aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/fork.c5
-rw-r--r--kernel/hrtimer.c6
-rw-r--r--kernel/irq/manage.c2
-rw-r--r--kernel/irq/spurious.c4
-rw-r--r--kernel/power/hibernate.c23
-rw-r--r--kernel/power/main.c3
-rw-r--r--kernel/time/clocksource.c58
-rw-r--r--kernel/time/timekeeping.c92
8 files changed, 166 insertions, 27 deletions
diff --git a/kernel/fork.c b/kernel/fork.c
index ba0d17261329..da4a6a10d088 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -162,7 +162,6 @@ static void account_kernel_stack(struct thread_info *ti, int account)
162 162
163void free_task(struct task_struct *tsk) 163void free_task(struct task_struct *tsk)
164{ 164{
165 prop_local_destroy_single(&tsk->dirties);
166 account_kernel_stack(tsk->stack, -1); 165 account_kernel_stack(tsk->stack, -1);
167 free_thread_info(tsk->stack); 166 free_thread_info(tsk->stack);
168 rt_mutex_debug_task_free(tsk); 167 rt_mutex_debug_task_free(tsk);
@@ -274,10 +273,6 @@ static struct task_struct *dup_task_struct(struct task_struct *orig)
274 273
275 tsk->stack = ti; 274 tsk->stack = ti;
276 275
277 err = prop_local_init_single(&tsk->dirties);
278 if (err)
279 goto out;
280
281 setup_thread_stack(tsk, orig); 276 setup_thread_stack(tsk, orig);
282 clear_user_return_notifier(tsk); 277 clear_user_return_notifier(tsk);
283 clear_tsk_need_resched(tsk); 278 clear_tsk_need_resched(tsk);
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index 422e567eecf6..ae34bf51682b 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -885,10 +885,13 @@ static void __remove_hrtimer(struct hrtimer *timer,
885 struct hrtimer_clock_base *base, 885 struct hrtimer_clock_base *base,
886 unsigned long newstate, int reprogram) 886 unsigned long newstate, int reprogram)
887{ 887{
888 struct timerqueue_node *next_timer;
888 if (!(timer->state & HRTIMER_STATE_ENQUEUED)) 889 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
889 goto out; 890 goto out;
890 891
891 if (&timer->node == timerqueue_getnext(&base->active)) { 892 next_timer = timerqueue_getnext(&base->active);
893 timerqueue_del(&base->active, &timer->node);
894 if (&timer->node == next_timer) {
892#ifdef CONFIG_HIGH_RES_TIMERS 895#ifdef CONFIG_HIGH_RES_TIMERS
893 /* Reprogram the clock event device. if enabled */ 896 /* Reprogram the clock event device. if enabled */
894 if (reprogram && hrtimer_hres_active()) { 897 if (reprogram && hrtimer_hres_active()) {
@@ -901,7 +904,6 @@ static void __remove_hrtimer(struct hrtimer *timer,
901 } 904 }
902#endif 905#endif
903 } 906 }
904 timerqueue_del(&base->active, &timer->node);
905 if (!timerqueue_getnext(&base->active)) 907 if (!timerqueue_getnext(&base->active))
906 base->cpu_base->active_bases &= ~(1 << base->index); 908 base->cpu_base->active_bases &= ~(1 << base->index);
907out: 909out:
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 67ce837ae52c..0e2b179bc7b3 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -1596,7 +1596,7 @@ int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1596 return -ENOMEM; 1596 return -ENOMEM;
1597 1597
1598 action->handler = handler; 1598 action->handler = handler;
1599 action->flags = IRQF_PERCPU; 1599 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1600 action->name = devname; 1600 action->name = devname;
1601 action->percpu_dev_id = dev_id; 1601 action->percpu_dev_id = dev_id;
1602 1602
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c
index b5f4742693c0..dc813a948be2 100644
--- a/kernel/irq/spurious.c
+++ b/kernel/irq/spurious.c
@@ -84,7 +84,9 @@ static int try_one_irq(int irq, struct irq_desc *desc, bool force)
84 */ 84 */
85 action = desc->action; 85 action = desc->action;
86 if (!action || !(action->flags & IRQF_SHARED) || 86 if (!action || !(action->flags & IRQF_SHARED) ||
87 (action->flags & __IRQF_TIMER) || !action->next) 87 (action->flags & __IRQF_TIMER) ||
88 (action->handler(irq, action->dev_id) == IRQ_HANDLED) ||
89 !action->next)
88 goto out; 90 goto out;
89 91
90 /* Already running on another processor */ 92 /* Already running on another processor */
diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c
index b4511b6d3ef9..196c01268ebd 100644
--- a/kernel/power/hibernate.c
+++ b/kernel/power/hibernate.c
@@ -55,6 +55,8 @@ enum {
55 55
56static int hibernation_mode = HIBERNATION_SHUTDOWN; 56static int hibernation_mode = HIBERNATION_SHUTDOWN;
57 57
58static bool freezer_test_done;
59
58static const struct platform_hibernation_ops *hibernation_ops; 60static const struct platform_hibernation_ops *hibernation_ops;
59 61
60/** 62/**
@@ -347,6 +349,17 @@ int hibernation_snapshot(int platform_mode)
347 if (error) 349 if (error)
348 goto Close; 350 goto Close;
349 351
352 if (hibernation_test(TEST_FREEZER) ||
353 hibernation_testmode(HIBERNATION_TESTPROC)) {
354
355 /*
356 * Indicate to the caller that we are returning due to a
357 * successful freezer test.
358 */
359 freezer_test_done = true;
360 goto Close;
361 }
362
350 error = dpm_prepare(PMSG_FREEZE); 363 error = dpm_prepare(PMSG_FREEZE);
351 if (error) 364 if (error)
352 goto Complete_devices; 365 goto Complete_devices;
@@ -641,15 +654,13 @@ int hibernate(void)
641 if (error) 654 if (error)
642 goto Finish; 655 goto Finish;
643 656
644 if (hibernation_test(TEST_FREEZER))
645 goto Thaw;
646
647 if (hibernation_testmode(HIBERNATION_TESTPROC))
648 goto Thaw;
649
650 error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); 657 error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM);
651 if (error) 658 if (error)
652 goto Thaw; 659 goto Thaw;
660 if (freezer_test_done) {
661 freezer_test_done = false;
662 goto Thaw;
663 }
653 664
654 if (in_suspend) { 665 if (in_suspend) {
655 unsigned int flags = 0; 666 unsigned int flags = 0;
diff --git a/kernel/power/main.c b/kernel/power/main.c
index 71f49fe4377e..36e0f0903c32 100644
--- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -290,13 +290,14 @@ static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
290 if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) 290 if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
291 break; 291 break;
292 } 292 }
293 if (state < PM_SUSPEND_MAX && *s) 293 if (state < PM_SUSPEND_MAX && *s) {
294 error = enter_state(state); 294 error = enter_state(state);
295 if (error) { 295 if (error) {
296 suspend_stats.fail++; 296 suspend_stats.fail++;
297 dpm_save_failed_errno(error); 297 dpm_save_failed_errno(error);
298 } else 298 } else
299 suspend_stats.success++; 299 suspend_stats.success++;
300 }
300#endif 301#endif
301 302
302 Exit: 303 Exit:
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index cf52fda2e096..cfc65e1eb9fb 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -492,6 +492,22 @@ void clocksource_touch_watchdog(void)
492} 492}
493 493
494/** 494/**
495 * clocksource_max_adjustment- Returns max adjustment amount
496 * @cs: Pointer to clocksource
497 *
498 */
499static u32 clocksource_max_adjustment(struct clocksource *cs)
500{
501 u64 ret;
502 /*
503 * We won't try to correct for more then 11% adjustments (110,000 ppm),
504 */
505 ret = (u64)cs->mult * 11;
506 do_div(ret,100);
507 return (u32)ret;
508}
509
510/**
495 * clocksource_max_deferment - Returns max time the clocksource can be deferred 511 * clocksource_max_deferment - Returns max time the clocksource can be deferred
496 * @cs: Pointer to clocksource 512 * @cs: Pointer to clocksource
497 * 513 *
@@ -503,25 +519,28 @@ static u64 clocksource_max_deferment(struct clocksource *cs)
503 /* 519 /*
504 * Calculate the maximum number of cycles that we can pass to the 520 * Calculate the maximum number of cycles that we can pass to the
505 * cyc2ns function without overflowing a 64-bit signed result. The 521 * cyc2ns function without overflowing a 64-bit signed result. The
506 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which 522 * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
507 * is equivalent to the below. 523 * which is equivalent to the below.
508 * max_cycles < (2^63)/cs->mult 524 * max_cycles < (2^63)/(cs->mult + cs->maxadj)
509 * max_cycles < 2^(log2((2^63)/cs->mult)) 525 * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
510 * max_cycles < 2^(log2(2^63) - log2(cs->mult)) 526 * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
511 * max_cycles < 2^(63 - log2(cs->mult)) 527 * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
512 * max_cycles < 1 << (63 - log2(cs->mult)) 528 * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
513 * Please note that we add 1 to the result of the log2 to account for 529 * Please note that we add 1 to the result of the log2 to account for
514 * any rounding errors, ensure the above inequality is satisfied and 530 * any rounding errors, ensure the above inequality is satisfied and
515 * no overflow will occur. 531 * no overflow will occur.
516 */ 532 */
517 max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1)); 533 max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
518 534
519 /* 535 /*
520 * The actual maximum number of cycles we can defer the clocksource is 536 * The actual maximum number of cycles we can defer the clocksource is
521 * determined by the minimum of max_cycles and cs->mask. 537 * determined by the minimum of max_cycles and cs->mask.
538 * Note: Here we subtract the maxadj to make sure we don't sleep for
539 * too long if there's a large negative adjustment.
522 */ 540 */
523 max_cycles = min_t(u64, max_cycles, (u64) cs->mask); 541 max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
524 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift); 542 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
543 cs->shift);
525 544
526 /* 545 /*
527 * To ensure that the clocksource does not wrap whilst we are idle, 546 * To ensure that the clocksource does not wrap whilst we are idle,
@@ -640,7 +659,6 @@ static void clocksource_enqueue(struct clocksource *cs)
640void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq) 659void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
641{ 660{
642 u64 sec; 661 u64 sec;
643
644 /* 662 /*
645 * Calc the maximum number of seconds which we can run before 663 * Calc the maximum number of seconds which we can run before
646 * wrapping around. For clocksources which have a mask > 32bit 664 * wrapping around. For clocksources which have a mask > 32bit
@@ -661,6 +679,20 @@ void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
661 679
662 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 680 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
663 NSEC_PER_SEC / scale, sec * scale); 681 NSEC_PER_SEC / scale, sec * scale);
682
683 /*
684 * for clocksources that have large mults, to avoid overflow.
685 * Since mult may be adjusted by ntp, add an safety extra margin
686 *
687 */
688 cs->maxadj = clocksource_max_adjustment(cs);
689 while ((cs->mult + cs->maxadj < cs->mult)
690 || (cs->mult - cs->maxadj > cs->mult)) {
691 cs->mult >>= 1;
692 cs->shift--;
693 cs->maxadj = clocksource_max_adjustment(cs);
694 }
695
664 cs->max_idle_ns = clocksource_max_deferment(cs); 696 cs->max_idle_ns = clocksource_max_deferment(cs);
665} 697}
666EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale); 698EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
@@ -701,6 +733,12 @@ EXPORT_SYMBOL_GPL(__clocksource_register_scale);
701 */ 733 */
702int clocksource_register(struct clocksource *cs) 734int clocksource_register(struct clocksource *cs)
703{ 735{
736 /* calculate max adjustment for given mult/shift */
737 cs->maxadj = clocksource_max_adjustment(cs);
738 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
739 "Clocksource %s might overflow on 11%% adjustment\n",
740 cs->name);
741
704 /* calculate max idle time permitted for this clocksource */ 742 /* calculate max idle time permitted for this clocksource */
705 cs->max_idle_ns = clocksource_max_deferment(cs); 743 cs->max_idle_ns = clocksource_max_deferment(cs);
706 744
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 2b021b0e8507..237841378c03 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -249,6 +249,8 @@ ktime_t ktime_get(void)
249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec; 249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; 250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 nsecs += timekeeping_get_ns(); 251 nsecs += timekeeping_get_ns();
252 /* If arch requires, add in gettimeoffset() */
253 nsecs += arch_gettimeoffset();
252 254
253 } while (read_seqretry(&xtime_lock, seq)); 255 } while (read_seqretry(&xtime_lock, seq));
254 /* 256 /*
@@ -280,6 +282,8 @@ void ktime_get_ts(struct timespec *ts)
280 *ts = xtime; 282 *ts = xtime;
281 tomono = wall_to_monotonic; 283 tomono = wall_to_monotonic;
282 nsecs = timekeeping_get_ns(); 284 nsecs = timekeeping_get_ns();
285 /* If arch requires, add in gettimeoffset() */
286 nsecs += arch_gettimeoffset();
283 287
284 } while (read_seqretry(&xtime_lock, seq)); 288 } while (read_seqretry(&xtime_lock, seq));
285 289
@@ -802,14 +806,44 @@ static void timekeeping_adjust(s64 offset)
802 s64 error, interval = timekeeper.cycle_interval; 806 s64 error, interval = timekeeper.cycle_interval;
803 int adj; 807 int adj;
804 808
809 /*
810 * The point of this is to check if the error is greater then half
811 * an interval.
812 *
813 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
814 *
815 * Note we subtract one in the shift, so that error is really error*2.
816 * This "saves" dividing(shifting) intererval twice, but keeps the
817 * (error > interval) comparision as still measuring if error is
818 * larger then half an interval.
819 *
820 * Note: It does not "save" on aggrivation when reading the code.
821 */
805 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); 822 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
806 if (error > interval) { 823 if (error > interval) {
824 /*
825 * We now divide error by 4(via shift), which checks if
826 * the error is greater then twice the interval.
827 * If it is greater, we need a bigadjust, if its smaller,
828 * we can adjust by 1.
829 */
807 error >>= 2; 830 error >>= 2;
831 /*
832 * XXX - In update_wall_time, we round up to the next
833 * nanosecond, and store the amount rounded up into
834 * the error. This causes the likely below to be unlikely.
835 *
836 * The properfix is to avoid rounding up by using
837 * the high precision timekeeper.xtime_nsec instead of
838 * xtime.tv_nsec everywhere. Fixing this will take some
839 * time.
840 */
808 if (likely(error <= interval)) 841 if (likely(error <= interval))
809 adj = 1; 842 adj = 1;
810 else 843 else
811 adj = timekeeping_bigadjust(error, &interval, &offset); 844 adj = timekeeping_bigadjust(error, &interval, &offset);
812 } else if (error < -interval) { 845 } else if (error < -interval) {
846 /* See comment above, this is just switched for the negative */
813 error >>= 2; 847 error >>= 2;
814 if (likely(error >= -interval)) { 848 if (likely(error >= -interval)) {
815 adj = -1; 849 adj = -1;
@@ -817,9 +851,65 @@ static void timekeeping_adjust(s64 offset)
817 offset = -offset; 851 offset = -offset;
818 } else 852 } else
819 adj = timekeeping_bigadjust(error, &interval, &offset); 853 adj = timekeeping_bigadjust(error, &interval, &offset);
820 } else 854 } else /* No adjustment needed */
821 return; 855 return;
822 856
857 WARN_ONCE(timekeeper.clock->maxadj &&
858 (timekeeper.mult + adj > timekeeper.clock->mult +
859 timekeeper.clock->maxadj),
860 "Adjusting %s more then 11%% (%ld vs %ld)\n",
861 timekeeper.clock->name, (long)timekeeper.mult + adj,
862 (long)timekeeper.clock->mult +
863 timekeeper.clock->maxadj);
864 /*
865 * So the following can be confusing.
866 *
867 * To keep things simple, lets assume adj == 1 for now.
868 *
869 * When adj != 1, remember that the interval and offset values
870 * have been appropriately scaled so the math is the same.
871 *
872 * The basic idea here is that we're increasing the multiplier
873 * by one, this causes the xtime_interval to be incremented by
874 * one cycle_interval. This is because:
875 * xtime_interval = cycle_interval * mult
876 * So if mult is being incremented by one:
877 * xtime_interval = cycle_interval * (mult + 1)
878 * Its the same as:
879 * xtime_interval = (cycle_interval * mult) + cycle_interval
880 * Which can be shortened to:
881 * xtime_interval += cycle_interval
882 *
883 * So offset stores the non-accumulated cycles. Thus the current
884 * time (in shifted nanoseconds) is:
885 * now = (offset * adj) + xtime_nsec
886 * Now, even though we're adjusting the clock frequency, we have
887 * to keep time consistent. In other words, we can't jump back
888 * in time, and we also want to avoid jumping forward in time.
889 *
890 * So given the same offset value, we need the time to be the same
891 * both before and after the freq adjustment.
892 * now = (offset * adj_1) + xtime_nsec_1
893 * now = (offset * adj_2) + xtime_nsec_2
894 * So:
895 * (offset * adj_1) + xtime_nsec_1 =
896 * (offset * adj_2) + xtime_nsec_2
897 * And we know:
898 * adj_2 = adj_1 + 1
899 * So:
900 * (offset * adj_1) + xtime_nsec_1 =
901 * (offset * (adj_1+1)) + xtime_nsec_2
902 * (offset * adj_1) + xtime_nsec_1 =
903 * (offset * adj_1) + offset + xtime_nsec_2
904 * Canceling the sides:
905 * xtime_nsec_1 = offset + xtime_nsec_2
906 * Which gives us:
907 * xtime_nsec_2 = xtime_nsec_1 - offset
908 * Which simplfies to:
909 * xtime_nsec -= offset
910 *
911 * XXX - TODO: Doc ntp_error calculation.
912 */
823 timekeeper.mult += adj; 913 timekeeper.mult += adj;
824 timekeeper.xtime_interval += interval; 914 timekeeper.xtime_interval += interval;
825 timekeeper.xtime_nsec -= offset; 915 timekeeper.xtime_nsec -= offset;