diff options
Diffstat (limited to 'kernel')
77 files changed, 5088 insertions, 2293 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index e4791b3ba55d..bab1dffe37e9 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -93,6 +93,7 @@ obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o | |||
93 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ | 93 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ |
94 | obj-$(CONFIG_TRACING) += trace/ | 94 | obj-$(CONFIG_TRACING) += trace/ |
95 | obj-$(CONFIG_SMP) += sched_cpupri.o | 95 | obj-$(CONFIG_SMP) += sched_cpupri.o |
96 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | ||
96 | 97 | ||
97 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 98 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
98 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 99 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/async.c b/kernel/async.c index f565891f2c9b..968ef9457d4e 100644 --- a/kernel/async.c +++ b/kernel/async.c | |||
@@ -49,6 +49,7 @@ asynchronous and synchronous parts of the kernel. | |||
49 | */ | 49 | */ |
50 | 50 | ||
51 | #include <linux/async.h> | 51 | #include <linux/async.h> |
52 | #include <linux/bug.h> | ||
52 | #include <linux/module.h> | 53 | #include <linux/module.h> |
53 | #include <linux/wait.h> | 54 | #include <linux/wait.h> |
54 | #include <linux/sched.h> | 55 | #include <linux/sched.h> |
@@ -387,20 +388,11 @@ static int async_manager_thread(void *unused) | |||
387 | 388 | ||
388 | static int __init async_init(void) | 389 | static int __init async_init(void) |
389 | { | 390 | { |
390 | if (async_enabled) | 391 | async_enabled = |
391 | if (IS_ERR(kthread_run(async_manager_thread, NULL, | 392 | !IS_ERR(kthread_run(async_manager_thread, NULL, "async/mgr")); |
392 | "async/mgr"))) | ||
393 | async_enabled = 0; | ||
394 | return 0; | ||
395 | } | ||
396 | 393 | ||
397 | static int __init setup_async(char *str) | 394 | WARN_ON(!async_enabled); |
398 | { | 395 | return 0; |
399 | async_enabled = 1; | ||
400 | return 1; | ||
401 | } | 396 | } |
402 | 397 | ||
403 | __setup("fastboot", setup_async); | ||
404 | |||
405 | |||
406 | core_initcall(async_init); | 398 | core_initcall(async_init); |
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index 8cbddff6c283..2bfc64786765 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
@@ -66,6 +66,7 @@ | |||
66 | #include <linux/syscalls.h> | 66 | #include <linux/syscalls.h> |
67 | #include <linux/inotify.h> | 67 | #include <linux/inotify.h> |
68 | #include <linux/capability.h> | 68 | #include <linux/capability.h> |
69 | #include <linux/fs_struct.h> | ||
69 | 70 | ||
70 | #include "audit.h" | 71 | #include "audit.h" |
71 | 72 | ||
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index 9edb5c4b79b4..382109b5baeb 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -94,7 +94,6 @@ struct cgroupfs_root { | |||
94 | char release_agent_path[PATH_MAX]; | 94 | char release_agent_path[PATH_MAX]; |
95 | }; | 95 | }; |
96 | 96 | ||
97 | |||
98 | /* | 97 | /* |
99 | * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the | 98 | * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the |
100 | * subsystems that are otherwise unattached - it never has more than a | 99 | * subsystems that are otherwise unattached - it never has more than a |
@@ -102,6 +101,39 @@ struct cgroupfs_root { | |||
102 | */ | 101 | */ |
103 | static struct cgroupfs_root rootnode; | 102 | static struct cgroupfs_root rootnode; |
104 | 103 | ||
104 | /* | ||
105 | * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when | ||
106 | * cgroup_subsys->use_id != 0. | ||
107 | */ | ||
108 | #define CSS_ID_MAX (65535) | ||
109 | struct css_id { | ||
110 | /* | ||
111 | * The css to which this ID points. This pointer is set to valid value | ||
112 | * after cgroup is populated. If cgroup is removed, this will be NULL. | ||
113 | * This pointer is expected to be RCU-safe because destroy() | ||
114 | * is called after synchronize_rcu(). But for safe use, css_is_removed() | ||
115 | * css_tryget() should be used for avoiding race. | ||
116 | */ | ||
117 | struct cgroup_subsys_state *css; | ||
118 | /* | ||
119 | * ID of this css. | ||
120 | */ | ||
121 | unsigned short id; | ||
122 | /* | ||
123 | * Depth in hierarchy which this ID belongs to. | ||
124 | */ | ||
125 | unsigned short depth; | ||
126 | /* | ||
127 | * ID is freed by RCU. (and lookup routine is RCU safe.) | ||
128 | */ | ||
129 | struct rcu_head rcu_head; | ||
130 | /* | ||
131 | * Hierarchy of CSS ID belongs to. | ||
132 | */ | ||
133 | unsigned short stack[0]; /* Array of Length (depth+1) */ | ||
134 | }; | ||
135 | |||
136 | |||
105 | /* The list of hierarchy roots */ | 137 | /* The list of hierarchy roots */ |
106 | 138 | ||
107 | static LIST_HEAD(roots); | 139 | static LIST_HEAD(roots); |
@@ -185,6 +217,8 @@ struct cg_cgroup_link { | |||
185 | static struct css_set init_css_set; | 217 | static struct css_set init_css_set; |
186 | static struct cg_cgroup_link init_css_set_link; | 218 | static struct cg_cgroup_link init_css_set_link; |
187 | 219 | ||
220 | static int cgroup_subsys_init_idr(struct cgroup_subsys *ss); | ||
221 | |||
188 | /* css_set_lock protects the list of css_set objects, and the | 222 | /* css_set_lock protects the list of css_set objects, and the |
189 | * chain of tasks off each css_set. Nests outside task->alloc_lock | 223 | * chain of tasks off each css_set. Nests outside task->alloc_lock |
190 | * due to cgroup_iter_start() */ | 224 | * due to cgroup_iter_start() */ |
@@ -567,6 +601,9 @@ static struct backing_dev_info cgroup_backing_dev_info = { | |||
567 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, | 601 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, |
568 | }; | 602 | }; |
569 | 603 | ||
604 | static int alloc_css_id(struct cgroup_subsys *ss, | ||
605 | struct cgroup *parent, struct cgroup *child); | ||
606 | |||
570 | static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) | 607 | static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) |
571 | { | 608 | { |
572 | struct inode *inode = new_inode(sb); | 609 | struct inode *inode = new_inode(sb); |
@@ -585,13 +622,18 @@ static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) | |||
585 | * Call subsys's pre_destroy handler. | 622 | * Call subsys's pre_destroy handler. |
586 | * This is called before css refcnt check. | 623 | * This is called before css refcnt check. |
587 | */ | 624 | */ |
588 | static void cgroup_call_pre_destroy(struct cgroup *cgrp) | 625 | static int cgroup_call_pre_destroy(struct cgroup *cgrp) |
589 | { | 626 | { |
590 | struct cgroup_subsys *ss; | 627 | struct cgroup_subsys *ss; |
628 | int ret = 0; | ||
629 | |||
591 | for_each_subsys(cgrp->root, ss) | 630 | for_each_subsys(cgrp->root, ss) |
592 | if (ss->pre_destroy) | 631 | if (ss->pre_destroy) { |
593 | ss->pre_destroy(ss, cgrp); | 632 | ret = ss->pre_destroy(ss, cgrp); |
594 | return; | 633 | if (ret) |
634 | break; | ||
635 | } | ||
636 | return ret; | ||
595 | } | 637 | } |
596 | 638 | ||
597 | static void free_cgroup_rcu(struct rcu_head *obj) | 639 | static void free_cgroup_rcu(struct rcu_head *obj) |
@@ -685,6 +727,22 @@ static void cgroup_d_remove_dir(struct dentry *dentry) | |||
685 | remove_dir(dentry); | 727 | remove_dir(dentry); |
686 | } | 728 | } |
687 | 729 | ||
730 | /* | ||
731 | * A queue for waiters to do rmdir() cgroup. A tasks will sleep when | ||
732 | * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some | ||
733 | * reference to css->refcnt. In general, this refcnt is expected to goes down | ||
734 | * to zero, soon. | ||
735 | * | ||
736 | * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex; | ||
737 | */ | ||
738 | DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); | ||
739 | |||
740 | static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp) | ||
741 | { | ||
742 | if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) | ||
743 | wake_up_all(&cgroup_rmdir_waitq); | ||
744 | } | ||
745 | |||
688 | static int rebind_subsystems(struct cgroupfs_root *root, | 746 | static int rebind_subsystems(struct cgroupfs_root *root, |
689 | unsigned long final_bits) | 747 | unsigned long final_bits) |
690 | { | 748 | { |
@@ -857,16 +915,16 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
857 | } | 915 | } |
858 | 916 | ||
859 | ret = rebind_subsystems(root, opts.subsys_bits); | 917 | ret = rebind_subsystems(root, opts.subsys_bits); |
918 | if (ret) | ||
919 | goto out_unlock; | ||
860 | 920 | ||
861 | /* (re)populate subsystem files */ | 921 | /* (re)populate subsystem files */ |
862 | if (!ret) | 922 | cgroup_populate_dir(cgrp); |
863 | cgroup_populate_dir(cgrp); | ||
864 | 923 | ||
865 | if (opts.release_agent) | 924 | if (opts.release_agent) |
866 | strcpy(root->release_agent_path, opts.release_agent); | 925 | strcpy(root->release_agent_path, opts.release_agent); |
867 | out_unlock: | 926 | out_unlock: |
868 | if (opts.release_agent) | 927 | kfree(opts.release_agent); |
869 | kfree(opts.release_agent); | ||
870 | mutex_unlock(&cgroup_mutex); | 928 | mutex_unlock(&cgroup_mutex); |
871 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 929 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
872 | return ret; | 930 | return ret; |
@@ -969,15 +1027,13 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
969 | /* First find the desired set of subsystems */ | 1027 | /* First find the desired set of subsystems */ |
970 | ret = parse_cgroupfs_options(data, &opts); | 1028 | ret = parse_cgroupfs_options(data, &opts); |
971 | if (ret) { | 1029 | if (ret) { |
972 | if (opts.release_agent) | 1030 | kfree(opts.release_agent); |
973 | kfree(opts.release_agent); | ||
974 | return ret; | 1031 | return ret; |
975 | } | 1032 | } |
976 | 1033 | ||
977 | root = kzalloc(sizeof(*root), GFP_KERNEL); | 1034 | root = kzalloc(sizeof(*root), GFP_KERNEL); |
978 | if (!root) { | 1035 | if (!root) { |
979 | if (opts.release_agent) | 1036 | kfree(opts.release_agent); |
980 | kfree(opts.release_agent); | ||
981 | return -ENOMEM; | 1037 | return -ENOMEM; |
982 | } | 1038 | } |
983 | 1039 | ||
@@ -1071,7 +1127,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1071 | mutex_unlock(&cgroup_mutex); | 1127 | mutex_unlock(&cgroup_mutex); |
1072 | } | 1128 | } |
1073 | 1129 | ||
1074 | return simple_set_mnt(mnt, sb); | 1130 | simple_set_mnt(mnt, sb); |
1131 | return 0; | ||
1075 | 1132 | ||
1076 | free_cg_links: | 1133 | free_cg_links: |
1077 | free_cg_links(&tmp_cg_links); | 1134 | free_cg_links(&tmp_cg_links); |
@@ -1279,6 +1336,12 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
1279 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 1336 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); |
1280 | synchronize_rcu(); | 1337 | synchronize_rcu(); |
1281 | put_css_set(cg); | 1338 | put_css_set(cg); |
1339 | |||
1340 | /* | ||
1341 | * wake up rmdir() waiter. the rmdir should fail since the cgroup | ||
1342 | * is no longer empty. | ||
1343 | */ | ||
1344 | cgroup_wakeup_rmdir_waiters(cgrp); | ||
1282 | return 0; | 1345 | return 0; |
1283 | } | 1346 | } |
1284 | 1347 | ||
@@ -1624,10 +1687,10 @@ static struct inode_operations cgroup_dir_inode_operations = { | |||
1624 | .rename = cgroup_rename, | 1687 | .rename = cgroup_rename, |
1625 | }; | 1688 | }; |
1626 | 1689 | ||
1627 | static int cgroup_create_file(struct dentry *dentry, int mode, | 1690 | static int cgroup_create_file(struct dentry *dentry, mode_t mode, |
1628 | struct super_block *sb) | 1691 | struct super_block *sb) |
1629 | { | 1692 | { |
1630 | static struct dentry_operations cgroup_dops = { | 1693 | static const struct dentry_operations cgroup_dops = { |
1631 | .d_iput = cgroup_diput, | 1694 | .d_iput = cgroup_diput, |
1632 | }; | 1695 | }; |
1633 | 1696 | ||
@@ -1670,7 +1733,7 @@ static int cgroup_create_file(struct dentry *dentry, int mode, | |||
1670 | * @mode: mode to set on new directory. | 1733 | * @mode: mode to set on new directory. |
1671 | */ | 1734 | */ |
1672 | static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, | 1735 | static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, |
1673 | int mode) | 1736 | mode_t mode) |
1674 | { | 1737 | { |
1675 | struct dentry *parent; | 1738 | struct dentry *parent; |
1676 | int error = 0; | 1739 | int error = 0; |
@@ -1688,6 +1751,33 @@ static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, | |||
1688 | return error; | 1751 | return error; |
1689 | } | 1752 | } |
1690 | 1753 | ||
1754 | /** | ||
1755 | * cgroup_file_mode - deduce file mode of a control file | ||
1756 | * @cft: the control file in question | ||
1757 | * | ||
1758 | * returns cft->mode if ->mode is not 0 | ||
1759 | * returns S_IRUGO|S_IWUSR if it has both a read and a write handler | ||
1760 | * returns S_IRUGO if it has only a read handler | ||
1761 | * returns S_IWUSR if it has only a write hander | ||
1762 | */ | ||
1763 | static mode_t cgroup_file_mode(const struct cftype *cft) | ||
1764 | { | ||
1765 | mode_t mode = 0; | ||
1766 | |||
1767 | if (cft->mode) | ||
1768 | return cft->mode; | ||
1769 | |||
1770 | if (cft->read || cft->read_u64 || cft->read_s64 || | ||
1771 | cft->read_map || cft->read_seq_string) | ||
1772 | mode |= S_IRUGO; | ||
1773 | |||
1774 | if (cft->write || cft->write_u64 || cft->write_s64 || | ||
1775 | cft->write_string || cft->trigger) | ||
1776 | mode |= S_IWUSR; | ||
1777 | |||
1778 | return mode; | ||
1779 | } | ||
1780 | |||
1691 | int cgroup_add_file(struct cgroup *cgrp, | 1781 | int cgroup_add_file(struct cgroup *cgrp, |
1692 | struct cgroup_subsys *subsys, | 1782 | struct cgroup_subsys *subsys, |
1693 | const struct cftype *cft) | 1783 | const struct cftype *cft) |
@@ -1695,6 +1785,7 @@ int cgroup_add_file(struct cgroup *cgrp, | |||
1695 | struct dentry *dir = cgrp->dentry; | 1785 | struct dentry *dir = cgrp->dentry; |
1696 | struct dentry *dentry; | 1786 | struct dentry *dentry; |
1697 | int error; | 1787 | int error; |
1788 | mode_t mode; | ||
1698 | 1789 | ||
1699 | char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; | 1790 | char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; |
1700 | if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { | 1791 | if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { |
@@ -1705,7 +1796,8 @@ int cgroup_add_file(struct cgroup *cgrp, | |||
1705 | BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); | 1796 | BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); |
1706 | dentry = lookup_one_len(name, dir, strlen(name)); | 1797 | dentry = lookup_one_len(name, dir, strlen(name)); |
1707 | if (!IS_ERR(dentry)) { | 1798 | if (!IS_ERR(dentry)) { |
1708 | error = cgroup_create_file(dentry, 0644 | S_IFREG, | 1799 | mode = cgroup_file_mode(cft); |
1800 | error = cgroup_create_file(dentry, mode | S_IFREG, | ||
1709 | cgrp->root->sb); | 1801 | cgrp->root->sb); |
1710 | if (!error) | 1802 | if (!error) |
1711 | dentry->d_fsdata = (void *)cft; | 1803 | dentry->d_fsdata = (void *)cft; |
@@ -2287,6 +2379,7 @@ static struct cftype files[] = { | |||
2287 | .write_u64 = cgroup_tasks_write, | 2379 | .write_u64 = cgroup_tasks_write, |
2288 | .release = cgroup_tasks_release, | 2380 | .release = cgroup_tasks_release, |
2289 | .private = FILE_TASKLIST, | 2381 | .private = FILE_TASKLIST, |
2382 | .mode = S_IRUGO | S_IWUSR, | ||
2290 | }, | 2383 | }, |
2291 | 2384 | ||
2292 | { | 2385 | { |
@@ -2326,6 +2419,17 @@ static int cgroup_populate_dir(struct cgroup *cgrp) | |||
2326 | if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) | 2419 | if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) |
2327 | return err; | 2420 | return err; |
2328 | } | 2421 | } |
2422 | /* This cgroup is ready now */ | ||
2423 | for_each_subsys(cgrp->root, ss) { | ||
2424 | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | ||
2425 | /* | ||
2426 | * Update id->css pointer and make this css visible from | ||
2427 | * CSS ID functions. This pointer will be dereferened | ||
2428 | * from RCU-read-side without locks. | ||
2429 | */ | ||
2430 | if (css->id) | ||
2431 | rcu_assign_pointer(css->id->css, css); | ||
2432 | } | ||
2329 | 2433 | ||
2330 | return 0; | 2434 | return 0; |
2331 | } | 2435 | } |
@@ -2337,6 +2441,7 @@ static void init_cgroup_css(struct cgroup_subsys_state *css, | |||
2337 | css->cgroup = cgrp; | 2441 | css->cgroup = cgrp; |
2338 | atomic_set(&css->refcnt, 1); | 2442 | atomic_set(&css->refcnt, 1); |
2339 | css->flags = 0; | 2443 | css->flags = 0; |
2444 | css->id = NULL; | ||
2340 | if (cgrp == dummytop) | 2445 | if (cgrp == dummytop) |
2341 | set_bit(CSS_ROOT, &css->flags); | 2446 | set_bit(CSS_ROOT, &css->flags); |
2342 | BUG_ON(cgrp->subsys[ss->subsys_id]); | 2447 | BUG_ON(cgrp->subsys[ss->subsys_id]); |
@@ -2375,7 +2480,7 @@ static void cgroup_unlock_hierarchy(struct cgroupfs_root *root) | |||
2375 | * Must be called with the mutex on the parent inode held | 2480 | * Must be called with the mutex on the parent inode held |
2376 | */ | 2481 | */ |
2377 | static long cgroup_create(struct cgroup *parent, struct dentry *dentry, | 2482 | static long cgroup_create(struct cgroup *parent, struct dentry *dentry, |
2378 | int mode) | 2483 | mode_t mode) |
2379 | { | 2484 | { |
2380 | struct cgroup *cgrp; | 2485 | struct cgroup *cgrp; |
2381 | struct cgroupfs_root *root = parent->root; | 2486 | struct cgroupfs_root *root = parent->root; |
@@ -2412,6 +2517,10 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry, | |||
2412 | goto err_destroy; | 2517 | goto err_destroy; |
2413 | } | 2518 | } |
2414 | init_cgroup_css(css, ss, cgrp); | 2519 | init_cgroup_css(css, ss, cgrp); |
2520 | if (ss->use_id) | ||
2521 | if (alloc_css_id(ss, parent, cgrp)) | ||
2522 | goto err_destroy; | ||
2523 | /* At error, ->destroy() callback has to free assigned ID. */ | ||
2415 | } | 2524 | } |
2416 | 2525 | ||
2417 | cgroup_lock_hierarchy(root); | 2526 | cgroup_lock_hierarchy(root); |
@@ -2554,9 +2663,11 @@ static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) | |||
2554 | struct cgroup *cgrp = dentry->d_fsdata; | 2663 | struct cgroup *cgrp = dentry->d_fsdata; |
2555 | struct dentry *d; | 2664 | struct dentry *d; |
2556 | struct cgroup *parent; | 2665 | struct cgroup *parent; |
2666 | DEFINE_WAIT(wait); | ||
2667 | int ret; | ||
2557 | 2668 | ||
2558 | /* the vfs holds both inode->i_mutex already */ | 2669 | /* the vfs holds both inode->i_mutex already */ |
2559 | 2670 | again: | |
2560 | mutex_lock(&cgroup_mutex); | 2671 | mutex_lock(&cgroup_mutex); |
2561 | if (atomic_read(&cgrp->count) != 0) { | 2672 | if (atomic_read(&cgrp->count) != 0) { |
2562 | mutex_unlock(&cgroup_mutex); | 2673 | mutex_unlock(&cgroup_mutex); |
@@ -2572,17 +2683,39 @@ static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) | |||
2572 | * Call pre_destroy handlers of subsys. Notify subsystems | 2683 | * Call pre_destroy handlers of subsys. Notify subsystems |
2573 | * that rmdir() request comes. | 2684 | * that rmdir() request comes. |
2574 | */ | 2685 | */ |
2575 | cgroup_call_pre_destroy(cgrp); | 2686 | ret = cgroup_call_pre_destroy(cgrp); |
2687 | if (ret) | ||
2688 | return ret; | ||
2576 | 2689 | ||
2577 | mutex_lock(&cgroup_mutex); | 2690 | mutex_lock(&cgroup_mutex); |
2578 | parent = cgrp->parent; | 2691 | parent = cgrp->parent; |
2579 | 2692 | if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) { | |
2580 | if (atomic_read(&cgrp->count) | ||
2581 | || !list_empty(&cgrp->children) | ||
2582 | || !cgroup_clear_css_refs(cgrp)) { | ||
2583 | mutex_unlock(&cgroup_mutex); | 2693 | mutex_unlock(&cgroup_mutex); |
2584 | return -EBUSY; | 2694 | return -EBUSY; |
2585 | } | 2695 | } |
2696 | /* | ||
2697 | * css_put/get is provided for subsys to grab refcnt to css. In typical | ||
2698 | * case, subsystem has no reference after pre_destroy(). But, under | ||
2699 | * hierarchy management, some *temporal* refcnt can be hold. | ||
2700 | * To avoid returning -EBUSY to a user, waitqueue is used. If subsys | ||
2701 | * is really busy, it should return -EBUSY at pre_destroy(). wake_up | ||
2702 | * is called when css_put() is called and refcnt goes down to 0. | ||
2703 | */ | ||
2704 | set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | ||
2705 | prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); | ||
2706 | |||
2707 | if (!cgroup_clear_css_refs(cgrp)) { | ||
2708 | mutex_unlock(&cgroup_mutex); | ||
2709 | schedule(); | ||
2710 | finish_wait(&cgroup_rmdir_waitq, &wait); | ||
2711 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | ||
2712 | if (signal_pending(current)) | ||
2713 | return -EINTR; | ||
2714 | goto again; | ||
2715 | } | ||
2716 | /* NO css_tryget() can success after here. */ | ||
2717 | finish_wait(&cgroup_rmdir_waitq, &wait); | ||
2718 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | ||
2586 | 2719 | ||
2587 | spin_lock(&release_list_lock); | 2720 | spin_lock(&release_list_lock); |
2588 | set_bit(CGRP_REMOVED, &cgrp->flags); | 2721 | set_bit(CGRP_REMOVED, &cgrp->flags); |
@@ -2707,6 +2840,8 @@ int __init cgroup_init(void) | |||
2707 | struct cgroup_subsys *ss = subsys[i]; | 2840 | struct cgroup_subsys *ss = subsys[i]; |
2708 | if (!ss->early_init) | 2841 | if (!ss->early_init) |
2709 | cgroup_init_subsys(ss); | 2842 | cgroup_init_subsys(ss); |
2843 | if (ss->use_id) | ||
2844 | cgroup_subsys_init_idr(ss); | ||
2710 | } | 2845 | } |
2711 | 2846 | ||
2712 | /* Add init_css_set to the hash table */ | 2847 | /* Add init_css_set to the hash table */ |
@@ -3083,18 +3218,19 @@ int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys, | |||
3083 | } | 3218 | } |
3084 | 3219 | ||
3085 | /** | 3220 | /** |
3086 | * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp | 3221 | * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp |
3087 | * @cgrp: the cgroup in question | 3222 | * @cgrp: the cgroup in question |
3223 | * @task: the task in question | ||
3088 | * | 3224 | * |
3089 | * See if @cgrp is a descendant of the current task's cgroup in | 3225 | * See if @cgrp is a descendant of @task's cgroup in the appropriate |
3090 | * the appropriate hierarchy. | 3226 | * hierarchy. |
3091 | * | 3227 | * |
3092 | * If we are sending in dummytop, then presumably we are creating | 3228 | * If we are sending in dummytop, then presumably we are creating |
3093 | * the top cgroup in the subsystem. | 3229 | * the top cgroup in the subsystem. |
3094 | * | 3230 | * |
3095 | * Called only by the ns (nsproxy) cgroup. | 3231 | * Called only by the ns (nsproxy) cgroup. |
3096 | */ | 3232 | */ |
3097 | int cgroup_is_descendant(const struct cgroup *cgrp) | 3233 | int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) |
3098 | { | 3234 | { |
3099 | int ret; | 3235 | int ret; |
3100 | struct cgroup *target; | 3236 | struct cgroup *target; |
@@ -3104,7 +3240,7 @@ int cgroup_is_descendant(const struct cgroup *cgrp) | |||
3104 | return 1; | 3240 | return 1; |
3105 | 3241 | ||
3106 | get_first_subsys(cgrp, NULL, &subsys_id); | 3242 | get_first_subsys(cgrp, NULL, &subsys_id); |
3107 | target = task_cgroup(current, subsys_id); | 3243 | target = task_cgroup(task, subsys_id); |
3108 | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 3244 | while (cgrp != target && cgrp!= cgrp->top_cgroup) |
3109 | cgrp = cgrp->parent; | 3245 | cgrp = cgrp->parent; |
3110 | ret = (cgrp == target); | 3246 | ret = (cgrp == target); |
@@ -3137,10 +3273,12 @@ void __css_put(struct cgroup_subsys_state *css) | |||
3137 | { | 3273 | { |
3138 | struct cgroup *cgrp = css->cgroup; | 3274 | struct cgroup *cgrp = css->cgroup; |
3139 | rcu_read_lock(); | 3275 | rcu_read_lock(); |
3140 | if ((atomic_dec_return(&css->refcnt) == 1) && | 3276 | if (atomic_dec_return(&css->refcnt) == 1) { |
3141 | notify_on_release(cgrp)) { | 3277 | if (notify_on_release(cgrp)) { |
3142 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 3278 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
3143 | check_for_release(cgrp); | 3279 | check_for_release(cgrp); |
3280 | } | ||
3281 | cgroup_wakeup_rmdir_waiters(cgrp); | ||
3144 | } | 3282 | } |
3145 | rcu_read_unlock(); | 3283 | rcu_read_unlock(); |
3146 | } | 3284 | } |
@@ -3240,3 +3378,232 @@ static int __init cgroup_disable(char *str) | |||
3240 | return 1; | 3378 | return 1; |
3241 | } | 3379 | } |
3242 | __setup("cgroup_disable=", cgroup_disable); | 3380 | __setup("cgroup_disable=", cgroup_disable); |
3381 | |||
3382 | /* | ||
3383 | * Functons for CSS ID. | ||
3384 | */ | ||
3385 | |||
3386 | /* | ||
3387 | *To get ID other than 0, this should be called when !cgroup_is_removed(). | ||
3388 | */ | ||
3389 | unsigned short css_id(struct cgroup_subsys_state *css) | ||
3390 | { | ||
3391 | struct css_id *cssid = rcu_dereference(css->id); | ||
3392 | |||
3393 | if (cssid) | ||
3394 | return cssid->id; | ||
3395 | return 0; | ||
3396 | } | ||
3397 | |||
3398 | unsigned short css_depth(struct cgroup_subsys_state *css) | ||
3399 | { | ||
3400 | struct css_id *cssid = rcu_dereference(css->id); | ||
3401 | |||
3402 | if (cssid) | ||
3403 | return cssid->depth; | ||
3404 | return 0; | ||
3405 | } | ||
3406 | |||
3407 | bool css_is_ancestor(struct cgroup_subsys_state *child, | ||
3408 | const struct cgroup_subsys_state *root) | ||
3409 | { | ||
3410 | struct css_id *child_id = rcu_dereference(child->id); | ||
3411 | struct css_id *root_id = rcu_dereference(root->id); | ||
3412 | |||
3413 | if (!child_id || !root_id || (child_id->depth < root_id->depth)) | ||
3414 | return false; | ||
3415 | return child_id->stack[root_id->depth] == root_id->id; | ||
3416 | } | ||
3417 | |||
3418 | static void __free_css_id_cb(struct rcu_head *head) | ||
3419 | { | ||
3420 | struct css_id *id; | ||
3421 | |||
3422 | id = container_of(head, struct css_id, rcu_head); | ||
3423 | kfree(id); | ||
3424 | } | ||
3425 | |||
3426 | void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) | ||
3427 | { | ||
3428 | struct css_id *id = css->id; | ||
3429 | /* When this is called before css_id initialization, id can be NULL */ | ||
3430 | if (!id) | ||
3431 | return; | ||
3432 | |||
3433 | BUG_ON(!ss->use_id); | ||
3434 | |||
3435 | rcu_assign_pointer(id->css, NULL); | ||
3436 | rcu_assign_pointer(css->id, NULL); | ||
3437 | spin_lock(&ss->id_lock); | ||
3438 | idr_remove(&ss->idr, id->id); | ||
3439 | spin_unlock(&ss->id_lock); | ||
3440 | call_rcu(&id->rcu_head, __free_css_id_cb); | ||
3441 | } | ||
3442 | |||
3443 | /* | ||
3444 | * This is called by init or create(). Then, calls to this function are | ||
3445 | * always serialized (By cgroup_mutex() at create()). | ||
3446 | */ | ||
3447 | |||
3448 | static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) | ||
3449 | { | ||
3450 | struct css_id *newid; | ||
3451 | int myid, error, size; | ||
3452 | |||
3453 | BUG_ON(!ss->use_id); | ||
3454 | |||
3455 | size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); | ||
3456 | newid = kzalloc(size, GFP_KERNEL); | ||
3457 | if (!newid) | ||
3458 | return ERR_PTR(-ENOMEM); | ||
3459 | /* get id */ | ||
3460 | if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) { | ||
3461 | error = -ENOMEM; | ||
3462 | goto err_out; | ||
3463 | } | ||
3464 | spin_lock(&ss->id_lock); | ||
3465 | /* Don't use 0. allocates an ID of 1-65535 */ | ||
3466 | error = idr_get_new_above(&ss->idr, newid, 1, &myid); | ||
3467 | spin_unlock(&ss->id_lock); | ||
3468 | |||
3469 | /* Returns error when there are no free spaces for new ID.*/ | ||
3470 | if (error) { | ||
3471 | error = -ENOSPC; | ||
3472 | goto err_out; | ||
3473 | } | ||
3474 | if (myid > CSS_ID_MAX) | ||
3475 | goto remove_idr; | ||
3476 | |||
3477 | newid->id = myid; | ||
3478 | newid->depth = depth; | ||
3479 | return newid; | ||
3480 | remove_idr: | ||
3481 | error = -ENOSPC; | ||
3482 | spin_lock(&ss->id_lock); | ||
3483 | idr_remove(&ss->idr, myid); | ||
3484 | spin_unlock(&ss->id_lock); | ||
3485 | err_out: | ||
3486 | kfree(newid); | ||
3487 | return ERR_PTR(error); | ||
3488 | |||
3489 | } | ||
3490 | |||
3491 | static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss) | ||
3492 | { | ||
3493 | struct css_id *newid; | ||
3494 | struct cgroup_subsys_state *rootcss; | ||
3495 | |||
3496 | spin_lock_init(&ss->id_lock); | ||
3497 | idr_init(&ss->idr); | ||
3498 | |||
3499 | rootcss = init_css_set.subsys[ss->subsys_id]; | ||
3500 | newid = get_new_cssid(ss, 0); | ||
3501 | if (IS_ERR(newid)) | ||
3502 | return PTR_ERR(newid); | ||
3503 | |||
3504 | newid->stack[0] = newid->id; | ||
3505 | newid->css = rootcss; | ||
3506 | rootcss->id = newid; | ||
3507 | return 0; | ||
3508 | } | ||
3509 | |||
3510 | static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, | ||
3511 | struct cgroup *child) | ||
3512 | { | ||
3513 | int subsys_id, i, depth = 0; | ||
3514 | struct cgroup_subsys_state *parent_css, *child_css; | ||
3515 | struct css_id *child_id, *parent_id = NULL; | ||
3516 | |||
3517 | subsys_id = ss->subsys_id; | ||
3518 | parent_css = parent->subsys[subsys_id]; | ||
3519 | child_css = child->subsys[subsys_id]; | ||
3520 | depth = css_depth(parent_css) + 1; | ||
3521 | parent_id = parent_css->id; | ||
3522 | |||
3523 | child_id = get_new_cssid(ss, depth); | ||
3524 | if (IS_ERR(child_id)) | ||
3525 | return PTR_ERR(child_id); | ||
3526 | |||
3527 | for (i = 0; i < depth; i++) | ||
3528 | child_id->stack[i] = parent_id->stack[i]; | ||
3529 | child_id->stack[depth] = child_id->id; | ||
3530 | /* | ||
3531 | * child_id->css pointer will be set after this cgroup is available | ||
3532 | * see cgroup_populate_dir() | ||
3533 | */ | ||
3534 | rcu_assign_pointer(child_css->id, child_id); | ||
3535 | |||
3536 | return 0; | ||
3537 | } | ||
3538 | |||
3539 | /** | ||
3540 | * css_lookup - lookup css by id | ||
3541 | * @ss: cgroup subsys to be looked into. | ||
3542 | * @id: the id | ||
3543 | * | ||
3544 | * Returns pointer to cgroup_subsys_state if there is valid one with id. | ||
3545 | * NULL if not. Should be called under rcu_read_lock() | ||
3546 | */ | ||
3547 | struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) | ||
3548 | { | ||
3549 | struct css_id *cssid = NULL; | ||
3550 | |||
3551 | BUG_ON(!ss->use_id); | ||
3552 | cssid = idr_find(&ss->idr, id); | ||
3553 | |||
3554 | if (unlikely(!cssid)) | ||
3555 | return NULL; | ||
3556 | |||
3557 | return rcu_dereference(cssid->css); | ||
3558 | } | ||
3559 | |||
3560 | /** | ||
3561 | * css_get_next - lookup next cgroup under specified hierarchy. | ||
3562 | * @ss: pointer to subsystem | ||
3563 | * @id: current position of iteration. | ||
3564 | * @root: pointer to css. search tree under this. | ||
3565 | * @foundid: position of found object. | ||
3566 | * | ||
3567 | * Search next css under the specified hierarchy of rootid. Calling under | ||
3568 | * rcu_read_lock() is necessary. Returns NULL if it reaches the end. | ||
3569 | */ | ||
3570 | struct cgroup_subsys_state * | ||
3571 | css_get_next(struct cgroup_subsys *ss, int id, | ||
3572 | struct cgroup_subsys_state *root, int *foundid) | ||
3573 | { | ||
3574 | struct cgroup_subsys_state *ret = NULL; | ||
3575 | struct css_id *tmp; | ||
3576 | int tmpid; | ||
3577 | int rootid = css_id(root); | ||
3578 | int depth = css_depth(root); | ||
3579 | |||
3580 | if (!rootid) | ||
3581 | return NULL; | ||
3582 | |||
3583 | BUG_ON(!ss->use_id); | ||
3584 | /* fill start point for scan */ | ||
3585 | tmpid = id; | ||
3586 | while (1) { | ||
3587 | /* | ||
3588 | * scan next entry from bitmap(tree), tmpid is updated after | ||
3589 | * idr_get_next(). | ||
3590 | */ | ||
3591 | spin_lock(&ss->id_lock); | ||
3592 | tmp = idr_get_next(&ss->idr, &tmpid); | ||
3593 | spin_unlock(&ss->id_lock); | ||
3594 | |||
3595 | if (!tmp) | ||
3596 | break; | ||
3597 | if (tmp->depth >= depth && tmp->stack[depth] == rootid) { | ||
3598 | ret = rcu_dereference(tmp->css); | ||
3599 | if (ret) { | ||
3600 | *foundid = tmpid; | ||
3601 | break; | ||
3602 | } | ||
3603 | } | ||
3604 | /* continue to scan from next id */ | ||
3605 | tmpid = tmpid + 1; | ||
3606 | } | ||
3607 | return ret; | ||
3608 | } | ||
3609 | |||
diff --git a/kernel/cgroup_debug.c b/kernel/cgroup_debug.c index daca6209202d..0c92d797baa6 100644 --- a/kernel/cgroup_debug.c +++ b/kernel/cgroup_debug.c | |||
@@ -40,9 +40,7 @@ static u64 taskcount_read(struct cgroup *cont, struct cftype *cft) | |||
40 | { | 40 | { |
41 | u64 count; | 41 | u64 count; |
42 | 42 | ||
43 | cgroup_lock(); | ||
44 | count = cgroup_task_count(cont); | 43 | count = cgroup_task_count(cont); |
45 | cgroup_unlock(); | ||
46 | return count; | 44 | return count; |
47 | } | 45 | } |
48 | 46 | ||
diff --git a/kernel/cpu.c b/kernel/cpu.c index 79e40f00dcb8..395b6974dc8d 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
@@ -281,7 +281,7 @@ int __ref cpu_down(unsigned int cpu) | |||
281 | goto out; | 281 | goto out; |
282 | } | 282 | } |
283 | 283 | ||
284 | cpu_clear(cpu, cpu_active_map); | 284 | set_cpu_active(cpu, false); |
285 | 285 | ||
286 | /* | 286 | /* |
287 | * Make sure the all cpus did the reschedule and are not | 287 | * Make sure the all cpus did the reschedule and are not |
@@ -296,7 +296,7 @@ int __ref cpu_down(unsigned int cpu) | |||
296 | err = _cpu_down(cpu, 0); | 296 | err = _cpu_down(cpu, 0); |
297 | 297 | ||
298 | if (cpu_online(cpu)) | 298 | if (cpu_online(cpu)) |
299 | cpu_set(cpu, cpu_active_map); | 299 | set_cpu_active(cpu, true); |
300 | 300 | ||
301 | out: | 301 | out: |
302 | cpu_maps_update_done(); | 302 | cpu_maps_update_done(); |
@@ -333,7 +333,7 @@ static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen) | |||
333 | goto out_notify; | 333 | goto out_notify; |
334 | BUG_ON(!cpu_online(cpu)); | 334 | BUG_ON(!cpu_online(cpu)); |
335 | 335 | ||
336 | cpu_set(cpu, cpu_active_map); | 336 | set_cpu_active(cpu, true); |
337 | 337 | ||
338 | /* Now call notifier in preparation. */ | 338 | /* Now call notifier in preparation. */ |
339 | raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu); | 339 | raw_notifier_call_chain(&cpu_chain, CPU_ONLINE | mod, hcpu); |
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index f76db9dcaa05..026faccca869 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -128,10 +128,6 @@ static inline struct cpuset *task_cs(struct task_struct *task) | |||
128 | return container_of(task_subsys_state(task, cpuset_subsys_id), | 128 | return container_of(task_subsys_state(task, cpuset_subsys_id), |
129 | struct cpuset, css); | 129 | struct cpuset, css); |
130 | } | 130 | } |
131 | struct cpuset_hotplug_scanner { | ||
132 | struct cgroup_scanner scan; | ||
133 | struct cgroup *to; | ||
134 | }; | ||
135 | 131 | ||
136 | /* bits in struct cpuset flags field */ | 132 | /* bits in struct cpuset flags field */ |
137 | typedef enum { | 133 | typedef enum { |
@@ -521,6 +517,7 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |||
521 | return 0; | 517 | return 0; |
522 | } | 518 | } |
523 | 519 | ||
520 | #ifdef CONFIG_SMP | ||
524 | /* | 521 | /* |
525 | * Helper routine for generate_sched_domains(). | 522 | * Helper routine for generate_sched_domains(). |
526 | * Do cpusets a, b have overlapping cpus_allowed masks? | 523 | * Do cpusets a, b have overlapping cpus_allowed masks? |
@@ -815,6 +812,18 @@ static void do_rebuild_sched_domains(struct work_struct *unused) | |||
815 | 812 | ||
816 | put_online_cpus(); | 813 | put_online_cpus(); |
817 | } | 814 | } |
815 | #else /* !CONFIG_SMP */ | ||
816 | static void do_rebuild_sched_domains(struct work_struct *unused) | ||
817 | { | ||
818 | } | ||
819 | |||
820 | static int generate_sched_domains(struct cpumask **domains, | ||
821 | struct sched_domain_attr **attributes) | ||
822 | { | ||
823 | *domains = NULL; | ||
824 | return 1; | ||
825 | } | ||
826 | #endif /* CONFIG_SMP */ | ||
818 | 827 | ||
819 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); | 828 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); |
820 | 829 | ||
@@ -1026,101 +1035,70 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |||
1026 | mutex_unlock(&callback_mutex); | 1035 | mutex_unlock(&callback_mutex); |
1027 | } | 1036 | } |
1028 | 1037 | ||
1038 | /* | ||
1039 | * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new | ||
1040 | * nodes if memory_migrate flag is set. Called with cgroup_mutex held. | ||
1041 | */ | ||
1042 | static void cpuset_change_nodemask(struct task_struct *p, | ||
1043 | struct cgroup_scanner *scan) | ||
1044 | { | ||
1045 | struct mm_struct *mm; | ||
1046 | struct cpuset *cs; | ||
1047 | int migrate; | ||
1048 | const nodemask_t *oldmem = scan->data; | ||
1049 | |||
1050 | mm = get_task_mm(p); | ||
1051 | if (!mm) | ||
1052 | return; | ||
1053 | |||
1054 | cs = cgroup_cs(scan->cg); | ||
1055 | migrate = is_memory_migrate(cs); | ||
1056 | |||
1057 | mpol_rebind_mm(mm, &cs->mems_allowed); | ||
1058 | if (migrate) | ||
1059 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | ||
1060 | mmput(mm); | ||
1061 | } | ||
1062 | |||
1029 | static void *cpuset_being_rebound; | 1063 | static void *cpuset_being_rebound; |
1030 | 1064 | ||
1031 | /** | 1065 | /** |
1032 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | 1066 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. |
1033 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | 1067 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed |
1034 | * @oldmem: old mems_allowed of cpuset cs | 1068 | * @oldmem: old mems_allowed of cpuset cs |
1069 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | ||
1035 | * | 1070 | * |
1036 | * Called with cgroup_mutex held | 1071 | * Called with cgroup_mutex held |
1037 | * Return 0 if successful, -errno if not. | 1072 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
1073 | * if @heap != NULL. | ||
1038 | */ | 1074 | */ |
1039 | static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem) | 1075 | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, |
1076 | struct ptr_heap *heap) | ||
1040 | { | 1077 | { |
1041 | struct task_struct *p; | 1078 | struct cgroup_scanner scan; |
1042 | struct mm_struct **mmarray; | ||
1043 | int i, n, ntasks; | ||
1044 | int migrate; | ||
1045 | int fudge; | ||
1046 | struct cgroup_iter it; | ||
1047 | int retval; | ||
1048 | 1079 | ||
1049 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ | 1080 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
1050 | 1081 | ||
1051 | fudge = 10; /* spare mmarray[] slots */ | 1082 | scan.cg = cs->css.cgroup; |
1052 | fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */ | 1083 | scan.test_task = NULL; |
1053 | retval = -ENOMEM; | 1084 | scan.process_task = cpuset_change_nodemask; |
1054 | 1085 | scan.heap = heap; | |
1055 | /* | 1086 | scan.data = (nodemask_t *)oldmem; |
1056 | * Allocate mmarray[] to hold mm reference for each task | ||
1057 | * in cpuset cs. Can't kmalloc GFP_KERNEL while holding | ||
1058 | * tasklist_lock. We could use GFP_ATOMIC, but with a | ||
1059 | * few more lines of code, we can retry until we get a big | ||
1060 | * enough mmarray[] w/o using GFP_ATOMIC. | ||
1061 | */ | ||
1062 | while (1) { | ||
1063 | ntasks = cgroup_task_count(cs->css.cgroup); /* guess */ | ||
1064 | ntasks += fudge; | ||
1065 | mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL); | ||
1066 | if (!mmarray) | ||
1067 | goto done; | ||
1068 | read_lock(&tasklist_lock); /* block fork */ | ||
1069 | if (cgroup_task_count(cs->css.cgroup) <= ntasks) | ||
1070 | break; /* got enough */ | ||
1071 | read_unlock(&tasklist_lock); /* try again */ | ||
1072 | kfree(mmarray); | ||
1073 | } | ||
1074 | |||
1075 | n = 0; | ||
1076 | |||
1077 | /* Load up mmarray[] with mm reference for each task in cpuset. */ | ||
1078 | cgroup_iter_start(cs->css.cgroup, &it); | ||
1079 | while ((p = cgroup_iter_next(cs->css.cgroup, &it))) { | ||
1080 | struct mm_struct *mm; | ||
1081 | |||
1082 | if (n >= ntasks) { | ||
1083 | printk(KERN_WARNING | ||
1084 | "Cpuset mempolicy rebind incomplete.\n"); | ||
1085 | break; | ||
1086 | } | ||
1087 | mm = get_task_mm(p); | ||
1088 | if (!mm) | ||
1089 | continue; | ||
1090 | mmarray[n++] = mm; | ||
1091 | } | ||
1092 | cgroup_iter_end(cs->css.cgroup, &it); | ||
1093 | read_unlock(&tasklist_lock); | ||
1094 | 1087 | ||
1095 | /* | 1088 | /* |
1096 | * Now that we've dropped the tasklist spinlock, we can | 1089 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't |
1097 | * rebind the vma mempolicies of each mm in mmarray[] to their | 1090 | * take while holding tasklist_lock. Forks can happen - the |
1098 | * new cpuset, and release that mm. The mpol_rebind_mm() | 1091 | * mpol_dup() cpuset_being_rebound check will catch such forks, |
1099 | * call takes mmap_sem, which we couldn't take while holding | 1092 | * and rebind their vma mempolicies too. Because we still hold |
1100 | * tasklist_lock. Forks can happen again now - the mpol_dup() | 1093 | * the global cgroup_mutex, we know that no other rebind effort |
1101 | * cpuset_being_rebound check will catch such forks, and rebind | 1094 | * will be contending for the global variable cpuset_being_rebound. |
1102 | * their vma mempolicies too. Because we still hold the global | ||
1103 | * cgroup_mutex, we know that no other rebind effort will | ||
1104 | * be contending for the global variable cpuset_being_rebound. | ||
1105 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 1095 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
1106 | * is idempotent. Also migrate pages in each mm to new nodes. | 1096 | * is idempotent. Also migrate pages in each mm to new nodes. |
1107 | */ | 1097 | */ |
1108 | migrate = is_memory_migrate(cs); | 1098 | cgroup_scan_tasks(&scan); |
1109 | for (i = 0; i < n; i++) { | ||
1110 | struct mm_struct *mm = mmarray[i]; | ||
1111 | |||
1112 | mpol_rebind_mm(mm, &cs->mems_allowed); | ||
1113 | if (migrate) | ||
1114 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | ||
1115 | mmput(mm); | ||
1116 | } | ||
1117 | 1099 | ||
1118 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ | 1100 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
1119 | kfree(mmarray); | ||
1120 | cpuset_being_rebound = NULL; | 1101 | cpuset_being_rebound = NULL; |
1121 | retval = 0; | ||
1122 | done: | ||
1123 | return retval; | ||
1124 | } | 1102 | } |
1125 | 1103 | ||
1126 | /* | 1104 | /* |
@@ -1141,6 +1119,7 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | |||
1141 | { | 1119 | { |
1142 | nodemask_t oldmem; | 1120 | nodemask_t oldmem; |
1143 | int retval; | 1121 | int retval; |
1122 | struct ptr_heap heap; | ||
1144 | 1123 | ||
1145 | /* | 1124 | /* |
1146 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | 1125 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; |
@@ -1175,12 +1154,18 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | |||
1175 | if (retval < 0) | 1154 | if (retval < 0) |
1176 | goto done; | 1155 | goto done; |
1177 | 1156 | ||
1157 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | ||
1158 | if (retval < 0) | ||
1159 | goto done; | ||
1160 | |||
1178 | mutex_lock(&callback_mutex); | 1161 | mutex_lock(&callback_mutex); |
1179 | cs->mems_allowed = trialcs->mems_allowed; | 1162 | cs->mems_allowed = trialcs->mems_allowed; |
1180 | cs->mems_generation = cpuset_mems_generation++; | 1163 | cs->mems_generation = cpuset_mems_generation++; |
1181 | mutex_unlock(&callback_mutex); | 1164 | mutex_unlock(&callback_mutex); |
1182 | 1165 | ||
1183 | retval = update_tasks_nodemask(cs, &oldmem); | 1166 | update_tasks_nodemask(cs, &oldmem, &heap); |
1167 | |||
1168 | heap_free(&heap); | ||
1184 | done: | 1169 | done: |
1185 | return retval; | 1170 | return retval; |
1186 | } | 1171 | } |
@@ -1192,8 +1177,10 @@ int current_cpuset_is_being_rebound(void) | |||
1192 | 1177 | ||
1193 | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 1178 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1194 | { | 1179 | { |
1180 | #ifdef CONFIG_SMP | ||
1195 | if (val < -1 || val >= SD_LV_MAX) | 1181 | if (val < -1 || val >= SD_LV_MAX) |
1196 | return -EINVAL; | 1182 | return -EINVAL; |
1183 | #endif | ||
1197 | 1184 | ||
1198 | if (val != cs->relax_domain_level) { | 1185 | if (val != cs->relax_domain_level) { |
1199 | cs->relax_domain_level = val; | 1186 | cs->relax_domain_level = val; |
@@ -1355,19 +1342,22 @@ static int cpuset_can_attach(struct cgroup_subsys *ss, | |||
1355 | struct cgroup *cont, struct task_struct *tsk) | 1342 | struct cgroup *cont, struct task_struct *tsk) |
1356 | { | 1343 | { |
1357 | struct cpuset *cs = cgroup_cs(cont); | 1344 | struct cpuset *cs = cgroup_cs(cont); |
1358 | int ret = 0; | ||
1359 | 1345 | ||
1360 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 1346 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
1361 | return -ENOSPC; | 1347 | return -ENOSPC; |
1362 | 1348 | ||
1363 | if (tsk->flags & PF_THREAD_BOUND) { | 1349 | /* |
1364 | mutex_lock(&callback_mutex); | 1350 | * Kthreads bound to specific cpus cannot be moved to a new cpuset; we |
1365 | if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed)) | 1351 | * cannot change their cpu affinity and isolating such threads by their |
1366 | ret = -EINVAL; | 1352 | * set of allowed nodes is unnecessary. Thus, cpusets are not |
1367 | mutex_unlock(&callback_mutex); | 1353 | * applicable for such threads. This prevents checking for success of |
1368 | } | 1354 | * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may |
1355 | * be changed. | ||
1356 | */ | ||
1357 | if (tsk->flags & PF_THREAD_BOUND) | ||
1358 | return -EINVAL; | ||
1369 | 1359 | ||
1370 | return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL); | 1360 | return security_task_setscheduler(tsk, 0, NULL); |
1371 | } | 1361 | } |
1372 | 1362 | ||
1373 | static void cpuset_attach(struct cgroup_subsys *ss, | 1363 | static void cpuset_attach(struct cgroup_subsys *ss, |
@@ -1706,6 +1696,7 @@ static struct cftype files[] = { | |||
1706 | .read_u64 = cpuset_read_u64, | 1696 | .read_u64 = cpuset_read_u64, |
1707 | .write_u64 = cpuset_write_u64, | 1697 | .write_u64 = cpuset_write_u64, |
1708 | .private = FILE_MEMORY_PRESSURE, | 1698 | .private = FILE_MEMORY_PRESSURE, |
1699 | .mode = S_IRUGO, | ||
1709 | }, | 1700 | }, |
1710 | 1701 | ||
1711 | { | 1702 | { |
@@ -1913,10 +1904,9 @@ int __init cpuset_init(void) | |||
1913 | static void cpuset_do_move_task(struct task_struct *tsk, | 1904 | static void cpuset_do_move_task(struct task_struct *tsk, |
1914 | struct cgroup_scanner *scan) | 1905 | struct cgroup_scanner *scan) |
1915 | { | 1906 | { |
1916 | struct cpuset_hotplug_scanner *chsp; | 1907 | struct cgroup *new_cgroup = scan->data; |
1917 | 1908 | ||
1918 | chsp = container_of(scan, struct cpuset_hotplug_scanner, scan); | 1909 | cgroup_attach_task(new_cgroup, tsk); |
1919 | cgroup_attach_task(chsp->to, tsk); | ||
1920 | } | 1910 | } |
1921 | 1911 | ||
1922 | /** | 1912 | /** |
@@ -1932,15 +1922,15 @@ static void cpuset_do_move_task(struct task_struct *tsk, | |||
1932 | */ | 1922 | */ |
1933 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | 1923 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) |
1934 | { | 1924 | { |
1935 | struct cpuset_hotplug_scanner scan; | 1925 | struct cgroup_scanner scan; |
1936 | 1926 | ||
1937 | scan.scan.cg = from->css.cgroup; | 1927 | scan.cg = from->css.cgroup; |
1938 | scan.scan.test_task = NULL; /* select all tasks in cgroup */ | 1928 | scan.test_task = NULL; /* select all tasks in cgroup */ |
1939 | scan.scan.process_task = cpuset_do_move_task; | 1929 | scan.process_task = cpuset_do_move_task; |
1940 | scan.scan.heap = NULL; | 1930 | scan.heap = NULL; |
1941 | scan.to = to->css.cgroup; | 1931 | scan.data = to->css.cgroup; |
1942 | 1932 | ||
1943 | if (cgroup_scan_tasks(&scan.scan)) | 1933 | if (cgroup_scan_tasks(&scan)) |
1944 | printk(KERN_ERR "move_member_tasks_to_cpuset: " | 1934 | printk(KERN_ERR "move_member_tasks_to_cpuset: " |
1945 | "cgroup_scan_tasks failed\n"); | 1935 | "cgroup_scan_tasks failed\n"); |
1946 | } | 1936 | } |
@@ -2033,7 +2023,7 @@ static void scan_for_empty_cpusets(struct cpuset *root) | |||
2033 | remove_tasks_in_empty_cpuset(cp); | 2023 | remove_tasks_in_empty_cpuset(cp); |
2034 | else { | 2024 | else { |
2035 | update_tasks_cpumask(cp, NULL); | 2025 | update_tasks_cpumask(cp, NULL); |
2036 | update_tasks_nodemask(cp, &oldmems); | 2026 | update_tasks_nodemask(cp, &oldmems, NULL); |
2037 | } | 2027 | } |
2038 | } | 2028 | } |
2039 | } | 2029 | } |
@@ -2069,7 +2059,9 @@ static int cpuset_track_online_cpus(struct notifier_block *unused_nb, | |||
2069 | } | 2059 | } |
2070 | 2060 | ||
2071 | cgroup_lock(); | 2061 | cgroup_lock(); |
2062 | mutex_lock(&callback_mutex); | ||
2072 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); | 2063 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); |
2064 | mutex_unlock(&callback_mutex); | ||
2073 | scan_for_empty_cpusets(&top_cpuset); | 2065 | scan_for_empty_cpusets(&top_cpuset); |
2074 | ndoms = generate_sched_domains(&doms, &attr); | 2066 | ndoms = generate_sched_domains(&doms, &attr); |
2075 | cgroup_unlock(); | 2067 | cgroup_unlock(); |
@@ -2092,11 +2084,12 @@ static int cpuset_track_online_nodes(struct notifier_block *self, | |||
2092 | cgroup_lock(); | 2084 | cgroup_lock(); |
2093 | switch (action) { | 2085 | switch (action) { |
2094 | case MEM_ONLINE: | 2086 | case MEM_ONLINE: |
2095 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | ||
2096 | break; | ||
2097 | case MEM_OFFLINE: | 2087 | case MEM_OFFLINE: |
2088 | mutex_lock(&callback_mutex); | ||
2098 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 2089 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
2099 | scan_for_empty_cpusets(&top_cpuset); | 2090 | mutex_unlock(&callback_mutex); |
2091 | if (action == MEM_OFFLINE) | ||
2092 | scan_for_empty_cpusets(&top_cpuset); | ||
2100 | break; | 2093 | break; |
2101 | default: | 2094 | default: |
2102 | break; | 2095 | break; |
@@ -2206,26 +2199,24 @@ static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) | |||
2206 | } | 2199 | } |
2207 | 2200 | ||
2208 | /** | 2201 | /** |
2209 | * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node? | 2202 | * cpuset_node_allowed_softwall - Can we allocate on a memory node? |
2210 | * @z: is this zone on an allowed node? | 2203 | * @node: is this an allowed node? |
2211 | * @gfp_mask: memory allocation flags | 2204 | * @gfp_mask: memory allocation flags |
2212 | * | 2205 | * |
2213 | * If we're in interrupt, yes, we can always allocate. If | 2206 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2214 | * __GFP_THISNODE is set, yes, we can always allocate. If zone | 2207 | * set, yes, we can always allocate. If node is in our task's mems_allowed, |
2215 | * z's node is in our tasks mems_allowed, yes. If it's not a | 2208 | * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest |
2216 | * __GFP_HARDWALL request and this zone's nodes is in the nearest | 2209 | * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been |
2217 | * hardwalled cpuset ancestor to this tasks cpuset, yes. | 2210 | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE |
2218 | * If the task has been OOM killed and has access to memory reserves | 2211 | * flag, yes. |
2219 | * as specified by the TIF_MEMDIE flag, yes. | ||
2220 | * Otherwise, no. | 2212 | * Otherwise, no. |
2221 | * | 2213 | * |
2222 | * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall() | 2214 | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to |
2223 | * reduces to cpuset_zone_allowed_hardwall(). Otherwise, | 2215 | * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall() |
2224 | * cpuset_zone_allowed_softwall() might sleep, and might allow a zone | 2216 | * might sleep, and might allow a node from an enclosing cpuset. |
2225 | * from an enclosing cpuset. | ||
2226 | * | 2217 | * |
2227 | * cpuset_zone_allowed_hardwall() only handles the simpler case of | 2218 | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall |
2228 | * hardwall cpusets, and never sleeps. | 2219 | * cpusets, and never sleeps. |
2229 | * | 2220 | * |
2230 | * The __GFP_THISNODE placement logic is really handled elsewhere, | 2221 | * The __GFP_THISNODE placement logic is really handled elsewhere, |
2231 | * by forcibly using a zonelist starting at a specified node, and by | 2222 | * by forcibly using a zonelist starting at a specified node, and by |
@@ -2264,20 +2255,17 @@ static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) | |||
2264 | * GFP_USER - only nodes in current tasks mems allowed ok. | 2255 | * GFP_USER - only nodes in current tasks mems allowed ok. |
2265 | * | 2256 | * |
2266 | * Rule: | 2257 | * Rule: |
2267 | * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you | 2258 | * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you |
2268 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables | 2259 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
2269 | * the code that might scan up ancestor cpusets and sleep. | 2260 | * the code that might scan up ancestor cpusets and sleep. |
2270 | */ | 2261 | */ |
2271 | 2262 | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) | |
2272 | int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | ||
2273 | { | 2263 | { |
2274 | int node; /* node that zone z is on */ | ||
2275 | const struct cpuset *cs; /* current cpuset ancestors */ | 2264 | const struct cpuset *cs; /* current cpuset ancestors */ |
2276 | int allowed; /* is allocation in zone z allowed? */ | 2265 | int allowed; /* is allocation in zone z allowed? */ |
2277 | 2266 | ||
2278 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 2267 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
2279 | return 1; | 2268 | return 1; |
2280 | node = zone_to_nid(z); | ||
2281 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); | 2269 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
2282 | if (node_isset(node, current->mems_allowed)) | 2270 | if (node_isset(node, current->mems_allowed)) |
2283 | return 1; | 2271 | return 1; |
@@ -2306,15 +2294,15 @@ int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | |||
2306 | } | 2294 | } |
2307 | 2295 | ||
2308 | /* | 2296 | /* |
2309 | * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node? | 2297 | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? |
2310 | * @z: is this zone on an allowed node? | 2298 | * @node: is this an allowed node? |
2311 | * @gfp_mask: memory allocation flags | 2299 | * @gfp_mask: memory allocation flags |
2312 | * | 2300 | * |
2313 | * If we're in interrupt, yes, we can always allocate. | 2301 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2314 | * If __GFP_THISNODE is set, yes, we can always allocate. If zone | 2302 | * set, yes, we can always allocate. If node is in our task's mems_allowed, |
2315 | * z's node is in our tasks mems_allowed, yes. If the task has been | 2303 | * yes. If the task has been OOM killed and has access to memory reserves as |
2316 | * OOM killed and has access to memory reserves as specified by the | 2304 | * specified by the TIF_MEMDIE flag, yes. |
2317 | * TIF_MEMDIE flag, yes. Otherwise, no. | 2305 | * Otherwise, no. |
2318 | * | 2306 | * |
2319 | * The __GFP_THISNODE placement logic is really handled elsewhere, | 2307 | * The __GFP_THISNODE placement logic is really handled elsewhere, |
2320 | * by forcibly using a zonelist starting at a specified node, and by | 2308 | * by forcibly using a zonelist starting at a specified node, and by |
@@ -2322,20 +2310,16 @@ int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | |||
2322 | * any node on the zonelist except the first. By the time any such | 2310 | * any node on the zonelist except the first. By the time any such |
2323 | * calls get to this routine, we should just shut up and say 'yes'. | 2311 | * calls get to this routine, we should just shut up and say 'yes'. |
2324 | * | 2312 | * |
2325 | * Unlike the cpuset_zone_allowed_softwall() variant, above, | 2313 | * Unlike the cpuset_node_allowed_softwall() variant, above, |
2326 | * this variant requires that the zone be in the current tasks | 2314 | * this variant requires that the node be in the current task's |
2327 | * mems_allowed or that we're in interrupt. It does not scan up the | 2315 | * mems_allowed or that we're in interrupt. It does not scan up the |
2328 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | 2316 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. |
2329 | * It never sleeps. | 2317 | * It never sleeps. |
2330 | */ | 2318 | */ |
2331 | 2319 | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) | |
2332 | int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | ||
2333 | { | 2320 | { |
2334 | int node; /* node that zone z is on */ | ||
2335 | |||
2336 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 2321 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
2337 | return 1; | 2322 | return 1; |
2338 | node = zone_to_nid(z); | ||
2339 | if (node_isset(node, current->mems_allowed)) | 2323 | if (node_isset(node, current->mems_allowed)) |
2340 | return 1; | 2324 | return 1; |
2341 | /* | 2325 | /* |
diff --git a/kernel/exec_domain.c b/kernel/exec_domain.c index 667c841c2952..c35452cadded 100644 --- a/kernel/exec_domain.c +++ b/kernel/exec_domain.c | |||
@@ -18,6 +18,7 @@ | |||
18 | #include <linux/syscalls.h> | 18 | #include <linux/syscalls.h> |
19 | #include <linux/sysctl.h> | 19 | #include <linux/sysctl.h> |
20 | #include <linux/types.h> | 20 | #include <linux/types.h> |
21 | #include <linux/fs_struct.h> | ||
21 | 22 | ||
22 | 23 | ||
23 | static void default_handler(int, struct pt_regs *); | 24 | static void default_handler(int, struct pt_regs *); |
@@ -145,28 +146,6 @@ __set_personality(u_long personality) | |||
145 | return 0; | 146 | return 0; |
146 | } | 147 | } |
147 | 148 | ||
148 | if (atomic_read(¤t->fs->count) != 1) { | ||
149 | struct fs_struct *fsp, *ofsp; | ||
150 | |||
151 | fsp = copy_fs_struct(current->fs); | ||
152 | if (fsp == NULL) { | ||
153 | module_put(ep->module); | ||
154 | return -ENOMEM; | ||
155 | } | ||
156 | |||
157 | task_lock(current); | ||
158 | ofsp = current->fs; | ||
159 | current->fs = fsp; | ||
160 | task_unlock(current); | ||
161 | |||
162 | put_fs_struct(ofsp); | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * At that point we are guaranteed to be the sole owner of | ||
167 | * current->fs. | ||
168 | */ | ||
169 | |||
170 | current->personality = personality; | 149 | current->personality = personality; |
171 | oep = current_thread_info()->exec_domain; | 150 | oep = current_thread_info()->exec_domain; |
172 | current_thread_info()->exec_domain = ep; | 151 | current_thread_info()->exec_domain = ep; |
diff --git a/kernel/exit.c b/kernel/exit.c index efd30ccf3858..6686ed1e4aa3 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -46,6 +46,7 @@ | |||
46 | #include <linux/blkdev.h> | 46 | #include <linux/blkdev.h> |
47 | #include <linux/task_io_accounting_ops.h> | 47 | #include <linux/task_io_accounting_ops.h> |
48 | #include <linux/tracehook.h> | 48 | #include <linux/tracehook.h> |
49 | #include <linux/fs_struct.h> | ||
49 | #include <linux/init_task.h> | 50 | #include <linux/init_task.h> |
50 | #include <trace/sched.h> | 51 | #include <trace/sched.h> |
51 | 52 | ||
@@ -61,11 +62,6 @@ DEFINE_TRACE(sched_process_wait); | |||
61 | 62 | ||
62 | static void exit_mm(struct task_struct * tsk); | 63 | static void exit_mm(struct task_struct * tsk); |
63 | 64 | ||
64 | static inline int task_detached(struct task_struct *p) | ||
65 | { | ||
66 | return p->exit_signal == -1; | ||
67 | } | ||
68 | |||
69 | static void __unhash_process(struct task_struct *p) | 65 | static void __unhash_process(struct task_struct *p) |
70 | { | 66 | { |
71 | nr_threads--; | 67 | nr_threads--; |
@@ -362,16 +358,12 @@ static void reparent_to_kthreadd(void) | |||
362 | void __set_special_pids(struct pid *pid) | 358 | void __set_special_pids(struct pid *pid) |
363 | { | 359 | { |
364 | struct task_struct *curr = current->group_leader; | 360 | struct task_struct *curr = current->group_leader; |
365 | pid_t nr = pid_nr(pid); | ||
366 | 361 | ||
367 | if (task_session(curr) != pid) { | 362 | if (task_session(curr) != pid) |
368 | change_pid(curr, PIDTYPE_SID, pid); | 363 | change_pid(curr, PIDTYPE_SID, pid); |
369 | set_task_session(curr, nr); | 364 | |
370 | } | 365 | if (task_pgrp(curr) != pid) |
371 | if (task_pgrp(curr) != pid) { | ||
372 | change_pid(curr, PIDTYPE_PGID, pid); | 366 | change_pid(curr, PIDTYPE_PGID, pid); |
373 | set_task_pgrp(curr, nr); | ||
374 | } | ||
375 | } | 367 | } |
376 | 368 | ||
377 | static void set_special_pids(struct pid *pid) | 369 | static void set_special_pids(struct pid *pid) |
@@ -429,7 +421,6 @@ EXPORT_SYMBOL(disallow_signal); | |||
429 | void daemonize(const char *name, ...) | 421 | void daemonize(const char *name, ...) |
430 | { | 422 | { |
431 | va_list args; | 423 | va_list args; |
432 | struct fs_struct *fs; | ||
433 | sigset_t blocked; | 424 | sigset_t blocked; |
434 | 425 | ||
435 | va_start(args, name); | 426 | va_start(args, name); |
@@ -462,11 +453,7 @@ void daemonize(const char *name, ...) | |||
462 | 453 | ||
463 | /* Become as one with the init task */ | 454 | /* Become as one with the init task */ |
464 | 455 | ||
465 | exit_fs(current); /* current->fs->count--; */ | 456 | daemonize_fs_struct(); |
466 | fs = init_task.fs; | ||
467 | current->fs = fs; | ||
468 | atomic_inc(&fs->count); | ||
469 | |||
470 | exit_files(current); | 457 | exit_files(current); |
471 | current->files = init_task.files; | 458 | current->files = init_task.files; |
472 | atomic_inc(¤t->files->count); | 459 | atomic_inc(¤t->files->count); |
@@ -565,30 +552,6 @@ void exit_files(struct task_struct *tsk) | |||
565 | } | 552 | } |
566 | } | 553 | } |
567 | 554 | ||
568 | void put_fs_struct(struct fs_struct *fs) | ||
569 | { | ||
570 | /* No need to hold fs->lock if we are killing it */ | ||
571 | if (atomic_dec_and_test(&fs->count)) { | ||
572 | path_put(&fs->root); | ||
573 | path_put(&fs->pwd); | ||
574 | kmem_cache_free(fs_cachep, fs); | ||
575 | } | ||
576 | } | ||
577 | |||
578 | void exit_fs(struct task_struct *tsk) | ||
579 | { | ||
580 | struct fs_struct * fs = tsk->fs; | ||
581 | |||
582 | if (fs) { | ||
583 | task_lock(tsk); | ||
584 | tsk->fs = NULL; | ||
585 | task_unlock(tsk); | ||
586 | put_fs_struct(fs); | ||
587 | } | ||
588 | } | ||
589 | |||
590 | EXPORT_SYMBOL_GPL(exit_fs); | ||
591 | |||
592 | #ifdef CONFIG_MM_OWNER | 555 | #ifdef CONFIG_MM_OWNER |
593 | /* | 556 | /* |
594 | * Task p is exiting and it owned mm, lets find a new owner for it | 557 | * Task p is exiting and it owned mm, lets find a new owner for it |
@@ -732,119 +695,6 @@ static void exit_mm(struct task_struct * tsk) | |||
732 | } | 695 | } |
733 | 696 | ||
734 | /* | 697 | /* |
735 | * Return nonzero if @parent's children should reap themselves. | ||
736 | * | ||
737 | * Called with write_lock_irq(&tasklist_lock) held. | ||
738 | */ | ||
739 | static int ignoring_children(struct task_struct *parent) | ||
740 | { | ||
741 | int ret; | ||
742 | struct sighand_struct *psig = parent->sighand; | ||
743 | unsigned long flags; | ||
744 | spin_lock_irqsave(&psig->siglock, flags); | ||
745 | ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | ||
746 | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); | ||
747 | spin_unlock_irqrestore(&psig->siglock, flags); | ||
748 | return ret; | ||
749 | } | ||
750 | |||
751 | /* | ||
752 | * Detach all tasks we were using ptrace on. | ||
753 | * Any that need to be release_task'd are put on the @dead list. | ||
754 | * | ||
755 | * Called with write_lock(&tasklist_lock) held. | ||
756 | */ | ||
757 | static void ptrace_exit(struct task_struct *parent, struct list_head *dead) | ||
758 | { | ||
759 | struct task_struct *p, *n; | ||
760 | int ign = -1; | ||
761 | |||
762 | list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { | ||
763 | __ptrace_unlink(p); | ||
764 | |||
765 | if (p->exit_state != EXIT_ZOMBIE) | ||
766 | continue; | ||
767 | |||
768 | /* | ||
769 | * If it's a zombie, our attachedness prevented normal | ||
770 | * parent notification or self-reaping. Do notification | ||
771 | * now if it would have happened earlier. If it should | ||
772 | * reap itself, add it to the @dead list. We can't call | ||
773 | * release_task() here because we already hold tasklist_lock. | ||
774 | * | ||
775 | * If it's our own child, there is no notification to do. | ||
776 | * But if our normal children self-reap, then this child | ||
777 | * was prevented by ptrace and we must reap it now. | ||
778 | */ | ||
779 | if (!task_detached(p) && thread_group_empty(p)) { | ||
780 | if (!same_thread_group(p->real_parent, parent)) | ||
781 | do_notify_parent(p, p->exit_signal); | ||
782 | else { | ||
783 | if (ign < 0) | ||
784 | ign = ignoring_children(parent); | ||
785 | if (ign) | ||
786 | p->exit_signal = -1; | ||
787 | } | ||
788 | } | ||
789 | |||
790 | if (task_detached(p)) { | ||
791 | /* | ||
792 | * Mark it as in the process of being reaped. | ||
793 | */ | ||
794 | p->exit_state = EXIT_DEAD; | ||
795 | list_add(&p->ptrace_entry, dead); | ||
796 | } | ||
797 | } | ||
798 | } | ||
799 | |||
800 | /* | ||
801 | * Finish up exit-time ptrace cleanup. | ||
802 | * | ||
803 | * Called without locks. | ||
804 | */ | ||
805 | static void ptrace_exit_finish(struct task_struct *parent, | ||
806 | struct list_head *dead) | ||
807 | { | ||
808 | struct task_struct *p, *n; | ||
809 | |||
810 | BUG_ON(!list_empty(&parent->ptraced)); | ||
811 | |||
812 | list_for_each_entry_safe(p, n, dead, ptrace_entry) { | ||
813 | list_del_init(&p->ptrace_entry); | ||
814 | release_task(p); | ||
815 | } | ||
816 | } | ||
817 | |||
818 | static void reparent_thread(struct task_struct *p, struct task_struct *father) | ||
819 | { | ||
820 | if (p->pdeath_signal) | ||
821 | /* We already hold the tasklist_lock here. */ | ||
822 | group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); | ||
823 | |||
824 | list_move_tail(&p->sibling, &p->real_parent->children); | ||
825 | |||
826 | /* If this is a threaded reparent there is no need to | ||
827 | * notify anyone anything has happened. | ||
828 | */ | ||
829 | if (same_thread_group(p->real_parent, father)) | ||
830 | return; | ||
831 | |||
832 | /* We don't want people slaying init. */ | ||
833 | if (!task_detached(p)) | ||
834 | p->exit_signal = SIGCHLD; | ||
835 | |||
836 | /* If we'd notified the old parent about this child's death, | ||
837 | * also notify the new parent. | ||
838 | */ | ||
839 | if (!ptrace_reparented(p) && | ||
840 | p->exit_state == EXIT_ZOMBIE && | ||
841 | !task_detached(p) && thread_group_empty(p)) | ||
842 | do_notify_parent(p, p->exit_signal); | ||
843 | |||
844 | kill_orphaned_pgrp(p, father); | ||
845 | } | ||
846 | |||
847 | /* | ||
848 | * When we die, we re-parent all our children. | 698 | * When we die, we re-parent all our children. |
849 | * Try to give them to another thread in our thread | 699 | * Try to give them to another thread in our thread |
850 | * group, and if no such member exists, give it to | 700 | * group, and if no such member exists, give it to |
@@ -883,17 +733,51 @@ static struct task_struct *find_new_reaper(struct task_struct *father) | |||
883 | return pid_ns->child_reaper; | 733 | return pid_ns->child_reaper; |
884 | } | 734 | } |
885 | 735 | ||
736 | /* | ||
737 | * Any that need to be release_task'd are put on the @dead list. | ||
738 | */ | ||
739 | static void reparent_thread(struct task_struct *father, struct task_struct *p, | ||
740 | struct list_head *dead) | ||
741 | { | ||
742 | if (p->pdeath_signal) | ||
743 | group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); | ||
744 | |||
745 | list_move_tail(&p->sibling, &p->real_parent->children); | ||
746 | |||
747 | if (task_detached(p)) | ||
748 | return; | ||
749 | /* | ||
750 | * If this is a threaded reparent there is no need to | ||
751 | * notify anyone anything has happened. | ||
752 | */ | ||
753 | if (same_thread_group(p->real_parent, father)) | ||
754 | return; | ||
755 | |||
756 | /* We don't want people slaying init. */ | ||
757 | p->exit_signal = SIGCHLD; | ||
758 | |||
759 | /* If it has exited notify the new parent about this child's death. */ | ||
760 | if (!p->ptrace && | ||
761 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { | ||
762 | do_notify_parent(p, p->exit_signal); | ||
763 | if (task_detached(p)) { | ||
764 | p->exit_state = EXIT_DEAD; | ||
765 | list_move_tail(&p->sibling, dead); | ||
766 | } | ||
767 | } | ||
768 | |||
769 | kill_orphaned_pgrp(p, father); | ||
770 | } | ||
771 | |||
886 | static void forget_original_parent(struct task_struct *father) | 772 | static void forget_original_parent(struct task_struct *father) |
887 | { | 773 | { |
888 | struct task_struct *p, *n, *reaper; | 774 | struct task_struct *p, *n, *reaper; |
889 | LIST_HEAD(ptrace_dead); | 775 | LIST_HEAD(dead_children); |
776 | |||
777 | exit_ptrace(father); | ||
890 | 778 | ||
891 | write_lock_irq(&tasklist_lock); | 779 | write_lock_irq(&tasklist_lock); |
892 | reaper = find_new_reaper(father); | 780 | reaper = find_new_reaper(father); |
893 | /* | ||
894 | * First clean up ptrace if we were using it. | ||
895 | */ | ||
896 | ptrace_exit(father, &ptrace_dead); | ||
897 | 781 | ||
898 | list_for_each_entry_safe(p, n, &father->children, sibling) { | 782 | list_for_each_entry_safe(p, n, &father->children, sibling) { |
899 | p->real_parent = reaper; | 783 | p->real_parent = reaper; |
@@ -901,13 +785,16 @@ static void forget_original_parent(struct task_struct *father) | |||
901 | BUG_ON(p->ptrace); | 785 | BUG_ON(p->ptrace); |
902 | p->parent = p->real_parent; | 786 | p->parent = p->real_parent; |
903 | } | 787 | } |
904 | reparent_thread(p, father); | 788 | reparent_thread(father, p, &dead_children); |
905 | } | 789 | } |
906 | |||
907 | write_unlock_irq(&tasklist_lock); | 790 | write_unlock_irq(&tasklist_lock); |
791 | |||
908 | BUG_ON(!list_empty(&father->children)); | 792 | BUG_ON(!list_empty(&father->children)); |
909 | 793 | ||
910 | ptrace_exit_finish(father, &ptrace_dead); | 794 | list_for_each_entry_safe(p, n, &dead_children, sibling) { |
795 | list_del_init(&p->sibling); | ||
796 | release_task(p); | ||
797 | } | ||
911 | } | 798 | } |
912 | 799 | ||
913 | /* | 800 | /* |
@@ -980,12 +867,9 @@ static void check_stack_usage(void) | |||
980 | { | 867 | { |
981 | static DEFINE_SPINLOCK(low_water_lock); | 868 | static DEFINE_SPINLOCK(low_water_lock); |
982 | static int lowest_to_date = THREAD_SIZE; | 869 | static int lowest_to_date = THREAD_SIZE; |
983 | unsigned long *n = end_of_stack(current); | ||
984 | unsigned long free; | 870 | unsigned long free; |
985 | 871 | ||
986 | while (*n == 0) | 872 | free = stack_not_used(current); |
987 | n++; | ||
988 | free = (unsigned long)n - (unsigned long)end_of_stack(current); | ||
989 | 873 | ||
990 | if (free >= lowest_to_date) | 874 | if (free >= lowest_to_date) |
991 | return; | 875 | return; |
@@ -1420,6 +1304,18 @@ static int wait_task_zombie(struct task_struct *p, int options, | |||
1420 | return retval; | 1304 | return retval; |
1421 | } | 1305 | } |
1422 | 1306 | ||
1307 | static int *task_stopped_code(struct task_struct *p, bool ptrace) | ||
1308 | { | ||
1309 | if (ptrace) { | ||
1310 | if (task_is_stopped_or_traced(p)) | ||
1311 | return &p->exit_code; | ||
1312 | } else { | ||
1313 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | ||
1314 | return &p->signal->group_exit_code; | ||
1315 | } | ||
1316 | return NULL; | ||
1317 | } | ||
1318 | |||
1423 | /* | 1319 | /* |
1424 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold | 1320 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold |
1425 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | 1321 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
@@ -1430,7 +1326,7 @@ static int wait_task_stopped(int ptrace, struct task_struct *p, | |||
1430 | int options, struct siginfo __user *infop, | 1326 | int options, struct siginfo __user *infop, |
1431 | int __user *stat_addr, struct rusage __user *ru) | 1327 | int __user *stat_addr, struct rusage __user *ru) |
1432 | { | 1328 | { |
1433 | int retval, exit_code, why; | 1329 | int retval, exit_code, *p_code, why; |
1434 | uid_t uid = 0; /* unneeded, required by compiler */ | 1330 | uid_t uid = 0; /* unneeded, required by compiler */ |
1435 | pid_t pid; | 1331 | pid_t pid; |
1436 | 1332 | ||
@@ -1440,22 +1336,16 @@ static int wait_task_stopped(int ptrace, struct task_struct *p, | |||
1440 | exit_code = 0; | 1336 | exit_code = 0; |
1441 | spin_lock_irq(&p->sighand->siglock); | 1337 | spin_lock_irq(&p->sighand->siglock); |
1442 | 1338 | ||
1443 | if (unlikely(!task_is_stopped_or_traced(p))) | 1339 | p_code = task_stopped_code(p, ptrace); |
1444 | goto unlock_sig; | 1340 | if (unlikely(!p_code)) |
1445 | |||
1446 | if (!ptrace && p->signal->group_stop_count > 0) | ||
1447 | /* | ||
1448 | * A group stop is in progress and this is the group leader. | ||
1449 | * We won't report until all threads have stopped. | ||
1450 | */ | ||
1451 | goto unlock_sig; | 1341 | goto unlock_sig; |
1452 | 1342 | ||
1453 | exit_code = p->exit_code; | 1343 | exit_code = *p_code; |
1454 | if (!exit_code) | 1344 | if (!exit_code) |
1455 | goto unlock_sig; | 1345 | goto unlock_sig; |
1456 | 1346 | ||
1457 | if (!unlikely(options & WNOWAIT)) | 1347 | if (!unlikely(options & WNOWAIT)) |
1458 | p->exit_code = 0; | 1348 | *p_code = 0; |
1459 | 1349 | ||
1460 | /* don't need the RCU readlock here as we're holding a spinlock */ | 1350 | /* don't need the RCU readlock here as we're holding a spinlock */ |
1461 | uid = __task_cred(p)->uid; | 1351 | uid = __task_cred(p)->uid; |
@@ -1611,7 +1501,7 @@ static int wait_consider_task(struct task_struct *parent, int ptrace, | |||
1611 | */ | 1501 | */ |
1612 | *notask_error = 0; | 1502 | *notask_error = 0; |
1613 | 1503 | ||
1614 | if (task_is_stopped_or_traced(p)) | 1504 | if (task_stopped_code(p, ptrace)) |
1615 | return wait_task_stopped(ptrace, p, options, | 1505 | return wait_task_stopped(ptrace, p, options, |
1616 | infop, stat_addr, ru); | 1506 | infop, stat_addr, ru); |
1617 | 1507 | ||
@@ -1815,7 +1705,7 @@ SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, | |||
1815 | pid = find_get_pid(-upid); | 1705 | pid = find_get_pid(-upid); |
1816 | } else if (upid == 0) { | 1706 | } else if (upid == 0) { |
1817 | type = PIDTYPE_PGID; | 1707 | type = PIDTYPE_PGID; |
1818 | pid = get_pid(task_pgrp(current)); | 1708 | pid = get_task_pid(current, PIDTYPE_PGID); |
1819 | } else /* upid > 0 */ { | 1709 | } else /* upid > 0 */ { |
1820 | type = PIDTYPE_PID; | 1710 | type = PIDTYPE_PID; |
1821 | pid = find_get_pid(upid); | 1711 | pid = find_get_pid(upid); |
diff --git a/kernel/fork.c b/kernel/fork.c index 4854c2c4a82e..660c2b8765bc 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -60,7 +60,9 @@ | |||
60 | #include <linux/tty.h> | 60 | #include <linux/tty.h> |
61 | #include <linux/proc_fs.h> | 61 | #include <linux/proc_fs.h> |
62 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
63 | #include <linux/fs_struct.h> | ||
63 | #include <trace/sched.h> | 64 | #include <trace/sched.h> |
65 | #include <linux/magic.h> | ||
64 | 66 | ||
65 | #include <asm/pgtable.h> | 67 | #include <asm/pgtable.h> |
66 | #include <asm/pgalloc.h> | 68 | #include <asm/pgalloc.h> |
@@ -212,6 +214,8 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
212 | { | 214 | { |
213 | struct task_struct *tsk; | 215 | struct task_struct *tsk; |
214 | struct thread_info *ti; | 216 | struct thread_info *ti; |
217 | unsigned long *stackend; | ||
218 | |||
215 | int err; | 219 | int err; |
216 | 220 | ||
217 | prepare_to_copy(orig); | 221 | prepare_to_copy(orig); |
@@ -237,6 +241,8 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
237 | goto out; | 241 | goto out; |
238 | 242 | ||
239 | setup_thread_stack(tsk, orig); | 243 | setup_thread_stack(tsk, orig); |
244 | stackend = end_of_stack(tsk); | ||
245 | *stackend = STACK_END_MAGIC; /* for overflow detection */ | ||
240 | 246 | ||
241 | #ifdef CONFIG_CC_STACKPROTECTOR | 247 | #ifdef CONFIG_CC_STACKPROTECTOR |
242 | tsk->stack_canary = get_random_int(); | 248 | tsk->stack_canary = get_random_int(); |
@@ -279,7 +285,7 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
279 | mm->free_area_cache = oldmm->mmap_base; | 285 | mm->free_area_cache = oldmm->mmap_base; |
280 | mm->cached_hole_size = ~0UL; | 286 | mm->cached_hole_size = ~0UL; |
281 | mm->map_count = 0; | 287 | mm->map_count = 0; |
282 | cpus_clear(mm->cpu_vm_mask); | 288 | cpumask_clear(mm_cpumask(mm)); |
283 | mm->mm_rb = RB_ROOT; | 289 | mm->mm_rb = RB_ROOT; |
284 | rb_link = &mm->mm_rb.rb_node; | 290 | rb_link = &mm->mm_rb.rb_node; |
285 | rb_parent = NULL; | 291 | rb_parent = NULL; |
@@ -676,38 +682,21 @@ fail_nomem: | |||
676 | return retval; | 682 | return retval; |
677 | } | 683 | } |
678 | 684 | ||
679 | static struct fs_struct *__copy_fs_struct(struct fs_struct *old) | ||
680 | { | ||
681 | struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); | ||
682 | /* We don't need to lock fs - think why ;-) */ | ||
683 | if (fs) { | ||
684 | atomic_set(&fs->count, 1); | ||
685 | rwlock_init(&fs->lock); | ||
686 | fs->umask = old->umask; | ||
687 | read_lock(&old->lock); | ||
688 | fs->root = old->root; | ||
689 | path_get(&old->root); | ||
690 | fs->pwd = old->pwd; | ||
691 | path_get(&old->pwd); | ||
692 | read_unlock(&old->lock); | ||
693 | } | ||
694 | return fs; | ||
695 | } | ||
696 | |||
697 | struct fs_struct *copy_fs_struct(struct fs_struct *old) | ||
698 | { | ||
699 | return __copy_fs_struct(old); | ||
700 | } | ||
701 | |||
702 | EXPORT_SYMBOL_GPL(copy_fs_struct); | ||
703 | |||
704 | static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) | 685 | static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) |
705 | { | 686 | { |
687 | struct fs_struct *fs = current->fs; | ||
706 | if (clone_flags & CLONE_FS) { | 688 | if (clone_flags & CLONE_FS) { |
707 | atomic_inc(¤t->fs->count); | 689 | /* tsk->fs is already what we want */ |
690 | write_lock(&fs->lock); | ||
691 | if (fs->in_exec) { | ||
692 | write_unlock(&fs->lock); | ||
693 | return -EAGAIN; | ||
694 | } | ||
695 | fs->users++; | ||
696 | write_unlock(&fs->lock); | ||
708 | return 0; | 697 | return 0; |
709 | } | 698 | } |
710 | tsk->fs = __copy_fs_struct(current->fs); | 699 | tsk->fs = copy_fs_struct(fs); |
711 | if (!tsk->fs) | 700 | if (!tsk->fs) |
712 | return -ENOMEM; | 701 | return -ENOMEM; |
713 | return 0; | 702 | return 0; |
@@ -836,6 +825,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
836 | atomic_set(&sig->live, 1); | 825 | atomic_set(&sig->live, 1); |
837 | init_waitqueue_head(&sig->wait_chldexit); | 826 | init_waitqueue_head(&sig->wait_chldexit); |
838 | sig->flags = 0; | 827 | sig->flags = 0; |
828 | if (clone_flags & CLONE_NEWPID) | ||
829 | sig->flags |= SIGNAL_UNKILLABLE; | ||
839 | sig->group_exit_code = 0; | 830 | sig->group_exit_code = 0; |
840 | sig->group_exit_task = NULL; | 831 | sig->group_exit_task = NULL; |
841 | sig->group_stop_count = 0; | 832 | sig->group_stop_count = 0; |
@@ -1120,7 +1111,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1120 | goto bad_fork_cleanup_mm; | 1111 | goto bad_fork_cleanup_mm; |
1121 | if ((retval = copy_io(clone_flags, p))) | 1112 | if ((retval = copy_io(clone_flags, p))) |
1122 | goto bad_fork_cleanup_namespaces; | 1113 | goto bad_fork_cleanup_namespaces; |
1123 | retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); | 1114 | retval = copy_thread(clone_flags, stack_start, stack_size, p, regs); |
1124 | if (retval) | 1115 | if (retval) |
1125 | goto bad_fork_cleanup_io; | 1116 | goto bad_fork_cleanup_io; |
1126 | 1117 | ||
@@ -1258,8 +1249,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1258 | p->signal->leader_pid = pid; | 1249 | p->signal->leader_pid = pid; |
1259 | tty_kref_put(p->signal->tty); | 1250 | tty_kref_put(p->signal->tty); |
1260 | p->signal->tty = tty_kref_get(current->signal->tty); | 1251 | p->signal->tty = tty_kref_get(current->signal->tty); |
1261 | set_task_pgrp(p, task_pgrp_nr(current)); | ||
1262 | set_task_session(p, task_session_nr(current)); | ||
1263 | attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); | 1252 | attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); |
1264 | attach_pid(p, PIDTYPE_SID, task_session(current)); | 1253 | attach_pid(p, PIDTYPE_SID, task_session(current)); |
1265 | list_add_tail_rcu(&p->tasks, &init_task.tasks); | 1254 | list_add_tail_rcu(&p->tasks, &init_task.tasks); |
@@ -1483,6 +1472,7 @@ void __init proc_caches_init(void) | |||
1483 | mm_cachep = kmem_cache_create("mm_struct", | 1472 | mm_cachep = kmem_cache_create("mm_struct", |
1484 | sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, | 1473 | sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, |
1485 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 1474 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1475 | vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); | ||
1486 | mmap_init(); | 1476 | mmap_init(); |
1487 | } | 1477 | } |
1488 | 1478 | ||
@@ -1538,12 +1528,16 @@ static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) | |||
1538 | { | 1528 | { |
1539 | struct fs_struct *fs = current->fs; | 1529 | struct fs_struct *fs = current->fs; |
1540 | 1530 | ||
1541 | if ((unshare_flags & CLONE_FS) && | 1531 | if (!(unshare_flags & CLONE_FS) || !fs) |
1542 | (fs && atomic_read(&fs->count) > 1)) { | 1532 | return 0; |
1543 | *new_fsp = __copy_fs_struct(current->fs); | 1533 | |
1544 | if (!*new_fsp) | 1534 | /* don't need lock here; in the worst case we'll do useless copy */ |
1545 | return -ENOMEM; | 1535 | if (fs->users == 1) |
1546 | } | 1536 | return 0; |
1537 | |||
1538 | *new_fsp = copy_fs_struct(fs); | ||
1539 | if (!*new_fsp) | ||
1540 | return -ENOMEM; | ||
1547 | 1541 | ||
1548 | return 0; | 1542 | return 0; |
1549 | } | 1543 | } |
@@ -1659,8 +1653,13 @@ SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) | |||
1659 | 1653 | ||
1660 | if (new_fs) { | 1654 | if (new_fs) { |
1661 | fs = current->fs; | 1655 | fs = current->fs; |
1656 | write_lock(&fs->lock); | ||
1662 | current->fs = new_fs; | 1657 | current->fs = new_fs; |
1663 | new_fs = fs; | 1658 | if (--fs->users) |
1659 | new_fs = NULL; | ||
1660 | else | ||
1661 | new_fs = fs; | ||
1662 | write_unlock(&fs->lock); | ||
1664 | } | 1663 | } |
1665 | 1664 | ||
1666 | if (new_mm) { | 1665 | if (new_mm) { |
@@ -1699,7 +1698,7 @@ bad_unshare_cleanup_sigh: | |||
1699 | 1698 | ||
1700 | bad_unshare_cleanup_fs: | 1699 | bad_unshare_cleanup_fs: |
1701 | if (new_fs) | 1700 | if (new_fs) |
1702 | put_fs_struct(new_fs); | 1701 | free_fs_struct(new_fs); |
1703 | 1702 | ||
1704 | bad_unshare_cleanup_thread: | 1703 | bad_unshare_cleanup_thread: |
1705 | bad_unshare_out: | 1704 | bad_unshare_out: |
diff --git a/kernel/futex.c b/kernel/futex.c index 438701adce23..6b50a024bca2 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -114,7 +114,9 @@ struct futex_q { | |||
114 | }; | 114 | }; |
115 | 115 | ||
116 | /* | 116 | /* |
117 | * Split the global futex_lock into every hash list lock. | 117 | * Hash buckets are shared by all the futex_keys that hash to the same |
118 | * location. Each key may have multiple futex_q structures, one for each task | ||
119 | * waiting on a futex. | ||
118 | */ | 120 | */ |
119 | struct futex_hash_bucket { | 121 | struct futex_hash_bucket { |
120 | spinlock_t lock; | 122 | spinlock_t lock; |
@@ -189,8 +191,7 @@ static void drop_futex_key_refs(union futex_key *key) | |||
189 | /** | 191 | /** |
190 | * get_futex_key - Get parameters which are the keys for a futex. | 192 | * get_futex_key - Get parameters which are the keys for a futex. |
191 | * @uaddr: virtual address of the futex | 193 | * @uaddr: virtual address of the futex |
192 | * @shared: NULL for a PROCESS_PRIVATE futex, | 194 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED |
193 | * ¤t->mm->mmap_sem for a PROCESS_SHARED futex | ||
194 | * @key: address where result is stored. | 195 | * @key: address where result is stored. |
195 | * | 196 | * |
196 | * Returns a negative error code or 0 | 197 | * Returns a negative error code or 0 |
@@ -200,9 +201,7 @@ static void drop_futex_key_refs(union futex_key *key) | |||
200 | * offset_within_page). For private mappings, it's (uaddr, current->mm). | 201 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
201 | * We can usually work out the index without swapping in the page. | 202 | * We can usually work out the index without swapping in the page. |
202 | * | 203 | * |
203 | * fshared is NULL for PROCESS_PRIVATE futexes | 204 | * lock_page() might sleep, the caller should not hold a spinlock. |
204 | * For other futexes, it points to ¤t->mm->mmap_sem and | ||
205 | * caller must have taken the reader lock. but NOT any spinlocks. | ||
206 | */ | 205 | */ |
207 | static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key) | 206 | static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key) |
208 | { | 207 | { |
@@ -299,41 +298,6 @@ static int get_futex_value_locked(u32 *dest, u32 __user *from) | |||
299 | return ret ? -EFAULT : 0; | 298 | return ret ? -EFAULT : 0; |
300 | } | 299 | } |
301 | 300 | ||
302 | /* | ||
303 | * Fault handling. | ||
304 | */ | ||
305 | static int futex_handle_fault(unsigned long address, int attempt) | ||
306 | { | ||
307 | struct vm_area_struct * vma; | ||
308 | struct mm_struct *mm = current->mm; | ||
309 | int ret = -EFAULT; | ||
310 | |||
311 | if (attempt > 2) | ||
312 | return ret; | ||
313 | |||
314 | down_read(&mm->mmap_sem); | ||
315 | vma = find_vma(mm, address); | ||
316 | if (vma && address >= vma->vm_start && | ||
317 | (vma->vm_flags & VM_WRITE)) { | ||
318 | int fault; | ||
319 | fault = handle_mm_fault(mm, vma, address, 1); | ||
320 | if (unlikely((fault & VM_FAULT_ERROR))) { | ||
321 | #if 0 | ||
322 | /* XXX: let's do this when we verify it is OK */ | ||
323 | if (ret & VM_FAULT_OOM) | ||
324 | ret = -ENOMEM; | ||
325 | #endif | ||
326 | } else { | ||
327 | ret = 0; | ||
328 | if (fault & VM_FAULT_MAJOR) | ||
329 | current->maj_flt++; | ||
330 | else | ||
331 | current->min_flt++; | ||
332 | } | ||
333 | } | ||
334 | up_read(&mm->mmap_sem); | ||
335 | return ret; | ||
336 | } | ||
337 | 301 | ||
338 | /* | 302 | /* |
339 | * PI code: | 303 | * PI code: |
@@ -589,10 +553,9 @@ static void wake_futex(struct futex_q *q) | |||
589 | * The waiting task can free the futex_q as soon as this is written, | 553 | * The waiting task can free the futex_q as soon as this is written, |
590 | * without taking any locks. This must come last. | 554 | * without taking any locks. This must come last. |
591 | * | 555 | * |
592 | * A memory barrier is required here to prevent the following store | 556 | * A memory barrier is required here to prevent the following store to |
593 | * to lock_ptr from getting ahead of the wakeup. Clearing the lock | 557 | * lock_ptr from getting ahead of the wakeup. Clearing the lock at the |
594 | * at the end of wake_up_all() does not prevent this store from | 558 | * end of wake_up() does not prevent this store from moving. |
595 | * moving. | ||
596 | */ | 559 | */ |
597 | smp_wmb(); | 560 | smp_wmb(); |
598 | q->lock_ptr = NULL; | 561 | q->lock_ptr = NULL; |
@@ -692,9 +655,16 @@ double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |||
692 | } | 655 | } |
693 | } | 656 | } |
694 | 657 | ||
658 | static inline void | ||
659 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | ||
660 | { | ||
661 | spin_unlock(&hb1->lock); | ||
662 | if (hb1 != hb2) | ||
663 | spin_unlock(&hb2->lock); | ||
664 | } | ||
665 | |||
695 | /* | 666 | /* |
696 | * Wake up all waiters hashed on the physical page that is mapped | 667 | * Wake up waiters matching bitset queued on this futex (uaddr). |
697 | * to this virtual address: | ||
698 | */ | 668 | */ |
699 | static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset) | 669 | static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset) |
700 | { | 670 | { |
@@ -750,9 +720,9 @@ futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2, | |||
750 | struct futex_hash_bucket *hb1, *hb2; | 720 | struct futex_hash_bucket *hb1, *hb2; |
751 | struct plist_head *head; | 721 | struct plist_head *head; |
752 | struct futex_q *this, *next; | 722 | struct futex_q *this, *next; |
753 | int ret, op_ret, attempt = 0; | 723 | int ret, op_ret; |
754 | 724 | ||
755 | retryfull: | 725 | retry: |
756 | ret = get_futex_key(uaddr1, fshared, &key1); | 726 | ret = get_futex_key(uaddr1, fshared, &key1); |
757 | if (unlikely(ret != 0)) | 727 | if (unlikely(ret != 0)) |
758 | goto out; | 728 | goto out; |
@@ -763,16 +733,13 @@ retryfull: | |||
763 | hb1 = hash_futex(&key1); | 733 | hb1 = hash_futex(&key1); |
764 | hb2 = hash_futex(&key2); | 734 | hb2 = hash_futex(&key2); |
765 | 735 | ||
766 | retry: | ||
767 | double_lock_hb(hb1, hb2); | 736 | double_lock_hb(hb1, hb2); |
768 | 737 | retry_private: | |
769 | op_ret = futex_atomic_op_inuser(op, uaddr2); | 738 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
770 | if (unlikely(op_ret < 0)) { | 739 | if (unlikely(op_ret < 0)) { |
771 | u32 dummy; | 740 | u32 dummy; |
772 | 741 | ||
773 | spin_unlock(&hb1->lock); | 742 | double_unlock_hb(hb1, hb2); |
774 | if (hb1 != hb2) | ||
775 | spin_unlock(&hb2->lock); | ||
776 | 743 | ||
777 | #ifndef CONFIG_MMU | 744 | #ifndef CONFIG_MMU |
778 | /* | 745 | /* |
@@ -788,26 +755,16 @@ retry: | |||
788 | goto out_put_keys; | 755 | goto out_put_keys; |
789 | } | 756 | } |
790 | 757 | ||
791 | /* | ||
792 | * futex_atomic_op_inuser needs to both read and write | ||
793 | * *(int __user *)uaddr2, but we can't modify it | ||
794 | * non-atomically. Therefore, if get_user below is not | ||
795 | * enough, we need to handle the fault ourselves, while | ||
796 | * still holding the mmap_sem. | ||
797 | */ | ||
798 | if (attempt++) { | ||
799 | ret = futex_handle_fault((unsigned long)uaddr2, | ||
800 | attempt); | ||
801 | if (ret) | ||
802 | goto out_put_keys; | ||
803 | goto retry; | ||
804 | } | ||
805 | |||
806 | ret = get_user(dummy, uaddr2); | 758 | ret = get_user(dummy, uaddr2); |
807 | if (ret) | 759 | if (ret) |
808 | return ret; | 760 | goto out_put_keys; |
761 | |||
762 | if (!fshared) | ||
763 | goto retry_private; | ||
809 | 764 | ||
810 | goto retryfull; | 765 | put_futex_key(fshared, &key2); |
766 | put_futex_key(fshared, &key1); | ||
767 | goto retry; | ||
811 | } | 768 | } |
812 | 769 | ||
813 | head = &hb1->chain; | 770 | head = &hb1->chain; |
@@ -834,9 +791,7 @@ retry: | |||
834 | ret += op_ret; | 791 | ret += op_ret; |
835 | } | 792 | } |
836 | 793 | ||
837 | spin_unlock(&hb1->lock); | 794 | double_unlock_hb(hb1, hb2); |
838 | if (hb1 != hb2) | ||
839 | spin_unlock(&hb2->lock); | ||
840 | out_put_keys: | 795 | out_put_keys: |
841 | put_futex_key(fshared, &key2); | 796 | put_futex_key(fshared, &key2); |
842 | out_put_key1: | 797 | out_put_key1: |
@@ -869,6 +824,7 @@ retry: | |||
869 | hb1 = hash_futex(&key1); | 824 | hb1 = hash_futex(&key1); |
870 | hb2 = hash_futex(&key2); | 825 | hb2 = hash_futex(&key2); |
871 | 826 | ||
827 | retry_private: | ||
872 | double_lock_hb(hb1, hb2); | 828 | double_lock_hb(hb1, hb2); |
873 | 829 | ||
874 | if (likely(cmpval != NULL)) { | 830 | if (likely(cmpval != NULL)) { |
@@ -877,16 +833,18 @@ retry: | |||
877 | ret = get_futex_value_locked(&curval, uaddr1); | 833 | ret = get_futex_value_locked(&curval, uaddr1); |
878 | 834 | ||
879 | if (unlikely(ret)) { | 835 | if (unlikely(ret)) { |
880 | spin_unlock(&hb1->lock); | 836 | double_unlock_hb(hb1, hb2); |
881 | if (hb1 != hb2) | ||
882 | spin_unlock(&hb2->lock); | ||
883 | 837 | ||
884 | ret = get_user(curval, uaddr1); | 838 | ret = get_user(curval, uaddr1); |
839 | if (ret) | ||
840 | goto out_put_keys; | ||
885 | 841 | ||
886 | if (!ret) | 842 | if (!fshared) |
887 | goto retry; | 843 | goto retry_private; |
888 | 844 | ||
889 | goto out_put_keys; | 845 | put_futex_key(fshared, &key2); |
846 | put_futex_key(fshared, &key1); | ||
847 | goto retry; | ||
890 | } | 848 | } |
891 | if (curval != *cmpval) { | 849 | if (curval != *cmpval) { |
892 | ret = -EAGAIN; | 850 | ret = -EAGAIN; |
@@ -923,9 +881,7 @@ retry: | |||
923 | } | 881 | } |
924 | 882 | ||
925 | out_unlock: | 883 | out_unlock: |
926 | spin_unlock(&hb1->lock); | 884 | double_unlock_hb(hb1, hb2); |
927 | if (hb1 != hb2) | ||
928 | spin_unlock(&hb2->lock); | ||
929 | 885 | ||
930 | /* drop_futex_key_refs() must be called outside the spinlocks. */ | 886 | /* drop_futex_key_refs() must be called outside the spinlocks. */ |
931 | while (--drop_count >= 0) | 887 | while (--drop_count >= 0) |
@@ -1063,7 +1019,7 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | |||
1063 | struct futex_pi_state *pi_state = q->pi_state; | 1019 | struct futex_pi_state *pi_state = q->pi_state; |
1064 | struct task_struct *oldowner = pi_state->owner; | 1020 | struct task_struct *oldowner = pi_state->owner; |
1065 | u32 uval, curval, newval; | 1021 | u32 uval, curval, newval; |
1066 | int ret, attempt = 0; | 1022 | int ret; |
1067 | 1023 | ||
1068 | /* Owner died? */ | 1024 | /* Owner died? */ |
1069 | if (!pi_state->owner) | 1025 | if (!pi_state->owner) |
@@ -1076,11 +1032,9 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, | |||
1076 | * in the user space variable. This must be atomic as we have | 1032 | * in the user space variable. This must be atomic as we have |
1077 | * to preserve the owner died bit here. | 1033 | * to preserve the owner died bit here. |
1078 | * | 1034 | * |
1079 | * Note: We write the user space value _before_ changing the | 1035 | * Note: We write the user space value _before_ changing the pi_state |
1080 | * pi_state because we can fault here. Imagine swapped out | 1036 | * because we can fault here. Imagine swapped out pages or a fork |
1081 | * pages or a fork, which was running right before we acquired | 1037 | * that marked all the anonymous memory readonly for cow. |
1082 | * mmap_sem, that marked all the anonymous memory readonly for | ||
1083 | * cow. | ||
1084 | * | 1038 | * |
1085 | * Modifying pi_state _before_ the user space value would | 1039 | * Modifying pi_state _before_ the user space value would |
1086 | * leave the pi_state in an inconsistent state when we fault | 1040 | * leave the pi_state in an inconsistent state when we fault |
@@ -1136,7 +1090,7 @@ retry: | |||
1136 | handle_fault: | 1090 | handle_fault: |
1137 | spin_unlock(q->lock_ptr); | 1091 | spin_unlock(q->lock_ptr); |
1138 | 1092 | ||
1139 | ret = futex_handle_fault((unsigned long)uaddr, attempt++); | 1093 | ret = get_user(uval, uaddr); |
1140 | 1094 | ||
1141 | spin_lock(q->lock_ptr); | 1095 | spin_lock(q->lock_ptr); |
1142 | 1096 | ||
@@ -1185,10 +1139,11 @@ retry: | |||
1185 | if (unlikely(ret != 0)) | 1139 | if (unlikely(ret != 0)) |
1186 | goto out; | 1140 | goto out; |
1187 | 1141 | ||
1142 | retry_private: | ||
1188 | hb = queue_lock(&q); | 1143 | hb = queue_lock(&q); |
1189 | 1144 | ||
1190 | /* | 1145 | /* |
1191 | * Access the page AFTER the futex is queued. | 1146 | * Access the page AFTER the hash-bucket is locked. |
1192 | * Order is important: | 1147 | * Order is important: |
1193 | * | 1148 | * |
1194 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | 1149 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); |
@@ -1204,20 +1159,23 @@ retry: | |||
1204 | * a wakeup when *uaddr != val on entry to the syscall. This is | 1159 | * a wakeup when *uaddr != val on entry to the syscall. This is |
1205 | * rare, but normal. | 1160 | * rare, but normal. |
1206 | * | 1161 | * |
1207 | * for shared futexes, we hold the mmap semaphore, so the mapping | 1162 | * For shared futexes, we hold the mmap semaphore, so the mapping |
1208 | * cannot have changed since we looked it up in get_futex_key. | 1163 | * cannot have changed since we looked it up in get_futex_key. |
1209 | */ | 1164 | */ |
1210 | ret = get_futex_value_locked(&uval, uaddr); | 1165 | ret = get_futex_value_locked(&uval, uaddr); |
1211 | 1166 | ||
1212 | if (unlikely(ret)) { | 1167 | if (unlikely(ret)) { |
1213 | queue_unlock(&q, hb); | 1168 | queue_unlock(&q, hb); |
1214 | put_futex_key(fshared, &q.key); | ||
1215 | 1169 | ||
1216 | ret = get_user(uval, uaddr); | 1170 | ret = get_user(uval, uaddr); |
1171 | if (ret) | ||
1172 | goto out_put_key; | ||
1217 | 1173 | ||
1218 | if (!ret) | 1174 | if (!fshared) |
1219 | goto retry; | 1175 | goto retry_private; |
1220 | goto out; | 1176 | |
1177 | put_futex_key(fshared, &q.key); | ||
1178 | goto retry; | ||
1221 | } | 1179 | } |
1222 | ret = -EWOULDBLOCK; | 1180 | ret = -EWOULDBLOCK; |
1223 | if (unlikely(uval != val)) { | 1181 | if (unlikely(uval != val)) { |
@@ -1248,16 +1206,13 @@ retry: | |||
1248 | if (!abs_time) | 1206 | if (!abs_time) |
1249 | schedule(); | 1207 | schedule(); |
1250 | else { | 1208 | else { |
1251 | unsigned long slack; | ||
1252 | slack = current->timer_slack_ns; | ||
1253 | if (rt_task(current)) | ||
1254 | slack = 0; | ||
1255 | hrtimer_init_on_stack(&t.timer, | 1209 | hrtimer_init_on_stack(&t.timer, |
1256 | clockrt ? CLOCK_REALTIME : | 1210 | clockrt ? CLOCK_REALTIME : |
1257 | CLOCK_MONOTONIC, | 1211 | CLOCK_MONOTONIC, |
1258 | HRTIMER_MODE_ABS); | 1212 | HRTIMER_MODE_ABS); |
1259 | hrtimer_init_sleeper(&t, current); | 1213 | hrtimer_init_sleeper(&t, current); |
1260 | hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack); | 1214 | hrtimer_set_expires_range_ns(&t.timer, *abs_time, |
1215 | current->timer_slack_ns); | ||
1261 | 1216 | ||
1262 | hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS); | 1217 | hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS); |
1263 | if (!hrtimer_active(&t.timer)) | 1218 | if (!hrtimer_active(&t.timer)) |
@@ -1354,7 +1309,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared, | |||
1354 | struct futex_hash_bucket *hb; | 1309 | struct futex_hash_bucket *hb; |
1355 | u32 uval, newval, curval; | 1310 | u32 uval, newval, curval; |
1356 | struct futex_q q; | 1311 | struct futex_q q; |
1357 | int ret, lock_taken, ownerdied = 0, attempt = 0; | 1312 | int ret, lock_taken, ownerdied = 0; |
1358 | 1313 | ||
1359 | if (refill_pi_state_cache()) | 1314 | if (refill_pi_state_cache()) |
1360 | return -ENOMEM; | 1315 | return -ENOMEM; |
@@ -1374,7 +1329,7 @@ retry: | |||
1374 | if (unlikely(ret != 0)) | 1329 | if (unlikely(ret != 0)) |
1375 | goto out; | 1330 | goto out; |
1376 | 1331 | ||
1377 | retry_unlocked: | 1332 | retry_private: |
1378 | hb = queue_lock(&q); | 1333 | hb = queue_lock(&q); |
1379 | 1334 | ||
1380 | retry_locked: | 1335 | retry_locked: |
@@ -1458,6 +1413,7 @@ retry_locked: | |||
1458 | * exit to complete. | 1413 | * exit to complete. |
1459 | */ | 1414 | */ |
1460 | queue_unlock(&q, hb); | 1415 | queue_unlock(&q, hb); |
1416 | put_futex_key(fshared, &q.key); | ||
1461 | cond_resched(); | 1417 | cond_resched(); |
1462 | goto retry; | 1418 | goto retry; |
1463 | 1419 | ||
@@ -1564,6 +1520,13 @@ retry_locked: | |||
1564 | } | 1520 | } |
1565 | } | 1521 | } |
1566 | 1522 | ||
1523 | /* | ||
1524 | * If fixup_pi_state_owner() faulted and was unable to handle the | ||
1525 | * fault, unlock it and return the fault to userspace. | ||
1526 | */ | ||
1527 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | ||
1528 | rt_mutex_unlock(&q.pi_state->pi_mutex); | ||
1529 | |||
1567 | /* Unqueue and drop the lock */ | 1530 | /* Unqueue and drop the lock */ |
1568 | unqueue_me_pi(&q); | 1531 | unqueue_me_pi(&q); |
1569 | 1532 | ||
@@ -1591,22 +1554,18 @@ uaddr_faulted: | |||
1591 | */ | 1554 | */ |
1592 | queue_unlock(&q, hb); | 1555 | queue_unlock(&q, hb); |
1593 | 1556 | ||
1594 | if (attempt++) { | ||
1595 | ret = futex_handle_fault((unsigned long)uaddr, attempt); | ||
1596 | if (ret) | ||
1597 | goto out_put_key; | ||
1598 | goto retry_unlocked; | ||
1599 | } | ||
1600 | |||
1601 | ret = get_user(uval, uaddr); | 1557 | ret = get_user(uval, uaddr); |
1602 | if (!ret) | 1558 | if (ret) |
1603 | goto retry; | 1559 | goto out_put_key; |
1604 | 1560 | ||
1605 | if (to) | 1561 | if (!fshared) |
1606 | destroy_hrtimer_on_stack(&to->timer); | 1562 | goto retry_private; |
1607 | return ret; | 1563 | |
1564 | put_futex_key(fshared, &q.key); | ||
1565 | goto retry; | ||
1608 | } | 1566 | } |
1609 | 1567 | ||
1568 | |||
1610 | /* | 1569 | /* |
1611 | * Userspace attempted a TID -> 0 atomic transition, and failed. | 1570 | * Userspace attempted a TID -> 0 atomic transition, and failed. |
1612 | * This is the in-kernel slowpath: we look up the PI state (if any), | 1571 | * This is the in-kernel slowpath: we look up the PI state (if any), |
@@ -1619,7 +1578,7 @@ static int futex_unlock_pi(u32 __user *uaddr, int fshared) | |||
1619 | u32 uval; | 1578 | u32 uval; |
1620 | struct plist_head *head; | 1579 | struct plist_head *head; |
1621 | union futex_key key = FUTEX_KEY_INIT; | 1580 | union futex_key key = FUTEX_KEY_INIT; |
1622 | int ret, attempt = 0; | 1581 | int ret; |
1623 | 1582 | ||
1624 | retry: | 1583 | retry: |
1625 | if (get_user(uval, uaddr)) | 1584 | if (get_user(uval, uaddr)) |
@@ -1635,7 +1594,6 @@ retry: | |||
1635 | goto out; | 1594 | goto out; |
1636 | 1595 | ||
1637 | hb = hash_futex(&key); | 1596 | hb = hash_futex(&key); |
1638 | retry_unlocked: | ||
1639 | spin_lock(&hb->lock); | 1597 | spin_lock(&hb->lock); |
1640 | 1598 | ||
1641 | /* | 1599 | /* |
@@ -1700,14 +1658,7 @@ pi_faulted: | |||
1700 | * we have to drop the mmap_sem in order to call get_user(). | 1658 | * we have to drop the mmap_sem in order to call get_user(). |
1701 | */ | 1659 | */ |
1702 | spin_unlock(&hb->lock); | 1660 | spin_unlock(&hb->lock); |
1703 | 1661 | put_futex_key(fshared, &key); | |
1704 | if (attempt++) { | ||
1705 | ret = futex_handle_fault((unsigned long)uaddr, attempt); | ||
1706 | if (ret) | ||
1707 | goto out; | ||
1708 | uval = 0; | ||
1709 | goto retry_unlocked; | ||
1710 | } | ||
1711 | 1662 | ||
1712 | ret = get_user(uval, uaddr); | 1663 | ret = get_user(uval, uaddr); |
1713 | if (!ret) | 1664 | if (!ret) |
diff --git a/kernel/irq/Makefile b/kernel/irq/Makefile index 4dd5b1edac98..3394f8f52964 100644 --- a/kernel/irq/Makefile +++ b/kernel/irq/Makefile | |||
@@ -4,3 +4,4 @@ obj-$(CONFIG_GENERIC_IRQ_PROBE) += autoprobe.o | |||
4 | obj-$(CONFIG_PROC_FS) += proc.o | 4 | obj-$(CONFIG_PROC_FS) += proc.o |
5 | obj-$(CONFIG_GENERIC_PENDING_IRQ) += migration.o | 5 | obj-$(CONFIG_GENERIC_PENDING_IRQ) += migration.o |
6 | obj-$(CONFIG_NUMA_MIGRATE_IRQ_DESC) += numa_migrate.o | 6 | obj-$(CONFIG_NUMA_MIGRATE_IRQ_DESC) += numa_migrate.o |
7 | obj-$(CONFIG_PM_SLEEP) += pm.o | ||
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c index 7de11bd64dfe..c687ba4363f2 100644 --- a/kernel/irq/chip.c +++ b/kernel/irq/chip.c | |||
@@ -46,7 +46,10 @@ void dynamic_irq_init(unsigned int irq) | |||
46 | desc->irq_count = 0; | 46 | desc->irq_count = 0; |
47 | desc->irqs_unhandled = 0; | 47 | desc->irqs_unhandled = 0; |
48 | #ifdef CONFIG_SMP | 48 | #ifdef CONFIG_SMP |
49 | cpumask_setall(&desc->affinity); | 49 | cpumask_setall(desc->affinity); |
50 | #ifdef CONFIG_GENERIC_PENDING_IRQ | ||
51 | cpumask_clear(desc->pending_mask); | ||
52 | #endif | ||
50 | #endif | 53 | #endif |
51 | spin_unlock_irqrestore(&desc->lock, flags); | 54 | spin_unlock_irqrestore(&desc->lock, flags); |
52 | } | 55 | } |
@@ -78,6 +81,7 @@ void dynamic_irq_cleanup(unsigned int irq) | |||
78 | desc->handle_irq = handle_bad_irq; | 81 | desc->handle_irq = handle_bad_irq; |
79 | desc->chip = &no_irq_chip; | 82 | desc->chip = &no_irq_chip; |
80 | desc->name = NULL; | 83 | desc->name = NULL; |
84 | clear_kstat_irqs(desc); | ||
81 | spin_unlock_irqrestore(&desc->lock, flags); | 85 | spin_unlock_irqrestore(&desc->lock, flags); |
82 | } | 86 | } |
83 | 87 | ||
@@ -290,7 +294,8 @@ static inline void mask_ack_irq(struct irq_desc *desc, int irq) | |||
290 | desc->chip->mask_ack(irq); | 294 | desc->chip->mask_ack(irq); |
291 | else { | 295 | else { |
292 | desc->chip->mask(irq); | 296 | desc->chip->mask(irq); |
293 | desc->chip->ack(irq); | 297 | if (desc->chip->ack) |
298 | desc->chip->ack(irq); | ||
294 | } | 299 | } |
295 | } | 300 | } |
296 | 301 | ||
@@ -476,7 +481,8 @@ handle_edge_irq(unsigned int irq, struct irq_desc *desc) | |||
476 | kstat_incr_irqs_this_cpu(irq, desc); | 481 | kstat_incr_irqs_this_cpu(irq, desc); |
477 | 482 | ||
478 | /* Start handling the irq */ | 483 | /* Start handling the irq */ |
479 | desc->chip->ack(irq); | 484 | if (desc->chip->ack) |
485 | desc->chip->ack(irq); | ||
480 | desc = irq_remap_to_desc(irq, desc); | 486 | desc = irq_remap_to_desc(irq, desc); |
481 | 487 | ||
482 | /* Mark the IRQ currently in progress.*/ | 488 | /* Mark the IRQ currently in progress.*/ |
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index 3aba8d12f328..9ebf77968871 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c | |||
@@ -17,6 +17,7 @@ | |||
17 | #include <linux/kernel_stat.h> | 17 | #include <linux/kernel_stat.h> |
18 | #include <linux/rculist.h> | 18 | #include <linux/rculist.h> |
19 | #include <linux/hash.h> | 19 | #include <linux/hash.h> |
20 | #include <linux/bootmem.h> | ||
20 | 21 | ||
21 | #include "internals.h" | 22 | #include "internals.h" |
22 | 23 | ||
@@ -69,6 +70,7 @@ int nr_irqs = NR_IRQS; | |||
69 | EXPORT_SYMBOL_GPL(nr_irqs); | 70 | EXPORT_SYMBOL_GPL(nr_irqs); |
70 | 71 | ||
71 | #ifdef CONFIG_SPARSE_IRQ | 72 | #ifdef CONFIG_SPARSE_IRQ |
73 | |||
72 | static struct irq_desc irq_desc_init = { | 74 | static struct irq_desc irq_desc_init = { |
73 | .irq = -1, | 75 | .irq = -1, |
74 | .status = IRQ_DISABLED, | 76 | .status = IRQ_DISABLED, |
@@ -76,26 +78,25 @@ static struct irq_desc irq_desc_init = { | |||
76 | .handle_irq = handle_bad_irq, | 78 | .handle_irq = handle_bad_irq, |
77 | .depth = 1, | 79 | .depth = 1, |
78 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), | 80 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), |
79 | #ifdef CONFIG_SMP | ||
80 | .affinity = CPU_MASK_ALL | ||
81 | #endif | ||
82 | }; | 81 | }; |
83 | 82 | ||
84 | void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr) | 83 | void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr) |
85 | { | 84 | { |
86 | unsigned long bytes; | ||
87 | char *ptr; | ||
88 | int node; | 85 | int node; |
89 | 86 | void *ptr; | |
90 | /* Compute how many bytes we need per irq and allocate them */ | ||
91 | bytes = nr * sizeof(unsigned int); | ||
92 | 87 | ||
93 | node = cpu_to_node(cpu); | 88 | node = cpu_to_node(cpu); |
94 | ptr = kzalloc_node(bytes, GFP_ATOMIC, node); | 89 | ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs), GFP_ATOMIC, node); |
95 | printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", cpu, node); | ||
96 | 90 | ||
97 | if (ptr) | 91 | /* |
98 | desc->kstat_irqs = (unsigned int *)ptr; | 92 | * don't overwite if can not get new one |
93 | * init_copy_kstat_irqs() could still use old one | ||
94 | */ | ||
95 | if (ptr) { | ||
96 | printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", | ||
97 | cpu, node); | ||
98 | desc->kstat_irqs = ptr; | ||
99 | } | ||
99 | } | 100 | } |
100 | 101 | ||
101 | static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) | 102 | static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) |
@@ -113,6 +114,10 @@ static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) | |||
113 | printk(KERN_ERR "can not alloc kstat_irqs\n"); | 114 | printk(KERN_ERR "can not alloc kstat_irqs\n"); |
114 | BUG_ON(1); | 115 | BUG_ON(1); |
115 | } | 116 | } |
117 | if (!init_alloc_desc_masks(desc, cpu, false)) { | ||
118 | printk(KERN_ERR "can not alloc irq_desc cpumasks\n"); | ||
119 | BUG_ON(1); | ||
120 | } | ||
116 | arch_init_chip_data(desc, cpu); | 121 | arch_init_chip_data(desc, cpu); |
117 | } | 122 | } |
118 | 123 | ||
@@ -121,7 +126,7 @@ static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu) | |||
121 | */ | 126 | */ |
122 | DEFINE_SPINLOCK(sparse_irq_lock); | 127 | DEFINE_SPINLOCK(sparse_irq_lock); |
123 | 128 | ||
124 | struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly; | 129 | struct irq_desc **irq_desc_ptrs __read_mostly; |
125 | 130 | ||
126 | static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = { | 131 | static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = { |
127 | [0 ... NR_IRQS_LEGACY-1] = { | 132 | [0 ... NR_IRQS_LEGACY-1] = { |
@@ -131,14 +136,10 @@ static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_sm | |||
131 | .handle_irq = handle_bad_irq, | 136 | .handle_irq = handle_bad_irq, |
132 | .depth = 1, | 137 | .depth = 1, |
133 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), | 138 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock), |
134 | #ifdef CONFIG_SMP | ||
135 | .affinity = CPU_MASK_ALL | ||
136 | #endif | ||
137 | } | 139 | } |
138 | }; | 140 | }; |
139 | 141 | ||
140 | /* FIXME: use bootmem alloc ...*/ | 142 | static unsigned int *kstat_irqs_legacy; |
141 | static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS]; | ||
142 | 143 | ||
143 | int __init early_irq_init(void) | 144 | int __init early_irq_init(void) |
144 | { | 145 | { |
@@ -148,18 +149,30 @@ int __init early_irq_init(void) | |||
148 | 149 | ||
149 | init_irq_default_affinity(); | 150 | init_irq_default_affinity(); |
150 | 151 | ||
152 | /* initialize nr_irqs based on nr_cpu_ids */ | ||
153 | arch_probe_nr_irqs(); | ||
154 | printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs); | ||
155 | |||
151 | desc = irq_desc_legacy; | 156 | desc = irq_desc_legacy; |
152 | legacy_count = ARRAY_SIZE(irq_desc_legacy); | 157 | legacy_count = ARRAY_SIZE(irq_desc_legacy); |
153 | 158 | ||
159 | /* allocate irq_desc_ptrs array based on nr_irqs */ | ||
160 | irq_desc_ptrs = alloc_bootmem(nr_irqs * sizeof(void *)); | ||
161 | |||
162 | /* allocate based on nr_cpu_ids */ | ||
163 | /* FIXME: invert kstat_irgs, and it'd be a per_cpu_alloc'd thing */ | ||
164 | kstat_irqs_legacy = alloc_bootmem(NR_IRQS_LEGACY * nr_cpu_ids * | ||
165 | sizeof(int)); | ||
166 | |||
154 | for (i = 0; i < legacy_count; i++) { | 167 | for (i = 0; i < legacy_count; i++) { |
155 | desc[i].irq = i; | 168 | desc[i].irq = i; |
156 | desc[i].kstat_irqs = kstat_irqs_legacy[i]; | 169 | desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; |
157 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); | 170 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); |
158 | 171 | init_alloc_desc_masks(&desc[i], 0, true); | |
159 | irq_desc_ptrs[i] = desc + i; | 172 | irq_desc_ptrs[i] = desc + i; |
160 | } | 173 | } |
161 | 174 | ||
162 | for (i = legacy_count; i < NR_IRQS; i++) | 175 | for (i = legacy_count; i < nr_irqs; i++) |
163 | irq_desc_ptrs[i] = NULL; | 176 | irq_desc_ptrs[i] = NULL; |
164 | 177 | ||
165 | return arch_early_irq_init(); | 178 | return arch_early_irq_init(); |
@@ -167,7 +180,10 @@ int __init early_irq_init(void) | |||
167 | 180 | ||
168 | struct irq_desc *irq_to_desc(unsigned int irq) | 181 | struct irq_desc *irq_to_desc(unsigned int irq) |
169 | { | 182 | { |
170 | return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL; | 183 | if (irq_desc_ptrs && irq < nr_irqs) |
184 | return irq_desc_ptrs[irq]; | ||
185 | |||
186 | return NULL; | ||
171 | } | 187 | } |
172 | 188 | ||
173 | struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) | 189 | struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) |
@@ -176,10 +192,9 @@ struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) | |||
176 | unsigned long flags; | 192 | unsigned long flags; |
177 | int node; | 193 | int node; |
178 | 194 | ||
179 | if (irq >= NR_IRQS) { | 195 | if (irq >= nr_irqs) { |
180 | printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n", | 196 | WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n", |
181 | irq, NR_IRQS); | 197 | irq, nr_irqs); |
182 | WARN_ON(1); | ||
183 | return NULL; | 198 | return NULL; |
184 | } | 199 | } |
185 | 200 | ||
@@ -221,12 +236,10 @@ struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = { | |||
221 | .handle_irq = handle_bad_irq, | 236 | .handle_irq = handle_bad_irq, |
222 | .depth = 1, | 237 | .depth = 1, |
223 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock), | 238 | .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock), |
224 | #ifdef CONFIG_SMP | ||
225 | .affinity = CPU_MASK_ALL | ||
226 | #endif | ||
227 | } | 239 | } |
228 | }; | 240 | }; |
229 | 241 | ||
242 | static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS]; | ||
230 | int __init early_irq_init(void) | 243 | int __init early_irq_init(void) |
231 | { | 244 | { |
232 | struct irq_desc *desc; | 245 | struct irq_desc *desc; |
@@ -235,12 +248,16 @@ int __init early_irq_init(void) | |||
235 | 248 | ||
236 | init_irq_default_affinity(); | 249 | init_irq_default_affinity(); |
237 | 250 | ||
251 | printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS); | ||
252 | |||
238 | desc = irq_desc; | 253 | desc = irq_desc; |
239 | count = ARRAY_SIZE(irq_desc); | 254 | count = ARRAY_SIZE(irq_desc); |
240 | 255 | ||
241 | for (i = 0; i < count; i++) | 256 | for (i = 0; i < count; i++) { |
242 | desc[i].irq = i; | 257 | desc[i].irq = i; |
243 | 258 | init_alloc_desc_masks(&desc[i], 0, true); | |
259 | desc[i].kstat_irqs = kstat_irqs_all[i]; | ||
260 | } | ||
244 | return arch_early_irq_init(); | 261 | return arch_early_irq_init(); |
245 | } | 262 | } |
246 | 263 | ||
@@ -255,6 +272,11 @@ struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu) | |||
255 | } | 272 | } |
256 | #endif /* !CONFIG_SPARSE_IRQ */ | 273 | #endif /* !CONFIG_SPARSE_IRQ */ |
257 | 274 | ||
275 | void clear_kstat_irqs(struct irq_desc *desc) | ||
276 | { | ||
277 | memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs))); | ||
278 | } | ||
279 | |||
258 | /* | 280 | /* |
259 | * What should we do if we get a hw irq event on an illegal vector? | 281 | * What should we do if we get a hw irq event on an illegal vector? |
260 | * Each architecture has to answer this themself. | 282 | * Each architecture has to answer this themself. |
@@ -328,6 +350,8 @@ irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) | |||
328 | irqreturn_t ret, retval = IRQ_NONE; | 350 | irqreturn_t ret, retval = IRQ_NONE; |
329 | unsigned int status = 0; | 351 | unsigned int status = 0; |
330 | 352 | ||
353 | WARN_ONCE(!in_irq(), "BUG: IRQ handler called from non-hardirq context!"); | ||
354 | |||
331 | if (!(action->flags & IRQF_DISABLED)) | 355 | if (!(action->flags & IRQF_DISABLED)) |
332 | local_irq_enable_in_hardirq(); | 356 | local_irq_enable_in_hardirq(); |
333 | 357 | ||
@@ -347,6 +371,11 @@ irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) | |||
347 | } | 371 | } |
348 | 372 | ||
349 | #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ | 373 | #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ |
374 | |||
375 | #ifdef CONFIG_ENABLE_WARN_DEPRECATED | ||
376 | # warning __do_IRQ is deprecated. Please convert to proper flow handlers | ||
377 | #endif | ||
378 | |||
350 | /** | 379 | /** |
351 | * __do_IRQ - original all in one highlevel IRQ handler | 380 | * __do_IRQ - original all in one highlevel IRQ handler |
352 | * @irq: the interrupt number | 381 | * @irq: the interrupt number |
@@ -467,12 +496,10 @@ void early_init_irq_lock_class(void) | |||
467 | } | 496 | } |
468 | } | 497 | } |
469 | 498 | ||
470 | #ifdef CONFIG_SPARSE_IRQ | ||
471 | unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) | 499 | unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) |
472 | { | 500 | { |
473 | struct irq_desc *desc = irq_to_desc(irq); | 501 | struct irq_desc *desc = irq_to_desc(irq); |
474 | return desc ? desc->kstat_irqs[cpu] : 0; | 502 | return desc ? desc->kstat_irqs[cpu] : 0; |
475 | } | 503 | } |
476 | #endif | ||
477 | EXPORT_SYMBOL(kstat_irqs_cpu); | 504 | EXPORT_SYMBOL(kstat_irqs_cpu); |
478 | 505 | ||
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h index e6d0a43cc125..01ce20eab38f 100644 --- a/kernel/irq/internals.h +++ b/kernel/irq/internals.h | |||
@@ -12,11 +12,21 @@ extern void compat_irq_chip_set_default_handler(struct irq_desc *desc); | |||
12 | 12 | ||
13 | extern int __irq_set_trigger(struct irq_desc *desc, unsigned int irq, | 13 | extern int __irq_set_trigger(struct irq_desc *desc, unsigned int irq, |
14 | unsigned long flags); | 14 | unsigned long flags); |
15 | extern void __disable_irq(struct irq_desc *desc, unsigned int irq, bool susp); | ||
16 | extern void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume); | ||
15 | 17 | ||
16 | extern struct lock_class_key irq_desc_lock_class; | 18 | extern struct lock_class_key irq_desc_lock_class; |
17 | extern void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr); | 19 | extern void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr); |
20 | extern void clear_kstat_irqs(struct irq_desc *desc); | ||
18 | extern spinlock_t sparse_irq_lock; | 21 | extern spinlock_t sparse_irq_lock; |
22 | |||
23 | #ifdef CONFIG_SPARSE_IRQ | ||
24 | /* irq_desc_ptrs allocated at boot time */ | ||
25 | extern struct irq_desc **irq_desc_ptrs; | ||
26 | #else | ||
27 | /* irq_desc_ptrs is a fixed size array */ | ||
19 | extern struct irq_desc *irq_desc_ptrs[NR_IRQS]; | 28 | extern struct irq_desc *irq_desc_ptrs[NR_IRQS]; |
29 | #endif | ||
20 | 30 | ||
21 | #ifdef CONFIG_PROC_FS | 31 | #ifdef CONFIG_PROC_FS |
22 | extern void register_irq_proc(unsigned int irq, struct irq_desc *desc); | 32 | extern void register_irq_proc(unsigned int irq, struct irq_desc *desc); |
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 291f03664552..1516ab77355c 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
@@ -90,14 +90,14 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
90 | 90 | ||
91 | #ifdef CONFIG_GENERIC_PENDING_IRQ | 91 | #ifdef CONFIG_GENERIC_PENDING_IRQ |
92 | if (desc->status & IRQ_MOVE_PCNTXT || desc->status & IRQ_DISABLED) { | 92 | if (desc->status & IRQ_MOVE_PCNTXT || desc->status & IRQ_DISABLED) { |
93 | cpumask_copy(&desc->affinity, cpumask); | 93 | cpumask_copy(desc->affinity, cpumask); |
94 | desc->chip->set_affinity(irq, cpumask); | 94 | desc->chip->set_affinity(irq, cpumask); |
95 | } else { | 95 | } else { |
96 | desc->status |= IRQ_MOVE_PENDING; | 96 | desc->status |= IRQ_MOVE_PENDING; |
97 | cpumask_copy(&desc->pending_mask, cpumask); | 97 | cpumask_copy(desc->pending_mask, cpumask); |
98 | } | 98 | } |
99 | #else | 99 | #else |
100 | cpumask_copy(&desc->affinity, cpumask); | 100 | cpumask_copy(desc->affinity, cpumask); |
101 | desc->chip->set_affinity(irq, cpumask); | 101 | desc->chip->set_affinity(irq, cpumask); |
102 | #endif | 102 | #endif |
103 | desc->status |= IRQ_AFFINITY_SET; | 103 | desc->status |= IRQ_AFFINITY_SET; |
@@ -109,7 +109,7 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
109 | /* | 109 | /* |
110 | * Generic version of the affinity autoselector. | 110 | * Generic version of the affinity autoselector. |
111 | */ | 111 | */ |
112 | int do_irq_select_affinity(unsigned int irq, struct irq_desc *desc) | 112 | static int setup_affinity(unsigned int irq, struct irq_desc *desc) |
113 | { | 113 | { |
114 | if (!irq_can_set_affinity(irq)) | 114 | if (!irq_can_set_affinity(irq)) |
115 | return 0; | 115 | return 0; |
@@ -119,21 +119,21 @@ int do_irq_select_affinity(unsigned int irq, struct irq_desc *desc) | |||
119 | * one of the targets is online. | 119 | * one of the targets is online. |
120 | */ | 120 | */ |
121 | if (desc->status & (IRQ_AFFINITY_SET | IRQ_NO_BALANCING)) { | 121 | if (desc->status & (IRQ_AFFINITY_SET | IRQ_NO_BALANCING)) { |
122 | if (cpumask_any_and(&desc->affinity, cpu_online_mask) | 122 | if (cpumask_any_and(desc->affinity, cpu_online_mask) |
123 | < nr_cpu_ids) | 123 | < nr_cpu_ids) |
124 | goto set_affinity; | 124 | goto set_affinity; |
125 | else | 125 | else |
126 | desc->status &= ~IRQ_AFFINITY_SET; | 126 | desc->status &= ~IRQ_AFFINITY_SET; |
127 | } | 127 | } |
128 | 128 | ||
129 | cpumask_and(&desc->affinity, cpu_online_mask, irq_default_affinity); | 129 | cpumask_and(desc->affinity, cpu_online_mask, irq_default_affinity); |
130 | set_affinity: | 130 | set_affinity: |
131 | desc->chip->set_affinity(irq, &desc->affinity); | 131 | desc->chip->set_affinity(irq, desc->affinity); |
132 | 132 | ||
133 | return 0; | 133 | return 0; |
134 | } | 134 | } |
135 | #else | 135 | #else |
136 | static inline int do_irq_select_affinity(unsigned int irq, struct irq_desc *d) | 136 | static inline int setup_affinity(unsigned int irq, struct irq_desc *d) |
137 | { | 137 | { |
138 | return irq_select_affinity(irq); | 138 | return irq_select_affinity(irq); |
139 | } | 139 | } |
@@ -149,19 +149,33 @@ int irq_select_affinity_usr(unsigned int irq) | |||
149 | int ret; | 149 | int ret; |
150 | 150 | ||
151 | spin_lock_irqsave(&desc->lock, flags); | 151 | spin_lock_irqsave(&desc->lock, flags); |
152 | ret = do_irq_select_affinity(irq, desc); | 152 | ret = setup_affinity(irq, desc); |
153 | spin_unlock_irqrestore(&desc->lock, flags); | 153 | spin_unlock_irqrestore(&desc->lock, flags); |
154 | 154 | ||
155 | return ret; | 155 | return ret; |
156 | } | 156 | } |
157 | 157 | ||
158 | #else | 158 | #else |
159 | static inline int do_irq_select_affinity(int irq, struct irq_desc *desc) | 159 | static inline int setup_affinity(unsigned int irq, struct irq_desc *desc) |
160 | { | 160 | { |
161 | return 0; | 161 | return 0; |
162 | } | 162 | } |
163 | #endif | 163 | #endif |
164 | 164 | ||
165 | void __disable_irq(struct irq_desc *desc, unsigned int irq, bool suspend) | ||
166 | { | ||
167 | if (suspend) { | ||
168 | if (!desc->action || (desc->action->flags & IRQF_TIMER)) | ||
169 | return; | ||
170 | desc->status |= IRQ_SUSPENDED; | ||
171 | } | ||
172 | |||
173 | if (!desc->depth++) { | ||
174 | desc->status |= IRQ_DISABLED; | ||
175 | desc->chip->disable(irq); | ||
176 | } | ||
177 | } | ||
178 | |||
165 | /** | 179 | /** |
166 | * disable_irq_nosync - disable an irq without waiting | 180 | * disable_irq_nosync - disable an irq without waiting |
167 | * @irq: Interrupt to disable | 181 | * @irq: Interrupt to disable |
@@ -182,10 +196,7 @@ void disable_irq_nosync(unsigned int irq) | |||
182 | return; | 196 | return; |
183 | 197 | ||
184 | spin_lock_irqsave(&desc->lock, flags); | 198 | spin_lock_irqsave(&desc->lock, flags); |
185 | if (!desc->depth++) { | 199 | __disable_irq(desc, irq, false); |
186 | desc->status |= IRQ_DISABLED; | ||
187 | desc->chip->disable(irq); | ||
188 | } | ||
189 | spin_unlock_irqrestore(&desc->lock, flags); | 200 | spin_unlock_irqrestore(&desc->lock, flags); |
190 | } | 201 | } |
191 | EXPORT_SYMBOL(disable_irq_nosync); | 202 | EXPORT_SYMBOL(disable_irq_nosync); |
@@ -215,15 +226,21 @@ void disable_irq(unsigned int irq) | |||
215 | } | 226 | } |
216 | EXPORT_SYMBOL(disable_irq); | 227 | EXPORT_SYMBOL(disable_irq); |
217 | 228 | ||
218 | static void __enable_irq(struct irq_desc *desc, unsigned int irq) | 229 | void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume) |
219 | { | 230 | { |
231 | if (resume) | ||
232 | desc->status &= ~IRQ_SUSPENDED; | ||
233 | |||
220 | switch (desc->depth) { | 234 | switch (desc->depth) { |
221 | case 0: | 235 | case 0: |
236 | err_out: | ||
222 | WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", irq); | 237 | WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", irq); |
223 | break; | 238 | break; |
224 | case 1: { | 239 | case 1: { |
225 | unsigned int status = desc->status & ~IRQ_DISABLED; | 240 | unsigned int status = desc->status & ~IRQ_DISABLED; |
226 | 241 | ||
242 | if (desc->status & IRQ_SUSPENDED) | ||
243 | goto err_out; | ||
227 | /* Prevent probing on this irq: */ | 244 | /* Prevent probing on this irq: */ |
228 | desc->status = status | IRQ_NOPROBE; | 245 | desc->status = status | IRQ_NOPROBE; |
229 | check_irq_resend(desc, irq); | 246 | check_irq_resend(desc, irq); |
@@ -253,7 +270,7 @@ void enable_irq(unsigned int irq) | |||
253 | return; | 270 | return; |
254 | 271 | ||
255 | spin_lock_irqsave(&desc->lock, flags); | 272 | spin_lock_irqsave(&desc->lock, flags); |
256 | __enable_irq(desc, irq); | 273 | __enable_irq(desc, irq, false); |
257 | spin_unlock_irqrestore(&desc->lock, flags); | 274 | spin_unlock_irqrestore(&desc->lock, flags); |
258 | } | 275 | } |
259 | EXPORT_SYMBOL(enable_irq); | 276 | EXPORT_SYMBOL(enable_irq); |
@@ -389,9 +406,9 @@ int __irq_set_trigger(struct irq_desc *desc, unsigned int irq, | |||
389 | * allocate special interrupts that are part of the architecture. | 406 | * allocate special interrupts that are part of the architecture. |
390 | */ | 407 | */ |
391 | static int | 408 | static int |
392 | __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | 409 | __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) |
393 | { | 410 | { |
394 | struct irqaction *old, **p; | 411 | struct irqaction *old, **old_ptr; |
395 | const char *old_name = NULL; | 412 | const char *old_name = NULL; |
396 | unsigned long flags; | 413 | unsigned long flags; |
397 | int shared = 0; | 414 | int shared = 0; |
@@ -423,8 +440,8 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
423 | * The following block of code has to be executed atomically | 440 | * The following block of code has to be executed atomically |
424 | */ | 441 | */ |
425 | spin_lock_irqsave(&desc->lock, flags); | 442 | spin_lock_irqsave(&desc->lock, flags); |
426 | p = &desc->action; | 443 | old_ptr = &desc->action; |
427 | old = *p; | 444 | old = *old_ptr; |
428 | if (old) { | 445 | if (old) { |
429 | /* | 446 | /* |
430 | * Can't share interrupts unless both agree to and are | 447 | * Can't share interrupts unless both agree to and are |
@@ -447,8 +464,8 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
447 | 464 | ||
448 | /* add new interrupt at end of irq queue */ | 465 | /* add new interrupt at end of irq queue */ |
449 | do { | 466 | do { |
450 | p = &old->next; | 467 | old_ptr = &old->next; |
451 | old = *p; | 468 | old = *old_ptr; |
452 | } while (old); | 469 | } while (old); |
453 | shared = 1; | 470 | shared = 1; |
454 | } | 471 | } |
@@ -488,7 +505,7 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
488 | desc->status |= IRQ_NO_BALANCING; | 505 | desc->status |= IRQ_NO_BALANCING; |
489 | 506 | ||
490 | /* Set default affinity mask once everything is setup */ | 507 | /* Set default affinity mask once everything is setup */ |
491 | do_irq_select_affinity(irq, desc); | 508 | setup_affinity(irq, desc); |
492 | 509 | ||
493 | } else if ((new->flags & IRQF_TRIGGER_MASK) | 510 | } else if ((new->flags & IRQF_TRIGGER_MASK) |
494 | && (new->flags & IRQF_TRIGGER_MASK) | 511 | && (new->flags & IRQF_TRIGGER_MASK) |
@@ -499,7 +516,7 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
499 | (int)(new->flags & IRQF_TRIGGER_MASK)); | 516 | (int)(new->flags & IRQF_TRIGGER_MASK)); |
500 | } | 517 | } |
501 | 518 | ||
502 | *p = new; | 519 | *old_ptr = new; |
503 | 520 | ||
504 | /* Reset broken irq detection when installing new handler */ | 521 | /* Reset broken irq detection when installing new handler */ |
505 | desc->irq_count = 0; | 522 | desc->irq_count = 0; |
@@ -511,7 +528,7 @@ __setup_irq(unsigned int irq, struct irq_desc * desc, struct irqaction *new) | |||
511 | */ | 528 | */ |
512 | if (shared && (desc->status & IRQ_SPURIOUS_DISABLED)) { | 529 | if (shared && (desc->status & IRQ_SPURIOUS_DISABLED)) { |
513 | desc->status &= ~IRQ_SPURIOUS_DISABLED; | 530 | desc->status &= ~IRQ_SPURIOUS_DISABLED; |
514 | __enable_irq(desc, irq); | 531 | __enable_irq(desc, irq, false); |
515 | } | 532 | } |
516 | 533 | ||
517 | spin_unlock_irqrestore(&desc->lock, flags); | 534 | spin_unlock_irqrestore(&desc->lock, flags); |
@@ -549,90 +566,117 @@ int setup_irq(unsigned int irq, struct irqaction *act) | |||
549 | 566 | ||
550 | return __setup_irq(irq, desc, act); | 567 | return __setup_irq(irq, desc, act); |
551 | } | 568 | } |
569 | EXPORT_SYMBOL_GPL(setup_irq); | ||
552 | 570 | ||
553 | /** | 571 | /* |
554 | * free_irq - free an interrupt | 572 | * Internal function to unregister an irqaction - used to free |
555 | * @irq: Interrupt line to free | 573 | * regular and special interrupts that are part of the architecture. |
556 | * @dev_id: Device identity to free | ||
557 | * | ||
558 | * Remove an interrupt handler. The handler is removed and if the | ||
559 | * interrupt line is no longer in use by any driver it is disabled. | ||
560 | * On a shared IRQ the caller must ensure the interrupt is disabled | ||
561 | * on the card it drives before calling this function. The function | ||
562 | * does not return until any executing interrupts for this IRQ | ||
563 | * have completed. | ||
564 | * | ||
565 | * This function must not be called from interrupt context. | ||
566 | */ | 574 | */ |
567 | void free_irq(unsigned int irq, void *dev_id) | 575 | static struct irqaction *__free_irq(unsigned int irq, void *dev_id) |
568 | { | 576 | { |
569 | struct irq_desc *desc = irq_to_desc(irq); | 577 | struct irq_desc *desc = irq_to_desc(irq); |
570 | struct irqaction **p; | 578 | struct irqaction *action, **action_ptr; |
571 | unsigned long flags; | 579 | unsigned long flags; |
572 | 580 | ||
573 | WARN_ON(in_interrupt()); | 581 | WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); |
574 | 582 | ||
575 | if (!desc) | 583 | if (!desc) |
576 | return; | 584 | return NULL; |
577 | 585 | ||
578 | spin_lock_irqsave(&desc->lock, flags); | 586 | spin_lock_irqsave(&desc->lock, flags); |
579 | p = &desc->action; | 587 | |
588 | /* | ||
589 | * There can be multiple actions per IRQ descriptor, find the right | ||
590 | * one based on the dev_id: | ||
591 | */ | ||
592 | action_ptr = &desc->action; | ||
580 | for (;;) { | 593 | for (;;) { |
581 | struct irqaction *action = *p; | 594 | action = *action_ptr; |
582 | 595 | ||
583 | if (action) { | 596 | if (!action) { |
584 | struct irqaction **pp = p; | 597 | WARN(1, "Trying to free already-free IRQ %d\n", irq); |
598 | spin_unlock_irqrestore(&desc->lock, flags); | ||
585 | 599 | ||
586 | p = &action->next; | 600 | return NULL; |
587 | if (action->dev_id != dev_id) | 601 | } |
588 | continue; | ||
589 | 602 | ||
590 | /* Found it - now remove it from the list of entries */ | 603 | if (action->dev_id == dev_id) |
591 | *pp = action->next; | 604 | break; |
605 | action_ptr = &action->next; | ||
606 | } | ||
592 | 607 | ||
593 | /* Currently used only by UML, might disappear one day.*/ | 608 | /* Found it - now remove it from the list of entries: */ |
609 | *action_ptr = action->next; | ||
610 | |||
611 | /* Currently used only by UML, might disappear one day: */ | ||
594 | #ifdef CONFIG_IRQ_RELEASE_METHOD | 612 | #ifdef CONFIG_IRQ_RELEASE_METHOD |
595 | if (desc->chip->release) | 613 | if (desc->chip->release) |
596 | desc->chip->release(irq, dev_id); | 614 | desc->chip->release(irq, dev_id); |
597 | #endif | 615 | #endif |
598 | 616 | ||
599 | if (!desc->action) { | 617 | /* If this was the last handler, shut down the IRQ line: */ |
600 | desc->status |= IRQ_DISABLED; | 618 | if (!desc->action) { |
601 | if (desc->chip->shutdown) | 619 | desc->status |= IRQ_DISABLED; |
602 | desc->chip->shutdown(irq); | 620 | if (desc->chip->shutdown) |
603 | else | 621 | desc->chip->shutdown(irq); |
604 | desc->chip->disable(irq); | 622 | else |
605 | } | 623 | desc->chip->disable(irq); |
606 | spin_unlock_irqrestore(&desc->lock, flags); | 624 | } |
607 | unregister_handler_proc(irq, action); | 625 | spin_unlock_irqrestore(&desc->lock, flags); |
626 | |||
627 | unregister_handler_proc(irq, action); | ||
628 | |||
629 | /* Make sure it's not being used on another CPU: */ | ||
630 | synchronize_irq(irq); | ||
608 | 631 | ||
609 | /* Make sure it's not being used on another CPU */ | ||
610 | synchronize_irq(irq); | ||
611 | #ifdef CONFIG_DEBUG_SHIRQ | ||
612 | /* | ||
613 | * It's a shared IRQ -- the driver ought to be | ||
614 | * prepared for it to happen even now it's | ||
615 | * being freed, so let's make sure.... We do | ||
616 | * this after actually deregistering it, to | ||
617 | * make sure that a 'real' IRQ doesn't run in | ||
618 | * parallel with our fake | ||
619 | */ | ||
620 | if (action->flags & IRQF_SHARED) { | ||
621 | local_irq_save(flags); | ||
622 | action->handler(irq, dev_id); | ||
623 | local_irq_restore(flags); | ||
624 | } | ||
625 | #endif | ||
626 | kfree(action); | ||
627 | return; | ||
628 | } | ||
629 | printk(KERN_ERR "Trying to free already-free IRQ %d\n", irq); | ||
630 | #ifdef CONFIG_DEBUG_SHIRQ | 632 | #ifdef CONFIG_DEBUG_SHIRQ |
631 | dump_stack(); | 633 | /* |
632 | #endif | 634 | * It's a shared IRQ -- the driver ought to be prepared for an IRQ |
633 | spin_unlock_irqrestore(&desc->lock, flags); | 635 | * event to happen even now it's being freed, so let's make sure that |
634 | return; | 636 | * is so by doing an extra call to the handler .... |
637 | * | ||
638 | * ( We do this after actually deregistering it, to make sure that a | ||
639 | * 'real' IRQ doesn't run in * parallel with our fake. ) | ||
640 | */ | ||
641 | if (action->flags & IRQF_SHARED) { | ||
642 | local_irq_save(flags); | ||
643 | action->handler(irq, dev_id); | ||
644 | local_irq_restore(flags); | ||
635 | } | 645 | } |
646 | #endif | ||
647 | return action; | ||
648 | } | ||
649 | |||
650 | /** | ||
651 | * remove_irq - free an interrupt | ||
652 | * @irq: Interrupt line to free | ||
653 | * @act: irqaction for the interrupt | ||
654 | * | ||
655 | * Used to remove interrupts statically setup by the early boot process. | ||
656 | */ | ||
657 | void remove_irq(unsigned int irq, struct irqaction *act) | ||
658 | { | ||
659 | __free_irq(irq, act->dev_id); | ||
660 | } | ||
661 | EXPORT_SYMBOL_GPL(remove_irq); | ||
662 | |||
663 | /** | ||
664 | * free_irq - free an interrupt allocated with request_irq | ||
665 | * @irq: Interrupt line to free | ||
666 | * @dev_id: Device identity to free | ||
667 | * | ||
668 | * Remove an interrupt handler. The handler is removed and if the | ||
669 | * interrupt line is no longer in use by any driver it is disabled. | ||
670 | * On a shared IRQ the caller must ensure the interrupt is disabled | ||
671 | * on the card it drives before calling this function. The function | ||
672 | * does not return until any executing interrupts for this IRQ | ||
673 | * have completed. | ||
674 | * | ||
675 | * This function must not be called from interrupt context. | ||
676 | */ | ||
677 | void free_irq(unsigned int irq, void *dev_id) | ||
678 | { | ||
679 | kfree(__free_irq(irq, dev_id)); | ||
636 | } | 680 | } |
637 | EXPORT_SYMBOL(free_irq); | 681 | EXPORT_SYMBOL(free_irq); |
638 | 682 | ||
@@ -679,11 +723,12 @@ int request_irq(unsigned int irq, irq_handler_t handler, | |||
679 | * the behavior is classified as "will not fix" so we need to | 723 | * the behavior is classified as "will not fix" so we need to |
680 | * start nudging drivers away from using that idiom. | 724 | * start nudging drivers away from using that idiom. |
681 | */ | 725 | */ |
682 | if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) | 726 | if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) == |
683 | == (IRQF_SHARED|IRQF_DISABLED)) | 727 | (IRQF_SHARED|IRQF_DISABLED)) { |
684 | pr_warning("IRQ %d/%s: IRQF_DISABLED is not " | 728 | pr_warning( |
685 | "guaranteed on shared IRQs\n", | 729 | "IRQ %d/%s: IRQF_DISABLED is not guaranteed on shared IRQs\n", |
686 | irq, devname); | 730 | irq, devname); |
731 | } | ||
687 | 732 | ||
688 | #ifdef CONFIG_LOCKDEP | 733 | #ifdef CONFIG_LOCKDEP |
689 | /* | 734 | /* |
@@ -709,15 +754,13 @@ int request_irq(unsigned int irq, irq_handler_t handler, | |||
709 | if (!handler) | 754 | if (!handler) |
710 | return -EINVAL; | 755 | return -EINVAL; |
711 | 756 | ||
712 | action = kmalloc(sizeof(struct irqaction), GFP_ATOMIC); | 757 | action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); |
713 | if (!action) | 758 | if (!action) |
714 | return -ENOMEM; | 759 | return -ENOMEM; |
715 | 760 | ||
716 | action->handler = handler; | 761 | action->handler = handler; |
717 | action->flags = irqflags; | 762 | action->flags = irqflags; |
718 | cpus_clear(action->mask); | ||
719 | action->name = devname; | 763 | action->name = devname; |
720 | action->next = NULL; | ||
721 | action->dev_id = dev_id; | 764 | action->dev_id = dev_id; |
722 | 765 | ||
723 | retval = __setup_irq(irq, desc, action); | 766 | retval = __setup_irq(irq, desc, action); |
diff --git a/kernel/irq/migration.c b/kernel/irq/migration.c index bd72329e630c..e05ad9be43b7 100644 --- a/kernel/irq/migration.c +++ b/kernel/irq/migration.c | |||
@@ -18,7 +18,7 @@ void move_masked_irq(int irq) | |||
18 | 18 | ||
19 | desc->status &= ~IRQ_MOVE_PENDING; | 19 | desc->status &= ~IRQ_MOVE_PENDING; |
20 | 20 | ||
21 | if (unlikely(cpumask_empty(&desc->pending_mask))) | 21 | if (unlikely(cpumask_empty(desc->pending_mask))) |
22 | return; | 22 | return; |
23 | 23 | ||
24 | if (!desc->chip->set_affinity) | 24 | if (!desc->chip->set_affinity) |
@@ -38,13 +38,13 @@ void move_masked_irq(int irq) | |||
38 | * For correct operation this depends on the caller | 38 | * For correct operation this depends on the caller |
39 | * masking the irqs. | 39 | * masking the irqs. |
40 | */ | 40 | */ |
41 | if (likely(cpumask_any_and(&desc->pending_mask, cpu_online_mask) | 41 | if (likely(cpumask_any_and(desc->pending_mask, cpu_online_mask) |
42 | < nr_cpu_ids)) { | 42 | < nr_cpu_ids)) { |
43 | cpumask_and(&desc->affinity, | 43 | cpumask_and(desc->affinity, |
44 | &desc->pending_mask, cpu_online_mask); | 44 | desc->pending_mask, cpu_online_mask); |
45 | desc->chip->set_affinity(irq, &desc->affinity); | 45 | desc->chip->set_affinity(irq, desc->affinity); |
46 | } | 46 | } |
47 | cpumask_clear(&desc->pending_mask); | 47 | cpumask_clear(desc->pending_mask); |
48 | } | 48 | } |
49 | 49 | ||
50 | void move_native_irq(int irq) | 50 | void move_native_irq(int irq) |
diff --git a/kernel/irq/numa_migrate.c b/kernel/irq/numa_migrate.c index acd88356ac76..243d6121e50e 100644 --- a/kernel/irq/numa_migrate.c +++ b/kernel/irq/numa_migrate.c | |||
@@ -17,16 +17,11 @@ static void init_copy_kstat_irqs(struct irq_desc *old_desc, | |||
17 | struct irq_desc *desc, | 17 | struct irq_desc *desc, |
18 | int cpu, int nr) | 18 | int cpu, int nr) |
19 | { | 19 | { |
20 | unsigned long bytes; | ||
21 | |||
22 | init_kstat_irqs(desc, cpu, nr); | 20 | init_kstat_irqs(desc, cpu, nr); |
23 | 21 | ||
24 | if (desc->kstat_irqs != old_desc->kstat_irqs) { | 22 | if (desc->kstat_irqs != old_desc->kstat_irqs) |
25 | /* Compute how many bytes we need per irq and allocate them */ | 23 | memcpy(desc->kstat_irqs, old_desc->kstat_irqs, |
26 | bytes = nr * sizeof(unsigned int); | 24 | nr * sizeof(*desc->kstat_irqs)); |
27 | |||
28 | memcpy(desc->kstat_irqs, old_desc->kstat_irqs, bytes); | ||
29 | } | ||
30 | } | 25 | } |
31 | 26 | ||
32 | static void free_kstat_irqs(struct irq_desc *old_desc, struct irq_desc *desc) | 27 | static void free_kstat_irqs(struct irq_desc *old_desc, struct irq_desc *desc) |
@@ -38,15 +33,22 @@ static void free_kstat_irqs(struct irq_desc *old_desc, struct irq_desc *desc) | |||
38 | old_desc->kstat_irqs = NULL; | 33 | old_desc->kstat_irqs = NULL; |
39 | } | 34 | } |
40 | 35 | ||
41 | static void init_copy_one_irq_desc(int irq, struct irq_desc *old_desc, | 36 | static bool init_copy_one_irq_desc(int irq, struct irq_desc *old_desc, |
42 | struct irq_desc *desc, int cpu) | 37 | struct irq_desc *desc, int cpu) |
43 | { | 38 | { |
44 | memcpy(desc, old_desc, sizeof(struct irq_desc)); | 39 | memcpy(desc, old_desc, sizeof(struct irq_desc)); |
40 | if (!init_alloc_desc_masks(desc, cpu, false)) { | ||
41 | printk(KERN_ERR "irq %d: can not get new irq_desc cpumask " | ||
42 | "for migration.\n", irq); | ||
43 | return false; | ||
44 | } | ||
45 | spin_lock_init(&desc->lock); | 45 | spin_lock_init(&desc->lock); |
46 | desc->cpu = cpu; | 46 | desc->cpu = cpu; |
47 | lockdep_set_class(&desc->lock, &irq_desc_lock_class); | 47 | lockdep_set_class(&desc->lock, &irq_desc_lock_class); |
48 | init_copy_kstat_irqs(old_desc, desc, cpu, nr_cpu_ids); | 48 | init_copy_kstat_irqs(old_desc, desc, cpu, nr_cpu_ids); |
49 | init_copy_desc_masks(old_desc, desc); | ||
49 | arch_init_copy_chip_data(old_desc, desc, cpu); | 50 | arch_init_copy_chip_data(old_desc, desc, cpu); |
51 | return true; | ||
50 | } | 52 | } |
51 | 53 | ||
52 | static void free_one_irq_desc(struct irq_desc *old_desc, struct irq_desc *desc) | 54 | static void free_one_irq_desc(struct irq_desc *old_desc, struct irq_desc *desc) |
@@ -76,12 +78,18 @@ static struct irq_desc *__real_move_irq_desc(struct irq_desc *old_desc, | |||
76 | node = cpu_to_node(cpu); | 78 | node = cpu_to_node(cpu); |
77 | desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node); | 79 | desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node); |
78 | if (!desc) { | 80 | if (!desc) { |
79 | printk(KERN_ERR "irq %d: can not get new irq_desc for migration.\n", irq); | 81 | printk(KERN_ERR "irq %d: can not get new irq_desc " |
82 | "for migration.\n", irq); | ||
83 | /* still use old one */ | ||
84 | desc = old_desc; | ||
85 | goto out_unlock; | ||
86 | } | ||
87 | if (!init_copy_one_irq_desc(irq, old_desc, desc, cpu)) { | ||
80 | /* still use old one */ | 88 | /* still use old one */ |
89 | kfree(desc); | ||
81 | desc = old_desc; | 90 | desc = old_desc; |
82 | goto out_unlock; | 91 | goto out_unlock; |
83 | } | 92 | } |
84 | init_copy_one_irq_desc(irq, old_desc, desc, cpu); | ||
85 | 93 | ||
86 | irq_desc_ptrs[irq] = desc; | 94 | irq_desc_ptrs[irq] = desc; |
87 | spin_unlock_irqrestore(&sparse_irq_lock, flags); | 95 | spin_unlock_irqrestore(&sparse_irq_lock, flags); |
diff --git a/kernel/irq/pm.c b/kernel/irq/pm.c new file mode 100644 index 000000000000..638d8bedec14 --- /dev/null +++ b/kernel/irq/pm.c | |||
@@ -0,0 +1,79 @@ | |||
1 | /* | ||
2 | * linux/kernel/irq/pm.c | ||
3 | * | ||
4 | * Copyright (C) 2009 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc. | ||
5 | * | ||
6 | * This file contains power management functions related to interrupts. | ||
7 | */ | ||
8 | |||
9 | #include <linux/irq.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/interrupt.h> | ||
12 | |||
13 | #include "internals.h" | ||
14 | |||
15 | /** | ||
16 | * suspend_device_irqs - disable all currently enabled interrupt lines | ||
17 | * | ||
18 | * During system-wide suspend or hibernation device interrupts need to be | ||
19 | * disabled at the chip level and this function is provided for this purpose. | ||
20 | * It disables all interrupt lines that are enabled at the moment and sets the | ||
21 | * IRQ_SUSPENDED flag for them. | ||
22 | */ | ||
23 | void suspend_device_irqs(void) | ||
24 | { | ||
25 | struct irq_desc *desc; | ||
26 | int irq; | ||
27 | |||
28 | for_each_irq_desc(irq, desc) { | ||
29 | unsigned long flags; | ||
30 | |||
31 | spin_lock_irqsave(&desc->lock, flags); | ||
32 | __disable_irq(desc, irq, true); | ||
33 | spin_unlock_irqrestore(&desc->lock, flags); | ||
34 | } | ||
35 | |||
36 | for_each_irq_desc(irq, desc) | ||
37 | if (desc->status & IRQ_SUSPENDED) | ||
38 | synchronize_irq(irq); | ||
39 | } | ||
40 | EXPORT_SYMBOL_GPL(suspend_device_irqs); | ||
41 | |||
42 | /** | ||
43 | * resume_device_irqs - enable interrupt lines disabled by suspend_device_irqs() | ||
44 | * | ||
45 | * Enable all interrupt lines previously disabled by suspend_device_irqs() that | ||
46 | * have the IRQ_SUSPENDED flag set. | ||
47 | */ | ||
48 | void resume_device_irqs(void) | ||
49 | { | ||
50 | struct irq_desc *desc; | ||
51 | int irq; | ||
52 | |||
53 | for_each_irq_desc(irq, desc) { | ||
54 | unsigned long flags; | ||
55 | |||
56 | if (!(desc->status & IRQ_SUSPENDED)) | ||
57 | continue; | ||
58 | |||
59 | spin_lock_irqsave(&desc->lock, flags); | ||
60 | __enable_irq(desc, irq, true); | ||
61 | spin_unlock_irqrestore(&desc->lock, flags); | ||
62 | } | ||
63 | } | ||
64 | EXPORT_SYMBOL_GPL(resume_device_irqs); | ||
65 | |||
66 | /** | ||
67 | * check_wakeup_irqs - check if any wake-up interrupts are pending | ||
68 | */ | ||
69 | int check_wakeup_irqs(void) | ||
70 | { | ||
71 | struct irq_desc *desc; | ||
72 | int irq; | ||
73 | |||
74 | for_each_irq_desc(irq, desc) | ||
75 | if ((desc->status & IRQ_WAKEUP) && (desc->status & IRQ_PENDING)) | ||
76 | return -EBUSY; | ||
77 | |||
78 | return 0; | ||
79 | } | ||
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c index aae3f742bcec..692363dd591f 100644 --- a/kernel/irq/proc.c +++ b/kernel/irq/proc.c | |||
@@ -20,11 +20,11 @@ static struct proc_dir_entry *root_irq_dir; | |||
20 | static int irq_affinity_proc_show(struct seq_file *m, void *v) | 20 | static int irq_affinity_proc_show(struct seq_file *m, void *v) |
21 | { | 21 | { |
22 | struct irq_desc *desc = irq_to_desc((long)m->private); | 22 | struct irq_desc *desc = irq_to_desc((long)m->private); |
23 | const struct cpumask *mask = &desc->affinity; | 23 | const struct cpumask *mask = desc->affinity; |
24 | 24 | ||
25 | #ifdef CONFIG_GENERIC_PENDING_IRQ | 25 | #ifdef CONFIG_GENERIC_PENDING_IRQ |
26 | if (desc->status & IRQ_MOVE_PENDING) | 26 | if (desc->status & IRQ_MOVE_PENDING) |
27 | mask = &desc->pending_mask; | 27 | mask = desc->pending_mask; |
28 | #endif | 28 | #endif |
29 | seq_cpumask(m, mask); | 29 | seq_cpumask(m, mask); |
30 | seq_putc(m, '\n'); | 30 | seq_putc(m, '\n'); |
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c index dd364c11e56e..4d568294de3e 100644 --- a/kernel/irq/spurious.c +++ b/kernel/irq/spurious.c | |||
@@ -104,7 +104,7 @@ static int misrouted_irq(int irq) | |||
104 | return ok; | 104 | return ok; |
105 | } | 105 | } |
106 | 106 | ||
107 | static void poll_spurious_irqs(unsigned long dummy) | 107 | static void poll_all_shared_irqs(void) |
108 | { | 108 | { |
109 | struct irq_desc *desc; | 109 | struct irq_desc *desc; |
110 | int i; | 110 | int i; |
@@ -123,11 +123,23 @@ static void poll_spurious_irqs(unsigned long dummy) | |||
123 | 123 | ||
124 | try_one_irq(i, desc); | 124 | try_one_irq(i, desc); |
125 | } | 125 | } |
126 | } | ||
127 | |||
128 | static void poll_spurious_irqs(unsigned long dummy) | ||
129 | { | ||
130 | poll_all_shared_irqs(); | ||
126 | 131 | ||
127 | mod_timer(&poll_spurious_irq_timer, | 132 | mod_timer(&poll_spurious_irq_timer, |
128 | jiffies + POLL_SPURIOUS_IRQ_INTERVAL); | 133 | jiffies + POLL_SPURIOUS_IRQ_INTERVAL); |
129 | } | 134 | } |
130 | 135 | ||
136 | #ifdef CONFIG_DEBUG_SHIRQ | ||
137 | void debug_poll_all_shared_irqs(void) | ||
138 | { | ||
139 | poll_all_shared_irqs(); | ||
140 | } | ||
141 | #endif | ||
142 | |||
131 | /* | 143 | /* |
132 | * If 99,900 of the previous 100,000 interrupts have not been handled | 144 | * If 99,900 of the previous 100,000 interrupts have not been handled |
133 | * then assume that the IRQ is stuck in some manner. Drop a diagnostic | 145 | * then assume that the IRQ is stuck in some manner. Drop a diagnostic |
diff --git a/kernel/kexec.c b/kernel/kexec.c index 483899578259..5a758c6e4950 100644 --- a/kernel/kexec.c +++ b/kernel/kexec.c | |||
@@ -42,7 +42,7 @@ | |||
42 | note_buf_t* crash_notes; | 42 | note_buf_t* crash_notes; |
43 | 43 | ||
44 | /* vmcoreinfo stuff */ | 44 | /* vmcoreinfo stuff */ |
45 | unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; | 45 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; |
46 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; | 46 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; |
47 | size_t vmcoreinfo_size; | 47 | size_t vmcoreinfo_size; |
48 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | 48 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); |
@@ -1130,7 +1130,7 @@ void crash_save_cpu(struct pt_regs *regs, int cpu) | |||
1130 | return; | 1130 | return; |
1131 | memset(&prstatus, 0, sizeof(prstatus)); | 1131 | memset(&prstatus, 0, sizeof(prstatus)); |
1132 | prstatus.pr_pid = current->pid; | 1132 | prstatus.pr_pid = current->pid; |
1133 | elf_core_copy_regs(&prstatus.pr_reg, regs); | 1133 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
1134 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 1134 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1135 | &prstatus, sizeof(prstatus)); | 1135 | &prstatus, sizeof(prstatus)); |
1136 | final_note(buf); | 1136 | final_note(buf); |
@@ -1409,6 +1409,7 @@ static int __init crash_save_vmcoreinfo_init(void) | |||
1409 | VMCOREINFO_OFFSET(list_head, prev); | 1409 | VMCOREINFO_OFFSET(list_head, prev); |
1410 | VMCOREINFO_OFFSET(vm_struct, addr); | 1410 | VMCOREINFO_OFFSET(vm_struct, addr); |
1411 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); | 1411 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); |
1412 | log_buf_kexec_setup(); | ||
1412 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); | 1413 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
1413 | VMCOREINFO_NUMBER(NR_FREE_PAGES); | 1414 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
1414 | VMCOREINFO_NUMBER(PG_lru); | 1415 | VMCOREINFO_NUMBER(PG_lru); |
@@ -1450,11 +1451,7 @@ int kernel_kexec(void) | |||
1450 | error = device_suspend(PMSG_FREEZE); | 1451 | error = device_suspend(PMSG_FREEZE); |
1451 | if (error) | 1452 | if (error) |
1452 | goto Resume_console; | 1453 | goto Resume_console; |
1453 | error = disable_nonboot_cpus(); | ||
1454 | if (error) | ||
1455 | goto Resume_devices; | ||
1456 | device_pm_lock(); | 1454 | device_pm_lock(); |
1457 | local_irq_disable(); | ||
1458 | /* At this point, device_suspend() has been called, | 1455 | /* At this point, device_suspend() has been called, |
1459 | * but *not* device_power_down(). We *must* | 1456 | * but *not* device_power_down(). We *must* |
1460 | * device_power_down() now. Otherwise, drivers for | 1457 | * device_power_down() now. Otherwise, drivers for |
@@ -1464,12 +1461,15 @@ int kernel_kexec(void) | |||
1464 | */ | 1461 | */ |
1465 | error = device_power_down(PMSG_FREEZE); | 1462 | error = device_power_down(PMSG_FREEZE); |
1466 | if (error) | 1463 | if (error) |
1467 | goto Enable_irqs; | 1464 | goto Resume_devices; |
1468 | 1465 | error = disable_nonboot_cpus(); | |
1466 | if (error) | ||
1467 | goto Enable_cpus; | ||
1468 | local_irq_disable(); | ||
1469 | /* Suspend system devices */ | 1469 | /* Suspend system devices */ |
1470 | error = sysdev_suspend(PMSG_FREEZE); | 1470 | error = sysdev_suspend(PMSG_FREEZE); |
1471 | if (error) | 1471 | if (error) |
1472 | goto Power_up_devices; | 1472 | goto Enable_irqs; |
1473 | } else | 1473 | } else |
1474 | #endif | 1474 | #endif |
1475 | { | 1475 | { |
@@ -1483,13 +1483,13 @@ int kernel_kexec(void) | |||
1483 | #ifdef CONFIG_KEXEC_JUMP | 1483 | #ifdef CONFIG_KEXEC_JUMP |
1484 | if (kexec_image->preserve_context) { | 1484 | if (kexec_image->preserve_context) { |
1485 | sysdev_resume(); | 1485 | sysdev_resume(); |
1486 | Power_up_devices: | ||
1487 | device_power_up(PMSG_RESTORE); | ||
1488 | Enable_irqs: | 1486 | Enable_irqs: |
1489 | local_irq_enable(); | 1487 | local_irq_enable(); |
1490 | device_pm_unlock(); | 1488 | Enable_cpus: |
1491 | enable_nonboot_cpus(); | 1489 | enable_nonboot_cpus(); |
1490 | device_power_up(PMSG_RESTORE); | ||
1492 | Resume_devices: | 1491 | Resume_devices: |
1492 | device_pm_unlock(); | ||
1493 | device_resume(PMSG_RESTORE); | 1493 | device_resume(PMSG_RESTORE); |
1494 | Resume_console: | 1494 | Resume_console: |
1495 | resume_console(); | 1495 | resume_console(); |
diff --git a/kernel/kmod.c b/kernel/kmod.c index a27a5f64443d..f0c8f545180d 100644 --- a/kernel/kmod.c +++ b/kernel/kmod.c | |||
@@ -167,7 +167,7 @@ static int ____call_usermodehelper(void *data) | |||
167 | } | 167 | } |
168 | 168 | ||
169 | /* We can run anywhere, unlike our parent keventd(). */ | 169 | /* We can run anywhere, unlike our parent keventd(). */ |
170 | set_cpus_allowed_ptr(current, CPU_MASK_ALL_PTR); | 170 | set_cpus_allowed_ptr(current, cpu_all_mask); |
171 | 171 | ||
172 | /* | 172 | /* |
173 | * Our parent is keventd, which runs with elevated scheduling priority. | 173 | * Our parent is keventd, which runs with elevated scheduling priority. |
diff --git a/kernel/kthread.c b/kernel/kthread.c index 4fbc456f393d..84bbadd4d021 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c | |||
@@ -110,7 +110,7 @@ static void create_kthread(struct kthread_create_info *create) | |||
110 | */ | 110 | */ |
111 | sched_setscheduler(create->result, SCHED_NORMAL, ¶m); | 111 | sched_setscheduler(create->result, SCHED_NORMAL, ¶m); |
112 | set_user_nice(create->result, KTHREAD_NICE_LEVEL); | 112 | set_user_nice(create->result, KTHREAD_NICE_LEVEL); |
113 | set_cpus_allowed_ptr(create->result, CPU_MASK_ALL_PTR); | 113 | set_cpus_allowed_ptr(create->result, cpu_all_mask); |
114 | } | 114 | } |
115 | complete(&create->done); | 115 | complete(&create->done); |
116 | } | 116 | } |
@@ -240,7 +240,7 @@ int kthreadd(void *unused) | |||
240 | set_task_comm(tsk, "kthreadd"); | 240 | set_task_comm(tsk, "kthreadd"); |
241 | ignore_signals(tsk); | 241 | ignore_signals(tsk); |
242 | set_user_nice(tsk, KTHREAD_NICE_LEVEL); | 242 | set_user_nice(tsk, KTHREAD_NICE_LEVEL); |
243 | set_cpus_allowed_ptr(tsk, CPU_MASK_ALL_PTR); | 243 | set_cpus_allowed_ptr(tsk, cpu_all_mask); |
244 | 244 | ||
245 | current->flags |= PF_NOFREEZE | PF_FREEZER_NOSIG; | 245 | current->flags |= PF_NOFREEZE | PF_FREEZER_NOSIG; |
246 | 246 | ||
diff --git a/kernel/latencytop.c b/kernel/latencytop.c index 449db466bdbc..ca07c5c0c914 100644 --- a/kernel/latencytop.c +++ b/kernel/latencytop.c | |||
@@ -9,6 +9,44 @@ | |||
9 | * as published by the Free Software Foundation; version 2 | 9 | * as published by the Free Software Foundation; version 2 |
10 | * of the License. | 10 | * of the License. |
11 | */ | 11 | */ |
12 | |||
13 | /* | ||
14 | * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is | ||
15 | * used by the "latencytop" userspace tool. The latency that is tracked is not | ||
16 | * the 'traditional' interrupt latency (which is primarily caused by something | ||
17 | * else consuming CPU), but instead, it is the latency an application encounters | ||
18 | * because the kernel sleeps on its behalf for various reasons. | ||
19 | * | ||
20 | * This code tracks 2 levels of statistics: | ||
21 | * 1) System level latency | ||
22 | * 2) Per process latency | ||
23 | * | ||
24 | * The latency is stored in fixed sized data structures in an accumulated form; | ||
25 | * if the "same" latency cause is hit twice, this will be tracked as one entry | ||
26 | * in the data structure. Both the count, total accumulated latency and maximum | ||
27 | * latency are tracked in this data structure. When the fixed size structure is | ||
28 | * full, no new causes are tracked until the buffer is flushed by writing to | ||
29 | * the /proc file; the userspace tool does this on a regular basis. | ||
30 | * | ||
31 | * A latency cause is identified by a stringified backtrace at the point that | ||
32 | * the scheduler gets invoked. The userland tool will use this string to | ||
33 | * identify the cause of the latency in human readable form. | ||
34 | * | ||
35 | * The information is exported via /proc/latency_stats and /proc/<pid>/latency. | ||
36 | * These files look like this: | ||
37 | * | ||
38 | * Latency Top version : v0.1 | ||
39 | * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl | ||
40 | * | | | | | ||
41 | * | | | +----> the stringified backtrace | ||
42 | * | | +---------> The maximum latency for this entry in microseconds | ||
43 | * | +--------------> The accumulated latency for this entry (microseconds) | ||
44 | * +-------------------> The number of times this entry is hit | ||
45 | * | ||
46 | * (note: the average latency is the accumulated latency divided by the number | ||
47 | * of times) | ||
48 | */ | ||
49 | |||
12 | #include <linux/latencytop.h> | 50 | #include <linux/latencytop.h> |
13 | #include <linux/kallsyms.h> | 51 | #include <linux/kallsyms.h> |
14 | #include <linux/seq_file.h> | 52 | #include <linux/seq_file.h> |
@@ -72,7 +110,7 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
72 | firstnonnull = i; | 110 | firstnonnull = i; |
73 | continue; | 111 | continue; |
74 | } | 112 | } |
75 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 113 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
76 | unsigned long record = lat->backtrace[q]; | 114 | unsigned long record = lat->backtrace[q]; |
77 | 115 | ||
78 | if (latency_record[i].backtrace[q] != record) { | 116 | if (latency_record[i].backtrace[q] != record) { |
@@ -101,31 +139,52 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record | |||
101 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); | 139 | memcpy(&latency_record[i], lat, sizeof(struct latency_record)); |
102 | } | 140 | } |
103 | 141 | ||
104 | static inline void store_stacktrace(struct task_struct *tsk, struct latency_record *lat) | 142 | /* |
143 | * Iterator to store a backtrace into a latency record entry | ||
144 | */ | ||
145 | static inline void store_stacktrace(struct task_struct *tsk, | ||
146 | struct latency_record *lat) | ||
105 | { | 147 | { |
106 | struct stack_trace trace; | 148 | struct stack_trace trace; |
107 | 149 | ||
108 | memset(&trace, 0, sizeof(trace)); | 150 | memset(&trace, 0, sizeof(trace)); |
109 | trace.max_entries = LT_BACKTRACEDEPTH; | 151 | trace.max_entries = LT_BACKTRACEDEPTH; |
110 | trace.entries = &lat->backtrace[0]; | 152 | trace.entries = &lat->backtrace[0]; |
111 | trace.skip = 0; | ||
112 | save_stack_trace_tsk(tsk, &trace); | 153 | save_stack_trace_tsk(tsk, &trace); |
113 | } | 154 | } |
114 | 155 | ||
156 | /** | ||
157 | * __account_scheduler_latency - record an occured latency | ||
158 | * @tsk - the task struct of the task hitting the latency | ||
159 | * @usecs - the duration of the latency in microseconds | ||
160 | * @inter - 1 if the sleep was interruptible, 0 if uninterruptible | ||
161 | * | ||
162 | * This function is the main entry point for recording latency entries | ||
163 | * as called by the scheduler. | ||
164 | * | ||
165 | * This function has a few special cases to deal with normal 'non-latency' | ||
166 | * sleeps: specifically, interruptible sleep longer than 5 msec is skipped | ||
167 | * since this usually is caused by waiting for events via select() and co. | ||
168 | * | ||
169 | * Negative latencies (caused by time going backwards) are also explicitly | ||
170 | * skipped. | ||
171 | */ | ||
115 | void __sched | 172 | void __sched |
116 | account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | 173 | __account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) |
117 | { | 174 | { |
118 | unsigned long flags; | 175 | unsigned long flags; |
119 | int i, q; | 176 | int i, q; |
120 | struct latency_record lat; | 177 | struct latency_record lat; |
121 | 178 | ||
122 | if (!latencytop_enabled) | ||
123 | return; | ||
124 | |||
125 | /* Long interruptible waits are generally user requested... */ | 179 | /* Long interruptible waits are generally user requested... */ |
126 | if (inter && usecs > 5000) | 180 | if (inter && usecs > 5000) |
127 | return; | 181 | return; |
128 | 182 | ||
183 | /* Negative sleeps are time going backwards */ | ||
184 | /* Zero-time sleeps are non-interesting */ | ||
185 | if (usecs <= 0) | ||
186 | return; | ||
187 | |||
129 | memset(&lat, 0, sizeof(lat)); | 188 | memset(&lat, 0, sizeof(lat)); |
130 | lat.count = 1; | 189 | lat.count = 1; |
131 | lat.time = usecs; | 190 | lat.time = usecs; |
@@ -143,12 +202,12 @@ account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) | |||
143 | if (tsk->latency_record_count >= LT_SAVECOUNT) | 202 | if (tsk->latency_record_count >= LT_SAVECOUNT) |
144 | goto out_unlock; | 203 | goto out_unlock; |
145 | 204 | ||
146 | for (i = 0; i < LT_SAVECOUNT ; i++) { | 205 | for (i = 0; i < LT_SAVECOUNT; i++) { |
147 | struct latency_record *mylat; | 206 | struct latency_record *mylat; |
148 | int same = 1; | 207 | int same = 1; |
149 | 208 | ||
150 | mylat = &tsk->latency_record[i]; | 209 | mylat = &tsk->latency_record[i]; |
151 | for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { | 210 | for (q = 0; q < LT_BACKTRACEDEPTH; q++) { |
152 | unsigned long record = lat.backtrace[q]; | 211 | unsigned long record = lat.backtrace[q]; |
153 | 212 | ||
154 | if (mylat->backtrace[q] != record) { | 213 | if (mylat->backtrace[q] != record) { |
@@ -186,7 +245,7 @@ static int lstats_show(struct seq_file *m, void *v) | |||
186 | for (i = 0; i < MAXLR; i++) { | 245 | for (i = 0; i < MAXLR; i++) { |
187 | if (latency_record[i].backtrace[0]) { | 246 | if (latency_record[i].backtrace[0]) { |
188 | int q; | 247 | int q; |
189 | seq_printf(m, "%i %li %li ", | 248 | seq_printf(m, "%i %lu %lu ", |
190 | latency_record[i].count, | 249 | latency_record[i].count, |
191 | latency_record[i].time, | 250 | latency_record[i].time, |
192 | latency_record[i].max); | 251 | latency_record[i].max); |
@@ -223,7 +282,7 @@ static int lstats_open(struct inode *inode, struct file *filp) | |||
223 | return single_open(filp, lstats_show, NULL); | 282 | return single_open(filp, lstats_show, NULL); |
224 | } | 283 | } |
225 | 284 | ||
226 | static struct file_operations lstats_fops = { | 285 | static const struct file_operations lstats_fops = { |
227 | .open = lstats_open, | 286 | .open = lstats_open, |
228 | .read = seq_read, | 287 | .read = seq_read, |
229 | .write = lstats_write, | 288 | .write = lstats_write, |
@@ -236,4 +295,4 @@ static int __init init_lstats_procfs(void) | |||
236 | proc_create("latency_stats", 0644, NULL, &lstats_fops); | 295 | proc_create("latency_stats", 0644, NULL, &lstats_fops); |
237 | return 0; | 296 | return 0; |
238 | } | 297 | } |
239 | __initcall(init_lstats_procfs); | 298 | device_initcall(init_lstats_procfs); |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index 06b0c3568f0b..981cd4854281 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -41,6 +41,7 @@ | |||
41 | #include <linux/utsname.h> | 41 | #include <linux/utsname.h> |
42 | #include <linux/hash.h> | 42 | #include <linux/hash.h> |
43 | #include <linux/ftrace.h> | 43 | #include <linux/ftrace.h> |
44 | #include <linux/stringify.h> | ||
44 | 45 | ||
45 | #include <asm/sections.h> | 46 | #include <asm/sections.h> |
46 | 47 | ||
@@ -310,12 +311,14 @@ EXPORT_SYMBOL(lockdep_on); | |||
310 | #if VERBOSE | 311 | #if VERBOSE |
311 | # define HARDIRQ_VERBOSE 1 | 312 | # define HARDIRQ_VERBOSE 1 |
312 | # define SOFTIRQ_VERBOSE 1 | 313 | # define SOFTIRQ_VERBOSE 1 |
314 | # define RECLAIM_VERBOSE 1 | ||
313 | #else | 315 | #else |
314 | # define HARDIRQ_VERBOSE 0 | 316 | # define HARDIRQ_VERBOSE 0 |
315 | # define SOFTIRQ_VERBOSE 0 | 317 | # define SOFTIRQ_VERBOSE 0 |
318 | # define RECLAIM_VERBOSE 0 | ||
316 | #endif | 319 | #endif |
317 | 320 | ||
318 | #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE | 321 | #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE |
319 | /* | 322 | /* |
320 | * Quick filtering for interesting events: | 323 | * Quick filtering for interesting events: |
321 | */ | 324 | */ |
@@ -430,30 +433,24 @@ atomic_t nr_find_usage_forwards_checks; | |||
430 | atomic_t nr_find_usage_forwards_recursions; | 433 | atomic_t nr_find_usage_forwards_recursions; |
431 | atomic_t nr_find_usage_backwards_checks; | 434 | atomic_t nr_find_usage_backwards_checks; |
432 | atomic_t nr_find_usage_backwards_recursions; | 435 | atomic_t nr_find_usage_backwards_recursions; |
433 | # define debug_atomic_inc(ptr) atomic_inc(ptr) | ||
434 | # define debug_atomic_dec(ptr) atomic_dec(ptr) | ||
435 | # define debug_atomic_read(ptr) atomic_read(ptr) | ||
436 | #else | ||
437 | # define debug_atomic_inc(ptr) do { } while (0) | ||
438 | # define debug_atomic_dec(ptr) do { } while (0) | ||
439 | # define debug_atomic_read(ptr) 0 | ||
440 | #endif | 436 | #endif |
441 | 437 | ||
442 | /* | 438 | /* |
443 | * Locking printouts: | 439 | * Locking printouts: |
444 | */ | 440 | */ |
445 | 441 | ||
442 | #define __USAGE(__STATE) \ | ||
443 | [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ | ||
444 | [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ | ||
445 | [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ | ||
446 | [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", | ||
447 | |||
446 | static const char *usage_str[] = | 448 | static const char *usage_str[] = |
447 | { | 449 | { |
448 | [LOCK_USED] = "initial-use ", | 450 | #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) |
449 | [LOCK_USED_IN_HARDIRQ] = "in-hardirq-W", | 451 | #include "lockdep_states.h" |
450 | [LOCK_USED_IN_SOFTIRQ] = "in-softirq-W", | 452 | #undef LOCKDEP_STATE |
451 | [LOCK_ENABLED_SOFTIRQS] = "softirq-on-W", | 453 | [LOCK_USED] = "INITIAL USE", |
452 | [LOCK_ENABLED_HARDIRQS] = "hardirq-on-W", | ||
453 | [LOCK_USED_IN_HARDIRQ_READ] = "in-hardirq-R", | ||
454 | [LOCK_USED_IN_SOFTIRQ_READ] = "in-softirq-R", | ||
455 | [LOCK_ENABLED_SOFTIRQS_READ] = "softirq-on-R", | ||
456 | [LOCK_ENABLED_HARDIRQS_READ] = "hardirq-on-R", | ||
457 | }; | 454 | }; |
458 | 455 | ||
459 | const char * __get_key_name(struct lockdep_subclass_key *key, char *str) | 456 | const char * __get_key_name(struct lockdep_subclass_key *key, char *str) |
@@ -461,46 +458,45 @@ const char * __get_key_name(struct lockdep_subclass_key *key, char *str) | |||
461 | return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); | 458 | return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); |
462 | } | 459 | } |
463 | 460 | ||
464 | void | 461 | static inline unsigned long lock_flag(enum lock_usage_bit bit) |
465 | get_usage_chars(struct lock_class *class, char *c1, char *c2, char *c3, char *c4) | ||
466 | { | 462 | { |
467 | *c1 = '.', *c2 = '.', *c3 = '.', *c4 = '.'; | 463 | return 1UL << bit; |
468 | 464 | } | |
469 | if (class->usage_mask & LOCKF_USED_IN_HARDIRQ) | ||
470 | *c1 = '+'; | ||
471 | else | ||
472 | if (class->usage_mask & LOCKF_ENABLED_HARDIRQS) | ||
473 | *c1 = '-'; | ||
474 | 465 | ||
475 | if (class->usage_mask & LOCKF_USED_IN_SOFTIRQ) | 466 | static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) |
476 | *c2 = '+'; | 467 | { |
477 | else | 468 | char c = '.'; |
478 | if (class->usage_mask & LOCKF_ENABLED_SOFTIRQS) | ||
479 | *c2 = '-'; | ||
480 | 469 | ||
481 | if (class->usage_mask & LOCKF_ENABLED_HARDIRQS_READ) | 470 | if (class->usage_mask & lock_flag(bit + 2)) |
482 | *c3 = '-'; | 471 | c = '+'; |
483 | if (class->usage_mask & LOCKF_USED_IN_HARDIRQ_READ) { | 472 | if (class->usage_mask & lock_flag(bit)) { |
484 | *c3 = '+'; | 473 | c = '-'; |
485 | if (class->usage_mask & LOCKF_ENABLED_HARDIRQS_READ) | 474 | if (class->usage_mask & lock_flag(bit + 2)) |
486 | *c3 = '?'; | 475 | c = '?'; |
487 | } | 476 | } |
488 | 477 | ||
489 | if (class->usage_mask & LOCKF_ENABLED_SOFTIRQS_READ) | 478 | return c; |
490 | *c4 = '-'; | 479 | } |
491 | if (class->usage_mask & LOCKF_USED_IN_SOFTIRQ_READ) { | 480 | |
492 | *c4 = '+'; | 481 | void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) |
493 | if (class->usage_mask & LOCKF_ENABLED_SOFTIRQS_READ) | 482 | { |
494 | *c4 = '?'; | 483 | int i = 0; |
495 | } | 484 | |
485 | #define LOCKDEP_STATE(__STATE) \ | ||
486 | usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ | ||
487 | usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); | ||
488 | #include "lockdep_states.h" | ||
489 | #undef LOCKDEP_STATE | ||
490 | |||
491 | usage[i] = '\0'; | ||
496 | } | 492 | } |
497 | 493 | ||
498 | static void print_lock_name(struct lock_class *class) | 494 | static void print_lock_name(struct lock_class *class) |
499 | { | 495 | { |
500 | char str[KSYM_NAME_LEN], c1, c2, c3, c4; | 496 | char str[KSYM_NAME_LEN], usage[LOCK_USAGE_CHARS]; |
501 | const char *name; | 497 | const char *name; |
502 | 498 | ||
503 | get_usage_chars(class, &c1, &c2, &c3, &c4); | 499 | get_usage_chars(class, usage); |
504 | 500 | ||
505 | name = class->name; | 501 | name = class->name; |
506 | if (!name) { | 502 | if (!name) { |
@@ -513,7 +509,7 @@ static void print_lock_name(struct lock_class *class) | |||
513 | if (class->subclass) | 509 | if (class->subclass) |
514 | printk("/%d", class->subclass); | 510 | printk("/%d", class->subclass); |
515 | } | 511 | } |
516 | printk("){%c%c%c%c}", c1, c2, c3, c4); | 512 | printk("){%s}", usage); |
517 | } | 513 | } |
518 | 514 | ||
519 | static void print_lockdep_cache(struct lockdep_map *lock) | 515 | static void print_lockdep_cache(struct lockdep_map *lock) |
@@ -1263,9 +1259,49 @@ check_usage(struct task_struct *curr, struct held_lock *prev, | |||
1263 | bit_backwards, bit_forwards, irqclass); | 1259 | bit_backwards, bit_forwards, irqclass); |
1264 | } | 1260 | } |
1265 | 1261 | ||
1266 | static int | 1262 | static const char *state_names[] = { |
1267 | check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, | 1263 | #define LOCKDEP_STATE(__STATE) \ |
1268 | struct held_lock *next) | 1264 | __stringify(__STATE), |
1265 | #include "lockdep_states.h" | ||
1266 | #undef LOCKDEP_STATE | ||
1267 | }; | ||
1268 | |||
1269 | static const char *state_rnames[] = { | ||
1270 | #define LOCKDEP_STATE(__STATE) \ | ||
1271 | __stringify(__STATE)"-READ", | ||
1272 | #include "lockdep_states.h" | ||
1273 | #undef LOCKDEP_STATE | ||
1274 | }; | ||
1275 | |||
1276 | static inline const char *state_name(enum lock_usage_bit bit) | ||
1277 | { | ||
1278 | return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2]; | ||
1279 | } | ||
1280 | |||
1281 | static int exclusive_bit(int new_bit) | ||
1282 | { | ||
1283 | /* | ||
1284 | * USED_IN | ||
1285 | * USED_IN_READ | ||
1286 | * ENABLED | ||
1287 | * ENABLED_READ | ||
1288 | * | ||
1289 | * bit 0 - write/read | ||
1290 | * bit 1 - used_in/enabled | ||
1291 | * bit 2+ state | ||
1292 | */ | ||
1293 | |||
1294 | int state = new_bit & ~3; | ||
1295 | int dir = new_bit & 2; | ||
1296 | |||
1297 | /* | ||
1298 | * keep state, bit flip the direction and strip read. | ||
1299 | */ | ||
1300 | return state | (dir ^ 2); | ||
1301 | } | ||
1302 | |||
1303 | static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, | ||
1304 | struct held_lock *next, enum lock_usage_bit bit) | ||
1269 | { | 1305 | { |
1270 | /* | 1306 | /* |
1271 | * Prove that the new dependency does not connect a hardirq-safe | 1307 | * Prove that the new dependency does not connect a hardirq-safe |
@@ -1273,38 +1309,34 @@ check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, | |||
1273 | * the backwards-subgraph starting at <prev>, and the | 1309 | * the backwards-subgraph starting at <prev>, and the |
1274 | * forwards-subgraph starting at <next>: | 1310 | * forwards-subgraph starting at <next>: |
1275 | */ | 1311 | */ |
1276 | if (!check_usage(curr, prev, next, LOCK_USED_IN_HARDIRQ, | 1312 | if (!check_usage(curr, prev, next, bit, |
1277 | LOCK_ENABLED_HARDIRQS, "hard")) | 1313 | exclusive_bit(bit), state_name(bit))) |
1278 | return 0; | 1314 | return 0; |
1279 | 1315 | ||
1316 | bit++; /* _READ */ | ||
1317 | |||
1280 | /* | 1318 | /* |
1281 | * Prove that the new dependency does not connect a hardirq-safe-read | 1319 | * Prove that the new dependency does not connect a hardirq-safe-read |
1282 | * lock with a hardirq-unsafe lock - to achieve this we search | 1320 | * lock with a hardirq-unsafe lock - to achieve this we search |
1283 | * the backwards-subgraph starting at <prev>, and the | 1321 | * the backwards-subgraph starting at <prev>, and the |
1284 | * forwards-subgraph starting at <next>: | 1322 | * forwards-subgraph starting at <next>: |
1285 | */ | 1323 | */ |
1286 | if (!check_usage(curr, prev, next, LOCK_USED_IN_HARDIRQ_READ, | 1324 | if (!check_usage(curr, prev, next, bit, |
1287 | LOCK_ENABLED_HARDIRQS, "hard-read")) | 1325 | exclusive_bit(bit), state_name(bit))) |
1288 | return 0; | 1326 | return 0; |
1289 | 1327 | ||
1290 | /* | 1328 | return 1; |
1291 | * Prove that the new dependency does not connect a softirq-safe | 1329 | } |
1292 | * lock with a softirq-unsafe lock - to achieve this we search | 1330 | |
1293 | * the backwards-subgraph starting at <prev>, and the | 1331 | static int |
1294 | * forwards-subgraph starting at <next>: | 1332 | check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, |
1295 | */ | 1333 | struct held_lock *next) |
1296 | if (!check_usage(curr, prev, next, LOCK_USED_IN_SOFTIRQ, | 1334 | { |
1297 | LOCK_ENABLED_SOFTIRQS, "soft")) | 1335 | #define LOCKDEP_STATE(__STATE) \ |
1298 | return 0; | 1336 | if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \ |
1299 | /* | ||
1300 | * Prove that the new dependency does not connect a softirq-safe-read | ||
1301 | * lock with a softirq-unsafe lock - to achieve this we search | ||
1302 | * the backwards-subgraph starting at <prev>, and the | ||
1303 | * forwards-subgraph starting at <next>: | ||
1304 | */ | ||
1305 | if (!check_usage(curr, prev, next, LOCK_USED_IN_SOFTIRQ_READ, | ||
1306 | LOCK_ENABLED_SOFTIRQS, "soft")) | ||
1307 | return 0; | 1337 | return 0; |
1338 | #include "lockdep_states.h" | ||
1339 | #undef LOCKDEP_STATE | ||
1308 | 1340 | ||
1309 | return 1; | 1341 | return 1; |
1310 | } | 1342 | } |
@@ -1861,9 +1893,9 @@ print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other, | |||
1861 | curr->comm, task_pid_nr(curr)); | 1893 | curr->comm, task_pid_nr(curr)); |
1862 | print_lock(this); | 1894 | print_lock(this); |
1863 | if (forwards) | 1895 | if (forwards) |
1864 | printk("but this lock took another, %s-irq-unsafe lock in the past:\n", irqclass); | 1896 | printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); |
1865 | else | 1897 | else |
1866 | printk("but this lock was taken by another, %s-irq-safe lock in the past:\n", irqclass); | 1898 | printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); |
1867 | print_lock_name(other); | 1899 | print_lock_name(other); |
1868 | printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); | 1900 | printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); |
1869 | 1901 | ||
@@ -1933,7 +1965,7 @@ void print_irqtrace_events(struct task_struct *curr) | |||
1933 | print_ip_sym(curr->softirq_disable_ip); | 1965 | print_ip_sym(curr->softirq_disable_ip); |
1934 | } | 1966 | } |
1935 | 1967 | ||
1936 | static int hardirq_verbose(struct lock_class *class) | 1968 | static int HARDIRQ_verbose(struct lock_class *class) |
1937 | { | 1969 | { |
1938 | #if HARDIRQ_VERBOSE | 1970 | #if HARDIRQ_VERBOSE |
1939 | return class_filter(class); | 1971 | return class_filter(class); |
@@ -1941,7 +1973,7 @@ static int hardirq_verbose(struct lock_class *class) | |||
1941 | return 0; | 1973 | return 0; |
1942 | } | 1974 | } |
1943 | 1975 | ||
1944 | static int softirq_verbose(struct lock_class *class) | 1976 | static int SOFTIRQ_verbose(struct lock_class *class) |
1945 | { | 1977 | { |
1946 | #if SOFTIRQ_VERBOSE | 1978 | #if SOFTIRQ_VERBOSE |
1947 | return class_filter(class); | 1979 | return class_filter(class); |
@@ -1949,185 +1981,95 @@ static int softirq_verbose(struct lock_class *class) | |||
1949 | return 0; | 1981 | return 0; |
1950 | } | 1982 | } |
1951 | 1983 | ||
1984 | static int RECLAIM_FS_verbose(struct lock_class *class) | ||
1985 | { | ||
1986 | #if RECLAIM_VERBOSE | ||
1987 | return class_filter(class); | ||
1988 | #endif | ||
1989 | return 0; | ||
1990 | } | ||
1991 | |||
1952 | #define STRICT_READ_CHECKS 1 | 1992 | #define STRICT_READ_CHECKS 1 |
1953 | 1993 | ||
1954 | static int mark_lock_irq(struct task_struct *curr, struct held_lock *this, | 1994 | static int (*state_verbose_f[])(struct lock_class *class) = { |
1995 | #define LOCKDEP_STATE(__STATE) \ | ||
1996 | __STATE##_verbose, | ||
1997 | #include "lockdep_states.h" | ||
1998 | #undef LOCKDEP_STATE | ||
1999 | }; | ||
2000 | |||
2001 | static inline int state_verbose(enum lock_usage_bit bit, | ||
2002 | struct lock_class *class) | ||
2003 | { | ||
2004 | return state_verbose_f[bit >> 2](class); | ||
2005 | } | ||
2006 | |||
2007 | typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, | ||
2008 | enum lock_usage_bit bit, const char *name); | ||
2009 | |||
2010 | static int | ||
2011 | mark_lock_irq(struct task_struct *curr, struct held_lock *this, | ||
1955 | enum lock_usage_bit new_bit) | 2012 | enum lock_usage_bit new_bit) |
1956 | { | 2013 | { |
1957 | int ret = 1; | 2014 | int excl_bit = exclusive_bit(new_bit); |
2015 | int read = new_bit & 1; | ||
2016 | int dir = new_bit & 2; | ||
1958 | 2017 | ||
1959 | switch(new_bit) { | 2018 | /* |
1960 | case LOCK_USED_IN_HARDIRQ: | 2019 | * mark USED_IN has to look forwards -- to ensure no dependency |
1961 | if (!valid_state(curr, this, new_bit, LOCK_ENABLED_HARDIRQS)) | 2020 | * has ENABLED state, which would allow recursion deadlocks. |
1962 | return 0; | 2021 | * |
1963 | if (!valid_state(curr, this, new_bit, | 2022 | * mark ENABLED has to look backwards -- to ensure no dependee |
1964 | LOCK_ENABLED_HARDIRQS_READ)) | 2023 | * has USED_IN state, which, again, would allow recursion deadlocks. |
1965 | return 0; | 2024 | */ |
1966 | /* | 2025 | check_usage_f usage = dir ? |
1967 | * just marked it hardirq-safe, check that this lock | 2026 | check_usage_backwards : check_usage_forwards; |
1968 | * took no hardirq-unsafe lock in the past: | 2027 | |
1969 | */ | 2028 | /* |
1970 | if (!check_usage_forwards(curr, this, | 2029 | * Validate that this particular lock does not have conflicting |
1971 | LOCK_ENABLED_HARDIRQS, "hard")) | 2030 | * usage states. |
1972 | return 0; | 2031 | */ |
1973 | #if STRICT_READ_CHECKS | 2032 | if (!valid_state(curr, this, new_bit, excl_bit)) |
1974 | /* | 2033 | return 0; |
1975 | * just marked it hardirq-safe, check that this lock | 2034 | |
1976 | * took no hardirq-unsafe-read lock in the past: | 2035 | /* |
1977 | */ | 2036 | * Validate that the lock dependencies don't have conflicting usage |
1978 | if (!check_usage_forwards(curr, this, | 2037 | * states. |
1979 | LOCK_ENABLED_HARDIRQS_READ, "hard-read")) | 2038 | */ |
1980 | return 0; | 2039 | if ((!read || !dir || STRICT_READ_CHECKS) && |
1981 | #endif | 2040 | !usage(curr, this, excl_bit, state_name(new_bit & ~1))) |
1982 | if (hardirq_verbose(hlock_class(this))) | 2041 | return 0; |
1983 | ret = 2; | 2042 | |
1984 | break; | 2043 | /* |
1985 | case LOCK_USED_IN_SOFTIRQ: | 2044 | * Check for read in write conflicts |
1986 | if (!valid_state(curr, this, new_bit, LOCK_ENABLED_SOFTIRQS)) | 2045 | */ |
1987 | return 0; | 2046 | if (!read) { |
1988 | if (!valid_state(curr, this, new_bit, | 2047 | if (!valid_state(curr, this, new_bit, excl_bit + 1)) |
1989 | LOCK_ENABLED_SOFTIRQS_READ)) | ||
1990 | return 0; | ||
1991 | /* | ||
1992 | * just marked it softirq-safe, check that this lock | ||
1993 | * took no softirq-unsafe lock in the past: | ||
1994 | */ | ||
1995 | if (!check_usage_forwards(curr, this, | ||
1996 | LOCK_ENABLED_SOFTIRQS, "soft")) | ||
1997 | return 0; | ||
1998 | #if STRICT_READ_CHECKS | ||
1999 | /* | ||
2000 | * just marked it softirq-safe, check that this lock | ||
2001 | * took no softirq-unsafe-read lock in the past: | ||
2002 | */ | ||
2003 | if (!check_usage_forwards(curr, this, | ||
2004 | LOCK_ENABLED_SOFTIRQS_READ, "soft-read")) | ||
2005 | return 0; | ||
2006 | #endif | ||
2007 | if (softirq_verbose(hlock_class(this))) | ||
2008 | ret = 2; | ||
2009 | break; | ||
2010 | case LOCK_USED_IN_HARDIRQ_READ: | ||
2011 | if (!valid_state(curr, this, new_bit, LOCK_ENABLED_HARDIRQS)) | ||
2012 | return 0; | ||
2013 | /* | ||
2014 | * just marked it hardirq-read-safe, check that this lock | ||
2015 | * took no hardirq-unsafe lock in the past: | ||
2016 | */ | ||
2017 | if (!check_usage_forwards(curr, this, | ||
2018 | LOCK_ENABLED_HARDIRQS, "hard")) | ||
2019 | return 0; | ||
2020 | if (hardirq_verbose(hlock_class(this))) | ||
2021 | ret = 2; | ||
2022 | break; | ||
2023 | case LOCK_USED_IN_SOFTIRQ_READ: | ||
2024 | if (!valid_state(curr, this, new_bit, LOCK_ENABLED_SOFTIRQS)) | ||
2025 | return 0; | ||
2026 | /* | ||
2027 | * just marked it softirq-read-safe, check that this lock | ||
2028 | * took no softirq-unsafe lock in the past: | ||
2029 | */ | ||
2030 | if (!check_usage_forwards(curr, this, | ||
2031 | LOCK_ENABLED_SOFTIRQS, "soft")) | ||
2032 | return 0; | ||
2033 | if (softirq_verbose(hlock_class(this))) | ||
2034 | ret = 2; | ||
2035 | break; | ||
2036 | case LOCK_ENABLED_HARDIRQS: | ||
2037 | if (!valid_state(curr, this, new_bit, LOCK_USED_IN_HARDIRQ)) | ||
2038 | return 0; | ||
2039 | if (!valid_state(curr, this, new_bit, | ||
2040 | LOCK_USED_IN_HARDIRQ_READ)) | ||
2041 | return 0; | ||
2042 | /* | ||
2043 | * just marked it hardirq-unsafe, check that no hardirq-safe | ||
2044 | * lock in the system ever took it in the past: | ||
2045 | */ | ||
2046 | if (!check_usage_backwards(curr, this, | ||
2047 | LOCK_USED_IN_HARDIRQ, "hard")) | ||
2048 | return 0; | ||
2049 | #if STRICT_READ_CHECKS | ||
2050 | /* | ||
2051 | * just marked it hardirq-unsafe, check that no | ||
2052 | * hardirq-safe-read lock in the system ever took | ||
2053 | * it in the past: | ||
2054 | */ | ||
2055 | if (!check_usage_backwards(curr, this, | ||
2056 | LOCK_USED_IN_HARDIRQ_READ, "hard-read")) | ||
2057 | return 0; | ||
2058 | #endif | ||
2059 | if (hardirq_verbose(hlock_class(this))) | ||
2060 | ret = 2; | ||
2061 | break; | ||
2062 | case LOCK_ENABLED_SOFTIRQS: | ||
2063 | if (!valid_state(curr, this, new_bit, LOCK_USED_IN_SOFTIRQ)) | ||
2064 | return 0; | ||
2065 | if (!valid_state(curr, this, new_bit, | ||
2066 | LOCK_USED_IN_SOFTIRQ_READ)) | ||
2067 | return 0; | ||
2068 | /* | ||
2069 | * just marked it softirq-unsafe, check that no softirq-safe | ||
2070 | * lock in the system ever took it in the past: | ||
2071 | */ | ||
2072 | if (!check_usage_backwards(curr, this, | ||
2073 | LOCK_USED_IN_SOFTIRQ, "soft")) | ||
2074 | return 0; | ||
2075 | #if STRICT_READ_CHECKS | ||
2076 | /* | ||
2077 | * just marked it softirq-unsafe, check that no | ||
2078 | * softirq-safe-read lock in the system ever took | ||
2079 | * it in the past: | ||
2080 | */ | ||
2081 | if (!check_usage_backwards(curr, this, | ||
2082 | LOCK_USED_IN_SOFTIRQ_READ, "soft-read")) | ||
2083 | return 0; | ||
2084 | #endif | ||
2085 | if (softirq_verbose(hlock_class(this))) | ||
2086 | ret = 2; | ||
2087 | break; | ||
2088 | case LOCK_ENABLED_HARDIRQS_READ: | ||
2089 | if (!valid_state(curr, this, new_bit, LOCK_USED_IN_HARDIRQ)) | ||
2090 | return 0; | ||
2091 | #if STRICT_READ_CHECKS | ||
2092 | /* | ||
2093 | * just marked it hardirq-read-unsafe, check that no | ||
2094 | * hardirq-safe lock in the system ever took it in the past: | ||
2095 | */ | ||
2096 | if (!check_usage_backwards(curr, this, | ||
2097 | LOCK_USED_IN_HARDIRQ, "hard")) | ||
2098 | return 0; | ||
2099 | #endif | ||
2100 | if (hardirq_verbose(hlock_class(this))) | ||
2101 | ret = 2; | ||
2102 | break; | ||
2103 | case LOCK_ENABLED_SOFTIRQS_READ: | ||
2104 | if (!valid_state(curr, this, new_bit, LOCK_USED_IN_SOFTIRQ)) | ||
2105 | return 0; | 2048 | return 0; |
2106 | #if STRICT_READ_CHECKS | 2049 | |
2107 | /* | 2050 | if (STRICT_READ_CHECKS && |
2108 | * just marked it softirq-read-unsafe, check that no | 2051 | !usage(curr, this, excl_bit + 1, |
2109 | * softirq-safe lock in the system ever took it in the past: | 2052 | state_name(new_bit + 1))) |
2110 | */ | ||
2111 | if (!check_usage_backwards(curr, this, | ||
2112 | LOCK_USED_IN_SOFTIRQ, "soft")) | ||
2113 | return 0; | 2053 | return 0; |
2114 | #endif | ||
2115 | if (softirq_verbose(hlock_class(this))) | ||
2116 | ret = 2; | ||
2117 | break; | ||
2118 | default: | ||
2119 | WARN_ON(1); | ||
2120 | break; | ||
2121 | } | 2054 | } |
2122 | 2055 | ||
2123 | return ret; | 2056 | if (state_verbose(new_bit, hlock_class(this))) |
2057 | return 2; | ||
2058 | |||
2059 | return 1; | ||
2124 | } | 2060 | } |
2125 | 2061 | ||
2062 | enum mark_type { | ||
2063 | #define LOCKDEP_STATE(__STATE) __STATE, | ||
2064 | #include "lockdep_states.h" | ||
2065 | #undef LOCKDEP_STATE | ||
2066 | }; | ||
2067 | |||
2126 | /* | 2068 | /* |
2127 | * Mark all held locks with a usage bit: | 2069 | * Mark all held locks with a usage bit: |
2128 | */ | 2070 | */ |
2129 | static int | 2071 | static int |
2130 | mark_held_locks(struct task_struct *curr, int hardirq) | 2072 | mark_held_locks(struct task_struct *curr, enum mark_type mark) |
2131 | { | 2073 | { |
2132 | enum lock_usage_bit usage_bit; | 2074 | enum lock_usage_bit usage_bit; |
2133 | struct held_lock *hlock; | 2075 | struct held_lock *hlock; |
@@ -2136,17 +2078,12 @@ mark_held_locks(struct task_struct *curr, int hardirq) | |||
2136 | for (i = 0; i < curr->lockdep_depth; i++) { | 2078 | for (i = 0; i < curr->lockdep_depth; i++) { |
2137 | hlock = curr->held_locks + i; | 2079 | hlock = curr->held_locks + i; |
2138 | 2080 | ||
2139 | if (hardirq) { | 2081 | usage_bit = 2 + (mark << 2); /* ENABLED */ |
2140 | if (hlock->read) | 2082 | if (hlock->read) |
2141 | usage_bit = LOCK_ENABLED_HARDIRQS_READ; | 2083 | usage_bit += 1; /* READ */ |
2142 | else | 2084 | |
2143 | usage_bit = LOCK_ENABLED_HARDIRQS; | 2085 | BUG_ON(usage_bit >= LOCK_USAGE_STATES); |
2144 | } else { | 2086 | |
2145 | if (hlock->read) | ||
2146 | usage_bit = LOCK_ENABLED_SOFTIRQS_READ; | ||
2147 | else | ||
2148 | usage_bit = LOCK_ENABLED_SOFTIRQS; | ||
2149 | } | ||
2150 | if (!mark_lock(curr, hlock, usage_bit)) | 2087 | if (!mark_lock(curr, hlock, usage_bit)) |
2151 | return 0; | 2088 | return 0; |
2152 | } | 2089 | } |
@@ -2200,7 +2137,7 @@ void trace_hardirqs_on_caller(unsigned long ip) | |||
2200 | * We are going to turn hardirqs on, so set the | 2137 | * We are going to turn hardirqs on, so set the |
2201 | * usage bit for all held locks: | 2138 | * usage bit for all held locks: |
2202 | */ | 2139 | */ |
2203 | if (!mark_held_locks(curr, 1)) | 2140 | if (!mark_held_locks(curr, HARDIRQ)) |
2204 | return; | 2141 | return; |
2205 | /* | 2142 | /* |
2206 | * If we have softirqs enabled, then set the usage | 2143 | * If we have softirqs enabled, then set the usage |
@@ -2208,7 +2145,7 @@ void trace_hardirqs_on_caller(unsigned long ip) | |||
2208 | * this bit from being set before) | 2145 | * this bit from being set before) |
2209 | */ | 2146 | */ |
2210 | if (curr->softirqs_enabled) | 2147 | if (curr->softirqs_enabled) |
2211 | if (!mark_held_locks(curr, 0)) | 2148 | if (!mark_held_locks(curr, SOFTIRQ)) |
2212 | return; | 2149 | return; |
2213 | 2150 | ||
2214 | curr->hardirq_enable_ip = ip; | 2151 | curr->hardirq_enable_ip = ip; |
@@ -2288,7 +2225,7 @@ void trace_softirqs_on(unsigned long ip) | |||
2288 | * enabled too: | 2225 | * enabled too: |
2289 | */ | 2226 | */ |
2290 | if (curr->hardirqs_enabled) | 2227 | if (curr->hardirqs_enabled) |
2291 | mark_held_locks(curr, 0); | 2228 | mark_held_locks(curr, SOFTIRQ); |
2292 | } | 2229 | } |
2293 | 2230 | ||
2294 | /* | 2231 | /* |
@@ -2317,6 +2254,48 @@ void trace_softirqs_off(unsigned long ip) | |||
2317 | debug_atomic_inc(&redundant_softirqs_off); | 2254 | debug_atomic_inc(&redundant_softirqs_off); |
2318 | } | 2255 | } |
2319 | 2256 | ||
2257 | static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) | ||
2258 | { | ||
2259 | struct task_struct *curr = current; | ||
2260 | |||
2261 | if (unlikely(!debug_locks)) | ||
2262 | return; | ||
2263 | |||
2264 | /* no reclaim without waiting on it */ | ||
2265 | if (!(gfp_mask & __GFP_WAIT)) | ||
2266 | return; | ||
2267 | |||
2268 | /* this guy won't enter reclaim */ | ||
2269 | if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) | ||
2270 | return; | ||
2271 | |||
2272 | /* We're only interested __GFP_FS allocations for now */ | ||
2273 | if (!(gfp_mask & __GFP_FS)) | ||
2274 | return; | ||
2275 | |||
2276 | if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags))) | ||
2277 | return; | ||
2278 | |||
2279 | mark_held_locks(curr, RECLAIM_FS); | ||
2280 | } | ||
2281 | |||
2282 | static void check_flags(unsigned long flags); | ||
2283 | |||
2284 | void lockdep_trace_alloc(gfp_t gfp_mask) | ||
2285 | { | ||
2286 | unsigned long flags; | ||
2287 | |||
2288 | if (unlikely(current->lockdep_recursion)) | ||
2289 | return; | ||
2290 | |||
2291 | raw_local_irq_save(flags); | ||
2292 | check_flags(flags); | ||
2293 | current->lockdep_recursion = 1; | ||
2294 | __lockdep_trace_alloc(gfp_mask, flags); | ||
2295 | current->lockdep_recursion = 0; | ||
2296 | raw_local_irq_restore(flags); | ||
2297 | } | ||
2298 | |||
2320 | static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) | 2299 | static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) |
2321 | { | 2300 | { |
2322 | /* | 2301 | /* |
@@ -2345,19 +2324,35 @@ static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) | |||
2345 | if (!hlock->hardirqs_off) { | 2324 | if (!hlock->hardirqs_off) { |
2346 | if (hlock->read) { | 2325 | if (hlock->read) { |
2347 | if (!mark_lock(curr, hlock, | 2326 | if (!mark_lock(curr, hlock, |
2348 | LOCK_ENABLED_HARDIRQS_READ)) | 2327 | LOCK_ENABLED_HARDIRQ_READ)) |
2349 | return 0; | 2328 | return 0; |
2350 | if (curr->softirqs_enabled) | 2329 | if (curr->softirqs_enabled) |
2351 | if (!mark_lock(curr, hlock, | 2330 | if (!mark_lock(curr, hlock, |
2352 | LOCK_ENABLED_SOFTIRQS_READ)) | 2331 | LOCK_ENABLED_SOFTIRQ_READ)) |
2353 | return 0; | 2332 | return 0; |
2354 | } else { | 2333 | } else { |
2355 | if (!mark_lock(curr, hlock, | 2334 | if (!mark_lock(curr, hlock, |
2356 | LOCK_ENABLED_HARDIRQS)) | 2335 | LOCK_ENABLED_HARDIRQ)) |
2357 | return 0; | 2336 | return 0; |
2358 | if (curr->softirqs_enabled) | 2337 | if (curr->softirqs_enabled) |
2359 | if (!mark_lock(curr, hlock, | 2338 | if (!mark_lock(curr, hlock, |
2360 | LOCK_ENABLED_SOFTIRQS)) | 2339 | LOCK_ENABLED_SOFTIRQ)) |
2340 | return 0; | ||
2341 | } | ||
2342 | } | ||
2343 | |||
2344 | /* | ||
2345 | * We reuse the irq context infrastructure more broadly as a general | ||
2346 | * context checking code. This tests GFP_FS recursion (a lock taken | ||
2347 | * during reclaim for a GFP_FS allocation is held over a GFP_FS | ||
2348 | * allocation). | ||
2349 | */ | ||
2350 | if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) { | ||
2351 | if (hlock->read) { | ||
2352 | if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ)) | ||
2353 | return 0; | ||
2354 | } else { | ||
2355 | if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS)) | ||
2361 | return 0; | 2356 | return 0; |
2362 | } | 2357 | } |
2363 | } | 2358 | } |
@@ -2412,6 +2407,10 @@ static inline int separate_irq_context(struct task_struct *curr, | |||
2412 | return 0; | 2407 | return 0; |
2413 | } | 2408 | } |
2414 | 2409 | ||
2410 | void lockdep_trace_alloc(gfp_t gfp_mask) | ||
2411 | { | ||
2412 | } | ||
2413 | |||
2415 | #endif | 2414 | #endif |
2416 | 2415 | ||
2417 | /* | 2416 | /* |
@@ -2445,14 +2444,13 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this, | |||
2445 | return 0; | 2444 | return 0; |
2446 | 2445 | ||
2447 | switch (new_bit) { | 2446 | switch (new_bit) { |
2448 | case LOCK_USED_IN_HARDIRQ: | 2447 | #define LOCKDEP_STATE(__STATE) \ |
2449 | case LOCK_USED_IN_SOFTIRQ: | 2448 | case LOCK_USED_IN_##__STATE: \ |
2450 | case LOCK_USED_IN_HARDIRQ_READ: | 2449 | case LOCK_USED_IN_##__STATE##_READ: \ |
2451 | case LOCK_USED_IN_SOFTIRQ_READ: | 2450 | case LOCK_ENABLED_##__STATE: \ |
2452 | case LOCK_ENABLED_HARDIRQS: | 2451 | case LOCK_ENABLED_##__STATE##_READ: |
2453 | case LOCK_ENABLED_SOFTIRQS: | 2452 | #include "lockdep_states.h" |
2454 | case LOCK_ENABLED_HARDIRQS_READ: | 2453 | #undef LOCKDEP_STATE |
2455 | case LOCK_ENABLED_SOFTIRQS_READ: | ||
2456 | ret = mark_lock_irq(curr, this, new_bit); | 2454 | ret = mark_lock_irq(curr, this, new_bit); |
2457 | if (!ret) | 2455 | if (!ret) |
2458 | return 0; | 2456 | return 0; |
@@ -2966,6 +2964,16 @@ void lock_release(struct lockdep_map *lock, int nested, | |||
2966 | } | 2964 | } |
2967 | EXPORT_SYMBOL_GPL(lock_release); | 2965 | EXPORT_SYMBOL_GPL(lock_release); |
2968 | 2966 | ||
2967 | void lockdep_set_current_reclaim_state(gfp_t gfp_mask) | ||
2968 | { | ||
2969 | current->lockdep_reclaim_gfp = gfp_mask; | ||
2970 | } | ||
2971 | |||
2972 | void lockdep_clear_current_reclaim_state(void) | ||
2973 | { | ||
2974 | current->lockdep_reclaim_gfp = 0; | ||
2975 | } | ||
2976 | |||
2969 | #ifdef CONFIG_LOCK_STAT | 2977 | #ifdef CONFIG_LOCK_STAT |
2970 | static int | 2978 | static int |
2971 | print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock, | 2979 | print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock, |
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h index 56b196932c08..a2cc7e9a6e84 100644 --- a/kernel/lockdep_internals.h +++ b/kernel/lockdep_internals.h | |||
@@ -7,6 +7,45 @@ | |||
7 | */ | 7 | */ |
8 | 8 | ||
9 | /* | 9 | /* |
10 | * Lock-class usage-state bits: | ||
11 | */ | ||
12 | enum lock_usage_bit { | ||
13 | #define LOCKDEP_STATE(__STATE) \ | ||
14 | LOCK_USED_IN_##__STATE, \ | ||
15 | LOCK_USED_IN_##__STATE##_READ, \ | ||
16 | LOCK_ENABLED_##__STATE, \ | ||
17 | LOCK_ENABLED_##__STATE##_READ, | ||
18 | #include "lockdep_states.h" | ||
19 | #undef LOCKDEP_STATE | ||
20 | LOCK_USED, | ||
21 | LOCK_USAGE_STATES | ||
22 | }; | ||
23 | |||
24 | /* | ||
25 | * Usage-state bitmasks: | ||
26 | */ | ||
27 | #define __LOCKF(__STATE) LOCKF_##__STATE = (1 << LOCK_##__STATE), | ||
28 | |||
29 | enum { | ||
30 | #define LOCKDEP_STATE(__STATE) \ | ||
31 | __LOCKF(USED_IN_##__STATE) \ | ||
32 | __LOCKF(USED_IN_##__STATE##_READ) \ | ||
33 | __LOCKF(ENABLED_##__STATE) \ | ||
34 | __LOCKF(ENABLED_##__STATE##_READ) | ||
35 | #include "lockdep_states.h" | ||
36 | #undef LOCKDEP_STATE | ||
37 | __LOCKF(USED) | ||
38 | }; | ||
39 | |||
40 | #define LOCKF_ENABLED_IRQ (LOCKF_ENABLED_HARDIRQ | LOCKF_ENABLED_SOFTIRQ) | ||
41 | #define LOCKF_USED_IN_IRQ (LOCKF_USED_IN_HARDIRQ | LOCKF_USED_IN_SOFTIRQ) | ||
42 | |||
43 | #define LOCKF_ENABLED_IRQ_READ \ | ||
44 | (LOCKF_ENABLED_HARDIRQ_READ | LOCKF_ENABLED_SOFTIRQ_READ) | ||
45 | #define LOCKF_USED_IN_IRQ_READ \ | ||
46 | (LOCKF_USED_IN_HARDIRQ_READ | LOCKF_USED_IN_SOFTIRQ_READ) | ||
47 | |||
48 | /* | ||
10 | * MAX_LOCKDEP_ENTRIES is the maximum number of lock dependencies | 49 | * MAX_LOCKDEP_ENTRIES is the maximum number of lock dependencies |
11 | * we track. | 50 | * we track. |
12 | * | 51 | * |
@@ -31,8 +70,10 @@ | |||
31 | extern struct list_head all_lock_classes; | 70 | extern struct list_head all_lock_classes; |
32 | extern struct lock_chain lock_chains[]; | 71 | extern struct lock_chain lock_chains[]; |
33 | 72 | ||
34 | extern void | 73 | #define LOCK_USAGE_CHARS (1+LOCK_USAGE_STATES/2) |
35 | get_usage_chars(struct lock_class *class, char *c1, char *c2, char *c3, char *c4); | 74 | |
75 | extern void get_usage_chars(struct lock_class *class, | ||
76 | char usage[LOCK_USAGE_CHARS]); | ||
36 | 77 | ||
37 | extern const char * __get_key_name(struct lockdep_subclass_key *key, char *str); | 78 | extern const char * __get_key_name(struct lockdep_subclass_key *key, char *str); |
38 | 79 | ||
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index 13716b813896..d7135aa2d2c4 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
@@ -84,7 +84,7 @@ static int l_show(struct seq_file *m, void *v) | |||
84 | { | 84 | { |
85 | struct lock_class *class = v; | 85 | struct lock_class *class = v; |
86 | struct lock_list *entry; | 86 | struct lock_list *entry; |
87 | char c1, c2, c3, c4; | 87 | char usage[LOCK_USAGE_CHARS]; |
88 | 88 | ||
89 | if (v == SEQ_START_TOKEN) { | 89 | if (v == SEQ_START_TOKEN) { |
90 | seq_printf(m, "all lock classes:\n"); | 90 | seq_printf(m, "all lock classes:\n"); |
@@ -100,8 +100,8 @@ static int l_show(struct seq_file *m, void *v) | |||
100 | seq_printf(m, " BD:%5ld", lockdep_count_backward_deps(class)); | 100 | seq_printf(m, " BD:%5ld", lockdep_count_backward_deps(class)); |
101 | #endif | 101 | #endif |
102 | 102 | ||
103 | get_usage_chars(class, &c1, &c2, &c3, &c4); | 103 | get_usage_chars(class, usage); |
104 | seq_printf(m, " %c%c%c%c", c1, c2, c3, c4); | 104 | seq_printf(m, " %s", usage); |
105 | 105 | ||
106 | seq_printf(m, ": "); | 106 | seq_printf(m, ": "); |
107 | print_name(m, class); | 107 | print_name(m, class); |
@@ -300,27 +300,27 @@ static int lockdep_stats_show(struct seq_file *m, void *v) | |||
300 | nr_uncategorized++; | 300 | nr_uncategorized++; |
301 | if (class->usage_mask & LOCKF_USED_IN_IRQ) | 301 | if (class->usage_mask & LOCKF_USED_IN_IRQ) |
302 | nr_irq_safe++; | 302 | nr_irq_safe++; |
303 | if (class->usage_mask & LOCKF_ENABLED_IRQS) | 303 | if (class->usage_mask & LOCKF_ENABLED_IRQ) |
304 | nr_irq_unsafe++; | 304 | nr_irq_unsafe++; |
305 | if (class->usage_mask & LOCKF_USED_IN_SOFTIRQ) | 305 | if (class->usage_mask & LOCKF_USED_IN_SOFTIRQ) |
306 | nr_softirq_safe++; | 306 | nr_softirq_safe++; |
307 | if (class->usage_mask & LOCKF_ENABLED_SOFTIRQS) | 307 | if (class->usage_mask & LOCKF_ENABLED_SOFTIRQ) |
308 | nr_softirq_unsafe++; | 308 | nr_softirq_unsafe++; |
309 | if (class->usage_mask & LOCKF_USED_IN_HARDIRQ) | 309 | if (class->usage_mask & LOCKF_USED_IN_HARDIRQ) |
310 | nr_hardirq_safe++; | 310 | nr_hardirq_safe++; |
311 | if (class->usage_mask & LOCKF_ENABLED_HARDIRQS) | 311 | if (class->usage_mask & LOCKF_ENABLED_HARDIRQ) |
312 | nr_hardirq_unsafe++; | 312 | nr_hardirq_unsafe++; |
313 | if (class->usage_mask & LOCKF_USED_IN_IRQ_READ) | 313 | if (class->usage_mask & LOCKF_USED_IN_IRQ_READ) |
314 | nr_irq_read_safe++; | 314 | nr_irq_read_safe++; |
315 | if (class->usage_mask & LOCKF_ENABLED_IRQS_READ) | 315 | if (class->usage_mask & LOCKF_ENABLED_IRQ_READ) |
316 | nr_irq_read_unsafe++; | 316 | nr_irq_read_unsafe++; |
317 | if (class->usage_mask & LOCKF_USED_IN_SOFTIRQ_READ) | 317 | if (class->usage_mask & LOCKF_USED_IN_SOFTIRQ_READ) |
318 | nr_softirq_read_safe++; | 318 | nr_softirq_read_safe++; |
319 | if (class->usage_mask & LOCKF_ENABLED_SOFTIRQS_READ) | 319 | if (class->usage_mask & LOCKF_ENABLED_SOFTIRQ_READ) |
320 | nr_softirq_read_unsafe++; | 320 | nr_softirq_read_unsafe++; |
321 | if (class->usage_mask & LOCKF_USED_IN_HARDIRQ_READ) | 321 | if (class->usage_mask & LOCKF_USED_IN_HARDIRQ_READ) |
322 | nr_hardirq_read_safe++; | 322 | nr_hardirq_read_safe++; |
323 | if (class->usage_mask & LOCKF_ENABLED_HARDIRQS_READ) | 323 | if (class->usage_mask & LOCKF_ENABLED_HARDIRQ_READ) |
324 | nr_hardirq_read_unsafe++; | 324 | nr_hardirq_read_unsafe++; |
325 | 325 | ||
326 | #ifdef CONFIG_PROVE_LOCKING | 326 | #ifdef CONFIG_PROVE_LOCKING |
@@ -601,6 +601,10 @@ static void seq_stats(struct seq_file *m, struct lock_stat_data *data) | |||
601 | static void seq_header(struct seq_file *m) | 601 | static void seq_header(struct seq_file *m) |
602 | { | 602 | { |
603 | seq_printf(m, "lock_stat version 0.3\n"); | 603 | seq_printf(m, "lock_stat version 0.3\n"); |
604 | |||
605 | if (unlikely(!debug_locks)) | ||
606 | seq_printf(m, "*WARNING* lock debugging disabled!! - possibly due to a lockdep warning\n"); | ||
607 | |||
604 | seq_line(m, '-', 0, 40 + 1 + 10 * (14 + 1)); | 608 | seq_line(m, '-', 0, 40 + 1 + 10 * (14 + 1)); |
605 | seq_printf(m, "%40s %14s %14s %14s %14s %14s %14s %14s %14s " | 609 | seq_printf(m, "%40s %14s %14s %14s %14s %14s %14s %14s %14s " |
606 | "%14s %14s\n", | 610 | "%14s %14s\n", |
diff --git a/kernel/lockdep_states.h b/kernel/lockdep_states.h new file mode 100644 index 000000000000..995b0cc2b84c --- /dev/null +++ b/kernel/lockdep_states.h | |||
@@ -0,0 +1,9 @@ | |||
1 | /* | ||
2 | * Lockdep states, | ||
3 | * | ||
4 | * please update XXX_LOCK_USAGE_STATES in include/linux/lockdep.h whenever | ||
5 | * you add one, or come up with a nice dynamic solution. | ||
6 | */ | ||
7 | LOCKDEP_STATE(HARDIRQ) | ||
8 | LOCKDEP_STATE(SOFTIRQ) | ||
9 | LOCKDEP_STATE(RECLAIM_FS) | ||
diff --git a/kernel/module.c b/kernel/module.c index 1196f5d11700..f77ac320d0b5 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -51,6 +51,7 @@ | |||
51 | #include <linux/tracepoint.h> | 51 | #include <linux/tracepoint.h> |
52 | #include <linux/ftrace.h> | 52 | #include <linux/ftrace.h> |
53 | #include <linux/async.h> | 53 | #include <linux/async.h> |
54 | #include <linux/percpu.h> | ||
54 | 55 | ||
55 | #if 0 | 56 | #if 0 |
56 | #define DEBUGP printk | 57 | #define DEBUGP printk |
@@ -366,6 +367,34 @@ static struct module *find_module(const char *name) | |||
366 | } | 367 | } |
367 | 368 | ||
368 | #ifdef CONFIG_SMP | 369 | #ifdef CONFIG_SMP |
370 | |||
371 | #ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
372 | |||
373 | static void *percpu_modalloc(unsigned long size, unsigned long align, | ||
374 | const char *name) | ||
375 | { | ||
376 | void *ptr; | ||
377 | |||
378 | if (align > PAGE_SIZE) { | ||
379 | printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n", | ||
380 | name, align, PAGE_SIZE); | ||
381 | align = PAGE_SIZE; | ||
382 | } | ||
383 | |||
384 | ptr = __alloc_reserved_percpu(size, align); | ||
385 | if (!ptr) | ||
386 | printk(KERN_WARNING | ||
387 | "Could not allocate %lu bytes percpu data\n", size); | ||
388 | return ptr; | ||
389 | } | ||
390 | |||
391 | static void percpu_modfree(void *freeme) | ||
392 | { | ||
393 | free_percpu(freeme); | ||
394 | } | ||
395 | |||
396 | #else /* ... !CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | ||
397 | |||
369 | /* Number of blocks used and allocated. */ | 398 | /* Number of blocks used and allocated. */ |
370 | static unsigned int pcpu_num_used, pcpu_num_allocated; | 399 | static unsigned int pcpu_num_used, pcpu_num_allocated; |
371 | /* Size of each block. -ve means used. */ | 400 | /* Size of each block. -ve means used. */ |
@@ -480,21 +509,6 @@ static void percpu_modfree(void *freeme) | |||
480 | } | 509 | } |
481 | } | 510 | } |
482 | 511 | ||
483 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, | ||
484 | Elf_Shdr *sechdrs, | ||
485 | const char *secstrings) | ||
486 | { | ||
487 | return find_sec(hdr, sechdrs, secstrings, ".data.percpu"); | ||
488 | } | ||
489 | |||
490 | static void percpu_modcopy(void *pcpudest, const void *from, unsigned long size) | ||
491 | { | ||
492 | int cpu; | ||
493 | |||
494 | for_each_possible_cpu(cpu) | ||
495 | memcpy(pcpudest + per_cpu_offset(cpu), from, size); | ||
496 | } | ||
497 | |||
498 | static int percpu_modinit(void) | 512 | static int percpu_modinit(void) |
499 | { | 513 | { |
500 | pcpu_num_used = 2; | 514 | pcpu_num_used = 2; |
@@ -513,7 +527,26 @@ static int percpu_modinit(void) | |||
513 | return 0; | 527 | return 0; |
514 | } | 528 | } |
515 | __initcall(percpu_modinit); | 529 | __initcall(percpu_modinit); |
530 | |||
531 | #endif /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | ||
532 | |||
533 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, | ||
534 | Elf_Shdr *sechdrs, | ||
535 | const char *secstrings) | ||
536 | { | ||
537 | return find_sec(hdr, sechdrs, secstrings, ".data.percpu"); | ||
538 | } | ||
539 | |||
540 | static void percpu_modcopy(void *pcpudest, const void *from, unsigned long size) | ||
541 | { | ||
542 | int cpu; | ||
543 | |||
544 | for_each_possible_cpu(cpu) | ||
545 | memcpy(pcpudest + per_cpu_offset(cpu), from, size); | ||
546 | } | ||
547 | |||
516 | #else /* ... !CONFIG_SMP */ | 548 | #else /* ... !CONFIG_SMP */ |
549 | |||
517 | static inline void *percpu_modalloc(unsigned long size, unsigned long align, | 550 | static inline void *percpu_modalloc(unsigned long size, unsigned long align, |
518 | const char *name) | 551 | const char *name) |
519 | { | 552 | { |
@@ -535,6 +568,7 @@ static inline void percpu_modcopy(void *pcpudst, const void *src, | |||
535 | /* pcpusec should be 0, and size of that section should be 0. */ | 568 | /* pcpusec should be 0, and size of that section should be 0. */ |
536 | BUG_ON(size != 0); | 569 | BUG_ON(size != 0); |
537 | } | 570 | } |
571 | |||
538 | #endif /* CONFIG_SMP */ | 572 | #endif /* CONFIG_SMP */ |
539 | 573 | ||
540 | #define MODINFO_ATTR(field) \ | 574 | #define MODINFO_ATTR(field) \ |
@@ -822,7 +856,7 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, | |||
822 | mutex_lock(&module_mutex); | 856 | mutex_lock(&module_mutex); |
823 | /* Store the name of the last unloaded module for diagnostic purposes */ | 857 | /* Store the name of the last unloaded module for diagnostic purposes */ |
824 | strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); | 858 | strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); |
825 | unregister_dynamic_debug_module(mod->name); | 859 | ddebug_remove_module(mod->name); |
826 | free_module(mod); | 860 | free_module(mod); |
827 | 861 | ||
828 | out: | 862 | out: |
@@ -1827,19 +1861,13 @@ static inline void add_kallsyms(struct module *mod, | |||
1827 | } | 1861 | } |
1828 | #endif /* CONFIG_KALLSYMS */ | 1862 | #endif /* CONFIG_KALLSYMS */ |
1829 | 1863 | ||
1830 | static void dynamic_printk_setup(struct mod_debug *debug, unsigned int num) | 1864 | static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num) |
1831 | { | 1865 | { |
1832 | #ifdef CONFIG_DYNAMIC_PRINTK_DEBUG | 1866 | #ifdef CONFIG_DYNAMIC_DEBUG |
1833 | unsigned int i; | 1867 | if (ddebug_add_module(debug, num, debug->modname)) |
1834 | 1868 | printk(KERN_ERR "dynamic debug error adding module: %s\n", | |
1835 | for (i = 0; i < num; i++) { | 1869 | debug->modname); |
1836 | register_dynamic_debug_module(debug[i].modname, | 1870 | #endif |
1837 | debug[i].type, | ||
1838 | debug[i].logical_modname, | ||
1839 | debug[i].flag_names, | ||
1840 | debug[i].hash, debug[i].hash2); | ||
1841 | } | ||
1842 | #endif /* CONFIG_DYNAMIC_PRINTK_DEBUG */ | ||
1843 | } | 1871 | } |
1844 | 1872 | ||
1845 | static void *module_alloc_update_bounds(unsigned long size) | 1873 | static void *module_alloc_update_bounds(unsigned long size) |
@@ -2213,12 +2241,13 @@ static noinline struct module *load_module(void __user *umod, | |||
2213 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); | 2241 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); |
2214 | 2242 | ||
2215 | if (!mod->taints) { | 2243 | if (!mod->taints) { |
2216 | struct mod_debug *debug; | 2244 | struct _ddebug *debug; |
2217 | unsigned int num_debug; | 2245 | unsigned int num_debug; |
2218 | 2246 | ||
2219 | debug = section_objs(hdr, sechdrs, secstrings, "__verbose", | 2247 | debug = section_objs(hdr, sechdrs, secstrings, "__verbose", |
2220 | sizeof(*debug), &num_debug); | 2248 | sizeof(*debug), &num_debug); |
2221 | dynamic_printk_setup(debug, num_debug); | 2249 | if (debug) |
2250 | dynamic_debug_setup(debug, num_debug); | ||
2222 | } | 2251 | } |
2223 | 2252 | ||
2224 | /* sechdrs[0].sh_size is always zero */ | 2253 | /* sechdrs[0].sh_size is always zero */ |
diff --git a/kernel/mutex-debug.c b/kernel/mutex-debug.c index 1d94160eb532..50d022e5a560 100644 --- a/kernel/mutex-debug.c +++ b/kernel/mutex-debug.c | |||
@@ -26,11 +26,6 @@ | |||
26 | /* | 26 | /* |
27 | * Must be called with lock->wait_lock held. | 27 | * Must be called with lock->wait_lock held. |
28 | */ | 28 | */ |
29 | void debug_mutex_set_owner(struct mutex *lock, struct thread_info *new_owner) | ||
30 | { | ||
31 | lock->owner = new_owner; | ||
32 | } | ||
33 | |||
34 | void debug_mutex_lock_common(struct mutex *lock, struct mutex_waiter *waiter) | 29 | void debug_mutex_lock_common(struct mutex *lock, struct mutex_waiter *waiter) |
35 | { | 30 | { |
36 | memset(waiter, MUTEX_DEBUG_INIT, sizeof(*waiter)); | 31 | memset(waiter, MUTEX_DEBUG_INIT, sizeof(*waiter)); |
@@ -59,7 +54,6 @@ void debug_mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, | |||
59 | 54 | ||
60 | /* Mark the current thread as blocked on the lock: */ | 55 | /* Mark the current thread as blocked on the lock: */ |
61 | ti->task->blocked_on = waiter; | 56 | ti->task->blocked_on = waiter; |
62 | waiter->lock = lock; | ||
63 | } | 57 | } |
64 | 58 | ||
65 | void mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter, | 59 | void mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter, |
@@ -82,7 +76,7 @@ void debug_mutex_unlock(struct mutex *lock) | |||
82 | DEBUG_LOCKS_WARN_ON(lock->magic != lock); | 76 | DEBUG_LOCKS_WARN_ON(lock->magic != lock); |
83 | DEBUG_LOCKS_WARN_ON(lock->owner != current_thread_info()); | 77 | DEBUG_LOCKS_WARN_ON(lock->owner != current_thread_info()); |
84 | DEBUG_LOCKS_WARN_ON(!lock->wait_list.prev && !lock->wait_list.next); | 78 | DEBUG_LOCKS_WARN_ON(!lock->wait_list.prev && !lock->wait_list.next); |
85 | DEBUG_LOCKS_WARN_ON(lock->owner != current_thread_info()); | 79 | mutex_clear_owner(lock); |
86 | } | 80 | } |
87 | 81 | ||
88 | void debug_mutex_init(struct mutex *lock, const char *name, | 82 | void debug_mutex_init(struct mutex *lock, const char *name, |
@@ -95,7 +89,6 @@ void debug_mutex_init(struct mutex *lock, const char *name, | |||
95 | debug_check_no_locks_freed((void *)lock, sizeof(*lock)); | 89 | debug_check_no_locks_freed((void *)lock, sizeof(*lock)); |
96 | lockdep_init_map(&lock->dep_map, name, key, 0); | 90 | lockdep_init_map(&lock->dep_map, name, key, 0); |
97 | #endif | 91 | #endif |
98 | lock->owner = NULL; | ||
99 | lock->magic = lock; | 92 | lock->magic = lock; |
100 | } | 93 | } |
101 | 94 | ||
diff --git a/kernel/mutex-debug.h b/kernel/mutex-debug.h index babfbdfc534b..6b2d735846a5 100644 --- a/kernel/mutex-debug.h +++ b/kernel/mutex-debug.h | |||
@@ -13,14 +13,6 @@ | |||
13 | /* | 13 | /* |
14 | * This must be called with lock->wait_lock held. | 14 | * This must be called with lock->wait_lock held. |
15 | */ | 15 | */ |
16 | extern void | ||
17 | debug_mutex_set_owner(struct mutex *lock, struct thread_info *new_owner); | ||
18 | |||
19 | static inline void debug_mutex_clear_owner(struct mutex *lock) | ||
20 | { | ||
21 | lock->owner = NULL; | ||
22 | } | ||
23 | |||
24 | extern void debug_mutex_lock_common(struct mutex *lock, | 16 | extern void debug_mutex_lock_common(struct mutex *lock, |
25 | struct mutex_waiter *waiter); | 17 | struct mutex_waiter *waiter); |
26 | extern void debug_mutex_wake_waiter(struct mutex *lock, | 18 | extern void debug_mutex_wake_waiter(struct mutex *lock, |
@@ -35,6 +27,16 @@ extern void debug_mutex_unlock(struct mutex *lock); | |||
35 | extern void debug_mutex_init(struct mutex *lock, const char *name, | 27 | extern void debug_mutex_init(struct mutex *lock, const char *name, |
36 | struct lock_class_key *key); | 28 | struct lock_class_key *key); |
37 | 29 | ||
30 | static inline void mutex_set_owner(struct mutex *lock) | ||
31 | { | ||
32 | lock->owner = current_thread_info(); | ||
33 | } | ||
34 | |||
35 | static inline void mutex_clear_owner(struct mutex *lock) | ||
36 | { | ||
37 | lock->owner = NULL; | ||
38 | } | ||
39 | |||
38 | #define spin_lock_mutex(lock, flags) \ | 40 | #define spin_lock_mutex(lock, flags) \ |
39 | do { \ | 41 | do { \ |
40 | struct mutex *l = container_of(lock, struct mutex, wait_lock); \ | 42 | struct mutex *l = container_of(lock, struct mutex, wait_lock); \ |
diff --git a/kernel/mutex.c b/kernel/mutex.c index 4f45d4b658ef..5d79781394a3 100644 --- a/kernel/mutex.c +++ b/kernel/mutex.c | |||
@@ -10,6 +10,11 @@ | |||
10 | * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and | 10 | * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and |
11 | * David Howells for suggestions and improvements. | 11 | * David Howells for suggestions and improvements. |
12 | * | 12 | * |
13 | * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline | ||
14 | * from the -rt tree, where it was originally implemented for rtmutexes | ||
15 | * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale | ||
16 | * and Sven Dietrich. | ||
17 | * | ||
13 | * Also see Documentation/mutex-design.txt. | 18 | * Also see Documentation/mutex-design.txt. |
14 | */ | 19 | */ |
15 | #include <linux/mutex.h> | 20 | #include <linux/mutex.h> |
@@ -46,6 +51,7 @@ __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) | |||
46 | atomic_set(&lock->count, 1); | 51 | atomic_set(&lock->count, 1); |
47 | spin_lock_init(&lock->wait_lock); | 52 | spin_lock_init(&lock->wait_lock); |
48 | INIT_LIST_HEAD(&lock->wait_list); | 53 | INIT_LIST_HEAD(&lock->wait_list); |
54 | mutex_clear_owner(lock); | ||
49 | 55 | ||
50 | debug_mutex_init(lock, name, key); | 56 | debug_mutex_init(lock, name, key); |
51 | } | 57 | } |
@@ -91,6 +97,7 @@ void inline __sched mutex_lock(struct mutex *lock) | |||
91 | * 'unlocked' into 'locked' state. | 97 | * 'unlocked' into 'locked' state. |
92 | */ | 98 | */ |
93 | __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); | 99 | __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); |
100 | mutex_set_owner(lock); | ||
94 | } | 101 | } |
95 | 102 | ||
96 | EXPORT_SYMBOL(mutex_lock); | 103 | EXPORT_SYMBOL(mutex_lock); |
@@ -115,6 +122,14 @@ void __sched mutex_unlock(struct mutex *lock) | |||
115 | * The unlocking fastpath is the 0->1 transition from 'locked' | 122 | * The unlocking fastpath is the 0->1 transition from 'locked' |
116 | * into 'unlocked' state: | 123 | * into 'unlocked' state: |
117 | */ | 124 | */ |
125 | #ifndef CONFIG_DEBUG_MUTEXES | ||
126 | /* | ||
127 | * When debugging is enabled we must not clear the owner before time, | ||
128 | * the slow path will always be taken, and that clears the owner field | ||
129 | * after verifying that it was indeed current. | ||
130 | */ | ||
131 | mutex_clear_owner(lock); | ||
132 | #endif | ||
118 | __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); | 133 | __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); |
119 | } | 134 | } |
120 | 135 | ||
@@ -129,21 +144,75 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, | |||
129 | { | 144 | { |
130 | struct task_struct *task = current; | 145 | struct task_struct *task = current; |
131 | struct mutex_waiter waiter; | 146 | struct mutex_waiter waiter; |
132 | unsigned int old_val; | ||
133 | unsigned long flags; | 147 | unsigned long flags; |
134 | 148 | ||
149 | preempt_disable(); | ||
150 | mutex_acquire(&lock->dep_map, subclass, 0, ip); | ||
151 | #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) | ||
152 | /* | ||
153 | * Optimistic spinning. | ||
154 | * | ||
155 | * We try to spin for acquisition when we find that there are no | ||
156 | * pending waiters and the lock owner is currently running on a | ||
157 | * (different) CPU. | ||
158 | * | ||
159 | * The rationale is that if the lock owner is running, it is likely to | ||
160 | * release the lock soon. | ||
161 | * | ||
162 | * Since this needs the lock owner, and this mutex implementation | ||
163 | * doesn't track the owner atomically in the lock field, we need to | ||
164 | * track it non-atomically. | ||
165 | * | ||
166 | * We can't do this for DEBUG_MUTEXES because that relies on wait_lock | ||
167 | * to serialize everything. | ||
168 | */ | ||
169 | |||
170 | for (;;) { | ||
171 | struct thread_info *owner; | ||
172 | |||
173 | /* | ||
174 | * If there's an owner, wait for it to either | ||
175 | * release the lock or go to sleep. | ||
176 | */ | ||
177 | owner = ACCESS_ONCE(lock->owner); | ||
178 | if (owner && !mutex_spin_on_owner(lock, owner)) | ||
179 | break; | ||
180 | |||
181 | if (atomic_cmpxchg(&lock->count, 1, 0) == 1) { | ||
182 | lock_acquired(&lock->dep_map, ip); | ||
183 | mutex_set_owner(lock); | ||
184 | preempt_enable(); | ||
185 | return 0; | ||
186 | } | ||
187 | |||
188 | /* | ||
189 | * When there's no owner, we might have preempted between the | ||
190 | * owner acquiring the lock and setting the owner field. If | ||
191 | * we're an RT task that will live-lock because we won't let | ||
192 | * the owner complete. | ||
193 | */ | ||
194 | if (!owner && (need_resched() || rt_task(task))) | ||
195 | break; | ||
196 | |||
197 | /* | ||
198 | * The cpu_relax() call is a compiler barrier which forces | ||
199 | * everything in this loop to be re-loaded. We don't need | ||
200 | * memory barriers as we'll eventually observe the right | ||
201 | * values at the cost of a few extra spins. | ||
202 | */ | ||
203 | cpu_relax(); | ||
204 | } | ||
205 | #endif | ||
135 | spin_lock_mutex(&lock->wait_lock, flags); | 206 | spin_lock_mutex(&lock->wait_lock, flags); |
136 | 207 | ||
137 | debug_mutex_lock_common(lock, &waiter); | 208 | debug_mutex_lock_common(lock, &waiter); |
138 | mutex_acquire(&lock->dep_map, subclass, 0, ip); | ||
139 | debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); | 209 | debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); |
140 | 210 | ||
141 | /* add waiting tasks to the end of the waitqueue (FIFO): */ | 211 | /* add waiting tasks to the end of the waitqueue (FIFO): */ |
142 | list_add_tail(&waiter.list, &lock->wait_list); | 212 | list_add_tail(&waiter.list, &lock->wait_list); |
143 | waiter.task = task; | 213 | waiter.task = task; |
144 | 214 | ||
145 | old_val = atomic_xchg(&lock->count, -1); | 215 | if (atomic_xchg(&lock->count, -1) == 1) |
146 | if (old_val == 1) | ||
147 | goto done; | 216 | goto done; |
148 | 217 | ||
149 | lock_contended(&lock->dep_map, ip); | 218 | lock_contended(&lock->dep_map, ip); |
@@ -158,8 +227,7 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, | |||
158 | * that when we release the lock, we properly wake up the | 227 | * that when we release the lock, we properly wake up the |
159 | * other waiters: | 228 | * other waiters: |
160 | */ | 229 | */ |
161 | old_val = atomic_xchg(&lock->count, -1); | 230 | if (atomic_xchg(&lock->count, -1) == 1) |
162 | if (old_val == 1) | ||
163 | break; | 231 | break; |
164 | 232 | ||
165 | /* | 233 | /* |
@@ -173,21 +241,22 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, | |||
173 | spin_unlock_mutex(&lock->wait_lock, flags); | 241 | spin_unlock_mutex(&lock->wait_lock, flags); |
174 | 242 | ||
175 | debug_mutex_free_waiter(&waiter); | 243 | debug_mutex_free_waiter(&waiter); |
244 | preempt_enable(); | ||
176 | return -EINTR; | 245 | return -EINTR; |
177 | } | 246 | } |
178 | __set_task_state(task, state); | 247 | __set_task_state(task, state); |
179 | 248 | ||
180 | /* didnt get the lock, go to sleep: */ | 249 | /* didnt get the lock, go to sleep: */ |
181 | spin_unlock_mutex(&lock->wait_lock, flags); | 250 | spin_unlock_mutex(&lock->wait_lock, flags); |
182 | schedule(); | 251 | __schedule(); |
183 | spin_lock_mutex(&lock->wait_lock, flags); | 252 | spin_lock_mutex(&lock->wait_lock, flags); |
184 | } | 253 | } |
185 | 254 | ||
186 | done: | 255 | done: |
187 | lock_acquired(&lock->dep_map, ip); | 256 | lock_acquired(&lock->dep_map, ip); |
188 | /* got the lock - rejoice! */ | 257 | /* got the lock - rejoice! */ |
189 | mutex_remove_waiter(lock, &waiter, task_thread_info(task)); | 258 | mutex_remove_waiter(lock, &waiter, current_thread_info()); |
190 | debug_mutex_set_owner(lock, task_thread_info(task)); | 259 | mutex_set_owner(lock); |
191 | 260 | ||
192 | /* set it to 0 if there are no waiters left: */ | 261 | /* set it to 0 if there are no waiters left: */ |
193 | if (likely(list_empty(&lock->wait_list))) | 262 | if (likely(list_empty(&lock->wait_list))) |
@@ -196,6 +265,7 @@ done: | |||
196 | spin_unlock_mutex(&lock->wait_lock, flags); | 265 | spin_unlock_mutex(&lock->wait_lock, flags); |
197 | 266 | ||
198 | debug_mutex_free_waiter(&waiter); | 267 | debug_mutex_free_waiter(&waiter); |
268 | preempt_enable(); | ||
199 | 269 | ||
200 | return 0; | 270 | return 0; |
201 | } | 271 | } |
@@ -222,7 +292,8 @@ int __sched | |||
222 | mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) | 292 | mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) |
223 | { | 293 | { |
224 | might_sleep(); | 294 | might_sleep(); |
225 | return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, _RET_IP_); | 295 | return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, |
296 | subclass, _RET_IP_); | ||
226 | } | 297 | } |
227 | 298 | ||
228 | EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); | 299 | EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); |
@@ -260,8 +331,6 @@ __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested) | |||
260 | wake_up_process(waiter->task); | 331 | wake_up_process(waiter->task); |
261 | } | 332 | } |
262 | 333 | ||
263 | debug_mutex_clear_owner(lock); | ||
264 | |||
265 | spin_unlock_mutex(&lock->wait_lock, flags); | 334 | spin_unlock_mutex(&lock->wait_lock, flags); |
266 | } | 335 | } |
267 | 336 | ||
@@ -298,18 +367,30 @@ __mutex_lock_interruptible_slowpath(atomic_t *lock_count); | |||
298 | */ | 367 | */ |
299 | int __sched mutex_lock_interruptible(struct mutex *lock) | 368 | int __sched mutex_lock_interruptible(struct mutex *lock) |
300 | { | 369 | { |
370 | int ret; | ||
371 | |||
301 | might_sleep(); | 372 | might_sleep(); |
302 | return __mutex_fastpath_lock_retval | 373 | ret = __mutex_fastpath_lock_retval |
303 | (&lock->count, __mutex_lock_interruptible_slowpath); | 374 | (&lock->count, __mutex_lock_interruptible_slowpath); |
375 | if (!ret) | ||
376 | mutex_set_owner(lock); | ||
377 | |||
378 | return ret; | ||
304 | } | 379 | } |
305 | 380 | ||
306 | EXPORT_SYMBOL(mutex_lock_interruptible); | 381 | EXPORT_SYMBOL(mutex_lock_interruptible); |
307 | 382 | ||
308 | int __sched mutex_lock_killable(struct mutex *lock) | 383 | int __sched mutex_lock_killable(struct mutex *lock) |
309 | { | 384 | { |
385 | int ret; | ||
386 | |||
310 | might_sleep(); | 387 | might_sleep(); |
311 | return __mutex_fastpath_lock_retval | 388 | ret = __mutex_fastpath_lock_retval |
312 | (&lock->count, __mutex_lock_killable_slowpath); | 389 | (&lock->count, __mutex_lock_killable_slowpath); |
390 | if (!ret) | ||
391 | mutex_set_owner(lock); | ||
392 | |||
393 | return ret; | ||
313 | } | 394 | } |
314 | EXPORT_SYMBOL(mutex_lock_killable); | 395 | EXPORT_SYMBOL(mutex_lock_killable); |
315 | 396 | ||
@@ -352,9 +433,10 @@ static inline int __mutex_trylock_slowpath(atomic_t *lock_count) | |||
352 | 433 | ||
353 | prev = atomic_xchg(&lock->count, -1); | 434 | prev = atomic_xchg(&lock->count, -1); |
354 | if (likely(prev == 1)) { | 435 | if (likely(prev == 1)) { |
355 | debug_mutex_set_owner(lock, current_thread_info()); | 436 | mutex_set_owner(lock); |
356 | mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); | 437 | mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); |
357 | } | 438 | } |
439 | |||
358 | /* Set it back to 0 if there are no waiters: */ | 440 | /* Set it back to 0 if there are no waiters: */ |
359 | if (likely(list_empty(&lock->wait_list))) | 441 | if (likely(list_empty(&lock->wait_list))) |
360 | atomic_set(&lock->count, 0); | 442 | atomic_set(&lock->count, 0); |
@@ -380,8 +462,13 @@ static inline int __mutex_trylock_slowpath(atomic_t *lock_count) | |||
380 | */ | 462 | */ |
381 | int __sched mutex_trylock(struct mutex *lock) | 463 | int __sched mutex_trylock(struct mutex *lock) |
382 | { | 464 | { |
383 | return __mutex_fastpath_trylock(&lock->count, | 465 | int ret; |
384 | __mutex_trylock_slowpath); | 466 | |
467 | ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); | ||
468 | if (ret) | ||
469 | mutex_set_owner(lock); | ||
470 | |||
471 | return ret; | ||
385 | } | 472 | } |
386 | 473 | ||
387 | EXPORT_SYMBOL(mutex_trylock); | 474 | EXPORT_SYMBOL(mutex_trylock); |
diff --git a/kernel/mutex.h b/kernel/mutex.h index a075dafbb290..67578ca48f94 100644 --- a/kernel/mutex.h +++ b/kernel/mutex.h | |||
@@ -16,8 +16,26 @@ | |||
16 | #define mutex_remove_waiter(lock, waiter, ti) \ | 16 | #define mutex_remove_waiter(lock, waiter, ti) \ |
17 | __list_del((waiter)->list.prev, (waiter)->list.next) | 17 | __list_del((waiter)->list.prev, (waiter)->list.next) |
18 | 18 | ||
19 | #define debug_mutex_set_owner(lock, new_owner) do { } while (0) | 19 | #ifdef CONFIG_SMP |
20 | #define debug_mutex_clear_owner(lock) do { } while (0) | 20 | static inline void mutex_set_owner(struct mutex *lock) |
21 | { | ||
22 | lock->owner = current_thread_info(); | ||
23 | } | ||
24 | |||
25 | static inline void mutex_clear_owner(struct mutex *lock) | ||
26 | { | ||
27 | lock->owner = NULL; | ||
28 | } | ||
29 | #else | ||
30 | static inline void mutex_set_owner(struct mutex *lock) | ||
31 | { | ||
32 | } | ||
33 | |||
34 | static inline void mutex_clear_owner(struct mutex *lock) | ||
35 | { | ||
36 | } | ||
37 | #endif | ||
38 | |||
21 | #define debug_mutex_wake_waiter(lock, waiter) do { } while (0) | 39 | #define debug_mutex_wake_waiter(lock, waiter) do { } while (0) |
22 | #define debug_mutex_free_waiter(waiter) do { } while (0) | 40 | #define debug_mutex_free_waiter(waiter) do { } while (0) |
23 | #define debug_mutex_add_waiter(lock, waiter, ti) do { } while (0) | 41 | #define debug_mutex_add_waiter(lock, waiter, ti) do { } while (0) |
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c index 78bc3fdac0d2..5aa854f9e5ae 100644 --- a/kernel/ns_cgroup.c +++ b/kernel/ns_cgroup.c | |||
@@ -34,7 +34,7 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid) | |||
34 | 34 | ||
35 | /* | 35 | /* |
36 | * Rules: | 36 | * Rules: |
37 | * 1. you can only enter a cgroup which is a child of your current | 37 | * 1. you can only enter a cgroup which is a descendant of your current |
38 | * cgroup | 38 | * cgroup |
39 | * 2. you can only place another process into a cgroup if | 39 | * 2. you can only place another process into a cgroup if |
40 | * a. you have CAP_SYS_ADMIN | 40 | * a. you have CAP_SYS_ADMIN |
@@ -45,21 +45,15 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid) | |||
45 | static int ns_can_attach(struct cgroup_subsys *ss, | 45 | static int ns_can_attach(struct cgroup_subsys *ss, |
46 | struct cgroup *new_cgroup, struct task_struct *task) | 46 | struct cgroup *new_cgroup, struct task_struct *task) |
47 | { | 47 | { |
48 | struct cgroup *orig; | ||
49 | |||
50 | if (current != task) { | 48 | if (current != task) { |
51 | if (!capable(CAP_SYS_ADMIN)) | 49 | if (!capable(CAP_SYS_ADMIN)) |
52 | return -EPERM; | 50 | return -EPERM; |
53 | 51 | ||
54 | if (!cgroup_is_descendant(new_cgroup)) | 52 | if (!cgroup_is_descendant(new_cgroup, current)) |
55 | return -EPERM; | 53 | return -EPERM; |
56 | } | 54 | } |
57 | 55 | ||
58 | if (atomic_read(&new_cgroup->count) != 0) | 56 | if (!cgroup_is_descendant(new_cgroup, task)) |
59 | return -EPERM; | ||
60 | |||
61 | orig = task_cgroup(task, ns_subsys_id); | ||
62 | if (orig && orig != new_cgroup->parent) | ||
63 | return -EPERM; | 57 | return -EPERM; |
64 | 58 | ||
65 | return 0; | 59 | return 0; |
@@ -77,7 +71,7 @@ static struct cgroup_subsys_state *ns_create(struct cgroup_subsys *ss, | |||
77 | 71 | ||
78 | if (!capable(CAP_SYS_ADMIN)) | 72 | if (!capable(CAP_SYS_ADMIN)) |
79 | return ERR_PTR(-EPERM); | 73 | return ERR_PTR(-EPERM); |
80 | if (!cgroup_is_descendant(cgroup)) | 74 | if (!cgroup_is_descendant(cgroup, current)) |
81 | return ERR_PTR(-EPERM); | 75 | return ERR_PTR(-EPERM); |
82 | 76 | ||
83 | ns_cgroup = kzalloc(sizeof(*ns_cgroup), GFP_KERNEL); | 77 | ns_cgroup = kzalloc(sizeof(*ns_cgroup), GFP_KERNEL); |
diff --git a/kernel/panic.c b/kernel/panic.c index 2a2ff36ff44d..3fd8c5bf8b39 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -8,19 +8,19 @@ | |||
8 | * This function is used through-out the kernel (including mm and fs) | 8 | * This function is used through-out the kernel (including mm and fs) |
9 | * to indicate a major problem. | 9 | * to indicate a major problem. |
10 | */ | 10 | */ |
11 | #include <linux/debug_locks.h> | ||
12 | #include <linux/interrupt.h> | ||
13 | #include <linux/kallsyms.h> | ||
14 | #include <linux/notifier.h> | ||
11 | #include <linux/module.h> | 15 | #include <linux/module.h> |
12 | #include <linux/sched.h> | 16 | #include <linux/random.h> |
13 | #include <linux/delay.h> | ||
14 | #include <linux/reboot.h> | 17 | #include <linux/reboot.h> |
15 | #include <linux/notifier.h> | 18 | #include <linux/delay.h> |
16 | #include <linux/init.h> | 19 | #include <linux/kexec.h> |
20 | #include <linux/sched.h> | ||
17 | #include <linux/sysrq.h> | 21 | #include <linux/sysrq.h> |
18 | #include <linux/interrupt.h> | 22 | #include <linux/init.h> |
19 | #include <linux/nmi.h> | 23 | #include <linux/nmi.h> |
20 | #include <linux/kexec.h> | ||
21 | #include <linux/debug_locks.h> | ||
22 | #include <linux/random.h> | ||
23 | #include <linux/kallsyms.h> | ||
24 | #include <linux/dmi.h> | 24 | #include <linux/dmi.h> |
25 | 25 | ||
26 | int panic_on_oops; | 26 | int panic_on_oops; |
@@ -52,19 +52,15 @@ EXPORT_SYMBOL(panic_blink); | |||
52 | * | 52 | * |
53 | * This function never returns. | 53 | * This function never returns. |
54 | */ | 54 | */ |
55 | |||
56 | NORET_TYPE void panic(const char * fmt, ...) | 55 | NORET_TYPE void panic(const char * fmt, ...) |
57 | { | 56 | { |
58 | long i; | ||
59 | static char buf[1024]; | 57 | static char buf[1024]; |
60 | va_list args; | 58 | va_list args; |
61 | #if defined(CONFIG_S390) | 59 | long i; |
62 | unsigned long caller = (unsigned long) __builtin_return_address(0); | ||
63 | #endif | ||
64 | 60 | ||
65 | /* | 61 | /* |
66 | * It's possible to come here directly from a panic-assertion and not | 62 | * It's possible to come here directly from a panic-assertion and |
67 | * have preempt disabled. Some functions called from here want | 63 | * not have preempt disabled. Some functions called from here want |
68 | * preempt to be disabled. No point enabling it later though... | 64 | * preempt to be disabled. No point enabling it later though... |
69 | */ | 65 | */ |
70 | preempt_disable(); | 66 | preempt_disable(); |
@@ -74,7 +70,9 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
74 | vsnprintf(buf, sizeof(buf), fmt, args); | 70 | vsnprintf(buf, sizeof(buf), fmt, args); |
75 | va_end(args); | 71 | va_end(args); |
76 | printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf); | 72 | printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf); |
77 | bust_spinlocks(0); | 73 | #ifdef CONFIG_DEBUG_BUGVERBOSE |
74 | dump_stack(); | ||
75 | #endif | ||
78 | 76 | ||
79 | /* | 77 | /* |
80 | * If we have crashed and we have a crash kernel loaded let it handle | 78 | * If we have crashed and we have a crash kernel loaded let it handle |
@@ -83,14 +81,12 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
83 | */ | 81 | */ |
84 | crash_kexec(NULL); | 82 | crash_kexec(NULL); |
85 | 83 | ||
86 | #ifdef CONFIG_SMP | ||
87 | /* | 84 | /* |
88 | * Note smp_send_stop is the usual smp shutdown function, which | 85 | * Note smp_send_stop is the usual smp shutdown function, which |
89 | * unfortunately means it may not be hardened to work in a panic | 86 | * unfortunately means it may not be hardened to work in a panic |
90 | * situation. | 87 | * situation. |
91 | */ | 88 | */ |
92 | smp_send_stop(); | 89 | smp_send_stop(); |
93 | #endif | ||
94 | 90 | ||
95 | atomic_notifier_call_chain(&panic_notifier_list, 0, buf); | 91 | atomic_notifier_call_chain(&panic_notifier_list, 0, buf); |
96 | 92 | ||
@@ -99,19 +95,21 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
99 | 95 | ||
100 | if (panic_timeout > 0) { | 96 | if (panic_timeout > 0) { |
101 | /* | 97 | /* |
102 | * Delay timeout seconds before rebooting the machine. | 98 | * Delay timeout seconds before rebooting the machine. |
103 | * We can't use the "normal" timers since we just panicked.. | 99 | * We can't use the "normal" timers since we just panicked. |
104 | */ | 100 | */ |
105 | printk(KERN_EMERG "Rebooting in %d seconds..",panic_timeout); | 101 | printk(KERN_EMERG "Rebooting in %d seconds..", panic_timeout); |
102 | |||
106 | for (i = 0; i < panic_timeout*1000; ) { | 103 | for (i = 0; i < panic_timeout*1000; ) { |
107 | touch_nmi_watchdog(); | 104 | touch_nmi_watchdog(); |
108 | i += panic_blink(i); | 105 | i += panic_blink(i); |
109 | mdelay(1); | 106 | mdelay(1); |
110 | i++; | 107 | i++; |
111 | } | 108 | } |
112 | /* This will not be a clean reboot, with everything | 109 | /* |
113 | * shutting down. But if there is a chance of | 110 | * This will not be a clean reboot, with everything |
114 | * rebooting the system it will be rebooted. | 111 | * shutting down. But if there is a chance of |
112 | * rebooting the system it will be rebooted. | ||
115 | */ | 113 | */ |
116 | emergency_restart(); | 114 | emergency_restart(); |
117 | } | 115 | } |
@@ -124,38 +122,44 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
124 | } | 122 | } |
125 | #endif | 123 | #endif |
126 | #if defined(CONFIG_S390) | 124 | #if defined(CONFIG_S390) |
127 | disabled_wait(caller); | 125 | { |
126 | unsigned long caller; | ||
127 | |||
128 | caller = (unsigned long)__builtin_return_address(0); | ||
129 | disabled_wait(caller); | ||
130 | } | ||
128 | #endif | 131 | #endif |
129 | local_irq_enable(); | 132 | local_irq_enable(); |
130 | for (i = 0;;) { | 133 | for (i = 0; ; ) { |
131 | touch_softlockup_watchdog(); | 134 | touch_softlockup_watchdog(); |
132 | i += panic_blink(i); | 135 | i += panic_blink(i); |
133 | mdelay(1); | 136 | mdelay(1); |
134 | i++; | 137 | i++; |
135 | } | 138 | } |
139 | bust_spinlocks(0); | ||
136 | } | 140 | } |
137 | 141 | ||
138 | EXPORT_SYMBOL(panic); | 142 | EXPORT_SYMBOL(panic); |
139 | 143 | ||
140 | 144 | ||
141 | struct tnt { | 145 | struct tnt { |
142 | u8 bit; | 146 | u8 bit; |
143 | char true; | 147 | char true; |
144 | char false; | 148 | char false; |
145 | }; | 149 | }; |
146 | 150 | ||
147 | static const struct tnt tnts[] = { | 151 | static const struct tnt tnts[] = { |
148 | { TAINT_PROPRIETARY_MODULE, 'P', 'G' }, | 152 | { TAINT_PROPRIETARY_MODULE, 'P', 'G' }, |
149 | { TAINT_FORCED_MODULE, 'F', ' ' }, | 153 | { TAINT_FORCED_MODULE, 'F', ' ' }, |
150 | { TAINT_UNSAFE_SMP, 'S', ' ' }, | 154 | { TAINT_UNSAFE_SMP, 'S', ' ' }, |
151 | { TAINT_FORCED_RMMOD, 'R', ' ' }, | 155 | { TAINT_FORCED_RMMOD, 'R', ' ' }, |
152 | { TAINT_MACHINE_CHECK, 'M', ' ' }, | 156 | { TAINT_MACHINE_CHECK, 'M', ' ' }, |
153 | { TAINT_BAD_PAGE, 'B', ' ' }, | 157 | { TAINT_BAD_PAGE, 'B', ' ' }, |
154 | { TAINT_USER, 'U', ' ' }, | 158 | { TAINT_USER, 'U', ' ' }, |
155 | { TAINT_DIE, 'D', ' ' }, | 159 | { TAINT_DIE, 'D', ' ' }, |
156 | { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' }, | 160 | { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' }, |
157 | { TAINT_WARN, 'W', ' ' }, | 161 | { TAINT_WARN, 'W', ' ' }, |
158 | { TAINT_CRAP, 'C', ' ' }, | 162 | { TAINT_CRAP, 'C', ' ' }, |
159 | }; | 163 | }; |
160 | 164 | ||
161 | /** | 165 | /** |
@@ -192,7 +196,8 @@ const char *print_tainted(void) | |||
192 | *s = 0; | 196 | *s = 0; |
193 | } else | 197 | } else |
194 | snprintf(buf, sizeof(buf), "Not tainted"); | 198 | snprintf(buf, sizeof(buf), "Not tainted"); |
195 | return(buf); | 199 | |
200 | return buf; | ||
196 | } | 201 | } |
197 | 202 | ||
198 | int test_taint(unsigned flag) | 203 | int test_taint(unsigned flag) |
@@ -208,7 +213,8 @@ unsigned long get_taint(void) | |||
208 | 213 | ||
209 | void add_taint(unsigned flag) | 214 | void add_taint(unsigned flag) |
210 | { | 215 | { |
211 | debug_locks = 0; /* can't trust the integrity of the kernel anymore */ | 216 | /* can't trust the integrity of the kernel anymore: */ |
217 | debug_locks = 0; | ||
212 | set_bit(flag, &tainted_mask); | 218 | set_bit(flag, &tainted_mask); |
213 | } | 219 | } |
214 | EXPORT_SYMBOL(add_taint); | 220 | EXPORT_SYMBOL(add_taint); |
@@ -263,8 +269,8 @@ static void do_oops_enter_exit(void) | |||
263 | } | 269 | } |
264 | 270 | ||
265 | /* | 271 | /* |
266 | * Return true if the calling CPU is allowed to print oops-related info. This | 272 | * Return true if the calling CPU is allowed to print oops-related info. |
267 | * is a bit racy.. | 273 | * This is a bit racy.. |
268 | */ | 274 | */ |
269 | int oops_may_print(void) | 275 | int oops_may_print(void) |
270 | { | 276 | { |
@@ -273,20 +279,22 @@ int oops_may_print(void) | |||
273 | 279 | ||
274 | /* | 280 | /* |
275 | * Called when the architecture enters its oops handler, before it prints | 281 | * Called when the architecture enters its oops handler, before it prints |
276 | * anything. If this is the first CPU to oops, and it's oopsing the first time | 282 | * anything. If this is the first CPU to oops, and it's oopsing the first |
277 | * then let it proceed. | 283 | * time then let it proceed. |
278 | * | 284 | * |
279 | * This is all enabled by the pause_on_oops kernel boot option. We do all this | 285 | * This is all enabled by the pause_on_oops kernel boot option. We do all |
280 | * to ensure that oopses don't scroll off the screen. It has the side-effect | 286 | * this to ensure that oopses don't scroll off the screen. It has the |
281 | * of preventing later-oopsing CPUs from mucking up the display, too. | 287 | * side-effect of preventing later-oopsing CPUs from mucking up the display, |
288 | * too. | ||
282 | * | 289 | * |
283 | * It turns out that the CPU which is allowed to print ends up pausing for the | 290 | * It turns out that the CPU which is allowed to print ends up pausing for |
284 | * right duration, whereas all the other CPUs pause for twice as long: once in | 291 | * the right duration, whereas all the other CPUs pause for twice as long: |
285 | * oops_enter(), once in oops_exit(). | 292 | * once in oops_enter(), once in oops_exit(). |
286 | */ | 293 | */ |
287 | void oops_enter(void) | 294 | void oops_enter(void) |
288 | { | 295 | { |
289 | debug_locks_off(); /* can't trust the integrity of the kernel anymore */ | 296 | /* can't trust the integrity of the kernel anymore: */ |
297 | debug_locks_off(); | ||
290 | do_oops_enter_exit(); | 298 | do_oops_enter_exit(); |
291 | } | 299 | } |
292 | 300 | ||
@@ -355,15 +363,18 @@ EXPORT_SYMBOL(warn_slowpath); | |||
355 | #endif | 363 | #endif |
356 | 364 | ||
357 | #ifdef CONFIG_CC_STACKPROTECTOR | 365 | #ifdef CONFIG_CC_STACKPROTECTOR |
366 | |||
358 | /* | 367 | /* |
359 | * Called when gcc's -fstack-protector feature is used, and | 368 | * Called when gcc's -fstack-protector feature is used, and |
360 | * gcc detects corruption of the on-stack canary value | 369 | * gcc detects corruption of the on-stack canary value |
361 | */ | 370 | */ |
362 | void __stack_chk_fail(void) | 371 | void __stack_chk_fail(void) |
363 | { | 372 | { |
364 | panic("stack-protector: Kernel stack is corrupted"); | 373 | panic("stack-protector: Kernel stack is corrupted in: %p\n", |
374 | __builtin_return_address(0)); | ||
365 | } | 375 | } |
366 | EXPORT_SYMBOL(__stack_chk_fail); | 376 | EXPORT_SYMBOL(__stack_chk_fail); |
377 | |||
367 | #endif | 378 | #endif |
368 | 379 | ||
369 | core_param(panic, panic_timeout, int, 0644); | 380 | core_param(panic, panic_timeout, int, 0644); |
diff --git a/kernel/pid.c b/kernel/pid.c index 1b3586fe753a..b2e5f78fd281 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -403,6 +403,8 @@ struct pid *get_task_pid(struct task_struct *task, enum pid_type type) | |||
403 | { | 403 | { |
404 | struct pid *pid; | 404 | struct pid *pid; |
405 | rcu_read_lock(); | 405 | rcu_read_lock(); |
406 | if (type != PIDTYPE_PID) | ||
407 | task = task->group_leader; | ||
406 | pid = get_pid(task->pids[type].pid); | 408 | pid = get_pid(task->pids[type].pid); |
407 | rcu_read_unlock(); | 409 | rcu_read_unlock(); |
408 | return pid; | 410 | return pid; |
@@ -450,11 +452,24 @@ pid_t pid_vnr(struct pid *pid) | |||
450 | } | 452 | } |
451 | EXPORT_SYMBOL_GPL(pid_vnr); | 453 | EXPORT_SYMBOL_GPL(pid_vnr); |
452 | 454 | ||
453 | pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 455 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, |
456 | struct pid_namespace *ns) | ||
454 | { | 457 | { |
455 | return pid_nr_ns(task_pid(tsk), ns); | 458 | pid_t nr = 0; |
459 | |||
460 | rcu_read_lock(); | ||
461 | if (!ns) | ||
462 | ns = current->nsproxy->pid_ns; | ||
463 | if (likely(pid_alive(task))) { | ||
464 | if (type != PIDTYPE_PID) | ||
465 | task = task->group_leader; | ||
466 | nr = pid_nr_ns(task->pids[type].pid, ns); | ||
467 | } | ||
468 | rcu_read_unlock(); | ||
469 | |||
470 | return nr; | ||
456 | } | 471 | } |
457 | EXPORT_SYMBOL(task_pid_nr_ns); | 472 | EXPORT_SYMBOL(__task_pid_nr_ns); |
458 | 473 | ||
459 | pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | 474 | pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
460 | { | 475 | { |
@@ -462,18 +477,6 @@ pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | |||
462 | } | 477 | } |
463 | EXPORT_SYMBOL(task_tgid_nr_ns); | 478 | EXPORT_SYMBOL(task_tgid_nr_ns); |
464 | 479 | ||
465 | pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | ||
466 | { | ||
467 | return pid_nr_ns(task_pgrp(tsk), ns); | ||
468 | } | ||
469 | EXPORT_SYMBOL(task_pgrp_nr_ns); | ||
470 | |||
471 | pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | ||
472 | { | ||
473 | return pid_nr_ns(task_session(tsk), ns); | ||
474 | } | ||
475 | EXPORT_SYMBOL(task_session_nr_ns); | ||
476 | |||
477 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) | 480 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) |
478 | { | 481 | { |
479 | return ns_of_pid(task_pid(tsk)); | 482 | return ns_of_pid(task_pid(tsk)); |
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index fab8ea86fac3..2d1001b4858d 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c | |||
@@ -152,6 +152,7 @@ void zap_pid_ns_processes(struct pid_namespace *pid_ns) | |||
152 | { | 152 | { |
153 | int nr; | 153 | int nr; |
154 | int rc; | 154 | int rc; |
155 | struct task_struct *task; | ||
155 | 156 | ||
156 | /* | 157 | /* |
157 | * The last thread in the cgroup-init thread group is terminating. | 158 | * The last thread in the cgroup-init thread group is terminating. |
@@ -169,7 +170,19 @@ void zap_pid_ns_processes(struct pid_namespace *pid_ns) | |||
169 | read_lock(&tasklist_lock); | 170 | read_lock(&tasklist_lock); |
170 | nr = next_pidmap(pid_ns, 1); | 171 | nr = next_pidmap(pid_ns, 1); |
171 | while (nr > 0) { | 172 | while (nr > 0) { |
172 | kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr); | 173 | rcu_read_lock(); |
174 | |||
175 | /* | ||
176 | * Use force_sig() since it clears SIGNAL_UNKILLABLE ensuring | ||
177 | * any nested-container's init processes don't ignore the | ||
178 | * signal | ||
179 | */ | ||
180 | task = pid_task(find_vpid(nr), PIDTYPE_PID); | ||
181 | if (task) | ||
182 | force_sig(SIGKILL, task); | ||
183 | |||
184 | rcu_read_unlock(); | ||
185 | |||
173 | nr = next_pidmap(pid_ns, nr); | 186 | nr = next_pidmap(pid_ns, nr); |
174 | } | 187 | } |
175 | read_unlock(&tasklist_lock); | 188 | read_unlock(&tasklist_lock); |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e976e505648d..8e5d9a68b022 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -1370,7 +1370,8 @@ static inline int fastpath_timer_check(struct task_struct *tsk) | |||
1370 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) | 1370 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) |
1371 | return 1; | 1371 | return 1; |
1372 | } | 1372 | } |
1373 | return 0; | 1373 | |
1374 | return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY; | ||
1374 | } | 1375 | } |
1375 | 1376 | ||
1376 | /* | 1377 | /* |
diff --git a/kernel/power/disk.c b/kernel/power/disk.c index 4a4a206b1979..5f21ab2bbcdf 100644 --- a/kernel/power/disk.c +++ b/kernel/power/disk.c | |||
@@ -22,6 +22,7 @@ | |||
22 | #include <linux/console.h> | 22 | #include <linux/console.h> |
23 | #include <linux/cpu.h> | 23 | #include <linux/cpu.h> |
24 | #include <linux/freezer.h> | 24 | #include <linux/freezer.h> |
25 | #include <asm/suspend.h> | ||
25 | 26 | ||
26 | #include "power.h" | 27 | #include "power.h" |
27 | 28 | ||
@@ -214,7 +215,7 @@ static int create_image(int platform_mode) | |||
214 | return error; | 215 | return error; |
215 | 216 | ||
216 | device_pm_lock(); | 217 | device_pm_lock(); |
217 | local_irq_disable(); | 218 | |
218 | /* At this point, device_suspend() has been called, but *not* | 219 | /* At this point, device_suspend() has been called, but *not* |
219 | * device_power_down(). We *must* call device_power_down() now. | 220 | * device_power_down(). We *must* call device_power_down() now. |
220 | * Otherwise, drivers for some devices (e.g. interrupt controllers) | 221 | * Otherwise, drivers for some devices (e.g. interrupt controllers) |
@@ -225,13 +226,25 @@ static int create_image(int platform_mode) | |||
225 | if (error) { | 226 | if (error) { |
226 | printk(KERN_ERR "PM: Some devices failed to power down, " | 227 | printk(KERN_ERR "PM: Some devices failed to power down, " |
227 | "aborting hibernation\n"); | 228 | "aborting hibernation\n"); |
228 | goto Enable_irqs; | 229 | goto Unlock; |
229 | } | 230 | } |
231 | |||
232 | error = platform_pre_snapshot(platform_mode); | ||
233 | if (error || hibernation_test(TEST_PLATFORM)) | ||
234 | goto Platform_finish; | ||
235 | |||
236 | error = disable_nonboot_cpus(); | ||
237 | if (error || hibernation_test(TEST_CPUS) | ||
238 | || hibernation_testmode(HIBERNATION_TEST)) | ||
239 | goto Enable_cpus; | ||
240 | |||
241 | local_irq_disable(); | ||
242 | |||
230 | sysdev_suspend(PMSG_FREEZE); | 243 | sysdev_suspend(PMSG_FREEZE); |
231 | if (error) { | 244 | if (error) { |
232 | printk(KERN_ERR "PM: Some devices failed to power down, " | 245 | printk(KERN_ERR "PM: Some devices failed to power down, " |
233 | "aborting hibernation\n"); | 246 | "aborting hibernation\n"); |
234 | goto Power_up_devices; | 247 | goto Enable_irqs; |
235 | } | 248 | } |
236 | 249 | ||
237 | if (hibernation_test(TEST_CORE)) | 250 | if (hibernation_test(TEST_CORE)) |
@@ -247,17 +260,28 @@ static int create_image(int platform_mode) | |||
247 | restore_processor_state(); | 260 | restore_processor_state(); |
248 | if (!in_suspend) | 261 | if (!in_suspend) |
249 | platform_leave(platform_mode); | 262 | platform_leave(platform_mode); |
263 | |||
250 | Power_up: | 264 | Power_up: |
251 | sysdev_resume(); | 265 | sysdev_resume(); |
252 | /* NOTE: device_power_up() is just a resume() for devices | 266 | /* NOTE: device_power_up() is just a resume() for devices |
253 | * that suspended with irqs off ... no overall powerup. | 267 | * that suspended with irqs off ... no overall powerup. |
254 | */ | 268 | */ |
255 | Power_up_devices: | 269 | |
256 | device_power_up(in_suspend ? | ||
257 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); | ||
258 | Enable_irqs: | 270 | Enable_irqs: |
259 | local_irq_enable(); | 271 | local_irq_enable(); |
272 | |||
273 | Enable_cpus: | ||
274 | enable_nonboot_cpus(); | ||
275 | |||
276 | Platform_finish: | ||
277 | platform_finish(platform_mode); | ||
278 | |||
279 | device_power_up(in_suspend ? | ||
280 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); | ||
281 | |||
282 | Unlock: | ||
260 | device_pm_unlock(); | 283 | device_pm_unlock(); |
284 | |||
261 | return error; | 285 | return error; |
262 | } | 286 | } |
263 | 287 | ||
@@ -265,7 +289,7 @@ static int create_image(int platform_mode) | |||
265 | * hibernation_snapshot - quiesce devices and create the hibernation | 289 | * hibernation_snapshot - quiesce devices and create the hibernation |
266 | * snapshot image. | 290 | * snapshot image. |
267 | * @platform_mode - if set, use the platform driver, if available, to | 291 | * @platform_mode - if set, use the platform driver, if available, to |
268 | * prepare the platform frimware for the power transition. | 292 | * prepare the platform firmware for the power transition. |
269 | * | 293 | * |
270 | * Must be called with pm_mutex held | 294 | * Must be called with pm_mutex held |
271 | */ | 295 | */ |
@@ -291,25 +315,9 @@ int hibernation_snapshot(int platform_mode) | |||
291 | if (hibernation_test(TEST_DEVICES)) | 315 | if (hibernation_test(TEST_DEVICES)) |
292 | goto Recover_platform; | 316 | goto Recover_platform; |
293 | 317 | ||
294 | error = platform_pre_snapshot(platform_mode); | 318 | error = create_image(platform_mode); |
295 | if (error || hibernation_test(TEST_PLATFORM)) | 319 | /* Control returns here after successful restore */ |
296 | goto Finish; | ||
297 | |||
298 | error = disable_nonboot_cpus(); | ||
299 | if (!error) { | ||
300 | if (hibernation_test(TEST_CPUS)) | ||
301 | goto Enable_cpus; | ||
302 | |||
303 | if (hibernation_testmode(HIBERNATION_TEST)) | ||
304 | goto Enable_cpus; | ||
305 | 320 | ||
306 | error = create_image(platform_mode); | ||
307 | /* Control returns here after successful restore */ | ||
308 | } | ||
309 | Enable_cpus: | ||
310 | enable_nonboot_cpus(); | ||
311 | Finish: | ||
312 | platform_finish(platform_mode); | ||
313 | Resume_devices: | 321 | Resume_devices: |
314 | device_resume(in_suspend ? | 322 | device_resume(in_suspend ? |
315 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); | 323 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); |
@@ -331,19 +339,33 @@ int hibernation_snapshot(int platform_mode) | |||
331 | * kernel. | 339 | * kernel. |
332 | */ | 340 | */ |
333 | 341 | ||
334 | static int resume_target_kernel(void) | 342 | static int resume_target_kernel(bool platform_mode) |
335 | { | 343 | { |
336 | int error; | 344 | int error; |
337 | 345 | ||
338 | device_pm_lock(); | 346 | device_pm_lock(); |
339 | local_irq_disable(); | 347 | |
340 | error = device_power_down(PMSG_QUIESCE); | 348 | error = device_power_down(PMSG_QUIESCE); |
341 | if (error) { | 349 | if (error) { |
342 | printk(KERN_ERR "PM: Some devices failed to power down, " | 350 | printk(KERN_ERR "PM: Some devices failed to power down, " |
343 | "aborting resume\n"); | 351 | "aborting resume\n"); |
344 | goto Enable_irqs; | 352 | goto Unlock; |
345 | } | 353 | } |
346 | sysdev_suspend(PMSG_QUIESCE); | 354 | |
355 | error = platform_pre_restore(platform_mode); | ||
356 | if (error) | ||
357 | goto Cleanup; | ||
358 | |||
359 | error = disable_nonboot_cpus(); | ||
360 | if (error) | ||
361 | goto Enable_cpus; | ||
362 | |||
363 | local_irq_disable(); | ||
364 | |||
365 | error = sysdev_suspend(PMSG_QUIESCE); | ||
366 | if (error) | ||
367 | goto Enable_irqs; | ||
368 | |||
347 | /* We'll ignore saved state, but this gets preempt count (etc) right */ | 369 | /* We'll ignore saved state, but this gets preempt count (etc) right */ |
348 | save_processor_state(); | 370 | save_processor_state(); |
349 | error = restore_highmem(); | 371 | error = restore_highmem(); |
@@ -366,11 +388,23 @@ static int resume_target_kernel(void) | |||
366 | swsusp_free(); | 388 | swsusp_free(); |
367 | restore_processor_state(); | 389 | restore_processor_state(); |
368 | touch_softlockup_watchdog(); | 390 | touch_softlockup_watchdog(); |
391 | |||
369 | sysdev_resume(); | 392 | sysdev_resume(); |
370 | device_power_up(PMSG_RECOVER); | 393 | |
371 | Enable_irqs: | 394 | Enable_irqs: |
372 | local_irq_enable(); | 395 | local_irq_enable(); |
396 | |||
397 | Enable_cpus: | ||
398 | enable_nonboot_cpus(); | ||
399 | |||
400 | Cleanup: | ||
401 | platform_restore_cleanup(platform_mode); | ||
402 | |||
403 | device_power_up(PMSG_RECOVER); | ||
404 | |||
405 | Unlock: | ||
373 | device_pm_unlock(); | 406 | device_pm_unlock(); |
407 | |||
374 | return error; | 408 | return error; |
375 | } | 409 | } |
376 | 410 | ||
@@ -378,7 +412,7 @@ static int resume_target_kernel(void) | |||
378 | * hibernation_restore - quiesce devices and restore the hibernation | 412 | * hibernation_restore - quiesce devices and restore the hibernation |
379 | * snapshot image. If successful, control returns in hibernation_snaphot() | 413 | * snapshot image. If successful, control returns in hibernation_snaphot() |
380 | * @platform_mode - if set, use the platform driver, if available, to | 414 | * @platform_mode - if set, use the platform driver, if available, to |
381 | * prepare the platform frimware for the transition. | 415 | * prepare the platform firmware for the transition. |
382 | * | 416 | * |
383 | * Must be called with pm_mutex held | 417 | * Must be called with pm_mutex held |
384 | */ | 418 | */ |
@@ -390,19 +424,10 @@ int hibernation_restore(int platform_mode) | |||
390 | pm_prepare_console(); | 424 | pm_prepare_console(); |
391 | suspend_console(); | 425 | suspend_console(); |
392 | error = device_suspend(PMSG_QUIESCE); | 426 | error = device_suspend(PMSG_QUIESCE); |
393 | if (error) | ||
394 | goto Finish; | ||
395 | |||
396 | error = platform_pre_restore(platform_mode); | ||
397 | if (!error) { | 427 | if (!error) { |
398 | error = disable_nonboot_cpus(); | 428 | error = resume_target_kernel(platform_mode); |
399 | if (!error) | 429 | device_resume(PMSG_RECOVER); |
400 | error = resume_target_kernel(); | ||
401 | enable_nonboot_cpus(); | ||
402 | } | 430 | } |
403 | platform_restore_cleanup(platform_mode); | ||
404 | device_resume(PMSG_RECOVER); | ||
405 | Finish: | ||
406 | resume_console(); | 431 | resume_console(); |
407 | pm_restore_console(); | 432 | pm_restore_console(); |
408 | return error; | 433 | return error; |
@@ -438,38 +463,46 @@ int hibernation_platform_enter(void) | |||
438 | goto Resume_devices; | 463 | goto Resume_devices; |
439 | } | 464 | } |
440 | 465 | ||
466 | device_pm_lock(); | ||
467 | |||
468 | error = device_power_down(PMSG_HIBERNATE); | ||
469 | if (error) | ||
470 | goto Unlock; | ||
471 | |||
441 | error = hibernation_ops->prepare(); | 472 | error = hibernation_ops->prepare(); |
442 | if (error) | 473 | if (error) |
443 | goto Resume_devices; | 474 | goto Platofrm_finish; |
444 | 475 | ||
445 | error = disable_nonboot_cpus(); | 476 | error = disable_nonboot_cpus(); |
446 | if (error) | 477 | if (error) |
447 | goto Finish; | 478 | goto Platofrm_finish; |
448 | 479 | ||
449 | device_pm_lock(); | ||
450 | local_irq_disable(); | 480 | local_irq_disable(); |
451 | error = device_power_down(PMSG_HIBERNATE); | 481 | sysdev_suspend(PMSG_HIBERNATE); |
452 | if (!error) { | 482 | hibernation_ops->enter(); |
453 | sysdev_suspend(PMSG_HIBERNATE); | 483 | /* We should never get here */ |
454 | hibernation_ops->enter(); | 484 | while (1); |
455 | /* We should never get here */ | ||
456 | while (1); | ||
457 | } | ||
458 | local_irq_enable(); | ||
459 | device_pm_unlock(); | ||
460 | 485 | ||
461 | /* | 486 | /* |
462 | * We don't need to reenable the nonboot CPUs or resume consoles, since | 487 | * We don't need to reenable the nonboot CPUs or resume consoles, since |
463 | * the system is going to be halted anyway. | 488 | * the system is going to be halted anyway. |
464 | */ | 489 | */ |
465 | Finish: | 490 | Platofrm_finish: |
466 | hibernation_ops->finish(); | 491 | hibernation_ops->finish(); |
492 | |||
493 | device_power_up(PMSG_RESTORE); | ||
494 | |||
495 | Unlock: | ||
496 | device_pm_unlock(); | ||
497 | |||
467 | Resume_devices: | 498 | Resume_devices: |
468 | entering_platform_hibernation = false; | 499 | entering_platform_hibernation = false; |
469 | device_resume(PMSG_RESTORE); | 500 | device_resume(PMSG_RESTORE); |
470 | resume_console(); | 501 | resume_console(); |
502 | |||
471 | Close: | 503 | Close: |
472 | hibernation_ops->end(); | 504 | hibernation_ops->end(); |
505 | |||
473 | return error; | 506 | return error; |
474 | } | 507 | } |
475 | 508 | ||
diff --git a/kernel/power/main.c b/kernel/power/main.c index c9632f841f64..f172f41858bb 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c | |||
@@ -287,17 +287,32 @@ void __attribute__ ((weak)) arch_suspend_enable_irqs(void) | |||
287 | */ | 287 | */ |
288 | static int suspend_enter(suspend_state_t state) | 288 | static int suspend_enter(suspend_state_t state) |
289 | { | 289 | { |
290 | int error = 0; | 290 | int error; |
291 | 291 | ||
292 | device_pm_lock(); | 292 | device_pm_lock(); |
293 | arch_suspend_disable_irqs(); | ||
294 | BUG_ON(!irqs_disabled()); | ||
295 | 293 | ||
296 | if ((error = device_power_down(PMSG_SUSPEND))) { | 294 | error = device_power_down(PMSG_SUSPEND); |
295 | if (error) { | ||
297 | printk(KERN_ERR "PM: Some devices failed to power down\n"); | 296 | printk(KERN_ERR "PM: Some devices failed to power down\n"); |
298 | goto Done; | 297 | goto Done; |
299 | } | 298 | } |
300 | 299 | ||
300 | if (suspend_ops->prepare) { | ||
301 | error = suspend_ops->prepare(); | ||
302 | if (error) | ||
303 | goto Power_up_devices; | ||
304 | } | ||
305 | |||
306 | if (suspend_test(TEST_PLATFORM)) | ||
307 | goto Platfrom_finish; | ||
308 | |||
309 | error = disable_nonboot_cpus(); | ||
310 | if (error || suspend_test(TEST_CPUS)) | ||
311 | goto Enable_cpus; | ||
312 | |||
313 | arch_suspend_disable_irqs(); | ||
314 | BUG_ON(!irqs_disabled()); | ||
315 | |||
301 | error = sysdev_suspend(PMSG_SUSPEND); | 316 | error = sysdev_suspend(PMSG_SUSPEND); |
302 | if (!error) { | 317 | if (!error) { |
303 | if (!suspend_test(TEST_CORE)) | 318 | if (!suspend_test(TEST_CORE)) |
@@ -305,11 +320,22 @@ static int suspend_enter(suspend_state_t state) | |||
305 | sysdev_resume(); | 320 | sysdev_resume(); |
306 | } | 321 | } |
307 | 322 | ||
308 | device_power_up(PMSG_RESUME); | ||
309 | Done: | ||
310 | arch_suspend_enable_irqs(); | 323 | arch_suspend_enable_irqs(); |
311 | BUG_ON(irqs_disabled()); | 324 | BUG_ON(irqs_disabled()); |
325 | |||
326 | Enable_cpus: | ||
327 | enable_nonboot_cpus(); | ||
328 | |||
329 | Platfrom_finish: | ||
330 | if (suspend_ops->finish) | ||
331 | suspend_ops->finish(); | ||
332 | |||
333 | Power_up_devices: | ||
334 | device_power_up(PMSG_RESUME); | ||
335 | |||
336 | Done: | ||
312 | device_pm_unlock(); | 337 | device_pm_unlock(); |
338 | |||
313 | return error; | 339 | return error; |
314 | } | 340 | } |
315 | 341 | ||
@@ -341,23 +367,8 @@ int suspend_devices_and_enter(suspend_state_t state) | |||
341 | if (suspend_test(TEST_DEVICES)) | 367 | if (suspend_test(TEST_DEVICES)) |
342 | goto Recover_platform; | 368 | goto Recover_platform; |
343 | 369 | ||
344 | if (suspend_ops->prepare) { | 370 | suspend_enter(state); |
345 | error = suspend_ops->prepare(); | ||
346 | if (error) | ||
347 | goto Resume_devices; | ||
348 | } | ||
349 | |||
350 | if (suspend_test(TEST_PLATFORM)) | ||
351 | goto Finish; | ||
352 | |||
353 | error = disable_nonboot_cpus(); | ||
354 | if (!error && !suspend_test(TEST_CPUS)) | ||
355 | suspend_enter(state); | ||
356 | 371 | ||
357 | enable_nonboot_cpus(); | ||
358 | Finish: | ||
359 | if (suspend_ops->finish) | ||
360 | suspend_ops->finish(); | ||
361 | Resume_devices: | 372 | Resume_devices: |
362 | suspend_test_start(); | 373 | suspend_test_start(); |
363 | device_resume(PMSG_RESUME); | 374 | device_resume(PMSG_RESUME); |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index f5fc2d7680f2..33e2e4a819f9 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -321,13 +321,10 @@ static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) | |||
321 | 321 | ||
322 | INIT_LIST_HEAD(list); | 322 | INIT_LIST_HEAD(list); |
323 | 323 | ||
324 | for_each_zone(zone) { | 324 | for_each_populated_zone(zone) { |
325 | unsigned long zone_start, zone_end; | 325 | unsigned long zone_start, zone_end; |
326 | struct mem_extent *ext, *cur, *aux; | 326 | struct mem_extent *ext, *cur, *aux; |
327 | 327 | ||
328 | if (!populated_zone(zone)) | ||
329 | continue; | ||
330 | |||
331 | zone_start = zone->zone_start_pfn; | 328 | zone_start = zone->zone_start_pfn; |
332 | zone_end = zone->zone_start_pfn + zone->spanned_pages; | 329 | zone_end = zone->zone_start_pfn + zone->spanned_pages; |
333 | 330 | ||
@@ -804,8 +801,8 @@ static unsigned int count_free_highmem_pages(void) | |||
804 | struct zone *zone; | 801 | struct zone *zone; |
805 | unsigned int cnt = 0; | 802 | unsigned int cnt = 0; |
806 | 803 | ||
807 | for_each_zone(zone) | 804 | for_each_populated_zone(zone) |
808 | if (populated_zone(zone) && is_highmem(zone)) | 805 | if (is_highmem(zone)) |
809 | cnt += zone_page_state(zone, NR_FREE_PAGES); | 806 | cnt += zone_page_state(zone, NR_FREE_PAGES); |
810 | 807 | ||
811 | return cnt; | 808 | return cnt; |
diff --git a/kernel/power/swsusp.c b/kernel/power/swsusp.c index a92c91451559..78c35047586d 100644 --- a/kernel/power/swsusp.c +++ b/kernel/power/swsusp.c | |||
@@ -51,6 +51,7 @@ | |||
51 | #include <linux/highmem.h> | 51 | #include <linux/highmem.h> |
52 | #include <linux/time.h> | 52 | #include <linux/time.h> |
53 | #include <linux/rbtree.h> | 53 | #include <linux/rbtree.h> |
54 | #include <linux/io.h> | ||
54 | 55 | ||
55 | #include "power.h" | 56 | #include "power.h" |
56 | 57 | ||
@@ -229,17 +230,16 @@ int swsusp_shrink_memory(void) | |||
229 | size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES; | 230 | size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES; |
230 | tmp = size; | 231 | tmp = size; |
231 | size += highmem_size; | 232 | size += highmem_size; |
232 | for_each_zone (zone) | 233 | for_each_populated_zone(zone) { |
233 | if (populated_zone(zone)) { | 234 | tmp += snapshot_additional_pages(zone); |
234 | tmp += snapshot_additional_pages(zone); | 235 | if (is_highmem(zone)) { |
235 | if (is_highmem(zone)) { | 236 | highmem_size -= |
236 | highmem_size -= | ||
237 | zone_page_state(zone, NR_FREE_PAGES); | 237 | zone_page_state(zone, NR_FREE_PAGES); |
238 | } else { | 238 | } else { |
239 | tmp -= zone_page_state(zone, NR_FREE_PAGES); | 239 | tmp -= zone_page_state(zone, NR_FREE_PAGES); |
240 | tmp += zone->lowmem_reserve[ZONE_NORMAL]; | 240 | tmp += zone->lowmem_reserve[ZONE_NORMAL]; |
241 | } | ||
242 | } | 241 | } |
242 | } | ||
243 | 243 | ||
244 | if (highmem_size < 0) | 244 | if (highmem_size < 0) |
245 | highmem_size = 0; | 245 | highmem_size = 0; |
diff --git a/kernel/printk.c b/kernel/printk.c index e3602d0755b0..a5f61a9acedb 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -32,6 +32,7 @@ | |||
32 | #include <linux/security.h> | 32 | #include <linux/security.h> |
33 | #include <linux/bootmem.h> | 33 | #include <linux/bootmem.h> |
34 | #include <linux/syscalls.h> | 34 | #include <linux/syscalls.h> |
35 | #include <linux/kexec.h> | ||
35 | 36 | ||
36 | #include <asm/uaccess.h> | 37 | #include <asm/uaccess.h> |
37 | 38 | ||
@@ -135,6 +136,24 @@ static char *log_buf = __log_buf; | |||
135 | static int log_buf_len = __LOG_BUF_LEN; | 136 | static int log_buf_len = __LOG_BUF_LEN; |
136 | static unsigned logged_chars; /* Number of chars produced since last read+clear operation */ | 137 | static unsigned logged_chars; /* Number of chars produced since last read+clear operation */ |
137 | 138 | ||
139 | #ifdef CONFIG_KEXEC | ||
140 | /* | ||
141 | * This appends the listed symbols to /proc/vmcoreinfo | ||
142 | * | ||
143 | * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to | ||
144 | * obtain access to symbols that are otherwise very difficult to locate. These | ||
145 | * symbols are specifically used so that utilities can access and extract the | ||
146 | * dmesg log from a vmcore file after a crash. | ||
147 | */ | ||
148 | void log_buf_kexec_setup(void) | ||
149 | { | ||
150 | VMCOREINFO_SYMBOL(log_buf); | ||
151 | VMCOREINFO_SYMBOL(log_end); | ||
152 | VMCOREINFO_SYMBOL(log_buf_len); | ||
153 | VMCOREINFO_SYMBOL(logged_chars); | ||
154 | } | ||
155 | #endif | ||
156 | |||
138 | static int __init log_buf_len_setup(char *str) | 157 | static int __init log_buf_len_setup(char *str) |
139 | { | 158 | { |
140 | unsigned size = memparse(str, &str); | 159 | unsigned size = memparse(str, &str); |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index c9cf48b21f05..5105f5a6a2ce 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
@@ -60,11 +60,15 @@ static void ptrace_untrace(struct task_struct *child) | |||
60 | { | 60 | { |
61 | spin_lock(&child->sighand->siglock); | 61 | spin_lock(&child->sighand->siglock); |
62 | if (task_is_traced(child)) { | 62 | if (task_is_traced(child)) { |
63 | if (child->signal->flags & SIGNAL_STOP_STOPPED) { | 63 | /* |
64 | * If the group stop is completed or in progress, | ||
65 | * this thread was already counted as stopped. | ||
66 | */ | ||
67 | if (child->signal->flags & SIGNAL_STOP_STOPPED || | ||
68 | child->signal->group_stop_count) | ||
64 | __set_task_state(child, TASK_STOPPED); | 69 | __set_task_state(child, TASK_STOPPED); |
65 | } else { | 70 | else |
66 | signal_wake_up(child, 1); | 71 | signal_wake_up(child, 1); |
67 | } | ||
68 | } | 72 | } |
69 | spin_unlock(&child->sighand->siglock); | 73 | spin_unlock(&child->sighand->siglock); |
70 | } | 74 | } |
@@ -235,18 +239,58 @@ out: | |||
235 | return retval; | 239 | return retval; |
236 | } | 240 | } |
237 | 241 | ||
238 | static inline void __ptrace_detach(struct task_struct *child, unsigned int data) | 242 | /* |
243 | * Called with irqs disabled, returns true if childs should reap themselves. | ||
244 | */ | ||
245 | static int ignoring_children(struct sighand_struct *sigh) | ||
239 | { | 246 | { |
240 | child->exit_code = data; | 247 | int ret; |
241 | /* .. re-parent .. */ | 248 | spin_lock(&sigh->siglock); |
242 | __ptrace_unlink(child); | 249 | ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || |
243 | /* .. and wake it up. */ | 250 | (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); |
244 | if (child->exit_state != EXIT_ZOMBIE) | 251 | spin_unlock(&sigh->siglock); |
245 | wake_up_process(child); | 252 | return ret; |
253 | } | ||
254 | |||
255 | /* | ||
256 | * Called with tasklist_lock held for writing. | ||
257 | * Unlink a traced task, and clean it up if it was a traced zombie. | ||
258 | * Return true if it needs to be reaped with release_task(). | ||
259 | * (We can't call release_task() here because we already hold tasklist_lock.) | ||
260 | * | ||
261 | * If it's a zombie, our attachedness prevented normal parent notification | ||
262 | * or self-reaping. Do notification now if it would have happened earlier. | ||
263 | * If it should reap itself, return true. | ||
264 | * | ||
265 | * If it's our own child, there is no notification to do. | ||
266 | * But if our normal children self-reap, then this child | ||
267 | * was prevented by ptrace and we must reap it now. | ||
268 | */ | ||
269 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | ||
270 | { | ||
271 | __ptrace_unlink(p); | ||
272 | |||
273 | if (p->exit_state == EXIT_ZOMBIE) { | ||
274 | if (!task_detached(p) && thread_group_empty(p)) { | ||
275 | if (!same_thread_group(p->real_parent, tracer)) | ||
276 | do_notify_parent(p, p->exit_signal); | ||
277 | else if (ignoring_children(tracer->sighand)) | ||
278 | p->exit_signal = -1; | ||
279 | } | ||
280 | if (task_detached(p)) { | ||
281 | /* Mark it as in the process of being reaped. */ | ||
282 | p->exit_state = EXIT_DEAD; | ||
283 | return true; | ||
284 | } | ||
285 | } | ||
286 | |||
287 | return false; | ||
246 | } | 288 | } |
247 | 289 | ||
248 | int ptrace_detach(struct task_struct *child, unsigned int data) | 290 | int ptrace_detach(struct task_struct *child, unsigned int data) |
249 | { | 291 | { |
292 | bool dead = false; | ||
293 | |||
250 | if (!valid_signal(data)) | 294 | if (!valid_signal(data)) |
251 | return -EIO; | 295 | return -EIO; |
252 | 296 | ||
@@ -255,14 +299,45 @@ int ptrace_detach(struct task_struct *child, unsigned int data) | |||
255 | clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 299 | clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
256 | 300 | ||
257 | write_lock_irq(&tasklist_lock); | 301 | write_lock_irq(&tasklist_lock); |
258 | /* protect against de_thread()->release_task() */ | 302 | /* |
259 | if (child->ptrace) | 303 | * This child can be already killed. Make sure de_thread() or |
260 | __ptrace_detach(child, data); | 304 | * our sub-thread doing do_wait() didn't do release_task() yet. |
305 | */ | ||
306 | if (child->ptrace) { | ||
307 | child->exit_code = data; | ||
308 | dead = __ptrace_detach(current, child); | ||
309 | } | ||
261 | write_unlock_irq(&tasklist_lock); | 310 | write_unlock_irq(&tasklist_lock); |
262 | 311 | ||
312 | if (unlikely(dead)) | ||
313 | release_task(child); | ||
314 | |||
263 | return 0; | 315 | return 0; |
264 | } | 316 | } |
265 | 317 | ||
318 | /* | ||
319 | * Detach all tasks we were using ptrace on. | ||
320 | */ | ||
321 | void exit_ptrace(struct task_struct *tracer) | ||
322 | { | ||
323 | struct task_struct *p, *n; | ||
324 | LIST_HEAD(ptrace_dead); | ||
325 | |||
326 | write_lock_irq(&tasklist_lock); | ||
327 | list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { | ||
328 | if (__ptrace_detach(tracer, p)) | ||
329 | list_add(&p->ptrace_entry, &ptrace_dead); | ||
330 | } | ||
331 | write_unlock_irq(&tasklist_lock); | ||
332 | |||
333 | BUG_ON(!list_empty(&tracer->ptraced)); | ||
334 | |||
335 | list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) { | ||
336 | list_del_init(&p->ptrace_entry); | ||
337 | release_task(p); | ||
338 | } | ||
339 | } | ||
340 | |||
266 | int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) | 341 | int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) |
267 | { | 342 | { |
268 | int copied = 0; | 343 | int copied = 0; |
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index cae8a059cf47..2c7b8457d0d2 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
@@ -122,6 +122,8 @@ static void rcu_barrier_func(void *type) | |||
122 | } | 122 | } |
123 | } | 123 | } |
124 | 124 | ||
125 | static inline void wait_migrated_callbacks(void); | ||
126 | |||
125 | /* | 127 | /* |
126 | * Orchestrate the specified type of RCU barrier, waiting for all | 128 | * Orchestrate the specified type of RCU barrier, waiting for all |
127 | * RCU callbacks of the specified type to complete. | 129 | * RCU callbacks of the specified type to complete. |
@@ -147,6 +149,7 @@ static void _rcu_barrier(enum rcu_barrier type) | |||
147 | complete(&rcu_barrier_completion); | 149 | complete(&rcu_barrier_completion); |
148 | wait_for_completion(&rcu_barrier_completion); | 150 | wait_for_completion(&rcu_barrier_completion); |
149 | mutex_unlock(&rcu_barrier_mutex); | 151 | mutex_unlock(&rcu_barrier_mutex); |
152 | wait_migrated_callbacks(); | ||
150 | } | 153 | } |
151 | 154 | ||
152 | /** | 155 | /** |
@@ -176,9 +179,50 @@ void rcu_barrier_sched(void) | |||
176 | } | 179 | } |
177 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | 180 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); |
178 | 181 | ||
182 | static atomic_t rcu_migrate_type_count = ATOMIC_INIT(0); | ||
183 | static struct rcu_head rcu_migrate_head[3]; | ||
184 | static DECLARE_WAIT_QUEUE_HEAD(rcu_migrate_wq); | ||
185 | |||
186 | static void rcu_migrate_callback(struct rcu_head *notused) | ||
187 | { | ||
188 | if (atomic_dec_and_test(&rcu_migrate_type_count)) | ||
189 | wake_up(&rcu_migrate_wq); | ||
190 | } | ||
191 | |||
192 | static inline void wait_migrated_callbacks(void) | ||
193 | { | ||
194 | wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); | ||
195 | } | ||
196 | |||
197 | static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | ||
198 | unsigned long action, void *hcpu) | ||
199 | { | ||
200 | if (action == CPU_DYING) { | ||
201 | /* | ||
202 | * preempt_disable() in on_each_cpu() prevents stop_machine(), | ||
203 | * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);" | ||
204 | * returns, all online cpus have queued rcu_barrier_func(), | ||
205 | * and the dead cpu(if it exist) queues rcu_migrate_callback()s. | ||
206 | * | ||
207 | * These callbacks ensure _rcu_barrier() waits for all | ||
208 | * RCU callbacks of the specified type to complete. | ||
209 | */ | ||
210 | atomic_set(&rcu_migrate_type_count, 3); | ||
211 | call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); | ||
212 | call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); | ||
213 | call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); | ||
214 | } else if (action == CPU_POST_DEAD) { | ||
215 | /* rcu_migrate_head is protected by cpu_add_remove_lock */ | ||
216 | wait_migrated_callbacks(); | ||
217 | } | ||
218 | |||
219 | return NOTIFY_OK; | ||
220 | } | ||
221 | |||
179 | void __init rcu_init(void) | 222 | void __init rcu_init(void) |
180 | { | 223 | { |
181 | __rcu_init(); | 224 | __rcu_init(); |
225 | hotcpu_notifier(rcu_barrier_cpu_hotplug, 0); | ||
182 | } | 226 | } |
183 | 227 | ||
184 | void rcu_scheduler_starting(void) | 228 | void rcu_scheduler_starting(void) |
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 7c4142a79f0a..9b4a975a4b4a 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -126,6 +126,7 @@ static atomic_t n_rcu_torture_mberror; | |||
126 | static atomic_t n_rcu_torture_error; | 126 | static atomic_t n_rcu_torture_error; |
127 | static long n_rcu_torture_timers = 0; | 127 | static long n_rcu_torture_timers = 0; |
128 | static struct list_head rcu_torture_removed; | 128 | static struct list_head rcu_torture_removed; |
129 | static cpumask_var_t shuffle_tmp_mask; | ||
129 | 130 | ||
130 | static int stutter_pause_test = 0; | 131 | static int stutter_pause_test = 0; |
131 | 132 | ||
@@ -889,10 +890,9 @@ static int rcu_idle_cpu; /* Force all torture tasks off this CPU */ | |||
889 | */ | 890 | */ |
890 | static void rcu_torture_shuffle_tasks(void) | 891 | static void rcu_torture_shuffle_tasks(void) |
891 | { | 892 | { |
892 | cpumask_t tmp_mask; | ||
893 | int i; | 893 | int i; |
894 | 894 | ||
895 | cpus_setall(tmp_mask); | 895 | cpumask_setall(shuffle_tmp_mask); |
896 | get_online_cpus(); | 896 | get_online_cpus(); |
897 | 897 | ||
898 | /* No point in shuffling if there is only one online CPU (ex: UP) */ | 898 | /* No point in shuffling if there is only one online CPU (ex: UP) */ |
@@ -902,29 +902,29 @@ static void rcu_torture_shuffle_tasks(void) | |||
902 | } | 902 | } |
903 | 903 | ||
904 | if (rcu_idle_cpu != -1) | 904 | if (rcu_idle_cpu != -1) |
905 | cpu_clear(rcu_idle_cpu, tmp_mask); | 905 | cpumask_clear_cpu(rcu_idle_cpu, shuffle_tmp_mask); |
906 | 906 | ||
907 | set_cpus_allowed_ptr(current, &tmp_mask); | 907 | set_cpus_allowed_ptr(current, shuffle_tmp_mask); |
908 | 908 | ||
909 | if (reader_tasks) { | 909 | if (reader_tasks) { |
910 | for (i = 0; i < nrealreaders; i++) | 910 | for (i = 0; i < nrealreaders; i++) |
911 | if (reader_tasks[i]) | 911 | if (reader_tasks[i]) |
912 | set_cpus_allowed_ptr(reader_tasks[i], | 912 | set_cpus_allowed_ptr(reader_tasks[i], |
913 | &tmp_mask); | 913 | shuffle_tmp_mask); |
914 | } | 914 | } |
915 | 915 | ||
916 | if (fakewriter_tasks) { | 916 | if (fakewriter_tasks) { |
917 | for (i = 0; i < nfakewriters; i++) | 917 | for (i = 0; i < nfakewriters; i++) |
918 | if (fakewriter_tasks[i]) | 918 | if (fakewriter_tasks[i]) |
919 | set_cpus_allowed_ptr(fakewriter_tasks[i], | 919 | set_cpus_allowed_ptr(fakewriter_tasks[i], |
920 | &tmp_mask); | 920 | shuffle_tmp_mask); |
921 | } | 921 | } |
922 | 922 | ||
923 | if (writer_task) | 923 | if (writer_task) |
924 | set_cpus_allowed_ptr(writer_task, &tmp_mask); | 924 | set_cpus_allowed_ptr(writer_task, shuffle_tmp_mask); |
925 | 925 | ||
926 | if (stats_task) | 926 | if (stats_task) |
927 | set_cpus_allowed_ptr(stats_task, &tmp_mask); | 927 | set_cpus_allowed_ptr(stats_task, shuffle_tmp_mask); |
928 | 928 | ||
929 | if (rcu_idle_cpu == -1) | 929 | if (rcu_idle_cpu == -1) |
930 | rcu_idle_cpu = num_online_cpus() - 1; | 930 | rcu_idle_cpu = num_online_cpus() - 1; |
@@ -1012,6 +1012,7 @@ rcu_torture_cleanup(void) | |||
1012 | if (shuffler_task) { | 1012 | if (shuffler_task) { |
1013 | VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task"); | 1013 | VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task"); |
1014 | kthread_stop(shuffler_task); | 1014 | kthread_stop(shuffler_task); |
1015 | free_cpumask_var(shuffle_tmp_mask); | ||
1015 | } | 1016 | } |
1016 | shuffler_task = NULL; | 1017 | shuffler_task = NULL; |
1017 | 1018 | ||
@@ -1190,10 +1191,18 @@ rcu_torture_init(void) | |||
1190 | } | 1191 | } |
1191 | if (test_no_idle_hz) { | 1192 | if (test_no_idle_hz) { |
1192 | rcu_idle_cpu = num_online_cpus() - 1; | 1193 | rcu_idle_cpu = num_online_cpus() - 1; |
1194 | |||
1195 | if (!alloc_cpumask_var(&shuffle_tmp_mask, GFP_KERNEL)) { | ||
1196 | firsterr = -ENOMEM; | ||
1197 | VERBOSE_PRINTK_ERRSTRING("Failed to alloc mask"); | ||
1198 | goto unwind; | ||
1199 | } | ||
1200 | |||
1193 | /* Create the shuffler thread */ | 1201 | /* Create the shuffler thread */ |
1194 | shuffler_task = kthread_run(rcu_torture_shuffle, NULL, | 1202 | shuffler_task = kthread_run(rcu_torture_shuffle, NULL, |
1195 | "rcu_torture_shuffle"); | 1203 | "rcu_torture_shuffle"); |
1196 | if (IS_ERR(shuffler_task)) { | 1204 | if (IS_ERR(shuffler_task)) { |
1205 | free_cpumask_var(shuffle_tmp_mask); | ||
1197 | firsterr = PTR_ERR(shuffler_task); | 1206 | firsterr = PTR_ERR(shuffler_task); |
1198 | VERBOSE_PRINTK_ERRSTRING("Failed to create shuffler"); | 1207 | VERBOSE_PRINTK_ERRSTRING("Failed to create shuffler"); |
1199 | shuffler_task = NULL; | 1208 | shuffler_task = NULL; |
diff --git a/kernel/relay.c b/kernel/relay.c index 9d79b7854fa6..e92db8c06acf 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
@@ -750,7 +750,7 @@ size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) | |||
750 | * from the scheduler (trying to re-grab | 750 | * from the scheduler (trying to re-grab |
751 | * rq->lock), so defer it. | 751 | * rq->lock), so defer it. |
752 | */ | 752 | */ |
753 | __mod_timer(&buf->timer, jiffies + 1); | 753 | mod_timer(&buf->timer, jiffies + 1); |
754 | } | 754 | } |
755 | 755 | ||
756 | old = buf->data; | 756 | old = buf->data; |
@@ -797,13 +797,15 @@ void relay_subbufs_consumed(struct rchan *chan, | |||
797 | if (!chan) | 797 | if (!chan) |
798 | return; | 798 | return; |
799 | 799 | ||
800 | if (cpu >= NR_CPUS || !chan->buf[cpu]) | 800 | if (cpu >= NR_CPUS || !chan->buf[cpu] || |
801 | subbufs_consumed > chan->n_subbufs) | ||
801 | return; | 802 | return; |
802 | 803 | ||
803 | buf = chan->buf[cpu]; | 804 | buf = chan->buf[cpu]; |
804 | buf->subbufs_consumed += subbufs_consumed; | 805 | if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) |
805 | if (buf->subbufs_consumed > buf->subbufs_produced) | ||
806 | buf->subbufs_consumed = buf->subbufs_produced; | 806 | buf->subbufs_consumed = buf->subbufs_produced; |
807 | else | ||
808 | buf->subbufs_consumed += subbufs_consumed; | ||
807 | } | 809 | } |
808 | EXPORT_SYMBOL_GPL(relay_subbufs_consumed); | 810 | EXPORT_SYMBOL_GPL(relay_subbufs_consumed); |
809 | 811 | ||
diff --git a/kernel/sched.c b/kernel/sched.c index 8e2558c2ba67..2325db2be31b 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |||
331 | */ | 331 | */ |
332 | static DEFINE_SPINLOCK(task_group_lock); | 332 | static DEFINE_SPINLOCK(task_group_lock); |
333 | 333 | ||
334 | #ifdef CONFIG_SMP | ||
335 | static int root_task_group_empty(void) | ||
336 | { | ||
337 | return list_empty(&root_task_group.children); | ||
338 | } | ||
339 | #endif | ||
340 | |||
334 | #ifdef CONFIG_FAIR_GROUP_SCHED | 341 | #ifdef CONFIG_FAIR_GROUP_SCHED |
335 | #ifdef CONFIG_USER_SCHED | 342 | #ifdef CONFIG_USER_SCHED |
336 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 343 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
@@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
391 | 398 | ||
392 | #else | 399 | #else |
393 | 400 | ||
401 | #ifdef CONFIG_SMP | ||
402 | static int root_task_group_empty(void) | ||
403 | { | ||
404 | return 1; | ||
405 | } | ||
406 | #endif | ||
407 | |||
394 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 408 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
395 | static inline struct task_group *task_group(struct task_struct *p) | 409 | static inline struct task_group *task_group(struct task_struct *p) |
396 | { | 410 | { |
@@ -467,11 +481,17 @@ struct rt_rq { | |||
467 | struct rt_prio_array active; | 481 | struct rt_prio_array active; |
468 | unsigned long rt_nr_running; | 482 | unsigned long rt_nr_running; |
469 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 483 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
470 | int highest_prio; /* highest queued rt task prio */ | 484 | struct { |
485 | int curr; /* highest queued rt task prio */ | ||
486 | #ifdef CONFIG_SMP | ||
487 | int next; /* next highest */ | ||
488 | #endif | ||
489 | } highest_prio; | ||
471 | #endif | 490 | #endif |
472 | #ifdef CONFIG_SMP | 491 | #ifdef CONFIG_SMP |
473 | unsigned long rt_nr_migratory; | 492 | unsigned long rt_nr_migratory; |
474 | int overloaded; | 493 | int overloaded; |
494 | struct plist_head pushable_tasks; | ||
475 | #endif | 495 | #endif |
476 | int rt_throttled; | 496 | int rt_throttled; |
477 | u64 rt_time; | 497 | u64 rt_time; |
@@ -549,7 +569,6 @@ struct rq { | |||
549 | unsigned long nr_running; | 569 | unsigned long nr_running; |
550 | #define CPU_LOAD_IDX_MAX 5 | 570 | #define CPU_LOAD_IDX_MAX 5 |
551 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 571 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
552 | unsigned char idle_at_tick; | ||
553 | #ifdef CONFIG_NO_HZ | 572 | #ifdef CONFIG_NO_HZ |
554 | unsigned long last_tick_seen; | 573 | unsigned long last_tick_seen; |
555 | unsigned char in_nohz_recently; | 574 | unsigned char in_nohz_recently; |
@@ -590,6 +609,7 @@ struct rq { | |||
590 | struct root_domain *rd; | 609 | struct root_domain *rd; |
591 | struct sched_domain *sd; | 610 | struct sched_domain *sd; |
592 | 611 | ||
612 | unsigned char idle_at_tick; | ||
593 | /* For active balancing */ | 613 | /* For active balancing */ |
594 | int active_balance; | 614 | int active_balance; |
595 | int push_cpu; | 615 | int push_cpu; |
@@ -618,9 +638,6 @@ struct rq { | |||
618 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 638 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
619 | 639 | ||
620 | /* sys_sched_yield() stats */ | 640 | /* sys_sched_yield() stats */ |
621 | unsigned int yld_exp_empty; | ||
622 | unsigned int yld_act_empty; | ||
623 | unsigned int yld_both_empty; | ||
624 | unsigned int yld_count; | 641 | unsigned int yld_count; |
625 | 642 | ||
626 | /* schedule() stats */ | 643 | /* schedule() stats */ |
@@ -1093,7 +1110,7 @@ static void hrtick_start(struct rq *rq, u64 delay) | |||
1093 | if (rq == this_rq()) { | 1110 | if (rq == this_rq()) { |
1094 | hrtimer_restart(timer); | 1111 | hrtimer_restart(timer); |
1095 | } else if (!rq->hrtick_csd_pending) { | 1112 | } else if (!rq->hrtick_csd_pending) { |
1096 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); | 1113 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
1097 | rq->hrtick_csd_pending = 1; | 1114 | rq->hrtick_csd_pending = 1; |
1098 | } | 1115 | } |
1099 | } | 1116 | } |
@@ -1183,10 +1200,10 @@ static void resched_task(struct task_struct *p) | |||
1183 | 1200 | ||
1184 | assert_spin_locked(&task_rq(p)->lock); | 1201 | assert_spin_locked(&task_rq(p)->lock); |
1185 | 1202 | ||
1186 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 1203 | if (test_tsk_need_resched(p)) |
1187 | return; | 1204 | return; |
1188 | 1205 | ||
1189 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 1206 | set_tsk_need_resched(p); |
1190 | 1207 | ||
1191 | cpu = task_cpu(p); | 1208 | cpu = task_cpu(p); |
1192 | if (cpu == smp_processor_id()) | 1209 | if (cpu == smp_processor_id()) |
@@ -1242,7 +1259,7 @@ void wake_up_idle_cpu(int cpu) | |||
1242 | * lockless. The worst case is that the other CPU runs the | 1259 | * lockless. The worst case is that the other CPU runs the |
1243 | * idle task through an additional NOOP schedule() | 1260 | * idle task through an additional NOOP schedule() |
1244 | */ | 1261 | */ |
1245 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 1262 | set_tsk_need_resched(rq->idle); |
1246 | 1263 | ||
1247 | /* NEED_RESCHED must be visible before we test polling */ | 1264 | /* NEED_RESCHED must be visible before we test polling */ |
1248 | smp_mb(); | 1265 | smp_mb(); |
@@ -1610,21 +1627,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
1610 | 1627 | ||
1611 | #endif | 1628 | #endif |
1612 | 1629 | ||
1630 | #ifdef CONFIG_PREEMPT | ||
1631 | |||
1613 | /* | 1632 | /* |
1614 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 1633 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1634 | * way at the expense of forcing extra atomic operations in all | ||
1635 | * invocations. This assures that the double_lock is acquired using the | ||
1636 | * same underlying policy as the spinlock_t on this architecture, which | ||
1637 | * reduces latency compared to the unfair variant below. However, it | ||
1638 | * also adds more overhead and therefore may reduce throughput. | ||
1615 | */ | 1639 | */ |
1616 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 1640 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1641 | __releases(this_rq->lock) | ||
1642 | __acquires(busiest->lock) | ||
1643 | __acquires(this_rq->lock) | ||
1644 | { | ||
1645 | spin_unlock(&this_rq->lock); | ||
1646 | double_rq_lock(this_rq, busiest); | ||
1647 | |||
1648 | return 1; | ||
1649 | } | ||
1650 | |||
1651 | #else | ||
1652 | /* | ||
1653 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
1654 | * latency by eliminating extra atomic operations when the locks are | ||
1655 | * already in proper order on entry. This favors lower cpu-ids and will | ||
1656 | * grant the double lock to lower cpus over higher ids under contention, | ||
1657 | * regardless of entry order into the function. | ||
1658 | */ | ||
1659 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1617 | __releases(this_rq->lock) | 1660 | __releases(this_rq->lock) |
1618 | __acquires(busiest->lock) | 1661 | __acquires(busiest->lock) |
1619 | __acquires(this_rq->lock) | 1662 | __acquires(this_rq->lock) |
1620 | { | 1663 | { |
1621 | int ret = 0; | 1664 | int ret = 0; |
1622 | 1665 | ||
1623 | if (unlikely(!irqs_disabled())) { | ||
1624 | /* printk() doesn't work good under rq->lock */ | ||
1625 | spin_unlock(&this_rq->lock); | ||
1626 | BUG_ON(1); | ||
1627 | } | ||
1628 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1666 | if (unlikely(!spin_trylock(&busiest->lock))) { |
1629 | if (busiest < this_rq) { | 1667 | if (busiest < this_rq) { |
1630 | spin_unlock(&this_rq->lock); | 1668 | spin_unlock(&this_rq->lock); |
@@ -1637,6 +1675,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1637 | return ret; | 1675 | return ret; |
1638 | } | 1676 | } |
1639 | 1677 | ||
1678 | #endif /* CONFIG_PREEMPT */ | ||
1679 | |||
1680 | /* | ||
1681 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
1682 | */ | ||
1683 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1684 | { | ||
1685 | if (unlikely(!irqs_disabled())) { | ||
1686 | /* printk() doesn't work good under rq->lock */ | ||
1687 | spin_unlock(&this_rq->lock); | ||
1688 | BUG_ON(1); | ||
1689 | } | ||
1690 | |||
1691 | return _double_lock_balance(this_rq, busiest); | ||
1692 | } | ||
1693 | |||
1640 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1694 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1641 | __releases(busiest->lock) | 1695 | __releases(busiest->lock) |
1642 | { | 1696 | { |
@@ -1705,6 +1759,9 @@ static void update_avg(u64 *avg, u64 sample) | |||
1705 | 1759 | ||
1706 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1760 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
1707 | { | 1761 | { |
1762 | if (wakeup) | ||
1763 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
1764 | |||
1708 | sched_info_queued(p); | 1765 | sched_info_queued(p); |
1709 | p->sched_class->enqueue_task(rq, p, wakeup); | 1766 | p->sched_class->enqueue_task(rq, p, wakeup); |
1710 | p->se.on_rq = 1; | 1767 | p->se.on_rq = 1; |
@@ -1712,10 +1769,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
1712 | 1769 | ||
1713 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1770 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
1714 | { | 1771 | { |
1715 | if (sleep && p->se.last_wakeup) { | 1772 | if (sleep) { |
1716 | update_avg(&p->se.avg_overlap, | 1773 | if (p->se.last_wakeup) { |
1717 | p->se.sum_exec_runtime - p->se.last_wakeup); | 1774 | update_avg(&p->se.avg_overlap, |
1718 | p->se.last_wakeup = 0; | 1775 | p->se.sum_exec_runtime - p->se.last_wakeup); |
1776 | p->se.last_wakeup = 0; | ||
1777 | } else { | ||
1778 | update_avg(&p->se.avg_wakeup, | ||
1779 | sysctl_sched_wakeup_granularity); | ||
1780 | } | ||
1719 | } | 1781 | } |
1720 | 1782 | ||
1721 | sched_info_dequeued(p); | 1783 | sched_info_dequeued(p); |
@@ -2017,7 +2079,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
2017 | * it must be off the runqueue _entirely_, and not | 2079 | * it must be off the runqueue _entirely_, and not |
2018 | * preempted! | 2080 | * preempted! |
2019 | * | 2081 | * |
2020 | * So if it wa still runnable (but just not actively | 2082 | * So if it was still runnable (but just not actively |
2021 | * running right now), it's preempted, and we should | 2083 | * running right now), it's preempted, and we should |
2022 | * yield - it could be a while. | 2084 | * yield - it could be a while. |
2023 | */ | 2085 | */ |
@@ -2267,7 +2329,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
2267 | sync = 0; | 2329 | sync = 0; |
2268 | 2330 | ||
2269 | #ifdef CONFIG_SMP | 2331 | #ifdef CONFIG_SMP |
2270 | if (sched_feat(LB_WAKEUP_UPDATE)) { | 2332 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { |
2271 | struct sched_domain *sd; | 2333 | struct sched_domain *sd; |
2272 | 2334 | ||
2273 | this_cpu = raw_smp_processor_id(); | 2335 | this_cpu = raw_smp_processor_id(); |
@@ -2345,6 +2407,22 @@ out_activate: | |||
2345 | activate_task(rq, p, 1); | 2407 | activate_task(rq, p, 1); |
2346 | success = 1; | 2408 | success = 1; |
2347 | 2409 | ||
2410 | /* | ||
2411 | * Only attribute actual wakeups done by this task. | ||
2412 | */ | ||
2413 | if (!in_interrupt()) { | ||
2414 | struct sched_entity *se = ¤t->se; | ||
2415 | u64 sample = se->sum_exec_runtime; | ||
2416 | |||
2417 | if (se->last_wakeup) | ||
2418 | sample -= se->last_wakeup; | ||
2419 | else | ||
2420 | sample -= se->start_runtime; | ||
2421 | update_avg(&se->avg_wakeup, sample); | ||
2422 | |||
2423 | se->last_wakeup = se->sum_exec_runtime; | ||
2424 | } | ||
2425 | |||
2348 | out_running: | 2426 | out_running: |
2349 | trace_sched_wakeup(rq, p, success); | 2427 | trace_sched_wakeup(rq, p, success); |
2350 | check_preempt_curr(rq, p, sync); | 2428 | check_preempt_curr(rq, p, sync); |
@@ -2355,8 +2433,6 @@ out_running: | |||
2355 | p->sched_class->task_wake_up(rq, p); | 2433 | p->sched_class->task_wake_up(rq, p); |
2356 | #endif | 2434 | #endif |
2357 | out: | 2435 | out: |
2358 | current->se.last_wakeup = current->se.sum_exec_runtime; | ||
2359 | |||
2360 | task_rq_unlock(rq, &flags); | 2436 | task_rq_unlock(rq, &flags); |
2361 | 2437 | ||
2362 | return success; | 2438 | return success; |
@@ -2386,6 +2462,8 @@ static void __sched_fork(struct task_struct *p) | |||
2386 | p->se.prev_sum_exec_runtime = 0; | 2462 | p->se.prev_sum_exec_runtime = 0; |
2387 | p->se.last_wakeup = 0; | 2463 | p->se.last_wakeup = 0; |
2388 | p->se.avg_overlap = 0; | 2464 | p->se.avg_overlap = 0; |
2465 | p->se.start_runtime = 0; | ||
2466 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
2389 | 2467 | ||
2390 | #ifdef CONFIG_SCHEDSTATS | 2468 | #ifdef CONFIG_SCHEDSTATS |
2391 | p->se.wait_start = 0; | 2469 | p->se.wait_start = 0; |
@@ -2448,6 +2526,8 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2448 | /* Want to start with kernel preemption disabled. */ | 2526 | /* Want to start with kernel preemption disabled. */ |
2449 | task_thread_info(p)->preempt_count = 1; | 2527 | task_thread_info(p)->preempt_count = 1; |
2450 | #endif | 2528 | #endif |
2529 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | ||
2530 | |||
2451 | put_cpu(); | 2531 | put_cpu(); |
2452 | } | 2532 | } |
2453 | 2533 | ||
@@ -2491,7 +2571,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2491 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2492 | 2572 | ||
2493 | /** | 2573 | /** |
2494 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 2574 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
2495 | * @notifier: notifier struct to register | 2575 | * @notifier: notifier struct to register |
2496 | */ | 2576 | */ |
2497 | void preempt_notifier_register(struct preempt_notifier *notifier) | 2577 | void preempt_notifier_register(struct preempt_notifier *notifier) |
@@ -2588,6 +2668,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2588 | { | 2668 | { |
2589 | struct mm_struct *mm = rq->prev_mm; | 2669 | struct mm_struct *mm = rq->prev_mm; |
2590 | long prev_state; | 2670 | long prev_state; |
2671 | #ifdef CONFIG_SMP | ||
2672 | int post_schedule = 0; | ||
2673 | |||
2674 | if (current->sched_class->needs_post_schedule) | ||
2675 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
2676 | #endif | ||
2591 | 2677 | ||
2592 | rq->prev_mm = NULL; | 2678 | rq->prev_mm = NULL; |
2593 | 2679 | ||
@@ -2606,7 +2692,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2606 | finish_arch_switch(prev); | 2692 | finish_arch_switch(prev); |
2607 | finish_lock_switch(rq, prev); | 2693 | finish_lock_switch(rq, prev); |
2608 | #ifdef CONFIG_SMP | 2694 | #ifdef CONFIG_SMP |
2609 | if (current->sched_class->post_schedule) | 2695 | if (post_schedule) |
2610 | current->sched_class->post_schedule(rq); | 2696 | current->sched_class->post_schedule(rq); |
2611 | #endif | 2697 | #endif |
2612 | 2698 | ||
@@ -2913,6 +2999,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2913 | struct sched_domain *sd, enum cpu_idle_type idle, | 2999 | struct sched_domain *sd, enum cpu_idle_type idle, |
2914 | int *all_pinned) | 3000 | int *all_pinned) |
2915 | { | 3001 | { |
3002 | int tsk_cache_hot = 0; | ||
2916 | /* | 3003 | /* |
2917 | * We do not migrate tasks that are: | 3004 | * We do not migrate tasks that are: |
2918 | * 1) running (obviously), or | 3005 | * 1) running (obviously), or |
@@ -2936,10 +3023,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2936 | * 2) too many balance attempts have failed. | 3023 | * 2) too many balance attempts have failed. |
2937 | */ | 3024 | */ |
2938 | 3025 | ||
2939 | if (!task_hot(p, rq->clock, sd) || | 3026 | tsk_cache_hot = task_hot(p, rq->clock, sd); |
2940 | sd->nr_balance_failed > sd->cache_nice_tries) { | 3027 | if (!tsk_cache_hot || |
3028 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
2941 | #ifdef CONFIG_SCHEDSTATS | 3029 | #ifdef CONFIG_SCHEDSTATS |
2942 | if (task_hot(p, rq->clock, sd)) { | 3030 | if (tsk_cache_hot) { |
2943 | schedstat_inc(sd, lb_hot_gained[idle]); | 3031 | schedstat_inc(sd, lb_hot_gained[idle]); |
2944 | schedstat_inc(p, se.nr_forced_migrations); | 3032 | schedstat_inc(p, se.nr_forced_migrations); |
2945 | } | 3033 | } |
@@ -2947,7 +3035,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2947 | return 1; | 3035 | return 1; |
2948 | } | 3036 | } |
2949 | 3037 | ||
2950 | if (task_hot(p, rq->clock, sd)) { | 3038 | if (tsk_cache_hot) { |
2951 | schedstat_inc(p, se.nr_failed_migrations_hot); | 3039 | schedstat_inc(p, se.nr_failed_migrations_hot); |
2952 | return 0; | 3040 | return 0; |
2953 | } | 3041 | } |
@@ -2987,6 +3075,16 @@ next: | |||
2987 | pulled++; | 3075 | pulled++; |
2988 | rem_load_move -= p->se.load.weight; | 3076 | rem_load_move -= p->se.load.weight; |
2989 | 3077 | ||
3078 | #ifdef CONFIG_PREEMPT | ||
3079 | /* | ||
3080 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3081 | * will stop after the first task is pulled to minimize the critical | ||
3082 | * section. | ||
3083 | */ | ||
3084 | if (idle == CPU_NEWLY_IDLE) | ||
3085 | goto out; | ||
3086 | #endif | ||
3087 | |||
2990 | /* | 3088 | /* |
2991 | * We only want to steal up to the prescribed amount of weighted load. | 3089 | * We only want to steal up to the prescribed amount of weighted load. |
2992 | */ | 3090 | */ |
@@ -3033,9 +3131,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3033 | sd, idle, all_pinned, &this_best_prio); | 3131 | sd, idle, all_pinned, &this_best_prio); |
3034 | class = class->next; | 3132 | class = class->next; |
3035 | 3133 | ||
3134 | #ifdef CONFIG_PREEMPT | ||
3135 | /* | ||
3136 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3137 | * kernels will stop after the first task is pulled to minimize | ||
3138 | * the critical section. | ||
3139 | */ | ||
3036 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3140 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
3037 | break; | 3141 | break; |
3038 | 3142 | #endif | |
3039 | } while (class && max_load_move > total_load_moved); | 3143 | } while (class && max_load_move > total_load_moved); |
3040 | 3144 | ||
3041 | return total_load_moved > 0; | 3145 | return total_load_moved > 0; |
@@ -3085,246 +3189,480 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3085 | 3189 | ||
3086 | return 0; | 3190 | return 0; |
3087 | } | 3191 | } |
3088 | 3192 | /********** Helpers for find_busiest_group ************************/ | |
3089 | /* | 3193 | /* |
3090 | * find_busiest_group finds and returns the busiest CPU group within the | 3194 | * sd_lb_stats - Structure to store the statistics of a sched_domain |
3091 | * domain. It calculates and returns the amount of weighted load which | 3195 | * during load balancing. |
3092 | * should be moved to restore balance via the imbalance parameter. | ||
3093 | */ | 3196 | */ |
3094 | static struct sched_group * | 3197 | struct sd_lb_stats { |
3095 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 3198 | struct sched_group *busiest; /* Busiest group in this sd */ |
3096 | unsigned long *imbalance, enum cpu_idle_type idle, | 3199 | struct sched_group *this; /* Local group in this sd */ |
3097 | int *sd_idle, const struct cpumask *cpus, int *balance) | 3200 | unsigned long total_load; /* Total load of all groups in sd */ |
3098 | { | 3201 | unsigned long total_pwr; /* Total power of all groups in sd */ |
3099 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 3202 | unsigned long avg_load; /* Average load across all groups in sd */ |
3100 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 3203 | |
3101 | unsigned long max_pull; | 3204 | /** Statistics of this group */ |
3102 | unsigned long busiest_load_per_task, busiest_nr_running; | 3205 | unsigned long this_load; |
3103 | unsigned long this_load_per_task, this_nr_running; | 3206 | unsigned long this_load_per_task; |
3104 | int load_idx, group_imb = 0; | 3207 | unsigned long this_nr_running; |
3208 | |||
3209 | /* Statistics of the busiest group */ | ||
3210 | unsigned long max_load; | ||
3211 | unsigned long busiest_load_per_task; | ||
3212 | unsigned long busiest_nr_running; | ||
3213 | |||
3214 | int group_imb; /* Is there imbalance in this sd */ | ||
3105 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3215 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3106 | int power_savings_balance = 1; | 3216 | int power_savings_balance; /* Is powersave balance needed for this sd */ |
3107 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | 3217 | struct sched_group *group_min; /* Least loaded group in sd */ |
3108 | unsigned long min_nr_running = ULONG_MAX; | 3218 | struct sched_group *group_leader; /* Group which relieves group_min */ |
3109 | struct sched_group *group_min = NULL, *group_leader = NULL; | 3219 | unsigned long min_load_per_task; /* load_per_task in group_min */ |
3220 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3221 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3110 | #endif | 3222 | #endif |
3223 | }; | ||
3224 | |||
3225 | /* | ||
3226 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3227 | */ | ||
3228 | struct sg_lb_stats { | ||
3229 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3230 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3231 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3232 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3233 | unsigned long group_capacity; | ||
3234 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3235 | }; | ||
3111 | 3236 | ||
3112 | max_load = this_load = total_load = total_pwr = 0; | 3237 | /** |
3113 | busiest_load_per_task = busiest_nr_running = 0; | 3238 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. |
3114 | this_load_per_task = this_nr_running = 0; | 3239 | * @group: The group whose first cpu is to be returned. |
3240 | */ | ||
3241 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3242 | { | ||
3243 | return cpumask_first(sched_group_cpus(group)); | ||
3244 | } | ||
3115 | 3245 | ||
3116 | if (idle == CPU_NOT_IDLE) | 3246 | /** |
3247 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3248 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3249 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3250 | */ | ||
3251 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3252 | enum cpu_idle_type idle) | ||
3253 | { | ||
3254 | int load_idx; | ||
3255 | |||
3256 | switch (idle) { | ||
3257 | case CPU_NOT_IDLE: | ||
3117 | load_idx = sd->busy_idx; | 3258 | load_idx = sd->busy_idx; |
3118 | else if (idle == CPU_NEWLY_IDLE) | 3259 | break; |
3260 | |||
3261 | case CPU_NEWLY_IDLE: | ||
3119 | load_idx = sd->newidle_idx; | 3262 | load_idx = sd->newidle_idx; |
3120 | else | 3263 | break; |
3264 | default: | ||
3121 | load_idx = sd->idle_idx; | 3265 | load_idx = sd->idle_idx; |
3266 | break; | ||
3267 | } | ||
3122 | 3268 | ||
3123 | do { | 3269 | return load_idx; |
3124 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; | 3270 | } |
3125 | int local_group; | ||
3126 | int i; | ||
3127 | int __group_imb = 0; | ||
3128 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3129 | unsigned long sum_nr_running, sum_weighted_load; | ||
3130 | unsigned long sum_avg_load_per_task; | ||
3131 | unsigned long avg_load_per_task; | ||
3132 | 3271 | ||
3133 | local_group = cpumask_test_cpu(this_cpu, | ||
3134 | sched_group_cpus(group)); | ||
3135 | 3272 | ||
3136 | if (local_group) | 3273 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3137 | balance_cpu = cpumask_first(sched_group_cpus(group)); | 3274 | /** |
3275 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3276 | * the given sched_domain, during load balancing. | ||
3277 | * | ||
3278 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3279 | * @sds: Variable containing the statistics for sd. | ||
3280 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3281 | */ | ||
3282 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3283 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3284 | { | ||
3285 | /* | ||
3286 | * Busy processors will not participate in power savings | ||
3287 | * balance. | ||
3288 | */ | ||
3289 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3290 | sds->power_savings_balance = 0; | ||
3291 | else { | ||
3292 | sds->power_savings_balance = 1; | ||
3293 | sds->min_nr_running = ULONG_MAX; | ||
3294 | sds->leader_nr_running = 0; | ||
3295 | } | ||
3296 | } | ||
3138 | 3297 | ||
3139 | /* Tally up the load of all CPUs in the group */ | 3298 | /** |
3140 | sum_weighted_load = sum_nr_running = avg_load = 0; | 3299 | * update_sd_power_savings_stats - Update the power saving stats for a |
3141 | sum_avg_load_per_task = avg_load_per_task = 0; | 3300 | * sched_domain while performing load balancing. |
3301 | * | ||
3302 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3303 | * @sds: Variable containing the statistics of the sched_domain | ||
3304 | * @local_group: Does group contain the CPU for which we're performing | ||
3305 | * load balancing ? | ||
3306 | * @sgs: Variable containing the statistics of the group. | ||
3307 | */ | ||
3308 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3309 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3310 | { | ||
3142 | 3311 | ||
3143 | max_cpu_load = 0; | 3312 | if (!sds->power_savings_balance) |
3144 | min_cpu_load = ~0UL; | 3313 | return; |
3145 | 3314 | ||
3146 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | 3315 | /* |
3147 | struct rq *rq = cpu_rq(i); | 3316 | * If the local group is idle or completely loaded |
3317 | * no need to do power savings balance at this domain | ||
3318 | */ | ||
3319 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3320 | !sds->this_nr_running)) | ||
3321 | sds->power_savings_balance = 0; | ||
3148 | 3322 | ||
3149 | if (*sd_idle && rq->nr_running) | 3323 | /* |
3150 | *sd_idle = 0; | 3324 | * If a group is already running at full capacity or idle, |
3325 | * don't include that group in power savings calculations | ||
3326 | */ | ||
3327 | if (!sds->power_savings_balance || | ||
3328 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3329 | !sgs->sum_nr_running) | ||
3330 | return; | ||
3151 | 3331 | ||
3152 | /* Bias balancing toward cpus of our domain */ | 3332 | /* |
3153 | if (local_group) { | 3333 | * Calculate the group which has the least non-idle load. |
3154 | if (idle_cpu(i) && !first_idle_cpu) { | 3334 | * This is the group from where we need to pick up the load |
3155 | first_idle_cpu = 1; | 3335 | * for saving power |
3156 | balance_cpu = i; | 3336 | */ |
3157 | } | 3337 | if ((sgs->sum_nr_running < sds->min_nr_running) || |
3338 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3339 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3340 | sds->group_min = group; | ||
3341 | sds->min_nr_running = sgs->sum_nr_running; | ||
3342 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3343 | sgs->sum_nr_running; | ||
3344 | } | ||
3158 | 3345 | ||
3159 | load = target_load(i, load_idx); | 3346 | /* |
3160 | } else { | 3347 | * Calculate the group which is almost near its |
3161 | load = source_load(i, load_idx); | 3348 | * capacity but still has some space to pick up some load |
3162 | if (load > max_cpu_load) | 3349 | * from other group and save more power |
3163 | max_cpu_load = load; | 3350 | */ |
3164 | if (min_cpu_load > load) | 3351 | if (sgs->sum_nr_running > sgs->group_capacity - 1) |
3165 | min_cpu_load = load; | 3352 | return; |
3166 | } | ||
3167 | 3353 | ||
3168 | avg_load += load; | 3354 | if (sgs->sum_nr_running > sds->leader_nr_running || |
3169 | sum_nr_running += rq->nr_running; | 3355 | (sgs->sum_nr_running == sds->leader_nr_running && |
3170 | sum_weighted_load += weighted_cpuload(i); | 3356 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { |
3357 | sds->group_leader = group; | ||
3358 | sds->leader_nr_running = sgs->sum_nr_running; | ||
3359 | } | ||
3360 | } | ||
3171 | 3361 | ||
3172 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 3362 | /** |
3173 | } | 3363 | * check_power_save_busiest_group - see if there is potential for some power-savings balance |
3364 | * @sds: Variable containing the statistics of the sched_domain | ||
3365 | * under consideration. | ||
3366 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3367 | * @imbalance: Variable to store the imbalance. | ||
3368 | * | ||
3369 | * Description: | ||
3370 | * Check if we have potential to perform some power-savings balance. | ||
3371 | * If yes, set the busiest group to be the least loaded group in the | ||
3372 | * sched_domain, so that it's CPUs can be put to idle. | ||
3373 | * | ||
3374 | * Returns 1 if there is potential to perform power-savings balance. | ||
3375 | * Else returns 0. | ||
3376 | */ | ||
3377 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3378 | int this_cpu, unsigned long *imbalance) | ||
3379 | { | ||
3380 | if (!sds->power_savings_balance) | ||
3381 | return 0; | ||
3174 | 3382 | ||
3175 | /* | 3383 | if (sds->this != sds->group_leader || |
3176 | * First idle cpu or the first cpu(busiest) in this sched group | 3384 | sds->group_leader == sds->group_min) |
3177 | * is eligible for doing load balancing at this and above | 3385 | return 0; |
3178 | * domains. In the newly idle case, we will allow all the cpu's | ||
3179 | * to do the newly idle load balance. | ||
3180 | */ | ||
3181 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
3182 | balance_cpu != this_cpu && balance) { | ||
3183 | *balance = 0; | ||
3184 | goto ret; | ||
3185 | } | ||
3186 | 3386 | ||
3187 | total_load += avg_load; | 3387 | *imbalance = sds->min_load_per_task; |
3188 | total_pwr += group->__cpu_power; | 3388 | sds->busiest = sds->group_min; |
3189 | 3389 | ||
3190 | /* Adjust by relative CPU power of the group */ | 3390 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { |
3191 | avg_load = sg_div_cpu_power(group, | 3391 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = |
3192 | avg_load * SCHED_LOAD_SCALE); | 3392 | group_first_cpu(sds->group_leader); |
3393 | } | ||
3193 | 3394 | ||
3395 | return 1; | ||
3194 | 3396 | ||
3195 | /* | 3397 | } |
3196 | * Consider the group unbalanced when the imbalance is larger | 3398 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
3197 | * than the average weight of two tasks. | 3399 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, |
3198 | * | 3400 | struct sd_lb_stats *sds, enum cpu_idle_type idle) |
3199 | * APZ: with cgroup the avg task weight can vary wildly and | 3401 | { |
3200 | * might not be a suitable number - should we keep a | 3402 | return; |
3201 | * normalized nr_running number somewhere that negates | 3403 | } |
3202 | * the hierarchy? | 3404 | |
3203 | */ | 3405 | static inline void update_sd_power_savings_stats(struct sched_group *group, |
3204 | avg_load_per_task = sg_div_cpu_power(group, | 3406 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) |
3205 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | 3407 | { |
3408 | return; | ||
3409 | } | ||
3410 | |||
3411 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3412 | int this_cpu, unsigned long *imbalance) | ||
3413 | { | ||
3414 | return 0; | ||
3415 | } | ||
3416 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3417 | |||
3418 | |||
3419 | /** | ||
3420 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3421 | * @group: sched_group whose statistics are to be updated. | ||
3422 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3423 | * @idle: Idle status of this_cpu | ||
3424 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3425 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3426 | * @local_group: Does group contain this_cpu. | ||
3427 | * @cpus: Set of cpus considered for load balancing. | ||
3428 | * @balance: Should we balance. | ||
3429 | * @sgs: variable to hold the statistics for this group. | ||
3430 | */ | ||
3431 | static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | ||
3432 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
3433 | int local_group, const struct cpumask *cpus, | ||
3434 | int *balance, struct sg_lb_stats *sgs) | ||
3435 | { | ||
3436 | unsigned long load, max_cpu_load, min_cpu_load; | ||
3437 | int i; | ||
3438 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3439 | unsigned long sum_avg_load_per_task; | ||
3440 | unsigned long avg_load_per_task; | ||
3206 | 3441 | ||
3207 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3442 | if (local_group) |
3208 | __group_imb = 1; | 3443 | balance_cpu = group_first_cpu(group); |
3209 | 3444 | ||
3210 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 3445 | /* Tally up the load of all CPUs in the group */ |
3446 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3447 | max_cpu_load = 0; | ||
3448 | min_cpu_load = ~0UL; | ||
3211 | 3449 | ||
3450 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3451 | struct rq *rq = cpu_rq(i); | ||
3452 | |||
3453 | if (*sd_idle && rq->nr_running) | ||
3454 | *sd_idle = 0; | ||
3455 | |||
3456 | /* Bias balancing toward cpus of our domain */ | ||
3212 | if (local_group) { | 3457 | if (local_group) { |
3213 | this_load = avg_load; | 3458 | if (idle_cpu(i) && !first_idle_cpu) { |
3214 | this = group; | 3459 | first_idle_cpu = 1; |
3215 | this_nr_running = sum_nr_running; | 3460 | balance_cpu = i; |
3216 | this_load_per_task = sum_weighted_load; | 3461 | } |
3217 | } else if (avg_load > max_load && | 3462 | |
3218 | (sum_nr_running > group_capacity || __group_imb)) { | 3463 | load = target_load(i, load_idx); |
3219 | max_load = avg_load; | 3464 | } else { |
3220 | busiest = group; | 3465 | load = source_load(i, load_idx); |
3221 | busiest_nr_running = sum_nr_running; | 3466 | if (load > max_cpu_load) |
3222 | busiest_load_per_task = sum_weighted_load; | 3467 | max_cpu_load = load; |
3223 | group_imb = __group_imb; | 3468 | if (min_cpu_load > load) |
3469 | min_cpu_load = load; | ||
3224 | } | 3470 | } |
3225 | 3471 | ||
3226 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3472 | sgs->group_load += load; |
3227 | /* | 3473 | sgs->sum_nr_running += rq->nr_running; |
3228 | * Busy processors will not participate in power savings | 3474 | sgs->sum_weighted_load += weighted_cpuload(i); |
3229 | * balance. | ||
3230 | */ | ||
3231 | if (idle == CPU_NOT_IDLE || | ||
3232 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3233 | goto group_next; | ||
3234 | 3475 | ||
3235 | /* | 3476 | sum_avg_load_per_task += cpu_avg_load_per_task(i); |
3236 | * If the local group is idle or completely loaded | 3477 | } |
3237 | * no need to do power savings balance at this domain | ||
3238 | */ | ||
3239 | if (local_group && (this_nr_running >= group_capacity || | ||
3240 | !this_nr_running)) | ||
3241 | power_savings_balance = 0; | ||
3242 | 3478 | ||
3243 | /* | 3479 | /* |
3244 | * If a group is already running at full capacity or idle, | 3480 | * First idle cpu or the first cpu(busiest) in this sched group |
3245 | * don't include that group in power savings calculations | 3481 | * is eligible for doing load balancing at this and above |
3246 | */ | 3482 | * domains. In the newly idle case, we will allow all the cpu's |
3247 | if (!power_savings_balance || sum_nr_running >= group_capacity | 3483 | * to do the newly idle load balance. |
3248 | || !sum_nr_running) | 3484 | */ |
3249 | goto group_next; | 3485 | if (idle != CPU_NEWLY_IDLE && local_group && |
3486 | balance_cpu != this_cpu && balance) { | ||
3487 | *balance = 0; | ||
3488 | return; | ||
3489 | } | ||
3250 | 3490 | ||
3251 | /* | 3491 | /* Adjust by relative CPU power of the group */ |
3252 | * Calculate the group which has the least non-idle load. | 3492 | sgs->avg_load = sg_div_cpu_power(group, |
3253 | * This is the group from where we need to pick up the load | 3493 | sgs->group_load * SCHED_LOAD_SCALE); |
3254 | * for saving power | ||
3255 | */ | ||
3256 | if ((sum_nr_running < min_nr_running) || | ||
3257 | (sum_nr_running == min_nr_running && | ||
3258 | cpumask_first(sched_group_cpus(group)) > | ||
3259 | cpumask_first(sched_group_cpus(group_min)))) { | ||
3260 | group_min = group; | ||
3261 | min_nr_running = sum_nr_running; | ||
3262 | min_load_per_task = sum_weighted_load / | ||
3263 | sum_nr_running; | ||
3264 | } | ||
3265 | 3494 | ||
3266 | /* | 3495 | |
3267 | * Calculate the group which is almost near its | 3496 | /* |
3268 | * capacity but still has some space to pick up some load | 3497 | * Consider the group unbalanced when the imbalance is larger |
3269 | * from other group and save more power | 3498 | * than the average weight of two tasks. |
3270 | */ | 3499 | * |
3271 | if (sum_nr_running <= group_capacity - 1) { | 3500 | * APZ: with cgroup the avg task weight can vary wildly and |
3272 | if (sum_nr_running > leader_nr_running || | 3501 | * might not be a suitable number - should we keep a |
3273 | (sum_nr_running == leader_nr_running && | 3502 | * normalized nr_running number somewhere that negates |
3274 | cpumask_first(sched_group_cpus(group)) < | 3503 | * the hierarchy? |
3275 | cpumask_first(sched_group_cpus(group_leader)))) { | 3504 | */ |
3276 | group_leader = group; | 3505 | avg_load_per_task = sg_div_cpu_power(group, |
3277 | leader_nr_running = sum_nr_running; | 3506 | sum_avg_load_per_task * SCHED_LOAD_SCALE); |
3278 | } | 3507 | |
3508 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
3509 | sgs->group_imb = 1; | ||
3510 | |||
3511 | sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | ||
3512 | |||
3513 | } | ||
3514 | |||
3515 | /** | ||
3516 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
3517 | * @sd: sched_domain whose statistics are to be updated. | ||
3518 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3519 | * @idle: Idle status of this_cpu | ||
3520 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3521 | * @cpus: Set of cpus considered for load balancing. | ||
3522 | * @balance: Should we balance. | ||
3523 | * @sds: variable to hold the statistics for this sched_domain. | ||
3524 | */ | ||
3525 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3526 | enum cpu_idle_type idle, int *sd_idle, | ||
3527 | const struct cpumask *cpus, int *balance, | ||
3528 | struct sd_lb_stats *sds) | ||
3529 | { | ||
3530 | struct sched_group *group = sd->groups; | ||
3531 | struct sg_lb_stats sgs; | ||
3532 | int load_idx; | ||
3533 | |||
3534 | init_sd_power_savings_stats(sd, sds, idle); | ||
3535 | load_idx = get_sd_load_idx(sd, idle); | ||
3536 | |||
3537 | do { | ||
3538 | int local_group; | ||
3539 | |||
3540 | local_group = cpumask_test_cpu(this_cpu, | ||
3541 | sched_group_cpus(group)); | ||
3542 | memset(&sgs, 0, sizeof(sgs)); | ||
3543 | update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, | ||
3544 | local_group, cpus, balance, &sgs); | ||
3545 | |||
3546 | if (local_group && balance && !(*balance)) | ||
3547 | return; | ||
3548 | |||
3549 | sds->total_load += sgs.group_load; | ||
3550 | sds->total_pwr += group->__cpu_power; | ||
3551 | |||
3552 | if (local_group) { | ||
3553 | sds->this_load = sgs.avg_load; | ||
3554 | sds->this = group; | ||
3555 | sds->this_nr_running = sgs.sum_nr_running; | ||
3556 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
3557 | } else if (sgs.avg_load > sds->max_load && | ||
3558 | (sgs.sum_nr_running > sgs.group_capacity || | ||
3559 | sgs.group_imb)) { | ||
3560 | sds->max_load = sgs.avg_load; | ||
3561 | sds->busiest = group; | ||
3562 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
3563 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
3564 | sds->group_imb = sgs.group_imb; | ||
3279 | } | 3565 | } |
3280 | group_next: | 3566 | |
3281 | #endif | 3567 | update_sd_power_savings_stats(group, sds, local_group, &sgs); |
3282 | group = group->next; | 3568 | group = group->next; |
3283 | } while (group != sd->groups); | 3569 | } while (group != sd->groups); |
3284 | 3570 | ||
3285 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 3571 | } |
3286 | goto out_balanced; | ||
3287 | |||
3288 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | ||
3289 | 3572 | ||
3290 | if (this_load >= avg_load || | 3573 | /** |
3291 | 100*max_load <= sd->imbalance_pct*this_load) | 3574 | * fix_small_imbalance - Calculate the minor imbalance that exists |
3292 | goto out_balanced; | 3575 | * amongst the groups of a sched_domain, during |
3576 | * load balancing. | ||
3577 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
3578 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
3579 | * @imbalance: Variable to store the imbalance. | ||
3580 | */ | ||
3581 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
3582 | int this_cpu, unsigned long *imbalance) | ||
3583 | { | ||
3584 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
3585 | unsigned int imbn = 2; | ||
3586 | |||
3587 | if (sds->this_nr_running) { | ||
3588 | sds->this_load_per_task /= sds->this_nr_running; | ||
3589 | if (sds->busiest_load_per_task > | ||
3590 | sds->this_load_per_task) | ||
3591 | imbn = 1; | ||
3592 | } else | ||
3593 | sds->this_load_per_task = | ||
3594 | cpu_avg_load_per_task(this_cpu); | ||
3293 | 3595 | ||
3294 | busiest_load_per_task /= busiest_nr_running; | 3596 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= |
3295 | if (group_imb) | 3597 | sds->busiest_load_per_task * imbn) { |
3296 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | 3598 | *imbalance = sds->busiest_load_per_task; |
3599 | return; | ||
3600 | } | ||
3297 | 3601 | ||
3298 | /* | 3602 | /* |
3299 | * We're trying to get all the cpus to the average_load, so we don't | 3603 | * OK, we don't have enough imbalance to justify moving tasks, |
3300 | * want to push ourselves above the average load, nor do we wish to | 3604 | * however we may be able to increase total CPU power used by |
3301 | * reduce the max loaded cpu below the average load, as either of these | 3605 | * moving them. |
3302 | * actions would just result in more rebalancing later, and ping-pong | ||
3303 | * tasks around. Thus we look for the minimum possible imbalance. | ||
3304 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
3305 | * be counted as no imbalance for these purposes -- we can't fix that | ||
3306 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
3307 | * appear as very large values with unsigned longs. | ||
3308 | */ | 3606 | */ |
3309 | if (max_load <= busiest_load_per_task) | ||
3310 | goto out_balanced; | ||
3311 | 3607 | ||
3608 | pwr_now += sds->busiest->__cpu_power * | ||
3609 | min(sds->busiest_load_per_task, sds->max_load); | ||
3610 | pwr_now += sds->this->__cpu_power * | ||
3611 | min(sds->this_load_per_task, sds->this_load); | ||
3612 | pwr_now /= SCHED_LOAD_SCALE; | ||
3613 | |||
3614 | /* Amount of load we'd subtract */ | ||
3615 | tmp = sg_div_cpu_power(sds->busiest, | ||
3616 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3617 | if (sds->max_load > tmp) | ||
3618 | pwr_move += sds->busiest->__cpu_power * | ||
3619 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3620 | |||
3621 | /* Amount of load we'd add */ | ||
3622 | if (sds->max_load * sds->busiest->__cpu_power < | ||
3623 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3624 | tmp = sg_div_cpu_power(sds->this, | ||
3625 | sds->max_load * sds->busiest->__cpu_power); | ||
3626 | else | ||
3627 | tmp = sg_div_cpu_power(sds->this, | ||
3628 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3629 | pwr_move += sds->this->__cpu_power * | ||
3630 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3631 | pwr_move /= SCHED_LOAD_SCALE; | ||
3632 | |||
3633 | /* Move if we gain throughput */ | ||
3634 | if (pwr_move > pwr_now) | ||
3635 | *imbalance = sds->busiest_load_per_task; | ||
3636 | } | ||
3637 | |||
3638 | /** | ||
3639 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3640 | * groups of a given sched_domain during load balance. | ||
3641 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3642 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
3643 | * @imbalance: The variable to store the imbalance. | ||
3644 | */ | ||
3645 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
3646 | unsigned long *imbalance) | ||
3647 | { | ||
3648 | unsigned long max_pull; | ||
3312 | /* | 3649 | /* |
3313 | * In the presence of smp nice balancing, certain scenarios can have | 3650 | * In the presence of smp nice balancing, certain scenarios can have |
3314 | * max load less than avg load(as we skip the groups at or below | 3651 | * max load less than avg load(as we skip the groups at or below |
3315 | * its cpu_power, while calculating max_load..) | 3652 | * its cpu_power, while calculating max_load..) |
3316 | */ | 3653 | */ |
3317 | if (max_load < avg_load) { | 3654 | if (sds->max_load < sds->avg_load) { |
3318 | *imbalance = 0; | 3655 | *imbalance = 0; |
3319 | goto small_imbalance; | 3656 | return fix_small_imbalance(sds, this_cpu, imbalance); |
3320 | } | 3657 | } |
3321 | 3658 | ||
3322 | /* Don't want to pull so many tasks that a group would go idle */ | 3659 | /* Don't want to pull so many tasks that a group would go idle */ |
3323 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 3660 | max_pull = min(sds->max_load - sds->avg_load, |
3661 | sds->max_load - sds->busiest_load_per_task); | ||
3324 | 3662 | ||
3325 | /* How much load to actually move to equalise the imbalance */ | 3663 | /* How much load to actually move to equalise the imbalance */ |
3326 | *imbalance = min(max_pull * busiest->__cpu_power, | 3664 | *imbalance = min(max_pull * sds->busiest->__cpu_power, |
3327 | (avg_load - this_load) * this->__cpu_power) | 3665 | (sds->avg_load - sds->this_load) * sds->this->__cpu_power) |
3328 | / SCHED_LOAD_SCALE; | 3666 | / SCHED_LOAD_SCALE; |
3329 | 3667 | ||
3330 | /* | 3668 | /* |
@@ -3333,78 +3671,110 @@ group_next: | |||
3333 | * a think about bumping its value to force at least one task to be | 3671 | * a think about bumping its value to force at least one task to be |
3334 | * moved | 3672 | * moved |
3335 | */ | 3673 | */ |
3336 | if (*imbalance < busiest_load_per_task) { | 3674 | if (*imbalance < sds->busiest_load_per_task) |
3337 | unsigned long tmp, pwr_now, pwr_move; | 3675 | return fix_small_imbalance(sds, this_cpu, imbalance); |
3338 | unsigned int imbn; | ||
3339 | |||
3340 | small_imbalance: | ||
3341 | pwr_move = pwr_now = 0; | ||
3342 | imbn = 2; | ||
3343 | if (this_nr_running) { | ||
3344 | this_load_per_task /= this_nr_running; | ||
3345 | if (busiest_load_per_task > this_load_per_task) | ||
3346 | imbn = 1; | ||
3347 | } else | ||
3348 | this_load_per_task = cpu_avg_load_per_task(this_cpu); | ||
3349 | 3676 | ||
3350 | if (max_load - this_load + busiest_load_per_task >= | 3677 | } |
3351 | busiest_load_per_task * imbn) { | 3678 | /******* find_busiest_group() helpers end here *********************/ |
3352 | *imbalance = busiest_load_per_task; | ||
3353 | return busiest; | ||
3354 | } | ||
3355 | 3679 | ||
3356 | /* | 3680 | /** |
3357 | * OK, we don't have enough imbalance to justify moving tasks, | 3681 | * find_busiest_group - Returns the busiest group within the sched_domain |
3358 | * however we may be able to increase total CPU power used by | 3682 | * if there is an imbalance. If there isn't an imbalance, and |
3359 | * moving them. | 3683 | * the user has opted for power-savings, it returns a group whose |
3360 | */ | 3684 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if |
3685 | * such a group exists. | ||
3686 | * | ||
3687 | * Also calculates the amount of weighted load which should be moved | ||
3688 | * to restore balance. | ||
3689 | * | ||
3690 | * @sd: The sched_domain whose busiest group is to be returned. | ||
3691 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
3692 | * @imbalance: Variable which stores amount of weighted load which should | ||
3693 | * be moved to restore balance/put a group to idle. | ||
3694 | * @idle: The idle status of this_cpu. | ||
3695 | * @sd_idle: The idleness of sd | ||
3696 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
3697 | * @balance: Pointer to a variable indicating if this_cpu | ||
3698 | * is the appropriate cpu to perform load balancing at this_level. | ||
3699 | * | ||
3700 | * Returns: - the busiest group if imbalance exists. | ||
3701 | * - If no imbalance and user has opted for power-savings balance, | ||
3702 | * return the least loaded group whose CPUs can be | ||
3703 | * put to idle by rebalancing its tasks onto our group. | ||
3704 | */ | ||
3705 | static struct sched_group * | ||
3706 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
3707 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
3708 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
3709 | { | ||
3710 | struct sd_lb_stats sds; | ||
3361 | 3711 | ||
3362 | pwr_now += busiest->__cpu_power * | 3712 | memset(&sds, 0, sizeof(sds)); |
3363 | min(busiest_load_per_task, max_load); | ||
3364 | pwr_now += this->__cpu_power * | ||
3365 | min(this_load_per_task, this_load); | ||
3366 | pwr_now /= SCHED_LOAD_SCALE; | ||
3367 | |||
3368 | /* Amount of load we'd subtract */ | ||
3369 | tmp = sg_div_cpu_power(busiest, | ||
3370 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3371 | if (max_load > tmp) | ||
3372 | pwr_move += busiest->__cpu_power * | ||
3373 | min(busiest_load_per_task, max_load - tmp); | ||
3374 | |||
3375 | /* Amount of load we'd add */ | ||
3376 | if (max_load * busiest->__cpu_power < | ||
3377 | busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3378 | tmp = sg_div_cpu_power(this, | ||
3379 | max_load * busiest->__cpu_power); | ||
3380 | else | ||
3381 | tmp = sg_div_cpu_power(this, | ||
3382 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3383 | pwr_move += this->__cpu_power * | ||
3384 | min(this_load_per_task, this_load + tmp); | ||
3385 | pwr_move /= SCHED_LOAD_SCALE; | ||
3386 | 3713 | ||
3387 | /* Move if we gain throughput */ | 3714 | /* |
3388 | if (pwr_move > pwr_now) | 3715 | * Compute the various statistics relavent for load balancing at |
3389 | *imbalance = busiest_load_per_task; | 3716 | * this level. |
3390 | } | 3717 | */ |
3718 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
3719 | balance, &sds); | ||
3720 | |||
3721 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
3722 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
3723 | * at this level. | ||
3724 | * 2) There is no busy sibling group to pull from. | ||
3725 | * 3) This group is the busiest group. | ||
3726 | * 4) This group is more busy than the avg busieness at this | ||
3727 | * sched_domain. | ||
3728 | * 5) The imbalance is within the specified limit. | ||
3729 | * 6) Any rebalance would lead to ping-pong | ||
3730 | */ | ||
3731 | if (balance && !(*balance)) | ||
3732 | goto ret; | ||
3391 | 3733 | ||
3392 | return busiest; | 3734 | if (!sds.busiest || sds.busiest_nr_running == 0) |
3735 | goto out_balanced; | ||
3393 | 3736 | ||
3394 | out_balanced: | 3737 | if (sds.this_load >= sds.max_load) |
3395 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3738 | goto out_balanced; |
3396 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3397 | goto ret; | ||
3398 | 3739 | ||
3399 | if (this == group_leader && group_leader != group_min) { | 3740 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; |
3400 | *imbalance = min_load_per_task; | 3741 | |
3401 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | 3742 | if (sds.this_load >= sds.avg_load) |
3402 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | 3743 | goto out_balanced; |
3403 | cpumask_first(sched_group_cpus(group_leader)); | 3744 | |
3404 | } | 3745 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) |
3405 | return group_min; | 3746 | goto out_balanced; |
3406 | } | 3747 | |
3407 | #endif | 3748 | sds.busiest_load_per_task /= sds.busiest_nr_running; |
3749 | if (sds.group_imb) | ||
3750 | sds.busiest_load_per_task = | ||
3751 | min(sds.busiest_load_per_task, sds.avg_load); | ||
3752 | |||
3753 | /* | ||
3754 | * We're trying to get all the cpus to the average_load, so we don't | ||
3755 | * want to push ourselves above the average load, nor do we wish to | ||
3756 | * reduce the max loaded cpu below the average load, as either of these | ||
3757 | * actions would just result in more rebalancing later, and ping-pong | ||
3758 | * tasks around. Thus we look for the minimum possible imbalance. | ||
3759 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
3760 | * be counted as no imbalance for these purposes -- we can't fix that | ||
3761 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
3762 | * appear as very large values with unsigned longs. | ||
3763 | */ | ||
3764 | if (sds.max_load <= sds.busiest_load_per_task) | ||
3765 | goto out_balanced; | ||
3766 | |||
3767 | /* Looks like there is an imbalance. Compute it */ | ||
3768 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
3769 | return sds.busiest; | ||
3770 | |||
3771 | out_balanced: | ||
3772 | /* | ||
3773 | * There is no obvious imbalance. But check if we can do some balancing | ||
3774 | * to save power. | ||
3775 | */ | ||
3776 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
3777 | return sds.busiest; | ||
3408 | ret: | 3778 | ret: |
3409 | *imbalance = 0; | 3779 | *imbalance = 0; |
3410 | return NULL; | 3780 | return NULL; |
@@ -4057,6 +4427,11 @@ static void run_rebalance_domains(struct softirq_action *h) | |||
4057 | #endif | 4427 | #endif |
4058 | } | 4428 | } |
4059 | 4429 | ||
4430 | static inline int on_null_domain(int cpu) | ||
4431 | { | ||
4432 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4433 | } | ||
4434 | |||
4060 | /* | 4435 | /* |
4061 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 4436 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
4062 | * | 4437 | * |
@@ -4114,7 +4489,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) | |||
4114 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | 4489 | cpumask_test_cpu(cpu, nohz.cpu_mask)) |
4115 | return; | 4490 | return; |
4116 | #endif | 4491 | #endif |
4117 | if (time_after_eq(jiffies, rq->next_balance)) | 4492 | /* Don't need to rebalance while attached to NULL domain */ |
4493 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4494 | likely(!on_null_domain(cpu))) | ||
4118 | raise_softirq(SCHED_SOFTIRQ); | 4495 | raise_softirq(SCHED_SOFTIRQ); |
4119 | } | 4496 | } |
4120 | 4497 | ||
@@ -4508,11 +4885,33 @@ static inline void schedule_debug(struct task_struct *prev) | |||
4508 | #endif | 4885 | #endif |
4509 | } | 4886 | } |
4510 | 4887 | ||
4888 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | ||
4889 | { | ||
4890 | if (prev->state == TASK_RUNNING) { | ||
4891 | u64 runtime = prev->se.sum_exec_runtime; | ||
4892 | |||
4893 | runtime -= prev->se.prev_sum_exec_runtime; | ||
4894 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
4895 | |||
4896 | /* | ||
4897 | * In order to avoid avg_overlap growing stale when we are | ||
4898 | * indeed overlapping and hence not getting put to sleep, grow | ||
4899 | * the avg_overlap on preemption. | ||
4900 | * | ||
4901 | * We use the average preemption runtime because that | ||
4902 | * correlates to the amount of cache footprint a task can | ||
4903 | * build up. | ||
4904 | */ | ||
4905 | update_avg(&prev->se.avg_overlap, runtime); | ||
4906 | } | ||
4907 | prev->sched_class->put_prev_task(rq, prev); | ||
4908 | } | ||
4909 | |||
4511 | /* | 4910 | /* |
4512 | * Pick up the highest-prio task: | 4911 | * Pick up the highest-prio task: |
4513 | */ | 4912 | */ |
4514 | static inline struct task_struct * | 4913 | static inline struct task_struct * |
4515 | pick_next_task(struct rq *rq, struct task_struct *prev) | 4914 | pick_next_task(struct rq *rq) |
4516 | { | 4915 | { |
4517 | const struct sched_class *class; | 4916 | const struct sched_class *class; |
4518 | struct task_struct *p; | 4917 | struct task_struct *p; |
@@ -4543,15 +4942,13 @@ pick_next_task(struct rq *rq, struct task_struct *prev) | |||
4543 | /* | 4942 | /* |
4544 | * schedule() is the main scheduler function. | 4943 | * schedule() is the main scheduler function. |
4545 | */ | 4944 | */ |
4546 | asmlinkage void __sched schedule(void) | 4945 | asmlinkage void __sched __schedule(void) |
4547 | { | 4946 | { |
4548 | struct task_struct *prev, *next; | 4947 | struct task_struct *prev, *next; |
4549 | unsigned long *switch_count; | 4948 | unsigned long *switch_count; |
4550 | struct rq *rq; | 4949 | struct rq *rq; |
4551 | int cpu; | 4950 | int cpu; |
4552 | 4951 | ||
4553 | need_resched: | ||
4554 | preempt_disable(); | ||
4555 | cpu = smp_processor_id(); | 4952 | cpu = smp_processor_id(); |
4556 | rq = cpu_rq(cpu); | 4953 | rq = cpu_rq(cpu); |
4557 | rcu_qsctr_inc(cpu); | 4954 | rcu_qsctr_inc(cpu); |
@@ -4586,8 +4983,8 @@ need_resched_nonpreemptible: | |||
4586 | if (unlikely(!rq->nr_running)) | 4983 | if (unlikely(!rq->nr_running)) |
4587 | idle_balance(cpu, rq); | 4984 | idle_balance(cpu, rq); |
4588 | 4985 | ||
4589 | prev->sched_class->put_prev_task(rq, prev); | 4986 | put_prev_task(rq, prev); |
4590 | next = pick_next_task(rq, prev); | 4987 | next = pick_next_task(rq); |
4591 | 4988 | ||
4592 | if (likely(prev != next)) { | 4989 | if (likely(prev != next)) { |
4593 | sched_info_switch(prev, next); | 4990 | sched_info_switch(prev, next); |
@@ -4608,13 +5005,80 @@ need_resched_nonpreemptible: | |||
4608 | 5005 | ||
4609 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 5006 | if (unlikely(reacquire_kernel_lock(current) < 0)) |
4610 | goto need_resched_nonpreemptible; | 5007 | goto need_resched_nonpreemptible; |
5008 | } | ||
4611 | 5009 | ||
5010 | asmlinkage void __sched schedule(void) | ||
5011 | { | ||
5012 | need_resched: | ||
5013 | preempt_disable(); | ||
5014 | __schedule(); | ||
4612 | preempt_enable_no_resched(); | 5015 | preempt_enable_no_resched(); |
4613 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 5016 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) |
4614 | goto need_resched; | 5017 | goto need_resched; |
4615 | } | 5018 | } |
4616 | EXPORT_SYMBOL(schedule); | 5019 | EXPORT_SYMBOL(schedule); |
4617 | 5020 | ||
5021 | #ifdef CONFIG_SMP | ||
5022 | /* | ||
5023 | * Look out! "owner" is an entirely speculative pointer | ||
5024 | * access and not reliable. | ||
5025 | */ | ||
5026 | int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) | ||
5027 | { | ||
5028 | unsigned int cpu; | ||
5029 | struct rq *rq; | ||
5030 | |||
5031 | if (!sched_feat(OWNER_SPIN)) | ||
5032 | return 0; | ||
5033 | |||
5034 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
5035 | /* | ||
5036 | * Need to access the cpu field knowing that | ||
5037 | * DEBUG_PAGEALLOC could have unmapped it if | ||
5038 | * the mutex owner just released it and exited. | ||
5039 | */ | ||
5040 | if (probe_kernel_address(&owner->cpu, cpu)) | ||
5041 | goto out; | ||
5042 | #else | ||
5043 | cpu = owner->cpu; | ||
5044 | #endif | ||
5045 | |||
5046 | /* | ||
5047 | * Even if the access succeeded (likely case), | ||
5048 | * the cpu field may no longer be valid. | ||
5049 | */ | ||
5050 | if (cpu >= nr_cpumask_bits) | ||
5051 | goto out; | ||
5052 | |||
5053 | /* | ||
5054 | * We need to validate that we can do a | ||
5055 | * get_cpu() and that we have the percpu area. | ||
5056 | */ | ||
5057 | if (!cpu_online(cpu)) | ||
5058 | goto out; | ||
5059 | |||
5060 | rq = cpu_rq(cpu); | ||
5061 | |||
5062 | for (;;) { | ||
5063 | /* | ||
5064 | * Owner changed, break to re-assess state. | ||
5065 | */ | ||
5066 | if (lock->owner != owner) | ||
5067 | break; | ||
5068 | |||
5069 | /* | ||
5070 | * Is that owner really running on that cpu? | ||
5071 | */ | ||
5072 | if (task_thread_info(rq->curr) != owner || need_resched()) | ||
5073 | return 0; | ||
5074 | |||
5075 | cpu_relax(); | ||
5076 | } | ||
5077 | out: | ||
5078 | return 1; | ||
5079 | } | ||
5080 | #endif | ||
5081 | |||
4618 | #ifdef CONFIG_PREEMPT | 5082 | #ifdef CONFIG_PREEMPT |
4619 | /* | 5083 | /* |
4620 | * this is the entry point to schedule() from in-kernel preemption | 5084 | * this is the entry point to schedule() from in-kernel preemption |
@@ -4642,7 +5106,7 @@ asmlinkage void __sched preempt_schedule(void) | |||
4642 | * between schedule and now. | 5106 | * between schedule and now. |
4643 | */ | 5107 | */ |
4644 | barrier(); | 5108 | barrier(); |
4645 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5109 | } while (need_resched()); |
4646 | } | 5110 | } |
4647 | EXPORT_SYMBOL(preempt_schedule); | 5111 | EXPORT_SYMBOL(preempt_schedule); |
4648 | 5112 | ||
@@ -4671,7 +5135,7 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
4671 | * between schedule and now. | 5135 | * between schedule and now. |
4672 | */ | 5136 | */ |
4673 | barrier(); | 5137 | barrier(); |
4674 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5138 | } while (need_resched()); |
4675 | } | 5139 | } |
4676 | 5140 | ||
4677 | #endif /* CONFIG_PREEMPT */ | 5141 | #endif /* CONFIG_PREEMPT */ |
@@ -4732,11 +5196,17 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |||
4732 | __wake_up_common(q, mode, 1, 0, NULL); | 5196 | __wake_up_common(q, mode, 1, 0, NULL); |
4733 | } | 5197 | } |
4734 | 5198 | ||
5199 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | ||
5200 | { | ||
5201 | __wake_up_common(q, mode, 1, 0, key); | ||
5202 | } | ||
5203 | |||
4735 | /** | 5204 | /** |
4736 | * __wake_up_sync - wake up threads blocked on a waitqueue. | 5205 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
4737 | * @q: the waitqueue | 5206 | * @q: the waitqueue |
4738 | * @mode: which threads | 5207 | * @mode: which threads |
4739 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 5208 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
5209 | * @key: opaque value to be passed to wakeup targets | ||
4740 | * | 5210 | * |
4741 | * The sync wakeup differs that the waker knows that it will schedule | 5211 | * The sync wakeup differs that the waker knows that it will schedule |
4742 | * away soon, so while the target thread will be woken up, it will not | 5212 | * away soon, so while the target thread will be woken up, it will not |
@@ -4745,8 +5215,8 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |||
4745 | * | 5215 | * |
4746 | * On UP it can prevent extra preemption. | 5216 | * On UP it can prevent extra preemption. |
4747 | */ | 5217 | */ |
4748 | void | 5218 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
4749 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 5219 | int nr_exclusive, void *key) |
4750 | { | 5220 | { |
4751 | unsigned long flags; | 5221 | unsigned long flags; |
4752 | int sync = 1; | 5222 | int sync = 1; |
@@ -4758,9 +5228,18 @@ __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |||
4758 | sync = 0; | 5228 | sync = 0; |
4759 | 5229 | ||
4760 | spin_lock_irqsave(&q->lock, flags); | 5230 | spin_lock_irqsave(&q->lock, flags); |
4761 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 5231 | __wake_up_common(q, mode, nr_exclusive, sync, key); |
4762 | spin_unlock_irqrestore(&q->lock, flags); | 5232 | spin_unlock_irqrestore(&q->lock, flags); |
4763 | } | 5233 | } |
5234 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | ||
5235 | |||
5236 | /* | ||
5237 | * __wake_up_sync - see __wake_up_sync_key() | ||
5238 | */ | ||
5239 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | ||
5240 | { | ||
5241 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | ||
5242 | } | ||
4764 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | 5243 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
4765 | 5244 | ||
4766 | /** | 5245 | /** |
@@ -5145,7 +5624,7 @@ SYSCALL_DEFINE1(nice, int, increment) | |||
5145 | if (increment > 40) | 5624 | if (increment > 40) |
5146 | increment = 40; | 5625 | increment = 40; |
5147 | 5626 | ||
5148 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 5627 | nice = TASK_NICE(current) + increment; |
5149 | if (nice < -20) | 5628 | if (nice < -20) |
5150 | nice = -20; | 5629 | nice = -20; |
5151 | if (nice > 19) | 5630 | if (nice > 19) |
@@ -5944,12 +6423,7 @@ void sched_show_task(struct task_struct *p) | |||
5944 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 6423 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
5945 | #endif | 6424 | #endif |
5946 | #ifdef CONFIG_DEBUG_STACK_USAGE | 6425 | #ifdef CONFIG_DEBUG_STACK_USAGE |
5947 | { | 6426 | free = stack_not_used(p); |
5948 | unsigned long *n = end_of_stack(p); | ||
5949 | while (!*n) | ||
5950 | n++; | ||
5951 | free = (unsigned long)n - (unsigned long)end_of_stack(p); | ||
5952 | } | ||
5953 | #endif | 6427 | #endif |
5954 | printk(KERN_CONT "%5lu %5d %6d\n", free, | 6428 | printk(KERN_CONT "%5lu %5d %6d\n", free, |
5955 | task_pid_nr(p), task_pid_nr(p->real_parent)); | 6429 | task_pid_nr(p), task_pid_nr(p->real_parent)); |
@@ -6423,7 +6897,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
6423 | if (!rq->nr_running) | 6897 | if (!rq->nr_running) |
6424 | break; | 6898 | break; |
6425 | update_rq_clock(rq); | 6899 | update_rq_clock(rq); |
6426 | next = pick_next_task(rq, rq->curr); | 6900 | next = pick_next_task(rq); |
6427 | if (!next) | 6901 | if (!next) |
6428 | break; | 6902 | break; |
6429 | next->sched_class->put_prev_task(rq, next); | 6903 | next->sched_class->put_prev_task(rq, next); |
@@ -8218,11 +8692,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
8218 | __set_bit(MAX_RT_PRIO, array->bitmap); | 8692 | __set_bit(MAX_RT_PRIO, array->bitmap); |
8219 | 8693 | ||
8220 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 8694 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
8221 | rt_rq->highest_prio = MAX_RT_PRIO; | 8695 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
8696 | #ifdef CONFIG_SMP | ||
8697 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
8698 | #endif | ||
8222 | #endif | 8699 | #endif |
8223 | #ifdef CONFIG_SMP | 8700 | #ifdef CONFIG_SMP |
8224 | rt_rq->rt_nr_migratory = 0; | 8701 | rt_rq->rt_nr_migratory = 0; |
8225 | rt_rq->overloaded = 0; | 8702 | rt_rq->overloaded = 0; |
8703 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); | ||
8226 | #endif | 8704 | #endif |
8227 | 8705 | ||
8228 | rt_rq->rt_time = 0; | 8706 | rt_rq->rt_time = 0; |
@@ -9490,7 +9968,7 @@ cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
9490 | 9968 | ||
9491 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | 9969 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
9492 | { | 9970 | { |
9493 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9971 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
9494 | u64 data; | 9972 | u64 data; |
9495 | 9973 | ||
9496 | #ifndef CONFIG_64BIT | 9974 | #ifndef CONFIG_64BIT |
@@ -9509,7 +9987,7 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | |||
9509 | 9987 | ||
9510 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | 9988 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) |
9511 | { | 9989 | { |
9512 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9990 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
9513 | 9991 | ||
9514 | #ifndef CONFIG_64BIT | 9992 | #ifndef CONFIG_64BIT |
9515 | /* | 9993 | /* |
@@ -9598,14 +10076,14 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
9598 | struct cpuacct *ca; | 10076 | struct cpuacct *ca; |
9599 | int cpu; | 10077 | int cpu; |
9600 | 10078 | ||
9601 | if (!cpuacct_subsys.active) | 10079 | if (unlikely(!cpuacct_subsys.active)) |
9602 | return; | 10080 | return; |
9603 | 10081 | ||
9604 | cpu = task_cpu(tsk); | 10082 | cpu = task_cpu(tsk); |
9605 | ca = task_ca(tsk); | 10083 | ca = task_ca(tsk); |
9606 | 10084 | ||
9607 | for (; ca; ca = ca->parent) { | 10085 | for (; ca; ca = ca->parent) { |
9608 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 10086 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
9609 | *cpuusage += cputime; | 10087 | *cpuusage += cputime; |
9610 | } | 10088 | } |
9611 | } | 10089 | } |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index a0b0852414cc..390f33234bd0 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -24,11 +24,11 @@ | |||
24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat | 24 | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat |
25 | * consistent between cpus (never more than 2 jiffies difference). | 25 | * consistent between cpus (never more than 2 jiffies difference). |
26 | */ | 26 | */ |
27 | #include <linux/sched.h> | ||
28 | #include <linux/percpu.h> | ||
29 | #include <linux/spinlock.h> | 27 | #include <linux/spinlock.h> |
30 | #include <linux/ktime.h> | ||
31 | #include <linux/module.h> | 28 | #include <linux/module.h> |
29 | #include <linux/percpu.h> | ||
30 | #include <linux/ktime.h> | ||
31 | #include <linux/sched.h> | ||
32 | 32 | ||
33 | /* | 33 | /* |
34 | * Scheduler clock - returns current time in nanosec units. | 34 | * Scheduler clock - returns current time in nanosec units. |
@@ -43,6 +43,7 @@ unsigned long long __attribute__((weak)) sched_clock(void) | |||
43 | static __read_mostly int sched_clock_running; | 43 | static __read_mostly int sched_clock_running; |
44 | 44 | ||
45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | 45 | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
46 | __read_mostly int sched_clock_stable; | ||
46 | 47 | ||
47 | struct sched_clock_data { | 48 | struct sched_clock_data { |
48 | /* | 49 | /* |
@@ -87,7 +88,7 @@ void sched_clock_init(void) | |||
87 | } | 88 | } |
88 | 89 | ||
89 | /* | 90 | /* |
90 | * min,max except they take wrapping into account | 91 | * min, max except they take wrapping into account |
91 | */ | 92 | */ |
92 | 93 | ||
93 | static inline u64 wrap_min(u64 x, u64 y) | 94 | static inline u64 wrap_min(u64 x, u64 y) |
@@ -111,15 +112,13 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
111 | s64 delta = now - scd->tick_raw; | 112 | s64 delta = now - scd->tick_raw; |
112 | u64 clock, min_clock, max_clock; | 113 | u64 clock, min_clock, max_clock; |
113 | 114 | ||
114 | WARN_ON_ONCE(!irqs_disabled()); | ||
115 | |||
116 | if (unlikely(delta < 0)) | 115 | if (unlikely(delta < 0)) |
117 | delta = 0; | 116 | delta = 0; |
118 | 117 | ||
119 | /* | 118 | /* |
120 | * scd->clock = clamp(scd->tick_gtod + delta, | 119 | * scd->clock = clamp(scd->tick_gtod + delta, |
121 | * max(scd->tick_gtod, scd->clock), | 120 | * max(scd->tick_gtod, scd->clock), |
122 | * scd->tick_gtod + TICK_NSEC); | 121 | * scd->tick_gtod + TICK_NSEC); |
123 | */ | 122 | */ |
124 | 123 | ||
125 | clock = scd->tick_gtod + delta; | 124 | clock = scd->tick_gtod + delta; |
@@ -148,12 +147,13 @@ static void lock_double_clock(struct sched_clock_data *data1, | |||
148 | 147 | ||
149 | u64 sched_clock_cpu(int cpu) | 148 | u64 sched_clock_cpu(int cpu) |
150 | { | 149 | { |
151 | struct sched_clock_data *scd = cpu_sdc(cpu); | ||
152 | u64 now, clock, this_clock, remote_clock; | 150 | u64 now, clock, this_clock, remote_clock; |
151 | struct sched_clock_data *scd; | ||
153 | 152 | ||
154 | if (unlikely(!sched_clock_running)) | 153 | if (sched_clock_stable) |
155 | return 0ull; | 154 | return sched_clock(); |
156 | 155 | ||
156 | scd = cpu_sdc(cpu); | ||
157 | WARN_ON_ONCE(!irqs_disabled()); | 157 | WARN_ON_ONCE(!irqs_disabled()); |
158 | now = sched_clock(); | 158 | now = sched_clock(); |
159 | 159 | ||
@@ -195,14 +195,18 @@ u64 sched_clock_cpu(int cpu) | |||
195 | 195 | ||
196 | void sched_clock_tick(void) | 196 | void sched_clock_tick(void) |
197 | { | 197 | { |
198 | struct sched_clock_data *scd = this_scd(); | 198 | struct sched_clock_data *scd; |
199 | u64 now, now_gtod; | 199 | u64 now, now_gtod; |
200 | 200 | ||
201 | if (sched_clock_stable) | ||
202 | return; | ||
203 | |||
201 | if (unlikely(!sched_clock_running)) | 204 | if (unlikely(!sched_clock_running)) |
202 | return; | 205 | return; |
203 | 206 | ||
204 | WARN_ON_ONCE(!irqs_disabled()); | 207 | WARN_ON_ONCE(!irqs_disabled()); |
205 | 208 | ||
209 | scd = this_scd(); | ||
206 | now_gtod = ktime_to_ns(ktime_get()); | 210 | now_gtod = ktime_to_ns(ktime_get()); |
207 | now = sched_clock(); | 211 | now = sched_clock(); |
208 | 212 | ||
@@ -250,7 +254,7 @@ u64 sched_clock_cpu(int cpu) | |||
250 | return sched_clock(); | 254 | return sched_clock(); |
251 | } | 255 | } |
252 | 256 | ||
253 | #endif | 257 | #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
254 | 258 | ||
255 | unsigned long long cpu_clock(int cpu) | 259 | unsigned long long cpu_clock(int cpu) |
256 | { | 260 | { |
diff --git a/kernel/sched_cpupri.h b/kernel/sched_cpupri.h index 642a94ef8a0a..9a7e859b8fbf 100644 --- a/kernel/sched_cpupri.h +++ b/kernel/sched_cpupri.h | |||
@@ -25,7 +25,7 @@ struct cpupri { | |||
25 | 25 | ||
26 | #ifdef CONFIG_SMP | 26 | #ifdef CONFIG_SMP |
27 | int cpupri_find(struct cpupri *cp, | 27 | int cpupri_find(struct cpupri *cp, |
28 | struct task_struct *p, cpumask_t *lowest_mask); | 28 | struct task_struct *p, struct cpumask *lowest_mask); |
29 | void cpupri_set(struct cpupri *cp, int cpu, int pri); | 29 | void cpupri_set(struct cpupri *cp, int cpu, int pri); |
30 | int cpupri_init(struct cpupri *cp, bool bootmem); | 30 | int cpupri_init(struct cpupri *cp, bool bootmem); |
31 | void cpupri_cleanup(struct cpupri *cp); | 31 | void cpupri_cleanup(struct cpupri *cp); |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 16eeba4e4169..467ca72f1657 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -272,7 +272,6 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
272 | P(nr_switches); | 272 | P(nr_switches); |
273 | P(nr_load_updates); | 273 | P(nr_load_updates); |
274 | P(nr_uninterruptible); | 274 | P(nr_uninterruptible); |
275 | SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies); | ||
276 | PN(next_balance); | 275 | PN(next_balance); |
277 | P(curr->pid); | 276 | P(curr->pid); |
278 | PN(clock); | 277 | PN(clock); |
@@ -287,9 +286,6 @@ static void print_cpu(struct seq_file *m, int cpu) | |||
287 | #ifdef CONFIG_SCHEDSTATS | 286 | #ifdef CONFIG_SCHEDSTATS |
288 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); | 287 | #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); |
289 | 288 | ||
290 | P(yld_exp_empty); | ||
291 | P(yld_act_empty); | ||
292 | P(yld_both_empty); | ||
293 | P(yld_count); | 289 | P(yld_count); |
294 | 290 | ||
295 | P(sched_switch); | 291 | P(sched_switch); |
@@ -314,7 +310,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
314 | u64 now = ktime_to_ns(ktime_get()); | 310 | u64 now = ktime_to_ns(ktime_get()); |
315 | int cpu; | 311 | int cpu; |
316 | 312 | ||
317 | SEQ_printf(m, "Sched Debug Version: v0.08, %s %.*s\n", | 313 | SEQ_printf(m, "Sched Debug Version: v0.09, %s %.*s\n", |
318 | init_utsname()->release, | 314 | init_utsname()->release, |
319 | (int)strcspn(init_utsname()->version, " "), | 315 | (int)strcspn(init_utsname()->version, " "), |
320 | init_utsname()->version); | 316 | init_utsname()->version); |
@@ -325,6 +321,7 @@ static int sched_debug_show(struct seq_file *m, void *v) | |||
325 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) | 321 | SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) |
326 | #define PN(x) \ | 322 | #define PN(x) \ |
327 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) | 323 | SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) |
324 | P(jiffies); | ||
328 | PN(sysctl_sched_latency); | 325 | PN(sysctl_sched_latency); |
329 | PN(sysctl_sched_min_granularity); | 326 | PN(sysctl_sched_min_granularity); |
330 | PN(sysctl_sched_wakeup_granularity); | 327 | PN(sysctl_sched_wakeup_granularity); |
@@ -397,6 +394,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
397 | PN(se.vruntime); | 394 | PN(se.vruntime); |
398 | PN(se.sum_exec_runtime); | 395 | PN(se.sum_exec_runtime); |
399 | PN(se.avg_overlap); | 396 | PN(se.avg_overlap); |
397 | PN(se.avg_wakeup); | ||
400 | 398 | ||
401 | nr_switches = p->nvcsw + p->nivcsw; | 399 | nr_switches = p->nvcsw + p->nivcsw; |
402 | 400 | ||
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 0566f2a03c42..3816f217f119 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -1314,16 +1314,63 @@ out: | |||
1314 | } | 1314 | } |
1315 | #endif /* CONFIG_SMP */ | 1315 | #endif /* CONFIG_SMP */ |
1316 | 1316 | ||
1317 | static unsigned long wakeup_gran(struct sched_entity *se) | 1317 | /* |
1318 | * Adaptive granularity | ||
1319 | * | ||
1320 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | ||
1321 | * with the limit of wakeup_gran -- when it never does a wakeup. | ||
1322 | * | ||
1323 | * So the smaller avg_wakeup is the faster we want this task to preempt, | ||
1324 | * but we don't want to treat the preemptee unfairly and therefore allow it | ||
1325 | * to run for at least the amount of time we'd like to run. | ||
1326 | * | ||
1327 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | ||
1328 | * | ||
1329 | * NOTE: we use *nr_running to scale with load, this nicely matches the | ||
1330 | * degrading latency on load. | ||
1331 | */ | ||
1332 | static unsigned long | ||
1333 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | ||
1334 | { | ||
1335 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
1336 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | ||
1337 | u64 gran = 0; | ||
1338 | |||
1339 | if (this_run < expected_wakeup) | ||
1340 | gran = expected_wakeup - this_run; | ||
1341 | |||
1342 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | ||
1343 | } | ||
1344 | |||
1345 | static unsigned long | ||
1346 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | ||
1318 | { | 1347 | { |
1319 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1348 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1320 | 1349 | ||
1350 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | ||
1351 | gran = adaptive_gran(curr, se); | ||
1352 | |||
1321 | /* | 1353 | /* |
1322 | * More easily preempt - nice tasks, while not making it harder for | 1354 | * Since its curr running now, convert the gran from real-time |
1323 | * + nice tasks. | 1355 | * to virtual-time in his units. |
1324 | */ | 1356 | */ |
1325 | if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD) | 1357 | if (sched_feat(ASYM_GRAN)) { |
1326 | gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se); | 1358 | /* |
1359 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
1360 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
1361 | * the resulting gran will be larger, therefore penalizing the | ||
1362 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
1363 | * be smaller, again penalizing the lighter task. | ||
1364 | * | ||
1365 | * This is especially important for buddies when the leftmost | ||
1366 | * task is higher priority than the buddy. | ||
1367 | */ | ||
1368 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
1369 | gran = calc_delta_fair(gran, se); | ||
1370 | } else { | ||
1371 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | ||
1372 | gran = calc_delta_fair(gran, curr); | ||
1373 | } | ||
1327 | 1374 | ||
1328 | return gran; | 1375 | return gran; |
1329 | } | 1376 | } |
@@ -1350,7 +1397,7 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |||
1350 | if (vdiff <= 0) | 1397 | if (vdiff <= 0) |
1351 | return -1; | 1398 | return -1; |
1352 | 1399 | ||
1353 | gran = wakeup_gran(curr); | 1400 | gran = wakeup_gran(curr, se); |
1354 | if (vdiff > gran) | 1401 | if (vdiff > gran) |
1355 | return 1; | 1402 | return 1; |
1356 | 1403 | ||
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index da5d93b5d2c6..4569bfa7df9b 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
@@ -1,5 +1,6 @@ | |||
1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) | 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) |
2 | SCHED_FEAT(NORMALIZED_SLEEPER, 1) | 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
3 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) |
4 | SCHED_FEAT(START_DEBIT, 1) | 5 | SCHED_FEAT(START_DEBIT, 1) |
5 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
@@ -13,3 +14,4 @@ SCHED_FEAT(LB_WAKEUP_UPDATE, 1) | |||
13 | SCHED_FEAT(ASYM_EFF_LOAD, 1) | 14 | SCHED_FEAT(ASYM_EFF_LOAD, 1) |
14 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | 15 | SCHED_FEAT(WAKEUP_OVERLAP, 0) |
15 | SCHED_FEAT(LAST_BUDDY, 1) | 16 | SCHED_FEAT(LAST_BUDDY, 1) |
17 | SCHED_FEAT(OWNER_SPIN, 1) | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index bac1061cea2f..299d012b4394 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -3,6 +3,40 @@ | |||
3 | * policies) | 3 | * policies) |
4 | */ | 4 | */ |
5 | 5 | ||
6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
7 | { | ||
8 | return container_of(rt_se, struct task_struct, rt); | ||
9 | } | ||
10 | |||
11 | #ifdef CONFIG_RT_GROUP_SCHED | ||
12 | |||
13 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
14 | { | ||
15 | return rt_rq->rq; | ||
16 | } | ||
17 | |||
18 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
19 | { | ||
20 | return rt_se->rt_rq; | ||
21 | } | ||
22 | |||
23 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
24 | |||
25 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
26 | { | ||
27 | return container_of(rt_rq, struct rq, rt); | ||
28 | } | ||
29 | |||
30 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
31 | { | ||
32 | struct task_struct *p = rt_task_of(rt_se); | ||
33 | struct rq *rq = task_rq(p); | ||
34 | |||
35 | return &rq->rt; | ||
36 | } | ||
37 | |||
38 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
39 | |||
6 | #ifdef CONFIG_SMP | 40 | #ifdef CONFIG_SMP |
7 | 41 | ||
8 | static inline int rt_overloaded(struct rq *rq) | 42 | static inline int rt_overloaded(struct rq *rq) |
@@ -37,25 +71,69 @@ static inline void rt_clear_overload(struct rq *rq) | |||
37 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 71 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
38 | } | 72 | } |
39 | 73 | ||
40 | static void update_rt_migration(struct rq *rq) | 74 | static void update_rt_migration(struct rt_rq *rt_rq) |
41 | { | 75 | { |
42 | if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { | 76 | if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) { |
43 | if (!rq->rt.overloaded) { | 77 | if (!rt_rq->overloaded) { |
44 | rt_set_overload(rq); | 78 | rt_set_overload(rq_of_rt_rq(rt_rq)); |
45 | rq->rt.overloaded = 1; | 79 | rt_rq->overloaded = 1; |
46 | } | 80 | } |
47 | } else if (rq->rt.overloaded) { | 81 | } else if (rt_rq->overloaded) { |
48 | rt_clear_overload(rq); | 82 | rt_clear_overload(rq_of_rt_rq(rt_rq)); |
49 | rq->rt.overloaded = 0; | 83 | rt_rq->overloaded = 0; |
50 | } | 84 | } |
51 | } | 85 | } |
52 | #endif /* CONFIG_SMP */ | ||
53 | 86 | ||
54 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 87 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
88 | { | ||
89 | if (rt_se->nr_cpus_allowed > 1) | ||
90 | rt_rq->rt_nr_migratory++; | ||
91 | |||
92 | update_rt_migration(rt_rq); | ||
93 | } | ||
94 | |||
95 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
96 | { | ||
97 | if (rt_se->nr_cpus_allowed > 1) | ||
98 | rt_rq->rt_nr_migratory--; | ||
99 | |||
100 | update_rt_migration(rt_rq); | ||
101 | } | ||
102 | |||
103 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
104 | { | ||
105 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
106 | plist_node_init(&p->pushable_tasks, p->prio); | ||
107 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
108 | } | ||
109 | |||
110 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
111 | { | ||
112 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
113 | } | ||
114 | |||
115 | #else | ||
116 | |||
117 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
55 | { | 118 | { |
56 | return container_of(rt_se, struct task_struct, rt); | ||
57 | } | 119 | } |
58 | 120 | ||
121 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
122 | { | ||
123 | } | ||
124 | |||
125 | static inline | ||
126 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
127 | { | ||
128 | } | ||
129 | |||
130 | static inline | ||
131 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
132 | { | ||
133 | } | ||
134 | |||
135 | #endif /* CONFIG_SMP */ | ||
136 | |||
59 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 137 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
60 | { | 138 | { |
61 | return !list_empty(&rt_se->run_list); | 139 | return !list_empty(&rt_se->run_list); |
@@ -79,16 +157,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
79 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 157 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
80 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 158 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
81 | 159 | ||
82 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
83 | { | ||
84 | return rt_rq->rq; | ||
85 | } | ||
86 | |||
87 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
88 | { | ||
89 | return rt_se->rt_rq; | ||
90 | } | ||
91 | |||
92 | #define for_each_sched_rt_entity(rt_se) \ | 160 | #define for_each_sched_rt_entity(rt_se) \ |
93 | for (; rt_se; rt_se = rt_se->parent) | 161 | for (; rt_se; rt_se = rt_se->parent) |
94 | 162 | ||
@@ -108,7 +176,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |||
108 | if (rt_rq->rt_nr_running) { | 176 | if (rt_rq->rt_nr_running) { |
109 | if (rt_se && !on_rt_rq(rt_se)) | 177 | if (rt_se && !on_rt_rq(rt_se)) |
110 | enqueue_rt_entity(rt_se); | 178 | enqueue_rt_entity(rt_se); |
111 | if (rt_rq->highest_prio < curr->prio) | 179 | if (rt_rq->highest_prio.curr < curr->prio) |
112 | resched_task(curr); | 180 | resched_task(curr); |
113 | } | 181 | } |
114 | } | 182 | } |
@@ -176,19 +244,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
176 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 244 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
177 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 245 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
178 | 246 | ||
179 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
180 | { | ||
181 | return container_of(rt_rq, struct rq, rt); | ||
182 | } | ||
183 | |||
184 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
185 | { | ||
186 | struct task_struct *p = rt_task_of(rt_se); | ||
187 | struct rq *rq = task_rq(p); | ||
188 | |||
189 | return &rq->rt; | ||
190 | } | ||
191 | |||
192 | #define for_each_sched_rt_entity(rt_se) \ | 247 | #define for_each_sched_rt_entity(rt_se) \ |
193 | for (; rt_se; rt_se = NULL) | 248 | for (; rt_se; rt_se = NULL) |
194 | 249 | ||
@@ -473,7 +528,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |||
473 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 528 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
474 | 529 | ||
475 | if (rt_rq) | 530 | if (rt_rq) |
476 | return rt_rq->highest_prio; | 531 | return rt_rq->highest_prio.curr; |
477 | #endif | 532 | #endif |
478 | 533 | ||
479 | return rt_task_of(rt_se)->prio; | 534 | return rt_task_of(rt_se)->prio; |
@@ -547,91 +602,174 @@ static void update_curr_rt(struct rq *rq) | |||
547 | } | 602 | } |
548 | } | 603 | } |
549 | 604 | ||
550 | static inline | 605 | #if defined CONFIG_SMP |
551 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 606 | |
607 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | ||
608 | |||
609 | static inline int next_prio(struct rq *rq) | ||
552 | { | 610 | { |
553 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 611 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
554 | rt_rq->rt_nr_running++; | 612 | |
555 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 613 | if (next && rt_prio(next->prio)) |
556 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) { | 614 | return next->prio; |
557 | #ifdef CONFIG_SMP | 615 | else |
558 | struct rq *rq = rq_of_rt_rq(rt_rq); | 616 | return MAX_RT_PRIO; |
559 | #endif | 617 | } |
618 | |||
619 | static void | ||
620 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
621 | { | ||
622 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
623 | |||
624 | if (prio < prev_prio) { | ||
625 | |||
626 | /* | ||
627 | * If the new task is higher in priority than anything on the | ||
628 | * run-queue, we know that the previous high becomes our | ||
629 | * next-highest. | ||
630 | */ | ||
631 | rt_rq->highest_prio.next = prev_prio; | ||
560 | 632 | ||
561 | rt_rq->highest_prio = rt_se_prio(rt_se); | ||
562 | #ifdef CONFIG_SMP | ||
563 | if (rq->online) | 633 | if (rq->online) |
564 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 634 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
565 | rt_se_prio(rt_se)); | ||
566 | #endif | ||
567 | } | ||
568 | #endif | ||
569 | #ifdef CONFIG_SMP | ||
570 | if (rt_se->nr_cpus_allowed > 1) { | ||
571 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
572 | 635 | ||
573 | rq->rt.rt_nr_migratory++; | 636 | } else if (prio == rt_rq->highest_prio.curr) |
574 | } | 637 | /* |
638 | * If the next task is equal in priority to the highest on | ||
639 | * the run-queue, then we implicitly know that the next highest | ||
640 | * task cannot be any lower than current | ||
641 | */ | ||
642 | rt_rq->highest_prio.next = prio; | ||
643 | else if (prio < rt_rq->highest_prio.next) | ||
644 | /* | ||
645 | * Otherwise, we need to recompute next-highest | ||
646 | */ | ||
647 | rt_rq->highest_prio.next = next_prio(rq); | ||
648 | } | ||
575 | 649 | ||
576 | update_rt_migration(rq_of_rt_rq(rt_rq)); | 650 | static void |
577 | #endif | 651 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
578 | #ifdef CONFIG_RT_GROUP_SCHED | 652 | { |
579 | if (rt_se_boosted(rt_se)) | 653 | struct rq *rq = rq_of_rt_rq(rt_rq); |
580 | rt_rq->rt_nr_boosted++; | ||
581 | 654 | ||
582 | if (rt_rq->tg) | 655 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
583 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 656 | rt_rq->highest_prio.next = next_prio(rq); |
584 | #else | 657 | |
585 | start_rt_bandwidth(&def_rt_bandwidth); | 658 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
586 | #endif | 659 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
587 | } | 660 | } |
588 | 661 | ||
662 | #else /* CONFIG_SMP */ | ||
663 | |||
589 | static inline | 664 | static inline |
590 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 665 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
591 | { | 666 | static inline |
592 | #ifdef CONFIG_SMP | 667 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
593 | int highest_prio = rt_rq->highest_prio; | 668 | |
594 | #endif | 669 | #endif /* CONFIG_SMP */ |
595 | 670 | ||
596 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
597 | WARN_ON(!rt_rq->rt_nr_running); | ||
598 | rt_rq->rt_nr_running--; | ||
599 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 671 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
672 | static void | ||
673 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | ||
674 | { | ||
675 | int prev_prio = rt_rq->highest_prio.curr; | ||
676 | |||
677 | if (prio < prev_prio) | ||
678 | rt_rq->highest_prio.curr = prio; | ||
679 | |||
680 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | ||
681 | } | ||
682 | |||
683 | static void | ||
684 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | ||
685 | { | ||
686 | int prev_prio = rt_rq->highest_prio.curr; | ||
687 | |||
600 | if (rt_rq->rt_nr_running) { | 688 | if (rt_rq->rt_nr_running) { |
601 | struct rt_prio_array *array; | ||
602 | 689 | ||
603 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); | 690 | WARN_ON(prio < prev_prio); |
604 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { | 691 | |
605 | /* recalculate */ | 692 | /* |
606 | array = &rt_rq->active; | 693 | * This may have been our highest task, and therefore |
607 | rt_rq->highest_prio = | 694 | * we may have some recomputation to do |
695 | */ | ||
696 | if (prio == prev_prio) { | ||
697 | struct rt_prio_array *array = &rt_rq->active; | ||
698 | |||
699 | rt_rq->highest_prio.curr = | ||
608 | sched_find_first_bit(array->bitmap); | 700 | sched_find_first_bit(array->bitmap); |
609 | } /* otherwise leave rq->highest prio alone */ | 701 | } |
702 | |||
610 | } else | 703 | } else |
611 | rt_rq->highest_prio = MAX_RT_PRIO; | 704 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
612 | #endif | ||
613 | #ifdef CONFIG_SMP | ||
614 | if (rt_se->nr_cpus_allowed > 1) { | ||
615 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
616 | rq->rt.rt_nr_migratory--; | ||
617 | } | ||
618 | 705 | ||
619 | if (rt_rq->highest_prio != highest_prio) { | 706 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
620 | struct rq *rq = rq_of_rt_rq(rt_rq); | 707 | } |
621 | 708 | ||
622 | if (rq->online) | 709 | #else |
623 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 710 | |
624 | rt_rq->highest_prio); | 711 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} |
625 | } | 712 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} |
713 | |||
714 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | ||
626 | 715 | ||
627 | update_rt_migration(rq_of_rt_rq(rt_rq)); | ||
628 | #endif /* CONFIG_SMP */ | ||
629 | #ifdef CONFIG_RT_GROUP_SCHED | 716 | #ifdef CONFIG_RT_GROUP_SCHED |
717 | |||
718 | static void | ||
719 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
720 | { | ||
721 | if (rt_se_boosted(rt_se)) | ||
722 | rt_rq->rt_nr_boosted++; | ||
723 | |||
724 | if (rt_rq->tg) | ||
725 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | ||
726 | } | ||
727 | |||
728 | static void | ||
729 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
730 | { | ||
630 | if (rt_se_boosted(rt_se)) | 731 | if (rt_se_boosted(rt_se)) |
631 | rt_rq->rt_nr_boosted--; | 732 | rt_rq->rt_nr_boosted--; |
632 | 733 | ||
633 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 734 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); |
634 | #endif | 735 | } |
736 | |||
737 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
738 | |||
739 | static void | ||
740 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
741 | { | ||
742 | start_rt_bandwidth(&def_rt_bandwidth); | ||
743 | } | ||
744 | |||
745 | static inline | ||
746 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | ||
747 | |||
748 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
749 | |||
750 | static inline | ||
751 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
752 | { | ||
753 | int prio = rt_se_prio(rt_se); | ||
754 | |||
755 | WARN_ON(!rt_prio(prio)); | ||
756 | rt_rq->rt_nr_running++; | ||
757 | |||
758 | inc_rt_prio(rt_rq, prio); | ||
759 | inc_rt_migration(rt_se, rt_rq); | ||
760 | inc_rt_group(rt_se, rt_rq); | ||
761 | } | ||
762 | |||
763 | static inline | ||
764 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
765 | { | ||
766 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
767 | WARN_ON(!rt_rq->rt_nr_running); | ||
768 | rt_rq->rt_nr_running--; | ||
769 | |||
770 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | ||
771 | dec_rt_migration(rt_se, rt_rq); | ||
772 | dec_rt_group(rt_se, rt_rq); | ||
635 | } | 773 | } |
636 | 774 | ||
637 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) | 775 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) |
@@ -718,6 +856,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
718 | 856 | ||
719 | enqueue_rt_entity(rt_se); | 857 | enqueue_rt_entity(rt_se); |
720 | 858 | ||
859 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
860 | enqueue_pushable_task(rq, p); | ||
861 | |||
721 | inc_cpu_load(rq, p->se.load.weight); | 862 | inc_cpu_load(rq, p->se.load.weight); |
722 | } | 863 | } |
723 | 864 | ||
@@ -728,6 +869,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
728 | update_curr_rt(rq); | 869 | update_curr_rt(rq); |
729 | dequeue_rt_entity(rt_se); | 870 | dequeue_rt_entity(rt_se); |
730 | 871 | ||
872 | dequeue_pushable_task(rq, p); | ||
873 | |||
731 | dec_cpu_load(rq, p->se.load.weight); | 874 | dec_cpu_load(rq, p->se.load.weight); |
732 | } | 875 | } |
733 | 876 | ||
@@ -878,7 +1021,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | |||
878 | return next; | 1021 | return next; |
879 | } | 1022 | } |
880 | 1023 | ||
881 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 1024 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
882 | { | 1025 | { |
883 | struct sched_rt_entity *rt_se; | 1026 | struct sched_rt_entity *rt_se; |
884 | struct task_struct *p; | 1027 | struct task_struct *p; |
@@ -900,6 +1043,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
900 | 1043 | ||
901 | p = rt_task_of(rt_se); | 1044 | p = rt_task_of(rt_se); |
902 | p->se.exec_start = rq->clock; | 1045 | p->se.exec_start = rq->clock; |
1046 | |||
1047 | return p; | ||
1048 | } | ||
1049 | |||
1050 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
1051 | { | ||
1052 | struct task_struct *p = _pick_next_task_rt(rq); | ||
1053 | |||
1054 | /* The running task is never eligible for pushing */ | ||
1055 | if (p) | ||
1056 | dequeue_pushable_task(rq, p); | ||
1057 | |||
903 | return p; | 1058 | return p; |
904 | } | 1059 | } |
905 | 1060 | ||
@@ -907,6 +1062,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
907 | { | 1062 | { |
908 | update_curr_rt(rq); | 1063 | update_curr_rt(rq); |
909 | p->se.exec_start = 0; | 1064 | p->se.exec_start = 0; |
1065 | |||
1066 | /* | ||
1067 | * The previous task needs to be made eligible for pushing | ||
1068 | * if it is still active | ||
1069 | */ | ||
1070 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | ||
1071 | enqueue_pushable_task(rq, p); | ||
910 | } | 1072 | } |
911 | 1073 | ||
912 | #ifdef CONFIG_SMP | 1074 | #ifdef CONFIG_SMP |
@@ -960,12 +1122,13 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | |||
960 | 1122 | ||
961 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 1123 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
962 | 1124 | ||
963 | static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) | 1125 | static inline int pick_optimal_cpu(int this_cpu, |
1126 | const struct cpumask *mask) | ||
964 | { | 1127 | { |
965 | int first; | 1128 | int first; |
966 | 1129 | ||
967 | /* "this_cpu" is cheaper to preempt than a remote processor */ | 1130 | /* "this_cpu" is cheaper to preempt than a remote processor */ |
968 | if ((this_cpu != -1) && cpu_isset(this_cpu, *mask)) | 1131 | if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask)) |
969 | return this_cpu; | 1132 | return this_cpu; |
970 | 1133 | ||
971 | first = cpumask_first(mask); | 1134 | first = cpumask_first(mask); |
@@ -981,6 +1144,7 @@ static int find_lowest_rq(struct task_struct *task) | |||
981 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | 1144 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
982 | int this_cpu = smp_processor_id(); | 1145 | int this_cpu = smp_processor_id(); |
983 | int cpu = task_cpu(task); | 1146 | int cpu = task_cpu(task); |
1147 | cpumask_var_t domain_mask; | ||
984 | 1148 | ||
985 | if (task->rt.nr_cpus_allowed == 1) | 1149 | if (task->rt.nr_cpus_allowed == 1) |
986 | return -1; /* No other targets possible */ | 1150 | return -1; /* No other targets possible */ |
@@ -1013,19 +1177,25 @@ static int find_lowest_rq(struct task_struct *task) | |||
1013 | if (this_cpu == cpu) | 1177 | if (this_cpu == cpu) |
1014 | this_cpu = -1; /* Skip this_cpu opt if the same */ | 1178 | this_cpu = -1; /* Skip this_cpu opt if the same */ |
1015 | 1179 | ||
1016 | for_each_domain(cpu, sd) { | 1180 | if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) { |
1017 | if (sd->flags & SD_WAKE_AFFINE) { | 1181 | for_each_domain(cpu, sd) { |
1018 | cpumask_t domain_mask; | 1182 | if (sd->flags & SD_WAKE_AFFINE) { |
1019 | int best_cpu; | 1183 | int best_cpu; |
1184 | |||
1185 | cpumask_and(domain_mask, | ||
1186 | sched_domain_span(sd), | ||
1187 | lowest_mask); | ||
1020 | 1188 | ||
1021 | cpumask_and(&domain_mask, sched_domain_span(sd), | 1189 | best_cpu = pick_optimal_cpu(this_cpu, |
1022 | lowest_mask); | 1190 | domain_mask); |
1023 | 1191 | ||
1024 | best_cpu = pick_optimal_cpu(this_cpu, | 1192 | if (best_cpu != -1) { |
1025 | &domain_mask); | 1193 | free_cpumask_var(domain_mask); |
1026 | if (best_cpu != -1) | 1194 | return best_cpu; |
1027 | return best_cpu; | 1195 | } |
1196 | } | ||
1028 | } | 1197 | } |
1198 | free_cpumask_var(domain_mask); | ||
1029 | } | 1199 | } |
1030 | 1200 | ||
1031 | /* | 1201 | /* |
@@ -1072,7 +1242,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1072 | } | 1242 | } |
1073 | 1243 | ||
1074 | /* If this rq is still suitable use it. */ | 1244 | /* If this rq is still suitable use it. */ |
1075 | if (lowest_rq->rt.highest_prio > task->prio) | 1245 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
1076 | break; | 1246 | break; |
1077 | 1247 | ||
1078 | /* try again */ | 1248 | /* try again */ |
@@ -1083,6 +1253,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1083 | return lowest_rq; | 1253 | return lowest_rq; |
1084 | } | 1254 | } |
1085 | 1255 | ||
1256 | static inline int has_pushable_tasks(struct rq *rq) | ||
1257 | { | ||
1258 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
1259 | } | ||
1260 | |||
1261 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
1262 | { | ||
1263 | struct task_struct *p; | ||
1264 | |||
1265 | if (!has_pushable_tasks(rq)) | ||
1266 | return NULL; | ||
1267 | |||
1268 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
1269 | struct task_struct, pushable_tasks); | ||
1270 | |||
1271 | BUG_ON(rq->cpu != task_cpu(p)); | ||
1272 | BUG_ON(task_current(rq, p)); | ||
1273 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
1274 | |||
1275 | BUG_ON(!p->se.on_rq); | ||
1276 | BUG_ON(!rt_task(p)); | ||
1277 | |||
1278 | return p; | ||
1279 | } | ||
1280 | |||
1086 | /* | 1281 | /* |
1087 | * If the current CPU has more than one RT task, see if the non | 1282 | * If the current CPU has more than one RT task, see if the non |
1088 | * running task can migrate over to a CPU that is running a task | 1283 | * running task can migrate over to a CPU that is running a task |
@@ -1092,13 +1287,11 @@ static int push_rt_task(struct rq *rq) | |||
1092 | { | 1287 | { |
1093 | struct task_struct *next_task; | 1288 | struct task_struct *next_task; |
1094 | struct rq *lowest_rq; | 1289 | struct rq *lowest_rq; |
1095 | int ret = 0; | ||
1096 | int paranoid = RT_MAX_TRIES; | ||
1097 | 1290 | ||
1098 | if (!rq->rt.overloaded) | 1291 | if (!rq->rt.overloaded) |
1099 | return 0; | 1292 | return 0; |
1100 | 1293 | ||
1101 | next_task = pick_next_highest_task_rt(rq, -1); | 1294 | next_task = pick_next_pushable_task(rq); |
1102 | if (!next_task) | 1295 | if (!next_task) |
1103 | return 0; | 1296 | return 0; |
1104 | 1297 | ||
@@ -1127,16 +1320,34 @@ static int push_rt_task(struct rq *rq) | |||
1127 | struct task_struct *task; | 1320 | struct task_struct *task; |
1128 | /* | 1321 | /* |
1129 | * find lock_lowest_rq releases rq->lock | 1322 | * find lock_lowest_rq releases rq->lock |
1130 | * so it is possible that next_task has changed. | 1323 | * so it is possible that next_task has migrated. |
1131 | * If it has, then try again. | 1324 | * |
1325 | * We need to make sure that the task is still on the same | ||
1326 | * run-queue and is also still the next task eligible for | ||
1327 | * pushing. | ||
1132 | */ | 1328 | */ |
1133 | task = pick_next_highest_task_rt(rq, -1); | 1329 | task = pick_next_pushable_task(rq); |
1134 | if (unlikely(task != next_task) && task && paranoid--) { | 1330 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1135 | put_task_struct(next_task); | 1331 | /* |
1136 | next_task = task; | 1332 | * If we get here, the task hasnt moved at all, but |
1137 | goto retry; | 1333 | * it has failed to push. We will not try again, |
1334 | * since the other cpus will pull from us when they | ||
1335 | * are ready. | ||
1336 | */ | ||
1337 | dequeue_pushable_task(rq, next_task); | ||
1338 | goto out; | ||
1138 | } | 1339 | } |
1139 | goto out; | 1340 | |
1341 | if (!task) | ||
1342 | /* No more tasks, just exit */ | ||
1343 | goto out; | ||
1344 | |||
1345 | /* | ||
1346 | * Something has shifted, try again. | ||
1347 | */ | ||
1348 | put_task_struct(next_task); | ||
1349 | next_task = task; | ||
1350 | goto retry; | ||
1140 | } | 1351 | } |
1141 | 1352 | ||
1142 | deactivate_task(rq, next_task, 0); | 1353 | deactivate_task(rq, next_task, 0); |
@@ -1147,23 +1358,12 @@ static int push_rt_task(struct rq *rq) | |||
1147 | 1358 | ||
1148 | double_unlock_balance(rq, lowest_rq); | 1359 | double_unlock_balance(rq, lowest_rq); |
1149 | 1360 | ||
1150 | ret = 1; | ||
1151 | out: | 1361 | out: |
1152 | put_task_struct(next_task); | 1362 | put_task_struct(next_task); |
1153 | 1363 | ||
1154 | return ret; | 1364 | return 1; |
1155 | } | 1365 | } |
1156 | 1366 | ||
1157 | /* | ||
1158 | * TODO: Currently we just use the second highest prio task on | ||
1159 | * the queue, and stop when it can't migrate (or there's | ||
1160 | * no more RT tasks). There may be a case where a lower | ||
1161 | * priority RT task has a different affinity than the | ||
1162 | * higher RT task. In this case the lower RT task could | ||
1163 | * possibly be able to migrate where as the higher priority | ||
1164 | * RT task could not. We currently ignore this issue. | ||
1165 | * Enhancements are welcome! | ||
1166 | */ | ||
1167 | static void push_rt_tasks(struct rq *rq) | 1367 | static void push_rt_tasks(struct rq *rq) |
1168 | { | 1368 | { |
1169 | /* push_rt_task will return true if it moved an RT */ | 1369 | /* push_rt_task will return true if it moved an RT */ |
@@ -1174,33 +1374,35 @@ static void push_rt_tasks(struct rq *rq) | |||
1174 | static int pull_rt_task(struct rq *this_rq) | 1374 | static int pull_rt_task(struct rq *this_rq) |
1175 | { | 1375 | { |
1176 | int this_cpu = this_rq->cpu, ret = 0, cpu; | 1376 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
1177 | struct task_struct *p, *next; | 1377 | struct task_struct *p; |
1178 | struct rq *src_rq; | 1378 | struct rq *src_rq; |
1179 | 1379 | ||
1180 | if (likely(!rt_overloaded(this_rq))) | 1380 | if (likely(!rt_overloaded(this_rq))) |
1181 | return 0; | 1381 | return 0; |
1182 | 1382 | ||
1183 | next = pick_next_task_rt(this_rq); | ||
1184 | |||
1185 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 1383 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
1186 | if (this_cpu == cpu) | 1384 | if (this_cpu == cpu) |
1187 | continue; | 1385 | continue; |
1188 | 1386 | ||
1189 | src_rq = cpu_rq(cpu); | 1387 | src_rq = cpu_rq(cpu); |
1388 | |||
1389 | /* | ||
1390 | * Don't bother taking the src_rq->lock if the next highest | ||
1391 | * task is known to be lower-priority than our current task. | ||
1392 | * This may look racy, but if this value is about to go | ||
1393 | * logically higher, the src_rq will push this task away. | ||
1394 | * And if its going logically lower, we do not care | ||
1395 | */ | ||
1396 | if (src_rq->rt.highest_prio.next >= | ||
1397 | this_rq->rt.highest_prio.curr) | ||
1398 | continue; | ||
1399 | |||
1190 | /* | 1400 | /* |
1191 | * We can potentially drop this_rq's lock in | 1401 | * We can potentially drop this_rq's lock in |
1192 | * double_lock_balance, and another CPU could | 1402 | * double_lock_balance, and another CPU could |
1193 | * steal our next task - hence we must cause | 1403 | * alter this_rq |
1194 | * the caller to recalculate the next task | ||
1195 | * in that case: | ||
1196 | */ | 1404 | */ |
1197 | if (double_lock_balance(this_rq, src_rq)) { | 1405 | double_lock_balance(this_rq, src_rq); |
1198 | struct task_struct *old_next = next; | ||
1199 | |||
1200 | next = pick_next_task_rt(this_rq); | ||
1201 | if (next != old_next) | ||
1202 | ret = 1; | ||
1203 | } | ||
1204 | 1406 | ||
1205 | /* | 1407 | /* |
1206 | * Are there still pullable RT tasks? | 1408 | * Are there still pullable RT tasks? |
@@ -1214,7 +1416,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1214 | * Do we have an RT task that preempts | 1416 | * Do we have an RT task that preempts |
1215 | * the to-be-scheduled task? | 1417 | * the to-be-scheduled task? |
1216 | */ | 1418 | */ |
1217 | if (p && (!next || (p->prio < next->prio))) { | 1419 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
1218 | WARN_ON(p == src_rq->curr); | 1420 | WARN_ON(p == src_rq->curr); |
1219 | WARN_ON(!p->se.on_rq); | 1421 | WARN_ON(!p->se.on_rq); |
1220 | 1422 | ||
@@ -1224,12 +1426,9 @@ static int pull_rt_task(struct rq *this_rq) | |||
1224 | * This is just that p is wakeing up and hasn't | 1426 | * This is just that p is wakeing up and hasn't |
1225 | * had a chance to schedule. We only pull | 1427 | * had a chance to schedule. We only pull |
1226 | * p if it is lower in priority than the | 1428 | * p if it is lower in priority than the |
1227 | * current task on the run queue or | 1429 | * current task on the run queue |
1228 | * this_rq next task is lower in prio than | ||
1229 | * the current task on that rq. | ||
1230 | */ | 1430 | */ |
1231 | if (p->prio < src_rq->curr->prio || | 1431 | if (p->prio < src_rq->curr->prio) |
1232 | (next && next->prio < src_rq->curr->prio)) | ||
1233 | goto skip; | 1432 | goto skip; |
1234 | 1433 | ||
1235 | ret = 1; | 1434 | ret = 1; |
@@ -1242,13 +1441,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1242 | * case there's an even higher prio task | 1441 | * case there's an even higher prio task |
1243 | * in another runqueue. (low likelyhood | 1442 | * in another runqueue. (low likelyhood |
1244 | * but possible) | 1443 | * but possible) |
1245 | * | ||
1246 | * Update next so that we won't pick a task | ||
1247 | * on another cpu with a priority lower (or equal) | ||
1248 | * than the one we just picked. | ||
1249 | */ | 1444 | */ |
1250 | next = p; | ||
1251 | |||
1252 | } | 1445 | } |
1253 | skip: | 1446 | skip: |
1254 | double_unlock_balance(this_rq, src_rq); | 1447 | double_unlock_balance(this_rq, src_rq); |
@@ -1260,24 +1453,27 @@ static int pull_rt_task(struct rq *this_rq) | |||
1260 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 1453 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
1261 | { | 1454 | { |
1262 | /* Try to pull RT tasks here if we lower this rq's prio */ | 1455 | /* Try to pull RT tasks here if we lower this rq's prio */ |
1263 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) | 1456 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
1264 | pull_rt_task(rq); | 1457 | pull_rt_task(rq); |
1265 | } | 1458 | } |
1266 | 1459 | ||
1460 | /* | ||
1461 | * assumes rq->lock is held | ||
1462 | */ | ||
1463 | static int needs_post_schedule_rt(struct rq *rq) | ||
1464 | { | ||
1465 | return has_pushable_tasks(rq); | ||
1466 | } | ||
1467 | |||
1267 | static void post_schedule_rt(struct rq *rq) | 1468 | static void post_schedule_rt(struct rq *rq) |
1268 | { | 1469 | { |
1269 | /* | 1470 | /* |
1270 | * If we have more than one rt_task queued, then | 1471 | * This is only called if needs_post_schedule_rt() indicates that |
1271 | * see if we can push the other rt_tasks off to other CPUS. | 1472 | * we need to push tasks away |
1272 | * Note we may release the rq lock, and since | ||
1273 | * the lock was owned by prev, we need to release it | ||
1274 | * first via finish_lock_switch and then reaquire it here. | ||
1275 | */ | 1473 | */ |
1276 | if (unlikely(rq->rt.overloaded)) { | 1474 | spin_lock_irq(&rq->lock); |
1277 | spin_lock_irq(&rq->lock); | 1475 | push_rt_tasks(rq); |
1278 | push_rt_tasks(rq); | 1476 | spin_unlock_irq(&rq->lock); |
1279 | spin_unlock_irq(&rq->lock); | ||
1280 | } | ||
1281 | } | 1477 | } |
1282 | 1478 | ||
1283 | /* | 1479 | /* |
@@ -1288,7 +1484,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) | |||
1288 | { | 1484 | { |
1289 | if (!task_running(rq, p) && | 1485 | if (!task_running(rq, p) && |
1290 | !test_tsk_need_resched(rq->curr) && | 1486 | !test_tsk_need_resched(rq->curr) && |
1291 | rq->rt.overloaded) | 1487 | has_pushable_tasks(rq) && |
1488 | p->rt.nr_cpus_allowed > 1) | ||
1292 | push_rt_tasks(rq); | 1489 | push_rt_tasks(rq); |
1293 | } | 1490 | } |
1294 | 1491 | ||
@@ -1324,6 +1521,24 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
1324 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 1521 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
1325 | struct rq *rq = task_rq(p); | 1522 | struct rq *rq = task_rq(p); |
1326 | 1523 | ||
1524 | if (!task_current(rq, p)) { | ||
1525 | /* | ||
1526 | * Make sure we dequeue this task from the pushable list | ||
1527 | * before going further. It will either remain off of | ||
1528 | * the list because we are no longer pushable, or it | ||
1529 | * will be requeued. | ||
1530 | */ | ||
1531 | if (p->rt.nr_cpus_allowed > 1) | ||
1532 | dequeue_pushable_task(rq, p); | ||
1533 | |||
1534 | /* | ||
1535 | * Requeue if our weight is changing and still > 1 | ||
1536 | */ | ||
1537 | if (weight > 1) | ||
1538 | enqueue_pushable_task(rq, p); | ||
1539 | |||
1540 | } | ||
1541 | |||
1327 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 1542 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
1328 | rq->rt.rt_nr_migratory++; | 1543 | rq->rt.rt_nr_migratory++; |
1329 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 1544 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
@@ -1331,7 +1546,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
1331 | rq->rt.rt_nr_migratory--; | 1546 | rq->rt.rt_nr_migratory--; |
1332 | } | 1547 | } |
1333 | 1548 | ||
1334 | update_rt_migration(rq); | 1549 | update_rt_migration(&rq->rt); |
1335 | } | 1550 | } |
1336 | 1551 | ||
1337 | cpumask_copy(&p->cpus_allowed, new_mask); | 1552 | cpumask_copy(&p->cpus_allowed, new_mask); |
@@ -1346,7 +1561,7 @@ static void rq_online_rt(struct rq *rq) | |||
1346 | 1561 | ||
1347 | __enable_runtime(rq); | 1562 | __enable_runtime(rq); |
1348 | 1563 | ||
1349 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); | 1564 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
1350 | } | 1565 | } |
1351 | 1566 | ||
1352 | /* Assumes rq->lock is held */ | 1567 | /* Assumes rq->lock is held */ |
@@ -1438,7 +1653,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |||
1438 | * can release the rq lock and p could migrate. | 1653 | * can release the rq lock and p could migrate. |
1439 | * Only reschedule if p is still on the same runqueue. | 1654 | * Only reschedule if p is still on the same runqueue. |
1440 | */ | 1655 | */ |
1441 | if (p->prio > rq->rt.highest_prio && rq->curr == p) | 1656 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
1442 | resched_task(p); | 1657 | resched_task(p); |
1443 | #else | 1658 | #else |
1444 | /* For UP simply resched on drop of prio */ | 1659 | /* For UP simply resched on drop of prio */ |
@@ -1509,6 +1724,9 @@ static void set_curr_task_rt(struct rq *rq) | |||
1509 | struct task_struct *p = rq->curr; | 1724 | struct task_struct *p = rq->curr; |
1510 | 1725 | ||
1511 | p->se.exec_start = rq->clock; | 1726 | p->se.exec_start = rq->clock; |
1727 | |||
1728 | /* The running task is never eligible for pushing */ | ||
1729 | dequeue_pushable_task(rq, p); | ||
1512 | } | 1730 | } |
1513 | 1731 | ||
1514 | static const struct sched_class rt_sched_class = { | 1732 | static const struct sched_class rt_sched_class = { |
@@ -1531,6 +1749,7 @@ static const struct sched_class rt_sched_class = { | |||
1531 | .rq_online = rq_online_rt, | 1749 | .rq_online = rq_online_rt, |
1532 | .rq_offline = rq_offline_rt, | 1750 | .rq_offline = rq_offline_rt, |
1533 | .pre_schedule = pre_schedule_rt, | 1751 | .pre_schedule = pre_schedule_rt, |
1752 | .needs_post_schedule = needs_post_schedule_rt, | ||
1534 | .post_schedule = post_schedule_rt, | 1753 | .post_schedule = post_schedule_rt, |
1535 | .task_wake_up = task_wake_up_rt, | 1754 | .task_wake_up = task_wake_up_rt, |
1536 | .switched_from = switched_from_rt, | 1755 | .switched_from = switched_from_rt, |
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h index a8f93dd374e1..32d2bd4061b0 100644 --- a/kernel/sched_stats.h +++ b/kernel/sched_stats.h | |||
@@ -4,7 +4,7 @@ | |||
4 | * bump this up when changing the output format or the meaning of an existing | 4 | * bump this up when changing the output format or the meaning of an existing |
5 | * format, so that tools can adapt (or abort) | 5 | * format, so that tools can adapt (or abort) |
6 | */ | 6 | */ |
7 | #define SCHEDSTAT_VERSION 14 | 7 | #define SCHEDSTAT_VERSION 15 |
8 | 8 | ||
9 | static int show_schedstat(struct seq_file *seq, void *v) | 9 | static int show_schedstat(struct seq_file *seq, void *v) |
10 | { | 10 | { |
@@ -26,9 +26,8 @@ static int show_schedstat(struct seq_file *seq, void *v) | |||
26 | 26 | ||
27 | /* runqueue-specific stats */ | 27 | /* runqueue-specific stats */ |
28 | seq_printf(seq, | 28 | seq_printf(seq, |
29 | "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu", | 29 | "cpu%d %u %u %u %u %u %u %llu %llu %lu", |
30 | cpu, rq->yld_both_empty, | 30 | cpu, rq->yld_count, |
31 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count, | ||
32 | rq->sched_switch, rq->sched_count, rq->sched_goidle, | 31 | rq->sched_switch, rq->sched_count, rq->sched_goidle, |
33 | rq->ttwu_count, rq->ttwu_local, | 32 | rq->ttwu_count, rq->ttwu_local, |
34 | rq->rq_cpu_time, | 33 | rq->rq_cpu_time, |
diff --git a/kernel/signal.c b/kernel/signal.c index 2a74fe87c0dd..d8034737db4c 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -55,10 +55,22 @@ static int sig_handler_ignored(void __user *handler, int sig) | |||
55 | (handler == SIG_DFL && sig_kernel_ignore(sig)); | 55 | (handler == SIG_DFL && sig_kernel_ignore(sig)); |
56 | } | 56 | } |
57 | 57 | ||
58 | static int sig_ignored(struct task_struct *t, int sig) | 58 | static int sig_task_ignored(struct task_struct *t, int sig, |
59 | int from_ancestor_ns) | ||
59 | { | 60 | { |
60 | void __user *handler; | 61 | void __user *handler; |
61 | 62 | ||
63 | handler = sig_handler(t, sig); | ||
64 | |||
65 | if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && | ||
66 | handler == SIG_DFL && !from_ancestor_ns) | ||
67 | return 1; | ||
68 | |||
69 | return sig_handler_ignored(handler, sig); | ||
70 | } | ||
71 | |||
72 | static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) | ||
73 | { | ||
62 | /* | 74 | /* |
63 | * Blocked signals are never ignored, since the | 75 | * Blocked signals are never ignored, since the |
64 | * signal handler may change by the time it is | 76 | * signal handler may change by the time it is |
@@ -67,14 +79,13 @@ static int sig_ignored(struct task_struct *t, int sig) | |||
67 | if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) | 79 | if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) |
68 | return 0; | 80 | return 0; |
69 | 81 | ||
70 | handler = sig_handler(t, sig); | 82 | if (!sig_task_ignored(t, sig, from_ancestor_ns)) |
71 | if (!sig_handler_ignored(handler, sig)) | ||
72 | return 0; | 83 | return 0; |
73 | 84 | ||
74 | /* | 85 | /* |
75 | * Tracers may want to know about even ignored signals. | 86 | * Tracers may want to know about even ignored signals. |
76 | */ | 87 | */ |
77 | return !tracehook_consider_ignored_signal(t, sig, handler); | 88 | return !tracehook_consider_ignored_signal(t, sig); |
78 | } | 89 | } |
79 | 90 | ||
80 | /* | 91 | /* |
@@ -318,7 +329,7 @@ int unhandled_signal(struct task_struct *tsk, int sig) | |||
318 | return 1; | 329 | return 1; |
319 | if (handler != SIG_IGN && handler != SIG_DFL) | 330 | if (handler != SIG_IGN && handler != SIG_DFL) |
320 | return 0; | 331 | return 0; |
321 | return !tracehook_consider_fatal_signal(tsk, sig, handler); | 332 | return !tracehook_consider_fatal_signal(tsk, sig); |
322 | } | 333 | } |
323 | 334 | ||
324 | 335 | ||
@@ -624,7 +635,7 @@ static int check_kill_permission(int sig, struct siginfo *info, | |||
624 | * Returns true if the signal should be actually delivered, otherwise | 635 | * Returns true if the signal should be actually delivered, otherwise |
625 | * it should be dropped. | 636 | * it should be dropped. |
626 | */ | 637 | */ |
627 | static int prepare_signal(int sig, struct task_struct *p) | 638 | static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) |
628 | { | 639 | { |
629 | struct signal_struct *signal = p->signal; | 640 | struct signal_struct *signal = p->signal; |
630 | struct task_struct *t; | 641 | struct task_struct *t; |
@@ -708,7 +719,7 @@ static int prepare_signal(int sig, struct task_struct *p) | |||
708 | } | 719 | } |
709 | } | 720 | } |
710 | 721 | ||
711 | return !sig_ignored(p, sig); | 722 | return !sig_ignored(p, sig, from_ancestor_ns); |
712 | } | 723 | } |
713 | 724 | ||
714 | /* | 725 | /* |
@@ -777,7 +788,7 @@ static void complete_signal(int sig, struct task_struct *p, int group) | |||
777 | !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && | 788 | !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && |
778 | !sigismember(&t->real_blocked, sig) && | 789 | !sigismember(&t->real_blocked, sig) && |
779 | (sig == SIGKILL || | 790 | (sig == SIGKILL || |
780 | !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) { | 791 | !tracehook_consider_fatal_signal(t, sig))) { |
781 | /* | 792 | /* |
782 | * This signal will be fatal to the whole group. | 793 | * This signal will be fatal to the whole group. |
783 | */ | 794 | */ |
@@ -813,8 +824,8 @@ static inline int legacy_queue(struct sigpending *signals, int sig) | |||
813 | return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); | 824 | return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); |
814 | } | 825 | } |
815 | 826 | ||
816 | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | 827 | static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, |
817 | int group) | 828 | int group, int from_ancestor_ns) |
818 | { | 829 | { |
819 | struct sigpending *pending; | 830 | struct sigpending *pending; |
820 | struct sigqueue *q; | 831 | struct sigqueue *q; |
@@ -822,7 +833,8 @@ static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | |||
822 | trace_sched_signal_send(sig, t); | 833 | trace_sched_signal_send(sig, t); |
823 | 834 | ||
824 | assert_spin_locked(&t->sighand->siglock); | 835 | assert_spin_locked(&t->sighand->siglock); |
825 | if (!prepare_signal(sig, t)) | 836 | |
837 | if (!prepare_signal(sig, t, from_ancestor_ns)) | ||
826 | return 0; | 838 | return 0; |
827 | 839 | ||
828 | pending = group ? &t->signal->shared_pending : &t->pending; | 840 | pending = group ? &t->signal->shared_pending : &t->pending; |
@@ -871,6 +883,8 @@ static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | |||
871 | break; | 883 | break; |
872 | default: | 884 | default: |
873 | copy_siginfo(&q->info, info); | 885 | copy_siginfo(&q->info, info); |
886 | if (from_ancestor_ns) | ||
887 | q->info.si_pid = 0; | ||
874 | break; | 888 | break; |
875 | } | 889 | } |
876 | } else if (!is_si_special(info)) { | 890 | } else if (!is_si_special(info)) { |
@@ -889,6 +903,20 @@ out_set: | |||
889 | return 0; | 903 | return 0; |
890 | } | 904 | } |
891 | 905 | ||
906 | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | ||
907 | int group) | ||
908 | { | ||
909 | int from_ancestor_ns = 0; | ||
910 | |||
911 | #ifdef CONFIG_PID_NS | ||
912 | if (!is_si_special(info) && SI_FROMUSER(info) && | ||
913 | task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0) | ||
914 | from_ancestor_ns = 1; | ||
915 | #endif | ||
916 | |||
917 | return __send_signal(sig, info, t, group, from_ancestor_ns); | ||
918 | } | ||
919 | |||
892 | int print_fatal_signals; | 920 | int print_fatal_signals; |
893 | 921 | ||
894 | static void print_fatal_signal(struct pt_regs *regs, int signr) | 922 | static void print_fatal_signal(struct pt_regs *regs, int signr) |
@@ -1133,7 +1161,7 @@ int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, | |||
1133 | if (sig && p->sighand) { | 1161 | if (sig && p->sighand) { |
1134 | unsigned long flags; | 1162 | unsigned long flags; |
1135 | spin_lock_irqsave(&p->sighand->siglock, flags); | 1163 | spin_lock_irqsave(&p->sighand->siglock, flags); |
1136 | ret = __group_send_sig_info(sig, info, p); | 1164 | ret = __send_signal(sig, info, p, 1, 0); |
1137 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 1165 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
1138 | } | 1166 | } |
1139 | out_unlock: | 1167 | out_unlock: |
@@ -1320,7 +1348,7 @@ int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) | |||
1320 | goto ret; | 1348 | goto ret; |
1321 | 1349 | ||
1322 | ret = 1; /* the signal is ignored */ | 1350 | ret = 1; /* the signal is ignored */ |
1323 | if (!prepare_signal(sig, t)) | 1351 | if (!prepare_signal(sig, t, 0)) |
1324 | goto out; | 1352 | goto out; |
1325 | 1353 | ||
1326 | ret = 0; | 1354 | ret = 0; |
@@ -1575,7 +1603,15 @@ static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) | |||
1575 | read_lock(&tasklist_lock); | 1603 | read_lock(&tasklist_lock); |
1576 | if (may_ptrace_stop()) { | 1604 | if (may_ptrace_stop()) { |
1577 | do_notify_parent_cldstop(current, CLD_TRAPPED); | 1605 | do_notify_parent_cldstop(current, CLD_TRAPPED); |
1606 | /* | ||
1607 | * Don't want to allow preemption here, because | ||
1608 | * sys_ptrace() needs this task to be inactive. | ||
1609 | * | ||
1610 | * XXX: implement read_unlock_no_resched(). | ||
1611 | */ | ||
1612 | preempt_disable(); | ||
1578 | read_unlock(&tasklist_lock); | 1613 | read_unlock(&tasklist_lock); |
1614 | preempt_enable_no_resched(); | ||
1579 | schedule(); | 1615 | schedule(); |
1580 | } else { | 1616 | } else { |
1581 | /* | 1617 | /* |
@@ -1836,9 +1872,16 @@ relock: | |||
1836 | 1872 | ||
1837 | /* | 1873 | /* |
1838 | * Global init gets no signals it doesn't want. | 1874 | * Global init gets no signals it doesn't want. |
1875 | * Container-init gets no signals it doesn't want from same | ||
1876 | * container. | ||
1877 | * | ||
1878 | * Note that if global/container-init sees a sig_kernel_only() | ||
1879 | * signal here, the signal must have been generated internally | ||
1880 | * or must have come from an ancestor namespace. In either | ||
1881 | * case, the signal cannot be dropped. | ||
1839 | */ | 1882 | */ |
1840 | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && | 1883 | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && |
1841 | !signal_group_exit(signal)) | 1884 | !sig_kernel_only(signr)) |
1842 | continue; | 1885 | continue; |
1843 | 1886 | ||
1844 | if (sig_kernel_stop(signr)) { | 1887 | if (sig_kernel_stop(signr)) { |
diff --git a/kernel/slow-work.c b/kernel/slow-work.c new file mode 100644 index 000000000000..cf2bc01186ef --- /dev/null +++ b/kernel/slow-work.c | |||
@@ -0,0 +1,640 @@ | |||
1 | /* Worker thread pool for slow items, such as filesystem lookups or mkdirs | ||
2 | * | ||
3 | * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. | ||
4 | * Written by David Howells (dhowells@redhat.com) | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public Licence | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the Licence, or (at your option) any later version. | ||
10 | * | ||
11 | * See Documentation/slow-work.txt | ||
12 | */ | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | #include <linux/slow-work.h> | ||
16 | #include <linux/kthread.h> | ||
17 | #include <linux/freezer.h> | ||
18 | #include <linux/wait.h> | ||
19 | |||
20 | #define SLOW_WORK_CULL_TIMEOUT (5 * HZ) /* cull threads 5s after running out of | ||
21 | * things to do */ | ||
22 | #define SLOW_WORK_OOM_TIMEOUT (5 * HZ) /* can't start new threads for 5s after | ||
23 | * OOM */ | ||
24 | |||
25 | static void slow_work_cull_timeout(unsigned long); | ||
26 | static void slow_work_oom_timeout(unsigned long); | ||
27 | |||
28 | #ifdef CONFIG_SYSCTL | ||
29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *, | ||
30 | void __user *, size_t *, loff_t *); | ||
31 | |||
32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *, | ||
33 | void __user *, size_t *, loff_t *); | ||
34 | #endif | ||
35 | |||
36 | /* | ||
37 | * The pool of threads has at least min threads in it as long as someone is | ||
38 | * using the facility, and may have as many as max. | ||
39 | * | ||
40 | * A portion of the pool may be processing very slow operations. | ||
41 | */ | ||
42 | static unsigned slow_work_min_threads = 2; | ||
43 | static unsigned slow_work_max_threads = 4; | ||
44 | static unsigned vslow_work_proportion = 50; /* % of threads that may process | ||
45 | * very slow work */ | ||
46 | |||
47 | #ifdef CONFIG_SYSCTL | ||
48 | static const int slow_work_min_min_threads = 2; | ||
49 | static int slow_work_max_max_threads = 255; | ||
50 | static const int slow_work_min_vslow = 1; | ||
51 | static const int slow_work_max_vslow = 99; | ||
52 | |||
53 | ctl_table slow_work_sysctls[] = { | ||
54 | { | ||
55 | .ctl_name = CTL_UNNUMBERED, | ||
56 | .procname = "min-threads", | ||
57 | .data = &slow_work_min_threads, | ||
58 | .maxlen = sizeof(unsigned), | ||
59 | .mode = 0644, | ||
60 | .proc_handler = slow_work_min_threads_sysctl, | ||
61 | .extra1 = (void *) &slow_work_min_min_threads, | ||
62 | .extra2 = &slow_work_max_threads, | ||
63 | }, | ||
64 | { | ||
65 | .ctl_name = CTL_UNNUMBERED, | ||
66 | .procname = "max-threads", | ||
67 | .data = &slow_work_max_threads, | ||
68 | .maxlen = sizeof(unsigned), | ||
69 | .mode = 0644, | ||
70 | .proc_handler = slow_work_max_threads_sysctl, | ||
71 | .extra1 = &slow_work_min_threads, | ||
72 | .extra2 = (void *) &slow_work_max_max_threads, | ||
73 | }, | ||
74 | { | ||
75 | .ctl_name = CTL_UNNUMBERED, | ||
76 | .procname = "vslow-percentage", | ||
77 | .data = &vslow_work_proportion, | ||
78 | .maxlen = sizeof(unsigned), | ||
79 | .mode = 0644, | ||
80 | .proc_handler = &proc_dointvec_minmax, | ||
81 | .extra1 = (void *) &slow_work_min_vslow, | ||
82 | .extra2 = (void *) &slow_work_max_vslow, | ||
83 | }, | ||
84 | { .ctl_name = 0 } | ||
85 | }; | ||
86 | #endif | ||
87 | |||
88 | /* | ||
89 | * The active state of the thread pool | ||
90 | */ | ||
91 | static atomic_t slow_work_thread_count; | ||
92 | static atomic_t vslow_work_executing_count; | ||
93 | |||
94 | static bool slow_work_may_not_start_new_thread; | ||
95 | static bool slow_work_cull; /* cull a thread due to lack of activity */ | ||
96 | static DEFINE_TIMER(slow_work_cull_timer, slow_work_cull_timeout, 0, 0); | ||
97 | static DEFINE_TIMER(slow_work_oom_timer, slow_work_oom_timeout, 0, 0); | ||
98 | static struct slow_work slow_work_new_thread; /* new thread starter */ | ||
99 | |||
100 | /* | ||
101 | * The queues of work items and the lock governing access to them. These are | ||
102 | * shared between all the CPUs. It doesn't make sense to have per-CPU queues | ||
103 | * as the number of threads bears no relation to the number of CPUs. | ||
104 | * | ||
105 | * There are two queues of work items: one for slow work items, and one for | ||
106 | * very slow work items. | ||
107 | */ | ||
108 | static LIST_HEAD(slow_work_queue); | ||
109 | static LIST_HEAD(vslow_work_queue); | ||
110 | static DEFINE_SPINLOCK(slow_work_queue_lock); | ||
111 | |||
112 | /* | ||
113 | * The thread controls. A variable used to signal to the threads that they | ||
114 | * should exit when the queue is empty, a waitqueue used by the threads to wait | ||
115 | * for signals, and a completion set by the last thread to exit. | ||
116 | */ | ||
117 | static bool slow_work_threads_should_exit; | ||
118 | static DECLARE_WAIT_QUEUE_HEAD(slow_work_thread_wq); | ||
119 | static DECLARE_COMPLETION(slow_work_last_thread_exited); | ||
120 | |||
121 | /* | ||
122 | * The number of users of the thread pool and its lock. Whilst this is zero we | ||
123 | * have no threads hanging around, and when this reaches zero, we wait for all | ||
124 | * active or queued work items to complete and kill all the threads we do have. | ||
125 | */ | ||
126 | static int slow_work_user_count; | ||
127 | static DEFINE_MUTEX(slow_work_user_lock); | ||
128 | |||
129 | /* | ||
130 | * Calculate the maximum number of active threads in the pool that are | ||
131 | * permitted to process very slow work items. | ||
132 | * | ||
133 | * The answer is rounded up to at least 1, but may not equal or exceed the | ||
134 | * maximum number of the threads in the pool. This means we always have at | ||
135 | * least one thread that can process slow work items, and we always have at | ||
136 | * least one thread that won't get tied up doing so. | ||
137 | */ | ||
138 | static unsigned slow_work_calc_vsmax(void) | ||
139 | { | ||
140 | unsigned vsmax; | ||
141 | |||
142 | vsmax = atomic_read(&slow_work_thread_count) * vslow_work_proportion; | ||
143 | vsmax /= 100; | ||
144 | vsmax = max(vsmax, 1U); | ||
145 | return min(vsmax, slow_work_max_threads - 1); | ||
146 | } | ||
147 | |||
148 | /* | ||
149 | * Attempt to execute stuff queued on a slow thread. Return true if we managed | ||
150 | * it, false if there was nothing to do. | ||
151 | */ | ||
152 | static bool slow_work_execute(void) | ||
153 | { | ||
154 | struct slow_work *work = NULL; | ||
155 | unsigned vsmax; | ||
156 | bool very_slow; | ||
157 | |||
158 | vsmax = slow_work_calc_vsmax(); | ||
159 | |||
160 | /* see if we can schedule a new thread to be started if we're not | ||
161 | * keeping up with the work */ | ||
162 | if (!waitqueue_active(&slow_work_thread_wq) && | ||
163 | (!list_empty(&slow_work_queue) || !list_empty(&vslow_work_queue)) && | ||
164 | atomic_read(&slow_work_thread_count) < slow_work_max_threads && | ||
165 | !slow_work_may_not_start_new_thread) | ||
166 | slow_work_enqueue(&slow_work_new_thread); | ||
167 | |||
168 | /* find something to execute */ | ||
169 | spin_lock_irq(&slow_work_queue_lock); | ||
170 | if (!list_empty(&vslow_work_queue) && | ||
171 | atomic_read(&vslow_work_executing_count) < vsmax) { | ||
172 | work = list_entry(vslow_work_queue.next, | ||
173 | struct slow_work, link); | ||
174 | if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags)) | ||
175 | BUG(); | ||
176 | list_del_init(&work->link); | ||
177 | atomic_inc(&vslow_work_executing_count); | ||
178 | very_slow = true; | ||
179 | } else if (!list_empty(&slow_work_queue)) { | ||
180 | work = list_entry(slow_work_queue.next, | ||
181 | struct slow_work, link); | ||
182 | if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags)) | ||
183 | BUG(); | ||
184 | list_del_init(&work->link); | ||
185 | very_slow = false; | ||
186 | } else { | ||
187 | very_slow = false; /* avoid the compiler warning */ | ||
188 | } | ||
189 | spin_unlock_irq(&slow_work_queue_lock); | ||
190 | |||
191 | if (!work) | ||
192 | return false; | ||
193 | |||
194 | if (!test_and_clear_bit(SLOW_WORK_PENDING, &work->flags)) | ||
195 | BUG(); | ||
196 | |||
197 | work->ops->execute(work); | ||
198 | |||
199 | if (very_slow) | ||
200 | atomic_dec(&vslow_work_executing_count); | ||
201 | clear_bit_unlock(SLOW_WORK_EXECUTING, &work->flags); | ||
202 | |||
203 | /* if someone tried to enqueue the item whilst we were executing it, | ||
204 | * then it'll be left unenqueued to avoid multiple threads trying to | ||
205 | * execute it simultaneously | ||
206 | * | ||
207 | * there is, however, a race between us testing the pending flag and | ||
208 | * getting the spinlock, and between the enqueuer setting the pending | ||
209 | * flag and getting the spinlock, so we use a deferral bit to tell us | ||
210 | * if the enqueuer got there first | ||
211 | */ | ||
212 | if (test_bit(SLOW_WORK_PENDING, &work->flags)) { | ||
213 | spin_lock_irq(&slow_work_queue_lock); | ||
214 | |||
215 | if (!test_bit(SLOW_WORK_EXECUTING, &work->flags) && | ||
216 | test_and_clear_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags)) | ||
217 | goto auto_requeue; | ||
218 | |||
219 | spin_unlock_irq(&slow_work_queue_lock); | ||
220 | } | ||
221 | |||
222 | work->ops->put_ref(work); | ||
223 | return true; | ||
224 | |||
225 | auto_requeue: | ||
226 | /* we must complete the enqueue operation | ||
227 | * - we transfer our ref on the item back to the appropriate queue | ||
228 | * - don't wake another thread up as we're awake already | ||
229 | */ | ||
230 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) | ||
231 | list_add_tail(&work->link, &vslow_work_queue); | ||
232 | else | ||
233 | list_add_tail(&work->link, &slow_work_queue); | ||
234 | spin_unlock_irq(&slow_work_queue_lock); | ||
235 | return true; | ||
236 | } | ||
237 | |||
238 | /** | ||
239 | * slow_work_enqueue - Schedule a slow work item for processing | ||
240 | * @work: The work item to queue | ||
241 | * | ||
242 | * Schedule a slow work item for processing. If the item is already undergoing | ||
243 | * execution, this guarantees not to re-enter the execution routine until the | ||
244 | * first execution finishes. | ||
245 | * | ||
246 | * The item is pinned by this function as it retains a reference to it, managed | ||
247 | * through the item operations. The item is unpinned once it has been | ||
248 | * executed. | ||
249 | * | ||
250 | * An item may hog the thread that is running it for a relatively large amount | ||
251 | * of time, sufficient, for example, to perform several lookup, mkdir, create | ||
252 | * and setxattr operations. It may sleep on I/O and may sleep to obtain locks. | ||
253 | * | ||
254 | * Conversely, if a number of items are awaiting processing, it may take some | ||
255 | * time before any given item is given attention. The number of threads in the | ||
256 | * pool may be increased to deal with demand, but only up to a limit. | ||
257 | * | ||
258 | * If SLOW_WORK_VERY_SLOW is set on the work item, then it will be placed in | ||
259 | * the very slow queue, from which only a portion of the threads will be | ||
260 | * allowed to pick items to execute. This ensures that very slow items won't | ||
261 | * overly block ones that are just ordinarily slow. | ||
262 | * | ||
263 | * Returns 0 if successful, -EAGAIN if not. | ||
264 | */ | ||
265 | int slow_work_enqueue(struct slow_work *work) | ||
266 | { | ||
267 | unsigned long flags; | ||
268 | |||
269 | BUG_ON(slow_work_user_count <= 0); | ||
270 | BUG_ON(!work); | ||
271 | BUG_ON(!work->ops); | ||
272 | BUG_ON(!work->ops->get_ref); | ||
273 | |||
274 | /* when honouring an enqueue request, we only promise that we will run | ||
275 | * the work function in the future; we do not promise to run it once | ||
276 | * per enqueue request | ||
277 | * | ||
278 | * we use the PENDING bit to merge together repeat requests without | ||
279 | * having to disable IRQs and take the spinlock, whilst still | ||
280 | * maintaining our promise | ||
281 | */ | ||
282 | if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) { | ||
283 | spin_lock_irqsave(&slow_work_queue_lock, flags); | ||
284 | |||
285 | /* we promise that we will not attempt to execute the work | ||
286 | * function in more than one thread simultaneously | ||
287 | * | ||
288 | * this, however, leaves us with a problem if we're asked to | ||
289 | * enqueue the work whilst someone is executing the work | ||
290 | * function as simply queueing the work immediately means that | ||
291 | * another thread may try executing it whilst it is already | ||
292 | * under execution | ||
293 | * | ||
294 | * to deal with this, we set the ENQ_DEFERRED bit instead of | ||
295 | * enqueueing, and the thread currently executing the work | ||
296 | * function will enqueue the work item when the work function | ||
297 | * returns and it has cleared the EXECUTING bit | ||
298 | */ | ||
299 | if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) { | ||
300 | set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags); | ||
301 | } else { | ||
302 | if (work->ops->get_ref(work) < 0) | ||
303 | goto cant_get_ref; | ||
304 | if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) | ||
305 | list_add_tail(&work->link, &vslow_work_queue); | ||
306 | else | ||
307 | list_add_tail(&work->link, &slow_work_queue); | ||
308 | wake_up(&slow_work_thread_wq); | ||
309 | } | ||
310 | |||
311 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
312 | } | ||
313 | return 0; | ||
314 | |||
315 | cant_get_ref: | ||
316 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
317 | return -EAGAIN; | ||
318 | } | ||
319 | EXPORT_SYMBOL(slow_work_enqueue); | ||
320 | |||
321 | /* | ||
322 | * Worker thread culling algorithm | ||
323 | */ | ||
324 | static bool slow_work_cull_thread(void) | ||
325 | { | ||
326 | unsigned long flags; | ||
327 | bool do_cull = false; | ||
328 | |||
329 | spin_lock_irqsave(&slow_work_queue_lock, flags); | ||
330 | |||
331 | if (slow_work_cull) { | ||
332 | slow_work_cull = false; | ||
333 | |||
334 | if (list_empty(&slow_work_queue) && | ||
335 | list_empty(&vslow_work_queue) && | ||
336 | atomic_read(&slow_work_thread_count) > | ||
337 | slow_work_min_threads) { | ||
338 | mod_timer(&slow_work_cull_timer, | ||
339 | jiffies + SLOW_WORK_CULL_TIMEOUT); | ||
340 | do_cull = true; | ||
341 | } | ||
342 | } | ||
343 | |||
344 | spin_unlock_irqrestore(&slow_work_queue_lock, flags); | ||
345 | return do_cull; | ||
346 | } | ||
347 | |||
348 | /* | ||
349 | * Determine if there is slow work available for dispatch | ||
350 | */ | ||
351 | static inline bool slow_work_available(int vsmax) | ||
352 | { | ||
353 | return !list_empty(&slow_work_queue) || | ||
354 | (!list_empty(&vslow_work_queue) && | ||
355 | atomic_read(&vslow_work_executing_count) < vsmax); | ||
356 | } | ||
357 | |||
358 | /* | ||
359 | * Worker thread dispatcher | ||
360 | */ | ||
361 | static int slow_work_thread(void *_data) | ||
362 | { | ||
363 | int vsmax; | ||
364 | |||
365 | DEFINE_WAIT(wait); | ||
366 | |||
367 | set_freezable(); | ||
368 | set_user_nice(current, -5); | ||
369 | |||
370 | for (;;) { | ||
371 | vsmax = vslow_work_proportion; | ||
372 | vsmax *= atomic_read(&slow_work_thread_count); | ||
373 | vsmax /= 100; | ||
374 | |||
375 | prepare_to_wait(&slow_work_thread_wq, &wait, | ||
376 | TASK_INTERRUPTIBLE); | ||
377 | if (!freezing(current) && | ||
378 | !slow_work_threads_should_exit && | ||
379 | !slow_work_available(vsmax) && | ||
380 | !slow_work_cull) | ||
381 | schedule(); | ||
382 | finish_wait(&slow_work_thread_wq, &wait); | ||
383 | |||
384 | try_to_freeze(); | ||
385 | |||
386 | vsmax = vslow_work_proportion; | ||
387 | vsmax *= atomic_read(&slow_work_thread_count); | ||
388 | vsmax /= 100; | ||
389 | |||
390 | if (slow_work_available(vsmax) && slow_work_execute()) { | ||
391 | cond_resched(); | ||
392 | if (list_empty(&slow_work_queue) && | ||
393 | list_empty(&vslow_work_queue) && | ||
394 | atomic_read(&slow_work_thread_count) > | ||
395 | slow_work_min_threads) | ||
396 | mod_timer(&slow_work_cull_timer, | ||
397 | jiffies + SLOW_WORK_CULL_TIMEOUT); | ||
398 | continue; | ||
399 | } | ||
400 | |||
401 | if (slow_work_threads_should_exit) | ||
402 | break; | ||
403 | |||
404 | if (slow_work_cull && slow_work_cull_thread()) | ||
405 | break; | ||
406 | } | ||
407 | |||
408 | if (atomic_dec_and_test(&slow_work_thread_count)) | ||
409 | complete_and_exit(&slow_work_last_thread_exited, 0); | ||
410 | return 0; | ||
411 | } | ||
412 | |||
413 | /* | ||
414 | * Handle thread cull timer expiration | ||
415 | */ | ||
416 | static void slow_work_cull_timeout(unsigned long data) | ||
417 | { | ||
418 | slow_work_cull = true; | ||
419 | wake_up(&slow_work_thread_wq); | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * Get a reference on slow work thread starter | ||
424 | */ | ||
425 | static int slow_work_new_thread_get_ref(struct slow_work *work) | ||
426 | { | ||
427 | return 0; | ||
428 | } | ||
429 | |||
430 | /* | ||
431 | * Drop a reference on slow work thread starter | ||
432 | */ | ||
433 | static void slow_work_new_thread_put_ref(struct slow_work *work) | ||
434 | { | ||
435 | } | ||
436 | |||
437 | /* | ||
438 | * Start a new slow work thread | ||
439 | */ | ||
440 | static void slow_work_new_thread_execute(struct slow_work *work) | ||
441 | { | ||
442 | struct task_struct *p; | ||
443 | |||
444 | if (slow_work_threads_should_exit) | ||
445 | return; | ||
446 | |||
447 | if (atomic_read(&slow_work_thread_count) >= slow_work_max_threads) | ||
448 | return; | ||
449 | |||
450 | if (!mutex_trylock(&slow_work_user_lock)) | ||
451 | return; | ||
452 | |||
453 | slow_work_may_not_start_new_thread = true; | ||
454 | atomic_inc(&slow_work_thread_count); | ||
455 | p = kthread_run(slow_work_thread, NULL, "kslowd"); | ||
456 | if (IS_ERR(p)) { | ||
457 | printk(KERN_DEBUG "Slow work thread pool: OOM\n"); | ||
458 | if (atomic_dec_and_test(&slow_work_thread_count)) | ||
459 | BUG(); /* we're running on a slow work thread... */ | ||
460 | mod_timer(&slow_work_oom_timer, | ||
461 | jiffies + SLOW_WORK_OOM_TIMEOUT); | ||
462 | } else { | ||
463 | /* ratelimit the starting of new threads */ | ||
464 | mod_timer(&slow_work_oom_timer, jiffies + 1); | ||
465 | } | ||
466 | |||
467 | mutex_unlock(&slow_work_user_lock); | ||
468 | } | ||
469 | |||
470 | static const struct slow_work_ops slow_work_new_thread_ops = { | ||
471 | .get_ref = slow_work_new_thread_get_ref, | ||
472 | .put_ref = slow_work_new_thread_put_ref, | ||
473 | .execute = slow_work_new_thread_execute, | ||
474 | }; | ||
475 | |||
476 | /* | ||
477 | * post-OOM new thread start suppression expiration | ||
478 | */ | ||
479 | static void slow_work_oom_timeout(unsigned long data) | ||
480 | { | ||
481 | slow_work_may_not_start_new_thread = false; | ||
482 | } | ||
483 | |||
484 | #ifdef CONFIG_SYSCTL | ||
485 | /* | ||
486 | * Handle adjustment of the minimum number of threads | ||
487 | */ | ||
488 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | ||
489 | struct file *filp, void __user *buffer, | ||
490 | size_t *lenp, loff_t *ppos) | ||
491 | { | ||
492 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | ||
493 | int n; | ||
494 | |||
495 | if (ret == 0) { | ||
496 | mutex_lock(&slow_work_user_lock); | ||
497 | if (slow_work_user_count > 0) { | ||
498 | /* see if we need to start or stop threads */ | ||
499 | n = atomic_read(&slow_work_thread_count) - | ||
500 | slow_work_min_threads; | ||
501 | |||
502 | if (n < 0 && !slow_work_may_not_start_new_thread) | ||
503 | slow_work_enqueue(&slow_work_new_thread); | ||
504 | else if (n > 0) | ||
505 | mod_timer(&slow_work_cull_timer, | ||
506 | jiffies + SLOW_WORK_CULL_TIMEOUT); | ||
507 | } | ||
508 | mutex_unlock(&slow_work_user_lock); | ||
509 | } | ||
510 | |||
511 | return ret; | ||
512 | } | ||
513 | |||
514 | /* | ||
515 | * Handle adjustment of the maximum number of threads | ||
516 | */ | ||
517 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, | ||
518 | struct file *filp, void __user *buffer, | ||
519 | size_t *lenp, loff_t *ppos) | ||
520 | { | ||
521 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | ||
522 | int n; | ||
523 | |||
524 | if (ret == 0) { | ||
525 | mutex_lock(&slow_work_user_lock); | ||
526 | if (slow_work_user_count > 0) { | ||
527 | /* see if we need to stop threads */ | ||
528 | n = slow_work_max_threads - | ||
529 | atomic_read(&slow_work_thread_count); | ||
530 | |||
531 | if (n < 0) | ||
532 | mod_timer(&slow_work_cull_timer, | ||
533 | jiffies + SLOW_WORK_CULL_TIMEOUT); | ||
534 | } | ||
535 | mutex_unlock(&slow_work_user_lock); | ||
536 | } | ||
537 | |||
538 | return ret; | ||
539 | } | ||
540 | #endif /* CONFIG_SYSCTL */ | ||
541 | |||
542 | /** | ||
543 | * slow_work_register_user - Register a user of the facility | ||
544 | * | ||
545 | * Register a user of the facility, starting up the initial threads if there | ||
546 | * aren't any other users at this point. This will return 0 if successful, or | ||
547 | * an error if not. | ||
548 | */ | ||
549 | int slow_work_register_user(void) | ||
550 | { | ||
551 | struct task_struct *p; | ||
552 | int loop; | ||
553 | |||
554 | mutex_lock(&slow_work_user_lock); | ||
555 | |||
556 | if (slow_work_user_count == 0) { | ||
557 | printk(KERN_NOTICE "Slow work thread pool: Starting up\n"); | ||
558 | init_completion(&slow_work_last_thread_exited); | ||
559 | |||
560 | slow_work_threads_should_exit = false; | ||
561 | slow_work_init(&slow_work_new_thread, | ||
562 | &slow_work_new_thread_ops); | ||
563 | slow_work_may_not_start_new_thread = false; | ||
564 | slow_work_cull = false; | ||
565 | |||
566 | /* start the minimum number of threads */ | ||
567 | for (loop = 0; loop < slow_work_min_threads; loop++) { | ||
568 | atomic_inc(&slow_work_thread_count); | ||
569 | p = kthread_run(slow_work_thread, NULL, "kslowd"); | ||
570 | if (IS_ERR(p)) | ||
571 | goto error; | ||
572 | } | ||
573 | printk(KERN_NOTICE "Slow work thread pool: Ready\n"); | ||
574 | } | ||
575 | |||
576 | slow_work_user_count++; | ||
577 | mutex_unlock(&slow_work_user_lock); | ||
578 | return 0; | ||
579 | |||
580 | error: | ||
581 | if (atomic_dec_and_test(&slow_work_thread_count)) | ||
582 | complete(&slow_work_last_thread_exited); | ||
583 | if (loop > 0) { | ||
584 | printk(KERN_ERR "Slow work thread pool:" | ||
585 | " Aborting startup on ENOMEM\n"); | ||
586 | slow_work_threads_should_exit = true; | ||
587 | wake_up_all(&slow_work_thread_wq); | ||
588 | wait_for_completion(&slow_work_last_thread_exited); | ||
589 | printk(KERN_ERR "Slow work thread pool: Aborted\n"); | ||
590 | } | ||
591 | mutex_unlock(&slow_work_user_lock); | ||
592 | return PTR_ERR(p); | ||
593 | } | ||
594 | EXPORT_SYMBOL(slow_work_register_user); | ||
595 | |||
596 | /** | ||
597 | * slow_work_unregister_user - Unregister a user of the facility | ||
598 | * | ||
599 | * Unregister a user of the facility, killing all the threads if this was the | ||
600 | * last one. | ||
601 | */ | ||
602 | void slow_work_unregister_user(void) | ||
603 | { | ||
604 | mutex_lock(&slow_work_user_lock); | ||
605 | |||
606 | BUG_ON(slow_work_user_count <= 0); | ||
607 | |||
608 | slow_work_user_count--; | ||
609 | if (slow_work_user_count == 0) { | ||
610 | printk(KERN_NOTICE "Slow work thread pool: Shutting down\n"); | ||
611 | slow_work_threads_should_exit = true; | ||
612 | wake_up_all(&slow_work_thread_wq); | ||
613 | wait_for_completion(&slow_work_last_thread_exited); | ||
614 | printk(KERN_NOTICE "Slow work thread pool:" | ||
615 | " Shut down complete\n"); | ||
616 | } | ||
617 | |||
618 | del_timer_sync(&slow_work_cull_timer); | ||
619 | |||
620 | mutex_unlock(&slow_work_user_lock); | ||
621 | } | ||
622 | EXPORT_SYMBOL(slow_work_unregister_user); | ||
623 | |||
624 | /* | ||
625 | * Initialise the slow work facility | ||
626 | */ | ||
627 | static int __init init_slow_work(void) | ||
628 | { | ||
629 | unsigned nr_cpus = num_possible_cpus(); | ||
630 | |||
631 | if (slow_work_max_threads < nr_cpus) | ||
632 | slow_work_max_threads = nr_cpus; | ||
633 | #ifdef CONFIG_SYSCTL | ||
634 | if (slow_work_max_max_threads < nr_cpus * 2) | ||
635 | slow_work_max_max_threads = nr_cpus * 2; | ||
636 | #endif | ||
637 | return 0; | ||
638 | } | ||
639 | |||
640 | subsys_initcall(init_slow_work); | ||
diff --git a/kernel/smp.c b/kernel/smp.c index bbedbb7efe32..858baac568ee 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
@@ -2,40 +2,82 @@ | |||
2 | * Generic helpers for smp ipi calls | 2 | * Generic helpers for smp ipi calls |
3 | * | 3 | * |
4 | * (C) Jens Axboe <jens.axboe@oracle.com> 2008 | 4 | * (C) Jens Axboe <jens.axboe@oracle.com> 2008 |
5 | * | ||
6 | */ | 5 | */ |
7 | #include <linux/init.h> | ||
8 | #include <linux/module.h> | ||
9 | #include <linux/percpu.h> | ||
10 | #include <linux/rcupdate.h> | 6 | #include <linux/rcupdate.h> |
11 | #include <linux/rculist.h> | 7 | #include <linux/rculist.h> |
8 | #include <linux/kernel.h> | ||
9 | #include <linux/module.h> | ||
10 | #include <linux/percpu.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/smp.h> | 12 | #include <linux/smp.h> |
13 | #include <linux/cpu.h> | ||
13 | 14 | ||
14 | static DEFINE_PER_CPU(struct call_single_queue, call_single_queue); | 15 | static DEFINE_PER_CPU(struct call_single_queue, call_single_queue); |
15 | static LIST_HEAD(call_function_queue); | 16 | |
16 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_function_lock); | 17 | static struct { |
18 | struct list_head queue; | ||
19 | spinlock_t lock; | ||
20 | } call_function __cacheline_aligned_in_smp = | ||
21 | { | ||
22 | .queue = LIST_HEAD_INIT(call_function.queue), | ||
23 | .lock = __SPIN_LOCK_UNLOCKED(call_function.lock), | ||
24 | }; | ||
17 | 25 | ||
18 | enum { | 26 | enum { |
19 | CSD_FLAG_WAIT = 0x01, | 27 | CSD_FLAG_LOCK = 0x01, |
20 | CSD_FLAG_ALLOC = 0x02, | ||
21 | CSD_FLAG_LOCK = 0x04, | ||
22 | }; | 28 | }; |
23 | 29 | ||
24 | struct call_function_data { | 30 | struct call_function_data { |
25 | struct call_single_data csd; | 31 | struct call_single_data csd; |
26 | spinlock_t lock; | 32 | spinlock_t lock; |
27 | unsigned int refs; | 33 | unsigned int refs; |
28 | struct rcu_head rcu_head; | 34 | cpumask_var_t cpumask; |
29 | unsigned long cpumask_bits[]; | ||
30 | }; | 35 | }; |
31 | 36 | ||
32 | struct call_single_queue { | 37 | struct call_single_queue { |
33 | struct list_head list; | 38 | struct list_head list; |
34 | spinlock_t lock; | 39 | spinlock_t lock; |
40 | }; | ||
41 | |||
42 | static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { | ||
43 | .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock), | ||
44 | }; | ||
45 | |||
46 | static int | ||
47 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | ||
48 | { | ||
49 | long cpu = (long)hcpu; | ||
50 | struct call_function_data *cfd = &per_cpu(cfd_data, cpu); | ||
51 | |||
52 | switch (action) { | ||
53 | case CPU_UP_PREPARE: | ||
54 | case CPU_UP_PREPARE_FROZEN: | ||
55 | if (!alloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, | ||
56 | cpu_to_node(cpu))) | ||
57 | return NOTIFY_BAD; | ||
58 | break; | ||
59 | |||
60 | #ifdef CONFIG_CPU_HOTPLUG | ||
61 | case CPU_UP_CANCELED: | ||
62 | case CPU_UP_CANCELED_FROZEN: | ||
63 | |||
64 | case CPU_DEAD: | ||
65 | case CPU_DEAD_FROZEN: | ||
66 | free_cpumask_var(cfd->cpumask); | ||
67 | break; | ||
68 | #endif | ||
69 | }; | ||
70 | |||
71 | return NOTIFY_OK; | ||
72 | } | ||
73 | |||
74 | static struct notifier_block __cpuinitdata hotplug_cfd_notifier = { | ||
75 | .notifier_call = hotplug_cfd, | ||
35 | }; | 76 | }; |
36 | 77 | ||
37 | static int __cpuinit init_call_single_data(void) | 78 | static int __cpuinit init_call_single_data(void) |
38 | { | 79 | { |
80 | void *cpu = (void *)(long)smp_processor_id(); | ||
39 | int i; | 81 | int i; |
40 | 82 | ||
41 | for_each_possible_cpu(i) { | 83 | for_each_possible_cpu(i) { |
@@ -44,29 +86,63 @@ static int __cpuinit init_call_single_data(void) | |||
44 | spin_lock_init(&q->lock); | 86 | spin_lock_init(&q->lock); |
45 | INIT_LIST_HEAD(&q->list); | 87 | INIT_LIST_HEAD(&q->list); |
46 | } | 88 | } |
89 | |||
90 | hotplug_cfd(&hotplug_cfd_notifier, CPU_UP_PREPARE, cpu); | ||
91 | register_cpu_notifier(&hotplug_cfd_notifier); | ||
92 | |||
47 | return 0; | 93 | return 0; |
48 | } | 94 | } |
49 | early_initcall(init_call_single_data); | 95 | early_initcall(init_call_single_data); |
50 | 96 | ||
51 | static void csd_flag_wait(struct call_single_data *data) | 97 | /* |
98 | * csd_lock/csd_unlock used to serialize access to per-cpu csd resources | ||
99 | * | ||
100 | * For non-synchronous ipi calls the csd can still be in use by the | ||
101 | * previous function call. For multi-cpu calls its even more interesting | ||
102 | * as we'll have to ensure no other cpu is observing our csd. | ||
103 | */ | ||
104 | static void csd_lock_wait(struct call_single_data *data) | ||
52 | { | 105 | { |
53 | /* Wait for response */ | 106 | while (data->flags & CSD_FLAG_LOCK) |
54 | do { | ||
55 | if (!(data->flags & CSD_FLAG_WAIT)) | ||
56 | break; | ||
57 | cpu_relax(); | 107 | cpu_relax(); |
58 | } while (1); | 108 | } |
109 | |||
110 | static void csd_lock(struct call_single_data *data) | ||
111 | { | ||
112 | csd_lock_wait(data); | ||
113 | data->flags = CSD_FLAG_LOCK; | ||
114 | |||
115 | /* | ||
116 | * prevent CPU from reordering the above assignment | ||
117 | * to ->flags with any subsequent assignments to other | ||
118 | * fields of the specified call_single_data structure: | ||
119 | */ | ||
120 | smp_mb(); | ||
121 | } | ||
122 | |||
123 | static void csd_unlock(struct call_single_data *data) | ||
124 | { | ||
125 | WARN_ON(!(data->flags & CSD_FLAG_LOCK)); | ||
126 | |||
127 | /* | ||
128 | * ensure we're all done before releasing data: | ||
129 | */ | ||
130 | smp_mb(); | ||
131 | |||
132 | data->flags &= ~CSD_FLAG_LOCK; | ||
59 | } | 133 | } |
60 | 134 | ||
61 | /* | 135 | /* |
62 | * Insert a previously allocated call_single_data element for execution | 136 | * Insert a previously allocated call_single_data element |
63 | * on the given CPU. data must already have ->func, ->info, and ->flags set. | 137 | * for execution on the given CPU. data must already have |
138 | * ->func, ->info, and ->flags set. | ||
64 | */ | 139 | */ |
65 | static void generic_exec_single(int cpu, struct call_single_data *data) | 140 | static |
141 | void generic_exec_single(int cpu, struct call_single_data *data, int wait) | ||
66 | { | 142 | { |
67 | struct call_single_queue *dst = &per_cpu(call_single_queue, cpu); | 143 | struct call_single_queue *dst = &per_cpu(call_single_queue, cpu); |
68 | int wait = data->flags & CSD_FLAG_WAIT, ipi; | ||
69 | unsigned long flags; | 144 | unsigned long flags; |
145 | int ipi; | ||
70 | 146 | ||
71 | spin_lock_irqsave(&dst->lock, flags); | 147 | spin_lock_irqsave(&dst->lock, flags); |
72 | ipi = list_empty(&dst->list); | 148 | ipi = list_empty(&dst->list); |
@@ -74,24 +150,21 @@ static void generic_exec_single(int cpu, struct call_single_data *data) | |||
74 | spin_unlock_irqrestore(&dst->lock, flags); | 150 | spin_unlock_irqrestore(&dst->lock, flags); |
75 | 151 | ||
76 | /* | 152 | /* |
77 | * Make the list addition visible before sending the ipi. | 153 | * The list addition should be visible before sending the IPI |
154 | * handler locks the list to pull the entry off it because of | ||
155 | * normal cache coherency rules implied by spinlocks. | ||
156 | * | ||
157 | * If IPIs can go out of order to the cache coherency protocol | ||
158 | * in an architecture, sufficient synchronisation should be added | ||
159 | * to arch code to make it appear to obey cache coherency WRT | ||
160 | * locking and barrier primitives. Generic code isn't really | ||
161 | * equipped to do the right thing... | ||
78 | */ | 162 | */ |
79 | smp_mb(); | ||
80 | |||
81 | if (ipi) | 163 | if (ipi) |
82 | arch_send_call_function_single_ipi(cpu); | 164 | arch_send_call_function_single_ipi(cpu); |
83 | 165 | ||
84 | if (wait) | 166 | if (wait) |
85 | csd_flag_wait(data); | 167 | csd_lock_wait(data); |
86 | } | ||
87 | |||
88 | static void rcu_free_call_data(struct rcu_head *head) | ||
89 | { | ||
90 | struct call_function_data *data; | ||
91 | |||
92 | data = container_of(head, struct call_function_data, rcu_head); | ||
93 | |||
94 | kfree(data); | ||
95 | } | 168 | } |
96 | 169 | ||
97 | /* | 170 | /* |
@@ -104,99 +177,83 @@ void generic_smp_call_function_interrupt(void) | |||
104 | int cpu = get_cpu(); | 177 | int cpu = get_cpu(); |
105 | 178 | ||
106 | /* | 179 | /* |
107 | * It's ok to use list_for_each_rcu() here even though we may delete | 180 | * Ensure entry is visible on call_function_queue after we have |
108 | * 'pos', since list_del_rcu() doesn't clear ->next | 181 | * entered the IPI. See comment in smp_call_function_many. |
182 | * If we don't have this, then we may miss an entry on the list | ||
183 | * and never get another IPI to process it. | ||
184 | */ | ||
185 | smp_mb(); | ||
186 | |||
187 | /* | ||
188 | * It's ok to use list_for_each_rcu() here even though we may | ||
189 | * delete 'pos', since list_del_rcu() doesn't clear ->next | ||
109 | */ | 190 | */ |
110 | rcu_read_lock(); | 191 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { |
111 | list_for_each_entry_rcu(data, &call_function_queue, csd.list) { | ||
112 | int refs; | 192 | int refs; |
113 | 193 | ||
114 | if (!cpumask_test_cpu(cpu, to_cpumask(data->cpumask_bits))) | 194 | spin_lock(&data->lock); |
195 | if (!cpumask_test_cpu(cpu, data->cpumask)) { | ||
196 | spin_unlock(&data->lock); | ||
115 | continue; | 197 | continue; |
198 | } | ||
199 | cpumask_clear_cpu(cpu, data->cpumask); | ||
200 | spin_unlock(&data->lock); | ||
116 | 201 | ||
117 | data->csd.func(data->csd.info); | 202 | data->csd.func(data->csd.info); |
118 | 203 | ||
119 | spin_lock(&data->lock); | 204 | spin_lock(&data->lock); |
120 | cpumask_clear_cpu(cpu, to_cpumask(data->cpumask_bits)); | ||
121 | WARN_ON(data->refs == 0); | 205 | WARN_ON(data->refs == 0); |
122 | data->refs--; | 206 | refs = --data->refs; |
123 | refs = data->refs; | 207 | if (!refs) { |
208 | spin_lock(&call_function.lock); | ||
209 | list_del_rcu(&data->csd.list); | ||
210 | spin_unlock(&call_function.lock); | ||
211 | } | ||
124 | spin_unlock(&data->lock); | 212 | spin_unlock(&data->lock); |
125 | 213 | ||
126 | if (refs) | 214 | if (refs) |
127 | continue; | 215 | continue; |
128 | 216 | ||
129 | spin_lock(&call_function_lock); | 217 | csd_unlock(&data->csd); |
130 | list_del_rcu(&data->csd.list); | ||
131 | spin_unlock(&call_function_lock); | ||
132 | |||
133 | if (data->csd.flags & CSD_FLAG_WAIT) { | ||
134 | /* | ||
135 | * serialize stores to data with the flag clear | ||
136 | * and wakeup | ||
137 | */ | ||
138 | smp_wmb(); | ||
139 | data->csd.flags &= ~CSD_FLAG_WAIT; | ||
140 | } | ||
141 | if (data->csd.flags & CSD_FLAG_ALLOC) | ||
142 | call_rcu(&data->rcu_head, rcu_free_call_data); | ||
143 | } | 218 | } |
144 | rcu_read_unlock(); | ||
145 | 219 | ||
146 | put_cpu(); | 220 | put_cpu(); |
147 | } | 221 | } |
148 | 222 | ||
149 | /* | 223 | /* |
150 | * Invoked by arch to handle an IPI for call function single. Must be called | 224 | * Invoked by arch to handle an IPI for call function single. Must be |
151 | * from the arch with interrupts disabled. | 225 | * called from the arch with interrupts disabled. |
152 | */ | 226 | */ |
153 | void generic_smp_call_function_single_interrupt(void) | 227 | void generic_smp_call_function_single_interrupt(void) |
154 | { | 228 | { |
155 | struct call_single_queue *q = &__get_cpu_var(call_single_queue); | 229 | struct call_single_queue *q = &__get_cpu_var(call_single_queue); |
230 | unsigned int data_flags; | ||
156 | LIST_HEAD(list); | 231 | LIST_HEAD(list); |
157 | 232 | ||
158 | /* | 233 | spin_lock(&q->lock); |
159 | * Need to see other stores to list head for checking whether | 234 | list_replace_init(&q->list, &list); |
160 | * list is empty without holding q->lock | 235 | spin_unlock(&q->lock); |
161 | */ | 236 | |
162 | smp_read_barrier_depends(); | 237 | while (!list_empty(&list)) { |
163 | while (!list_empty(&q->list)) { | 238 | struct call_single_data *data; |
164 | unsigned int data_flags; | 239 | |
165 | 240 | data = list_entry(list.next, struct call_single_data, list); | |
166 | spin_lock(&q->lock); | 241 | list_del(&data->list); |
167 | list_replace_init(&q->list, &list); | 242 | |
168 | spin_unlock(&q->lock); | 243 | /* |
169 | 244 | * 'data' can be invalid after this call if flags == 0 | |
170 | while (!list_empty(&list)) { | 245 | * (when called through generic_exec_single()), |
171 | struct call_single_data *data; | 246 | * so save them away before making the call: |
172 | 247 | */ | |
173 | data = list_entry(list.next, struct call_single_data, | 248 | data_flags = data->flags; |
174 | list); | 249 | |
175 | list_del(&data->list); | 250 | data->func(data->info); |
176 | 251 | ||
177 | /* | ||
178 | * 'data' can be invalid after this call if | ||
179 | * flags == 0 (when called through | ||
180 | * generic_exec_single(), so save them away before | ||
181 | * making the call. | ||
182 | */ | ||
183 | data_flags = data->flags; | ||
184 | |||
185 | data->func(data->info); | ||
186 | |||
187 | if (data_flags & CSD_FLAG_WAIT) { | ||
188 | smp_wmb(); | ||
189 | data->flags &= ~CSD_FLAG_WAIT; | ||
190 | } else if (data_flags & CSD_FLAG_LOCK) { | ||
191 | smp_wmb(); | ||
192 | data->flags &= ~CSD_FLAG_LOCK; | ||
193 | } else if (data_flags & CSD_FLAG_ALLOC) | ||
194 | kfree(data); | ||
195 | } | ||
196 | /* | 252 | /* |
197 | * See comment on outer loop | 253 | * Unlocked CSDs are valid through generic_exec_single(): |
198 | */ | 254 | */ |
199 | smp_read_barrier_depends(); | 255 | if (data_flags & CSD_FLAG_LOCK) |
256 | csd_unlock(data); | ||
200 | } | 257 | } |
201 | } | 258 | } |
202 | 259 | ||
@@ -215,65 +272,45 @@ static DEFINE_PER_CPU(struct call_single_data, csd_data); | |||
215 | int smp_call_function_single(int cpu, void (*func) (void *info), void *info, | 272 | int smp_call_function_single(int cpu, void (*func) (void *info), void *info, |
216 | int wait) | 273 | int wait) |
217 | { | 274 | { |
218 | struct call_single_data d; | 275 | struct call_single_data d = { |
276 | .flags = 0, | ||
277 | }; | ||
219 | unsigned long flags; | 278 | unsigned long flags; |
220 | /* prevent preemption and reschedule on another processor, | 279 | int this_cpu; |
221 | as well as CPU removal */ | ||
222 | int me = get_cpu(); | ||
223 | int err = 0; | 280 | int err = 0; |
224 | 281 | ||
282 | /* | ||
283 | * prevent preemption and reschedule on another processor, | ||
284 | * as well as CPU removal | ||
285 | */ | ||
286 | this_cpu = get_cpu(); | ||
287 | |||
225 | /* Can deadlock when called with interrupts disabled */ | 288 | /* Can deadlock when called with interrupts disabled */ |
226 | WARN_ON(irqs_disabled()); | 289 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); |
227 | 290 | ||
228 | if (cpu == me) { | 291 | if (cpu == this_cpu) { |
229 | local_irq_save(flags); | 292 | local_irq_save(flags); |
230 | func(info); | 293 | func(info); |
231 | local_irq_restore(flags); | 294 | local_irq_restore(flags); |
232 | } else if ((unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) { | 295 | } else { |
233 | struct call_single_data *data; | 296 | if ((unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) { |
297 | struct call_single_data *data = &d; | ||
298 | |||
299 | if (!wait) | ||
300 | data = &__get_cpu_var(csd_data); | ||
234 | 301 | ||
235 | if (!wait) { | 302 | csd_lock(data); |
236 | /* | 303 | |
237 | * We are calling a function on a single CPU | 304 | data->func = func; |
238 | * and we are not going to wait for it to finish. | 305 | data->info = info; |
239 | * We first try to allocate the data, but if we | 306 | generic_exec_single(cpu, data, wait); |
240 | * fail, we fall back to use a per cpu data to pass | ||
241 | * the information to that CPU. Since all callers | ||
242 | * of this code will use the same data, we must | ||
243 | * synchronize the callers to prevent a new caller | ||
244 | * from corrupting the data before the callee | ||
245 | * can access it. | ||
246 | * | ||
247 | * The CSD_FLAG_LOCK is used to let us know when | ||
248 | * the IPI handler is done with the data. | ||
249 | * The first caller will set it, and the callee | ||
250 | * will clear it. The next caller must wait for | ||
251 | * it to clear before we set it again. This | ||
252 | * will make sure the callee is done with the | ||
253 | * data before a new caller will use it. | ||
254 | */ | ||
255 | data = kmalloc(sizeof(*data), GFP_ATOMIC); | ||
256 | if (data) | ||
257 | data->flags = CSD_FLAG_ALLOC; | ||
258 | else { | ||
259 | data = &per_cpu(csd_data, me); | ||
260 | while (data->flags & CSD_FLAG_LOCK) | ||
261 | cpu_relax(); | ||
262 | data->flags = CSD_FLAG_LOCK; | ||
263 | } | ||
264 | } else { | 307 | } else { |
265 | data = &d; | 308 | err = -ENXIO; /* CPU not online */ |
266 | data->flags = CSD_FLAG_WAIT; | ||
267 | } | 309 | } |
268 | |||
269 | data->func = func; | ||
270 | data->info = info; | ||
271 | generic_exec_single(cpu, data); | ||
272 | } else { | ||
273 | err = -ENXIO; /* CPU not online */ | ||
274 | } | 310 | } |
275 | 311 | ||
276 | put_cpu(); | 312 | put_cpu(); |
313 | |||
277 | return err; | 314 | return err; |
278 | } | 315 | } |
279 | EXPORT_SYMBOL(smp_call_function_single); | 316 | EXPORT_SYMBOL(smp_call_function_single); |
@@ -283,23 +320,26 @@ EXPORT_SYMBOL(smp_call_function_single); | |||
283 | * @cpu: The CPU to run on. | 320 | * @cpu: The CPU to run on. |
284 | * @data: Pre-allocated and setup data structure | 321 | * @data: Pre-allocated and setup data structure |
285 | * | 322 | * |
286 | * Like smp_call_function_single(), but allow caller to pass in a pre-allocated | 323 | * Like smp_call_function_single(), but allow caller to pass in a |
287 | * data structure. Useful for embedding @data inside other structures, for | 324 | * pre-allocated data structure. Useful for embedding @data inside |
288 | * instance. | 325 | * other structures, for instance. |
289 | * | ||
290 | */ | 326 | */ |
291 | void __smp_call_function_single(int cpu, struct call_single_data *data) | 327 | void __smp_call_function_single(int cpu, struct call_single_data *data, |
328 | int wait) | ||
292 | { | 329 | { |
330 | csd_lock(data); | ||
331 | |||
293 | /* Can deadlock when called with interrupts disabled */ | 332 | /* Can deadlock when called with interrupts disabled */ |
294 | WARN_ON((data->flags & CSD_FLAG_WAIT) && irqs_disabled()); | 333 | WARN_ON_ONCE(wait && irqs_disabled() && !oops_in_progress); |
295 | 334 | ||
296 | generic_exec_single(cpu, data); | 335 | generic_exec_single(cpu, data, wait); |
297 | } | 336 | } |
298 | 337 | ||
299 | /* FIXME: Shim for archs using old arch_send_call_function_ipi API. */ | 338 | /* Deprecated: shim for archs using old arch_send_call_function_ipi API. */ |
339 | |||
300 | #ifndef arch_send_call_function_ipi_mask | 340 | #ifndef arch_send_call_function_ipi_mask |
301 | #define arch_send_call_function_ipi_mask(maskp) \ | 341 | # define arch_send_call_function_ipi_mask(maskp) \ |
302 | arch_send_call_function_ipi(*(maskp)) | 342 | arch_send_call_function_ipi(*(maskp)) |
303 | #endif | 343 | #endif |
304 | 344 | ||
305 | /** | 345 | /** |
@@ -307,7 +347,8 @@ void __smp_call_function_single(int cpu, struct call_single_data *data) | |||
307 | * @mask: The set of cpus to run on (only runs on online subset). | 347 | * @mask: The set of cpus to run on (only runs on online subset). |
308 | * @func: The function to run. This must be fast and non-blocking. | 348 | * @func: The function to run. This must be fast and non-blocking. |
309 | * @info: An arbitrary pointer to pass to the function. | 349 | * @info: An arbitrary pointer to pass to the function. |
310 | * @wait: If true, wait (atomically) until function has completed on other CPUs. | 350 | * @wait: If true, wait (atomically) until function has completed |
351 | * on other CPUs. | ||
311 | * | 352 | * |
312 | * If @wait is true, then returns once @func has returned. Note that @wait | 353 | * If @wait is true, then returns once @func has returned. Note that @wait |
313 | * will be implicitly turned on in case of allocation failures, since | 354 | * will be implicitly turned on in case of allocation failures, since |
@@ -318,27 +359,27 @@ void __smp_call_function_single(int cpu, struct call_single_data *data) | |||
318 | * must be disabled when calling this function. | 359 | * must be disabled when calling this function. |
319 | */ | 360 | */ |
320 | void smp_call_function_many(const struct cpumask *mask, | 361 | void smp_call_function_many(const struct cpumask *mask, |
321 | void (*func)(void *), void *info, | 362 | void (*func)(void *), void *info, bool wait) |
322 | bool wait) | ||
323 | { | 363 | { |
324 | struct call_function_data *data; | 364 | struct call_function_data *data; |
325 | unsigned long flags; | 365 | unsigned long flags; |
326 | int cpu, next_cpu; | 366 | int cpu, next_cpu, this_cpu = smp_processor_id(); |
327 | 367 | ||
328 | /* Can deadlock when called with interrupts disabled */ | 368 | /* Can deadlock when called with interrupts disabled */ |
329 | WARN_ON(irqs_disabled()); | 369 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); |
330 | 370 | ||
331 | /* So, what's a CPU they want? Ignoring this one. */ | 371 | /* So, what's a CPU they want? Ignoring this one. */ |
332 | cpu = cpumask_first_and(mask, cpu_online_mask); | 372 | cpu = cpumask_first_and(mask, cpu_online_mask); |
333 | if (cpu == smp_processor_id()) | 373 | if (cpu == this_cpu) |
334 | cpu = cpumask_next_and(cpu, mask, cpu_online_mask); | 374 | cpu = cpumask_next_and(cpu, mask, cpu_online_mask); |
375 | |||
335 | /* No online cpus? We're done. */ | 376 | /* No online cpus? We're done. */ |
336 | if (cpu >= nr_cpu_ids) | 377 | if (cpu >= nr_cpu_ids) |
337 | return; | 378 | return; |
338 | 379 | ||
339 | /* Do we have another CPU which isn't us? */ | 380 | /* Do we have another CPU which isn't us? */ |
340 | next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask); | 381 | next_cpu = cpumask_next_and(cpu, mask, cpu_online_mask); |
341 | if (next_cpu == smp_processor_id()) | 382 | if (next_cpu == this_cpu) |
342 | next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask); | 383 | next_cpu = cpumask_next_and(next_cpu, mask, cpu_online_mask); |
343 | 384 | ||
344 | /* Fastpath: do that cpu by itself. */ | 385 | /* Fastpath: do that cpu by itself. */ |
@@ -347,43 +388,40 @@ void smp_call_function_many(const struct cpumask *mask, | |||
347 | return; | 388 | return; |
348 | } | 389 | } |
349 | 390 | ||
350 | data = kmalloc(sizeof(*data) + cpumask_size(), GFP_ATOMIC); | 391 | data = &__get_cpu_var(cfd_data); |
351 | if (unlikely(!data)) { | 392 | csd_lock(&data->csd); |
352 | /* Slow path. */ | ||
353 | for_each_online_cpu(cpu) { | ||
354 | if (cpu == smp_processor_id()) | ||
355 | continue; | ||
356 | if (cpumask_test_cpu(cpu, mask)) | ||
357 | smp_call_function_single(cpu, func, info, wait); | ||
358 | } | ||
359 | return; | ||
360 | } | ||
361 | 393 | ||
362 | spin_lock_init(&data->lock); | 394 | spin_lock_irqsave(&data->lock, flags); |
363 | data->csd.flags = CSD_FLAG_ALLOC; | ||
364 | if (wait) | ||
365 | data->csd.flags |= CSD_FLAG_WAIT; | ||
366 | data->csd.func = func; | 395 | data->csd.func = func; |
367 | data->csd.info = info; | 396 | data->csd.info = info; |
368 | cpumask_and(to_cpumask(data->cpumask_bits), mask, cpu_online_mask); | 397 | cpumask_and(data->cpumask, mask, cpu_online_mask); |
369 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(data->cpumask_bits)); | 398 | cpumask_clear_cpu(this_cpu, data->cpumask); |
370 | data->refs = cpumask_weight(to_cpumask(data->cpumask_bits)); | 399 | data->refs = cpumask_weight(data->cpumask); |
371 | 400 | ||
372 | spin_lock_irqsave(&call_function_lock, flags); | 401 | spin_lock(&call_function.lock); |
373 | list_add_tail_rcu(&data->csd.list, &call_function_queue); | 402 | /* |
374 | spin_unlock_irqrestore(&call_function_lock, flags); | 403 | * Place entry at the _HEAD_ of the list, so that any cpu still |
404 | * observing the entry in generic_smp_call_function_interrupt() | ||
405 | * will not miss any other list entries: | ||
406 | */ | ||
407 | list_add_rcu(&data->csd.list, &call_function.queue); | ||
408 | spin_unlock(&call_function.lock); | ||
409 | |||
410 | spin_unlock_irqrestore(&data->lock, flags); | ||
375 | 411 | ||
376 | /* | 412 | /* |
377 | * Make the list addition visible before sending the ipi. | 413 | * Make the list addition visible before sending the ipi. |
414 | * (IPIs must obey or appear to obey normal Linux cache | ||
415 | * coherency rules -- see comment in generic_exec_single). | ||
378 | */ | 416 | */ |
379 | smp_mb(); | 417 | smp_mb(); |
380 | 418 | ||
381 | /* Send a message to all CPUs in the map */ | 419 | /* Send a message to all CPUs in the map */ |
382 | arch_send_call_function_ipi_mask(to_cpumask(data->cpumask_bits)); | 420 | arch_send_call_function_ipi_mask(data->cpumask); |
383 | 421 | ||
384 | /* optionally wait for the CPUs to complete */ | 422 | /* Optionally wait for the CPUs to complete */ |
385 | if (wait) | 423 | if (wait) |
386 | csd_flag_wait(&data->csd); | 424 | csd_lock_wait(&data->csd); |
387 | } | 425 | } |
388 | EXPORT_SYMBOL(smp_call_function_many); | 426 | EXPORT_SYMBOL(smp_call_function_many); |
389 | 427 | ||
@@ -391,7 +429,8 @@ EXPORT_SYMBOL(smp_call_function_many); | |||
391 | * smp_call_function(): Run a function on all other CPUs. | 429 | * smp_call_function(): Run a function on all other CPUs. |
392 | * @func: The function to run. This must be fast and non-blocking. | 430 | * @func: The function to run. This must be fast and non-blocking. |
393 | * @info: An arbitrary pointer to pass to the function. | 431 | * @info: An arbitrary pointer to pass to the function. |
394 | * @wait: If true, wait (atomically) until function has completed on other CPUs. | 432 | * @wait: If true, wait (atomically) until function has completed |
433 | * on other CPUs. | ||
395 | * | 434 | * |
396 | * Returns 0. | 435 | * Returns 0. |
397 | * | 436 | * |
@@ -407,26 +446,27 @@ int smp_call_function(void (*func)(void *), void *info, int wait) | |||
407 | preempt_disable(); | 446 | preempt_disable(); |
408 | smp_call_function_many(cpu_online_mask, func, info, wait); | 447 | smp_call_function_many(cpu_online_mask, func, info, wait); |
409 | preempt_enable(); | 448 | preempt_enable(); |
449 | |||
410 | return 0; | 450 | return 0; |
411 | } | 451 | } |
412 | EXPORT_SYMBOL(smp_call_function); | 452 | EXPORT_SYMBOL(smp_call_function); |
413 | 453 | ||
414 | void ipi_call_lock(void) | 454 | void ipi_call_lock(void) |
415 | { | 455 | { |
416 | spin_lock(&call_function_lock); | 456 | spin_lock(&call_function.lock); |
417 | } | 457 | } |
418 | 458 | ||
419 | void ipi_call_unlock(void) | 459 | void ipi_call_unlock(void) |
420 | { | 460 | { |
421 | spin_unlock(&call_function_lock); | 461 | spin_unlock(&call_function.lock); |
422 | } | 462 | } |
423 | 463 | ||
424 | void ipi_call_lock_irq(void) | 464 | void ipi_call_lock_irq(void) |
425 | { | 465 | { |
426 | spin_lock_irq(&call_function_lock); | 466 | spin_lock_irq(&call_function.lock); |
427 | } | 467 | } |
428 | 468 | ||
429 | void ipi_call_unlock_irq(void) | 469 | void ipi_call_unlock_irq(void) |
430 | { | 470 | { |
431 | spin_unlock_irq(&call_function_lock); | 471 | spin_unlock_irq(&call_function.lock); |
432 | } | 472 | } |
diff --git a/kernel/softirq.c b/kernel/softirq.c index 9041ea7948fe..ea23ec087ee9 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
@@ -180,7 +180,7 @@ asmlinkage void __do_softirq(void) | |||
180 | account_system_vtime(current); | 180 | account_system_vtime(current); |
181 | 181 | ||
182 | __local_bh_disable((unsigned long)__builtin_return_address(0)); | 182 | __local_bh_disable((unsigned long)__builtin_return_address(0)); |
183 | trace_softirq_enter(); | 183 | lockdep_softirq_enter(); |
184 | 184 | ||
185 | cpu = smp_processor_id(); | 185 | cpu = smp_processor_id(); |
186 | restart: | 186 | restart: |
@@ -220,7 +220,7 @@ restart: | |||
220 | if (pending) | 220 | if (pending) |
221 | wakeup_softirqd(); | 221 | wakeup_softirqd(); |
222 | 222 | ||
223 | trace_softirq_exit(); | 223 | lockdep_softirq_exit(); |
224 | 224 | ||
225 | account_system_vtime(current); | 225 | account_system_vtime(current); |
226 | _local_bh_enable(); | 226 | _local_bh_enable(); |
@@ -496,7 +496,7 @@ static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softir | |||
496 | cp->flags = 0; | 496 | cp->flags = 0; |
497 | cp->priv = softirq; | 497 | cp->priv = softirq; |
498 | 498 | ||
499 | __smp_call_function_single(cpu, cp); | 499 | __smp_call_function_single(cpu, cp, 0); |
500 | return 0; | 500 | return 0; |
501 | } | 501 | } |
502 | return 1; | 502 | return 1; |
@@ -796,6 +796,11 @@ int __init __weak early_irq_init(void) | |||
796 | return 0; | 796 | return 0; |
797 | } | 797 | } |
798 | 798 | ||
799 | int __init __weak arch_probe_nr_irqs(void) | ||
800 | { | ||
801 | return 0; | ||
802 | } | ||
803 | |||
799 | int __init __weak arch_early_irq_init(void) | 804 | int __init __weak arch_early_irq_init(void) |
800 | { | 805 | { |
801 | return 0; | 806 | return 0; |
diff --git a/kernel/spinlock.c b/kernel/spinlock.c index 29ab20749dd3..7932653c4ebd 100644 --- a/kernel/spinlock.c +++ b/kernel/spinlock.c | |||
@@ -121,7 +121,8 @@ unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) | |||
121 | local_irq_save(flags); | 121 | local_irq_save(flags); |
122 | preempt_disable(); | 122 | preempt_disable(); |
123 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | 123 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); |
124 | LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock); | 124 | LOCK_CONTENDED_FLAGS(lock, _raw_read_trylock, _raw_read_lock, |
125 | _raw_read_lock_flags, &flags); | ||
125 | return flags; | 126 | return flags; |
126 | } | 127 | } |
127 | EXPORT_SYMBOL(_read_lock_irqsave); | 128 | EXPORT_SYMBOL(_read_lock_irqsave); |
@@ -151,7 +152,8 @@ unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) | |||
151 | local_irq_save(flags); | 152 | local_irq_save(flags); |
152 | preempt_disable(); | 153 | preempt_disable(); |
153 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | 154 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); |
154 | LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock); | 155 | LOCK_CONTENDED_FLAGS(lock, _raw_write_trylock, _raw_write_lock, |
156 | _raw_write_lock_flags, &flags); | ||
155 | return flags; | 157 | return flags; |
156 | } | 158 | } |
157 | EXPORT_SYMBOL(_write_lock_irqsave); | 159 | EXPORT_SYMBOL(_write_lock_irqsave); |
@@ -299,16 +301,8 @@ unsigned long __lockfunc _spin_lock_irqsave_nested(spinlock_t *lock, int subclas | |||
299 | local_irq_save(flags); | 301 | local_irq_save(flags); |
300 | preempt_disable(); | 302 | preempt_disable(); |
301 | spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_); | 303 | spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_); |
302 | /* | 304 | LOCK_CONTENDED_FLAGS(lock, _raw_spin_trylock, _raw_spin_lock, |
303 | * On lockdep we dont want the hand-coded irq-enable of | 305 | _raw_spin_lock_flags, &flags); |
304 | * _raw_spin_lock_flags() code, because lockdep assumes | ||
305 | * that interrupts are not re-enabled during lock-acquire: | ||
306 | */ | ||
307 | #ifdef CONFIG_LOCKDEP | ||
308 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
309 | #else | ||
310 | _raw_spin_lock_flags(lock, &flags); | ||
311 | #endif | ||
312 | return flags; | 306 | return flags; |
313 | } | 307 | } |
314 | EXPORT_SYMBOL(_spin_lock_irqsave_nested); | 308 | EXPORT_SYMBOL(_spin_lock_irqsave_nested); |
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 0cd415ee62a2..912823e2a11b 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c | |||
@@ -44,7 +44,7 @@ static DEFINE_MUTEX(setup_lock); | |||
44 | static int refcount; | 44 | static int refcount; |
45 | static struct workqueue_struct *stop_machine_wq; | 45 | static struct workqueue_struct *stop_machine_wq; |
46 | static struct stop_machine_data active, idle; | 46 | static struct stop_machine_data active, idle; |
47 | static const cpumask_t *active_cpus; | 47 | static const struct cpumask *active_cpus; |
48 | static void *stop_machine_work; | 48 | static void *stop_machine_work; |
49 | 49 | ||
50 | static void set_state(enum stopmachine_state newstate) | 50 | static void set_state(enum stopmachine_state newstate) |
@@ -170,7 +170,7 @@ int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) | |||
170 | * doesn't hit this CPU until we're ready. */ | 170 | * doesn't hit this CPU until we're ready. */ |
171 | get_cpu(); | 171 | get_cpu(); |
172 | for_each_online_cpu(i) { | 172 | for_each_online_cpu(i) { |
173 | sm_work = percpu_ptr(stop_machine_work, i); | 173 | sm_work = per_cpu_ptr(stop_machine_work, i); |
174 | INIT_WORK(sm_work, stop_cpu); | 174 | INIT_WORK(sm_work, stop_cpu); |
175 | queue_work_on(i, stop_machine_wq, sm_work); | 175 | queue_work_on(i, stop_machine_wq, sm_work); |
176 | } | 176 | } |
diff --git a/kernel/sys.c b/kernel/sys.c index 37f458e6882a..51dbb55604e8 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -34,6 +34,7 @@ | |||
34 | #include <linux/seccomp.h> | 34 | #include <linux/seccomp.h> |
35 | #include <linux/cpu.h> | 35 | #include <linux/cpu.h> |
36 | #include <linux/ptrace.h> | 36 | #include <linux/ptrace.h> |
37 | #include <linux/fs_struct.h> | ||
37 | 38 | ||
38 | #include <linux/compat.h> | 39 | #include <linux/compat.h> |
39 | #include <linux/syscalls.h> | 40 | #include <linux/syscalls.h> |
@@ -1013,10 +1014,8 @@ SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) | |||
1013 | if (err) | 1014 | if (err) |
1014 | goto out; | 1015 | goto out; |
1015 | 1016 | ||
1016 | if (task_pgrp(p) != pgrp) { | 1017 | if (task_pgrp(p) != pgrp) |
1017 | change_pid(p, PIDTYPE_PGID, pgrp); | 1018 | change_pid(p, PIDTYPE_PGID, pgrp); |
1018 | set_task_pgrp(p, pid_nr(pgrp)); | ||
1019 | } | ||
1020 | 1019 | ||
1021 | err = 0; | 1020 | err = 0; |
1022 | out: | 1021 | out: |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index c5ef44ff850f..82350f8f04f6 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -48,6 +48,7 @@ | |||
48 | #include <linux/acpi.h> | 48 | #include <linux/acpi.h> |
49 | #include <linux/reboot.h> | 49 | #include <linux/reboot.h> |
50 | #include <linux/ftrace.h> | 50 | #include <linux/ftrace.h> |
51 | #include <linux/slow-work.h> | ||
51 | 52 | ||
52 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
53 | #include <asm/processor.h> | 54 | #include <asm/processor.h> |
@@ -95,12 +96,9 @@ static int sixty = 60; | |||
95 | static int neg_one = -1; | 96 | static int neg_one = -1; |
96 | #endif | 97 | #endif |
97 | 98 | ||
98 | #if defined(CONFIG_MMU) && defined(CONFIG_FILE_LOCKING) | ||
99 | static int two = 2; | ||
100 | #endif | ||
101 | |||
102 | static int zero; | 99 | static int zero; |
103 | static int one = 1; | 100 | static int one = 1; |
101 | static int two = 2; | ||
104 | static unsigned long one_ul = 1; | 102 | static unsigned long one_ul = 1; |
105 | static int one_hundred = 100; | 103 | static int one_hundred = 100; |
106 | 104 | ||
@@ -900,6 +898,14 @@ static struct ctl_table kern_table[] = { | |||
900 | .proc_handler = &scan_unevictable_handler, | 898 | .proc_handler = &scan_unevictable_handler, |
901 | }, | 899 | }, |
902 | #endif | 900 | #endif |
901 | #ifdef CONFIG_SLOW_WORK | ||
902 | { | ||
903 | .ctl_name = CTL_UNNUMBERED, | ||
904 | .procname = "slow-work", | ||
905 | .mode = 0555, | ||
906 | .child = slow_work_sysctls, | ||
907 | }, | ||
908 | #endif | ||
903 | /* | 909 | /* |
904 | * NOTE: do not add new entries to this table unless you have read | 910 | * NOTE: do not add new entries to this table unless you have read |
905 | * Documentation/sysctl/ctl_unnumbered.txt | 911 | * Documentation/sysctl/ctl_unnumbered.txt |
@@ -1010,7 +1016,7 @@ static struct ctl_table vm_table[] = { | |||
1010 | .data = &dirty_expire_interval, | 1016 | .data = &dirty_expire_interval, |
1011 | .maxlen = sizeof(dirty_expire_interval), | 1017 | .maxlen = sizeof(dirty_expire_interval), |
1012 | .mode = 0644, | 1018 | .mode = 0644, |
1013 | .proc_handler = &proc_dointvec_userhz_jiffies, | 1019 | .proc_handler = &proc_dointvec, |
1014 | }, | 1020 | }, |
1015 | { | 1021 | { |
1016 | .ctl_name = VM_NR_PDFLUSH_THREADS, | 1022 | .ctl_name = VM_NR_PDFLUSH_THREADS, |
@@ -1373,10 +1379,7 @@ static struct ctl_table fs_table[] = { | |||
1373 | .data = &lease_break_time, | 1379 | .data = &lease_break_time, |
1374 | .maxlen = sizeof(int), | 1380 | .maxlen = sizeof(int), |
1375 | .mode = 0644, | 1381 | .mode = 0644, |
1376 | .proc_handler = &proc_dointvec_minmax, | 1382 | .proc_handler = &proc_dointvec, |
1377 | .strategy = &sysctl_intvec, | ||
1378 | .extra1 = &zero, | ||
1379 | .extra2 = &two, | ||
1380 | }, | 1383 | }, |
1381 | #endif | 1384 | #endif |
1382 | #ifdef CONFIG_AIO | 1385 | #ifdef CONFIG_AIO |
@@ -1417,7 +1420,10 @@ static struct ctl_table fs_table[] = { | |||
1417 | .data = &suid_dumpable, | 1420 | .data = &suid_dumpable, |
1418 | .maxlen = sizeof(int), | 1421 | .maxlen = sizeof(int), |
1419 | .mode = 0644, | 1422 | .mode = 0644, |
1420 | .proc_handler = &proc_dointvec, | 1423 | .proc_handler = &proc_dointvec_minmax, |
1424 | .strategy = &sysctl_intvec, | ||
1425 | .extra1 = &zero, | ||
1426 | .extra2 = &two, | ||
1421 | }, | 1427 | }, |
1422 | #if defined(CONFIG_BINFMT_MISC) || defined(CONFIG_BINFMT_MISC_MODULE) | 1428 | #if defined(CONFIG_BINFMT_MISC) || defined(CONFIG_BINFMT_MISC_MODULE) |
1423 | { | 1429 | { |
diff --git a/kernel/sysctl_check.c b/kernel/sysctl_check.c index fafeb48f27c0..b38423ca711a 100644 --- a/kernel/sysctl_check.c +++ b/kernel/sysctl_check.c | |||
@@ -219,6 +219,7 @@ static const struct trans_ctl_table trans_net_ipv4_conf_vars_table[] = { | |||
219 | { NET_IPV4_CONF_ARP_IGNORE, "arp_ignore" }, | 219 | { NET_IPV4_CONF_ARP_IGNORE, "arp_ignore" }, |
220 | { NET_IPV4_CONF_PROMOTE_SECONDARIES, "promote_secondaries" }, | 220 | { NET_IPV4_CONF_PROMOTE_SECONDARIES, "promote_secondaries" }, |
221 | { NET_IPV4_CONF_ARP_ACCEPT, "arp_accept" }, | 221 | { NET_IPV4_CONF_ARP_ACCEPT, "arp_accept" }, |
222 | { NET_IPV4_CONF_ARP_NOTIFY, "arp_notify" }, | ||
222 | {} | 223 | {} |
223 | }; | 224 | }; |
224 | 225 | ||
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 905b0b50792d..0b0a6366c9d4 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
@@ -1,4 +1,4 @@ | |||
1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o |
2 | 2 | ||
3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c index ea2f48af83cf..d13be216a790 100644 --- a/kernel/time/clockevents.c +++ b/kernel/time/clockevents.c | |||
@@ -68,6 +68,17 @@ void clockevents_set_mode(struct clock_event_device *dev, | |||
68 | if (dev->mode != mode) { | 68 | if (dev->mode != mode) { |
69 | dev->set_mode(mode, dev); | 69 | dev->set_mode(mode, dev); |
70 | dev->mode = mode; | 70 | dev->mode = mode; |
71 | |||
72 | /* | ||
73 | * A nsec2cyc multiplicator of 0 is invalid and we'd crash | ||
74 | * on it, so fix it up and emit a warning: | ||
75 | */ | ||
76 | if (mode == CLOCK_EVT_MODE_ONESHOT) { | ||
77 | if (unlikely(!dev->mult)) { | ||
78 | dev->mult = 1; | ||
79 | WARN_ON(1); | ||
80 | } | ||
81 | } | ||
71 | } | 82 | } |
72 | } | 83 | } |
73 | 84 | ||
@@ -168,15 +179,6 @@ void clockevents_register_device(struct clock_event_device *dev) | |||
168 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); | 179 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); |
169 | BUG_ON(!dev->cpumask); | 180 | BUG_ON(!dev->cpumask); |
170 | 181 | ||
171 | /* | ||
172 | * A nsec2cyc multiplicator of 0 is invalid and we'd crash | ||
173 | * on it, so fix it up and emit a warning: | ||
174 | */ | ||
175 | if (unlikely(!dev->mult)) { | ||
176 | dev->mult = 1; | ||
177 | WARN_ON(1); | ||
178 | } | ||
179 | |||
180 | spin_lock(&clockevents_lock); | 182 | spin_lock(&clockevents_lock); |
181 | 183 | ||
182 | list_add(&dev->list, &clockevent_devices); | 184 | list_add(&dev->list, &clockevent_devices); |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index ca89e1593f08..c46c931a7fe7 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
@@ -31,6 +31,82 @@ | |||
31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
32 | #include <linux/tick.h> | 32 | #include <linux/tick.h> |
33 | 33 | ||
34 | void timecounter_init(struct timecounter *tc, | ||
35 | const struct cyclecounter *cc, | ||
36 | u64 start_tstamp) | ||
37 | { | ||
38 | tc->cc = cc; | ||
39 | tc->cycle_last = cc->read(cc); | ||
40 | tc->nsec = start_tstamp; | ||
41 | } | ||
42 | EXPORT_SYMBOL(timecounter_init); | ||
43 | |||
44 | /** | ||
45 | * timecounter_read_delta - get nanoseconds since last call of this function | ||
46 | * @tc: Pointer to time counter | ||
47 | * | ||
48 | * When the underlying cycle counter runs over, this will be handled | ||
49 | * correctly as long as it does not run over more than once between | ||
50 | * calls. | ||
51 | * | ||
52 | * The first call to this function for a new time counter initializes | ||
53 | * the time tracking and returns an undefined result. | ||
54 | */ | ||
55 | static u64 timecounter_read_delta(struct timecounter *tc) | ||
56 | { | ||
57 | cycle_t cycle_now, cycle_delta; | ||
58 | u64 ns_offset; | ||
59 | |||
60 | /* read cycle counter: */ | ||
61 | cycle_now = tc->cc->read(tc->cc); | ||
62 | |||
63 | /* calculate the delta since the last timecounter_read_delta(): */ | ||
64 | cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask; | ||
65 | |||
66 | /* convert to nanoseconds: */ | ||
67 | ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta); | ||
68 | |||
69 | /* update time stamp of timecounter_read_delta() call: */ | ||
70 | tc->cycle_last = cycle_now; | ||
71 | |||
72 | return ns_offset; | ||
73 | } | ||
74 | |||
75 | u64 timecounter_read(struct timecounter *tc) | ||
76 | { | ||
77 | u64 nsec; | ||
78 | |||
79 | /* increment time by nanoseconds since last call */ | ||
80 | nsec = timecounter_read_delta(tc); | ||
81 | nsec += tc->nsec; | ||
82 | tc->nsec = nsec; | ||
83 | |||
84 | return nsec; | ||
85 | } | ||
86 | EXPORT_SYMBOL(timecounter_read); | ||
87 | |||
88 | u64 timecounter_cyc2time(struct timecounter *tc, | ||
89 | cycle_t cycle_tstamp) | ||
90 | { | ||
91 | u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask; | ||
92 | u64 nsec; | ||
93 | |||
94 | /* | ||
95 | * Instead of always treating cycle_tstamp as more recent | ||
96 | * than tc->cycle_last, detect when it is too far in the | ||
97 | * future and treat it as old time stamp instead. | ||
98 | */ | ||
99 | if (cycle_delta > tc->cc->mask / 2) { | ||
100 | cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask; | ||
101 | nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta); | ||
102 | } else { | ||
103 | nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec; | ||
104 | } | ||
105 | |||
106 | return nsec; | ||
107 | } | ||
108 | EXPORT_SYMBOL(timecounter_cyc2time); | ||
109 | |||
34 | /* XXX - Would like a better way for initializing curr_clocksource */ | 110 | /* XXX - Would like a better way for initializing curr_clocksource */ |
35 | extern struct clocksource clocksource_jiffies; | 111 | extern struct clocksource clocksource_jiffies; |
36 | 112 | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index f5f793d92415..7fc64375ff43 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -1,71 +1,129 @@ | |||
1 | /* | 1 | /* |
2 | * linux/kernel/time/ntp.c | ||
3 | * | ||
4 | * NTP state machine interfaces and logic. | 2 | * NTP state machine interfaces and logic. |
5 | * | 3 | * |
6 | * This code was mainly moved from kernel/timer.c and kernel/time.c | 4 | * This code was mainly moved from kernel/timer.c and kernel/time.c |
7 | * Please see those files for relevant copyright info and historical | 5 | * Please see those files for relevant copyright info and historical |
8 | * changelogs. | 6 | * changelogs. |
9 | */ | 7 | */ |
10 | |||
11 | #include <linux/mm.h> | ||
12 | #include <linux/time.h> | ||
13 | #include <linux/timex.h> | ||
14 | #include <linux/jiffies.h> | ||
15 | #include <linux/hrtimer.h> | ||
16 | #include <linux/capability.h> | 8 | #include <linux/capability.h> |
17 | #include <linux/math64.h> | ||
18 | #include <linux/clocksource.h> | 9 | #include <linux/clocksource.h> |
19 | #include <linux/workqueue.h> | 10 | #include <linux/workqueue.h> |
20 | #include <asm/timex.h> | 11 | #include <linux/hrtimer.h> |
12 | #include <linux/jiffies.h> | ||
13 | #include <linux/math64.h> | ||
14 | #include <linux/timex.h> | ||
15 | #include <linux/time.h> | ||
16 | #include <linux/mm.h> | ||
21 | 17 | ||
22 | /* | 18 | /* |
23 | * Timekeeping variables | 19 | * NTP timekeeping variables: |
24 | */ | 20 | */ |
25 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | ||
26 | unsigned long tick_nsec; /* ACTHZ period (nsec) */ | ||
27 | u64 tick_length; | ||
28 | static u64 tick_length_base; | ||
29 | 21 | ||
30 | static struct hrtimer leap_timer; | 22 | /* USER_HZ period (usecs): */ |
23 | unsigned long tick_usec = TICK_USEC; | ||
31 | 24 | ||
32 | #define MAX_TICKADJ 500 /* microsecs */ | 25 | /* ACTHZ period (nsecs): */ |
33 | #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ | 26 | unsigned long tick_nsec; |
34 | NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | 27 | |
28 | u64 tick_length; | ||
29 | static u64 tick_length_base; | ||
30 | |||
31 | static struct hrtimer leap_timer; | ||
32 | |||
33 | #define MAX_TICKADJ 500LL /* usecs */ | ||
34 | #define MAX_TICKADJ_SCALED \ | ||
35 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | ||
35 | 36 | ||
36 | /* | 37 | /* |
37 | * phase-lock loop variables | 38 | * phase-lock loop variables |
38 | */ | 39 | */ |
39 | /* TIME_ERROR prevents overwriting the CMOS clock */ | ||
40 | static int time_state = TIME_OK; /* clock synchronization status */ | ||
41 | int time_status = STA_UNSYNC; /* clock status bits */ | ||
42 | static long time_tai; /* TAI offset (s) */ | ||
43 | static s64 time_offset; /* time adjustment (ns) */ | ||
44 | static long time_constant = 2; /* pll time constant */ | ||
45 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | ||
46 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | ||
47 | static s64 time_freq; /* frequency offset (scaled ns/s)*/ | ||
48 | static long time_reftime; /* time at last adjustment (s) */ | ||
49 | long time_adjust; | ||
50 | static long ntp_tick_adj; | ||
51 | 40 | ||
41 | /* | ||
42 | * clock synchronization status | ||
43 | * | ||
44 | * (TIME_ERROR prevents overwriting the CMOS clock) | ||
45 | */ | ||
46 | static int time_state = TIME_OK; | ||
47 | |||
48 | /* clock status bits: */ | ||
49 | int time_status = STA_UNSYNC; | ||
50 | |||
51 | /* TAI offset (secs): */ | ||
52 | static long time_tai; | ||
53 | |||
54 | /* time adjustment (nsecs): */ | ||
55 | static s64 time_offset; | ||
56 | |||
57 | /* pll time constant: */ | ||
58 | static long time_constant = 2; | ||
59 | |||
60 | /* maximum error (usecs): */ | ||
61 | long time_maxerror = NTP_PHASE_LIMIT; | ||
62 | |||
63 | /* estimated error (usecs): */ | ||
64 | long time_esterror = NTP_PHASE_LIMIT; | ||
65 | |||
66 | /* frequency offset (scaled nsecs/secs): */ | ||
67 | static s64 time_freq; | ||
68 | |||
69 | /* time at last adjustment (secs): */ | ||
70 | static long time_reftime; | ||
71 | |||
72 | long time_adjust; | ||
73 | |||
74 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ | ||
75 | static s64 ntp_tick_adj; | ||
76 | |||
77 | /* | ||
78 | * NTP methods: | ||
79 | */ | ||
80 | |||
81 | /* | ||
82 | * Update (tick_length, tick_length_base, tick_nsec), based | ||
83 | * on (tick_usec, ntp_tick_adj, time_freq): | ||
84 | */ | ||
52 | static void ntp_update_frequency(void) | 85 | static void ntp_update_frequency(void) |
53 | { | 86 | { |
54 | u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 87 | u64 second_length; |
55 | << NTP_SCALE_SHIFT; | 88 | u64 new_base; |
56 | second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT; | 89 | |
57 | second_length += time_freq; | 90 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
91 | << NTP_SCALE_SHIFT; | ||
92 | |||
93 | second_length += ntp_tick_adj; | ||
94 | second_length += time_freq; | ||
58 | 95 | ||
59 | tick_length_base = second_length; | 96 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
97 | new_base = div_u64(second_length, NTP_INTERVAL_FREQ); | ||
60 | 98 | ||
61 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; | 99 | /* |
62 | tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ); | 100 | * Don't wait for the next second_overflow, apply |
101 | * the change to the tick length immediately: | ||
102 | */ | ||
103 | tick_length += new_base - tick_length_base; | ||
104 | tick_length_base = new_base; | ||
105 | } | ||
106 | |||
107 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) | ||
108 | { | ||
109 | time_status &= ~STA_MODE; | ||
110 | |||
111 | if (secs < MINSEC) | ||
112 | return 0; | ||
113 | |||
114 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | ||
115 | return 0; | ||
116 | |||
117 | time_status |= STA_MODE; | ||
118 | |||
119 | return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); | ||
63 | } | 120 | } |
64 | 121 | ||
65 | static void ntp_update_offset(long offset) | 122 | static void ntp_update_offset(long offset) |
66 | { | 123 | { |
67 | long mtemp; | ||
68 | s64 freq_adj; | 124 | s64 freq_adj; |
125 | s64 offset64; | ||
126 | long secs; | ||
69 | 127 | ||
70 | if (!(time_status & STA_PLL)) | 128 | if (!(time_status & STA_PLL)) |
71 | return; | 129 | return; |
@@ -84,24 +142,23 @@ static void ntp_update_offset(long offset) | |||
84 | * Select how the frequency is to be controlled | 142 | * Select how the frequency is to be controlled |
85 | * and in which mode (PLL or FLL). | 143 | * and in which mode (PLL or FLL). |
86 | */ | 144 | */ |
87 | if (time_status & STA_FREQHOLD || time_reftime == 0) | 145 | secs = xtime.tv_sec - time_reftime; |
88 | time_reftime = xtime.tv_sec; | 146 | if (unlikely(time_status & STA_FREQHOLD)) |
89 | mtemp = xtime.tv_sec - time_reftime; | 147 | secs = 0; |
148 | |||
90 | time_reftime = xtime.tv_sec; | 149 | time_reftime = xtime.tv_sec; |
91 | 150 | ||
92 | freq_adj = (s64)offset * mtemp; | 151 | offset64 = offset; |
93 | freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant); | 152 | freq_adj = (offset64 * secs) << |
94 | time_status &= ~STA_MODE; | 153 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); |
95 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { | ||
96 | freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL), | ||
97 | mtemp); | ||
98 | time_status |= STA_MODE; | ||
99 | } | ||
100 | freq_adj += time_freq; | ||
101 | freq_adj = min(freq_adj, MAXFREQ_SCALED); | ||
102 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
103 | 154 | ||
104 | time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | 155 | freq_adj += ntp_update_offset_fll(offset64, secs); |
156 | |||
157 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); | ||
158 | |||
159 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
160 | |||
161 | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | ||
105 | } | 162 | } |
106 | 163 | ||
107 | /** | 164 | /** |
@@ -111,15 +168,15 @@ static void ntp_update_offset(long offset) | |||
111 | */ | 168 | */ |
112 | void ntp_clear(void) | 169 | void ntp_clear(void) |
113 | { | 170 | { |
114 | time_adjust = 0; /* stop active adjtime() */ | 171 | time_adjust = 0; /* stop active adjtime() */ |
115 | time_status |= STA_UNSYNC; | 172 | time_status |= STA_UNSYNC; |
116 | time_maxerror = NTP_PHASE_LIMIT; | 173 | time_maxerror = NTP_PHASE_LIMIT; |
117 | time_esterror = NTP_PHASE_LIMIT; | 174 | time_esterror = NTP_PHASE_LIMIT; |
118 | 175 | ||
119 | ntp_update_frequency(); | 176 | ntp_update_frequency(); |
120 | 177 | ||
121 | tick_length = tick_length_base; | 178 | tick_length = tick_length_base; |
122 | time_offset = 0; | 179 | time_offset = 0; |
123 | } | 180 | } |
124 | 181 | ||
125 | /* | 182 | /* |
@@ -140,8 +197,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
140 | xtime.tv_sec--; | 197 | xtime.tv_sec--; |
141 | wall_to_monotonic.tv_sec++; | 198 | wall_to_monotonic.tv_sec++; |
142 | time_state = TIME_OOP; | 199 | time_state = TIME_OOP; |
143 | printk(KERN_NOTICE "Clock: " | 200 | printk(KERN_NOTICE |
144 | "inserting leap second 23:59:60 UTC\n"); | 201 | "Clock: inserting leap second 23:59:60 UTC\n"); |
145 | hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); | 202 | hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); |
146 | res = HRTIMER_RESTART; | 203 | res = HRTIMER_RESTART; |
147 | break; | 204 | break; |
@@ -150,8 +207,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
150 | time_tai--; | 207 | time_tai--; |
151 | wall_to_monotonic.tv_sec--; | 208 | wall_to_monotonic.tv_sec--; |
152 | time_state = TIME_WAIT; | 209 | time_state = TIME_WAIT; |
153 | printk(KERN_NOTICE "Clock: " | 210 | printk(KERN_NOTICE |
154 | "deleting leap second 23:59:59 UTC\n"); | 211 | "Clock: deleting leap second 23:59:59 UTC\n"); |
155 | break; | 212 | break; |
156 | case TIME_OOP: | 213 | case TIME_OOP: |
157 | time_tai++; | 214 | time_tai++; |
@@ -179,7 +236,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
179 | */ | 236 | */ |
180 | void second_overflow(void) | 237 | void second_overflow(void) |
181 | { | 238 | { |
182 | s64 time_adj; | 239 | s64 delta; |
183 | 240 | ||
184 | /* Bump the maxerror field */ | 241 | /* Bump the maxerror field */ |
185 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | 242 | time_maxerror += MAXFREQ / NSEC_PER_USEC; |
@@ -192,24 +249,30 @@ void second_overflow(void) | |||
192 | * Compute the phase adjustment for the next second. The offset is | 249 | * Compute the phase adjustment for the next second. The offset is |
193 | * reduced by a fixed factor times the time constant. | 250 | * reduced by a fixed factor times the time constant. |
194 | */ | 251 | */ |
195 | tick_length = tick_length_base; | 252 | tick_length = tick_length_base; |
196 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); | 253 | |
197 | time_offset -= time_adj; | 254 | delta = shift_right(time_offset, SHIFT_PLL + time_constant); |
198 | tick_length += time_adj; | 255 | time_offset -= delta; |
199 | 256 | tick_length += delta; | |
200 | if (unlikely(time_adjust)) { | 257 | |
201 | if (time_adjust > MAX_TICKADJ) { | 258 | if (!time_adjust) |
202 | time_adjust -= MAX_TICKADJ; | 259 | return; |
203 | tick_length += MAX_TICKADJ_SCALED; | 260 | |
204 | } else if (time_adjust < -MAX_TICKADJ) { | 261 | if (time_adjust > MAX_TICKADJ) { |
205 | time_adjust += MAX_TICKADJ; | 262 | time_adjust -= MAX_TICKADJ; |
206 | tick_length -= MAX_TICKADJ_SCALED; | 263 | tick_length += MAX_TICKADJ_SCALED; |
207 | } else { | 264 | return; |
208 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / | ||
209 | NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT; | ||
210 | time_adjust = 0; | ||
211 | } | ||
212 | } | 265 | } |
266 | |||
267 | if (time_adjust < -MAX_TICKADJ) { | ||
268 | time_adjust += MAX_TICKADJ; | ||
269 | tick_length -= MAX_TICKADJ_SCALED; | ||
270 | return; | ||
271 | } | ||
272 | |||
273 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | ||
274 | << NTP_SCALE_SHIFT; | ||
275 | time_adjust = 0; | ||
213 | } | 276 | } |
214 | 277 | ||
215 | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 278 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
@@ -233,12 +296,13 @@ static void sync_cmos_clock(struct work_struct *work) | |||
233 | * This code is run on a timer. If the clock is set, that timer | 296 | * This code is run on a timer. If the clock is set, that timer |
234 | * may not expire at the correct time. Thus, we adjust... | 297 | * may not expire at the correct time. Thus, we adjust... |
235 | */ | 298 | */ |
236 | if (!ntp_synced()) | 299 | if (!ntp_synced()) { |
237 | /* | 300 | /* |
238 | * Not synced, exit, do not restart a timer (if one is | 301 | * Not synced, exit, do not restart a timer (if one is |
239 | * running, let it run out). | 302 | * running, let it run out). |
240 | */ | 303 | */ |
241 | return; | 304 | return; |
305 | } | ||
242 | 306 | ||
243 | getnstimeofday(&now); | 307 | getnstimeofday(&now); |
244 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) | 308 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) |
@@ -270,7 +334,116 @@ static void notify_cmos_timer(void) | |||
270 | static inline void notify_cmos_timer(void) { } | 334 | static inline void notify_cmos_timer(void) { } |
271 | #endif | 335 | #endif |
272 | 336 | ||
273 | /* adjtimex mainly allows reading (and writing, if superuser) of | 337 | /* |
338 | * Start the leap seconds timer: | ||
339 | */ | ||
340 | static inline void ntp_start_leap_timer(struct timespec *ts) | ||
341 | { | ||
342 | long now = ts->tv_sec; | ||
343 | |||
344 | if (time_status & STA_INS) { | ||
345 | time_state = TIME_INS; | ||
346 | now += 86400 - now % 86400; | ||
347 | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | ||
348 | |||
349 | return; | ||
350 | } | ||
351 | |||
352 | if (time_status & STA_DEL) { | ||
353 | time_state = TIME_DEL; | ||
354 | now += 86400 - (now + 1) % 86400; | ||
355 | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | ||
356 | } | ||
357 | } | ||
358 | |||
359 | /* | ||
360 | * Propagate a new txc->status value into the NTP state: | ||
361 | */ | ||
362 | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | ||
363 | { | ||
364 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { | ||
365 | time_state = TIME_OK; | ||
366 | time_status = STA_UNSYNC; | ||
367 | } | ||
368 | |||
369 | /* | ||
370 | * If we turn on PLL adjustments then reset the | ||
371 | * reference time to current time. | ||
372 | */ | ||
373 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | ||
374 | time_reftime = xtime.tv_sec; | ||
375 | |||
376 | /* only set allowed bits */ | ||
377 | time_status &= STA_RONLY; | ||
378 | time_status |= txc->status & ~STA_RONLY; | ||
379 | |||
380 | switch (time_state) { | ||
381 | case TIME_OK: | ||
382 | ntp_start_leap_timer(ts); | ||
383 | break; | ||
384 | case TIME_INS: | ||
385 | case TIME_DEL: | ||
386 | time_state = TIME_OK; | ||
387 | ntp_start_leap_timer(ts); | ||
388 | case TIME_WAIT: | ||
389 | if (!(time_status & (STA_INS | STA_DEL))) | ||
390 | time_state = TIME_OK; | ||
391 | break; | ||
392 | case TIME_OOP: | ||
393 | hrtimer_restart(&leap_timer); | ||
394 | break; | ||
395 | } | ||
396 | } | ||
397 | /* | ||
398 | * Called with the xtime lock held, so we can access and modify | ||
399 | * all the global NTP state: | ||
400 | */ | ||
401 | static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) | ||
402 | { | ||
403 | if (txc->modes & ADJ_STATUS) | ||
404 | process_adj_status(txc, ts); | ||
405 | |||
406 | if (txc->modes & ADJ_NANO) | ||
407 | time_status |= STA_NANO; | ||
408 | |||
409 | if (txc->modes & ADJ_MICRO) | ||
410 | time_status &= ~STA_NANO; | ||
411 | |||
412 | if (txc->modes & ADJ_FREQUENCY) { | ||
413 | time_freq = txc->freq * PPM_SCALE; | ||
414 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
415 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
416 | } | ||
417 | |||
418 | if (txc->modes & ADJ_MAXERROR) | ||
419 | time_maxerror = txc->maxerror; | ||
420 | |||
421 | if (txc->modes & ADJ_ESTERROR) | ||
422 | time_esterror = txc->esterror; | ||
423 | |||
424 | if (txc->modes & ADJ_TIMECONST) { | ||
425 | time_constant = txc->constant; | ||
426 | if (!(time_status & STA_NANO)) | ||
427 | time_constant += 4; | ||
428 | time_constant = min(time_constant, (long)MAXTC); | ||
429 | time_constant = max(time_constant, 0l); | ||
430 | } | ||
431 | |||
432 | if (txc->modes & ADJ_TAI && txc->constant > 0) | ||
433 | time_tai = txc->constant; | ||
434 | |||
435 | if (txc->modes & ADJ_OFFSET) | ||
436 | ntp_update_offset(txc->offset); | ||
437 | |||
438 | if (txc->modes & ADJ_TICK) | ||
439 | tick_usec = txc->tick; | ||
440 | |||
441 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | ||
442 | ntp_update_frequency(); | ||
443 | } | ||
444 | |||
445 | /* | ||
446 | * adjtimex mainly allows reading (and writing, if superuser) of | ||
274 | * kernel time-keeping variables. used by xntpd. | 447 | * kernel time-keeping variables. used by xntpd. |
275 | */ | 448 | */ |
276 | int do_adjtimex(struct timex *txc) | 449 | int do_adjtimex(struct timex *txc) |
@@ -291,11 +464,14 @@ int do_adjtimex(struct timex *txc) | |||
291 | if (txc->modes && !capable(CAP_SYS_TIME)) | 464 | if (txc->modes && !capable(CAP_SYS_TIME)) |
292 | return -EPERM; | 465 | return -EPERM; |
293 | 466 | ||
294 | /* if the quartz is off by more than 10% something is VERY wrong! */ | 467 | /* |
468 | * if the quartz is off by more than 10% then | ||
469 | * something is VERY wrong! | ||
470 | */ | ||
295 | if (txc->modes & ADJ_TICK && | 471 | if (txc->modes & ADJ_TICK && |
296 | (txc->tick < 900000/USER_HZ || | 472 | (txc->tick < 900000/USER_HZ || |
297 | txc->tick > 1100000/USER_HZ)) | 473 | txc->tick > 1100000/USER_HZ)) |
298 | return -EINVAL; | 474 | return -EINVAL; |
299 | 475 | ||
300 | if (txc->modes & ADJ_STATUS && time_state != TIME_OK) | 476 | if (txc->modes & ADJ_STATUS && time_state != TIME_OK) |
301 | hrtimer_cancel(&leap_timer); | 477 | hrtimer_cancel(&leap_timer); |
@@ -305,7 +481,6 @@ int do_adjtimex(struct timex *txc) | |||
305 | 481 | ||
306 | write_seqlock_irq(&xtime_lock); | 482 | write_seqlock_irq(&xtime_lock); |
307 | 483 | ||
308 | /* If there are input parameters, then process them */ | ||
309 | if (txc->modes & ADJ_ADJTIME) { | 484 | if (txc->modes & ADJ_ADJTIME) { |
310 | long save_adjust = time_adjust; | 485 | long save_adjust = time_adjust; |
311 | 486 | ||
@@ -315,98 +490,24 @@ int do_adjtimex(struct timex *txc) | |||
315 | ntp_update_frequency(); | 490 | ntp_update_frequency(); |
316 | } | 491 | } |
317 | txc->offset = save_adjust; | 492 | txc->offset = save_adjust; |
318 | goto adj_done; | 493 | } else { |
319 | } | ||
320 | if (txc->modes) { | ||
321 | long sec; | ||
322 | |||
323 | if (txc->modes & ADJ_STATUS) { | ||
324 | if ((time_status & STA_PLL) && | ||
325 | !(txc->status & STA_PLL)) { | ||
326 | time_state = TIME_OK; | ||
327 | time_status = STA_UNSYNC; | ||
328 | } | ||
329 | /* only set allowed bits */ | ||
330 | time_status &= STA_RONLY; | ||
331 | time_status |= txc->status & ~STA_RONLY; | ||
332 | |||
333 | switch (time_state) { | ||
334 | case TIME_OK: | ||
335 | start_timer: | ||
336 | sec = ts.tv_sec; | ||
337 | if (time_status & STA_INS) { | ||
338 | time_state = TIME_INS; | ||
339 | sec += 86400 - sec % 86400; | ||
340 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
341 | } else if (time_status & STA_DEL) { | ||
342 | time_state = TIME_DEL; | ||
343 | sec += 86400 - (sec + 1) % 86400; | ||
344 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
345 | } | ||
346 | break; | ||
347 | case TIME_INS: | ||
348 | case TIME_DEL: | ||
349 | time_state = TIME_OK; | ||
350 | goto start_timer; | ||
351 | break; | ||
352 | case TIME_WAIT: | ||
353 | if (!(time_status & (STA_INS | STA_DEL))) | ||
354 | time_state = TIME_OK; | ||
355 | break; | ||
356 | case TIME_OOP: | ||
357 | hrtimer_restart(&leap_timer); | ||
358 | break; | ||
359 | } | ||
360 | } | ||
361 | |||
362 | if (txc->modes & ADJ_NANO) | ||
363 | time_status |= STA_NANO; | ||
364 | if (txc->modes & ADJ_MICRO) | ||
365 | time_status &= ~STA_NANO; | ||
366 | |||
367 | if (txc->modes & ADJ_FREQUENCY) { | ||
368 | time_freq = (s64)txc->freq * PPM_SCALE; | ||
369 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
370 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
371 | } | ||
372 | |||
373 | if (txc->modes & ADJ_MAXERROR) | ||
374 | time_maxerror = txc->maxerror; | ||
375 | if (txc->modes & ADJ_ESTERROR) | ||
376 | time_esterror = txc->esterror; | ||
377 | |||
378 | if (txc->modes & ADJ_TIMECONST) { | ||
379 | time_constant = txc->constant; | ||
380 | if (!(time_status & STA_NANO)) | ||
381 | time_constant += 4; | ||
382 | time_constant = min(time_constant, (long)MAXTC); | ||
383 | time_constant = max(time_constant, 0l); | ||
384 | } | ||
385 | |||
386 | if (txc->modes & ADJ_TAI && txc->constant > 0) | ||
387 | time_tai = txc->constant; | ||
388 | |||
389 | if (txc->modes & ADJ_OFFSET) | ||
390 | ntp_update_offset(txc->offset); | ||
391 | if (txc->modes & ADJ_TICK) | ||
392 | tick_usec = txc->tick; | ||
393 | 494 | ||
394 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | 495 | /* If there are input parameters, then process them: */ |
395 | ntp_update_frequency(); | 496 | if (txc->modes) |
396 | } | 497 | process_adjtimex_modes(txc, &ts); |
397 | 498 | ||
398 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, | 499 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
399 | NTP_SCALE_SHIFT); | 500 | NTP_SCALE_SHIFT); |
400 | if (!(time_status & STA_NANO)) | 501 | if (!(time_status & STA_NANO)) |
401 | txc->offset /= NSEC_PER_USEC; | 502 | txc->offset /= NSEC_PER_USEC; |
503 | } | ||
402 | 504 | ||
403 | adj_done: | ||
404 | result = time_state; /* mostly `TIME_OK' */ | 505 | result = time_state; /* mostly `TIME_OK' */ |
405 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) | 506 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) |
406 | result = TIME_ERROR; | 507 | result = TIME_ERROR; |
407 | 508 | ||
408 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * | 509 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
409 | (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT); | 510 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
410 | txc->maxerror = time_maxerror; | 511 | txc->maxerror = time_maxerror; |
411 | txc->esterror = time_esterror; | 512 | txc->esterror = time_esterror; |
412 | txc->status = time_status; | 513 | txc->status = time_status; |
@@ -425,6 +526,7 @@ adj_done: | |||
425 | txc->calcnt = 0; | 526 | txc->calcnt = 0; |
426 | txc->errcnt = 0; | 527 | txc->errcnt = 0; |
427 | txc->stbcnt = 0; | 528 | txc->stbcnt = 0; |
529 | |||
428 | write_sequnlock_irq(&xtime_lock); | 530 | write_sequnlock_irq(&xtime_lock); |
429 | 531 | ||
430 | txc->time.tv_sec = ts.tv_sec; | 532 | txc->time.tv_sec = ts.tv_sec; |
@@ -440,6 +542,8 @@ adj_done: | |||
440 | static int __init ntp_tick_adj_setup(char *str) | 542 | static int __init ntp_tick_adj_setup(char *str) |
441 | { | 543 | { |
442 | ntp_tick_adj = simple_strtol(str, NULL, 0); | 544 | ntp_tick_adj = simple_strtol(str, NULL, 0); |
545 | ntp_tick_adj <<= NTP_SCALE_SHIFT; | ||
546 | |||
443 | return 1; | 547 | return 1; |
444 | } | 548 | } |
445 | 549 | ||
diff --git a/kernel/time/timecompare.c b/kernel/time/timecompare.c new file mode 100644 index 000000000000..71e7f1a19156 --- /dev/null +++ b/kernel/time/timecompare.c | |||
@@ -0,0 +1,191 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2009 Intel Corporation. | ||
3 | * Author: Patrick Ohly <patrick.ohly@intel.com> | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; either version 2 of the License, or | ||
8 | * (at your option) any later version. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
18 | */ | ||
19 | |||
20 | #include <linux/timecompare.h> | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/math64.h> | ||
23 | |||
24 | /* | ||
25 | * fixed point arithmetic scale factor for skew | ||
26 | * | ||
27 | * Usually one would measure skew in ppb (parts per billion, 1e9), but | ||
28 | * using a factor of 2 simplifies the math. | ||
29 | */ | ||
30 | #define TIMECOMPARE_SKEW_RESOLUTION (((s64)1)<<30) | ||
31 | |||
32 | ktime_t timecompare_transform(struct timecompare *sync, | ||
33 | u64 source_tstamp) | ||
34 | { | ||
35 | u64 nsec; | ||
36 | |||
37 | nsec = source_tstamp + sync->offset; | ||
38 | nsec += (s64)(source_tstamp - sync->last_update) * sync->skew / | ||
39 | TIMECOMPARE_SKEW_RESOLUTION; | ||
40 | |||
41 | return ns_to_ktime(nsec); | ||
42 | } | ||
43 | EXPORT_SYMBOL(timecompare_transform); | ||
44 | |||
45 | int timecompare_offset(struct timecompare *sync, | ||
46 | s64 *offset, | ||
47 | u64 *source_tstamp) | ||
48 | { | ||
49 | u64 start_source = 0, end_source = 0; | ||
50 | struct { | ||
51 | s64 offset; | ||
52 | s64 duration_target; | ||
53 | } buffer[10], sample, *samples; | ||
54 | int counter = 0, i; | ||
55 | int used; | ||
56 | int index; | ||
57 | int num_samples = sync->num_samples; | ||
58 | |||
59 | if (num_samples > sizeof(buffer)/sizeof(buffer[0])) { | ||
60 | samples = kmalloc(sizeof(*samples) * num_samples, GFP_ATOMIC); | ||
61 | if (!samples) { | ||
62 | samples = buffer; | ||
63 | num_samples = sizeof(buffer)/sizeof(buffer[0]); | ||
64 | } | ||
65 | } else { | ||
66 | samples = buffer; | ||
67 | } | ||
68 | |||
69 | /* run until we have enough valid samples, but do not try forever */ | ||
70 | i = 0; | ||
71 | counter = 0; | ||
72 | while (1) { | ||
73 | u64 ts; | ||
74 | ktime_t start, end; | ||
75 | |||
76 | start = sync->target(); | ||
77 | ts = timecounter_read(sync->source); | ||
78 | end = sync->target(); | ||
79 | |||
80 | if (!i) | ||
81 | start_source = ts; | ||
82 | |||
83 | /* ignore negative durations */ | ||
84 | sample.duration_target = ktime_to_ns(ktime_sub(end, start)); | ||
85 | if (sample.duration_target >= 0) { | ||
86 | /* | ||
87 | * assume symetric delay to and from source: | ||
88 | * average target time corresponds to measured | ||
89 | * source time | ||
90 | */ | ||
91 | sample.offset = | ||
92 | ktime_to_ns(ktime_add(end, start)) / 2 - | ||
93 | ts; | ||
94 | |||
95 | /* simple insertion sort based on duration */ | ||
96 | index = counter - 1; | ||
97 | while (index >= 0) { | ||
98 | if (samples[index].duration_target < | ||
99 | sample.duration_target) | ||
100 | break; | ||
101 | samples[index + 1] = samples[index]; | ||
102 | index--; | ||
103 | } | ||
104 | samples[index + 1] = sample; | ||
105 | counter++; | ||
106 | } | ||
107 | |||
108 | i++; | ||
109 | if (counter >= num_samples || i >= 100000) { | ||
110 | end_source = ts; | ||
111 | break; | ||
112 | } | ||
113 | } | ||
114 | |||
115 | *source_tstamp = (end_source + start_source) / 2; | ||
116 | |||
117 | /* remove outliers by only using 75% of the samples */ | ||
118 | used = counter * 3 / 4; | ||
119 | if (!used) | ||
120 | used = counter; | ||
121 | if (used) { | ||
122 | /* calculate average */ | ||
123 | s64 off = 0; | ||
124 | for (index = 0; index < used; index++) | ||
125 | off += samples[index].offset; | ||
126 | *offset = div_s64(off, used); | ||
127 | } | ||
128 | |||
129 | if (samples && samples != buffer) | ||
130 | kfree(samples); | ||
131 | |||
132 | return used; | ||
133 | } | ||
134 | EXPORT_SYMBOL(timecompare_offset); | ||
135 | |||
136 | void __timecompare_update(struct timecompare *sync, | ||
137 | u64 source_tstamp) | ||
138 | { | ||
139 | s64 offset; | ||
140 | u64 average_time; | ||
141 | |||
142 | if (!timecompare_offset(sync, &offset, &average_time)) | ||
143 | return; | ||
144 | |||
145 | if (!sync->last_update) { | ||
146 | sync->last_update = average_time; | ||
147 | sync->offset = offset; | ||
148 | sync->skew = 0; | ||
149 | } else { | ||
150 | s64 delta_nsec = average_time - sync->last_update; | ||
151 | |||
152 | /* avoid division by negative or small deltas */ | ||
153 | if (delta_nsec >= 10000) { | ||
154 | s64 delta_offset_nsec = offset - sync->offset; | ||
155 | s64 skew; /* delta_offset_nsec * | ||
156 | TIMECOMPARE_SKEW_RESOLUTION / | ||
157 | delta_nsec */ | ||
158 | u64 divisor; | ||
159 | |||
160 | /* div_s64() is limited to 32 bit divisor */ | ||
161 | skew = delta_offset_nsec * TIMECOMPARE_SKEW_RESOLUTION; | ||
162 | divisor = delta_nsec; | ||
163 | while (unlikely(divisor >= ((s64)1) << 32)) { | ||
164 | /* divide both by 2; beware, right shift | ||
165 | of negative value has undefined | ||
166 | behavior and can only be used for | ||
167 | the positive divisor */ | ||
168 | skew = div_s64(skew, 2); | ||
169 | divisor >>= 1; | ||
170 | } | ||
171 | skew = div_s64(skew, divisor); | ||
172 | |||
173 | /* | ||
174 | * Calculate new overall skew as 4/16 the | ||
175 | * old value and 12/16 the new one. This is | ||
176 | * a rather arbitrary tradeoff between | ||
177 | * only using the latest measurement (0/16 and | ||
178 | * 16/16) and even more weight on past measurements. | ||
179 | */ | ||
180 | #define TIMECOMPARE_NEW_SKEW_PER_16 12 | ||
181 | sync->skew = | ||
182 | div_s64((16 - TIMECOMPARE_NEW_SKEW_PER_16) * | ||
183 | sync->skew + | ||
184 | TIMECOMPARE_NEW_SKEW_PER_16 * skew, | ||
185 | 16); | ||
186 | sync->last_update = average_time; | ||
187 | sync->offset = offset; | ||
188 | } | ||
189 | } | ||
190 | } | ||
191 | EXPORT_SYMBOL(__timecompare_update); | ||
diff --git a/kernel/timer.c b/kernel/timer.c index 13dd64fe143d..b4555568b4e4 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -491,14 +491,18 @@ static inline void debug_timer_free(struct timer_list *timer) | |||
491 | debug_object_free(timer, &timer_debug_descr); | 491 | debug_object_free(timer, &timer_debug_descr); |
492 | } | 492 | } |
493 | 493 | ||
494 | static void __init_timer(struct timer_list *timer); | 494 | static void __init_timer(struct timer_list *timer, |
495 | const char *name, | ||
496 | struct lock_class_key *key); | ||
495 | 497 | ||
496 | void init_timer_on_stack(struct timer_list *timer) | 498 | void init_timer_on_stack_key(struct timer_list *timer, |
499 | const char *name, | ||
500 | struct lock_class_key *key) | ||
497 | { | 501 | { |
498 | debug_object_init_on_stack(timer, &timer_debug_descr); | 502 | debug_object_init_on_stack(timer, &timer_debug_descr); |
499 | __init_timer(timer); | 503 | __init_timer(timer, name, key); |
500 | } | 504 | } |
501 | EXPORT_SYMBOL_GPL(init_timer_on_stack); | 505 | EXPORT_SYMBOL_GPL(init_timer_on_stack_key); |
502 | 506 | ||
503 | void destroy_timer_on_stack(struct timer_list *timer) | 507 | void destroy_timer_on_stack(struct timer_list *timer) |
504 | { | 508 | { |
@@ -512,7 +516,9 @@ static inline void debug_timer_activate(struct timer_list *timer) { } | |||
512 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | 516 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
513 | #endif | 517 | #endif |
514 | 518 | ||
515 | static void __init_timer(struct timer_list *timer) | 519 | static void __init_timer(struct timer_list *timer, |
520 | const char *name, | ||
521 | struct lock_class_key *key) | ||
516 | { | 522 | { |
517 | timer->entry.next = NULL; | 523 | timer->entry.next = NULL; |
518 | timer->base = __raw_get_cpu_var(tvec_bases); | 524 | timer->base = __raw_get_cpu_var(tvec_bases); |
@@ -521,6 +527,7 @@ static void __init_timer(struct timer_list *timer) | |||
521 | timer->start_pid = -1; | 527 | timer->start_pid = -1; |
522 | memset(timer->start_comm, 0, TASK_COMM_LEN); | 528 | memset(timer->start_comm, 0, TASK_COMM_LEN); |
523 | #endif | 529 | #endif |
530 | lockdep_init_map(&timer->lockdep_map, name, key, 0); | ||
524 | } | 531 | } |
525 | 532 | ||
526 | /** | 533 | /** |
@@ -530,19 +537,23 @@ static void __init_timer(struct timer_list *timer) | |||
530 | * init_timer() must be done to a timer prior calling *any* of the | 537 | * init_timer() must be done to a timer prior calling *any* of the |
531 | * other timer functions. | 538 | * other timer functions. |
532 | */ | 539 | */ |
533 | void init_timer(struct timer_list *timer) | 540 | void init_timer_key(struct timer_list *timer, |
541 | const char *name, | ||
542 | struct lock_class_key *key) | ||
534 | { | 543 | { |
535 | debug_timer_init(timer); | 544 | debug_timer_init(timer); |
536 | __init_timer(timer); | 545 | __init_timer(timer, name, key); |
537 | } | 546 | } |
538 | EXPORT_SYMBOL(init_timer); | 547 | EXPORT_SYMBOL(init_timer_key); |
539 | 548 | ||
540 | void init_timer_deferrable(struct timer_list *timer) | 549 | void init_timer_deferrable_key(struct timer_list *timer, |
550 | const char *name, | ||
551 | struct lock_class_key *key) | ||
541 | { | 552 | { |
542 | init_timer(timer); | 553 | init_timer_key(timer, name, key); |
543 | timer_set_deferrable(timer); | 554 | timer_set_deferrable(timer); |
544 | } | 555 | } |
545 | EXPORT_SYMBOL(init_timer_deferrable); | 556 | EXPORT_SYMBOL(init_timer_deferrable_key); |
546 | 557 | ||
547 | static inline void detach_timer(struct timer_list *timer, | 558 | static inline void detach_timer(struct timer_list *timer, |
548 | int clear_pending) | 559 | int clear_pending) |
@@ -589,11 +600,14 @@ static struct tvec_base *lock_timer_base(struct timer_list *timer, | |||
589 | } | 600 | } |
590 | } | 601 | } |
591 | 602 | ||
592 | int __mod_timer(struct timer_list *timer, unsigned long expires) | 603 | static inline int |
604 | __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only) | ||
593 | { | 605 | { |
594 | struct tvec_base *base, *new_base; | 606 | struct tvec_base *base, *new_base; |
595 | unsigned long flags; | 607 | unsigned long flags; |
596 | int ret = 0; | 608 | int ret; |
609 | |||
610 | ret = 0; | ||
597 | 611 | ||
598 | timer_stats_timer_set_start_info(timer); | 612 | timer_stats_timer_set_start_info(timer); |
599 | BUG_ON(!timer->function); | 613 | BUG_ON(!timer->function); |
@@ -603,6 +617,9 @@ int __mod_timer(struct timer_list *timer, unsigned long expires) | |||
603 | if (timer_pending(timer)) { | 617 | if (timer_pending(timer)) { |
604 | detach_timer(timer, 0); | 618 | detach_timer(timer, 0); |
605 | ret = 1; | 619 | ret = 1; |
620 | } else { | ||
621 | if (pending_only) | ||
622 | goto out_unlock; | ||
606 | } | 623 | } |
607 | 624 | ||
608 | debug_timer_activate(timer); | 625 | debug_timer_activate(timer); |
@@ -629,42 +646,28 @@ int __mod_timer(struct timer_list *timer, unsigned long expires) | |||
629 | 646 | ||
630 | timer->expires = expires; | 647 | timer->expires = expires; |
631 | internal_add_timer(base, timer); | 648 | internal_add_timer(base, timer); |
649 | |||
650 | out_unlock: | ||
632 | spin_unlock_irqrestore(&base->lock, flags); | 651 | spin_unlock_irqrestore(&base->lock, flags); |
633 | 652 | ||
634 | return ret; | 653 | return ret; |
635 | } | 654 | } |
636 | 655 | ||
637 | EXPORT_SYMBOL(__mod_timer); | ||
638 | |||
639 | /** | 656 | /** |
640 | * add_timer_on - start a timer on a particular CPU | 657 | * mod_timer_pending - modify a pending timer's timeout |
641 | * @timer: the timer to be added | 658 | * @timer: the pending timer to be modified |
642 | * @cpu: the CPU to start it on | 659 | * @expires: new timeout in jiffies |
643 | * | 660 | * |
644 | * This is not very scalable on SMP. Double adds are not possible. | 661 | * mod_timer_pending() is the same for pending timers as mod_timer(), |
662 | * but will not re-activate and modify already deleted timers. | ||
663 | * | ||
664 | * It is useful for unserialized use of timers. | ||
645 | */ | 665 | */ |
646 | void add_timer_on(struct timer_list *timer, int cpu) | 666 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
647 | { | 667 | { |
648 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | 668 | return __mod_timer(timer, expires, true); |
649 | unsigned long flags; | ||
650 | |||
651 | timer_stats_timer_set_start_info(timer); | ||
652 | BUG_ON(timer_pending(timer) || !timer->function); | ||
653 | spin_lock_irqsave(&base->lock, flags); | ||
654 | timer_set_base(timer, base); | ||
655 | debug_timer_activate(timer); | ||
656 | internal_add_timer(base, timer); | ||
657 | /* | ||
658 | * Check whether the other CPU is idle and needs to be | ||
659 | * triggered to reevaluate the timer wheel when nohz is | ||
660 | * active. We are protected against the other CPU fiddling | ||
661 | * with the timer by holding the timer base lock. This also | ||
662 | * makes sure that a CPU on the way to idle can not evaluate | ||
663 | * the timer wheel. | ||
664 | */ | ||
665 | wake_up_idle_cpu(cpu); | ||
666 | spin_unlock_irqrestore(&base->lock, flags); | ||
667 | } | 669 | } |
670 | EXPORT_SYMBOL(mod_timer_pending); | ||
668 | 671 | ||
669 | /** | 672 | /** |
670 | * mod_timer - modify a timer's timeout | 673 | * mod_timer - modify a timer's timeout |
@@ -688,9 +691,6 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
688 | */ | 691 | */ |
689 | int mod_timer(struct timer_list *timer, unsigned long expires) | 692 | int mod_timer(struct timer_list *timer, unsigned long expires) |
690 | { | 693 | { |
691 | BUG_ON(!timer->function); | ||
692 | |||
693 | timer_stats_timer_set_start_info(timer); | ||
694 | /* | 694 | /* |
695 | * This is a common optimization triggered by the | 695 | * This is a common optimization triggered by the |
696 | * networking code - if the timer is re-modified | 696 | * networking code - if the timer is re-modified |
@@ -699,12 +699,62 @@ int mod_timer(struct timer_list *timer, unsigned long expires) | |||
699 | if (timer->expires == expires && timer_pending(timer)) | 699 | if (timer->expires == expires && timer_pending(timer)) |
700 | return 1; | 700 | return 1; |
701 | 701 | ||
702 | return __mod_timer(timer, expires); | 702 | return __mod_timer(timer, expires, false); |
703 | } | 703 | } |
704 | |||
705 | EXPORT_SYMBOL(mod_timer); | 704 | EXPORT_SYMBOL(mod_timer); |
706 | 705 | ||
707 | /** | 706 | /** |
707 | * add_timer - start a timer | ||
708 | * @timer: the timer to be added | ||
709 | * | ||
710 | * The kernel will do a ->function(->data) callback from the | ||
711 | * timer interrupt at the ->expires point in the future. The | ||
712 | * current time is 'jiffies'. | ||
713 | * | ||
714 | * The timer's ->expires, ->function (and if the handler uses it, ->data) | ||
715 | * fields must be set prior calling this function. | ||
716 | * | ||
717 | * Timers with an ->expires field in the past will be executed in the next | ||
718 | * timer tick. | ||
719 | */ | ||
720 | void add_timer(struct timer_list *timer) | ||
721 | { | ||
722 | BUG_ON(timer_pending(timer)); | ||
723 | mod_timer(timer, timer->expires); | ||
724 | } | ||
725 | EXPORT_SYMBOL(add_timer); | ||
726 | |||
727 | /** | ||
728 | * add_timer_on - start a timer on a particular CPU | ||
729 | * @timer: the timer to be added | ||
730 | * @cpu: the CPU to start it on | ||
731 | * | ||
732 | * This is not very scalable on SMP. Double adds are not possible. | ||
733 | */ | ||
734 | void add_timer_on(struct timer_list *timer, int cpu) | ||
735 | { | ||
736 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | ||
737 | unsigned long flags; | ||
738 | |||
739 | timer_stats_timer_set_start_info(timer); | ||
740 | BUG_ON(timer_pending(timer) || !timer->function); | ||
741 | spin_lock_irqsave(&base->lock, flags); | ||
742 | timer_set_base(timer, base); | ||
743 | debug_timer_activate(timer); | ||
744 | internal_add_timer(base, timer); | ||
745 | /* | ||
746 | * Check whether the other CPU is idle and needs to be | ||
747 | * triggered to reevaluate the timer wheel when nohz is | ||
748 | * active. We are protected against the other CPU fiddling | ||
749 | * with the timer by holding the timer base lock. This also | ||
750 | * makes sure that a CPU on the way to idle can not evaluate | ||
751 | * the timer wheel. | ||
752 | */ | ||
753 | wake_up_idle_cpu(cpu); | ||
754 | spin_unlock_irqrestore(&base->lock, flags); | ||
755 | } | ||
756 | |||
757 | /** | ||
708 | * del_timer - deactive a timer. | 758 | * del_timer - deactive a timer. |
709 | * @timer: the timer to be deactivated | 759 | * @timer: the timer to be deactivated |
710 | * | 760 | * |
@@ -733,7 +783,6 @@ int del_timer(struct timer_list *timer) | |||
733 | 783 | ||
734 | return ret; | 784 | return ret; |
735 | } | 785 | } |
736 | |||
737 | EXPORT_SYMBOL(del_timer); | 786 | EXPORT_SYMBOL(del_timer); |
738 | 787 | ||
739 | #ifdef CONFIG_SMP | 788 | #ifdef CONFIG_SMP |
@@ -767,7 +816,6 @@ out: | |||
767 | 816 | ||
768 | return ret; | 817 | return ret; |
769 | } | 818 | } |
770 | |||
771 | EXPORT_SYMBOL(try_to_del_timer_sync); | 819 | EXPORT_SYMBOL(try_to_del_timer_sync); |
772 | 820 | ||
773 | /** | 821 | /** |
@@ -789,6 +837,15 @@ EXPORT_SYMBOL(try_to_del_timer_sync); | |||
789 | */ | 837 | */ |
790 | int del_timer_sync(struct timer_list *timer) | 838 | int del_timer_sync(struct timer_list *timer) |
791 | { | 839 | { |
840 | #ifdef CONFIG_LOCKDEP | ||
841 | unsigned long flags; | ||
842 | |||
843 | local_irq_save(flags); | ||
844 | lock_map_acquire(&timer->lockdep_map); | ||
845 | lock_map_release(&timer->lockdep_map); | ||
846 | local_irq_restore(flags); | ||
847 | #endif | ||
848 | |||
792 | for (;;) { | 849 | for (;;) { |
793 | int ret = try_to_del_timer_sync(timer); | 850 | int ret = try_to_del_timer_sync(timer); |
794 | if (ret >= 0) | 851 | if (ret >= 0) |
@@ -796,7 +853,6 @@ int del_timer_sync(struct timer_list *timer) | |||
796 | cpu_relax(); | 853 | cpu_relax(); |
797 | } | 854 | } |
798 | } | 855 | } |
799 | |||
800 | EXPORT_SYMBOL(del_timer_sync); | 856 | EXPORT_SYMBOL(del_timer_sync); |
801 | #endif | 857 | #endif |
802 | 858 | ||
@@ -861,10 +917,36 @@ static inline void __run_timers(struct tvec_base *base) | |||
861 | 917 | ||
862 | set_running_timer(base, timer); | 918 | set_running_timer(base, timer); |
863 | detach_timer(timer, 1); | 919 | detach_timer(timer, 1); |
920 | |||
864 | spin_unlock_irq(&base->lock); | 921 | spin_unlock_irq(&base->lock); |
865 | { | 922 | { |
866 | int preempt_count = preempt_count(); | 923 | int preempt_count = preempt_count(); |
924 | |||
925 | #ifdef CONFIG_LOCKDEP | ||
926 | /* | ||
927 | * It is permissible to free the timer from | ||
928 | * inside the function that is called from | ||
929 | * it, this we need to take into account for | ||
930 | * lockdep too. To avoid bogus "held lock | ||
931 | * freed" warnings as well as problems when | ||
932 | * looking into timer->lockdep_map, make a | ||
933 | * copy and use that here. | ||
934 | */ | ||
935 | struct lockdep_map lockdep_map = | ||
936 | timer->lockdep_map; | ||
937 | #endif | ||
938 | /* | ||
939 | * Couple the lock chain with the lock chain at | ||
940 | * del_timer_sync() by acquiring the lock_map | ||
941 | * around the fn() call here and in | ||
942 | * del_timer_sync(). | ||
943 | */ | ||
944 | lock_map_acquire(&lockdep_map); | ||
945 | |||
867 | fn(data); | 946 | fn(data); |
947 | |||
948 | lock_map_release(&lockdep_map); | ||
949 | |||
868 | if (preempt_count != preempt_count()) { | 950 | if (preempt_count != preempt_count()) { |
869 | printk(KERN_ERR "huh, entered %p " | 951 | printk(KERN_ERR "huh, entered %p " |
870 | "with preempt_count %08x, exited" | 952 | "with preempt_count %08x, exited" |
@@ -1268,7 +1350,7 @@ signed long __sched schedule_timeout(signed long timeout) | |||
1268 | expire = timeout + jiffies; | 1350 | expire = timeout + jiffies; |
1269 | 1351 | ||
1270 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); | 1352 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
1271 | __mod_timer(&timer, expire); | 1353 | __mod_timer(&timer, expire, false); |
1272 | schedule(); | 1354 | schedule(); |
1273 | del_singleshot_timer_sync(&timer); | 1355 | del_singleshot_timer_sync(&timer); |
1274 | 1356 | ||
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index 34e707e5ab87..504086ab4443 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
@@ -72,11 +72,10 @@ config FUNCTION_GRAPH_TRACER | |||
72 | help | 72 | help |
73 | Enable the kernel to trace a function at both its return | 73 | Enable the kernel to trace a function at both its return |
74 | and its entry. | 74 | and its entry. |
75 | It's first purpose is to trace the duration of functions and | 75 | Its first purpose is to trace the duration of functions and |
76 | draw a call graph for each thread with some informations like | 76 | draw a call graph for each thread with some information like |
77 | the return value. | 77 | the return value. This is done by setting the current return |
78 | This is done by setting the current return address on the current | 78 | address on the current task structure into a stack of calls. |
79 | task structure into a stack of calls. | ||
80 | 79 | ||
81 | config IRQSOFF_TRACER | 80 | config IRQSOFF_TRACER |
82 | bool "Interrupts-off Latency Tracer" | 81 | bool "Interrupts-off Latency Tracer" |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index fdf913dfc7e8..53e8c8bc0c98 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
@@ -1908,7 +1908,7 @@ int register_ftrace_function(struct ftrace_ops *ops) | |||
1908 | } | 1908 | } |
1909 | 1909 | ||
1910 | /** | 1910 | /** |
1911 | * unregister_ftrace_function - unresgister a function for profiling. | 1911 | * unregister_ftrace_function - unregister a function for profiling. |
1912 | * @ops - ops structure that holds the function to unregister | 1912 | * @ops - ops structure that holds the function to unregister |
1913 | * | 1913 | * |
1914 | * Unregister a function that was added to be called by ftrace profiling. | 1914 | * Unregister a function that was added to be called by ftrace profiling. |
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index 930c08e5b38e..dce71a5b51bc 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c | |||
@@ -42,6 +42,81 @@ static struct tracer_flags tracer_flags = { | |||
42 | /* pid on the last trace processed */ | 42 | /* pid on the last trace processed */ |
43 | static pid_t last_pid[NR_CPUS] = { [0 ... NR_CPUS-1] = -1 }; | 43 | static pid_t last_pid[NR_CPUS] = { [0 ... NR_CPUS-1] = -1 }; |
44 | 44 | ||
45 | /* Add a function return address to the trace stack on thread info.*/ | ||
46 | int | ||
47 | ftrace_push_return_trace(unsigned long ret, unsigned long long time, | ||
48 | unsigned long func, int *depth) | ||
49 | { | ||
50 | int index; | ||
51 | |||
52 | if (!current->ret_stack) | ||
53 | return -EBUSY; | ||
54 | |||
55 | /* The return trace stack is full */ | ||
56 | if (current->curr_ret_stack == FTRACE_RETFUNC_DEPTH - 1) { | ||
57 | atomic_inc(¤t->trace_overrun); | ||
58 | return -EBUSY; | ||
59 | } | ||
60 | |||
61 | index = ++current->curr_ret_stack; | ||
62 | barrier(); | ||
63 | current->ret_stack[index].ret = ret; | ||
64 | current->ret_stack[index].func = func; | ||
65 | current->ret_stack[index].calltime = time; | ||
66 | *depth = index; | ||
67 | |||
68 | return 0; | ||
69 | } | ||
70 | |||
71 | /* Retrieve a function return address to the trace stack on thread info.*/ | ||
72 | void | ||
73 | ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret) | ||
74 | { | ||
75 | int index; | ||
76 | |||
77 | index = current->curr_ret_stack; | ||
78 | |||
79 | if (unlikely(index < 0)) { | ||
80 | ftrace_graph_stop(); | ||
81 | WARN_ON(1); | ||
82 | /* Might as well panic, otherwise we have no where to go */ | ||
83 | *ret = (unsigned long)panic; | ||
84 | return; | ||
85 | } | ||
86 | |||
87 | *ret = current->ret_stack[index].ret; | ||
88 | trace->func = current->ret_stack[index].func; | ||
89 | trace->calltime = current->ret_stack[index].calltime; | ||
90 | trace->overrun = atomic_read(¤t->trace_overrun); | ||
91 | trace->depth = index; | ||
92 | barrier(); | ||
93 | current->curr_ret_stack--; | ||
94 | |||
95 | } | ||
96 | |||
97 | /* | ||
98 | * Send the trace to the ring-buffer. | ||
99 | * @return the original return address. | ||
100 | */ | ||
101 | unsigned long ftrace_return_to_handler(void) | ||
102 | { | ||
103 | struct ftrace_graph_ret trace; | ||
104 | unsigned long ret; | ||
105 | |||
106 | ftrace_pop_return_trace(&trace, &ret); | ||
107 | trace.rettime = cpu_clock(raw_smp_processor_id()); | ||
108 | ftrace_graph_return(&trace); | ||
109 | |||
110 | if (unlikely(!ret)) { | ||
111 | ftrace_graph_stop(); | ||
112 | WARN_ON(1); | ||
113 | /* Might as well panic. What else to do? */ | ||
114 | ret = (unsigned long)panic; | ||
115 | } | ||
116 | |||
117 | return ret; | ||
118 | } | ||
119 | |||
45 | static int graph_trace_init(struct trace_array *tr) | 120 | static int graph_trace_init(struct trace_array *tr) |
46 | { | 121 | { |
47 | int cpu, ret; | 122 | int cpu, ret; |
diff --git a/kernel/user.c b/kernel/user.c index fbb300e6191f..850e0ba41c1e 100644 --- a/kernel/user.c +++ b/kernel/user.c | |||
@@ -20,7 +20,7 @@ | |||
20 | 20 | ||
21 | struct user_namespace init_user_ns = { | 21 | struct user_namespace init_user_ns = { |
22 | .kref = { | 22 | .kref = { |
23 | .refcount = ATOMIC_INIT(1), | 23 | .refcount = ATOMIC_INIT(2), |
24 | }, | 24 | }, |
25 | .creator = &root_user, | 25 | .creator = &root_user, |
26 | }; | 26 | }; |
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c index 3b34b3545936..92359cc747a7 100644 --- a/kernel/utsname_sysctl.c +++ b/kernel/utsname_sysctl.c | |||
@@ -37,7 +37,7 @@ static void put_uts(ctl_table *table, int write, void *which) | |||
37 | up_write(&uts_sem); | 37 | up_write(&uts_sem); |
38 | } | 38 | } |
39 | 39 | ||
40 | #ifdef CONFIG_PROC_FS | 40 | #ifdef CONFIG_PROC_SYSCTL |
41 | /* | 41 | /* |
42 | * Special case of dostring for the UTS structure. This has locks | 42 | * Special case of dostring for the UTS structure. This has locks |
43 | * to observe. Should this be in kernel/sys.c ???? | 43 | * to observe. Should this be in kernel/sys.c ???? |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 1f0c509b40d3..32f8e0d2bf5a 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -48,8 +48,6 @@ struct cpu_workqueue_struct { | |||
48 | 48 | ||
49 | struct workqueue_struct *wq; | 49 | struct workqueue_struct *wq; |
50 | struct task_struct *thread; | 50 | struct task_struct *thread; |
51 | |||
52 | int run_depth; /* Detect run_workqueue() recursion depth */ | ||
53 | } ____cacheline_aligned; | 51 | } ____cacheline_aligned; |
54 | 52 | ||
55 | /* | 53 | /* |
@@ -262,13 +260,6 @@ EXPORT_SYMBOL_GPL(queue_delayed_work_on); | |||
262 | static void run_workqueue(struct cpu_workqueue_struct *cwq) | 260 | static void run_workqueue(struct cpu_workqueue_struct *cwq) |
263 | { | 261 | { |
264 | spin_lock_irq(&cwq->lock); | 262 | spin_lock_irq(&cwq->lock); |
265 | cwq->run_depth++; | ||
266 | if (cwq->run_depth > 3) { | ||
267 | /* morton gets to eat his hat */ | ||
268 | printk("%s: recursion depth exceeded: %d\n", | ||
269 | __func__, cwq->run_depth); | ||
270 | dump_stack(); | ||
271 | } | ||
272 | while (!list_empty(&cwq->worklist)) { | 263 | while (!list_empty(&cwq->worklist)) { |
273 | struct work_struct *work = list_entry(cwq->worklist.next, | 264 | struct work_struct *work = list_entry(cwq->worklist.next, |
274 | struct work_struct, entry); | 265 | struct work_struct, entry); |
@@ -311,7 +302,6 @@ static void run_workqueue(struct cpu_workqueue_struct *cwq) | |||
311 | spin_lock_irq(&cwq->lock); | 302 | spin_lock_irq(&cwq->lock); |
312 | cwq->current_work = NULL; | 303 | cwq->current_work = NULL; |
313 | } | 304 | } |
314 | cwq->run_depth--; | ||
315 | spin_unlock_irq(&cwq->lock); | 305 | spin_unlock_irq(&cwq->lock); |
316 | } | 306 | } |
317 | 307 | ||
@@ -368,29 +358,20 @@ static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, | |||
368 | 358 | ||
369 | static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | 359 | static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) |
370 | { | 360 | { |
371 | int active; | 361 | int active = 0; |
362 | struct wq_barrier barr; | ||
372 | 363 | ||
373 | if (cwq->thread == current) { | 364 | WARN_ON(cwq->thread == current); |
374 | /* | ||
375 | * Probably keventd trying to flush its own queue. So simply run | ||
376 | * it by hand rather than deadlocking. | ||
377 | */ | ||
378 | run_workqueue(cwq); | ||
379 | active = 1; | ||
380 | } else { | ||
381 | struct wq_barrier barr; | ||
382 | 365 | ||
383 | active = 0; | 366 | spin_lock_irq(&cwq->lock); |
384 | spin_lock_irq(&cwq->lock); | 367 | if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { |
385 | if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { | 368 | insert_wq_barrier(cwq, &barr, &cwq->worklist); |
386 | insert_wq_barrier(cwq, &barr, &cwq->worklist); | 369 | active = 1; |
387 | active = 1; | ||
388 | } | ||
389 | spin_unlock_irq(&cwq->lock); | ||
390 | |||
391 | if (active) | ||
392 | wait_for_completion(&barr.done); | ||
393 | } | 370 | } |
371 | spin_unlock_irq(&cwq->lock); | ||
372 | |||
373 | if (active) | ||
374 | wait_for_completion(&barr.done); | ||
394 | 375 | ||
395 | return active; | 376 | return active; |
396 | } | 377 | } |
@@ -416,7 +397,7 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
416 | might_sleep(); | 397 | might_sleep(); |
417 | lock_map_acquire(&wq->lockdep_map); | 398 | lock_map_acquire(&wq->lockdep_map); |
418 | lock_map_release(&wq->lockdep_map); | 399 | lock_map_release(&wq->lockdep_map); |
419 | for_each_cpu_mask_nr(cpu, *cpu_map) | 400 | for_each_cpu(cpu, cpu_map) |
420 | flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); | 401 | flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); |
421 | } | 402 | } |
422 | EXPORT_SYMBOL_GPL(flush_workqueue); | 403 | EXPORT_SYMBOL_GPL(flush_workqueue); |
@@ -547,7 +528,7 @@ static void wait_on_work(struct work_struct *work) | |||
547 | wq = cwq->wq; | 528 | wq = cwq->wq; |
548 | cpu_map = wq_cpu_map(wq); | 529 | cpu_map = wq_cpu_map(wq); |
549 | 530 | ||
550 | for_each_cpu_mask_nr(cpu, *cpu_map) | 531 | for_each_cpu(cpu, cpu_map) |
551 | wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); | 532 | wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); |
552 | } | 533 | } |
553 | 534 | ||
@@ -911,7 +892,7 @@ void destroy_workqueue(struct workqueue_struct *wq) | |||
911 | list_del(&wq->list); | 892 | list_del(&wq->list); |
912 | spin_unlock(&workqueue_lock); | 893 | spin_unlock(&workqueue_lock); |
913 | 894 | ||
914 | for_each_cpu_mask_nr(cpu, *cpu_map) | 895 | for_each_cpu(cpu, cpu_map) |
915 | cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); | 896 | cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); |
916 | cpu_maps_update_done(); | 897 | cpu_maps_update_done(); |
917 | 898 | ||