diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/sched.c | 1919 | ||||
-rw-r--r-- | kernel/sched_fair.c | 1765 |
2 files changed, 1844 insertions, 1840 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 64298a52eaa6..13a2acf18b2d 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -1805,6 +1805,51 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |||
1805 | raw_spin_unlock(&busiest->lock); | 1805 | raw_spin_unlock(&busiest->lock); |
1806 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 1806 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1807 | } | 1807 | } |
1808 | |||
1809 | /* | ||
1810 | * double_rq_lock - safely lock two runqueues | ||
1811 | * | ||
1812 | * Note this does not disable interrupts like task_rq_lock, | ||
1813 | * you need to do so manually before calling. | ||
1814 | */ | ||
1815 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1816 | __acquires(rq1->lock) | ||
1817 | __acquires(rq2->lock) | ||
1818 | { | ||
1819 | BUG_ON(!irqs_disabled()); | ||
1820 | if (rq1 == rq2) { | ||
1821 | raw_spin_lock(&rq1->lock); | ||
1822 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1823 | } else { | ||
1824 | if (rq1 < rq2) { | ||
1825 | raw_spin_lock(&rq1->lock); | ||
1826 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
1827 | } else { | ||
1828 | raw_spin_lock(&rq2->lock); | ||
1829 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
1830 | } | ||
1831 | } | ||
1832 | update_rq_clock(rq1); | ||
1833 | update_rq_clock(rq2); | ||
1834 | } | ||
1835 | |||
1836 | /* | ||
1837 | * double_rq_unlock - safely unlock two runqueues | ||
1838 | * | ||
1839 | * Note this does not restore interrupts like task_rq_unlock, | ||
1840 | * you need to do so manually after calling. | ||
1841 | */ | ||
1842 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1843 | __releases(rq1->lock) | ||
1844 | __releases(rq2->lock) | ||
1845 | { | ||
1846 | raw_spin_unlock(&rq1->lock); | ||
1847 | if (rq1 != rq2) | ||
1848 | raw_spin_unlock(&rq2->lock); | ||
1849 | else | ||
1850 | __release(rq2->lock); | ||
1851 | } | ||
1852 | |||
1808 | #endif | 1853 | #endif |
1809 | 1854 | ||
1810 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1855 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1834,18 +1879,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |||
1834 | #endif | 1879 | #endif |
1835 | } | 1880 | } |
1836 | 1881 | ||
1837 | #include "sched_stats.h" | 1882 | static const struct sched_class rt_sched_class; |
1838 | #include "sched_idletask.c" | ||
1839 | #include "sched_fair.c" | ||
1840 | #include "sched_rt.c" | ||
1841 | #ifdef CONFIG_SCHED_DEBUG | ||
1842 | # include "sched_debug.c" | ||
1843 | #endif | ||
1844 | 1883 | ||
1845 | #define sched_class_highest (&rt_sched_class) | 1884 | #define sched_class_highest (&rt_sched_class) |
1846 | #define for_each_class(class) \ | 1885 | #define for_each_class(class) \ |
1847 | for (class = sched_class_highest; class; class = class->next) | 1886 | for (class = sched_class_highest; class; class = class->next) |
1848 | 1887 | ||
1888 | #include "sched_stats.h" | ||
1889 | |||
1849 | static void inc_nr_running(struct rq *rq) | 1890 | static void inc_nr_running(struct rq *rq) |
1850 | { | 1891 | { |
1851 | rq->nr_running++; | 1892 | rq->nr_running++; |
@@ -1912,6 +1953,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | |||
1912 | } | 1953 | } |
1913 | 1954 | ||
1914 | /* | 1955 | /* |
1956 | * activate_task - move a task to the runqueue. | ||
1957 | */ | ||
1958 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1959 | { | ||
1960 | if (task_contributes_to_load(p)) | ||
1961 | rq->nr_uninterruptible--; | ||
1962 | |||
1963 | enqueue_task(rq, p, wakeup); | ||
1964 | inc_nr_running(rq); | ||
1965 | } | ||
1966 | |||
1967 | /* | ||
1968 | * deactivate_task - remove a task from the runqueue. | ||
1969 | */ | ||
1970 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1971 | { | ||
1972 | if (task_contributes_to_load(p)) | ||
1973 | rq->nr_uninterruptible++; | ||
1974 | |||
1975 | dequeue_task(rq, p, sleep); | ||
1976 | dec_nr_running(rq); | ||
1977 | } | ||
1978 | |||
1979 | #include "sched_idletask.c" | ||
1980 | #include "sched_fair.c" | ||
1981 | #include "sched_rt.c" | ||
1982 | #ifdef CONFIG_SCHED_DEBUG | ||
1983 | # include "sched_debug.c" | ||
1984 | #endif | ||
1985 | |||
1986 | /* | ||
1915 | * __normal_prio - return the priority that is based on the static prio | 1987 | * __normal_prio - return the priority that is based on the static prio |
1916 | */ | 1988 | */ |
1917 | static inline int __normal_prio(struct task_struct *p) | 1989 | static inline int __normal_prio(struct task_struct *p) |
@@ -1957,30 +2029,6 @@ static int effective_prio(struct task_struct *p) | |||
1957 | return p->prio; | 2029 | return p->prio; |
1958 | } | 2030 | } |
1959 | 2031 | ||
1960 | /* | ||
1961 | * activate_task - move a task to the runqueue. | ||
1962 | */ | ||
1963 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1964 | { | ||
1965 | if (task_contributes_to_load(p)) | ||
1966 | rq->nr_uninterruptible--; | ||
1967 | |||
1968 | enqueue_task(rq, p, wakeup); | ||
1969 | inc_nr_running(rq); | ||
1970 | } | ||
1971 | |||
1972 | /* | ||
1973 | * deactivate_task - remove a task from the runqueue. | ||
1974 | */ | ||
1975 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1976 | { | ||
1977 | if (task_contributes_to_load(p)) | ||
1978 | rq->nr_uninterruptible++; | ||
1979 | |||
1980 | dequeue_task(rq, p, sleep); | ||
1981 | dec_nr_running(rq); | ||
1982 | } | ||
1983 | |||
1984 | /** | 2032 | /** |
1985 | * task_curr - is this task currently executing on a CPU? | 2033 | * task_curr - is this task currently executing on a CPU? |
1986 | * @p: the task in question. | 2034 | * @p: the task in question. |
@@ -3088,50 +3136,6 @@ static void update_cpu_load(struct rq *this_rq) | |||
3088 | #ifdef CONFIG_SMP | 3136 | #ifdef CONFIG_SMP |
3089 | 3137 | ||
3090 | /* | 3138 | /* |
3091 | * double_rq_lock - safely lock two runqueues | ||
3092 | * | ||
3093 | * Note this does not disable interrupts like task_rq_lock, | ||
3094 | * you need to do so manually before calling. | ||
3095 | */ | ||
3096 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
3097 | __acquires(rq1->lock) | ||
3098 | __acquires(rq2->lock) | ||
3099 | { | ||
3100 | BUG_ON(!irqs_disabled()); | ||
3101 | if (rq1 == rq2) { | ||
3102 | raw_spin_lock(&rq1->lock); | ||
3103 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
3104 | } else { | ||
3105 | if (rq1 < rq2) { | ||
3106 | raw_spin_lock(&rq1->lock); | ||
3107 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
3108 | } else { | ||
3109 | raw_spin_lock(&rq2->lock); | ||
3110 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
3111 | } | ||
3112 | } | ||
3113 | update_rq_clock(rq1); | ||
3114 | update_rq_clock(rq2); | ||
3115 | } | ||
3116 | |||
3117 | /* | ||
3118 | * double_rq_unlock - safely unlock two runqueues | ||
3119 | * | ||
3120 | * Note this does not restore interrupts like task_rq_unlock, | ||
3121 | * you need to do so manually after calling. | ||
3122 | */ | ||
3123 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
3124 | __releases(rq1->lock) | ||
3125 | __releases(rq2->lock) | ||
3126 | { | ||
3127 | raw_spin_unlock(&rq1->lock); | ||
3128 | if (rq1 != rq2) | ||
3129 | raw_spin_unlock(&rq2->lock); | ||
3130 | else | ||
3131 | __release(rq2->lock); | ||
3132 | } | ||
3133 | |||
3134 | /* | ||
3135 | * sched_exec - execve() is a valuable balancing opportunity, because at | 3139 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3136 | * this point the task has the smallest effective memory and cache footprint. | 3140 | * this point the task has the smallest effective memory and cache footprint. |
3137 | */ | 3141 | */ |
@@ -3179,1771 +3183,6 @@ again: | |||
3179 | task_rq_unlock(rq, &flags); | 3183 | task_rq_unlock(rq, &flags); |
3180 | } | 3184 | } |
3181 | 3185 | ||
3182 | /* | ||
3183 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
3184 | * Both runqueues must be locked. | ||
3185 | */ | ||
3186 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
3187 | struct rq *this_rq, int this_cpu) | ||
3188 | { | ||
3189 | deactivate_task(src_rq, p, 0); | ||
3190 | set_task_cpu(p, this_cpu); | ||
3191 | activate_task(this_rq, p, 0); | ||
3192 | check_preempt_curr(this_rq, p, 0); | ||
3193 | } | ||
3194 | |||
3195 | /* | ||
3196 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
3197 | */ | ||
3198 | static | ||
3199 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
3200 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3201 | int *all_pinned) | ||
3202 | { | ||
3203 | int tsk_cache_hot = 0; | ||
3204 | /* | ||
3205 | * We do not migrate tasks that are: | ||
3206 | * 1) running (obviously), or | ||
3207 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
3208 | * 3) are cache-hot on their current CPU. | ||
3209 | */ | ||
3210 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
3211 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
3212 | return 0; | ||
3213 | } | ||
3214 | *all_pinned = 0; | ||
3215 | |||
3216 | if (task_running(rq, p)) { | ||
3217 | schedstat_inc(p, se.nr_failed_migrations_running); | ||
3218 | return 0; | ||
3219 | } | ||
3220 | |||
3221 | /* | ||
3222 | * Aggressive migration if: | ||
3223 | * 1) task is cache cold, or | ||
3224 | * 2) too many balance attempts have failed. | ||
3225 | */ | ||
3226 | |||
3227 | tsk_cache_hot = task_hot(p, rq->clock, sd); | ||
3228 | if (!tsk_cache_hot || | ||
3229 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
3230 | #ifdef CONFIG_SCHEDSTATS | ||
3231 | if (tsk_cache_hot) { | ||
3232 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
3233 | schedstat_inc(p, se.nr_forced_migrations); | ||
3234 | } | ||
3235 | #endif | ||
3236 | return 1; | ||
3237 | } | ||
3238 | |||
3239 | if (tsk_cache_hot) { | ||
3240 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
3241 | return 0; | ||
3242 | } | ||
3243 | return 1; | ||
3244 | } | ||
3245 | |||
3246 | static unsigned long | ||
3247 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3248 | unsigned long max_load_move, struct sched_domain *sd, | ||
3249 | enum cpu_idle_type idle, int *all_pinned, | ||
3250 | int *this_best_prio, struct rq_iterator *iterator) | ||
3251 | { | ||
3252 | int loops = 0, pulled = 0, pinned = 0; | ||
3253 | struct task_struct *p; | ||
3254 | long rem_load_move = max_load_move; | ||
3255 | |||
3256 | if (max_load_move == 0) | ||
3257 | goto out; | ||
3258 | |||
3259 | pinned = 1; | ||
3260 | |||
3261 | /* | ||
3262 | * Start the load-balancing iterator: | ||
3263 | */ | ||
3264 | p = iterator->start(iterator->arg); | ||
3265 | next: | ||
3266 | if (!p || loops++ > sysctl_sched_nr_migrate) | ||
3267 | goto out; | ||
3268 | |||
3269 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
3270 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3271 | p = iterator->next(iterator->arg); | ||
3272 | goto next; | ||
3273 | } | ||
3274 | |||
3275 | pull_task(busiest, p, this_rq, this_cpu); | ||
3276 | pulled++; | ||
3277 | rem_load_move -= p->se.load.weight; | ||
3278 | |||
3279 | #ifdef CONFIG_PREEMPT | ||
3280 | /* | ||
3281 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3282 | * will stop after the first task is pulled to minimize the critical | ||
3283 | * section. | ||
3284 | */ | ||
3285 | if (idle == CPU_NEWLY_IDLE) | ||
3286 | goto out; | ||
3287 | #endif | ||
3288 | |||
3289 | /* | ||
3290 | * We only want to steal up to the prescribed amount of weighted load. | ||
3291 | */ | ||
3292 | if (rem_load_move > 0) { | ||
3293 | if (p->prio < *this_best_prio) | ||
3294 | *this_best_prio = p->prio; | ||
3295 | p = iterator->next(iterator->arg); | ||
3296 | goto next; | ||
3297 | } | ||
3298 | out: | ||
3299 | /* | ||
3300 | * Right now, this is one of only two places pull_task() is called, | ||
3301 | * so we can safely collect pull_task() stats here rather than | ||
3302 | * inside pull_task(). | ||
3303 | */ | ||
3304 | schedstat_add(sd, lb_gained[idle], pulled); | ||
3305 | |||
3306 | if (all_pinned) | ||
3307 | *all_pinned = pinned; | ||
3308 | |||
3309 | return max_load_move - rem_load_move; | ||
3310 | } | ||
3311 | |||
3312 | /* | ||
3313 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
3314 | * this_rq, as part of a balancing operation within domain "sd". | ||
3315 | * Returns 1 if successful and 0 otherwise. | ||
3316 | * | ||
3317 | * Called with both runqueues locked. | ||
3318 | */ | ||
3319 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3320 | unsigned long max_load_move, | ||
3321 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3322 | int *all_pinned) | ||
3323 | { | ||
3324 | const struct sched_class *class = sched_class_highest; | ||
3325 | unsigned long total_load_moved = 0; | ||
3326 | int this_best_prio = this_rq->curr->prio; | ||
3327 | |||
3328 | do { | ||
3329 | total_load_moved += | ||
3330 | class->load_balance(this_rq, this_cpu, busiest, | ||
3331 | max_load_move - total_load_moved, | ||
3332 | sd, idle, all_pinned, &this_best_prio); | ||
3333 | class = class->next; | ||
3334 | |||
3335 | #ifdef CONFIG_PREEMPT | ||
3336 | /* | ||
3337 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3338 | * kernels will stop after the first task is pulled to minimize | ||
3339 | * the critical section. | ||
3340 | */ | ||
3341 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
3342 | break; | ||
3343 | #endif | ||
3344 | } while (class && max_load_move > total_load_moved); | ||
3345 | |||
3346 | return total_load_moved > 0; | ||
3347 | } | ||
3348 | |||
3349 | static int | ||
3350 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3351 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3352 | struct rq_iterator *iterator) | ||
3353 | { | ||
3354 | struct task_struct *p = iterator->start(iterator->arg); | ||
3355 | int pinned = 0; | ||
3356 | |||
3357 | while (p) { | ||
3358 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3359 | pull_task(busiest, p, this_rq, this_cpu); | ||
3360 | /* | ||
3361 | * Right now, this is only the second place pull_task() | ||
3362 | * is called, so we can safely collect pull_task() | ||
3363 | * stats here rather than inside pull_task(). | ||
3364 | */ | ||
3365 | schedstat_inc(sd, lb_gained[idle]); | ||
3366 | |||
3367 | return 1; | ||
3368 | } | ||
3369 | p = iterator->next(iterator->arg); | ||
3370 | } | ||
3371 | |||
3372 | return 0; | ||
3373 | } | ||
3374 | |||
3375 | /* | ||
3376 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
3377 | * part of active balancing operations within "domain". | ||
3378 | * Returns 1 if successful and 0 otherwise. | ||
3379 | * | ||
3380 | * Called with both runqueues locked. | ||
3381 | */ | ||
3382 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3383 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
3384 | { | ||
3385 | const struct sched_class *class; | ||
3386 | |||
3387 | for_each_class(class) { | ||
3388 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | ||
3389 | return 1; | ||
3390 | } | ||
3391 | |||
3392 | return 0; | ||
3393 | } | ||
3394 | /********** Helpers for find_busiest_group ************************/ | ||
3395 | /* | ||
3396 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
3397 | * during load balancing. | ||
3398 | */ | ||
3399 | struct sd_lb_stats { | ||
3400 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
3401 | struct sched_group *this; /* Local group in this sd */ | ||
3402 | unsigned long total_load; /* Total load of all groups in sd */ | ||
3403 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
3404 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
3405 | |||
3406 | /** Statistics of this group */ | ||
3407 | unsigned long this_load; | ||
3408 | unsigned long this_load_per_task; | ||
3409 | unsigned long this_nr_running; | ||
3410 | |||
3411 | /* Statistics of the busiest group */ | ||
3412 | unsigned long max_load; | ||
3413 | unsigned long busiest_load_per_task; | ||
3414 | unsigned long busiest_nr_running; | ||
3415 | |||
3416 | int group_imb; /* Is there imbalance in this sd */ | ||
3417 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3418 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
3419 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
3420 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
3421 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
3422 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3423 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3424 | #endif | ||
3425 | }; | ||
3426 | |||
3427 | /* | ||
3428 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3429 | */ | ||
3430 | struct sg_lb_stats { | ||
3431 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3432 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3433 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3434 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3435 | unsigned long group_capacity; | ||
3436 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3437 | }; | ||
3438 | |||
3439 | /** | ||
3440 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
3441 | * @group: The group whose first cpu is to be returned. | ||
3442 | */ | ||
3443 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3444 | { | ||
3445 | return cpumask_first(sched_group_cpus(group)); | ||
3446 | } | ||
3447 | |||
3448 | /** | ||
3449 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3450 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3451 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3452 | */ | ||
3453 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3454 | enum cpu_idle_type idle) | ||
3455 | { | ||
3456 | int load_idx; | ||
3457 | |||
3458 | switch (idle) { | ||
3459 | case CPU_NOT_IDLE: | ||
3460 | load_idx = sd->busy_idx; | ||
3461 | break; | ||
3462 | |||
3463 | case CPU_NEWLY_IDLE: | ||
3464 | load_idx = sd->newidle_idx; | ||
3465 | break; | ||
3466 | default: | ||
3467 | load_idx = sd->idle_idx; | ||
3468 | break; | ||
3469 | } | ||
3470 | |||
3471 | return load_idx; | ||
3472 | } | ||
3473 | |||
3474 | |||
3475 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3476 | /** | ||
3477 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3478 | * the given sched_domain, during load balancing. | ||
3479 | * | ||
3480 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3481 | * @sds: Variable containing the statistics for sd. | ||
3482 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3483 | */ | ||
3484 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3485 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3486 | { | ||
3487 | /* | ||
3488 | * Busy processors will not participate in power savings | ||
3489 | * balance. | ||
3490 | */ | ||
3491 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3492 | sds->power_savings_balance = 0; | ||
3493 | else { | ||
3494 | sds->power_savings_balance = 1; | ||
3495 | sds->min_nr_running = ULONG_MAX; | ||
3496 | sds->leader_nr_running = 0; | ||
3497 | } | ||
3498 | } | ||
3499 | |||
3500 | /** | ||
3501 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
3502 | * sched_domain while performing load balancing. | ||
3503 | * | ||
3504 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3505 | * @sds: Variable containing the statistics of the sched_domain | ||
3506 | * @local_group: Does group contain the CPU for which we're performing | ||
3507 | * load balancing ? | ||
3508 | * @sgs: Variable containing the statistics of the group. | ||
3509 | */ | ||
3510 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3511 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3512 | { | ||
3513 | |||
3514 | if (!sds->power_savings_balance) | ||
3515 | return; | ||
3516 | |||
3517 | /* | ||
3518 | * If the local group is idle or completely loaded | ||
3519 | * no need to do power savings balance at this domain | ||
3520 | */ | ||
3521 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3522 | !sds->this_nr_running)) | ||
3523 | sds->power_savings_balance = 0; | ||
3524 | |||
3525 | /* | ||
3526 | * If a group is already running at full capacity or idle, | ||
3527 | * don't include that group in power savings calculations | ||
3528 | */ | ||
3529 | if (!sds->power_savings_balance || | ||
3530 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3531 | !sgs->sum_nr_running) | ||
3532 | return; | ||
3533 | |||
3534 | /* | ||
3535 | * Calculate the group which has the least non-idle load. | ||
3536 | * This is the group from where we need to pick up the load | ||
3537 | * for saving power | ||
3538 | */ | ||
3539 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
3540 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3541 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3542 | sds->group_min = group; | ||
3543 | sds->min_nr_running = sgs->sum_nr_running; | ||
3544 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3545 | sgs->sum_nr_running; | ||
3546 | } | ||
3547 | |||
3548 | /* | ||
3549 | * Calculate the group which is almost near its | ||
3550 | * capacity but still has some space to pick up some load | ||
3551 | * from other group and save more power | ||
3552 | */ | ||
3553 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
3554 | return; | ||
3555 | |||
3556 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
3557 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
3558 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
3559 | sds->group_leader = group; | ||
3560 | sds->leader_nr_running = sgs->sum_nr_running; | ||
3561 | } | ||
3562 | } | ||
3563 | |||
3564 | /** | ||
3565 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
3566 | * @sds: Variable containing the statistics of the sched_domain | ||
3567 | * under consideration. | ||
3568 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3569 | * @imbalance: Variable to store the imbalance. | ||
3570 | * | ||
3571 | * Description: | ||
3572 | * Check if we have potential to perform some power-savings balance. | ||
3573 | * If yes, set the busiest group to be the least loaded group in the | ||
3574 | * sched_domain, so that it's CPUs can be put to idle. | ||
3575 | * | ||
3576 | * Returns 1 if there is potential to perform power-savings balance. | ||
3577 | * Else returns 0. | ||
3578 | */ | ||
3579 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3580 | int this_cpu, unsigned long *imbalance) | ||
3581 | { | ||
3582 | if (!sds->power_savings_balance) | ||
3583 | return 0; | ||
3584 | |||
3585 | if (sds->this != sds->group_leader || | ||
3586 | sds->group_leader == sds->group_min) | ||
3587 | return 0; | ||
3588 | |||
3589 | *imbalance = sds->min_load_per_task; | ||
3590 | sds->busiest = sds->group_min; | ||
3591 | |||
3592 | return 1; | ||
3593 | |||
3594 | } | ||
3595 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3596 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3597 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3598 | { | ||
3599 | return; | ||
3600 | } | ||
3601 | |||
3602 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3603 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3604 | { | ||
3605 | return; | ||
3606 | } | ||
3607 | |||
3608 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3609 | int this_cpu, unsigned long *imbalance) | ||
3610 | { | ||
3611 | return 0; | ||
3612 | } | ||
3613 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3614 | |||
3615 | |||
3616 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3617 | { | ||
3618 | return SCHED_LOAD_SCALE; | ||
3619 | } | ||
3620 | |||
3621 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3622 | { | ||
3623 | return default_scale_freq_power(sd, cpu); | ||
3624 | } | ||
3625 | |||
3626 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3627 | { | ||
3628 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3629 | unsigned long smt_gain = sd->smt_gain; | ||
3630 | |||
3631 | smt_gain /= weight; | ||
3632 | |||
3633 | return smt_gain; | ||
3634 | } | ||
3635 | |||
3636 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3637 | { | ||
3638 | return default_scale_smt_power(sd, cpu); | ||
3639 | } | ||
3640 | |||
3641 | unsigned long scale_rt_power(int cpu) | ||
3642 | { | ||
3643 | struct rq *rq = cpu_rq(cpu); | ||
3644 | u64 total, available; | ||
3645 | |||
3646 | sched_avg_update(rq); | ||
3647 | |||
3648 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
3649 | available = total - rq->rt_avg; | ||
3650 | |||
3651 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
3652 | total = SCHED_LOAD_SCALE; | ||
3653 | |||
3654 | total >>= SCHED_LOAD_SHIFT; | ||
3655 | |||
3656 | return div_u64(available, total); | ||
3657 | } | ||
3658 | |||
3659 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
3660 | { | ||
3661 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3662 | unsigned long power = SCHED_LOAD_SCALE; | ||
3663 | struct sched_group *sdg = sd->groups; | ||
3664 | |||
3665 | if (sched_feat(ARCH_POWER)) | ||
3666 | power *= arch_scale_freq_power(sd, cpu); | ||
3667 | else | ||
3668 | power *= default_scale_freq_power(sd, cpu); | ||
3669 | |||
3670 | power >>= SCHED_LOAD_SHIFT; | ||
3671 | |||
3672 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
3673 | if (sched_feat(ARCH_POWER)) | ||
3674 | power *= arch_scale_smt_power(sd, cpu); | ||
3675 | else | ||
3676 | power *= default_scale_smt_power(sd, cpu); | ||
3677 | |||
3678 | power >>= SCHED_LOAD_SHIFT; | ||
3679 | } | ||
3680 | |||
3681 | power *= scale_rt_power(cpu); | ||
3682 | power >>= SCHED_LOAD_SHIFT; | ||
3683 | |||
3684 | if (!power) | ||
3685 | power = 1; | ||
3686 | |||
3687 | sdg->cpu_power = power; | ||
3688 | } | ||
3689 | |||
3690 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
3691 | { | ||
3692 | struct sched_domain *child = sd->child; | ||
3693 | struct sched_group *group, *sdg = sd->groups; | ||
3694 | unsigned long power; | ||
3695 | |||
3696 | if (!child) { | ||
3697 | update_cpu_power(sd, cpu); | ||
3698 | return; | ||
3699 | } | ||
3700 | |||
3701 | power = 0; | ||
3702 | |||
3703 | group = child->groups; | ||
3704 | do { | ||
3705 | power += group->cpu_power; | ||
3706 | group = group->next; | ||
3707 | } while (group != child->groups); | ||
3708 | |||
3709 | sdg->cpu_power = power; | ||
3710 | } | ||
3711 | |||
3712 | /** | ||
3713 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3714 | * @sd: The sched_domain whose statistics are to be updated. | ||
3715 | * @group: sched_group whose statistics are to be updated. | ||
3716 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3717 | * @idle: Idle status of this_cpu | ||
3718 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3719 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3720 | * @local_group: Does group contain this_cpu. | ||
3721 | * @cpus: Set of cpus considered for load balancing. | ||
3722 | * @balance: Should we balance. | ||
3723 | * @sgs: variable to hold the statistics for this group. | ||
3724 | */ | ||
3725 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
3726 | struct sched_group *group, int this_cpu, | ||
3727 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
3728 | int local_group, const struct cpumask *cpus, | ||
3729 | int *balance, struct sg_lb_stats *sgs) | ||
3730 | { | ||
3731 | unsigned long load, max_cpu_load, min_cpu_load; | ||
3732 | int i; | ||
3733 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3734 | unsigned long sum_avg_load_per_task; | ||
3735 | unsigned long avg_load_per_task; | ||
3736 | |||
3737 | if (local_group) { | ||
3738 | balance_cpu = group_first_cpu(group); | ||
3739 | if (balance_cpu == this_cpu) | ||
3740 | update_group_power(sd, this_cpu); | ||
3741 | } | ||
3742 | |||
3743 | /* Tally up the load of all CPUs in the group */ | ||
3744 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3745 | max_cpu_load = 0; | ||
3746 | min_cpu_load = ~0UL; | ||
3747 | |||
3748 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3749 | struct rq *rq = cpu_rq(i); | ||
3750 | |||
3751 | if (*sd_idle && rq->nr_running) | ||
3752 | *sd_idle = 0; | ||
3753 | |||
3754 | /* Bias balancing toward cpus of our domain */ | ||
3755 | if (local_group) { | ||
3756 | if (idle_cpu(i) && !first_idle_cpu) { | ||
3757 | first_idle_cpu = 1; | ||
3758 | balance_cpu = i; | ||
3759 | } | ||
3760 | |||
3761 | load = target_load(i, load_idx); | ||
3762 | } else { | ||
3763 | load = source_load(i, load_idx); | ||
3764 | if (load > max_cpu_load) | ||
3765 | max_cpu_load = load; | ||
3766 | if (min_cpu_load > load) | ||
3767 | min_cpu_load = load; | ||
3768 | } | ||
3769 | |||
3770 | sgs->group_load += load; | ||
3771 | sgs->sum_nr_running += rq->nr_running; | ||
3772 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
3773 | |||
3774 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | ||
3775 | } | ||
3776 | |||
3777 | /* | ||
3778 | * First idle cpu or the first cpu(busiest) in this sched group | ||
3779 | * is eligible for doing load balancing at this and above | ||
3780 | * domains. In the newly idle case, we will allow all the cpu's | ||
3781 | * to do the newly idle load balance. | ||
3782 | */ | ||
3783 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
3784 | balance_cpu != this_cpu && balance) { | ||
3785 | *balance = 0; | ||
3786 | return; | ||
3787 | } | ||
3788 | |||
3789 | /* Adjust by relative CPU power of the group */ | ||
3790 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
3791 | |||
3792 | |||
3793 | /* | ||
3794 | * Consider the group unbalanced when the imbalance is larger | ||
3795 | * than the average weight of two tasks. | ||
3796 | * | ||
3797 | * APZ: with cgroup the avg task weight can vary wildly and | ||
3798 | * might not be a suitable number - should we keep a | ||
3799 | * normalized nr_running number somewhere that negates | ||
3800 | * the hierarchy? | ||
3801 | */ | ||
3802 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / | ||
3803 | group->cpu_power; | ||
3804 | |||
3805 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
3806 | sgs->group_imb = 1; | ||
3807 | |||
3808 | sgs->group_capacity = | ||
3809 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
3810 | } | ||
3811 | |||
3812 | /** | ||
3813 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
3814 | * @sd: sched_domain whose statistics are to be updated. | ||
3815 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3816 | * @idle: Idle status of this_cpu | ||
3817 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3818 | * @cpus: Set of cpus considered for load balancing. | ||
3819 | * @balance: Should we balance. | ||
3820 | * @sds: variable to hold the statistics for this sched_domain. | ||
3821 | */ | ||
3822 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3823 | enum cpu_idle_type idle, int *sd_idle, | ||
3824 | const struct cpumask *cpus, int *balance, | ||
3825 | struct sd_lb_stats *sds) | ||
3826 | { | ||
3827 | struct sched_domain *child = sd->child; | ||
3828 | struct sched_group *group = sd->groups; | ||
3829 | struct sg_lb_stats sgs; | ||
3830 | int load_idx, prefer_sibling = 0; | ||
3831 | |||
3832 | if (child && child->flags & SD_PREFER_SIBLING) | ||
3833 | prefer_sibling = 1; | ||
3834 | |||
3835 | init_sd_power_savings_stats(sd, sds, idle); | ||
3836 | load_idx = get_sd_load_idx(sd, idle); | ||
3837 | |||
3838 | do { | ||
3839 | int local_group; | ||
3840 | |||
3841 | local_group = cpumask_test_cpu(this_cpu, | ||
3842 | sched_group_cpus(group)); | ||
3843 | memset(&sgs, 0, sizeof(sgs)); | ||
3844 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
3845 | local_group, cpus, balance, &sgs); | ||
3846 | |||
3847 | if (local_group && balance && !(*balance)) | ||
3848 | return; | ||
3849 | |||
3850 | sds->total_load += sgs.group_load; | ||
3851 | sds->total_pwr += group->cpu_power; | ||
3852 | |||
3853 | /* | ||
3854 | * In case the child domain prefers tasks go to siblings | ||
3855 | * first, lower the group capacity to one so that we'll try | ||
3856 | * and move all the excess tasks away. | ||
3857 | */ | ||
3858 | if (prefer_sibling) | ||
3859 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
3860 | |||
3861 | if (local_group) { | ||
3862 | sds->this_load = sgs.avg_load; | ||
3863 | sds->this = group; | ||
3864 | sds->this_nr_running = sgs.sum_nr_running; | ||
3865 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
3866 | } else if (sgs.avg_load > sds->max_load && | ||
3867 | (sgs.sum_nr_running > sgs.group_capacity || | ||
3868 | sgs.group_imb)) { | ||
3869 | sds->max_load = sgs.avg_load; | ||
3870 | sds->busiest = group; | ||
3871 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
3872 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
3873 | sds->group_imb = sgs.group_imb; | ||
3874 | } | ||
3875 | |||
3876 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
3877 | group = group->next; | ||
3878 | } while (group != sd->groups); | ||
3879 | } | ||
3880 | |||
3881 | /** | ||
3882 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
3883 | * amongst the groups of a sched_domain, during | ||
3884 | * load balancing. | ||
3885 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
3886 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
3887 | * @imbalance: Variable to store the imbalance. | ||
3888 | */ | ||
3889 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
3890 | int this_cpu, unsigned long *imbalance) | ||
3891 | { | ||
3892 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
3893 | unsigned int imbn = 2; | ||
3894 | |||
3895 | if (sds->this_nr_running) { | ||
3896 | sds->this_load_per_task /= sds->this_nr_running; | ||
3897 | if (sds->busiest_load_per_task > | ||
3898 | sds->this_load_per_task) | ||
3899 | imbn = 1; | ||
3900 | } else | ||
3901 | sds->this_load_per_task = | ||
3902 | cpu_avg_load_per_task(this_cpu); | ||
3903 | |||
3904 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | ||
3905 | sds->busiest_load_per_task * imbn) { | ||
3906 | *imbalance = sds->busiest_load_per_task; | ||
3907 | return; | ||
3908 | } | ||
3909 | |||
3910 | /* | ||
3911 | * OK, we don't have enough imbalance to justify moving tasks, | ||
3912 | * however we may be able to increase total CPU power used by | ||
3913 | * moving them. | ||
3914 | */ | ||
3915 | |||
3916 | pwr_now += sds->busiest->cpu_power * | ||
3917 | min(sds->busiest_load_per_task, sds->max_load); | ||
3918 | pwr_now += sds->this->cpu_power * | ||
3919 | min(sds->this_load_per_task, sds->this_load); | ||
3920 | pwr_now /= SCHED_LOAD_SCALE; | ||
3921 | |||
3922 | /* Amount of load we'd subtract */ | ||
3923 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3924 | sds->busiest->cpu_power; | ||
3925 | if (sds->max_load > tmp) | ||
3926 | pwr_move += sds->busiest->cpu_power * | ||
3927 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3928 | |||
3929 | /* Amount of load we'd add */ | ||
3930 | if (sds->max_load * sds->busiest->cpu_power < | ||
3931 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3932 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
3933 | sds->this->cpu_power; | ||
3934 | else | ||
3935 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3936 | sds->this->cpu_power; | ||
3937 | pwr_move += sds->this->cpu_power * | ||
3938 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3939 | pwr_move /= SCHED_LOAD_SCALE; | ||
3940 | |||
3941 | /* Move if we gain throughput */ | ||
3942 | if (pwr_move > pwr_now) | ||
3943 | *imbalance = sds->busiest_load_per_task; | ||
3944 | } | ||
3945 | |||
3946 | /** | ||
3947 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3948 | * groups of a given sched_domain during load balance. | ||
3949 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3950 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
3951 | * @imbalance: The variable to store the imbalance. | ||
3952 | */ | ||
3953 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
3954 | unsigned long *imbalance) | ||
3955 | { | ||
3956 | unsigned long max_pull; | ||
3957 | /* | ||
3958 | * In the presence of smp nice balancing, certain scenarios can have | ||
3959 | * max load less than avg load(as we skip the groups at or below | ||
3960 | * its cpu_power, while calculating max_load..) | ||
3961 | */ | ||
3962 | if (sds->max_load < sds->avg_load) { | ||
3963 | *imbalance = 0; | ||
3964 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3965 | } | ||
3966 | |||
3967 | /* Don't want to pull so many tasks that a group would go idle */ | ||
3968 | max_pull = min(sds->max_load - sds->avg_load, | ||
3969 | sds->max_load - sds->busiest_load_per_task); | ||
3970 | |||
3971 | /* How much load to actually move to equalise the imbalance */ | ||
3972 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
3973 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
3974 | / SCHED_LOAD_SCALE; | ||
3975 | |||
3976 | /* | ||
3977 | * if *imbalance is less than the average load per runnable task | ||
3978 | * there is no gaurantee that any tasks will be moved so we'll have | ||
3979 | * a think about bumping its value to force at least one task to be | ||
3980 | * moved | ||
3981 | */ | ||
3982 | if (*imbalance < sds->busiest_load_per_task) | ||
3983 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3984 | |||
3985 | } | ||
3986 | /******* find_busiest_group() helpers end here *********************/ | ||
3987 | |||
3988 | /** | ||
3989 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
3990 | * if there is an imbalance. If there isn't an imbalance, and | ||
3991 | * the user has opted for power-savings, it returns a group whose | ||
3992 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
3993 | * such a group exists. | ||
3994 | * | ||
3995 | * Also calculates the amount of weighted load which should be moved | ||
3996 | * to restore balance. | ||
3997 | * | ||
3998 | * @sd: The sched_domain whose busiest group is to be returned. | ||
3999 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
4000 | * @imbalance: Variable which stores amount of weighted load which should | ||
4001 | * be moved to restore balance/put a group to idle. | ||
4002 | * @idle: The idle status of this_cpu. | ||
4003 | * @sd_idle: The idleness of sd | ||
4004 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
4005 | * @balance: Pointer to a variable indicating if this_cpu | ||
4006 | * is the appropriate cpu to perform load balancing at this_level. | ||
4007 | * | ||
4008 | * Returns: - the busiest group if imbalance exists. | ||
4009 | * - If no imbalance and user has opted for power-savings balance, | ||
4010 | * return the least loaded group whose CPUs can be | ||
4011 | * put to idle by rebalancing its tasks onto our group. | ||
4012 | */ | ||
4013 | static struct sched_group * | ||
4014 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
4015 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
4016 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
4017 | { | ||
4018 | struct sd_lb_stats sds; | ||
4019 | |||
4020 | memset(&sds, 0, sizeof(sds)); | ||
4021 | |||
4022 | /* | ||
4023 | * Compute the various statistics relavent for load balancing at | ||
4024 | * this level. | ||
4025 | */ | ||
4026 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
4027 | balance, &sds); | ||
4028 | |||
4029 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
4030 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
4031 | * at this level. | ||
4032 | * 2) There is no busy sibling group to pull from. | ||
4033 | * 3) This group is the busiest group. | ||
4034 | * 4) This group is more busy than the avg busieness at this | ||
4035 | * sched_domain. | ||
4036 | * 5) The imbalance is within the specified limit. | ||
4037 | * 6) Any rebalance would lead to ping-pong | ||
4038 | */ | ||
4039 | if (balance && !(*balance)) | ||
4040 | goto ret; | ||
4041 | |||
4042 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
4043 | goto out_balanced; | ||
4044 | |||
4045 | if (sds.this_load >= sds.max_load) | ||
4046 | goto out_balanced; | ||
4047 | |||
4048 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
4049 | |||
4050 | if (sds.this_load >= sds.avg_load) | ||
4051 | goto out_balanced; | ||
4052 | |||
4053 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
4054 | goto out_balanced; | ||
4055 | |||
4056 | sds.busiest_load_per_task /= sds.busiest_nr_running; | ||
4057 | if (sds.group_imb) | ||
4058 | sds.busiest_load_per_task = | ||
4059 | min(sds.busiest_load_per_task, sds.avg_load); | ||
4060 | |||
4061 | /* | ||
4062 | * We're trying to get all the cpus to the average_load, so we don't | ||
4063 | * want to push ourselves above the average load, nor do we wish to | ||
4064 | * reduce the max loaded cpu below the average load, as either of these | ||
4065 | * actions would just result in more rebalancing later, and ping-pong | ||
4066 | * tasks around. Thus we look for the minimum possible imbalance. | ||
4067 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
4068 | * be counted as no imbalance for these purposes -- we can't fix that | ||
4069 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
4070 | * appear as very large values with unsigned longs. | ||
4071 | */ | ||
4072 | if (sds.max_load <= sds.busiest_load_per_task) | ||
4073 | goto out_balanced; | ||
4074 | |||
4075 | /* Looks like there is an imbalance. Compute it */ | ||
4076 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
4077 | return sds.busiest; | ||
4078 | |||
4079 | out_balanced: | ||
4080 | /* | ||
4081 | * There is no obvious imbalance. But check if we can do some balancing | ||
4082 | * to save power. | ||
4083 | */ | ||
4084 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
4085 | return sds.busiest; | ||
4086 | ret: | ||
4087 | *imbalance = 0; | ||
4088 | return NULL; | ||
4089 | } | ||
4090 | |||
4091 | /* | ||
4092 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
4093 | */ | ||
4094 | static struct rq * | ||
4095 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
4096 | unsigned long imbalance, const struct cpumask *cpus) | ||
4097 | { | ||
4098 | struct rq *busiest = NULL, *rq; | ||
4099 | unsigned long max_load = 0; | ||
4100 | int i; | ||
4101 | |||
4102 | for_each_cpu(i, sched_group_cpus(group)) { | ||
4103 | unsigned long power = power_of(i); | ||
4104 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
4105 | unsigned long wl; | ||
4106 | |||
4107 | if (!cpumask_test_cpu(i, cpus)) | ||
4108 | continue; | ||
4109 | |||
4110 | rq = cpu_rq(i); | ||
4111 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; | ||
4112 | wl /= power; | ||
4113 | |||
4114 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
4115 | continue; | ||
4116 | |||
4117 | if (wl > max_load) { | ||
4118 | max_load = wl; | ||
4119 | busiest = rq; | ||
4120 | } | ||
4121 | } | ||
4122 | |||
4123 | return busiest; | ||
4124 | } | ||
4125 | |||
4126 | /* | ||
4127 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
4128 | * so long as it is large enough. | ||
4129 | */ | ||
4130 | #define MAX_PINNED_INTERVAL 512 | ||
4131 | |||
4132 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
4133 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
4134 | |||
4135 | /* | ||
4136 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4137 | * tasks if there is an imbalance. | ||
4138 | */ | ||
4139 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
4140 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
4141 | int *balance) | ||
4142 | { | ||
4143 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
4144 | struct sched_group *group; | ||
4145 | unsigned long imbalance; | ||
4146 | struct rq *busiest; | ||
4147 | unsigned long flags; | ||
4148 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4149 | |||
4150 | cpumask_copy(cpus, cpu_active_mask); | ||
4151 | |||
4152 | /* | ||
4153 | * When power savings policy is enabled for the parent domain, idle | ||
4154 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4155 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
4156 | * portraying it as CPU_NOT_IDLE. | ||
4157 | */ | ||
4158 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
4159 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4160 | sd_idle = 1; | ||
4161 | |||
4162 | schedstat_inc(sd, lb_count[idle]); | ||
4163 | |||
4164 | redo: | ||
4165 | update_shares(sd); | ||
4166 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
4167 | cpus, balance); | ||
4168 | |||
4169 | if (*balance == 0) | ||
4170 | goto out_balanced; | ||
4171 | |||
4172 | if (!group) { | ||
4173 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
4174 | goto out_balanced; | ||
4175 | } | ||
4176 | |||
4177 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
4178 | if (!busiest) { | ||
4179 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
4180 | goto out_balanced; | ||
4181 | } | ||
4182 | |||
4183 | BUG_ON(busiest == this_rq); | ||
4184 | |||
4185 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
4186 | |||
4187 | ld_moved = 0; | ||
4188 | if (busiest->nr_running > 1) { | ||
4189 | /* | ||
4190 | * Attempt to move tasks. If find_busiest_group has found | ||
4191 | * an imbalance but busiest->nr_running <= 1, the group is | ||
4192 | * still unbalanced. ld_moved simply stays zero, so it is | ||
4193 | * correctly treated as an imbalance. | ||
4194 | */ | ||
4195 | local_irq_save(flags); | ||
4196 | double_rq_lock(this_rq, busiest); | ||
4197 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4198 | imbalance, sd, idle, &all_pinned); | ||
4199 | double_rq_unlock(this_rq, busiest); | ||
4200 | local_irq_restore(flags); | ||
4201 | |||
4202 | /* | ||
4203 | * some other cpu did the load balance for us. | ||
4204 | */ | ||
4205 | if (ld_moved && this_cpu != smp_processor_id()) | ||
4206 | resched_cpu(this_cpu); | ||
4207 | |||
4208 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
4209 | if (unlikely(all_pinned)) { | ||
4210 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4211 | if (!cpumask_empty(cpus)) | ||
4212 | goto redo; | ||
4213 | goto out_balanced; | ||
4214 | } | ||
4215 | } | ||
4216 | |||
4217 | if (!ld_moved) { | ||
4218 | schedstat_inc(sd, lb_failed[idle]); | ||
4219 | sd->nr_balance_failed++; | ||
4220 | |||
4221 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
4222 | |||
4223 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
4224 | |||
4225 | /* don't kick the migration_thread, if the curr | ||
4226 | * task on busiest cpu can't be moved to this_cpu | ||
4227 | */ | ||
4228 | if (!cpumask_test_cpu(this_cpu, | ||
4229 | &busiest->curr->cpus_allowed)) { | ||
4230 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
4231 | flags); | ||
4232 | all_pinned = 1; | ||
4233 | goto out_one_pinned; | ||
4234 | } | ||
4235 | |||
4236 | if (!busiest->active_balance) { | ||
4237 | busiest->active_balance = 1; | ||
4238 | busiest->push_cpu = this_cpu; | ||
4239 | active_balance = 1; | ||
4240 | } | ||
4241 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
4242 | if (active_balance) | ||
4243 | wake_up_process(busiest->migration_thread); | ||
4244 | |||
4245 | /* | ||
4246 | * We've kicked active balancing, reset the failure | ||
4247 | * counter. | ||
4248 | */ | ||
4249 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
4250 | } | ||
4251 | } else | ||
4252 | sd->nr_balance_failed = 0; | ||
4253 | |||
4254 | if (likely(!active_balance)) { | ||
4255 | /* We were unbalanced, so reset the balancing interval */ | ||
4256 | sd->balance_interval = sd->min_interval; | ||
4257 | } else { | ||
4258 | /* | ||
4259 | * If we've begun active balancing, start to back off. This | ||
4260 | * case may not be covered by the all_pinned logic if there | ||
4261 | * is only 1 task on the busy runqueue (because we don't call | ||
4262 | * move_tasks). | ||
4263 | */ | ||
4264 | if (sd->balance_interval < sd->max_interval) | ||
4265 | sd->balance_interval *= 2; | ||
4266 | } | ||
4267 | |||
4268 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4269 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4270 | ld_moved = -1; | ||
4271 | |||
4272 | goto out; | ||
4273 | |||
4274 | out_balanced: | ||
4275 | schedstat_inc(sd, lb_balanced[idle]); | ||
4276 | |||
4277 | sd->nr_balance_failed = 0; | ||
4278 | |||
4279 | out_one_pinned: | ||
4280 | /* tune up the balancing interval */ | ||
4281 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
4282 | (sd->balance_interval < sd->max_interval)) | ||
4283 | sd->balance_interval *= 2; | ||
4284 | |||
4285 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4286 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4287 | ld_moved = -1; | ||
4288 | else | ||
4289 | ld_moved = 0; | ||
4290 | out: | ||
4291 | if (ld_moved) | ||
4292 | update_shares(sd); | ||
4293 | return ld_moved; | ||
4294 | } | ||
4295 | |||
4296 | /* | ||
4297 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4298 | * tasks if there is an imbalance. | ||
4299 | * | ||
4300 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | ||
4301 | * this_rq is locked. | ||
4302 | */ | ||
4303 | static int | ||
4304 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | ||
4305 | { | ||
4306 | struct sched_group *group; | ||
4307 | struct rq *busiest = NULL; | ||
4308 | unsigned long imbalance; | ||
4309 | int ld_moved = 0; | ||
4310 | int sd_idle = 0; | ||
4311 | int all_pinned = 0; | ||
4312 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4313 | |||
4314 | cpumask_copy(cpus, cpu_active_mask); | ||
4315 | |||
4316 | /* | ||
4317 | * When power savings policy is enabled for the parent domain, idle | ||
4318 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4319 | * let the state of idle sibling percolate up as IDLE, instead of | ||
4320 | * portraying it as CPU_NOT_IDLE. | ||
4321 | */ | ||
4322 | if (sd->flags & SD_SHARE_CPUPOWER && | ||
4323 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4324 | sd_idle = 1; | ||
4325 | |||
4326 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | ||
4327 | redo: | ||
4328 | update_shares_locked(this_rq, sd); | ||
4329 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | ||
4330 | &sd_idle, cpus, NULL); | ||
4331 | if (!group) { | ||
4332 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | ||
4333 | goto out_balanced; | ||
4334 | } | ||
4335 | |||
4336 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | ||
4337 | if (!busiest) { | ||
4338 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | ||
4339 | goto out_balanced; | ||
4340 | } | ||
4341 | |||
4342 | BUG_ON(busiest == this_rq); | ||
4343 | |||
4344 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | ||
4345 | |||
4346 | ld_moved = 0; | ||
4347 | if (busiest->nr_running > 1) { | ||
4348 | /* Attempt to move tasks */ | ||
4349 | double_lock_balance(this_rq, busiest); | ||
4350 | /* this_rq->clock is already updated */ | ||
4351 | update_rq_clock(busiest); | ||
4352 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4353 | imbalance, sd, CPU_NEWLY_IDLE, | ||
4354 | &all_pinned); | ||
4355 | double_unlock_balance(this_rq, busiest); | ||
4356 | |||
4357 | if (unlikely(all_pinned)) { | ||
4358 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4359 | if (!cpumask_empty(cpus)) | ||
4360 | goto redo; | ||
4361 | } | ||
4362 | } | ||
4363 | |||
4364 | if (!ld_moved) { | ||
4365 | int active_balance = 0; | ||
4366 | |||
4367 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | ||
4368 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4369 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4370 | return -1; | ||
4371 | |||
4372 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
4373 | return -1; | ||
4374 | |||
4375 | if (sd->nr_balance_failed++ < 2) | ||
4376 | return -1; | ||
4377 | |||
4378 | /* | ||
4379 | * The only task running in a non-idle cpu can be moved to this | ||
4380 | * cpu in an attempt to completely freeup the other CPU | ||
4381 | * package. The same method used to move task in load_balance() | ||
4382 | * have been extended for load_balance_newidle() to speedup | ||
4383 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | ||
4384 | * | ||
4385 | * The package power saving logic comes from | ||
4386 | * find_busiest_group(). If there are no imbalance, then | ||
4387 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
4388 | * f_b_g() will select a group from which a running task may be | ||
4389 | * pulled to this cpu in order to make the other package idle. | ||
4390 | * If there is no opportunity to make a package idle and if | ||
4391 | * there are no imbalance, then f_b_g() will return NULL and no | ||
4392 | * action will be taken in load_balance_newidle(). | ||
4393 | * | ||
4394 | * Under normal task pull operation due to imbalance, there | ||
4395 | * will be more than one task in the source run queue and | ||
4396 | * move_tasks() will succeed. ld_moved will be true and this | ||
4397 | * active balance code will not be triggered. | ||
4398 | */ | ||
4399 | |||
4400 | /* Lock busiest in correct order while this_rq is held */ | ||
4401 | double_lock_balance(this_rq, busiest); | ||
4402 | |||
4403 | /* | ||
4404 | * don't kick the migration_thread, if the curr | ||
4405 | * task on busiest cpu can't be moved to this_cpu | ||
4406 | */ | ||
4407 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { | ||
4408 | double_unlock_balance(this_rq, busiest); | ||
4409 | all_pinned = 1; | ||
4410 | return ld_moved; | ||
4411 | } | ||
4412 | |||
4413 | if (!busiest->active_balance) { | ||
4414 | busiest->active_balance = 1; | ||
4415 | busiest->push_cpu = this_cpu; | ||
4416 | active_balance = 1; | ||
4417 | } | ||
4418 | |||
4419 | double_unlock_balance(this_rq, busiest); | ||
4420 | /* | ||
4421 | * Should not call ttwu while holding a rq->lock | ||
4422 | */ | ||
4423 | raw_spin_unlock(&this_rq->lock); | ||
4424 | if (active_balance) | ||
4425 | wake_up_process(busiest->migration_thread); | ||
4426 | raw_spin_lock(&this_rq->lock); | ||
4427 | |||
4428 | } else | ||
4429 | sd->nr_balance_failed = 0; | ||
4430 | |||
4431 | update_shares_locked(this_rq, sd); | ||
4432 | return ld_moved; | ||
4433 | |||
4434 | out_balanced: | ||
4435 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | ||
4436 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4437 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4438 | return -1; | ||
4439 | sd->nr_balance_failed = 0; | ||
4440 | |||
4441 | return 0; | ||
4442 | } | ||
4443 | |||
4444 | /* | ||
4445 | * idle_balance is called by schedule() if this_cpu is about to become | ||
4446 | * idle. Attempts to pull tasks from other CPUs. | ||
4447 | */ | ||
4448 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
4449 | { | ||
4450 | struct sched_domain *sd; | ||
4451 | int pulled_task = 0; | ||
4452 | unsigned long next_balance = jiffies + HZ; | ||
4453 | |||
4454 | this_rq->idle_stamp = this_rq->clock; | ||
4455 | |||
4456 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
4457 | return; | ||
4458 | |||
4459 | for_each_domain(this_cpu, sd) { | ||
4460 | unsigned long interval; | ||
4461 | |||
4462 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4463 | continue; | ||
4464 | |||
4465 | if (sd->flags & SD_BALANCE_NEWIDLE) | ||
4466 | /* If we've pulled tasks over stop searching: */ | ||
4467 | pulled_task = load_balance_newidle(this_cpu, this_rq, | ||
4468 | sd); | ||
4469 | |||
4470 | interval = msecs_to_jiffies(sd->balance_interval); | ||
4471 | if (time_after(next_balance, sd->last_balance + interval)) | ||
4472 | next_balance = sd->last_balance + interval; | ||
4473 | if (pulled_task) { | ||
4474 | this_rq->idle_stamp = 0; | ||
4475 | break; | ||
4476 | } | ||
4477 | } | ||
4478 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
4479 | /* | ||
4480 | * We are going idle. next_balance may be set based on | ||
4481 | * a busy processor. So reset next_balance. | ||
4482 | */ | ||
4483 | this_rq->next_balance = next_balance; | ||
4484 | } | ||
4485 | } | ||
4486 | |||
4487 | /* | ||
4488 | * active_load_balance is run by migration threads. It pushes running tasks | ||
4489 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
4490 | * running on each physical CPU where possible, and avoids physical / | ||
4491 | * logical imbalances. | ||
4492 | * | ||
4493 | * Called with busiest_rq locked. | ||
4494 | */ | ||
4495 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
4496 | { | ||
4497 | int target_cpu = busiest_rq->push_cpu; | ||
4498 | struct sched_domain *sd; | ||
4499 | struct rq *target_rq; | ||
4500 | |||
4501 | /* Is there any task to move? */ | ||
4502 | if (busiest_rq->nr_running <= 1) | ||
4503 | return; | ||
4504 | |||
4505 | target_rq = cpu_rq(target_cpu); | ||
4506 | |||
4507 | /* | ||
4508 | * This condition is "impossible", if it occurs | ||
4509 | * we need to fix it. Originally reported by | ||
4510 | * Bjorn Helgaas on a 128-cpu setup. | ||
4511 | */ | ||
4512 | BUG_ON(busiest_rq == target_rq); | ||
4513 | |||
4514 | /* move a task from busiest_rq to target_rq */ | ||
4515 | double_lock_balance(busiest_rq, target_rq); | ||
4516 | update_rq_clock(busiest_rq); | ||
4517 | update_rq_clock(target_rq); | ||
4518 | |||
4519 | /* Search for an sd spanning us and the target CPU. */ | ||
4520 | for_each_domain(target_cpu, sd) { | ||
4521 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
4522 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
4523 | break; | ||
4524 | } | ||
4525 | |||
4526 | if (likely(sd)) { | ||
4527 | schedstat_inc(sd, alb_count); | ||
4528 | |||
4529 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
4530 | sd, CPU_IDLE)) | ||
4531 | schedstat_inc(sd, alb_pushed); | ||
4532 | else | ||
4533 | schedstat_inc(sd, alb_failed); | ||
4534 | } | ||
4535 | double_unlock_balance(busiest_rq, target_rq); | ||
4536 | } | ||
4537 | |||
4538 | #ifdef CONFIG_NO_HZ | ||
4539 | static struct { | ||
4540 | atomic_t load_balancer; | ||
4541 | cpumask_var_t cpu_mask; | ||
4542 | cpumask_var_t ilb_grp_nohz_mask; | ||
4543 | } nohz ____cacheline_aligned = { | ||
4544 | .load_balancer = ATOMIC_INIT(-1), | ||
4545 | }; | ||
4546 | |||
4547 | int get_nohz_load_balancer(void) | ||
4548 | { | ||
4549 | return atomic_read(&nohz.load_balancer); | ||
4550 | } | ||
4551 | |||
4552 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
4553 | /** | ||
4554 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
4555 | * @cpu: The cpu whose lowest level of sched domain is to | ||
4556 | * be returned. | ||
4557 | * @flag: The flag to check for the lowest sched_domain | ||
4558 | * for the given cpu. | ||
4559 | * | ||
4560 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
4561 | */ | ||
4562 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
4563 | { | ||
4564 | struct sched_domain *sd; | ||
4565 | |||
4566 | for_each_domain(cpu, sd) | ||
4567 | if (sd && (sd->flags & flag)) | ||
4568 | break; | ||
4569 | |||
4570 | return sd; | ||
4571 | } | ||
4572 | |||
4573 | /** | ||
4574 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
4575 | * @cpu: The cpu whose domains we're iterating over. | ||
4576 | * @sd: variable holding the value of the power_savings_sd | ||
4577 | * for cpu. | ||
4578 | * @flag: The flag to filter the sched_domains to be iterated. | ||
4579 | * | ||
4580 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
4581 | * set, starting from the lowest sched_domain to the highest. | ||
4582 | */ | ||
4583 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
4584 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
4585 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
4586 | |||
4587 | /** | ||
4588 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
4589 | * @ilb_group: group to be checked for semi-idleness | ||
4590 | * | ||
4591 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
4592 | * | ||
4593 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
4594 | * and atleast one non-idle CPU. This helper function checks if the given | ||
4595 | * sched_group is semi-idle or not. | ||
4596 | */ | ||
4597 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
4598 | { | ||
4599 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
4600 | sched_group_cpus(ilb_group)); | ||
4601 | |||
4602 | /* | ||
4603 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
4604 | * and atleast one idle cpu. | ||
4605 | */ | ||
4606 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
4607 | return 0; | ||
4608 | |||
4609 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
4610 | return 0; | ||
4611 | |||
4612 | return 1; | ||
4613 | } | ||
4614 | /** | ||
4615 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
4616 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
4617 | * | ||
4618 | * Returns: Returns the id of the idle load balancer if it exists, | ||
4619 | * Else, returns >= nr_cpu_ids. | ||
4620 | * | ||
4621 | * This algorithm picks the idle load balancer such that it belongs to a | ||
4622 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
4623 | * completely idle packages/cores just for the purpose of idle load balancing | ||
4624 | * when there are other idle cpu's which are better suited for that job. | ||
4625 | */ | ||
4626 | static int find_new_ilb(int cpu) | ||
4627 | { | ||
4628 | struct sched_domain *sd; | ||
4629 | struct sched_group *ilb_group; | ||
4630 | |||
4631 | /* | ||
4632 | * Have idle load balancer selection from semi-idle packages only | ||
4633 | * when power-aware load balancing is enabled | ||
4634 | */ | ||
4635 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
4636 | goto out_done; | ||
4637 | |||
4638 | /* | ||
4639 | * Optimize for the case when we have no idle CPUs or only one | ||
4640 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
4641 | */ | ||
4642 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
4643 | goto out_done; | ||
4644 | |||
4645 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
4646 | ilb_group = sd->groups; | ||
4647 | |||
4648 | do { | ||
4649 | if (is_semi_idle_group(ilb_group)) | ||
4650 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
4651 | |||
4652 | ilb_group = ilb_group->next; | ||
4653 | |||
4654 | } while (ilb_group != sd->groups); | ||
4655 | } | ||
4656 | |||
4657 | out_done: | ||
4658 | return cpumask_first(nohz.cpu_mask); | ||
4659 | } | ||
4660 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
4661 | static inline int find_new_ilb(int call_cpu) | ||
4662 | { | ||
4663 | return cpumask_first(nohz.cpu_mask); | ||
4664 | } | ||
4665 | #endif | ||
4666 | |||
4667 | /* | ||
4668 | * This routine will try to nominate the ilb (idle load balancing) | ||
4669 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
4670 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
4671 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
4672 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
4673 | * arrives... | ||
4674 | * | ||
4675 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
4676 | * for idle load balancing. ilb owner will still be part of | ||
4677 | * nohz.cpu_mask.. | ||
4678 | * | ||
4679 | * While stopping the tick, this cpu will become the ilb owner if there | ||
4680 | * is no other owner. And will be the owner till that cpu becomes busy | ||
4681 | * or if all cpus in the system stop their ticks at which point | ||
4682 | * there is no need for ilb owner. | ||
4683 | * | ||
4684 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
4685 | * next busy scheduler_tick() | ||
4686 | */ | ||
4687 | int select_nohz_load_balancer(int stop_tick) | ||
4688 | { | ||
4689 | int cpu = smp_processor_id(); | ||
4690 | |||
4691 | if (stop_tick) { | ||
4692 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
4693 | |||
4694 | if (!cpu_active(cpu)) { | ||
4695 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
4696 | return 0; | ||
4697 | |||
4698 | /* | ||
4699 | * If we are going offline and still the leader, | ||
4700 | * give up! | ||
4701 | */ | ||
4702 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4703 | BUG(); | ||
4704 | |||
4705 | return 0; | ||
4706 | } | ||
4707 | |||
4708 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
4709 | |||
4710 | /* time for ilb owner also to sleep */ | ||
4711 | if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { | ||
4712 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4713 | atomic_set(&nohz.load_balancer, -1); | ||
4714 | return 0; | ||
4715 | } | ||
4716 | |||
4717 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4718 | /* make me the ilb owner */ | ||
4719 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
4720 | return 1; | ||
4721 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4722 | int new_ilb; | ||
4723 | |||
4724 | if (!(sched_smt_power_savings || | ||
4725 | sched_mc_power_savings)) | ||
4726 | return 1; | ||
4727 | /* | ||
4728 | * Check to see if there is a more power-efficient | ||
4729 | * ilb. | ||
4730 | */ | ||
4731 | new_ilb = find_new_ilb(cpu); | ||
4732 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
4733 | atomic_set(&nohz.load_balancer, -1); | ||
4734 | resched_cpu(new_ilb); | ||
4735 | return 0; | ||
4736 | } | ||
4737 | return 1; | ||
4738 | } | ||
4739 | } else { | ||
4740 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4741 | return 0; | ||
4742 | |||
4743 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4744 | |||
4745 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4746 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4747 | BUG(); | ||
4748 | } | ||
4749 | return 0; | ||
4750 | } | ||
4751 | #endif | ||
4752 | |||
4753 | static DEFINE_SPINLOCK(balancing); | ||
4754 | |||
4755 | /* | ||
4756 | * It checks each scheduling domain to see if it is due to be balanced, | ||
4757 | * and initiates a balancing operation if so. | ||
4758 | * | ||
4759 | * Balancing parameters are set up in arch_init_sched_domains. | ||
4760 | */ | ||
4761 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
4762 | { | ||
4763 | int balance = 1; | ||
4764 | struct rq *rq = cpu_rq(cpu); | ||
4765 | unsigned long interval; | ||
4766 | struct sched_domain *sd; | ||
4767 | /* Earliest time when we have to do rebalance again */ | ||
4768 | unsigned long next_balance = jiffies + 60*HZ; | ||
4769 | int update_next_balance = 0; | ||
4770 | int need_serialize; | ||
4771 | |||
4772 | for_each_domain(cpu, sd) { | ||
4773 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4774 | continue; | ||
4775 | |||
4776 | interval = sd->balance_interval; | ||
4777 | if (idle != CPU_IDLE) | ||
4778 | interval *= sd->busy_factor; | ||
4779 | |||
4780 | /* scale ms to jiffies */ | ||
4781 | interval = msecs_to_jiffies(interval); | ||
4782 | if (unlikely(!interval)) | ||
4783 | interval = 1; | ||
4784 | if (interval > HZ*NR_CPUS/10) | ||
4785 | interval = HZ*NR_CPUS/10; | ||
4786 | |||
4787 | need_serialize = sd->flags & SD_SERIALIZE; | ||
4788 | |||
4789 | if (need_serialize) { | ||
4790 | if (!spin_trylock(&balancing)) | ||
4791 | goto out; | ||
4792 | } | ||
4793 | |||
4794 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
4795 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
4796 | /* | ||
4797 | * We've pulled tasks over so either we're no | ||
4798 | * longer idle, or one of our SMT siblings is | ||
4799 | * not idle. | ||
4800 | */ | ||
4801 | idle = CPU_NOT_IDLE; | ||
4802 | } | ||
4803 | sd->last_balance = jiffies; | ||
4804 | } | ||
4805 | if (need_serialize) | ||
4806 | spin_unlock(&balancing); | ||
4807 | out: | ||
4808 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
4809 | next_balance = sd->last_balance + interval; | ||
4810 | update_next_balance = 1; | ||
4811 | } | ||
4812 | |||
4813 | /* | ||
4814 | * Stop the load balance at this level. There is another | ||
4815 | * CPU in our sched group which is doing load balancing more | ||
4816 | * actively. | ||
4817 | */ | ||
4818 | if (!balance) | ||
4819 | break; | ||
4820 | } | ||
4821 | |||
4822 | /* | ||
4823 | * next_balance will be updated only when there is a need. | ||
4824 | * When the cpu is attached to null domain for ex, it will not be | ||
4825 | * updated. | ||
4826 | */ | ||
4827 | if (likely(update_next_balance)) | ||
4828 | rq->next_balance = next_balance; | ||
4829 | } | ||
4830 | |||
4831 | /* | ||
4832 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
4833 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
4834 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
4835 | */ | ||
4836 | static void run_rebalance_domains(struct softirq_action *h) | ||
4837 | { | ||
4838 | int this_cpu = smp_processor_id(); | ||
4839 | struct rq *this_rq = cpu_rq(this_cpu); | ||
4840 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
4841 | CPU_IDLE : CPU_NOT_IDLE; | ||
4842 | |||
4843 | rebalance_domains(this_cpu, idle); | ||
4844 | |||
4845 | #ifdef CONFIG_NO_HZ | ||
4846 | /* | ||
4847 | * If this cpu is the owner for idle load balancing, then do the | ||
4848 | * balancing on behalf of the other idle cpus whose ticks are | ||
4849 | * stopped. | ||
4850 | */ | ||
4851 | if (this_rq->idle_at_tick && | ||
4852 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
4853 | struct rq *rq; | ||
4854 | int balance_cpu; | ||
4855 | |||
4856 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
4857 | if (balance_cpu == this_cpu) | ||
4858 | continue; | ||
4859 | |||
4860 | /* | ||
4861 | * If this cpu gets work to do, stop the load balancing | ||
4862 | * work being done for other cpus. Next load | ||
4863 | * balancing owner will pick it up. | ||
4864 | */ | ||
4865 | if (need_resched()) | ||
4866 | break; | ||
4867 | |||
4868 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
4869 | |||
4870 | rq = cpu_rq(balance_cpu); | ||
4871 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
4872 | this_rq->next_balance = rq->next_balance; | ||
4873 | } | ||
4874 | } | ||
4875 | #endif | ||
4876 | } | ||
4877 | |||
4878 | static inline int on_null_domain(int cpu) | ||
4879 | { | ||
4880 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4881 | } | ||
4882 | |||
4883 | /* | ||
4884 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
4885 | * | ||
4886 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
4887 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
4888 | * if the whole system is idle. | ||
4889 | */ | ||
4890 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
4891 | { | ||
4892 | #ifdef CONFIG_NO_HZ | ||
4893 | /* | ||
4894 | * If we were in the nohz mode recently and busy at the current | ||
4895 | * scheduler tick, then check if we need to nominate new idle | ||
4896 | * load balancer. | ||
4897 | */ | ||
4898 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
4899 | rq->in_nohz_recently = 0; | ||
4900 | |||
4901 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4902 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4903 | atomic_set(&nohz.load_balancer, -1); | ||
4904 | } | ||
4905 | |||
4906 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4907 | int ilb = find_new_ilb(cpu); | ||
4908 | |||
4909 | if (ilb < nr_cpu_ids) | ||
4910 | resched_cpu(ilb); | ||
4911 | } | ||
4912 | } | ||
4913 | |||
4914 | /* | ||
4915 | * If this cpu is idle and doing idle load balancing for all the | ||
4916 | * cpus with ticks stopped, is it time for that to stop? | ||
4917 | */ | ||
4918 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
4919 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
4920 | resched_cpu(cpu); | ||
4921 | return; | ||
4922 | } | ||
4923 | |||
4924 | /* | ||
4925 | * If this cpu is idle and the idle load balancing is done by | ||
4926 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
4927 | */ | ||
4928 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
4929 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4930 | return; | ||
4931 | #endif | ||
4932 | /* Don't need to rebalance while attached to NULL domain */ | ||
4933 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4934 | likely(!on_null_domain(cpu))) | ||
4935 | raise_softirq(SCHED_SOFTIRQ); | ||
4936 | } | ||
4937 | |||
4938 | #else /* CONFIG_SMP */ | ||
4939 | |||
4940 | /* | ||
4941 | * on UP we do not need to balance between CPUs: | ||
4942 | */ | ||
4943 | static inline void idle_balance(int cpu, struct rq *rq) | ||
4944 | { | ||
4945 | } | ||
4946 | |||
4947 | #endif | 3186 | #endif |
4948 | 3187 | ||
4949 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 3188 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 71778601c103..5116b81d7727 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -1952,6 +1952,1762 @@ move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
1952 | return 0; | 1952 | return 0; |
1953 | } | 1953 | } |
1954 | 1954 | ||
1955 | /* | ||
1956 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
1957 | * Both runqueues must be locked. | ||
1958 | */ | ||
1959 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
1960 | struct rq *this_rq, int this_cpu) | ||
1961 | { | ||
1962 | deactivate_task(src_rq, p, 0); | ||
1963 | set_task_cpu(p, this_cpu); | ||
1964 | activate_task(this_rq, p, 0); | ||
1965 | check_preempt_curr(this_rq, p, 0); | ||
1966 | } | ||
1967 | |||
1968 | /* | ||
1969 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
1970 | */ | ||
1971 | static | ||
1972 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
1973 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
1974 | int *all_pinned) | ||
1975 | { | ||
1976 | int tsk_cache_hot = 0; | ||
1977 | /* | ||
1978 | * We do not migrate tasks that are: | ||
1979 | * 1) running (obviously), or | ||
1980 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
1981 | * 3) are cache-hot on their current CPU. | ||
1982 | */ | ||
1983 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
1984 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
1985 | return 0; | ||
1986 | } | ||
1987 | *all_pinned = 0; | ||
1988 | |||
1989 | if (task_running(rq, p)) { | ||
1990 | schedstat_inc(p, se.nr_failed_migrations_running); | ||
1991 | return 0; | ||
1992 | } | ||
1993 | |||
1994 | /* | ||
1995 | * Aggressive migration if: | ||
1996 | * 1) task is cache cold, or | ||
1997 | * 2) too many balance attempts have failed. | ||
1998 | */ | ||
1999 | |||
2000 | tsk_cache_hot = task_hot(p, rq->clock, sd); | ||
2001 | if (!tsk_cache_hot || | ||
2002 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
2003 | #ifdef CONFIG_SCHEDSTATS | ||
2004 | if (tsk_cache_hot) { | ||
2005 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
2006 | schedstat_inc(p, se.nr_forced_migrations); | ||
2007 | } | ||
2008 | #endif | ||
2009 | return 1; | ||
2010 | } | ||
2011 | |||
2012 | if (tsk_cache_hot) { | ||
2013 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
2014 | return 0; | ||
2015 | } | ||
2016 | return 1; | ||
2017 | } | ||
2018 | |||
2019 | static unsigned long | ||
2020 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2021 | unsigned long max_load_move, struct sched_domain *sd, | ||
2022 | enum cpu_idle_type idle, int *all_pinned, | ||
2023 | int *this_best_prio, struct rq_iterator *iterator) | ||
2024 | { | ||
2025 | int loops = 0, pulled = 0, pinned = 0; | ||
2026 | struct task_struct *p; | ||
2027 | long rem_load_move = max_load_move; | ||
2028 | |||
2029 | if (max_load_move == 0) | ||
2030 | goto out; | ||
2031 | |||
2032 | pinned = 1; | ||
2033 | |||
2034 | /* | ||
2035 | * Start the load-balancing iterator: | ||
2036 | */ | ||
2037 | p = iterator->start(iterator->arg); | ||
2038 | next: | ||
2039 | if (!p || loops++ > sysctl_sched_nr_migrate) | ||
2040 | goto out; | ||
2041 | |||
2042 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
2043 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
2044 | p = iterator->next(iterator->arg); | ||
2045 | goto next; | ||
2046 | } | ||
2047 | |||
2048 | pull_task(busiest, p, this_rq, this_cpu); | ||
2049 | pulled++; | ||
2050 | rem_load_move -= p->se.load.weight; | ||
2051 | |||
2052 | #ifdef CONFIG_PREEMPT | ||
2053 | /* | ||
2054 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
2055 | * will stop after the first task is pulled to minimize the critical | ||
2056 | * section. | ||
2057 | */ | ||
2058 | if (idle == CPU_NEWLY_IDLE) | ||
2059 | goto out; | ||
2060 | #endif | ||
2061 | |||
2062 | /* | ||
2063 | * We only want to steal up to the prescribed amount of weighted load. | ||
2064 | */ | ||
2065 | if (rem_load_move > 0) { | ||
2066 | if (p->prio < *this_best_prio) | ||
2067 | *this_best_prio = p->prio; | ||
2068 | p = iterator->next(iterator->arg); | ||
2069 | goto next; | ||
2070 | } | ||
2071 | out: | ||
2072 | /* | ||
2073 | * Right now, this is one of only two places pull_task() is called, | ||
2074 | * so we can safely collect pull_task() stats here rather than | ||
2075 | * inside pull_task(). | ||
2076 | */ | ||
2077 | schedstat_add(sd, lb_gained[idle], pulled); | ||
2078 | |||
2079 | if (all_pinned) | ||
2080 | *all_pinned = pinned; | ||
2081 | |||
2082 | return max_load_move - rem_load_move; | ||
2083 | } | ||
2084 | |||
2085 | /* | ||
2086 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
2087 | * this_rq, as part of a balancing operation within domain "sd". | ||
2088 | * Returns 1 if successful and 0 otherwise. | ||
2089 | * | ||
2090 | * Called with both runqueues locked. | ||
2091 | */ | ||
2092 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2093 | unsigned long max_load_move, | ||
2094 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
2095 | int *all_pinned) | ||
2096 | { | ||
2097 | const struct sched_class *class = sched_class_highest; | ||
2098 | unsigned long total_load_moved = 0; | ||
2099 | int this_best_prio = this_rq->curr->prio; | ||
2100 | |||
2101 | do { | ||
2102 | total_load_moved += | ||
2103 | class->load_balance(this_rq, this_cpu, busiest, | ||
2104 | max_load_move - total_load_moved, | ||
2105 | sd, idle, all_pinned, &this_best_prio); | ||
2106 | class = class->next; | ||
2107 | |||
2108 | #ifdef CONFIG_PREEMPT | ||
2109 | /* | ||
2110 | * NEWIDLE balancing is a source of latency, so preemptible | ||
2111 | * kernels will stop after the first task is pulled to minimize | ||
2112 | * the critical section. | ||
2113 | */ | ||
2114 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
2115 | break; | ||
2116 | #endif | ||
2117 | } while (class && max_load_move > total_load_moved); | ||
2118 | |||
2119 | return total_load_moved > 0; | ||
2120 | } | ||
2121 | |||
2122 | static int | ||
2123 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2124 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
2125 | struct rq_iterator *iterator) | ||
2126 | { | ||
2127 | struct task_struct *p = iterator->start(iterator->arg); | ||
2128 | int pinned = 0; | ||
2129 | |||
2130 | while (p) { | ||
2131 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
2132 | pull_task(busiest, p, this_rq, this_cpu); | ||
2133 | /* | ||
2134 | * Right now, this is only the second place pull_task() | ||
2135 | * is called, so we can safely collect pull_task() | ||
2136 | * stats here rather than inside pull_task(). | ||
2137 | */ | ||
2138 | schedstat_inc(sd, lb_gained[idle]); | ||
2139 | |||
2140 | return 1; | ||
2141 | } | ||
2142 | p = iterator->next(iterator->arg); | ||
2143 | } | ||
2144 | |||
2145 | return 0; | ||
2146 | } | ||
2147 | |||
2148 | /* | ||
2149 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
2150 | * part of active balancing operations within "domain". | ||
2151 | * Returns 1 if successful and 0 otherwise. | ||
2152 | * | ||
2153 | * Called with both runqueues locked. | ||
2154 | */ | ||
2155 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
2156 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
2157 | { | ||
2158 | const struct sched_class *class; | ||
2159 | |||
2160 | for_each_class(class) { | ||
2161 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | ||
2162 | return 1; | ||
2163 | } | ||
2164 | |||
2165 | return 0; | ||
2166 | } | ||
2167 | /********** Helpers for find_busiest_group ************************/ | ||
2168 | /* | ||
2169 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
2170 | * during load balancing. | ||
2171 | */ | ||
2172 | struct sd_lb_stats { | ||
2173 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
2174 | struct sched_group *this; /* Local group in this sd */ | ||
2175 | unsigned long total_load; /* Total load of all groups in sd */ | ||
2176 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
2177 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
2178 | |||
2179 | /** Statistics of this group */ | ||
2180 | unsigned long this_load; | ||
2181 | unsigned long this_load_per_task; | ||
2182 | unsigned long this_nr_running; | ||
2183 | |||
2184 | /* Statistics of the busiest group */ | ||
2185 | unsigned long max_load; | ||
2186 | unsigned long busiest_load_per_task; | ||
2187 | unsigned long busiest_nr_running; | ||
2188 | |||
2189 | int group_imb; /* Is there imbalance in this sd */ | ||
2190 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
2191 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
2192 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
2193 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
2194 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
2195 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
2196 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
2197 | #endif | ||
2198 | }; | ||
2199 | |||
2200 | /* | ||
2201 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
2202 | */ | ||
2203 | struct sg_lb_stats { | ||
2204 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
2205 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
2206 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
2207 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
2208 | unsigned long group_capacity; | ||
2209 | int group_imb; /* Is there an imbalance in the group ? */ | ||
2210 | }; | ||
2211 | |||
2212 | /** | ||
2213 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
2214 | * @group: The group whose first cpu is to be returned. | ||
2215 | */ | ||
2216 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
2217 | { | ||
2218 | return cpumask_first(sched_group_cpus(group)); | ||
2219 | } | ||
2220 | |||
2221 | /** | ||
2222 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
2223 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
2224 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
2225 | */ | ||
2226 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
2227 | enum cpu_idle_type idle) | ||
2228 | { | ||
2229 | int load_idx; | ||
2230 | |||
2231 | switch (idle) { | ||
2232 | case CPU_NOT_IDLE: | ||
2233 | load_idx = sd->busy_idx; | ||
2234 | break; | ||
2235 | |||
2236 | case CPU_NEWLY_IDLE: | ||
2237 | load_idx = sd->newidle_idx; | ||
2238 | break; | ||
2239 | default: | ||
2240 | load_idx = sd->idle_idx; | ||
2241 | break; | ||
2242 | } | ||
2243 | |||
2244 | return load_idx; | ||
2245 | } | ||
2246 | |||
2247 | |||
2248 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
2249 | /** | ||
2250 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
2251 | * the given sched_domain, during load balancing. | ||
2252 | * | ||
2253 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
2254 | * @sds: Variable containing the statistics for sd. | ||
2255 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
2256 | */ | ||
2257 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
2258 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
2259 | { | ||
2260 | /* | ||
2261 | * Busy processors will not participate in power savings | ||
2262 | * balance. | ||
2263 | */ | ||
2264 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
2265 | sds->power_savings_balance = 0; | ||
2266 | else { | ||
2267 | sds->power_savings_balance = 1; | ||
2268 | sds->min_nr_running = ULONG_MAX; | ||
2269 | sds->leader_nr_running = 0; | ||
2270 | } | ||
2271 | } | ||
2272 | |||
2273 | /** | ||
2274 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
2275 | * sched_domain while performing load balancing. | ||
2276 | * | ||
2277 | * @group: sched_group belonging to the sched_domain under consideration. | ||
2278 | * @sds: Variable containing the statistics of the sched_domain | ||
2279 | * @local_group: Does group contain the CPU for which we're performing | ||
2280 | * load balancing ? | ||
2281 | * @sgs: Variable containing the statistics of the group. | ||
2282 | */ | ||
2283 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
2284 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
2285 | { | ||
2286 | |||
2287 | if (!sds->power_savings_balance) | ||
2288 | return; | ||
2289 | |||
2290 | /* | ||
2291 | * If the local group is idle or completely loaded | ||
2292 | * no need to do power savings balance at this domain | ||
2293 | */ | ||
2294 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
2295 | !sds->this_nr_running)) | ||
2296 | sds->power_savings_balance = 0; | ||
2297 | |||
2298 | /* | ||
2299 | * If a group is already running at full capacity or idle, | ||
2300 | * don't include that group in power savings calculations | ||
2301 | */ | ||
2302 | if (!sds->power_savings_balance || | ||
2303 | sgs->sum_nr_running >= sgs->group_capacity || | ||
2304 | !sgs->sum_nr_running) | ||
2305 | return; | ||
2306 | |||
2307 | /* | ||
2308 | * Calculate the group which has the least non-idle load. | ||
2309 | * This is the group from where we need to pick up the load | ||
2310 | * for saving power | ||
2311 | */ | ||
2312 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
2313 | (sgs->sum_nr_running == sds->min_nr_running && | ||
2314 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
2315 | sds->group_min = group; | ||
2316 | sds->min_nr_running = sgs->sum_nr_running; | ||
2317 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
2318 | sgs->sum_nr_running; | ||
2319 | } | ||
2320 | |||
2321 | /* | ||
2322 | * Calculate the group which is almost near its | ||
2323 | * capacity but still has some space to pick up some load | ||
2324 | * from other group and save more power | ||
2325 | */ | ||
2326 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
2327 | return; | ||
2328 | |||
2329 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
2330 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
2331 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
2332 | sds->group_leader = group; | ||
2333 | sds->leader_nr_running = sgs->sum_nr_running; | ||
2334 | } | ||
2335 | } | ||
2336 | |||
2337 | /** | ||
2338 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
2339 | * @sds: Variable containing the statistics of the sched_domain | ||
2340 | * under consideration. | ||
2341 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
2342 | * @imbalance: Variable to store the imbalance. | ||
2343 | * | ||
2344 | * Description: | ||
2345 | * Check if we have potential to perform some power-savings balance. | ||
2346 | * If yes, set the busiest group to be the least loaded group in the | ||
2347 | * sched_domain, so that it's CPUs can be put to idle. | ||
2348 | * | ||
2349 | * Returns 1 if there is potential to perform power-savings balance. | ||
2350 | * Else returns 0. | ||
2351 | */ | ||
2352 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
2353 | int this_cpu, unsigned long *imbalance) | ||
2354 | { | ||
2355 | if (!sds->power_savings_balance) | ||
2356 | return 0; | ||
2357 | |||
2358 | if (sds->this != sds->group_leader || | ||
2359 | sds->group_leader == sds->group_min) | ||
2360 | return 0; | ||
2361 | |||
2362 | *imbalance = sds->min_load_per_task; | ||
2363 | sds->busiest = sds->group_min; | ||
2364 | |||
2365 | return 1; | ||
2366 | |||
2367 | } | ||
2368 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
2369 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
2370 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
2371 | { | ||
2372 | return; | ||
2373 | } | ||
2374 | |||
2375 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
2376 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
2377 | { | ||
2378 | return; | ||
2379 | } | ||
2380 | |||
2381 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
2382 | int this_cpu, unsigned long *imbalance) | ||
2383 | { | ||
2384 | return 0; | ||
2385 | } | ||
2386 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
2387 | |||
2388 | |||
2389 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
2390 | { | ||
2391 | return SCHED_LOAD_SCALE; | ||
2392 | } | ||
2393 | |||
2394 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
2395 | { | ||
2396 | return default_scale_freq_power(sd, cpu); | ||
2397 | } | ||
2398 | |||
2399 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
2400 | { | ||
2401 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
2402 | unsigned long smt_gain = sd->smt_gain; | ||
2403 | |||
2404 | smt_gain /= weight; | ||
2405 | |||
2406 | return smt_gain; | ||
2407 | } | ||
2408 | |||
2409 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
2410 | { | ||
2411 | return default_scale_smt_power(sd, cpu); | ||
2412 | } | ||
2413 | |||
2414 | unsigned long scale_rt_power(int cpu) | ||
2415 | { | ||
2416 | struct rq *rq = cpu_rq(cpu); | ||
2417 | u64 total, available; | ||
2418 | |||
2419 | sched_avg_update(rq); | ||
2420 | |||
2421 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
2422 | available = total - rq->rt_avg; | ||
2423 | |||
2424 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
2425 | total = SCHED_LOAD_SCALE; | ||
2426 | |||
2427 | total >>= SCHED_LOAD_SHIFT; | ||
2428 | |||
2429 | return div_u64(available, total); | ||
2430 | } | ||
2431 | |||
2432 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
2433 | { | ||
2434 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
2435 | unsigned long power = SCHED_LOAD_SCALE; | ||
2436 | struct sched_group *sdg = sd->groups; | ||
2437 | |||
2438 | if (sched_feat(ARCH_POWER)) | ||
2439 | power *= arch_scale_freq_power(sd, cpu); | ||
2440 | else | ||
2441 | power *= default_scale_freq_power(sd, cpu); | ||
2442 | |||
2443 | power >>= SCHED_LOAD_SHIFT; | ||
2444 | |||
2445 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
2446 | if (sched_feat(ARCH_POWER)) | ||
2447 | power *= arch_scale_smt_power(sd, cpu); | ||
2448 | else | ||
2449 | power *= default_scale_smt_power(sd, cpu); | ||
2450 | |||
2451 | power >>= SCHED_LOAD_SHIFT; | ||
2452 | } | ||
2453 | |||
2454 | power *= scale_rt_power(cpu); | ||
2455 | power >>= SCHED_LOAD_SHIFT; | ||
2456 | |||
2457 | if (!power) | ||
2458 | power = 1; | ||
2459 | |||
2460 | sdg->cpu_power = power; | ||
2461 | } | ||
2462 | |||
2463 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
2464 | { | ||
2465 | struct sched_domain *child = sd->child; | ||
2466 | struct sched_group *group, *sdg = sd->groups; | ||
2467 | unsigned long power; | ||
2468 | |||
2469 | if (!child) { | ||
2470 | update_cpu_power(sd, cpu); | ||
2471 | return; | ||
2472 | } | ||
2473 | |||
2474 | power = 0; | ||
2475 | |||
2476 | group = child->groups; | ||
2477 | do { | ||
2478 | power += group->cpu_power; | ||
2479 | group = group->next; | ||
2480 | } while (group != child->groups); | ||
2481 | |||
2482 | sdg->cpu_power = power; | ||
2483 | } | ||
2484 | |||
2485 | /** | ||
2486 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
2487 | * @sd: The sched_domain whose statistics are to be updated. | ||
2488 | * @group: sched_group whose statistics are to be updated. | ||
2489 | * @this_cpu: Cpu for which load balance is currently performed. | ||
2490 | * @idle: Idle status of this_cpu | ||
2491 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
2492 | * @sd_idle: Idle status of the sched_domain containing group. | ||
2493 | * @local_group: Does group contain this_cpu. | ||
2494 | * @cpus: Set of cpus considered for load balancing. | ||
2495 | * @balance: Should we balance. | ||
2496 | * @sgs: variable to hold the statistics for this group. | ||
2497 | */ | ||
2498 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
2499 | struct sched_group *group, int this_cpu, | ||
2500 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
2501 | int local_group, const struct cpumask *cpus, | ||
2502 | int *balance, struct sg_lb_stats *sgs) | ||
2503 | { | ||
2504 | unsigned long load, max_cpu_load, min_cpu_load; | ||
2505 | int i; | ||
2506 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
2507 | unsigned long sum_avg_load_per_task; | ||
2508 | unsigned long avg_load_per_task; | ||
2509 | |||
2510 | if (local_group) { | ||
2511 | balance_cpu = group_first_cpu(group); | ||
2512 | if (balance_cpu == this_cpu) | ||
2513 | update_group_power(sd, this_cpu); | ||
2514 | } | ||
2515 | |||
2516 | /* Tally up the load of all CPUs in the group */ | ||
2517 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
2518 | max_cpu_load = 0; | ||
2519 | min_cpu_load = ~0UL; | ||
2520 | |||
2521 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
2522 | struct rq *rq = cpu_rq(i); | ||
2523 | |||
2524 | if (*sd_idle && rq->nr_running) | ||
2525 | *sd_idle = 0; | ||
2526 | |||
2527 | /* Bias balancing toward cpus of our domain */ | ||
2528 | if (local_group) { | ||
2529 | if (idle_cpu(i) && !first_idle_cpu) { | ||
2530 | first_idle_cpu = 1; | ||
2531 | balance_cpu = i; | ||
2532 | } | ||
2533 | |||
2534 | load = target_load(i, load_idx); | ||
2535 | } else { | ||
2536 | load = source_load(i, load_idx); | ||
2537 | if (load > max_cpu_load) | ||
2538 | max_cpu_load = load; | ||
2539 | if (min_cpu_load > load) | ||
2540 | min_cpu_load = load; | ||
2541 | } | ||
2542 | |||
2543 | sgs->group_load += load; | ||
2544 | sgs->sum_nr_running += rq->nr_running; | ||
2545 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
2546 | |||
2547 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | ||
2548 | } | ||
2549 | |||
2550 | /* | ||
2551 | * First idle cpu or the first cpu(busiest) in this sched group | ||
2552 | * is eligible for doing load balancing at this and above | ||
2553 | * domains. In the newly idle case, we will allow all the cpu's | ||
2554 | * to do the newly idle load balance. | ||
2555 | */ | ||
2556 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
2557 | balance_cpu != this_cpu && balance) { | ||
2558 | *balance = 0; | ||
2559 | return; | ||
2560 | } | ||
2561 | |||
2562 | /* Adjust by relative CPU power of the group */ | ||
2563 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
2564 | |||
2565 | |||
2566 | /* | ||
2567 | * Consider the group unbalanced when the imbalance is larger | ||
2568 | * than the average weight of two tasks. | ||
2569 | * | ||
2570 | * APZ: with cgroup the avg task weight can vary wildly and | ||
2571 | * might not be a suitable number - should we keep a | ||
2572 | * normalized nr_running number somewhere that negates | ||
2573 | * the hierarchy? | ||
2574 | */ | ||
2575 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / | ||
2576 | group->cpu_power; | ||
2577 | |||
2578 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
2579 | sgs->group_imb = 1; | ||
2580 | |||
2581 | sgs->group_capacity = | ||
2582 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
2583 | } | ||
2584 | |||
2585 | /** | ||
2586 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
2587 | * @sd: sched_domain whose statistics are to be updated. | ||
2588 | * @this_cpu: Cpu for which load balance is currently performed. | ||
2589 | * @idle: Idle status of this_cpu | ||
2590 | * @sd_idle: Idle status of the sched_domain containing group. | ||
2591 | * @cpus: Set of cpus considered for load balancing. | ||
2592 | * @balance: Should we balance. | ||
2593 | * @sds: variable to hold the statistics for this sched_domain. | ||
2594 | */ | ||
2595 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
2596 | enum cpu_idle_type idle, int *sd_idle, | ||
2597 | const struct cpumask *cpus, int *balance, | ||
2598 | struct sd_lb_stats *sds) | ||
2599 | { | ||
2600 | struct sched_domain *child = sd->child; | ||
2601 | struct sched_group *group = sd->groups; | ||
2602 | struct sg_lb_stats sgs; | ||
2603 | int load_idx, prefer_sibling = 0; | ||
2604 | |||
2605 | if (child && child->flags & SD_PREFER_SIBLING) | ||
2606 | prefer_sibling = 1; | ||
2607 | |||
2608 | init_sd_power_savings_stats(sd, sds, idle); | ||
2609 | load_idx = get_sd_load_idx(sd, idle); | ||
2610 | |||
2611 | do { | ||
2612 | int local_group; | ||
2613 | |||
2614 | local_group = cpumask_test_cpu(this_cpu, | ||
2615 | sched_group_cpus(group)); | ||
2616 | memset(&sgs, 0, sizeof(sgs)); | ||
2617 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
2618 | local_group, cpus, balance, &sgs); | ||
2619 | |||
2620 | if (local_group && balance && !(*balance)) | ||
2621 | return; | ||
2622 | |||
2623 | sds->total_load += sgs.group_load; | ||
2624 | sds->total_pwr += group->cpu_power; | ||
2625 | |||
2626 | /* | ||
2627 | * In case the child domain prefers tasks go to siblings | ||
2628 | * first, lower the group capacity to one so that we'll try | ||
2629 | * and move all the excess tasks away. | ||
2630 | */ | ||
2631 | if (prefer_sibling) | ||
2632 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
2633 | |||
2634 | if (local_group) { | ||
2635 | sds->this_load = sgs.avg_load; | ||
2636 | sds->this = group; | ||
2637 | sds->this_nr_running = sgs.sum_nr_running; | ||
2638 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
2639 | } else if (sgs.avg_load > sds->max_load && | ||
2640 | (sgs.sum_nr_running > sgs.group_capacity || | ||
2641 | sgs.group_imb)) { | ||
2642 | sds->max_load = sgs.avg_load; | ||
2643 | sds->busiest = group; | ||
2644 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
2645 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
2646 | sds->group_imb = sgs.group_imb; | ||
2647 | } | ||
2648 | |||
2649 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
2650 | group = group->next; | ||
2651 | } while (group != sd->groups); | ||
2652 | } | ||
2653 | |||
2654 | /** | ||
2655 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
2656 | * amongst the groups of a sched_domain, during | ||
2657 | * load balancing. | ||
2658 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
2659 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
2660 | * @imbalance: Variable to store the imbalance. | ||
2661 | */ | ||
2662 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
2663 | int this_cpu, unsigned long *imbalance) | ||
2664 | { | ||
2665 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
2666 | unsigned int imbn = 2; | ||
2667 | |||
2668 | if (sds->this_nr_running) { | ||
2669 | sds->this_load_per_task /= sds->this_nr_running; | ||
2670 | if (sds->busiest_load_per_task > | ||
2671 | sds->this_load_per_task) | ||
2672 | imbn = 1; | ||
2673 | } else | ||
2674 | sds->this_load_per_task = | ||
2675 | cpu_avg_load_per_task(this_cpu); | ||
2676 | |||
2677 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | ||
2678 | sds->busiest_load_per_task * imbn) { | ||
2679 | *imbalance = sds->busiest_load_per_task; | ||
2680 | return; | ||
2681 | } | ||
2682 | |||
2683 | /* | ||
2684 | * OK, we don't have enough imbalance to justify moving tasks, | ||
2685 | * however we may be able to increase total CPU power used by | ||
2686 | * moving them. | ||
2687 | */ | ||
2688 | |||
2689 | pwr_now += sds->busiest->cpu_power * | ||
2690 | min(sds->busiest_load_per_task, sds->max_load); | ||
2691 | pwr_now += sds->this->cpu_power * | ||
2692 | min(sds->this_load_per_task, sds->this_load); | ||
2693 | pwr_now /= SCHED_LOAD_SCALE; | ||
2694 | |||
2695 | /* Amount of load we'd subtract */ | ||
2696 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
2697 | sds->busiest->cpu_power; | ||
2698 | if (sds->max_load > tmp) | ||
2699 | pwr_move += sds->busiest->cpu_power * | ||
2700 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
2701 | |||
2702 | /* Amount of load we'd add */ | ||
2703 | if (sds->max_load * sds->busiest->cpu_power < | ||
2704 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
2705 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
2706 | sds->this->cpu_power; | ||
2707 | else | ||
2708 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
2709 | sds->this->cpu_power; | ||
2710 | pwr_move += sds->this->cpu_power * | ||
2711 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
2712 | pwr_move /= SCHED_LOAD_SCALE; | ||
2713 | |||
2714 | /* Move if we gain throughput */ | ||
2715 | if (pwr_move > pwr_now) | ||
2716 | *imbalance = sds->busiest_load_per_task; | ||
2717 | } | ||
2718 | |||
2719 | /** | ||
2720 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
2721 | * groups of a given sched_domain during load balance. | ||
2722 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
2723 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
2724 | * @imbalance: The variable to store the imbalance. | ||
2725 | */ | ||
2726 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
2727 | unsigned long *imbalance) | ||
2728 | { | ||
2729 | unsigned long max_pull; | ||
2730 | /* | ||
2731 | * In the presence of smp nice balancing, certain scenarios can have | ||
2732 | * max load less than avg load(as we skip the groups at or below | ||
2733 | * its cpu_power, while calculating max_load..) | ||
2734 | */ | ||
2735 | if (sds->max_load < sds->avg_load) { | ||
2736 | *imbalance = 0; | ||
2737 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
2738 | } | ||
2739 | |||
2740 | /* Don't want to pull so many tasks that a group would go idle */ | ||
2741 | max_pull = min(sds->max_load - sds->avg_load, | ||
2742 | sds->max_load - sds->busiest_load_per_task); | ||
2743 | |||
2744 | /* How much load to actually move to equalise the imbalance */ | ||
2745 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
2746 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
2747 | / SCHED_LOAD_SCALE; | ||
2748 | |||
2749 | /* | ||
2750 | * if *imbalance is less than the average load per runnable task | ||
2751 | * there is no gaurantee that any tasks will be moved so we'll have | ||
2752 | * a think about bumping its value to force at least one task to be | ||
2753 | * moved | ||
2754 | */ | ||
2755 | if (*imbalance < sds->busiest_load_per_task) | ||
2756 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
2757 | |||
2758 | } | ||
2759 | /******* find_busiest_group() helpers end here *********************/ | ||
2760 | |||
2761 | /** | ||
2762 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
2763 | * if there is an imbalance. If there isn't an imbalance, and | ||
2764 | * the user has opted for power-savings, it returns a group whose | ||
2765 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
2766 | * such a group exists. | ||
2767 | * | ||
2768 | * Also calculates the amount of weighted load which should be moved | ||
2769 | * to restore balance. | ||
2770 | * | ||
2771 | * @sd: The sched_domain whose busiest group is to be returned. | ||
2772 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
2773 | * @imbalance: Variable which stores amount of weighted load which should | ||
2774 | * be moved to restore balance/put a group to idle. | ||
2775 | * @idle: The idle status of this_cpu. | ||
2776 | * @sd_idle: The idleness of sd | ||
2777 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
2778 | * @balance: Pointer to a variable indicating if this_cpu | ||
2779 | * is the appropriate cpu to perform load balancing at this_level. | ||
2780 | * | ||
2781 | * Returns: - the busiest group if imbalance exists. | ||
2782 | * - If no imbalance and user has opted for power-savings balance, | ||
2783 | * return the least loaded group whose CPUs can be | ||
2784 | * put to idle by rebalancing its tasks onto our group. | ||
2785 | */ | ||
2786 | static struct sched_group * | ||
2787 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
2788 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
2789 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
2790 | { | ||
2791 | struct sd_lb_stats sds; | ||
2792 | |||
2793 | memset(&sds, 0, sizeof(sds)); | ||
2794 | |||
2795 | /* | ||
2796 | * Compute the various statistics relavent for load balancing at | ||
2797 | * this level. | ||
2798 | */ | ||
2799 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
2800 | balance, &sds); | ||
2801 | |||
2802 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
2803 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
2804 | * at this level. | ||
2805 | * 2) There is no busy sibling group to pull from. | ||
2806 | * 3) This group is the busiest group. | ||
2807 | * 4) This group is more busy than the avg busieness at this | ||
2808 | * sched_domain. | ||
2809 | * 5) The imbalance is within the specified limit. | ||
2810 | * 6) Any rebalance would lead to ping-pong | ||
2811 | */ | ||
2812 | if (balance && !(*balance)) | ||
2813 | goto ret; | ||
2814 | |||
2815 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
2816 | goto out_balanced; | ||
2817 | |||
2818 | if (sds.this_load >= sds.max_load) | ||
2819 | goto out_balanced; | ||
2820 | |||
2821 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
2822 | |||
2823 | if (sds.this_load >= sds.avg_load) | ||
2824 | goto out_balanced; | ||
2825 | |||
2826 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
2827 | goto out_balanced; | ||
2828 | |||
2829 | sds.busiest_load_per_task /= sds.busiest_nr_running; | ||
2830 | if (sds.group_imb) | ||
2831 | sds.busiest_load_per_task = | ||
2832 | min(sds.busiest_load_per_task, sds.avg_load); | ||
2833 | |||
2834 | /* | ||
2835 | * We're trying to get all the cpus to the average_load, so we don't | ||
2836 | * want to push ourselves above the average load, nor do we wish to | ||
2837 | * reduce the max loaded cpu below the average load, as either of these | ||
2838 | * actions would just result in more rebalancing later, and ping-pong | ||
2839 | * tasks around. Thus we look for the minimum possible imbalance. | ||
2840 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
2841 | * be counted as no imbalance for these purposes -- we can't fix that | ||
2842 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
2843 | * appear as very large values with unsigned longs. | ||
2844 | */ | ||
2845 | if (sds.max_load <= sds.busiest_load_per_task) | ||
2846 | goto out_balanced; | ||
2847 | |||
2848 | /* Looks like there is an imbalance. Compute it */ | ||
2849 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
2850 | return sds.busiest; | ||
2851 | |||
2852 | out_balanced: | ||
2853 | /* | ||
2854 | * There is no obvious imbalance. But check if we can do some balancing | ||
2855 | * to save power. | ||
2856 | */ | ||
2857 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
2858 | return sds.busiest; | ||
2859 | ret: | ||
2860 | *imbalance = 0; | ||
2861 | return NULL; | ||
2862 | } | ||
2863 | |||
2864 | /* | ||
2865 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
2866 | */ | ||
2867 | static struct rq * | ||
2868 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
2869 | unsigned long imbalance, const struct cpumask *cpus) | ||
2870 | { | ||
2871 | struct rq *busiest = NULL, *rq; | ||
2872 | unsigned long max_load = 0; | ||
2873 | int i; | ||
2874 | |||
2875 | for_each_cpu(i, sched_group_cpus(group)) { | ||
2876 | unsigned long power = power_of(i); | ||
2877 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
2878 | unsigned long wl; | ||
2879 | |||
2880 | if (!cpumask_test_cpu(i, cpus)) | ||
2881 | continue; | ||
2882 | |||
2883 | rq = cpu_rq(i); | ||
2884 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; | ||
2885 | wl /= power; | ||
2886 | |||
2887 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
2888 | continue; | ||
2889 | |||
2890 | if (wl > max_load) { | ||
2891 | max_load = wl; | ||
2892 | busiest = rq; | ||
2893 | } | ||
2894 | } | ||
2895 | |||
2896 | return busiest; | ||
2897 | } | ||
2898 | |||
2899 | /* | ||
2900 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
2901 | * so long as it is large enough. | ||
2902 | */ | ||
2903 | #define MAX_PINNED_INTERVAL 512 | ||
2904 | |||
2905 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
2906 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
2907 | |||
2908 | /* | ||
2909 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
2910 | * tasks if there is an imbalance. | ||
2911 | */ | ||
2912 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
2913 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
2914 | int *balance) | ||
2915 | { | ||
2916 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
2917 | struct sched_group *group; | ||
2918 | unsigned long imbalance; | ||
2919 | struct rq *busiest; | ||
2920 | unsigned long flags; | ||
2921 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
2922 | |||
2923 | cpumask_copy(cpus, cpu_active_mask); | ||
2924 | |||
2925 | /* | ||
2926 | * When power savings policy is enabled for the parent domain, idle | ||
2927 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
2928 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
2929 | * portraying it as CPU_NOT_IDLE. | ||
2930 | */ | ||
2931 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
2932 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
2933 | sd_idle = 1; | ||
2934 | |||
2935 | schedstat_inc(sd, lb_count[idle]); | ||
2936 | |||
2937 | redo: | ||
2938 | update_shares(sd); | ||
2939 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
2940 | cpus, balance); | ||
2941 | |||
2942 | if (*balance == 0) | ||
2943 | goto out_balanced; | ||
2944 | |||
2945 | if (!group) { | ||
2946 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
2947 | goto out_balanced; | ||
2948 | } | ||
2949 | |||
2950 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
2951 | if (!busiest) { | ||
2952 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
2953 | goto out_balanced; | ||
2954 | } | ||
2955 | |||
2956 | BUG_ON(busiest == this_rq); | ||
2957 | |||
2958 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
2959 | |||
2960 | ld_moved = 0; | ||
2961 | if (busiest->nr_running > 1) { | ||
2962 | /* | ||
2963 | * Attempt to move tasks. If find_busiest_group has found | ||
2964 | * an imbalance but busiest->nr_running <= 1, the group is | ||
2965 | * still unbalanced. ld_moved simply stays zero, so it is | ||
2966 | * correctly treated as an imbalance. | ||
2967 | */ | ||
2968 | local_irq_save(flags); | ||
2969 | double_rq_lock(this_rq, busiest); | ||
2970 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
2971 | imbalance, sd, idle, &all_pinned); | ||
2972 | double_rq_unlock(this_rq, busiest); | ||
2973 | local_irq_restore(flags); | ||
2974 | |||
2975 | /* | ||
2976 | * some other cpu did the load balance for us. | ||
2977 | */ | ||
2978 | if (ld_moved && this_cpu != smp_processor_id()) | ||
2979 | resched_cpu(this_cpu); | ||
2980 | |||
2981 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
2982 | if (unlikely(all_pinned)) { | ||
2983 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
2984 | if (!cpumask_empty(cpus)) | ||
2985 | goto redo; | ||
2986 | goto out_balanced; | ||
2987 | } | ||
2988 | } | ||
2989 | |||
2990 | if (!ld_moved) { | ||
2991 | schedstat_inc(sd, lb_failed[idle]); | ||
2992 | sd->nr_balance_failed++; | ||
2993 | |||
2994 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
2995 | |||
2996 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
2997 | |||
2998 | /* don't kick the migration_thread, if the curr | ||
2999 | * task on busiest cpu can't be moved to this_cpu | ||
3000 | */ | ||
3001 | if (!cpumask_test_cpu(this_cpu, | ||
3002 | &busiest->curr->cpus_allowed)) { | ||
3003 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
3004 | flags); | ||
3005 | all_pinned = 1; | ||
3006 | goto out_one_pinned; | ||
3007 | } | ||
3008 | |||
3009 | if (!busiest->active_balance) { | ||
3010 | busiest->active_balance = 1; | ||
3011 | busiest->push_cpu = this_cpu; | ||
3012 | active_balance = 1; | ||
3013 | } | ||
3014 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
3015 | if (active_balance) | ||
3016 | wake_up_process(busiest->migration_thread); | ||
3017 | |||
3018 | /* | ||
3019 | * We've kicked active balancing, reset the failure | ||
3020 | * counter. | ||
3021 | */ | ||
3022 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
3023 | } | ||
3024 | } else | ||
3025 | sd->nr_balance_failed = 0; | ||
3026 | |||
3027 | if (likely(!active_balance)) { | ||
3028 | /* We were unbalanced, so reset the balancing interval */ | ||
3029 | sd->balance_interval = sd->min_interval; | ||
3030 | } else { | ||
3031 | /* | ||
3032 | * If we've begun active balancing, start to back off. This | ||
3033 | * case may not be covered by the all_pinned logic if there | ||
3034 | * is only 1 task on the busy runqueue (because we don't call | ||
3035 | * move_tasks). | ||
3036 | */ | ||
3037 | if (sd->balance_interval < sd->max_interval) | ||
3038 | sd->balance_interval *= 2; | ||
3039 | } | ||
3040 | |||
3041 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
3042 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
3043 | ld_moved = -1; | ||
3044 | |||
3045 | goto out; | ||
3046 | |||
3047 | out_balanced: | ||
3048 | schedstat_inc(sd, lb_balanced[idle]); | ||
3049 | |||
3050 | sd->nr_balance_failed = 0; | ||
3051 | |||
3052 | out_one_pinned: | ||
3053 | /* tune up the balancing interval */ | ||
3054 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
3055 | (sd->balance_interval < sd->max_interval)) | ||
3056 | sd->balance_interval *= 2; | ||
3057 | |||
3058 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
3059 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
3060 | ld_moved = -1; | ||
3061 | else | ||
3062 | ld_moved = 0; | ||
3063 | out: | ||
3064 | if (ld_moved) | ||
3065 | update_shares(sd); | ||
3066 | return ld_moved; | ||
3067 | } | ||
3068 | |||
3069 | /* | ||
3070 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
3071 | * tasks if there is an imbalance. | ||
3072 | * | ||
3073 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | ||
3074 | * this_rq is locked. | ||
3075 | */ | ||
3076 | static int | ||
3077 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | ||
3078 | { | ||
3079 | struct sched_group *group; | ||
3080 | struct rq *busiest = NULL; | ||
3081 | unsigned long imbalance; | ||
3082 | int ld_moved = 0; | ||
3083 | int sd_idle = 0; | ||
3084 | int all_pinned = 0; | ||
3085 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
3086 | |||
3087 | cpumask_copy(cpus, cpu_active_mask); | ||
3088 | |||
3089 | /* | ||
3090 | * When power savings policy is enabled for the parent domain, idle | ||
3091 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
3092 | * let the state of idle sibling percolate up as IDLE, instead of | ||
3093 | * portraying it as CPU_NOT_IDLE. | ||
3094 | */ | ||
3095 | if (sd->flags & SD_SHARE_CPUPOWER && | ||
3096 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
3097 | sd_idle = 1; | ||
3098 | |||
3099 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | ||
3100 | redo: | ||
3101 | update_shares_locked(this_rq, sd); | ||
3102 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | ||
3103 | &sd_idle, cpus, NULL); | ||
3104 | if (!group) { | ||
3105 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | ||
3106 | goto out_balanced; | ||
3107 | } | ||
3108 | |||
3109 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | ||
3110 | if (!busiest) { | ||
3111 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | ||
3112 | goto out_balanced; | ||
3113 | } | ||
3114 | |||
3115 | BUG_ON(busiest == this_rq); | ||
3116 | |||
3117 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | ||
3118 | |||
3119 | ld_moved = 0; | ||
3120 | if (busiest->nr_running > 1) { | ||
3121 | /* Attempt to move tasks */ | ||
3122 | double_lock_balance(this_rq, busiest); | ||
3123 | /* this_rq->clock is already updated */ | ||
3124 | update_rq_clock(busiest); | ||
3125 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
3126 | imbalance, sd, CPU_NEWLY_IDLE, | ||
3127 | &all_pinned); | ||
3128 | double_unlock_balance(this_rq, busiest); | ||
3129 | |||
3130 | if (unlikely(all_pinned)) { | ||
3131 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
3132 | if (!cpumask_empty(cpus)) | ||
3133 | goto redo; | ||
3134 | } | ||
3135 | } | ||
3136 | |||
3137 | if (!ld_moved) { | ||
3138 | int active_balance = 0; | ||
3139 | |||
3140 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | ||
3141 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
3142 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
3143 | return -1; | ||
3144 | |||
3145 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
3146 | return -1; | ||
3147 | |||
3148 | if (sd->nr_balance_failed++ < 2) | ||
3149 | return -1; | ||
3150 | |||
3151 | /* | ||
3152 | * The only task running in a non-idle cpu can be moved to this | ||
3153 | * cpu in an attempt to completely freeup the other CPU | ||
3154 | * package. The same method used to move task in load_balance() | ||
3155 | * have been extended for load_balance_newidle() to speedup | ||
3156 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | ||
3157 | * | ||
3158 | * The package power saving logic comes from | ||
3159 | * find_busiest_group(). If there are no imbalance, then | ||
3160 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
3161 | * f_b_g() will select a group from which a running task may be | ||
3162 | * pulled to this cpu in order to make the other package idle. | ||
3163 | * If there is no opportunity to make a package idle and if | ||
3164 | * there are no imbalance, then f_b_g() will return NULL and no | ||
3165 | * action will be taken in load_balance_newidle(). | ||
3166 | * | ||
3167 | * Under normal task pull operation due to imbalance, there | ||
3168 | * will be more than one task in the source run queue and | ||
3169 | * move_tasks() will succeed. ld_moved will be true and this | ||
3170 | * active balance code will not be triggered. | ||
3171 | */ | ||
3172 | |||
3173 | /* Lock busiest in correct order while this_rq is held */ | ||
3174 | double_lock_balance(this_rq, busiest); | ||
3175 | |||
3176 | /* | ||
3177 | * don't kick the migration_thread, if the curr | ||
3178 | * task on busiest cpu can't be moved to this_cpu | ||
3179 | */ | ||
3180 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { | ||
3181 | double_unlock_balance(this_rq, busiest); | ||
3182 | all_pinned = 1; | ||
3183 | return ld_moved; | ||
3184 | } | ||
3185 | |||
3186 | if (!busiest->active_balance) { | ||
3187 | busiest->active_balance = 1; | ||
3188 | busiest->push_cpu = this_cpu; | ||
3189 | active_balance = 1; | ||
3190 | } | ||
3191 | |||
3192 | double_unlock_balance(this_rq, busiest); | ||
3193 | /* | ||
3194 | * Should not call ttwu while holding a rq->lock | ||
3195 | */ | ||
3196 | raw_spin_unlock(&this_rq->lock); | ||
3197 | if (active_balance) | ||
3198 | wake_up_process(busiest->migration_thread); | ||
3199 | raw_spin_lock(&this_rq->lock); | ||
3200 | |||
3201 | } else | ||
3202 | sd->nr_balance_failed = 0; | ||
3203 | |||
3204 | update_shares_locked(this_rq, sd); | ||
3205 | return ld_moved; | ||
3206 | |||
3207 | out_balanced: | ||
3208 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | ||
3209 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
3210 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
3211 | return -1; | ||
3212 | sd->nr_balance_failed = 0; | ||
3213 | |||
3214 | return 0; | ||
3215 | } | ||
3216 | |||
3217 | /* | ||
3218 | * idle_balance is called by schedule() if this_cpu is about to become | ||
3219 | * idle. Attempts to pull tasks from other CPUs. | ||
3220 | */ | ||
3221 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
3222 | { | ||
3223 | struct sched_domain *sd; | ||
3224 | int pulled_task = 0; | ||
3225 | unsigned long next_balance = jiffies + HZ; | ||
3226 | |||
3227 | this_rq->idle_stamp = this_rq->clock; | ||
3228 | |||
3229 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
3230 | return; | ||
3231 | |||
3232 | for_each_domain(this_cpu, sd) { | ||
3233 | unsigned long interval; | ||
3234 | |||
3235 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
3236 | continue; | ||
3237 | |||
3238 | if (sd->flags & SD_BALANCE_NEWIDLE) | ||
3239 | /* If we've pulled tasks over stop searching: */ | ||
3240 | pulled_task = load_balance_newidle(this_cpu, this_rq, | ||
3241 | sd); | ||
3242 | |||
3243 | interval = msecs_to_jiffies(sd->balance_interval); | ||
3244 | if (time_after(next_balance, sd->last_balance + interval)) | ||
3245 | next_balance = sd->last_balance + interval; | ||
3246 | if (pulled_task) { | ||
3247 | this_rq->idle_stamp = 0; | ||
3248 | break; | ||
3249 | } | ||
3250 | } | ||
3251 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
3252 | /* | ||
3253 | * We are going idle. next_balance may be set based on | ||
3254 | * a busy processor. So reset next_balance. | ||
3255 | */ | ||
3256 | this_rq->next_balance = next_balance; | ||
3257 | } | ||
3258 | } | ||
3259 | |||
3260 | /* | ||
3261 | * active_load_balance is run by migration threads. It pushes running tasks | ||
3262 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
3263 | * running on each physical CPU where possible, and avoids physical / | ||
3264 | * logical imbalances. | ||
3265 | * | ||
3266 | * Called with busiest_rq locked. | ||
3267 | */ | ||
3268 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
3269 | { | ||
3270 | int target_cpu = busiest_rq->push_cpu; | ||
3271 | struct sched_domain *sd; | ||
3272 | struct rq *target_rq; | ||
3273 | |||
3274 | /* Is there any task to move? */ | ||
3275 | if (busiest_rq->nr_running <= 1) | ||
3276 | return; | ||
3277 | |||
3278 | target_rq = cpu_rq(target_cpu); | ||
3279 | |||
3280 | /* | ||
3281 | * This condition is "impossible", if it occurs | ||
3282 | * we need to fix it. Originally reported by | ||
3283 | * Bjorn Helgaas on a 128-cpu setup. | ||
3284 | */ | ||
3285 | BUG_ON(busiest_rq == target_rq); | ||
3286 | |||
3287 | /* move a task from busiest_rq to target_rq */ | ||
3288 | double_lock_balance(busiest_rq, target_rq); | ||
3289 | update_rq_clock(busiest_rq); | ||
3290 | update_rq_clock(target_rq); | ||
3291 | |||
3292 | /* Search for an sd spanning us and the target CPU. */ | ||
3293 | for_each_domain(target_cpu, sd) { | ||
3294 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
3295 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
3296 | break; | ||
3297 | } | ||
3298 | |||
3299 | if (likely(sd)) { | ||
3300 | schedstat_inc(sd, alb_count); | ||
3301 | |||
3302 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
3303 | sd, CPU_IDLE)) | ||
3304 | schedstat_inc(sd, alb_pushed); | ||
3305 | else | ||
3306 | schedstat_inc(sd, alb_failed); | ||
3307 | } | ||
3308 | double_unlock_balance(busiest_rq, target_rq); | ||
3309 | } | ||
3310 | |||
3311 | #ifdef CONFIG_NO_HZ | ||
3312 | static struct { | ||
3313 | atomic_t load_balancer; | ||
3314 | cpumask_var_t cpu_mask; | ||
3315 | cpumask_var_t ilb_grp_nohz_mask; | ||
3316 | } nohz ____cacheline_aligned = { | ||
3317 | .load_balancer = ATOMIC_INIT(-1), | ||
3318 | }; | ||
3319 | |||
3320 | int get_nohz_load_balancer(void) | ||
3321 | { | ||
3322 | return atomic_read(&nohz.load_balancer); | ||
3323 | } | ||
3324 | |||
3325 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3326 | /** | ||
3327 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
3328 | * @cpu: The cpu whose lowest level of sched domain is to | ||
3329 | * be returned. | ||
3330 | * @flag: The flag to check for the lowest sched_domain | ||
3331 | * for the given cpu. | ||
3332 | * | ||
3333 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
3334 | */ | ||
3335 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
3336 | { | ||
3337 | struct sched_domain *sd; | ||
3338 | |||
3339 | for_each_domain(cpu, sd) | ||
3340 | if (sd && (sd->flags & flag)) | ||
3341 | break; | ||
3342 | |||
3343 | return sd; | ||
3344 | } | ||
3345 | |||
3346 | /** | ||
3347 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
3348 | * @cpu: The cpu whose domains we're iterating over. | ||
3349 | * @sd: variable holding the value of the power_savings_sd | ||
3350 | * for cpu. | ||
3351 | * @flag: The flag to filter the sched_domains to be iterated. | ||
3352 | * | ||
3353 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
3354 | * set, starting from the lowest sched_domain to the highest. | ||
3355 | */ | ||
3356 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
3357 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
3358 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
3359 | |||
3360 | /** | ||
3361 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
3362 | * @ilb_group: group to be checked for semi-idleness | ||
3363 | * | ||
3364 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
3365 | * | ||
3366 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
3367 | * and atleast one non-idle CPU. This helper function checks if the given | ||
3368 | * sched_group is semi-idle or not. | ||
3369 | */ | ||
3370 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
3371 | { | ||
3372 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
3373 | sched_group_cpus(ilb_group)); | ||
3374 | |||
3375 | /* | ||
3376 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
3377 | * and atleast one idle cpu. | ||
3378 | */ | ||
3379 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
3380 | return 0; | ||
3381 | |||
3382 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
3383 | return 0; | ||
3384 | |||
3385 | return 1; | ||
3386 | } | ||
3387 | /** | ||
3388 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
3389 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
3390 | * | ||
3391 | * Returns: Returns the id of the idle load balancer if it exists, | ||
3392 | * Else, returns >= nr_cpu_ids. | ||
3393 | * | ||
3394 | * This algorithm picks the idle load balancer such that it belongs to a | ||
3395 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
3396 | * completely idle packages/cores just for the purpose of idle load balancing | ||
3397 | * when there are other idle cpu's which are better suited for that job. | ||
3398 | */ | ||
3399 | static int find_new_ilb(int cpu) | ||
3400 | { | ||
3401 | struct sched_domain *sd; | ||
3402 | struct sched_group *ilb_group; | ||
3403 | |||
3404 | /* | ||
3405 | * Have idle load balancer selection from semi-idle packages only | ||
3406 | * when power-aware load balancing is enabled | ||
3407 | */ | ||
3408 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
3409 | goto out_done; | ||
3410 | |||
3411 | /* | ||
3412 | * Optimize for the case when we have no idle CPUs or only one | ||
3413 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
3414 | */ | ||
3415 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
3416 | goto out_done; | ||
3417 | |||
3418 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
3419 | ilb_group = sd->groups; | ||
3420 | |||
3421 | do { | ||
3422 | if (is_semi_idle_group(ilb_group)) | ||
3423 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
3424 | |||
3425 | ilb_group = ilb_group->next; | ||
3426 | |||
3427 | } while (ilb_group != sd->groups); | ||
3428 | } | ||
3429 | |||
3430 | out_done: | ||
3431 | return cpumask_first(nohz.cpu_mask); | ||
3432 | } | ||
3433 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
3434 | static inline int find_new_ilb(int call_cpu) | ||
3435 | { | ||
3436 | return cpumask_first(nohz.cpu_mask); | ||
3437 | } | ||
3438 | #endif | ||
3439 | |||
3440 | /* | ||
3441 | * This routine will try to nominate the ilb (idle load balancing) | ||
3442 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
3443 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
3444 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
3445 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
3446 | * arrives... | ||
3447 | * | ||
3448 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
3449 | * for idle load balancing. ilb owner will still be part of | ||
3450 | * nohz.cpu_mask.. | ||
3451 | * | ||
3452 | * While stopping the tick, this cpu will become the ilb owner if there | ||
3453 | * is no other owner. And will be the owner till that cpu becomes busy | ||
3454 | * or if all cpus in the system stop their ticks at which point | ||
3455 | * there is no need for ilb owner. | ||
3456 | * | ||
3457 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
3458 | * next busy scheduler_tick() | ||
3459 | */ | ||
3460 | int select_nohz_load_balancer(int stop_tick) | ||
3461 | { | ||
3462 | int cpu = smp_processor_id(); | ||
3463 | |||
3464 | if (stop_tick) { | ||
3465 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
3466 | |||
3467 | if (!cpu_active(cpu)) { | ||
3468 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
3469 | return 0; | ||
3470 | |||
3471 | /* | ||
3472 | * If we are going offline and still the leader, | ||
3473 | * give up! | ||
3474 | */ | ||
3475 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
3476 | BUG(); | ||
3477 | |||
3478 | return 0; | ||
3479 | } | ||
3480 | |||
3481 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
3482 | |||
3483 | /* time for ilb owner also to sleep */ | ||
3484 | if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { | ||
3485 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
3486 | atomic_set(&nohz.load_balancer, -1); | ||
3487 | return 0; | ||
3488 | } | ||
3489 | |||
3490 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
3491 | /* make me the ilb owner */ | ||
3492 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
3493 | return 1; | ||
3494 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
3495 | int new_ilb; | ||
3496 | |||
3497 | if (!(sched_smt_power_savings || | ||
3498 | sched_mc_power_savings)) | ||
3499 | return 1; | ||
3500 | /* | ||
3501 | * Check to see if there is a more power-efficient | ||
3502 | * ilb. | ||
3503 | */ | ||
3504 | new_ilb = find_new_ilb(cpu); | ||
3505 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
3506 | atomic_set(&nohz.load_balancer, -1); | ||
3507 | resched_cpu(new_ilb); | ||
3508 | return 0; | ||
3509 | } | ||
3510 | return 1; | ||
3511 | } | ||
3512 | } else { | ||
3513 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
3514 | return 0; | ||
3515 | |||
3516 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
3517 | |||
3518 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
3519 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
3520 | BUG(); | ||
3521 | } | ||
3522 | return 0; | ||
3523 | } | ||
3524 | #endif | ||
3525 | |||
3526 | static DEFINE_SPINLOCK(balancing); | ||
3527 | |||
3528 | /* | ||
3529 | * It checks each scheduling domain to see if it is due to be balanced, | ||
3530 | * and initiates a balancing operation if so. | ||
3531 | * | ||
3532 | * Balancing parameters are set up in arch_init_sched_domains. | ||
3533 | */ | ||
3534 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
3535 | { | ||
3536 | int balance = 1; | ||
3537 | struct rq *rq = cpu_rq(cpu); | ||
3538 | unsigned long interval; | ||
3539 | struct sched_domain *sd; | ||
3540 | /* Earliest time when we have to do rebalance again */ | ||
3541 | unsigned long next_balance = jiffies + 60*HZ; | ||
3542 | int update_next_balance = 0; | ||
3543 | int need_serialize; | ||
3544 | |||
3545 | for_each_domain(cpu, sd) { | ||
3546 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
3547 | continue; | ||
3548 | |||
3549 | interval = sd->balance_interval; | ||
3550 | if (idle != CPU_IDLE) | ||
3551 | interval *= sd->busy_factor; | ||
3552 | |||
3553 | /* scale ms to jiffies */ | ||
3554 | interval = msecs_to_jiffies(interval); | ||
3555 | if (unlikely(!interval)) | ||
3556 | interval = 1; | ||
3557 | if (interval > HZ*NR_CPUS/10) | ||
3558 | interval = HZ*NR_CPUS/10; | ||
3559 | |||
3560 | need_serialize = sd->flags & SD_SERIALIZE; | ||
3561 | |||
3562 | if (need_serialize) { | ||
3563 | if (!spin_trylock(&balancing)) | ||
3564 | goto out; | ||
3565 | } | ||
3566 | |||
3567 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
3568 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
3569 | /* | ||
3570 | * We've pulled tasks over so either we're no | ||
3571 | * longer idle, or one of our SMT siblings is | ||
3572 | * not idle. | ||
3573 | */ | ||
3574 | idle = CPU_NOT_IDLE; | ||
3575 | } | ||
3576 | sd->last_balance = jiffies; | ||
3577 | } | ||
3578 | if (need_serialize) | ||
3579 | spin_unlock(&balancing); | ||
3580 | out: | ||
3581 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
3582 | next_balance = sd->last_balance + interval; | ||
3583 | update_next_balance = 1; | ||
3584 | } | ||
3585 | |||
3586 | /* | ||
3587 | * Stop the load balance at this level. There is another | ||
3588 | * CPU in our sched group which is doing load balancing more | ||
3589 | * actively. | ||
3590 | */ | ||
3591 | if (!balance) | ||
3592 | break; | ||
3593 | } | ||
3594 | |||
3595 | /* | ||
3596 | * next_balance will be updated only when there is a need. | ||
3597 | * When the cpu is attached to null domain for ex, it will not be | ||
3598 | * updated. | ||
3599 | */ | ||
3600 | if (likely(update_next_balance)) | ||
3601 | rq->next_balance = next_balance; | ||
3602 | } | ||
3603 | |||
3604 | /* | ||
3605 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
3606 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
3607 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
3608 | */ | ||
3609 | static void run_rebalance_domains(struct softirq_action *h) | ||
3610 | { | ||
3611 | int this_cpu = smp_processor_id(); | ||
3612 | struct rq *this_rq = cpu_rq(this_cpu); | ||
3613 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
3614 | CPU_IDLE : CPU_NOT_IDLE; | ||
3615 | |||
3616 | rebalance_domains(this_cpu, idle); | ||
3617 | |||
3618 | #ifdef CONFIG_NO_HZ | ||
3619 | /* | ||
3620 | * If this cpu is the owner for idle load balancing, then do the | ||
3621 | * balancing on behalf of the other idle cpus whose ticks are | ||
3622 | * stopped. | ||
3623 | */ | ||
3624 | if (this_rq->idle_at_tick && | ||
3625 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
3626 | struct rq *rq; | ||
3627 | int balance_cpu; | ||
3628 | |||
3629 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
3630 | if (balance_cpu == this_cpu) | ||
3631 | continue; | ||
3632 | |||
3633 | /* | ||
3634 | * If this cpu gets work to do, stop the load balancing | ||
3635 | * work being done for other cpus. Next load | ||
3636 | * balancing owner will pick it up. | ||
3637 | */ | ||
3638 | if (need_resched()) | ||
3639 | break; | ||
3640 | |||
3641 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
3642 | |||
3643 | rq = cpu_rq(balance_cpu); | ||
3644 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
3645 | this_rq->next_balance = rq->next_balance; | ||
3646 | } | ||
3647 | } | ||
3648 | #endif | ||
3649 | } | ||
3650 | |||
3651 | static inline int on_null_domain(int cpu) | ||
3652 | { | ||
3653 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
3654 | } | ||
3655 | |||
3656 | /* | ||
3657 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
3658 | * | ||
3659 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
3660 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
3661 | * if the whole system is idle. | ||
3662 | */ | ||
3663 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
3664 | { | ||
3665 | #ifdef CONFIG_NO_HZ | ||
3666 | /* | ||
3667 | * If we were in the nohz mode recently and busy at the current | ||
3668 | * scheduler tick, then check if we need to nominate new idle | ||
3669 | * load balancer. | ||
3670 | */ | ||
3671 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
3672 | rq->in_nohz_recently = 0; | ||
3673 | |||
3674 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
3675 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
3676 | atomic_set(&nohz.load_balancer, -1); | ||
3677 | } | ||
3678 | |||
3679 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
3680 | int ilb = find_new_ilb(cpu); | ||
3681 | |||
3682 | if (ilb < nr_cpu_ids) | ||
3683 | resched_cpu(ilb); | ||
3684 | } | ||
3685 | } | ||
3686 | |||
3687 | /* | ||
3688 | * If this cpu is idle and doing idle load balancing for all the | ||
3689 | * cpus with ticks stopped, is it time for that to stop? | ||
3690 | */ | ||
3691 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
3692 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
3693 | resched_cpu(cpu); | ||
3694 | return; | ||
3695 | } | ||
3696 | |||
3697 | /* | ||
3698 | * If this cpu is idle and the idle load balancing is done by | ||
3699 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
3700 | */ | ||
3701 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
3702 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
3703 | return; | ||
3704 | #endif | ||
3705 | /* Don't need to rebalance while attached to NULL domain */ | ||
3706 | if (time_after_eq(jiffies, rq->next_balance) && | ||
3707 | likely(!on_null_domain(cpu))) | ||
3708 | raise_softirq(SCHED_SOFTIRQ); | ||
3709 | } | ||
3710 | |||
1955 | static void rq_online_fair(struct rq *rq) | 3711 | static void rq_online_fair(struct rq *rq) |
1956 | { | 3712 | { |
1957 | update_sysctl(); | 3713 | update_sysctl(); |
@@ -1962,6 +3718,15 @@ static void rq_offline_fair(struct rq *rq) | |||
1962 | update_sysctl(); | 3718 | update_sysctl(); |
1963 | } | 3719 | } |
1964 | 3720 | ||
3721 | #else /* CONFIG_SMP */ | ||
3722 | |||
3723 | /* | ||
3724 | * on UP we do not need to balance between CPUs: | ||
3725 | */ | ||
3726 | static inline void idle_balance(int cpu, struct rq *rq) | ||
3727 | { | ||
3728 | } | ||
3729 | |||
1965 | #endif /* CONFIG_SMP */ | 3730 | #endif /* CONFIG_SMP */ |
1966 | 3731 | ||
1967 | /* | 3732 | /* |