 2541 | return false; | ||
| 2542 | |||
| 2543 | return true; | ||
| 2544 | } | ||
| 2545 | |||
| 2546 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2547 | { | ||
| 2548 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2549 | |||
| 2550 | if (handle->nmi) { | ||
| 2551 | handle->counter->pending_wakeup = 1; | ||
| 2552 | perf_pending_queue(&handle->counter->pending, | ||
| 2553 | perf_pending_counter); | ||
| 2554 | } else | ||
| 2555 | perf_counter_wakeup(handle->counter); | ||
| 2556 | } | ||
| 2557 | |||
| 2558 | /* | ||
| 2559 | * Curious locking construct. | ||
| 2560 | * | ||
| 2561 | * We need to ensure a later event doesn't publish a head when a former | ||
| 2562 | * event isn't done writing. However since we need to deal with NMIs we | ||
| 2563 | * cannot fully serialize things. | ||
| 2564 | * | ||
| 2565 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2566 | * nesting on a single CPU. | ||
| 2567 | * | ||
| 2568 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2569 | * event completes. | ||
| 2570 | */ | ||
| 2571 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2572 | { | ||
| 2573 | struct perf_mmap_data *data = handle->data; | ||
| 2574 | int cpu; | ||
| 2575 | |||
| 2576 | handle->locked = 0; | ||
| 2577 | |||
| 2578 | local_irq_save(handle->flags); | ||
| 2579 | cpu = smp_processor_id(); | ||
| 2580 | |||
| 2581 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
| 2582 | return; | ||
| 2583 | |||
| 2584 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2585 | cpu_relax(); | ||
| 2586 | |||
| 2587 | handle->locked = 1; | ||
| 2588 | } | ||
| 2589 | |||
| 2590 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2591 | { | ||
| 2592 | struct perf_mmap_data *data = handle->data; | ||
| 2593 | unsigned long head; | ||
| 2594 | int cpu; | ||
| 2595 | |||
| 2596 | data->done_head = data->head; | ||
| 2597 | |||
| 2598 | if (!handle->locked) | ||
| 2599 | goto out; | ||
| 2600 | |||
| 2601 | again: | ||
| 2602 | /* | ||
| 2603 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2604 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2605 | * reading this position. | ||
| 2606 | */ | ||
| 2607 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2608 | data->user_page->data_head = head; | ||
| 2609 | |||
| 2610 | /* | ||
| 2611 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2612 | */ | ||
| 2613 | |||
| 2614 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2615 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2616 | |||
| 2617 | /* | ||
| 2618 | * Therefore we have to validate we did not indeed do so. | ||
| 2619 | */ | ||
| 2620 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2621 | /* | ||
| 2622 | * Since we had it locked, we can lock it again. | ||
| 2623 | */ | ||
| 2624 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2625 | cpu_relax(); | ||
| 2626 | |||
| 2627 | goto again; | ||
| 2628 | } | ||
| 2629 | |||
| 2630 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2631 | perf_output_wakeup(handle); | ||
| 2632 | out: | ||
| 2633 | local_irq_restore(handle->flags); | ||
| 2634 | } | ||
| 2635 | |||
| 2636 | static void perf_output_copy(struct perf_output_handle *handle, | ||
| 2637 | const void *buf, unsigned int len) | ||
| 2638 | { | ||
| 2639 | unsigned int pages_mask; | ||
| 2640 | unsigned int offset; | ||
| 2641 | unsigned int size; | ||
| 2642 | void **pages; | ||
| 2643 | |||
| 2644 | offset = handle->offset; | ||
| 2645 | pages_mask = handle->data->nr_pages - 1; | ||
| 2646 | pages = handle->data->data_pages; | ||
| 2647 | |||
| 2648 | do { | ||
| 2649 | unsigned int page_offset; | ||
| 2650 | int nr; | ||
| 2651 | |||
| 2652 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2653 | page_offset = offset & (PAGE_SIZE - 1); | ||
| 2654 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
| 2655 | |||
| 2656 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2657 | |||
| 2658 | len -= size; | ||
| 2659 | buf += size; | ||
| 2660 | offset += size; | ||
| 2661 | } while (len); | ||
| 2662 | |||
| 2663 | handle->offset = offset; | ||
| 2664 | |||
| 2665 | /* | ||
| 2666 | * Check we didn't copy past our reservation window, taking the | ||
| 2667 | * possible unsigned int wrap into account. | ||
| 2668 | */ | ||
| 2669 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2670 | } | ||
| 2671 | |||
| 2672 | #define perf_output_put(handle, x) \ | ||
| 2673 | perf_output_copy((handle), &(x), sizeof(x)) | ||
| 2674 | |||
| 2675 | static int perf_output_begin(struct perf_output_handle *handle, | ||
| 2676 | struct perf_counter *counter, unsigned int size, | ||
| 2677 | int nmi, int sample) | ||
| 2678 | { | ||
| 2679 | struct perf_counter *output_counter; | ||
| 2680 | struct perf_mmap_data *data; | ||
| 2681 | unsigned int offset, head; | ||
| 2682 | int have_lost; | ||
| 2683 | struct { | ||
| 2684 | struct perf_event_header header; | ||
| 2685 | u64 id; | ||
| 2686 | u64 lost; | ||
| 2687 | } lost_event; | ||
| 2688 | |||
| 2689 | rcu_read_lock(); | ||
| 2690 | /* | ||
| 2691 | * For inherited counters we send all the output towards the parent. | ||
| 2692 | */ | ||
| 2693 | if (counter->parent) | ||
| 2694 | counter = counter->parent; | ||
| 2695 | |||
| 2696 | output_counter = rcu_dereference(counter->output); | ||
| 2697 | if (output_counter) | ||
| 2698 | counter = output_counter; | ||
| 2699 | |||
| 2700 | data = rcu_dereference(counter->data); | ||
| 2701 | if (!data) | ||
| 2702 | goto out; | ||
| 2703 | |||
| 2704 | handle->data = data; | ||
| 2705 | handle->counter = counter; | ||
| 2706 | handle->nmi = nmi; | ||
| 2707 | handle->sample = sample; | ||
| 2708 | |||
| 2709 | if (!data->nr_pages) | ||
| 2710 | goto fail; | ||
| 2711 | |||
| 2712 | have_lost = atomic_read(&data->lost); | ||
| 2713 | if (have_lost) | ||
| 2714 | size += sizeof(lost_event); | ||
| 2715 | |||
| 2716 | perf_output_lock(handle); | ||
| 2717 | |||
| 2718 | do { | ||
| 2719 | offset = head = atomic_long_read(&data->head); | ||
| 2720 | head += size; | ||
| 2721 | if (unlikely(!perf_output_space(data, offset, head))) | ||
| 2722 | goto fail; | ||
| 2723 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2724 | |||
| 2725 | handle->offset = offset; | ||
| 2726 | handle->head = head; | ||
| 2727 | |||
| 2728 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
| 2729 | atomic_set(&data->wakeup, 1); | ||
| 2730 | |||
| 2731 | if (have_lost) { | ||
| 2732 | lost_event.header.type = PERF_EVENT_LOST; | ||
| 2733 | lost_event.header.misc = 0; | ||
| 2734 | lost_event.header.size = sizeof(lost_event); | ||
| 2735 | lost_event.id = counter->id; | ||
| 2736 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
| 2737 | |||
| 2738 | perf_output_put(handle, lost_event); | ||
| 2739 | } | ||
| 2740 | |||
| 2741 | return 0; | ||
| 2742 | |||
| 2743 | fail: | ||
| 2744 | atomic_inc(&data->lost); | ||
| 2745 | perf_output_unlock(handle); | ||
| 2746 | out: | ||
| 2747 | rcu_read_unlock(); | ||
| 2748 | |||
| 2749 | return -ENOSPC; | ||
| 2750 | } | ||
| 2751 | |||
| 2752 | static void perf_output_end(struct perf_output_handle *handle) | ||
| 2753 | { | ||
| 2754 | struct perf_counter *counter = handle->counter; | ||
| 2755 | struct perf_mmap_data *data = handle->data; | ||
| 2756 | |||
| 2757 | int wakeup_events = counter->attr.wakeup_events; | ||
| 2758 | |||
| 2759 | if (handle->sample && wakeup_events) { | ||
| 2760 | int events = atomic_inc_return(&data->events); | ||
| 2761 | if (events >= wakeup_events) { | ||
| 2762 | atomic_sub(wakeup_events, &data->events); | ||
| 2763 | atomic_set(&data->wakeup, 1); | ||
| 2764 | } | ||
| 2765 | } | ||
| 2766 | |||
| 2767 | perf_output_unlock(handle); | ||
| 2768 | rcu_read_unlock(); | ||
| 2769 | } | ||
| 2770 | |||
| 2771 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | ||
| 2772 | { | ||
| 2773 | /* | ||
| 2774 | * only top level counters have the pid namespace they were created in | ||
| 2775 | */ | ||
| 2776 | if (counter->parent) | ||
| 2777 | counter = counter->parent; | ||
| 2778 | |||
| 2779 | return task_tgid_nr_ns(p, counter->ns); | ||
| 2780 | } | ||
| 2781 | |||
| 2782 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | ||
| 2783 | { | ||
| 2784 | /* | ||
| 2785 | * only top level counters have the pid namespace they were created in | ||
| 2786 | */ | ||
| 2787 | if (counter->parent) | ||
| 2788 | counter = counter->parent; | ||
| 2789 | |||
| 2790 | return task_pid_nr_ns(p, counter->ns); | ||
| 2791 | } | ||
| 2792 | |||
| 2793 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
| 2794 | struct perf_counter *counter) | ||
| 2795 | { | ||
| 2796 | u64 read_format = counter->attr.read_format; | ||
| 2797 | u64 values[4]; | ||
| 2798 | int n = 0; | ||
| 2799 | |||
| 2800 | values[n++] = atomic64_read(&counter->count); | ||
| 2801 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 2802 | values[n++] = counter->total_time_enabled + | ||
| 2803 | atomic64_read(&counter->child_total_time_enabled); | ||
| 2804 | } | ||
| 2805 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 2806 | values[n++] = counter->total_time_running + | ||
| 2807 | atomic64_read(&counter->child_total_time_running); | ||
| 2808 | } | ||
| 2809 | if (read_format & PERF_FORMAT_ID) | ||
| 2810 | values[n++] = primary_counter_id(counter); | ||
| 2811 | |||
| 2812 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2813 | } | ||
| 2814 | |||
| 2815 | /* | ||
| 2816 | * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult. | ||
| 2817 | */ | ||
| 2818 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
| 2819 | struct perf_counter *counter) | ||
| 2820 | { | ||
| 2821 | struct perf_counter *leader = counter->group_leader, *sub; | ||
| 2822 | u64 read_format = counter->attr.read_format; | ||
| 2823 | u64 values[5]; | ||
| 2824 | int n = 0; | ||
| 2825 | |||
| 2826 | values[n++] = 1 + leader->nr_siblings; | ||
| 2827 | |||
| 2828 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 2829 | values[n++] = leader->total_time_enabled; | ||
| 2830 | |||
| 2831 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 2832 | values[n++] = leader->total_time_running; | ||
| 2833 | |||
| 2834 | if (leader != counter) | ||
| 2835 | leader->pmu->read(leader); | ||
| 2836 | |||
| 2837 | values[n++] = atomic64_read(&leader->count); | ||
| 2838 | if (read_format & PERF_FORMAT_ID) | ||
| 2839 | values[n++] = primary_counter_id(leader); | ||
| 2840 | |||
| 2841 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2842 | |||
| 2843 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
| 2844 | n = 0; | ||
| 2845 | |||
| 2846 | if (sub != counter) | ||
| 2847 | sub->pmu->read(sub); | ||
| 2848 | |||
| 2849 | values[n++] = atomic64_read(&sub->count); | ||
| 2850 | if (read_format & PERF_FORMAT_ID) | ||
| 2851 | values[n++] = primary_counter_id(sub); | ||
| 2852 | |||
| 2853 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2854 | } | ||
| 2855 | } | ||
| 2856 | |||
| 2857 | static void perf_output_read(struct perf_output_handle *handle, | ||
| 2858 | struct perf_counter *counter) | ||
| 2859 | { | ||
| 2860 | if (counter->attr.read_format & PERF_FORMAT_GROUP) | ||
| 2861 | perf_output_read_group(handle, counter); | ||
| 2862 | else | ||
| 2863 | perf_output_read_one(handle, counter); | ||
| 2864 | } | ||
| 2865 | |||
| 2866 | void perf_counter_output(struct perf_counter *counter, int nmi, | ||
| 2867 | struct perf_sample_data *data) | ||
| 2868 | { | ||
| 2869 | int ret; | ||
| 2870 | u64 sample_type = counter->attr.sample_type; | ||
| 2871 | struct perf_output_handle handle; | ||
| 2872 | struct perf_event_header header; | ||
| 2873 | u64 ip; | ||
| 2874 | struct { | ||
| 2875 | u32 pid, tid; | ||
| 2876 | } tid_entry; | ||
| 2877 | struct perf_callchain_entry *callchain = NULL; | ||
| 2878 | int callchain_size = 0; | ||
| 2879 | u64 time; | ||
| 2880 | struct { | ||
| 2881 | u32 cpu, reserved; | ||
| 2882 | } cpu_entry; | ||
| 2883 | |||
| 2884 | header.type = PERF_EVENT_SAMPLE; | ||
| 2885 | header.size = sizeof(header); | ||
| 2886 | |||
| 2887 | header.misc = 0; | ||
| 2888 | header.misc |= perf_misc_flags(data->regs); | ||
| 2889 | |||
| 2890 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 2891 | ip = perf_instruction_pointer(data->regs); | ||
| 2892 | header.size += sizeof(ip); | ||
| 2893 | } | ||
| 2894 | |||
| 2895 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 2896 | /* namespace issues */ | ||
| 2897 | tid_entry.pid = perf_counter_pid(counter, current); | ||
| 2898 | tid_entry.tid = perf_counter_tid(counter, current); | ||
| 2899 | |||
| 2900 | header.size += sizeof(tid_entry); | ||
| 2901 | } | ||
| 2902 | |||
| 2903 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 2904 | /* | ||
| 2905 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
| 2906 | */ | ||
| 2907 | time = sched_clock(); | ||
| 2908 | |||
| 2909 | header.size += sizeof(u64); | ||
| 2910 | } | ||
| 2911 | |||
| 2912 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2913 | header.size += sizeof(u64); | ||
| 2914 | |||
| 2915 | if (sample_type & PERF_SAMPLE_ID) | ||
| 2916 | header.size += sizeof(u64); | ||
| 2917 | |||
| 2918 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 2919 | header.size += sizeof(u64); | ||
| 2920 | |||
| 2921 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 2922 | header.size += sizeof(cpu_entry); | ||
| 2923 | |||
| 2924 | cpu_entry.cpu = raw_smp_processor_id(); | ||
| 2925 | cpu_entry.reserved = 0; | ||
| 2926 | } | ||
| 2927 | |||
| 2928 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2929 | header.size += sizeof(u64); | ||
| 2930 | |||
| 2931 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2932 | header.size += perf_counter_read_size(counter); | ||
| 2933 | |||
| 2934 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2935 | callchain = perf_callchain(data->regs); | ||
| 2936 | |||
| 2937 | if (callchain) { | ||
| 2938 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
| 2939 | header.size += callchain_size; | ||
| 2940 | } else | ||
| 2941 | header.size += sizeof(u64); | ||
| 2942 | } | ||
| 2943 | |||
| 2944 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 2945 | int size = sizeof(u32); | ||
| 2946 | |||
| 2947 | if (data->raw) | ||
| 2948 | size += data->raw->size; | ||
| 2949 | else | ||
| 2950 | size += sizeof(u32); | ||
| 2951 | |||
| 2952 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
| 2953 | header.size += size; | ||
| 2954 | } | ||
| 2955 | |||
| 2956 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
| 2957 | if (ret) | ||
| 2958 | return; | ||
| 2959 | |||
| 2960 | perf_output_put(&handle, header); | ||
| 2961 | |||
| 2962 | if (sample_type & PERF_SAMPLE_IP) | ||
| 2963 | perf_output_put(&handle, ip); | ||
| 2964 | |||
| 2965 | if (sample_type & PERF_SAMPLE_TID) | ||
| 2966 | perf_output_put(&handle, tid_entry); | ||
| 2967 | |||
| 2968 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 2969 | perf_output_put(&handle, time); | ||
| 2970 | |||
| 2971 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2972 | perf_output_put(&handle, data->addr); | ||
| 2973 | |||
| 2974 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 2975 | u64 id = primary_counter_id(counter); | ||
| 2976 | |||
| 2977 | perf_output_put(&handle, id); | ||
| 2978 | } | ||
| 2979 | |||
| 2980 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 2981 | perf_output_put(&handle, counter->id); | ||
| 2982 | |||
| 2983 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 2984 | perf_output_put(&handle, cpu_entry); | ||
| 2985 | |||
| 2986 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2987 | perf_output_put(&handle, data->period); | ||
| 2988 | |||
| 2989 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2990 | perf_output_read(&handle, counter); | ||
| 2991 | |||
| 2992 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2993 | if (callchain) | ||
| 2994 | perf_output_copy(&handle, callchain, callchain_size); | ||
| 2995 | else { | ||
| 2996 | u64 nr = 0; | ||
| 2997 | perf_output_put(&handle, nr); | ||
| 2998 | } | ||
| 2999 | } | ||
| 3000 | |||
| 3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 3002 | if (data->raw) { | ||
| 3003 | perf_output_put(&handle, data->raw->size); | ||
| 3004 | perf_output_copy(&handle, data->raw->data, data->raw->size); | ||
| 3005 | } else { | ||
| 3006 | struct { | ||
| 3007 | u32 size; | ||
| 3008 | u32 data; | ||
| 3009 | } raw = { | ||
| 3010 | .size = sizeof(u32), | ||
| 3011 | .data = 0, | ||
| 3012 | }; | ||
| 3013 | perf_output_put(&handle, raw); | ||
| 3014 | } | ||
| 3015 | } | ||
| 3016 | |||
| 3017 | perf_output_end(&handle); | ||
| 3018 | } | ||
| 3019 | |||
| 3020 | /* | ||
| 3021 | * read event | ||
| 3022 | */ | ||
| 3023 | |||
| 3024 | struct perf_read_event { | ||
| 3025 | struct perf_event_header header; | ||
| 3026 | |||
| 3027 | u32 pid; | ||
| 3028 | u32 tid; | ||
| 3029 | }; | ||
| 3030 | |||
| 3031 | static void | ||
| 3032 | perf_counter_read_event(struct perf_counter *counter, | ||
| 3033 | struct task_struct *task) | ||
| 3034 | { | ||
| 3035 | struct perf_output_handle handle; | ||
| 3036 | struct perf_read_event event = { | ||
| 3037 | .header = { | ||
| 3038 | .type = PERF_EVENT_READ, | ||
| 3039 | .misc = 0, | ||
| 3040 | .size = sizeof(event) + perf_counter_read_size(counter), | ||
| 3041 | }, | ||
| 3042 | .pid = perf_counter_pid(counter, task), | ||
| 3043 | .tid = perf_counter_tid(counter, task), | ||
| 3044 | }; | ||
| 3045 | int ret; | ||
| 3046 | |||
| 3047 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); | ||
| 3048 | if (ret) | ||
| 3049 | return; | ||
| 3050 | |||
| 3051 | perf_output_put(&handle, event); | ||
| 3052 | perf_output_read(&handle, counter); | ||
| 3053 | |||
| 3054 | perf_output_end(&handle); | ||
| 3055 | } | ||
| 3056 | |||
| 3057 | /* | ||
| 3058 | * task tracking -- fork/exit | ||
| 3059 | * | ||
| 3060 | * enabled by: attr.comm | attr.mmap | attr.task | ||
| 3061 | */ | ||
| 3062 | |||
| 3063 | struct perf_task_event { | ||
| 3064 | struct task_struct *task; | ||
| 3065 | struct perf_counter_context *task_ctx; | ||
| 3066 | |||
| 3067 | struct { | ||
| 3068 | struct perf_event_header header; | ||
| 3069 | |||
| 3070 | u32 pid; | ||
| 3071 | u32 ppid; | ||
| 3072 | u32 tid; | ||
| 3073 | u32 ptid; | ||
| 3074 | } event; | ||
| 3075 | }; | ||
| 3076 | |||
| 3077 | static void perf_counter_task_output(struct perf_counter *counter, | ||
| 3078 | struct perf_task_event *task_event) | ||
| 3079 | { | ||
| 3080 | struct perf_output_handle handle; | ||
| 3081 | int size = task_event->event.header.size; | ||
| 3082 | struct task_struct *task = task_event->task; | ||
| 3083 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 3084 | |||
| 3085 | if (ret) | ||
| 3086 | return; | ||
| 3087 | |||
| 3088 | task_event->event.pid = perf_counter_pid(counter, task); | ||
| 3089 | task_event->event.ppid = perf_counter_pid(counter, current); | ||
| 3090 | |||
| 3091 | task_event->event.tid = perf_counter_tid(counter, task); | ||
| 3092 | task_event->event.ptid = perf_counter_tid(counter, current); | ||
| 3093 | |||
| 3094 | perf_output_put(&handle, task_event->event); | ||
| 3095 | perf_output_end(&handle); | ||
| 3096 | } | ||
| 3097 | |||
| 3098 | static int perf_counter_task_match(struct perf_counter *counter) | ||
| 3099 | { | ||
| 3100 | if (counter->attr.comm || counter->attr.mmap || counter->attr.task) | ||
| 3101 | return 1; | ||
| 3102 | |||
| 3103 | return 0; | ||
| 3104 | } | ||
| 3105 | |||
| 3106 | static void perf_counter_task_ctx(struct perf_counter_context *ctx, | ||
| 3107 | struct perf_task_event *task_event) | ||
| 3108 | { | ||
| 3109 | struct perf_counter *counter; | ||
| 3110 | |||
| 3111 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3112 | return; | ||
| 3113 | |||
| 3114 | rcu_read_lock(); | ||
| 3115 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3116 | if (perf_counter_task_match(counter)) | ||
| 3117 | perf_counter_task_output(counter, task_event); | ||
| 3118 | } | ||
| 3119 | rcu_read_unlock(); | ||
| 3120 | } | ||
| 3121 | |||
| 3122 | static void perf_counter_task_event(struct perf_task_event *task_event) | ||
| 3123 | { | ||
| 3124 | struct perf_cpu_context *cpuctx; | ||
| 3125 | struct perf_counter_context *ctx = task_event->task_ctx; | ||
| 3126 | |||
| 3127 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3128 | perf_counter_task_ctx(&cpuctx->ctx, task_event); | ||
| 3129 | put_cpu_var(perf_cpu_context); | ||
| 3130 | |||
| 3131 | rcu_read_lock(); | ||
| 3132 | if (!ctx) | ||
| 3133 | ctx = rcu_dereference(task_event->task->perf_counter_ctxp); | ||
| 3134 | if (ctx) | ||
| 3135 | perf_counter_task_ctx(ctx, task_event); | ||
| 3136 | rcu_read_unlock(); | ||
| 3137 | } | ||
| 3138 | |||
| 3139 | static void perf_counter_task(struct task_struct *task, | ||
| 3140 | struct perf_counter_context *task_ctx, | ||
| 3141 | int new) | ||
| 3142 | { | ||
| 3143 | struct perf_task_event task_event; | ||
| 3144 | |||
| 3145 | if (!atomic_read(&nr_comm_counters) && | ||
| 3146 | !atomic_read(&nr_mmap_counters) && | ||
| 3147 | !atomic_read(&nr_task_counters)) | ||
| 3148 | return; | ||
| 3149 | |||
| 3150 | task_event = (struct perf_task_event){ | ||
| 3151 | .task = task, | ||
| 3152 | .task_ctx = task_ctx, | ||
| 3153 | .event = { | ||
| 3154 | .header = { | ||
| 3155 | .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, | ||
| 3156 | .misc = 0, | ||
| 3157 | .size = sizeof(task_event.event), | ||
| 3158 | }, | ||
| 3159 | /* .pid */ | ||
| 3160 | /* .ppid */ | ||
| 3161 | /* .tid */ | ||
| 3162 | /* .ptid */ | ||
| 3163 | }, | ||
| 3164 | }; | ||
| 3165 | |||
| 3166 | perf_counter_task_event(&task_event); | ||
| 3167 | } | ||
| 3168 | |||
| 3169 | void perf_counter_fork(struct task_struct *task) | ||
| 3170 | { | ||
| 3171 | perf_counter_task(task, NULL, 1); | ||
| 3172 | } | ||
| 3173 | |||
| 3174 | /* | ||
| 3175 | * comm tracking | ||
| 3176 | */ | ||
| 3177 | |||
| 3178 | struct perf_comm_event { | ||
| 3179 | struct task_struct *task; | ||
| 3180 | char *comm; | ||
| 3181 | int comm_size; | ||
| 3182 | |||
| 3183 | struct { | ||
| 3184 | struct perf_event_header header; | ||
| 3185 | |||
| 3186 | u32 pid; | ||
| 3187 | u32 tid; | ||
| 3188 | } event; | ||
| 3189 | }; | ||
| 3190 | |||
| 3191 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
| 3192 | struct perf_comm_event *comm_event) | ||
| 3193 | { | ||
| 3194 | struct perf_output_handle handle; | ||
| 3195 | int size = comm_event->event.header.size; | ||
| 3196 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 3197 | |||
| 3198 | if (ret) | ||
| 3199 | return; | ||
| 3200 | |||
| 3201 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | ||
| 3202 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | ||
| 3203 | |||
| 3204 | perf_output_put(&handle, comm_event->event); | ||
| 3205 | perf_output_copy(&handle, comm_event->comm, | ||
| 3206 | comm_event->comm_size); | ||
| 3207 | perf_output_end(&handle); | ||
| 3208 | } | ||
| 3209 | |||
| 3210 | static int perf_counter_comm_match(struct perf_counter *counter) | ||
| 3211 | { | ||
| 3212 | if (counter->attr.comm) | ||
| 3213 | return 1; | ||
| 3214 | |||
| 3215 | return 0; | ||
| 3216 | } | ||
| 3217 | |||
| 3218 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
| 3219 | struct perf_comm_event *comm_event) | ||
| 3220 | { | ||
| 3221 | struct perf_counter *counter; | ||
| 3222 | |||
| 3223 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3224 | return; | ||
| 3225 | |||
| 3226 | rcu_read_lock(); | ||
| 3227 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3228 | if (perf_counter_comm_match(counter)) | ||
| 3229 | perf_counter_comm_output(counter, comm_event); | ||
| 3230 | } | ||
| 3231 | rcu_read_unlock(); | ||
| 3232 | } | ||
| 3233 | |||
| 3234 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
| 3235 | { | ||
| 3236 | struct perf_cpu_context *cpuctx; | ||
| 3237 | struct perf_counter_context *ctx; | ||
| 3238 | unsigned int size; | ||
| 3239 | char comm[TASK_COMM_LEN]; | ||
| 3240 | |||
| 3241 | memset(comm, 0, sizeof(comm)); | ||
| 3242 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
| 3243 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 3244 | |||
| 3245 | comm_event->comm = comm; | ||
| 3246 | comm_event->comm_size = size; | ||
| 3247 | |||
| 3248 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
| 3249 | |||
| 3250 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3251 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 3252 | put_cpu_var(perf_cpu_context); | ||
| 3253 | |||
| 3254 | rcu_read_lock(); | ||
| 3255 | /* | ||
| 3256 | * doesn't really matter which of the child contexts the | ||
| 3257 | * events ends up in. | ||
| 3258 | */ | ||
| 3259 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3260 | if (ctx) | ||
| 3261 | perf_counter_comm_ctx(ctx, comm_event); | ||
| 3262 | rcu_read_unlock(); | ||
| 3263 | } | ||
| 3264 | |||
| 3265 | void perf_counter_comm(struct task_struct *task) | ||
| 3266 | { | ||
| 3267 | struct perf_comm_event comm_event; | ||
| 3268 | |||
| 3269 | if (task->perf_counter_ctxp) | ||
| 3270 | perf_counter_enable_on_exec(task); | ||
| 3271 | |||
| 3272 | if (!atomic_read(&nr_comm_counters)) | ||
| 3273 | return; | ||
| 3274 | |||
| 3275 | comm_event = (struct perf_comm_event){ | ||
| 3276 | .task = task, | ||
| 3277 | /* .comm */ | ||
| 3278 | /* .comm_size */ | ||
| 3279 | .event = { | ||
| 3280 | .header = { | ||
| 3281 | .type = PERF_EVENT_COMM, | ||
| 3282 | .misc = 0, | ||
| 3283 | /* .size */ | ||
| 3284 | }, | ||
| 3285 | /* .pid */ | ||
| 3286 | /* .tid */ | ||
| 3287 | }, | ||
| 3288 | }; | ||
| 3289 | |||
| 3290 | perf_counter_comm_event(&comm_event); | ||
| 3291 | } | ||
| 3292 | |||
| 3293 | /* | ||
| 3294 | * mmap tracking | ||
| 3295 | */ | ||
| 3296 | |||
| 3297 | struct perf_mmap_event { | ||
| 3298 | struct vm_area_struct *vma; | ||
| 3299 | |||
| 3300 | const char *file_name; | ||
| 3301 | int file_size; | ||
| 3302 | |||
| 3303 | struct { | ||
| 3304 | struct perf_event_header header; | ||
| 3305 | |||
| 3306 | u32 pid; | ||
| 3307 | u32 tid; | ||
| 3308 | u64 start; | ||
| 3309 | u64 len; | ||
| 3310 | u64 pgoff; | ||
| 3311 | } event; | ||
| 3312 | }; | ||
| 3313 | |||
| 3314 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
| 3315 | struct perf_mmap_event *mmap_event) | ||
| 3316 | { | ||
| 3317 | struct perf_output_handle handle; | ||
| 3318 | int size = mmap_event->event.header.size; | ||
| 3319 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 3320 | |||
| 3321 | if (ret) | ||
| 3322 | return; | ||
| 3323 | |||
| 3324 | mmap_event->event.pid = perf_counter_pid(counter, current); | ||
| 3325 | mmap_event->event.tid = perf_counter_tid(counter, current); | ||
| 3326 | |||
| 3327 | perf_output_put(&handle, mmap_event->event); | ||
| 3328 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 3329 | mmap_event->file_size); | ||
| 3330 | perf_output_end(&handle); | ||
| 3331 | } | ||
| 3332 | |||
| 3333 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
| 3334 | struct perf_mmap_event *mmap_event) | ||
| 3335 | { | ||
| 3336 | if (counter->attr.mmap) | ||
| 3337 | return 1; | ||
| 3338 | |||
| 3339 | return 0; | ||
| 3340 | } | ||
| 3341 | |||
| 3342 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
| 3343 | struct perf_mmap_event *mmap_event) | ||
| 3344 | { | ||
| 3345 | struct perf_counter *counter; | ||
| 3346 | |||
| 3347 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3348 | return; | ||
| 3349 | |||
| 3350 | rcu_read_lock(); | ||
| 3351 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3352 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
| 3353 | perf_counter_mmap_output(counter, mmap_event); | ||
| 3354 | } | ||
| 3355 | rcu_read_unlock(); | ||
| 3356 | } | ||
| 3357 | |||
| 3358 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 3359 | { | ||
| 3360 | struct perf_cpu_context *cpuctx; | ||
| 3361 | struct perf_counter_context *ctx; | ||
| 3362 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 3363 | struct file *file = vma->vm_file; | ||
| 3364 | unsigned int size; | ||
| 3365 | char tmp[16]; | ||
| 3366 | char *buf = NULL; | ||
| 3367 | const char *name; | ||
| 3368 | |||
| 3369 | memset(tmp, 0, sizeof(tmp)); | ||
| 3370 | |||
| 3371 | if (file) { | ||
| 3372 | /* | ||
| 3373 | * d_path works from the end of the buffer backwards, so we | ||
| 3374 | * need to add enough zero bytes after the string to handle | ||
| 3375 | * the 64bit alignment we do later. | ||
| 3376 | */ | ||
| 3377 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
| 3378 | if (!buf) { | ||
| 3379 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 3380 | goto got_name; | ||
| 3381 | } | ||
| 3382 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 3383 | if (IS_ERR(name)) { | ||
| 3384 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 3385 | goto got_name; | ||
| 3386 | } | ||
| 3387 | } else { | ||
| 3388 | if (arch_vma_name(mmap_event->vma)) { | ||
| 3389 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
| 3390 | sizeof(tmp)); | ||
| 3391 | goto got_name; | ||
| 3392 | } | ||
| 3393 | |||
| 3394 | if (!vma->vm_mm) { | ||
| 3395 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 3396 | goto got_name; | ||
| 3397 | } | ||
| 3398 | |||
| 3399 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 3400 | goto got_name; | ||
| 3401 | } | ||
| 3402 | |||
| 3403 | got_name: | ||
| 3404 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 3405 | |||
| 3406 | mmap_event->file_name = name; | ||
| 3407 | mmap_event->file_size = size; | ||
| 3408 | |||
| 3409 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
| 3410 | |||
| 3411 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3412 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 3413 | put_cpu_var(perf_cpu_context); | ||
| 3414 | |||
| 3415 | rcu_read_lock(); | ||
| 3416 | /* | ||
| 3417 | * doesn't really matter which of the child contexts the | ||
| 3418 | * events ends up in. | ||
| 3419 | */ | ||
| 3420 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3421 | if (ctx) | ||
| 3422 | perf_counter_mmap_ctx(ctx, mmap_event); | ||
| 3423 | rcu_read_unlock(); | ||
| 3424 | |||
| 3425 | kfree(buf); | ||
| 3426 | } | ||
| 3427 | |||
| 3428 | void __perf_counter_mmap(struct vm_area_struct *vma) | ||
| 3429 | { | ||
| 3430 | struct perf_mmap_event mmap_event; | ||
| 3431 | |||
| 3432 | if (!atomic_read(&nr_mmap_counters)) | ||
| 3433 | return; | ||
| 3434 | |||
| 3435 | mmap_event = (struct perf_mmap_event){ | ||
| 3436 | .vma = vma, | ||
| 3437 | /* .file_name */ | ||
| 3438 | /* .file_size */ | ||
| 3439 | .event = { | ||
| 3440 | .header = { | ||
| 3441 | .type = PERF_EVENT_MMAP, | ||
| 3442 | .misc = 0, | ||
| 3443 | /* .size */ | ||
| 3444 | }, | ||
| 3445 | /* .pid */ | ||
| 3446 | /* .tid */ | ||
| 3447 | .start = vma->vm_start, | ||
| 3448 | .len = vma->vm_end - vma->vm_start, | ||
| 3449 | .pgoff = vma->vm_pgoff, | ||
| 3450 | }, | ||
| 3451 | }; | ||
| 3452 | |||
| 3453 | perf_counter_mmap_event(&mmap_event); | ||
| 3454 | } | ||
| 3455 | |||
| 3456 | /* | ||
| 3457 | * IRQ throttle logging | ||
| 3458 | */ | ||
| 3459 | |||
| 3460 | static void perf_log_throttle(struct perf_counter *counter, int enable) | ||
| 3461 | { | ||
| 3462 | struct perf_output_handle handle; | ||
| 3463 | int ret; | ||
| 3464 | |||
| 3465 | struct { | ||
| 3466 | struct perf_event_header header; | ||
| 3467 | u64 time; | ||
| 3468 | u64 id; | ||
| 3469 | u64 stream_id; | ||
| 3470 | } throttle_event = { | ||
| 3471 | .header = { | ||
| 3472 | .type = PERF_EVENT_THROTTLE, | ||
| 3473 | .misc = 0, | ||
| 3474 | .size = sizeof(throttle_event), | ||
| 3475 | }, | ||
| 3476 | .time = sched_clock(), | ||
| 3477 | .id = primary_counter_id(counter), | ||
| 3478 | .stream_id = counter->id, | ||
| 3479 | }; | ||
| 3480 | |||
| 3481 | if (enable) | ||
| 3482 | throttle_event.header.type = PERF_EVENT_UNTHROTTLE; | ||
| 3483 | |||
| 3484 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | ||
| 3485 | if (ret) | ||
| 3486 | return; | ||
| 3487 | |||
| 3488 | perf_output_put(&handle, throttle_event); | ||
| 3489 | perf_output_end(&handle); | ||
| 3490 | } | ||
| 3491 | |||
| 3492 | /* | ||
| 3493 | * Generic counter overflow handling, sampling. | ||
| 3494 | */ | ||
| 3495 | |||
| 3496 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | ||
| 3497 | struct perf_sample_data *data) | ||
| 3498 | { | ||
| 3499 | int events = atomic_read(&counter->event_limit); | ||
| 3500 | int throttle = counter->pmu->unthrottle != NULL; | ||
| 3501 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3502 | int ret = 0; | ||
| 3503 | |||
| 3504 | if (!throttle) { | ||
| 3505 | hwc->interrupts++; | ||
| 3506 | } else { | ||
| 3507 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 3508 | hwc->interrupts++; | ||
| 3509 | if (HZ * hwc->interrupts > | ||
| 3510 | (u64)sysctl_perf_counter_sample_rate) { | ||
| 3511 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 3512 | perf_log_throttle(counter, 0); | ||
| 3513 | ret = 1; | ||
| 3514 | } | ||
| 3515 | } else { | ||
| 3516 | /* | ||
| 3517 | * Keep re-disabling counters even though on the previous | ||
| 3518 | * pass we disabled it - just in case we raced with a | ||
| 3519 | * sched-in and the counter got enabled again: | ||
| 3520 | */ | ||
| 3521 | ret = 1; | ||
| 3522 | } | ||
| 3523 | } | ||
| 3524 | |||
| 3525 | if (counter->attr.freq) { | ||
| 3526 | u64 now = sched_clock(); | ||
| 3527 | s64 delta = now - hwc->freq_stamp; | ||
| 3528 | |||
| 3529 | hwc->freq_stamp = now; | ||
| 3530 | |||
| 3531 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3532 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | ||
| 3533 | } | ||
| 3534 | |||
| 3535 | /* | ||
| 3536 | * XXX event_limit might not quite work as expected on inherited | ||
| 3537 | * counters | ||
| 3538 | */ | ||
| 3539 | |||
| 3540 | counter->pending_kill = POLL_IN; | ||
| 3541 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
| 3542 | ret = 1; | ||
| 3543 | counter->pending_kill = POLL_HUP; | ||
| 3544 | if (nmi) { | ||
| 3545 | counter->pending_disable = 1; | ||
| 3546 | perf_pending_queue(&counter->pending, | ||
| 3547 | perf_pending_counter); | ||
| 3548 | } else | ||
| 3549 | perf_counter_disable(counter); | ||
| 3550 | } | ||
| 3551 | |||
| 3552 | perf_counter_output(counter, nmi, data); | ||
| 3553 | return ret; | ||
| 3554 | } | ||
| 3555 | |||
| 3556 | /* | ||
| 3557 | * Generic software counter infrastructure | ||
| 3558 | */ | ||
| 3559 | |||
| 3560 | /* | ||
| 3561 | * We directly increment counter->count and keep a second value in | ||
| 3562 | * counter->hw.period_left to count intervals. This period counter | ||
| 3563 | * is kept in the range [-sample_period, 0] so that we can use the | ||
| 3564 | * sign as trigger. | ||
| 3565 | */ | ||
| 3566 | |||
| 3567 | static u64 perf_swcounter_set_period(struct perf_counter *counter) | ||
| 3568 | { | ||
| 3569 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3570 | u64 period = hwc->last_period; | ||
| 3571 | u64 nr, offset; | ||
| 3572 | s64 old, val; | ||
| 3573 | |||
| 3574 | hwc->last_period = hwc->sample_period; | ||
| 3575 | |||
| 3576 | again: | ||
| 3577 | old = val = atomic64_read(&hwc->period_left); | ||
| 3578 | if (val < 0) | ||
| 3579 | return 0; | ||
| 3580 | |||
| 3581 | nr = div64_u64(period + val, period); | ||
| 3582 | offset = nr * period; | ||
| 3583 | val -= offset; | ||
| 3584 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
| 3585 | goto again; | ||
| 3586 | |||
| 3587 | return nr; | ||
| 3588 | } | ||
| 3589 | |||
| 3590 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
| 3591 | int nmi, struct perf_sample_data *data) | ||
| 3592 | { | ||
| 3593 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3594 | u64 overflow; | ||
| 3595 | |||
| 3596 | data->period = counter->hw.last_period; | ||
| 3597 | overflow = perf_swcounter_set_period(counter); | ||
| 3598 | |||
| 3599 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
| 3600 | return; | ||
| 3601 | |||
| 3602 | for (; overflow; overflow--) { | ||
| 3603 | if (perf_counter_overflow(counter, nmi, data)) { | ||
| 3604 | /* | ||
| 3605 | * We inhibit the overflow from happening when | ||
| 3606 | * hwc->interrupts == MAX_INTERRUPTS. | ||
| 3607 | */ | ||
| 3608 | break; | ||
| 3609 | } | ||
| 3610 | } | ||
| 3611 | } | ||
| 3612 | |||
| 3613 | static void perf_swcounter_unthrottle(struct perf_counter *counter) | ||
| 3614 | { | ||
| 3615 | /* | ||
| 3616 | * Nothing to do, we already reset hwc->interrupts. | ||
| 3617 | */ | ||
| 3618 | } | ||
| 3619 | |||
| 3620 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
| 3621 | int nmi, struct perf_sample_data *data) | ||
| 3622 | { | ||
| 3623 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3624 | |||
| 3625 | atomic64_add(nr, &counter->count); | ||
| 3626 | |||
| 3627 | if (!hwc->sample_period) | ||
| 3628 | return; | ||
| 3629 | |||
| 3630 | if (!data->regs) | ||
| 3631 | return; | ||
| 3632 | |||
| 3633 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
| 3634 | perf_swcounter_overflow(counter, nmi, data); | ||
| 3635 | } | ||
| 3636 | |||
| 3637 | static int perf_swcounter_is_counting(struct perf_counter *counter) | ||
| 3638 | { | ||
| 3639 | /* | ||
| 3640 | * The counter is active, we're good! | ||
| 3641 | */ | ||
| 3642 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 3643 | return 1; | ||
| 3644 | |||
| 3645 | /* | ||
| 3646 | * The counter is off/error, not counting. | ||
| 3647 | */ | ||
| 3648 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | ||
| 3649 | return 0; | ||
| 3650 | |||
| 3651 | /* | ||
| 3652 | * The counter is inactive, if the context is active | ||
| 3653 | * we're part of a group that didn't make it on the 'pmu', | ||
| 3654 | * not counting. | ||
| 3655 | */ | ||
| 3656 | if (counter->ctx->is_active) | ||
| 3657 | return 0; | ||
| 3658 | |||
| 3659 | /* | ||
| 3660 | * We're inactive and the context is too, this means the | ||
| 3661 | * task is scheduled out, we're counting events that happen | ||
| 3662 | * to us, like migration events. | ||
| 3663 | */ | ||
| 3664 | return 1; | ||
| 3665 | } | ||
| 3666 | |||
| 3667 | static int perf_swcounter_match(struct perf_counter *counter, | ||
| 3668 | enum perf_type_id type, | ||
| 3669 | u32 event, struct pt_regs *regs) | ||
| 3670 | { | ||
| 3671 | if (!perf_swcounter_is_counting(counter)) | ||
| 3672 | return 0; | ||
| 3673 | |||
| 3674 | if (counter->attr.type != type) | ||
| 3675 | return 0; | ||
| 3676 | if (counter->attr.config != event) | ||
| 3677 | return 0; | ||
| 3678 | |||
| 3679 | if (regs) { | ||
| 3680 | if (counter->attr.exclude_user && user_mode(regs)) | ||
| 3681 | return 0; | ||
| 3682 | |||
| 3683 | if (counter->attr.exclude_kernel && !user_mode(regs)) | ||
| 3684 | return 0; | ||
| 3685 | } | ||
| 3686 | |||
| 3687 | return 1; | ||
| 3688 | } | ||
| 3689 | |||
| 3690 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
| 3691 | enum perf_type_id type, | ||
| 3692 | u32 event, u64 nr, int nmi, | ||
| 3693 | struct perf_sample_data *data) | ||
| 3694 | { | ||
| 3695 | struct perf_counter *counter; | ||
| 3696 | |||
| 3697 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3698 | return; | ||
| 3699 | |||
| 3700 | rcu_read_lock(); | ||
| 3701 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3702 | if (perf_swcounter_match(counter, type, event, data->regs)) | ||
| 3703 | perf_swcounter_add(counter, nr, nmi, data); | ||
| 3704 | } | ||
| 3705 | rcu_read_unlock(); | ||
| 3706 | } | ||
| 3707 | |||
| 3708 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
| 3709 | { | ||
| 3710 | if (in_nmi()) | ||
| 3711 | return &cpuctx->recursion[3]; | ||
| 3712 | |||
| 3713 | if (in_irq()) | ||
| 3714 | return &cpuctx->recursion[2]; | ||
| 3715 | |||
| 3716 | if (in_softirq()) | ||
| 3717 | return &cpuctx->recursion[1]; | ||
| 3718 | |||
| 3719 | return &cpuctx->recursion[0]; | ||
| 3720 | } | ||
| 3721 | |||
| 3722 | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | ||
| 3723 | u64 nr, int nmi, | ||
| 3724 | struct perf_sample_data *data) | ||
| 3725 | { | ||
| 3726 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3727 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
| 3728 | struct perf_counter_context *ctx; | ||
| 3729 | |||
| 3730 | if (*recursion) | ||
| 3731 | goto out; | ||
| 3732 | |||
| 3733 | (*recursion)++; | ||
| 3734 | barrier(); | ||
| 3735 | |||
| 3736 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
| 3737 | nr, nmi, data); | ||
| 3738 | rcu_read_lock(); | ||
| 3739 | /* | ||
| 3740 | * doesn't really matter which of the child contexts the | ||
| 3741 | * events ends up in. | ||
| 3742 | */ | ||
| 3743 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3744 | if (ctx) | ||
| 3745 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data); | ||
| 3746 | rcu_read_unlock(); | ||
| 3747 | |||
| 3748 | barrier(); | ||
| 3749 | (*recursion)--; | ||
| 3750 | |||
| 3751 | out: | ||
| 3752 | put_cpu_var(perf_cpu_context); | ||
| 3753 | } | ||
| 3754 | |||
| 3755 | void __perf_swcounter_event(u32 event, u64 nr, int nmi, | ||
| 3756 | struct pt_regs *regs, u64 addr) | ||
| 3757 | { | ||
| 3758 | struct perf_sample_data data = { | ||
| 3759 | .regs = regs, | ||
| 3760 | .addr = addr, | ||
| 3761 | }; | ||
| 3762 | |||
| 3763 | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data); | ||
| 3764 | } | ||
| 3765 | |||
| 3766 | static void perf_swcounter_read(struct perf_counter *counter) | ||
| 3767 | { | ||
| 3768 | } | ||
| 3769 | |||
| 3770 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
| 3771 | { | ||
| 3772 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3773 | |||
| 3774 | if (hwc->sample_period) { | ||
| 3775 | hwc->last_period = hwc->sample_period; | ||
| 3776 | perf_swcounter_set_period(counter); | ||
| 3777 | } | ||
| 3778 | return 0; | ||
| 3779 | } | ||
| 3780 | |||
| 3781 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
| 3782 | { | ||
| 3783 | } | ||
| 3784 | |||
| 3785 | static const struct pmu perf_ops_generic = { | ||
| 3786 | .enable = perf_swcounter_enable, | ||
| 3787 | .disable = perf_swcounter_disable, | ||
| 3788 | .read = perf_swcounter_read, | ||
| 3789 | .unthrottle = perf_swcounter_unthrottle, | ||
| 3790 | }; | ||
| 3791 | |||
| 3792 | /* | ||
| 3793 | * hrtimer based swcounter callback | ||
| 3794 | */ | ||
| 3795 | |||
| 3796 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
| 3797 | { | ||
| 3798 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 3799 | struct perf_sample_data data; | ||
| 3800 | struct perf_counter *counter; | ||
| 3801 | u64 period; | ||
| 3802 | |||
| 3803 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
| 3804 | counter->pmu->read(counter); | ||
| 3805 | |||
| 3806 | data.addr = 0; | ||
| 3807 | data.regs = get_irq_regs(); | ||
| 3808 | /* | ||
| 3809 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 3810 | * context, provide the next best thing, the user IP. | ||
| 3811 | */ | ||
| 3812 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
| 3813 | !counter->attr.exclude_user) | ||
| 3814 | data.regs = task_pt_regs(current); | ||
| 3815 | |||
| 3816 | if (data.regs) { | ||
| 3817 | if (perf_counter_overflow(counter, 0, &data)) | ||
| 3818 | ret = HRTIMER_NORESTART; | ||
| 3819 | } | ||
| 3820 | |||
| 3821 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
| 3822 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 3823 | |||
| 3824 | return ret; | ||
| 3825 | } | ||
| 3826 | |||
| 3827 | /* | ||
| 3828 | * Software counter: cpu wall time clock | ||
| 3829 | */ | ||
| 3830 | |||
| 3831 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
| 3832 | { | ||
| 3833 | int cpu = raw_smp_processor_id(); | ||
| 3834 | s64 prev; | ||
| 3835 | u64 now; | ||
| 3836 | |||
| 3837 | now = cpu_clock(cpu); | ||
| 3838 | prev = atomic64_read(&counter->hw.prev_count); | ||
| 3839 | atomic64_set(&counter->hw.prev_count, now); | ||
| 3840 | atomic64_add(now - prev, &counter->count); | ||
| 3841 | } | ||
| 3842 | |||
| 3843 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3844 | { | ||
| 3845 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3846 | int cpu = raw_smp_processor_id(); | ||
| 3847 | |||
| 3848 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 3849 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3850 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3851 | if (hwc->sample_period) { | ||
| 3852 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3853 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3854 | ns_to_ktime(period), 0, | ||
| 3855 | HRTIMER_MODE_REL, 0); | ||
| 3856 | } | ||
| 3857 | |||
| 3858 | return 0; | ||
| 3859 | } | ||
| 3860 | |||
| 3861 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3862 | { | ||
| 3863 | if (counter->hw.sample_period) | ||
| 3864 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3865 | cpu_clock_perf_counter_update(counter); | ||
| 3866 | } | ||
| 3867 | |||
| 3868 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3869 | { | ||
| 3870 | cpu_clock_perf_counter_update(counter); | ||
| 3871 | } | ||
| 3872 | |||
| 3873 | static const struct pmu perf_ops_cpu_clock = { | ||
| 3874 | .enable = cpu_clock_perf_counter_enable, | ||
| 3875 | .disable = cpu_clock_perf_counter_disable, | ||
| 3876 | .read = cpu_clock_perf_counter_read, | ||
| 3877 | }; | ||
| 3878 | |||
| 3879 | /* | ||
| 3880 | * Software counter: task time clock | ||
| 3881 | */ | ||
| 3882 | |||
| 3883 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
| 3884 | { | ||
| 3885 | u64 prev; | ||
| 3886 | s64 delta; | ||
| 3887 | |||
| 3888 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
| 3889 | delta = now - prev; | ||
| 3890 | atomic64_add(delta, &counter->count); | ||
| 3891 | } | ||
| 3892 | |||
| 3893 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3894 | { | ||
| 3895 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3896 | u64 now; | ||
| 3897 | |||
| 3898 | now = counter->ctx->time; | ||
| 3899 | |||
| 3900 | atomic64_set(&hwc->prev_count, now); | ||
| 3901 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3902 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3903 | if (hwc->sample_period) { | ||
| 3904 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3905 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3906 | ns_to_ktime(period), 0, | ||
| 3907 | HRTIMER_MODE_REL, 0); | ||
| 3908 | } | ||
| 3909 | |||
| 3910 | return 0; | ||
| 3911 | } | ||
| 3912 | |||
| 3913 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3914 | { | ||
| 3915 | if (counter->hw.sample_period) | ||
| 3916 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3917 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
| 3918 | |||
| 3919 | } | ||
| 3920 | |||
| 3921 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3922 | { | ||
| 3923 | u64 time; | ||
| 3924 | |||
| 3925 | if (!in_nmi()) { | ||
| 3926 | update_context_time(counter->ctx); | ||
| 3927 | time = counter->ctx->time; | ||
| 3928 | } else { | ||
| 3929 | u64 now = perf_clock(); | ||
| 3930 | u64 delta = now - counter->ctx->timestamp; | ||
| 3931 | time = counter->ctx->time + delta; | ||
| 3932 | } | ||
| 3933 | |||
| 3934 | task_clock_perf_counter_update(counter, time); | ||
| 3935 | } | ||
| 3936 | |||
| 3937 | static const struct pmu perf_ops_task_clock = { | ||
| 3938 | .enable = task_clock_perf_counter_enable, | ||
| 3939 | .disable = task_clock_perf_counter_disable, | ||
| 3940 | .read = task_clock_perf_counter_read, | ||
| 3941 | }; | ||
| 3942 | |||
| 3943 | #ifdef CONFIG_EVENT_PROFILE | ||
| 3944 | void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | ||
| 3945 | int entry_size) | ||
| 3946 | { | ||
| 3947 | struct perf_raw_record raw = { | ||
| 3948 | .size = entry_size, | ||
| 3949 | .data = record, | ||
| 3950 | }; | ||
| 3951 | |||
| 3952 | struct perf_sample_data data = { | ||
| 3953 | .regs = get_irq_regs(), | ||
| 3954 | .addr = addr, | ||
| 3955 | .raw = &raw, | ||
| 3956 | }; | ||
| 3957 | |||
| 3958 | if (!data.regs) | ||
| 3959 | data.regs = task_pt_regs(current); | ||
| 3960 | |||
| 3961 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data); | ||
| 3962 | } | ||
| 3963 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
| 3964 | |||
| 3965 | extern int ftrace_profile_enable(int); | ||
| 3966 | extern void ftrace_profile_disable(int); | ||
| 3967 | |||
| 3968 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
| 3969 | { | ||
| 3970 | ftrace_profile_disable(counter->attr.config); | ||
| 3971 | } | ||
| 3972 | |||
| 3973 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3974 | { | ||
| 3975 | /* | ||
| 3976 | * Raw tracepoint data is a severe data leak, only allow root to | ||
| 3977 | * have these. | ||
| 3978 | */ | ||
| 3979 | if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && | ||
| 3980 | perf_paranoid_tracepoint_raw() && | ||
| 3981 | !capable(CAP_SYS_ADMIN)) | ||
| 3982 | return ERR_PTR(-EPERM); | ||
| 3983 | |||
| 3984 | if (ftrace_profile_enable(counter->attr.config)) | ||
| 3985 | return NULL; | ||
| 3986 | |||
| 3987 | counter->destroy = tp_perf_counter_destroy; | ||
| 3988 | |||
| 3989 | return &perf_ops_generic; | ||
| 3990 | } | ||
| 3991 | #else | ||
| 3992 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3993 | { | ||
| 3994 | return NULL; | ||
| 3995 | } | ||
| 3996 | #endif | ||
| 3997 | |||
| 3998 | atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX]; | ||
| 3999 | |||
| 4000 | static void sw_perf_counter_destroy(struct perf_counter *counter) | ||
| 4001 | { | ||
| 4002 | u64 event = counter->attr.config; | ||
| 4003 | |||
| 4004 | WARN_ON(counter->parent); | ||
| 4005 | |||
| 4006 | atomic_dec(&perf_swcounter_enabled[event]); | ||
| 4007 | } | ||
| 4008 | |||
| 4009 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
| 4010 | { | ||
| 4011 | const struct pmu *pmu = NULL; | ||
| 4012 | u64 event = counter->attr.config; | ||
| 4013 | |||
| 4014 | /* | ||
| 4015 | * Software counters (currently) can't in general distinguish | ||
| 4016 | * between user, kernel and hypervisor events. | ||
| 4017 | * However, context switches and cpu migrations are considered | ||
| 4018 | * to be kernel events, and page faults are never hypervisor | ||
| 4019 | * events. | ||
| 4020 | */ | ||
| 4021 | switch (event) { | ||
| 4022 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 4023 | pmu = &perf_ops_cpu_clock; | ||
| 4024 | |||
| 4025 | break; | ||
| 4026 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 4027 | /* | ||
| 4028 | * If the user instantiates this as a per-cpu counter, | ||
| 4029 | * use the cpu_clock counter instead. | ||
| 4030 | */ | ||
| 4031 | if (counter->ctx->task) | ||
| 4032 | pmu = &perf_ops_task_clock; | ||
| 4033 | else | ||
| 4034 | pmu = &perf_ops_cpu_clock; | ||
| 4035 | |||
| 4036 | break; | ||
| 4037 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 4038 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 4039 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 4040 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 4041 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 4042 | if (!counter->parent) { | ||
| 4043 | atomic_inc(&perf_swcounter_enabled[event]); | ||
| 4044 | counter->destroy = sw_perf_counter_destroy; | ||
| 4045 | } | ||
| 4046 | pmu = &perf_ops_generic; | ||
| 4047 | break; | ||
| 4048 | } | ||
| 4049 | |||
| 4050 | return pmu; | ||
| 4051 | } | ||
| 4052 | |||
| 4053 | /* | ||
| 4054 | * Allocate and initialize a counter structure | ||
| 4055 | */ | ||
| 4056 | static struct perf_counter * | ||
| 4057 | perf_counter_alloc(struct perf_counter_attr *attr, | ||
| 4058 | int cpu, | ||
| 4059 | struct perf_counter_context *ctx, | ||
| 4060 | struct perf_counter *group_leader, | ||
| 4061 | struct perf_counter *parent_counter, | ||
| 4062 | gfp_t gfpflags) | ||
| 4063 | { | ||
| 4064 | const struct pmu *pmu; | ||
| 4065 | struct perf_counter *counter; | ||
| 4066 | struct hw_perf_counter *hwc; | ||
| 4067 | long err; | ||
| 4068 | |||
| 4069 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
| 4070 | if (!counter) | ||
| 4071 | return ERR_PTR(-ENOMEM); | ||
| 4072 | |||
| 4073 | /* | ||
| 4074 | * Single counters are their own group leaders, with an | ||
| 4075 | * empty sibling list: | ||
| 4076 | */ | ||
| 4077 | if (!group_leader) | ||
| 4078 | group_leader = counter; | ||
| 4079 | |||
| 4080 | mutex_init(&counter->child_mutex); | ||
| 4081 | INIT_LIST_HEAD(&counter->child_list); | ||
| 4082 | |||
| 4083 | INIT_LIST_HEAD(&counter->list_entry); | ||
| 4084 | INIT_LIST_HEAD(&counter->event_entry); | ||
| 4085 | INIT_LIST_HEAD(&counter->sibling_list); | ||
| 4086 | init_waitqueue_head(&counter->waitq); | ||
| 4087 | |||
| 4088 | mutex_init(&counter->mmap_mutex); | ||
| 4089 | |||
| 4090 | counter->cpu = cpu; | ||
| 4091 | counter->attr = *attr; | ||
| 4092 | counter->group_leader = group_leader; | ||
| 4093 | counter->pmu = NULL; | ||
| 4094 | counter->ctx = ctx; | ||
| 4095 | counter->oncpu = -1; | ||
| 4096 | |||
| 4097 | counter->parent = parent_counter; | ||
| 4098 | |||
| 4099 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 4100 | counter->id = atomic64_inc_return(&perf_counter_id); | ||
| 4101 | |||
| 4102 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 4103 | |||
| 4104 | if (attr->disabled) | ||
| 4105 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 4106 | |||
| 4107 | pmu = NULL; | ||
| 4108 | |||
| 4109 | hwc = &counter->hw; | ||
| 4110 | hwc->sample_period = attr->sample_period; | ||
| 4111 | if (attr->freq && attr->sample_freq) | ||
| 4112 | hwc->sample_period = 1; | ||
| 4113 | hwc->last_period = hwc->sample_period; | ||
| 4114 | |||
| 4115 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 4116 | |||
| 4117 | /* | ||
| 4118 | * we currently do not support PERF_FORMAT_GROUP on inherited counters | ||
| 4119 | */ | ||
| 4120 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
| 4121 | goto done; | ||
| 4122 | |||
| 4123 | switch (attr->type) { | ||
| 4124 | case PERF_TYPE_RAW: | ||
| 4125 | case PERF_TYPE_HARDWARE: | ||
| 4126 | case PERF_TYPE_HW_CACHE: | ||
| 4127 | pmu = hw_perf_counter_init(counter); | ||
| 4128 | break; | ||
| 4129 | |||
| 4130 | case PERF_TYPE_SOFTWARE: | ||
| 4131 | pmu = sw_perf_counter_init(counter); | ||
| 4132 | break; | ||
| 4133 | |||
| 4134 | case PERF_TYPE_TRACEPOINT: | ||
| 4135 | pmu = tp_perf_counter_init(counter); | ||
| 4136 | break; | ||
| 4137 | |||
| 4138 | default: | ||
| 4139 | break; | ||
| 4140 | } | ||
| 4141 | done: | ||
| 4142 | err = 0; | ||
| 4143 | if (!pmu) | ||
| 4144 | err = -EINVAL; | ||
| 4145 | else if (IS_ERR(pmu)) | ||
| 4146 | err = PTR_ERR(pmu); | ||
| 4147 | |||
| 4148 | if (err) { | ||
| 4149 | if (counter->ns) | ||
| 4150 | put_pid_ns(counter->ns); | ||
| 4151 | kfree(counter); | ||
| 4152 | return ERR_PTR(err); | ||
| 4153 | } | ||
| 4154 | |||
| 4155 | counter->pmu = pmu; | ||
| 4156 | |||
| 4157 | if (!counter->parent) { | ||
| 4158 | atomic_inc(&nr_counters); | ||
| 4159 | if (counter->attr.mmap) | ||
| 4160 | atomic_inc(&nr_mmap_counters); | ||
| 4161 | if (counter->attr.comm) | ||
| 4162 | atomic_inc(&nr_comm_counters); | ||
| 4163 | if (counter->attr.task) | ||
| 4164 | atomic_inc(&nr_task_counters); | ||
| 4165 | } | ||
| 4166 | |||
| 4167 | return counter; | ||
| 4168 | } | ||
| 4169 | |||
| 4170 | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | ||
| 4171 | struct perf_counter_attr *attr) | ||
| 4172 | { | ||
| 4173 | int ret; | ||
| 4174 | u32 size; | ||
| 4175 | |||
| 4176 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
| 4177 | return -EFAULT; | ||
| 4178 | |||
| 4179 | /* | ||
| 4180 | * zero the full structure, so that a short copy will be nice. | ||
| 4181 | */ | ||
| 4182 | memset(attr, 0, sizeof(*attr)); | ||
| 4183 | |||
| 4184 | ret = get_user(size, &uattr->size); | ||
| 4185 | if (ret) | ||
| 4186 | return ret; | ||
| 4187 | |||
| 4188 | if (size > PAGE_SIZE) /* silly large */ | ||
| 4189 | goto err_size; | ||
| 4190 | |||
| 4191 | if (!size) /* abi compat */ | ||
| 4192 | size = PERF_ATTR_SIZE_VER0; | ||
| 4193 | |||
| 4194 | if (size < PERF_ATTR_SIZE_VER0) | ||
| 4195 | goto err_size; | ||
| 4196 | |||
| 4197 | /* | ||
| 4198 | * If we're handed a bigger struct than we know of, | ||
| 4199 | * ensure all the unknown bits are 0. | ||
| 4200 | */ | ||
| 4201 | if (size > sizeof(*attr)) { | ||
| 4202 | unsigned long val; | ||
| 4203 | unsigned long __user *addr; | ||
| 4204 | unsigned long __user *end; | ||
| 4205 | |||
| 4206 | addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr), | ||
| 4207 | sizeof(unsigned long)); | ||
| 4208 | end = PTR_ALIGN((void __user *)uattr + size, | ||
| 4209 | sizeof(unsigned long)); | ||
| 4210 | |||
| 4211 | for (; addr < end; addr += sizeof(unsigned long)) { | ||
| 4212 | ret = get_user(val, addr); | ||
| 4213 | if (ret) | ||
| 4214 | return ret; | ||
| 4215 | if (val) | ||
| 4216 | goto err_size; | ||
| 4217 | } | ||
| 4218 | size = sizeof(*attr); | ||
| 4219 | } | ||
| 4220 | |||
| 4221 | ret = copy_from_user(attr, uattr, size); | ||
| 4222 | if (ret) | ||
| 4223 | return -EFAULT; | ||
| 4224 | |||
| 4225 | /* | ||
| 4226 | * If the type exists, the corresponding creation will verify | ||
| 4227 | * the attr->config. | ||
| 4228 | */ | ||
| 4229 | if (attr->type >= PERF_TYPE_MAX) | ||
| 4230 | return -EINVAL; | ||
| 4231 | |||
| 4232 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
| 4233 | return -EINVAL; | ||
| 4234 | |||
| 4235 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
| 4236 | return -EINVAL; | ||
| 4237 | |||
| 4238 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
| 4239 | return -EINVAL; | ||
| 4240 | |||
| 4241 | out: | ||
| 4242 | return ret; | ||
| 4243 | |||
| 4244 | err_size: | ||
| 4245 | put_user(sizeof(*attr), &uattr->size); | ||
| 4246 | ret = -E2BIG; | ||
| 4247 | goto out; | ||
| 4248 | } | ||
| 4249 | |||
| 4250 | int perf_counter_set_output(struct perf_counter *counter, int output_fd) | ||
| 4251 | { | ||
| 4252 | struct perf_counter *output_counter = NULL; | ||
| 4253 | struct file *output_file = NULL; | ||
| 4254 | struct perf_counter *old_output; | ||
| 4255 | int fput_needed = 0; | ||
| 4256 | int ret = -EINVAL; | ||
| 4257 | |||
| 4258 | if (!output_fd) | ||
| 4259 | goto set; | ||
| 4260 | |||
| 4261 | output_file = fget_light(output_fd, &fput_needed); | ||
| 4262 | if (!output_file) | ||
| 4263 | return -EBADF; | ||
| 4264 | |||
| 4265 | if (output_file->f_op != &perf_fops) | ||
| 4266 | goto out; | ||
| 4267 | |||
| 4268 | output_counter = output_file->private_data; | ||
| 4269 | |||
| 4270 | /* Don't chain output fds */ | ||
| 4271 | if (output_counter->output) | ||
| 4272 | goto out; | ||
| 4273 | |||
| 4274 | /* Don't set an output fd when we already have an output channel */ | ||
| 4275 | if (counter->data) | ||
| 4276 | goto out; | ||
| 4277 | |||
| 4278 | atomic_long_inc(&output_file->f_count); | ||
| 4279 | |||
| 4280 | set: | ||
| 4281 | mutex_lock(&counter->mmap_mutex); | ||
| 4282 | old_output = counter->output; | ||
| 4283 | rcu_assign_pointer(counter->output, output_counter); | ||
| 4284 | mutex_unlock(&counter->mmap_mutex); | ||
| 4285 | |||
| 4286 | if (old_output) { | ||
| 4287 | /* | ||
| 4288 | * we need to make sure no existing perf_output_*() | ||
| 4289 | * is still referencing this counter. | ||
| 4290 | */ | ||
| 4291 | synchronize_rcu(); | ||
| 4292 | fput(old_output->filp); | ||
| 4293 | } | ||
| 4294 | |||
| 4295 | ret = 0; | ||
| 4296 | out: | ||
| 4297 | fput_light(output_file, fput_needed); | ||
| 4298 | return ret; | ||
| 4299 | } | ||
| 4300 | |||
| 4301 | /** | ||
| 4302 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
| 4303 | * | ||
| 4304 | * @attr_uptr: event type attributes for monitoring/sampling | ||
| 4305 | * @pid: target pid | ||
| 4306 | * @cpu: target cpu | ||
| 4307 | * @group_fd: group leader counter fd | ||
| 4308 | */ | ||
| 4309 | SYSCALL_DEFINE5(perf_counter_open, | ||
| 4310 | struct perf_counter_attr __user *, attr_uptr, | ||
| 4311 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 4312 | { | ||
| 4313 | struct perf_counter *counter, *group_leader; | ||
| 4314 | struct perf_counter_attr attr; | ||
| 4315 | struct perf_counter_context *ctx; | ||
| 4316 | struct file *counter_file = NULL; | ||
| 4317 | struct file *group_file = NULL; | ||
| 4318 | int fput_needed = 0; | ||
| 4319 | int fput_needed2 = 0; | ||
| 4320 | int err; | ||
| 4321 | |||
| 4322 | /* for future expandability... */ | ||
| 4323 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
| 4324 | return -EINVAL; | ||
| 4325 | |||
| 4326 | err = perf_copy_attr(attr_uptr, &attr); | ||
| 4327 | if (err) | ||
| 4328 | return err; | ||
| 4329 | |||
| 4330 | if (!attr.exclude_kernel) { | ||
| 4331 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 4332 | return -EACCES; | ||
| 4333 | } | ||
| 4334 | |||
| 4335 | if (attr.freq) { | ||
| 4336 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | ||
| 4337 | return -EINVAL; | ||
| 4338 | } | ||
| 4339 | |||
| 4340 | /* | ||
| 4341 | * Get the target context (task or percpu): | ||
| 4342 | */ | ||
| 4343 | ctx = find_get_context(pid, cpu); | ||
| 4344 | if (IS_ERR(ctx)) | ||
| 4345 | return PTR_ERR(ctx); | ||
| 4346 | |||
| 4347 | /* | ||
| 4348 | * Look up the group leader (we will attach this counter to it): | ||
| 4349 | */ | ||
| 4350 | group_leader = NULL; | ||
| 4351 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
| 4352 | err = -EINVAL; | ||
| 4353 | group_file = fget_light(group_fd, &fput_needed); | ||
| 4354 | if (!group_file) | ||
| 4355 | goto err_put_context; | ||
| 4356 | if (group_file->f_op != &perf_fops) | ||
| 4357 | goto err_put_context; | ||
| 4358 | |||
| 4359 | group_leader = group_file->private_data; | ||
| 4360 | /* | ||
| 4361 | * Do not allow a recursive hierarchy (this new sibling | ||
| 4362 | * becoming part of another group-sibling): | ||
| 4363 | */ | ||
| 4364 | if (group_leader->group_leader != group_leader) | ||
| 4365 | goto err_put_context; | ||
| 4366 | /* | ||
| 4367 | * Do not allow to attach to a group in a different | ||
| 4368 | * task or CPU context: | ||
| 4369 | */ | ||
| 4370 | if (group_leader->ctx != ctx) | ||
| 4371 | goto err_put_context; | ||
| 4372 | /* | ||
| 4373 | * Only a group leader can be exclusive or pinned | ||
| 4374 | */ | ||
| 4375 | if (attr.exclusive || attr.pinned) | ||
| 4376 | goto err_put_context; | ||
| 4377 | } | ||
| 4378 | |||
| 4379 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | ||
| 4380 | NULL, GFP_KERNEL); | ||
| 4381 | err = PTR_ERR(counter); | ||
| 4382 | if (IS_ERR(counter)) | ||
| 4383 | goto err_put_context; | ||
| 4384 | |||
| 4385 | err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
| 4386 | if (err < 0) | ||
| 4387 | goto err_free_put_context; | ||
| 4388 | |||
| 4389 | counter_file = fget_light(err, &fput_needed2); | ||
| 4390 | if (!counter_file) | ||
| 4391 | goto err_free_put_context; | ||
| 4392 | |||
| 4393 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
| 4394 | err = perf_counter_set_output(counter, group_fd); | ||
| 4395 | if (err) | ||
| 4396 | goto err_fput_free_put_context; | ||
| 4397 | } | ||
| 4398 | |||
| 4399 | counter->filp = counter_file; | ||
| 4400 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 4401 | mutex_lock(&ctx->mutex); | ||
| 4402 | perf_install_in_context(ctx, counter, cpu); | ||
| 4403 | ++ctx->generation; | ||
| 4404 | mutex_unlock(&ctx->mutex); | ||
| 4405 | |||
| 4406 | counter->owner = current; | ||
| 4407 | get_task_struct(current); | ||
| 4408 | mutex_lock(¤t->perf_counter_mutex); | ||
| 4409 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | ||
| 4410 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 4411 | |||
| 4412 | err_fput_free_put_context: | ||
| 4413 | fput_light(counter_file, fput_needed2); | ||
| 4414 | |||
| 4415 | err_free_put_context: | ||
| 4416 | if (err < 0) | ||
| 4417 | kfree(counter); | ||
| 4418 | |||
| 4419 | err_put_context: | ||
| 4420 | if (err < 0) | ||
| 4421 | put_ctx(ctx); | ||
| 4422 | |||
| 4423 | fput_light(group_file, fput_needed); | ||
| 4424 | |||
| 4425 | return err; | ||
| 4426 | } | ||
| 4427 | |||
| 4428 | /* | ||
| 4429 | * inherit a counter from parent task to child task: | ||
| 4430 | */ | ||
| 4431 | static struct perf_counter * | ||
| 4432 | inherit_counter(struct perf_counter *parent_counter, | ||
| 4433 | struct task_struct *parent, | ||
| 4434 | struct perf_counter_context *parent_ctx, | ||
| 4435 | struct task_struct *child, | ||
| 4436 | struct perf_counter *group_leader, | ||
| 4437 | struct perf_counter_context *child_ctx) | ||
| 4438 | { | ||
| 4439 | struct perf_counter *child_counter; | ||
| 4440 | |||
| 4441 | /* | ||
| 4442 | * Instead of creating recursive hierarchies of counters, | ||
| 4443 | * we link inherited counters back to the original parent, | ||
| 4444 | * which has a filp for sure, which we use as the reference | ||
| 4445 | * count: | ||
| 4446 | */ | ||
| 4447 | if (parent_counter->parent) | ||
| 4448 | parent_counter = parent_counter->parent; | ||
| 4449 | |||
| 4450 | child_counter = perf_counter_alloc(&parent_counter->attr, | ||
| 4451 | parent_counter->cpu, child_ctx, | ||
| 4452 | group_leader, parent_counter, | ||
| 4453 | GFP_KERNEL); | ||
| 4454 | if (IS_ERR(child_counter)) | ||
| 4455 | return child_counter; | ||
| 4456 | get_ctx(child_ctx); | ||
| 4457 | |||
| 4458 | /* | ||
| 4459 | * Make the child state follow the state of the parent counter, | ||
| 4460 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 4461 | * so we won't race with perf_counter_{en, dis}able_family. | ||
| 4462 | */ | ||
| 4463 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 4464 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 4465 | else | ||
| 4466 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
| 4467 | |||
| 4468 | if (parent_counter->attr.freq) | ||
| 4469 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | ||
| 4470 | |||
| 4471 | /* | ||
| 4472 | * Link it up in the child's context: | ||
| 4473 | */ | ||
| 4474 | add_counter_to_ctx(child_counter, child_ctx); | ||
| 4475 | |||
| 4476 | /* | ||
| 4477 | * Get a reference to the parent filp - we will fput it | ||
| 4478 | * when the child counter exits. This is safe to do because | ||
| 4479 | * we are in the parent and we know that the filp still | ||
| 4480 | * exists and has a nonzero count: | ||
| 4481 | */ | ||
| 4482 | atomic_long_inc(&parent_counter->filp->f_count); | ||
| 4483 | |||
| 4484 | /* | ||
| 4485 | * Link this into the parent counter's child list | ||
| 4486 | */ | ||
| 4487 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 4488 | mutex_lock(&parent_counter->child_mutex); | ||
| 4489 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
| 4490 | mutex_unlock(&parent_counter->child_mutex); | ||
| 4491 | |||
| 4492 | return child_counter; | ||
| 4493 | } | ||
| 4494 | |||
| 4495 | static int inherit_group(struct perf_counter *parent_counter, | ||
| 4496 | struct task_struct *parent, | ||
| 4497 | struct perf_counter_context *parent_ctx, | ||
| 4498 | struct task_struct *child, | ||
| 4499 | struct perf_counter_context *child_ctx) | ||
| 4500 | { | ||
| 4501 | struct perf_counter *leader; | ||
| 4502 | struct perf_counter *sub; | ||
| 4503 | struct perf_counter *child_ctr; | ||
| 4504 | |||
| 4505 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
| 4506 | child, NULL, child_ctx); | ||
| 4507 | if (IS_ERR(leader)) | ||
| 4508 | return PTR_ERR(leader); | ||
| 4509 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
| 4510 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
| 4511 | child, leader, child_ctx); | ||
| 4512 | if (IS_ERR(child_ctr)) | ||
| 4513 | return PTR_ERR(child_ctr); | ||
| 4514 | } | ||
| 4515 | return 0; | ||
| 4516 | } | ||
| 4517 | |||
| 4518 | static void sync_child_counter(struct perf_counter *child_counter, | ||
| 4519 | struct task_struct *child) | ||
| 4520 | { | ||
| 4521 | struct perf_counter *parent_counter = child_counter->parent; | ||
| 4522 | u64 child_val; | ||
| 4523 | |||
| 4524 | if (child_counter->attr.inherit_stat) | ||
| 4525 | perf_counter_read_event(child_counter, child); | ||
| 4526 | |||
| 4527 | child_val = atomic64_read(&child_counter->count); | ||
| 4528 | |||
| 4529 | /* | ||
| 4530 | * Add back the child's count to the parent's count: | ||
| 4531 | */ | ||
| 4532 | atomic64_add(child_val, &parent_counter->count); | ||
| 4533 | atomic64_add(child_counter->total_time_enabled, | ||
| 4534 | &parent_counter->child_total_time_enabled); | ||
| 4535 | atomic64_add(child_counter->total_time_running, | ||
| 4536 | &parent_counter->child_total_time_running); | ||
| 4537 | |||
| 4538 | /* | ||
| 4539 | * Remove this counter from the parent's list | ||
| 4540 | */ | ||
| 4541 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 4542 | mutex_lock(&parent_counter->child_mutex); | ||
| 4543 | list_del_init(&child_counter->child_list); | ||
| 4544 | mutex_unlock(&parent_counter->child_mutex); | ||
| 4545 | |||
| 4546 | /* | ||
| 4547 | * Release the parent counter, if this was the last | ||
| 4548 | * reference to it. | ||
| 4549 | */ | ||
| 4550 | fput(parent_counter->filp); | ||
| 4551 | } | ||
| 4552 | |||
| 4553 | static void | ||
| 4554 | __perf_counter_exit_task(struct perf_counter *child_counter, | ||
| 4555 | struct perf_counter_context *child_ctx, | ||
| 4556 | struct task_struct *child) | ||
| 4557 | { | ||
| 4558 | struct perf_counter *parent_counter; | ||
| 4559 | |||
| 4560 | update_counter_times(child_counter); | ||
| 4561 | perf_counter_remove_from_context(child_counter); | ||
| 4562 | |||
| 4563 | parent_counter = child_counter->parent; | ||
| 4564 | /* | ||
| 4565 | * It can happen that parent exits first, and has counters | ||
| 4566 | * that are still around due to the child reference. These | ||
| 4567 | * counters need to be zapped - but otherwise linger. | ||
| 4568 | */ | ||
| 4569 | if (parent_counter) { | ||
| 4570 | sync_child_counter(child_counter, child); | ||
| 4571 | free_counter(child_counter); | ||
| 4572 | } | ||
| 4573 | } | ||
| 4574 | |||
| 4575 | /* | ||
| 4576 | * When a child task exits, feed back counter values to parent counters. | ||
| 4577 | */ | ||
| 4578 | void perf_counter_exit_task(struct task_struct *child) | ||
| 4579 | { | ||
| 4580 | struct perf_counter *child_counter, *tmp; | ||
| 4581 | struct perf_counter_context *child_ctx; | ||
| 4582 | unsigned long flags; | ||
| 4583 | |||
| 4584 | if (likely(!child->perf_counter_ctxp)) { | ||
| 4585 | perf_counter_task(child, NULL, 0); | ||
| 4586 | return; | ||
| 4587 | } | ||
| 4588 | |||
| 4589 | local_irq_save(flags); | ||
| 4590 | /* | ||
| 4591 | * We can't reschedule here because interrupts are disabled, | ||
| 4592 | * and either child is current or it is a task that can't be | ||
| 4593 | * scheduled, so we are now safe from rescheduling changing | ||
| 4594 | * our context. | ||
| 4595 | */ | ||
| 4596 | child_ctx = child->perf_counter_ctxp; | ||
| 4597 | __perf_counter_task_sched_out(child_ctx); | ||
| 4598 | |||
| 4599 | /* | ||
| 4600 | * Take the context lock here so that if find_get_context is | ||
| 4601 | * reading child->perf_counter_ctxp, we wait until it has | ||
| 4602 | * incremented the context's refcount before we do put_ctx below. | ||
| 4603 | */ | ||
| 4604 | spin_lock(&child_ctx->lock); | ||
| 4605 | child->perf_counter_ctxp = NULL; | ||
| 4606 | /* | ||
| 4607 | * If this context is a clone; unclone it so it can't get | ||
| 4608 | * swapped to another process while we're removing all | ||
| 4609 | * the counters from it. | ||
| 4610 | */ | ||
| 4611 | unclone_ctx(child_ctx); | ||
| 4612 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
| 4613 | |||
| 4614 | /* | ||
| 4615 | * Report the task dead after unscheduling the counters so that we | ||
| 4616 | * won't get any samples after PERF_EVENT_EXIT. We can however still | ||
| 4617 | * get a few PERF_EVENT_READ events. | ||
| 4618 | */ | ||
| 4619 | perf_counter_task(child, child_ctx, 0); | ||
| 4620 | |||
| 4621 | /* | ||
| 4622 | * We can recurse on the same lock type through: | ||
| 4623 | * | ||
| 4624 | * __perf_counter_exit_task() | ||
| 4625 | * sync_child_counter() | ||
| 4626 | * fput(parent_counter->filp) | ||
| 4627 | * perf_release() | ||
| 4628 | * mutex_lock(&ctx->mutex) | ||
| 4629 | * | ||
| 4630 | * But since its the parent context it won't be the same instance. | ||
| 4631 | */ | ||
| 4632 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 4633 | |||
| 4634 | again: | ||
| 4635 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
| 4636 | list_entry) | ||
| 4637 | __perf_counter_exit_task(child_counter, child_ctx, child); | ||
| 4638 | |||
| 4639 | /* | ||
| 4640 | * If the last counter was a group counter, it will have appended all | ||
| 4641 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 4642 | * will still point to the list head terminating the iteration. | ||
| 4643 | */ | ||
| 4644 | if (!list_empty(&child_ctx->counter_list)) | ||
| 4645 | goto again; | ||
| 4646 | |||
| 4647 | mutex_unlock(&child_ctx->mutex); | ||
| 4648 | |||
| 4649 | put_ctx(child_ctx); | ||
| 4650 | } | ||
| 4651 | |||
| 4652 | /* | ||
| 4653 | * free an unexposed, unused context as created by inheritance by | ||
| 4654 | * init_task below, used by fork() in case of fail. | ||
| 4655 | */ | ||
| 4656 | void perf_counter_free_task(struct task_struct *task) | ||
| 4657 | { | ||
| 4658 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 4659 | struct perf_counter *counter, *tmp; | ||
| 4660 | |||
| 4661 | if (!ctx) | ||
| 4662 | return; | ||
| 4663 | |||
| 4664 | mutex_lock(&ctx->mutex); | ||
| 4665 | again: | ||
| 4666 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | ||
| 4667 | struct perf_counter *parent = counter->parent; | ||
| 4668 | |||
| 4669 | if (WARN_ON_ONCE(!parent)) | ||
| 4670 | continue; | ||
| 4671 | |||
| 4672 | mutex_lock(&parent->child_mutex); | ||
| 4673 | list_del_init(&counter->child_list); | ||
| 4674 | mutex_unlock(&parent->child_mutex); | ||
| 4675 | |||
| 4676 | fput(parent->filp); | ||
| 4677 | |||
| 4678 | list_del_counter(counter, ctx); | ||
| 4679 | free_counter(counter); | ||
| 4680 | } | ||
| 4681 | |||
| 4682 | if (!list_empty(&ctx->counter_list)) | ||
| 4683 | goto again; | ||
| 4684 | |||
| 4685 | mutex_unlock(&ctx->mutex); | ||
| 4686 | |||
| 4687 | put_ctx(ctx); | ||
| 4688 | } | ||
| 4689 | |||
| 4690 | /* | ||
| 4691 | * Initialize the perf_counter context in task_struct | ||
| 4692 | */ | ||
| 4693 | int perf_counter_init_task(struct task_struct *child) | ||
| 4694 | { | ||
| 4695 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
| 4696 | struct perf_counter_context *cloned_ctx; | ||
| 4697 | struct perf_counter *counter; | ||
| 4698 | struct task_struct *parent = current; | ||
| 4699 | int inherited_all = 1; | ||
| 4700 | int ret = 0; | ||
| 4701 | |||
| 4702 | child->perf_counter_ctxp = NULL; | ||
| 4703 | |||
| 4704 | mutex_init(&child->perf_counter_mutex); | ||
| 4705 | INIT_LIST_HEAD(&child->perf_counter_list); | ||
| 4706 | |||
| 4707 | if (likely(!parent->perf_counter_ctxp)) | ||
| 4708 | return 0; | ||
| 4709 | |||
| 4710 | /* | ||
| 4711 | * This is executed from the parent task context, so inherit | ||
| 4712 | * counters that have been marked for cloning. | ||
| 4713 | * First allocate and initialize a context for the child. | ||
| 4714 | */ | ||
| 4715 | |||
| 4716 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 4717 | if (!child_ctx) | ||
| 4718 | return -ENOMEM; | ||
| 4719 | |||
| 4720 | __perf_counter_init_context(child_ctx, child); | ||
| 4721 | child->perf_counter_ctxp = child_ctx; | ||
| 4722 | get_task_struct(child); | ||
| 4723 | |||
| 4724 | /* | ||
| 4725 | * If the parent's context is a clone, pin it so it won't get | ||
| 4726 | * swapped under us. | ||
| 4727 | */ | ||
| 4728 | parent_ctx = perf_pin_task_context(parent); | ||
| 4729 | |||
| 4730 | /* | ||
| 4731 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 4732 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 4733 | * is if we exit, and since we're currently in the middle of | ||
| 4734 | * a fork we can't be exiting at the same time. | ||
| 4735 | */ | ||
| 4736 | |||
| 4737 | /* | ||
| 4738 | * Lock the parent list. No need to lock the child - not PID | ||
| 4739 | * hashed yet and not running, so nobody can access it. | ||
| 4740 | */ | ||
| 4741 | mutex_lock(&parent_ctx->mutex); | ||
| 4742 | |||
| 4743 | /* | ||
| 4744 | * We dont have to disable NMIs - we are only looking at | ||
| 4745 | * the list, not manipulating it: | ||
| 4746 | */ | ||
| 4747 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | ||
| 4748 | if (counter != counter->group_leader) | ||
| 4749 | continue; | ||
| 4750 | |||
| 4751 | if (!counter->attr.inherit) { | ||
| 4752 | inherited_all = 0; | ||
| 4753 | continue; | ||
| 4754 | } | ||
| 4755 | |||
| 4756 | ret = inherit_group(counter, parent, parent_ctx, | ||
| 4757 | child, child_ctx); | ||
| 4758 | if (ret) { | ||
| 4759 | inherited_all = 0; | ||
| 4760 | break; | ||
| 4761 | } | ||
| 4762 | } | ||
| 4763 | |||
| 4764 | if (inherited_all) { | ||
| 4765 | /* | ||
| 4766 | * Mark the child context as a clone of the parent | ||
| 4767 | * context, or of whatever the parent is a clone of. | ||
| 4768 | * Note that if the parent is a clone, it could get | ||
| 4769 | * uncloned at any point, but that doesn't matter | ||
| 4770 | * because the list of counters and the generation | ||
| 4771 | * count can't have changed since we took the mutex. | ||
| 4772 | */ | ||
| 4773 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 4774 | if (cloned_ctx) { | ||
| 4775 | child_ctx->parent_ctx = cloned_ctx; | ||
| 4776 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 4777 | } else { | ||
| 4778 | child_ctx->parent_ctx = parent_ctx; | ||
| 4779 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 4780 | } | ||
| 4781 | get_ctx(child_ctx->parent_ctx); | ||
| 4782 | } | ||
| 4783 | |||
| 4784 | mutex_unlock(&parent_ctx->mutex); | ||
| 4785 | |||
| 4786 | perf_unpin_context(parent_ctx); | ||
| 4787 | |||
| 4788 | return ret; | ||
| 4789 | } | ||
| 4790 | |||
| 4791 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
| 4792 | { | ||
| 4793 | struct perf_cpu_context *cpuctx; | ||
| 4794 | |||
| 4795 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4796 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
| 4797 | |||
| 4798 | spin_lock(&perf_resource_lock); | ||
| 4799 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
| 4800 | spin_unlock(&perf_resource_lock); | ||
| 4801 | |||
| 4802 | hw_perf_counter_setup(cpu); | ||
| 4803 | } | ||
| 4804 | |||
| 4805 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 4806 | static void __perf_counter_exit_cpu(void *info) | ||
| 4807 | { | ||
| 4808 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 4809 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4810 | struct perf_counter *counter, *tmp; | ||
| 4811 | |||
| 4812 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
| 4813 | __perf_counter_remove_from_context(counter); | ||
| 4814 | } | ||
| 4815 | static void perf_counter_exit_cpu(int cpu) | ||
| 4816 | { | ||
| 4817 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4818 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4819 | |||
| 4820 | mutex_lock(&ctx->mutex); | ||
| 4821 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
| 4822 | mutex_unlock(&ctx->mutex); | ||
| 4823 | } | ||
| 4824 | #else | ||
| 4825 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
| 4826 | #endif | ||
| 4827 | |||
| 4828 | static int __cpuinit | ||
| 4829 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 4830 | { | ||
| 4831 | unsigned int cpu = (long)hcpu; | ||
| 4832 | |||
| 4833 | switch (action) { | ||
| 4834 | |||
| 4835 | case CPU_UP_PREPARE: | ||
| 4836 | case CPU_UP_PREPARE_FROZEN: | ||
| 4837 | perf_counter_init_cpu(cpu); | ||
| 4838 | break; | ||
| 4839 | |||
| 4840 | case CPU_ONLINE: | ||
| 4841 | case CPU_ONLINE_FROZEN: | ||
| 4842 | hw_perf_counter_setup_online(cpu); | ||
| 4843 | break; | ||
| 4844 | |||
| 4845 | case CPU_DOWN_PREPARE: | ||
| 4846 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 4847 | perf_counter_exit_cpu(cpu); | ||
| 4848 | break; | ||
| 4849 | |||
| 4850 | default: | ||
| 4851 | break; | ||
| 4852 | } | ||
| 4853 | |||
| 4854 | return NOTIFY_OK; | ||
| 4855 | } | ||
| 4856 | |||
| 4857 | /* | ||
| 4858 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 4859 | */ | ||
| 4860 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 4861 | .notifier_call = perf_cpu_notify, | ||
| 4862 | .priority = 20, | ||
| 4863 | }; | ||
| 4864 | |||
| 4865 | void __init perf_counter_init(void) | ||
| 4866 | { | ||
| 4867 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 4868 | (void *)(long)smp_processor_id()); | ||
| 4869 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
| 4870 | (void *)(long)smp_processor_id()); | ||
| 4871 | register_cpu_notifier(&perf_cpu_nb); | ||
| 4872 | } | ||
| 4873 | |||
| 4874 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 4875 | { | ||
| 4876 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 4877 | } | ||
| 4878 | |||
| 4879 | static ssize_t | ||
| 4880 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 4881 | const char *buf, | ||
| 4882 | size_t count) | ||
| 4883 | { | ||
| 4884 | struct perf_cpu_context *cpuctx; | ||
| 4885 | unsigned long val; | ||
| 4886 | int err, cpu, mpt; | ||
| 4887 | |||
| 4888 | err = strict_strtoul(buf, 10, &val); | ||
| 4889 | if (err) | ||
| 4890 | return err; | ||
| 4891 | if (val > perf_max_counters) | ||
| 4892 | return -EINVAL; | ||
| 4893 | |||
| 4894 | spin_lock(&perf_resource_lock); | ||
| 4895 | perf_reserved_percpu = val; | ||
| 4896 | for_each_online_cpu(cpu) { | ||
| 4897 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4898 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 4899 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
| 4900 | perf_max_counters - perf_reserved_percpu); | ||
| 4901 | cpuctx->max_pertask = mpt; | ||
| 4902 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 4903 | } | ||
| 4904 | spin_unlock(&perf_resource_lock); | ||
| 4905 | |||
| 4906 | return count; | ||
| 4907 | } | ||
| 4908 | |||
| 4909 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 4910 | { | ||
| 4911 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 4912 | } | ||
| 4913 | |||
| 4914 | static ssize_t | ||
| 4915 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 4916 | { | ||
| 4917 | unsigned long val; | ||
| 4918 | int err; | ||
| 4919 | |||
| 4920 | err = strict_strtoul(buf, 10, &val); | ||
| 4921 | if (err) | ||
| 4922 | return err; | ||
| 4923 | if (val > 1) | ||
| 4924 | return -EINVAL; | ||
| 4925 | |||
| 4926 | spin_lock(&perf_resource_lock); | ||
| 4927 | perf_overcommit = val; | ||
| 4928 | spin_unlock(&perf_resource_lock); | ||
| 4929 | |||
| 4930 | return count; | ||
| 4931 | } | ||
| 4932 | |||
| 4933 | static SYSDEV_CLASS_ATTR( | ||
| 4934 | reserve_percpu, | ||
| 4935 | 0644, | ||
| 4936 | perf_show_reserve_percpu, | ||
| 4937 | perf_set_reserve_percpu | ||
| 4938 | ); | ||
| 4939 | |||
| 4940 | static SYSDEV_CLASS_ATTR( | ||
| 4941 | overcommit, | ||
| 4942 | 0644, | ||
| 4943 | perf_show_overcommit, | ||
| 4944 | perf_set_overcommit | ||
| 4945 | ); | ||
| 4946 | |||
| 4947 | static struct attribute *perfclass_attrs[] = { | ||
| 4948 | &attr_reserve_percpu.attr, | ||
| 4949 | &attr_overcommit.attr, | ||
| 4950 | NULL | ||
| 4951 | }; | ||
| 4952 | |||
| 4953 | static struct attribute_group perfclass_attr_group = { | ||
| 4954 | .attrs = perfclass_attrs, | ||
| 4955 | .name = "perf_counters", | ||
| 4956 | }; | ||
| 4957 | |||
| 4958 | static int __init perf_counter_sysfs_init(void) | ||
| 4959 | { | ||
| 4960 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 4961 | &perfclass_attr_group); | ||
| 4962 | } | ||
| 4963 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..0f86feb6db0c --- /dev/null +++ b/kernel/perf_event.c | |||
| @@ -0,0 +1,5000 @@ | |||
| 1 | /* | ||
| 2 | * Performance events core code: | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/hardirq.h> | ||
| 24 | #include <linux/rculist.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/anon_inodes.h> | ||
| 28 | #include <linux/kernel_stat.h> | ||
| 29 | #include <linux/perf_event.h> | ||
| 30 | |||
| 31 | #include <asm/irq_regs.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Each CPU has a list of per CPU events: | ||
| 35 | */ | ||
| 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 37 | |||
| 38 | int perf_max_events __read_mostly = 1; | ||
| 39 | static int perf_reserved_percpu __read_mostly; | ||
| 40 | static int perf_overcommit __read_mostly = 1; | ||
| 41 | |||
| 42 | static atomic_t nr_events __read_mostly; | ||
| 43 | static atomic_t nr_mmap_events __read_mostly; | ||
| 44 | static atomic_t nr_comm_events __read_mostly; | ||
| 45 | static atomic_t nr_task_events __read_mostly; | ||
| 46 | |||
| 47 | /* | ||
| 48 | * perf event paranoia level: | ||
| 49 | * -1 - not paranoid at all | ||
| 50 | * 0 - disallow raw tracepoint access for unpriv | ||
| 51 | * 1 - disallow cpu events for unpriv | ||
| 52 | * 2 - disallow kernel profiling for unpriv | ||
| 53 | */ | ||
| 54 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
| 55 | |||
| 56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
| 57 | { | ||
| 58 | return sysctl_perf_event_paranoid > -1; | ||
| 59 | } | ||
| 60 | |||
| 61 | static inline bool perf_paranoid_cpu(void) | ||
| 62 | { | ||
| 63 | return sysctl_perf_event_paranoid > 0; | ||
| 64 | } | ||
| 65 | |||
| 66 | static inline bool perf_paranoid_kernel(void) | ||
| 67 | { | ||
| 68 | return sysctl_perf_event_paranoid > 1; | ||
| 69 | } | ||
| 70 | |||
| 71 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 72 | |||
| 73 | /* | ||
| 74 | * max perf event sample rate | ||
| 75 | */ | ||
| 76 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
| 77 | |||
| 78 | static atomic64_t perf_event_id; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * Lock for (sysadmin-configurable) event reservations: | ||
| 82 | */ | ||
| 83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 84 | |||
| 85 | /* | ||
| 86 | * Architecture provided APIs - weak aliases: | ||
| 87 | */ | ||
| 88 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
| 89 | { | ||
| 90 | return NULL; | ||
| 91 | } | ||
| 92 | |||
| 93 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 94 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 95 | |||
| 96 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
| 97 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
| 98 | |||
| 99 | int __weak | ||
| 100 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
| 101 | struct perf_cpu_context *cpuctx, | ||
| 102 | struct perf_event_context *ctx, int cpu) | ||
| 103 | { | ||
| 104 | return 0; | ||
| 105 | } | ||
| 106 | |||
| 107 | void __weak perf_event_print_debug(void) { } | ||
| 108 | |||
| 109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
| 110 | |||
| 111 | void __perf_disable(void) | ||
| 112 | { | ||
| 113 | __get_cpu_var(perf_disable_count)++; | ||
| 114 | } | ||
| 115 | |||
| 116 | bool __perf_enable(void) | ||
| 117 | { | ||
| 118 | return !--__get_cpu_var(perf_disable_count); | ||
| 119 | } | ||
| 120 | |||
| 121 | void perf_disable(void) | ||
| 122 | { | ||
| 123 | __perf_disable(); | ||
| 124 | hw_perf_disable(); | ||
| 125 | } | ||
| 126 | |||
| 127 | void perf_enable(void) | ||
| 128 | { | ||
| 129 | if (__perf_enable()) | ||
| 130 | hw_perf_enable(); | ||
| 131 | } | ||
| 132 | |||
| 133 | static void get_ctx(struct perf_event_context *ctx) | ||
| 134 | { | ||
| 135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
| 136 | } | ||
| 137 | |||
| 138 | static void free_ctx(struct rcu_head *head) | ||
| 139 | { | ||
| 140 | struct perf_event_context *ctx; | ||
| 141 | |||
| 142 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
| 143 | kfree(ctx); | ||
| 144 | } | ||
| 145 | |||
| 146 | static void put_ctx(struct perf_event_context *ctx) | ||
| 147 | { | ||
| 148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 149 | if (ctx->parent_ctx) | ||
| 150 | put_ctx(ctx->parent_ctx); | ||
| 151 | if (ctx->task) | ||
| 152 | put_task_struct(ctx->task); | ||
| 153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 154 | } | ||
| 155 | } | ||
| 156 | |||
| 157 | static void unclone_ctx(struct perf_event_context *ctx) | ||
| 158 | { | ||
| 159 | if (ctx->parent_ctx) { | ||
| 160 | put_ctx(ctx->parent_ctx); | ||
| 161 | ctx->parent_ctx = NULL; | ||
| 162 | } | ||
| 163 | } | ||
| 164 | |||
| 165 | /* | ||
| 166 | * If we inherit events we want to return the parent event id | ||
| 167 | * to userspace. | ||
| 168 | */ | ||
| 169 | static u64 primary_event_id(struct perf_event *event) | ||
| 170 | { | ||
| 171 | u64 id = event->id; | ||
| 172 | |||
| 173 | if (event->parent) | ||
| 174 | id = event->parent->id; | ||
| 175 | |||
| 176 | return id; | ||
| 177 | } | ||
| 178 | |||
| 179 | /* | ||
| 180 | * Get the perf_event_context for a task and lock it. | ||
| 181 | * This has to cope with with the fact that until it is locked, | ||
| 182 | * the context could get moved to another task. | ||
| 183 | */ | ||
| 184 | static struct perf_event_context * | ||
| 185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 186 | { | ||
| 187 | struct perf_event_context *ctx; | ||
| 188 | |||
| 189 | rcu_read_lock(); | ||
| 190 | retry: | ||
| 191 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
| 192 | if (ctx) { | ||
| 193 | /* | ||
| 194 | * If this context is a clone of another, it might | ||
| 195 | * get swapped for another underneath us by | ||
| 196 | * perf_event_task_sched_out, though the | ||
| 197 | * rcu_read_lock() protects us from any context | ||
| 198 | * getting freed. Lock the context and check if it | ||
| 199 | * got swapped before we could get the lock, and retry | ||
| 200 | * if so. If we locked the right context, then it | ||
| 201 | * can't get swapped on us any more. | ||
| 202 | */ | ||
| 203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 204 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
| 205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 206 | goto retry; | ||
| 207 | } | ||
| 208 | |||
| 209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
| 210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 211 | ctx = NULL; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | rcu_read_unlock(); | ||
| 215 | return ctx; | ||
| 216 | } | ||
| 217 | |||
| 218 | /* | ||
| 219 | * Get the context for a task and increment its pin_count so it | ||
| 220 | * can't get swapped to another task. This also increments its | ||
| 221 | * reference count so that the context can't get freed. | ||
| 222 | */ | ||
| 223 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
| 224 | { | ||
| 225 | struct perf_event_context *ctx; | ||
| 226 | unsigned long flags; | ||
| 227 | |||
| 228 | ctx = perf_lock_task_context(task, &flags); | ||
| 229 | if (ctx) { | ||
| 230 | ++ctx->pin_count; | ||
| 231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 232 | } | ||
| 233 | return ctx; | ||
| 234 | } | ||
| 235 | |||
| 236 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
| 237 | { | ||
| 238 | unsigned long flags; | ||
| 239 | |||
| 240 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 241 | --ctx->pin_count; | ||
| 242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 243 | put_ctx(ctx); | ||
| 244 | } | ||
| 245 | |||
| 246 | /* | ||
| 247 | * Add a event from the lists for its context. | ||
| 248 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 249 | */ | ||
| 250 | static void | ||
| 251 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 252 | { | ||
| 253 | struct perf_event *group_leader = event->group_leader; | ||
| 254 | |||
| 255 | /* | ||
| 256 | * Depending on whether it is a standalone or sibling event, | ||
| 257 | * add it straight to the context's event list, or to the group | ||
| 258 | * leader's sibling list: | ||
| 259 | */ | ||
| 260 | if (group_leader == event) | ||
| 261 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
| 262 | else { | ||
| 263 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
| 264 | group_leader->nr_siblings++; | ||
| 265 | } | ||
| 266 | |||
| 267 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
| 268 | ctx->nr_events++; | ||
| 269 | if (event->attr.inherit_stat) | ||
| 270 | ctx->nr_stat++; | ||
| 271 | } | ||
| 272 | |||
| 273 | /* | ||
| 274 | * Remove a event from the lists for its context. | ||
| 275 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 276 | */ | ||
| 277 | static void | ||
| 278 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 279 | { | ||
| 280 | struct perf_event *sibling, *tmp; | ||
| 281 | |||
| 282 | if (list_empty(&event->group_entry)) | ||
| 283 | return; | ||
| 284 | ctx->nr_events--; | ||
| 285 | if (event->attr.inherit_stat) | ||
| 286 | ctx->nr_stat--; | ||
| 287 | |||
| 288 | list_del_init(&event->group_entry); | ||
| 289 | list_del_rcu(&event->event_entry); | ||
| 290 | |||
| 291 | if (event->group_leader != event) | ||
| 292 | event->group_leader->nr_siblings--; | ||
| 293 | |||
| 294 | /* | ||
| 295 | * If this was a group event with sibling events then | ||
| 296 | * upgrade the siblings to singleton events by adding them | ||
| 297 | * to the context list directly: | ||
| 298 | */ | ||
| 299 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
| 300 | |||
| 301 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
| 302 | sibling->group_leader = sibling; | ||
| 303 | } | ||
| 304 | } | ||
| 305 | |||
| 306 | static void | ||
| 307 | event_sched_out(struct perf_event *event, | ||
| 308 | struct perf_cpu_context *cpuctx, | ||
| 309 | struct perf_event_context *ctx) | ||
| 310 | { | ||
| 311 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 312 | return; | ||
| 313 | |||
| 314 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 315 | if (event->pending_disable) { | ||
| 316 | event->pending_disable = 0; | ||
| 317 | event->state = PERF_EVENT_STATE_OFF; | ||
| 318 | } | ||
| 319 | event->tstamp_stopped = ctx->time; | ||
| 320 | event->pmu->disable(event); | ||
| 321 | event->oncpu = -1; | ||
| 322 | |||
| 323 | if (!is_software_event(event)) | ||
| 324 | cpuctx->active_oncpu--; | ||
| 325 | ctx->nr_active--; | ||
| 326 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
| 327 | cpuctx->exclusive = 0; | ||
| 328 | } | ||
| 329 | |||
| 330 | static void | ||
| 331 | group_sched_out(struct perf_event *group_event, | ||
| 332 | struct perf_cpu_context *cpuctx, | ||
| 333 | struct perf_event_context *ctx) | ||
| 334 | { | ||
| 335 | struct perf_event *event; | ||
| 336 | |||
| 337 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 338 | return; | ||
| 339 | |||
| 340 | event_sched_out(group_event, cpuctx, ctx); | ||
| 341 | |||
| 342 | /* | ||
| 343 | * Schedule out siblings (if any): | ||
| 344 | */ | ||
| 345 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
| 346 | event_sched_out(event, cpuctx, ctx); | ||
| 347 | |||
| 348 | if (group_event->attr.exclusive) | ||
| 349 | cpuctx->exclusive = 0; | ||
| 350 | } | ||
| 351 | |||
| 352 | /* | ||
| 353 | * Cross CPU call to remove a performance event | ||
| 354 | * | ||
| 355 | * We disable the event on the hardware level first. After that we | ||
| 356 | * remove it from the context list. | ||
| 357 | */ | ||
| 358 | static void __perf_event_remove_from_context(void *info) | ||
| 359 | { | ||
| 360 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 361 | struct perf_event *event = info; | ||
| 362 | struct perf_event_context *ctx = event->ctx; | ||
| 363 | |||
| 364 | /* | ||
| 365 | * If this is a task context, we need to check whether it is | ||
| 366 | * the current task context of this cpu. If not it has been | ||
| 367 | * scheduled out before the smp call arrived. | ||
| 368 | */ | ||
| 369 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 370 | return; | ||
| 371 | |||
| 372 | spin_lock(&ctx->lock); | ||
| 373 | /* | ||
| 374 | * Protect the list operation against NMI by disabling the | ||
| 375 | * events on a global level. | ||
| 376 | */ | ||
| 377 | perf_disable(); | ||
| 378 | |||
| 379 | event_sched_out(event, cpuctx, ctx); | ||
| 380 | |||
| 381 | list_del_event(event, ctx); | ||
| 382 | |||
| 383 | if (!ctx->task) { | ||
| 384 | /* | ||
| 385 | * Allow more per task events with respect to the | ||
| 386 | * reservation: | ||
| 387 | */ | ||
| 388 | cpuctx->max_pertask = | ||
| 389 | min(perf_max_events - ctx->nr_events, | ||
| 390 | perf_max_events - perf_reserved_percpu); | ||
| 391 | } | ||
| 392 | |||
| 393 | perf_enable(); | ||
| 394 | spin_unlock(&ctx->lock); | ||
| 395 | } | ||
| 396 | |||
| 397 | |||
| 398 | /* | ||
| 399 | * Remove the event from a task's (or a CPU's) list of events. | ||
| 400 | * | ||
| 401 | * Must be called with ctx->mutex held. | ||
| 402 | * | ||
| 403 | * CPU events are removed with a smp call. For task events we only | ||
| 404 | * call when the task is on a CPU. | ||
| 405 | * | ||
| 406 | * If event->ctx is a cloned context, callers must make sure that | ||
| 407 | * every task struct that event->ctx->task could possibly point to | ||
| 408 | * remains valid. This is OK when called from perf_release since | ||
| 409 | * that only calls us on the top-level context, which can't be a clone. | ||
| 410 | * When called from perf_event_exit_task, it's OK because the | ||
| 411 | * context has been detached from its task. | ||
| 412 | */ | ||
| 413 | static void perf_event_remove_from_context(struct perf_event *event) | ||
| 414 | { | ||
| 415 | struct perf_event_context *ctx = event->ctx; | ||
| 416 | struct task_struct *task = ctx->task; | ||
| 417 | |||
| 418 | if (!task) { | ||
| 419 | /* | ||
| 420 | * Per cpu events are removed via an smp call and | ||
| 421 | * the removal is always sucessful. | ||
| 422 | */ | ||
| 423 | smp_call_function_single(event->cpu, | ||
| 424 | __perf_event_remove_from_context, | ||
| 425 | event, 1); | ||
| 426 | return; | ||
| 427 | } | ||
| 428 | |||
| 429 | retry: | ||
| 430 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
| 431 | event); | ||
| 432 | |||
| 433 | spin_lock_irq(&ctx->lock); | ||
| 434 | /* | ||
| 435 | * If the context is active we need to retry the smp call. | ||
| 436 | */ | ||
| 437 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
| 438 | spin_unlock_irq(&ctx->lock); | ||
| 439 | goto retry; | ||
| 440 | } | ||
| 441 | |||
| 442 | /* | ||
| 443 | * The lock prevents that this context is scheduled in so we | ||
| 444 | * can remove the event safely, if the call above did not | ||
| 445 | * succeed. | ||
| 446 | */ | ||
| 447 | if (!list_empty(&event->group_entry)) { | ||
| 448 | list_del_event(event, ctx); | ||
| 449 | } | ||
| 450 | spin_unlock_irq(&ctx->lock); | ||
| 451 | } | ||
| 452 | |||
| 453 | static inline u64 perf_clock(void) | ||
| 454 | { | ||
| 455 | return cpu_clock(smp_processor_id()); | ||
| 456 | } | ||
| 457 | |||
| 458 | /* | ||
| 459 | * Update the record of the current time in a context. | ||
| 460 | */ | ||
| 461 | static void update_context_time(struct perf_event_context *ctx) | ||
| 462 | { | ||
| 463 | u64 now = perf_clock(); | ||
| 464 | |||
| 465 | ctx->time += now - ctx->timestamp; | ||
| 466 | ctx->timestamp = now; | ||
| 467 | } | ||
| 468 | |||
| 469 | /* | ||
| 470 | * Update the total_time_enabled and total_time_running fields for a event. | ||
| 471 | */ | ||
| 472 | static void update_event_times(struct perf_event *event) | ||
| 473 | { | ||
| 474 | struct perf_event_context *ctx = event->ctx; | ||
| 475 | u64 run_end; | ||
| 476 | |||
| 477 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
| 478 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
| 479 | return; | ||
| 480 | |||
| 481 | event->total_time_enabled = ctx->time - event->tstamp_enabled; | ||
| 482 | |||
| 483 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
| 484 | run_end = event->tstamp_stopped; | ||
| 485 | else | ||
| 486 | run_end = ctx->time; | ||
| 487 | |||
| 488 | event->total_time_running = run_end - event->tstamp_running; | ||
| 489 | } | ||
| 490 | |||
| 491 | /* | ||
| 492 | * Update total_time_enabled and total_time_running for all events in a group. | ||
| 493 | */ | ||
| 494 | static void update_group_times(struct perf_event *leader) | ||
| 495 | { | ||
| 496 | struct perf_event *event; | ||
| 497 | |||
| 498 | update_event_times(leader); | ||
| 499 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 500 | update_event_times(event); | ||
| 501 | } | ||
| 502 | |||
| 503 | /* | ||
| 504 | * Cross CPU call to disable a performance event | ||
| 505 | */ | ||
| 506 | static void __perf_event_disable(void *info) | ||
| 507 | { | ||
| 508 | struct perf_event *event = info; | ||
| 509 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 510 | struct perf_event_context *ctx = event->ctx; | ||
| 511 | |||
| 512 | /* | ||
| 513 | * If this is a per-task event, need to check whether this | ||
| 514 | * event's task is the current task on this cpu. | ||
| 515 | */ | ||
| 516 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 517 | return; | ||
| 518 | |||
| 519 | spin_lock(&ctx->lock); | ||
| 520 | |||
| 521 | /* | ||
| 522 | * If the event is on, turn it off. | ||
| 523 | * If it is in error state, leave it in error state. | ||
| 524 | */ | ||
| 525 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
| 526 | update_context_time(ctx); | ||
| 527 | update_group_times(event); | ||
| 528 | if (event == event->group_leader) | ||
| 529 | group_sched_out(event, cpuctx, ctx); | ||
| 530 | else | ||
| 531 | event_sched_out(event, cpuctx, ctx); | ||
| 532 | event->state = PERF_EVENT_STATE_OFF; | ||
| 533 | } | ||
| 534 | |||
| 535 | spin_unlock(&ctx->lock); | ||
| 536 | } | ||
| 537 | |||
| 538 | /* | ||
| 539 | * Disable a event. | ||
| 540 | * | ||
| 541 | * If event->ctx is a cloned context, callers must make sure that | ||
| 542 | * every task struct that event->ctx->task could possibly point to | ||
| 543 | * remains valid. This condition is satisifed when called through | ||
| 544 | * perf_event_for_each_child or perf_event_for_each because they | ||
| 545 | * hold the top-level event's child_mutex, so any descendant that | ||
| 546 | * goes to exit will block in sync_child_event. | ||
| 547 | * When called from perf_pending_event it's OK because event->ctx | ||
| 548 | * is the current context on this CPU and preemption is disabled, | ||
| 549 | * hence we can't get into perf_event_task_sched_out for this context. | ||
| 550 | */ | ||
| 551 | static void perf_event_disable(struct perf_event *event) | ||
| 552 | { | ||
| 553 | struct perf_event_context *ctx = event->ctx; | ||
| 554 | struct task_struct *task = ctx->task; | ||
| 555 | |||
| 556 | if (!task) { | ||
| 557 | /* | ||
| 558 | * Disable the event on the cpu that it's on | ||
| 559 | */ | ||
| 560 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
| 561 | event, 1); | ||
| 562 | return; | ||
| 563 | } | ||
| 564 | |||
| 565 | retry: | ||
| 566 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
| 567 | |||
| 568 | spin_lock_irq(&ctx->lock); | ||
| 569 | /* | ||
| 570 | * If the event is still active, we need to retry the cross-call. | ||
| 571 | */ | ||
| 572 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 573 | spin_unlock_irq(&ctx->lock); | ||
| 574 | goto retry; | ||
| 575 | } | ||
| 576 | |||
| 577 | /* | ||
| 578 | * Since we have the lock this context can't be scheduled | ||
| 579 | * in, so we can change the state safely. | ||
| 580 | */ | ||
| 581 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 582 | update_group_times(event); | ||
| 583 | event->state = PERF_EVENT_STATE_OFF; | ||
| 584 | } | ||
| 585 | |||
| 586 | spin_unlock_irq(&ctx->lock); | ||
| 587 | } | ||
| 588 | |||
| 589 | static int | ||
| 590 | event_sched_in(struct perf_event *event, | ||
| 591 | struct perf_cpu_context *cpuctx, | ||
| 592 | struct perf_event_context *ctx, | ||
| 593 | int cpu) | ||
| 594 | { | ||
| 595 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
| 596 | return 0; | ||
| 597 | |||
| 598 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
| 599 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 600 | /* | ||
| 601 | * The new state must be visible before we turn it on in the hardware: | ||
| 602 | */ | ||
| 603 | smp_wmb(); | ||
| 604 | |||
| 605 | if (event->pmu->enable(event)) { | ||
| 606 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 607 | event->oncpu = -1; | ||
| 608 | return -EAGAIN; | ||
| 609 | } | ||
| 610 | |||
| 611 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
| 612 | |||
| 613 | if (!is_software_event(event)) | ||
| 614 | cpuctx->active_oncpu++; | ||
| 615 | ctx->nr_active++; | ||
| 616 | |||
| 617 | if (event->attr.exclusive) | ||
| 618 | cpuctx->exclusive = 1; | ||
| 619 | |||
| 620 | return 0; | ||
| 621 | } | ||
| 622 | |||
| 623 | static int | ||
| 624 | group_sched_in(struct perf_event *group_event, | ||
| 625 | struct perf_cpu_context *cpuctx, | ||
| 626 | struct perf_event_context *ctx, | ||
| 627 | int cpu) | ||
| 628 | { | ||
| 629 | struct perf_event *event, *partial_group; | ||
| 630 | int ret; | ||
| 631 | |||
| 632 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
| 633 | return 0; | ||
| 634 | |||
| 635 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
| 636 | if (ret) | ||
| 637 | return ret < 0 ? ret : 0; | ||
| 638 | |||
| 639 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
| 640 | return -EAGAIN; | ||
| 641 | |||
| 642 | /* | ||
| 643 | * Schedule in siblings as one group (if any): | ||
| 644 | */ | ||
| 645 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 646 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
| 647 | partial_group = event; | ||
| 648 | goto group_error; | ||
| 649 | } | ||
| 650 | } | ||
| 651 | |||
| 652 | return 0; | ||
| 653 | |||
| 654 | group_error: | ||
| 655 | /* | ||
| 656 | * Groups can be scheduled in as one unit only, so undo any | ||
| 657 | * partial group before returning: | ||
| 658 | */ | ||
| 659 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 660 | if (event == partial_group) | ||
| 661 | break; | ||
| 662 | event_sched_out(event, cpuctx, ctx); | ||
| 663 | } | ||
| 664 | event_sched_out(group_event, cpuctx, ctx); | ||
| 665 | |||
| 666 | return -EAGAIN; | ||
| 667 | } | ||
| 668 | |||
| 669 | /* | ||
| 670 | * Return 1 for a group consisting entirely of software events, | ||
| 671 | * 0 if the group contains any hardware events. | ||
| 672 | */ | ||
| 673 | static int is_software_only_group(struct perf_event *leader) | ||
| 674 | { | ||
| 675 | struct perf_event *event; | ||
| 676 | |||
| 677 | if (!is_software_event(leader)) | ||
| 678 | return 0; | ||
| 679 | |||
| 680 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 681 | if (!is_software_event(event)) | ||
| 682 | return 0; | ||
| 683 | |||
| 684 | return 1; | ||
| 685 | } | ||
| 686 | |||
| 687 | /* | ||
| 688 | * Work out whether we can put this event group on the CPU now. | ||
| 689 | */ | ||
| 690 | static int group_can_go_on(struct perf_event *event, | ||
| 691 | struct perf_cpu_context *cpuctx, | ||
| 692 | int can_add_hw) | ||
| 693 | { | ||
| 694 | /* | ||
| 695 | * Groups consisting entirely of software events can always go on. | ||
| 696 | */ | ||
| 697 | if (is_software_only_group(event)) | ||
| 698 | return 1; | ||
| 699 | /* | ||
| 700 | * If an exclusive group is already on, no other hardware | ||
| 701 | * events can go on. | ||
| 702 | */ | ||
| 703 | if (cpuctx->exclusive) | ||
| 704 | return 0; | ||
| 705 | /* | ||
| 706 | * If this group is exclusive and there are already | ||
| 707 | * events on the CPU, it can't go on. | ||
| 708 | */ | ||
| 709 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
| 710 | return 0; | ||
| 711 | /* | ||
| 712 | * Otherwise, try to add it if all previous groups were able | ||
| 713 | * to go on. | ||
| 714 | */ | ||
| 715 | return can_add_hw; | ||
| 716 | } | ||
| 717 | |||
| 718 | static void add_event_to_ctx(struct perf_event *event, | ||
| 719 | struct perf_event_context *ctx) | ||
| 720 | { | ||
| 721 | list_add_event(event, ctx); | ||
| 722 | event->tstamp_enabled = ctx->time; | ||
| 723 | event->tstamp_running = ctx->time; | ||
| 724 | event->tstamp_stopped = ctx->time; | ||
| 725 | } | ||
| 726 | |||
| 727 | /* | ||
| 728 | * Cross CPU call to install and enable a performance event | ||
| 729 | * | ||
| 730 | * Must be called with ctx->mutex held | ||
| 731 | */ | ||
| 732 | static void __perf_install_in_context(void *info) | ||
| 733 | { | ||
| 734 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 735 | struct perf_event *event = info; | ||
| 736 | struct perf_event_context *ctx = event->ctx; | ||
| 737 | struct perf_event *leader = event->group_leader; | ||
| 738 | int cpu = smp_processor_id(); | ||
| 739 | int err; | ||
| 740 | |||
| 741 | /* | ||
| 742 | * If this is a task context, we need to check whether it is | ||
| 743 | * the current task context of this cpu. If not it has been | ||
| 744 | * scheduled out before the smp call arrived. | ||
| 745 | * Or possibly this is the right context but it isn't | ||
| 746 | * on this cpu because it had no events. | ||
| 747 | */ | ||
| 748 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 749 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 750 | return; | ||
| 751 | cpuctx->task_ctx = ctx; | ||
| 752 | } | ||
| 753 | |||
| 754 | spin_lock(&ctx->lock); | ||
| 755 | ctx->is_active = 1; | ||
| 756 | update_context_time(ctx); | ||
| 757 | |||
| 758 | /* | ||
| 759 | * Protect the list operation against NMI by disabling the | ||
| 760 | * events on a global level. NOP for non NMI based events. | ||
| 761 | */ | ||
| 762 | perf_disable(); | ||
| 763 | |||
| 764 | add_event_to_ctx(event, ctx); | ||
| 765 | |||
| 766 | /* | ||
| 767 | * Don't put the event on if it is disabled or if | ||
| 768 | * it is in a group and the group isn't on. | ||
| 769 | */ | ||
| 770 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
| 771 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
| 772 | goto unlock; | ||
| 773 | |||
| 774 | /* | ||
| 775 | * An exclusive event can't go on if there are already active | ||
| 776 | * hardware events, and no hardware event can go on if there | ||
| 777 | * is already an exclusive event on. | ||
| 778 | */ | ||
| 779 | if (!group_can_go_on(event, cpuctx, 1)) | ||
| 780 | err = -EEXIST; | ||
| 781 | else | ||
| 782 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
| 783 | |||
| 784 | if (err) { | ||
| 785 | /* | ||
| 786 | * This event couldn't go on. If it is in a group | ||
| 787 | * then we have to pull the whole group off. | ||
| 788 | * If the event group is pinned then put it in error state. | ||
| 789 | */ | ||
| 790 | if (leader != event) | ||
| 791 | group_sched_out(leader, cpuctx, ctx); | ||
| 792 | if (leader->attr.pinned) { | ||
| 793 | update_group_times(leader); | ||
| 794 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 795 | } | ||
| 796 | } | ||
| 797 | |||
| 798 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 799 | cpuctx->max_pertask--; | ||
| 800 | |||
| 801 | unlock: | ||
| 802 | perf_enable(); | ||
| 803 | |||
| 804 | spin_unlock(&ctx->lock); | ||
| 805 | } | ||
| 806 | |||
| 807 | /* | ||
| 808 | * Attach a performance event to a context | ||
| 809 | * | ||
| 810 | * First we add the event to the list with the hardware enable bit | ||
| 811 | * in event->hw_config cleared. | ||
| 812 | * | ||
| 813 | * If the event is attached to a task which is on a CPU we use a smp | ||
| 814 | * call to enable it in the task context. The task might have been | ||
| 815 | * scheduled away, but we check this in the smp call again. | ||
| 816 | * | ||
| 817 | * Must be called with ctx->mutex held. | ||
| 818 | */ | ||
| 819 | static void | ||
| 820 | perf_install_in_context(struct perf_event_context *ctx, | ||
| 821 | struct perf_event *event, | ||
| 822 | int cpu) | ||
| 823 | { | ||
| 824 | struct task_struct *task = ctx->task; | ||
| 825 | |||
| 826 | if (!task) { | ||
| 827 | /* | ||
| 828 | * Per cpu events are installed via an smp call and | ||
| 829 | * the install is always sucessful. | ||
| 830 | */ | ||
| 831 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 832 | event, 1); | ||
| 833 | return; | ||
| 834 | } | ||
| 835 | |||
| 836 | retry: | ||
| 837 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 838 | event); | ||
| 839 | |||
| 840 | spin_lock_irq(&ctx->lock); | ||
| 841 | /* | ||
| 842 | * we need to retry the smp call. | ||
| 843 | */ | ||
| 844 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
| 845 | spin_unlock_irq(&ctx->lock); | ||
| 846 | goto retry; | ||
| 847 | } | ||
| 848 | |||
| 849 | /* | ||
| 850 | * The lock prevents that this context is scheduled in so we | ||
| 851 | * can add the event safely, if it the call above did not | ||
| 852 | * succeed. | ||
| 853 | */ | ||
| 854 | if (list_empty(&event->group_entry)) | ||
| 855 | add_event_to_ctx(event, ctx); | ||
| 856 | spin_unlock_irq(&ctx->lock); | ||
| 857 | } | ||
| 858 | |||
| 859 | /* | ||
| 860 | * Put a event into inactive state and update time fields. | ||
| 861 | * Enabling the leader of a group effectively enables all | ||
| 862 | * the group members that aren't explicitly disabled, so we | ||
| 863 | * have to update their ->tstamp_enabled also. | ||
| 864 | * Note: this works for group members as well as group leaders | ||
| 865 | * since the non-leader members' sibling_lists will be empty. | ||
| 866 | */ | ||
| 867 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
| 868 | struct perf_event_context *ctx) | ||
| 869 | { | ||
| 870 | struct perf_event *sub; | ||
| 871 | |||
| 872 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 873 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
| 874 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
| 875 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 876 | sub->tstamp_enabled = | ||
| 877 | ctx->time - sub->total_time_enabled; | ||
| 878 | } | ||
| 879 | |||
| 880 | /* | ||
| 881 | * Cross CPU call to enable a performance event | ||
| 882 | */ | ||
| 883 | static void __perf_event_enable(void *info) | ||
| 884 | { | ||
| 885 | struct perf_event *event = info; | ||
| 886 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 887 | struct perf_event_context *ctx = event->ctx; | ||
| 888 | struct perf_event *leader = event->group_leader; | ||
| 889 | int err; | ||
| 890 | |||
| 891 | /* | ||
| 892 | * If this is a per-task event, need to check whether this | ||
| 893 | * event's task is the current task on this cpu. | ||
| 894 | */ | ||
| 895 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 896 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 897 | return; | ||
| 898 | cpuctx->task_ctx = ctx; | ||
| 899 | } | ||
| 900 | |||
| 901 | spin_lock(&ctx->lock); | ||
| 902 | ctx->is_active = 1; | ||
| 903 | update_context_time(ctx); | ||
| 904 | |||
| 905 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 906 | goto unlock; | ||
| 907 | __perf_event_mark_enabled(event, ctx); | ||
| 908 | |||
| 909 | /* | ||
| 910 | * If the event is in a group and isn't the group leader, | ||
| 911 | * then don't put it on unless the group is on. | ||
| 912 | */ | ||
| 913 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
| 914 | goto unlock; | ||
| 915 | |||
| 916 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
| 917 | err = -EEXIST; | ||
| 918 | } else { | ||
| 919 | perf_disable(); | ||
| 920 | if (event == leader) | ||
| 921 | err = group_sched_in(event, cpuctx, ctx, | ||
| 922 | smp_processor_id()); | ||
| 923 | else | ||
| 924 | err = event_sched_in(event, cpuctx, ctx, | ||
| 925 | smp_processor_id()); | ||
| 926 | perf_enable(); | ||
| 927 | } | ||
| 928 | |||
| 929 | if (err) { | ||
| 930 | /* | ||
| 931 | * If this event can't go on and it's part of a | ||
| 932 | * group, then the whole group has to come off. | ||
| 933 | */ | ||
| 934 | if (leader != event) | ||
| 935 | group_sched_out(leader, cpuctx, ctx); | ||
| 936 | if (leader->attr.pinned) { | ||
| 937 | update_group_times(leader); | ||
| 938 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 939 | } | ||
| 940 | } | ||
| 941 | |||
| 942 | unlock: | ||
| 943 | spin_unlock(&ctx->lock); | ||
| 944 | } | ||
| 945 | |||
| 946 | /* | ||
| 947 | * Enable a event. | ||
| 948 | * | ||
| 949 | * If event->ctx is a cloned context, callers must make sure that | ||
| 950 | * every task struct that event->ctx->task could possibly point to | ||
| 951 | * remains valid. This condition is satisfied when called through | ||
| 952 | * perf_event_for_each_child or perf_event_for_each as described | ||
| 953 | * for perf_event_disable. | ||
| 954 | */ | ||
| 955 | static void perf_event_enable(struct perf_event *event) | ||
| 956 | { | ||
| 957 | struct perf_event_context *ctx = event->ctx; | ||
| 958 | struct task_struct *task = ctx->task; | ||
| 959 | |||
| 960 | if (!task) { | ||
| 961 | /* | ||
| 962 | * Enable the event on the cpu that it's on | ||
| 963 | */ | ||
| 964 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
| 965 | event, 1); | ||
| 966 | return; | ||
| 967 | } | ||
| 968 | |||
| 969 | spin_lock_irq(&ctx->lock); | ||
| 970 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 971 | goto out; | ||
| 972 | |||
| 973 | /* | ||
| 974 | * If the event is in error state, clear that first. | ||
| 975 | * That way, if we see the event in error state below, we | ||
| 976 | * know that it has gone back into error state, as distinct | ||
| 977 | * from the task having been scheduled away before the | ||
| 978 | * cross-call arrived. | ||
| 979 | */ | ||
| 980 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 981 | event->state = PERF_EVENT_STATE_OFF; | ||
| 982 | |||
| 983 | retry: | ||
| 984 | spin_unlock_irq(&ctx->lock); | ||
| 985 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
| 986 | |||
| 987 | spin_lock_irq(&ctx->lock); | ||
| 988 | |||
| 989 | /* | ||
| 990 | * If the context is active and the event is still off, | ||
| 991 | * we need to retry the cross-call. | ||
| 992 | */ | ||
| 993 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
| 994 | goto retry; | ||
| 995 | |||
| 996 | /* | ||
| 997 | * Since we have the lock this context can't be scheduled | ||
| 998 | * in, so we can change the state safely. | ||
| 999 | */ | ||
| 1000 | if (event->state == PERF_EVENT_STATE_OFF) | ||
| 1001 | __perf_event_mark_enabled(event, ctx); | ||
| 1002 | |||
| 1003 | out: | ||
| 1004 | spin_unlock_irq(&ctx->lock); | ||
| 1005 | } | ||
| 1006 | |||
| 1007 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
| 1008 | { | ||
| 1009 | /* | ||
| 1010 | * not supported on inherited events | ||
| 1011 | */ | ||
| 1012 | if (event->attr.inherit) | ||
| 1013 | return -EINVAL; | ||
| 1014 | |||
| 1015 | atomic_add(refresh, &event->event_limit); | ||
| 1016 | perf_event_enable(event); | ||
| 1017 | |||
| 1018 | return 0; | ||
| 1019 | } | ||
| 1020 | |||
| 1021 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
| 1022 | struct perf_cpu_context *cpuctx) | ||
| 1023 | { | ||
| 1024 | struct perf_event *event; | ||
| 1025 | |||
| 1026 | spin_lock(&ctx->lock); | ||
| 1027 | ctx->is_active = 0; | ||
| 1028 | if (likely(!ctx->nr_events)) | ||
| 1029 | goto out; | ||
| 1030 | update_context_time(ctx); | ||
| 1031 | |||
| 1032 | perf_disable(); | ||
| 1033 | if (ctx->nr_active) { | ||
| 1034 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1035 | if (event != event->group_leader) | ||
| 1036 | event_sched_out(event, cpuctx, ctx); | ||
| 1037 | else | ||
| 1038 | group_sched_out(event, cpuctx, ctx); | ||
| 1039 | } | ||
| 1040 | } | ||
| 1041 | perf_enable(); | ||
| 1042 | out: | ||
| 1043 | spin_unlock(&ctx->lock); | ||
| 1044 | } | ||
| 1045 | |||
| 1046 | /* | ||
| 1047 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 1048 | * have both been cloned from the same version of the same context | ||
| 1049 | * and they both have the same number of enabled events. | ||
| 1050 | * If the number of enabled events is the same, then the set | ||
| 1051 | * of enabled events should be the same, because these are both | ||
| 1052 | * inherited contexts, therefore we can't access individual events | ||
| 1053 | * in them directly with an fd; we can only enable/disable all | ||
| 1054 | * events via prctl, or enable/disable all events in a family | ||
| 1055 | * via ioctl, which will have the same effect on both contexts. | ||
| 1056 | */ | ||
| 1057 | static int context_equiv(struct perf_event_context *ctx1, | ||
| 1058 | struct perf_event_context *ctx2) | ||
| 1059 | { | ||
| 1060 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1061 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1062 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1063 | } | ||
| 1064 | |||
| 1065 | static void __perf_event_read(void *event); | ||
| 1066 | |||
| 1067 | static void __perf_event_sync_stat(struct perf_event *event, | ||
| 1068 | struct perf_event *next_event) | ||
| 1069 | { | ||
| 1070 | u64 value; | ||
| 1071 | |||
| 1072 | if (!event->attr.inherit_stat) | ||
| 1073 | return; | ||
| 1074 | |||
| 1075 | /* | ||
| 1076 | * Update the event value, we cannot use perf_event_read() | ||
| 1077 | * because we're in the middle of a context switch and have IRQs | ||
| 1078 | * disabled, which upsets smp_call_function_single(), however | ||
| 1079 | * we know the event must be on the current CPU, therefore we | ||
| 1080 | * don't need to use it. | ||
| 1081 | */ | ||
| 1082 | switch (event->state) { | ||
| 1083 | case PERF_EVENT_STATE_ACTIVE: | ||
| 1084 | __perf_event_read(event); | ||
| 1085 | break; | ||
| 1086 | |||
| 1087 | case PERF_EVENT_STATE_INACTIVE: | ||
| 1088 | update_event_times(event); | ||
| 1089 | break; | ||
| 1090 | |||
| 1091 | default: | ||
| 1092 | break; | ||
| 1093 | } | ||
| 1094 | |||
| 1095 | /* | ||
| 1096 | * In order to keep per-task stats reliable we need to flip the event | ||
| 1097 | * values when we flip the contexts. | ||
| 1098 | */ | ||
| 1099 | value = atomic64_read(&next_event->count); | ||
| 1100 | value = atomic64_xchg(&event->count, value); | ||
| 1101 | atomic64_set(&next_event->count, value); | ||
| 1102 | |||
| 1103 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
| 1104 | swap(event->total_time_running, next_event->total_time_running); | ||
| 1105 | |||
| 1106 | /* | ||
| 1107 | * Since we swizzled the values, update the user visible data too. | ||
| 1108 | */ | ||
| 1109 | perf_event_update_userpage(event); | ||
| 1110 | perf_event_update_userpage(next_event); | ||
| 1111 | } | ||
| 1112 | |||
| 1113 | #define list_next_entry(pos, member) \ | ||
| 1114 | list_entry(pos->member.next, typeof(*pos), member) | ||
| 1115 | |||
| 1116 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
| 1117 | struct perf_event_context *next_ctx) | ||
| 1118 | { | ||
| 1119 | struct perf_event *event, *next_event; | ||
| 1120 | |||
| 1121 | if (!ctx->nr_stat) | ||
| 1122 | return; | ||
| 1123 | |||
| 1124 | event = list_first_entry(&ctx->event_list, | ||
| 1125 | struct perf_event, event_entry); | ||
| 1126 | |||
| 1127 | next_event = list_first_entry(&next_ctx->event_list, | ||
| 1128 | struct perf_event, event_entry); | ||
| 1129 | |||
| 1130 | while (&event->event_entry != &ctx->event_list && | ||
| 1131 | &next_event->event_entry != &next_ctx->event_list) { | ||
| 1132 | |||
| 1133 | __perf_event_sync_stat(event, next_event); | ||
| 1134 | |||
| 1135 | event = list_next_entry(event, event_entry); | ||
| 1136 | next_event = list_next_entry(next_event, event_entry); | ||
| 1137 | } | ||
| 1138 | } | ||
| 1139 | |||
| 1140 | /* | ||
| 1141 | * Called from scheduler to remove the events of the current task, | ||
| 1142 | * with interrupts disabled. | ||
| 1143 | * | ||
| 1144 | * We stop each event and update the event value in event->count. | ||
| 1145 | * | ||
| 1146 | * This does not protect us against NMI, but disable() | ||
| 1147 | * sets the disabled bit in the control field of event _before_ | ||
| 1148 | * accessing the event control register. If a NMI hits, then it will | ||
| 1149 | * not restart the event. | ||
| 1150 | */ | ||
| 1151 | void perf_event_task_sched_out(struct task_struct *task, | ||
| 1152 | struct task_struct *next, int cpu) | ||
| 1153 | { | ||
| 1154 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1155 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1156 | struct perf_event_context *next_ctx; | ||
| 1157 | struct perf_event_context *parent; | ||
| 1158 | struct pt_regs *regs; | ||
| 1159 | int do_switch = 1; | ||
| 1160 | |||
| 1161 | regs = task_pt_regs(task); | ||
| 1162 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1163 | |||
| 1164 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1165 | return; | ||
| 1166 | |||
| 1167 | update_context_time(ctx); | ||
| 1168 | |||
| 1169 | rcu_read_lock(); | ||
| 1170 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1171 | next_ctx = next->perf_event_ctxp; | ||
| 1172 | if (parent && next_ctx && | ||
| 1173 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1174 | /* | ||
| 1175 | * Looks like the two contexts are clones, so we might be | ||
| 1176 | * able to optimize the context switch. We lock both | ||
| 1177 | * contexts and check that they are clones under the | ||
| 1178 | * lock (including re-checking that neither has been | ||
| 1179 | * uncloned in the meantime). It doesn't matter which | ||
| 1180 | * order we take the locks because no other cpu could | ||
| 1181 | * be trying to lock both of these tasks. | ||
| 1182 | */ | ||
| 1183 | spin_lock(&ctx->lock); | ||
| 1184 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1185 | if (context_equiv(ctx, next_ctx)) { | ||
| 1186 | /* | ||
| 1187 | * XXX do we need a memory barrier of sorts | ||
| 1188 | * wrt to rcu_dereference() of perf_event_ctxp | ||
| 1189 | */ | ||
| 1190 | task->perf_event_ctxp = next_ctx; | ||
| 1191 | next->perf_event_ctxp = ctx; | ||
| 1192 | ctx->task = next; | ||
| 1193 | next_ctx->task = task; | ||
| 1194 | do_switch = 0; | ||
| 1195 | |||
| 1196 | perf_event_sync_stat(ctx, next_ctx); | ||
| 1197 | } | ||
| 1198 | spin_unlock(&next_ctx->lock); | ||
| 1199 | spin_unlock(&ctx->lock); | ||
| 1200 | } | ||
| 1201 | rcu_read_unlock(); | ||
| 1202 | |||
| 1203 | if (do_switch) { | ||
| 1204 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1205 | cpuctx->task_ctx = NULL; | ||
| 1206 | } | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | /* | ||
| 1210 | * Called with IRQs disabled | ||
| 1211 | */ | ||
| 1212 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
| 1213 | { | ||
| 1214 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1215 | |||
| 1216 | if (!cpuctx->task_ctx) | ||
| 1217 | return; | ||
| 1218 | |||
| 1219 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1220 | return; | ||
| 1221 | |||
| 1222 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1223 | cpuctx->task_ctx = NULL; | ||
| 1224 | } | ||
| 1225 | |||
| 1226 | /* | ||
| 1227 | * Called with IRQs disabled | ||
| 1228 | */ | ||
| 1229 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1230 | { | ||
| 1231 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | static void | ||
| 1235 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
| 1236 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1237 | { | ||
| 1238 | struct perf_event *event; | ||
| 1239 | int can_add_hw = 1; | ||
| 1240 | |||
| 1241 | spin_lock(&ctx->lock); | ||
| 1242 | ctx->is_active = 1; | ||
| 1243 | if (likely(!ctx->nr_events)) | ||
| 1244 | goto out; | ||
| 1245 | |||
| 1246 | ctx->timestamp = perf_clock(); | ||
| 1247 | |||
| 1248 | perf_disable(); | ||
| 1249 | |||
| 1250 | /* | ||
| 1251 | * First go through the list and put on any pinned groups | ||
| 1252 | * in order to give them the best chance of going on. | ||
| 1253 | */ | ||
| 1254 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1255 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1256 | !event->attr.pinned) | ||
| 1257 | continue; | ||
| 1258 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1259 | continue; | ||
| 1260 | |||
| 1261 | if (event != event->group_leader) | ||
| 1262 | event_sched_in(event, cpuctx, ctx, cpu); | ||
| 1263 | else { | ||
| 1264 | if (group_can_go_on(event, cpuctx, 1)) | ||
| 1265 | group_sched_in(event, cpuctx, ctx, cpu); | ||
| 1266 | } | ||
| 1267 | |||
| 1268 | /* | ||
| 1269 | * If this pinned group hasn't been scheduled, | ||
| 1270 | * put it in error state. | ||
| 1271 | */ | ||
| 1272 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1273 | update_group_times(event); | ||
| 1274 | event->state = PERF_EVENT_STATE_ERROR; | ||
| 1275 | } | ||
| 1276 | } | ||
| 1277 | |||
| 1278 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1279 | /* | ||
| 1280 | * Ignore events in OFF or ERROR state, and | ||
| 1281 | * ignore pinned events since we did them already. | ||
| 1282 | */ | ||
| 1283 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1284 | event->attr.pinned) | ||
| 1285 | continue; | ||
| 1286 | |||
| 1287 | /* | ||
| 1288 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1289 | * of events: | ||
| 1290 | */ | ||
| 1291 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1292 | continue; | ||
| 1293 | |||
| 1294 | if (event != event->group_leader) { | ||
| 1295 | if (event_sched_in(event, cpuctx, ctx, cpu)) | ||
| 1296 | can_add_hw = 0; | ||
| 1297 | } else { | ||
| 1298 | if (group_can_go_on(event, cpuctx, can_add_hw)) { | ||
| 1299 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
| 1300 | can_add_hw = 0; | ||
| 1301 | } | ||
| 1302 | } | ||
| 1303 | } | ||
| 1304 | perf_enable(); | ||
| 1305 | out: | ||
| 1306 | spin_unlock(&ctx->lock); | ||
| 1307 | } | ||
| 1308 | |||
| 1309 | /* | ||
| 1310 | * Called from scheduler to add the events of the current task | ||
| 1311 | * with interrupts disabled. | ||
| 1312 | * | ||
| 1313 | * We restore the event value and then enable it. | ||
| 1314 | * | ||
| 1315 | * This does not protect us against NMI, but enable() | ||
| 1316 | * sets the enabled bit in the control field of event _before_ | ||
| 1317 | * accessing the event control register. If a NMI hits, then it will | ||
| 1318 | * keep the event running. | ||
| 1319 | */ | ||
| 1320 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
| 1321 | { | ||
| 1322 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1323 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1324 | |||
| 1325 | if (likely(!ctx)) | ||
| 1326 | return; | ||
| 1327 | if (cpuctx->task_ctx == ctx) | ||
| 1328 | return; | ||
| 1329 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1330 | cpuctx->task_ctx = ctx; | ||
| 1331 | } | ||
| 1332 | |||
| 1333 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1334 | { | ||
| 1335 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 1336 | |||
| 1337 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1338 | } | ||
| 1339 | |||
| 1340 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1341 | |||
| 1342 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
| 1343 | |||
| 1344 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
| 1345 | { | ||
| 1346 | struct hw_perf_event *hwc = &event->hw; | ||
| 1347 | u64 period, sample_period; | ||
| 1348 | s64 delta; | ||
| 1349 | |||
| 1350 | events *= hwc->sample_period; | ||
| 1351 | period = div64_u64(events, event->attr.sample_freq); | ||
| 1352 | |||
| 1353 | delta = (s64)(period - hwc->sample_period); | ||
| 1354 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1355 | |||
| 1356 | sample_period = hwc->sample_period + delta; | ||
| 1357 | |||
| 1358 | if (!sample_period) | ||
| 1359 | sample_period = 1; | ||
| 1360 | |||
| 1361 | hwc->sample_period = sample_period; | ||
| 1362 | } | ||
| 1363 | |||
| 1364 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
| 1365 | { | ||
| 1366 | struct perf_event *event; | ||
| 1367 | struct hw_perf_event *hwc; | ||
| 1368 | u64 interrupts, freq; | ||
| 1369 | |||
| 1370 | spin_lock(&ctx->lock); | ||
| 1371 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1372 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 1373 | continue; | ||
| 1374 | |||
| 1375 | hwc = &event->hw; | ||
| 1376 | |||
| 1377 | interrupts = hwc->interrupts; | ||
| 1378 | hwc->interrupts = 0; | ||
| 1379 | |||
| 1380 | /* | ||
| 1381 | * unthrottle events on the tick | ||
| 1382 | */ | ||
| 1383 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1384 | perf_log_throttle(event, 1); | ||
| 1385 | event->pmu->unthrottle(event); | ||
| 1386 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
| 1387 | } | ||
| 1388 | |||
| 1389 | if (!event->attr.freq || !event->attr.sample_freq) | ||
| 1390 | continue; | ||
| 1391 | |||
| 1392 | /* | ||
| 1393 | * if the specified freq < HZ then we need to skip ticks | ||
| 1394 | */ | ||
| 1395 | if (event->attr.sample_freq < HZ) { | ||
| 1396 | freq = event->attr.sample_freq; | ||
| 1397 | |||
| 1398 | hwc->freq_count += freq; | ||
| 1399 | hwc->freq_interrupts += interrupts; | ||
| 1400 | |||
| 1401 | if (hwc->freq_count < HZ) | ||
| 1402 | continue; | ||
| 1403 | |||
| 1404 | interrupts = hwc->freq_interrupts; | ||
| 1405 | hwc->freq_interrupts = 0; | ||
| 1406 | hwc->freq_count -= HZ; | ||
| 1407 | } else | ||
| 1408 | freq = HZ; | ||
| 1409 | |||
| 1410 | perf_adjust_period(event, freq * interrupts); | ||
| 1411 | |||
| 1412 | /* | ||
| 1413 | * In order to avoid being stalled by an (accidental) huge | ||
| 1414 | * sample period, force reset the sample period if we didn't | ||
| 1415 | * get any events in this freq period. | ||
| 1416 | */ | ||
| 1417 | if (!interrupts) { | ||
| 1418 | perf_disable(); | ||
| 1419 | event->pmu->disable(event); | ||
| 1420 | atomic64_set(&hwc->period_left, 0); | ||
| 1421 | event->pmu->enable(event); | ||
| 1422 | perf_enable(); | ||
| 1423 | } | ||
| 1424 | } | ||
| 1425 | spin_unlock(&ctx->lock); | ||
| 1426 | } | ||
| 1427 | |||
| 1428 | /* | ||
| 1429 | * Round-robin a context's events: | ||
| 1430 | */ | ||
| 1431 | static void rotate_ctx(struct perf_event_context *ctx) | ||
| 1432 | { | ||
| 1433 | struct perf_event *event; | ||
| 1434 | |||
| 1435 | if (!ctx->nr_events) | ||
| 1436 | return; | ||
| 1437 | |||
| 1438 | spin_lock(&ctx->lock); | ||
| 1439 | /* | ||
| 1440 | * Rotate the first entry last (works just fine for group events too): | ||
| 1441 | */ | ||
| 1442 | perf_disable(); | ||
| 1443 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1444 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
| 1445 | break; | ||
| 1446 | } | ||
| 1447 | perf_enable(); | ||
| 1448 | |||
| 1449 | spin_unlock(&ctx->lock); | ||
| 1450 | } | ||
| 1451 | |||
| 1452 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
| 1453 | { | ||
| 1454 | struct perf_cpu_context *cpuctx; | ||
| 1455 | struct perf_event_context *ctx; | ||
| 1456 | |||
| 1457 | if (!atomic_read(&nr_events)) | ||
| 1458 | return; | ||
| 1459 | |||
| 1460 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1461 | ctx = curr->perf_event_ctxp; | ||
| 1462 | |||
| 1463 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1464 | if (ctx) | ||
| 1465 | perf_ctx_adjust_freq(ctx); | ||
| 1466 | |||
| 1467 | perf_event_cpu_sched_out(cpuctx); | ||
| 1468 | if (ctx) | ||
| 1469 | __perf_event_task_sched_out(ctx); | ||
| 1470 | |||
| 1471 | rotate_ctx(&cpuctx->ctx); | ||
| 1472 | if (ctx) | ||
| 1473 | rotate_ctx(ctx); | ||
| 1474 | |||
| 1475 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
| 1476 | if (ctx) | ||
| 1477 | perf_event_task_sched_in(curr, cpu); | ||
| 1478 | } | ||
| 1479 | |||
| 1480 | /* | ||
| 1481 | * Enable all of a task's events that have been marked enable-on-exec. | ||
| 1482 | * This expects task == current. | ||
| 1483 | */ | ||
| 1484 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
| 1485 | { | ||
| 1486 | struct perf_event_context *ctx; | ||
| 1487 | struct perf_event *event; | ||
| 1488 | unsigned long flags; | ||
| 1489 | int enabled = 0; | ||
| 1490 | |||
| 1491 | local_irq_save(flags); | ||
| 1492 | ctx = task->perf_event_ctxp; | ||
| 1493 | if (!ctx || !ctx->nr_events) | ||
| 1494 | goto out; | ||
| 1495 | |||
| 1496 | __perf_event_task_sched_out(ctx); | ||
| 1497 | |||
| 1498 | spin_lock(&ctx->lock); | ||
| 1499 | |||
| 1500 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1501 | if (!event->attr.enable_on_exec) | ||
| 1502 | continue; | ||
| 1503 | event->attr.enable_on_exec = 0; | ||
| 1504 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 1505 | continue; | ||
| 1506 | __perf_event_mark_enabled(event, ctx); | ||
| 1507 | enabled = 1; | ||
| 1508 | } | ||
| 1509 | |||
| 1510 | /* | ||
| 1511 | * Unclone this context if we enabled any event. | ||
| 1512 | */ | ||
| 1513 | if (enabled) | ||
| 1514 | unclone_ctx(ctx); | ||
| 1515 | |||
| 1516 | spin_unlock(&ctx->lock); | ||
| 1517 | |||
| 1518 | perf_event_task_sched_in(task, smp_processor_id()); | ||
| 1519 | out: | ||
| 1520 | local_irq_restore(flags); | ||
| 1521 | } | ||
| 1522 | |||
| 1523 | /* | ||
| 1524 | * Cross CPU call to read the hardware event | ||
| 1525 | */ | ||
| 1526 | static void __perf_event_read(void *info) | ||
| 1527 | { | ||
| 1528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1529 | struct perf_event *event = info; | ||
| 1530 | struct perf_event_context *ctx = event->ctx; | ||
| 1531 | unsigned long flags; | ||
| 1532 | |||
| 1533 | /* | ||
| 1534 | * If this is a task context, we need to check whether it is | ||
| 1535 | * the current task context of this cpu. If not it has been | ||
| 1536 | * scheduled out before the smp call arrived. In that case | ||
| 1537 | * event->count would have been updated to a recent sample | ||
| 1538 | * when the event was scheduled out. | ||
| 1539 | */ | ||
| 1540 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 1541 | return; | ||
| 1542 | |||
| 1543 | local_irq_save(flags); | ||
| 1544 | if (ctx->is_active) | ||
| 1545 | update_context_time(ctx); | ||
| 1546 | event->pmu->read(event); | ||
| 1547 | update_event_times(event); | ||
| 1548 | local_irq_restore(flags); | ||
| 1549 | } | ||
| 1550 | |||
| 1551 | static u64 perf_event_read(struct perf_event *event) | ||
| 1552 | { | ||
| 1553 | /* | ||
| 1554 | * If event is enabled and currently active on a CPU, update the | ||
| 1555 | * value in the event structure: | ||
| 1556 | */ | ||
| 1557 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 1558 | smp_call_function_single(event->oncpu, | ||
| 1559 | __perf_event_read, event, 1); | ||
| 1560 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1561 | update_event_times(event); | ||
| 1562 | } | ||
| 1563 | |||
| 1564 | return atomic64_read(&event->count); | ||
| 1565 | } | ||
| 1566 | |||
| 1567 | /* | ||
| 1568 | * Initialize the perf_event context in a task_struct: | ||
| 1569 | */ | ||
| 1570 | static void | ||
| 1571 | __perf_event_init_context(struct perf_event_context *ctx, | ||
| 1572 | struct task_struct *task) | ||
| 1573 | { | ||
| 1574 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1575 | spin_lock_init(&ctx->lock); | ||
| 1576 | mutex_init(&ctx->mutex); | ||
| 1577 | INIT_LIST_HEAD(&ctx->group_list); | ||
| 1578 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1579 | atomic_set(&ctx->refcount, 1); | ||
| 1580 | ctx->task = task; | ||
| 1581 | } | ||
| 1582 | |||
| 1583 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
| 1584 | { | ||
| 1585 | struct perf_event_context *ctx; | ||
| 1586 | struct perf_cpu_context *cpuctx; | ||
| 1587 | struct task_struct *task; | ||
| 1588 | unsigned long flags; | ||
| 1589 | int err; | ||
| 1590 | |||
| 1591 | /* | ||
| 1592 | * If cpu is not a wildcard then this is a percpu event: | ||
| 1593 | */ | ||
| 1594 | if (cpu != -1) { | ||
| 1595 | /* Must be root to operate on a CPU event: */ | ||
| 1596 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1597 | return ERR_PTR(-EACCES); | ||
| 1598 | |||
| 1599 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1600 | return ERR_PTR(-EINVAL); | ||
| 1601 | |||
| 1602 | /* | ||
| 1603 | * We could be clever and allow to attach a event to an | ||
| 1604 | * offline CPU and activate it when the CPU comes up, but | ||
| 1605 | * that's for later. | ||
| 1606 | */ | ||
| 1607 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1608 | return ERR_PTR(-ENODEV); | ||
| 1609 | |||
| 1610 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1611 | ctx = &cpuctx->ctx; | ||
| 1612 | get_ctx(ctx); | ||
| 1613 | |||
| 1614 | return ctx; | ||
| 1615 | } | ||
| 1616 | |||
| 1617 | rcu_read_lock(); | ||
| 1618 | if (!pid) | ||
| 1619 | task = current; | ||
| 1620 | else | ||
| 1621 | task = find_task_by_vpid(pid); | ||
| 1622 | if (task) | ||
| 1623 | get_task_struct(task); | ||
| 1624 | rcu_read_unlock(); | ||
| 1625 | |||
| 1626 | if (!task) | ||
| 1627 | return ERR_PTR(-ESRCH); | ||
| 1628 | |||
| 1629 | /* | ||
| 1630 | * Can't attach events to a dying task. | ||
| 1631 | */ | ||
| 1632 | err = -ESRCH; | ||
| 1633 | if (task->flags & PF_EXITING) | ||
| 1634 | goto errout; | ||
| 1635 | |||
| 1636 | /* Reuse ptrace permission checks for now. */ | ||
| 1637 | err = -EACCES; | ||
| 1638 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1639 | goto errout; | ||
| 1640 | |||
| 1641 | retry: | ||
| 1642 | ctx = perf_lock_task_context(task, &flags); | ||
| 1643 | if (ctx) { | ||
| 1644 | unclone_ctx(ctx); | ||
| 1645 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1646 | } | ||
| 1647 | |||
| 1648 | if (!ctx) { | ||
| 1649 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 1650 | err = -ENOMEM; | ||
| 1651 | if (!ctx) | ||
| 1652 | goto errout; | ||
| 1653 | __perf_event_init_context(ctx, task); | ||
| 1654 | get_ctx(ctx); | ||
| 1655 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
| 1656 | /* | ||
| 1657 | * We raced with some other task; use | ||
| 1658 | * the context they set. | ||
| 1659 | */ | ||
| 1660 | kfree(ctx); | ||
| 1661 | goto retry; | ||
| 1662 | } | ||
| 1663 | get_task_struct(task); | ||
| 1664 | } | ||
| 1665 | |||
| 1666 | put_task_struct(task); | ||
| 1667 | return ctx; | ||
| 1668 | |||
| 1669 | errout: | ||
| 1670 | put_task_struct(task); | ||
| 1671 | return ERR_PTR(err); | ||
| 1672 | } | ||
| 1673 | |||
| 1674 | static void free_event_rcu(struct rcu_head *head) | ||
| 1675 | { | ||
| 1676 | struct perf_event *event; | ||
| 1677 | |||
| 1678 | event = container_of(head, struct perf_event, rcu_head); | ||
| 1679 | if (event->ns) | ||
| 1680 | put_pid_ns(event->ns); | ||
| 1681 | kfree(event); | ||
| 1682 | } | ||
| 1683 | |||
| 1684 | static void perf_pending_sync(struct perf_event *event); | ||
| 1685 | |||
| 1686 | static void free_event(struct perf_event *event) | ||
| 1687 | { | ||
| 1688 | perf_pending_sync(event); | ||
| 1689 | |||
| 1690 | if (!event->parent) { | ||
| 1691 | atomic_dec(&nr_events); | ||
| 1692 | if (event->attr.mmap) | ||
| 1693 | atomic_dec(&nr_mmap_events); | ||
| 1694 | if (event->attr.comm) | ||
| 1695 | atomic_dec(&nr_comm_events); | ||
| 1696 | if (event->attr.task) | ||
| 1697 | atomic_dec(&nr_task_events); | ||
| 1698 | } | ||
| 1699 | |||
| 1700 | if (event->output) { | ||
| 1701 | fput(event->output->filp); | ||
| 1702 | event->output = NULL; | ||
| 1703 | } | ||
| 1704 | |||
| 1705 | if (event->destroy) | ||
| 1706 | event->destroy(event); | ||
| 1707 | |||
| 1708 | put_ctx(event->ctx); | ||
| 1709 | call_rcu(&event->rcu_head, free_event_rcu); | ||
| 1710 | } | ||
| 1711 | |||
| 1712 | /* | ||
| 1713 | * Called when the last reference to the file is gone. | ||
| 1714 | */ | ||
| 1715 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1716 | { | ||
| 1717 | struct perf_event *event = file->private_data; | ||
| 1718 | struct perf_event_context *ctx = event->ctx; | ||
| 1719 | |||
| 1720 | file->private_data = NULL; | ||
| 1721 | |||
| 1722 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1723 | mutex_lock(&ctx->mutex); | ||
| 1724 | perf_event_remove_from_context(event); | ||
| 1725 | mutex_unlock(&ctx->mutex); | ||
| 1726 | |||
| 1727 | mutex_lock(&event->owner->perf_event_mutex); | ||
| 1728 | list_del_init(&event->owner_entry); | ||
| 1729 | mutex_unlock(&event->owner->perf_event_mutex); | ||
| 1730 | put_task_struct(event->owner); | ||
| 1731 | |||
| 1732 | free_event(event); | ||
| 1733 | |||
| 1734 | return 0; | ||
| 1735 | } | ||
| 1736 | |||
| 1737 | static int perf_event_read_size(struct perf_event *event) | ||
| 1738 | { | ||
| 1739 | int entry = sizeof(u64); /* value */ | ||
| 1740 | int size = 0; | ||
| 1741 | int nr = 1; | ||
| 1742 | |||
| 1743 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1744 | size += sizeof(u64); | ||
| 1745 | |||
| 1746 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1747 | size += sizeof(u64); | ||
| 1748 | |||
| 1749 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
| 1750 | entry += sizeof(u64); | ||
| 1751 | |||
| 1752 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
| 1753 | nr += event->group_leader->nr_siblings; | ||
| 1754 | size += sizeof(u64); | ||
| 1755 | } | ||
| 1756 | |||
| 1757 | size += entry * nr; | ||
| 1758 | |||
| 1759 | return size; | ||
| 1760 | } | ||
| 1761 | |||
| 1762 | static u64 perf_event_read_value(struct perf_event *event) | ||
| 1763 | { | ||
| 1764 | struct perf_event *child; | ||
| 1765 | u64 total = 0; | ||
| 1766 | |||
| 1767 | total += perf_event_read(event); | ||
| 1768 | list_for_each_entry(child, &event->child_list, child_list) | ||
| 1769 | total += perf_event_read(child); | ||
| 1770 | |||
| 1771 | return total; | ||
| 1772 | } | ||
| 1773 | |||
| 1774 | static int perf_event_read_entry(struct perf_event *event, | ||
| 1775 | u64 read_format, char __user *buf) | ||
| 1776 | { | ||
| 1777 | int n = 0, count = 0; | ||
| 1778 | u64 values[2]; | ||
| 1779 | |||
| 1780 | values[n++] = perf_event_read_value(event); | ||
| 1781 | if (read_format & PERF_FORMAT_ID) | ||
| 1782 | values[n++] = primary_event_id(event); | ||
| 1783 | |||
| 1784 | count = n * sizeof(u64); | ||
| 1785 | |||
| 1786 | if (copy_to_user(buf, values, count)) | ||
| 1787 | return -EFAULT; | ||
| 1788 | |||
| 1789 | return count; | ||
| 1790 | } | ||
| 1791 | |||
| 1792 | static int perf_event_read_group(struct perf_event *event, | ||
| 1793 | u64 read_format, char __user *buf) | ||
| 1794 | { | ||
| 1795 | struct perf_event *leader = event->group_leader, *sub; | ||
| 1796 | int n = 0, size = 0, err = -EFAULT; | ||
| 1797 | u64 values[3]; | ||
| 1798 | |||
| 1799 | values[n++] = 1 + leader->nr_siblings; | ||
| 1800 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1801 | values[n++] = leader->total_time_enabled + | ||
| 1802 | atomic64_read(&leader->child_total_time_enabled); | ||
| 1803 | } | ||
| 1804 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1805 | values[n++] = leader->total_time_running + | ||
| 1806 | atomic64_read(&leader->child_total_time_running); | ||
| 1807 | } | ||
| 1808 | |||
| 1809 | size = n * sizeof(u64); | ||
| 1810 | |||
| 1811 | if (copy_to_user(buf, values, size)) | ||
| 1812 | return -EFAULT; | ||
| 1813 | |||
| 1814 | err = perf_event_read_entry(leader, read_format, buf + size); | ||
| 1815 | if (err < 0) | ||
| 1816 | return err; | ||
| 1817 | |||
| 1818 | size += err; | ||
| 1819 | |||
| 1820 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 1821 | err = perf_event_read_entry(sub, read_format, | ||
| 1822 | buf + size); | ||
| 1823 | if (err < 0) | ||
| 1824 | return err; | ||
| 1825 | |||
| 1826 | size += err; | ||
| 1827 | } | ||
| 1828 | |||
| 1829 | return size; | ||
| 1830 | } | ||
| 1831 | |||
| 1832 | static int perf_event_read_one(struct perf_event *event, | ||
| 1833 | u64 read_format, char __user *buf) | ||
| 1834 | { | ||
| 1835 | u64 values[4]; | ||
| 1836 | int n = 0; | ||
| 1837 | |||
| 1838 | values[n++] = perf_event_read_value(event); | ||
| 1839 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1840 | values[n++] = event->total_time_enabled + | ||
| 1841 | atomic64_read(&event->child_total_time_enabled); | ||
| 1842 | } | ||
| 1843 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1844 | values[n++] = event->total_time_running + | ||
| 1845 | atomic64_read(&event->child_total_time_running); | ||
| 1846 | } | ||
| 1847 | if (read_format & PERF_FORMAT_ID) | ||
| 1848 | values[n++] = primary_event_id(event); | ||
| 1849 | |||
| 1850 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
| 1851 | return -EFAULT; | ||
| 1852 | |||
| 1853 | return n * sizeof(u64); | ||
| 1854 | } | ||
| 1855 | |||
| 1856 | /* | ||
| 1857 | * Read the performance event - simple non blocking version for now | ||
| 1858 | */ | ||
| 1859 | static ssize_t | ||
| 1860 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
| 1861 | { | ||
| 1862 | u64 read_format = event->attr.read_format; | ||
| 1863 | int ret; | ||
| 1864 | |||
| 1865 | /* | ||
| 1866 | * Return end-of-file for a read on a event that is in | ||
| 1867 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1868 | * scheduled on to the CPU at some point). | ||
| 1869 | */ | ||
| 1870 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 1871 | return 0; | ||
| 1872 | |||
| 1873 | if (count < perf_event_read_size(event)) | ||
| 1874 | return -ENOSPC; | ||
| 1875 | |||
| 1876 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1877 | mutex_lock(&event->child_mutex); | ||
| 1878 | if (read_format & PERF_FORMAT_GROUP) | ||
| 1879 | ret = perf_event_read_group(event, read_format, buf); | ||
| 1880 | else | ||
| 1881 | ret = perf_event_read_one(event, read_format, buf); | ||
| 1882 | mutex_unlock(&event->child_mutex); | ||
| 1883 | |||
| 1884 | return ret; | ||
| 1885 | } | ||
| 1886 | |||
| 1887 | static ssize_t | ||
| 1888 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1889 | { | ||
| 1890 | struct perf_event *event = file->private_data; | ||
| 1891 | |||
| 1892 | return perf_read_hw(event, buf, count); | ||
| 1893 | } | ||
| 1894 | |||
| 1895 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1896 | { | ||
| 1897 | struct perf_event *event = file->private_data; | ||
| 1898 | struct perf_mmap_data *data; | ||
| 1899 | unsigned int events = POLL_HUP; | ||
| 1900 | |||
| 1901 | rcu_read_lock(); | ||
| 1902 | data = rcu_dereference(event->data); | ||
| 1903 | if (data) | ||
| 1904 | events = atomic_xchg(&data->poll, 0); | ||
| 1905 | rcu_read_unlock(); | ||
| 1906 | |||
| 1907 | poll_wait(file, &event->waitq, wait); | ||
| 1908 | |||
| 1909 | return events; | ||
| 1910 | } | ||
| 1911 | |||
| 1912 | static void perf_event_reset(struct perf_event *event) | ||
| 1913 | { | ||
| 1914 | (void)perf_event_read(event); | ||
| 1915 | atomic64_set(&event->count, 0); | ||
| 1916 | perf_event_update_userpage(event); | ||
| 1917 | } | ||
| 1918 | |||
| 1919 | /* | ||
| 1920 | * Holding the top-level event's child_mutex means that any | ||
| 1921 | * descendant process that has inherited this event will block | ||
| 1922 | * in sync_child_event if it goes to exit, thus satisfying the | ||
| 1923 | * task existence requirements of perf_event_enable/disable. | ||
| 1924 | */ | ||
| 1925 | static void perf_event_for_each_child(struct perf_event *event, | ||
| 1926 | void (*func)(struct perf_event *)) | ||
| 1927 | { | ||
| 1928 | struct perf_event *child; | ||
| 1929 | |||
| 1930 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1931 | mutex_lock(&event->child_mutex); | ||
| 1932 | func(event); | ||
| 1933 | list_for_each_entry(child, &event->child_list, child_list) | ||
| 1934 | func(child); | ||
| 1935 | mutex_unlock(&event->child_mutex); | ||
| 1936 | } | ||
| 1937 | |||
| 1938 | static void perf_event_for_each(struct perf_event *event, | ||
| 1939 | void (*func)(struct perf_event *)) | ||
| 1940 | { | ||
| 1941 | struct perf_event_context *ctx = event->ctx; | ||
| 1942 | struct perf_event *sibling; | ||
| 1943 | |||
| 1944 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1945 | mutex_lock(&ctx->mutex); | ||
| 1946 | event = event->group_leader; | ||
| 1947 | |||
| 1948 | perf_event_for_each_child(event, func); | ||
| 1949 | func(event); | ||
| 1950 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
| 1951 | perf_event_for_each_child(event, func); | ||
| 1952 | mutex_unlock(&ctx->mutex); | ||
| 1953 | } | ||
| 1954 | |||
| 1955 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
| 1956 | { | ||
| 1957 | struct perf_event_context *ctx = event->ctx; | ||
| 1958 | unsigned long size; | ||
| 1959 | int ret = 0; | ||
| 1960 | u64 value; | ||
| 1961 | |||
| 1962 | if (!event->attr.sample_period) | ||
| 1963 | return -EINVAL; | ||
| 1964 | |||
| 1965 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1966 | if (size != sizeof(value)) | ||
| 1967 | return -EFAULT; | ||
| 1968 | |||
| 1969 | if (!value) | ||
| 1970 | return -EINVAL; | ||
| 1971 | |||
| 1972 | spin_lock_irq(&ctx->lock); | ||
| 1973 | if (event->attr.freq) { | ||
| 1974 | if (value > sysctl_perf_event_sample_rate) { | ||
| 1975 | ret = -EINVAL; | ||
| 1976 | goto unlock; | ||
| 1977 | } | ||
| 1978 | |||
| 1979 | event->attr.sample_freq = value; | ||
| 1980 | } else { | ||
| 1981 | event->attr.sample_period = value; | ||
| 1982 | event->hw.sample_period = value; | ||
| 1983 | } | ||
| 1984 | unlock: | ||
| 1985 | spin_unlock_irq(&ctx->lock); | ||
| 1986 | |||
| 1987 | return ret; | ||
| 1988 | } | ||
| 1989 | |||
| 1990 | int perf_event_set_output(struct perf_event *event, int output_fd); | ||
| 1991 | |||
| 1992 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 1993 | { | ||
| 1994 | struct perf_event *event = file->private_data; | ||
| 1995 | void (*func)(struct perf_event *); | ||
| 1996 | u32 flags = arg; | ||
| 1997 | |||
| 1998 | switch (cmd) { | ||
| 1999 | case PERF_EVENT_IOC_ENABLE: | ||
| 2000 | func = perf_event_enable; | ||
| 2001 | break; | ||
| 2002 | case PERF_EVENT_IOC_DISABLE: | ||
| 2003 | func = perf_event_disable; | ||
| 2004 | break; | ||
| 2005 | case PERF_EVENT_IOC_RESET: | ||
| 2006 | func = perf_event_reset; | ||
| 2007 | break; | ||
| 2008 | |||
| 2009 | case PERF_EVENT_IOC_REFRESH: | ||
| 2010 | return perf_event_refresh(event, arg); | ||
| 2011 | |||
| 2012 | case PERF_EVENT_IOC_PERIOD: | ||
| 2013 | return perf_event_period(event, (u64 __user *)arg); | ||
| 2014 | |||
| 2015 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
| 2016 | return perf_event_set_output(event, arg); | ||
| 2017 | |||
| 2018 | default: | ||
| 2019 | return -ENOTTY; | ||
| 2020 | } | ||
| 2021 | |||
| 2022 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 2023 | perf_event_for_each(event, func); | ||
| 2024 | else | ||
| 2025 | perf_event_for_each_child(event, func); | ||
| 2026 | |||
| 2027 | return 0; | ||
| 2028 | } | ||
| 2029 | |||
| 2030 | int perf_event_task_enable(void) | ||
| 2031 | { | ||
| 2032 | struct perf_event *event; | ||
| 2033 | |||
| 2034 | mutex_lock(¤t->perf_event_mutex); | ||
| 2035 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2036 | perf_event_for_each_child(event, perf_event_enable); | ||
| 2037 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2038 | |||
| 2039 | return 0; | ||
| 2040 | } | ||
| 2041 | |||
| 2042 | int perf_event_task_disable(void) | ||
| 2043 | { | ||
| 2044 | struct perf_event *event; | ||
| 2045 | |||
| 2046 | mutex_lock(¤t->perf_event_mutex); | ||
| 2047 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2048 | perf_event_for_each_child(event, perf_event_disable); | ||
| 2049 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2050 | |||
| 2051 | return 0; | ||
| 2052 | } | ||
| 2053 | |||
| 2054 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
| 2055 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
| 2056 | #endif | ||
| 2057 | |||
| 2058 | static int perf_event_index(struct perf_event *event) | ||
| 2059 | { | ||
| 2060 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 2061 | return 0; | ||
| 2062 | |||
| 2063 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
| 2064 | } | ||
| 2065 | |||
| 2066 | /* | ||
| 2067 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 2068 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 2069 | * code calls this from NMI context. | ||
| 2070 | */ | ||
| 2071 | void perf_event_update_userpage(struct perf_event *event) | ||
| 2072 | { | ||
| 2073 | struct perf_event_mmap_page *userpg; | ||
| 2074 | struct perf_mmap_data *data; | ||
| 2075 | |||
| 2076 | rcu_read_lock(); | ||
| 2077 | data = rcu_dereference(event->data); | ||
| 2078 | if (!data) | ||
| 2079 | goto unlock; | ||
| 2080 | |||
| 2081 | userpg = data->user_page; | ||
| 2082 | |||
| 2083 | /* | ||
| 2084 | * Disable preemption so as to not let the corresponding user-space | ||
| 2085 | * spin too long if we get preempted. | ||
| 2086 | */ | ||
| 2087 | preempt_disable(); | ||
| 2088 | ++userpg->lock; | ||
| 2089 | barrier(); | ||
| 2090 | userpg->index = perf_event_index(event); | ||
| 2091 | userpg->offset = atomic64_read(&event->count); | ||
| 2092 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 2093 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
| 2094 | |||
| 2095 | userpg->time_enabled = event->total_time_enabled + | ||
| 2096 | atomic64_read(&event->child_total_time_enabled); | ||
| 2097 | |||
| 2098 | userpg->time_running = event->total_time_running + | ||
| 2099 | atomic64_read(&event->child_total_time_running); | ||
| 2100 | |||
| 2101 | barrier(); | ||
| 2102 | ++userpg->lock; | ||
| 2103 | preempt_enable(); | ||
| 2104 | unlock: | ||
| 2105 | rcu_read_unlock(); | ||
| 2106 | } | ||
| 2107 | |||
| 2108 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 2109 | { | ||
| 2110 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2111 | struct perf_mmap_data *data; | ||
| 2112 | int ret = VM_FAULT_SIGBUS; | ||
| 2113 | |||
| 2114 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
| 2115 | if (vmf->pgoff == 0) | ||
| 2116 | ret = 0; | ||
| 2117 | return ret; | ||
| 2118 | } | ||
| 2119 | |||
| 2120 | rcu_read_lock(); | ||
| 2121 | data = rcu_dereference(event->data); | ||
| 2122 | if (!data) | ||
| 2123 | goto unlock; | ||
| 2124 | |||
| 2125 | if (vmf->pgoff == 0) { | ||
| 2126 | vmf->page = virt_to_page(data->user_page); | ||
| 2127 | } else { | ||
| 2128 | int nr = vmf->pgoff - 1; | ||
| 2129 | |||
| 2130 | if ((unsigned)nr > data->nr_pages) | ||
| 2131 | goto unlock; | ||
| 2132 | |||
| 2133 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
| 2134 | goto unlock; | ||
| 2135 | |||
| 2136 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
| 2137 | } | ||
| 2138 | |||
| 2139 | get_page(vmf->page); | ||
| 2140 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
| 2141 | vmf->page->index = vmf->pgoff; | ||
| 2142 | |||
| 2143 | ret = 0; | ||
| 2144 | unlock: | ||
| 2145 | rcu_read_unlock(); | ||
| 2146 | |||
| 2147 | return ret; | ||
| 2148 | } | ||
| 2149 | |||
| 2150 | static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
| 2151 | { | ||
| 2152 | struct perf_mmap_data *data; | ||
| 2153 | unsigned long size; | ||
| 2154 | int i; | ||
| 2155 | |||
| 2156 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2157 | |||
| 2158 | size = sizeof(struct perf_mmap_data); | ||
| 2159 | size += nr_pages * sizeof(void *); | ||
| 2160 | |||
| 2161 | data = kzalloc(size, GFP_KERNEL); | ||
| 2162 | if (!data) | ||
| 2163 | goto fail; | ||
| 2164 | |||
| 2165 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2166 | if (!data->user_page) | ||
| 2167 | goto fail_user_page; | ||
| 2168 | |||
| 2169 | for (i = 0; i < nr_pages; i++) { | ||
| 2170 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2171 | if (!data->data_pages[i]) | ||
| 2172 | goto fail_data_pages; | ||
| 2173 | } | ||
| 2174 | |||
| 2175 | data->nr_pages = nr_pages; | ||
| 2176 | atomic_set(&data->lock, -1); | ||
| 2177 | |||
| 2178 | if (event->attr.watermark) { | ||
| 2179 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | ||
| 2180 | event->attr.wakeup_watermark); | ||
| 2181 | } | ||
| 2182 | if (!data->watermark) | ||
| 2183 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | ||
| 2184 | |||
| 2185 | rcu_assign_pointer(event->data, data); | ||
| 2186 | |||
| 2187 | return 0; | ||
| 2188 | |||
| 2189 | fail_data_pages: | ||
| 2190 | for (i--; i >= 0; i--) | ||
| 2191 | free_page((unsigned long)data->data_pages[i]); | ||
| 2192 | |||
| 2193 | free_page((unsigned long)data->user_page); | ||
| 2194 | |||
| 2195 | fail_user_page: | ||
| 2196 | kfree(data); | ||
| 2197 | |||
| 2198 | fail: | ||
| 2199 | return -ENOMEM; | ||
| 2200 | } | ||
| 2201 | |||
| 2202 | static void perf_mmap_free_page(unsigned long addr) | ||
| 2203 | { | ||
| 2204 | struct page *page = virt_to_page((void *)addr); | ||
| 2205 | |||
| 2206 | page->mapping = NULL; | ||
| 2207 | __free_page(page); | ||
| 2208 | } | ||
| 2209 | |||
| 2210 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
| 2211 | { | ||
| 2212 | struct perf_mmap_data *data; | ||
| 2213 | int i; | ||
| 2214 | |||
| 2215 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 2216 | |||
| 2217 | perf_mmap_free_page((unsigned long)data->user_page); | ||
| 2218 | for (i = 0; i < data->nr_pages; i++) | ||
| 2219 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
| 2220 | |||
| 2221 | kfree(data); | ||
| 2222 | } | ||
| 2223 | |||
| 2224 | static void perf_mmap_data_free(struct perf_event *event) | ||
| 2225 | { | ||
| 2226 | struct perf_mmap_data *data = event->data; | ||
| 2227 | |||
| 2228 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2229 | |||
| 2230 | rcu_assign_pointer(event->data, NULL); | ||
| 2231 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
| 2232 | } | ||
| 2233 | |||
| 2234 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 2235 | { | ||
| 2236 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2237 | |||
| 2238 | atomic_inc(&event->mmap_count); | ||
| 2239 | } | ||
| 2240 | |||
| 2241 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 2242 | { | ||
| 2243 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2244 | |||
| 2245 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2246 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
| 2247 | struct user_struct *user = current_user(); | ||
| 2248 | |||
| 2249 | atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm); | ||
| 2250 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
| 2251 | perf_mmap_data_free(event); | ||
| 2252 | mutex_unlock(&event->mmap_mutex); | ||
| 2253 | } | ||
| 2254 | } | ||
| 2255 | |||
| 2256 | static const struct vm_operations_struct perf_mmap_vmops = { | ||
| 2257 | .open = perf_mmap_open, | ||
| 2258 | .close = perf_mmap_close, | ||
| 2259 | .fault = perf_mmap_fault, | ||
| 2260 | .page_mkwrite = perf_mmap_fault, | ||
| 2261 | }; | ||
| 2262 | |||
| 2263 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 2264 | { | ||
| 2265 | struct perf_event *event = file->private_data; | ||
| 2266 | unsigned long user_locked, user_lock_limit; | ||
| 2267 | struct user_struct *user = current_user(); | ||
| 2268 | unsigned long locked, lock_limit; | ||
| 2269 | unsigned long vma_size; | ||
| 2270 | unsigned long nr_pages; | ||
| 2271 | long user_extra, extra; | ||
| 2272 | int ret = 0; | ||
| 2273 | |||
| 2274 | if (!(vma->vm_flags & VM_SHARED)) | ||
| 2275 | return -EINVAL; | ||
| 2276 | |||
| 2277 | vma_size = vma->vm_end - vma->vm_start; | ||
| 2278 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 2279 | |||
| 2280 | /* | ||
| 2281 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 2282 | * can do bitmasks instead of modulo. | ||
| 2283 | */ | ||
| 2284 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 2285 | return -EINVAL; | ||
| 2286 | |||
| 2287 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 2288 | return -EINVAL; | ||
| 2289 | |||
| 2290 | if (vma->vm_pgoff != 0) | ||
| 2291 | return -EINVAL; | ||
| 2292 | |||
| 2293 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2294 | mutex_lock(&event->mmap_mutex); | ||
| 2295 | if (event->output) { | ||
| 2296 | ret = -EINVAL; | ||
| 2297 | goto unlock; | ||
| 2298 | } | ||
| 2299 | |||
| 2300 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
| 2301 | if (nr_pages != event->data->nr_pages) | ||
| 2302 | ret = -EINVAL; | ||
| 2303 | goto unlock; | ||
| 2304 | } | ||
| 2305 | |||
| 2306 | user_extra = nr_pages + 1; | ||
| 2307 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
| 2308 | |||
| 2309 | /* | ||
| 2310 | * Increase the limit linearly with more CPUs: | ||
| 2311 | */ | ||
| 2312 | user_lock_limit *= num_online_cpus(); | ||
| 2313 | |||
| 2314 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 2315 | |||
| 2316 | extra = 0; | ||
| 2317 | if (user_locked > user_lock_limit) | ||
| 2318 | extra = user_locked - user_lock_limit; | ||
| 2319 | |||
| 2320 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 2321 | lock_limit >>= PAGE_SHIFT; | ||
| 2322 | locked = vma->vm_mm->locked_vm + extra; | ||
| 2323 | |||
| 2324 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
| 2325 | !capable(CAP_IPC_LOCK)) { | ||
| 2326 | ret = -EPERM; | ||
| 2327 | goto unlock; | ||
| 2328 | } | ||
| 2329 | |||
| 2330 | WARN_ON(event->data); | ||
| 2331 | ret = perf_mmap_data_alloc(event, nr_pages); | ||
| 2332 | if (ret) | ||
| 2333 | goto unlock; | ||
| 2334 | |||
| 2335 | atomic_set(&event->mmap_count, 1); | ||
| 2336 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 2337 | vma->vm_mm->locked_vm += extra; | ||
| 2338 | event->data->nr_locked = extra; | ||
| 2339 | if (vma->vm_flags & VM_WRITE) | ||
| 2340 | event->data->writable = 1; | ||
| 2341 | |||
| 2342 | unlock: | ||
| 2343 | mutex_unlock(&event->mmap_mutex); | ||
| 2344 | |||
| 2345 | vma->vm_flags |= VM_RESERVED; | ||
| 2346 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2347 | |||
| 2348 | return ret; | ||
| 2349 | } | ||
| 2350 | |||
| 2351 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2352 | { | ||
| 2353 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2354 | struct perf_event *event = filp->private_data; | ||
| 2355 | int retval; | ||
| 2356 | |||
| 2357 | mutex_lock(&inode->i_mutex); | ||
| 2358 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
| 2359 | mutex_unlock(&inode->i_mutex); | ||
| 2360 | |||
| 2361 | if (retval < 0) | ||
| 2362 | return retval; | ||
| 2363 | |||
| 2364 | return 0; | ||
| 2365 | } | ||
| 2366 | |||
| 2367 | static const struct file_operations perf_fops = { | ||
| 2368 | .release = perf_release, | ||
| 2369 | .read = perf_read, | ||
| 2370 | .poll = perf_poll, | ||
| 2371 | .unlocked_ioctl = perf_ioctl, | ||
| 2372 | .compat_ioctl = perf_ioctl, | ||
| 2373 | .mmap = perf_mmap, | ||
| 2374 | .fasync = perf_fasync, | ||
| 2375 | }; | ||
| 2376 | |||
| 2377 | /* | ||
| 2378 | * Perf event wakeup | ||
| 2379 | * | ||
| 2380 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2381 | * to user-space before waking everybody up. | ||
| 2382 | */ | ||
| 2383 | |||
| 2384 | void perf_event_wakeup(struct perf_event *event) | ||
| 2385 | { | ||
| 2386 | wake_up_all(&event->waitq); | ||
| 2387 | |||
| 2388 | if (event->pending_kill) { | ||
| 2389 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
| 2390 | event->pending_kill = 0; | ||
| 2391 | } | ||
| 2392 | } | ||
| 2393 | |||
| 2394 | /* | ||
| 2395 | * Pending wakeups | ||
| 2396 | * | ||
| 2397 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2398 | * | ||
| 2399 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2400 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2401 | */ | ||
| 2402 | |||
| 2403 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
| 2404 | { | ||
| 2405 | struct perf_event *event = container_of(entry, | ||
| 2406 | struct perf_event, pending); | ||
| 2407 | |||
| 2408 | if (event->pending_disable) { | ||
| 2409 | event->pending_disable = 0; | ||
| 2410 | __perf_event_disable(event); | ||
| 2411 | } | ||
| 2412 | |||
| 2413 | if (event->pending_wakeup) { | ||
| 2414 | event->pending_wakeup = 0; | ||
| 2415 | perf_event_wakeup(event); | ||
| 2416 | } | ||
| 2417 | } | ||
| 2418 | |||
| 2419 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2420 | |||
| 2421 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2422 | PENDING_TAIL, | ||
| 2423 | }; | ||
| 2424 | |||
| 2425 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2426 | void (*func)(struct perf_pending_entry *)) | ||
| 2427 | { | ||
| 2428 | struct perf_pending_entry **head; | ||
| 2429 | |||
| 2430 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2431 | return; | ||
| 2432 | |||
| 2433 | entry->func = func; | ||
| 2434 | |||
| 2435 | head = &get_cpu_var(perf_pending_head); | ||
| 2436 | |||
| 2437 | do { | ||
| 2438 | entry->next = *head; | ||
| 2439 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2440 | |||
| 2441 | set_perf_event_pending(); | ||
| 2442 | |||
| 2443 | put_cpu_var(perf_pending_head); | ||
| 2444 | } | ||
| 2445 | |||
| 2446 | static int __perf_pending_run(void) | ||
| 2447 | { | ||
| 2448 | struct perf_pending_entry *list; | ||
| 2449 | int nr = 0; | ||
| 2450 | |||
| 2451 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2452 | while (list != PENDING_TAIL) { | ||
| 2453 | void (*func)(struct perf_pending_entry *); | ||
| 2454 | struct perf_pending_entry *entry = list; | ||
| 2455 | |||
| 2456 | list = list->next; | ||
| 2457 | |||
| 2458 | func = entry->func; | ||
| 2459 | entry->next = NULL; | ||
| 2460 | /* | ||
| 2461 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2462 | * so that we won't be waiting forever. | ||
| 2463 | * -- see perf_not_pending(). | ||
| 2464 | */ | ||
| 2465 | smp_wmb(); | ||
| 2466 | |||
| 2467 | func(entry); | ||
| 2468 | nr++; | ||
| 2469 | } | ||
| 2470 | |||
| 2471 | return nr; | ||
| 2472 | } | ||
| 2473 | |||
| 2474 | static inline int perf_not_pending(struct perf_event *event) | ||
| 2475 | { | ||
| 2476 | /* | ||
| 2477 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2478 | * need to wait. | ||
| 2479 | */ | ||
| 2480 | get_cpu(); | ||
| 2481 | __perf_pending_run(); | ||
| 2482 | put_cpu(); | ||
| 2483 | |||
| 2484 | /* | ||
| 2485 | * Ensure we see the proper queue state before going to sleep | ||
| 2486 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2487 | */ | ||
| 2488 | smp_rmb(); | ||
| 2489 | return event->pending.next == NULL; | ||
| 2490 | } | ||
| 2491 | |||
| 2492 | static void perf_pending_sync(struct perf_event *event) | ||
| 2493 | { | ||
| 2494 | wait_event(event->waitq, perf_not_pending(event)); | ||
| 2495 | } | ||
| 2496 | |||
| 2497 | void perf_event_do_pending(void) | ||
| 2498 | { | ||
| 2499 | __perf_pending_run(); | ||
| 2500 | } | ||
| 2501 | |||
| 2502 | /* | ||
| 2503 | * Callchain support -- arch specific | ||
| 2504 | */ | ||
| 2505 | |||
| 2506 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2507 | { | ||
| 2508 | return NULL; | ||
| 2509 | } | ||
| 2510 | |||
| 2511 | /* | ||
| 2512 | * Output | ||
| 2513 | */ | ||
| 2514 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
| 2515 | unsigned long offset, unsigned long head) | ||
| 2516 | { | ||
| 2517 | unsigned long mask; | ||
| 2518 | |||
| 2519 | if (!data->writable) | ||
| 2520 | return true; | ||
| 2521 | |||
| 2522 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
| 2523 | |||
| 2524 | offset = (offset - tail) & mask; | ||
| 2525 | head = (head - tail) & mask; | ||
| 2526 | |||
| 2527 | if ((int)(head - offset) < 0) | ||
| 2528 | return false; | ||
| 2529 | |||
| 2530 | return true; | ||
| 2531 | } | ||
| 2532 | |||
| 2533 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2534 | { | ||
| 2535 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2536 | |||
| 2537 | if (handle->nmi) { | ||
| 2538 | handle->event->pending_wakeup = 1; | ||
| 2539 | perf_pending_queue(&handle->event->pending, | ||
| 2540 | perf_pending_event); | ||
| 2541 | } else | ||
| 2542 | perf_event_wakeup(handle->event); | ||
| 2543 | } | ||
| 2544 | |||
| 2545 | /* | ||
| 2546 | * Curious locking construct. | ||
| 2547 | * | ||
| 2548 | * We need to ensure a later event_id doesn't publish a head when a former | ||
| 2549 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
| 2550 | * cannot fully serialize things. | ||
| 2551 | * | ||
| 2552 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2553 | * nesting on a single CPU. | ||
| 2554 | * | ||
| 2555 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2556 | * event_id completes. | ||
| 2557 | */ | ||
| 2558 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2559 | { | ||
| 2560 | struct perf_mmap_data *data = handle->data; | ||
| 2561 | int cpu; | ||
| 2562 | |||
| 2563 | handle->locked = 0; | ||
| 2564 | |||
| 2565 | local_irq_save(handle->flags); | ||
| 2566 | cpu = smp_processor_id(); | ||
| 2567 | |||
| 2568 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
| 2569 | return; | ||
| 2570 | |||
| 2571 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2572 | cpu_relax(); | ||
| 2573 | |||
| 2574 | handle->locked = 1; | ||
| 2575 | } | ||
| 2576 | |||
| 2577 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2578 | { | ||
| 2579 | struct perf_mmap_data *data = handle->data; | ||
| 2580 | unsigned long head; | ||
| 2581 | int cpu; | ||
| 2582 | |||
| 2583 | data->done_head = data->head; | ||
| 2584 | |||
| 2585 | if (!handle->locked) | ||
| 2586 | goto out; | ||
| 2587 | |||
| 2588 | again: | ||
| 2589 | /* | ||
| 2590 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2591 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2592 | * reading this position. | ||
| 2593 | */ | ||
| 2594 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2595 | data->user_page->data_head = head; | ||
| 2596 | |||
| 2597 | /* | ||
| 2598 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2599 | */ | ||
| 2600 | |||
| 2601 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2602 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2603 | |||
| 2604 | /* | ||
| 2605 | * Therefore we have to validate we did not indeed do so. | ||
| 2606 | */ | ||
| 2607 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2608 | /* | ||
| 2609 | * Since we had it locked, we can lock it again. | ||
| 2610 | */ | ||
| 2611 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2612 | cpu_relax(); | ||
| 2613 | |||
| 2614 | goto again; | ||
| 2615 | } | ||
| 2616 | |||
| 2617 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2618 | perf_output_wakeup(handle); | ||
| 2619 | out: | ||
| 2620 | local_irq_restore(handle->flags); | ||
| 2621 | } | ||
| 2622 | |||
| 2623 | void perf_output_copy(struct perf_output_handle *handle, | ||
| 2624 | const void *buf, unsigned int len) | ||
| 2625 | { | ||
| 2626 | unsigned int pages_mask; | ||
| 2627 | unsigned int offset; | ||
| 2628 | unsigned int size; | ||
| 2629 | void **pages; | ||
| 2630 | |||
| 2631 | offset = handle->offset; | ||
| 2632 | pages_mask = handle->data->nr_pages - 1; | ||
| 2633 | pages = handle->data->data_pages; | ||
| 2634 | |||
| 2635 | do { | ||
| 2636 | unsigned int page_offset; | ||
| 2637 | int nr; | ||
| 2638 | |||
| 2639 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2640 | page_offset = offset & (PAGE_SIZE - 1); | ||
| 2641 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
| 2642 | |||
| 2643 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2644 | |||
| 2645 | len -= size; | ||
| 2646 | buf += size; | ||
| 2647 | offset += size; | ||
| 2648 | } while (len); | ||
| 2649 | |||
| 2650 | handle->offset = offset; | ||
| 2651 | |||
| 2652 | /* | ||
| 2653 | * Check we didn't copy past our reservation window, taking the | ||
| 2654 | * possible unsigned int wrap into account. | ||
| 2655 | */ | ||
| 2656 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2657 | } | ||
| 2658 | |||
| 2659 | int perf_output_begin(struct perf_output_handle *handle, | ||
| 2660 | struct perf_event *event, unsigned int size, | ||
| 2661 | int nmi, int sample) | ||
| 2662 | { | ||
| 2663 | struct perf_event *output_event; | ||
| 2664 | struct perf_mmap_data *data; | ||
| 2665 | unsigned long tail, offset, head; | ||
| 2666 | int have_lost; | ||
| 2667 | struct { | ||
| 2668 | struct perf_event_header header; | ||
| 2669 | u64 id; | ||
| 2670 | u64 lost; | ||
| 2671 | } lost_event; | ||
| 2672 | |||
| 2673 | rcu_read_lock(); | ||
| 2674 | /* | ||
| 2675 | * For inherited events we send all the output towards the parent. | ||
| 2676 | */ | ||
| 2677 | if (event->parent) | ||
| 2678 | event = event->parent; | ||
| 2679 | |||
| 2680 | output_event = rcu_dereference(event->output); | ||
| 2681 | if (output_event) | ||
| 2682 | event = output_event; | ||
| 2683 | |||
| 2684 | data = rcu_dereference(event->data); | ||
| 2685 | if (!data) | ||
| 2686 | goto out; | ||
| 2687 | |||
| 2688 | handle->data = data; | ||
| 2689 | handle->event = event; | ||
| 2690 | handle->nmi = nmi; | ||
| 2691 | handle->sample = sample; | ||
| 2692 | |||
| 2693 | if (!data->nr_pages) | ||
| 2694 | goto fail; | ||
| 2695 | |||
| 2696 | have_lost = atomic_read(&data->lost); | ||
| 2697 | if (have_lost) | ||
| 2698 | size += sizeof(lost_event); | ||
| 2699 | |||
| 2700 | perf_output_lock(handle); | ||
| 2701 | |||
| 2702 | do { | ||
| 2703 | /* | ||
| 2704 | * Userspace could choose to issue a mb() before updating the | ||
| 2705 | * tail pointer. So that all reads will be completed before the | ||
| 2706 | * write is issued. | ||
| 2707 | */ | ||
| 2708 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
| 2709 | smp_rmb(); | ||
| 2710 | offset = head = atomic_long_read(&data->head); | ||
| 2711 | head += size; | ||
| 2712 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
| 2713 | goto fail; | ||
| 2714 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2715 | |||
| 2716 | handle->offset = offset; | ||
| 2717 | handle->head = head; | ||
| 2718 | |||
| 2719 | if (head - tail > data->watermark) | ||
| 2720 | atomic_set(&data->wakeup, 1); | ||
| 2721 | |||
| 2722 | if (have_lost) { | ||
| 2723 | lost_event.header.type = PERF_RECORD_LOST; | ||
| 2724 | lost_event.header.misc = 0; | ||
| 2725 | lost_event.header.size = sizeof(lost_event); | ||
| 2726 | lost_event.id = event->id; | ||
| 2727 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
| 2728 | |||
| 2729 | perf_output_put(handle, lost_event); | ||
| 2730 | } | ||
| 2731 | |||
| 2732 | return 0; | ||
| 2733 | |||
| 2734 | fail: | ||
| 2735 | atomic_inc(&data->lost); | ||
| 2736 | perf_output_unlock(handle); | ||
| 2737 | out: | ||
| 2738 | rcu_read_unlock(); | ||
| 2739 | |||
| 2740 | return -ENOSPC; | ||
| 2741 | } | ||
| 2742 | |||
| 2743 | void perf_output_end(struct perf_output_handle *handle) | ||
| 2744 | { | ||
| 2745 | struct perf_event *event = handle->event; | ||
| 2746 | struct perf_mmap_data *data = handle->data; | ||
| 2747 | |||
| 2748 | int wakeup_events = event->attr.wakeup_events; | ||
| 2749 | |||
| 2750 | if (handle->sample && wakeup_events) { | ||
| 2751 | int events = atomic_inc_return(&data->events); | ||
| 2752 | if (events >= wakeup_events) { | ||
| 2753 | atomic_sub(wakeup_events, &data->events); | ||
| 2754 | atomic_set(&data->wakeup, 1); | ||
| 2755 | } | ||
| 2756 | } | ||
| 2757 | |||
| 2758 | perf_output_unlock(handle); | ||
| 2759 | rcu_read_unlock(); | ||
| 2760 | } | ||
| 2761 | |||
| 2762 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
| 2763 | { | ||
| 2764 | /* | ||
| 2765 | * only top level events have the pid namespace they were created in | ||
| 2766 | */ | ||
| 2767 | if (event->parent) | ||
| 2768 | event = event->parent; | ||
| 2769 | |||
| 2770 | return task_tgid_nr_ns(p, event->ns); | ||
| 2771 | } | ||
| 2772 | |||
| 2773 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
| 2774 | { | ||
| 2775 | /* | ||
| 2776 | * only top level events have the pid namespace they were created in | ||
| 2777 | */ | ||
| 2778 | if (event->parent) | ||
| 2779 | event = event->parent; | ||
| 2780 | |||
| 2781 | return task_pid_nr_ns(p, event->ns); | ||
| 2782 | } | ||
| 2783 | |||
| 2784 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
| 2785 | struct perf_event *event) | ||
| 2786 | { | ||
| 2787 | u64 read_format = event->attr.read_format; | ||
| 2788 | u64 values[4]; | ||
| 2789 | int n = 0; | ||
| 2790 | |||
| 2791 | values[n++] = atomic64_read(&event->count); | ||
| 2792 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 2793 | values[n++] = event->total_time_enabled + | ||
| 2794 | atomic64_read(&event->child_total_time_enabled); | ||
| 2795 | } | ||
| 2796 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 2797 | values[n++] = event->total_time_running + | ||
| 2798 | atomic64_read(&event->child_total_time_running); | ||
| 2799 | } | ||
| 2800 | if (read_format & PERF_FORMAT_ID) | ||
| 2801 | values[n++] = primary_event_id(event); | ||
| 2802 | |||
| 2803 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2804 | } | ||
| 2805 | |||
| 2806 | /* | ||
| 2807 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
| 2808 | */ | ||
| 2809 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
| 2810 | struct perf_event *event) | ||
| 2811 | { | ||
| 2812 | struct perf_event *leader = event->group_leader, *sub; | ||
| 2813 | u64 read_format = event->attr.read_format; | ||
| 2814 | u64 values[5]; | ||
| 2815 | int n = 0; | ||
| 2816 | |||
| 2817 | values[n++] = 1 + leader->nr_siblings; | ||
| 2818 | |||
| 2819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 2820 | values[n++] = leader->total_time_enabled; | ||
| 2821 | |||
| 2822 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 2823 | values[n++] = leader->total_time_running; | ||
| 2824 | |||
| 2825 | if (leader != event) | ||
| 2826 | leader->pmu->read(leader); | ||
| 2827 | |||
| 2828 | values[n++] = atomic64_read(&leader->count); | ||
| 2829 | if (read_format & PERF_FORMAT_ID) | ||
| 2830 | values[n++] = primary_event_id(leader); | ||
| 2831 | |||
| 2832 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2833 | |||
| 2834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 2835 | n = 0; | ||
| 2836 | |||
| 2837 | if (sub != event) | ||
| 2838 | sub->pmu->read(sub); | ||
| 2839 | |||
| 2840 | values[n++] = atomic64_read(&sub->count); | ||
| 2841 | if (read_format & PERF_FORMAT_ID) | ||
| 2842 | values[n++] = primary_event_id(sub); | ||
| 2843 | |||
| 2844 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2845 | } | ||
| 2846 | } | ||
| 2847 | |||
| 2848 | static void perf_output_read(struct perf_output_handle *handle, | ||
| 2849 | struct perf_event *event) | ||
| 2850 | { | ||
| 2851 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
| 2852 | perf_output_read_group(handle, event); | ||
| 2853 | else | ||
| 2854 | perf_output_read_one(handle, event); | ||
| 2855 | } | ||
| 2856 | |||
| 2857 | void perf_output_sample(struct perf_output_handle *handle, | ||
| 2858 | struct perf_event_header *header, | ||
| 2859 | struct perf_sample_data *data, | ||
| 2860 | struct perf_event *event) | ||
| 2861 | { | ||
| 2862 | u64 sample_type = data->type; | ||
| 2863 | |||
| 2864 | perf_output_put(handle, *header); | ||
| 2865 | |||
| 2866 | if (sample_type & PERF_SAMPLE_IP) | ||
| 2867 | perf_output_put(handle, data->ip); | ||
| 2868 | |||
| 2869 | if (sample_type & PERF_SAMPLE_TID) | ||
| 2870 | perf_output_put(handle, data->tid_entry); | ||
| 2871 | |||
| 2872 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 2873 | perf_output_put(handle, data->time); | ||
| 2874 | |||
| 2875 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2876 | perf_output_put(handle, data->addr); | ||
| 2877 | |||
| 2878 | if (sample_type & PERF_SAMPLE_ID) | ||
| 2879 | perf_output_put(handle, data->id); | ||
| 2880 | |||
| 2881 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 2882 | perf_output_put(handle, data->stream_id); | ||
| 2883 | |||
| 2884 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 2885 | perf_output_put(handle, data->cpu_entry); | ||
| 2886 | |||
| 2887 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2888 | perf_output_put(handle, data->period); | ||
| 2889 | |||
| 2890 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2891 | perf_output_read(handle, event); | ||
| 2892 | |||
| 2893 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2894 | if (data->callchain) { | ||
| 2895 | int size = 1; | ||
| 2896 | |||
| 2897 | if (data->callchain) | ||
| 2898 | size += data->callchain->nr; | ||
| 2899 | |||
| 2900 | size *= sizeof(u64); | ||
| 2901 | |||
| 2902 | perf_output_copy(handle, data->callchain, size); | ||
| 2903 | } else { | ||
| 2904 | u64 nr = 0; | ||
| 2905 | perf_output_put(handle, nr); | ||
| 2906 | } | ||
| 2907 | } | ||
| 2908 | |||
| 2909 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 2910 | if (data->raw) { | ||
| 2911 | perf_output_put(handle, data->raw->size); | ||
| 2912 | perf_output_copy(handle, data->raw->data, | ||
| 2913 | data->raw->size); | ||
| 2914 | } else { | ||
| 2915 | struct { | ||
| 2916 | u32 size; | ||
| 2917 | u32 data; | ||
| 2918 | } raw = { | ||
| 2919 | .size = sizeof(u32), | ||
| 2920 | .data = 0, | ||
| 2921 | }; | ||
| 2922 | perf_output_put(handle, raw); | ||
| 2923 | } | ||
| 2924 | } | ||
| 2925 | } | ||
| 2926 | |||
| 2927 | void perf_prepare_sample(struct perf_event_header *header, | ||
| 2928 | struct perf_sample_data *data, | ||
| 2929 | struct perf_event *event, | ||
| 2930 | struct pt_regs *regs) | ||
| 2931 | { | ||
| 2932 | u64 sample_type = event->attr.sample_type; | ||
| 2933 | |||
| 2934 | data->type = sample_type; | ||
| 2935 | |||
| 2936 | header->type = PERF_RECORD_SAMPLE; | ||
| 2937 | header->size = sizeof(*header); | ||
| 2938 | |||
| 2939 | header->misc = 0; | ||
| 2940 | header->misc |= perf_misc_flags(regs); | ||
| 2941 | |||
| 2942 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 2943 | data->ip = perf_instruction_pointer(regs); | ||
| 2944 | |||
| 2945 | header->size += sizeof(data->ip); | ||
| 2946 | } | ||
| 2947 | |||
| 2948 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 2949 | /* namespace issues */ | ||
| 2950 | data->tid_entry.pid = perf_event_pid(event, current); | ||
| 2951 | data->tid_entry.tid = perf_event_tid(event, current); | ||
| 2952 | |||
| 2953 | header->size += sizeof(data->tid_entry); | ||
| 2954 | } | ||
| 2955 | |||
| 2956 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 2957 | data->time = perf_clock(); | ||
| 2958 | |||
| 2959 | header->size += sizeof(data->time); | ||
| 2960 | } | ||
| 2961 | |||
| 2962 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2963 | header->size += sizeof(data->addr); | ||
| 2964 | |||
| 2965 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 2966 | data->id = primary_event_id(event); | ||
| 2967 | |||
| 2968 | header->size += sizeof(data->id); | ||
| 2969 | } | ||
| 2970 | |||
| 2971 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
| 2972 | data->stream_id = event->id; | ||
| 2973 | |||
| 2974 | header->size += sizeof(data->stream_id); | ||
| 2975 | } | ||
| 2976 | |||
| 2977 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 2978 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
| 2979 | data->cpu_entry.reserved = 0; | ||
| 2980 | |||
| 2981 | header->size += sizeof(data->cpu_entry); | ||
| 2982 | } | ||
| 2983 | |||
| 2984 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2985 | header->size += sizeof(data->period); | ||
| 2986 | |||
| 2987 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2988 | header->size += perf_event_read_size(event); | ||
| 2989 | |||
| 2990 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2991 | int size = 1; | ||
| 2992 | |||
| 2993 | data->callchain = perf_callchain(regs); | ||
| 2994 | |||
| 2995 | if (data->callchain) | ||
| 2996 | size += data->callchain->nr; | ||
| 2997 | |||
| 2998 | header->size += size * sizeof(u64); | ||
| 2999 | } | ||
| 3000 | |||
| 3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 3002 | int size = sizeof(u32); | ||
| 3003 | |||
| 3004 | if (data->raw) | ||
| 3005 | size += data->raw->size; | ||
| 3006 | else | ||
| 3007 | size += sizeof(u32); | ||
| 3008 | |||
| 3009 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
| 3010 | header->size += size; | ||
| 3011 | } | ||
| 3012 | } | ||
| 3013 | |||
| 3014 | static void perf_event_output(struct perf_event *event, int nmi, | ||
| 3015 | struct perf_sample_data *data, | ||
| 3016 | struct pt_regs *regs) | ||
| 3017 | { | ||
| 3018 | struct perf_output_handle handle; | ||
| 3019 | struct perf_event_header header; | ||
| 3020 | |||
| 3021 | perf_prepare_sample(&header, data, event, regs); | ||
| 3022 | |||
| 3023 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
| 3024 | return; | ||
| 3025 | |||
| 3026 | perf_output_sample(&handle, &header, data, event); | ||
| 3027 | |||
| 3028 | perf_output_end(&handle); | ||
| 3029 | } | ||
| 3030 | |||
| 3031 | /* | ||
| 3032 | * read event_id | ||
| 3033 | */ | ||
| 3034 | |||
| 3035 | struct perf_read_event { | ||
| 3036 | struct perf_event_header header; | ||
| 3037 | |||
| 3038 | u32 pid; | ||
| 3039 | u32 tid; | ||
| 3040 | }; | ||
| 3041 | |||
| 3042 | static void | ||
| 3043 | perf_event_read_event(struct perf_event *event, | ||
| 3044 | struct task_struct *task) | ||
| 3045 | { | ||
| 3046 | struct perf_output_handle handle; | ||
| 3047 | struct perf_read_event read_event = { | ||
| 3048 | .header = { | ||
| 3049 | .type = PERF_RECORD_READ, | ||
| 3050 | .misc = 0, | ||
| 3051 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
| 3052 | }, | ||
| 3053 | .pid = perf_event_pid(event, task), | ||
| 3054 | .tid = perf_event_tid(event, task), | ||
| 3055 | }; | ||
| 3056 | int ret; | ||
| 3057 | |||
| 3058 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
| 3059 | if (ret) | ||
| 3060 | return; | ||
| 3061 | |||
| 3062 | perf_output_put(&handle, read_event); | ||
| 3063 | perf_output_read(&handle, event); | ||
| 3064 | |||
| 3065 | perf_output_end(&handle); | ||
| 3066 | } | ||
| 3067 | |||
| 3068 | /* | ||
| 3069 | * task tracking -- fork/exit | ||
| 3070 | * | ||
| 3071 | * enabled by: attr.comm | attr.mmap | attr.task | ||
| 3072 | */ | ||
| 3073 | |||
| 3074 | struct perf_task_event { | ||
| 3075 | struct task_struct *task; | ||
| 3076 | struct perf_event_context *task_ctx; | ||
| 3077 | |||
| 3078 | struct { | ||
| 3079 | struct perf_event_header header; | ||
| 3080 | |||
| 3081 | u32 pid; | ||
| 3082 | u32 ppid; | ||
| 3083 | u32 tid; | ||
| 3084 | u32 ptid; | ||
| 3085 | u64 time; | ||
| 3086 | } event_id; | ||
| 3087 | }; | ||
| 3088 | |||
| 3089 | static void perf_event_task_output(struct perf_event *event, | ||
| 3090 | struct perf_task_event *task_event) | ||
| 3091 | { | ||
| 3092 | struct perf_output_handle handle; | ||
| 3093 | int size; | ||
| 3094 | struct task_struct *task = task_event->task; | ||
| 3095 | int ret; | ||
| 3096 | |||
| 3097 | size = task_event->event_id.header.size; | ||
| 3098 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3099 | |||
| 3100 | if (ret) | ||
| 3101 | return; | ||
| 3102 | |||
| 3103 | task_event->event_id.pid = perf_event_pid(event, task); | ||
| 3104 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
| 3105 | |||
| 3106 | task_event->event_id.tid = perf_event_tid(event, task); | ||
| 3107 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
| 3108 | |||
| 3109 | task_event->event_id.time = perf_clock(); | ||
| 3110 | |||
| 3111 | perf_output_put(&handle, task_event->event_id); | ||
| 3112 | |||
| 3113 | perf_output_end(&handle); | ||
| 3114 | } | ||
| 3115 | |||
| 3116 | static int perf_event_task_match(struct perf_event *event) | ||
| 3117 | { | ||
| 3118 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
| 3119 | return 1; | ||
| 3120 | |||
| 3121 | return 0; | ||
| 3122 | } | ||
| 3123 | |||
| 3124 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
| 3125 | struct perf_task_event *task_event) | ||
| 3126 | { | ||
| 3127 | struct perf_event *event; | ||
| 3128 | |||
| 3129 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3130 | return; | ||
| 3131 | |||
| 3132 | rcu_read_lock(); | ||
| 3133 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3134 | if (perf_event_task_match(event)) | ||
| 3135 | perf_event_task_output(event, task_event); | ||
| 3136 | } | ||
| 3137 | rcu_read_unlock(); | ||
| 3138 | } | ||
| 3139 | |||
| 3140 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
| 3141 | { | ||
| 3142 | struct perf_cpu_context *cpuctx; | ||
| 3143 | struct perf_event_context *ctx = task_event->task_ctx; | ||
| 3144 | |||
| 3145 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3146 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
| 3147 | put_cpu_var(perf_cpu_context); | ||
| 3148 | |||
| 3149 | rcu_read_lock(); | ||
| 3150 | if (!ctx) | ||
| 3151 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
| 3152 | if (ctx) | ||
| 3153 | perf_event_task_ctx(ctx, task_event); | ||
| 3154 | rcu_read_unlock(); | ||
| 3155 | } | ||
| 3156 | |||
| 3157 | static void perf_event_task(struct task_struct *task, | ||
| 3158 | struct perf_event_context *task_ctx, | ||
| 3159 | int new) | ||
| 3160 | { | ||
| 3161 | struct perf_task_event task_event; | ||
| 3162 | |||
| 3163 | if (!atomic_read(&nr_comm_events) && | ||
| 3164 | !atomic_read(&nr_mmap_events) && | ||
| 3165 | !atomic_read(&nr_task_events)) | ||
| 3166 | return; | ||
| 3167 | |||
| 3168 | task_event = (struct perf_task_event){ | ||
| 3169 | .task = task, | ||
| 3170 | .task_ctx = task_ctx, | ||
| 3171 | .event_id = { | ||
| 3172 | .header = { | ||
| 3173 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
| 3174 | .misc = 0, | ||
| 3175 | .size = sizeof(task_event.event_id), | ||
| 3176 | }, | ||
| 3177 | /* .pid */ | ||
| 3178 | /* .ppid */ | ||
| 3179 | /* .tid */ | ||
| 3180 | /* .ptid */ | ||
| 3181 | }, | ||
| 3182 | }; | ||
| 3183 | |||
| 3184 | perf_event_task_event(&task_event); | ||
| 3185 | } | ||
| 3186 | |||
| 3187 | void perf_event_fork(struct task_struct *task) | ||
| 3188 | { | ||
| 3189 | perf_event_task(task, NULL, 1); | ||
| 3190 | } | ||
| 3191 | |||
| 3192 | /* | ||
| 3193 | * comm tracking | ||
| 3194 | */ | ||
| 3195 | |||
| 3196 | struct perf_comm_event { | ||
| 3197 | struct task_struct *task; | ||
| 3198 | char *comm; | ||
| 3199 | int comm_size; | ||
| 3200 | |||
| 3201 | struct { | ||
| 3202 | struct perf_event_header header; | ||
| 3203 | |||
| 3204 | u32 pid; | ||
| 3205 | u32 tid; | ||
| 3206 | } event_id; | ||
| 3207 | }; | ||
| 3208 | |||
| 3209 | static void perf_event_comm_output(struct perf_event *event, | ||
| 3210 | struct perf_comm_event *comm_event) | ||
| 3211 | { | ||
| 3212 | struct perf_output_handle handle; | ||
| 3213 | int size = comm_event->event_id.header.size; | ||
| 3214 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3215 | |||
| 3216 | if (ret) | ||
| 3217 | return; | ||
| 3218 | |||
| 3219 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
| 3220 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
| 3221 | |||
| 3222 | perf_output_put(&handle, comm_event->event_id); | ||
| 3223 | perf_output_copy(&handle, comm_event->comm, | ||
| 3224 | comm_event->comm_size); | ||
| 3225 | perf_output_end(&handle); | ||
| 3226 | } | ||
| 3227 | |||
| 3228 | static int perf_event_comm_match(struct perf_event *event) | ||
| 3229 | { | ||
| 3230 | if (event->attr.comm) | ||
| 3231 | return 1; | ||
| 3232 | |||
| 3233 | return 0; | ||
| 3234 | } | ||
| 3235 | |||
| 3236 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
| 3237 | struct perf_comm_event *comm_event) | ||
| 3238 | { | ||
| 3239 | struct perf_event *event; | ||
| 3240 | |||
| 3241 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3242 | return; | ||
| 3243 | |||
| 3244 | rcu_read_lock(); | ||
| 3245 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3246 | if (perf_event_comm_match(event)) | ||
| 3247 | perf_event_comm_output(event, comm_event); | ||
| 3248 | } | ||
| 3249 | rcu_read_unlock(); | ||
| 3250 | } | ||
| 3251 | |||
| 3252 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
| 3253 | { | ||
| 3254 | struct perf_cpu_context *cpuctx; | ||
| 3255 | struct perf_event_context *ctx; | ||
| 3256 | unsigned int size; | ||
| 3257 | char comm[TASK_COMM_LEN]; | ||
| 3258 | |||
| 3259 | memset(comm, 0, sizeof(comm)); | ||
| 3260 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
| 3261 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 3262 | |||
| 3263 | comm_event->comm = comm; | ||
| 3264 | comm_event->comm_size = size; | ||
| 3265 | |||
| 3266 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
| 3267 | |||
| 3268 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3269 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 3270 | put_cpu_var(perf_cpu_context); | ||
| 3271 | |||
| 3272 | rcu_read_lock(); | ||
| 3273 | /* | ||
| 3274 | * doesn't really matter which of the child contexts the | ||
| 3275 | * events ends up in. | ||
| 3276 | */ | ||
| 3277 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3278 | if (ctx) | ||
| 3279 | perf_event_comm_ctx(ctx, comm_event); | ||
| 3280 | rcu_read_unlock(); | ||
| 3281 | } | ||
| 3282 | |||
| 3283 | void perf_event_comm(struct task_struct *task) | ||
| 3284 | { | ||
| 3285 | struct perf_comm_event comm_event; | ||
| 3286 | |||
| 3287 | if (task->perf_event_ctxp) | ||
| 3288 | perf_event_enable_on_exec(task); | ||
| 3289 | |||
| 3290 | if (!atomic_read(&nr_comm_events)) | ||
| 3291 | return; | ||
| 3292 | |||
| 3293 | comm_event = (struct perf_comm_event){ | ||
| 3294 | .task = task, | ||
| 3295 | /* .comm */ | ||
| 3296 | /* .comm_size */ | ||
| 3297 | .event_id = { | ||
| 3298 | .header = { | ||
| 3299 | .type = PERF_RECORD_COMM, | ||
| 3300 | .misc = 0, | ||
| 3301 | /* .size */ | ||
| 3302 | }, | ||
| 3303 | /* .pid */ | ||
| 3304 | /* .tid */ | ||
| 3305 | }, | ||
| 3306 | }; | ||
| 3307 | |||
| 3308 | perf_event_comm_event(&comm_event); | ||
| 3309 | } | ||
| 3310 | |||
| 3311 | /* | ||
| 3312 | * mmap tracking | ||
| 3313 | */ | ||
| 3314 | |||
| 3315 | struct perf_mmap_event { | ||
| 3316 | struct vm_area_struct *vma; | ||
| 3317 | |||
| 3318 | const char *file_name; | ||
| 3319 | int file_size; | ||
| 3320 | |||
| 3321 | struct { | ||
| 3322 | struct perf_event_header header; | ||
| 3323 | |||
| 3324 | u32 pid; | ||
| 3325 | u32 tid; | ||
| 3326 | u64 start; | ||
| 3327 | u64 len; | ||
| 3328 | u64 pgoff; | ||
| 3329 | } event_id; | ||
| 3330 | }; | ||
| 3331 | |||
| 3332 | static void perf_event_mmap_output(struct perf_event *event, | ||
| 3333 | struct perf_mmap_event *mmap_event) | ||
| 3334 | { | ||
| 3335 | struct perf_output_handle handle; | ||
| 3336 | int size = mmap_event->event_id.header.size; | ||
| 3337 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3338 | |||
| 3339 | if (ret) | ||
| 3340 | return; | ||
| 3341 | |||
| 3342 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
| 3343 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
| 3344 | |||
| 3345 | perf_output_put(&handle, mmap_event->event_id); | ||
| 3346 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 3347 | mmap_event->file_size); | ||
| 3348 | perf_output_end(&handle); | ||
| 3349 | } | ||
| 3350 | |||
| 3351 | static int perf_event_mmap_match(struct perf_event *event, | ||
| 3352 | struct perf_mmap_event *mmap_event) | ||
| 3353 | { | ||
| 3354 | if (event->attr.mmap) | ||
| 3355 | return 1; | ||
| 3356 | |||
| 3357 | return 0; | ||
| 3358 | } | ||
| 3359 | |||
| 3360 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
| 3361 | struct perf_mmap_event *mmap_event) | ||
| 3362 | { | ||
| 3363 | struct perf_event *event; | ||
| 3364 | |||
| 3365 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3366 | return; | ||
| 3367 | |||
| 3368 | rcu_read_lock(); | ||
| 3369 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3370 | if (perf_event_mmap_match(event, mmap_event)) | ||
| 3371 | perf_event_mmap_output(event, mmap_event); | ||
| 3372 | } | ||
| 3373 | rcu_read_unlock(); | ||
| 3374 | } | ||
| 3375 | |||
| 3376 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 3377 | { | ||
| 3378 | struct perf_cpu_context *cpuctx; | ||
| 3379 | struct perf_event_context *ctx; | ||
| 3380 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 3381 | struct file *file = vma->vm_file; | ||
| 3382 | unsigned int size; | ||
| 3383 | char tmp[16]; | ||
| 3384 | char *buf = NULL; | ||
| 3385 | const char *name; | ||
| 3386 | |||
| 3387 | memset(tmp, 0, sizeof(tmp)); | ||
| 3388 | |||
| 3389 | if (file) { | ||
| 3390 | /* | ||
| 3391 | * d_path works from the end of the buffer backwards, so we | ||
| 3392 | * need to add enough zero bytes after the string to handle | ||
| 3393 | * the 64bit alignment we do later. | ||
| 3394 | */ | ||
| 3395 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
| 3396 | if (!buf) { | ||
| 3397 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 3398 | goto got_name; | ||
| 3399 | } | ||
| 3400 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 3401 | if (IS_ERR(name)) { | ||
| 3402 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 3403 | goto got_name; | ||
| 3404 | } | ||
| 3405 | } else { | ||
| 3406 | if (arch_vma_name(mmap_event->vma)) { | ||
| 3407 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
| 3408 | sizeof(tmp)); | ||
| 3409 | goto got_name; | ||
| 3410 | } | ||
| 3411 | |||
| 3412 | if (!vma->vm_mm) { | ||
| 3413 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 3414 | goto got_name; | ||
| 3415 | } | ||
| 3416 | |||
| 3417 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 3418 | goto got_name; | ||
| 3419 | } | ||
| 3420 | |||
| 3421 | got_name: | ||
| 3422 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 3423 | |||
| 3424 | mmap_event->file_name = name; | ||
| 3425 | mmap_event->file_size = size; | ||
| 3426 | |||
| 3427 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
| 3428 | |||
| 3429 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3430 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 3431 | put_cpu_var(perf_cpu_context); | ||
| 3432 | |||
| 3433 | rcu_read_lock(); | ||
| 3434 | /* | ||
| 3435 | * doesn't really matter which of the child contexts the | ||
| 3436 | * events ends up in. | ||
| 3437 | */ | ||
| 3438 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3439 | if (ctx) | ||
| 3440 | perf_event_mmap_ctx(ctx, mmap_event); | ||
| 3441 | rcu_read_unlock(); | ||
| 3442 | |||
| 3443 | kfree(buf); | ||
| 3444 | } | ||
| 3445 | |||
| 3446 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
| 3447 | { | ||
| 3448 | struct perf_mmap_event mmap_event; | ||
| 3449 | |||
| 3450 | if (!atomic_read(&nr_mmap_events)) | ||
| 3451 | return; | ||
| 3452 | |||
| 3453 | mmap_event = (struct perf_mmap_event){ | ||
| 3454 | .vma = vma, | ||
| 3455 | /* .file_name */ | ||
| 3456 | /* .file_size */ | ||
| 3457 | .event_id = { | ||
| 3458 | .header = { | ||
| 3459 | .type = PERF_RECORD_MMAP, | ||
| 3460 | .misc = 0, | ||
| 3461 | /* .size */ | ||
| 3462 | }, | ||
| 3463 | /* .pid */ | ||
| 3464 | /* .tid */ | ||
| 3465 | .start = vma->vm_start, | ||
| 3466 | .len = vma->vm_end - vma->vm_start, | ||
| 3467 | .pgoff = vma->vm_pgoff, | ||
| 3468 | }, | ||
| 3469 | }; | ||
| 3470 | |||
| 3471 | perf_event_mmap_event(&mmap_event); | ||
| 3472 | } | ||
| 3473 | |||
| 3474 | /* | ||
| 3475 | * IRQ throttle logging | ||
| 3476 | */ | ||
| 3477 | |||
| 3478 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
| 3479 | { | ||
| 3480 | struct perf_output_handle handle; | ||
| 3481 | int ret; | ||
| 3482 | |||
| 3483 | struct { | ||
| 3484 | struct perf_event_header header; | ||
| 3485 | u64 time; | ||
| 3486 | u64 id; | ||
| 3487 | u64 stream_id; | ||
| 3488 | } throttle_event = { | ||
| 3489 | .header = { | ||
| 3490 | .type = PERF_RECORD_THROTTLE, | ||
| 3491 | .misc = 0, | ||
| 3492 | .size = sizeof(throttle_event), | ||
| 3493 | }, | ||
| 3494 | .time = perf_clock(), | ||
| 3495 | .id = primary_event_id(event), | ||
| 3496 | .stream_id = event->id, | ||
| 3497 | }; | ||
| 3498 | |||
| 3499 | if (enable) | ||
| 3500 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
| 3501 | |||
| 3502 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
| 3503 | if (ret) | ||
| 3504 | return; | ||
| 3505 | |||
| 3506 | perf_output_put(&handle, throttle_event); | ||
| 3507 | perf_output_end(&handle); | ||
| 3508 | } | ||
| 3509 | |||
| 3510 | /* | ||
| 3511 | * Generic event overflow handling, sampling. | ||
| 3512 | */ | ||
| 3513 | |||
| 3514 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3515 | int throttle, struct perf_sample_data *data, | ||
| 3516 | struct pt_regs *regs) | ||
| 3517 | { | ||
| 3518 | int events = atomic_read(&event->event_limit); | ||
| 3519 | struct hw_perf_event *hwc = &event->hw; | ||
| 3520 | int ret = 0; | ||
| 3521 | |||
| 3522 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
| 3523 | |||
| 3524 | if (!throttle) { | ||
| 3525 | hwc->interrupts++; | ||
| 3526 | } else { | ||
| 3527 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 3528 | hwc->interrupts++; | ||
| 3529 | if (HZ * hwc->interrupts > | ||
| 3530 | (u64)sysctl_perf_event_sample_rate) { | ||
| 3531 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 3532 | perf_log_throttle(event, 0); | ||
| 3533 | ret = 1; | ||
| 3534 | } | ||
| 3535 | } else { | ||
| 3536 | /* | ||
| 3537 | * Keep re-disabling events even though on the previous | ||
| 3538 | * pass we disabled it - just in case we raced with a | ||
| 3539 | * sched-in and the event got enabled again: | ||
| 3540 | */ | ||
| 3541 | ret = 1; | ||
| 3542 | } | ||
| 3543 | } | ||
| 3544 | |||
| 3545 | if (event->attr.freq) { | ||
| 3546 | u64 now = perf_clock(); | ||
| 3547 | s64 delta = now - hwc->freq_stamp; | ||
| 3548 | |||
| 3549 | hwc->freq_stamp = now; | ||
| 3550 | |||
| 3551 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3552 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
| 3553 | } | ||
| 3554 | |||
| 3555 | /* | ||
| 3556 | * XXX event_limit might not quite work as expected on inherited | ||
| 3557 | * events | ||
| 3558 | */ | ||
| 3559 | |||
| 3560 | event->pending_kill = POLL_IN; | ||
| 3561 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
| 3562 | ret = 1; | ||
| 3563 | event->pending_kill = POLL_HUP; | ||
| 3564 | if (nmi) { | ||
| 3565 | event->pending_disable = 1; | ||
| 3566 | perf_pending_queue(&event->pending, | ||
| 3567 | perf_pending_event); | ||
| 3568 | } else | ||
| 3569 | perf_event_disable(event); | ||
| 3570 | } | ||
| 3571 | |||
| 3572 | perf_event_output(event, nmi, data, regs); | ||
| 3573 | return ret; | ||
| 3574 | } | ||
| 3575 | |||
| 3576 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3577 | struct perf_sample_data *data, | ||
| 3578 | struct pt_regs *regs) | ||
| 3579 | { | ||
| 3580 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
| 3581 | } | ||
| 3582 | |||
| 3583 | /* | ||
| 3584 | * Generic software event infrastructure | ||
| 3585 | */ | ||
| 3586 | |||
| 3587 | /* | ||
| 3588 | * We directly increment event->count and keep a second value in | ||
| 3589 | * event->hw.period_left to count intervals. This period event | ||
| 3590 | * is kept in the range [-sample_period, 0] so that we can use the | ||
| 3591 | * sign as trigger. | ||
| 3592 | */ | ||
| 3593 | |||
| 3594 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
| 3595 | { | ||
| 3596 | struct hw_perf_event *hwc = &event->hw; | ||
| 3597 | u64 period = hwc->last_period; | ||
| 3598 | u64 nr, offset; | ||
| 3599 | s64 old, val; | ||
| 3600 | |||
| 3601 | hwc->last_period = hwc->sample_period; | ||
| 3602 | |||
| 3603 | again: | ||
| 3604 | old = val = atomic64_read(&hwc->period_left); | ||
| 3605 | if (val < 0) | ||
| 3606 | return 0; | ||
| 3607 | |||
| 3608 | nr = div64_u64(period + val, period); | ||
| 3609 | offset = nr * period; | ||
| 3610 | val -= offset; | ||
| 3611 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
| 3612 | goto again; | ||
| 3613 | |||
| 3614 | return nr; | ||
| 3615 | } | ||
| 3616 | |||
| 3617 | static void perf_swevent_overflow(struct perf_event *event, | ||
| 3618 | int nmi, struct perf_sample_data *data, | ||
| 3619 | struct pt_regs *regs) | ||
| 3620 | { | ||
| 3621 | struct hw_perf_event *hwc = &event->hw; | ||
| 3622 | int throttle = 0; | ||
| 3623 | u64 overflow; | ||
| 3624 | |||
| 3625 | data->period = event->hw.last_period; | ||
| 3626 | overflow = perf_swevent_set_period(event); | ||
| 3627 | |||
| 3628 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
| 3629 | return; | ||
| 3630 | |||
| 3631 | for (; overflow; overflow--) { | ||
| 3632 | if (__perf_event_overflow(event, nmi, throttle, | ||
| 3633 | data, regs)) { | ||
| 3634 | /* | ||
| 3635 | * We inhibit the overflow from happening when | ||
| 3636 | * hwc->interrupts == MAX_INTERRUPTS. | ||
| 3637 | */ | ||
| 3638 | break; | ||
| 3639 | } | ||
| 3640 | throttle = 1; | ||
| 3641 | } | ||
| 3642 | } | ||
| 3643 | |||
| 3644 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
| 3645 | { | ||
| 3646 | /* | ||
| 3647 | * Nothing to do, we already reset hwc->interrupts. | ||
| 3648 | */ | ||
| 3649 | } | ||
| 3650 | |||
| 3651 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
| 3652 | int nmi, struct perf_sample_data *data, | ||
| 3653 | struct pt_regs *regs) | ||
| 3654 | { | ||
| 3655 | struct hw_perf_event *hwc = &event->hw; | ||
| 3656 | |||
| 3657 | atomic64_add(nr, &event->count); | ||
| 3658 | |||
| 3659 | if (!hwc->sample_period) | ||
| 3660 | return; | ||
| 3661 | |||
| 3662 | if (!regs) | ||
| 3663 | return; | ||
| 3664 | |||
| 3665 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
| 3666 | perf_swevent_overflow(event, nmi, data, regs); | ||
| 3667 | } | ||
| 3668 | |||
| 3669 | static int perf_swevent_is_counting(struct perf_event *event) | ||
| 3670 | { | ||
| 3671 | /* | ||
| 3672 | * The event is active, we're good! | ||
| 3673 | */ | ||
| 3674 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 3675 | return 1; | ||
| 3676 | |||
| 3677 | /* | ||
| 3678 | * The event is off/error, not counting. | ||
| 3679 | */ | ||
| 3680 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
| 3681 | return 0; | ||
| 3682 | |||
| 3683 | /* | ||
| 3684 | * The event is inactive, if the context is active | ||
| 3685 | * we're part of a group that didn't make it on the 'pmu', | ||
| 3686 | * not counting. | ||
| 3687 | */ | ||
| 3688 | if (event->ctx->is_active) | ||
| 3689 | return 0; | ||
| 3690 | |||
| 3691 | /* | ||
| 3692 | * We're inactive and the context is too, this means the | ||
| 3693 | * task is scheduled out, we're counting events that happen | ||
| 3694 | * to us, like migration events. | ||
| 3695 | */ | ||
| 3696 | return 1; | ||
| 3697 | } | ||
| 3698 | |||
| 3699 | static int perf_swevent_match(struct perf_event *event, | ||
| 3700 | enum perf_type_id type, | ||
| 3701 | u32 event_id, struct pt_regs *regs) | ||
| 3702 | { | ||
| 3703 | if (!perf_swevent_is_counting(event)) | ||
| 3704 | return 0; | ||
| 3705 | |||
| 3706 | if (event->attr.type != type) | ||
| 3707 | return 0; | ||
| 3708 | if (event->attr.config != event_id) | ||
| 3709 | return 0; | ||
| 3710 | |||
| 3711 | if (regs) { | ||
| 3712 | if (event->attr.exclude_user && user_mode(regs)) | ||
| 3713 | return 0; | ||
| 3714 | |||
| 3715 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
| 3716 | return 0; | ||
| 3717 | } | ||
| 3718 | |||
| 3719 | return 1; | ||
| 3720 | } | ||
| 3721 | |||
| 3722 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
| 3723 | enum perf_type_id type, | ||
| 3724 | u32 event_id, u64 nr, int nmi, | ||
| 3725 | struct perf_sample_data *data, | ||
| 3726 | struct pt_regs *regs) | ||
| 3727 | { | ||
| 3728 | struct perf_event *event; | ||
| 3729 | |||
| 3730 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3731 | return; | ||
| 3732 | |||
| 3733 | rcu_read_lock(); | ||
| 3734 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3735 | if (perf_swevent_match(event, type, event_id, regs)) | ||
| 3736 | perf_swevent_add(event, nr, nmi, data, regs); | ||
| 3737 | } | ||
| 3738 | rcu_read_unlock(); | ||
| 3739 | } | ||
| 3740 | |||
| 3741 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | ||
| 3742 | { | ||
| 3743 | if (in_nmi()) | ||
| 3744 | return &cpuctx->recursion[3]; | ||
| 3745 | |||
| 3746 | if (in_irq()) | ||
| 3747 | return &cpuctx->recursion[2]; | ||
| 3748 | |||
| 3749 | if (in_softirq()) | ||
| 3750 | return &cpuctx->recursion[1]; | ||
| 3751 | |||
| 3752 | return &cpuctx->recursion[0]; | ||
| 3753 | } | ||
| 3754 | |||
| 3755 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
| 3756 | u64 nr, int nmi, | ||
| 3757 | struct perf_sample_data *data, | ||
| 3758 | struct pt_regs *regs) | ||
| 3759 | { | ||
| 3760 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3761 | int *recursion = perf_swevent_recursion_context(cpuctx); | ||
| 3762 | struct perf_event_context *ctx; | ||
| 3763 | |||
| 3764 | if (*recursion) | ||
| 3765 | goto out; | ||
| 3766 | |||
| 3767 | (*recursion)++; | ||
| 3768 | barrier(); | ||
| 3769 | |||
| 3770 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
| 3771 | nr, nmi, data, regs); | ||
| 3772 | rcu_read_lock(); | ||
| 3773 | /* | ||
| 3774 | * doesn't really matter which of the child contexts the | ||
| 3775 | * events ends up in. | ||
| 3776 | */ | ||
| 3777 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3778 | if (ctx) | ||
| 3779 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
| 3780 | rcu_read_unlock(); | ||
| 3781 | |||
| 3782 | barrier(); | ||
| 3783 | (*recursion)--; | ||
| 3784 | |||
| 3785 | out: | ||
| 3786 | put_cpu_var(perf_cpu_context); | ||
| 3787 | } | ||
| 3788 | |||
| 3789 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
| 3790 | struct pt_regs *regs, u64 addr) | ||
| 3791 | { | ||
| 3792 | struct perf_sample_data data = { | ||
| 3793 | .addr = addr, | ||
| 3794 | }; | ||
| 3795 | |||
| 3796 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | ||
| 3797 | &data, regs); | ||
| 3798 | } | ||
| 3799 | |||
| 3800 | static void perf_swevent_read(struct perf_event *event) | ||
| 3801 | { | ||
| 3802 | } | ||
| 3803 | |||
| 3804 | static int perf_swevent_enable(struct perf_event *event) | ||
| 3805 | { | ||
| 3806 | struct hw_perf_event *hwc = &event->hw; | ||
| 3807 | |||
| 3808 | if (hwc->sample_period) { | ||
| 3809 | hwc->last_period = hwc->sample_period; | ||
| 3810 | perf_swevent_set_period(event); | ||
| 3811 | } | ||
| 3812 | return 0; | ||
| 3813 | } | ||
| 3814 | |||
| 3815 | static void perf_swevent_disable(struct perf_event *event) | ||
| 3816 | { | ||
| 3817 | } | ||
| 3818 | |||
| 3819 | static const struct pmu perf_ops_generic = { | ||
| 3820 | .enable = perf_swevent_enable, | ||
| 3821 | .disable = perf_swevent_disable, | ||
| 3822 | .read = perf_swevent_read, | ||
| 3823 | .unthrottle = perf_swevent_unthrottle, | ||
| 3824 | }; | ||
| 3825 | |||
| 3826 | /* | ||
| 3827 | * hrtimer based swevent callback | ||
| 3828 | */ | ||
| 3829 | |||
| 3830 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
| 3831 | { | ||
| 3832 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 3833 | struct perf_sample_data data; | ||
| 3834 | struct pt_regs *regs; | ||
| 3835 | struct perf_event *event; | ||
| 3836 | u64 period; | ||
| 3837 | |||
| 3838 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
| 3839 | event->pmu->read(event); | ||
| 3840 | |||
| 3841 | data.addr = 0; | ||
| 3842 | regs = get_irq_regs(); | ||
| 3843 | /* | ||
| 3844 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 3845 | * context, provide the next best thing, the user IP. | ||
| 3846 | */ | ||
| 3847 | if ((event->attr.exclude_kernel || !regs) && | ||
| 3848 | !event->attr.exclude_user) | ||
| 3849 | regs = task_pt_regs(current); | ||
| 3850 | |||
| 3851 | if (regs) { | ||
| 3852 | if (perf_event_overflow(event, 0, &data, regs)) | ||
| 3853 | ret = HRTIMER_NORESTART; | ||
| 3854 | } | ||
| 3855 | |||
| 3856 | period = max_t(u64, 10000, event->hw.sample_period); | ||
| 3857 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 3858 | |||
| 3859 | return ret; | ||
| 3860 | } | ||
| 3861 | |||
| 3862 | /* | ||
| 3863 | * Software event: cpu wall time clock | ||
| 3864 | */ | ||
| 3865 | |||
| 3866 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
| 3867 | { | ||
| 3868 | int cpu = raw_smp_processor_id(); | ||
| 3869 | s64 prev; | ||
| 3870 | u64 now; | ||
| 3871 | |||
| 3872 | now = cpu_clock(cpu); | ||
| 3873 | prev = atomic64_read(&event->hw.prev_count); | ||
| 3874 | atomic64_set(&event->hw.prev_count, now); | ||
| 3875 | atomic64_add(now - prev, &event->count); | ||
| 3876 | } | ||
| 3877 | |||
| 3878 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
| 3879 | { | ||
| 3880 | struct hw_perf_event *hwc = &event->hw; | ||
| 3881 | int cpu = raw_smp_processor_id(); | ||
| 3882 | |||
| 3883 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 3884 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3885 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
| 3886 | if (hwc->sample_period) { | ||
| 3887 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3888 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3889 | ns_to_ktime(period), 0, | ||
| 3890 | HRTIMER_MODE_REL, 0); | ||
| 3891 | } | ||
| 3892 | |||
| 3893 | return 0; | ||
| 3894 | } | ||
| 3895 | |||
| 3896 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
| 3897 | { | ||
| 3898 | if (event->hw.sample_period) | ||
| 3899 | hrtimer_cancel(&event->hw.hrtimer); | ||
| 3900 | cpu_clock_perf_event_update(event); | ||
| 3901 | } | ||
| 3902 | |||
| 3903 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
| 3904 | { | ||
| 3905 | cpu_clock_perf_event_update(event); | ||
| 3906 | } | ||
| 3907 | |||
| 3908 | static const struct pmu perf_ops_cpu_clock = { | ||
| 3909 | .enable = cpu_clock_perf_event_enable, | ||
| 3910 | .disable = cpu_clock_perf_event_disable, | ||
| 3911 | .read = cpu_clock_perf_event_read, | ||
| 3912 | }; | ||
| 3913 | |||
| 3914 | /* | ||
| 3915 | * Software event: task time clock | ||
| 3916 | */ | ||
| 3917 | |||
| 3918 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
| 3919 | { | ||
| 3920 | u64 prev; | ||
| 3921 | s64 delta; | ||
| 3922 | |||
| 3923 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
| 3924 | delta = now - prev; | ||
| 3925 | atomic64_add(delta, &event->count); | ||
| 3926 | } | ||
| 3927 | |||
| 3928 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
| 3929 | { | ||
| 3930 | struct hw_perf_event *hwc = &event->hw; | ||
| 3931 | u64 now; | ||
| 3932 | |||
| 3933 | now = event->ctx->time; | ||
| 3934 | |||
| 3935 | atomic64_set(&hwc->prev_count, now); | ||
| 3936 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3937 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
| 3938 | if (hwc->sample_period) { | ||
| 3939 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3940 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3941 | ns_to_ktime(period), 0, | ||
| 3942 | HRTIMER_MODE_REL, 0); | ||
| 3943 | } | ||
| 3944 | |||
| 3945 | return 0; | ||
| 3946 | } | ||
| 3947 | |||
| 3948 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
| 3949 | { | ||
| 3950 | if (event->hw.sample_period) | ||
| 3951 | hrtimer_cancel(&event->hw.hrtimer); | ||
| 3952 | task_clock_perf_event_update(event, event->ctx->time); | ||
| 3953 | |||
| 3954 | } | ||
| 3955 | |||
| 3956 | static void task_clock_perf_event_read(struct perf_event *event) | ||
| 3957 | { | ||
| 3958 | u64 time; | ||
| 3959 | |||
| 3960 | if (!in_nmi()) { | ||
| 3961 | update_context_time(event->ctx); | ||
| 3962 | time = event->ctx->time; | ||
| 3963 | } else { | ||
| 3964 | u64 now = perf_clock(); | ||
| 3965 | u64 delta = now - event->ctx->timestamp; | ||
| 3966 | time = event->ctx->time + delta; | ||
| 3967 | } | ||
| 3968 | |||
| 3969 | task_clock_perf_event_update(event, time); | ||
| 3970 | } | ||
| 3971 | |||
| 3972 | static const struct pmu perf_ops_task_clock = { | ||
| 3973 | .enable = task_clock_perf_event_enable, | ||
| 3974 | .disable = task_clock_perf_event_disable, | ||
| 3975 | .read = task_clock_perf_event_read, | ||
| 3976 | }; | ||
| 3977 | |||
| 3978 | #ifdef CONFIG_EVENT_PROFILE | ||
| 3979 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
| 3980 | int entry_size) | ||
| 3981 | { | ||
| 3982 | struct perf_raw_record raw = { | ||
| 3983 | .size = entry_size, | ||
| 3984 | .data = record, | ||
| 3985 | }; | ||
| 3986 | |||
| 3987 | struct perf_sample_data data = { | ||
| 3988 | .addr = addr, | ||
| 3989 | .raw = &raw, | ||
| 3990 | }; | ||
| 3991 | |||
| 3992 | struct pt_regs *regs = get_irq_regs(); | ||
| 3993 | |||
| 3994 | if (!regs) | ||
| 3995 | regs = task_pt_regs(current); | ||
| 3996 | |||
| 3997 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
| 3998 | &data, regs); | ||
| 3999 | } | ||
| 4000 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
| 4001 | |||
| 4002 | extern int ftrace_profile_enable(int); | ||
| 4003 | extern void ftrace_profile_disable(int); | ||
| 4004 | |||
| 4005 | static void tp_perf_event_destroy(struct perf_event *event) | ||
| 4006 | { | ||
| 4007 | ftrace_profile_disable(event->attr.config); | ||
| 4008 | } | ||
| 4009 | |||
| 4010 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4011 | { | ||
| 4012 | /* | ||
| 4013 | * Raw tracepoint data is a severe data leak, only allow root to | ||
| 4014 | * have these. | ||
| 4015 | */ | ||
| 4016 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
| 4017 | perf_paranoid_tracepoint_raw() && | ||
| 4018 | !capable(CAP_SYS_ADMIN)) | ||
| 4019 | return ERR_PTR(-EPERM); | ||
| 4020 | |||
| 4021 | if (ftrace_profile_enable(event->attr.config)) | ||
| 4022 | return NULL; | ||
| 4023 | |||
| 4024 | event->destroy = tp_perf_event_destroy; | ||
| 4025 | |||
| 4026 | return &perf_ops_generic; | ||
| 4027 | } | ||
| 4028 | #else | ||
| 4029 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4030 | { | ||
| 4031 | return NULL; | ||
| 4032 | } | ||
| 4033 | #endif | ||
| 4034 | |||
| 4035 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
| 4036 | |||
| 4037 | static void sw_perf_event_destroy(struct perf_event *event) | ||
| 4038 | { | ||
| 4039 | u64 event_id = event->attr.config; | ||
| 4040 | |||
| 4041 | WARN_ON(event->parent); | ||
| 4042 | |||
| 4043 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
| 4044 | } | ||
| 4045 | |||
| 4046 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
| 4047 | { | ||
| 4048 | const struct pmu *pmu = NULL; | ||
| 4049 | u64 event_id = event->attr.config; | ||
| 4050 | |||
| 4051 | /* | ||
| 4052 | * Software events (currently) can't in general distinguish | ||
| 4053 | * between user, kernel and hypervisor events. | ||
| 4054 | * However, context switches and cpu migrations are considered | ||
| 4055 | * to be kernel events, and page faults are never hypervisor | ||
| 4056 | * events. | ||
| 4057 | */ | ||
| 4058 | switch (event_id) { | ||
| 4059 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 4060 | pmu = &perf_ops_cpu_clock; | ||
| 4061 | |||
| 4062 | break; | ||
| 4063 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 4064 | /* | ||
| 4065 | * If the user instantiates this as a per-cpu event, | ||
| 4066 | * use the cpu_clock event instead. | ||
| 4067 | */ | ||
| 4068 | if (event->ctx->task) | ||
| 4069 | pmu = &perf_ops_task_clock; | ||
| 4070 | else | ||
| 4071 | pmu = &perf_ops_cpu_clock; | ||
| 4072 | |||
| 4073 | break; | ||
| 4074 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 4075 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 4076 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 4077 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 4078 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 4079 | if (!event->parent) { | ||
| 4080 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
| 4081 | event->destroy = sw_perf_event_destroy; | ||
| 4082 | } | ||
| 4083 | pmu = &perf_ops_generic; | ||
| 4084 | break; | ||
| 4085 | } | ||
| 4086 | |||
| 4087 | return pmu; | ||
| 4088 | } | ||
| 4089 | |||
| 4090 | /* | ||
| 4091 | * Allocate and initialize a event structure | ||
| 4092 | */ | ||
| 4093 | static struct perf_event * | ||
| 4094 | perf_event_alloc(struct perf_event_attr *attr, | ||
| 4095 | int cpu, | ||
| 4096 | struct perf_event_context *ctx, | ||
| 4097 | struct perf_event *group_leader, | ||
| 4098 | struct perf_event *parent_event, | ||
| 4099 | gfp_t gfpflags) | ||
| 4100 | { | ||
| 4101 | const struct pmu *pmu; | ||
| 4102 | struct perf_event *event; | ||
| 4103 | struct hw_perf_event *hwc; | ||
| 4104 | long err; | ||
| 4105 | |||
| 4106 | event = kzalloc(sizeof(*event), gfpflags); | ||
| 4107 | if (!event) | ||
| 4108 | return ERR_PTR(-ENOMEM); | ||
| 4109 | |||
| 4110 | /* | ||
| 4111 | * Single events are their own group leaders, with an | ||
| 4112 | * empty sibling list: | ||
| 4113 | */ | ||
| 4114 | if (!group_leader) | ||
| 4115 | group_leader = event; | ||
| 4116 | |||
| 4117 | mutex_init(&event->child_mutex); | ||
| 4118 | INIT_LIST_HEAD(&event->child_list); | ||
| 4119 | |||
| 4120 | INIT_LIST_HEAD(&event->group_entry); | ||
| 4121 | INIT_LIST_HEAD(&event->event_entry); | ||
| 4122 | INIT_LIST_HEAD(&event->sibling_list); | ||
| 4123 | init_waitqueue_head(&event->waitq); | ||
| 4124 | |||
| 4125 | mutex_init(&event->mmap_mutex); | ||
| 4126 | |||
| 4127 | event->cpu = cpu; | ||
| 4128 | event->attr = *attr; | ||
| 4129 | event->group_leader = group_leader; | ||
| 4130 | event->pmu = NULL; | ||
| 4131 | event->ctx = ctx; | ||
| 4132 | event->oncpu = -1; | ||
| 4133 | |||
| 4134 | event->parent = parent_event; | ||
| 4135 | |||
| 4136 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 4137 | event->id = atomic64_inc_return(&perf_event_id); | ||
| 4138 | |||
| 4139 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4140 | |||
| 4141 | if (attr->disabled) | ||
| 4142 | event->state = PERF_EVENT_STATE_OFF; | ||
| 4143 | |||
| 4144 | pmu = NULL; | ||
| 4145 | |||
| 4146 | hwc = &event->hw; | ||
| 4147 | hwc->sample_period = attr->sample_period; | ||
| 4148 | if (attr->freq && attr->sample_freq) | ||
| 4149 | hwc->sample_period = 1; | ||
| 4150 | hwc->last_period = hwc->sample_period; | ||
| 4151 | |||
| 4152 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 4153 | |||
| 4154 | /* | ||
| 4155 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
| 4156 | */ | ||
| 4157 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
| 4158 | goto done; | ||
| 4159 | |||
| 4160 | switch (attr->type) { | ||
| 4161 | case PERF_TYPE_RAW: | ||
| 4162 | case PERF_TYPE_HARDWARE: | ||
| 4163 | case PERF_TYPE_HW_CACHE: | ||
| 4164 | pmu = hw_perf_event_init(event); | ||
| 4165 | break; | ||
| 4166 | |||
| 4167 | case PERF_TYPE_SOFTWARE: | ||
| 4168 | pmu = sw_perf_event_init(event); | ||
| 4169 | break; | ||
| 4170 | |||
| 4171 | case PERF_TYPE_TRACEPOINT: | ||
| 4172 | pmu = tp_perf_event_init(event); | ||
| 4173 | break; | ||
| 4174 | |||
| 4175 | default: | ||
| 4176 | break; | ||
| 4177 | } | ||
| 4178 | done: | ||
| 4179 | err = 0; | ||
| 4180 | if (!pmu) | ||
| 4181 | err = -EINVAL; | ||
| 4182 | else if (IS_ERR(pmu)) | ||
| 4183 | err = PTR_ERR(pmu); | ||
| 4184 | |||
| 4185 | if (err) { | ||
| 4186 | if (event->ns) | ||
| 4187 | put_pid_ns(event->ns); | ||
| 4188 | kfree(event); | ||
| 4189 | return ERR_PTR(err); | ||
| 4190 | } | ||
| 4191 | |||
| 4192 | event->pmu = pmu; | ||
| 4193 | |||
| 4194 | if (!event->parent) { | ||
| 4195 | atomic_inc(&nr_events); | ||
| 4196 | if (event->attr.mmap) | ||
| 4197 | atomic_inc(&nr_mmap_events); | ||
| 4198 | if (event->attr.comm) | ||
| 4199 | atomic_inc(&nr_comm_events); | ||
| 4200 | if (event->attr.task) | ||
| 4201 | atomic_inc(&nr_task_events); | ||
| 4202 | } | ||
| 4203 | |||
| 4204 | return event; | ||
| 4205 | } | ||
| 4206 | |||
| 4207 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
| 4208 | struct perf_event_attr *attr) | ||
| 4209 | { | ||
| 4210 | u32 size; | ||
| 4211 | int ret; | ||
| 4212 | |||
| 4213 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
| 4214 | return -EFAULT; | ||
| 4215 | |||
| 4216 | /* | ||
| 4217 | * zero the full structure, so that a short copy will be nice. | ||
| 4218 | */ | ||
| 4219 | memset(attr, 0, sizeof(*attr)); | ||
| 4220 | |||
| 4221 | ret = get_user(size, &uattr->size); | ||
| 4222 | if (ret) | ||
| 4223 | return ret; | ||
| 4224 | |||
| 4225 | if (size > PAGE_SIZE) /* silly large */ | ||
| 4226 | goto err_size; | ||
| 4227 | |||
| 4228 | if (!size) /* abi compat */ | ||
| 4229 | size = PERF_ATTR_SIZE_VER0; | ||
| 4230 | |||
| 4231 | if (size < PERF_ATTR_SIZE_VER0) | ||
| 4232 | goto err_size; | ||
| 4233 | |||
| 4234 | /* | ||
| 4235 | * If we're handed a bigger struct than we know of, | ||
| 4236 | * ensure all the unknown bits are 0 - i.e. new | ||
| 4237 | * user-space does not rely on any kernel feature | ||
| 4238 | * extensions we dont know about yet. | ||
| 4239 | */ | ||
| 4240 | if (size > sizeof(*attr)) { | ||
| 4241 | unsigned char __user *addr; | ||
| 4242 | unsigned char __user *end; | ||
| 4243 | unsigned char val; | ||
| 4244 | |||
| 4245 | addr = (void __user *)uattr + sizeof(*attr); | ||
| 4246 | end = (void __user *)uattr + size; | ||
| 4247 | |||
| 4248 | for (; addr < end; addr++) { | ||
| 4249 | ret = get_user(val, addr); | ||
| 4250 | if (ret) | ||
| 4251 | return ret; | ||
| 4252 | if (val) | ||
| 4253 | goto err_size; | ||
| 4254 | } | ||
| 4255 | size = sizeof(*attr); | ||
| 4256 | } | ||
| 4257 | |||
| 4258 | ret = copy_from_user(attr, uattr, size); | ||
| 4259 | if (ret) | ||
| 4260 | return -EFAULT; | ||
| 4261 | |||
| 4262 | /* | ||
| 4263 | * If the type exists, the corresponding creation will verify | ||
| 4264 | * the attr->config. | ||
| 4265 | */ | ||
| 4266 | if (attr->type >= PERF_TYPE_MAX) | ||
| 4267 | return -EINVAL; | ||
| 4268 | |||
| 4269 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
| 4270 | return -EINVAL; | ||
| 4271 | |||
| 4272 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
| 4273 | return -EINVAL; | ||
| 4274 | |||
| 4275 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
| 4276 | return -EINVAL; | ||
| 4277 | |||
| 4278 | out: | ||
| 4279 | return ret; | ||
| 4280 | |||
| 4281 | err_size: | ||
| 4282 | put_user(sizeof(*attr), &uattr->size); | ||
| 4283 | ret = -E2BIG; | ||
| 4284 | goto out; | ||
| 4285 | } | ||
| 4286 | |||
| 4287 | int perf_event_set_output(struct perf_event *event, int output_fd) | ||
| 4288 | { | ||
| 4289 | struct perf_event *output_event = NULL; | ||
| 4290 | struct file *output_file = NULL; | ||
| 4291 | struct perf_event *old_output; | ||
| 4292 | int fput_needed = 0; | ||
| 4293 | int ret = -EINVAL; | ||
| 4294 | |||
| 4295 | if (!output_fd) | ||
| 4296 | goto set; | ||
| 4297 | |||
| 4298 | output_file = fget_light(output_fd, &fput_needed); | ||
| 4299 | if (!output_file) | ||
| 4300 | return -EBADF; | ||
| 4301 | |||
| 4302 | if (output_file->f_op != &perf_fops) | ||
| 4303 | goto out; | ||
| 4304 | |||
| 4305 | output_event = output_file->private_data; | ||
| 4306 | |||
| 4307 | /* Don't chain output fds */ | ||
| 4308 | if (output_event->output) | ||
| 4309 | goto out; | ||
| 4310 | |||
| 4311 | /* Don't set an output fd when we already have an output channel */ | ||
| 4312 | if (event->data) | ||
| 4313 | goto out; | ||
| 4314 | |||
| 4315 | atomic_long_inc(&output_file->f_count); | ||
| 4316 | |||
| 4317 | set: | ||
| 4318 | mutex_lock(&event->mmap_mutex); | ||
| 4319 | old_output = event->output; | ||
| 4320 | rcu_assign_pointer(event->output, output_event); | ||
| 4321 | mutex_unlock(&event->mmap_mutex); | ||
| 4322 | |||
| 4323 | if (old_output) { | ||
| 4324 | /* | ||
| 4325 | * we need to make sure no existing perf_output_*() | ||
| 4326 | * is still referencing this event. | ||
| 4327 | */ | ||
| 4328 | synchronize_rcu(); | ||
| 4329 | fput(old_output->filp); | ||
| 4330 | } | ||
| 4331 | |||
| 4332 | ret = 0; | ||
| 4333 | out: | ||
| 4334 | fput_light(output_file, fput_needed); | ||
| 4335 | return ret; | ||
| 4336 | } | ||
| 4337 | |||
| 4338 | /** | ||
| 4339 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
| 4340 | * | ||
| 4341 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
| 4342 | * @pid: target pid | ||
| 4343 | * @cpu: target cpu | ||
| 4344 | * @group_fd: group leader event fd | ||
| 4345 | */ | ||
| 4346 | SYSCALL_DEFINE5(perf_event_open, | ||
| 4347 | struct perf_event_attr __user *, attr_uptr, | ||
| 4348 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 4349 | { | ||
| 4350 | struct perf_event *event, *group_leader; | ||
| 4351 | struct perf_event_attr attr; | ||
| 4352 | struct perf_event_context *ctx; | ||
| 4353 | struct file *event_file = NULL; | ||
| 4354 | struct file *group_file = NULL; | ||
| 4355 | int fput_needed = 0; | ||
| 4356 | int fput_needed2 = 0; | ||
| 4357 | int err; | ||
| 4358 | |||
| 4359 | /* for future expandability... */ | ||
| 4360 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
| 4361 | return -EINVAL; | ||
| 4362 | |||
| 4363 | err = perf_copy_attr(attr_uptr, &attr); | ||
| 4364 | if (err) | ||
| 4365 | return err; | ||
| 4366 | |||
| 4367 | if (!attr.exclude_kernel) { | ||
| 4368 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 4369 | return -EACCES; | ||
| 4370 | } | ||
| 4371 | |||
| 4372 | if (attr.freq) { | ||
| 4373 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
| 4374 | return -EINVAL; | ||
| 4375 | } | ||
| 4376 | |||
| 4377 | /* | ||
| 4378 | * Get the target context (task or percpu): | ||
| 4379 | */ | ||
| 4380 | ctx = find_get_context(pid, cpu); | ||
| 4381 | if (IS_ERR(ctx)) | ||
| 4382 | return PTR_ERR(ctx); | ||
| 4383 | |||
| 4384 | /* | ||
| 4385 | * Look up the group leader (we will attach this event to it): | ||
| 4386 | */ | ||
| 4387 | group_leader = NULL; | ||
| 4388 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
| 4389 | err = -EINVAL; | ||
| 4390 | group_file = fget_light(group_fd, &fput_needed); | ||
| 4391 | if (!group_file) | ||
| 4392 | goto err_put_context; | ||
| 4393 | if (group_file->f_op != &perf_fops) | ||
| 4394 | goto err_put_context; | ||
| 4395 | |||
| 4396 | group_leader = group_file->private_data; | ||
| 4397 | /* | ||
| 4398 | * Do not allow a recursive hierarchy (this new sibling | ||
| 4399 | * becoming part of another group-sibling): | ||
| 4400 | */ | ||
| 4401 | if (group_leader->group_leader != group_leader) | ||
| 4402 | goto err_put_context; | ||
| 4403 | /* | ||
| 4404 | * Do not allow to attach to a group in a different | ||
| 4405 | * task or CPU context: | ||
| 4406 | */ | ||
| 4407 | if (group_leader->ctx != ctx) | ||
| 4408 | goto err_put_context; | ||
| 4409 | /* | ||
| 4410 | * Only a group leader can be exclusive or pinned | ||
| 4411 | */ | ||
| 4412 | if (attr.exclusive || attr.pinned) | ||
| 4413 | goto err_put_context; | ||
| 4414 | } | ||
| 4415 | |||
| 4416 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
| 4417 | NULL, GFP_KERNEL); | ||
| 4418 | err = PTR_ERR(event); | ||
| 4419 | if (IS_ERR(event)) | ||
| 4420 | goto err_put_context; | ||
| 4421 | |||
| 4422 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
| 4423 | if (err < 0) | ||
| 4424 | goto err_free_put_context; | ||
| 4425 | |||
| 4426 | event_file = fget_light(err, &fput_needed2); | ||
| 4427 | if (!event_file) | ||
| 4428 | goto err_free_put_context; | ||
| 4429 | |||
| 4430 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
| 4431 | err = perf_event_set_output(event, group_fd); | ||
| 4432 | if (err) | ||
| 4433 | goto err_fput_free_put_context; | ||
| 4434 | } | ||
| 4435 | |||
| 4436 | event->filp = event_file; | ||
| 4437 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 4438 | mutex_lock(&ctx->mutex); | ||
| 4439 | perf_install_in_context(ctx, event, cpu); | ||
| 4440 | ++ctx->generation; | ||
| 4441 | mutex_unlock(&ctx->mutex); | ||
| 4442 | |||
| 4443 | event->owner = current; | ||
| 4444 | get_task_struct(current); | ||
| 4445 | mutex_lock(¤t->perf_event_mutex); | ||
| 4446 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
| 4447 | mutex_unlock(¤t->perf_event_mutex); | ||
| 4448 | |||
| 4449 | err_fput_free_put_context: | ||
| 4450 | fput_light(event_file, fput_needed2); | ||
| 4451 | |||
| 4452 | err_free_put_context: | ||
| 4453 | if (err < 0) | ||
| 4454 | kfree(event); | ||
| 4455 | |||
| 4456 | err_put_context: | ||
| 4457 | if (err < 0) | ||
| 4458 | put_ctx(ctx); | ||
| 4459 | |||
| 4460 | fput_light(group_file, fput_needed); | ||
| 4461 | |||
| 4462 | return err; | ||
| 4463 | } | ||
| 4464 | |||
| 4465 | /* | ||
| 4466 | * inherit a event from parent task to child task: | ||
| 4467 | */ | ||
| 4468 | static struct perf_event * | ||
| 4469 | inherit_event(struct perf_event *parent_event, | ||
| 4470 | struct task_struct *parent, | ||
| 4471 | struct perf_event_context *parent_ctx, | ||
| 4472 | struct task_struct *child, | ||
| 4473 | struct perf_event *group_leader, | ||
| 4474 | struct perf_event_context *child_ctx) | ||
| 4475 | { | ||
| 4476 | struct perf_event *child_event; | ||
| 4477 | |||
| 4478 | /* | ||
| 4479 | * Instead of creating recursive hierarchies of events, | ||
| 4480 | * we link inherited events back to the original parent, | ||
| 4481 | * which has a filp for sure, which we use as the reference | ||
| 4482 | * count: | ||
| 4483 | */ | ||
| 4484 | if (parent_event->parent) | ||
| 4485 | parent_event = parent_event->parent; | ||
| 4486 | |||
| 4487 | child_event = perf_event_alloc(&parent_event->attr, | ||
| 4488 | parent_event->cpu, child_ctx, | ||
| 4489 | group_leader, parent_event, | ||
| 4490 | GFP_KERNEL); | ||
| 4491 | if (IS_ERR(child_event)) | ||
| 4492 | return child_event; | ||
| 4493 | get_ctx(child_ctx); | ||
| 4494 | |||
| 4495 | /* | ||
| 4496 | * Make the child state follow the state of the parent event, | ||
| 4497 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 4498 | * so we won't race with perf_event_{en, dis}able_family. | ||
| 4499 | */ | ||
| 4500 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 4501 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4502 | else | ||
| 4503 | child_event->state = PERF_EVENT_STATE_OFF; | ||
| 4504 | |||
| 4505 | if (parent_event->attr.freq) | ||
| 4506 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
| 4507 | |||
| 4508 | /* | ||
| 4509 | * Link it up in the child's context: | ||
| 4510 | */ | ||
| 4511 | add_event_to_ctx(child_event, child_ctx); | ||
| 4512 | |||
| 4513 | /* | ||
| 4514 | * Get a reference to the parent filp - we will fput it | ||
| 4515 | * when the child event exits. This is safe to do because | ||
| 4516 | * we are in the parent and we know that the filp still | ||
| 4517 | * exists and has a nonzero count: | ||
| 4518 | */ | ||
| 4519 | atomic_long_inc(&parent_event->filp->f_count); | ||
| 4520 | |||
| 4521 | /* | ||
| 4522 | * Link this into the parent event's child list | ||
| 4523 | */ | ||
| 4524 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4525 | mutex_lock(&parent_event->child_mutex); | ||
| 4526 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
| 4527 | mutex_unlock(&parent_event->child_mutex); | ||
| 4528 | |||
| 4529 | return child_event; | ||
| 4530 | } | ||
| 4531 | |||
| 4532 | static int inherit_group(struct perf_event *parent_event, | ||
| 4533 | struct task_struct *parent, | ||
| 4534 | struct perf_event_context *parent_ctx, | ||
| 4535 | struct task_struct *child, | ||
| 4536 | struct perf_event_context *child_ctx) | ||
| 4537 | { | ||
| 4538 | struct perf_event *leader; | ||
| 4539 | struct perf_event *sub; | ||
| 4540 | struct perf_event *child_ctr; | ||
| 4541 | |||
| 4542 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
| 4543 | child, NULL, child_ctx); | ||
| 4544 | if (IS_ERR(leader)) | ||
| 4545 | return PTR_ERR(leader); | ||
| 4546 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
| 4547 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
| 4548 | child, leader, child_ctx); | ||
| 4549 | if (IS_ERR(child_ctr)) | ||
| 4550 | return PTR_ERR(child_ctr); | ||
| 4551 | } | ||
| 4552 | return 0; | ||
| 4553 | } | ||
| 4554 | |||
| 4555 | static void sync_child_event(struct perf_event *child_event, | ||
| 4556 | struct task_struct *child) | ||
| 4557 | { | ||
| 4558 | struct perf_event *parent_event = child_event->parent; | ||
| 4559 | u64 child_val; | ||
| 4560 | |||
| 4561 | if (child_event->attr.inherit_stat) | ||
| 4562 | perf_event_read_event(child_event, child); | ||
| 4563 | |||
| 4564 | child_val = atomic64_read(&child_event->count); | ||
| 4565 | |||
| 4566 | /* | ||
| 4567 | * Add back the child's count to the parent's count: | ||
| 4568 | */ | ||
| 4569 | atomic64_add(child_val, &parent_event->count); | ||
| 4570 | atomic64_add(child_event->total_time_enabled, | ||
| 4571 | &parent_event->child_total_time_enabled); | ||
| 4572 | atomic64_add(child_event->total_time_running, | ||
| 4573 | &parent_event->child_total_time_running); | ||
| 4574 | |||
| 4575 | /* | ||
| 4576 | * Remove this event from the parent's list | ||
| 4577 | */ | ||
| 4578 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4579 | mutex_lock(&parent_event->child_mutex); | ||
| 4580 | list_del_init(&child_event->child_list); | ||
| 4581 | mutex_unlock(&parent_event->child_mutex); | ||
| 4582 | |||
| 4583 | /* | ||
| 4584 | * Release the parent event, if this was the last | ||
| 4585 | * reference to it. | ||
| 4586 | */ | ||
| 4587 | fput(parent_event->filp); | ||
| 4588 | } | ||
| 4589 | |||
| 4590 | static void | ||
| 4591 | __perf_event_exit_task(struct perf_event *child_event, | ||
| 4592 | struct perf_event_context *child_ctx, | ||
| 4593 | struct task_struct *child) | ||
| 4594 | { | ||
| 4595 | struct perf_event *parent_event; | ||
| 4596 | |||
| 4597 | update_event_times(child_event); | ||
| 4598 | perf_event_remove_from_context(child_event); | ||
| 4599 | |||
| 4600 | parent_event = child_event->parent; | ||
| 4601 | /* | ||
| 4602 | * It can happen that parent exits first, and has events | ||
| 4603 | * that are still around due to the child reference. These | ||
| 4604 | * events need to be zapped - but otherwise linger. | ||
| 4605 | */ | ||
| 4606 | if (parent_event) { | ||
| 4607 | sync_child_event(child_event, child); | ||
| 4608 | free_event(child_event); | ||
| 4609 | } | ||
| 4610 | } | ||
| 4611 | |||
| 4612 | /* | ||
| 4613 | * When a child task exits, feed back event values to parent events. | ||
| 4614 | */ | ||
| 4615 | void perf_event_exit_task(struct task_struct *child) | ||
| 4616 | { | ||
| 4617 | struct perf_event *child_event, *tmp; | ||
| 4618 | struct perf_event_context *child_ctx; | ||
| 4619 | unsigned long flags; | ||
| 4620 | |||
| 4621 | if (likely(!child->perf_event_ctxp)) { | ||
| 4622 | perf_event_task(child, NULL, 0); | ||
| 4623 | return; | ||
| 4624 | } | ||
| 4625 | |||
| 4626 | local_irq_save(flags); | ||
| 4627 | /* | ||
| 4628 | * We can't reschedule here because interrupts are disabled, | ||
| 4629 | * and either child is current or it is a task that can't be | ||
| 4630 | * scheduled, so we are now safe from rescheduling changing | ||
| 4631 | * our context. | ||
| 4632 | */ | ||
| 4633 | child_ctx = child->perf_event_ctxp; | ||
| 4634 | __perf_event_task_sched_out(child_ctx); | ||
| 4635 | |||
| 4636 | /* | ||
| 4637 | * Take the context lock here so that if find_get_context is | ||
| 4638 | * reading child->perf_event_ctxp, we wait until it has | ||
| 4639 | * incremented the context's refcount before we do put_ctx below. | ||
| 4640 | */ | ||
| 4641 | spin_lock(&child_ctx->lock); | ||
| 4642 | child->perf_event_ctxp = NULL; | ||
| 4643 | /* | ||
| 4644 | * If this context is a clone; unclone it so it can't get | ||
| 4645 | * swapped to another process while we're removing all | ||
| 4646 | * the events from it. | ||
| 4647 | */ | ||
| 4648 | unclone_ctx(child_ctx); | ||
| 4649 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
| 4650 | |||
| 4651 | /* | ||
| 4652 | * Report the task dead after unscheduling the events so that we | ||
| 4653 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
| 4654 | * get a few PERF_RECORD_READ events. | ||
| 4655 | */ | ||
| 4656 | perf_event_task(child, child_ctx, 0); | ||
| 4657 | |||
| 4658 | /* | ||
| 4659 | * We can recurse on the same lock type through: | ||
| 4660 | * | ||
| 4661 | * __perf_event_exit_task() | ||
| 4662 | * sync_child_event() | ||
| 4663 | * fput(parent_event->filp) | ||
| 4664 | * perf_release() | ||
| 4665 | * mutex_lock(&ctx->mutex) | ||
| 4666 | * | ||
| 4667 | * But since its the parent context it won't be the same instance. | ||
| 4668 | */ | ||
| 4669 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 4670 | |||
| 4671 | again: | ||
| 4672 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
| 4673 | group_entry) | ||
| 4674 | __perf_event_exit_task(child_event, child_ctx, child); | ||
| 4675 | |||
| 4676 | /* | ||
| 4677 | * If the last event was a group event, it will have appended all | ||
| 4678 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 4679 | * will still point to the list head terminating the iteration. | ||
| 4680 | */ | ||
| 4681 | if (!list_empty(&child_ctx->group_list)) | ||
| 4682 | goto again; | ||
| 4683 | |||
| 4684 | mutex_unlock(&child_ctx->mutex); | ||
| 4685 | |||
| 4686 | put_ctx(child_ctx); | ||
| 4687 | } | ||
| 4688 | |||
| 4689 | /* | ||
| 4690 | * free an unexposed, unused context as created by inheritance by | ||
| 4691 | * init_task below, used by fork() in case of fail. | ||
| 4692 | */ | ||
| 4693 | void perf_event_free_task(struct task_struct *task) | ||
| 4694 | { | ||
| 4695 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 4696 | struct perf_event *event, *tmp; | ||
| 4697 | |||
| 4698 | if (!ctx) | ||
| 4699 | return; | ||
| 4700 | |||
| 4701 | mutex_lock(&ctx->mutex); | ||
| 4702 | again: | ||
| 4703 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
| 4704 | struct perf_event *parent = event->parent; | ||
| 4705 | |||
| 4706 | if (WARN_ON_ONCE(!parent)) | ||
| 4707 | continue; | ||
| 4708 | |||
| 4709 | mutex_lock(&parent->child_mutex); | ||
| 4710 | list_del_init(&event->child_list); | ||
| 4711 | mutex_unlock(&parent->child_mutex); | ||
| 4712 | |||
| 4713 | fput(parent->filp); | ||
| 4714 | |||
| 4715 | list_del_event(event, ctx); | ||
| 4716 | free_event(event); | ||
| 4717 | } | ||
| 4718 | |||
| 4719 | if (!list_empty(&ctx->group_list)) | ||
| 4720 | goto again; | ||
| 4721 | |||
| 4722 | mutex_unlock(&ctx->mutex); | ||
| 4723 | |||
| 4724 | put_ctx(ctx); | ||
| 4725 | } | ||
| 4726 | |||
| 4727 | /* | ||
| 4728 | * Initialize the perf_event context in task_struct | ||
| 4729 | */ | ||
| 4730 | int perf_event_init_task(struct task_struct *child) | ||
| 4731 | { | ||
| 4732 | struct perf_event_context *child_ctx, *parent_ctx; | ||
| 4733 | struct perf_event_context *cloned_ctx; | ||
| 4734 | struct perf_event *event; | ||
| 4735 | struct task_struct *parent = current; | ||
| 4736 | int inherited_all = 1; | ||
| 4737 | int ret = 0; | ||
| 4738 | |||
| 4739 | child->perf_event_ctxp = NULL; | ||
| 4740 | |||
| 4741 | mutex_init(&child->perf_event_mutex); | ||
| 4742 | INIT_LIST_HEAD(&child->perf_event_list); | ||
| 4743 | |||
| 4744 | if (likely(!parent->perf_event_ctxp)) | ||
| 4745 | return 0; | ||
| 4746 | |||
| 4747 | /* | ||
| 4748 | * This is executed from the parent task context, so inherit | ||
| 4749 | * events that have been marked for cloning. | ||
| 4750 | * First allocate and initialize a context for the child. | ||
| 4751 | */ | ||
| 4752 | |||
| 4753 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 4754 | if (!child_ctx) | ||
| 4755 | return -ENOMEM; | ||
| 4756 | |||
| 4757 | __perf_event_init_context(child_ctx, child); | ||
| 4758 | child->perf_event_ctxp = child_ctx; | ||
| 4759 | get_task_struct(child); | ||
| 4760 | |||
| 4761 | /* | ||
| 4762 | * If the parent's context is a clone, pin it so it won't get | ||
| 4763 | * swapped under us. | ||
| 4764 | */ | ||
| 4765 | parent_ctx = perf_pin_task_context(parent); | ||
| 4766 | |||
| 4767 | /* | ||
| 4768 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 4769 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 4770 | * is if we exit, and since we're currently in the middle of | ||
| 4771 | * a fork we can't be exiting at the same time. | ||
| 4772 | */ | ||
| 4773 | |||
| 4774 | /* | ||
| 4775 | * Lock the parent list. No need to lock the child - not PID | ||
| 4776 | * hashed yet and not running, so nobody can access it. | ||
| 4777 | */ | ||
| 4778 | mutex_lock(&parent_ctx->mutex); | ||
| 4779 | |||
| 4780 | /* | ||
| 4781 | * We dont have to disable NMIs - we are only looking at | ||
| 4782 | * the list, not manipulating it: | ||
| 4783 | */ | ||
| 4784 | list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) { | ||
| 4785 | if (event != event->group_leader) | ||
| 4786 | continue; | ||
| 4787 | |||
| 4788 | if (!event->attr.inherit) { | ||
| 4789 | inherited_all = 0; | ||
| 4790 | continue; | ||
| 4791 | } | ||
| 4792 | |||
| 4793 | ret = inherit_group(event, parent, parent_ctx, | ||
| 4794 | child, child_ctx); | ||
| 4795 | if (ret) { | ||
| 4796 | inherited_all = 0; | ||
| 4797 | break; | ||
| 4798 | } | ||
| 4799 | } | ||
| 4800 | |||
| 4801 | if (inherited_all) { | ||
| 4802 | /* | ||
| 4803 | * Mark the child context as a clone of the parent | ||
| 4804 | * context, or of whatever the parent is a clone of. | ||
| 4805 | * Note that if the parent is a clone, it could get | ||
| 4806 | * uncloned at any point, but that doesn't matter | ||
| 4807 | * because the list of events and the generation | ||
| 4808 | * count can't have changed since we took the mutex. | ||
| 4809 | */ | ||
| 4810 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 4811 | if (cloned_ctx) { | ||
| 4812 | child_ctx->parent_ctx = cloned_ctx; | ||
| 4813 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 4814 | } else { | ||
| 4815 | child_ctx->parent_ctx = parent_ctx; | ||
| 4816 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 4817 | } | ||
| 4818 | get_ctx(child_ctx->parent_ctx); | ||
| 4819 | } | ||
| 4820 | |||
| 4821 | mutex_unlock(&parent_ctx->mutex); | ||
| 4822 | |||
| 4823 | perf_unpin_context(parent_ctx); | ||
| 4824 | |||
| 4825 | return ret; | ||
| 4826 | } | ||
| 4827 | |||
| 4828 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
| 4829 | { | ||
| 4830 | struct perf_cpu_context *cpuctx; | ||
| 4831 | |||
| 4832 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4833 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
| 4834 | |||
| 4835 | spin_lock(&perf_resource_lock); | ||
| 4836 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
| 4837 | spin_unlock(&perf_resource_lock); | ||
| 4838 | |||
| 4839 | hw_perf_event_setup(cpu); | ||
| 4840 | } | ||
| 4841 | |||
| 4842 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 4843 | static void __perf_event_exit_cpu(void *info) | ||
| 4844 | { | ||
| 4845 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 4846 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 4847 | struct perf_event *event, *tmp; | ||
| 4848 | |||
| 4849 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
| 4850 | __perf_event_remove_from_context(event); | ||
| 4851 | } | ||
| 4852 | static void perf_event_exit_cpu(int cpu) | ||
| 4853 | { | ||
| 4854 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4855 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 4856 | |||
| 4857 | mutex_lock(&ctx->mutex); | ||
| 4858 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
| 4859 | mutex_unlock(&ctx->mutex); | ||
| 4860 | } | ||
| 4861 | #else | ||
| 4862 | static inline void perf_event_exit_cpu(int cpu) { } | ||
| 4863 | #endif | ||
| 4864 | |||
| 4865 | static int __cpuinit | ||
| 4866 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 4867 | { | ||
| 4868 | unsigned int cpu = (long)hcpu; | ||
| 4869 | |||
| 4870 | switch (action) { | ||
| 4871 | |||
| 4872 | case CPU_UP_PREPARE: | ||
| 4873 | case CPU_UP_PREPARE_FROZEN: | ||
| 4874 | perf_event_init_cpu(cpu); | ||
| 4875 | break; | ||
| 4876 | |||
| 4877 | case CPU_ONLINE: | ||
| 4878 | case CPU_ONLINE_FROZEN: | ||
| 4879 | hw_perf_event_setup_online(cpu); | ||
| 4880 | break; | ||
| 4881 | |||
| 4882 | case CPU_DOWN_PREPARE: | ||
| 4883 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 4884 | perf_event_exit_cpu(cpu); | ||
| 4885 | break; | ||
| 4886 | |||
| 4887 | default: | ||
| 4888 | break; | ||
| 4889 | } | ||
| 4890 | |||
| 4891 | return NOTIFY_OK; | ||
| 4892 | } | ||
| 4893 | |||
| 4894 | /* | ||
| 4895 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 4896 | */ | ||
| 4897 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 4898 | .notifier_call = perf_cpu_notify, | ||
| 4899 | .priority = 20, | ||
| 4900 | }; | ||
| 4901 | |||
| 4902 | void __init perf_event_init(void) | ||
| 4903 | { | ||
| 4904 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 4905 | (void *)(long)smp_processor_id()); | ||
| 4906 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
| 4907 | (void *)(long)smp_processor_id()); | ||
| 4908 | register_cpu_notifier(&perf_cpu_nb); | ||
| 4909 | } | ||
| 4910 | |||
| 4911 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 4912 | { | ||
| 4913 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 4914 | } | ||
| 4915 | |||
| 4916 | static ssize_t | ||
| 4917 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 4918 | const char *buf, | ||
| 4919 | size_t count) | ||
| 4920 | { | ||
| 4921 | struct perf_cpu_context *cpuctx; | ||
| 4922 | unsigned long val; | ||
| 4923 | int err, cpu, mpt; | ||
| 4924 | |||
| 4925 | err = strict_strtoul(buf, 10, &val); | ||
| 4926 | if (err) | ||
| 4927 | return err; | ||
| 4928 | if (val > perf_max_events) | ||
| 4929 | return -EINVAL; | ||
| 4930 | |||
| 4931 | spin_lock(&perf_resource_lock); | ||
| 4932 | perf_reserved_percpu = val; | ||
| 4933 | for_each_online_cpu(cpu) { | ||
| 4934 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4935 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 4936 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
| 4937 | perf_max_events - perf_reserved_percpu); | ||
| 4938 | cpuctx->max_pertask = mpt; | ||
| 4939 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 4940 | } | ||
| 4941 | spin_unlock(&perf_resource_lock); | ||
| 4942 | |||
| 4943 | return count; | ||
| 4944 | } | ||
| 4945 | |||
| 4946 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 4947 | { | ||
| 4948 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 4949 | } | ||
| 4950 | |||
| 4951 | static ssize_t | ||
| 4952 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 4953 | { | ||
| 4954 | unsigned long val; | ||
| 4955 | int err; | ||
| 4956 | |||
| 4957 | err = strict_strtoul(buf, 10, &val); | ||
| 4958 | if (err) | ||
| 4959 | return err; | ||
| 4960 | if (val > 1) | ||
| 4961 | return -EINVAL; | ||
| 4962 | |||
| 4963 | spin_lock(&perf_resource_lock); | ||
| 4964 | perf_overcommit = val; | ||
| 4965 | spin_unlock(&perf_resource_lock); | ||
| 4966 | |||
| 4967 | return count; | ||
| 4968 | } | ||
| 4969 | |||
| 4970 | static SYSDEV_CLASS_ATTR( | ||
| 4971 | reserve_percpu, | ||
| 4972 | 0644, | ||
| 4973 | perf_show_reserve_percpu, | ||
| 4974 | perf_set_reserve_percpu | ||
| 4975 | ); | ||
| 4976 | |||
| 4977 | static SYSDEV_CLASS_ATTR( | ||
| 4978 | overcommit, | ||
| 4979 | 0644, | ||
| 4980 | perf_show_overcommit, | ||
| 4981 | perf_set_overcommit | ||
| 4982 | ); | ||
| 4983 | |||
| 4984 | static struct attribute *perfclass_attrs[] = { | ||
| 4985 | &attr_reserve_percpu.attr, | ||
| 4986 | &attr_overcommit.attr, | ||
| 4987 | NULL | ||
| 4988 | }; | ||
| 4989 | |||
| 4990 | static struct attribute_group perfclass_attr_group = { | ||
| 4991 | .attrs = perfclass_attrs, | ||
| 4992 | .name = "perf_events", | ||
| 4993 | }; | ||
| 4994 | |||
| 4995 | static int __init perf_event_sysfs_init(void) | ||
| 4996 | { | ||
| 4997 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 4998 | &perfclass_attr_group); | ||
| 4999 | } | ||
| 5000 | device_initcall(perf_event_sysfs_init); | ||
diff --git a/kernel/pid.c b/kernel/pid.c index 31310b5d3f50..d3f722d20f9c 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
| @@ -40,7 +40,7 @@ | |||
| 40 | #define pid_hashfn(nr, ns) \ | 40 | #define pid_hashfn(nr, ns) \ |
| 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) |
| 42 | static struct hlist_head *pid_hash; | 42 | static struct hlist_head *pid_hash; |
| 43 | static int pidhash_shift; | 43 | static unsigned int pidhash_shift = 4; |
| 44 | struct pid init_struct_pid = INIT_STRUCT_PID; | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
| 45 | 45 | ||
| 46 | int pid_max = PID_MAX_DEFAULT; | 46 | int pid_max = PID_MAX_DEFAULT; |
| @@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | |||
| 499 | void __init pidhash_init(void) | 499 | void __init pidhash_init(void) |
| 500 | { | 500 | { |
| 501 | int i, pidhash_size; | 501 | int i, pidhash_size; |
| 502 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
| 503 | 502 | ||
| 504 | pidhash_shift = max(4, fls(megabytes * 4)); | 503 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
| 505 | pidhash_shift = min(12, pidhash_shift); | 504 | HASH_EARLY | HASH_SMALL, |
| 505 | &pidhash_shift, NULL, 4096); | ||
| 506 | pidhash_size = 1 << pidhash_shift; | 506 | pidhash_size = 1 << pidhash_shift; |
| 507 | 507 | ||
| 508 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
| 509 | pidhash_size, pidhash_shift, | ||
| 510 | pidhash_size * sizeof(struct hlist_head)); | ||
| 511 | |||
| 512 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | ||
| 513 | if (!pid_hash) | ||
| 514 | panic("Could not alloc pidhash!\n"); | ||
| 515 | for (i = 0; i < pidhash_size; i++) | 508 | for (i = 0; i < pidhash_size; i++) |
| 516 | INIT_HLIST_HEAD(&pid_hash[i]); | 509 | INIT_HLIST_HEAD(&pid_hash[i]); |
| 517 | } | 510 | } |
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index 821722ae58a7..86b3796b0436 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c | |||
| @@ -118,7 +118,7 @@ struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old | |||
| 118 | { | 118 | { |
| 119 | if (!(flags & CLONE_NEWPID)) | 119 | if (!(flags & CLONE_NEWPID)) |
| 120 | return get_pid_ns(old_ns); | 120 | return get_pid_ns(old_ns); |
| 121 | if (flags & CLONE_THREAD) | 121 | if (flags & (CLONE_THREAD|CLONE_PARENT)) |
| 122 | return ERR_PTR(-EINVAL); | 122 | return ERR_PTR(-EINVAL); |
| 123 | return create_pid_namespace(old_ns); | 123 | return create_pid_namespace(old_ns); |
| 124 | } | 124 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e33a21cb9407..5c9dc228747b 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
| @@ -8,17 +8,18 @@ | |||
| 8 | #include <linux/math64.h> | 8 | #include <linux/math64.h> |
| 9 | #include <asm/uaccess.h> | 9 | #include <asm/uaccess.h> |
| 10 | #include <linux/kernel_stat.h> | 10 | #include <linux/kernel_stat.h> |
| 11 | #include <trace/events/timer.h> | ||
| 11 | 12 | ||
| 12 | /* | 13 | /* |
| 13 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. |
| 14 | */ | 15 | */ |
| 15 | void update_rlimit_cpu(unsigned long rlim_new) | 16 | void update_rlimit_cpu(unsigned long rlim_new) |
| 16 | { | 17 | { |
| 17 | cputime_t cputime; | 18 | cputime_t cputime = secs_to_cputime(rlim_new); |
| 19 | struct signal_struct *const sig = current->signal; | ||
| 18 | 20 | ||
| 19 | cputime = secs_to_cputime(rlim_new); | 21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || |
| 20 | if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { |
| 21 | cputime_gt(current->signal->it_prof_expires, cputime)) { | ||
| 22 | spin_lock_irq(¤t->sighand->siglock); | 23 | spin_lock_irq(¤t->sighand->siglock); |
| 23 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
| 24 | spin_unlock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
| @@ -542,6 +543,17 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |||
| 542 | now); | 543 | now); |
| 543 | } | 544 | } |
| 544 | 545 | ||
| 546 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | ||
| 547 | { | ||
| 548 | return cputime_eq(expires, cputime_zero) || | ||
| 549 | cputime_gt(expires, new_exp); | ||
| 550 | } | ||
| 551 | |||
| 552 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
| 553 | { | ||
| 554 | return !cputime_eq(expires, cputime_zero) && | ||
| 555 | cputime_le(expires, new_exp); | ||
| 556 | } | ||
| 545 | /* | 557 | /* |
| 546 | * Insert the timer on the appropriate list before any timers that | 558 | * Insert the timer on the appropriate list before any timers that |
| 547 | * expire later. This must be called with the tasklist_lock held | 559 | * expire later. This must be called with the tasklist_lock held |
| @@ -586,34 +598,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
| 586 | */ | 598 | */ |
| 587 | 599 | ||
| 588 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 600 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| 601 | union cpu_time_count *exp = &nt->expires; | ||
| 602 | |||
| 589 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 603 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| 590 | default: | 604 | default: |
| 591 | BUG(); | 605 | BUG(); |
| 592 | case CPUCLOCK_PROF: | 606 | case CPUCLOCK_PROF: |
| 593 | if (cputime_eq(p->cputime_expires.prof_exp, | 607 | if (expires_gt(p->cputime_expires.prof_exp, |
| 594 | cputime_zero) || | 608 | exp->cpu)) |
| 595 | cputime_gt(p->cputime_expires.prof_exp, | 609 | p->cputime_expires.prof_exp = exp->cpu; |
| 596 | nt->expires.cpu)) | ||
| 597 | p->cputime_expires.prof_exp = | ||
| 598 | nt->expires.cpu; | ||
| 599 | break; | 610 | break; |
| 600 | case CPUCLOCK_VIRT: | 611 | case CPUCLOCK_VIRT: |
| 601 | if (cputime_eq(p->cputime_expires.virt_exp, | 612 | if (expires_gt(p->cputime_expires.virt_exp, |
| 602 | cputime_zero) || | 613 | exp->cpu)) |
| 603 | cputime_gt(p->cputime_expires.virt_exp, | 614 | p->cputime_expires.virt_exp = exp->cpu; |
| 604 | nt->expires.cpu)) | ||
| 605 | p->cputime_expires.virt_exp = | ||
| 606 | nt->expires.cpu; | ||
| 607 | break; | 615 | break; |
| 608 | case CPUCLOCK_SCHED: | 616 | case CPUCLOCK_SCHED: |
| 609 | if (p->cputime_expires.sched_exp == 0 || | 617 | if (p->cputime_expires.sched_exp == 0 || |
| 610 | p->cputime_expires.sched_exp > | 618 | p->cputime_expires.sched_exp > exp->sched) |
| 611 | nt->expires.sched) | ||
| 612 | p->cputime_expires.sched_exp = | 619 | p->cputime_expires.sched_exp = |
| 613 | nt->expires.sched; | 620 | exp->sched; |
| 614 | break; | 621 | break; |
| 615 | } | 622 | } |
| 616 | } else { | 623 | } else { |
| 624 | struct signal_struct *const sig = p->signal; | ||
| 625 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
| 626 | |||
| 617 | /* | 627 | /* |
| 618 | * For a process timer, set the cached expiration time. | 628 | * For a process timer, set the cached expiration time. |
| 619 | */ | 629 | */ |
| @@ -621,30 +631,23 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
| 621 | default: | 631 | default: |
| 622 | BUG(); | 632 | BUG(); |
| 623 | case CPUCLOCK_VIRT: | 633 | case CPUCLOCK_VIRT: |
| 624 | if (!cputime_eq(p->signal->it_virt_expires, | 634 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, |
| 625 | cputime_zero) && | 635 | exp->cpu)) |
| 626 | cputime_lt(p->signal->it_virt_expires, | ||
| 627 | timer->it.cpu.expires.cpu)) | ||
| 628 | break; | 636 | break; |
| 629 | p->signal->cputime_expires.virt_exp = | 637 | sig->cputime_expires.virt_exp = exp->cpu; |
| 630 | timer->it.cpu.expires.cpu; | ||
| 631 | break; | 638 | break; |
| 632 | case CPUCLOCK_PROF: | 639 | case CPUCLOCK_PROF: |
| 633 | if (!cputime_eq(p->signal->it_prof_expires, | 640 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, |
| 634 | cputime_zero) && | 641 | exp->cpu)) |
| 635 | cputime_lt(p->signal->it_prof_expires, | ||
| 636 | timer->it.cpu.expires.cpu)) | ||
| 637 | break; | 642 | break; |
| 638 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 643 | i = sig->rlim[RLIMIT_CPU].rlim_cur; |
| 639 | if (i != RLIM_INFINITY && | 644 | if (i != RLIM_INFINITY && |
| 640 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 645 | i <= cputime_to_secs(exp->cpu)) |
| 641 | break; | 646 | break; |
| 642 | p->signal->cputime_expires.prof_exp = | 647 | sig->cputime_expires.prof_exp = exp->cpu; |
| 643 | timer->it.cpu.expires.cpu; | ||
| 644 | break; | 648 | break; |
| 645 | case CPUCLOCK_SCHED: | 649 | case CPUCLOCK_SCHED: |
| 646 | p->signal->cputime_expires.sched_exp = | 650 | sig->cputime_expires.sched_exp = exp->sched; |
| 647 | timer->it.cpu.expires.sched; | ||
| 648 | break; | 651 | break; |
| 649 | } | 652 | } |
| 650 | } | 653 | } |
| @@ -1071,6 +1074,40 @@ static void stop_process_timers(struct task_struct *tsk) | |||
| 1071 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1074 | spin_unlock_irqrestore(&cputimer->lock, flags); |
| 1072 | } | 1075 | } |
| 1073 | 1076 | ||
| 1077 | static u32 onecputick; | ||
| 1078 | |||
| 1079 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | ||
| 1080 | cputime_t *expires, cputime_t cur_time, int signo) | ||
| 1081 | { | ||
| 1082 | if (cputime_eq(it->expires, cputime_zero)) | ||
| 1083 | return; | ||
| 1084 | |||
| 1085 | if (cputime_ge(cur_time, it->expires)) { | ||
| 1086 | if (!cputime_eq(it->incr, cputime_zero)) { | ||
| 1087 | it->expires = cputime_add(it->expires, it->incr); | ||
| 1088 | it->error += it->incr_error; | ||
| 1089 | if (it->error >= onecputick) { | ||
| 1090 | it->expires = cputime_sub(it->expires, | ||
| 1091 | cputime_one_jiffy); | ||
| 1092 | it->error -= onecputick; | ||
| 1093 | } | ||
| 1094 | } else { | ||
| 1095 | it->expires = cputime_zero; | ||
| 1096 | } | ||
| 1097 | |||
| 1098 | trace_itimer_expire(signo == SIGPROF ? | ||
| 1099 | ITIMER_PROF : ITIMER_VIRTUAL, | ||
| 1100 | tsk->signal->leader_pid, cur_time); | ||
| 1101 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | ||
| 1102 | } | ||
| 1103 | |||
| 1104 | if (!cputime_eq(it->expires, cputime_zero) && | ||
| 1105 | (cputime_eq(*expires, cputime_zero) || | ||
| 1106 | cputime_lt(it->expires, *expires))) { | ||
| 1107 | *expires = it->expires; | ||
| 1108 | } | ||
| 1109 | } | ||
| 1110 | |||
| 1074 | /* | 1111 | /* |
| 1075 | * Check for any per-thread CPU timers that have fired and move them | 1112 | * Check for any per-thread CPU timers that have fired and move them |
| 1076 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1113 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
| @@ -1090,10 +1127,10 @@ static void check_process_timers(struct task_struct *tsk, | |||
| 1090 | * Don't sample the current process CPU clocks if there are no timers. | 1127 | * Don't sample the current process CPU clocks if there are no timers. |
| 1091 | */ | 1128 | */ |
| 1092 | if (list_empty(&timers[CPUCLOCK_PROF]) && | 1129 | if (list_empty(&timers[CPUCLOCK_PROF]) && |
| 1093 | cputime_eq(sig->it_prof_expires, cputime_zero) && | 1130 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && |
| 1094 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 1131 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
| 1095 | list_empty(&timers[CPUCLOCK_VIRT]) && | 1132 | list_empty(&timers[CPUCLOCK_VIRT]) && |
| 1096 | cputime_eq(sig->it_virt_expires, cputime_zero) && | 1133 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && |
| 1097 | list_empty(&timers[CPUCLOCK_SCHED])) { | 1134 | list_empty(&timers[CPUCLOCK_SCHED])) { |
| 1098 | stop_process_timers(tsk); | 1135 | stop_process_timers(tsk); |
| 1099 | return; | 1136 | return; |
| @@ -1153,38 +1190,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
| 1153 | /* | 1190 | /* |
| 1154 | * Check for the special case process timers. | 1191 | * Check for the special case process timers. |
| 1155 | */ | 1192 | */ |
| 1156 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1193 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
| 1157 | if (cputime_ge(ptime, sig->it_prof_expires)) { | 1194 | SIGPROF); |
| 1158 | /* ITIMER_PROF fires and reloads. */ | 1195 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
| 1159 | sig->it_prof_expires = sig->it_prof_incr; | 1196 | SIGVTALRM); |
| 1160 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1197 | |
| 1161 | sig->it_prof_expires = cputime_add( | ||
| 1162 | sig->it_prof_expires, ptime); | ||
| 1163 | } | ||
| 1164 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | ||
| 1165 | } | ||
| 1166 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
| 1167 | (cputime_eq(prof_expires, cputime_zero) || | ||
| 1168 | cputime_lt(sig->it_prof_expires, prof_expires))) { | ||
| 1169 | prof_expires = sig->it_prof_expires; | ||
| 1170 | } | ||
| 1171 | } | ||
| 1172 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
| 1173 | if (cputime_ge(utime, sig->it_virt_expires)) { | ||
| 1174 | /* ITIMER_VIRTUAL fires and reloads. */ | ||
| 1175 | sig->it_virt_expires = sig->it_virt_incr; | ||
| 1176 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
| 1177 | sig->it_virt_expires = cputime_add( | ||
| 1178 | sig->it_virt_expires, utime); | ||
| 1179 | } | ||
| 1180 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | ||
| 1181 | } | ||
| 1182 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
| 1183 | (cputime_eq(virt_expires, cputime_zero) || | ||
| 1184 | cputime_lt(sig->it_virt_expires, virt_expires))) { | ||
| 1185 | virt_expires = sig->it_virt_expires; | ||
| 1186 | } | ||
| 1187 | } | ||
| 1188 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 1198 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
| 1189 | unsigned long psecs = cputime_to_secs(ptime); | 1199 | unsigned long psecs = cputime_to_secs(ptime); |
| 1190 | cputime_t x; | 1200 | cputime_t x; |
| @@ -1457,7 +1467,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
| 1457 | if (!cputime_eq(*oldval, cputime_zero)) { | 1467 | if (!cputime_eq(*oldval, cputime_zero)) { |
| 1458 | if (cputime_le(*oldval, now.cpu)) { | 1468 | if (cputime_le(*oldval, now.cpu)) { |
| 1459 | /* Just about to fire. */ | 1469 | /* Just about to fire. */ |
| 1460 | *oldval = jiffies_to_cputime(1); | 1470 | *oldval = cputime_one_jiffy; |
| 1461 | } else { | 1471 | } else { |
| 1462 | *oldval = cputime_sub(*oldval, now.cpu); | 1472 | *oldval = cputime_sub(*oldval, now.cpu); |
| 1463 | } | 1473 | } |
| @@ -1703,10 +1713,15 @@ static __init int init_posix_cpu_timers(void) | |||
| 1703 | .nsleep = thread_cpu_nsleep, | 1713 | .nsleep = thread_cpu_nsleep, |
| 1704 | .nsleep_restart = thread_cpu_nsleep_restart, | 1714 | .nsleep_restart = thread_cpu_nsleep_restart, |
| 1705 | }; | 1715 | }; |
| 1716 | struct timespec ts; | ||
| 1706 | 1717 | ||
| 1707 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 1718 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
| 1708 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 1719 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
| 1709 | 1720 | ||
| 1721 | cputime_to_timespec(cputime_one_jiffy, &ts); | ||
| 1722 | onecputick = ts.tv_nsec; | ||
| 1723 | WARN_ON(ts.tv_sec != 0); | ||
| 1724 | |||
| 1710 | return 0; | 1725 | return 0; |
| 1711 | } | 1726 | } |
| 1712 | __initcall(init_posix_cpu_timers); | 1727 | __initcall(init_posix_cpu_timers); |
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index d089d052c4a9..495440779ce3 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
| @@ -242,6 +242,25 @@ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |||
| 242 | return 0; | 242 | return 0; |
| 243 | } | 243 | } |
| 244 | 244 | ||
| 245 | |||
| 246 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | ||
| 247 | { | ||
| 248 | *tp = current_kernel_time(); | ||
| 249 | return 0; | ||
| 250 | } | ||
| 251 | |||
| 252 | static int posix_get_monotonic_coarse(clockid_t which_clock, | ||
| 253 | struct timespec *tp) | ||
| 254 | { | ||
| 255 | *tp = get_monotonic_coarse(); | ||
| 256 | return 0; | ||
| 257 | } | ||
| 258 | |||
| 259 | int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) | ||
| 260 | { | ||
| 261 | *tp = ktime_to_timespec(KTIME_LOW_RES); | ||
| 262 | return 0; | ||
| 263 | } | ||
| 245 | /* | 264 | /* |
| 246 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 265 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
| 247 | */ | 266 | */ |
| @@ -262,10 +281,26 @@ static __init int init_posix_timers(void) | |||
| 262 | .timer_create = no_timer_create, | 281 | .timer_create = no_timer_create, |
| 263 | .nsleep = no_nsleep, | 282 | .nsleep = no_nsleep, |
| 264 | }; | 283 | }; |
| 284 | struct k_clock clock_realtime_coarse = { | ||
| 285 | .clock_getres = posix_get_coarse_res, | ||
| 286 | .clock_get = posix_get_realtime_coarse, | ||
| 287 | .clock_set = do_posix_clock_nosettime, | ||
| 288 | .timer_create = no_timer_create, | ||
| 289 | .nsleep = no_nsleep, | ||
| 290 | }; | ||
| 291 | struct k_clock clock_monotonic_coarse = { | ||
| 292 | .clock_getres = posix_get_coarse_res, | ||
| 293 | .clock_get = posix_get_monotonic_coarse, | ||
| 294 | .clock_set = do_posix_clock_nosettime, | ||
| 295 | .timer_create = no_timer_create, | ||
| 296 | .nsleep = no_nsleep, | ||
| 297 | }; | ||
| 265 | 298 | ||
| 266 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 299 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
| 267 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 300 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); |
| 268 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | 301 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); |
| 302 | register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | ||
| 303 | register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | ||
| 269 | 304 | ||
| 270 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 305 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| 271 | sizeof (struct k_itimer), 0, SLAB_PANIC, | 306 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
diff --git a/kernel/power/console.c b/kernel/power/console.c index a3961b205de7..5187136fe1de 100644 --- a/kernel/power/console.c +++ b/kernel/power/console.c | |||
| @@ -14,56 +14,13 @@ | |||
| 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) | 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) |
| 15 | 15 | ||
| 16 | static int orig_fgconsole, orig_kmsg; | 16 | static int orig_fgconsole, orig_kmsg; |
| 17 | static int disable_vt_switch; | ||
| 18 | |||
| 19 | /* | ||
| 20 | * Normally during a suspend, we allocate a new console and switch to it. | ||
| 21 | * When we resume, we switch back to the original console. This switch | ||
| 22 | * can be slow, so on systems where the framebuffer can handle restoration | ||
| 23 | * of video registers anyways, there's little point in doing the console | ||
| 24 | * switch. This function allows you to disable it by passing it '0'. | ||
| 25 | */ | ||
| 26 | void pm_set_vt_switch(int do_switch) | ||
| 27 | { | ||
| 28 | acquire_console_sem(); | ||
| 29 | disable_vt_switch = !do_switch; | ||
| 30 | release_console_sem(); | ||
| 31 | } | ||
| 32 | EXPORT_SYMBOL(pm_set_vt_switch); | ||
| 33 | 17 | ||
| 34 | int pm_prepare_console(void) | 18 | int pm_prepare_console(void) |
| 35 | { | 19 | { |
| 36 | acquire_console_sem(); | 20 | orig_fgconsole = vt_move_to_console(SUSPEND_CONSOLE, 1); |
| 37 | 21 | if (orig_fgconsole < 0) | |
| 38 | if (disable_vt_switch) { | ||
| 39 | release_console_sem(); | ||
| 40 | return 0; | ||
| 41 | } | ||
| 42 | |||
| 43 | orig_fgconsole = fg_console; | ||
| 44 | |||
| 45 | if (vc_allocate(SUSPEND_CONSOLE)) { | ||
| 46 | /* we can't have a free VC for now. Too bad, | ||
| 47 | * we don't want to mess the screen for now. */ | ||
| 48 | release_console_sem(); | ||
| 49 | return 1; | 22 | return 1; |
| 50 | } | ||
| 51 | 23 | ||
| 52 | if (set_console(SUSPEND_CONSOLE)) { | ||
| 53 | /* | ||
| 54 | * We're unable to switch to the SUSPEND_CONSOLE. | ||
| 55 | * Let the calling function know so it can decide | ||
| 56 | * what to do. | ||
| 57 | */ | ||
| 58 | release_console_sem(); | ||
| 59 | return 1; | ||
| 60 | } | ||
| 61 | release_console_sem(); | ||
| 62 | |||
| 63 | if (vt_waitactive(SUSPEND_CONSOLE)) { | ||
| 64 | pr_debug("Suspend: Can't switch VCs."); | ||
| 65 | return 1; | ||
| 66 | } | ||
| 67 | orig_kmsg = kmsg_redirect; | 24 | orig_kmsg = kmsg_redirect; |
| 68 | kmsg_redirect = SUSPEND_CONSOLE; | 25 | kmsg_redirect = SUSPEND_CONSOLE; |
| 69 | return 0; | 26 | return 0; |
| @@ -71,19 +28,9 @@ int pm_prepare_console(void) | |||
| 71 | 28 | ||
| 72 | void pm_restore_console(void) | 29 | void pm_restore_console(void) |
| 73 | { | 30 | { |
| 74 | acquire_console_sem(); | 31 | if (orig_fgconsole >= 0) { |
| 75 | if (disable_vt_switch) { | 32 | vt_move_to_console(orig_fgconsole, 0); |
| 76 | release_console_sem(); | 33 | kmsg_redirect = orig_kmsg; |
| 77 | return; | ||
| 78 | } | ||
| 79 | set_console(orig_fgconsole); | ||
| 80 | release_console_sem(); | ||
| 81 | |||
| 82 | if (vt_waitactive(orig_fgconsole)) { | ||
| 83 | pr_debug("Resume: Can't switch VCs."); | ||
| 84 | return; | ||
| 85 | } | 34 | } |
| 86 | |||
| 87 | kmsg_redirect = orig_kmsg; | ||
| 88 | } | 35 | } |
| 89 | #endif | 36 | #endif |
diff --git a/kernel/power/process.c b/kernel/power/process.c index da2072d73811..cc2e55373b68 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
| @@ -9,6 +9,7 @@ | |||
| 9 | #undef DEBUG | 9 | #undef DEBUG |
| 10 | 10 | ||
| 11 | #include <linux/interrupt.h> | 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/oom.h> | ||
| 12 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
| 13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
| 14 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 97955b0e44f4..36cb168e4330 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
| @@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, | |||
| 619 | BUG_ON(!region); | 619 | BUG_ON(!region); |
| 620 | } else | 620 | } else |
| 621 | /* This allocation cannot fail */ | 621 | /* This allocation cannot fail */ |
| 622 | region = alloc_bootmem_low(sizeof(struct nosave_region)); | 622 | region = alloc_bootmem(sizeof(struct nosave_region)); |
| 623 | region->start_pfn = start_pfn; | 623 | region->start_pfn = start_pfn; |
| 624 | region->end_pfn = end_pfn; | 624 | region->end_pfn = end_pfn; |
| 625 | list_add_tail(®ion->list, &nosave_regions); | 625 | list_add_tail(®ion->list, &nosave_regions); |
diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 8ba052c86d48..b101cdc4df3f 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c | |||
| @@ -13,7 +13,6 @@ | |||
| 13 | 13 | ||
| 14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
| 15 | #include <linux/file.h> | 15 | #include <linux/file.h> |
| 16 | #include <linux/utsname.h> | ||
| 17 | #include <linux/delay.h> | 16 | #include <linux/delay.h> |
| 18 | #include <linux/bitops.h> | 17 | #include <linux/bitops.h> |
| 19 | #include <linux/genhd.h> | 18 | #include <linux/genhd.h> |
diff --git a/kernel/printk.c b/kernel/printk.c index 602033acd6c7..f38b07f78a4e 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
| @@ -206,12 +206,11 @@ __setup("log_buf_len=", log_buf_len_setup); | |||
| 206 | #ifdef CONFIG_BOOT_PRINTK_DELAY | 206 | #ifdef CONFIG_BOOT_PRINTK_DELAY |
| 207 | 207 | ||
| 208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ | 208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ |
| 209 | static unsigned long long printk_delay_msec; /* per msec, based on boot_delay */ | 209 | static unsigned long long loops_per_msec; /* based on boot_delay */ |
| 210 | 210 | ||
| 211 | static int __init boot_delay_setup(char *str) | 211 | static int __init boot_delay_setup(char *str) |
| 212 | { | 212 | { |
| 213 | unsigned long lpj; | 213 | unsigned long lpj; |
| 214 | unsigned long long loops_per_msec; | ||
| 215 | 214 | ||
| 216 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ | 215 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ |
| 217 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; | 216 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; |
| @@ -220,10 +219,9 @@ static int __init boot_delay_setup(char *str) | |||
| 220 | if (boot_delay > 10 * 1000) | 219 | if (boot_delay > 10 * 1000) |
| 221 | boot_delay = 0; | 220 | boot_delay = 0; |
| 222 | 221 | ||
| 223 | printk_delay_msec = loops_per_msec; | 222 | pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " |
| 224 | printk(KERN_DEBUG "boot_delay: %u, preset_lpj: %ld, lpj: %lu, " | 223 | "HZ: %d, loops_per_msec: %llu\n", |
| 225 | "HZ: %d, printk_delay_msec: %llu\n", | 224 | boot_delay, preset_lpj, lpj, HZ, loops_per_msec); |
| 226 | boot_delay, preset_lpj, lpj, HZ, printk_delay_msec); | ||
| 227 | return 1; | 225 | return 1; |
| 228 | } | 226 | } |
| 229 | __setup("boot_delay=", boot_delay_setup); | 227 | __setup("boot_delay=", boot_delay_setup); |
| @@ -236,7 +234,7 @@ static void boot_delay_msec(void) | |||
| 236 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) | 234 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) |
| 237 | return; | 235 | return; |
| 238 | 236 | ||
| 239 | k = (unsigned long long)printk_delay_msec * boot_delay; | 237 | k = (unsigned long long)loops_per_msec * boot_delay; |
| 240 | 238 | ||
| 241 | timeout = jiffies + msecs_to_jiffies(boot_delay); | 239 | timeout = jiffies + msecs_to_jiffies(boot_delay); |
| 242 | while (k) { | 240 | while (k) { |
| @@ -655,6 +653,20 @@ static int recursion_bug; | |||
| 655 | static int new_text_line = 1; | 653 | static int new_text_line = 1; |
| 656 | static char printk_buf[1024]; | 654 | static char printk_buf[1024]; |
| 657 | 655 | ||
| 656 | int printk_delay_msec __read_mostly; | ||
| 657 | |||
| 658 | static inline void printk_delay(void) | ||
| 659 | { | ||
| 660 | if (unlikely(printk_delay_msec)) { | ||
| 661 | int m = printk_delay_msec; | ||
| 662 | |||
| 663 | while (m--) { | ||
| 664 | mdelay(1); | ||
| 665 | touch_nmi_watchdog(); | ||
| 666 | } | ||
| 667 | } | ||
| 668 | } | ||
| 669 | |||
| 658 | asmlinkage int vprintk(const char *fmt, va_list args) | 670 | asmlinkage int vprintk(const char *fmt, va_list args) |
| 659 | { | 671 | { |
| 660 | int printed_len = 0; | 672 | int printed_len = 0; |
| @@ -664,6 +676,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
| 664 | char *p; | 676 | char *p; |
| 665 | 677 | ||
| 666 | boot_delay_msec(); | 678 | boot_delay_msec(); |
| 679 | printk_delay(); | ||
| 667 | 680 | ||
| 668 | preempt_disable(); | 681 | preempt_disable(); |
| 669 | /* This stops the holder of console_sem just where we want him */ | 682 | /* This stops the holder of console_sem just where we want him */ |
diff --git a/kernel/profile.c b/kernel/profile.c index 419250ebec4d..a55d3a367ae8 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
| @@ -442,48 +442,51 @@ void profile_tick(int type) | |||
| 442 | 442 | ||
| 443 | #ifdef CONFIG_PROC_FS | 443 | #ifdef CONFIG_PROC_FS |
| 444 | #include <linux/proc_fs.h> | 444 | #include <linux/proc_fs.h> |
| 445 | #include <linux/seq_file.h> | ||
| 445 | #include <asm/uaccess.h> | 446 | #include <asm/uaccess.h> |
| 446 | 447 | ||
| 447 | static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, | 448 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
| 448 | int count, int *eof, void *data) | ||
| 449 | { | 449 | { |
| 450 | int len = cpumask_scnprintf(page, count, data); | 450 | seq_cpumask(m, prof_cpu_mask); |
| 451 | if (count - len < 2) | 451 | seq_putc(m, '\n'); |
| 452 | return -EINVAL; | 452 | return 0; |
| 453 | len += sprintf(page + len, "\n"); | ||
| 454 | return len; | ||
| 455 | } | 453 | } |
| 456 | 454 | ||
| 457 | static int prof_cpu_mask_write_proc(struct file *file, | 455 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) |
| 458 | const char __user *buffer, unsigned long count, void *data) | 456 | { |
| 457 | return single_open(file, prof_cpu_mask_proc_show, NULL); | ||
| 458 | } | ||
| 459 | |||
| 460 | static ssize_t prof_cpu_mask_proc_write(struct file *file, | ||
| 461 | const char __user *buffer, size_t count, loff_t *pos) | ||
| 459 | { | 462 | { |
| 460 | struct cpumask *mask = data; | ||
| 461 | unsigned long full_count = count, err; | ||
| 462 | cpumask_var_t new_value; | 463 | cpumask_var_t new_value; |
| 464 | int err; | ||
| 463 | 465 | ||
| 464 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) | 466 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
| 465 | return -ENOMEM; | 467 | return -ENOMEM; |
| 466 | 468 | ||
| 467 | err = cpumask_parse_user(buffer, count, new_value); | 469 | err = cpumask_parse_user(buffer, count, new_value); |
| 468 | if (!err) { | 470 | if (!err) { |
| 469 | cpumask_copy(mask, new_value); | 471 | cpumask_copy(prof_cpu_mask, new_value); |
| 470 | err = full_count; | 472 | err = count; |
| 471 | } | 473 | } |
| 472 | free_cpumask_var(new_value); | 474 | free_cpumask_var(new_value); |
| 473 | return err; | 475 | return err; |
| 474 | } | 476 | } |
| 475 | 477 | ||
| 478 | static const struct file_operations prof_cpu_mask_proc_fops = { | ||
| 479 | .open = prof_cpu_mask_proc_open, | ||
| 480 | .read = seq_read, | ||
| 481 | .llseek = seq_lseek, | ||
| 482 | .release = single_release, | ||
| 483 | .write = prof_cpu_mask_proc_write, | ||
| 484 | }; | ||
| 485 | |||
| 476 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 486 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
| 477 | { | 487 | { |
| 478 | struct proc_dir_entry *entry; | ||
| 479 | |||
| 480 | /* create /proc/irq/prof_cpu_mask */ | 488 | /* create /proc/irq/prof_cpu_mask */ |
| 481 | entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); | 489 | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
| 482 | if (!entry) | ||
| 483 | return; | ||
| 484 | entry->data = prof_cpu_mask; | ||
| 485 | entry->read_proc = prof_cpu_mask_read_proc; | ||
| 486 | entry->write_proc = prof_cpu_mask_write_proc; | ||
| 487 | } | 490 | } |
| 488 | 491 | ||
| 489 | /* | 492 | /* |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 307c285af59e..23bd09cd042e 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
| @@ -266,9 +266,10 @@ static int ignoring_children(struct sighand_struct *sigh) | |||
| 266 | * or self-reaping. Do notification now if it would have happened earlier. | 266 | * or self-reaping. Do notification now if it would have happened earlier. |
| 267 | * If it should reap itself, return true. | 267 | * If it should reap itself, return true. |
| 268 | * | 268 | * |
| 269 | * If it's our own child, there is no notification to do. | 269 | * If it's our own child, there is no notification to do. But if our normal |
| 270 | * But if our normal children self-reap, then this child | 270 | * children self-reap, then this child was prevented by ptrace and we must |
| 271 | * was prevented by ptrace and we must reap it now. | 271 | * reap it now, in that case we must also wake up sub-threads sleeping in |
| 272 | * do_wait(). | ||
| 272 | */ | 273 | */ |
| 273 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | 274 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) |
| 274 | { | 275 | { |
| @@ -278,8 +279,10 @@ static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | |||
| 278 | if (!task_detached(p) && thread_group_empty(p)) { | 279 | if (!task_detached(p) && thread_group_empty(p)) { |
| 279 | if (!same_thread_group(p->real_parent, tracer)) | 280 | if (!same_thread_group(p->real_parent, tracer)) |
| 280 | do_notify_parent(p, p->exit_signal); | 281 | do_notify_parent(p, p->exit_signal); |
| 281 | else if (ignoring_children(tracer->sighand)) | 282 | else if (ignoring_children(tracer->sighand)) { |
| 283 | __wake_up_parent(p, tracer); | ||
| 282 | p->exit_signal = -1; | 284 | p->exit_signal = -1; |
| 285 | } | ||
| 283 | } | 286 | } |
| 284 | if (task_detached(p)) { | 287 | if (task_detached(p)) { |
| 285 | /* Mark it as in the process of being reaped. */ | 288 | /* Mark it as in the process of being reaped. */ |
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index bd5d5c8e5140..37ac45483082 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
| @@ -19,7 +19,7 @@ | |||
| 19 | * | 19 | * |
| 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| 21 | * Manfred Spraul <manfred@colorfullife.com> | 21 | * Manfred Spraul <manfred@colorfullife.com> |
| 22 | * | 22 | * |
| 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 25 | * Papers: | 25 | * Papers: |
| @@ -27,7 +27,7 @@ | |||
| 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
| 28 | * | 28 | * |
| 29 | * For detailed explanation of Read-Copy Update mechanism see - | 29 | * For detailed explanation of Read-Copy Update mechanism see - |
| 30 | * http://lse.sourceforge.net/locking/rcupdate.html | 30 | * http://lse.sourceforge.net/locking/rcupdate.html |
| 31 | * | 31 | * |
| 32 | */ | 32 | */ |
| 33 | #include <linux/types.h> | 33 | #include <linux/types.h> |
| @@ -74,6 +74,8 @@ void wakeme_after_rcu(struct rcu_head *head) | |||
| 74 | complete(&rcu->completion); | 74 | complete(&rcu->completion); |
| 75 | } | 75 | } |
| 76 | 76 | ||
| 77 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
| 78 | |||
| 77 | /** | 79 | /** |
| 78 | * synchronize_rcu - wait until a grace period has elapsed. | 80 | * synchronize_rcu - wait until a grace period has elapsed. |
| 79 | * | 81 | * |
| @@ -87,7 +89,7 @@ void synchronize_rcu(void) | |||
| 87 | { | 89 | { |
| 88 | struct rcu_synchronize rcu; | 90 | struct rcu_synchronize rcu; |
| 89 | 91 | ||
| 90 | if (rcu_blocking_is_gp()) | 92 | if (!rcu_scheduler_active) |
| 91 | return; | 93 | return; |
| 92 | 94 | ||
| 93 | init_completion(&rcu.completion); | 95 | init_completion(&rcu.completion); |
| @@ -98,6 +100,46 @@ void synchronize_rcu(void) | |||
| 98 | } | 100 | } |
| 99 | EXPORT_SYMBOL_GPL(synchronize_rcu); | 101 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
| 100 | 102 | ||
| 103 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 104 | |||
| 105 | /** | ||
| 106 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | ||
| 107 | * | ||
| 108 | * Control will return to the caller some time after a full rcu-sched | ||
| 109 | * grace period has elapsed, in other words after all currently executing | ||
| 110 | * rcu-sched read-side critical sections have completed. These read-side | ||
| 111 | * critical sections are delimited by rcu_read_lock_sched() and | ||
| 112 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), | ||
| 113 | * local_irq_disable(), and so on may be used in place of | ||
| 114 | * rcu_read_lock_sched(). | ||
| 115 | * | ||
| 116 | * This means that all preempt_disable code sequences, including NMI and | ||
| 117 | * hardware-interrupt handlers, in progress on entry will have completed | ||
| 118 | * before this primitive returns. However, this does not guarantee that | ||
| 119 | * softirq handlers will have completed, since in some kernels, these | ||
| 120 | * handlers can run in process context, and can block. | ||
| 121 | * | ||
| 122 | * This primitive provides the guarantees made by the (now removed) | ||
| 123 | * synchronize_kernel() API. In contrast, synchronize_rcu() only | ||
| 124 | * guarantees that rcu_read_lock() sections will have completed. | ||
| 125 | * In "classic RCU", these two guarantees happen to be one and | ||
| 126 | * the same, but can differ in realtime RCU implementations. | ||
| 127 | */ | ||
| 128 | void synchronize_sched(void) | ||
| 129 | { | ||
| 130 | struct rcu_synchronize rcu; | ||
| 131 | |||
| 132 | if (rcu_blocking_is_gp()) | ||
| 133 | return; | ||
| 134 | |||
| 135 | init_completion(&rcu.completion); | ||
| 136 | /* Will wake me after RCU finished. */ | ||
| 137 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
| 138 | /* Wait for it. */ | ||
| 139 | wait_for_completion(&rcu.completion); | ||
| 140 | } | ||
| 141 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
| 142 | |||
| 101 | /** | 143 | /** |
| 102 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | 144 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. |
| 103 | * | 145 | * |
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index b33db539a8ad..233768f21f97 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
| @@ -18,7 +18,7 @@ | |||
| 18 | * Copyright (C) IBM Corporation, 2005, 2006 | 18 | * Copyright (C) IBM Corporation, 2005, 2006 |
| 19 | * | 19 | * |
| 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> |
| 21 | * Josh Triplett <josh@freedesktop.org> | 21 | * Josh Triplett <josh@freedesktop.org> |
| 22 | * | 22 | * |
| 23 | * See also: Documentation/RCU/torture.txt | 23 | * See also: Documentation/RCU/torture.txt |
| 24 | */ | 24 | */ |
| @@ -50,7 +50,7 @@ | |||
| 50 | 50 | ||
| 51 | MODULE_LICENSE("GPL"); | 51 | MODULE_LICENSE("GPL"); |
| 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " | 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " |
| 53 | "Josh Triplett <josh@freedesktop.org>"); | 53 | "Josh Triplett <josh@freedesktop.org>"); |
| 54 | 54 | ||
| 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ | 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ |
| 56 | static int nfakewriters = 4; /* # fake writer threads */ | 56 | static int nfakewriters = 4; /* # fake writer threads */ |
| @@ -110,8 +110,8 @@ struct rcu_torture { | |||
| 110 | }; | 110 | }; |
| 111 | 111 | ||
| 112 | static LIST_HEAD(rcu_torture_freelist); | 112 | static LIST_HEAD(rcu_torture_freelist); |
| 113 | static struct rcu_torture *rcu_torture_current = NULL; | 113 | static struct rcu_torture *rcu_torture_current; |
| 114 | static long rcu_torture_current_version = 0; | 114 | static long rcu_torture_current_version; |
| 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; | 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; |
| 116 | static DEFINE_SPINLOCK(rcu_torture_lock); | 116 | static DEFINE_SPINLOCK(rcu_torture_lock); |
| 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = | 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = |
| @@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail; | |||
| 124 | static atomic_t n_rcu_torture_free; | 124 | static atomic_t n_rcu_torture_free; |
| 125 | static atomic_t n_rcu_torture_mberror; | 125 | static atomic_t n_rcu_torture_mberror; |
| 126 | static atomic_t n_rcu_torture_error; | 126 | static atomic_t n_rcu_torture_error; |
| 127 | static long n_rcu_torture_timers = 0; | 127 | static long n_rcu_torture_timers; |
| 128 | static struct list_head rcu_torture_removed; | 128 | static struct list_head rcu_torture_removed; |
| 129 | static cpumask_var_t shuffle_tmp_mask; | 129 | static cpumask_var_t shuffle_tmp_mask; |
| 130 | 130 | ||
| 131 | static int stutter_pause_test = 0; | 131 | static int stutter_pause_test; |
| 132 | 132 | ||
| 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) | 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) |
| 134 | #define RCUTORTURE_RUNNABLE_INIT 1 | 134 | #define RCUTORTURE_RUNNABLE_INIT 1 |
| @@ -267,7 +267,8 @@ struct rcu_torture_ops { | |||
| 267 | int irq_capable; | 267 | int irq_capable; |
| 268 | char *name; | 268 | char *name; |
| 269 | }; | 269 | }; |
| 270 | static struct rcu_torture_ops *cur_ops = NULL; | 270 | |
| 271 | static struct rcu_torture_ops *cur_ops; | ||
| 271 | 272 | ||
| 272 | /* | 273 | /* |
| 273 | * Definitions for rcu torture testing. | 274 | * Definitions for rcu torture testing. |
| @@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU) | |||
| 281 | 282 | ||
| 282 | static void rcu_read_delay(struct rcu_random_state *rrsp) | 283 | static void rcu_read_delay(struct rcu_random_state *rrsp) |
| 283 | { | 284 | { |
| 284 | long delay; | 285 | const unsigned long shortdelay_us = 200; |
| 285 | const long longdelay = 200; | 286 | const unsigned long longdelay_ms = 50; |
| 286 | 287 | ||
| 287 | /* We want there to be long-running readers, but not all the time. */ | 288 | /* We want a short delay sometimes to make a reader delay the grace |
| 289 | * period, and we want a long delay occasionally to trigger | ||
| 290 | * force_quiescent_state. */ | ||
| 288 | 291 | ||
| 289 | delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay); | 292 | if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) |
| 290 | if (!delay) | 293 | mdelay(longdelay_ms); |
| 291 | udelay(longdelay); | 294 | if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) |
| 295 | udelay(shortdelay_us); | ||
| 292 | } | 296 | } |
| 293 | 297 | ||
| 294 | static void rcu_torture_read_unlock(int idx) __releases(RCU) | 298 | static void rcu_torture_read_unlock(int idx) __releases(RCU) |
| @@ -339,8 +343,8 @@ static struct rcu_torture_ops rcu_ops = { | |||
| 339 | .sync = synchronize_rcu, | 343 | .sync = synchronize_rcu, |
| 340 | .cb_barrier = rcu_barrier, | 344 | .cb_barrier = rcu_barrier, |
| 341 | .stats = NULL, | 345 | .stats = NULL, |
| 342 | .irq_capable = 1, | 346 | .irq_capable = 1, |
| 343 | .name = "rcu" | 347 | .name = "rcu" |
| 344 | }; | 348 | }; |
| 345 | 349 | ||
| 346 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) | 350 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) |
| @@ -638,7 +642,8 @@ rcu_torture_writer(void *arg) | |||
| 638 | 642 | ||
| 639 | do { | 643 | do { |
| 640 | schedule_timeout_uninterruptible(1); | 644 | schedule_timeout_uninterruptible(1); |
| 641 | if ((rp = rcu_torture_alloc()) == NULL) | 645 | rp = rcu_torture_alloc(); |
| 646 | if (rp == NULL) | ||
| 642 | continue; | 647 | continue; |
| 643 | rp->rtort_pipe_count = 0; | 648 | rp->rtort_pipe_count = 0; |
| 644 | udelay(rcu_random(&rand) & 0x3ff); | 649 | udelay(rcu_random(&rand) & 0x3ff); |
| @@ -1110,7 +1115,7 @@ rcu_torture_init(void) | |||
| 1110 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", | 1115 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", |
| 1111 | torture_type); | 1116 | torture_type); |
| 1112 | mutex_unlock(&fullstop_mutex); | 1117 | mutex_unlock(&fullstop_mutex); |
| 1113 | return (-EINVAL); | 1118 | return -EINVAL; |
| 1114 | } | 1119 | } |
| 1115 | if (cur_ops->init) | 1120 | if (cur_ops->init) |
| 1116 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ | 1121 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ |
| @@ -1161,7 +1166,7 @@ rcu_torture_init(void) | |||
| 1161 | goto unwind; | 1166 | goto unwind; |
| 1162 | } | 1167 | } |
| 1163 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), | 1168 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), |
| 1164 | GFP_KERNEL); | 1169 | GFP_KERNEL); |
| 1165 | if (fakewriter_tasks == NULL) { | 1170 | if (fakewriter_tasks == NULL) { |
| 1166 | VERBOSE_PRINTK_ERRSTRING("out of memory"); | 1171 | VERBOSE_PRINTK_ERRSTRING("out of memory"); |
| 1167 | firsterr = -ENOMEM; | 1172 | firsterr = -ENOMEM; |
| @@ -1170,7 +1175,7 @@ rcu_torture_init(void) | |||
| 1170 | for (i = 0; i < nfakewriters; i++) { | 1175 | for (i = 0; i < nfakewriters; i++) { |
| 1171 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); | 1176 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); |
| 1172 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, | 1177 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, |
| 1173 | "rcu_torture_fakewriter"); | 1178 | "rcu_torture_fakewriter"); |
| 1174 | if (IS_ERR(fakewriter_tasks[i])) { | 1179 | if (IS_ERR(fakewriter_tasks[i])) { |
| 1175 | firsterr = PTR_ERR(fakewriter_tasks[i]); | 1180 | firsterr = PTR_ERR(fakewriter_tasks[i]); |
| 1176 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); | 1181 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 6b11b07cfe7f..52b06f6e158c 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c | |||
| @@ -25,7 +25,7 @@ | |||
| 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 26 | * | 26 | * |
| 27 | * For detailed explanation of Read-Copy Update mechanism see - | 27 | * For detailed explanation of Read-Copy Update mechanism see - |
| 28 | * Documentation/RCU | 28 | * Documentation/RCU |
| 29 | */ | 29 | */ |
| 30 | #include <linux/types.h> | 30 | #include <linux/types.h> |
| 31 | #include <linux/kernel.h> | 31 | #include <linux/kernel.h> |
| @@ -107,27 +107,23 @@ static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | |||
| 107 | */ | 107 | */ |
| 108 | void rcu_sched_qs(int cpu) | 108 | void rcu_sched_qs(int cpu) |
| 109 | { | 109 | { |
| 110 | unsigned long flags; | ||
| 111 | struct rcu_data *rdp; | 110 | struct rcu_data *rdp; |
| 112 | 111 | ||
| 113 | local_irq_save(flags); | ||
| 114 | rdp = &per_cpu(rcu_sched_data, cpu); | 112 | rdp = &per_cpu(rcu_sched_data, cpu); |
| 115 | rdp->passed_quiesc = 1; | ||
| 116 | rdp->passed_quiesc_completed = rdp->completed; | 113 | rdp->passed_quiesc_completed = rdp->completed; |
| 117 | rcu_preempt_qs(cpu); | 114 | barrier(); |
| 118 | local_irq_restore(flags); | 115 | rdp->passed_quiesc = 1; |
| 116 | rcu_preempt_note_context_switch(cpu); | ||
| 119 | } | 117 | } |
| 120 | 118 | ||
| 121 | void rcu_bh_qs(int cpu) | 119 | void rcu_bh_qs(int cpu) |
| 122 | { | 120 | { |
| 123 | unsigned long flags; | ||
| 124 | struct rcu_data *rdp; | 121 | struct rcu_data *rdp; |
| 125 | 122 | ||
| 126 | local_irq_save(flags); | ||
| 127 | rdp = &per_cpu(rcu_bh_data, cpu); | 123 | rdp = &per_cpu(rcu_bh_data, cpu); |
| 128 | rdp->passed_quiesc = 1; | ||
| 129 | rdp->passed_quiesc_completed = rdp->completed; | 124 | rdp->passed_quiesc_completed = rdp->completed; |
| 130 | local_irq_restore(flags); | 125 | barrier(); |
| 126 | rdp->passed_quiesc = 1; | ||
| 131 | } | 127 | } |
| 132 | 128 | ||
| 133 | #ifdef CONFIG_NO_HZ | 129 | #ifdef CONFIG_NO_HZ |
| @@ -605,8 +601,6 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 605 | { | 601 | { |
| 606 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | 602 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
| 607 | struct rcu_node *rnp = rcu_get_root(rsp); | 603 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 608 | struct rcu_node *rnp_cur; | ||
| 609 | struct rcu_node *rnp_end; | ||
| 610 | 604 | ||
| 611 | if (!cpu_needs_another_gp(rsp, rdp)) { | 605 | if (!cpu_needs_another_gp(rsp, rdp)) { |
| 612 | spin_unlock_irqrestore(&rnp->lock, flags); | 606 | spin_unlock_irqrestore(&rnp->lock, flags); |
| @@ -615,6 +609,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 615 | 609 | ||
| 616 | /* Advance to a new grace period and initialize state. */ | 610 | /* Advance to a new grace period and initialize state. */ |
| 617 | rsp->gpnum++; | 611 | rsp->gpnum++; |
| 612 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); | ||
| 618 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 613 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
| 619 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 614 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
| 620 | record_gp_stall_check_time(rsp); | 615 | record_gp_stall_check_time(rsp); |
| @@ -631,7 +626,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 631 | 626 | ||
| 632 | /* Special-case the common single-level case. */ | 627 | /* Special-case the common single-level case. */ |
| 633 | if (NUM_RCU_NODES == 1) { | 628 | if (NUM_RCU_NODES == 1) { |
| 629 | rcu_preempt_check_blocked_tasks(rnp); | ||
| 634 | rnp->qsmask = rnp->qsmaskinit; | 630 | rnp->qsmask = rnp->qsmaskinit; |
| 631 | rnp->gpnum = rsp->gpnum; | ||
| 635 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ | 632 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
| 636 | spin_unlock_irqrestore(&rnp->lock, flags); | 633 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 637 | return; | 634 | return; |
| @@ -644,42 +641,28 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 644 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | 641 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
| 645 | 642 | ||
| 646 | /* | 643 | /* |
| 647 | * Set the quiescent-state-needed bits in all the non-leaf RCU | 644 | * Set the quiescent-state-needed bits in all the rcu_node |
| 648 | * nodes for all currently online CPUs. This operation relies | 645 | * structures for all currently online CPUs in breadth-first |
| 649 | * on the layout of the hierarchy within the rsp->node[] array. | 646 | * order, starting from the root rcu_node structure. This |
| 650 | * Note that other CPUs will access only the leaves of the | 647 | * operation relies on the layout of the hierarchy within the |
| 651 | * hierarchy, which still indicate that no grace period is in | 648 | * rsp->node[] array. Note that other CPUs will access only |
| 652 | * progress. In addition, we have excluded CPU-hotplug operations. | 649 | * the leaves of the hierarchy, which still indicate that no |
| 653 | * | 650 | * grace period is in progress, at least until the corresponding |
| 654 | * We therefore do not need to hold any locks. Any required | 651 | * leaf node has been initialized. In addition, we have excluded |
| 655 | * memory barriers will be supplied by the locks guarding the | 652 | * CPU-hotplug operations. |
| 656 | * leaf rcu_nodes in the hierarchy. | ||
| 657 | */ | ||
| 658 | |||
| 659 | rnp_end = rsp->level[NUM_RCU_LVLS - 1]; | ||
| 660 | for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) | ||
| 661 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
| 662 | |||
| 663 | /* | ||
| 664 | * Now set up the leaf nodes. Here we must be careful. First, | ||
| 665 | * we need to hold the lock in order to exclude other CPUs, which | ||
| 666 | * might be contending for the leaf nodes' locks. Second, as | ||
| 667 | * soon as we initialize a given leaf node, its CPUs might run | ||
| 668 | * up the rest of the hierarchy. We must therefore acquire locks | ||
| 669 | * for each node that we touch during this stage. (But we still | ||
| 670 | * are excluding CPU-hotplug operations.) | ||
| 671 | * | 653 | * |
| 672 | * Note that the grace period cannot complete until we finish | 654 | * Note that the grace period cannot complete until we finish |
| 673 | * the initialization process, as there will be at least one | 655 | * the initialization process, as there will be at least one |
| 674 | * qsmask bit set in the root node until that time, namely the | 656 | * qsmask bit set in the root node until that time, namely the |
| 675 | * one corresponding to this CPU. | 657 | * one corresponding to this CPU, due to the fact that we have |
| 658 | * irqs disabled. | ||
| 676 | */ | 659 | */ |
| 677 | rnp_end = &rsp->node[NUM_RCU_NODES]; | 660 | for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) { |
| 678 | rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 661 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 679 | for (; rnp_cur < rnp_end; rnp_cur++) { | 662 | rcu_preempt_check_blocked_tasks(rnp); |
| 680 | spin_lock(&rnp_cur->lock); /* irqs already disabled. */ | 663 | rnp->qsmask = rnp->qsmaskinit; |
| 681 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | 664 | rnp->gpnum = rsp->gpnum; |
| 682 | spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ | 665 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
| 683 | } | 666 | } |
| 684 | 667 | ||
| 685 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 668 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
| @@ -722,6 +705,7 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 722 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | 705 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) |
| 723 | __releases(rnp->lock) | 706 | __releases(rnp->lock) |
| 724 | { | 707 | { |
| 708 | WARN_ON_ONCE(rsp->completed == rsp->gpnum); | ||
| 725 | rsp->completed = rsp->gpnum; | 709 | rsp->completed = rsp->gpnum; |
| 726 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | 710 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); |
| 727 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ | 711 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ |
| @@ -739,6 +723,8 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
| 739 | unsigned long flags) | 723 | unsigned long flags) |
| 740 | __releases(rnp->lock) | 724 | __releases(rnp->lock) |
| 741 | { | 725 | { |
| 726 | struct rcu_node *rnp_c; | ||
| 727 | |||
| 742 | /* Walk up the rcu_node hierarchy. */ | 728 | /* Walk up the rcu_node hierarchy. */ |
| 743 | for (;;) { | 729 | for (;;) { |
| 744 | if (!(rnp->qsmask & mask)) { | 730 | if (!(rnp->qsmask & mask)) { |
| @@ -762,8 +748,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
| 762 | break; | 748 | break; |
| 763 | } | 749 | } |
| 764 | spin_unlock_irqrestore(&rnp->lock, flags); | 750 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 751 | rnp_c = rnp; | ||
| 765 | rnp = rnp->parent; | 752 | rnp = rnp->parent; |
| 766 | spin_lock_irqsave(&rnp->lock, flags); | 753 | spin_lock_irqsave(&rnp->lock, flags); |
| 754 | WARN_ON_ONCE(rnp_c->qsmask); | ||
| 767 | } | 755 | } |
| 768 | 756 | ||
| 769 | /* | 757 | /* |
| @@ -776,10 +764,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
| 776 | 764 | ||
| 777 | /* | 765 | /* |
| 778 | * Record a quiescent state for the specified CPU, which must either be | 766 | * Record a quiescent state for the specified CPU, which must either be |
| 779 | * the current CPU or an offline CPU. The lastcomp argument is used to | 767 | * the current CPU. The lastcomp argument is used to make sure we are |
| 780 | * make sure we are still in the grace period of interest. We don't want | 768 | * still in the grace period of interest. We don't want to end the current |
| 781 | * to end the current grace period based on quiescent states detected in | 769 | * grace period based on quiescent states detected in an earlier grace |
| 782 | * an earlier grace period! | 770 | * period! |
| 783 | */ | 771 | */ |
| 784 | static void | 772 | static void |
| 785 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | 773 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) |
| @@ -814,7 +802,6 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |||
| 814 | * This GP can't end until cpu checks in, so all of our | 802 | * This GP can't end until cpu checks in, so all of our |
| 815 | * callbacks can be processed during the next GP. | 803 | * callbacks can be processed during the next GP. |
| 816 | */ | 804 | */ |
| 817 | rdp = rsp->rda[smp_processor_id()]; | ||
| 818 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 805 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
| 819 | 806 | ||
| 820 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | 807 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ |
| @@ -872,7 +859,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
| 872 | spin_lock_irqsave(&rsp->onofflock, flags); | 859 | spin_lock_irqsave(&rsp->onofflock, flags); |
| 873 | 860 | ||
| 874 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 861 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ |
| 875 | rnp = rdp->mynode; | 862 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
| 876 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | 863 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
| 877 | do { | 864 | do { |
| 878 | spin_lock(&rnp->lock); /* irqs already disabled. */ | 865 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| @@ -881,7 +868,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
| 881 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 868 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 882 | break; | 869 | break; |
| 883 | } | 870 | } |
| 884 | rcu_preempt_offline_tasks(rsp, rnp); | 871 | rcu_preempt_offline_tasks(rsp, rnp, rdp); |
| 885 | mask = rnp->grpmask; | 872 | mask = rnp->grpmask; |
| 886 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 873 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 887 | rnp = rnp->parent; | 874 | rnp = rnp->parent; |
| @@ -890,9 +877,6 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
| 890 | 877 | ||
| 891 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 878 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ |
| 892 | 879 | ||
| 893 | /* Being offline is a quiescent state, so go record it. */ | ||
| 894 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
| 895 | |||
| 896 | /* | 880 | /* |
| 897 | * Move callbacks from the outgoing CPU to the running CPU. | 881 | * Move callbacks from the outgoing CPU to the running CPU. |
| 898 | * Note that the outgoing CPU is now quiscent, so it is now | 882 | * Note that the outgoing CPU is now quiscent, so it is now |
| @@ -1457,20 +1441,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | |||
| 1457 | rnp = rnp->parent; | 1441 | rnp = rnp->parent; |
| 1458 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 1442 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); |
| 1459 | 1443 | ||
| 1460 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 1444 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 1461 | |||
| 1462 | /* | ||
| 1463 | * A new grace period might start here. If so, we will be part of | ||
| 1464 | * it, and its gpnum will be greater than ours, so we will | ||
| 1465 | * participate. It is also possible for the gpnum to have been | ||
| 1466 | * incremented before this function was called, and the bitmasks | ||
| 1467 | * to not be filled out until now, in which case we will also | ||
| 1468 | * participate due to our gpnum being behind. | ||
| 1469 | */ | ||
| 1470 | |||
| 1471 | /* Since it is coming online, the CPU is in a quiescent state. */ | ||
| 1472 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
| 1473 | local_irq_restore(flags); | ||
| 1474 | } | 1445 | } |
| 1475 | 1446 | ||
| 1476 | static void __cpuinit rcu_online_cpu(int cpu) | 1447 | static void __cpuinit rcu_online_cpu(int cpu) |
diff --git a/kernel/rcutree.h b/kernel/rcutree.h index bf8a6f9f134d..8e8287a983c2 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h | |||
| @@ -142,7 +142,7 @@ struct rcu_data { | |||
| 142 | */ | 142 | */ |
| 143 | struct rcu_head *nxtlist; | 143 | struct rcu_head *nxtlist; |
| 144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; | 144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; |
| 145 | long qlen; /* # of queued callbacks */ | 145 | long qlen; /* # of queued callbacks */ |
| 146 | long blimit; /* Upper limit on a processed batch */ | 146 | long blimit; /* Upper limit on a processed batch */ |
| 147 | 147 | ||
| 148 | #ifdef CONFIG_NO_HZ | 148 | #ifdef CONFIG_NO_HZ |
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index 47789369ea59..1cee04f627eb 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h | |||
| @@ -64,22 +64,31 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
| 64 | * not in a quiescent state. There might be any number of tasks blocked | 64 | * not in a quiescent state. There might be any number of tasks blocked |
| 65 | * while in an RCU read-side critical section. | 65 | * while in an RCU read-side critical section. |
| 66 | */ | 66 | */ |
| 67 | static void rcu_preempt_qs_record(int cpu) | 67 | static void rcu_preempt_qs(int cpu) |
| 68 | { | 68 | { |
| 69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | 69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); |
| 70 | rdp->passed_quiesc = 1; | ||
| 71 | rdp->passed_quiesc_completed = rdp->completed; | 70 | rdp->passed_quiesc_completed = rdp->completed; |
| 71 | barrier(); | ||
| 72 | rdp->passed_quiesc = 1; | ||
| 72 | } | 73 | } |
| 73 | 74 | ||
| 74 | /* | 75 | /* |
| 75 | * We have entered the scheduler or are between softirqs in ksoftirqd. | 76 | * We have entered the scheduler, and the current task might soon be |
| 76 | * If we are in an RCU read-side critical section, we need to reflect | 77 | * context-switched away from. If this task is in an RCU read-side |
| 77 | * that in the state of the rcu_node structure corresponding to this CPU. | 78 | * critical section, we will no longer be able to rely on the CPU to |
| 78 | * Caller must disable hardirqs. | 79 | * record that fact, so we enqueue the task on the appropriate entry |
| 80 | * of the blocked_tasks[] array. The task will dequeue itself when | ||
| 81 | * it exits the outermost enclosing RCU read-side critical section. | ||
| 82 | * Therefore, the current grace period cannot be permitted to complete | ||
| 83 | * until the blocked_tasks[] entry indexed by the low-order bit of | ||
| 84 | * rnp->gpnum empties. | ||
| 85 | * | ||
| 86 | * Caller must disable preemption. | ||
| 79 | */ | 87 | */ |
| 80 | static void rcu_preempt_qs(int cpu) | 88 | static void rcu_preempt_note_context_switch(int cpu) |
| 81 | { | 89 | { |
| 82 | struct task_struct *t = current; | 90 | struct task_struct *t = current; |
| 91 | unsigned long flags; | ||
| 83 | int phase; | 92 | int phase; |
| 84 | struct rcu_data *rdp; | 93 | struct rcu_data *rdp; |
| 85 | struct rcu_node *rnp; | 94 | struct rcu_node *rnp; |
| @@ -90,7 +99,7 @@ static void rcu_preempt_qs(int cpu) | |||
| 90 | /* Possibly blocking in an RCU read-side critical section. */ | 99 | /* Possibly blocking in an RCU read-side critical section. */ |
| 91 | rdp = rcu_preempt_state.rda[cpu]; | 100 | rdp = rcu_preempt_state.rda[cpu]; |
| 92 | rnp = rdp->mynode; | 101 | rnp = rdp->mynode; |
| 93 | spin_lock(&rnp->lock); | 102 | spin_lock_irqsave(&rnp->lock, flags); |
| 94 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | 103 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; |
| 95 | t->rcu_blocked_node = rnp; | 104 | t->rcu_blocked_node = rnp; |
| 96 | 105 | ||
| @@ -103,11 +112,15 @@ static void rcu_preempt_qs(int cpu) | |||
| 103 | * state for the current grace period), then as long | 112 | * state for the current grace period), then as long |
| 104 | * as that task remains queued, the current grace period | 113 | * as that task remains queued, the current grace period |
| 105 | * cannot end. | 114 | * cannot end. |
| 115 | * | ||
| 116 | * But first, note that the current CPU must still be | ||
| 117 | * on line! | ||
| 106 | */ | 118 | */ |
| 107 | phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); | 119 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); |
| 120 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | ||
| 121 | phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; | ||
| 108 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | 122 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); |
| 109 | smp_mb(); /* Ensure later ctxt swtch seen after above. */ | 123 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 110 | spin_unlock(&rnp->lock); | ||
| 111 | } | 124 | } |
| 112 | 125 | ||
| 113 | /* | 126 | /* |
| @@ -119,9 +132,10 @@ static void rcu_preempt_qs(int cpu) | |||
| 119 | * grace period, then the fact that the task has been enqueued | 132 | * grace period, then the fact that the task has been enqueued |
| 120 | * means that we continue to block the current grace period. | 133 | * means that we continue to block the current grace period. |
| 121 | */ | 134 | */ |
| 122 | rcu_preempt_qs_record(cpu); | 135 | rcu_preempt_qs(cpu); |
| 123 | t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | | 136 | local_irq_save(flags); |
| 124 | RCU_READ_UNLOCK_GOT_QS); | 137 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
| 138 | local_irq_restore(flags); | ||
| 125 | } | 139 | } |
| 126 | 140 | ||
| 127 | /* | 141 | /* |
| @@ -157,7 +171,7 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
| 157 | special = t->rcu_read_unlock_special; | 171 | special = t->rcu_read_unlock_special; |
| 158 | if (special & RCU_READ_UNLOCK_NEED_QS) { | 172 | if (special & RCU_READ_UNLOCK_NEED_QS) { |
| 159 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | 173 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
| 160 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; | 174 | rcu_preempt_qs(smp_processor_id()); |
| 161 | } | 175 | } |
| 162 | 176 | ||
| 163 | /* Hardware IRQ handlers cannot block. */ | 177 | /* Hardware IRQ handlers cannot block. */ |
| @@ -177,10 +191,10 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
| 177 | */ | 191 | */ |
| 178 | for (;;) { | 192 | for (;;) { |
| 179 | rnp = t->rcu_blocked_node; | 193 | rnp = t->rcu_blocked_node; |
| 180 | spin_lock(&rnp->lock); | 194 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 181 | if (rnp == t->rcu_blocked_node) | 195 | if (rnp == t->rcu_blocked_node) |
| 182 | break; | 196 | break; |
| 183 | spin_unlock(&rnp->lock); | 197 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 184 | } | 198 | } |
| 185 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | 199 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); |
| 186 | list_del_init(&t->rcu_node_entry); | 200 | list_del_init(&t->rcu_node_entry); |
| @@ -194,9 +208,8 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
| 194 | */ | 208 | */ |
| 195 | if (!empty && rnp->qsmask == 0 && | 209 | if (!empty && rnp->qsmask == 0 && |
| 196 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | 210 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { |
| 197 | t->rcu_read_unlock_special &= | 211 | struct rcu_node *rnp_p; |
| 198 | ~(RCU_READ_UNLOCK_NEED_QS | | 212 | |
| 199 | RCU_READ_UNLOCK_GOT_QS); | ||
| 200 | if (rnp->parent == NULL) { | 213 | if (rnp->parent == NULL) { |
| 201 | /* Only one rcu_node in the tree. */ | 214 | /* Only one rcu_node in the tree. */ |
| 202 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | 215 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); |
| @@ -205,9 +218,10 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
| 205 | /* Report up the rest of the hierarchy. */ | 218 | /* Report up the rest of the hierarchy. */ |
| 206 | mask = rnp->grpmask; | 219 | mask = rnp->grpmask; |
| 207 | spin_unlock_irqrestore(&rnp->lock, flags); | 220 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 208 | rnp = rnp->parent; | 221 | rnp_p = rnp->parent; |
| 209 | spin_lock_irqsave(&rnp->lock, flags); | 222 | spin_lock_irqsave(&rnp_p->lock, flags); |
| 210 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); | 223 | WARN_ON_ONCE(rnp->qsmask); |
| 224 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags); | ||
| 211 | return; | 225 | return; |
| 212 | } | 226 | } |
| 213 | spin_unlock(&rnp->lock); | 227 | spin_unlock(&rnp->lock); |
| @@ -259,6 +273,19 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
| 259 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 273 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 260 | 274 | ||
| 261 | /* | 275 | /* |
| 276 | * Check that the list of blocked tasks for the newly completed grace | ||
| 277 | * period is in fact empty. It is a serious bug to complete a grace | ||
| 278 | * period that still has RCU readers blocked! This function must be | ||
| 279 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | ||
| 280 | * must be held by the caller. | ||
| 281 | */ | ||
| 282 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
| 283 | { | ||
| 284 | WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])); | ||
| 285 | WARN_ON_ONCE(rnp->qsmask); | ||
| 286 | } | ||
| 287 | |||
| 288 | /* | ||
| 262 | * Check for preempted RCU readers for the specified rcu_node structure. | 289 | * Check for preempted RCU readers for the specified rcu_node structure. |
| 263 | * If the caller needs a reliable answer, it must hold the rcu_node's | 290 | * If the caller needs a reliable answer, it must hold the rcu_node's |
| 264 | * >lock. | 291 | * >lock. |
| @@ -280,7 +307,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp) | |||
| 280 | * The caller must hold rnp->lock with irqs disabled. | 307 | * The caller must hold rnp->lock with irqs disabled. |
| 281 | */ | 308 | */ |
| 282 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 309 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, |
| 283 | struct rcu_node *rnp) | 310 | struct rcu_node *rnp, |
| 311 | struct rcu_data *rdp) | ||
| 284 | { | 312 | { |
| 285 | int i; | 313 | int i; |
| 286 | struct list_head *lp; | 314 | struct list_head *lp; |
| @@ -292,6 +320,9 @@ static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | |||
| 292 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | 320 | WARN_ONCE(1, "Last CPU thought to be offlined?"); |
| 293 | return; /* Shouldn't happen: at least one CPU online. */ | 321 | return; /* Shouldn't happen: at least one CPU online. */ |
| 294 | } | 322 | } |
| 323 | WARN_ON_ONCE(rnp != rdp->mynode && | ||
| 324 | (!list_empty(&rnp->blocked_tasks[0]) || | ||
| 325 | !list_empty(&rnp->blocked_tasks[1]))); | ||
| 295 | 326 | ||
| 296 | /* | 327 | /* |
| 297 | * Move tasks up to root rcu_node. Rely on the fact that the | 328 | * Move tasks up to root rcu_node. Rely on the fact that the |
| @@ -335,20 +366,12 @@ static void rcu_preempt_check_callbacks(int cpu) | |||
| 335 | struct task_struct *t = current; | 366 | struct task_struct *t = current; |
| 336 | 367 | ||
| 337 | if (t->rcu_read_lock_nesting == 0) { | 368 | if (t->rcu_read_lock_nesting == 0) { |
| 338 | t->rcu_read_unlock_special &= | 369 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
| 339 | ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); | 370 | rcu_preempt_qs(cpu); |
| 340 | rcu_preempt_qs_record(cpu); | ||
| 341 | return; | 371 | return; |
| 342 | } | 372 | } |
| 343 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) { | 373 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) |
| 344 | if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { | 374 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; |
| 345 | rcu_preempt_qs_record(cpu); | ||
| 346 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS; | ||
| 347 | } else if (!(t->rcu_read_unlock_special & | ||
| 348 | RCU_READ_UNLOCK_NEED_QS)) { | ||
| 349 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | ||
| 350 | } | ||
| 351 | } | ||
| 352 | } | 375 | } |
| 353 | 376 | ||
| 354 | /* | 377 | /* |
| @@ -434,7 +457,7 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
| 434 | * Because preemptable RCU does not exist, we never have to check for | 457 | * Because preemptable RCU does not exist, we never have to check for |
| 435 | * CPUs being in quiescent states. | 458 | * CPUs being in quiescent states. |
| 436 | */ | 459 | */ |
| 437 | static void rcu_preempt_qs(int cpu) | 460 | static void rcu_preempt_note_context_switch(int cpu) |
| 438 | { | 461 | { |
| 439 | } | 462 | } |
| 440 | 463 | ||
| @@ -451,6 +474,16 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
| 451 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 474 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 452 | 475 | ||
| 453 | /* | 476 | /* |
| 477 | * Because there is no preemptable RCU, there can be no readers blocked, | ||
| 478 | * so there is no need to check for blocked tasks. So check only for | ||
| 479 | * bogus qsmask values. | ||
| 480 | */ | ||
| 481 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
| 482 | { | ||
| 483 | WARN_ON_ONCE(rnp->qsmask); | ||
| 484 | } | ||
| 485 | |||
| 486 | /* | ||
| 454 | * Because preemptable RCU does not exist, there are never any preempted | 487 | * Because preemptable RCU does not exist, there are never any preempted |
| 455 | * RCU readers. | 488 | * RCU readers. |
| 456 | */ | 489 | */ |
| @@ -466,7 +499,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp) | |||
| 466 | * tasks that were blocked within RCU read-side critical sections. | 499 | * tasks that were blocked within RCU read-side critical sections. |
| 467 | */ | 500 | */ |
| 468 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 501 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, |
| 469 | struct rcu_node *rnp) | 502 | struct rcu_node *rnp, |
| 503 | struct rcu_data *rdp) | ||
| 470 | { | 504 | { |
| 471 | } | 505 | } |
| 472 | 506 | ||
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index 0ea1bff69727..c89f5e9fd173 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c | |||
| @@ -20,7 +20,7 @@ | |||
| 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU |
| 21 | * | 21 | * |
| 22 | * For detailed explanation of Read-Copy Update mechanism see - | 22 | * For detailed explanation of Read-Copy Update mechanism see - |
| 23 | * Documentation/RCU | 23 | * Documentation/RCU |
| 24 | * | 24 | * |
| 25 | */ | 25 | */ |
| 26 | #include <linux/types.h> | 26 | #include <linux/types.h> |
diff --git a/kernel/relay.c b/kernel/relay.c index bc188549788f..760c26209a3c 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
| @@ -60,7 +60,7 @@ static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
| 60 | /* | 60 | /* |
| 61 | * vm_ops for relay file mappings. | 61 | * vm_ops for relay file mappings. |
| 62 | */ | 62 | */ |
| 63 | static struct vm_operations_struct relay_file_mmap_ops = { | 63 | static const struct vm_operations_struct relay_file_mmap_ops = { |
| 64 | .fault = relay_buf_fault, | 64 | .fault = relay_buf_fault, |
| 65 | .close = relay_file_mmap_close, | 65 | .close = relay_file_mmap_close, |
| 66 | }; | 66 | }; |
diff --git a/kernel/res_counter.c b/kernel/res_counter.c index e1338f074314..88faec23e833 100644 --- a/kernel/res_counter.c +++ b/kernel/res_counter.c | |||
| @@ -19,6 +19,7 @@ void res_counter_init(struct res_counter *counter, struct res_counter *parent) | |||
| 19 | { | 19 | { |
| 20 | spin_lock_init(&counter->lock); | 20 | spin_lock_init(&counter->lock); |
| 21 | counter->limit = RESOURCE_MAX; | 21 | counter->limit = RESOURCE_MAX; |
| 22 | counter->soft_limit = RESOURCE_MAX; | ||
| 22 | counter->parent = parent; | 23 | counter->parent = parent; |
| 23 | } | 24 | } |
| 24 | 25 | ||
| @@ -36,17 +37,27 @@ int res_counter_charge_locked(struct res_counter *counter, unsigned long val) | |||
| 36 | } | 37 | } |
| 37 | 38 | ||
| 38 | int res_counter_charge(struct res_counter *counter, unsigned long val, | 39 | int res_counter_charge(struct res_counter *counter, unsigned long val, |
| 39 | struct res_counter **limit_fail_at) | 40 | struct res_counter **limit_fail_at, |
| 41 | struct res_counter **soft_limit_fail_at) | ||
| 40 | { | 42 | { |
| 41 | int ret; | 43 | int ret; |
| 42 | unsigned long flags; | 44 | unsigned long flags; |
| 43 | struct res_counter *c, *u; | 45 | struct res_counter *c, *u; |
| 44 | 46 | ||
| 45 | *limit_fail_at = NULL; | 47 | *limit_fail_at = NULL; |
| 48 | if (soft_limit_fail_at) | ||
| 49 | *soft_limit_fail_at = NULL; | ||
| 46 | local_irq_save(flags); | 50 | local_irq_save(flags); |
| 47 | for (c = counter; c != NULL; c = c->parent) { | 51 | for (c = counter; c != NULL; c = c->parent) { |
| 48 | spin_lock(&c->lock); | 52 | spin_lock(&c->lock); |
| 49 | ret = res_counter_charge_locked(c, val); | 53 | ret = res_counter_charge_locked(c, val); |
| 54 | /* | ||
| 55 | * With soft limits, we return the highest ancestor | ||
| 56 | * that exceeds its soft limit | ||
| 57 | */ | ||
| 58 | if (soft_limit_fail_at && | ||
| 59 | !res_counter_soft_limit_check_locked(c)) | ||
| 60 | *soft_limit_fail_at = c; | ||
| 50 | spin_unlock(&c->lock); | 61 | spin_unlock(&c->lock); |
| 51 | if (ret < 0) { | 62 | if (ret < 0) { |
| 52 | *limit_fail_at = c; | 63 | *limit_fail_at = c; |
| @@ -74,7 +85,8 @@ void res_counter_uncharge_locked(struct res_counter *counter, unsigned long val) | |||
| 74 | counter->usage -= val; | 85 | counter->usage -= val; |
| 75 | } | 86 | } |
| 76 | 87 | ||
| 77 | void res_counter_uncharge(struct res_counter *counter, unsigned long val) | 88 | void res_counter_uncharge(struct res_counter *counter, unsigned long val, |
| 89 | bool *was_soft_limit_excess) | ||
| 78 | { | 90 | { |
| 79 | unsigned long flags; | 91 | unsigned long flags; |
| 80 | struct res_counter *c; | 92 | struct res_counter *c; |
| @@ -82,6 +94,9 @@ void res_counter_uncharge(struct res_counter *counter, unsigned long val) | |||
| 82 | local_irq_save(flags); | 94 | local_irq_save(flags); |
| 83 | for (c = counter; c != NULL; c = c->parent) { | 95 | for (c = counter; c != NULL; c = c->parent) { |
| 84 | spin_lock(&c->lock); | 96 | spin_lock(&c->lock); |
| 97 | if (was_soft_limit_excess) | ||
| 98 | *was_soft_limit_excess = | ||
| 99 | !res_counter_soft_limit_check_locked(c); | ||
| 85 | res_counter_uncharge_locked(c, val); | 100 | res_counter_uncharge_locked(c, val); |
| 86 | spin_unlock(&c->lock); | 101 | spin_unlock(&c->lock); |
| 87 | } | 102 | } |
| @@ -101,6 +116,8 @@ res_counter_member(struct res_counter *counter, int member) | |||
| 101 | return &counter->limit; | 116 | return &counter->limit; |
| 102 | case RES_FAILCNT: | 117 | case RES_FAILCNT: |
| 103 | return &counter->failcnt; | 118 | return &counter->failcnt; |
| 119 | case RES_SOFT_LIMIT: | ||
| 120 | return &counter->soft_limit; | ||
| 104 | }; | 121 | }; |
| 105 | 122 | ||
| 106 | BUG(); | 123 | BUG(); |
diff --git a/kernel/resource.c b/kernel/resource.c index 78b087221c15..fb11a58b9594 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
| @@ -223,13 +223,13 @@ int release_resource(struct resource *old) | |||
| 223 | 223 | ||
| 224 | EXPORT_SYMBOL(release_resource); | 224 | EXPORT_SYMBOL(release_resource); |
| 225 | 225 | ||
| 226 | #if defined(CONFIG_MEMORY_HOTPLUG) && !defined(CONFIG_ARCH_HAS_WALK_MEMORY) | 226 | #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) |
| 227 | /* | 227 | /* |
| 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) | 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) |
| 229 | * the caller must specify res->start, res->end, res->flags. | 229 | * the caller must specify res->start, res->end, res->flags and "name". |
| 230 | * If found, returns 0, res is overwritten, if not found, returns -1. | 230 | * If found, returns 0, res is overwritten, if not found, returns -1. |
| 231 | */ | 231 | */ |
| 232 | static int find_next_system_ram(struct resource *res) | 232 | static int find_next_system_ram(struct resource *res, char *name) |
| 233 | { | 233 | { |
| 234 | resource_size_t start, end; | 234 | resource_size_t start, end; |
| 235 | struct resource *p; | 235 | struct resource *p; |
| @@ -245,6 +245,8 @@ static int find_next_system_ram(struct resource *res) | |||
| 245 | /* system ram is just marked as IORESOURCE_MEM */ | 245 | /* system ram is just marked as IORESOURCE_MEM */ |
| 246 | if (p->flags != res->flags) | 246 | if (p->flags != res->flags) |
| 247 | continue; | 247 | continue; |
| 248 | if (name && strcmp(p->name, name)) | ||
| 249 | continue; | ||
| 248 | if (p->start > end) { | 250 | if (p->start > end) { |
| 249 | p = NULL; | 251 | p = NULL; |
| 250 | break; | 252 | break; |
| @@ -262,19 +264,26 @@ static int find_next_system_ram(struct resource *res) | |||
| 262 | res->end = p->end; | 264 | res->end = p->end; |
| 263 | return 0; | 265 | return 0; |
| 264 | } | 266 | } |
| 265 | int | 267 | |
| 266 | walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg, | 268 | /* |
| 267 | int (*func)(unsigned long, unsigned long, void *)) | 269 | * This function calls callback against all memory range of "System RAM" |
| 270 | * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. | ||
| 271 | * Now, this function is only for "System RAM". | ||
| 272 | */ | ||
| 273 | int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, | ||
| 274 | void *arg, int (*func)(unsigned long, unsigned long, void *)) | ||
| 268 | { | 275 | { |
| 269 | struct resource res; | 276 | struct resource res; |
| 270 | unsigned long pfn, len; | 277 | unsigned long pfn, len; |
| 271 | u64 orig_end; | 278 | u64 orig_end; |
| 272 | int ret = -1; | 279 | int ret = -1; |
| 280 | |||
| 273 | res.start = (u64) start_pfn << PAGE_SHIFT; | 281 | res.start = (u64) start_pfn << PAGE_SHIFT; |
| 274 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; | 282 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; |
| 275 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 283 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| 276 | orig_end = res.end; | 284 | orig_end = res.end; |
| 277 | while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) { | 285 | while ((res.start < res.end) && |
| 286 | (find_next_system_ram(&res, "System RAM") >= 0)) { | ||
| 278 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); | 287 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); |
| 279 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); | 288 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); |
| 280 | ret = (*func)(pfn, len, arg); | 289 | ret = (*func)(pfn, len, arg); |
diff --git a/kernel/sched.c b/kernel/sched.c index d9db3fb17573..ee61f454a98b 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -39,7 +39,7 @@ | |||
| 39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
| 40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
| 41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
| 42 | #include <linux/perf_counter.h> | 42 | #include <linux/perf_event.h> |
| 43 | #include <linux/security.h> | 43 | #include <linux/security.h> |
| 44 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
| 45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
| @@ -119,8 +119,6 @@ | |||
| 119 | */ | 119 | */ |
| 120 | #define RUNTIME_INF ((u64)~0ULL) | 120 | #define RUNTIME_INF ((u64)~0ULL) |
| 121 | 121 | ||
| 122 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
| 123 | |||
| 124 | static inline int rt_policy(int policy) | 122 | static inline int rt_policy(int policy) |
| 125 | { | 123 | { |
| 126 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 124 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
| @@ -378,13 +376,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
| 378 | 376 | ||
| 379 | #else | 377 | #else |
| 380 | 378 | ||
| 381 | #ifdef CONFIG_SMP | ||
| 382 | static int root_task_group_empty(void) | ||
| 383 | { | ||
| 384 | return 1; | ||
| 385 | } | ||
| 386 | #endif | ||
| 387 | |||
| 388 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 379 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 389 | static inline struct task_group *task_group(struct task_struct *p) | 380 | static inline struct task_group *task_group(struct task_struct *p) |
| 390 | { | 381 | { |
| @@ -514,14 +505,6 @@ struct root_domain { | |||
| 514 | #ifdef CONFIG_SMP | 505 | #ifdef CONFIG_SMP |
| 515 | struct cpupri cpupri; | 506 | struct cpupri cpupri; |
| 516 | #endif | 507 | #endif |
| 517 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 518 | /* | ||
| 519 | * Preferred wake up cpu nominated by sched_mc balance that will be | ||
| 520 | * used when most cpus are idle in the system indicating overall very | ||
| 521 | * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) | ||
| 522 | */ | ||
| 523 | unsigned int sched_mc_preferred_wakeup_cpu; | ||
| 524 | #endif | ||
| 525 | }; | 508 | }; |
| 526 | 509 | ||
| 527 | /* | 510 | /* |
| @@ -646,9 +629,10 @@ struct rq { | |||
| 646 | 629 | ||
| 647 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 630 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| 648 | 631 | ||
| 649 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) | 632 | static inline |
| 633 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
| 650 | { | 634 | { |
| 651 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); | 635 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
| 652 | } | 636 | } |
| 653 | 637 | ||
| 654 | static inline int cpu_of(struct rq *rq) | 638 | static inline int cpu_of(struct rq *rq) |
| @@ -697,15 +681,9 @@ inline void update_rq_clock(struct rq *rq) | |||
| 697 | * This interface allows printk to be called with the runqueue lock | 681 | * This interface allows printk to be called with the runqueue lock |
| 698 | * held and know whether or not it is OK to wake up the klogd. | 682 | * held and know whether or not it is OK to wake up the klogd. |
| 699 | */ | 683 | */ |
| 700 | int runqueue_is_locked(void) | 684 | int runqueue_is_locked(int cpu) |
| 701 | { | 685 | { |
| 702 | int cpu = get_cpu(); | 686 | return spin_is_locked(&cpu_rq(cpu)->lock); |
| 703 | struct rq *rq = cpu_rq(cpu); | ||
| 704 | int ret; | ||
| 705 | |||
| 706 | ret = spin_is_locked(&rq->lock); | ||
| 707 | put_cpu(); | ||
| 708 | return ret; | ||
| 709 | } | 687 | } |
| 710 | 688 | ||
| 711 | /* | 689 | /* |
| @@ -1509,8 +1487,65 @@ static int tg_nop(struct task_group *tg, void *data) | |||
| 1509 | #endif | 1487 | #endif |
| 1510 | 1488 | ||
| 1511 | #ifdef CONFIG_SMP | 1489 | #ifdef CONFIG_SMP |
| 1512 | static unsigned long source_load(int cpu, int type); | 1490 | /* Used instead of source_load when we know the type == 0 */ |
| 1513 | static unsigned long target_load(int cpu, int type); | 1491 | static unsigned long weighted_cpuload(const int cpu) |
| 1492 | { | ||
| 1493 | return cpu_rq(cpu)->load.weight; | ||
| 1494 | } | ||
| 1495 | |||
| 1496 | /* | ||
| 1497 | * Return a low guess at the load of a migration-source cpu weighted | ||
| 1498 | * according to the scheduling class and "nice" value. | ||
| 1499 | * | ||
| 1500 | * We want to under-estimate the load of migration sources, to | ||
| 1501 | * balance conservatively. | ||
| 1502 | */ | ||
| 1503 | static unsigned long source_load(int cpu, int type) | ||
| 1504 | { | ||
| 1505 | struct rq *rq = cpu_rq(cpu); | ||
| 1506 | unsigned long total = weighted_cpuload(cpu); | ||
| 1507 | |||
| 1508 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 1509 | return total; | ||
| 1510 | |||
| 1511 | return min(rq->cpu_load[type-1], total); | ||
| 1512 | } | ||
| 1513 | |||
| 1514 | /* | ||
| 1515 | * Return a high guess at the load of a migration-target cpu weighted | ||
| 1516 | * according to the scheduling class and "nice" value. | ||
| 1517 | */ | ||
| 1518 | static unsigned long target_load(int cpu, int type) | ||
| 1519 | { | ||
| 1520 | struct rq *rq = cpu_rq(cpu); | ||
| 1521 | unsigned long total = weighted_cpuload(cpu); | ||
| 1522 | |||
| 1523 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 1524 | return total; | ||
| 1525 | |||
| 1526 | return max(rq->cpu_load[type-1], total); | ||
| 1527 | } | ||
| 1528 | |||
| 1529 | static struct sched_group *group_of(int cpu) | ||
| 1530 | { | ||
| 1531 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
| 1532 | |||
| 1533 | if (!sd) | ||
| 1534 | return NULL; | ||
| 1535 | |||
| 1536 | return sd->groups; | ||
| 1537 | } | ||
| 1538 | |||
| 1539 | static unsigned long power_of(int cpu) | ||
| 1540 | { | ||
| 1541 | struct sched_group *group = group_of(cpu); | ||
| 1542 | |||
| 1543 | if (!group) | ||
| 1544 | return SCHED_LOAD_SCALE; | ||
| 1545 | |||
| 1546 | return group->cpu_power; | ||
| 1547 | } | ||
| 1548 | |||
| 1514 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1549 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
| 1515 | 1550 | ||
| 1516 | static unsigned long cpu_avg_load_per_task(int cpu) | 1551 | static unsigned long cpu_avg_load_per_task(int cpu) |
| @@ -1695,6 +1730,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
| 1695 | 1730 | ||
| 1696 | #ifdef CONFIG_PREEMPT | 1731 | #ifdef CONFIG_PREEMPT |
| 1697 | 1732 | ||
| 1733 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
| 1734 | |||
| 1698 | /* | 1735 | /* |
| 1699 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | 1736 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 1700 | * way at the expense of forcing extra atomic operations in all | 1737 | * way at the expense of forcing extra atomic operations in all |
| @@ -1959,13 +1996,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
| 1959 | } | 1996 | } |
| 1960 | 1997 | ||
| 1961 | #ifdef CONFIG_SMP | 1998 | #ifdef CONFIG_SMP |
| 1962 | |||
| 1963 | /* Used instead of source_load when we know the type == 0 */ | ||
| 1964 | static unsigned long weighted_cpuload(const int cpu) | ||
| 1965 | { | ||
| 1966 | return cpu_rq(cpu)->load.weight; | ||
| 1967 | } | ||
| 1968 | |||
| 1969 | /* | 1999 | /* |
| 1970 | * Is this task likely cache-hot: | 2000 | * Is this task likely cache-hot: |
| 1971 | */ | 2001 | */ |
| @@ -2023,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
| 2023 | if (task_hot(p, old_rq->clock, NULL)) | 2053 | if (task_hot(p, old_rq->clock, NULL)) |
| 2024 | schedstat_inc(p, se.nr_forced2_migrations); | 2054 | schedstat_inc(p, se.nr_forced2_migrations); |
| 2025 | #endif | 2055 | #endif |
| 2026 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2056 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
| 2027 | 1, 1, NULL, 0); | 2057 | 1, 1, NULL, 0); |
| 2028 | } | 2058 | } |
| 2029 | p->se.vruntime -= old_cfsrq->min_vruntime - | 2059 | p->se.vruntime -= old_cfsrq->min_vruntime - |
| @@ -2239,185 +2269,6 @@ void kick_process(struct task_struct *p) | |||
| 2239 | preempt_enable(); | 2269 | preempt_enable(); |
| 2240 | } | 2270 | } |
| 2241 | EXPORT_SYMBOL_GPL(kick_process); | 2271 | EXPORT_SYMBOL_GPL(kick_process); |
| 2242 | |||
| 2243 | /* | ||
| 2244 | * Return a low guess at the load of a migration-source cpu weighted | ||
| 2245 | * according to the scheduling class and "nice" value. | ||
| 2246 | * | ||
| 2247 | * We want to under-estimate the load of migration sources, to | ||
| 2248 | * balance conservatively. | ||
| 2249 | */ | ||
| 2250 | static unsigned long source_load(int cpu, int type) | ||
| 2251 | { | ||
| 2252 | struct rq *rq = cpu_rq(cpu); | ||
| 2253 | unsigned long total = weighted_cpuload(cpu); | ||
| 2254 | |||
| 2255 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 2256 | return total; | ||
| 2257 | |||
| 2258 | return min(rq->cpu_load[type-1], total); | ||
| 2259 | } | ||
| 2260 | |||
| 2261 | /* | ||
| 2262 | * Return a high guess at the load of a migration-target cpu weighted | ||
| 2263 | * according to the scheduling class and "nice" value. | ||
| 2264 | */ | ||
| 2265 | static unsigned long target_load(int cpu, int type) | ||
| 2266 | { | ||
| 2267 | struct rq *rq = cpu_rq(cpu); | ||
| 2268 | unsigned long total = weighted_cpuload(cpu); | ||
| 2269 | |||
| 2270 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 2271 | return total; | ||
| 2272 | |||
| 2273 | return max(rq->cpu_load[type-1], total); | ||
| 2274 | } | ||
| 2275 | |||
| 2276 | /* | ||
| 2277 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 2278 | * domain. | ||
| 2279 | */ | ||
| 2280 | static struct sched_group * | ||
| 2281 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | ||
| 2282 | { | ||
| 2283 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | ||
| 2284 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
| 2285 | int load_idx = sd->forkexec_idx; | ||
| 2286 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
| 2287 | |||
| 2288 | do { | ||
| 2289 | unsigned long load, avg_load; | ||
| 2290 | int local_group; | ||
| 2291 | int i; | ||
| 2292 | |||
| 2293 | /* Skip over this group if it has no CPUs allowed */ | ||
| 2294 | if (!cpumask_intersects(sched_group_cpus(group), | ||
| 2295 | &p->cpus_allowed)) | ||
| 2296 | continue; | ||
| 2297 | |||
| 2298 | local_group = cpumask_test_cpu(this_cpu, | ||
| 2299 | sched_group_cpus(group)); | ||
| 2300 | |||
| 2301 | /* Tally up the load of all CPUs in the group */ | ||
| 2302 | avg_load = 0; | ||
| 2303 | |||
| 2304 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 2305 | /* Bias balancing toward cpus of our domain */ | ||
| 2306 | if (local_group) | ||
| 2307 | load = source_load(i, load_idx); | ||
| 2308 | else | ||
| 2309 | load = target_load(i, load_idx); | ||
| 2310 | |||
| 2311 | avg_load += load; | ||
| 2312 | } | ||
| 2313 | |||
| 2314 | /* Adjust by relative CPU power of the group */ | ||
| 2315 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 2316 | |||
| 2317 | if (local_group) { | ||
| 2318 | this_load = avg_load; | ||
| 2319 | this = group; | ||
| 2320 | } else if (avg_load < min_load) { | ||
| 2321 | min_load = avg_load; | ||
| 2322 | idlest = group; | ||
| 2323 | } | ||
| 2324 | } while (group = group->next, group != sd->groups); | ||
| 2325 | |||
| 2326 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 2327 | return NULL; | ||
| 2328 | return idlest; | ||
| 2329 | } | ||
| 2330 | |||
| 2331 | /* | ||
| 2332 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
| 2333 | */ | ||
| 2334 | static int | ||
| 2335 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
| 2336 | { | ||
| 2337 | unsigned long load, min_load = ULONG_MAX; | ||
| 2338 | int idlest = -1; | ||
| 2339 | int i; | ||
| 2340 | |||
| 2341 | /* Traverse only the allowed CPUs */ | ||
| 2342 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
| 2343 | load = weighted_cpuload(i); | ||
| 2344 | |||
| 2345 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 2346 | min_load = load; | ||
| 2347 | idlest = i; | ||
| 2348 | } | ||
| 2349 | } | ||
| 2350 | |||
| 2351 | return idlest; | ||
| 2352 | } | ||
| 2353 | |||
| 2354 | /* | ||
| 2355 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
| 2356 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
| 2357 | * SD_BALANCE_EXEC. | ||
| 2358 | * | ||
| 2359 | * Balance, ie. select the least loaded group. | ||
| 2360 | * | ||
| 2361 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 2362 | * | ||
| 2363 | * preempt must be disabled. | ||
| 2364 | */ | ||
| 2365 | static int sched_balance_self(int cpu, int flag) | ||
| 2366 | { | ||
| 2367 | struct task_struct *t = current; | ||
| 2368 | struct sched_domain *tmp, *sd = NULL; | ||
| 2369 | |||
| 2370 | for_each_domain(cpu, tmp) { | ||
| 2371 | /* | ||
| 2372 | * If power savings logic is enabled for a domain, stop there. | ||
| 2373 | */ | ||
| 2374 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
| 2375 | break; | ||
| 2376 | if (tmp->flags & flag) | ||
| 2377 | sd = tmp; | ||
| 2378 | } | ||
| 2379 | |||
| 2380 | if (sd) | ||
| 2381 | update_shares(sd); | ||
| 2382 | |||
| 2383 | while (sd) { | ||
| 2384 | struct sched_group *group; | ||
| 2385 | int new_cpu, weight; | ||
| 2386 | |||
| 2387 | if (!(sd->flags & flag)) { | ||
| 2388 | sd = sd->child; | ||
| 2389 | continue; | ||
| 2390 | } | ||
| 2391 | |||
| 2392 | group = find_idlest_group(sd, t, cpu); | ||
| 2393 | if (!group) { | ||
| 2394 | sd = sd->child; | ||
| 2395 | continue; | ||
| 2396 | } | ||
| 2397 | |||
| 2398 | new_cpu = find_idlest_cpu(group, t, cpu); | ||
| 2399 | if (new_cpu == -1 || new_cpu == cpu) { | ||
| 2400 | /* Now try balancing at a lower domain level of cpu */ | ||
| 2401 | sd = sd->child; | ||
| 2402 | continue; | ||
| 2403 | } | ||
| 2404 | |||
| 2405 | /* Now try balancing at a lower domain level of new_cpu */ | ||
| 2406 | cpu = new_cpu; | ||
| 2407 | weight = cpumask_weight(sched_domain_span(sd)); | ||
| 2408 | sd = NULL; | ||
| 2409 | for_each_domain(cpu, tmp) { | ||
| 2410 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
| 2411 | break; | ||
| 2412 | if (tmp->flags & flag) | ||
| 2413 | sd = tmp; | ||
| 2414 | } | ||
| 2415 | /* while loop will break here if sd == NULL */ | ||
| 2416 | } | ||
| 2417 | |||
| 2418 | return cpu; | ||
| 2419 | } | ||
| 2420 | |||
| 2421 | #endif /* CONFIG_SMP */ | 2272 | #endif /* CONFIG_SMP */ |
| 2422 | 2273 | ||
| 2423 | /** | 2274 | /** |
| @@ -2455,37 +2306,22 @@ void task_oncpu_function_call(struct task_struct *p, | |||
| 2455 | * | 2306 | * |
| 2456 | * returns failure only if the task is already active. | 2307 | * returns failure only if the task is already active. |
| 2457 | */ | 2308 | */ |
| 2458 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 2309 | static int try_to_wake_up(struct task_struct *p, unsigned int state, |
| 2310 | int wake_flags) | ||
| 2459 | { | 2311 | { |
| 2460 | int cpu, orig_cpu, this_cpu, success = 0; | 2312 | int cpu, orig_cpu, this_cpu, success = 0; |
| 2461 | unsigned long flags; | 2313 | unsigned long flags; |
| 2462 | long old_state; | ||
| 2463 | struct rq *rq; | 2314 | struct rq *rq; |
| 2464 | 2315 | ||
| 2465 | if (!sched_feat(SYNC_WAKEUPS)) | 2316 | if (!sched_feat(SYNC_WAKEUPS)) |
| 2466 | sync = 0; | 2317 | wake_flags &= ~WF_SYNC; |
| 2467 | |||
| 2468 | #ifdef CONFIG_SMP | ||
| 2469 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { | ||
| 2470 | struct sched_domain *sd; | ||
| 2471 | 2318 | ||
| 2472 | this_cpu = raw_smp_processor_id(); | 2319 | this_cpu = get_cpu(); |
| 2473 | cpu = task_cpu(p); | ||
| 2474 | |||
| 2475 | for_each_domain(this_cpu, sd) { | ||
| 2476 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | ||
| 2477 | update_shares(sd); | ||
| 2478 | break; | ||
| 2479 | } | ||
| 2480 | } | ||
| 2481 | } | ||
| 2482 | #endif | ||
| 2483 | 2320 | ||
| 2484 | smp_wmb(); | 2321 | smp_wmb(); |
| 2485 | rq = task_rq_lock(p, &flags); | 2322 | rq = task_rq_lock(p, &flags); |
| 2486 | update_rq_clock(rq); | 2323 | update_rq_clock(rq); |
| 2487 | old_state = p->state; | 2324 | if (!(p->state & state)) |
| 2488 | if (!(old_state & state)) | ||
| 2489 | goto out; | 2325 | goto out; |
| 2490 | 2326 | ||
| 2491 | if (p->se.on_rq) | 2327 | if (p->se.on_rq) |
| @@ -2493,27 +2329,29 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2493 | 2329 | ||
| 2494 | cpu = task_cpu(p); | 2330 | cpu = task_cpu(p); |
| 2495 | orig_cpu = cpu; | 2331 | orig_cpu = cpu; |
| 2496 | this_cpu = smp_processor_id(); | ||
| 2497 | 2332 | ||
| 2498 | #ifdef CONFIG_SMP | 2333 | #ifdef CONFIG_SMP |
| 2499 | if (unlikely(task_running(rq, p))) | 2334 | if (unlikely(task_running(rq, p))) |
| 2500 | goto out_activate; | 2335 | goto out_activate; |
| 2501 | 2336 | ||
| 2502 | cpu = p->sched_class->select_task_rq(p, sync); | 2337 | /* |
| 2503 | if (cpu != orig_cpu) { | 2338 | * In order to handle concurrent wakeups and release the rq->lock |
| 2339 | * we put the task in TASK_WAKING state. | ||
| 2340 | * | ||
| 2341 | * First fix up the nr_uninterruptible count: | ||
| 2342 | */ | ||
| 2343 | if (task_contributes_to_load(p)) | ||
| 2344 | rq->nr_uninterruptible--; | ||
| 2345 | p->state = TASK_WAKING; | ||
| 2346 | task_rq_unlock(rq, &flags); | ||
| 2347 | |||
| 2348 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
| 2349 | if (cpu != orig_cpu) | ||
| 2504 | set_task_cpu(p, cpu); | 2350 | set_task_cpu(p, cpu); |
| 2505 | task_rq_unlock(rq, &flags); | ||
| 2506 | /* might preempt at this point */ | ||
| 2507 | rq = task_rq_lock(p, &flags); | ||
| 2508 | old_state = p->state; | ||
| 2509 | if (!(old_state & state)) | ||
| 2510 | goto out; | ||
| 2511 | if (p->se.on_rq) | ||
| 2512 | goto out_running; | ||
| 2513 | 2351 | ||
| 2514 | this_cpu = smp_processor_id(); | 2352 | rq = task_rq_lock(p, &flags); |
| 2515 | cpu = task_cpu(p); | 2353 | WARN_ON(p->state != TASK_WAKING); |
| 2516 | } | 2354 | cpu = task_cpu(p); |
| 2517 | 2355 | ||
| 2518 | #ifdef CONFIG_SCHEDSTATS | 2356 | #ifdef CONFIG_SCHEDSTATS |
| 2519 | schedstat_inc(rq, ttwu_count); | 2357 | schedstat_inc(rq, ttwu_count); |
| @@ -2533,7 +2371,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2533 | out_activate: | 2371 | out_activate: |
| 2534 | #endif /* CONFIG_SMP */ | 2372 | #endif /* CONFIG_SMP */ |
| 2535 | schedstat_inc(p, se.nr_wakeups); | 2373 | schedstat_inc(p, se.nr_wakeups); |
| 2536 | if (sync) | 2374 | if (wake_flags & WF_SYNC) |
| 2537 | schedstat_inc(p, se.nr_wakeups_sync); | 2375 | schedstat_inc(p, se.nr_wakeups_sync); |
| 2538 | if (orig_cpu != cpu) | 2376 | if (orig_cpu != cpu) |
| 2539 | schedstat_inc(p, se.nr_wakeups_migrate); | 2377 | schedstat_inc(p, se.nr_wakeups_migrate); |
| @@ -2562,7 +2400,7 @@ out_activate: | |||
| 2562 | 2400 | ||
| 2563 | out_running: | 2401 | out_running: |
| 2564 | trace_sched_wakeup(rq, p, success); | 2402 | trace_sched_wakeup(rq, p, success); |
| 2565 | check_preempt_curr(rq, p, sync); | 2403 | check_preempt_curr(rq, p, wake_flags); |
| 2566 | 2404 | ||
| 2567 | p->state = TASK_RUNNING; | 2405 | p->state = TASK_RUNNING; |
| 2568 | #ifdef CONFIG_SMP | 2406 | #ifdef CONFIG_SMP |
| @@ -2571,6 +2409,7 @@ out_running: | |||
| 2571 | #endif | 2409 | #endif |
| 2572 | out: | 2410 | out: |
| 2573 | task_rq_unlock(rq, &flags); | 2411 | task_rq_unlock(rq, &flags); |
| 2412 | put_cpu(); | ||
| 2574 | 2413 | ||
| 2575 | return success; | 2414 | return success; |
| 2576 | } | 2415 | } |
| @@ -2613,6 +2452,7 @@ static void __sched_fork(struct task_struct *p) | |||
| 2613 | p->se.avg_overlap = 0; | 2452 | p->se.avg_overlap = 0; |
| 2614 | p->se.start_runtime = 0; | 2453 | p->se.start_runtime = 0; |
| 2615 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2454 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
| 2455 | p->se.avg_running = 0; | ||
| 2616 | 2456 | ||
| 2617 | #ifdef CONFIG_SCHEDSTATS | 2457 | #ifdef CONFIG_SCHEDSTATS |
| 2618 | p->se.wait_start = 0; | 2458 | p->se.wait_start = 0; |
| @@ -2674,11 +2514,6 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2674 | 2514 | ||
| 2675 | __sched_fork(p); | 2515 | __sched_fork(p); |
| 2676 | 2516 | ||
| 2677 | #ifdef CONFIG_SMP | ||
| 2678 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | ||
| 2679 | #endif | ||
| 2680 | set_task_cpu(p, cpu); | ||
| 2681 | |||
| 2682 | /* | 2517 | /* |
| 2683 | * Make sure we do not leak PI boosting priority to the child. | 2518 | * Make sure we do not leak PI boosting priority to the child. |
| 2684 | */ | 2519 | */ |
| @@ -2709,6 +2544,11 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2709 | if (!rt_prio(p->prio)) | 2544 | if (!rt_prio(p->prio)) |
| 2710 | p->sched_class = &fair_sched_class; | 2545 | p->sched_class = &fair_sched_class; |
| 2711 | 2546 | ||
| 2547 | #ifdef CONFIG_SMP | ||
| 2548 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | ||
| 2549 | #endif | ||
| 2550 | set_task_cpu(p, cpu); | ||
| 2551 | |||
| 2712 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2552 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| 2713 | if (likely(sched_info_on())) | 2553 | if (likely(sched_info_on())) |
| 2714 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 2554 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| @@ -2754,7 +2594,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2754 | inc_nr_running(rq); | 2594 | inc_nr_running(rq); |
| 2755 | } | 2595 | } |
| 2756 | trace_sched_wakeup_new(rq, p, 1); | 2596 | trace_sched_wakeup_new(rq, p, 1); |
| 2757 | check_preempt_curr(rq, p, 0); | 2597 | check_preempt_curr(rq, p, WF_FORK); |
| 2758 | #ifdef CONFIG_SMP | 2598 | #ifdef CONFIG_SMP |
| 2759 | if (p->sched_class->task_wake_up) | 2599 | if (p->sched_class->task_wake_up) |
| 2760 | p->sched_class->task_wake_up(rq, p); | 2600 | p->sched_class->task_wake_up(rq, p); |
| @@ -2878,7 +2718,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2878 | */ | 2718 | */ |
| 2879 | prev_state = prev->state; | 2719 | prev_state = prev->state; |
| 2880 | finish_arch_switch(prev); | 2720 | finish_arch_switch(prev); |
| 2881 | perf_counter_task_sched_in(current, cpu_of(rq)); | 2721 | perf_event_task_sched_in(current, cpu_of(rq)); |
| 2882 | finish_lock_switch(rq, prev); | 2722 | finish_lock_switch(rq, prev); |
| 2883 | 2723 | ||
| 2884 | fire_sched_in_preempt_notifiers(current); | 2724 | fire_sched_in_preempt_notifiers(current); |
| @@ -3064,6 +2904,19 @@ unsigned long nr_iowait(void) | |||
| 3064 | return sum; | 2904 | return sum; |
| 3065 | } | 2905 | } |
| 3066 | 2906 | ||
| 2907 | unsigned long nr_iowait_cpu(void) | ||
| 2908 | { | ||
| 2909 | struct rq *this = this_rq(); | ||
| 2910 | return atomic_read(&this->nr_iowait); | ||
| 2911 | } | ||
| 2912 | |||
| 2913 | unsigned long this_cpu_load(void) | ||
| 2914 | { | ||
| 2915 | struct rq *this = this_rq(); | ||
| 2916 | return this->cpu_load[0]; | ||
| 2917 | } | ||
| 2918 | |||
| 2919 | |||
| 3067 | /* Variables and functions for calc_load */ | 2920 | /* Variables and functions for calc_load */ |
| 3068 | static atomic_long_t calc_load_tasks; | 2921 | static atomic_long_t calc_load_tasks; |
| 3069 | static unsigned long calc_load_update; | 2922 | static unsigned long calc_load_update; |
| @@ -3263,7 +3116,7 @@ out: | |||
| 3263 | void sched_exec(void) | 3116 | void sched_exec(void) |
| 3264 | { | 3117 | { |
| 3265 | int new_cpu, this_cpu = get_cpu(); | 3118 | int new_cpu, this_cpu = get_cpu(); |
| 3266 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 3119 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); |
| 3267 | put_cpu(); | 3120 | put_cpu(); |
| 3268 | if (new_cpu != this_cpu) | 3121 | if (new_cpu != this_cpu) |
| 3269 | sched_migrate_task(current, new_cpu); | 3122 | sched_migrate_task(current, new_cpu); |
| @@ -3683,11 +3536,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
| 3683 | *imbalance = sds->min_load_per_task; | 3536 | *imbalance = sds->min_load_per_task; |
| 3684 | sds->busiest = sds->group_min; | 3537 | sds->busiest = sds->group_min; |
| 3685 | 3538 | ||
| 3686 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | ||
| 3687 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | ||
| 3688 | group_first_cpu(sds->group_leader); | ||
| 3689 | } | ||
| 3690 | |||
| 3691 | return 1; | 3539 | return 1; |
| 3692 | 3540 | ||
| 3693 | } | 3541 | } |
| @@ -3711,7 +3559,18 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
| 3711 | } | 3559 | } |
| 3712 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 3560 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
| 3713 | 3561 | ||
| 3714 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | 3562 | |
| 3563 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3564 | { | ||
| 3565 | return SCHED_LOAD_SCALE; | ||
| 3566 | } | ||
| 3567 | |||
| 3568 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3569 | { | ||
| 3570 | return default_scale_freq_power(sd, cpu); | ||
| 3571 | } | ||
| 3572 | |||
| 3573 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3715 | { | 3574 | { |
| 3716 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | 3575 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); |
| 3717 | unsigned long smt_gain = sd->smt_gain; | 3576 | unsigned long smt_gain = sd->smt_gain; |
| @@ -3721,6 +3580,11 @@ unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | |||
| 3721 | return smt_gain; | 3580 | return smt_gain; |
| 3722 | } | 3581 | } |
| 3723 | 3582 | ||
| 3583 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3584 | { | ||
| 3585 | return default_scale_smt_power(sd, cpu); | ||
| 3586 | } | ||
| 3587 | |||
| 3724 | unsigned long scale_rt_power(int cpu) | 3588 | unsigned long scale_rt_power(int cpu) |
| 3725 | { | 3589 | { |
| 3726 | struct rq *rq = cpu_rq(cpu); | 3590 | struct rq *rq = cpu_rq(cpu); |
| @@ -3745,10 +3609,19 @@ static void update_cpu_power(struct sched_domain *sd, int cpu) | |||
| 3745 | unsigned long power = SCHED_LOAD_SCALE; | 3609 | unsigned long power = SCHED_LOAD_SCALE; |
| 3746 | struct sched_group *sdg = sd->groups; | 3610 | struct sched_group *sdg = sd->groups; |
| 3747 | 3611 | ||
| 3748 | /* here we could scale based on cpufreq */ | 3612 | if (sched_feat(ARCH_POWER)) |
| 3613 | power *= arch_scale_freq_power(sd, cpu); | ||
| 3614 | else | ||
| 3615 | power *= default_scale_freq_power(sd, cpu); | ||
| 3616 | |||
| 3617 | power >>= SCHED_LOAD_SHIFT; | ||
| 3749 | 3618 | ||
| 3750 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | 3619 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
| 3751 | power *= arch_scale_smt_power(sd, cpu); | 3620 | if (sched_feat(ARCH_POWER)) |
| 3621 | power *= arch_scale_smt_power(sd, cpu); | ||
| 3622 | else | ||
| 3623 | power *= default_scale_smt_power(sd, cpu); | ||
| 3624 | |||
| 3752 | power >>= SCHED_LOAD_SHIFT; | 3625 | power >>= SCHED_LOAD_SHIFT; |
| 3753 | } | 3626 | } |
| 3754 | 3627 | ||
| @@ -4161,26 +4034,6 @@ ret: | |||
| 4161 | return NULL; | 4034 | return NULL; |
| 4162 | } | 4035 | } |
| 4163 | 4036 | ||
| 4164 | static struct sched_group *group_of(int cpu) | ||
| 4165 | { | ||
| 4166 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
| 4167 | |||
| 4168 | if (!sd) | ||
| 4169 | return NULL; | ||
| 4170 | |||
| 4171 | return sd->groups; | ||
| 4172 | } | ||
| 4173 | |||
| 4174 | static unsigned long power_of(int cpu) | ||
| 4175 | { | ||
| 4176 | struct sched_group *group = group_of(cpu); | ||
| 4177 | |||
| 4178 | if (!group) | ||
| 4179 | return SCHED_LOAD_SCALE; | ||
| 4180 | |||
| 4181 | return group->cpu_power; | ||
| 4182 | } | ||
| 4183 | |||
| 4184 | /* | 4037 | /* |
| 4185 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 4038 | * find_busiest_queue - find the busiest runqueue among the cpus in group. |
| 4186 | */ | 4039 | */ |
| @@ -5239,17 +5092,16 @@ void account_idle_time(cputime_t cputime) | |||
| 5239 | */ | 5092 | */ |
| 5240 | void account_process_tick(struct task_struct *p, int user_tick) | 5093 | void account_process_tick(struct task_struct *p, int user_tick) |
| 5241 | { | 5094 | { |
| 5242 | cputime_t one_jiffy = jiffies_to_cputime(1); | 5095 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
| 5243 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | ||
| 5244 | struct rq *rq = this_rq(); | 5096 | struct rq *rq = this_rq(); |
| 5245 | 5097 | ||
| 5246 | if (user_tick) | 5098 | if (user_tick) |
| 5247 | account_user_time(p, one_jiffy, one_jiffy_scaled); | 5099 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
| 5248 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 5100 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
| 5249 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, | 5101 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
| 5250 | one_jiffy_scaled); | 5102 | one_jiffy_scaled); |
| 5251 | else | 5103 | else |
| 5252 | account_idle_time(one_jiffy); | 5104 | account_idle_time(cputime_one_jiffy); |
| 5253 | } | 5105 | } |
| 5254 | 5106 | ||
| 5255 | /* | 5107 | /* |
| @@ -5353,7 +5205,7 @@ void scheduler_tick(void) | |||
| 5353 | curr->sched_class->task_tick(rq, curr, 0); | 5205 | curr->sched_class->task_tick(rq, curr, 0); |
| 5354 | spin_unlock(&rq->lock); | 5206 | spin_unlock(&rq->lock); |
| 5355 | 5207 | ||
| 5356 | perf_counter_task_tick(curr, cpu); | 5208 | perf_event_task_tick(curr, cpu); |
| 5357 | 5209 | ||
| 5358 | #ifdef CONFIG_SMP | 5210 | #ifdef CONFIG_SMP |
| 5359 | rq->idle_at_tick = idle_cpu(cpu); | 5211 | rq->idle_at_tick = idle_cpu(cpu); |
| @@ -5465,14 +5317,13 @@ static inline void schedule_debug(struct task_struct *prev) | |||
| 5465 | #endif | 5317 | #endif |
| 5466 | } | 5318 | } |
| 5467 | 5319 | ||
| 5468 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 5320 | static void put_prev_task(struct rq *rq, struct task_struct *p) |
| 5469 | { | 5321 | { |
| 5470 | if (prev->state == TASK_RUNNING) { | 5322 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; |
| 5471 | u64 runtime = prev->se.sum_exec_runtime; | ||
| 5472 | 5323 | ||
| 5473 | runtime -= prev->se.prev_sum_exec_runtime; | 5324 | update_avg(&p->se.avg_running, runtime); |
| 5474 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
| 5475 | 5325 | ||
| 5326 | if (p->state == TASK_RUNNING) { | ||
| 5476 | /* | 5327 | /* |
| 5477 | * In order to avoid avg_overlap growing stale when we are | 5328 | * In order to avoid avg_overlap growing stale when we are |
| 5478 | * indeed overlapping and hence not getting put to sleep, grow | 5329 | * indeed overlapping and hence not getting put to sleep, grow |
| @@ -5482,9 +5333,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
| 5482 | * correlates to the amount of cache footprint a task can | 5333 | * correlates to the amount of cache footprint a task can |
| 5483 | * build up. | 5334 | * build up. |
| 5484 | */ | 5335 | */ |
| 5485 | update_avg(&prev->se.avg_overlap, runtime); | 5336 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); |
| 5337 | update_avg(&p->se.avg_overlap, runtime); | ||
| 5338 | } else { | ||
| 5339 | update_avg(&p->se.avg_running, 0); | ||
| 5486 | } | 5340 | } |
| 5487 | prev->sched_class->put_prev_task(rq, prev); | 5341 | p->sched_class->put_prev_task(rq, p); |
| 5488 | } | 5342 | } |
| 5489 | 5343 | ||
| 5490 | /* | 5344 | /* |
| @@ -5567,7 +5421,7 @@ need_resched_nonpreemptible: | |||
| 5567 | 5421 | ||
| 5568 | if (likely(prev != next)) { | 5422 | if (likely(prev != next)) { |
| 5569 | sched_info_switch(prev, next); | 5423 | sched_info_switch(prev, next); |
| 5570 | perf_counter_task_sched_out(prev, next, cpu); | 5424 | perf_event_task_sched_out(prev, next, cpu); |
| 5571 | 5425 | ||
| 5572 | rq->nr_switches++; | 5426 | rq->nr_switches++; |
| 5573 | rq->curr = next; | 5427 | rq->curr = next; |
| @@ -5716,10 +5570,10 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
| 5716 | 5570 | ||
| 5717 | #endif /* CONFIG_PREEMPT */ | 5571 | #endif /* CONFIG_PREEMPT */ |
| 5718 | 5572 | ||
| 5719 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 5573 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
| 5720 | void *key) | 5574 | void *key) |
| 5721 | { | 5575 | { |
| 5722 | return try_to_wake_up(curr->private, mode, sync); | 5576 | return try_to_wake_up(curr->private, mode, wake_flags); |
| 5723 | } | 5577 | } |
| 5724 | EXPORT_SYMBOL(default_wake_function); | 5578 | EXPORT_SYMBOL(default_wake_function); |
| 5725 | 5579 | ||
| @@ -5733,14 +5587,14 @@ EXPORT_SYMBOL(default_wake_function); | |||
| 5733 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 5587 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
| 5734 | */ | 5588 | */ |
| 5735 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 5589 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
| 5736 | int nr_exclusive, int sync, void *key) | 5590 | int nr_exclusive, int wake_flags, void *key) |
| 5737 | { | 5591 | { |
| 5738 | wait_queue_t *curr, *next; | 5592 | wait_queue_t *curr, *next; |
| 5739 | 5593 | ||
| 5740 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 5594 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
| 5741 | unsigned flags = curr->flags; | 5595 | unsigned flags = curr->flags; |
| 5742 | 5596 | ||
| 5743 | if (curr->func(curr, mode, sync, key) && | 5597 | if (curr->func(curr, mode, wake_flags, key) && |
| 5744 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 5598 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
| 5745 | break; | 5599 | break; |
| 5746 | } | 5600 | } |
| @@ -5801,16 +5655,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | |||
| 5801 | int nr_exclusive, void *key) | 5655 | int nr_exclusive, void *key) |
| 5802 | { | 5656 | { |
| 5803 | unsigned long flags; | 5657 | unsigned long flags; |
| 5804 | int sync = 1; | 5658 | int wake_flags = WF_SYNC; |
| 5805 | 5659 | ||
| 5806 | if (unlikely(!q)) | 5660 | if (unlikely(!q)) |
| 5807 | return; | 5661 | return; |
| 5808 | 5662 | ||
| 5809 | if (unlikely(!nr_exclusive)) | 5663 | if (unlikely(!nr_exclusive)) |
| 5810 | sync = 0; | 5664 | wake_flags = 0; |
| 5811 | 5665 | ||
| 5812 | spin_lock_irqsave(&q->lock, flags); | 5666 | spin_lock_irqsave(&q->lock, flags); |
| 5813 | __wake_up_common(q, mode, nr_exclusive, sync, key); | 5667 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
| 5814 | spin_unlock_irqrestore(&q->lock, flags); | 5668 | spin_unlock_irqrestore(&q->lock, flags); |
| 5815 | } | 5669 | } |
| 5816 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 5670 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
| @@ -6977,23 +6831,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
| 6977 | if (retval) | 6831 | if (retval) |
| 6978 | goto out_unlock; | 6832 | goto out_unlock; |
| 6979 | 6833 | ||
| 6980 | /* | 6834 | time_slice = p->sched_class->get_rr_interval(p); |
| 6981 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | ||
| 6982 | * tasks that are on an otherwise idle runqueue: | ||
| 6983 | */ | ||
| 6984 | time_slice = 0; | ||
| 6985 | if (p->policy == SCHED_RR) { | ||
| 6986 | time_slice = DEF_TIMESLICE; | ||
| 6987 | } else if (p->policy != SCHED_FIFO) { | ||
| 6988 | struct sched_entity *se = &p->se; | ||
| 6989 | unsigned long flags; | ||
| 6990 | struct rq *rq; | ||
| 6991 | 6835 | ||
| 6992 | rq = task_rq_lock(p, &flags); | ||
| 6993 | if (rq->cfs.load.weight) | ||
| 6994 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
| 6995 | task_rq_unlock(rq, &flags); | ||
| 6996 | } | ||
| 6997 | read_unlock(&tasklist_lock); | 6836 | read_unlock(&tasklist_lock); |
| 6998 | jiffies_to_timespec(time_slice, &t); | 6837 | jiffies_to_timespec(time_slice, &t); |
| 6999 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 6838 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
| @@ -7844,7 +7683,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
| 7844 | /* | 7683 | /* |
| 7845 | * Register at high priority so that task migration (migrate_all_tasks) | 7684 | * Register at high priority so that task migration (migrate_all_tasks) |
| 7846 | * happens before everything else. This has to be lower priority than | 7685 | * happens before everything else. This has to be lower priority than |
| 7847 | * the notifier in the perf_counter subsystem, though. | 7686 | * the notifier in the perf_event subsystem, though. |
| 7848 | */ | 7687 | */ |
| 7849 | static struct notifier_block __cpuinitdata migration_notifier = { | 7688 | static struct notifier_block __cpuinitdata migration_notifier = { |
| 7850 | .notifier_call = migration_call, | 7689 | .notifier_call = migration_call, |
| @@ -8000,9 +7839,7 @@ static int sd_degenerate(struct sched_domain *sd) | |||
| 8000 | } | 7839 | } |
| 8001 | 7840 | ||
| 8002 | /* Following flags don't use groups */ | 7841 | /* Following flags don't use groups */ |
| 8003 | if (sd->flags & (SD_WAKE_IDLE | | 7842 | if (sd->flags & (SD_WAKE_AFFINE)) |
| 8004 | SD_WAKE_AFFINE | | ||
| 8005 | SD_WAKE_BALANCE)) | ||
| 8006 | return 0; | 7843 | return 0; |
| 8007 | 7844 | ||
| 8008 | return 1; | 7845 | return 1; |
| @@ -8019,10 +7856,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
| 8019 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 7856 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
| 8020 | return 0; | 7857 | return 0; |
| 8021 | 7858 | ||
| 8022 | /* Does parent contain flags not in child? */ | ||
| 8023 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | ||
| 8024 | if (cflags & SD_WAKE_AFFINE) | ||
| 8025 | pflags &= ~SD_WAKE_BALANCE; | ||
| 8026 | /* Flags needing groups don't count if only 1 group in parent */ | 7859 | /* Flags needing groups don't count if only 1 group in parent */ |
| 8027 | if (parent->groups == parent->groups->next) { | 7860 | if (parent->groups == parent->groups->next) { |
| 8028 | pflags &= ~(SD_LOAD_BALANCE | | 7861 | pflags &= ~(SD_LOAD_BALANCE | |
| @@ -8708,10 +8541,10 @@ static void set_domain_attribute(struct sched_domain *sd, | |||
| 8708 | request = attr->relax_domain_level; | 8541 | request = attr->relax_domain_level; |
| 8709 | if (request < sd->level) { | 8542 | if (request < sd->level) { |
| 8710 | /* turn off idle balance on this domain */ | 8543 | /* turn off idle balance on this domain */ |
| 8711 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | 8544 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| 8712 | } else { | 8545 | } else { |
| 8713 | /* turn on idle balance on this domain */ | 8546 | /* turn on idle balance on this domain */ |
| 8714 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | 8547 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| 8715 | } | 8548 | } |
| 8716 | } | 8549 | } |
| 8717 | 8550 | ||
| @@ -9329,6 +9162,7 @@ void __init sched_init_smp(void) | |||
| 9329 | cpumask_var_t non_isolated_cpus; | 9162 | cpumask_var_t non_isolated_cpus; |
| 9330 | 9163 | ||
| 9331 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 9164 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
| 9165 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
| 9332 | 9166 | ||
| 9333 | #if defined(CONFIG_NUMA) | 9167 | #if defined(CONFIG_NUMA) |
| 9334 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 9168 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
| @@ -9360,7 +9194,6 @@ void __init sched_init_smp(void) | |||
| 9360 | sched_init_granularity(); | 9194 | sched_init_granularity(); |
| 9361 | free_cpumask_var(non_isolated_cpus); | 9195 | free_cpumask_var(non_isolated_cpus); |
| 9362 | 9196 | ||
| 9363 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
| 9364 | init_sched_rt_class(); | 9197 | init_sched_rt_class(); |
| 9365 | } | 9198 | } |
| 9366 | #else | 9199 | #else |
| @@ -9707,7 +9540,7 @@ void __init sched_init(void) | |||
| 9707 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9540 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
| 9708 | #endif /* SMP */ | 9541 | #endif /* SMP */ |
| 9709 | 9542 | ||
| 9710 | perf_counter_init(); | 9543 | perf_event_init(); |
| 9711 | 9544 | ||
| 9712 | scheduler_running = 1; | 9545 | scheduler_running = 1; |
| 9713 | } | 9546 | } |
| @@ -10479,7 +10312,7 @@ static int sched_rt_global_constraints(void) | |||
| 10479 | #endif /* CONFIG_RT_GROUP_SCHED */ | 10312 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 10480 | 10313 | ||
| 10481 | int sched_rt_handler(struct ctl_table *table, int write, | 10314 | int sched_rt_handler(struct ctl_table *table, int write, |
| 10482 | struct file *filp, void __user *buffer, size_t *lenp, | 10315 | void __user *buffer, size_t *lenp, |
| 10483 | loff_t *ppos) | 10316 | loff_t *ppos) |
| 10484 | { | 10317 | { |
| 10485 | int ret; | 10318 | int ret; |
| @@ -10490,7 +10323,7 @@ int sched_rt_handler(struct ctl_table *table, int write, | |||
| 10490 | old_period = sysctl_sched_rt_period; | 10323 | old_period = sysctl_sched_rt_period; |
| 10491 | old_runtime = sysctl_sched_rt_runtime; | 10324 | old_runtime = sysctl_sched_rt_runtime; |
| 10492 | 10325 | ||
| 10493 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | 10326 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 10494 | 10327 | ||
| 10495 | if (!ret && write) { | 10328 | if (!ret && write) { |
| 10496 | ret = sched_rt_global_constraints(); | 10329 | ret = sched_rt_global_constraints(); |
| @@ -10544,8 +10377,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
| 10544 | } | 10377 | } |
| 10545 | 10378 | ||
| 10546 | static int | 10379 | static int |
| 10547 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10380 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
| 10548 | struct task_struct *tsk) | ||
| 10549 | { | 10381 | { |
| 10550 | #ifdef CONFIG_RT_GROUP_SCHED | 10382 | #ifdef CONFIG_RT_GROUP_SCHED |
| 10551 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | 10383 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
| @@ -10555,15 +10387,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |||
| 10555 | if (tsk->sched_class != &fair_sched_class) | 10387 | if (tsk->sched_class != &fair_sched_class) |
| 10556 | return -EINVAL; | 10388 | return -EINVAL; |
| 10557 | #endif | 10389 | #endif |
| 10390 | return 0; | ||
| 10391 | } | ||
| 10558 | 10392 | ||
| 10393 | static int | ||
| 10394 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
| 10395 | struct task_struct *tsk, bool threadgroup) | ||
| 10396 | { | ||
| 10397 | int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | ||
| 10398 | if (retval) | ||
| 10399 | return retval; | ||
| 10400 | if (threadgroup) { | ||
| 10401 | struct task_struct *c; | ||
| 10402 | rcu_read_lock(); | ||
| 10403 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 10404 | retval = cpu_cgroup_can_attach_task(cgrp, c); | ||
| 10405 | if (retval) { | ||
| 10406 | rcu_read_unlock(); | ||
| 10407 | return retval; | ||
| 10408 | } | ||
| 10409 | } | ||
| 10410 | rcu_read_unlock(); | ||
| 10411 | } | ||
| 10559 | return 0; | 10412 | return 0; |
| 10560 | } | 10413 | } |
| 10561 | 10414 | ||
| 10562 | static void | 10415 | static void |
| 10563 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10416 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
| 10564 | struct cgroup *old_cont, struct task_struct *tsk) | 10417 | struct cgroup *old_cont, struct task_struct *tsk, |
| 10418 | bool threadgroup) | ||
| 10565 | { | 10419 | { |
| 10566 | sched_move_task(tsk); | 10420 | sched_move_task(tsk); |
| 10421 | if (threadgroup) { | ||
| 10422 | struct task_struct *c; | ||
| 10423 | rcu_read_lock(); | ||
| 10424 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
| 10425 | sched_move_task(c); | ||
| 10426 | } | ||
| 10427 | rcu_read_unlock(); | ||
| 10428 | } | ||
| 10567 | } | 10429 | } |
| 10568 | 10430 | ||
| 10569 | #ifdef CONFIG_FAIR_GROUP_SCHED | 10431 | #ifdef CONFIG_FAIR_GROUP_SCHED |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index e1d16c9a7680..479ce5682d7c 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
| @@ -48,13 +48,6 @@ static __read_mostly int sched_clock_running; | |||
| 48 | __read_mostly int sched_clock_stable; | 48 | __read_mostly int sched_clock_stable; |
| 49 | 49 | ||
| 50 | struct sched_clock_data { | 50 | struct sched_clock_data { |
| 51 | /* | ||
| 52 | * Raw spinlock - this is a special case: this might be called | ||
| 53 | * from within instrumentation code so we dont want to do any | ||
| 54 | * instrumentation ourselves. | ||
| 55 | */ | ||
| 56 | raw_spinlock_t lock; | ||
| 57 | |||
| 58 | u64 tick_raw; | 51 | u64 tick_raw; |
| 59 | u64 tick_gtod; | 52 | u64 tick_gtod; |
| 60 | u64 clock; | 53 | u64 clock; |
| @@ -80,7 +73,6 @@ void sched_clock_init(void) | |||
| 80 | for_each_possible_cpu(cpu) { | 73 | for_each_possible_cpu(cpu) { |
| 81 | struct sched_clock_data *scd = cpu_sdc(cpu); | 74 | struct sched_clock_data *scd = cpu_sdc(cpu); |
| 82 | 75 | ||
| 83 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | ||
| 84 | scd->tick_raw = 0; | 76 | scd->tick_raw = 0; |
| 85 | scd->tick_gtod = ktime_now; | 77 | scd->tick_gtod = ktime_now; |
| 86 | scd->clock = ktime_now; | 78 | scd->clock = ktime_now; |
| @@ -109,14 +101,19 @@ static inline u64 wrap_max(u64 x, u64 y) | |||
| 109 | * - filter out backward motion | 101 | * - filter out backward motion |
| 110 | * - use the GTOD tick value to create a window to filter crazy TSC values | 102 | * - use the GTOD tick value to create a window to filter crazy TSC values |
| 111 | */ | 103 | */ |
| 112 | static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | 104 | static u64 sched_clock_local(struct sched_clock_data *scd) |
| 113 | { | 105 | { |
| 114 | s64 delta = now - scd->tick_raw; | 106 | u64 now, clock, old_clock, min_clock, max_clock; |
| 115 | u64 clock, min_clock, max_clock; | 107 | s64 delta; |
| 116 | 108 | ||
| 109 | again: | ||
| 110 | now = sched_clock(); | ||
| 111 | delta = now - scd->tick_raw; | ||
| 117 | if (unlikely(delta < 0)) | 112 | if (unlikely(delta < 0)) |
| 118 | delta = 0; | 113 | delta = 0; |
| 119 | 114 | ||
| 115 | old_clock = scd->clock; | ||
| 116 | |||
| 120 | /* | 117 | /* |
| 121 | * scd->clock = clamp(scd->tick_gtod + delta, | 118 | * scd->clock = clamp(scd->tick_gtod + delta, |
| 122 | * max(scd->tick_gtod, scd->clock), | 119 | * max(scd->tick_gtod, scd->clock), |
| @@ -124,84 +121,73 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
| 124 | */ | 121 | */ |
| 125 | 122 | ||
| 126 | clock = scd->tick_gtod + delta; | 123 | clock = scd->tick_gtod + delta; |
| 127 | min_clock = wrap_max(scd->tick_gtod, scd->clock); | 124 | min_clock = wrap_max(scd->tick_gtod, old_clock); |
| 128 | max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); | 125 | max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); |
| 129 | 126 | ||
| 130 | clock = wrap_max(clock, min_clock); | 127 | clock = wrap_max(clock, min_clock); |
| 131 | clock = wrap_min(clock, max_clock); | 128 | clock = wrap_min(clock, max_clock); |
| 132 | 129 | ||
| 133 | scd->clock = clock; | 130 | if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) |
| 131 | goto again; | ||
| 134 | 132 | ||
| 135 | return scd->clock; | 133 | return clock; |
| 136 | } | 134 | } |
| 137 | 135 | ||
| 138 | static void lock_double_clock(struct sched_clock_data *data1, | 136 | static u64 sched_clock_remote(struct sched_clock_data *scd) |
| 139 | struct sched_clock_data *data2) | ||
| 140 | { | 137 | { |
| 141 | if (data1 < data2) { | 138 | struct sched_clock_data *my_scd = this_scd(); |
| 142 | __raw_spin_lock(&data1->lock); | 139 | u64 this_clock, remote_clock; |
| 143 | __raw_spin_lock(&data2->lock); | 140 | u64 *ptr, old_val, val; |
| 141 | |||
| 142 | sched_clock_local(my_scd); | ||
| 143 | again: | ||
| 144 | this_clock = my_scd->clock; | ||
| 145 | remote_clock = scd->clock; | ||
| 146 | |||
| 147 | /* | ||
| 148 | * Use the opportunity that we have both locks | ||
| 149 | * taken to couple the two clocks: we take the | ||
| 150 | * larger time as the latest time for both | ||
| 151 | * runqueues. (this creates monotonic movement) | ||
| 152 | */ | ||
| 153 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
| 154 | ptr = &scd->clock; | ||
| 155 | old_val = remote_clock; | ||
| 156 | val = this_clock; | ||
| 144 | } else { | 157 | } else { |
| 145 | __raw_spin_lock(&data2->lock); | 158 | /* |
| 146 | __raw_spin_lock(&data1->lock); | 159 | * Should be rare, but possible: |
| 160 | */ | ||
| 161 | ptr = &my_scd->clock; | ||
| 162 | old_val = this_clock; | ||
| 163 | val = remote_clock; | ||
| 147 | } | 164 | } |
| 165 | |||
| 166 | if (cmpxchg64(ptr, old_val, val) != old_val) | ||
| 167 | goto again; | ||
| 168 | |||
| 169 | return val; | ||
| 148 | } | 170 | } |
| 149 | 171 | ||
| 150 | u64 sched_clock_cpu(int cpu) | 172 | u64 sched_clock_cpu(int cpu) |
| 151 | { | 173 | { |
| 152 | u64 now, clock, this_clock, remote_clock; | ||
| 153 | struct sched_clock_data *scd; | 174 | struct sched_clock_data *scd; |
| 175 | u64 clock; | ||
| 176 | |||
| 177 | WARN_ON_ONCE(!irqs_disabled()); | ||
| 154 | 178 | ||
| 155 | if (sched_clock_stable) | 179 | if (sched_clock_stable) |
| 156 | return sched_clock(); | 180 | return sched_clock(); |
| 157 | 181 | ||
| 158 | scd = cpu_sdc(cpu); | ||
| 159 | |||
| 160 | /* | ||
| 161 | * Normally this is not called in NMI context - but if it is, | ||
| 162 | * trying to do any locking here is totally lethal. | ||
| 163 | */ | ||
| 164 | if (unlikely(in_nmi())) | ||
| 165 | return scd->clock; | ||
| 166 | |||
| 167 | if (unlikely(!sched_clock_running)) | 182 | if (unlikely(!sched_clock_running)) |
| 168 | return 0ull; | 183 | return 0ull; |
| 169 | 184 | ||
| 170 | WARN_ON_ONCE(!irqs_disabled()); | 185 | scd = cpu_sdc(cpu); |
| 171 | now = sched_clock(); | ||
| 172 | |||
| 173 | if (cpu != raw_smp_processor_id()) { | ||
| 174 | struct sched_clock_data *my_scd = this_scd(); | ||
| 175 | |||
| 176 | lock_double_clock(scd, my_scd); | ||
| 177 | |||
| 178 | this_clock = __update_sched_clock(my_scd, now); | ||
| 179 | remote_clock = scd->clock; | ||
| 180 | |||
| 181 | /* | ||
| 182 | * Use the opportunity that we have both locks | ||
| 183 | * taken to couple the two clocks: we take the | ||
| 184 | * larger time as the latest time for both | ||
| 185 | * runqueues. (this creates monotonic movement) | ||
| 186 | */ | ||
| 187 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
| 188 | clock = this_clock; | ||
| 189 | scd->clock = clock; | ||
| 190 | } else { | ||
| 191 | /* | ||
| 192 | * Should be rare, but possible: | ||
| 193 | */ | ||
| 194 | clock = remote_clock; | ||
| 195 | my_scd->clock = remote_clock; | ||
| 196 | } | ||
| 197 | |||
| 198 | __raw_spin_unlock(&my_scd->lock); | ||
| 199 | } else { | ||
| 200 | __raw_spin_lock(&scd->lock); | ||
| 201 | clock = __update_sched_clock(scd, now); | ||
| 202 | } | ||
| 203 | 186 | ||
| 204 | __raw_spin_unlock(&scd->lock); | 187 | if (cpu != smp_processor_id()) |
| 188 | clock = sched_clock_remote(scd); | ||
| 189 | else | ||
| 190 | clock = sched_clock_local(scd); | ||
| 205 | 191 | ||
| 206 | return clock; | 192 | return clock; |
| 207 | } | 193 | } |
| @@ -223,11 +209,9 @@ void sched_clock_tick(void) | |||
| 223 | now_gtod = ktime_to_ns(ktime_get()); | 209 | now_gtod = ktime_to_ns(ktime_get()); |
| 224 | now = sched_clock(); | 210 | now = sched_clock(); |
| 225 | 211 | ||
| 226 | __raw_spin_lock(&scd->lock); | ||
| 227 | scd->tick_raw = now; | 212 | scd->tick_raw = now; |
| 228 | scd->tick_gtod = now_gtod; | 213 | scd->tick_gtod = now_gtod; |
| 229 | __update_sched_clock(scd, now); | 214 | sched_clock_local(scd); |
| 230 | __raw_spin_unlock(&scd->lock); | ||
| 231 | } | 215 | } |
| 232 | 216 | ||
| 233 | /* | 217 | /* |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 5ddbd0891267..efb84409bc43 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
| @@ -395,6 +395,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
| 395 | PN(se.sum_exec_runtime); | 395 | PN(se.sum_exec_runtime); |
| 396 | PN(se.avg_overlap); | 396 | PN(se.avg_overlap); |
| 397 | PN(se.avg_wakeup); | 397 | PN(se.avg_wakeup); |
| 398 | PN(se.avg_running); | ||
| 398 | 399 | ||
| 399 | nr_switches = p->nvcsw + p->nivcsw; | 400 | nr_switches = p->nvcsw + p->nivcsw; |
| 400 | 401 | ||
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index aa7f84121016..4e777b47eeda 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
| @@ -384,10 +384,10 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | |||
| 384 | 384 | ||
| 385 | #ifdef CONFIG_SCHED_DEBUG | 385 | #ifdef CONFIG_SCHED_DEBUG |
| 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, | 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, |
| 387 | struct file *filp, void __user *buffer, size_t *lenp, | 387 | void __user *buffer, size_t *lenp, |
| 388 | loff_t *ppos) | 388 | loff_t *ppos) |
| 389 | { | 389 | { |
| 390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 390 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 391 | 391 | ||
| 392 | if (ret || !write) | 392 | if (ret || !write) |
| 393 | return ret; | 393 | return ret; |
| @@ -513,6 +513,7 @@ static void update_curr(struct cfs_rq *cfs_rq) | |||
| 513 | if (entity_is_task(curr)) { | 513 | if (entity_is_task(curr)) { |
| 514 | struct task_struct *curtask = task_of(curr); | 514 | struct task_struct *curtask = task_of(curr); |
| 515 | 515 | ||
| 516 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
| 516 | cpuacct_charge(curtask, delta_exec); | 517 | cpuacct_charge(curtask, delta_exec); |
| 517 | account_group_exec_runtime(curtask, delta_exec); | 518 | account_group_exec_runtime(curtask, delta_exec); |
| 518 | } | 519 | } |
| @@ -709,24 +710,28 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
| 709 | if (initial && sched_feat(START_DEBIT)) | 710 | if (initial && sched_feat(START_DEBIT)) |
| 710 | vruntime += sched_vslice(cfs_rq, se); | 711 | vruntime += sched_vslice(cfs_rq, se); |
| 711 | 712 | ||
| 712 | if (!initial) { | 713 | /* sleeps up to a single latency don't count. */ |
| 713 | /* sleeps upto a single latency don't count. */ | 714 | if (!initial && sched_feat(FAIR_SLEEPERS)) { |
| 714 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 715 | unsigned long thresh = sysctl_sched_latency; |
| 715 | unsigned long thresh = sysctl_sched_latency; | ||
| 716 | 716 | ||
| 717 | /* | 717 | /* |
| 718 | * Convert the sleeper threshold into virtual time. | 718 | * Convert the sleeper threshold into virtual time. |
| 719 | * SCHED_IDLE is a special sub-class. We care about | 719 | * SCHED_IDLE is a special sub-class. We care about |
| 720 | * fairness only relative to other SCHED_IDLE tasks, | 720 | * fairness only relative to other SCHED_IDLE tasks, |
| 721 | * all of which have the same weight. | 721 | * all of which have the same weight. |
| 722 | */ | 722 | */ |
| 723 | if (sched_feat(NORMALIZED_SLEEPER) && | 723 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || |
| 724 | (!entity_is_task(se) || | 724 | task_of(se)->policy != SCHED_IDLE)) |
| 725 | task_of(se)->policy != SCHED_IDLE)) | 725 | thresh = calc_delta_fair(thresh, se); |
| 726 | thresh = calc_delta_fair(thresh, se); | ||
| 727 | 726 | ||
| 728 | vruntime -= thresh; | 727 | /* |
| 729 | } | 728 | * Halve their sleep time's effect, to allow |
| 729 | * for a gentler effect of sleepers: | ||
| 730 | */ | ||
| 731 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
| 732 | thresh >>= 1; | ||
| 733 | |||
| 734 | vruntime -= thresh; | ||
| 730 | } | 735 | } |
| 731 | 736 | ||
| 732 | /* ensure we never gain time by being placed backwards. */ | 737 | /* ensure we never gain time by being placed backwards. */ |
| @@ -757,10 +762,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | |||
| 757 | 762 | ||
| 758 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 763 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 759 | { | 764 | { |
| 760 | if (cfs_rq->last == se) | 765 | if (!se || cfs_rq->last == se) |
| 761 | cfs_rq->last = NULL; | 766 | cfs_rq->last = NULL; |
| 762 | 767 | ||
| 763 | if (cfs_rq->next == se) | 768 | if (!se || cfs_rq->next == se) |
| 764 | cfs_rq->next = NULL; | 769 | cfs_rq->next = NULL; |
| 765 | } | 770 | } |
| 766 | 771 | ||
| @@ -1062,83 +1067,6 @@ static void yield_task_fair(struct rq *rq) | |||
| 1062 | se->vruntime = rightmost->vruntime + 1; | 1067 | se->vruntime = rightmost->vruntime + 1; |
| 1063 | } | 1068 | } |
| 1064 | 1069 | ||
| 1065 | /* | ||
| 1066 | * wake_idle() will wake a task on an idle cpu if task->cpu is | ||
| 1067 | * not idle and an idle cpu is available. The span of cpus to | ||
| 1068 | * search starts with cpus closest then further out as needed, | ||
| 1069 | * so we always favor a closer, idle cpu. | ||
| 1070 | * Domains may include CPUs that are not usable for migration, | ||
| 1071 | * hence we need to mask them out (rq->rd->online) | ||
| 1072 | * | ||
| 1073 | * Returns the CPU we should wake onto. | ||
| 1074 | */ | ||
| 1075 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | ||
| 1076 | |||
| 1077 | #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online) | ||
| 1078 | |||
| 1079 | static int wake_idle(int cpu, struct task_struct *p) | ||
| 1080 | { | ||
| 1081 | struct sched_domain *sd; | ||
| 1082 | int i; | ||
| 1083 | unsigned int chosen_wakeup_cpu; | ||
| 1084 | int this_cpu; | ||
| 1085 | struct rq *task_rq = task_rq(p); | ||
| 1086 | |||
| 1087 | /* | ||
| 1088 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | ||
| 1089 | * are idle and this is not a kernel thread and this task's affinity | ||
| 1090 | * allows it to be moved to preferred cpu, then just move! | ||
| 1091 | */ | ||
| 1092 | |||
| 1093 | this_cpu = smp_processor_id(); | ||
| 1094 | chosen_wakeup_cpu = | ||
| 1095 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | ||
| 1096 | |||
| 1097 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | ||
| 1098 | idle_cpu(cpu) && idle_cpu(this_cpu) && | ||
| 1099 | p->mm && !(p->flags & PF_KTHREAD) && | ||
| 1100 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | ||
| 1101 | return chosen_wakeup_cpu; | ||
| 1102 | |||
| 1103 | /* | ||
| 1104 | * If it is idle, then it is the best cpu to run this task. | ||
| 1105 | * | ||
| 1106 | * This cpu is also the best, if it has more than one task already. | ||
| 1107 | * Siblings must be also busy(in most cases) as they didn't already | ||
| 1108 | * pickup the extra load from this cpu and hence we need not check | ||
| 1109 | * sibling runqueue info. This will avoid the checks and cache miss | ||
| 1110 | * penalities associated with that. | ||
| 1111 | */ | ||
| 1112 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | ||
| 1113 | return cpu; | ||
| 1114 | |||
| 1115 | for_each_domain(cpu, sd) { | ||
| 1116 | if ((sd->flags & SD_WAKE_IDLE) | ||
| 1117 | || ((sd->flags & SD_WAKE_IDLE_FAR) | ||
| 1118 | && !task_hot(p, task_rq->clock, sd))) { | ||
| 1119 | for_each_cpu_and(i, sched_domain_span(sd), | ||
| 1120 | &p->cpus_allowed) { | ||
| 1121 | if (cpu_rd_active(i, task_rq) && idle_cpu(i)) { | ||
| 1122 | if (i != task_cpu(p)) { | ||
| 1123 | schedstat_inc(p, | ||
| 1124 | se.nr_wakeups_idle); | ||
| 1125 | } | ||
| 1126 | return i; | ||
| 1127 | } | ||
| 1128 | } | ||
| 1129 | } else { | ||
| 1130 | break; | ||
| 1131 | } | ||
| 1132 | } | ||
| 1133 | return cpu; | ||
| 1134 | } | ||
| 1135 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | ||
| 1136 | static inline int wake_idle(int cpu, struct task_struct *p) | ||
| 1137 | { | ||
| 1138 | return cpu; | ||
| 1139 | } | ||
| 1140 | #endif | ||
| 1141 | |||
| 1142 | #ifdef CONFIG_SMP | 1070 | #ifdef CONFIG_SMP |
| 1143 | 1071 | ||
| 1144 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1072 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| @@ -1225,25 +1153,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
| 1225 | 1153 | ||
| 1226 | #endif | 1154 | #endif |
| 1227 | 1155 | ||
| 1228 | static int | 1156 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
| 1229 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | ||
| 1230 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | ||
| 1231 | int idx, unsigned long load, unsigned long this_load, | ||
| 1232 | unsigned int imbalance) | ||
| 1233 | { | 1157 | { |
| 1234 | struct task_struct *curr = this_rq->curr; | 1158 | struct task_struct *curr = current; |
| 1235 | struct task_group *tg; | 1159 | unsigned long this_load, load; |
| 1236 | unsigned long tl = this_load; | 1160 | int idx, this_cpu, prev_cpu; |
| 1237 | unsigned long tl_per_task; | 1161 | unsigned long tl_per_task; |
| 1162 | unsigned int imbalance; | ||
| 1163 | struct task_group *tg; | ||
| 1238 | unsigned long weight; | 1164 | unsigned long weight; |
| 1239 | int balanced; | 1165 | int balanced; |
| 1240 | 1166 | ||
| 1241 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 1167 | idx = sd->wake_idx; |
| 1242 | return 0; | 1168 | this_cpu = smp_processor_id(); |
| 1169 | prev_cpu = task_cpu(p); | ||
| 1170 | load = source_load(prev_cpu, idx); | ||
| 1171 | this_load = target_load(this_cpu, idx); | ||
| 1243 | 1172 | ||
| 1244 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 1173 | if (sync) { |
| 1245 | p->se.avg_overlap > sysctl_sched_migration_cost)) | 1174 | if (sched_feat(SYNC_LESS) && |
| 1246 | sync = 0; | 1175 | (curr->se.avg_overlap > sysctl_sched_migration_cost || |
| 1176 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
| 1177 | sync = 0; | ||
| 1178 | } else { | ||
| 1179 | if (sched_feat(SYNC_MORE) && | ||
| 1180 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
| 1181 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
| 1182 | sync = 1; | ||
| 1183 | } | ||
| 1247 | 1184 | ||
| 1248 | /* | 1185 | /* |
| 1249 | * If sync wakeup then subtract the (maximum possible) | 1186 | * If sync wakeup then subtract the (maximum possible) |
| @@ -1254,24 +1191,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1254 | tg = task_group(current); | 1191 | tg = task_group(current); |
| 1255 | weight = current->se.load.weight; | 1192 | weight = current->se.load.weight; |
| 1256 | 1193 | ||
| 1257 | tl += effective_load(tg, this_cpu, -weight, -weight); | 1194 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
| 1258 | load += effective_load(tg, prev_cpu, 0, -weight); | 1195 | load += effective_load(tg, prev_cpu, 0, -weight); |
| 1259 | } | 1196 | } |
| 1260 | 1197 | ||
| 1261 | tg = task_group(p); | 1198 | tg = task_group(p); |
| 1262 | weight = p->se.load.weight; | 1199 | weight = p->se.load.weight; |
| 1263 | 1200 | ||
| 1201 | imbalance = 100 + (sd->imbalance_pct - 100) / 2; | ||
| 1202 | |||
| 1264 | /* | 1203 | /* |
| 1265 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | 1204 | * In low-load situations, where prev_cpu is idle and this_cpu is idle |
| 1266 | * due to the sync cause above having dropped tl to 0, we'll always have | 1205 | * due to the sync cause above having dropped this_load to 0, we'll |
| 1267 | * an imbalance, but there's really nothing you can do about that, so | 1206 | * always have an imbalance, but there's really nothing you can do |
| 1268 | * that's good too. | 1207 | * about that, so that's good too. |
| 1269 | * | 1208 | * |
| 1270 | * Otherwise check if either cpus are near enough in load to allow this | 1209 | * Otherwise check if either cpus are near enough in load to allow this |
| 1271 | * task to be woken on this_cpu. | 1210 | * task to be woken on this_cpu. |
| 1272 | */ | 1211 | */ |
| 1273 | balanced = !tl || | 1212 | balanced = !this_load || |
| 1274 | 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 1213 | 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <= |
| 1275 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 1214 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
| 1276 | 1215 | ||
| 1277 | /* | 1216 | /* |
| @@ -1285,14 +1224,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1285 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1224 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
| 1286 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1225 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
| 1287 | 1226 | ||
| 1288 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 1227 | if (balanced || |
| 1289 | tl_per_task)) { | 1228 | (this_load <= load && |
| 1229 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
| 1290 | /* | 1230 | /* |
| 1291 | * This domain has SD_WAKE_AFFINE and | 1231 | * This domain has SD_WAKE_AFFINE and |
| 1292 | * p is cache cold in this domain, and | 1232 | * p is cache cold in this domain, and |
| 1293 | * there is no bad imbalance. | 1233 | * there is no bad imbalance. |
| 1294 | */ | 1234 | */ |
| 1295 | schedstat_inc(this_sd, ttwu_move_affine); | 1235 | schedstat_inc(sd, ttwu_move_affine); |
| 1296 | schedstat_inc(p, se.nr_wakeups_affine); | 1236 | schedstat_inc(p, se.nr_wakeups_affine); |
| 1297 | 1237 | ||
| 1298 | return 1; | 1238 | return 1; |
| @@ -1300,65 +1240,216 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1300 | return 0; | 1240 | return 0; |
| 1301 | } | 1241 | } |
| 1302 | 1242 | ||
| 1303 | static int select_task_rq_fair(struct task_struct *p, int sync) | 1243 | /* |
| 1244 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 1245 | * domain. | ||
| 1246 | */ | ||
| 1247 | static struct sched_group * | ||
| 1248 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
| 1249 | int this_cpu, int load_idx) | ||
| 1304 | { | 1250 | { |
| 1305 | struct sched_domain *sd, *this_sd = NULL; | 1251 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
| 1306 | int prev_cpu, this_cpu, new_cpu; | 1252 | unsigned long min_load = ULONG_MAX, this_load = 0; |
| 1307 | unsigned long load, this_load; | 1253 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
| 1308 | struct rq *this_rq; | ||
| 1309 | unsigned int imbalance; | ||
| 1310 | int idx; | ||
| 1311 | 1254 | ||
| 1312 | prev_cpu = task_cpu(p); | 1255 | do { |
| 1313 | this_cpu = smp_processor_id(); | 1256 | unsigned long load, avg_load; |
| 1314 | this_rq = cpu_rq(this_cpu); | 1257 | int local_group; |
| 1315 | new_cpu = prev_cpu; | 1258 | int i; |
| 1316 | 1259 | ||
| 1317 | /* | 1260 | /* Skip over this group if it has no CPUs allowed */ |
| 1318 | * 'this_sd' is the first domain that both | 1261 | if (!cpumask_intersects(sched_group_cpus(group), |
| 1319 | * this_cpu and prev_cpu are present in: | 1262 | &p->cpus_allowed)) |
| 1320 | */ | 1263 | continue; |
| 1321 | for_each_domain(this_cpu, sd) { | 1264 | |
| 1322 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 1265 | local_group = cpumask_test_cpu(this_cpu, |
| 1323 | this_sd = sd; | 1266 | sched_group_cpus(group)); |
| 1324 | break; | 1267 | |
| 1268 | /* Tally up the load of all CPUs in the group */ | ||
| 1269 | avg_load = 0; | ||
| 1270 | |||
| 1271 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 1272 | /* Bias balancing toward cpus of our domain */ | ||
| 1273 | if (local_group) | ||
| 1274 | load = source_load(i, load_idx); | ||
| 1275 | else | ||
| 1276 | load = target_load(i, load_idx); | ||
| 1277 | |||
| 1278 | avg_load += load; | ||
| 1279 | } | ||
| 1280 | |||
| 1281 | /* Adjust by relative CPU power of the group */ | ||
| 1282 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 1283 | |||
| 1284 | if (local_group) { | ||
| 1285 | this_load = avg_load; | ||
| 1286 | this = group; | ||
| 1287 | } else if (avg_load < min_load) { | ||
| 1288 | min_load = avg_load; | ||
| 1289 | idlest = group; | ||
| 1290 | } | ||
| 1291 | } while (group = group->next, group != sd->groups); | ||
| 1292 | |||
| 1293 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 1294 | return NULL; | ||
| 1295 | return idlest; | ||
| 1296 | } | ||
| 1297 | |||
| 1298 | /* | ||
| 1299 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
| 1300 | */ | ||
| 1301 | static int | ||
| 1302 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
| 1303 | { | ||
| 1304 | unsigned long load, min_load = ULONG_MAX; | ||
| 1305 | int idlest = -1; | ||
| 1306 | int i; | ||
| 1307 | |||
| 1308 | /* Traverse only the allowed CPUs */ | ||
| 1309 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
| 1310 | load = weighted_cpuload(i); | ||
| 1311 | |||
| 1312 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 1313 | min_load = load; | ||
| 1314 | idlest = i; | ||
| 1325 | } | 1315 | } |
| 1326 | } | 1316 | } |
| 1327 | 1317 | ||
| 1328 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 1318 | return idlest; |
| 1329 | goto out; | 1319 | } |
| 1330 | 1320 | ||
| 1331 | /* | 1321 | /* |
| 1332 | * Check for affine wakeup and passive balancing possibilities. | 1322 | * sched_balance_self: balance the current task (running on cpu) in domains |
| 1333 | */ | 1323 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
| 1334 | if (!this_sd) | 1324 | * SD_BALANCE_EXEC. |
| 1325 | * | ||
| 1326 | * Balance, ie. select the least loaded group. | ||
| 1327 | * | ||
| 1328 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 1329 | * | ||
| 1330 | * preempt must be disabled. | ||
| 1331 | */ | ||
| 1332 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
| 1333 | { | ||
| 1334 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
| 1335 | int cpu = smp_processor_id(); | ||
| 1336 | int prev_cpu = task_cpu(p); | ||
| 1337 | int new_cpu = cpu; | ||
| 1338 | int want_affine = 0; | ||
| 1339 | int want_sd = 1; | ||
| 1340 | int sync = wake_flags & WF_SYNC; | ||
| 1341 | |||
| 1342 | if (sd_flag & SD_BALANCE_WAKE) { | ||
| 1343 | if (sched_feat(AFFINE_WAKEUPS) && | ||
| 1344 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
| 1345 | want_affine = 1; | ||
| 1346 | new_cpu = prev_cpu; | ||
| 1347 | } | ||
| 1348 | |||
| 1349 | rcu_read_lock(); | ||
| 1350 | for_each_domain(cpu, tmp) { | ||
| 1351 | /* | ||
| 1352 | * If power savings logic is enabled for a domain, see if we | ||
| 1353 | * are not overloaded, if so, don't balance wider. | ||
| 1354 | */ | ||
| 1355 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
| 1356 | unsigned long power = 0; | ||
| 1357 | unsigned long nr_running = 0; | ||
| 1358 | unsigned long capacity; | ||
| 1359 | int i; | ||
| 1360 | |||
| 1361 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
| 1362 | power += power_of(i); | ||
| 1363 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
| 1364 | } | ||
| 1365 | |||
| 1366 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
| 1367 | |||
| 1368 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
| 1369 | nr_running /= 2; | ||
| 1370 | |||
| 1371 | if (nr_running < capacity) | ||
| 1372 | want_sd = 0; | ||
| 1373 | } | ||
| 1374 | |||
| 1375 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
| 1376 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
| 1377 | |||
| 1378 | affine_sd = tmp; | ||
| 1379 | want_affine = 0; | ||
| 1380 | } | ||
| 1381 | |||
| 1382 | if (!want_sd && !want_affine) | ||
| 1383 | break; | ||
| 1384 | |||
| 1385 | if (!(tmp->flags & sd_flag)) | ||
| 1386 | continue; | ||
| 1387 | |||
| 1388 | if (want_sd) | ||
| 1389 | sd = tmp; | ||
| 1390 | } | ||
| 1391 | |||
| 1392 | if (sched_feat(LB_SHARES_UPDATE)) { | ||
| 1393 | /* | ||
| 1394 | * Pick the largest domain to update shares over | ||
| 1395 | */ | ||
| 1396 | tmp = sd; | ||
| 1397 | if (affine_sd && (!tmp || | ||
| 1398 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
| 1399 | cpumask_weight(sched_domain_span(sd)))) | ||
| 1400 | tmp = affine_sd; | ||
| 1401 | |||
| 1402 | if (tmp) | ||
| 1403 | update_shares(tmp); | ||
| 1404 | } | ||
| 1405 | |||
| 1406 | if (affine_sd && wake_affine(affine_sd, p, sync)) { | ||
| 1407 | new_cpu = cpu; | ||
| 1335 | goto out; | 1408 | goto out; |
| 1409 | } | ||
| 1336 | 1410 | ||
| 1337 | idx = this_sd->wake_idx; | 1411 | while (sd) { |
| 1412 | int load_idx = sd->forkexec_idx; | ||
| 1413 | struct sched_group *group; | ||
| 1414 | int weight; | ||
| 1338 | 1415 | ||
| 1339 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 1416 | if (!(sd->flags & sd_flag)) { |
| 1417 | sd = sd->child; | ||
| 1418 | continue; | ||
| 1419 | } | ||
| 1340 | 1420 | ||
| 1341 | load = source_load(prev_cpu, idx); | 1421 | if (sd_flag & SD_BALANCE_WAKE) |
| 1342 | this_load = target_load(this_cpu, idx); | 1422 | load_idx = sd->wake_idx; |
| 1343 | 1423 | ||
| 1344 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 1424 | group = find_idlest_group(sd, p, cpu, load_idx); |
| 1345 | load, this_load, imbalance)) | 1425 | if (!group) { |
| 1346 | return this_cpu; | 1426 | sd = sd->child; |
| 1427 | continue; | ||
| 1428 | } | ||
| 1347 | 1429 | ||
| 1348 | /* | 1430 | new_cpu = find_idlest_cpu(group, p, cpu); |
| 1349 | * Start passive balancing when half the imbalance_pct | 1431 | if (new_cpu == -1 || new_cpu == cpu) { |
| 1350 | * limit is reached. | 1432 | /* Now try balancing at a lower domain level of cpu */ |
| 1351 | */ | 1433 | sd = sd->child; |
| 1352 | if (this_sd->flags & SD_WAKE_BALANCE) { | 1434 | continue; |
| 1353 | if (imbalance*this_load <= 100*load) { | 1435 | } |
| 1354 | schedstat_inc(this_sd, ttwu_move_balance); | 1436 | |
| 1355 | schedstat_inc(p, se.nr_wakeups_passive); | 1437 | /* Now try balancing at a lower domain level of new_cpu */ |
| 1356 | return this_cpu; | 1438 | cpu = new_cpu; |
| 1439 | weight = cpumask_weight(sched_domain_span(sd)); | ||
| 1440 | sd = NULL; | ||
| 1441 | for_each_domain(cpu, tmp) { | ||
| 1442 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
| 1443 | break; | ||
| 1444 | if (tmp->flags & sd_flag) | ||
| 1445 | sd = tmp; | ||
| 1357 | } | 1446 | } |
| 1447 | /* while loop will break here if sd == NULL */ | ||
| 1358 | } | 1448 | } |
| 1359 | 1449 | ||
| 1360 | out: | 1450 | out: |
| 1361 | return wake_idle(new_cpu, p); | 1451 | rcu_read_unlock(); |
| 1452 | return new_cpu; | ||
| 1362 | } | 1453 | } |
| 1363 | #endif /* CONFIG_SMP */ | 1454 | #endif /* CONFIG_SMP */ |
| 1364 | 1455 | ||
| @@ -1471,11 +1562,12 @@ static void set_next_buddy(struct sched_entity *se) | |||
| 1471 | /* | 1562 | /* |
| 1472 | * Preempt the current task with a newly woken task if needed: | 1563 | * Preempt the current task with a newly woken task if needed: |
| 1473 | */ | 1564 | */ |
| 1474 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 1565 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
| 1475 | { | 1566 | { |
| 1476 | struct task_struct *curr = rq->curr; | 1567 | struct task_struct *curr = rq->curr; |
| 1477 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1568 | struct sched_entity *se = &curr->se, *pse = &p->se; |
| 1478 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1569 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
| 1570 | int sync = wake_flags & WF_SYNC; | ||
| 1479 | 1571 | ||
| 1480 | update_curr(cfs_rq); | 1572 | update_curr(cfs_rq); |
| 1481 | 1573 | ||
| @@ -1501,7 +1593,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
| 1501 | */ | 1593 | */ |
| 1502 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | 1594 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) |
| 1503 | set_last_buddy(se); | 1595 | set_last_buddy(se); |
| 1504 | set_next_buddy(pse); | 1596 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) |
| 1597 | set_next_buddy(pse); | ||
| 1505 | 1598 | ||
| 1506 | /* | 1599 | /* |
| 1507 | * We can come here with TIF_NEED_RESCHED already set from new task | 1600 | * We can come here with TIF_NEED_RESCHED already set from new task |
| @@ -1523,16 +1616,25 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
| 1523 | return; | 1616 | return; |
| 1524 | } | 1617 | } |
| 1525 | 1618 | ||
| 1526 | if (!sched_feat(WAKEUP_PREEMPT)) | 1619 | if ((sched_feat(WAKEUP_SYNC) && sync) || |
| 1527 | return; | 1620 | (sched_feat(WAKEUP_OVERLAP) && |
| 1528 | 1621 | (se->avg_overlap < sysctl_sched_migration_cost && | |
| 1529 | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 1622 | pse->avg_overlap < sysctl_sched_migration_cost))) { |
| 1530 | (se->avg_overlap < sysctl_sched_migration_cost && | ||
| 1531 | pse->avg_overlap < sysctl_sched_migration_cost))) { | ||
| 1532 | resched_task(curr); | 1623 | resched_task(curr); |
| 1533 | return; | 1624 | return; |
| 1534 | } | 1625 | } |
| 1535 | 1626 | ||
| 1627 | if (sched_feat(WAKEUP_RUNNING)) { | ||
| 1628 | if (pse->avg_running < se->avg_running) { | ||
| 1629 | set_next_buddy(pse); | ||
| 1630 | resched_task(curr); | ||
| 1631 | return; | ||
| 1632 | } | ||
| 1633 | } | ||
| 1634 | |||
| 1635 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
| 1636 | return; | ||
| 1637 | |||
| 1536 | find_matching_se(&se, &pse); | 1638 | find_matching_se(&se, &pse); |
| 1537 | 1639 | ||
| 1538 | BUG_ON(!pse); | 1640 | BUG_ON(!pse); |
| @@ -1555,8 +1657,13 @@ static struct task_struct *pick_next_task_fair(struct rq *rq) | |||
| 1555 | /* | 1657 | /* |
| 1556 | * If se was a buddy, clear it so that it will have to earn | 1658 | * If se was a buddy, clear it so that it will have to earn |
| 1557 | * the favour again. | 1659 | * the favour again. |
| 1660 | * | ||
| 1661 | * If se was not a buddy, clear the buddies because neither | ||
| 1662 | * was elegible to run, let them earn it again. | ||
| 1663 | * | ||
| 1664 | * IOW. unconditionally clear buddies. | ||
| 1558 | */ | 1665 | */ |
| 1559 | __clear_buddies(cfs_rq, se); | 1666 | __clear_buddies(cfs_rq, NULL); |
| 1560 | set_next_entity(cfs_rq, se); | 1667 | set_next_entity(cfs_rq, se); |
| 1561 | cfs_rq = group_cfs_rq(se); | 1668 | cfs_rq = group_cfs_rq(se); |
| 1562 | } while (cfs_rq); | 1669 | } while (cfs_rq); |
| @@ -1832,6 +1939,25 @@ static void moved_group_fair(struct task_struct *p) | |||
| 1832 | } | 1939 | } |
| 1833 | #endif | 1940 | #endif |
| 1834 | 1941 | ||
| 1942 | unsigned int get_rr_interval_fair(struct task_struct *task) | ||
| 1943 | { | ||
| 1944 | struct sched_entity *se = &task->se; | ||
| 1945 | unsigned long flags; | ||
| 1946 | struct rq *rq; | ||
| 1947 | unsigned int rr_interval = 0; | ||
| 1948 | |||
| 1949 | /* | ||
| 1950 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
| 1951 | * idle runqueue: | ||
| 1952 | */ | ||
| 1953 | rq = task_rq_lock(task, &flags); | ||
| 1954 | if (rq->cfs.load.weight) | ||
| 1955 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
| 1956 | task_rq_unlock(rq, &flags); | ||
| 1957 | |||
| 1958 | return rr_interval; | ||
| 1959 | } | ||
| 1960 | |||
| 1835 | /* | 1961 | /* |
| 1836 | * All the scheduling class methods: | 1962 | * All the scheduling class methods: |
| 1837 | */ | 1963 | */ |
| @@ -1860,6 +1986,8 @@ static const struct sched_class fair_sched_class = { | |||
| 1860 | .prio_changed = prio_changed_fair, | 1986 | .prio_changed = prio_changed_fair, |
| 1861 | .switched_to = switched_to_fair, | 1987 | .switched_to = switched_to_fair, |
| 1862 | 1988 | ||
| 1989 | .get_rr_interval = get_rr_interval_fair, | ||
| 1990 | |||
| 1863 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1991 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1864 | .moved_group = moved_group_fair, | 1992 | .moved_group = moved_group_fair, |
| 1865 | #endif | 1993 | #endif |
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index e2dc63a5815d..0d94083582c7 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
| @@ -1,17 +1,123 @@ | |||
| 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 0) | 1 | /* |
| 2 | * Disregards a certain amount of sleep time (sched_latency_ns) and | ||
| 3 | * considers the task to be running during that period. This gives it | ||
| 4 | * a service deficit on wakeup, allowing it to run sooner. | ||
| 5 | */ | ||
| 6 | SCHED_FEAT(FAIR_SLEEPERS, 1) | ||
| 7 | |||
| 8 | /* | ||
| 9 | * Only give sleepers 50% of their service deficit. This allows | ||
| 10 | * them to run sooner, but does not allow tons of sleepers to | ||
| 11 | * rip the spread apart. | ||
| 12 | */ | ||
| 13 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | ||
| 14 | |||
| 15 | /* | ||
| 16 | * By not normalizing the sleep time, heavy tasks get an effective | ||
| 17 | * longer period, and lighter task an effective shorter period they | ||
| 18 | * are considered running. | ||
| 19 | */ | ||
| 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) | 20 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
| 3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | 21 | |
| 4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 22 | /* |
| 23 | * Place new tasks ahead so that they do not starve already running | ||
| 24 | * tasks | ||
| 25 | */ | ||
| 5 | SCHED_FEAT(START_DEBIT, 1) | 26 | SCHED_FEAT(START_DEBIT, 1) |
| 27 | |||
| 28 | /* | ||
| 29 | * Should wakeups try to preempt running tasks. | ||
| 30 | */ | ||
| 31 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Compute wakeup_gran based on task behaviour, clipped to | ||
| 35 | * [0, sched_wakeup_gran_ns] | ||
| 36 | */ | ||
| 37 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
| 38 | |||
| 39 | /* | ||
| 40 | * When converting the wakeup granularity to virtual time, do it such | ||
| 41 | * that heavier tasks preempting a lighter task have an edge. | ||
| 42 | */ | ||
| 43 | SCHED_FEAT(ASYM_GRAN, 1) | ||
| 44 | |||
| 45 | /* | ||
| 46 | * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. | ||
| 47 | */ | ||
| 48 | SCHED_FEAT(WAKEUP_SYNC, 0) | ||
| 49 | |||
| 50 | /* | ||
| 51 | * Wakeup preempt based on task behaviour. Tasks that do not overlap | ||
| 52 | * don't get preempted. | ||
| 53 | */ | ||
| 54 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | ||
| 55 | |||
| 56 | /* | ||
| 57 | * Wakeup preemption towards tasks that run short | ||
| 58 | */ | ||
| 59 | SCHED_FEAT(WAKEUP_RUNNING, 0) | ||
| 60 | |||
| 61 | /* | ||
| 62 | * Use the SYNC wakeup hint, pipes and the likes use this to indicate | ||
| 63 | * the remote end is likely to consume the data we just wrote, and | ||
| 64 | * therefore has cache benefit from being placed on the same cpu, see | ||
| 65 | * also AFFINE_WAKEUPS. | ||
| 66 | */ | ||
| 67 | SCHED_FEAT(SYNC_WAKEUPS, 1) | ||
| 68 | |||
| 69 | /* | ||
| 70 | * Based on load and program behaviour, see if it makes sense to place | ||
| 71 | * a newly woken task on the same cpu as the task that woke it -- | ||
| 72 | * improve cache locality. Typically used with SYNC wakeups as | ||
| 73 | * generated by pipes and the like, see also SYNC_WAKEUPS. | ||
| 74 | */ | ||
| 6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 75 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
| 76 | |||
| 77 | /* | ||
| 78 | * Weaken SYNC hint based on overlap | ||
| 79 | */ | ||
| 80 | SCHED_FEAT(SYNC_LESS, 1) | ||
| 81 | |||
| 82 | /* | ||
| 83 | * Add SYNC hint based on overlap | ||
| 84 | */ | ||
| 85 | SCHED_FEAT(SYNC_MORE, 0) | ||
| 86 | |||
| 87 | /* | ||
| 88 | * Prefer to schedule the task we woke last (assuming it failed | ||
| 89 | * wakeup-preemption), since its likely going to consume data we | ||
| 90 | * touched, increases cache locality. | ||
| 91 | */ | ||
| 92 | SCHED_FEAT(NEXT_BUDDY, 0) | ||
| 93 | |||
| 94 | /* | ||
| 95 | * Prefer to schedule the task that ran last (when we did | ||
| 96 | * wake-preempt) as that likely will touch the same data, increases | ||
| 97 | * cache locality. | ||
| 98 | */ | ||
| 99 | SCHED_FEAT(LAST_BUDDY, 1) | ||
| 100 | |||
| 101 | /* | ||
| 102 | * Consider buddies to be cache hot, decreases the likelyness of a | ||
| 103 | * cache buddy being migrated away, increases cache locality. | ||
| 104 | */ | ||
| 7 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) | 105 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) |
| 8 | SCHED_FEAT(SYNC_WAKEUPS, 1) | 106 | |
| 107 | /* | ||
| 108 | * Use arch dependent cpu power functions | ||
| 109 | */ | ||
| 110 | SCHED_FEAT(ARCH_POWER, 0) | ||
| 111 | |||
| 9 | SCHED_FEAT(HRTICK, 0) | 112 | SCHED_FEAT(HRTICK, 0) |
| 10 | SCHED_FEAT(DOUBLE_TICK, 0) | 113 | SCHED_FEAT(DOUBLE_TICK, 0) |
| 11 | SCHED_FEAT(ASYM_GRAN, 1) | ||
| 12 | SCHED_FEAT(LB_BIAS, 1) | 114 | SCHED_FEAT(LB_BIAS, 1) |
| 13 | SCHED_FEAT(LB_WAKEUP_UPDATE, 1) | 115 | SCHED_FEAT(LB_SHARES_UPDATE, 1) |
| 14 | SCHED_FEAT(ASYM_EFF_LOAD, 1) | 116 | SCHED_FEAT(ASYM_EFF_LOAD, 1) |
| 15 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | 117 | |
| 16 | SCHED_FEAT(LAST_BUDDY, 1) | 118 | /* |
| 119 | * Spin-wait on mutex acquisition when the mutex owner is running on | ||
| 120 | * another cpu -- assumes that when the owner is running, it will soon | ||
| 121 | * release the lock. Decreases scheduling overhead. | ||
| 122 | */ | ||
| 17 | SCHED_FEAT(OWNER_SPIN, 1) | 123 | SCHED_FEAT(OWNER_SPIN, 1) |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index 499672c10cbd..b133a28fcde3 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
| @@ -6,7 +6,7 @@ | |||
| 6 | */ | 6 | */ |
| 7 | 7 | ||
| 8 | #ifdef CONFIG_SMP | 8 | #ifdef CONFIG_SMP |
| 9 | static int select_task_rq_idle(struct task_struct *p, int sync) | 9 | static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) |
| 10 | { | 10 | { |
| 11 | return task_cpu(p); /* IDLE tasks as never migrated */ | 11 | return task_cpu(p); /* IDLE tasks as never migrated */ |
| 12 | } | 12 | } |
| @@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync) | |||
| 14 | /* | 14 | /* |
| 15 | * Idle tasks are unconditionally rescheduled: | 15 | * Idle tasks are unconditionally rescheduled: |
| 16 | */ | 16 | */ |
| 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync) | 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) |
| 18 | { | 18 | { |
| 19 | resched_task(rq->idle); | 19 | resched_task(rq->idle); |
| 20 | } | 20 | } |
| @@ -97,6 +97,11 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p, | |||
| 97 | check_preempt_curr(rq, p, 0); | 97 | check_preempt_curr(rq, p, 0); |
| 98 | } | 98 | } |
| 99 | 99 | ||
| 100 | unsigned int get_rr_interval_idle(struct task_struct *task) | ||
| 101 | { | ||
| 102 | return 0; | ||
| 103 | } | ||
| 104 | |||
| 100 | /* | 105 | /* |
| 101 | * Simple, special scheduling class for the per-CPU idle tasks: | 106 | * Simple, special scheduling class for the per-CPU idle tasks: |
| 102 | */ | 107 | */ |
| @@ -122,6 +127,8 @@ static const struct sched_class idle_sched_class = { | |||
| 122 | .set_curr_task = set_curr_task_idle, | 127 | .set_curr_task = set_curr_task_idle, |
| 123 | .task_tick = task_tick_idle, | 128 | .task_tick = task_tick_idle, |
| 124 | 129 | ||
| 130 | .get_rr_interval = get_rr_interval_idle, | ||
| 131 | |||
| 125 | .prio_changed = prio_changed_idle, | 132 | .prio_changed = prio_changed_idle, |
| 126 | .switched_to = switched_to_idle, | 133 | .switched_to = switched_to_idle, |
| 127 | 134 | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 2eb4bd6a526c..a4d790cddb19 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
| @@ -938,10 +938,13 @@ static void yield_task_rt(struct rq *rq) | |||
| 938 | #ifdef CONFIG_SMP | 938 | #ifdef CONFIG_SMP |
| 939 | static int find_lowest_rq(struct task_struct *task); | 939 | static int find_lowest_rq(struct task_struct *task); |
| 940 | 940 | ||
| 941 | static int select_task_rq_rt(struct task_struct *p, int sync) | 941 | static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) |
| 942 | { | 942 | { |
| 943 | struct rq *rq = task_rq(p); | 943 | struct rq *rq = task_rq(p); |
| 944 | 944 | ||
| 945 | if (sd_flag != SD_BALANCE_WAKE) | ||
| 946 | return smp_processor_id(); | ||
| 947 | |||
| 945 | /* | 948 | /* |
| 946 | * If the current task is an RT task, then | 949 | * If the current task is an RT task, then |
| 947 | * try to see if we can wake this RT task up on another | 950 | * try to see if we can wake this RT task up on another |
| @@ -999,7 +1002,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |||
| 999 | /* | 1002 | /* |
| 1000 | * Preempt the current task with a newly woken task if needed: | 1003 | * Preempt the current task with a newly woken task if needed: |
| 1001 | */ | 1004 | */ |
| 1002 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) | 1005 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
| 1003 | { | 1006 | { |
| 1004 | if (p->prio < rq->curr->prio) { | 1007 | if (p->prio < rq->curr->prio) { |
| 1005 | resched_task(rq->curr); | 1008 | resched_task(rq->curr); |
| @@ -1731,6 +1734,17 @@ static void set_curr_task_rt(struct rq *rq) | |||
| 1731 | dequeue_pushable_task(rq, p); | 1734 | dequeue_pushable_task(rq, p); |
| 1732 | } | 1735 | } |
| 1733 | 1736 | ||
| 1737 | unsigned int get_rr_interval_rt(struct task_struct *task) | ||
| 1738 | { | ||
| 1739 | /* | ||
| 1740 | * Time slice is 0 for SCHED_FIFO tasks | ||
| 1741 | */ | ||
| 1742 | if (task->policy == SCHED_RR) | ||
| 1743 | return DEF_TIMESLICE; | ||
| 1744 | else | ||
| 1745 | return 0; | ||
| 1746 | } | ||
| 1747 | |||
| 1734 | static const struct sched_class rt_sched_class = { | 1748 | static const struct sched_class rt_sched_class = { |
| 1735 | .next = &fair_sched_class, | 1749 | .next = &fair_sched_class, |
| 1736 | .enqueue_task = enqueue_task_rt, | 1750 | .enqueue_task = enqueue_task_rt, |
| @@ -1759,6 +1773,8 @@ static const struct sched_class rt_sched_class = { | |||
| 1759 | .set_curr_task = set_curr_task_rt, | 1773 | .set_curr_task = set_curr_task_rt, |
| 1760 | .task_tick = task_tick_rt, | 1774 | .task_tick = task_tick_rt, |
| 1761 | 1775 | ||
| 1776 | .get_rr_interval = get_rr_interval_rt, | ||
| 1777 | |||
| 1762 | .prio_changed = prio_changed_rt, | 1778 | .prio_changed = prio_changed_rt, |
| 1763 | .switched_to = switched_to_rt, | 1779 | .switched_to = switched_to_rt, |
| 1764 | }; | 1780 | }; |
diff --git a/kernel/signal.c b/kernel/signal.c index 64c5deeaca5d..6705320784fd 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
| @@ -705,7 +705,7 @@ static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) | |||
| 705 | 705 | ||
| 706 | if (why) { | 706 | if (why) { |
| 707 | /* | 707 | /* |
| 708 | * The first thread which returns from finish_stop() | 708 | * The first thread which returns from do_signal_stop() |
| 709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
| 710 | * notify its parent. See get_signal_to_deliver(). | 710 | * notify its parent. See get_signal_to_deliver(). |
| 711 | */ | 711 | */ |
| @@ -971,6 +971,20 @@ specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | |||
| 971 | return send_signal(sig, info, t, 0); | 971 | return send_signal(sig, info, t, 0); |
| 972 | } | 972 | } |
| 973 | 973 | ||
| 974 | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, | ||
| 975 | bool group) | ||
| 976 | { | ||
| 977 | unsigned long flags; | ||
| 978 | int ret = -ESRCH; | ||
| 979 | |||
| 980 | if (lock_task_sighand(p, &flags)) { | ||
| 981 | ret = send_signal(sig, info, p, group); | ||
| 982 | unlock_task_sighand(p, &flags); | ||
| 983 | } | ||
| 984 | |||
| 985 | return ret; | ||
| 986 | } | ||
| 987 | |||
| 974 | /* | 988 | /* |
| 975 | * Force a signal that the process can't ignore: if necessary | 989 | * Force a signal that the process can't ignore: if necessary |
| 976 | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 990 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
| @@ -1036,12 +1050,6 @@ void zap_other_threads(struct task_struct *p) | |||
| 1036 | } | 1050 | } |
| 1037 | } | 1051 | } |
| 1038 | 1052 | ||
| 1039 | int __fatal_signal_pending(struct task_struct *tsk) | ||
| 1040 | { | ||
| 1041 | return sigismember(&tsk->pending.signal, SIGKILL); | ||
| 1042 | } | ||
| 1043 | EXPORT_SYMBOL(__fatal_signal_pending); | ||
| 1044 | |||
| 1045 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | 1053 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) |
| 1046 | { | 1054 | { |
| 1047 | struct sighand_struct *sighand; | 1055 | struct sighand_struct *sighand; |
| @@ -1068,18 +1076,10 @@ struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long | |||
| 1068 | */ | 1076 | */ |
| 1069 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1077 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1070 | { | 1078 | { |
| 1071 | unsigned long flags; | 1079 | int ret = check_kill_permission(sig, info, p); |
| 1072 | int ret; | ||
| 1073 | 1080 | ||
| 1074 | ret = check_kill_permission(sig, info, p); | 1081 | if (!ret && sig) |
| 1075 | 1082 | ret = do_send_sig_info(sig, info, p, true); | |
| 1076 | if (!ret && sig) { | ||
| 1077 | ret = -ESRCH; | ||
| 1078 | if (lock_task_sighand(p, &flags)) { | ||
| 1079 | ret = __group_send_sig_info(sig, info, p); | ||
| 1080 | unlock_task_sighand(p, &flags); | ||
| 1081 | } | ||
| 1082 | } | ||
| 1083 | 1083 | ||
| 1084 | return ret; | 1084 | return ret; |
| 1085 | } | 1085 | } |
| @@ -1224,15 +1224,9 @@ static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | |||
| 1224 | * These are for backward compatibility with the rest of the kernel source. | 1224 | * These are for backward compatibility with the rest of the kernel source. |
| 1225 | */ | 1225 | */ |
| 1226 | 1226 | ||
| 1227 | /* | ||
| 1228 | * The caller must ensure the task can't exit. | ||
| 1229 | */ | ||
| 1230 | int | 1227 | int |
| 1231 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1228 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
| 1232 | { | 1229 | { |
| 1233 | int ret; | ||
| 1234 | unsigned long flags; | ||
| 1235 | |||
| 1236 | /* | 1230 | /* |
| 1237 | * Make sure legacy kernel users don't send in bad values | 1231 | * Make sure legacy kernel users don't send in bad values |
| 1238 | * (normal paths check this in check_kill_permission). | 1232 | * (normal paths check this in check_kill_permission). |
| @@ -1240,10 +1234,7 @@ send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | |||
| 1240 | if (!valid_signal(sig)) | 1234 | if (!valid_signal(sig)) |
| 1241 | return -EINVAL; | 1235 | return -EINVAL; |
| 1242 | 1236 | ||
| 1243 | spin_lock_irqsave(&p->sighand->siglock, flags); | 1237 | return do_send_sig_info(sig, info, p, false); |
| 1244 | ret = specific_send_sig_info(sig, info, p); | ||
| 1245 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | ||
| 1246 | return ret; | ||
| 1247 | } | 1238 | } |
| 1248 | 1239 | ||
| 1249 | #define __si_special(priv) \ | 1240 | #define __si_special(priv) \ |
| @@ -1383,15 +1374,6 @@ ret: | |||
| 1383 | } | 1374 | } |
| 1384 | 1375 | ||
| 1385 | /* | 1376 | /* |
| 1386 | * Wake up any threads in the parent blocked in wait* syscalls. | ||
| 1387 | */ | ||
| 1388 | static inline void __wake_up_parent(struct task_struct *p, | ||
| 1389 | struct task_struct *parent) | ||
| 1390 | { | ||
| 1391 | wake_up_interruptible_sync(&parent->signal->wait_chldexit); | ||
| 1392 | } | ||
| 1393 | |||
| 1394 | /* | ||
| 1395 | * Let a parent know about the death of a child. | 1377 | * Let a parent know about the death of a child. |
| 1396 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 1378 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
| 1397 | * | 1379 | * |
| @@ -1673,29 +1655,6 @@ void ptrace_notify(int exit_code) | |||
| 1673 | spin_unlock_irq(¤t->sighand->siglock); | 1655 | spin_unlock_irq(¤t->sighand->siglock); |
| 1674 | } | 1656 | } |
| 1675 | 1657 | ||
| 1676 | static void | ||
| 1677 | finish_stop(int stop_count) | ||
| 1678 | { | ||
| 1679 | /* | ||
| 1680 | * If there are no other threads in the group, or if there is | ||
| 1681 | * a group stop in progress and we are the last to stop, | ||
| 1682 | * report to the parent. When ptraced, every thread reports itself. | ||
| 1683 | */ | ||
| 1684 | if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { | ||
| 1685 | read_lock(&tasklist_lock); | ||
| 1686 | do_notify_parent_cldstop(current, CLD_STOPPED); | ||
| 1687 | read_unlock(&tasklist_lock); | ||
| 1688 | } | ||
| 1689 | |||
| 1690 | do { | ||
| 1691 | schedule(); | ||
| 1692 | } while (try_to_freeze()); | ||
| 1693 | /* | ||
| 1694 | * Now we don't run again until continued. | ||
| 1695 | */ | ||
| 1696 | current->exit_code = 0; | ||
| 1697 | } | ||
| 1698 | |||
| 1699 | /* | 1658 | /* |
| 1700 | * This performs the stopping for SIGSTOP and other stop signals. | 1659 | * This performs the stopping for SIGSTOP and other stop signals. |
| 1701 | * We have to stop all threads in the thread group. | 1660 | * We have to stop all threads in the thread group. |
| @@ -1705,15 +1664,9 @@ finish_stop(int stop_count) | |||
| 1705 | static int do_signal_stop(int signr) | 1664 | static int do_signal_stop(int signr) |
| 1706 | { | 1665 | { |
| 1707 | struct signal_struct *sig = current->signal; | 1666 | struct signal_struct *sig = current->signal; |
| 1708 | int stop_count; | 1667 | int notify; |
| 1709 | 1668 | ||
| 1710 | if (sig->group_stop_count > 0) { | 1669 | if (!sig->group_stop_count) { |
| 1711 | /* | ||
| 1712 | * There is a group stop in progress. We don't need to | ||
| 1713 | * start another one. | ||
| 1714 | */ | ||
| 1715 | stop_count = --sig->group_stop_count; | ||
| 1716 | } else { | ||
| 1717 | struct task_struct *t; | 1670 | struct task_struct *t; |
| 1718 | 1671 | ||
| 1719 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || | 1672 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || |
| @@ -1725,7 +1678,7 @@ static int do_signal_stop(int signr) | |||
| 1725 | */ | 1678 | */ |
| 1726 | sig->group_exit_code = signr; | 1679 | sig->group_exit_code = signr; |
| 1727 | 1680 | ||
| 1728 | stop_count = 0; | 1681 | sig->group_stop_count = 1; |
| 1729 | for (t = next_thread(current); t != current; t = next_thread(t)) | 1682 | for (t = next_thread(current); t != current; t = next_thread(t)) |
| 1730 | /* | 1683 | /* |
| 1731 | * Setting state to TASK_STOPPED for a group | 1684 | * Setting state to TASK_STOPPED for a group |
| @@ -1734,19 +1687,44 @@ static int do_signal_stop(int signr) | |||
| 1734 | */ | 1687 | */ |
| 1735 | if (!(t->flags & PF_EXITING) && | 1688 | if (!(t->flags & PF_EXITING) && |
| 1736 | !task_is_stopped_or_traced(t)) { | 1689 | !task_is_stopped_or_traced(t)) { |
| 1737 | stop_count++; | 1690 | sig->group_stop_count++; |
| 1738 | signal_wake_up(t, 0); | 1691 | signal_wake_up(t, 0); |
| 1739 | } | 1692 | } |
| 1740 | sig->group_stop_count = stop_count; | ||
| 1741 | } | 1693 | } |
| 1694 | /* | ||
| 1695 | * If there are no other threads in the group, or if there is | ||
| 1696 | * a group stop in progress and we are the last to stop, report | ||
| 1697 | * to the parent. When ptraced, every thread reports itself. | ||
| 1698 | */ | ||
| 1699 | notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; | ||
| 1700 | notify = tracehook_notify_jctl(notify, CLD_STOPPED); | ||
| 1701 | /* | ||
| 1702 | * tracehook_notify_jctl() can drop and reacquire siglock, so | ||
| 1703 | * we keep ->group_stop_count != 0 before the call. If SIGCONT | ||
| 1704 | * or SIGKILL comes in between ->group_stop_count == 0. | ||
| 1705 | */ | ||
| 1706 | if (sig->group_stop_count) { | ||
| 1707 | if (!--sig->group_stop_count) | ||
| 1708 | sig->flags = SIGNAL_STOP_STOPPED; | ||
| 1709 | current->exit_code = sig->group_exit_code; | ||
| 1710 | __set_current_state(TASK_STOPPED); | ||
| 1711 | } | ||
| 1712 | spin_unlock_irq(¤t->sighand->siglock); | ||
| 1742 | 1713 | ||
| 1743 | if (stop_count == 0) | 1714 | if (notify) { |
| 1744 | sig->flags = SIGNAL_STOP_STOPPED; | 1715 | read_lock(&tasklist_lock); |
| 1745 | current->exit_code = sig->group_exit_code; | 1716 | do_notify_parent_cldstop(current, notify); |
| 1746 | __set_current_state(TASK_STOPPED); | 1717 | read_unlock(&tasklist_lock); |
| 1718 | } | ||
| 1719 | |||
| 1720 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ | ||
| 1721 | do { | ||
| 1722 | schedule(); | ||
| 1723 | } while (try_to_freeze()); | ||
| 1724 | |||
| 1725 | tracehook_finish_jctl(); | ||
| 1726 | current->exit_code = 0; | ||
| 1747 | 1727 | ||
| 1748 | spin_unlock_irq(¤t->sighand->siglock); | ||
| 1749 | finish_stop(stop_count); | ||
| 1750 | return 1; | 1728 | return 1; |
| 1751 | } | 1729 | } |
| 1752 | 1730 | ||
| @@ -1815,14 +1793,15 @@ relock: | |||
| 1815 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) | 1793 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) |
| 1816 | ? CLD_CONTINUED : CLD_STOPPED; | 1794 | ? CLD_CONTINUED : CLD_STOPPED; |
| 1817 | signal->flags &= ~SIGNAL_CLD_MASK; | 1795 | signal->flags &= ~SIGNAL_CLD_MASK; |
| 1818 | spin_unlock_irq(&sighand->siglock); | ||
| 1819 | 1796 | ||
| 1820 | if (unlikely(!tracehook_notify_jctl(1, why))) | 1797 | why = tracehook_notify_jctl(why, CLD_CONTINUED); |
| 1821 | goto relock; | 1798 | spin_unlock_irq(&sighand->siglock); |
| 1822 | 1799 | ||
| 1823 | read_lock(&tasklist_lock); | 1800 | if (why) { |
| 1824 | do_notify_parent_cldstop(current->group_leader, why); | 1801 | read_lock(&tasklist_lock); |
| 1825 | read_unlock(&tasklist_lock); | 1802 | do_notify_parent_cldstop(current->group_leader, why); |
| 1803 | read_unlock(&tasklist_lock); | ||
| 1804 | } | ||
| 1826 | goto relock; | 1805 | goto relock; |
| 1827 | } | 1806 | } |
| 1828 | 1807 | ||
| @@ -1987,14 +1966,14 @@ void exit_signals(struct task_struct *tsk) | |||
| 1987 | if (unlikely(tsk->signal->group_stop_count) && | 1966 | if (unlikely(tsk->signal->group_stop_count) && |
| 1988 | !--tsk->signal->group_stop_count) { | 1967 | !--tsk->signal->group_stop_count) { |
| 1989 | tsk->signal->flags = SIGNAL_STOP_STOPPED; | 1968 | tsk->signal->flags = SIGNAL_STOP_STOPPED; |
| 1990 | group_stop = 1; | 1969 | group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); |
| 1991 | } | 1970 | } |
| 1992 | out: | 1971 | out: |
| 1993 | spin_unlock_irq(&tsk->sighand->siglock); | 1972 | spin_unlock_irq(&tsk->sighand->siglock); |
| 1994 | 1973 | ||
| 1995 | if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { | 1974 | if (unlikely(group_stop)) { |
| 1996 | read_lock(&tasklist_lock); | 1975 | read_lock(&tasklist_lock); |
| 1997 | do_notify_parent_cldstop(tsk, CLD_STOPPED); | 1976 | do_notify_parent_cldstop(tsk, group_stop); |
| 1998 | read_unlock(&tasklist_lock); | 1977 | read_unlock(&tasklist_lock); |
| 1999 | } | 1978 | } |
| 2000 | } | 1979 | } |
| @@ -2290,7 +2269,6 @@ static int | |||
| 2290 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 2269 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) |
| 2291 | { | 2270 | { |
| 2292 | struct task_struct *p; | 2271 | struct task_struct *p; |
| 2293 | unsigned long flags; | ||
| 2294 | int error = -ESRCH; | 2272 | int error = -ESRCH; |
| 2295 | 2273 | ||
| 2296 | rcu_read_lock(); | 2274 | rcu_read_lock(); |
| @@ -2300,14 +2278,16 @@ do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | |||
| 2300 | /* | 2278 | /* |
| 2301 | * The null signal is a permissions and process existence | 2279 | * The null signal is a permissions and process existence |
| 2302 | * probe. No signal is actually delivered. | 2280 | * probe. No signal is actually delivered. |
| 2303 | * | ||
| 2304 | * If lock_task_sighand() fails we pretend the task dies | ||
| 2305 | * after receiving the signal. The window is tiny, and the | ||
| 2306 | * signal is private anyway. | ||
| 2307 | */ | 2281 | */ |
| 2308 | if (!error && sig && lock_task_sighand(p, &flags)) { | 2282 | if (!error && sig) { |
| 2309 | error = specific_send_sig_info(sig, info, p); | 2283 | error = do_send_sig_info(sig, info, p, false); |
| 2310 | unlock_task_sighand(p, &flags); | 2284 | /* |
| 2285 | * If lock_task_sighand() failed we pretend the task | ||
| 2286 | * dies after receiving the signal. The window is tiny, | ||
| 2287 | * and the signal is private anyway. | ||
| 2288 | */ | ||
| 2289 | if (unlikely(error == -ESRCH)) | ||
| 2290 | error = 0; | ||
| 2311 | } | 2291 | } |
| 2312 | } | 2292 | } |
| 2313 | rcu_read_unlock(); | 2293 | rcu_read_unlock(); |
diff --git a/kernel/slow-work.c b/kernel/slow-work.c index 09d7519557d3..0d31135efbf4 100644 --- a/kernel/slow-work.c +++ b/kernel/slow-work.c | |||
| @@ -26,10 +26,10 @@ static void slow_work_cull_timeout(unsigned long); | |||
| 26 | static void slow_work_oom_timeout(unsigned long); | 26 | static void slow_work_oom_timeout(unsigned long); |
| 27 | 27 | ||
| 28 | #ifdef CONFIG_SYSCTL | 28 | #ifdef CONFIG_SYSCTL |
| 29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *, | 29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, |
| 30 | void __user *, size_t *, loff_t *); | 30 | void __user *, size_t *, loff_t *); |
| 31 | 31 | ||
| 32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *, | 32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , |
| 33 | void __user *, size_t *, loff_t *); | 33 | void __user *, size_t *, loff_t *); |
| 34 | #endif | 34 | #endif |
| 35 | 35 | ||
| @@ -493,10 +493,10 @@ static void slow_work_oom_timeout(unsigned long data) | |||
| 493 | * Handle adjustment of the minimum number of threads | 493 | * Handle adjustment of the minimum number of threads |
| 494 | */ | 494 | */ |
| 495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | 495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, |
| 496 | struct file *filp, void __user *buffer, | 496 | void __user *buffer, |
| 497 | size_t *lenp, loff_t *ppos) | 497 | size_t *lenp, loff_t *ppos) |
| 498 | { | 498 | { |
| 499 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 499 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 500 | int n; | 500 | int n; |
| 501 | 501 | ||
| 502 | if (ret == 0) { | 502 | if (ret == 0) { |
| @@ -521,10 +521,10 @@ static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | |||
| 521 | * Handle adjustment of the maximum number of threads | 521 | * Handle adjustment of the maximum number of threads |
| 522 | */ | 522 | */ |
| 523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, | 523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, |
| 524 | struct file *filp, void __user *buffer, | 524 | void __user *buffer, |
| 525 | size_t *lenp, loff_t *ppos) | 525 | size_t *lenp, loff_t *ppos) |
| 526 | { | 526 | { |
| 527 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 527 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 528 | int n; | 528 | int n; |
| 529 | 529 | ||
| 530 | if (ret == 0) { | 530 | if (ret == 0) { |
diff --git a/kernel/smp.c b/kernel/smp.c index 8e218500ab14..c9d1c7835c2f 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
| @@ -29,8 +29,7 @@ enum { | |||
| 29 | 29 | ||
| 30 | struct call_function_data { | 30 | struct call_function_data { |
| 31 | struct call_single_data csd; | 31 | struct call_single_data csd; |
| 32 | spinlock_t lock; | 32 | atomic_t refs; |
| 33 | unsigned int refs; | ||
| 34 | cpumask_var_t cpumask; | 33 | cpumask_var_t cpumask; |
| 35 | }; | 34 | }; |
| 36 | 35 | ||
| @@ -39,9 +38,7 @@ struct call_single_queue { | |||
| 39 | spinlock_t lock; | 38 | spinlock_t lock; |
| 40 | }; | 39 | }; |
| 41 | 40 | ||
| 42 | static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { | 41 | static DEFINE_PER_CPU(struct call_function_data, cfd_data); |
| 43 | .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock), | ||
| 44 | }; | ||
| 45 | 42 | ||
| 46 | static int | 43 | static int |
| 47 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | 44 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) |
| @@ -196,25 +193,18 @@ void generic_smp_call_function_interrupt(void) | |||
| 196 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { | 193 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { |
| 197 | int refs; | 194 | int refs; |
| 198 | 195 | ||
| 199 | spin_lock(&data->lock); | 196 | if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) |
| 200 | if (!cpumask_test_cpu(cpu, data->cpumask)) { | ||
| 201 | spin_unlock(&data->lock); | ||
| 202 | continue; | 197 | continue; |
| 203 | } | ||
| 204 | cpumask_clear_cpu(cpu, data->cpumask); | ||
| 205 | spin_unlock(&data->lock); | ||
| 206 | 198 | ||
| 207 | data->csd.func(data->csd.info); | 199 | data->csd.func(data->csd.info); |
| 208 | 200 | ||
| 209 | spin_lock(&data->lock); | 201 | refs = atomic_dec_return(&data->refs); |
| 210 | WARN_ON(data->refs == 0); | 202 | WARN_ON(refs < 0); |
| 211 | refs = --data->refs; | ||
| 212 | if (!refs) { | 203 | if (!refs) { |
| 213 | spin_lock(&call_function.lock); | 204 | spin_lock(&call_function.lock); |
| 214 | list_del_rcu(&data->csd.list); | 205 | list_del_rcu(&data->csd.list); |
| 215 | spin_unlock(&call_function.lock); | 206 | spin_unlock(&call_function.lock); |
| 216 | } | 207 | } |
| 217 | spin_unlock(&data->lock); | ||
| 218 | 208 | ||
| 219 | if (refs) | 209 | if (refs) |
| 220 | continue; | 210 | continue; |
| @@ -357,13 +347,6 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
| 357 | generic_exec_single(cpu, data, wait); | 347 | generic_exec_single(cpu, data, wait); |
| 358 | } | 348 | } |
| 359 | 349 | ||
| 360 | /* Deprecated: shim for archs using old arch_send_call_function_ipi API. */ | ||
| 361 | |||
| 362 | #ifndef arch_send_call_function_ipi_mask | ||
| 363 | # define arch_send_call_function_ipi_mask(maskp) \ | ||
| 364 | arch_send_call_function_ipi(*(maskp)) | ||
| 365 | #endif | ||
| 366 | |||
| 367 | /** | 350 | /** |
| 368 | * smp_call_function_many(): Run a function on a set of other CPUs. | 351 | * smp_call_function_many(): Run a function on a set of other CPUs. |
| 369 | * @mask: The set of cpus to run on (only runs on online subset). | 352 | * @mask: The set of cpus to run on (only runs on online subset). |
| @@ -419,23 +402,20 @@ void smp_call_function_many(const struct cpumask *mask, | |||
| 419 | data = &__get_cpu_var(cfd_data); | 402 | data = &__get_cpu_var(cfd_data); |
| 420 | csd_lock(&data->csd); | 403 | csd_lock(&data->csd); |
| 421 | 404 | ||
| 422 | spin_lock_irqsave(&data->lock, flags); | ||
| 423 | data->csd.func = func; | 405 | data->csd.func = func; |
| 424 | data->csd.info = info; | 406 | data->csd.info = info; |
| 425 | cpumask_and(data->cpumask, mask, cpu_online_mask); | 407 | cpumask_and(data->cpumask, mask, cpu_online_mask); |
| 426 | cpumask_clear_cpu(this_cpu, data->cpumask); | 408 | cpumask_clear_cpu(this_cpu, data->cpumask); |
| 427 | data->refs = cpumask_weight(data->cpumask); | 409 | atomic_set(&data->refs, cpumask_weight(data->cpumask)); |
| 428 | 410 | ||
| 429 | spin_lock(&call_function.lock); | 411 | spin_lock_irqsave(&call_function.lock, flags); |
| 430 | /* | 412 | /* |
| 431 | * Place entry at the _HEAD_ of the list, so that any cpu still | 413 | * Place entry at the _HEAD_ of the list, so that any cpu still |
| 432 | * observing the entry in generic_smp_call_function_interrupt() | 414 | * observing the entry in generic_smp_call_function_interrupt() |
| 433 | * will not miss any other list entries: | 415 | * will not miss any other list entries: |
| 434 | */ | 416 | */ |
| 435 | list_add_rcu(&data->csd.list, &call_function.queue); | 417 | list_add_rcu(&data->csd.list, &call_function.queue); |
| 436 | spin_unlock(&call_function.lock); | 418 | spin_unlock_irqrestore(&call_function.lock, flags); |
| 437 | |||
| 438 | spin_unlock_irqrestore(&data->lock, flags); | ||
| 439 | 419 | ||
| 440 | /* | 420 | /* |
| 441 | * Make the list addition visible before sending the ipi. | 421 | * Make the list addition visible before sending the ipi. |
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index 88796c330838..81324d12eb35 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
| @@ -90,11 +90,11 @@ void touch_all_softlockup_watchdogs(void) | |||
| 90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); | 90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); |
| 91 | 91 | ||
| 92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, | 92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, |
| 93 | struct file *filp, void __user *buffer, | 93 | void __user *buffer, |
| 94 | size_t *lenp, loff_t *ppos) | 94 | size_t *lenp, loff_t *ppos) |
| 95 | { | 95 | { |
| 96 | touch_all_softlockup_watchdogs(); | 96 | touch_all_softlockup_watchdogs(); |
| 97 | return proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 97 | return proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 98 | } | 98 | } |
| 99 | 99 | ||
| 100 | /* | 100 | /* |
diff --git a/kernel/sys.c b/kernel/sys.c index b3f1097c76fa..255475d163e0 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
| @@ -14,7 +14,7 @@ | |||
| 14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
| 15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
| 16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
| 17 | #include <linux/perf_counter.h> | 17 | #include <linux/perf_event.h> |
| 18 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
| 19 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
| 20 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
| @@ -1338,6 +1338,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1338 | unsigned long flags; | 1338 | unsigned long flags; |
| 1339 | cputime_t utime, stime; | 1339 | cputime_t utime, stime; |
| 1340 | struct task_cputime cputime; | 1340 | struct task_cputime cputime; |
| 1341 | unsigned long maxrss = 0; | ||
| 1341 | 1342 | ||
| 1342 | memset((char *) r, 0, sizeof *r); | 1343 | memset((char *) r, 0, sizeof *r); |
| 1343 | utime = stime = cputime_zero; | 1344 | utime = stime = cputime_zero; |
| @@ -1346,6 +1347,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1346 | utime = task_utime(current); | 1347 | utime = task_utime(current); |
| 1347 | stime = task_stime(current); | 1348 | stime = task_stime(current); |
| 1348 | accumulate_thread_rusage(p, r); | 1349 | accumulate_thread_rusage(p, r); |
| 1350 | maxrss = p->signal->maxrss; | ||
| 1349 | goto out; | 1351 | goto out; |
| 1350 | } | 1352 | } |
| 1351 | 1353 | ||
| @@ -1363,6 +1365,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1363 | r->ru_majflt = p->signal->cmaj_flt; | 1365 | r->ru_majflt = p->signal->cmaj_flt; |
| 1364 | r->ru_inblock = p->signal->cinblock; | 1366 | r->ru_inblock = p->signal->cinblock; |
| 1365 | r->ru_oublock = p->signal->coublock; | 1367 | r->ru_oublock = p->signal->coublock; |
| 1368 | maxrss = p->signal->cmaxrss; | ||
| 1366 | 1369 | ||
| 1367 | if (who == RUSAGE_CHILDREN) | 1370 | if (who == RUSAGE_CHILDREN) |
| 1368 | break; | 1371 | break; |
| @@ -1377,6 +1380,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1377 | r->ru_majflt += p->signal->maj_flt; | 1380 | r->ru_majflt += p->signal->maj_flt; |
| 1378 | r->ru_inblock += p->signal->inblock; | 1381 | r->ru_inblock += p->signal->inblock; |
| 1379 | r->ru_oublock += p->signal->oublock; | 1382 | r->ru_oublock += p->signal->oublock; |
| 1383 | if (maxrss < p->signal->maxrss) | ||
| 1384 | maxrss = p->signal->maxrss; | ||
| 1380 | t = p; | 1385 | t = p; |
| 1381 | do { | 1386 | do { |
| 1382 | accumulate_thread_rusage(t, r); | 1387 | accumulate_thread_rusage(t, r); |
| @@ -1392,6 +1397,15 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
| 1392 | out: | 1397 | out: |
| 1393 | cputime_to_timeval(utime, &r->ru_utime); | 1398 | cputime_to_timeval(utime, &r->ru_utime); |
| 1394 | cputime_to_timeval(stime, &r->ru_stime); | 1399 | cputime_to_timeval(stime, &r->ru_stime); |
| 1400 | |||
| 1401 | if (who != RUSAGE_CHILDREN) { | ||
| 1402 | struct mm_struct *mm = get_task_mm(p); | ||
| 1403 | if (mm) { | ||
| 1404 | setmax_mm_hiwater_rss(&maxrss, mm); | ||
| 1405 | mmput(mm); | ||
| 1406 | } | ||
| 1407 | } | ||
| 1408 | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | ||
| 1395 | } | 1409 | } |
| 1396 | 1410 | ||
| 1397 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 1411 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
| @@ -1511,11 +1525,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
| 1511 | case PR_SET_TSC: | 1525 | case PR_SET_TSC: |
| 1512 | error = SET_TSC_CTL(arg2); | 1526 | error = SET_TSC_CTL(arg2); |
| 1513 | break; | 1527 | break; |
| 1514 | case PR_TASK_PERF_COUNTERS_DISABLE: | 1528 | case PR_TASK_PERF_EVENTS_DISABLE: |
| 1515 | error = perf_counter_task_disable(); | 1529 | error = perf_event_task_disable(); |
| 1516 | break; | 1530 | break; |
| 1517 | case PR_TASK_PERF_COUNTERS_ENABLE: | 1531 | case PR_TASK_PERF_EVENTS_ENABLE: |
| 1518 | error = perf_counter_task_enable(); | 1532 | error = perf_event_task_enable(); |
| 1519 | break; | 1533 | break; |
| 1520 | case PR_GET_TIMERSLACK: | 1534 | case PR_GET_TIMERSLACK: |
| 1521 | error = current->timer_slack_ns; | 1535 | error = current->timer_slack_ns; |
| @@ -1528,6 +1542,28 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
| 1528 | current->timer_slack_ns = arg2; | 1542 | current->timer_slack_ns = arg2; |
| 1529 | error = 0; | 1543 | error = 0; |
| 1530 | break; | 1544 | break; |
| 1545 | case PR_MCE_KILL: | ||
| 1546 | if (arg4 | arg5) | ||
| 1547 | return -EINVAL; | ||
| 1548 | switch (arg2) { | ||
| 1549 | case 0: | ||
| 1550 | if (arg3 != 0) | ||
| 1551 | return -EINVAL; | ||
| 1552 | current->flags &= ~PF_MCE_PROCESS; | ||
| 1553 | break; | ||
| 1554 | case 1: | ||
| 1555 | current->flags |= PF_MCE_PROCESS; | ||
| 1556 | if (arg3 != 0) | ||
| 1557 | current->flags |= PF_MCE_EARLY; | ||
| 1558 | else | ||
| 1559 | current->flags &= ~PF_MCE_EARLY; | ||
| 1560 | break; | ||
| 1561 | default: | ||
| 1562 | return -EINVAL; | ||
| 1563 | } | ||
| 1564 | error = 0; | ||
| 1565 | break; | ||
| 1566 | |||
| 1531 | default: | 1567 | default: |
| 1532 | error = -EINVAL; | 1568 | error = -EINVAL; |
| 1533 | break; | 1569 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 68320f6b07b5..e06d0b8d1951 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
| @@ -49,6 +49,7 @@ cond_syscall(sys_sendmsg); | |||
| 49 | cond_syscall(compat_sys_sendmsg); | 49 | cond_syscall(compat_sys_sendmsg); |
| 50 | cond_syscall(sys_recvmsg); | 50 | cond_syscall(sys_recvmsg); |
| 51 | cond_syscall(compat_sys_recvmsg); | 51 | cond_syscall(compat_sys_recvmsg); |
| 52 | cond_syscall(compat_sys_recvfrom); | ||
| 52 | cond_syscall(sys_socketcall); | 53 | cond_syscall(sys_socketcall); |
| 53 | cond_syscall(sys_futex); | 54 | cond_syscall(sys_futex); |
| 54 | cond_syscall(compat_sys_futex); | 55 | cond_syscall(compat_sys_futex); |
| @@ -177,4 +178,4 @@ cond_syscall(sys_eventfd); | |||
| 177 | cond_syscall(sys_eventfd2); | 178 | cond_syscall(sys_eventfd2); |
| 178 | 179 | ||
| 179 | /* performance counters: */ | 180 | /* performance counters: */ |
| 180 | cond_syscall(sys_perf_counter_open); | 181 | cond_syscall(sys_perf_event_open); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 1a631ba684a4..0d949c517412 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
| @@ -26,7 +26,6 @@ | |||
| 26 | #include <linux/proc_fs.h> | 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/security.h> | 27 | #include <linux/security.h> |
| 28 | #include <linux/ctype.h> | 28 | #include <linux/ctype.h> |
| 29 | #include <linux/utsname.h> | ||
| 30 | #include <linux/kmemcheck.h> | 29 | #include <linux/kmemcheck.h> |
| 31 | #include <linux/smp_lock.h> | 30 | #include <linux/smp_lock.h> |
| 32 | #include <linux/fs.h> | 31 | #include <linux/fs.h> |
| @@ -50,7 +49,7 @@ | |||
| 50 | #include <linux/reboot.h> | 49 | #include <linux/reboot.h> |
| 51 | #include <linux/ftrace.h> | 50 | #include <linux/ftrace.h> |
| 52 | #include <linux/slow-work.h> | 51 | #include <linux/slow-work.h> |
| 53 | #include <linux/perf_counter.h> | 52 | #include <linux/perf_event.h> |
| 54 | 53 | ||
| 55 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
| 56 | #include <asm/processor.h> | 55 | #include <asm/processor.h> |
| @@ -77,6 +76,7 @@ extern int max_threads; | |||
| 77 | extern int core_uses_pid; | 76 | extern int core_uses_pid; |
| 78 | extern int suid_dumpable; | 77 | extern int suid_dumpable; |
| 79 | extern char core_pattern[]; | 78 | extern char core_pattern[]; |
| 79 | extern unsigned int core_pipe_limit; | ||
| 80 | extern int pid_max; | 80 | extern int pid_max; |
| 81 | extern int min_free_kbytes; | 81 | extern int min_free_kbytes; |
| 82 | extern int pid_max_min, pid_max_max; | 82 | extern int pid_max_min, pid_max_max; |
| @@ -106,6 +106,9 @@ static int __maybe_unused one = 1; | |||
| 106 | static int __maybe_unused two = 2; | 106 | static int __maybe_unused two = 2; |
| 107 | static unsigned long one_ul = 1; | 107 | static unsigned long one_ul = 1; |
| 108 | static int one_hundred = 100; | 108 | static int one_hundred = 100; |
| 109 | #ifdef CONFIG_PRINTK | ||
| 110 | static int ten_thousand = 10000; | ||
| 111 | #endif | ||
| 109 | 112 | ||
| 110 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ | 113 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
| 111 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; | 114 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
| @@ -160,9 +163,9 @@ extern int max_lock_depth; | |||
| 160 | #endif | 163 | #endif |
| 161 | 164 | ||
| 162 | #ifdef CONFIG_PROC_SYSCTL | 165 | #ifdef CONFIG_PROC_SYSCTL |
| 163 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 166 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
| 164 | void __user *buffer, size_t *lenp, loff_t *ppos); | 167 | void __user *buffer, size_t *lenp, loff_t *ppos); |
| 165 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 168 | static int proc_taint(struct ctl_table *table, int write, |
| 166 | void __user *buffer, size_t *lenp, loff_t *ppos); | 169 | void __user *buffer, size_t *lenp, loff_t *ppos); |
| 167 | #endif | 170 | #endif |
| 168 | 171 | ||
| @@ -421,6 +424,14 @@ static struct ctl_table kern_table[] = { | |||
| 421 | .proc_handler = &proc_dostring, | 424 | .proc_handler = &proc_dostring, |
| 422 | .strategy = &sysctl_string, | 425 | .strategy = &sysctl_string, |
| 423 | }, | 426 | }, |
| 427 | { | ||
| 428 | .ctl_name = CTL_UNNUMBERED, | ||
| 429 | .procname = "core_pipe_limit", | ||
| 430 | .data = &core_pipe_limit, | ||
| 431 | .maxlen = sizeof(unsigned int), | ||
| 432 | .mode = 0644, | ||
| 433 | .proc_handler = &proc_dointvec, | ||
| 434 | }, | ||
| 424 | #ifdef CONFIG_PROC_SYSCTL | 435 | #ifdef CONFIG_PROC_SYSCTL |
| 425 | { | 436 | { |
| 426 | .procname = "tainted", | 437 | .procname = "tainted", |
| @@ -722,6 +733,17 @@ static struct ctl_table kern_table[] = { | |||
| 722 | .mode = 0644, | 733 | .mode = 0644, |
| 723 | .proc_handler = &proc_dointvec, | 734 | .proc_handler = &proc_dointvec, |
| 724 | }, | 735 | }, |
| 736 | { | ||
| 737 | .ctl_name = CTL_UNNUMBERED, | ||
| 738 | .procname = "printk_delay", | ||
| 739 | .data = &printk_delay_msec, | ||
| 740 | .maxlen = sizeof(int), | ||
| 741 | .mode = 0644, | ||
| 742 | .proc_handler = &proc_dointvec_minmax, | ||
| 743 | .strategy = &sysctl_intvec, | ||
| 744 | .extra1 = &zero, | ||
| 745 | .extra2 = &ten_thousand, | ||
| 746 | }, | ||
| 725 | #endif | 747 | #endif |
| 726 | { | 748 | { |
| 727 | .ctl_name = KERN_NGROUPS_MAX, | 749 | .ctl_name = KERN_NGROUPS_MAX, |
| @@ -964,28 +986,28 @@ static struct ctl_table kern_table[] = { | |||
| 964 | .child = slow_work_sysctls, | 986 | .child = slow_work_sysctls, |
| 965 | }, | 987 | }, |
| 966 | #endif | 988 | #endif |
| 967 | #ifdef CONFIG_PERF_COUNTERS | 989 | #ifdef CONFIG_PERF_EVENTS |
| 968 | { | 990 | { |
| 969 | .ctl_name = CTL_UNNUMBERED, | 991 | .ctl_name = CTL_UNNUMBERED, |
| 970 | .procname = "perf_counter_paranoid", | 992 | .procname = "perf_event_paranoid", |
| 971 | .data = &sysctl_perf_counter_paranoid, | 993 | .data = &sysctl_perf_event_paranoid, |
| 972 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | 994 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
| 973 | .mode = 0644, | 995 | .mode = 0644, |
| 974 | .proc_handler = &proc_dointvec, | 996 | .proc_handler = &proc_dointvec, |
| 975 | }, | 997 | }, |
| 976 | { | 998 | { |
| 977 | .ctl_name = CTL_UNNUMBERED, | 999 | .ctl_name = CTL_UNNUMBERED, |
| 978 | .procname = "perf_counter_mlock_kb", | 1000 | .procname = "perf_event_mlock_kb", |
| 979 | .data = &sysctl_perf_counter_mlock, | 1001 | .data = &sysctl_perf_event_mlock, |
| 980 | .maxlen = sizeof(sysctl_perf_counter_mlock), | 1002 | .maxlen = sizeof(sysctl_perf_event_mlock), |
| 981 | .mode = 0644, | 1003 | .mode = 0644, |
| 982 | .proc_handler = &proc_dointvec, | 1004 | .proc_handler = &proc_dointvec, |
| 983 | }, | 1005 | }, |
| 984 | { | 1006 | { |
| 985 | .ctl_name = CTL_UNNUMBERED, | 1007 | .ctl_name = CTL_UNNUMBERED, |
| 986 | .procname = "perf_counter_max_sample_rate", | 1008 | .procname = "perf_event_max_sample_rate", |
| 987 | .data = &sysctl_perf_counter_sample_rate, | 1009 | .data = &sysctl_perf_event_sample_rate, |
| 988 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | 1010 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
| 989 | .mode = 0644, | 1011 | .mode = 0644, |
| 990 | .proc_handler = &proc_dointvec, | 1012 | .proc_handler = &proc_dointvec, |
| 991 | }, | 1013 | }, |
| @@ -1376,6 +1398,31 @@ static struct ctl_table vm_table[] = { | |||
| 1376 | .mode = 0644, | 1398 | .mode = 0644, |
| 1377 | .proc_handler = &scan_unevictable_handler, | 1399 | .proc_handler = &scan_unevictable_handler, |
| 1378 | }, | 1400 | }, |
| 1401 | #ifdef CONFIG_MEMORY_FAILURE | ||
| 1402 | { | ||
| 1403 | .ctl_name = CTL_UNNUMBERED, | ||
| 1404 | .procname = "memory_failure_early_kill", | ||
| 1405 | .data = &sysctl_memory_failure_early_kill, | ||
| 1406 | .maxlen = sizeof(sysctl_memory_failure_early_kill), | ||
| 1407 | .mode = 0644, | ||
| 1408 | .proc_handler = &proc_dointvec_minmax, | ||
| 1409 | .strategy = &sysctl_intvec, | ||
| 1410 | .extra1 = &zero, | ||
| 1411 | .extra2 = &one, | ||
| 1412 | }, | ||
| 1413 | { | ||
| 1414 | .ctl_name = CTL_UNNUMBERED, | ||
| 1415 | .procname = "memory_failure_recovery", | ||
| 1416 | .data = &sysctl_memory_failure_recovery, | ||
| 1417 | .maxlen = sizeof(sysctl_memory_failure_recovery), | ||
| 1418 | .mode = 0644, | ||
| 1419 | .proc_handler = &proc_dointvec_minmax, | ||
| 1420 | .strategy = &sysctl_intvec, | ||
| 1421 | .extra1 = &zero, | ||
| 1422 | .extra2 = &one, | ||
| 1423 | }, | ||
| 1424 | #endif | ||
| 1425 | |||
| 1379 | /* | 1426 | /* |
| 1380 | * NOTE: do not add new entries to this table unless you have read | 1427 | * NOTE: do not add new entries to this table unless you have read |
| 1381 | * Documentation/sysctl/ctl_unnumbered.txt | 1428 | * Documentation/sysctl/ctl_unnumbered.txt |
| @@ -2204,7 +2251,7 @@ void sysctl_head_put(struct ctl_table_header *head) | |||
| 2204 | #ifdef CONFIG_PROC_SYSCTL | 2251 | #ifdef CONFIG_PROC_SYSCTL |
| 2205 | 2252 | ||
| 2206 | static int _proc_do_string(void* data, int maxlen, int write, | 2253 | static int _proc_do_string(void* data, int maxlen, int write, |
| 2207 | struct file *filp, void __user *buffer, | 2254 | void __user *buffer, |
| 2208 | size_t *lenp, loff_t *ppos) | 2255 | size_t *lenp, loff_t *ppos) |
| 2209 | { | 2256 | { |
| 2210 | size_t len; | 2257 | size_t len; |
| @@ -2265,7 +2312,6 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
| 2265 | * proc_dostring - read a string sysctl | 2312 | * proc_dostring - read a string sysctl |
| 2266 | * @table: the sysctl table | 2313 | * @table: the sysctl table |
| 2267 | * @write: %TRUE if this is a write to the sysctl file | 2314 | * @write: %TRUE if this is a write to the sysctl file |
| 2268 | * @filp: the file structure | ||
| 2269 | * @buffer: the user buffer | 2315 | * @buffer: the user buffer |
| 2270 | * @lenp: the size of the user buffer | 2316 | * @lenp: the size of the user buffer |
| 2271 | * @ppos: file position | 2317 | * @ppos: file position |
| @@ -2279,10 +2325,10 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
| 2279 | * | 2325 | * |
| 2280 | * Returns 0 on success. | 2326 | * Returns 0 on success. |
| 2281 | */ | 2327 | */ |
| 2282 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2328 | int proc_dostring(struct ctl_table *table, int write, |
| 2283 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2329 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2284 | { | 2330 | { |
| 2285 | return _proc_do_string(table->data, table->maxlen, write, filp, | 2331 | return _proc_do_string(table->data, table->maxlen, write, |
| 2286 | buffer, lenp, ppos); | 2332 | buffer, lenp, ppos); |
| 2287 | } | 2333 | } |
| 2288 | 2334 | ||
| @@ -2307,7 +2353,7 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | |||
| 2307 | } | 2353 | } |
| 2308 | 2354 | ||
| 2309 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | 2355 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, |
| 2310 | int write, struct file *filp, void __user *buffer, | 2356 | int write, void __user *buffer, |
| 2311 | size_t *lenp, loff_t *ppos, | 2357 | size_t *lenp, loff_t *ppos, |
| 2312 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2358 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
| 2313 | int write, void *data), | 2359 | int write, void *data), |
| @@ -2414,13 +2460,13 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | |||
| 2414 | #undef TMPBUFLEN | 2460 | #undef TMPBUFLEN |
| 2415 | } | 2461 | } |
| 2416 | 2462 | ||
| 2417 | static int do_proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2463 | static int do_proc_dointvec(struct ctl_table *table, int write, |
| 2418 | void __user *buffer, size_t *lenp, loff_t *ppos, | 2464 | void __user *buffer, size_t *lenp, loff_t *ppos, |
| 2419 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2465 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
| 2420 | int write, void *data), | 2466 | int write, void *data), |
| 2421 | void *data) | 2467 | void *data) |
| 2422 | { | 2468 | { |
| 2423 | return __do_proc_dointvec(table->data, table, write, filp, | 2469 | return __do_proc_dointvec(table->data, table, write, |
| 2424 | buffer, lenp, ppos, conv, data); | 2470 | buffer, lenp, ppos, conv, data); |
| 2425 | } | 2471 | } |
| 2426 | 2472 | ||
| @@ -2428,7 +2474,6 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
| 2428 | * proc_dointvec - read a vector of integers | 2474 | * proc_dointvec - read a vector of integers |
| 2429 | * @table: the sysctl table | 2475 | * @table: the sysctl table |
| 2430 | * @write: %TRUE if this is a write to the sysctl file | 2476 | * @write: %TRUE if this is a write to the sysctl file |
| 2431 | * @filp: the file structure | ||
| 2432 | * @buffer: the user buffer | 2477 | * @buffer: the user buffer |
| 2433 | * @lenp: the size of the user buffer | 2478 | * @lenp: the size of the user buffer |
| 2434 | * @ppos: file position | 2479 | * @ppos: file position |
| @@ -2438,10 +2483,10 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
| 2438 | * | 2483 | * |
| 2439 | * Returns 0 on success. | 2484 | * Returns 0 on success. |
| 2440 | */ | 2485 | */ |
| 2441 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2486 | int proc_dointvec(struct ctl_table *table, int write, |
| 2442 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2487 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2443 | { | 2488 | { |
| 2444 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2489 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
| 2445 | NULL,NULL); | 2490 | NULL,NULL); |
| 2446 | } | 2491 | } |
| 2447 | 2492 | ||
| @@ -2449,7 +2494,7 @@ int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | |||
| 2449 | * Taint values can only be increased | 2494 | * Taint values can only be increased |
| 2450 | * This means we can safely use a temporary. | 2495 | * This means we can safely use a temporary. |
| 2451 | */ | 2496 | */ |
| 2452 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 2497 | static int proc_taint(struct ctl_table *table, int write, |
| 2453 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2498 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2454 | { | 2499 | { |
| 2455 | struct ctl_table t; | 2500 | struct ctl_table t; |
| @@ -2461,7 +2506,7 @@ static int proc_taint(struct ctl_table *table, int write, struct file *filp, | |||
| 2461 | 2506 | ||
| 2462 | t = *table; | 2507 | t = *table; |
| 2463 | t.data = &tmptaint; | 2508 | t.data = &tmptaint; |
| 2464 | err = proc_doulongvec_minmax(&t, write, filp, buffer, lenp, ppos); | 2509 | err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); |
| 2465 | if (err < 0) | 2510 | if (err < 0) |
| 2466 | return err; | 2511 | return err; |
| 2467 | 2512 | ||
| @@ -2513,7 +2558,6 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
| 2513 | * proc_dointvec_minmax - read a vector of integers with min/max values | 2558 | * proc_dointvec_minmax - read a vector of integers with min/max values |
| 2514 | * @table: the sysctl table | 2559 | * @table: the sysctl table |
| 2515 | * @write: %TRUE if this is a write to the sysctl file | 2560 | * @write: %TRUE if this is a write to the sysctl file |
| 2516 | * @filp: the file structure | ||
| 2517 | * @buffer: the user buffer | 2561 | * @buffer: the user buffer |
| 2518 | * @lenp: the size of the user buffer | 2562 | * @lenp: the size of the user buffer |
| 2519 | * @ppos: file position | 2563 | * @ppos: file position |
| @@ -2526,19 +2570,18 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
| 2526 | * | 2570 | * |
| 2527 | * Returns 0 on success. | 2571 | * Returns 0 on success. |
| 2528 | */ | 2572 | */ |
| 2529 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2573 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
| 2530 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2574 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2531 | { | 2575 | { |
| 2532 | struct do_proc_dointvec_minmax_conv_param param = { | 2576 | struct do_proc_dointvec_minmax_conv_param param = { |
| 2533 | .min = (int *) table->extra1, | 2577 | .min = (int *) table->extra1, |
| 2534 | .max = (int *) table->extra2, | 2578 | .max = (int *) table->extra2, |
| 2535 | }; | 2579 | }; |
| 2536 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2580 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
| 2537 | do_proc_dointvec_minmax_conv, ¶m); | 2581 | do_proc_dointvec_minmax_conv, ¶m); |
| 2538 | } | 2582 | } |
| 2539 | 2583 | ||
| 2540 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, | 2584 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, |
| 2541 | struct file *filp, | ||
| 2542 | void __user *buffer, | 2585 | void __user *buffer, |
| 2543 | size_t *lenp, loff_t *ppos, | 2586 | size_t *lenp, loff_t *ppos, |
| 2544 | unsigned long convmul, | 2587 | unsigned long convmul, |
| @@ -2643,21 +2686,19 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int | |||
| 2643 | } | 2686 | } |
| 2644 | 2687 | ||
| 2645 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | 2688 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, |
| 2646 | struct file *filp, | ||
| 2647 | void __user *buffer, | 2689 | void __user *buffer, |
| 2648 | size_t *lenp, loff_t *ppos, | 2690 | size_t *lenp, loff_t *ppos, |
| 2649 | unsigned long convmul, | 2691 | unsigned long convmul, |
| 2650 | unsigned long convdiv) | 2692 | unsigned long convdiv) |
| 2651 | { | 2693 | { |
| 2652 | return __do_proc_doulongvec_minmax(table->data, table, write, | 2694 | return __do_proc_doulongvec_minmax(table->data, table, write, |
| 2653 | filp, buffer, lenp, ppos, convmul, convdiv); | 2695 | buffer, lenp, ppos, convmul, convdiv); |
| 2654 | } | 2696 | } |
| 2655 | 2697 | ||
| 2656 | /** | 2698 | /** |
| 2657 | * proc_doulongvec_minmax - read a vector of long integers with min/max values | 2699 | * proc_doulongvec_minmax - read a vector of long integers with min/max values |
| 2658 | * @table: the sysctl table | 2700 | * @table: the sysctl table |
| 2659 | * @write: %TRUE if this is a write to the sysctl file | 2701 | * @write: %TRUE if this is a write to the sysctl file |
| 2660 | * @filp: the file structure | ||
| 2661 | * @buffer: the user buffer | 2702 | * @buffer: the user buffer |
| 2662 | * @lenp: the size of the user buffer | 2703 | * @lenp: the size of the user buffer |
| 2663 | * @ppos: file position | 2704 | * @ppos: file position |
| @@ -2670,17 +2711,16 @@ static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | |||
| 2670 | * | 2711 | * |
| 2671 | * Returns 0 on success. | 2712 | * Returns 0 on success. |
| 2672 | */ | 2713 | */ |
| 2673 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2714 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
| 2674 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2715 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2675 | { | 2716 | { |
| 2676 | return do_proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos, 1l, 1l); | 2717 | return do_proc_doulongvec_minmax(table, write, buffer, lenp, ppos, 1l, 1l); |
| 2677 | } | 2718 | } |
| 2678 | 2719 | ||
| 2679 | /** | 2720 | /** |
| 2680 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values | 2721 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values |
| 2681 | * @table: the sysctl table | 2722 | * @table: the sysctl table |
| 2682 | * @write: %TRUE if this is a write to the sysctl file | 2723 | * @write: %TRUE if this is a write to the sysctl file |
| 2683 | * @filp: the file structure | ||
| 2684 | * @buffer: the user buffer | 2724 | * @buffer: the user buffer |
| 2685 | * @lenp: the size of the user buffer | 2725 | * @lenp: the size of the user buffer |
| 2686 | * @ppos: file position | 2726 | * @ppos: file position |
| @@ -2695,11 +2735,10 @@ int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp | |||
| 2695 | * Returns 0 on success. | 2735 | * Returns 0 on success. |
| 2696 | */ | 2736 | */ |
| 2697 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2737 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
| 2698 | struct file *filp, | ||
| 2699 | void __user *buffer, | 2738 | void __user *buffer, |
| 2700 | size_t *lenp, loff_t *ppos) | 2739 | size_t *lenp, loff_t *ppos) |
| 2701 | { | 2740 | { |
| 2702 | return do_proc_doulongvec_minmax(table, write, filp, buffer, | 2741 | return do_proc_doulongvec_minmax(table, write, buffer, |
| 2703 | lenp, ppos, HZ, 1000l); | 2742 | lenp, ppos, HZ, 1000l); |
| 2704 | } | 2743 | } |
| 2705 | 2744 | ||
| @@ -2775,7 +2814,6 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
| 2775 | * proc_dointvec_jiffies - read a vector of integers as seconds | 2814 | * proc_dointvec_jiffies - read a vector of integers as seconds |
| 2776 | * @table: the sysctl table | 2815 | * @table: the sysctl table |
| 2777 | * @write: %TRUE if this is a write to the sysctl file | 2816 | * @write: %TRUE if this is a write to the sysctl file |
| 2778 | * @filp: the file structure | ||
| 2779 | * @buffer: the user buffer | 2817 | * @buffer: the user buffer |
| 2780 | * @lenp: the size of the user buffer | 2818 | * @lenp: the size of the user buffer |
| 2781 | * @ppos: file position | 2819 | * @ppos: file position |
| @@ -2787,10 +2825,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
| 2787 | * | 2825 | * |
| 2788 | * Returns 0 on success. | 2826 | * Returns 0 on success. |
| 2789 | */ | 2827 | */ |
| 2790 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2828 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
| 2791 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2829 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2792 | { | 2830 | { |
| 2793 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2831 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
| 2794 | do_proc_dointvec_jiffies_conv,NULL); | 2832 | do_proc_dointvec_jiffies_conv,NULL); |
| 2795 | } | 2833 | } |
| 2796 | 2834 | ||
| @@ -2798,7 +2836,6 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
| 2798 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds | 2836 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds |
| 2799 | * @table: the sysctl table | 2837 | * @table: the sysctl table |
| 2800 | * @write: %TRUE if this is a write to the sysctl file | 2838 | * @write: %TRUE if this is a write to the sysctl file |
| 2801 | * @filp: the file structure | ||
| 2802 | * @buffer: the user buffer | 2839 | * @buffer: the user buffer |
| 2803 | * @lenp: the size of the user buffer | 2840 | * @lenp: the size of the user buffer |
| 2804 | * @ppos: pointer to the file position | 2841 | * @ppos: pointer to the file position |
| @@ -2810,10 +2847,10 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
| 2810 | * | 2847 | * |
| 2811 | * Returns 0 on success. | 2848 | * Returns 0 on success. |
| 2812 | */ | 2849 | */ |
| 2813 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2850 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
| 2814 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2851 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2815 | { | 2852 | { |
| 2816 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2853 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
| 2817 | do_proc_dointvec_userhz_jiffies_conv,NULL); | 2854 | do_proc_dointvec_userhz_jiffies_conv,NULL); |
| 2818 | } | 2855 | } |
| 2819 | 2856 | ||
| @@ -2821,7 +2858,6 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
| 2821 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds | 2858 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds |
| 2822 | * @table: the sysctl table | 2859 | * @table: the sysctl table |
| 2823 | * @write: %TRUE if this is a write to the sysctl file | 2860 | * @write: %TRUE if this is a write to the sysctl file |
| 2824 | * @filp: the file structure | ||
| 2825 | * @buffer: the user buffer | 2861 | * @buffer: the user buffer |
| 2826 | * @lenp: the size of the user buffer | 2862 | * @lenp: the size of the user buffer |
| 2827 | * @ppos: file position | 2863 | * @ppos: file position |
| @@ -2834,14 +2870,14 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
| 2834 | * | 2870 | * |
| 2835 | * Returns 0 on success. | 2871 | * Returns 0 on success. |
| 2836 | */ | 2872 | */ |
| 2837 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2873 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
| 2838 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2874 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2839 | { | 2875 | { |
| 2840 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2876 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
| 2841 | do_proc_dointvec_ms_jiffies_conv, NULL); | 2877 | do_proc_dointvec_ms_jiffies_conv, NULL); |
| 2842 | } | 2878 | } |
| 2843 | 2879 | ||
| 2844 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 2880 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
| 2845 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2881 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2846 | { | 2882 | { |
| 2847 | struct pid *new_pid; | 2883 | struct pid *new_pid; |
| @@ -2850,7 +2886,7 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
| 2850 | 2886 | ||
| 2851 | tmp = pid_vnr(cad_pid); | 2887 | tmp = pid_vnr(cad_pid); |
| 2852 | 2888 | ||
| 2853 | r = __do_proc_dointvec(&tmp, table, write, filp, buffer, | 2889 | r = __do_proc_dointvec(&tmp, table, write, buffer, |
| 2854 | lenp, ppos, NULL, NULL); | 2890 | lenp, ppos, NULL, NULL); |
| 2855 | if (r || !write) | 2891 | if (r || !write) |
| 2856 | return r; | 2892 | return r; |
| @@ -2865,50 +2901,49 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
| 2865 | 2901 | ||
| 2866 | #else /* CONFIG_PROC_FS */ | 2902 | #else /* CONFIG_PROC_FS */ |
| 2867 | 2903 | ||
| 2868 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2904 | int proc_dostring(struct ctl_table *table, int write, |
| 2869 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2905 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2870 | { | 2906 | { |
| 2871 | return -ENOSYS; | 2907 | return -ENOSYS; |
| 2872 | } | 2908 | } |
| 2873 | 2909 | ||
| 2874 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2910 | int proc_dointvec(struct ctl_table *table, int write, |
| 2875 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2911 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2876 | { | 2912 | { |
| 2877 | return -ENOSYS; | 2913 | return -ENOSYS; |
| 2878 | } | 2914 | } |
| 2879 | 2915 | ||
| 2880 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2916 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
| 2881 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2917 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2882 | { | 2918 | { |
| 2883 | return -ENOSYS; | 2919 | return -ENOSYS; |
| 2884 | } | 2920 | } |
| 2885 | 2921 | ||
| 2886 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2922 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
| 2887 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2923 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2888 | { | 2924 | { |
| 2889 | return -ENOSYS; | 2925 | return -ENOSYS; |
| 2890 | } | 2926 | } |
| 2891 | 2927 | ||
| 2892 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2928 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
| 2893 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2929 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2894 | { | 2930 | { |
| 2895 | return -ENOSYS; | 2931 | return -ENOSYS; |
| 2896 | } | 2932 | } |
| 2897 | 2933 | ||
| 2898 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2934 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
| 2899 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2935 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2900 | { | 2936 | { |
| 2901 | return -ENOSYS; | 2937 | return -ENOSYS; |
| 2902 | } | 2938 | } |
| 2903 | 2939 | ||
| 2904 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2940 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
| 2905 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2941 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 2906 | { | 2942 | { |
| 2907 | return -ENOSYS; | 2943 | return -ENOSYS; |
| 2908 | } | 2944 | } |
| 2909 | 2945 | ||
| 2910 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2946 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
| 2911 | struct file *filp, | ||
| 2912 | void __user *buffer, | 2947 | void __user *buffer, |
| 2913 | size_t *lenp, loff_t *ppos) | 2948 | size_t *lenp, loff_t *ppos) |
| 2914 | { | 2949 | { |
diff --git a/kernel/time.c b/kernel/time.c index 29511943871a..2e2e469a7fec 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
| @@ -370,13 +370,20 @@ EXPORT_SYMBOL(mktime); | |||
| 370 | * 0 <= tv_nsec < NSEC_PER_SEC | 370 | * 0 <= tv_nsec < NSEC_PER_SEC |
| 371 | * For negative values only the tv_sec field is negative ! | 371 | * For negative values only the tv_sec field is negative ! |
| 372 | */ | 372 | */ |
| 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) |
| 374 | { | 374 | { |
| 375 | while (nsec >= NSEC_PER_SEC) { | 375 | while (nsec >= NSEC_PER_SEC) { |
| 376 | /* | ||
| 377 | * The following asm() prevents the compiler from | ||
| 378 | * optimising this loop into a modulo operation. See | ||
| 379 | * also __iter_div_u64_rem() in include/linux/time.h | ||
| 380 | */ | ||
| 381 | asm("" : "+rm"(nsec)); | ||
| 376 | nsec -= NSEC_PER_SEC; | 382 | nsec -= NSEC_PER_SEC; |
| 377 | ++sec; | 383 | ++sec; |
| 378 | } | 384 | } |
| 379 | while (nsec < 0) { | 385 | while (nsec < 0) { |
| 386 | asm("" : "+rm"(nsec)); | ||
| 380 | nsec += NSEC_PER_SEC; | 387 | nsec += NSEC_PER_SEC; |
| 381 | --sec; | 388 | --sec; |
| 382 | } | 389 | } |
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 0b0a6366c9d4..ee266620b06c 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o timeconv.o |
| 2 | 2 | ||
| 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
| 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 7466cb811251..5e18c6ab2c6a 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
| @@ -21,7 +21,6 @@ | |||
| 21 | * | 21 | * |
| 22 | * TODO WishList: | 22 | * TODO WishList: |
| 23 | * o Allow clocksource drivers to be unregistered | 23 | * o Allow clocksource drivers to be unregistered |
| 24 | * o get rid of clocksource_jiffies extern | ||
| 25 | */ | 24 | */ |
| 26 | 25 | ||
| 27 | #include <linux/clocksource.h> | 26 | #include <linux/clocksource.h> |
| @@ -30,6 +29,7 @@ | |||
| 30 | #include <linux/module.h> | 29 | #include <linux/module.h> |
| 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 30 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
| 32 | #include <linux/tick.h> | 31 | #include <linux/tick.h> |
| 32 | #include <linux/kthread.h> | ||
| 33 | 33 | ||
| 34 | void timecounter_init(struct timecounter *tc, | 34 | void timecounter_init(struct timecounter *tc, |
| 35 | const struct cyclecounter *cc, | 35 | const struct cyclecounter *cc, |
| @@ -107,50 +107,35 @@ u64 timecounter_cyc2time(struct timecounter *tc, | |||
| 107 | } | 107 | } |
| 108 | EXPORT_SYMBOL(timecounter_cyc2time); | 108 | EXPORT_SYMBOL(timecounter_cyc2time); |
| 109 | 109 | ||
| 110 | /* XXX - Would like a better way for initializing curr_clocksource */ | ||
| 111 | extern struct clocksource clocksource_jiffies; | ||
| 112 | |||
| 113 | /*[Clocksource internal variables]--------- | 110 | /*[Clocksource internal variables]--------- |
| 114 | * curr_clocksource: | 111 | * curr_clocksource: |
| 115 | * currently selected clocksource. Initialized to clocksource_jiffies. | 112 | * currently selected clocksource. |
| 116 | * next_clocksource: | ||
| 117 | * pending next selected clocksource. | ||
| 118 | * clocksource_list: | 113 | * clocksource_list: |
| 119 | * linked list with the registered clocksources | 114 | * linked list with the registered clocksources |
| 120 | * clocksource_lock: | 115 | * clocksource_mutex: |
| 121 | * protects manipulations to curr_clocksource and next_clocksource | 116 | * protects manipulations to curr_clocksource and the clocksource_list |
| 122 | * and the clocksource_list | ||
| 123 | * override_name: | 117 | * override_name: |
| 124 | * Name of the user-specified clocksource. | 118 | * Name of the user-specified clocksource. |
| 125 | */ | 119 | */ |
| 126 | static struct clocksource *curr_clocksource = &clocksource_jiffies; | 120 | static struct clocksource *curr_clocksource; |
| 127 | static struct clocksource *next_clocksource; | ||
| 128 | static struct clocksource *clocksource_override; | ||
| 129 | static LIST_HEAD(clocksource_list); | 121 | static LIST_HEAD(clocksource_list); |
| 130 | static DEFINE_SPINLOCK(clocksource_lock); | 122 | static DEFINE_MUTEX(clocksource_mutex); |
| 131 | static char override_name[32]; | 123 | static char override_name[32]; |
| 132 | static int finished_booting; | 124 | static int finished_booting; |
| 133 | 125 | ||
| 134 | /* clocksource_done_booting - Called near the end of core bootup | ||
| 135 | * | ||
| 136 | * Hack to avoid lots of clocksource churn at boot time. | ||
| 137 | * We use fs_initcall because we want this to start before | ||
| 138 | * device_initcall but after subsys_initcall. | ||
| 139 | */ | ||
| 140 | static int __init clocksource_done_booting(void) | ||
| 141 | { | ||
| 142 | finished_booting = 1; | ||
| 143 | return 0; | ||
| 144 | } | ||
| 145 | fs_initcall(clocksource_done_booting); | ||
| 146 | |||
| 147 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG | 126 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG |
| 127 | static void clocksource_watchdog_work(struct work_struct *work); | ||
| 128 | |||
| 148 | static LIST_HEAD(watchdog_list); | 129 | static LIST_HEAD(watchdog_list); |
| 149 | static struct clocksource *watchdog; | 130 | static struct clocksource *watchdog; |
| 150 | static struct timer_list watchdog_timer; | 131 | static struct timer_list watchdog_timer; |
| 132 | static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); | ||
| 151 | static DEFINE_SPINLOCK(watchdog_lock); | 133 | static DEFINE_SPINLOCK(watchdog_lock); |
| 152 | static cycle_t watchdog_last; | 134 | static cycle_t watchdog_last; |
| 153 | static unsigned long watchdog_resumed; | 135 | static int watchdog_running; |
| 136 | |||
| 137 | static int clocksource_watchdog_kthread(void *data); | ||
| 138 | static void __clocksource_change_rating(struct clocksource *cs, int rating); | ||
| 154 | 139 | ||
| 155 | /* | 140 | /* |
| 156 | * Interval: 0.5sec Threshold: 0.0625s | 141 | * Interval: 0.5sec Threshold: 0.0625s |
| @@ -158,135 +143,249 @@ static unsigned long watchdog_resumed; | |||
| 158 | #define WATCHDOG_INTERVAL (HZ >> 1) | 143 | #define WATCHDOG_INTERVAL (HZ >> 1) |
| 159 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) | 144 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) |
| 160 | 145 | ||
| 161 | static void clocksource_ratewd(struct clocksource *cs, int64_t delta) | 146 | static void clocksource_watchdog_work(struct work_struct *work) |
| 162 | { | 147 | { |
| 163 | if (delta > -WATCHDOG_THRESHOLD && delta < WATCHDOG_THRESHOLD) | 148 | /* |
| 164 | return; | 149 | * If kthread_run fails the next watchdog scan over the |
| 150 | * watchdog_list will find the unstable clock again. | ||
| 151 | */ | ||
| 152 | kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); | ||
| 153 | } | ||
| 154 | |||
| 155 | static void __clocksource_unstable(struct clocksource *cs) | ||
| 156 | { | ||
| 157 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | ||
| 158 | cs->flags |= CLOCK_SOURCE_UNSTABLE; | ||
| 159 | if (finished_booting) | ||
| 160 | schedule_work(&watchdog_work); | ||
| 161 | } | ||
| 165 | 162 | ||
| 163 | static void clocksource_unstable(struct clocksource *cs, int64_t delta) | ||
| 164 | { | ||
| 166 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", | 165 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", |
| 167 | cs->name, delta); | 166 | cs->name, delta); |
| 168 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | 167 | __clocksource_unstable(cs); |
| 169 | clocksource_change_rating(cs, 0); | 168 | } |
| 170 | list_del(&cs->wd_list); | 169 | |
| 170 | /** | ||
| 171 | * clocksource_mark_unstable - mark clocksource unstable via watchdog | ||
| 172 | * @cs: clocksource to be marked unstable | ||
| 173 | * | ||
| 174 | * This function is called instead of clocksource_change_rating from | ||
| 175 | * cpu hotplug code to avoid a deadlock between the clocksource mutex | ||
| 176 | * and the cpu hotplug mutex. It defers the update of the clocksource | ||
| 177 | * to the watchdog thread. | ||
| 178 | */ | ||
| 179 | void clocksource_mark_unstable(struct clocksource *cs) | ||
| 180 | { | ||
| 181 | unsigned long flags; | ||
| 182 | |||
| 183 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 184 | if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { | ||
| 185 | if (list_empty(&cs->wd_list)) | ||
| 186 | list_add(&cs->wd_list, &watchdog_list); | ||
| 187 | __clocksource_unstable(cs); | ||
| 188 | } | ||
| 189 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 171 | } | 190 | } |
| 172 | 191 | ||
| 173 | static void clocksource_watchdog(unsigned long data) | 192 | static void clocksource_watchdog(unsigned long data) |
| 174 | { | 193 | { |
| 175 | struct clocksource *cs, *tmp; | 194 | struct clocksource *cs; |
| 176 | cycle_t csnow, wdnow; | 195 | cycle_t csnow, wdnow; |
| 177 | int64_t wd_nsec, cs_nsec; | 196 | int64_t wd_nsec, cs_nsec; |
| 178 | int resumed; | 197 | int next_cpu; |
| 179 | 198 | ||
| 180 | spin_lock(&watchdog_lock); | 199 | spin_lock(&watchdog_lock); |
| 181 | 200 | if (!watchdog_running) | |
| 182 | resumed = test_and_clear_bit(0, &watchdog_resumed); | 201 | goto out; |
| 183 | 202 | ||
| 184 | wdnow = watchdog->read(watchdog); | 203 | wdnow = watchdog->read(watchdog); |
| 185 | wd_nsec = cyc2ns(watchdog, (wdnow - watchdog_last) & watchdog->mask); | 204 | wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask, |
| 205 | watchdog->mult, watchdog->shift); | ||
| 186 | watchdog_last = wdnow; | 206 | watchdog_last = wdnow; |
| 187 | 207 | ||
| 188 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { | 208 | list_for_each_entry(cs, &watchdog_list, wd_list) { |
| 189 | csnow = cs->read(cs); | ||
| 190 | 209 | ||
| 191 | if (unlikely(resumed)) { | 210 | /* Clocksource already marked unstable? */ |
| 192 | cs->wd_last = csnow; | 211 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
| 212 | if (finished_booting) | ||
| 213 | schedule_work(&watchdog_work); | ||
| 193 | continue; | 214 | continue; |
| 194 | } | 215 | } |
| 195 | 216 | ||
| 196 | /* Initialized ? */ | 217 | csnow = cs->read(cs); |
| 218 | |||
| 219 | /* Clocksource initialized ? */ | ||
| 197 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { | 220 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { |
| 198 | if ((cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && | ||
| 199 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { | ||
| 200 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | ||
| 201 | /* | ||
| 202 | * We just marked the clocksource as | ||
| 203 | * highres-capable, notify the rest of the | ||
| 204 | * system as well so that we transition | ||
| 205 | * into high-res mode: | ||
| 206 | */ | ||
| 207 | tick_clock_notify(); | ||
| 208 | } | ||
| 209 | cs->flags |= CLOCK_SOURCE_WATCHDOG; | 221 | cs->flags |= CLOCK_SOURCE_WATCHDOG; |
| 210 | cs->wd_last = csnow; | 222 | cs->wd_last = csnow; |
| 211 | } else { | 223 | continue; |
| 212 | cs_nsec = cyc2ns(cs, (csnow - cs->wd_last) & cs->mask); | ||
| 213 | cs->wd_last = csnow; | ||
| 214 | /* Check the delta. Might remove from the list ! */ | ||
| 215 | clocksource_ratewd(cs, cs_nsec - wd_nsec); | ||
| 216 | } | 224 | } |
| 217 | } | ||
| 218 | 225 | ||
| 219 | if (!list_empty(&watchdog_list)) { | 226 | /* Check the deviation from the watchdog clocksource. */ |
| 220 | /* | 227 | cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) & |
| 221 | * Cycle through CPUs to check if the CPUs stay | 228 | cs->mask, cs->mult, cs->shift); |
| 222 | * synchronized to each other. | 229 | cs->wd_last = csnow; |
| 223 | */ | 230 | if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { |
| 224 | int next_cpu = cpumask_next(raw_smp_processor_id(), | 231 | clocksource_unstable(cs, cs_nsec - wd_nsec); |
| 225 | cpu_online_mask); | 232 | continue; |
| 233 | } | ||
| 226 | 234 | ||
| 227 | if (next_cpu >= nr_cpu_ids) | 235 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && |
| 228 | next_cpu = cpumask_first(cpu_online_mask); | 236 | (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && |
| 229 | watchdog_timer.expires += WATCHDOG_INTERVAL; | 237 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { |
| 230 | add_timer_on(&watchdog_timer, next_cpu); | 238 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 239 | /* | ||
| 240 | * We just marked the clocksource as highres-capable, | ||
| 241 | * notify the rest of the system as well so that we | ||
| 242 | * transition into high-res mode: | ||
| 243 | */ | ||
| 244 | tick_clock_notify(); | ||
| 245 | } | ||
| 231 | } | 246 | } |
| 247 | |||
| 248 | /* | ||
| 249 | * Cycle through CPUs to check if the CPUs stay synchronized | ||
| 250 | * to each other. | ||
| 251 | */ | ||
| 252 | next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); | ||
| 253 | if (next_cpu >= nr_cpu_ids) | ||
| 254 | next_cpu = cpumask_first(cpu_online_mask); | ||
| 255 | watchdog_timer.expires += WATCHDOG_INTERVAL; | ||
| 256 | add_timer_on(&watchdog_timer, next_cpu); | ||
| 257 | out: | ||
| 232 | spin_unlock(&watchdog_lock); | 258 | spin_unlock(&watchdog_lock); |
| 233 | } | 259 | } |
| 260 | |||
| 261 | static inline void clocksource_start_watchdog(void) | ||
| 262 | { | ||
| 263 | if (watchdog_running || !watchdog || list_empty(&watchdog_list)) | ||
| 264 | return; | ||
| 265 | init_timer(&watchdog_timer); | ||
| 266 | watchdog_timer.function = clocksource_watchdog; | ||
| 267 | watchdog_last = watchdog->read(watchdog); | ||
| 268 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
| 269 | add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); | ||
| 270 | watchdog_running = 1; | ||
| 271 | } | ||
| 272 | |||
| 273 | static inline void clocksource_stop_watchdog(void) | ||
| 274 | { | ||
| 275 | if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) | ||
| 276 | return; | ||
| 277 | del_timer(&watchdog_timer); | ||
| 278 | watchdog_running = 0; | ||
| 279 | } | ||
| 280 | |||
| 281 | static inline void clocksource_reset_watchdog(void) | ||
| 282 | { | ||
| 283 | struct clocksource *cs; | ||
| 284 | |||
| 285 | list_for_each_entry(cs, &watchdog_list, wd_list) | ||
| 286 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
| 287 | } | ||
| 288 | |||
| 234 | static void clocksource_resume_watchdog(void) | 289 | static void clocksource_resume_watchdog(void) |
| 235 | { | 290 | { |
| 236 | set_bit(0, &watchdog_resumed); | 291 | unsigned long flags; |
| 292 | |||
| 293 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 294 | clocksource_reset_watchdog(); | ||
| 295 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 237 | } | 296 | } |
| 238 | 297 | ||
| 239 | static void clocksource_check_watchdog(struct clocksource *cs) | 298 | static void clocksource_enqueue_watchdog(struct clocksource *cs) |
| 240 | { | 299 | { |
| 241 | struct clocksource *cse; | ||
| 242 | unsigned long flags; | 300 | unsigned long flags; |
| 243 | 301 | ||
| 244 | spin_lock_irqsave(&watchdog_lock, flags); | 302 | spin_lock_irqsave(&watchdog_lock, flags); |
| 245 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | 303 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
| 246 | int started = !list_empty(&watchdog_list); | 304 | /* cs is a clocksource to be watched. */ |
| 247 | |||
| 248 | list_add(&cs->wd_list, &watchdog_list); | 305 | list_add(&cs->wd_list, &watchdog_list); |
| 249 | if (!started && watchdog) { | 306 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
| 250 | watchdog_last = watchdog->read(watchdog); | ||
| 251 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
| 252 | add_timer_on(&watchdog_timer, | ||
| 253 | cpumask_first(cpu_online_mask)); | ||
| 254 | } | ||
| 255 | } else { | 307 | } else { |
| 308 | /* cs is a watchdog. */ | ||
| 256 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 309 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| 257 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 310 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 258 | 311 | /* Pick the best watchdog. */ | |
| 259 | if (!watchdog || cs->rating > watchdog->rating) { | 312 | if (!watchdog || cs->rating > watchdog->rating) { |
| 260 | if (watchdog) | ||
| 261 | del_timer(&watchdog_timer); | ||
| 262 | watchdog = cs; | 313 | watchdog = cs; |
| 263 | init_timer(&watchdog_timer); | ||
| 264 | watchdog_timer.function = clocksource_watchdog; | ||
| 265 | |||
| 266 | /* Reset watchdog cycles */ | 314 | /* Reset watchdog cycles */ |
| 267 | list_for_each_entry(cse, &watchdog_list, wd_list) | 315 | clocksource_reset_watchdog(); |
| 268 | cse->flags &= ~CLOCK_SOURCE_WATCHDOG; | 316 | } |
| 269 | /* Start if list is not empty */ | 317 | } |
| 270 | if (!list_empty(&watchdog_list)) { | 318 | /* Check if the watchdog timer needs to be started. */ |
| 271 | watchdog_last = watchdog->read(watchdog); | 319 | clocksource_start_watchdog(); |
| 272 | watchdog_timer.expires = | 320 | spin_unlock_irqrestore(&watchdog_lock, flags); |
| 273 | jiffies + WATCHDOG_INTERVAL; | 321 | } |
| 274 | add_timer_on(&watchdog_timer, | 322 | |
| 275 | cpumask_first(cpu_online_mask)); | 323 | static void clocksource_dequeue_watchdog(struct clocksource *cs) |
| 276 | } | 324 | { |
| 325 | struct clocksource *tmp; | ||
| 326 | unsigned long flags; | ||
| 327 | |||
| 328 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 329 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | ||
| 330 | /* cs is a watched clocksource. */ | ||
| 331 | list_del_init(&cs->wd_list); | ||
| 332 | } else if (cs == watchdog) { | ||
| 333 | /* Reset watchdog cycles */ | ||
| 334 | clocksource_reset_watchdog(); | ||
| 335 | /* Current watchdog is removed. Find an alternative. */ | ||
| 336 | watchdog = NULL; | ||
| 337 | list_for_each_entry(tmp, &clocksource_list, list) { | ||
| 338 | if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY) | ||
| 339 | continue; | ||
| 340 | if (!watchdog || tmp->rating > watchdog->rating) | ||
| 341 | watchdog = tmp; | ||
| 277 | } | 342 | } |
| 278 | } | 343 | } |
| 344 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
| 345 | /* Check if the watchdog timer needs to be stopped. */ | ||
| 346 | clocksource_stop_watchdog(); | ||
| 279 | spin_unlock_irqrestore(&watchdog_lock, flags); | 347 | spin_unlock_irqrestore(&watchdog_lock, flags); |
| 280 | } | 348 | } |
| 281 | #else | 349 | |
| 282 | static void clocksource_check_watchdog(struct clocksource *cs) | 350 | static int clocksource_watchdog_kthread(void *data) |
| 351 | { | ||
| 352 | struct clocksource *cs, *tmp; | ||
| 353 | unsigned long flags; | ||
| 354 | LIST_HEAD(unstable); | ||
| 355 | |||
| 356 | mutex_lock(&clocksource_mutex); | ||
| 357 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 358 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) | ||
| 359 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { | ||
| 360 | list_del_init(&cs->wd_list); | ||
| 361 | list_add(&cs->wd_list, &unstable); | ||
| 362 | } | ||
| 363 | /* Check if the watchdog timer needs to be stopped. */ | ||
| 364 | clocksource_stop_watchdog(); | ||
| 365 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 366 | |||
| 367 | /* Needs to be done outside of watchdog lock */ | ||
| 368 | list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { | ||
| 369 | list_del_init(&cs->wd_list); | ||
| 370 | __clocksource_change_rating(cs, 0); | ||
| 371 | } | ||
| 372 | mutex_unlock(&clocksource_mutex); | ||
| 373 | return 0; | ||
| 374 | } | ||
| 375 | |||
| 376 | #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
| 377 | |||
| 378 | static void clocksource_enqueue_watchdog(struct clocksource *cs) | ||
| 283 | { | 379 | { |
| 284 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 380 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| 285 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 381 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 286 | } | 382 | } |
| 287 | 383 | ||
| 384 | static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } | ||
| 288 | static inline void clocksource_resume_watchdog(void) { } | 385 | static inline void clocksource_resume_watchdog(void) { } |
| 289 | #endif | 386 | static inline int clocksource_watchdog_kthread(void *data) { return 0; } |
| 387 | |||
| 388 | #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
| 290 | 389 | ||
| 291 | /** | 390 | /** |
| 292 | * clocksource_resume - resume the clocksource(s) | 391 | * clocksource_resume - resume the clocksource(s) |
| @@ -294,18 +393,12 @@ static inline void clocksource_resume_watchdog(void) { } | |||
| 294 | void clocksource_resume(void) | 393 | void clocksource_resume(void) |
| 295 | { | 394 | { |
| 296 | struct clocksource *cs; | 395 | struct clocksource *cs; |
| 297 | unsigned long flags; | ||
| 298 | 396 | ||
| 299 | spin_lock_irqsave(&clocksource_lock, flags); | 397 | list_for_each_entry(cs, &clocksource_list, list) |
| 300 | |||
| 301 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 302 | if (cs->resume) | 398 | if (cs->resume) |
| 303 | cs->resume(); | 399 | cs->resume(); |
| 304 | } | ||
| 305 | 400 | ||
| 306 | clocksource_resume_watchdog(); | 401 | clocksource_resume_watchdog(); |
| 307 | |||
| 308 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 309 | } | 402 | } |
| 310 | 403 | ||
| 311 | /** | 404 | /** |
| @@ -320,75 +413,94 @@ void clocksource_touch_watchdog(void) | |||
| 320 | clocksource_resume_watchdog(); | 413 | clocksource_resume_watchdog(); |
| 321 | } | 414 | } |
| 322 | 415 | ||
| 416 | #ifdef CONFIG_GENERIC_TIME | ||
| 417 | |||
| 323 | /** | 418 | /** |
| 324 | * clocksource_get_next - Returns the selected clocksource | 419 | * clocksource_select - Select the best clocksource available |
| 325 | * | 420 | * |
| 421 | * Private function. Must hold clocksource_mutex when called. | ||
| 422 | * | ||
| 423 | * Select the clocksource with the best rating, or the clocksource, | ||
| 424 | * which is selected by userspace override. | ||
| 326 | */ | 425 | */ |
| 327 | struct clocksource *clocksource_get_next(void) | 426 | static void clocksource_select(void) |
| 328 | { | 427 | { |
| 329 | unsigned long flags; | 428 | struct clocksource *best, *cs; |
| 330 | 429 | ||
| 331 | spin_lock_irqsave(&clocksource_lock, flags); | 430 | if (!finished_booting || list_empty(&clocksource_list)) |
| 332 | if (next_clocksource && finished_booting) { | 431 | return; |
| 333 | curr_clocksource = next_clocksource; | 432 | /* First clocksource on the list has the best rating. */ |
| 334 | next_clocksource = NULL; | 433 | best = list_first_entry(&clocksource_list, struct clocksource, list); |
| 434 | /* Check for the override clocksource. */ | ||
| 435 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 436 | if (strcmp(cs->name, override_name) != 0) | ||
| 437 | continue; | ||
| 438 | /* | ||
| 439 | * Check to make sure we don't switch to a non-highres | ||
| 440 | * capable clocksource if the tick code is in oneshot | ||
| 441 | * mode (highres or nohz) | ||
| 442 | */ | ||
| 443 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && | ||
| 444 | tick_oneshot_mode_active()) { | ||
| 445 | /* Override clocksource cannot be used. */ | ||
| 446 | printk(KERN_WARNING "Override clocksource %s is not " | ||
| 447 | "HRT compatible. Cannot switch while in " | ||
| 448 | "HRT/NOHZ mode\n", cs->name); | ||
| 449 | override_name[0] = 0; | ||
| 450 | } else | ||
| 451 | /* Override clocksource can be used. */ | ||
| 452 | best = cs; | ||
| 453 | break; | ||
| 454 | } | ||
| 455 | if (curr_clocksource != best) { | ||
| 456 | printk(KERN_INFO "Switching to clocksource %s\n", best->name); | ||
| 457 | curr_clocksource = best; | ||
| 458 | timekeeping_notify(curr_clocksource); | ||
| 335 | } | 459 | } |
| 336 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 337 | |||
| 338 | return curr_clocksource; | ||
| 339 | } | 460 | } |
| 340 | 461 | ||
| 341 | /** | 462 | #else /* CONFIG_GENERIC_TIME */ |
| 342 | * select_clocksource - Selects the best registered clocksource. | 463 | |
| 343 | * | 464 | static inline void clocksource_select(void) { } |
| 344 | * Private function. Must hold clocksource_lock when called. | 465 | |
| 466 | #endif | ||
| 467 | |||
| 468 | /* | ||
| 469 | * clocksource_done_booting - Called near the end of core bootup | ||
| 345 | * | 470 | * |
| 346 | * Select the clocksource with the best rating, or the clocksource, | 471 | * Hack to avoid lots of clocksource churn at boot time. |
| 347 | * which is selected by userspace override. | 472 | * We use fs_initcall because we want this to start before |
| 473 | * device_initcall but after subsys_initcall. | ||
| 348 | */ | 474 | */ |
| 349 | static struct clocksource *select_clocksource(void) | 475 | static int __init clocksource_done_booting(void) |
| 350 | { | 476 | { |
| 351 | struct clocksource *next; | 477 | finished_booting = 1; |
| 352 | |||
| 353 | if (list_empty(&clocksource_list)) | ||
| 354 | return NULL; | ||
| 355 | |||
| 356 | if (clocksource_override) | ||
| 357 | next = clocksource_override; | ||
| 358 | else | ||
| 359 | next = list_entry(clocksource_list.next, struct clocksource, | ||
| 360 | list); | ||
| 361 | 478 | ||
| 362 | if (next == curr_clocksource) | 479 | /* |
| 363 | return NULL; | 480 | * Run the watchdog first to eliminate unstable clock sources |
| 481 | */ | ||
| 482 | clocksource_watchdog_kthread(NULL); | ||
| 364 | 483 | ||
| 365 | return next; | 484 | mutex_lock(&clocksource_mutex); |
| 485 | clocksource_select(); | ||
| 486 | mutex_unlock(&clocksource_mutex); | ||
| 487 | return 0; | ||
| 366 | } | 488 | } |
| 489 | fs_initcall(clocksource_done_booting); | ||
| 367 | 490 | ||
| 368 | /* | 491 | /* |
| 369 | * Enqueue the clocksource sorted by rating | 492 | * Enqueue the clocksource sorted by rating |
| 370 | */ | 493 | */ |
| 371 | static int clocksource_enqueue(struct clocksource *c) | 494 | static void clocksource_enqueue(struct clocksource *cs) |
| 372 | { | 495 | { |
| 373 | struct list_head *tmp, *entry = &clocksource_list; | 496 | struct list_head *entry = &clocksource_list; |
| 497 | struct clocksource *tmp; | ||
| 374 | 498 | ||
| 375 | list_for_each(tmp, &clocksource_list) { | 499 | list_for_each_entry(tmp, &clocksource_list, list) |
| 376 | struct clocksource *cs; | ||
| 377 | |||
| 378 | cs = list_entry(tmp, struct clocksource, list); | ||
| 379 | if (cs == c) | ||
| 380 | return -EBUSY; | ||
| 381 | /* Keep track of the place, where to insert */ | 500 | /* Keep track of the place, where to insert */ |
| 382 | if (cs->rating >= c->rating) | 501 | if (tmp->rating >= cs->rating) |
| 383 | entry = tmp; | 502 | entry = &tmp->list; |
| 384 | } | 503 | list_add(&cs->list, entry); |
| 385 | list_add(&c->list, entry); | ||
| 386 | |||
| 387 | if (strlen(c->name) == strlen(override_name) && | ||
| 388 | !strcmp(c->name, override_name)) | ||
| 389 | clocksource_override = c; | ||
| 390 | |||
| 391 | return 0; | ||
| 392 | } | 504 | } |
| 393 | 505 | ||
| 394 | /** | 506 | /** |
| @@ -397,52 +509,48 @@ static int clocksource_enqueue(struct clocksource *c) | |||
| 397 | * | 509 | * |
| 398 | * Returns -EBUSY if registration fails, zero otherwise. | 510 | * Returns -EBUSY if registration fails, zero otherwise. |
| 399 | */ | 511 | */ |
| 400 | int clocksource_register(struct clocksource *c) | 512 | int clocksource_register(struct clocksource *cs) |
| 401 | { | 513 | { |
| 402 | unsigned long flags; | 514 | mutex_lock(&clocksource_mutex); |
| 403 | int ret; | 515 | clocksource_enqueue(cs); |
| 404 | 516 | clocksource_select(); | |
| 405 | spin_lock_irqsave(&clocksource_lock, flags); | 517 | clocksource_enqueue_watchdog(cs); |
| 406 | ret = clocksource_enqueue(c); | 518 | mutex_unlock(&clocksource_mutex); |
| 407 | if (!ret) | 519 | return 0; |
| 408 | next_clocksource = select_clocksource(); | ||
| 409 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 410 | if (!ret) | ||
| 411 | clocksource_check_watchdog(c); | ||
| 412 | return ret; | ||
| 413 | } | 520 | } |
| 414 | EXPORT_SYMBOL(clocksource_register); | 521 | EXPORT_SYMBOL(clocksource_register); |
| 415 | 522 | ||
| 523 | static void __clocksource_change_rating(struct clocksource *cs, int rating) | ||
| 524 | { | ||
| 525 | list_del(&cs->list); | ||
| 526 | cs->rating = rating; | ||
| 527 | clocksource_enqueue(cs); | ||
| 528 | clocksource_select(); | ||
| 529 | } | ||
| 530 | |||
| 416 | /** | 531 | /** |
| 417 | * clocksource_change_rating - Change the rating of a registered clocksource | 532 | * clocksource_change_rating - Change the rating of a registered clocksource |
| 418 | * | ||
| 419 | */ | 533 | */ |
| 420 | void clocksource_change_rating(struct clocksource *cs, int rating) | 534 | void clocksource_change_rating(struct clocksource *cs, int rating) |
| 421 | { | 535 | { |
| 422 | unsigned long flags; | 536 | mutex_lock(&clocksource_mutex); |
| 423 | 537 | __clocksource_change_rating(cs, rating); | |
| 424 | spin_lock_irqsave(&clocksource_lock, flags); | 538 | mutex_unlock(&clocksource_mutex); |
| 425 | list_del(&cs->list); | ||
| 426 | cs->rating = rating; | ||
| 427 | clocksource_enqueue(cs); | ||
| 428 | next_clocksource = select_clocksource(); | ||
| 429 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 430 | } | 539 | } |
| 540 | EXPORT_SYMBOL(clocksource_change_rating); | ||
| 431 | 541 | ||
| 432 | /** | 542 | /** |
| 433 | * clocksource_unregister - remove a registered clocksource | 543 | * clocksource_unregister - remove a registered clocksource |
| 434 | */ | 544 | */ |
| 435 | void clocksource_unregister(struct clocksource *cs) | 545 | void clocksource_unregister(struct clocksource *cs) |
| 436 | { | 546 | { |
| 437 | unsigned long flags; | 547 | mutex_lock(&clocksource_mutex); |
| 438 | 548 | clocksource_dequeue_watchdog(cs); | |
| 439 | spin_lock_irqsave(&clocksource_lock, flags); | ||
| 440 | list_del(&cs->list); | 549 | list_del(&cs->list); |
| 441 | if (clocksource_override == cs) | 550 | clocksource_select(); |
| 442 | clocksource_override = NULL; | 551 | mutex_unlock(&clocksource_mutex); |
| 443 | next_clocksource = select_clocksource(); | ||
| 444 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 445 | } | 552 | } |
| 553 | EXPORT_SYMBOL(clocksource_unregister); | ||
| 446 | 554 | ||
| 447 | #ifdef CONFIG_SYSFS | 555 | #ifdef CONFIG_SYSFS |
| 448 | /** | 556 | /** |
| @@ -458,9 +566,9 @@ sysfs_show_current_clocksources(struct sys_device *dev, | |||
| 458 | { | 566 | { |
| 459 | ssize_t count = 0; | 567 | ssize_t count = 0; |
| 460 | 568 | ||
| 461 | spin_lock_irq(&clocksource_lock); | 569 | mutex_lock(&clocksource_mutex); |
| 462 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); | 570 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); |
| 463 | spin_unlock_irq(&clocksource_lock); | 571 | mutex_unlock(&clocksource_mutex); |
| 464 | 572 | ||
| 465 | return count; | 573 | return count; |
| 466 | } | 574 | } |
| @@ -478,9 +586,7 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
| 478 | struct sysdev_attribute *attr, | 586 | struct sysdev_attribute *attr, |
| 479 | const char *buf, size_t count) | 587 | const char *buf, size_t count) |
| 480 | { | 588 | { |
| 481 | struct clocksource *ovr = NULL; | ||
| 482 | size_t ret = count; | 589 | size_t ret = count; |
| 483 | int len; | ||
| 484 | 590 | ||
| 485 | /* strings from sysfs write are not 0 terminated! */ | 591 | /* strings from sysfs write are not 0 terminated! */ |
| 486 | if (count >= sizeof(override_name)) | 592 | if (count >= sizeof(override_name)) |
| @@ -490,44 +596,14 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
| 490 | if (buf[count-1] == '\n') | 596 | if (buf[count-1] == '\n') |
| 491 | count--; | 597 | count--; |
| 492 | 598 | ||
| 493 | spin_lock_irq(&clocksource_lock); | 599 | mutex_lock(&clocksource_mutex); |
| 494 | 600 | ||
| 495 | if (count > 0) | 601 | if (count > 0) |
| 496 | memcpy(override_name, buf, count); | 602 | memcpy(override_name, buf, count); |
| 497 | override_name[count] = 0; | 603 | override_name[count] = 0; |
| 604 | clocksource_select(); | ||
| 498 | 605 | ||
| 499 | len = strlen(override_name); | 606 | mutex_unlock(&clocksource_mutex); |
| 500 | if (len) { | ||
| 501 | struct clocksource *cs; | ||
| 502 | |||
| 503 | ovr = clocksource_override; | ||
| 504 | /* try to select it: */ | ||
| 505 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 506 | if (strlen(cs->name) == len && | ||
| 507 | !strcmp(cs->name, override_name)) | ||
| 508 | ovr = cs; | ||
| 509 | } | ||
| 510 | } | ||
| 511 | |||
| 512 | /* | ||
| 513 | * Check to make sure we don't switch to a non-highres capable | ||
| 514 | * clocksource if the tick code is in oneshot mode (highres or nohz) | ||
| 515 | */ | ||
| 516 | if (tick_oneshot_mode_active() && ovr && | ||
| 517 | !(ovr->flags & CLOCK_SOURCE_VALID_FOR_HRES)) { | ||
| 518 | printk(KERN_WARNING "%s clocksource is not HRT compatible. " | ||
| 519 | "Cannot switch while in HRT/NOHZ mode\n", ovr->name); | ||
| 520 | ovr = NULL; | ||
| 521 | override_name[0] = 0; | ||
| 522 | } | ||
| 523 | |||
| 524 | /* Reselect, when the override name has changed */ | ||
| 525 | if (ovr != clocksource_override) { | ||
| 526 | clocksource_override = ovr; | ||
| 527 | next_clocksource = select_clocksource(); | ||
| 528 | } | ||
| 529 | |||
| 530 | spin_unlock_irq(&clocksource_lock); | ||
| 531 | 607 | ||
| 532 | return ret; | 608 | return ret; |
| 533 | } | 609 | } |
| @@ -547,7 +623,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
| 547 | struct clocksource *src; | 623 | struct clocksource *src; |
| 548 | ssize_t count = 0; | 624 | ssize_t count = 0; |
| 549 | 625 | ||
| 550 | spin_lock_irq(&clocksource_lock); | 626 | mutex_lock(&clocksource_mutex); |
| 551 | list_for_each_entry(src, &clocksource_list, list) { | 627 | list_for_each_entry(src, &clocksource_list, list) { |
| 552 | /* | 628 | /* |
| 553 | * Don't show non-HRES clocksource if the tick code is | 629 | * Don't show non-HRES clocksource if the tick code is |
| @@ -559,7 +635,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
| 559 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), | 635 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), |
| 560 | "%s ", src->name); | 636 | "%s ", src->name); |
| 561 | } | 637 | } |
| 562 | spin_unlock_irq(&clocksource_lock); | 638 | mutex_unlock(&clocksource_mutex); |
| 563 | 639 | ||
| 564 | count += snprintf(buf + count, | 640 | count += snprintf(buf + count, |
| 565 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); | 641 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); |
| @@ -614,11 +690,10 @@ device_initcall(init_clocksource_sysfs); | |||
| 614 | */ | 690 | */ |
| 615 | static int __init boot_override_clocksource(char* str) | 691 | static int __init boot_override_clocksource(char* str) |
| 616 | { | 692 | { |
| 617 | unsigned long flags; | 693 | mutex_lock(&clocksource_mutex); |
| 618 | spin_lock_irqsave(&clocksource_lock, flags); | ||
| 619 | if (str) | 694 | if (str) |
| 620 | strlcpy(override_name, str, sizeof(override_name)); | 695 | strlcpy(override_name, str, sizeof(override_name)); |
| 621 | spin_unlock_irqrestore(&clocksource_lock, flags); | 696 | mutex_unlock(&clocksource_mutex); |
| 622 | return 1; | 697 | return 1; |
| 623 | } | 698 | } |
| 624 | 699 | ||
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c index c3f6c30816e3..5404a8456909 100644 --- a/kernel/time/jiffies.c +++ b/kernel/time/jiffies.c | |||
| @@ -61,7 +61,6 @@ struct clocksource clocksource_jiffies = { | |||
| 61 | .read = jiffies_read, | 61 | .read = jiffies_read, |
| 62 | .mask = 0xffffffff, /*32bits*/ | 62 | .mask = 0xffffffff, /*32bits*/ |
| 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ | 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ |
| 64 | .mult_orig = NSEC_PER_JIFFY << JIFFIES_SHIFT, | ||
| 65 | .shift = JIFFIES_SHIFT, | 64 | .shift = JIFFIES_SHIFT, |
| 66 | }; | 65 | }; |
| 67 | 66 | ||
| @@ -71,3 +70,8 @@ static int __init init_jiffies_clocksource(void) | |||
| 71 | } | 70 | } |
| 72 | 71 | ||
| 73 | core_initcall(init_jiffies_clocksource); | 72 | core_initcall(init_jiffies_clocksource); |
| 73 | |||
| 74 | struct clocksource * __init __weak clocksource_default_clock(void) | ||
| 75 | { | ||
| 76 | return &clocksource_jiffies; | ||
| 77 | } | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 7fc64375ff43..4800f933910e 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
| @@ -194,8 +194,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 194 | case TIME_OK: | 194 | case TIME_OK: |
| 195 | break; | 195 | break; |
| 196 | case TIME_INS: | 196 | case TIME_INS: |
| 197 | xtime.tv_sec--; | 197 | timekeeping_leap_insert(-1); |
| 198 | wall_to_monotonic.tv_sec++; | ||
| 199 | time_state = TIME_OOP; | 198 | time_state = TIME_OOP; |
| 200 | printk(KERN_NOTICE | 199 | printk(KERN_NOTICE |
| 201 | "Clock: inserting leap second 23:59:60 UTC\n"); | 200 | "Clock: inserting leap second 23:59:60 UTC\n"); |
| @@ -203,9 +202,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 203 | res = HRTIMER_RESTART; | 202 | res = HRTIMER_RESTART; |
| 204 | break; | 203 | break; |
| 205 | case TIME_DEL: | 204 | case TIME_DEL: |
| 206 | xtime.tv_sec++; | 205 | timekeeping_leap_insert(1); |
| 207 | time_tai--; | 206 | time_tai--; |
| 208 | wall_to_monotonic.tv_sec--; | ||
| 209 | time_state = TIME_WAIT; | 207 | time_state = TIME_WAIT; |
| 210 | printk(KERN_NOTICE | 208 | printk(KERN_NOTICE |
| 211 | "Clock: deleting leap second 23:59:59 UTC\n"); | 209 | "Clock: deleting leap second 23:59:59 UTC\n"); |
| @@ -219,7 +217,6 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 219 | time_state = TIME_OK; | 217 | time_state = TIME_OK; |
| 220 | break; | 218 | break; |
| 221 | } | 219 | } |
| 222 | update_vsyscall(&xtime, clock); | ||
| 223 | 220 | ||
| 224 | write_sequnlock(&xtime_lock); | 221 | write_sequnlock(&xtime_lock); |
| 225 | 222 | ||
diff --git a/kernel/time/timeconv.c b/kernel/time/timeconv.c new file mode 100644 index 000000000000..86628e755f38 --- /dev/null +++ b/kernel/time/timeconv.c | |||
| @@ -0,0 +1,127 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. | ||
| 3 | * This file is part of the GNU C Library. | ||
| 4 | * Contributed by Paul Eggert (eggert@twinsun.com). | ||
| 5 | * | ||
| 6 | * The GNU C Library is free software; you can redistribute it and/or | ||
| 7 | * modify it under the terms of the GNU Library General Public License as | ||
| 8 | * published by the Free Software Foundation; either version 2 of the | ||
| 9 | * License, or (at your option) any later version. | ||
| 10 | * | ||
| 11 | * The GNU C Library is distributed in the hope that it will be useful, | ||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
| 14 | * Library General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU Library General Public | ||
| 17 | * License along with the GNU C Library; see the file COPYING.LIB. If not, | ||
| 18 | * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
| 19 | * Boston, MA 02111-1307, USA. | ||
| 20 | */ | ||
| 21 | |||
| 22 | /* | ||
| 23 | * Converts the calendar time to broken-down time representation | ||
| 24 | * Based on code from glibc-2.6 | ||
| 25 | * | ||
| 26 | * 2009-7-14: | ||
| 27 | * Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com> | ||
| 28 | */ | ||
| 29 | |||
| 30 | #include <linux/time.h> | ||
| 31 | #include <linux/module.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Nonzero if YEAR is a leap year (every 4 years, | ||
| 35 | * except every 100th isn't, and every 400th is). | ||
| 36 | */ | ||
| 37 | static int __isleap(long year) | ||
| 38 | { | ||
| 39 | return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0); | ||
| 40 | } | ||
| 41 | |||
| 42 | /* do a mathdiv for long type */ | ||
| 43 | static long math_div(long a, long b) | ||
| 44 | { | ||
| 45 | return a / b - (a % b < 0); | ||
| 46 | } | ||
| 47 | |||
| 48 | /* How many leap years between y1 and y2, y1 must less or equal to y2 */ | ||
| 49 | static long leaps_between(long y1, long y2) | ||
| 50 | { | ||
| 51 | long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100) | ||
| 52 | + math_div(y1 - 1, 400); | ||
| 53 | long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100) | ||
| 54 | + math_div(y2 - 1, 400); | ||
| 55 | return leaps2 - leaps1; | ||
| 56 | } | ||
| 57 | |||
| 58 | /* How many days come before each month (0-12). */ | ||
| 59 | static const unsigned short __mon_yday[2][13] = { | ||
| 60 | /* Normal years. */ | ||
| 61 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, | ||
| 62 | /* Leap years. */ | ||
| 63 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366} | ||
| 64 | }; | ||
| 65 | |||
| 66 | #define SECS_PER_HOUR (60 * 60) | ||
| 67 | #define SECS_PER_DAY (SECS_PER_HOUR * 24) | ||
| 68 | |||
| 69 | /** | ||
| 70 | * time_to_tm - converts the calendar time to local broken-down time | ||
| 71 | * | ||
| 72 | * @totalsecs the number of seconds elapsed since 00:00:00 on January 1, 1970, | ||
| 73 | * Coordinated Universal Time (UTC). | ||
| 74 | * @offset offset seconds adding to totalsecs. | ||
| 75 | * @result pointer to struct tm variable to receive broken-down time | ||
| 76 | */ | ||
| 77 | void time_to_tm(time_t totalsecs, int offset, struct tm *result) | ||
| 78 | { | ||
| 79 | long days, rem, y; | ||
| 80 | const unsigned short *ip; | ||
| 81 | |||
| 82 | days = totalsecs / SECS_PER_DAY; | ||
| 83 | rem = totalsecs % SECS_PER_DAY; | ||
| 84 | rem += offset; | ||
| 85 | while (rem < 0) { | ||
| 86 | rem += SECS_PER_DAY; | ||
| 87 | --days; | ||
| 88 | } | ||
| 89 | while (rem >= SECS_PER_DAY) { | ||
| 90 | rem -= SECS_PER_DAY; | ||
| 91 | ++days; | ||
| 92 | } | ||
| 93 | |||
| 94 | result->tm_hour = rem / SECS_PER_HOUR; | ||
| 95 | rem %= SECS_PER_HOUR; | ||
| 96 | result->tm_min = rem / 60; | ||
| 97 | result->tm_sec = rem % 60; | ||
| 98 | |||
| 99 | /* January 1, 1970 was a Thursday. */ | ||
| 100 | result->tm_wday = (4 + days) % 7; | ||
| 101 | if (result->tm_wday < 0) | ||
| 102 | result->tm_wday += 7; | ||
| 103 | |||
| 104 | y = 1970; | ||
| 105 | |||
| 106 | while (days < 0 || days >= (__isleap(y) ? 366 : 365)) { | ||
| 107 | /* Guess a corrected year, assuming 365 days per year. */ | ||
| 108 | long yg = y + math_div(days, 365); | ||
| 109 | |||
| 110 | /* Adjust DAYS and Y to match the guessed year. */ | ||
| 111 | days -= (yg - y) * 365 + leaps_between(y, yg); | ||
| 112 | y = yg; | ||
| 113 | } | ||
| 114 | |||
| 115 | result->tm_year = y - 1900; | ||
| 116 | |||
| 117 | result->tm_yday = days; | ||
| 118 | |||
| 119 | ip = __mon_yday[__isleap(y)]; | ||
| 120 | for (y = 11; days < ip[y]; y--) | ||
| 121 | continue; | ||
| 122 | days -= ip[y]; | ||
| 123 | |||
| 124 | result->tm_mon = y; | ||
| 125 | result->tm_mday = days + 1; | ||
| 126 | } | ||
| 127 | EXPORT_SYMBOL(time_to_tm); | ||
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index e8c77d9c633a..fb0f46fa1ecd 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
| @@ -18,7 +18,117 @@ | |||
| 18 | #include <linux/jiffies.h> | 18 | #include <linux/jiffies.h> |
| 19 | #include <linux/time.h> | 19 | #include <linux/time.h> |
| 20 | #include <linux/tick.h> | 20 | #include <linux/tick.h> |
| 21 | #include <linux/stop_machine.h> | ||
| 22 | |||
| 23 | /* Structure holding internal timekeeping values. */ | ||
| 24 | struct timekeeper { | ||
| 25 | /* Current clocksource used for timekeeping. */ | ||
| 26 | struct clocksource *clock; | ||
| 27 | /* The shift value of the current clocksource. */ | ||
| 28 | int shift; | ||
| 29 | |||
| 30 | /* Number of clock cycles in one NTP interval. */ | ||
| 31 | cycle_t cycle_interval; | ||
| 32 | /* Number of clock shifted nano seconds in one NTP interval. */ | ||
| 33 | u64 xtime_interval; | ||
| 34 | /* Raw nano seconds accumulated per NTP interval. */ | ||
| 35 | u32 raw_interval; | ||
| 36 | |||
| 37 | /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ | ||
| 38 | u64 xtime_nsec; | ||
| 39 | /* Difference between accumulated time and NTP time in ntp | ||
| 40 | * shifted nano seconds. */ | ||
| 41 | s64 ntp_error; | ||
| 42 | /* Shift conversion between clock shifted nano seconds and | ||
| 43 | * ntp shifted nano seconds. */ | ||
| 44 | int ntp_error_shift; | ||
| 45 | /* NTP adjusted clock multiplier */ | ||
| 46 | u32 mult; | ||
| 47 | }; | ||
| 48 | |||
| 49 | struct timekeeper timekeeper; | ||
| 50 | |||
| 51 | /** | ||
| 52 | * timekeeper_setup_internals - Set up internals to use clocksource clock. | ||
| 53 | * | ||
| 54 | * @clock: Pointer to clocksource. | ||
| 55 | * | ||
| 56 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | ||
| 57 | * pair and interval request. | ||
| 58 | * | ||
| 59 | * Unless you're the timekeeping code, you should not be using this! | ||
| 60 | */ | ||
| 61 | static void timekeeper_setup_internals(struct clocksource *clock) | ||
| 62 | { | ||
| 63 | cycle_t interval; | ||
| 64 | u64 tmp; | ||
| 65 | |||
| 66 | timekeeper.clock = clock; | ||
| 67 | clock->cycle_last = clock->read(clock); | ||
| 21 | 68 | ||
| 69 | /* Do the ns -> cycle conversion first, using original mult */ | ||
| 70 | tmp = NTP_INTERVAL_LENGTH; | ||
| 71 | tmp <<= clock->shift; | ||
| 72 | tmp += clock->mult/2; | ||
| 73 | do_div(tmp, clock->mult); | ||
| 74 | if (tmp == 0) | ||
| 75 | tmp = 1; | ||
| 76 | |||
| 77 | interval = (cycle_t) tmp; | ||
| 78 | timekeeper.cycle_interval = interval; | ||
| 79 | |||
| 80 | /* Go back from cycles -> shifted ns */ | ||
| 81 | timekeeper.xtime_interval = (u64) interval * clock->mult; | ||
| 82 | timekeeper.raw_interval = | ||
| 83 | ((u64) interval * clock->mult) >> clock->shift; | ||
| 84 | |||
| 85 | timekeeper.xtime_nsec = 0; | ||
| 86 | timekeeper.shift = clock->shift; | ||
| 87 | |||
| 88 | timekeeper.ntp_error = 0; | ||
| 89 | timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | ||
| 90 | |||
| 91 | /* | ||
| 92 | * The timekeeper keeps its own mult values for the currently | ||
| 93 | * active clocksource. These value will be adjusted via NTP | ||
| 94 | * to counteract clock drifting. | ||
| 95 | */ | ||
| 96 | timekeeper.mult = clock->mult; | ||
| 97 | } | ||
| 98 | |||
| 99 | /* Timekeeper helper functions. */ | ||
| 100 | static inline s64 timekeeping_get_ns(void) | ||
| 101 | { | ||
| 102 | cycle_t cycle_now, cycle_delta; | ||
| 103 | struct clocksource *clock; | ||
| 104 | |||
| 105 | /* read clocksource: */ | ||
| 106 | clock = timekeeper.clock; | ||
| 107 | cycle_now = clock->read(clock); | ||
| 108 | |||
| 109 | /* calculate the delta since the last update_wall_time: */ | ||
| 110 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 111 | |||
| 112 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
| 113 | return clocksource_cyc2ns(cycle_delta, timekeeper.mult, | ||
| 114 | timekeeper.shift); | ||
| 115 | } | ||
| 116 | |||
| 117 | static inline s64 timekeeping_get_ns_raw(void) | ||
| 118 | { | ||
| 119 | cycle_t cycle_now, cycle_delta; | ||
| 120 | struct clocksource *clock; | ||
| 121 | |||
| 122 | /* read clocksource: */ | ||
| 123 | clock = timekeeper.clock; | ||
| 124 | cycle_now = clock->read(clock); | ||
| 125 | |||
| 126 | /* calculate the delta since the last update_wall_time: */ | ||
| 127 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 128 | |||
| 129 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
| 130 | return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); | ||
| 131 | } | ||
| 22 | 132 | ||
| 23 | /* | 133 | /* |
| 24 | * This read-write spinlock protects us from races in SMP while | 134 | * This read-write spinlock protects us from races in SMP while |
| @@ -44,7 +154,12 @@ __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); | |||
| 44 | */ | 154 | */ |
| 45 | struct timespec xtime __attribute__ ((aligned (16))); | 155 | struct timespec xtime __attribute__ ((aligned (16))); |
| 46 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 156 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
| 47 | static unsigned long total_sleep_time; /* seconds */ | 157 | static struct timespec total_sleep_time; |
| 158 | |||
| 159 | /* | ||
| 160 | * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. | ||
| 161 | */ | ||
| 162 | struct timespec raw_time; | ||
| 48 | 163 | ||
| 49 | /* flag for if timekeeping is suspended */ | 164 | /* flag for if timekeeping is suspended */ |
| 50 | int __read_mostly timekeeping_suspended; | 165 | int __read_mostly timekeeping_suspended; |
| @@ -56,35 +171,44 @@ void update_xtime_cache(u64 nsec) | |||
| 56 | timespec_add_ns(&xtime_cache, nsec); | 171 | timespec_add_ns(&xtime_cache, nsec); |
| 57 | } | 172 | } |
| 58 | 173 | ||
| 59 | struct clocksource *clock; | 174 | /* must hold xtime_lock */ |
| 60 | 175 | void timekeeping_leap_insert(int leapsecond) | |
| 176 | { | ||
| 177 | xtime.tv_sec += leapsecond; | ||
| 178 | wall_to_monotonic.tv_sec -= leapsecond; | ||
| 179 | update_vsyscall(&xtime, timekeeper.clock); | ||
| 180 | } | ||
| 61 | 181 | ||
| 62 | #ifdef CONFIG_GENERIC_TIME | 182 | #ifdef CONFIG_GENERIC_TIME |
| 183 | |||
| 63 | /** | 184 | /** |
| 64 | * clocksource_forward_now - update clock to the current time | 185 | * timekeeping_forward_now - update clock to the current time |
| 65 | * | 186 | * |
| 66 | * Forward the current clock to update its state since the last call to | 187 | * Forward the current clock to update its state since the last call to |
| 67 | * update_wall_time(). This is useful before significant clock changes, | 188 | * update_wall_time(). This is useful before significant clock changes, |
| 68 | * as it avoids having to deal with this time offset explicitly. | 189 | * as it avoids having to deal with this time offset explicitly. |
| 69 | */ | 190 | */ |
| 70 | static void clocksource_forward_now(void) | 191 | static void timekeeping_forward_now(void) |
| 71 | { | 192 | { |
| 72 | cycle_t cycle_now, cycle_delta; | 193 | cycle_t cycle_now, cycle_delta; |
| 194 | struct clocksource *clock; | ||
| 73 | s64 nsec; | 195 | s64 nsec; |
| 74 | 196 | ||
| 75 | cycle_now = clocksource_read(clock); | 197 | clock = timekeeper.clock; |
| 198 | cycle_now = clock->read(clock); | ||
| 76 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 199 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| 77 | clock->cycle_last = cycle_now; | 200 | clock->cycle_last = cycle_now; |
| 78 | 201 | ||
| 79 | nsec = cyc2ns(clock, cycle_delta); | 202 | nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
| 203 | timekeeper.shift); | ||
| 80 | 204 | ||
| 81 | /* If arch requires, add in gettimeoffset() */ | 205 | /* If arch requires, add in gettimeoffset() */ |
| 82 | nsec += arch_gettimeoffset(); | 206 | nsec += arch_gettimeoffset(); |
| 83 | 207 | ||
| 84 | timespec_add_ns(&xtime, nsec); | 208 | timespec_add_ns(&xtime, nsec); |
| 85 | 209 | ||
| 86 | nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | 210 | nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
| 87 | clock->raw_time.tv_nsec += nsec; | 211 | timespec_add_ns(&raw_time, nsec); |
| 88 | } | 212 | } |
| 89 | 213 | ||
| 90 | /** | 214 | /** |
| @@ -95,7 +219,6 @@ static void clocksource_forward_now(void) | |||
| 95 | */ | 219 | */ |
| 96 | void getnstimeofday(struct timespec *ts) | 220 | void getnstimeofday(struct timespec *ts) |
| 97 | { | 221 | { |
| 98 | cycle_t cycle_now, cycle_delta; | ||
| 99 | unsigned long seq; | 222 | unsigned long seq; |
| 100 | s64 nsecs; | 223 | s64 nsecs; |
| 101 | 224 | ||
| @@ -105,15 +228,7 @@ void getnstimeofday(struct timespec *ts) | |||
| 105 | seq = read_seqbegin(&xtime_lock); | 228 | seq = read_seqbegin(&xtime_lock); |
| 106 | 229 | ||
| 107 | *ts = xtime; | 230 | *ts = xtime; |
| 108 | 231 | nsecs = timekeeping_get_ns(); | |
| 109 | /* read clocksource: */ | ||
| 110 | cycle_now = clocksource_read(clock); | ||
| 111 | |||
| 112 | /* calculate the delta since the last update_wall_time: */ | ||
| 113 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 114 | |||
| 115 | /* convert to nanoseconds: */ | ||
| 116 | nsecs = cyc2ns(clock, cycle_delta); | ||
| 117 | 232 | ||
| 118 | /* If arch requires, add in gettimeoffset() */ | 233 | /* If arch requires, add in gettimeoffset() */ |
| 119 | nsecs += arch_gettimeoffset(); | 234 | nsecs += arch_gettimeoffset(); |
| @@ -125,6 +240,57 @@ void getnstimeofday(struct timespec *ts) | |||
| 125 | 240 | ||
| 126 | EXPORT_SYMBOL(getnstimeofday); | 241 | EXPORT_SYMBOL(getnstimeofday); |
| 127 | 242 | ||
| 243 | ktime_t ktime_get(void) | ||
| 244 | { | ||
| 245 | unsigned int seq; | ||
| 246 | s64 secs, nsecs; | ||
| 247 | |||
| 248 | WARN_ON(timekeeping_suspended); | ||
| 249 | |||
| 250 | do { | ||
| 251 | seq = read_seqbegin(&xtime_lock); | ||
| 252 | secs = xtime.tv_sec + wall_to_monotonic.tv_sec; | ||
| 253 | nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; | ||
| 254 | nsecs += timekeeping_get_ns(); | ||
| 255 | |||
| 256 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 257 | /* | ||
| 258 | * Use ktime_set/ktime_add_ns to create a proper ktime on | ||
| 259 | * 32-bit architectures without CONFIG_KTIME_SCALAR. | ||
| 260 | */ | ||
| 261 | return ktime_add_ns(ktime_set(secs, 0), nsecs); | ||
| 262 | } | ||
| 263 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 264 | |||
| 265 | /** | ||
| 266 | * ktime_get_ts - get the monotonic clock in timespec format | ||
| 267 | * @ts: pointer to timespec variable | ||
| 268 | * | ||
| 269 | * The function calculates the monotonic clock from the realtime | ||
| 270 | * clock and the wall_to_monotonic offset and stores the result | ||
| 271 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 272 | */ | ||
| 273 | void ktime_get_ts(struct timespec *ts) | ||
| 274 | { | ||
| 275 | struct timespec tomono; | ||
| 276 | unsigned int seq; | ||
| 277 | s64 nsecs; | ||
| 278 | |||
| 279 | WARN_ON(timekeeping_suspended); | ||
| 280 | |||
| 281 | do { | ||
| 282 | seq = read_seqbegin(&xtime_lock); | ||
| 283 | *ts = xtime; | ||
| 284 | tomono = wall_to_monotonic; | ||
| 285 | nsecs = timekeeping_get_ns(); | ||
| 286 | |||
| 287 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 288 | |||
| 289 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 290 | ts->tv_nsec + tomono.tv_nsec + nsecs); | ||
| 291 | } | ||
| 292 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
| 293 | |||
| 128 | /** | 294 | /** |
| 129 | * do_gettimeofday - Returns the time of day in a timeval | 295 | * do_gettimeofday - Returns the time of day in a timeval |
| 130 | * @tv: pointer to the timeval to be set | 296 | * @tv: pointer to the timeval to be set |
| @@ -157,7 +323,7 @@ int do_settimeofday(struct timespec *tv) | |||
| 157 | 323 | ||
| 158 | write_seqlock_irqsave(&xtime_lock, flags); | 324 | write_seqlock_irqsave(&xtime_lock, flags); |
| 159 | 325 | ||
| 160 | clocksource_forward_now(); | 326 | timekeeping_forward_now(); |
| 161 | 327 | ||
| 162 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; | 328 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; |
| 163 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; | 329 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; |
| @@ -167,10 +333,10 @@ int do_settimeofday(struct timespec *tv) | |||
| 167 | 333 | ||
| 168 | update_xtime_cache(0); | 334 | update_xtime_cache(0); |
| 169 | 335 | ||
| 170 | clock->error = 0; | 336 | timekeeper.ntp_error = 0; |
| 171 | ntp_clear(); | 337 | ntp_clear(); |
| 172 | 338 | ||
| 173 | update_vsyscall(&xtime, clock); | 339 | update_vsyscall(&xtime, timekeeper.clock); |
| 174 | 340 | ||
| 175 | write_sequnlock_irqrestore(&xtime_lock, flags); | 341 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 176 | 342 | ||
| @@ -187,44 +353,97 @@ EXPORT_SYMBOL(do_settimeofday); | |||
| 187 | * | 353 | * |
| 188 | * Accumulates current time interval and initializes new clocksource | 354 | * Accumulates current time interval and initializes new clocksource |
| 189 | */ | 355 | */ |
| 190 | static void change_clocksource(void) | 356 | static int change_clocksource(void *data) |
| 191 | { | 357 | { |
| 192 | struct clocksource *new, *old; | 358 | struct clocksource *new, *old; |
| 193 | 359 | ||
| 194 | new = clocksource_get_next(); | 360 | new = (struct clocksource *) data; |
| 361 | |||
| 362 | timekeeping_forward_now(); | ||
| 363 | if (!new->enable || new->enable(new) == 0) { | ||
| 364 | old = timekeeper.clock; | ||
| 365 | timekeeper_setup_internals(new); | ||
| 366 | if (old->disable) | ||
| 367 | old->disable(old); | ||
| 368 | } | ||
| 369 | return 0; | ||
| 370 | } | ||
| 195 | 371 | ||
| 196 | if (clock == new) | 372 | /** |
| 373 | * timekeeping_notify - Install a new clock source | ||
| 374 | * @clock: pointer to the clock source | ||
| 375 | * | ||
| 376 | * This function is called from clocksource.c after a new, better clock | ||
| 377 | * source has been registered. The caller holds the clocksource_mutex. | ||
| 378 | */ | ||
| 379 | void timekeeping_notify(struct clocksource *clock) | ||
| 380 | { | ||
| 381 | if (timekeeper.clock == clock) | ||
| 197 | return; | 382 | return; |
| 383 | stop_machine(change_clocksource, clock, NULL); | ||
| 384 | tick_clock_notify(); | ||
| 385 | } | ||
| 198 | 386 | ||
| 199 | clocksource_forward_now(); | 387 | #else /* GENERIC_TIME */ |
| 200 | 388 | ||
| 201 | if (clocksource_enable(new)) | 389 | static inline void timekeeping_forward_now(void) { } |
| 202 | return; | ||
| 203 | 390 | ||
| 204 | new->raw_time = clock->raw_time; | 391 | /** |
| 205 | old = clock; | 392 | * ktime_get - get the monotonic time in ktime_t format |
| 206 | clock = new; | 393 | * |
| 207 | clocksource_disable(old); | 394 | * returns the time in ktime_t format |
| 395 | */ | ||
| 396 | ktime_t ktime_get(void) | ||
| 397 | { | ||
| 398 | struct timespec now; | ||
| 208 | 399 | ||
| 209 | clock->cycle_last = 0; | 400 | ktime_get_ts(&now); |
| 210 | clock->cycle_last = clocksource_read(clock); | ||
| 211 | clock->error = 0; | ||
| 212 | clock->xtime_nsec = 0; | ||
| 213 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | ||
| 214 | 401 | ||
| 215 | tick_clock_notify(); | 402 | return timespec_to_ktime(now); |
| 403 | } | ||
| 404 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 216 | 405 | ||
| 217 | /* | 406 | /** |
| 218 | * We're holding xtime lock and waking up klogd would deadlock | 407 | * ktime_get_ts - get the monotonic clock in timespec format |
| 219 | * us on enqueue. So no printing! | 408 | * @ts: pointer to timespec variable |
| 220 | printk(KERN_INFO "Time: %s clocksource has been installed.\n", | 409 | * |
| 221 | clock->name); | 410 | * The function calculates the monotonic clock from the realtime |
| 222 | */ | 411 | * clock and the wall_to_monotonic offset and stores the result |
| 412 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 413 | */ | ||
| 414 | void ktime_get_ts(struct timespec *ts) | ||
| 415 | { | ||
| 416 | struct timespec tomono; | ||
| 417 | unsigned long seq; | ||
| 418 | |||
| 419 | do { | ||
| 420 | seq = read_seqbegin(&xtime_lock); | ||
| 421 | getnstimeofday(ts); | ||
| 422 | tomono = wall_to_monotonic; | ||
| 423 | |||
| 424 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 425 | |||
| 426 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 427 | ts->tv_nsec + tomono.tv_nsec); | ||
| 223 | } | 428 | } |
| 224 | #else | 429 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
| 225 | static inline void clocksource_forward_now(void) { } | 430 | |
| 226 | static inline void change_clocksource(void) { } | 431 | #endif /* !GENERIC_TIME */ |
| 227 | #endif | 432 | |
| 433 | /** | ||
| 434 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
| 435 | * | ||
| 436 | * returns the time in ktime_t format | ||
| 437 | */ | ||
| 438 | ktime_t ktime_get_real(void) | ||
| 439 | { | ||
| 440 | struct timespec now; | ||
| 441 | |||
| 442 | getnstimeofday(&now); | ||
| 443 | |||
| 444 | return timespec_to_ktime(now); | ||
| 445 | } | ||
| 446 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
| 228 | 447 | ||
| 229 | /** | 448 | /** |
| 230 | * getrawmonotonic - Returns the raw monotonic time in a timespec | 449 | * getrawmonotonic - Returns the raw monotonic time in a timespec |
| @@ -236,21 +455,11 @@ void getrawmonotonic(struct timespec *ts) | |||
| 236 | { | 455 | { |
| 237 | unsigned long seq; | 456 | unsigned long seq; |
| 238 | s64 nsecs; | 457 | s64 nsecs; |
| 239 | cycle_t cycle_now, cycle_delta; | ||
| 240 | 458 | ||
| 241 | do { | 459 | do { |
| 242 | seq = read_seqbegin(&xtime_lock); | 460 | seq = read_seqbegin(&xtime_lock); |
| 243 | 461 | nsecs = timekeeping_get_ns_raw(); | |
| 244 | /* read clocksource: */ | 462 | *ts = raw_time; |
| 245 | cycle_now = clocksource_read(clock); | ||
| 246 | |||
| 247 | /* calculate the delta since the last update_wall_time: */ | ||
| 248 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 249 | |||
| 250 | /* convert to nanoseconds: */ | ||
| 251 | nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | ||
| 252 | |||
| 253 | *ts = clock->raw_time; | ||
| 254 | 463 | ||
| 255 | } while (read_seqretry(&xtime_lock, seq)); | 464 | } while (read_seqretry(&xtime_lock, seq)); |
| 256 | 465 | ||
| @@ -270,7 +479,7 @@ int timekeeping_valid_for_hres(void) | |||
| 270 | do { | 479 | do { |
| 271 | seq = read_seqbegin(&xtime_lock); | 480 | seq = read_seqbegin(&xtime_lock); |
| 272 | 481 | ||
| 273 | ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 482 | ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
| 274 | 483 | ||
| 275 | } while (read_seqretry(&xtime_lock, seq)); | 484 | } while (read_seqretry(&xtime_lock, seq)); |
| 276 | 485 | ||
| @@ -278,17 +487,33 @@ int timekeeping_valid_for_hres(void) | |||
| 278 | } | 487 | } |
| 279 | 488 | ||
| 280 | /** | 489 | /** |
| 281 | * read_persistent_clock - Return time in seconds from the persistent clock. | 490 | * read_persistent_clock - Return time from the persistent clock. |
| 282 | * | 491 | * |
| 283 | * Weak dummy function for arches that do not yet support it. | 492 | * Weak dummy function for arches that do not yet support it. |
| 284 | * Returns seconds from epoch using the battery backed persistent clock. | 493 | * Reads the time from the battery backed persistent clock. |
| 285 | * Returns zero if unsupported. | 494 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| 286 | * | 495 | * |
| 287 | * XXX - Do be sure to remove it once all arches implement it. | 496 | * XXX - Do be sure to remove it once all arches implement it. |
| 288 | */ | 497 | */ |
| 289 | unsigned long __attribute__((weak)) read_persistent_clock(void) | 498 | void __attribute__((weak)) read_persistent_clock(struct timespec *ts) |
| 290 | { | 499 | { |
| 291 | return 0; | 500 | ts->tv_sec = 0; |
| 501 | ts->tv_nsec = 0; | ||
| 502 | } | ||
| 503 | |||
| 504 | /** | ||
| 505 | * read_boot_clock - Return time of the system start. | ||
| 506 | * | ||
| 507 | * Weak dummy function for arches that do not yet support it. | ||
| 508 | * Function to read the exact time the system has been started. | ||
| 509 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | ||
| 510 | * | ||
| 511 | * XXX - Do be sure to remove it once all arches implement it. | ||
| 512 | */ | ||
| 513 | void __attribute__((weak)) read_boot_clock(struct timespec *ts) | ||
| 514 | { | ||
| 515 | ts->tv_sec = 0; | ||
| 516 | ts->tv_nsec = 0; | ||
| 292 | } | 517 | } |
| 293 | 518 | ||
| 294 | /* | 519 | /* |
| @@ -296,29 +521,40 @@ unsigned long __attribute__((weak)) read_persistent_clock(void) | |||
| 296 | */ | 521 | */ |
| 297 | void __init timekeeping_init(void) | 522 | void __init timekeeping_init(void) |
| 298 | { | 523 | { |
| 524 | struct clocksource *clock; | ||
| 299 | unsigned long flags; | 525 | unsigned long flags; |
| 300 | unsigned long sec = read_persistent_clock(); | 526 | struct timespec now, boot; |
| 527 | |||
| 528 | read_persistent_clock(&now); | ||
| 529 | read_boot_clock(&boot); | ||
| 301 | 530 | ||
| 302 | write_seqlock_irqsave(&xtime_lock, flags); | 531 | write_seqlock_irqsave(&xtime_lock, flags); |
| 303 | 532 | ||
| 304 | ntp_init(); | 533 | ntp_init(); |
| 305 | 534 | ||
| 306 | clock = clocksource_get_next(); | 535 | clock = clocksource_default_clock(); |
| 307 | clocksource_enable(clock); | 536 | if (clock->enable) |
| 308 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | 537 | clock->enable(clock); |
| 309 | clock->cycle_last = clocksource_read(clock); | 538 | timekeeper_setup_internals(clock); |
| 310 | 539 | ||
| 311 | xtime.tv_sec = sec; | 540 | xtime.tv_sec = now.tv_sec; |
| 312 | xtime.tv_nsec = 0; | 541 | xtime.tv_nsec = now.tv_nsec; |
| 542 | raw_time.tv_sec = 0; | ||
| 543 | raw_time.tv_nsec = 0; | ||
| 544 | if (boot.tv_sec == 0 && boot.tv_nsec == 0) { | ||
| 545 | boot.tv_sec = xtime.tv_sec; | ||
| 546 | boot.tv_nsec = xtime.tv_nsec; | ||
| 547 | } | ||
| 313 | set_normalized_timespec(&wall_to_monotonic, | 548 | set_normalized_timespec(&wall_to_monotonic, |
| 314 | -xtime.tv_sec, -xtime.tv_nsec); | 549 | -boot.tv_sec, -boot.tv_nsec); |
| 315 | update_xtime_cache(0); | 550 | update_xtime_cache(0); |
| 316 | total_sleep_time = 0; | 551 | total_sleep_time.tv_sec = 0; |
| 552 | total_sleep_time.tv_nsec = 0; | ||
| 317 | write_sequnlock_irqrestore(&xtime_lock, flags); | 553 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 318 | } | 554 | } |
| 319 | 555 | ||
| 320 | /* time in seconds when suspend began */ | 556 | /* time in seconds when suspend began */ |
| 321 | static unsigned long timekeeping_suspend_time; | 557 | static struct timespec timekeeping_suspend_time; |
| 322 | 558 | ||
| 323 | /** | 559 | /** |
| 324 | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 560 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
| @@ -331,24 +567,24 @@ static unsigned long timekeeping_suspend_time; | |||
| 331 | static int timekeeping_resume(struct sys_device *dev) | 567 | static int timekeeping_resume(struct sys_device *dev) |
| 332 | { | 568 | { |
| 333 | unsigned long flags; | 569 | unsigned long flags; |
| 334 | unsigned long now = read_persistent_clock(); | 570 | struct timespec ts; |
| 571 | |||
| 572 | read_persistent_clock(&ts); | ||
| 335 | 573 | ||
| 336 | clocksource_resume(); | 574 | clocksource_resume(); |
| 337 | 575 | ||
| 338 | write_seqlock_irqsave(&xtime_lock, flags); | 576 | write_seqlock_irqsave(&xtime_lock, flags); |
| 339 | 577 | ||
| 340 | if (now && (now > timekeeping_suspend_time)) { | 578 | if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { |
| 341 | unsigned long sleep_length = now - timekeeping_suspend_time; | 579 | ts = timespec_sub(ts, timekeeping_suspend_time); |
| 342 | 580 | xtime = timespec_add_safe(xtime, ts); | |
| 343 | xtime.tv_sec += sleep_length; | 581 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
| 344 | wall_to_monotonic.tv_sec -= sleep_length; | 582 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); |
| 345 | total_sleep_time += sleep_length; | ||
| 346 | } | 583 | } |
| 347 | update_xtime_cache(0); | 584 | update_xtime_cache(0); |
| 348 | /* re-base the last cycle value */ | 585 | /* re-base the last cycle value */ |
| 349 | clock->cycle_last = 0; | 586 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
| 350 | clock->cycle_last = clocksource_read(clock); | 587 | timekeeper.ntp_error = 0; |
| 351 | clock->error = 0; | ||
| 352 | timekeeping_suspended = 0; | 588 | timekeeping_suspended = 0; |
| 353 | write_sequnlock_irqrestore(&xtime_lock, flags); | 589 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 354 | 590 | ||
| @@ -366,10 +602,10 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) | |||
| 366 | { | 602 | { |
| 367 | unsigned long flags; | 603 | unsigned long flags; |
| 368 | 604 | ||
| 369 | timekeeping_suspend_time = read_persistent_clock(); | 605 | read_persistent_clock(&timekeeping_suspend_time); |
| 370 | 606 | ||
| 371 | write_seqlock_irqsave(&xtime_lock, flags); | 607 | write_seqlock_irqsave(&xtime_lock, flags); |
| 372 | clocksource_forward_now(); | 608 | timekeeping_forward_now(); |
| 373 | timekeeping_suspended = 1; | 609 | timekeeping_suspended = 1; |
| 374 | write_sequnlock_irqrestore(&xtime_lock, flags); | 610 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 375 | 611 | ||
| @@ -404,7 +640,7 @@ device_initcall(timekeeping_init_device); | |||
| 404 | * If the error is already larger, we look ahead even further | 640 | * If the error is already larger, we look ahead even further |
| 405 | * to compensate for late or lost adjustments. | 641 | * to compensate for late or lost adjustments. |
| 406 | */ | 642 | */ |
| 407 | static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | 643 | static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, |
| 408 | s64 *offset) | 644 | s64 *offset) |
| 409 | { | 645 | { |
| 410 | s64 tick_error, i; | 646 | s64 tick_error, i; |
| @@ -420,7 +656,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 420 | * here. This is tuned so that an error of about 1 msec is adjusted | 656 | * here. This is tuned so that an error of about 1 msec is adjusted |
| 421 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | 657 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
| 422 | */ | 658 | */ |
| 423 | error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); | 659 | error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
| 424 | error2 = abs(error2); | 660 | error2 = abs(error2); |
| 425 | for (look_ahead = 0; error2 > 0; look_ahead++) | 661 | for (look_ahead = 0; error2 > 0; look_ahead++) |
| 426 | error2 >>= 2; | 662 | error2 >>= 2; |
| @@ -429,8 +665,8 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 429 | * Now calculate the error in (1 << look_ahead) ticks, but first | 665 | * Now calculate the error in (1 << look_ahead) ticks, but first |
| 430 | * remove the single look ahead already included in the error. | 666 | * remove the single look ahead already included in the error. |
| 431 | */ | 667 | */ |
| 432 | tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); | 668 | tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); |
| 433 | tick_error -= clock->xtime_interval >> 1; | 669 | tick_error -= timekeeper.xtime_interval >> 1; |
| 434 | error = ((error - tick_error) >> look_ahead) + tick_error; | 670 | error = ((error - tick_error) >> look_ahead) + tick_error; |
| 435 | 671 | ||
| 436 | /* Finally calculate the adjustment shift value. */ | 672 | /* Finally calculate the adjustment shift value. */ |
| @@ -455,18 +691,18 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 455 | * this is optimized for the most common adjustments of -1,0,1, | 691 | * this is optimized for the most common adjustments of -1,0,1, |
| 456 | * for other values we can do a bit more work. | 692 | * for other values we can do a bit more work. |
| 457 | */ | 693 | */ |
| 458 | static void clocksource_adjust(s64 offset) | 694 | static void timekeeping_adjust(s64 offset) |
| 459 | { | 695 | { |
| 460 | s64 error, interval = clock->cycle_interval; | 696 | s64 error, interval = timekeeper.cycle_interval; |
| 461 | int adj; | 697 | int adj; |
| 462 | 698 | ||
| 463 | error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); | 699 | error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); |
| 464 | if (error > interval) { | 700 | if (error > interval) { |
| 465 | error >>= 2; | 701 | error >>= 2; |
| 466 | if (likely(error <= interval)) | 702 | if (likely(error <= interval)) |
| 467 | adj = 1; | 703 | adj = 1; |
| 468 | else | 704 | else |
| 469 | adj = clocksource_bigadjust(error, &interval, &offset); | 705 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 470 | } else if (error < -interval) { | 706 | } else if (error < -interval) { |
| 471 | error >>= 2; | 707 | error >>= 2; |
| 472 | if (likely(error >= -interval)) { | 708 | if (likely(error >= -interval)) { |
| @@ -474,15 +710,15 @@ static void clocksource_adjust(s64 offset) | |||
| 474 | interval = -interval; | 710 | interval = -interval; |
| 475 | offset = -offset; | 711 | offset = -offset; |
| 476 | } else | 712 | } else |
| 477 | adj = clocksource_bigadjust(error, &interval, &offset); | 713 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 478 | } else | 714 | } else |
| 479 | return; | 715 | return; |
| 480 | 716 | ||
| 481 | clock->mult += adj; | 717 | timekeeper.mult += adj; |
| 482 | clock->xtime_interval += interval; | 718 | timekeeper.xtime_interval += interval; |
| 483 | clock->xtime_nsec -= offset; | 719 | timekeeper.xtime_nsec -= offset; |
| 484 | clock->error -= (interval - offset) << | 720 | timekeeper.ntp_error -= (interval - offset) << |
| 485 | (NTP_SCALE_SHIFT - clock->shift); | 721 | timekeeper.ntp_error_shift; |
| 486 | } | 722 | } |
| 487 | 723 | ||
| 488 | /** | 724 | /** |
| @@ -492,53 +728,59 @@ static void clocksource_adjust(s64 offset) | |||
| 492 | */ | 728 | */ |
| 493 | void update_wall_time(void) | 729 | void update_wall_time(void) |
| 494 | { | 730 | { |
| 731 | struct clocksource *clock; | ||
| 495 | cycle_t offset; | 732 | cycle_t offset; |
| 733 | u64 nsecs; | ||
| 496 | 734 | ||
| 497 | /* Make sure we're fully resumed: */ | 735 | /* Make sure we're fully resumed: */ |
| 498 | if (unlikely(timekeeping_suspended)) | 736 | if (unlikely(timekeeping_suspended)) |
| 499 | return; | 737 | return; |
| 500 | 738 | ||
| 739 | clock = timekeeper.clock; | ||
| 501 | #ifdef CONFIG_GENERIC_TIME | 740 | #ifdef CONFIG_GENERIC_TIME |
| 502 | offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; | 741 | offset = (clock->read(clock) - clock->cycle_last) & clock->mask; |
| 503 | #else | 742 | #else |
| 504 | offset = clock->cycle_interval; | 743 | offset = timekeeper.cycle_interval; |
| 505 | #endif | 744 | #endif |
| 506 | clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift; | 745 | timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; |
| 507 | 746 | ||
| 508 | /* normally this loop will run just once, however in the | 747 | /* normally this loop will run just once, however in the |
| 509 | * case of lost or late ticks, it will accumulate correctly. | 748 | * case of lost or late ticks, it will accumulate correctly. |
| 510 | */ | 749 | */ |
| 511 | while (offset >= clock->cycle_interval) { | 750 | while (offset >= timekeeper.cycle_interval) { |
| 751 | u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; | ||
| 752 | |||
| 512 | /* accumulate one interval */ | 753 | /* accumulate one interval */ |
| 513 | offset -= clock->cycle_interval; | 754 | offset -= timekeeper.cycle_interval; |
| 514 | clock->cycle_last += clock->cycle_interval; | 755 | clock->cycle_last += timekeeper.cycle_interval; |
| 515 | 756 | ||
| 516 | clock->xtime_nsec += clock->xtime_interval; | 757 | timekeeper.xtime_nsec += timekeeper.xtime_interval; |
| 517 | if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { | 758 | if (timekeeper.xtime_nsec >= nsecps) { |
| 518 | clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; | 759 | timekeeper.xtime_nsec -= nsecps; |
| 519 | xtime.tv_sec++; | 760 | xtime.tv_sec++; |
| 520 | second_overflow(); | 761 | second_overflow(); |
| 521 | } | 762 | } |
| 522 | 763 | ||
| 523 | clock->raw_time.tv_nsec += clock->raw_interval; | 764 | raw_time.tv_nsec += timekeeper.raw_interval; |
| 524 | if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) { | 765 | if (raw_time.tv_nsec >= NSEC_PER_SEC) { |
| 525 | clock->raw_time.tv_nsec -= NSEC_PER_SEC; | 766 | raw_time.tv_nsec -= NSEC_PER_SEC; |
| 526 | clock->raw_time.tv_sec++; | 767 | raw_time.tv_sec++; |
| 527 | } | 768 | } |
| 528 | 769 | ||
| 529 | /* accumulate error between NTP and clock interval */ | 770 | /* accumulate error between NTP and clock interval */ |
| 530 | clock->error += tick_length; | 771 | timekeeper.ntp_error += tick_length; |
| 531 | clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); | 772 | timekeeper.ntp_error -= timekeeper.xtime_interval << |
| 773 | timekeeper.ntp_error_shift; | ||
| 532 | } | 774 | } |
| 533 | 775 | ||
| 534 | /* correct the clock when NTP error is too big */ | 776 | /* correct the clock when NTP error is too big */ |
| 535 | clocksource_adjust(offset); | 777 | timekeeping_adjust(offset); |
| 536 | 778 | ||
| 537 | /* | 779 | /* |
| 538 | * Since in the loop above, we accumulate any amount of time | 780 | * Since in the loop above, we accumulate any amount of time |
| 539 | * in xtime_nsec over a second into xtime.tv_sec, its possible for | 781 | * in xtime_nsec over a second into xtime.tv_sec, its possible for |
| 540 | * xtime_nsec to be fairly small after the loop. Further, if we're | 782 | * xtime_nsec to be fairly small after the loop. Further, if we're |
| 541 | * slightly speeding the clocksource up in clocksource_adjust(), | 783 | * slightly speeding the clocksource up in timekeeping_adjust(), |
| 542 | * its possible the required corrective factor to xtime_nsec could | 784 | * its possible the required corrective factor to xtime_nsec could |
| 543 | * cause it to underflow. | 785 | * cause it to underflow. |
| 544 | * | 786 | * |
| @@ -550,24 +792,25 @@ void update_wall_time(void) | |||
| 550 | * We'll correct this error next time through this function, when | 792 | * We'll correct this error next time through this function, when |
| 551 | * xtime_nsec is not as small. | 793 | * xtime_nsec is not as small. |
| 552 | */ | 794 | */ |
| 553 | if (unlikely((s64)clock->xtime_nsec < 0)) { | 795 | if (unlikely((s64)timekeeper.xtime_nsec < 0)) { |
| 554 | s64 neg = -(s64)clock->xtime_nsec; | 796 | s64 neg = -(s64)timekeeper.xtime_nsec; |
| 555 | clock->xtime_nsec = 0; | 797 | timekeeper.xtime_nsec = 0; |
| 556 | clock->error += neg << (NTP_SCALE_SHIFT - clock->shift); | 798 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
| 557 | } | 799 | } |
| 558 | 800 | ||
| 559 | /* store full nanoseconds into xtime after rounding it up and | 801 | /* store full nanoseconds into xtime after rounding it up and |
| 560 | * add the remainder to the error difference. | 802 | * add the remainder to the error difference. |
| 561 | */ | 803 | */ |
| 562 | xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1; | 804 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
| 563 | clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; | 805 | timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; |
| 564 | clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift); | 806 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
| 807 | timekeeper.ntp_error_shift; | ||
| 565 | 808 | ||
| 566 | update_xtime_cache(cyc2ns(clock, offset)); | 809 | nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); |
| 810 | update_xtime_cache(nsecs); | ||
| 567 | 811 | ||
| 568 | /* check to see if there is a new clocksource to use */ | 812 | /* check to see if there is a new clocksource to use */ |
| 569 | change_clocksource(); | 813 | update_vsyscall(&xtime, timekeeper.clock); |
| 570 | update_vsyscall(&xtime, clock); | ||
| 571 | } | 814 | } |
| 572 | 815 | ||
| 573 | /** | 816 | /** |
| @@ -583,9 +826,12 @@ void update_wall_time(void) | |||
| 583 | */ | 826 | */ |
| 584 | void getboottime(struct timespec *ts) | 827 | void getboottime(struct timespec *ts) |
| 585 | { | 828 | { |
| 586 | set_normalized_timespec(ts, | 829 | struct timespec boottime = { |
| 587 | - (wall_to_monotonic.tv_sec + total_sleep_time), | 830 | .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, |
| 588 | - wall_to_monotonic.tv_nsec); | 831 | .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec |
| 832 | }; | ||
| 833 | |||
| 834 | set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); | ||
| 589 | } | 835 | } |
| 590 | 836 | ||
| 591 | /** | 837 | /** |
| @@ -594,7 +840,7 @@ void getboottime(struct timespec *ts) | |||
| 594 | */ | 840 | */ |
| 595 | void monotonic_to_bootbased(struct timespec *ts) | 841 | void monotonic_to_bootbased(struct timespec *ts) |
| 596 | { | 842 | { |
| 597 | ts->tv_sec += total_sleep_time; | 843 | *ts = timespec_add_safe(*ts, total_sleep_time); |
| 598 | } | 844 | } |
| 599 | 845 | ||
| 600 | unsigned long get_seconds(void) | 846 | unsigned long get_seconds(void) |
| @@ -603,6 +849,10 @@ unsigned long get_seconds(void) | |||
| 603 | } | 849 | } |
| 604 | EXPORT_SYMBOL(get_seconds); | 850 | EXPORT_SYMBOL(get_seconds); |
| 605 | 851 | ||
| 852 | struct timespec __current_kernel_time(void) | ||
| 853 | { | ||
| 854 | return xtime_cache; | ||
| 855 | } | ||
| 606 | 856 | ||
| 607 | struct timespec current_kernel_time(void) | 857 | struct timespec current_kernel_time(void) |
| 608 | { | 858 | { |
| @@ -618,3 +868,20 @@ struct timespec current_kernel_time(void) | |||
| 618 | return now; | 868 | return now; |
| 619 | } | 869 | } |
| 620 | EXPORT_SYMBOL(current_kernel_time); | 870 | EXPORT_SYMBOL(current_kernel_time); |
| 871 | |||
| 872 | struct timespec get_monotonic_coarse(void) | ||
| 873 | { | ||
| 874 | struct timespec now, mono; | ||
| 875 | unsigned long seq; | ||
| 876 | |||
| 877 | do { | ||
| 878 | seq = read_seqbegin(&xtime_lock); | ||
| 879 | |||
| 880 | now = xtime_cache; | ||
| 881 | mono = wall_to_monotonic; | ||
| 882 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 883 | |||
| 884 | set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, | ||
| 885 | now.tv_nsec + mono.tv_nsec); | ||
| 886 | return now; | ||
| 887 | } | ||
diff --git a/kernel/timer.c b/kernel/timer.c index a3d25f415019..5db5a8d26811 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -37,7 +37,7 @@ | |||
| 37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
| 38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
| 39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
| 40 | #include <linux/perf_counter.h> | 40 | #include <linux/perf_event.h> |
| 41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
| 42 | 42 | ||
| 43 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
| @@ -46,6 +46,9 @@ | |||
| 46 | #include <asm/timex.h> | 46 | #include <asm/timex.h> |
| 47 | #include <asm/io.h> | 47 | #include <asm/io.h> |
| 48 | 48 | ||
| 49 | #define CREATE_TRACE_POINTS | ||
| 50 | #include <trace/events/timer.h> | ||
| 51 | |||
| 49 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 52 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
| 50 | 53 | ||
| 51 | EXPORT_SYMBOL(jiffies_64); | 54 | EXPORT_SYMBOL(jiffies_64); |
| @@ -72,6 +75,7 @@ struct tvec_base { | |||
| 72 | spinlock_t lock; | 75 | spinlock_t lock; |
| 73 | struct timer_list *running_timer; | 76 | struct timer_list *running_timer; |
| 74 | unsigned long timer_jiffies; | 77 | unsigned long timer_jiffies; |
| 78 | unsigned long next_timer; | ||
| 75 | struct tvec_root tv1; | 79 | struct tvec_root tv1; |
| 76 | struct tvec tv2; | 80 | struct tvec tv2; |
| 77 | struct tvec tv3; | 81 | struct tvec tv3; |
| @@ -520,6 +524,25 @@ static inline void debug_timer_activate(struct timer_list *timer) { } | |||
| 520 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | 524 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
| 521 | #endif | 525 | #endif |
| 522 | 526 | ||
| 527 | static inline void debug_init(struct timer_list *timer) | ||
| 528 | { | ||
| 529 | debug_timer_init(timer); | ||
| 530 | trace_timer_init(timer); | ||
| 531 | } | ||
| 532 | |||
| 533 | static inline void | ||
| 534 | debug_activate(struct timer_list *timer, unsigned long expires) | ||
| 535 | { | ||
| 536 | debug_timer_activate(timer); | ||
| 537 | trace_timer_start(timer, expires); | ||
| 538 | } | ||
| 539 | |||
| 540 | static inline void debug_deactivate(struct timer_list *timer) | ||
| 541 | { | ||
| 542 | debug_timer_deactivate(timer); | ||
| 543 | trace_timer_cancel(timer); | ||
| 544 | } | ||
| 545 | |||
| 523 | static void __init_timer(struct timer_list *timer, | 546 | static void __init_timer(struct timer_list *timer, |
| 524 | const char *name, | 547 | const char *name, |
| 525 | struct lock_class_key *key) | 548 | struct lock_class_key *key) |
| @@ -548,7 +571,7 @@ void init_timer_key(struct timer_list *timer, | |||
| 548 | const char *name, | 571 | const char *name, |
| 549 | struct lock_class_key *key) | 572 | struct lock_class_key *key) |
| 550 | { | 573 | { |
| 551 | debug_timer_init(timer); | 574 | debug_init(timer); |
| 552 | __init_timer(timer, name, key); | 575 | __init_timer(timer, name, key); |
| 553 | } | 576 | } |
| 554 | EXPORT_SYMBOL(init_timer_key); | 577 | EXPORT_SYMBOL(init_timer_key); |
| @@ -567,7 +590,7 @@ static inline void detach_timer(struct timer_list *timer, | |||
| 567 | { | 590 | { |
| 568 | struct list_head *entry = &timer->entry; | 591 | struct list_head *entry = &timer->entry; |
| 569 | 592 | ||
| 570 | debug_timer_deactivate(timer); | 593 | debug_deactivate(timer); |
| 571 | 594 | ||
| 572 | __list_del(entry->prev, entry->next); | 595 | __list_del(entry->prev, entry->next); |
| 573 | if (clear_pending) | 596 | if (clear_pending) |
| @@ -622,13 +645,16 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
| 622 | 645 | ||
| 623 | if (timer_pending(timer)) { | 646 | if (timer_pending(timer)) { |
| 624 | detach_timer(timer, 0); | 647 | detach_timer(timer, 0); |
| 648 | if (timer->expires == base->next_timer && | ||
| 649 | !tbase_get_deferrable(timer->base)) | ||
| 650 | base->next_timer = base->timer_jiffies; | ||
| 625 | ret = 1; | 651 | ret = 1; |
| 626 | } else { | 652 | } else { |
| 627 | if (pending_only) | 653 | if (pending_only) |
| 628 | goto out_unlock; | 654 | goto out_unlock; |
| 629 | } | 655 | } |
| 630 | 656 | ||
| 631 | debug_timer_activate(timer); | 657 | debug_activate(timer, expires); |
| 632 | 658 | ||
| 633 | new_base = __get_cpu_var(tvec_bases); | 659 | new_base = __get_cpu_var(tvec_bases); |
| 634 | 660 | ||
| @@ -663,6 +689,9 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
| 663 | } | 689 | } |
| 664 | 690 | ||
| 665 | timer->expires = expires; | 691 | timer->expires = expires; |
| 692 | if (time_before(timer->expires, base->next_timer) && | ||
| 693 | !tbase_get_deferrable(timer->base)) | ||
| 694 | base->next_timer = timer->expires; | ||
| 666 | internal_add_timer(base, timer); | 695 | internal_add_timer(base, timer); |
| 667 | 696 | ||
| 668 | out_unlock: | 697 | out_unlock: |
| @@ -780,7 +809,10 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
| 780 | BUG_ON(timer_pending(timer) || !timer->function); | 809 | BUG_ON(timer_pending(timer) || !timer->function); |
| 781 | spin_lock_irqsave(&base->lock, flags); | 810 | spin_lock_irqsave(&base->lock, flags); |
| 782 | timer_set_base(timer, base); | 811 | timer_set_base(timer, base); |
| 783 | debug_timer_activate(timer); | 812 | debug_activate(timer, timer->expires); |
| 813 | if (time_before(timer->expires, base->next_timer) && | ||
| 814 | !tbase_get_deferrable(timer->base)) | ||
| 815 | base->next_timer = timer->expires; | ||
| 784 | internal_add_timer(base, timer); | 816 | internal_add_timer(base, timer); |
| 785 | /* | 817 | /* |
| 786 | * Check whether the other CPU is idle and needs to be | 818 | * Check whether the other CPU is idle and needs to be |
| @@ -817,6 +849,9 @@ int del_timer(struct timer_list *timer) | |||
| 817 | base = lock_timer_base(timer, &flags); | 849 | base = lock_timer_base(timer, &flags); |
| 818 | if (timer_pending(timer)) { | 850 | if (timer_pending(timer)) { |
| 819 | detach_timer(timer, 1); | 851 | detach_timer(timer, 1); |
| 852 | if (timer->expires == base->next_timer && | ||
| 853 | !tbase_get_deferrable(timer->base)) | ||
| 854 | base->next_timer = base->timer_jiffies; | ||
| 820 | ret = 1; | 855 | ret = 1; |
| 821 | } | 856 | } |
| 822 | spin_unlock_irqrestore(&base->lock, flags); | 857 | spin_unlock_irqrestore(&base->lock, flags); |
| @@ -850,6 +885,9 @@ int try_to_del_timer_sync(struct timer_list *timer) | |||
| 850 | ret = 0; | 885 | ret = 0; |
| 851 | if (timer_pending(timer)) { | 886 | if (timer_pending(timer)) { |
| 852 | detach_timer(timer, 1); | 887 | detach_timer(timer, 1); |
| 888 | if (timer->expires == base->next_timer && | ||
| 889 | !tbase_get_deferrable(timer->base)) | ||
| 890 | base->next_timer = base->timer_jiffies; | ||
| 853 | ret = 1; | 891 | ret = 1; |
| 854 | } | 892 | } |
| 855 | out: | 893 | out: |
| @@ -984,7 +1022,9 @@ static inline void __run_timers(struct tvec_base *base) | |||
| 984 | */ | 1022 | */ |
| 985 | lock_map_acquire(&lockdep_map); | 1023 | lock_map_acquire(&lockdep_map); |
| 986 | 1024 | ||
| 1025 | trace_timer_expire_entry(timer); | ||
| 987 | fn(data); | 1026 | fn(data); |
| 1027 | trace_timer_expire_exit(timer); | ||
| 988 | 1028 | ||
| 989 | lock_map_release(&lockdep_map); | 1029 | lock_map_release(&lockdep_map); |
| 990 | 1030 | ||
| @@ -1007,8 +1047,8 @@ static inline void __run_timers(struct tvec_base *base) | |||
| 1007 | #ifdef CONFIG_NO_HZ | 1047 | #ifdef CONFIG_NO_HZ |
| 1008 | /* | 1048 | /* |
| 1009 | * Find out when the next timer event is due to happen. This | 1049 | * Find out when the next timer event is due to happen. This |
| 1010 | * is used on S/390 to stop all activity when a cpus is idle. | 1050 | * is used on S/390 to stop all activity when a CPU is idle. |
| 1011 | * This functions needs to be called disabled. | 1051 | * This function needs to be called with interrupts disabled. |
| 1012 | */ | 1052 | */ |
| 1013 | static unsigned long __next_timer_interrupt(struct tvec_base *base) | 1053 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
| 1014 | { | 1054 | { |
| @@ -1134,7 +1174,9 @@ unsigned long get_next_timer_interrupt(unsigned long now) | |||
| 1134 | unsigned long expires; | 1174 | unsigned long expires; |
| 1135 | 1175 | ||
| 1136 | spin_lock(&base->lock); | 1176 | spin_lock(&base->lock); |
| 1137 | expires = __next_timer_interrupt(base); | 1177 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
| 1178 | base->next_timer = __next_timer_interrupt(base); | ||
| 1179 | expires = base->next_timer; | ||
| 1138 | spin_unlock(&base->lock); | 1180 | spin_unlock(&base->lock); |
| 1139 | 1181 | ||
| 1140 | if (time_before_eq(expires, now)) | 1182 | if (time_before_eq(expires, now)) |
| @@ -1169,7 +1211,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
| 1169 | { | 1211 | { |
| 1170 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1212 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
| 1171 | 1213 | ||
| 1172 | perf_counter_do_pending(); | 1214 | perf_event_do_pending(); |
| 1173 | 1215 | ||
| 1174 | hrtimer_run_pending(); | 1216 | hrtimer_run_pending(); |
| 1175 | 1217 | ||
| @@ -1522,6 +1564,7 @@ static int __cpuinit init_timers_cpu(int cpu) | |||
| 1522 | INIT_LIST_HEAD(base->tv1.vec + j); | 1564 | INIT_LIST_HEAD(base->tv1.vec + j); |
| 1523 | 1565 | ||
| 1524 | base->timer_jiffies = jiffies; | 1566 | base->timer_jiffies = jiffies; |
| 1567 | base->next_timer = base->timer_jiffies; | ||
| 1525 | return 0; | 1568 | return 0; |
| 1526 | } | 1569 | } |
| 1527 | 1570 | ||
| @@ -1534,6 +1577,9 @@ static void migrate_timer_list(struct tvec_base *new_base, struct list_head *hea | |||
| 1534 | timer = list_first_entry(head, struct timer_list, entry); | 1577 | timer = list_first_entry(head, struct timer_list, entry); |
| 1535 | detach_timer(timer, 0); | 1578 | detach_timer(timer, 0); |
| 1536 | timer_set_base(timer, new_base); | 1579 | timer_set_base(timer, new_base); |
| 1580 | if (time_before(timer->expires, new_base->next_timer) && | ||
| 1581 | !tbase_get_deferrable(timer->base)) | ||
| 1582 | new_base->next_timer = timer->expires; | ||
| 1537 | internal_add_timer(new_base, timer); | 1583 | internal_add_timer(new_base, timer); |
| 1538 | } | 1584 | } |
| 1539 | } | 1585 | } |
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index e71634604400..b416512ad17f 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
| @@ -83,7 +83,7 @@ config RING_BUFFER_ALLOW_SWAP | |||
| 83 | # This allows those options to appear when no other tracer is selected. But the | 83 | # This allows those options to appear when no other tracer is selected. But the |
| 84 | # options do not appear when something else selects it. We need the two options | 84 | # options do not appear when something else selects it. We need the two options |
| 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the | 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the |
| 86 | # hidding of the automatic options options. | 86 | # hidding of the automatic options. |
| 87 | 87 | ||
| 88 | config TRACING | 88 | config TRACING |
| 89 | bool | 89 | bool |
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile index 844164dca90a..26f03ac07c2b 100644 --- a/kernel/trace/Makefile +++ b/kernel/trace/Makefile | |||
| @@ -42,7 +42,6 @@ obj-$(CONFIG_BOOT_TRACER) += trace_boot.o | |||
| 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o | 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o |
| 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o | 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o |
| 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o | 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o |
| 45 | obj-$(CONFIG_POWER_TRACER) += trace_power.o | ||
| 46 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o | 45 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o |
| 47 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o | 46 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o |
| 48 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o | 47 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o |
| @@ -54,5 +53,6 @@ obj-$(CONFIG_EVENT_TRACING) += trace_export.o | |||
| 54 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o | 53 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o |
| 55 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o | 54 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o |
| 56 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o | 55 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o |
| 56 | obj-$(CONFIG_EVENT_TRACING) += power-traces.o | ||
| 57 | 57 | ||
| 58 | libftrace-y := ftrace.o | 58 | libftrace-y := ftrace.o |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index ddf23a225b52..9a72853a8f0a 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
| @@ -225,7 +225,11 @@ static void ftrace_update_pid_func(void) | |||
| 225 | if (ftrace_trace_function == ftrace_stub) | 225 | if (ftrace_trace_function == ftrace_stub) |
| 226 | return; | 226 | return; |
| 227 | 227 | ||
| 228 | #ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST | ||
| 228 | func = ftrace_trace_function; | 229 | func = ftrace_trace_function; |
| 230 | #else | ||
| 231 | func = __ftrace_trace_function; | ||
| 232 | #endif | ||
| 229 | 233 | ||
| 230 | if (ftrace_pid_trace) { | 234 | if (ftrace_pid_trace) { |
| 231 | set_ftrace_pid_function(func); | 235 | set_ftrace_pid_function(func); |
| @@ -1520,7 +1524,7 @@ static int t_show(struct seq_file *m, void *v) | |||
| 1520 | return 0; | 1524 | return 0; |
| 1521 | } | 1525 | } |
| 1522 | 1526 | ||
| 1523 | static struct seq_operations show_ftrace_seq_ops = { | 1527 | static const struct seq_operations show_ftrace_seq_ops = { |
| 1524 | .start = t_start, | 1528 | .start = t_start, |
| 1525 | .next = t_next, | 1529 | .next = t_next, |
| 1526 | .stop = t_stop, | 1530 | .stop = t_stop, |
| @@ -1621,8 +1625,10 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable) | |||
| 1621 | if (!ret) { | 1625 | if (!ret) { |
| 1622 | struct seq_file *m = file->private_data; | 1626 | struct seq_file *m = file->private_data; |
| 1623 | m->private = iter; | 1627 | m->private = iter; |
| 1624 | } else | 1628 | } else { |
| 1629 | trace_parser_put(&iter->parser); | ||
| 1625 | kfree(iter); | 1630 | kfree(iter); |
| 1631 | } | ||
| 1626 | } else | 1632 | } else |
| 1627 | file->private_data = iter; | 1633 | file->private_data = iter; |
| 1628 | mutex_unlock(&ftrace_regex_lock); | 1634 | mutex_unlock(&ftrace_regex_lock); |
| @@ -2148,7 +2154,7 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
| 2148 | struct trace_parser *parser; | 2154 | struct trace_parser *parser; |
| 2149 | ssize_t ret, read; | 2155 | ssize_t ret, read; |
| 2150 | 2156 | ||
| 2151 | if (!cnt || cnt < 0) | 2157 | if (!cnt) |
| 2152 | return 0; | 2158 | return 0; |
| 2153 | 2159 | ||
| 2154 | mutex_lock(&ftrace_regex_lock); | 2160 | mutex_lock(&ftrace_regex_lock); |
| @@ -2162,7 +2168,7 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
| 2162 | parser = &iter->parser; | 2168 | parser = &iter->parser; |
| 2163 | read = trace_get_user(parser, ubuf, cnt, ppos); | 2169 | read = trace_get_user(parser, ubuf, cnt, ppos); |
| 2164 | 2170 | ||
| 2165 | if (trace_parser_loaded(parser) && | 2171 | if (read >= 0 && trace_parser_loaded(parser) && |
| 2166 | !trace_parser_cont(parser)) { | 2172 | !trace_parser_cont(parser)) { |
| 2167 | ret = ftrace_process_regex(parser->buffer, | 2173 | ret = ftrace_process_regex(parser->buffer, |
| 2168 | parser->idx, enable); | 2174 | parser->idx, enable); |
| @@ -2360,11 +2366,9 @@ unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; | |||
| 2360 | static void * | 2366 | static void * |
| 2361 | __g_next(struct seq_file *m, loff_t *pos) | 2367 | __g_next(struct seq_file *m, loff_t *pos) |
| 2362 | { | 2368 | { |
| 2363 | unsigned long *array = m->private; | ||
| 2364 | |||
| 2365 | if (*pos >= ftrace_graph_count) | 2369 | if (*pos >= ftrace_graph_count) |
| 2366 | return NULL; | 2370 | return NULL; |
| 2367 | return &array[*pos]; | 2371 | return &ftrace_graph_funcs[*pos]; |
| 2368 | } | 2372 | } |
| 2369 | 2373 | ||
| 2370 | static void * | 2374 | static void * |
| @@ -2407,7 +2411,7 @@ static int g_show(struct seq_file *m, void *v) | |||
| 2407 | return 0; | 2411 | return 0; |
| 2408 | } | 2412 | } |
| 2409 | 2413 | ||
| 2410 | static struct seq_operations ftrace_graph_seq_ops = { | 2414 | static const struct seq_operations ftrace_graph_seq_ops = { |
| 2411 | .start = g_start, | 2415 | .start = g_start, |
| 2412 | .next = g_next, | 2416 | .next = g_next, |
| 2413 | .stop = g_stop, | 2417 | .stop = g_stop, |
| @@ -2428,16 +2432,10 @@ ftrace_graph_open(struct inode *inode, struct file *file) | |||
| 2428 | ftrace_graph_count = 0; | 2432 | ftrace_graph_count = 0; |
| 2429 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); | 2433 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); |
| 2430 | } | 2434 | } |
| 2435 | mutex_unlock(&graph_lock); | ||
| 2431 | 2436 | ||
| 2432 | if (file->f_mode & FMODE_READ) { | 2437 | if (file->f_mode & FMODE_READ) |
| 2433 | ret = seq_open(file, &ftrace_graph_seq_ops); | 2438 | ret = seq_open(file, &ftrace_graph_seq_ops); |
| 2434 | if (!ret) { | ||
| 2435 | struct seq_file *m = file->private_data; | ||
| 2436 | m->private = ftrace_graph_funcs; | ||
| 2437 | } | ||
| 2438 | } else | ||
| 2439 | file->private_data = ftrace_graph_funcs; | ||
| 2440 | mutex_unlock(&graph_lock); | ||
| 2441 | 2439 | ||
| 2442 | return ret; | 2440 | return ret; |
| 2443 | } | 2441 | } |
| @@ -2506,9 +2504,7 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
| 2506 | size_t cnt, loff_t *ppos) | 2504 | size_t cnt, loff_t *ppos) |
| 2507 | { | 2505 | { |
| 2508 | struct trace_parser parser; | 2506 | struct trace_parser parser; |
| 2509 | unsigned long *array; | 2507 | ssize_t read, ret; |
| 2510 | size_t read = 0; | ||
| 2511 | ssize_t ret; | ||
| 2512 | 2508 | ||
| 2513 | if (!cnt || cnt < 0) | 2509 | if (!cnt || cnt < 0) |
| 2514 | return 0; | 2510 | return 0; |
| @@ -2517,35 +2513,31 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
| 2517 | 2513 | ||
| 2518 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { | 2514 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { |
| 2519 | ret = -EBUSY; | 2515 | ret = -EBUSY; |
| 2520 | goto out; | 2516 | goto out_unlock; |
| 2521 | } | 2517 | } |
| 2522 | 2518 | ||
| 2523 | if (file->f_mode & FMODE_READ) { | ||
| 2524 | struct seq_file *m = file->private_data; | ||
| 2525 | array = m->private; | ||
| 2526 | } else | ||
| 2527 | array = file->private_data; | ||
| 2528 | |||
| 2529 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { | 2519 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { |
| 2530 | ret = -ENOMEM; | 2520 | ret = -ENOMEM; |
| 2531 | goto out; | 2521 | goto out_unlock; |
| 2532 | } | 2522 | } |
| 2533 | 2523 | ||
| 2534 | read = trace_get_user(&parser, ubuf, cnt, ppos); | 2524 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
| 2535 | 2525 | ||
| 2536 | if (trace_parser_loaded((&parser))) { | 2526 | if (read >= 0 && trace_parser_loaded((&parser))) { |
| 2537 | parser.buffer[parser.idx] = 0; | 2527 | parser.buffer[parser.idx] = 0; |
| 2538 | 2528 | ||
| 2539 | /* we allow only one expression at a time */ | 2529 | /* we allow only one expression at a time */ |
| 2540 | ret = ftrace_set_func(array, &ftrace_graph_count, | 2530 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, |
| 2541 | parser.buffer); | 2531 | parser.buffer); |
| 2542 | if (ret) | 2532 | if (ret) |
| 2543 | goto out; | 2533 | goto out_free; |
| 2544 | } | 2534 | } |
| 2545 | 2535 | ||
| 2546 | ret = read; | 2536 | ret = read; |
| 2547 | out: | 2537 | |
| 2538 | out_free: | ||
| 2548 | trace_parser_put(&parser); | 2539 | trace_parser_put(&parser); |
| 2540 | out_unlock: | ||
| 2549 | mutex_unlock(&graph_lock); | 2541 | mutex_unlock(&graph_lock); |
| 2550 | 2542 | ||
| 2551 | return ret; | 2543 | return ret; |
| @@ -2976,7 +2968,7 @@ int unregister_ftrace_function(struct ftrace_ops *ops) | |||
| 2976 | 2968 | ||
| 2977 | int | 2969 | int |
| 2978 | ftrace_enable_sysctl(struct ctl_table *table, int write, | 2970 | ftrace_enable_sysctl(struct ctl_table *table, int write, |
| 2979 | struct file *file, void __user *buffer, size_t *lenp, | 2971 | void __user *buffer, size_t *lenp, |
| 2980 | loff_t *ppos) | 2972 | loff_t *ppos) |
| 2981 | { | 2973 | { |
| 2982 | int ret; | 2974 | int ret; |
| @@ -2986,7 +2978,7 @@ ftrace_enable_sysctl(struct ctl_table *table, int write, | |||
| 2986 | 2978 | ||
| 2987 | mutex_lock(&ftrace_lock); | 2979 | mutex_lock(&ftrace_lock); |
| 2988 | 2980 | ||
| 2989 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 2981 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 2990 | 2982 | ||
| 2991 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) | 2983 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) |
| 2992 | goto out; | 2984 | goto out; |
diff --git a/kernel/trace/power-traces.c b/kernel/trace/power-traces.c new file mode 100644 index 000000000000..e06c6e3d56a3 --- /dev/null +++ b/kernel/trace/power-traces.c | |||
| @@ -0,0 +1,20 @@ | |||
| 1 | /* | ||
| 2 | * Power trace points | ||
| 3 | * | ||
| 4 | * Copyright (C) 2009 Arjan van de Ven <arjan@linux.intel.com> | ||
| 5 | */ | ||
| 6 | |||
| 7 | #include <linux/string.h> | ||
| 8 | #include <linux/types.h> | ||
| 9 | #include <linux/workqueue.h> | ||
| 10 | #include <linux/sched.h> | ||
| 11 | #include <linux/module.h> | ||
| 12 | #include <linux/slab.h> | ||
| 13 | |||
| 14 | #define CREATE_TRACE_POINTS | ||
| 15 | #include <trace/events/power.h> | ||
| 16 | |||
| 17 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_start); | ||
| 18 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_end); | ||
| 19 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_frequency); | ||
| 20 | |||
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 6eef38923b07..d4ff01970547 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c | |||
| @@ -201,8 +201,6 @@ int tracing_is_on(void) | |||
| 201 | } | 201 | } |
| 202 | EXPORT_SYMBOL_GPL(tracing_is_on); | 202 | EXPORT_SYMBOL_GPL(tracing_is_on); |
| 203 | 203 | ||
| 204 | #include "trace.h" | ||
| 205 | |||
| 206 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) | 204 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) |
| 207 | #define RB_ALIGNMENT 4U | 205 | #define RB_ALIGNMENT 4U |
| 208 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) | 206 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index fd52a19dd172..45068269ebb1 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
| @@ -125,13 +125,13 @@ int ftrace_dump_on_oops; | |||
| 125 | 125 | ||
| 126 | static int tracing_set_tracer(const char *buf); | 126 | static int tracing_set_tracer(const char *buf); |
| 127 | 127 | ||
| 128 | #define BOOTUP_TRACER_SIZE 100 | 128 | #define MAX_TRACER_SIZE 100 |
| 129 | static char bootup_tracer_buf[BOOTUP_TRACER_SIZE] __initdata; | 129 | static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata; |
| 130 | static char *default_bootup_tracer; | 130 | static char *default_bootup_tracer; |
| 131 | 131 | ||
| 132 | static int __init set_ftrace(char *str) | 132 | static int __init set_ftrace(char *str) |
| 133 | { | 133 | { |
| 134 | strncpy(bootup_tracer_buf, str, BOOTUP_TRACER_SIZE); | 134 | strncpy(bootup_tracer_buf, str, MAX_TRACER_SIZE); |
| 135 | default_bootup_tracer = bootup_tracer_buf; | 135 | default_bootup_tracer = bootup_tracer_buf; |
| 136 | /* We are using ftrace early, expand it */ | 136 | /* We are using ftrace early, expand it */ |
| 137 | ring_buffer_expanded = 1; | 137 | ring_buffer_expanded = 1; |
| @@ -242,13 +242,6 @@ static struct tracer *trace_types __read_mostly; | |||
| 242 | static struct tracer *current_trace __read_mostly; | 242 | static struct tracer *current_trace __read_mostly; |
| 243 | 243 | ||
| 244 | /* | 244 | /* |
| 245 | * max_tracer_type_len is used to simplify the allocating of | ||
| 246 | * buffers to read userspace tracer names. We keep track of | ||
| 247 | * the longest tracer name registered. | ||
| 248 | */ | ||
| 249 | static int max_tracer_type_len; | ||
| 250 | |||
| 251 | /* | ||
| 252 | * trace_types_lock is used to protect the trace_types list. | 245 | * trace_types_lock is used to protect the trace_types list. |
| 253 | * This lock is also used to keep user access serialized. | 246 | * This lock is also used to keep user access serialized. |
| 254 | * Accesses from userspace will grab this lock while userspace | 247 | * Accesses from userspace will grab this lock while userspace |
| @@ -275,12 +268,18 @@ static DEFINE_SPINLOCK(tracing_start_lock); | |||
| 275 | */ | 268 | */ |
| 276 | void trace_wake_up(void) | 269 | void trace_wake_up(void) |
| 277 | { | 270 | { |
| 271 | int cpu; | ||
| 272 | |||
| 273 | if (trace_flags & TRACE_ITER_BLOCK) | ||
| 274 | return; | ||
| 278 | /* | 275 | /* |
| 279 | * The runqueue_is_locked() can fail, but this is the best we | 276 | * The runqueue_is_locked() can fail, but this is the best we |
| 280 | * have for now: | 277 | * have for now: |
| 281 | */ | 278 | */ |
| 282 | if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) | 279 | cpu = get_cpu(); |
| 280 | if (!runqueue_is_locked(cpu)) | ||
| 283 | wake_up(&trace_wait); | 281 | wake_up(&trace_wait); |
| 282 | put_cpu(); | ||
| 284 | } | 283 | } |
| 285 | 284 | ||
| 286 | static int __init set_buf_size(char *str) | 285 | static int __init set_buf_size(char *str) |
| @@ -416,7 +415,7 @@ int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | |||
| 416 | 415 | ||
| 417 | /* read the non-space input */ | 416 | /* read the non-space input */ |
| 418 | while (cnt && !isspace(ch)) { | 417 | while (cnt && !isspace(ch)) { |
| 419 | if (parser->idx < parser->size) | 418 | if (parser->idx < parser->size - 1) |
| 420 | parser->buffer[parser->idx++] = ch; | 419 | parser->buffer[parser->idx++] = ch; |
| 421 | else { | 420 | else { |
| 422 | ret = -EINVAL; | 421 | ret = -EINVAL; |
| @@ -619,7 +618,6 @@ __releases(kernel_lock) | |||
| 619 | __acquires(kernel_lock) | 618 | __acquires(kernel_lock) |
| 620 | { | 619 | { |
| 621 | struct tracer *t; | 620 | struct tracer *t; |
| 622 | int len; | ||
| 623 | int ret = 0; | 621 | int ret = 0; |
| 624 | 622 | ||
| 625 | if (!type->name) { | 623 | if (!type->name) { |
| @@ -627,6 +625,11 @@ __acquires(kernel_lock) | |||
| 627 | return -1; | 625 | return -1; |
| 628 | } | 626 | } |
| 629 | 627 | ||
| 628 | if (strlen(type->name) > MAX_TRACER_SIZE) { | ||
| 629 | pr_info("Tracer has a name longer than %d\n", MAX_TRACER_SIZE); | ||
| 630 | return -1; | ||
| 631 | } | ||
| 632 | |||
| 630 | /* | 633 | /* |
| 631 | * When this gets called we hold the BKL which means that | 634 | * When this gets called we hold the BKL which means that |
| 632 | * preemption is disabled. Various trace selftests however | 635 | * preemption is disabled. Various trace selftests however |
| @@ -641,7 +644,7 @@ __acquires(kernel_lock) | |||
| 641 | for (t = trace_types; t; t = t->next) { | 644 | for (t = trace_types; t; t = t->next) { |
| 642 | if (strcmp(type->name, t->name) == 0) { | 645 | if (strcmp(type->name, t->name) == 0) { |
| 643 | /* already found */ | 646 | /* already found */ |
| 644 | pr_info("Trace %s already registered\n", | 647 | pr_info("Tracer %s already registered\n", |
| 645 | type->name); | 648 | type->name); |
| 646 | ret = -1; | 649 | ret = -1; |
| 647 | goto out; | 650 | goto out; |
| @@ -692,9 +695,6 @@ __acquires(kernel_lock) | |||
| 692 | 695 | ||
| 693 | type->next = trace_types; | 696 | type->next = trace_types; |
| 694 | trace_types = type; | 697 | trace_types = type; |
| 695 | len = strlen(type->name); | ||
| 696 | if (len > max_tracer_type_len) | ||
| 697 | max_tracer_type_len = len; | ||
| 698 | 698 | ||
| 699 | out: | 699 | out: |
| 700 | tracing_selftest_running = false; | 700 | tracing_selftest_running = false; |
| @@ -703,7 +703,7 @@ __acquires(kernel_lock) | |||
| 703 | if (ret || !default_bootup_tracer) | 703 | if (ret || !default_bootup_tracer) |
| 704 | goto out_unlock; | 704 | goto out_unlock; |
| 705 | 705 | ||
| 706 | if (strncmp(default_bootup_tracer, type->name, BOOTUP_TRACER_SIZE)) | 706 | if (strncmp(default_bootup_tracer, type->name, MAX_TRACER_SIZE)) |
| 707 | goto out_unlock; | 707 | goto out_unlock; |
| 708 | 708 | ||
| 709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); | 709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); |
| @@ -725,14 +725,13 @@ __acquires(kernel_lock) | |||
| 725 | void unregister_tracer(struct tracer *type) | 725 | void unregister_tracer(struct tracer *type) |
| 726 | { | 726 | { |
| 727 | struct tracer **t; | 727 | struct tracer **t; |
| 728 | int len; | ||
| 729 | 728 | ||
| 730 | mutex_lock(&trace_types_lock); | 729 | mutex_lock(&trace_types_lock); |
| 731 | for (t = &trace_types; *t; t = &(*t)->next) { | 730 | for (t = &trace_types; *t; t = &(*t)->next) { |
| 732 | if (*t == type) | 731 | if (*t == type) |
| 733 | goto found; | 732 | goto found; |
| 734 | } | 733 | } |
| 735 | pr_info("Trace %s not registered\n", type->name); | 734 | pr_info("Tracer %s not registered\n", type->name); |
| 736 | goto out; | 735 | goto out; |
| 737 | 736 | ||
| 738 | found: | 737 | found: |
| @@ -745,17 +744,7 @@ void unregister_tracer(struct tracer *type) | |||
| 745 | current_trace->stop(&global_trace); | 744 | current_trace->stop(&global_trace); |
| 746 | current_trace = &nop_trace; | 745 | current_trace = &nop_trace; |
| 747 | } | 746 | } |
| 748 | 747 | out: | |
| 749 | if (strlen(type->name) != max_tracer_type_len) | ||
| 750 | goto out; | ||
| 751 | |||
| 752 | max_tracer_type_len = 0; | ||
| 753 | for (t = &trace_types; *t; t = &(*t)->next) { | ||
| 754 | len = strlen((*t)->name); | ||
| 755 | if (len > max_tracer_type_len) | ||
| 756 | max_tracer_type_len = len; | ||
| 757 | } | ||
| 758 | out: | ||
| 759 | mutex_unlock(&trace_types_lock); | 748 | mutex_unlock(&trace_types_lock); |
| 760 | } | 749 | } |
| 761 | 750 | ||
| @@ -1960,7 +1949,7 @@ static int s_show(struct seq_file *m, void *v) | |||
| 1960 | return 0; | 1949 | return 0; |
| 1961 | } | 1950 | } |
| 1962 | 1951 | ||
| 1963 | static struct seq_operations tracer_seq_ops = { | 1952 | static const struct seq_operations tracer_seq_ops = { |
| 1964 | .start = s_start, | 1953 | .start = s_start, |
| 1965 | .next = s_next, | 1954 | .next = s_next, |
| 1966 | .stop = s_stop, | 1955 | .stop = s_stop, |
| @@ -1995,11 +1984,9 @@ __tracing_open(struct inode *inode, struct file *file) | |||
| 1995 | if (current_trace) | 1984 | if (current_trace) |
| 1996 | *iter->trace = *current_trace; | 1985 | *iter->trace = *current_trace; |
| 1997 | 1986 | ||
| 1998 | if (!alloc_cpumask_var(&iter->started, GFP_KERNEL)) | 1987 | if (!zalloc_cpumask_var(&iter->started, GFP_KERNEL)) |
| 1999 | goto fail; | 1988 | goto fail; |
| 2000 | 1989 | ||
| 2001 | cpumask_clear(iter->started); | ||
| 2002 | |||
| 2003 | if (current_trace && current_trace->print_max) | 1990 | if (current_trace && current_trace->print_max) |
| 2004 | iter->tr = &max_tr; | 1991 | iter->tr = &max_tr; |
| 2005 | else | 1992 | else |
| @@ -2174,7 +2161,7 @@ static int t_show(struct seq_file *m, void *v) | |||
| 2174 | return 0; | 2161 | return 0; |
| 2175 | } | 2162 | } |
| 2176 | 2163 | ||
| 2177 | static struct seq_operations show_traces_seq_ops = { | 2164 | static const struct seq_operations show_traces_seq_ops = { |
| 2178 | .start = t_start, | 2165 | .start = t_start, |
| 2179 | .next = t_next, | 2166 | .next = t_next, |
| 2180 | .stop = t_stop, | 2167 | .stop = t_stop, |
| @@ -2604,7 +2591,7 @@ static ssize_t | |||
| 2604 | tracing_set_trace_read(struct file *filp, char __user *ubuf, | 2591 | tracing_set_trace_read(struct file *filp, char __user *ubuf, |
| 2605 | size_t cnt, loff_t *ppos) | 2592 | size_t cnt, loff_t *ppos) |
| 2606 | { | 2593 | { |
| 2607 | char buf[max_tracer_type_len+2]; | 2594 | char buf[MAX_TRACER_SIZE+2]; |
| 2608 | int r; | 2595 | int r; |
| 2609 | 2596 | ||
| 2610 | mutex_lock(&trace_types_lock); | 2597 | mutex_lock(&trace_types_lock); |
| @@ -2754,15 +2741,15 @@ static ssize_t | |||
| 2754 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, | 2741 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, |
| 2755 | size_t cnt, loff_t *ppos) | 2742 | size_t cnt, loff_t *ppos) |
| 2756 | { | 2743 | { |
| 2757 | char buf[max_tracer_type_len+1]; | 2744 | char buf[MAX_TRACER_SIZE+1]; |
| 2758 | int i; | 2745 | int i; |
| 2759 | size_t ret; | 2746 | size_t ret; |
| 2760 | int err; | 2747 | int err; |
| 2761 | 2748 | ||
| 2762 | ret = cnt; | 2749 | ret = cnt; |
| 2763 | 2750 | ||
| 2764 | if (cnt > max_tracer_type_len) | 2751 | if (cnt > MAX_TRACER_SIZE) |
| 2765 | cnt = max_tracer_type_len; | 2752 | cnt = MAX_TRACER_SIZE; |
| 2766 | 2753 | ||
| 2767 | if (copy_from_user(&buf, ubuf, cnt)) | 2754 | if (copy_from_user(&buf, ubuf, cnt)) |
| 2768 | return -EFAULT; | 2755 | return -EFAULT; |
| @@ -4400,7 +4387,7 @@ __init static int tracer_alloc_buffers(void) | |||
| 4400 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) | 4387 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) |
| 4401 | goto out_free_buffer_mask; | 4388 | goto out_free_buffer_mask; |
| 4402 | 4389 | ||
| 4403 | if (!alloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) | 4390 | if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) |
| 4404 | goto out_free_tracing_cpumask; | 4391 | goto out_free_tracing_cpumask; |
| 4405 | 4392 | ||
| 4406 | /* To save memory, keep the ring buffer size to its minimum */ | 4393 | /* To save memory, keep the ring buffer size to its minimum */ |
| @@ -4411,7 +4398,6 @@ __init static int tracer_alloc_buffers(void) | |||
| 4411 | 4398 | ||
| 4412 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); | 4399 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); |
| 4413 | cpumask_copy(tracing_cpumask, cpu_all_mask); | 4400 | cpumask_copy(tracing_cpumask, cpu_all_mask); |
| 4414 | cpumask_clear(tracing_reader_cpumask); | ||
| 4415 | 4401 | ||
| 4416 | /* TODO: make the number of buffers hot pluggable with CPUS */ | 4402 | /* TODO: make the number of buffers hot pluggable with CPUS */ |
| 4417 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, | 4403 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, |
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index db6b83edd49b..365fb19d9e11 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h | |||
| @@ -11,7 +11,6 @@ | |||
| 11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
| 12 | #include <trace/boot.h> | 12 | #include <trace/boot.h> |
| 13 | #include <linux/kmemtrace.h> | 13 | #include <linux/kmemtrace.h> |
| 14 | #include <trace/power.h> | ||
| 15 | 14 | ||
| 16 | #include <linux/trace_seq.h> | 15 | #include <linux/trace_seq.h> |
| 17 | #include <linux/ftrace_event.h> | 16 | #include <linux/ftrace_event.h> |
| @@ -37,7 +36,6 @@ enum trace_type { | |||
| 37 | TRACE_HW_BRANCHES, | 36 | TRACE_HW_BRANCHES, |
| 38 | TRACE_KMEM_ALLOC, | 37 | TRACE_KMEM_ALLOC, |
| 39 | TRACE_KMEM_FREE, | 38 | TRACE_KMEM_FREE, |
| 40 | TRACE_POWER, | ||
| 41 | TRACE_BLK, | 39 | TRACE_BLK, |
| 42 | 40 | ||
| 43 | __TRACE_LAST_TYPE, | 41 | __TRACE_LAST_TYPE, |
| @@ -207,7 +205,6 @@ extern void __ftrace_bad_type(void); | |||
| 207 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ | 205 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ |
| 208 | TRACE_GRAPH_RET); \ | 206 | TRACE_GRAPH_RET); \ |
| 209 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ | 207 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ |
| 210 | IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \ | ||
| 211 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ | 208 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ |
| 212 | TRACE_KMEM_ALLOC); \ | 209 | TRACE_KMEM_ALLOC); \ |
| 213 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ | 210 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ |
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h index a431748ddd6e..ead3d724599d 100644 --- a/kernel/trace/trace_entries.h +++ b/kernel/trace/trace_entries.h | |||
| @@ -330,23 +330,6 @@ FTRACE_ENTRY(hw_branch, hw_branch_entry, | |||
| 330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) | 330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) |
| 331 | ); | 331 | ); |
| 332 | 332 | ||
| 333 | FTRACE_ENTRY(power, trace_power, | ||
| 334 | |||
| 335 | TRACE_POWER, | ||
| 336 | |||
| 337 | F_STRUCT( | ||
| 338 | __field_struct( struct power_trace, state_data ) | ||
| 339 | __field_desc( s64, state_data, stamp ) | ||
| 340 | __field_desc( s64, state_data, end ) | ||
| 341 | __field_desc( int, state_data, type ) | ||
| 342 | __field_desc( int, state_data, state ) | ||
| 343 | ), | ||
| 344 | |||
| 345 | F_printk("%llx->%llx type:%u state:%u", | ||
| 346 | __entry->stamp, __entry->end, | ||
| 347 | __entry->type, __entry->state) | ||
| 348 | ); | ||
| 349 | |||
| 350 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, | 333 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, |
| 351 | 334 | ||
| 352 | TRACE_KMEM_ALLOC, | 335 | TRACE_KMEM_ALLOC, |
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c index 55a25c933d15..dd44b8768867 100644 --- a/kernel/trace/trace_event_profile.c +++ b/kernel/trace/trace_event_profile.c | |||
| @@ -8,6 +8,57 @@ | |||
| 8 | #include <linux/module.h> | 8 | #include <linux/module.h> |
| 9 | #include "trace.h" | 9 | #include "trace.h" |
| 10 | 10 | ||
| 11 | /* | ||
| 12 | * We can't use a size but a type in alloc_percpu() | ||
| 13 | * So let's create a dummy type that matches the desired size | ||
| 14 | */ | ||
| 15 | typedef struct {char buf[FTRACE_MAX_PROFILE_SIZE];} profile_buf_t; | ||
| 16 | |||
| 17 | char *trace_profile_buf; | ||
| 18 | EXPORT_SYMBOL_GPL(trace_profile_buf); | ||
| 19 | |||
| 20 | char *trace_profile_buf_nmi; | ||
| 21 | EXPORT_SYMBOL_GPL(trace_profile_buf_nmi); | ||
| 22 | |||
| 23 | /* Count the events in use (per event id, not per instance) */ | ||
| 24 | static int total_profile_count; | ||
| 25 | |||
| 26 | static int ftrace_profile_enable_event(struct ftrace_event_call *event) | ||
| 27 | { | ||
| 28 | char *buf; | ||
| 29 | int ret = -ENOMEM; | ||
| 30 | |||
| 31 | if (atomic_inc_return(&event->profile_count)) | ||
| 32 | return 0; | ||
| 33 | |||
| 34 | if (!total_profile_count++) { | ||
| 35 | buf = (char *)alloc_percpu(profile_buf_t); | ||
| 36 | if (!buf) | ||
| 37 | goto fail_buf; | ||
| 38 | |||
| 39 | rcu_assign_pointer(trace_profile_buf, buf); | ||
| 40 | |||
| 41 | buf = (char *)alloc_percpu(profile_buf_t); | ||
| 42 | if (!buf) | ||
| 43 | goto fail_buf_nmi; | ||
| 44 | |||
| 45 | rcu_assign_pointer(trace_profile_buf_nmi, buf); | ||
| 46 | } | ||
| 47 | |||
| 48 | ret = event->profile_enable(); | ||
| 49 | if (!ret) | ||
| 50 | return 0; | ||
| 51 | |||
| 52 | kfree(trace_profile_buf_nmi); | ||
| 53 | fail_buf_nmi: | ||
| 54 | kfree(trace_profile_buf); | ||
| 55 | fail_buf: | ||
| 56 | total_profile_count--; | ||
| 57 | atomic_dec(&event->profile_count); | ||
| 58 | |||
| 59 | return ret; | ||
| 60 | } | ||
| 61 | |||
| 11 | int ftrace_profile_enable(int event_id) | 62 | int ftrace_profile_enable(int event_id) |
| 12 | { | 63 | { |
| 13 | struct ftrace_event_call *event; | 64 | struct ftrace_event_call *event; |
| @@ -17,7 +68,7 @@ int ftrace_profile_enable(int event_id) | |||
| 17 | list_for_each_entry(event, &ftrace_events, list) { | 68 | list_for_each_entry(event, &ftrace_events, list) { |
| 18 | if (event->id == event_id && event->profile_enable && | 69 | if (event->id == event_id && event->profile_enable && |
| 19 | try_module_get(event->mod)) { | 70 | try_module_get(event->mod)) { |
| 20 | ret = event->profile_enable(event); | 71 | ret = ftrace_profile_enable_event(event); |
| 21 | break; | 72 | break; |
| 22 | } | 73 | } |
| 23 | } | 74 | } |
| @@ -26,6 +77,33 @@ int ftrace_profile_enable(int event_id) | |||
| 26 | return ret; | 77 | return ret; |
| 27 | } | 78 | } |
| 28 | 79 | ||
| 80 | static void ftrace_profile_disable_event(struct ftrace_event_call *event) | ||
| 81 | { | ||
| 82 | char *buf, *nmi_buf; | ||
| 83 | |||
| 84 | if (!atomic_add_negative(-1, &event->profile_count)) | ||
| 85 | return; | ||
| 86 | |||
| 87 | event->profile_disable(); | ||
| 88 | |||
| 89 | if (!--total_profile_count) { | ||
| 90 | buf = trace_profile_buf; | ||
| 91 | rcu_assign_pointer(trace_profile_buf, NULL); | ||
| 92 | |||
| 93 | nmi_buf = trace_profile_buf_nmi; | ||
| 94 | rcu_assign_pointer(trace_profile_buf_nmi, NULL); | ||
| 95 | |||
| 96 | /* | ||
| 97 | * Ensure every events in profiling have finished before | ||
| 98 | * releasing the buffers | ||
| 99 | */ | ||
| 100 | synchronize_sched(); | ||
| 101 | |||
| 102 | free_percpu(buf); | ||
| 103 | free_percpu(nmi_buf); | ||
| 104 | } | ||
| 105 | } | ||
| 106 | |||
| 29 | void ftrace_profile_disable(int event_id) | 107 | void ftrace_profile_disable(int event_id) |
| 30 | { | 108 | { |
| 31 | struct ftrace_event_call *event; | 109 | struct ftrace_event_call *event; |
| @@ -33,7 +111,7 @@ void ftrace_profile_disable(int event_id) | |||
| 33 | mutex_lock(&event_mutex); | 111 | mutex_lock(&event_mutex); |
| 34 | list_for_each_entry(event, &ftrace_events, list) { | 112 | list_for_each_entry(event, &ftrace_events, list) { |
| 35 | if (event->id == event_id) { | 113 | if (event->id == event_id) { |
| 36 | event->profile_disable(event); | 114 | ftrace_profile_disable_event(event); |
| 37 | module_put(event->mod); | 115 | module_put(event->mod); |
| 38 | break; | 116 | break; |
| 39 | } | 117 | } |
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index 8c91b7c8f047..5e9ffc33f6db 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
| @@ -232,10 +232,9 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
| 232 | size_t cnt, loff_t *ppos) | 232 | size_t cnt, loff_t *ppos) |
| 233 | { | 233 | { |
| 234 | struct trace_parser parser; | 234 | struct trace_parser parser; |
| 235 | size_t read = 0; | 235 | ssize_t read, ret; |
| 236 | ssize_t ret; | ||
| 237 | 236 | ||
| 238 | if (!cnt || cnt < 0) | 237 | if (!cnt) |
| 239 | return 0; | 238 | return 0; |
| 240 | 239 | ||
| 241 | ret = tracing_update_buffers(); | 240 | ret = tracing_update_buffers(); |
| @@ -247,7 +246,7 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
| 247 | 246 | ||
| 248 | read = trace_get_user(&parser, ubuf, cnt, ppos); | 247 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
| 249 | 248 | ||
| 250 | if (trace_parser_loaded((&parser))) { | 249 | if (read >= 0 && trace_parser_loaded((&parser))) { |
| 251 | int set = 1; | 250 | int set = 1; |
| 252 | 251 | ||
| 253 | if (*parser.buffer == '!') | 252 | if (*parser.buffer == '!') |
| @@ -271,42 +270,32 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
| 271 | static void * | 270 | static void * |
| 272 | t_next(struct seq_file *m, void *v, loff_t *pos) | 271 | t_next(struct seq_file *m, void *v, loff_t *pos) |
| 273 | { | 272 | { |
| 274 | struct list_head *list = m->private; | 273 | struct ftrace_event_call *call = v; |
| 275 | struct ftrace_event_call *call; | ||
| 276 | 274 | ||
| 277 | (*pos)++; | 275 | (*pos)++; |
| 278 | 276 | ||
| 279 | for (;;) { | 277 | list_for_each_entry_continue(call, &ftrace_events, list) { |
| 280 | if (list == &ftrace_events) | ||
| 281 | return NULL; | ||
| 282 | |||
| 283 | call = list_entry(list, struct ftrace_event_call, list); | ||
| 284 | |||
| 285 | /* | 278 | /* |
| 286 | * The ftrace subsystem is for showing formats only. | 279 | * The ftrace subsystem is for showing formats only. |
| 287 | * They can not be enabled or disabled via the event files. | 280 | * They can not be enabled or disabled via the event files. |
| 288 | */ | 281 | */ |
| 289 | if (call->regfunc) | 282 | if (call->regfunc) |
| 290 | break; | 283 | return call; |
| 291 | |||
| 292 | list = list->next; | ||
| 293 | } | 284 | } |
| 294 | 285 | ||
| 295 | m->private = list->next; | 286 | return NULL; |
| 296 | |||
| 297 | return call; | ||
| 298 | } | 287 | } |
| 299 | 288 | ||
| 300 | static void *t_start(struct seq_file *m, loff_t *pos) | 289 | static void *t_start(struct seq_file *m, loff_t *pos) |
| 301 | { | 290 | { |
| 302 | struct ftrace_event_call *call = NULL; | 291 | struct ftrace_event_call *call; |
| 303 | loff_t l; | 292 | loff_t l; |
| 304 | 293 | ||
| 305 | mutex_lock(&event_mutex); | 294 | mutex_lock(&event_mutex); |
| 306 | 295 | ||
| 307 | m->private = ftrace_events.next; | 296 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
| 308 | for (l = 0; l <= *pos; ) { | 297 | for (l = 0; l <= *pos; ) { |
| 309 | call = t_next(m, NULL, &l); | 298 | call = t_next(m, call, &l); |
| 310 | if (!call) | 299 | if (!call) |
| 311 | break; | 300 | break; |
| 312 | } | 301 | } |
| @@ -316,37 +305,28 @@ static void *t_start(struct seq_file *m, loff_t *pos) | |||
| 316 | static void * | 305 | static void * |
| 317 | s_next(struct seq_file *m, void *v, loff_t *pos) | 306 | s_next(struct seq_file *m, void *v, loff_t *pos) |
| 318 | { | 307 | { |
| 319 | struct list_head *list = m->private; | 308 | struct ftrace_event_call *call = v; |
| 320 | struct ftrace_event_call *call; | ||
| 321 | 309 | ||
| 322 | (*pos)++; | 310 | (*pos)++; |
| 323 | 311 | ||
| 324 | retry: | 312 | list_for_each_entry_continue(call, &ftrace_events, list) { |
| 325 | if (list == &ftrace_events) | 313 | if (call->enabled) |
| 326 | return NULL; | 314 | return call; |
| 327 | |||
| 328 | call = list_entry(list, struct ftrace_event_call, list); | ||
| 329 | |||
| 330 | if (!call->enabled) { | ||
| 331 | list = list->next; | ||
| 332 | goto retry; | ||
| 333 | } | 315 | } |
| 334 | 316 | ||
| 335 | m->private = list->next; | 317 | return NULL; |
| 336 | |||
| 337 | return call; | ||
| 338 | } | 318 | } |
| 339 | 319 | ||
| 340 | static void *s_start(struct seq_file *m, loff_t *pos) | 320 | static void *s_start(struct seq_file *m, loff_t *pos) |
| 341 | { | 321 | { |
| 342 | struct ftrace_event_call *call = NULL; | 322 | struct ftrace_event_call *call; |
| 343 | loff_t l; | 323 | loff_t l; |
| 344 | 324 | ||
| 345 | mutex_lock(&event_mutex); | 325 | mutex_lock(&event_mutex); |
| 346 | 326 | ||
| 347 | m->private = ftrace_events.next; | 327 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
| 348 | for (l = 0; l <= *pos; ) { | 328 | for (l = 0; l <= *pos; ) { |
| 349 | call = s_next(m, NULL, &l); | 329 | call = s_next(m, call, &l); |
| 350 | if (!call) | 330 | if (!call) |
| 351 | break; | 331 | break; |
| 352 | } | 332 | } |
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c index ca7d7c4d0c2a..23b63859130e 100644 --- a/kernel/trace/trace_hw_branches.c +++ b/kernel/trace/trace_hw_branches.c | |||
| @@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | |||
| 155 | seq_print_ip_sym(seq, it->from, symflags) && | 155 | seq_print_ip_sym(seq, it->from, symflags) && |
| 156 | trace_seq_printf(seq, "\n")) | 156 | trace_seq_printf(seq, "\n")) |
| 157 | return TRACE_TYPE_HANDLED; | 157 | return TRACE_TYPE_HANDLED; |
| 158 | return TRACE_TYPE_PARTIAL_LINE;; | 158 | return TRACE_TYPE_PARTIAL_LINE; |
| 159 | } | 159 | } |
| 160 | return TRACE_TYPE_UNHANDLED; | 160 | return TRACE_TYPE_UNHANDLED; |
| 161 | } | 161 | } |
diff --git a/kernel/trace/trace_power.c b/kernel/trace/trace_power.c deleted file mode 100644 index fe1a00f1445a..000000000000 --- a/kernel/trace/trace_power.c +++ /dev/null | |||
| @@ -1,218 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * ring buffer based C-state tracer | ||
| 3 | * | ||
| 4 | * Arjan van de Ven <arjan@linux.intel.com> | ||
| 5 | * Copyright (C) 2008 Intel Corporation | ||
| 6 | * | ||
| 7 | * Much is borrowed from trace_boot.c which is | ||
| 8 | * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com> | ||
| 9 | * | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/init.h> | ||
| 13 | #include <linux/debugfs.h> | ||
| 14 | #include <trace/power.h> | ||
| 15 | #include <linux/kallsyms.h> | ||
| 16 | #include <linux/module.h> | ||
| 17 | |||
| 18 | #include "trace.h" | ||
| 19 | #include "trace_output.h" | ||
| 20 | |||
| 21 | static struct trace_array *power_trace; | ||
| 22 | static int __read_mostly trace_power_enabled; | ||
| 23 | |||
| 24 | static void probe_power_start(struct power_trace *it, unsigned int type, | ||
| 25 | unsigned int level) | ||
| 26 | { | ||
| 27 | if (!trace_power_enabled) | ||
| 28 | return; | ||
| 29 | |||
| 30 | memset(it, 0, sizeof(struct power_trace)); | ||
| 31 | it->state = level; | ||
| 32 | it->type = type; | ||
| 33 | it->stamp = ktime_get(); | ||
| 34 | } | ||
| 35 | |||
| 36 | |||
| 37 | static void probe_power_end(struct power_trace *it) | ||
| 38 | { | ||
| 39 | struct ftrace_event_call *call = &event_power; | ||
| 40 | struct ring_buffer_event *event; | ||
| 41 | struct ring_buffer *buffer; | ||
| 42 | struct trace_power *entry; | ||
| 43 | struct trace_array_cpu *data; | ||
| 44 | struct trace_array *tr = power_trace; | ||
| 45 | |||
| 46 | if (!trace_power_enabled) | ||
| 47 | return; | ||
| 48 | |||
| 49 | buffer = tr->buffer; | ||
| 50 | |||
| 51 | preempt_disable(); | ||
| 52 | it->end = ktime_get(); | ||
| 53 | data = tr->data[smp_processor_id()]; | ||
| 54 | |||
| 55 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
| 56 | sizeof(*entry), 0, 0); | ||
| 57 | if (!event) | ||
| 58 | goto out; | ||
| 59 | entry = ring_buffer_event_data(event); | ||
| 60 | entry->state_data = *it; | ||
| 61 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 62 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 63 | out: | ||
| 64 | preempt_enable(); | ||
| 65 | } | ||
| 66 | |||
| 67 | static void probe_power_mark(struct power_trace *it, unsigned int type, | ||
| 68 | unsigned int level) | ||
| 69 | { | ||
| 70 | struct ftrace_event_call *call = &event_power; | ||
| 71 | struct ring_buffer_event *event; | ||
| 72 | struct ring_buffer *buffer; | ||
| 73 | struct trace_power *entry; | ||
| 74 | struct trace_array_cpu *data; | ||
| 75 | struct trace_array *tr = power_trace; | ||
| 76 | |||
| 77 | if (!trace_power_enabled) | ||
| 78 | return; | ||
| 79 | |||
| 80 | buffer = tr->buffer; | ||
| 81 | |||
| 82 | memset(it, 0, sizeof(struct power_trace)); | ||
| 83 | it->state = level; | ||
| 84 | it->type = type; | ||
| 85 | it->stamp = ktime_get(); | ||
| 86 | preempt_disable(); | ||
| 87 | it->end = it->stamp; | ||
| 88 | data = tr->data[smp_processor_id()]; | ||
| 89 | |||
| 90 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
| 91 | sizeof(*entry), 0, 0); | ||
| 92 | if (!event) | ||
| 93 | goto out; | ||
| 94 | entry = ring_buffer_event_data(event); | ||
| 95 | entry->state_data = *it; | ||
| 96 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 97 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 98 | out: | ||
| 99 | preempt_enable(); | ||
| 100 | } | ||
| 101 | |||
| 102 | static int tracing_power_register(void) | ||
| 103 | { | ||
| 104 | int ret; | ||
| 105 | |||
| 106 | ret = register_trace_power_start(probe_power_start); | ||
| 107 | if (ret) { | ||
| 108 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 109 | " probe to trace_power_start\n"); | ||
| 110 | return ret; | ||
| 111 | } | ||
| 112 | ret = register_trace_power_end(probe_power_end); | ||
| 113 | if (ret) { | ||
| 114 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 115 | " probe to trace_power_end\n"); | ||
| 116 | goto fail_start; | ||
| 117 | } | ||
| 118 | ret = register_trace_power_mark(probe_power_mark); | ||
| 119 | if (ret) { | ||
| 120 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 121 | " probe to trace_power_mark\n"); | ||
| 122 | goto fail_end; | ||
| 123 | } | ||
| 124 | return ret; | ||
| 125 | fail_end: | ||
| 126 | unregister_trace_power_end(probe_power_end); | ||
| 127 | fail_start: | ||
| 128 | unregister_trace_power_start(probe_power_start); | ||
| 129 | return ret; | ||
| 130 | } | ||
| 131 | |||
| 132 | static void start_power_trace(struct trace_array *tr) | ||
| 133 | { | ||
| 134 | trace_power_enabled = 1; | ||
| 135 | } | ||
| 136 | |||
| 137 | static void stop_power_trace(struct trace_array *tr) | ||
| 138 | { | ||
| 139 | trace_power_enabled = 0; | ||
| 140 | } | ||
| 141 | |||
| 142 | static void power_trace_reset(struct trace_array *tr) | ||
| 143 | { | ||
| 144 | trace_power_enabled = 0; | ||
| 145 | unregister_trace_power_start(probe_power_start); | ||
| 146 | unregister_trace_power_end(probe_power_end); | ||
| 147 | unregister_trace_power_mark(probe_power_mark); | ||
| 148 | } | ||
| 149 | |||
| 150 | |||
| 151 | static int power_trace_init(struct trace_array *tr) | ||
| 152 | { | ||
| 153 | power_trace = tr; | ||
| 154 | |||
| 155 | trace_power_enabled = 1; | ||
| 156 | tracing_power_register(); | ||
| 157 | |||
| 158 | tracing_reset_online_cpus(tr); | ||
| 159 | return 0; | ||
| 160 | } | ||
| 161 | |||
| 162 | static enum print_line_t power_print_line(struct trace_iterator *iter) | ||
| 163 | { | ||
| 164 | int ret = 0; | ||
| 165 | struct trace_entry *entry = iter->ent; | ||
| 166 | struct trace_power *field ; | ||
| 167 | struct power_trace *it; | ||
| 168 | struct trace_seq *s = &iter->seq; | ||
| 169 | struct timespec stamp; | ||
| 170 | struct timespec duration; | ||
| 171 | |||
| 172 | trace_assign_type(field, entry); | ||
| 173 | it = &field->state_data; | ||
| 174 | stamp = ktime_to_timespec(it->stamp); | ||
| 175 | duration = ktime_to_timespec(ktime_sub(it->end, it->stamp)); | ||
| 176 | |||
| 177 | if (entry->type == TRACE_POWER) { | ||
| 178 | if (it->type == POWER_CSTATE) | ||
| 179 | ret = trace_seq_printf(s, "[%5ld.%09ld] CSTATE: Going to C%i on cpu %i for %ld.%09ld\n", | ||
| 180 | stamp.tv_sec, | ||
| 181 | stamp.tv_nsec, | ||
| 182 | it->state, iter->cpu, | ||
| 183 | duration.tv_sec, | ||
| 184 | duration.tv_nsec); | ||
| 185 | if (it->type == POWER_PSTATE) | ||
| 186 | ret = trace_seq_printf(s, "[%5ld.%09ld] PSTATE: Going to P%i on cpu %i\n", | ||
| 187 | stamp.tv_sec, | ||
| 188 | stamp.tv_nsec, | ||
| 189 | it->state, iter->cpu); | ||
| 190 | if (!ret) | ||
| 191 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 192 | return TRACE_TYPE_HANDLED; | ||
| 193 | } | ||
| 194 | return TRACE_TYPE_UNHANDLED; | ||
| 195 | } | ||
| 196 | |||
| 197 | static void power_print_header(struct seq_file *s) | ||
| 198 | { | ||
| 199 | seq_puts(s, "# TIMESTAMP STATE EVENT\n"); | ||
| 200 | seq_puts(s, "# | | |\n"); | ||
| 201 | } | ||
| 202 | |||
| 203 | static struct tracer power_tracer __read_mostly = | ||
| 204 | { | ||
| 205 | .name = "power", | ||
| 206 | .init = power_trace_init, | ||
| 207 | .start = start_power_trace, | ||
| 208 | .stop = stop_power_trace, | ||
| 209 | .reset = power_trace_reset, | ||
| 210 | .print_line = power_print_line, | ||
| 211 | .print_header = power_print_header, | ||
| 212 | }; | ||
| 213 | |||
| 214 | static int init_power_trace(void) | ||
| 215 | { | ||
| 216 | return register_tracer(&power_tracer); | ||
| 217 | } | ||
| 218 | device_initcall(init_power_trace); | ||
diff --git a/kernel/trace/trace_printk.c b/kernel/trace/trace_printk.c index 687699d365ae..2547d8813cf0 100644 --- a/kernel/trace/trace_printk.c +++ b/kernel/trace/trace_printk.c | |||
| @@ -11,7 +11,6 @@ | |||
| 11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
| 12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
| 13 | #include <linux/module.h> | 13 | #include <linux/module.h> |
| 14 | #include <linux/marker.h> | ||
| 15 | #include <linux/mutex.h> | 14 | #include <linux/mutex.h> |
| 16 | #include <linux/ctype.h> | 15 | #include <linux/ctype.h> |
| 17 | #include <linux/list.h> | 16 | #include <linux/list.h> |
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c index 0f6facb050a1..8504ac71e4e8 100644 --- a/kernel/trace/trace_stack.c +++ b/kernel/trace/trace_stack.c | |||
| @@ -296,14 +296,14 @@ static const struct file_operations stack_trace_fops = { | |||
| 296 | 296 | ||
| 297 | int | 297 | int |
| 298 | stack_trace_sysctl(struct ctl_table *table, int write, | 298 | stack_trace_sysctl(struct ctl_table *table, int write, |
| 299 | struct file *file, void __user *buffer, size_t *lenp, | 299 | void __user *buffer, size_t *lenp, |
| 300 | loff_t *ppos) | 300 | loff_t *ppos) |
| 301 | { | 301 | { |
| 302 | int ret; | 302 | int ret; |
| 303 | 303 | ||
| 304 | mutex_lock(&stack_sysctl_mutex); | 304 | mutex_lock(&stack_sysctl_mutex); |
| 305 | 305 | ||
| 306 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 306 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 307 | 307 | ||
| 308 | if (ret || !write || | 308 | if (ret || !write || |
| 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) | 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) |
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 8712ce3c6a0e..9fbce6c9d2e1 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
| @@ -2,7 +2,7 @@ | |||
| 2 | #include <trace/events/syscalls.h> | 2 | #include <trace/events/syscalls.h> |
| 3 | #include <linux/kernel.h> | 3 | #include <linux/kernel.h> |
| 4 | #include <linux/ftrace.h> | 4 | #include <linux/ftrace.h> |
| 5 | #include <linux/perf_counter.h> | 5 | #include <linux/perf_event.h> |
| 6 | #include <asm/syscall.h> | 6 | #include <asm/syscall.h> |
| 7 | 7 | ||
| 8 | #include "trace_output.h" | 8 | #include "trace_output.h" |
| @@ -384,10 +384,13 @@ static int sys_prof_refcount_exit; | |||
| 384 | 384 | ||
| 385 | static void prof_syscall_enter(struct pt_regs *regs, long id) | 385 | static void prof_syscall_enter(struct pt_regs *regs, long id) |
| 386 | { | 386 | { |
| 387 | struct syscall_trace_enter *rec; | ||
| 388 | struct syscall_metadata *sys_data; | 387 | struct syscall_metadata *sys_data; |
| 388 | struct syscall_trace_enter *rec; | ||
| 389 | unsigned long flags; | ||
| 390 | char *raw_data; | ||
| 389 | int syscall_nr; | 391 | int syscall_nr; |
| 390 | int size; | 392 | int size; |
| 393 | int cpu; | ||
| 391 | 394 | ||
| 392 | syscall_nr = syscall_get_nr(current, regs); | 395 | syscall_nr = syscall_get_nr(current, regs); |
| 393 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) | 396 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) |
| @@ -402,20 +405,38 @@ static void prof_syscall_enter(struct pt_regs *regs, long id) | |||
| 402 | size = ALIGN(size + sizeof(u32), sizeof(u64)); | 405 | size = ALIGN(size + sizeof(u32), sizeof(u64)); |
| 403 | size -= sizeof(u32); | 406 | size -= sizeof(u32); |
| 404 | 407 | ||
| 405 | do { | 408 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, |
| 406 | char raw_data[size]; | 409 | "profile buffer not large enough")) |
| 410 | return; | ||
| 411 | |||
| 412 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
| 413 | local_irq_save(flags); | ||
| 407 | 414 | ||
| 408 | /* zero the dead bytes from align to not leak stack to user */ | 415 | cpu = smp_processor_id(); |
| 409 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | 416 | |
| 417 | if (in_nmi()) | ||
| 418 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
| 419 | else | ||
| 420 | raw_data = rcu_dereference(trace_profile_buf); | ||
| 421 | |||
| 422 | if (!raw_data) | ||
| 423 | goto end; | ||
| 410 | 424 | ||
| 411 | rec = (struct syscall_trace_enter *) raw_data; | 425 | raw_data = per_cpu_ptr(raw_data, cpu); |
| 412 | tracing_generic_entry_update(&rec->ent, 0, 0); | 426 | |
| 413 | rec->ent.type = sys_data->enter_id; | 427 | /* zero the dead bytes from align to not leak stack to user */ |
| 414 | rec->nr = syscall_nr; | 428 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; |
| 415 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | 429 | |
| 416 | (unsigned long *)&rec->args); | 430 | rec = (struct syscall_trace_enter *) raw_data; |
| 417 | perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size); | 431 | tracing_generic_entry_update(&rec->ent, 0, 0); |
| 418 | } while(0); | 432 | rec->ent.type = sys_data->enter_id; |
| 433 | rec->nr = syscall_nr; | ||
| 434 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | ||
| 435 | (unsigned long *)&rec->args); | ||
| 436 | perf_tp_event(sys_data->enter_id, 0, 1, rec, size); | ||
| 437 | |||
| 438 | end: | ||
| 439 | local_irq_restore(flags); | ||
| 419 | } | 440 | } |
| 420 | 441 | ||
| 421 | int reg_prof_syscall_enter(char *name) | 442 | int reg_prof_syscall_enter(char *name) |
| @@ -460,8 +481,12 @@ void unreg_prof_syscall_enter(char *name) | |||
| 460 | static void prof_syscall_exit(struct pt_regs *regs, long ret) | 481 | static void prof_syscall_exit(struct pt_regs *regs, long ret) |
| 461 | { | 482 | { |
| 462 | struct syscall_metadata *sys_data; | 483 | struct syscall_metadata *sys_data; |
| 463 | struct syscall_trace_exit rec; | 484 | struct syscall_trace_exit *rec; |
| 485 | unsigned long flags; | ||
| 464 | int syscall_nr; | 486 | int syscall_nr; |
| 487 | char *raw_data; | ||
| 488 | int size; | ||
| 489 | int cpu; | ||
| 465 | 490 | ||
| 466 | syscall_nr = syscall_get_nr(current, regs); | 491 | syscall_nr = syscall_get_nr(current, regs); |
| 467 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) | 492 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) |
| @@ -471,12 +496,46 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret) | |||
| 471 | if (!sys_data) | 496 | if (!sys_data) |
| 472 | return; | 497 | return; |
| 473 | 498 | ||
| 474 | tracing_generic_entry_update(&rec.ent, 0, 0); | 499 | /* We can probably do that at build time */ |
| 475 | rec.ent.type = sys_data->exit_id; | 500 | size = ALIGN(sizeof(*rec) + sizeof(u32), sizeof(u64)); |
| 476 | rec.nr = syscall_nr; | 501 | size -= sizeof(u32); |
| 477 | rec.ret = syscall_get_return_value(current, regs); | ||
| 478 | 502 | ||
| 479 | perf_tpcounter_event(sys_data->exit_id, 0, 1, &rec, sizeof(rec)); | 503 | /* |
| 504 | * Impossible, but be paranoid with the future | ||
| 505 | * How to put this check outside runtime? | ||
| 506 | */ | ||
| 507 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
| 508 | "exit event has grown above profile buffer size")) | ||
| 509 | return; | ||
| 510 | |||
| 511 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
| 512 | local_irq_save(flags); | ||
| 513 | cpu = smp_processor_id(); | ||
| 514 | |||
| 515 | if (in_nmi()) | ||
| 516 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
| 517 | else | ||
| 518 | raw_data = rcu_dereference(trace_profile_buf); | ||
| 519 | |||
| 520 | if (!raw_data) | ||
| 521 | goto end; | ||
| 522 | |||
| 523 | raw_data = per_cpu_ptr(raw_data, cpu); | ||
| 524 | |||
| 525 | /* zero the dead bytes from align to not leak stack to user */ | ||
| 526 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
| 527 | |||
| 528 | rec = (struct syscall_trace_exit *)raw_data; | ||
| 529 | |||
| 530 | tracing_generic_entry_update(&rec->ent, 0, 0); | ||
| 531 | rec->ent.type = sys_data->exit_id; | ||
| 532 | rec->nr = syscall_nr; | ||
| 533 | rec->ret = syscall_get_return_value(current, regs); | ||
| 534 | |||
| 535 | perf_tp_event(sys_data->exit_id, 0, 1, rec, size); | ||
| 536 | |||
| 537 | end: | ||
| 538 | local_irq_restore(flags); | ||
| 480 | } | 539 | } |
| 481 | 540 | ||
| 482 | int reg_prof_syscall_exit(char *name) | 541 | int reg_prof_syscall_exit(char *name) |
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index 9489a0a9b1be..cc89be5bc0f8 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
| @@ -48,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
| 48 | 48 | ||
| 49 | /* | 49 | /* |
| 50 | * Note about RCU : | 50 | * Note about RCU : |
| 51 | * It is used to to delay the free of multiple probes array until a quiescent | 51 | * It is used to delay the free of multiple probes array until a quiescent |
| 52 | * state is reached. | 52 | * state is reached. |
| 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. | 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. |
| 54 | */ | 54 | */ |
diff --git a/kernel/uid16.c b/kernel/uid16.c index 0314501688b9..419209893d87 100644 --- a/kernel/uid16.c +++ b/kernel/uid16.c | |||
| @@ -4,7 +4,6 @@ | |||
| 4 | */ | 4 | */ |
| 5 | 5 | ||
| 6 | #include <linux/mm.h> | 6 | #include <linux/mm.h> |
| 7 | #include <linux/utsname.h> | ||
| 8 | #include <linux/mman.h> | 7 | #include <linux/mman.h> |
| 9 | #include <linux/notifier.h> | 8 | #include <linux/notifier.h> |
| 10 | #include <linux/reboot.h> | 9 | #include <linux/reboot.h> |
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c index 92359cc747a7..69eae358a726 100644 --- a/kernel/utsname_sysctl.c +++ b/kernel/utsname_sysctl.c | |||
| @@ -42,14 +42,14 @@ static void put_uts(ctl_table *table, int write, void *which) | |||
| 42 | * Special case of dostring for the UTS structure. This has locks | 42 | * Special case of dostring for the UTS structure. This has locks |
| 43 | * to observe. Should this be in kernel/sys.c ???? | 43 | * to observe. Should this be in kernel/sys.c ???? |
| 44 | */ | 44 | */ |
| 45 | static int proc_do_uts_string(ctl_table *table, int write, struct file *filp, | 45 | static int proc_do_uts_string(ctl_table *table, int write, |
| 46 | void __user *buffer, size_t *lenp, loff_t *ppos) | 46 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 47 | { | 47 | { |
| 48 | struct ctl_table uts_table; | 48 | struct ctl_table uts_table; |
| 49 | int r; | 49 | int r; |
| 50 | memcpy(&uts_table, table, sizeof(uts_table)); | 50 | memcpy(&uts_table, table, sizeof(uts_table)); |
| 51 | uts_table.data = get_uts(table, write); | 51 | uts_table.data = get_uts(table, write); |
| 52 | r = proc_dostring(&uts_table,write,filp,buffer,lenp, ppos); | 52 | r = proc_dostring(&uts_table,write,buffer,lenp, ppos); |
| 53 | put_uts(table, write, uts_table.data); | 53 | put_uts(table, write, uts_table.data); |
| 54 | return r; | 54 | return r; |
| 55 | } | 55 | } |
