aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile1
-rw-r--r--kernel/cgroup.c15
-rw-r--r--kernel/exit.c14
-rw-r--r--kernel/fork.c1
-rw-r--r--kernel/futex_compat.c6
-rw-r--r--kernel/kprobes.c34
-rw-r--r--kernel/ksysfs.c8
-rw-r--r--kernel/kthread.c2
-rw-r--r--kernel/lockdep.c18
-rw-r--r--kernel/notifier.c6
-rw-r--r--kernel/padata.c690
-rw-r--r--kernel/perf_event.c627
-rw-r--r--kernel/pid.c2
-rw-r--r--kernel/posix-timers.c2
-rw-r--r--kernel/power/Kconfig19
-rw-r--r--kernel/power/main.c31
-rw-r--r--kernel/power/snapshot.c4
-rw-r--r--kernel/power/swap.c4
-rw-r--r--kernel/power/swsusp.c58
-rw-r--r--kernel/power/user.c23
-rw-r--r--kernel/ptrace.c88
-rw-r--r--kernel/rcupdate.c29
-rw-r--r--kernel/rcutorture.c94
-rw-r--r--kernel/rcutree.c268
-rw-r--r--kernel/rcutree.h61
-rw-r--r--kernel/rcutree_plugin.h229
-rw-r--r--kernel/rcutree_trace.c14
-rw-r--r--kernel/resource.c57
-rw-r--r--kernel/sched.c2206
-rw-r--r--kernel/sched_cpupri.c4
-rw-r--r--kernel/sched_fair.c1699
-rw-r--r--kernel/sched_idletask.c23
-rw-r--r--kernel/sched_rt.c54
-rw-r--r--kernel/smp.c8
-rw-r--r--kernel/srcu.c52
-rw-r--r--kernel/sys.c5
-rw-r--r--kernel/time/clocksource.c14
-rw-r--r--kernel/time/ntp.c10
-rw-r--r--kernel/time/timekeeping.c1
-rw-r--r--kernel/trace/Kconfig11
-rw-r--r--kernel/trace/Makefile4
-rw-r--r--kernel/trace/ftrace.c105
-rw-r--r--kernel/trace/trace.c144
-rw-r--r--kernel/trace/trace.h6
-rw-r--r--kernel/trace/trace_branch.c19
-rw-r--r--kernel/trace/trace_event_profile.c52
-rw-r--r--kernel/trace/trace_events.c81
-rw-r--r--kernel/trace/trace_events_filter.c4
-rw-r--r--kernel/trace/trace_export.c87
-rw-r--r--kernel/trace/trace_functions_graph.c78
-rw-r--r--kernel/trace/trace_kprobe.c304
-rw-r--r--kernel/trace/trace_syscalls.c189
-rw-r--r--kernel/user.c305
53 files changed, 4296 insertions, 3574 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index 864ff75d65f2..6aebdeb2aa34 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -100,6 +100,7 @@ obj-$(CONFIG_SLOW_WORK_DEBUG) += slow-work-debugfs.o
100obj-$(CONFIG_PERF_EVENTS) += perf_event.o 100obj-$(CONFIG_PERF_EVENTS) += perf_event.o
101obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o 101obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o
102obj-$(CONFIG_USER_RETURN_NOTIFIER) += user-return-notifier.o 102obj-$(CONFIG_USER_RETURN_NOTIFIER) += user-return-notifier.o
103obj-$(CONFIG_PADATA) += padata.o
103 104
104ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) 105ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
105# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is 106# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index aa3bee566446..4fd90e129772 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -23,6 +23,7 @@
23 */ 23 */
24 24
25#include <linux/cgroup.h> 25#include <linux/cgroup.h>
26#include <linux/module.h>
26#include <linux/ctype.h> 27#include <linux/ctype.h>
27#include <linux/errno.h> 28#include <linux/errno.h>
28#include <linux/fs.h> 29#include <linux/fs.h>
@@ -166,6 +167,20 @@ static DEFINE_SPINLOCK(hierarchy_id_lock);
166 */ 167 */
167static int need_forkexit_callback __read_mostly; 168static int need_forkexit_callback __read_mostly;
168 169
170#ifdef CONFIG_PROVE_LOCKING
171int cgroup_lock_is_held(void)
172{
173 return lockdep_is_held(&cgroup_mutex);
174}
175#else /* #ifdef CONFIG_PROVE_LOCKING */
176int cgroup_lock_is_held(void)
177{
178 return mutex_is_locked(&cgroup_mutex);
179}
180#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
181
182EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
183
169/* convenient tests for these bits */ 184/* convenient tests for these bits */
170inline int cgroup_is_removed(const struct cgroup *cgrp) 185inline int cgroup_is_removed(const struct cgroup *cgrp)
171{ 186{
diff --git a/kernel/exit.c b/kernel/exit.c
index 546774a31a66..45ed043b8bf5 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -85,7 +85,9 @@ static void __exit_signal(struct task_struct *tsk)
85 BUG_ON(!sig); 85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count)); 86 BUG_ON(!atomic_read(&sig->count));
87 87
88 sighand = rcu_dereference(tsk->sighand); 88 sighand = rcu_dereference_check(tsk->sighand,
89 rcu_read_lock_held() ||
90 lockdep_is_held(&tasklist_lock));
89 spin_lock(&sighand->siglock); 91 spin_lock(&sighand->siglock);
90 92
91 posix_cpu_timers_exit(tsk); 93 posix_cpu_timers_exit(tsk);
@@ -170,8 +172,10 @@ void release_task(struct task_struct * p)
170repeat: 172repeat:
171 tracehook_prepare_release_task(p); 173 tracehook_prepare_release_task(p);
172 /* don't need to get the RCU readlock here - the process is dead and 174 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials */ 175 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 rcu_read_lock();
174 atomic_dec(&__task_cred(p)->user->processes); 177 atomic_dec(&__task_cred(p)->user->processes);
178 rcu_read_unlock();
175 179
176 proc_flush_task(p); 180 proc_flush_task(p);
177 181
@@ -473,9 +477,11 @@ static void close_files(struct files_struct * files)
473 /* 477 /*
474 * It is safe to dereference the fd table without RCU or 478 * It is safe to dereference the fd table without RCU or
475 * ->file_lock because this is the last reference to the 479 * ->file_lock because this is the last reference to the
476 * files structure. 480 * files structure. But use RCU to shut RCU-lockdep up.
477 */ 481 */
482 rcu_read_lock();
478 fdt = files_fdtable(files); 483 fdt = files_fdtable(files);
484 rcu_read_unlock();
479 for (;;) { 485 for (;;) {
480 unsigned long set; 486 unsigned long set;
481 i = j * __NFDBITS; 487 i = j * __NFDBITS;
@@ -521,10 +527,12 @@ void put_files_struct(struct files_struct *files)
521 * at the end of the RCU grace period. Otherwise, 527 * at the end of the RCU grace period. Otherwise,
522 * you can free files immediately. 528 * you can free files immediately.
523 */ 529 */
530 rcu_read_lock();
524 fdt = files_fdtable(files); 531 fdt = files_fdtable(files);
525 if (fdt != &files->fdtab) 532 if (fdt != &files->fdtab)
526 kmem_cache_free(files_cachep, files); 533 kmem_cache_free(files_cachep, files);
527 free_fdtable(fdt); 534 free_fdtable(fdt);
535 rcu_read_unlock();
528 } 536 }
529} 537}
530 538
diff --git a/kernel/fork.c b/kernel/fork.c
index f88bd984df35..17bbf093356d 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -86,6 +86,7 @@ int max_threads; /* tunable limit on nr_threads */
86DEFINE_PER_CPU(unsigned long, process_counts) = 0; 86DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 87
88__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 88__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89EXPORT_SYMBOL_GPL(tasklist_lock);
89 90
90int nr_processes(void) 91int nr_processes(void)
91{ 92{
diff --git a/kernel/futex_compat.c b/kernel/futex_compat.c
index 235716556bf1..d49afb2395e5 100644
--- a/kernel/futex_compat.c
+++ b/kernel/futex_compat.c
@@ -146,7 +146,7 @@ compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr,
146 struct task_struct *p; 146 struct task_struct *p;
147 147
148 ret = -ESRCH; 148 ret = -ESRCH;
149 read_lock(&tasklist_lock); 149 rcu_read_lock();
150 p = find_task_by_vpid(pid); 150 p = find_task_by_vpid(pid);
151 if (!p) 151 if (!p)
152 goto err_unlock; 152 goto err_unlock;
@@ -157,7 +157,7 @@ compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr,
157 !capable(CAP_SYS_PTRACE)) 157 !capable(CAP_SYS_PTRACE))
158 goto err_unlock; 158 goto err_unlock;
159 head = p->compat_robust_list; 159 head = p->compat_robust_list;
160 read_unlock(&tasklist_lock); 160 rcu_read_unlock();
161 } 161 }
162 162
163 if (put_user(sizeof(*head), len_ptr)) 163 if (put_user(sizeof(*head), len_ptr))
@@ -165,7 +165,7 @@ compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr,
165 return put_user(ptr_to_compat(head), head_ptr); 165 return put_user(ptr_to_compat(head), head_ptr);
166 166
167err_unlock: 167err_unlock:
168 read_unlock(&tasklist_lock); 168 rcu_read_unlock();
169 169
170 return ret; 170 return ret;
171} 171}
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index b7df302a0204..ccec774c716d 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -44,6 +44,7 @@
44#include <linux/debugfs.h> 44#include <linux/debugfs.h>
45#include <linux/kdebug.h> 45#include <linux/kdebug.h>
46#include <linux/memory.h> 46#include <linux/memory.h>
47#include <linux/ftrace.h>
47 48
48#include <asm-generic/sections.h> 49#include <asm-generic/sections.h>
49#include <asm/cacheflush.h> 50#include <asm/cacheflush.h>
@@ -93,6 +94,7 @@ static struct kprobe_blackpoint kprobe_blacklist[] = {
93 {"native_get_debugreg",}, 94 {"native_get_debugreg",},
94 {"irq_entries_start",}, 95 {"irq_entries_start",},
95 {"common_interrupt",}, 96 {"common_interrupt",},
97 {"mcount",}, /* mcount can be called from everywhere */
96 {NULL} /* Terminator */ 98 {NULL} /* Terminator */
97}; 99};
98 100
@@ -124,30 +126,6 @@ static LIST_HEAD(kprobe_insn_pages);
124static int kprobe_garbage_slots; 126static int kprobe_garbage_slots;
125static int collect_garbage_slots(void); 127static int collect_garbage_slots(void);
126 128
127static int __kprobes check_safety(void)
128{
129 int ret = 0;
130#if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
131 ret = freeze_processes();
132 if (ret == 0) {
133 struct task_struct *p, *q;
134 do_each_thread(p, q) {
135 if (p != current && p->state == TASK_RUNNING &&
136 p->pid != 0) {
137 printk("Check failed: %s is running\n",p->comm);
138 ret = -1;
139 goto loop_end;
140 }
141 } while_each_thread(p, q);
142 }
143loop_end:
144 thaw_processes();
145#else
146 synchronize_sched();
147#endif
148 return ret;
149}
150
151/** 129/**
152 * __get_insn_slot() - Find a slot on an executable page for an instruction. 130 * __get_insn_slot() - Find a slot on an executable page for an instruction.
153 * We allocate an executable page if there's no room on existing ones. 131 * We allocate an executable page if there's no room on existing ones.
@@ -235,9 +213,8 @@ static int __kprobes collect_garbage_slots(void)
235{ 213{
236 struct kprobe_insn_page *kip, *next; 214 struct kprobe_insn_page *kip, *next;
237 215
238 /* Ensure no-one is preepmted on the garbages */ 216 /* Ensure no-one is interrupted on the garbages */
239 if (check_safety()) 217 synchronize_sched();
240 return -EAGAIN;
241 218
242 list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) { 219 list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
243 int i; 220 int i;
@@ -728,7 +705,8 @@ int __kprobes register_kprobe(struct kprobe *p)
728 705
729 preempt_disable(); 706 preempt_disable();
730 if (!kernel_text_address((unsigned long) p->addr) || 707 if (!kernel_text_address((unsigned long) p->addr) ||
731 in_kprobes_functions((unsigned long) p->addr)) { 708 in_kprobes_functions((unsigned long) p->addr) ||
709 ftrace_text_reserved(p->addr, p->addr)) {
732 preempt_enable(); 710 preempt_enable();
733 return -EINVAL; 711 return -EINVAL;
734 } 712 }
diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c
index 3feaf5a74514..6b1ccc3f0205 100644
--- a/kernel/ksysfs.c
+++ b/kernel/ksysfs.c
@@ -197,16 +197,8 @@ static int __init ksysfs_init(void)
197 goto group_exit; 197 goto group_exit;
198 } 198 }
199 199
200 /* create the /sys/kernel/uids/ directory */
201 error = uids_sysfs_init();
202 if (error)
203 goto notes_exit;
204
205 return 0; 200 return 0;
206 201
207notes_exit:
208 if (notes_size > 0)
209 sysfs_remove_bin_file(kernel_kobj, &notes_attr);
210group_exit: 202group_exit:
211 sysfs_remove_group(kernel_kobj, &kernel_attr_group); 203 sysfs_remove_group(kernel_kobj, &kernel_attr_group);
212kset_exit: 204kset_exit:
diff --git a/kernel/kthread.c b/kernel/kthread.c
index fbb6222fe7e0..82ed0ea15194 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -101,7 +101,7 @@ static void create_kthread(struct kthread_create_info *create)
101 * 101 *
102 * Description: This helper function creates and names a kernel 102 * Description: This helper function creates and names a kernel
103 * thread. The thread will be stopped: use wake_up_process() to start 103 * thread. The thread will be stopped: use wake_up_process() to start
104 * it. See also kthread_run(), kthread_create_on_cpu(). 104 * it. See also kthread_run().
105 * 105 *
106 * When woken, the thread will run @threadfn() with @data as its 106 * When woken, the thread will run @threadfn() with @data as its
107 * argument. @threadfn() can either call do_exit() directly if it is a 107 * argument. @threadfn() can either call do_exit() directly if it is a
diff --git a/kernel/lockdep.c b/kernel/lockdep.c
index c62ec14609b9..0c30d0455de1 100644
--- a/kernel/lockdep.c
+++ b/kernel/lockdep.c
@@ -3809,3 +3809,21 @@ void lockdep_sys_exit(void)
3809 lockdep_print_held_locks(curr); 3809 lockdep_print_held_locks(curr);
3810 } 3810 }
3811} 3811}
3812
3813void lockdep_rcu_dereference(const char *file, const int line)
3814{
3815 struct task_struct *curr = current;
3816
3817 if (!debug_locks_off())
3818 return;
3819 printk("\n===================================================\n");
3820 printk( "[ INFO: suspicious rcu_dereference_check() usage. ]\n");
3821 printk( "---------------------------------------------------\n");
3822 printk("%s:%d invoked rcu_dereference_check() without protection!\n",
3823 file, line);
3824 printk("\nother info that might help us debug this:\n\n");
3825 lockdep_print_held_locks(curr);
3826 printk("\nstack backtrace:\n");
3827 dump_stack();
3828}
3829EXPORT_SYMBOL_GPL(lockdep_rcu_dereference);
diff --git a/kernel/notifier.c b/kernel/notifier.c
index acd24e7643eb..2488ba7eb568 100644
--- a/kernel/notifier.c
+++ b/kernel/notifier.c
@@ -78,10 +78,10 @@ static int __kprobes notifier_call_chain(struct notifier_block **nl,
78 int ret = NOTIFY_DONE; 78 int ret = NOTIFY_DONE;
79 struct notifier_block *nb, *next_nb; 79 struct notifier_block *nb, *next_nb;
80 80
81 nb = rcu_dereference(*nl); 81 nb = rcu_dereference_raw(*nl);
82 82
83 while (nb && nr_to_call) { 83 while (nb && nr_to_call) {
84 next_nb = rcu_dereference(nb->next); 84 next_nb = rcu_dereference_raw(nb->next);
85 85
86#ifdef CONFIG_DEBUG_NOTIFIERS 86#ifdef CONFIG_DEBUG_NOTIFIERS
87 if (unlikely(!func_ptr_is_kernel_text(nb->notifier_call))) { 87 if (unlikely(!func_ptr_is_kernel_text(nb->notifier_call))) {
@@ -309,7 +309,7 @@ int __blocking_notifier_call_chain(struct blocking_notifier_head *nh,
309 * racy then it does not matter what the result of the test 309 * racy then it does not matter what the result of the test
310 * is, we re-check the list after having taken the lock anyway: 310 * is, we re-check the list after having taken the lock anyway:
311 */ 311 */
312 if (rcu_dereference(nh->head)) { 312 if (rcu_dereference_raw(nh->head)) {
313 down_read(&nh->rwsem); 313 down_read(&nh->rwsem);
314 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, 314 ret = notifier_call_chain(&nh->head, val, v, nr_to_call,
315 nr_calls); 315 nr_calls);
diff --git a/kernel/padata.c b/kernel/padata.c
new file mode 100644
index 000000000000..6f9bcb8313d6
--- /dev/null
+++ b/kernel/padata.c
@@ -0,0 +1,690 @@
1/*
2 * padata.c - generic interface to process data streams in parallel
3 *
4 * Copyright (C) 2008, 2009 secunet Security Networks AG
5 * Copyright (C) 2008, 2009 Steffen Klassert <steffen.klassert@secunet.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21#include <linux/module.h>
22#include <linux/cpumask.h>
23#include <linux/err.h>
24#include <linux/cpu.h>
25#include <linux/padata.h>
26#include <linux/mutex.h>
27#include <linux/sched.h>
28#include <linux/rcupdate.h>
29
30#define MAX_SEQ_NR INT_MAX - NR_CPUS
31#define MAX_OBJ_NUM 10000 * NR_CPUS
32
33static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index)
34{
35 int cpu, target_cpu;
36
37 target_cpu = cpumask_first(pd->cpumask);
38 for (cpu = 0; cpu < cpu_index; cpu++)
39 target_cpu = cpumask_next(target_cpu, pd->cpumask);
40
41 return target_cpu;
42}
43
44static int padata_cpu_hash(struct padata_priv *padata)
45{
46 int cpu_index;
47 struct parallel_data *pd;
48
49 pd = padata->pd;
50
51 /*
52 * Hash the sequence numbers to the cpus by taking
53 * seq_nr mod. number of cpus in use.
54 */
55 cpu_index = padata->seq_nr % cpumask_weight(pd->cpumask);
56
57 return padata_index_to_cpu(pd, cpu_index);
58}
59
60static void padata_parallel_worker(struct work_struct *work)
61{
62 struct padata_queue *queue;
63 struct parallel_data *pd;
64 struct padata_instance *pinst;
65 LIST_HEAD(local_list);
66
67 local_bh_disable();
68 queue = container_of(work, struct padata_queue, pwork);
69 pd = queue->pd;
70 pinst = pd->pinst;
71
72 spin_lock(&queue->parallel.lock);
73 list_replace_init(&queue->parallel.list, &local_list);
74 spin_unlock(&queue->parallel.lock);
75
76 while (!list_empty(&local_list)) {
77 struct padata_priv *padata;
78
79 padata = list_entry(local_list.next,
80 struct padata_priv, list);
81
82 list_del_init(&padata->list);
83
84 padata->parallel(padata);
85 }
86
87 local_bh_enable();
88}
89
90/*
91 * padata_do_parallel - padata parallelization function
92 *
93 * @pinst: padata instance
94 * @padata: object to be parallelized
95 * @cb_cpu: cpu the serialization callback function will run on,
96 * must be in the cpumask of padata.
97 *
98 * The parallelization callback function will run with BHs off.
99 * Note: Every object which is parallelized by padata_do_parallel
100 * must be seen by padata_do_serial.
101 */
102int padata_do_parallel(struct padata_instance *pinst,
103 struct padata_priv *padata, int cb_cpu)
104{
105 int target_cpu, err;
106 struct padata_queue *queue;
107 struct parallel_data *pd;
108
109 rcu_read_lock_bh();
110
111 pd = rcu_dereference(pinst->pd);
112
113 err = 0;
114 if (!(pinst->flags & PADATA_INIT))
115 goto out;
116
117 err = -EBUSY;
118 if ((pinst->flags & PADATA_RESET))
119 goto out;
120
121 if (atomic_read(&pd->refcnt) >= MAX_OBJ_NUM)
122 goto out;
123
124 err = -EINVAL;
125 if (!cpumask_test_cpu(cb_cpu, pd->cpumask))
126 goto out;
127
128 err = -EINPROGRESS;
129 atomic_inc(&pd->refcnt);
130 padata->pd = pd;
131 padata->cb_cpu = cb_cpu;
132
133 if (unlikely(atomic_read(&pd->seq_nr) == pd->max_seq_nr))
134 atomic_set(&pd->seq_nr, -1);
135
136 padata->seq_nr = atomic_inc_return(&pd->seq_nr);
137
138 target_cpu = padata_cpu_hash(padata);
139 queue = per_cpu_ptr(pd->queue, target_cpu);
140
141 spin_lock(&queue->parallel.lock);
142 list_add_tail(&padata->list, &queue->parallel.list);
143 spin_unlock(&queue->parallel.lock);
144
145 queue_work_on(target_cpu, pinst->wq, &queue->pwork);
146
147out:
148 rcu_read_unlock_bh();
149
150 return err;
151}
152EXPORT_SYMBOL(padata_do_parallel);
153
154static struct padata_priv *padata_get_next(struct parallel_data *pd)
155{
156 int cpu, num_cpus, empty, calc_seq_nr;
157 int seq_nr, next_nr, overrun, next_overrun;
158 struct padata_queue *queue, *next_queue;
159 struct padata_priv *padata;
160 struct padata_list *reorder;
161
162 empty = 0;
163 next_nr = -1;
164 next_overrun = 0;
165 next_queue = NULL;
166
167 num_cpus = cpumask_weight(pd->cpumask);
168
169 for_each_cpu(cpu, pd->cpumask) {
170 queue = per_cpu_ptr(pd->queue, cpu);
171 reorder = &queue->reorder;
172
173 /*
174 * Calculate the seq_nr of the object that should be
175 * next in this queue.
176 */
177 overrun = 0;
178 calc_seq_nr = (atomic_read(&queue->num_obj) * num_cpus)
179 + queue->cpu_index;
180
181 if (unlikely(calc_seq_nr > pd->max_seq_nr)) {
182 calc_seq_nr = calc_seq_nr - pd->max_seq_nr - 1;
183 overrun = 1;
184 }
185
186 if (!list_empty(&reorder->list)) {
187 padata = list_entry(reorder->list.next,
188 struct padata_priv, list);
189
190 seq_nr = padata->seq_nr;
191 BUG_ON(calc_seq_nr != seq_nr);
192 } else {
193 seq_nr = calc_seq_nr;
194 empty++;
195 }
196
197 if (next_nr < 0 || seq_nr < next_nr
198 || (next_overrun && !overrun)) {
199 next_nr = seq_nr;
200 next_overrun = overrun;
201 next_queue = queue;
202 }
203 }
204
205 padata = NULL;
206
207 if (empty == num_cpus)
208 goto out;
209
210 reorder = &next_queue->reorder;
211
212 if (!list_empty(&reorder->list)) {
213 padata = list_entry(reorder->list.next,
214 struct padata_priv, list);
215
216 if (unlikely(next_overrun)) {
217 for_each_cpu(cpu, pd->cpumask) {
218 queue = per_cpu_ptr(pd->queue, cpu);
219 atomic_set(&queue->num_obj, 0);
220 }
221 }
222
223 spin_lock(&reorder->lock);
224 list_del_init(&padata->list);
225 atomic_dec(&pd->reorder_objects);
226 spin_unlock(&reorder->lock);
227
228 atomic_inc(&next_queue->num_obj);
229
230 goto out;
231 }
232
233 if (next_nr % num_cpus == next_queue->cpu_index) {
234 padata = ERR_PTR(-ENODATA);
235 goto out;
236 }
237
238 padata = ERR_PTR(-EINPROGRESS);
239out:
240 return padata;
241}
242
243static void padata_reorder(struct parallel_data *pd)
244{
245 struct padata_priv *padata;
246 struct padata_queue *queue;
247 struct padata_instance *pinst = pd->pinst;
248
249try_again:
250 if (!spin_trylock_bh(&pd->lock))
251 goto out;
252
253 while (1) {
254 padata = padata_get_next(pd);
255
256 if (!padata || PTR_ERR(padata) == -EINPROGRESS)
257 break;
258
259 if (PTR_ERR(padata) == -ENODATA) {
260 spin_unlock_bh(&pd->lock);
261 goto out;
262 }
263
264 queue = per_cpu_ptr(pd->queue, padata->cb_cpu);
265
266 spin_lock(&queue->serial.lock);
267 list_add_tail(&padata->list, &queue->serial.list);
268 spin_unlock(&queue->serial.lock);
269
270 queue_work_on(padata->cb_cpu, pinst->wq, &queue->swork);
271 }
272
273 spin_unlock_bh(&pd->lock);
274
275 if (atomic_read(&pd->reorder_objects))
276 goto try_again;
277
278out:
279 return;
280}
281
282static void padata_serial_worker(struct work_struct *work)
283{
284 struct padata_queue *queue;
285 struct parallel_data *pd;
286 LIST_HEAD(local_list);
287
288 local_bh_disable();
289 queue = container_of(work, struct padata_queue, swork);
290 pd = queue->pd;
291
292 spin_lock(&queue->serial.lock);
293 list_replace_init(&queue->serial.list, &local_list);
294 spin_unlock(&queue->serial.lock);
295
296 while (!list_empty(&local_list)) {
297 struct padata_priv *padata;
298
299 padata = list_entry(local_list.next,
300 struct padata_priv, list);
301
302 list_del_init(&padata->list);
303
304 padata->serial(padata);
305 atomic_dec(&pd->refcnt);
306 }
307 local_bh_enable();
308}
309
310/*
311 * padata_do_serial - padata serialization function
312 *
313 * @padata: object to be serialized.
314 *
315 * padata_do_serial must be called for every parallelized object.
316 * The serialization callback function will run with BHs off.
317 */
318void padata_do_serial(struct padata_priv *padata)
319{
320 int cpu;
321 struct padata_queue *queue;
322 struct parallel_data *pd;
323
324 pd = padata->pd;
325
326 cpu = get_cpu();
327 queue = per_cpu_ptr(pd->queue, cpu);
328
329 spin_lock(&queue->reorder.lock);
330 atomic_inc(&pd->reorder_objects);
331 list_add_tail(&padata->list, &queue->reorder.list);
332 spin_unlock(&queue->reorder.lock);
333
334 put_cpu();
335
336 padata_reorder(pd);
337}
338EXPORT_SYMBOL(padata_do_serial);
339
340static struct parallel_data *padata_alloc_pd(struct padata_instance *pinst,
341 const struct cpumask *cpumask)
342{
343 int cpu, cpu_index, num_cpus;
344 struct padata_queue *queue;
345 struct parallel_data *pd;
346
347 cpu_index = 0;
348
349 pd = kzalloc(sizeof(struct parallel_data), GFP_KERNEL);
350 if (!pd)
351 goto err;
352
353 pd->queue = alloc_percpu(struct padata_queue);
354 if (!pd->queue)
355 goto err_free_pd;
356
357 if (!alloc_cpumask_var(&pd->cpumask, GFP_KERNEL))
358 goto err_free_queue;
359
360 for_each_possible_cpu(cpu) {
361 queue = per_cpu_ptr(pd->queue, cpu);
362
363 queue->pd = pd;
364
365 if (cpumask_test_cpu(cpu, cpumask)
366 && cpumask_test_cpu(cpu, cpu_active_mask)) {
367 queue->cpu_index = cpu_index;
368 cpu_index++;
369 } else
370 queue->cpu_index = -1;
371
372 INIT_LIST_HEAD(&queue->reorder.list);
373 INIT_LIST_HEAD(&queue->parallel.list);
374 INIT_LIST_HEAD(&queue->serial.list);
375 spin_lock_init(&queue->reorder.lock);
376 spin_lock_init(&queue->parallel.lock);
377 spin_lock_init(&queue->serial.lock);
378
379 INIT_WORK(&queue->pwork, padata_parallel_worker);
380 INIT_WORK(&queue->swork, padata_serial_worker);
381 atomic_set(&queue->num_obj, 0);
382 }
383
384 cpumask_and(pd->cpumask, cpumask, cpu_active_mask);
385
386 num_cpus = cpumask_weight(pd->cpumask);
387 pd->max_seq_nr = (MAX_SEQ_NR / num_cpus) * num_cpus - 1;
388
389 atomic_set(&pd->seq_nr, -1);
390 atomic_set(&pd->reorder_objects, 0);
391 atomic_set(&pd->refcnt, 0);
392 pd->pinst = pinst;
393 spin_lock_init(&pd->lock);
394
395 return pd;
396
397err_free_queue:
398 free_percpu(pd->queue);
399err_free_pd:
400 kfree(pd);
401err:
402 return NULL;
403}
404
405static void padata_free_pd(struct parallel_data *pd)
406{
407 free_cpumask_var(pd->cpumask);
408 free_percpu(pd->queue);
409 kfree(pd);
410}
411
412static void padata_replace(struct padata_instance *pinst,
413 struct parallel_data *pd_new)
414{
415 struct parallel_data *pd_old = pinst->pd;
416
417 pinst->flags |= PADATA_RESET;
418
419 rcu_assign_pointer(pinst->pd, pd_new);
420
421 synchronize_rcu();
422
423 while (atomic_read(&pd_old->refcnt) != 0)
424 yield();
425
426 flush_workqueue(pinst->wq);
427
428 padata_free_pd(pd_old);
429
430 pinst->flags &= ~PADATA_RESET;
431}
432
433/*
434 * padata_set_cpumask - set the cpumask that padata should use
435 *
436 * @pinst: padata instance
437 * @cpumask: the cpumask to use
438 */
439int padata_set_cpumask(struct padata_instance *pinst,
440 cpumask_var_t cpumask)
441{
442 struct parallel_data *pd;
443 int err = 0;
444
445 might_sleep();
446
447 mutex_lock(&pinst->lock);
448
449 pd = padata_alloc_pd(pinst, cpumask);
450 if (!pd) {
451 err = -ENOMEM;
452 goto out;
453 }
454
455 cpumask_copy(pinst->cpumask, cpumask);
456
457 padata_replace(pinst, pd);
458
459out:
460 mutex_unlock(&pinst->lock);
461
462 return err;
463}
464EXPORT_SYMBOL(padata_set_cpumask);
465
466static int __padata_add_cpu(struct padata_instance *pinst, int cpu)
467{
468 struct parallel_data *pd;
469
470 if (cpumask_test_cpu(cpu, cpu_active_mask)) {
471 pd = padata_alloc_pd(pinst, pinst->cpumask);
472 if (!pd)
473 return -ENOMEM;
474
475 padata_replace(pinst, pd);
476 }
477
478 return 0;
479}
480
481/*
482 * padata_add_cpu - add a cpu to the padata cpumask
483 *
484 * @pinst: padata instance
485 * @cpu: cpu to add
486 */
487int padata_add_cpu(struct padata_instance *pinst, int cpu)
488{
489 int err;
490
491 might_sleep();
492
493 mutex_lock(&pinst->lock);
494
495 cpumask_set_cpu(cpu, pinst->cpumask);
496 err = __padata_add_cpu(pinst, cpu);
497
498 mutex_unlock(&pinst->lock);
499
500 return err;
501}
502EXPORT_SYMBOL(padata_add_cpu);
503
504static int __padata_remove_cpu(struct padata_instance *pinst, int cpu)
505{
506 struct parallel_data *pd;
507
508 if (cpumask_test_cpu(cpu, cpu_online_mask)) {
509 pd = padata_alloc_pd(pinst, pinst->cpumask);
510 if (!pd)
511 return -ENOMEM;
512
513 padata_replace(pinst, pd);
514 }
515
516 return 0;
517}
518
519/*
520 * padata_remove_cpu - remove a cpu from the padata cpumask
521 *
522 * @pinst: padata instance
523 * @cpu: cpu to remove
524 */
525int padata_remove_cpu(struct padata_instance *pinst, int cpu)
526{
527 int err;
528
529 might_sleep();
530
531 mutex_lock(&pinst->lock);
532
533 cpumask_clear_cpu(cpu, pinst->cpumask);
534 err = __padata_remove_cpu(pinst, cpu);
535
536 mutex_unlock(&pinst->lock);
537
538 return err;
539}
540EXPORT_SYMBOL(padata_remove_cpu);
541
542/*
543 * padata_start - start the parallel processing
544 *
545 * @pinst: padata instance to start
546 */
547void padata_start(struct padata_instance *pinst)
548{
549 might_sleep();
550
551 mutex_lock(&pinst->lock);
552 pinst->flags |= PADATA_INIT;
553 mutex_unlock(&pinst->lock);
554}
555EXPORT_SYMBOL(padata_start);
556
557/*
558 * padata_stop - stop the parallel processing
559 *
560 * @pinst: padata instance to stop
561 */
562void padata_stop(struct padata_instance *pinst)
563{
564 might_sleep();
565
566 mutex_lock(&pinst->lock);
567 pinst->flags &= ~PADATA_INIT;
568 mutex_unlock(&pinst->lock);
569}
570EXPORT_SYMBOL(padata_stop);
571
572static int __cpuinit padata_cpu_callback(struct notifier_block *nfb,
573 unsigned long action, void *hcpu)
574{
575 int err;
576 struct padata_instance *pinst;
577 int cpu = (unsigned long)hcpu;
578
579 pinst = container_of(nfb, struct padata_instance, cpu_notifier);
580
581 switch (action) {
582 case CPU_ONLINE:
583 case CPU_ONLINE_FROZEN:
584 if (!cpumask_test_cpu(cpu, pinst->cpumask))
585 break;
586 mutex_lock(&pinst->lock);
587 err = __padata_add_cpu(pinst, cpu);
588 mutex_unlock(&pinst->lock);
589 if (err)
590 return NOTIFY_BAD;
591 break;
592
593 case CPU_DOWN_PREPARE:
594 case CPU_DOWN_PREPARE_FROZEN:
595 if (!cpumask_test_cpu(cpu, pinst->cpumask))
596 break;
597 mutex_lock(&pinst->lock);
598 err = __padata_remove_cpu(pinst, cpu);
599 mutex_unlock(&pinst->lock);
600 if (err)
601 return NOTIFY_BAD;
602 break;
603
604 case CPU_UP_CANCELED:
605 case CPU_UP_CANCELED_FROZEN:
606 if (!cpumask_test_cpu(cpu, pinst->cpumask))
607 break;
608 mutex_lock(&pinst->lock);
609 __padata_remove_cpu(pinst, cpu);
610 mutex_unlock(&pinst->lock);
611
612 case CPU_DOWN_FAILED:
613 case CPU_DOWN_FAILED_FROZEN:
614 if (!cpumask_test_cpu(cpu, pinst->cpumask))
615 break;
616 mutex_lock(&pinst->lock);
617 __padata_add_cpu(pinst, cpu);
618 mutex_unlock(&pinst->lock);
619 }
620
621 return NOTIFY_OK;
622}
623
624/*
625 * padata_alloc - allocate and initialize a padata instance
626 *
627 * @cpumask: cpumask that padata uses for parallelization
628 * @wq: workqueue to use for the allocated padata instance
629 */
630struct padata_instance *padata_alloc(const struct cpumask *cpumask,
631 struct workqueue_struct *wq)
632{
633 int err;
634 struct padata_instance *pinst;
635 struct parallel_data *pd;
636
637 pinst = kzalloc(sizeof(struct padata_instance), GFP_KERNEL);
638 if (!pinst)
639 goto err;
640
641 pd = padata_alloc_pd(pinst, cpumask);
642 if (!pd)
643 goto err_free_inst;
644
645 rcu_assign_pointer(pinst->pd, pd);
646
647 pinst->wq = wq;
648
649 cpumask_copy(pinst->cpumask, cpumask);
650
651 pinst->flags = 0;
652
653 pinst->cpu_notifier.notifier_call = padata_cpu_callback;
654 pinst->cpu_notifier.priority = 0;
655 err = register_hotcpu_notifier(&pinst->cpu_notifier);
656 if (err)
657 goto err_free_pd;
658
659 mutex_init(&pinst->lock);
660
661 return pinst;
662
663err_free_pd:
664 padata_free_pd(pd);
665err_free_inst:
666 kfree(pinst);
667err:
668 return NULL;
669}
670EXPORT_SYMBOL(padata_alloc);
671
672/*
673 * padata_free - free a padata instance
674 *
675 * @ padata_inst: padata instance to free
676 */
677void padata_free(struct padata_instance *pinst)
678{
679 padata_stop(pinst);
680
681 synchronize_rcu();
682
683 while (atomic_read(&pinst->pd->refcnt) != 0)
684 yield();
685
686 unregister_hotcpu_notifier(&pinst->cpu_notifier);
687 padata_free_pd(pinst->pd);
688 kfree(pinst);
689}
690EXPORT_SYMBOL(padata_free);
diff --git a/kernel/perf_event.c b/kernel/perf_event.c
index 2ae7409bf38f..a661e7991865 100644
--- a/kernel/perf_event.c
+++ b/kernel/perf_event.c
@@ -98,11 +98,12 @@ void __weak hw_perf_enable(void) { barrier(); }
98 98
99void __weak hw_perf_event_setup(int cpu) { barrier(); } 99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); } 100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101void __weak hw_perf_event_setup_offline(int cpu) { barrier(); }
101 102
102int __weak 103int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader, 104hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx, 105 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu) 106 struct perf_event_context *ctx)
106{ 107{
107 return 0; 108 return 0;
108} 109}
@@ -248,7 +249,7 @@ static void perf_unpin_context(struct perf_event_context *ctx)
248 249
249static inline u64 perf_clock(void) 250static inline u64 perf_clock(void)
250{ 251{
251 return cpu_clock(smp_processor_id()); 252 return cpu_clock(raw_smp_processor_id());
252} 253}
253 254
254/* 255/*
@@ -289,6 +290,15 @@ static void update_event_times(struct perf_event *event)
289 event->total_time_running = run_end - event->tstamp_running; 290 event->total_time_running = run_end - event->tstamp_running;
290} 291}
291 292
293static struct list_head *
294ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
295{
296 if (event->attr.pinned)
297 return &ctx->pinned_groups;
298 else
299 return &ctx->flexible_groups;
300}
301
292/* 302/*
293 * Add a event from the lists for its context. 303 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held. 304 * Must be called with ctx->mutex and ctx->lock held.
@@ -303,9 +313,19 @@ list_add_event(struct perf_event *event, struct perf_event_context *ctx)
303 * add it straight to the context's event list, or to the group 313 * add it straight to the context's event list, or to the group
304 * leader's sibling list: 314 * leader's sibling list:
305 */ 315 */
306 if (group_leader == event) 316 if (group_leader == event) {
307 list_add_tail(&event->group_entry, &ctx->group_list); 317 struct list_head *list;
308 else { 318
319 if (is_software_event(event))
320 event->group_flags |= PERF_GROUP_SOFTWARE;
321
322 list = ctx_group_list(event, ctx);
323 list_add_tail(&event->group_entry, list);
324 } else {
325 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
326 !is_software_event(event))
327 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
328
309 list_add_tail(&event->group_entry, &group_leader->sibling_list); 329 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++; 330 group_leader->nr_siblings++;
311 } 331 }
@@ -355,9 +375,14 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx)
355 * to the context list directly: 375 * to the context list directly:
356 */ 376 */
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 377 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
378 struct list_head *list;
358 379
359 list_move_tail(&sibling->group_entry, &ctx->group_list); 380 list = ctx_group_list(event, ctx);
381 list_move_tail(&sibling->group_entry, list);
360 sibling->group_leader = sibling; 382 sibling->group_leader = sibling;
383
384 /* Inherit group flags from the previous leader */
385 sibling->group_flags = event->group_flags;
361 } 386 }
362} 387}
363 388
@@ -608,14 +633,13 @@ void perf_event_disable(struct perf_event *event)
608static int 633static int
609event_sched_in(struct perf_event *event, 634event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx, 635 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx, 636 struct perf_event_context *ctx)
612 int cpu)
613{ 637{
614 if (event->state <= PERF_EVENT_STATE_OFF) 638 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0; 639 return 0;
616 640
617 event->state = PERF_EVENT_STATE_ACTIVE; 641 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ 642 event->oncpu = smp_processor_id();
619 /* 643 /*
620 * The new state must be visible before we turn it on in the hardware: 644 * The new state must be visible before we turn it on in the hardware:
621 */ 645 */
@@ -642,8 +666,7 @@ event_sched_in(struct perf_event *event,
642static int 666static int
643group_sched_in(struct perf_event *group_event, 667group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx, 668 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx, 669 struct perf_event_context *ctx)
646 int cpu)
647{ 670{
648 struct perf_event *event, *partial_group; 671 struct perf_event *event, *partial_group;
649 int ret; 672 int ret;
@@ -651,18 +674,18 @@ group_sched_in(struct perf_event *group_event,
651 if (group_event->state == PERF_EVENT_STATE_OFF) 674 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0; 675 return 0;
653 676
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); 677 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
655 if (ret) 678 if (ret)
656 return ret < 0 ? ret : 0; 679 return ret < 0 ? ret : 0;
657 680
658 if (event_sched_in(group_event, cpuctx, ctx, cpu)) 681 if (event_sched_in(group_event, cpuctx, ctx))
659 return -EAGAIN; 682 return -EAGAIN;
660 683
661 /* 684 /*
662 * Schedule in siblings as one group (if any): 685 * Schedule in siblings as one group (if any):
663 */ 686 */
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 687 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) { 688 if (event_sched_in(event, cpuctx, ctx)) {
666 partial_group = event; 689 partial_group = event;
667 goto group_error; 690 goto group_error;
668 } 691 }
@@ -686,24 +709,6 @@ group_error:
686} 709}
687 710
688/* 711/*
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
691 */
692static int is_software_only_group(struct perf_event *leader)
693{
694 struct perf_event *event;
695
696 if (!is_software_event(leader))
697 return 0;
698
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
702
703 return 1;
704}
705
706/*
707 * Work out whether we can put this event group on the CPU now. 712 * Work out whether we can put this event group on the CPU now.
708 */ 713 */
709static int group_can_go_on(struct perf_event *event, 714static int group_can_go_on(struct perf_event *event,
@@ -713,7 +718,7 @@ static int group_can_go_on(struct perf_event *event,
713 /* 718 /*
714 * Groups consisting entirely of software events can always go on. 719 * Groups consisting entirely of software events can always go on.
715 */ 720 */
716 if (is_software_only_group(event)) 721 if (event->group_flags & PERF_GROUP_SOFTWARE)
717 return 1; 722 return 1;
718 /* 723 /*
719 * If an exclusive group is already on, no other hardware 724 * If an exclusive group is already on, no other hardware
@@ -754,7 +759,6 @@ static void __perf_install_in_context(void *info)
754 struct perf_event *event = info; 759 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx; 760 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader; 761 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err; 762 int err;
759 763
760 /* 764 /*
@@ -801,7 +805,7 @@ static void __perf_install_in_context(void *info)
801 if (!group_can_go_on(event, cpuctx, 1)) 805 if (!group_can_go_on(event, cpuctx, 1))
802 err = -EEXIST; 806 err = -EEXIST;
803 else 807 else
804 err = event_sched_in(event, cpuctx, ctx, cpu); 808 err = event_sched_in(event, cpuctx, ctx);
805 809
806 if (err) { 810 if (err) {
807 /* 811 /*
@@ -943,11 +947,9 @@ static void __perf_event_enable(void *info)
943 } else { 947 } else {
944 perf_disable(); 948 perf_disable();
945 if (event == leader) 949 if (event == leader)
946 err = group_sched_in(event, cpuctx, ctx, 950 err = group_sched_in(event, cpuctx, ctx);
947 smp_processor_id());
948 else 951 else
949 err = event_sched_in(event, cpuctx, ctx, 952 err = event_sched_in(event, cpuctx, ctx);
950 smp_processor_id());
951 perf_enable(); 953 perf_enable();
952 } 954 }
953 955
@@ -1043,8 +1045,15 @@ static int perf_event_refresh(struct perf_event *event, int refresh)
1043 return 0; 1045 return 0;
1044} 1046}
1045 1047
1046void __perf_event_sched_out(struct perf_event_context *ctx, 1048enum event_type_t {
1047 struct perf_cpu_context *cpuctx) 1049 EVENT_FLEXIBLE = 0x1,
1050 EVENT_PINNED = 0x2,
1051 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1052};
1053
1054static void ctx_sched_out(struct perf_event_context *ctx,
1055 struct perf_cpu_context *cpuctx,
1056 enum event_type_t event_type)
1048{ 1057{
1049 struct perf_event *event; 1058 struct perf_event *event;
1050 1059
@@ -1055,10 +1064,18 @@ void __perf_event_sched_out(struct perf_event_context *ctx,
1055 update_context_time(ctx); 1064 update_context_time(ctx);
1056 1065
1057 perf_disable(); 1066 perf_disable();
1058 if (ctx->nr_active) { 1067 if (!ctx->nr_active)
1059 list_for_each_entry(event, &ctx->group_list, group_entry) 1068 goto out_enable;
1069
1070 if (event_type & EVENT_PINNED)
1071 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1060 group_sched_out(event, cpuctx, ctx); 1072 group_sched_out(event, cpuctx, ctx);
1061 } 1073
1074 if (event_type & EVENT_FLEXIBLE)
1075 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1076 group_sched_out(event, cpuctx, ctx);
1077
1078 out_enable:
1062 perf_enable(); 1079 perf_enable();
1063 out: 1080 out:
1064 raw_spin_unlock(&ctx->lock); 1081 raw_spin_unlock(&ctx->lock);
@@ -1170,9 +1187,9 @@ static void perf_event_sync_stat(struct perf_event_context *ctx,
1170 * not restart the event. 1187 * not restart the event.
1171 */ 1188 */
1172void perf_event_task_sched_out(struct task_struct *task, 1189void perf_event_task_sched_out(struct task_struct *task,
1173 struct task_struct *next, int cpu) 1190 struct task_struct *next)
1174{ 1191{
1175 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); 1192 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1176 struct perf_event_context *ctx = task->perf_event_ctxp; 1193 struct perf_event_context *ctx = task->perf_event_ctxp;
1177 struct perf_event_context *next_ctx; 1194 struct perf_event_context *next_ctx;
1178 struct perf_event_context *parent; 1195 struct perf_event_context *parent;
@@ -1220,15 +1237,13 @@ void perf_event_task_sched_out(struct task_struct *task,
1220 rcu_read_unlock(); 1237 rcu_read_unlock();
1221 1238
1222 if (do_switch) { 1239 if (do_switch) {
1223 __perf_event_sched_out(ctx, cpuctx); 1240 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1224 cpuctx->task_ctx = NULL; 1241 cpuctx->task_ctx = NULL;
1225 } 1242 }
1226} 1243}
1227 1244
1228/* 1245static void task_ctx_sched_out(struct perf_event_context *ctx,
1229 * Called with IRQs disabled 1246 enum event_type_t event_type)
1230 */
1231static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1232{ 1247{
1233 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); 1248 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1234 1249
@@ -1238,47 +1253,41 @@ static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1238 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 1253 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1239 return; 1254 return;
1240 1255
1241 __perf_event_sched_out(ctx, cpuctx); 1256 ctx_sched_out(ctx, cpuctx, event_type);
1242 cpuctx->task_ctx = NULL; 1257 cpuctx->task_ctx = NULL;
1243} 1258}
1244 1259
1245/* 1260/*
1246 * Called with IRQs disabled 1261 * Called with IRQs disabled
1247 */ 1262 */
1248static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) 1263static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1264{
1265 task_ctx_sched_out(ctx, EVENT_ALL);
1266}
1267
1268/*
1269 * Called with IRQs disabled
1270 */
1271static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1272 enum event_type_t event_type)
1249{ 1273{
1250 __perf_event_sched_out(&cpuctx->ctx, cpuctx); 1274 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1251} 1275}
1252 1276
1253static void 1277static void
1254__perf_event_sched_in(struct perf_event_context *ctx, 1278ctx_pinned_sched_in(struct perf_event_context *ctx,
1255 struct perf_cpu_context *cpuctx, int cpu) 1279 struct perf_cpu_context *cpuctx)
1256{ 1280{
1257 struct perf_event *event; 1281 struct perf_event *event;
1258 int can_add_hw = 1;
1259
1260 raw_spin_lock(&ctx->lock);
1261 ctx->is_active = 1;
1262 if (likely(!ctx->nr_events))
1263 goto out;
1264 1282
1265 ctx->timestamp = perf_clock(); 1283 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266 1284 if (event->state <= PERF_EVENT_STATE_OFF)
1267 perf_disable();
1268
1269 /*
1270 * First go through the list and put on any pinned groups
1271 * in order to give them the best chance of going on.
1272 */
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 if (event->state <= PERF_EVENT_STATE_OFF ||
1275 !event->attr.pinned)
1276 continue; 1285 continue;
1277 if (event->cpu != -1 && event->cpu != cpu) 1286 if (event->cpu != -1 && event->cpu != smp_processor_id())
1278 continue; 1287 continue;
1279 1288
1280 if (group_can_go_on(event, cpuctx, 1)) 1289 if (group_can_go_on(event, cpuctx, 1))
1281 group_sched_in(event, cpuctx, ctx, cpu); 1290 group_sched_in(event, cpuctx, ctx);
1282 1291
1283 /* 1292 /*
1284 * If this pinned group hasn't been scheduled, 1293 * If this pinned group hasn't been scheduled,
@@ -1289,32 +1298,83 @@ __perf_event_sched_in(struct perf_event_context *ctx,
1289 event->state = PERF_EVENT_STATE_ERROR; 1298 event->state = PERF_EVENT_STATE_ERROR;
1290 } 1299 }
1291 } 1300 }
1301}
1292 1302
1293 list_for_each_entry(event, &ctx->group_list, group_entry) { 1303static void
1294 /* 1304ctx_flexible_sched_in(struct perf_event_context *ctx,
1295 * Ignore events in OFF or ERROR state, and 1305 struct perf_cpu_context *cpuctx)
1296 * ignore pinned events since we did them already. 1306{
1297 */ 1307 struct perf_event *event;
1298 if (event->state <= PERF_EVENT_STATE_OFF || 1308 int can_add_hw = 1;
1299 event->attr.pinned)
1300 continue;
1301 1309
1310 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1311 /* Ignore events in OFF or ERROR state */
1312 if (event->state <= PERF_EVENT_STATE_OFF)
1313 continue;
1302 /* 1314 /*
1303 * Listen to the 'cpu' scheduling filter constraint 1315 * Listen to the 'cpu' scheduling filter constraint
1304 * of events: 1316 * of events:
1305 */ 1317 */
1306 if (event->cpu != -1 && event->cpu != cpu) 1318 if (event->cpu != -1 && event->cpu != smp_processor_id())
1307 continue; 1319 continue;
1308 1320
1309 if (group_can_go_on(event, cpuctx, can_add_hw)) 1321 if (group_can_go_on(event, cpuctx, can_add_hw))
1310 if (group_sched_in(event, cpuctx, ctx, cpu)) 1322 if (group_sched_in(event, cpuctx, ctx))
1311 can_add_hw = 0; 1323 can_add_hw = 0;
1312 } 1324 }
1325}
1326
1327static void
1328ctx_sched_in(struct perf_event_context *ctx,
1329 struct perf_cpu_context *cpuctx,
1330 enum event_type_t event_type)
1331{
1332 raw_spin_lock(&ctx->lock);
1333 ctx->is_active = 1;
1334 if (likely(!ctx->nr_events))
1335 goto out;
1336
1337 ctx->timestamp = perf_clock();
1338
1339 perf_disable();
1340
1341 /*
1342 * First go through the list and put on any pinned groups
1343 * in order to give them the best chance of going on.
1344 */
1345 if (event_type & EVENT_PINNED)
1346 ctx_pinned_sched_in(ctx, cpuctx);
1347
1348 /* Then walk through the lower prio flexible groups */
1349 if (event_type & EVENT_FLEXIBLE)
1350 ctx_flexible_sched_in(ctx, cpuctx);
1351
1313 perf_enable(); 1352 perf_enable();
1314 out: 1353 out:
1315 raw_spin_unlock(&ctx->lock); 1354 raw_spin_unlock(&ctx->lock);
1316} 1355}
1317 1356
1357static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1358 enum event_type_t event_type)
1359{
1360 struct perf_event_context *ctx = &cpuctx->ctx;
1361
1362 ctx_sched_in(ctx, cpuctx, event_type);
1363}
1364
1365static void task_ctx_sched_in(struct task_struct *task,
1366 enum event_type_t event_type)
1367{
1368 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1369 struct perf_event_context *ctx = task->perf_event_ctxp;
1370
1371 if (likely(!ctx))
1372 return;
1373 if (cpuctx->task_ctx == ctx)
1374 return;
1375 ctx_sched_in(ctx, cpuctx, event_type);
1376 cpuctx->task_ctx = ctx;
1377}
1318/* 1378/*
1319 * Called from scheduler to add the events of the current task 1379 * Called from scheduler to add the events of the current task
1320 * with interrupts disabled. 1380 * with interrupts disabled.
@@ -1326,38 +1386,128 @@ __perf_event_sched_in(struct perf_event_context *ctx,
1326 * accessing the event control register. If a NMI hits, then it will 1386 * accessing the event control register. If a NMI hits, then it will
1327 * keep the event running. 1387 * keep the event running.
1328 */ 1388 */
1329void perf_event_task_sched_in(struct task_struct *task, int cpu) 1389void perf_event_task_sched_in(struct task_struct *task)
1330{ 1390{
1331 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); 1391 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1332 struct perf_event_context *ctx = task->perf_event_ctxp; 1392 struct perf_event_context *ctx = task->perf_event_ctxp;
1333 1393
1334 if (likely(!ctx)) 1394 if (likely(!ctx))
1335 return; 1395 return;
1396
1336 if (cpuctx->task_ctx == ctx) 1397 if (cpuctx->task_ctx == ctx)
1337 return; 1398 return;
1338 __perf_event_sched_in(ctx, cpuctx, cpu); 1399
1400 /*
1401 * We want to keep the following priority order:
1402 * cpu pinned (that don't need to move), task pinned,
1403 * cpu flexible, task flexible.
1404 */
1405 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1406
1407 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1408 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1409 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1410
1339 cpuctx->task_ctx = ctx; 1411 cpuctx->task_ctx = ctx;
1340} 1412}
1341 1413
1342static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) 1414#define MAX_INTERRUPTS (~0ULL)
1415
1416static void perf_log_throttle(struct perf_event *event, int enable);
1417
1418static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1343{ 1419{
1344 struct perf_event_context *ctx = &cpuctx->ctx; 1420 u64 frequency = event->attr.sample_freq;
1421 u64 sec = NSEC_PER_SEC;
1422 u64 divisor, dividend;
1423
1424 int count_fls, nsec_fls, frequency_fls, sec_fls;
1425
1426 count_fls = fls64(count);
1427 nsec_fls = fls64(nsec);
1428 frequency_fls = fls64(frequency);
1429 sec_fls = 30;
1345 1430
1346 __perf_event_sched_in(ctx, cpuctx, cpu); 1431 /*
1432 * We got @count in @nsec, with a target of sample_freq HZ
1433 * the target period becomes:
1434 *
1435 * @count * 10^9
1436 * period = -------------------
1437 * @nsec * sample_freq
1438 *
1439 */
1440
1441 /*
1442 * Reduce accuracy by one bit such that @a and @b converge
1443 * to a similar magnitude.
1444 */
1445#define REDUCE_FLS(a, b) \
1446do { \
1447 if (a##_fls > b##_fls) { \
1448 a >>= 1; \
1449 a##_fls--; \
1450 } else { \
1451 b >>= 1; \
1452 b##_fls--; \
1453 } \
1454} while (0)
1455
1456 /*
1457 * Reduce accuracy until either term fits in a u64, then proceed with
1458 * the other, so that finally we can do a u64/u64 division.
1459 */
1460 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1461 REDUCE_FLS(nsec, frequency);
1462 REDUCE_FLS(sec, count);
1463 }
1464
1465 if (count_fls + sec_fls > 64) {
1466 divisor = nsec * frequency;
1467
1468 while (count_fls + sec_fls > 64) {
1469 REDUCE_FLS(count, sec);
1470 divisor >>= 1;
1471 }
1472
1473 dividend = count * sec;
1474 } else {
1475 dividend = count * sec;
1476
1477 while (nsec_fls + frequency_fls > 64) {
1478 REDUCE_FLS(nsec, frequency);
1479 dividend >>= 1;
1480 }
1481
1482 divisor = nsec * frequency;
1483 }
1484
1485 return div64_u64(dividend, divisor);
1347} 1486}
1348 1487
1349#define MAX_INTERRUPTS (~0ULL) 1488static void perf_event_stop(struct perf_event *event)
1489{
1490 if (!event->pmu->stop)
1491 return event->pmu->disable(event);
1350 1492
1351static void perf_log_throttle(struct perf_event *event, int enable); 1493 return event->pmu->stop(event);
1494}
1495
1496static int perf_event_start(struct perf_event *event)
1497{
1498 if (!event->pmu->start)
1499 return event->pmu->enable(event);
1352 1500
1353static void perf_adjust_period(struct perf_event *event, u64 events) 1501 return event->pmu->start(event);
1502}
1503
1504static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1354{ 1505{
1355 struct hw_perf_event *hwc = &event->hw; 1506 struct hw_perf_event *hwc = &event->hw;
1356 u64 period, sample_period; 1507 u64 period, sample_period;
1357 s64 delta; 1508 s64 delta;
1358 1509
1359 events *= hwc->sample_period; 1510 period = perf_calculate_period(event, nsec, count);
1360 period = div64_u64(events, event->attr.sample_freq);
1361 1511
1362 delta = (s64)(period - hwc->sample_period); 1512 delta = (s64)(period - hwc->sample_period);
1363 delta = (delta + 7) / 8; /* low pass filter */ 1513 delta = (delta + 7) / 8; /* low pass filter */
@@ -1368,13 +1518,22 @@ static void perf_adjust_period(struct perf_event *event, u64 events)
1368 sample_period = 1; 1518 sample_period = 1;
1369 1519
1370 hwc->sample_period = sample_period; 1520 hwc->sample_period = sample_period;
1521
1522 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1523 perf_disable();
1524 perf_event_stop(event);
1525 atomic64_set(&hwc->period_left, 0);
1526 perf_event_start(event);
1527 perf_enable();
1528 }
1371} 1529}
1372 1530
1373static void perf_ctx_adjust_freq(struct perf_event_context *ctx) 1531static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1374{ 1532{
1375 struct perf_event *event; 1533 struct perf_event *event;
1376 struct hw_perf_event *hwc; 1534 struct hw_perf_event *hwc;
1377 u64 interrupts, freq; 1535 u64 interrupts, now;
1536 s64 delta;
1378 1537
1379 raw_spin_lock(&ctx->lock); 1538 raw_spin_lock(&ctx->lock);
1380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 1539 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
@@ -1395,44 +1554,18 @@ static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1395 if (interrupts == MAX_INTERRUPTS) { 1554 if (interrupts == MAX_INTERRUPTS) {
1396 perf_log_throttle(event, 1); 1555 perf_log_throttle(event, 1);
1397 event->pmu->unthrottle(event); 1556 event->pmu->unthrottle(event);
1398 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1399 } 1557 }
1400 1558
1401 if (!event->attr.freq || !event->attr.sample_freq) 1559 if (!event->attr.freq || !event->attr.sample_freq)
1402 continue; 1560 continue;
1403 1561
1404 /* 1562 event->pmu->read(event);
1405 * if the specified freq < HZ then we need to skip ticks 1563 now = atomic64_read(&event->count);
1406 */ 1564 delta = now - hwc->freq_count_stamp;
1407 if (event->attr.sample_freq < HZ) { 1565 hwc->freq_count_stamp = now;
1408 freq = event->attr.sample_freq;
1409
1410 hwc->freq_count += freq;
1411 hwc->freq_interrupts += interrupts;
1412
1413 if (hwc->freq_count < HZ)
1414 continue;
1415
1416 interrupts = hwc->freq_interrupts;
1417 hwc->freq_interrupts = 0;
1418 hwc->freq_count -= HZ;
1419 } else
1420 freq = HZ;
1421
1422 perf_adjust_period(event, freq * interrupts);
1423 1566
1424 /* 1567 if (delta > 0)
1425 * In order to avoid being stalled by an (accidental) huge 1568 perf_adjust_period(event, TICK_NSEC, delta);
1426 * sample period, force reset the sample period if we didn't
1427 * get any events in this freq period.
1428 */
1429 if (!interrupts) {
1430 perf_disable();
1431 event->pmu->disable(event);
1432 atomic64_set(&hwc->period_left, 0);
1433 event->pmu->enable(event);
1434 perf_enable();
1435 }
1436 } 1569 }
1437 raw_spin_unlock(&ctx->lock); 1570 raw_spin_unlock(&ctx->lock);
1438} 1571}
@@ -1442,26 +1575,18 @@ static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1442 */ 1575 */
1443static void rotate_ctx(struct perf_event_context *ctx) 1576static void rotate_ctx(struct perf_event_context *ctx)
1444{ 1577{
1445 struct perf_event *event;
1446
1447 if (!ctx->nr_events) 1578 if (!ctx->nr_events)
1448 return; 1579 return;
1449 1580
1450 raw_spin_lock(&ctx->lock); 1581 raw_spin_lock(&ctx->lock);
1451 /* 1582
1452 * Rotate the first entry last (works just fine for group events too): 1583 /* Rotate the first entry last of non-pinned groups */
1453 */ 1584 list_rotate_left(&ctx->flexible_groups);
1454 perf_disable();
1455 list_for_each_entry(event, &ctx->group_list, group_entry) {
1456 list_move_tail(&event->group_entry, &ctx->group_list);
1457 break;
1458 }
1459 perf_enable();
1460 1585
1461 raw_spin_unlock(&ctx->lock); 1586 raw_spin_unlock(&ctx->lock);
1462} 1587}
1463 1588
1464void perf_event_task_tick(struct task_struct *curr, int cpu) 1589void perf_event_task_tick(struct task_struct *curr)
1465{ 1590{
1466 struct perf_cpu_context *cpuctx; 1591 struct perf_cpu_context *cpuctx;
1467 struct perf_event_context *ctx; 1592 struct perf_event_context *ctx;
@@ -1469,24 +1594,43 @@ void perf_event_task_tick(struct task_struct *curr, int cpu)
1469 if (!atomic_read(&nr_events)) 1594 if (!atomic_read(&nr_events))
1470 return; 1595 return;
1471 1596
1472 cpuctx = &per_cpu(perf_cpu_context, cpu); 1597 cpuctx = &__get_cpu_var(perf_cpu_context);
1473 ctx = curr->perf_event_ctxp; 1598 ctx = curr->perf_event_ctxp;
1474 1599
1600 perf_disable();
1601
1475 perf_ctx_adjust_freq(&cpuctx->ctx); 1602 perf_ctx_adjust_freq(&cpuctx->ctx);
1476 if (ctx) 1603 if (ctx)
1477 perf_ctx_adjust_freq(ctx); 1604 perf_ctx_adjust_freq(ctx);
1478 1605
1479 perf_event_cpu_sched_out(cpuctx); 1606 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1480 if (ctx) 1607 if (ctx)
1481 __perf_event_task_sched_out(ctx); 1608 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1482 1609
1483 rotate_ctx(&cpuctx->ctx); 1610 rotate_ctx(&cpuctx->ctx);
1484 if (ctx) 1611 if (ctx)
1485 rotate_ctx(ctx); 1612 rotate_ctx(ctx);
1486 1613
1487 perf_event_cpu_sched_in(cpuctx, cpu); 1614 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1488 if (ctx) 1615 if (ctx)
1489 perf_event_task_sched_in(curr, cpu); 1616 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1617
1618 perf_enable();
1619}
1620
1621static int event_enable_on_exec(struct perf_event *event,
1622 struct perf_event_context *ctx)
1623{
1624 if (!event->attr.enable_on_exec)
1625 return 0;
1626
1627 event->attr.enable_on_exec = 0;
1628 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1629 return 0;
1630
1631 __perf_event_mark_enabled(event, ctx);
1632
1633 return 1;
1490} 1634}
1491 1635
1492/* 1636/*
@@ -1499,6 +1643,7 @@ static void perf_event_enable_on_exec(struct task_struct *task)
1499 struct perf_event *event; 1643 struct perf_event *event;
1500 unsigned long flags; 1644 unsigned long flags;
1501 int enabled = 0; 1645 int enabled = 0;
1646 int ret;
1502 1647
1503 local_irq_save(flags); 1648 local_irq_save(flags);
1504 ctx = task->perf_event_ctxp; 1649 ctx = task->perf_event_ctxp;
@@ -1509,14 +1654,16 @@ static void perf_event_enable_on_exec(struct task_struct *task)
1509 1654
1510 raw_spin_lock(&ctx->lock); 1655 raw_spin_lock(&ctx->lock);
1511 1656
1512 list_for_each_entry(event, &ctx->group_list, group_entry) { 1657 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1513 if (!event->attr.enable_on_exec) 1658 ret = event_enable_on_exec(event, ctx);
1514 continue; 1659 if (ret)
1515 event->attr.enable_on_exec = 0; 1660 enabled = 1;
1516 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1661 }
1517 continue; 1662
1518 __perf_event_mark_enabled(event, ctx); 1663 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1519 enabled = 1; 1664 ret = event_enable_on_exec(event, ctx);
1665 if (ret)
1666 enabled = 1;
1520 } 1667 }
1521 1668
1522 /* 1669 /*
@@ -1527,7 +1674,7 @@ static void perf_event_enable_on_exec(struct task_struct *task)
1527 1674
1528 raw_spin_unlock(&ctx->lock); 1675 raw_spin_unlock(&ctx->lock);
1529 1676
1530 perf_event_task_sched_in(task, smp_processor_id()); 1677 perf_event_task_sched_in(task);
1531 out: 1678 out:
1532 local_irq_restore(flags); 1679 local_irq_restore(flags);
1533} 1680}
@@ -1590,7 +1737,8 @@ __perf_event_init_context(struct perf_event_context *ctx,
1590{ 1737{
1591 raw_spin_lock_init(&ctx->lock); 1738 raw_spin_lock_init(&ctx->lock);
1592 mutex_init(&ctx->mutex); 1739 mutex_init(&ctx->mutex);
1593 INIT_LIST_HEAD(&ctx->group_list); 1740 INIT_LIST_HEAD(&ctx->pinned_groups);
1741 INIT_LIST_HEAD(&ctx->flexible_groups);
1594 INIT_LIST_HEAD(&ctx->event_list); 1742 INIT_LIST_HEAD(&ctx->event_list);
1595 atomic_set(&ctx->refcount, 1); 1743 atomic_set(&ctx->refcount, 1);
1596 ctx->task = task; 1744 ctx->task = task;
@@ -3608,7 +3756,7 @@ void __perf_event_mmap(struct vm_area_struct *vma)
3608 /* .tid */ 3756 /* .tid */
3609 .start = vma->vm_start, 3757 .start = vma->vm_start,
3610 .len = vma->vm_end - vma->vm_start, 3758 .len = vma->vm_end - vma->vm_start,
3611 .pgoff = vma->vm_pgoff, 3759 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3612 }, 3760 },
3613 }; 3761 };
3614 3762
@@ -3688,12 +3836,12 @@ static int __perf_event_overflow(struct perf_event *event, int nmi,
3688 3836
3689 if (event->attr.freq) { 3837 if (event->attr.freq) {
3690 u64 now = perf_clock(); 3838 u64 now = perf_clock();
3691 s64 delta = now - hwc->freq_stamp; 3839 s64 delta = now - hwc->freq_time_stamp;
3692 3840
3693 hwc->freq_stamp = now; 3841 hwc->freq_time_stamp = now;
3694 3842
3695 if (delta > 0 && delta < TICK_NSEC) 3843 if (delta > 0 && delta < 2*TICK_NSEC)
3696 perf_adjust_period(event, NSEC_PER_SEC / (int)delta); 3844 perf_adjust_period(event, delta, hwc->last_period);
3697 } 3845 }
3698 3846
3699 /* 3847 /*
@@ -4184,7 +4332,7 @@ static const struct pmu perf_ops_task_clock = {
4184 .read = task_clock_perf_event_read, 4332 .read = task_clock_perf_event_read,
4185}; 4333};
4186 4334
4187#ifdef CONFIG_EVENT_PROFILE 4335#ifdef CONFIG_EVENT_TRACING
4188 4336
4189void perf_tp_event(int event_id, u64 addr, u64 count, void *record, 4337void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4190 int entry_size) 4338 int entry_size)
@@ -4289,7 +4437,7 @@ static void perf_event_free_filter(struct perf_event *event)
4289{ 4437{
4290} 4438}
4291 4439
4292#endif /* CONFIG_EVENT_PROFILE */ 4440#endif /* CONFIG_EVENT_TRACING */
4293 4441
4294#ifdef CONFIG_HAVE_HW_BREAKPOINT 4442#ifdef CONFIG_HAVE_HW_BREAKPOINT
4295static void bp_perf_event_destroy(struct perf_event *event) 4443static void bp_perf_event_destroy(struct perf_event *event)
@@ -4870,8 +5018,15 @@ inherit_event(struct perf_event *parent_event,
4870 else 5018 else
4871 child_event->state = PERF_EVENT_STATE_OFF; 5019 child_event->state = PERF_EVENT_STATE_OFF;
4872 5020
4873 if (parent_event->attr.freq) 5021 if (parent_event->attr.freq) {
4874 child_event->hw.sample_period = parent_event->hw.sample_period; 5022 u64 sample_period = parent_event->hw.sample_period;
5023 struct hw_perf_event *hwc = &child_event->hw;
5024
5025 hwc->sample_period = sample_period;
5026 hwc->last_period = sample_period;
5027
5028 atomic64_set(&hwc->period_left, sample_period);
5029 }
4875 5030
4876 child_event->overflow_handler = parent_event->overflow_handler; 5031 child_event->overflow_handler = parent_event->overflow_handler;
4877 5032
@@ -5039,7 +5194,11 @@ void perf_event_exit_task(struct task_struct *child)
5039 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); 5194 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5040 5195
5041again: 5196again:
5042 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, 5197 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5198 group_entry)
5199 __perf_event_exit_task(child_event, child_ctx, child);
5200
5201 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5043 group_entry) 5202 group_entry)
5044 __perf_event_exit_task(child_event, child_ctx, child); 5203 __perf_event_exit_task(child_event, child_ctx, child);
5045 5204
@@ -5048,7 +5207,8 @@ again:
5048 * its siblings to the list, but we obtained 'tmp' before that which 5207 * its siblings to the list, but we obtained 'tmp' before that which
5049 * will still point to the list head terminating the iteration. 5208 * will still point to the list head terminating the iteration.
5050 */ 5209 */
5051 if (!list_empty(&child_ctx->group_list)) 5210 if (!list_empty(&child_ctx->pinned_groups) ||
5211 !list_empty(&child_ctx->flexible_groups))
5052 goto again; 5212 goto again;
5053 5213
5054 mutex_unlock(&child_ctx->mutex); 5214 mutex_unlock(&child_ctx->mutex);
@@ -5056,6 +5216,24 @@ again:
5056 put_ctx(child_ctx); 5216 put_ctx(child_ctx);
5057} 5217}
5058 5218
5219static void perf_free_event(struct perf_event *event,
5220 struct perf_event_context *ctx)
5221{
5222 struct perf_event *parent = event->parent;
5223
5224 if (WARN_ON_ONCE(!parent))
5225 return;
5226
5227 mutex_lock(&parent->child_mutex);
5228 list_del_init(&event->child_list);
5229 mutex_unlock(&parent->child_mutex);
5230
5231 fput(parent->filp);
5232
5233 list_del_event(event, ctx);
5234 free_event(event);
5235}
5236
5059/* 5237/*
5060 * free an unexposed, unused context as created by inheritance by 5238 * free an unexposed, unused context as created by inheritance by
5061 * init_task below, used by fork() in case of fail. 5239 * init_task below, used by fork() in case of fail.
@@ -5070,36 +5248,70 @@ void perf_event_free_task(struct task_struct *task)
5070 5248
5071 mutex_lock(&ctx->mutex); 5249 mutex_lock(&ctx->mutex);
5072again: 5250again:
5073 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { 5251 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5074 struct perf_event *parent = event->parent; 5252 perf_free_event(event, ctx);
5075 5253
5076 if (WARN_ON_ONCE(!parent)) 5254 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5077 continue; 5255 group_entry)
5256 perf_free_event(event, ctx);
5078 5257
5079 mutex_lock(&parent->child_mutex); 5258 if (!list_empty(&ctx->pinned_groups) ||
5080 list_del_init(&event->child_list); 5259 !list_empty(&ctx->flexible_groups))
5081 mutex_unlock(&parent->child_mutex); 5260 goto again;
5082 5261
5083 fput(parent->filp); 5262 mutex_unlock(&ctx->mutex);
5084 5263
5085 list_del_event(event, ctx); 5264 put_ctx(ctx);
5086 free_event(event); 5265}
5266
5267static int
5268inherit_task_group(struct perf_event *event, struct task_struct *parent,
5269 struct perf_event_context *parent_ctx,
5270 struct task_struct *child,
5271 int *inherited_all)
5272{
5273 int ret;
5274 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5275
5276 if (!event->attr.inherit) {
5277 *inherited_all = 0;
5278 return 0;
5087 } 5279 }
5088 5280
5089 if (!list_empty(&ctx->group_list)) 5281 if (!child_ctx) {
5090 goto again; 5282 /*
5283 * This is executed from the parent task context, so
5284 * inherit events that have been marked for cloning.
5285 * First allocate and initialize a context for the
5286 * child.
5287 */
5091 5288
5092 mutex_unlock(&ctx->mutex); 5289 child_ctx = kzalloc(sizeof(struct perf_event_context),
5290 GFP_KERNEL);
5291 if (!child_ctx)
5292 return -ENOMEM;
5093 5293
5094 put_ctx(ctx); 5294 __perf_event_init_context(child_ctx, child);
5295 child->perf_event_ctxp = child_ctx;
5296 get_task_struct(child);
5297 }
5298
5299 ret = inherit_group(event, parent, parent_ctx,
5300 child, child_ctx);
5301
5302 if (ret)
5303 *inherited_all = 0;
5304
5305 return ret;
5095} 5306}
5096 5307
5308
5097/* 5309/*
5098 * Initialize the perf_event context in task_struct 5310 * Initialize the perf_event context in task_struct
5099 */ 5311 */
5100int perf_event_init_task(struct task_struct *child) 5312int perf_event_init_task(struct task_struct *child)
5101{ 5313{
5102 struct perf_event_context *child_ctx = NULL, *parent_ctx; 5314 struct perf_event_context *child_ctx, *parent_ctx;
5103 struct perf_event_context *cloned_ctx; 5315 struct perf_event_context *cloned_ctx;
5104 struct perf_event *event; 5316 struct perf_event *event;
5105 struct task_struct *parent = current; 5317 struct task_struct *parent = current;
@@ -5137,41 +5349,22 @@ int perf_event_init_task(struct task_struct *child)
5137 * We dont have to disable NMIs - we are only looking at 5349 * We dont have to disable NMIs - we are only looking at
5138 * the list, not manipulating it: 5350 * the list, not manipulating it:
5139 */ 5351 */
5140 list_for_each_entry(event, &parent_ctx->group_list, group_entry) { 5352 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5141 5353 ret = inherit_task_group(event, parent, parent_ctx, child,
5142 if (!event->attr.inherit) { 5354 &inherited_all);
5143 inherited_all = 0; 5355 if (ret)
5144 continue; 5356 break;
5145 } 5357 }
5146
5147 if (!child->perf_event_ctxp) {
5148 /*
5149 * This is executed from the parent task context, so
5150 * inherit events that have been marked for cloning.
5151 * First allocate and initialize a context for the
5152 * child.
5153 */
5154
5155 child_ctx = kzalloc(sizeof(struct perf_event_context),
5156 GFP_KERNEL);
5157 if (!child_ctx) {
5158 ret = -ENOMEM;
5159 break;
5160 }
5161
5162 __perf_event_init_context(child_ctx, child);
5163 child->perf_event_ctxp = child_ctx;
5164 get_task_struct(child);
5165 }
5166 5358
5167 ret = inherit_group(event, parent, parent_ctx, 5359 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5168 child, child_ctx); 5360 ret = inherit_task_group(event, parent, parent_ctx, child,
5169 if (ret) { 5361 &inherited_all);
5170 inherited_all = 0; 5362 if (ret)
5171 break; 5363 break;
5172 }
5173 } 5364 }
5174 5365
5366 child_ctx = child->perf_event_ctxp;
5367
5175 if (child_ctx && inherited_all) { 5368 if (child_ctx && inherited_all) {
5176 /* 5369 /*
5177 * Mark the child context as a clone of the parent 5370 * Mark the child context as a clone of the parent
@@ -5220,7 +5413,9 @@ static void __perf_event_exit_cpu(void *info)
5220 struct perf_event_context *ctx = &cpuctx->ctx; 5413 struct perf_event_context *ctx = &cpuctx->ctx;
5221 struct perf_event *event, *tmp; 5414 struct perf_event *event, *tmp;
5222 5415
5223 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) 5416 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5417 __perf_event_remove_from_context(event);
5418 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5224 __perf_event_remove_from_context(event); 5419 __perf_event_remove_from_context(event);
5225} 5420}
5226static void perf_event_exit_cpu(int cpu) 5421static void perf_event_exit_cpu(int cpu)
@@ -5258,6 +5453,10 @@ perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5258 perf_event_exit_cpu(cpu); 5453 perf_event_exit_cpu(cpu);
5259 break; 5454 break;
5260 5455
5456 case CPU_DEAD:
5457 hw_perf_event_setup_offline(cpu);
5458 break;
5459
5261 default: 5460 default:
5262 break; 5461 break;
5263 } 5462 }
diff --git a/kernel/pid.c b/kernel/pid.c
index 2e17c9c92cbe..b08e697cd83f 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -367,7 +367,7 @@ struct task_struct *pid_task(struct pid *pid, enum pid_type type)
367 struct task_struct *result = NULL; 367 struct task_struct *result = NULL;
368 if (pid) { 368 if (pid) {
369 struct hlist_node *first; 369 struct hlist_node *first;
370 first = rcu_dereference(pid->tasks[type].first); 370 first = rcu_dereference_check(pid->tasks[type].first, rcu_read_lock_held() || lockdep_is_held(&tasklist_lock));
371 if (first) 371 if (first)
372 result = hlist_entry(first, struct task_struct, pids[(type)].node); 372 result = hlist_entry(first, struct task_struct, pids[(type)].node);
373 } 373 }
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c
index 495440779ce3..00d1fda58ab6 100644
--- a/kernel/posix-timers.c
+++ b/kernel/posix-timers.c
@@ -256,7 +256,7 @@ static int posix_get_monotonic_coarse(clockid_t which_clock,
256 return 0; 256 return 0;
257} 257}
258 258
259int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) 259static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
260{ 260{
261 *tp = ktime_to_timespec(KTIME_LOW_RES); 261 *tp = ktime_to_timespec(KTIME_LOW_RES);
262 return 0; 262 return 0;
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig
index 91e09d3b2eb2..5c36ea9d55d2 100644
--- a/kernel/power/Kconfig
+++ b/kernel/power/Kconfig
@@ -27,6 +27,15 @@ config PM_DEBUG
27 code. This is helpful when debugging and reporting PM bugs, like 27 code. This is helpful when debugging and reporting PM bugs, like
28 suspend support. 28 suspend support.
29 29
30config PM_ADVANCED_DEBUG
31 bool "Extra PM attributes in sysfs for low-level debugging/testing"
32 depends on PM_DEBUG
33 default n
34 ---help---
35 Add extra sysfs attributes allowing one to access some Power Management
36 fields of device objects from user space. If you are not a kernel
37 developer interested in debugging/testing Power Management, say "no".
38
30config PM_VERBOSE 39config PM_VERBOSE
31 bool "Verbose Power Management debugging" 40 bool "Verbose Power Management debugging"
32 depends on PM_DEBUG 41 depends on PM_DEBUG
@@ -85,6 +94,11 @@ config PM_SLEEP
85 depends on SUSPEND || HIBERNATION || XEN_SAVE_RESTORE 94 depends on SUSPEND || HIBERNATION || XEN_SAVE_RESTORE
86 default y 95 default y
87 96
97config PM_SLEEP_ADVANCED_DEBUG
98 bool
99 depends on PM_ADVANCED_DEBUG
100 default n
101
88config SUSPEND 102config SUSPEND
89 bool "Suspend to RAM and standby" 103 bool "Suspend to RAM and standby"
90 depends on PM && ARCH_SUSPEND_POSSIBLE 104 depends on PM && ARCH_SUSPEND_POSSIBLE
@@ -222,3 +236,8 @@ config PM_RUNTIME
222 and the bus type drivers of the buses the devices are on are 236 and the bus type drivers of the buses the devices are on are
223 responsible for the actual handling of the autosuspend requests and 237 responsible for the actual handling of the autosuspend requests and
224 wake-up events. 238 wake-up events.
239
240config PM_OPS
241 bool
242 depends on PM_SLEEP || PM_RUNTIME
243 default y
diff --git a/kernel/power/main.c b/kernel/power/main.c
index 0998c7139053..b58800b21fc0 100644
--- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -44,6 +44,32 @@ int pm_notifier_call_chain(unsigned long val)
44 == NOTIFY_BAD) ? -EINVAL : 0; 44 == NOTIFY_BAD) ? -EINVAL : 0;
45} 45}
46 46
47/* If set, devices may be suspended and resumed asynchronously. */
48int pm_async_enabled = 1;
49
50static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
51 char *buf)
52{
53 return sprintf(buf, "%d\n", pm_async_enabled);
54}
55
56static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
57 const char *buf, size_t n)
58{
59 unsigned long val;
60
61 if (strict_strtoul(buf, 10, &val))
62 return -EINVAL;
63
64 if (val > 1)
65 return -EINVAL;
66
67 pm_async_enabled = val;
68 return n;
69}
70
71power_attr(pm_async);
72
47#ifdef CONFIG_PM_DEBUG 73#ifdef CONFIG_PM_DEBUG
48int pm_test_level = TEST_NONE; 74int pm_test_level = TEST_NONE;
49 75
@@ -208,9 +234,12 @@ static struct attribute * g[] = {
208#ifdef CONFIG_PM_TRACE 234#ifdef CONFIG_PM_TRACE
209 &pm_trace_attr.attr, 235 &pm_trace_attr.attr,
210#endif 236#endif
211#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_PM_DEBUG) 237#ifdef CONFIG_PM_SLEEP
238 &pm_async_attr.attr,
239#ifdef CONFIG_PM_DEBUG
212 &pm_test_attr.attr, 240 &pm_test_attr.attr,
213#endif 241#endif
242#endif
214 NULL, 243 NULL,
215}; 244};
216 245
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 36cb168e4330..830cadecbdfc 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -1181,7 +1181,7 @@ static void free_unnecessary_pages(void)
1181 1181
1182 memory_bm_position_reset(&copy_bm); 1182 memory_bm_position_reset(&copy_bm);
1183 1183
1184 while (to_free_normal > 0 && to_free_highmem > 0) { 1184 while (to_free_normal > 0 || to_free_highmem > 0) {
1185 unsigned long pfn = memory_bm_next_pfn(&copy_bm); 1185 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1186 struct page *page = pfn_to_page(pfn); 1186 struct page *page = pfn_to_page(pfn);
1187 1187
@@ -1500,7 +1500,7 @@ asmlinkage int swsusp_save(void)
1500{ 1500{
1501 unsigned int nr_pages, nr_highmem; 1501 unsigned int nr_pages, nr_highmem;
1502 1502
1503 printk(KERN_INFO "PM: Creating hibernation image: \n"); 1503 printk(KERN_INFO "PM: Creating hibernation image:\n");
1504 1504
1505 drain_local_pages(NULL); 1505 drain_local_pages(NULL);
1506 nr_pages = count_data_pages(); 1506 nr_pages = count_data_pages();
diff --git a/kernel/power/swap.c b/kernel/power/swap.c
index 09b2b0ae9e9d..1d575733d4e1 100644
--- a/kernel/power/swap.c
+++ b/kernel/power/swap.c
@@ -657,10 +657,6 @@ int swsusp_read(unsigned int *flags_p)
657 struct swsusp_info *header; 657 struct swsusp_info *header;
658 658
659 *flags_p = swsusp_header->flags; 659 *flags_p = swsusp_header->flags;
660 if (IS_ERR(resume_bdev)) {
661 pr_debug("PM: Image device not initialised\n");
662 return PTR_ERR(resume_bdev);
663 }
664 660
665 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 661 memset(&snapshot, 0, sizeof(struct snapshot_handle));
666 error = snapshot_write_next(&snapshot, PAGE_SIZE); 662 error = snapshot_write_next(&snapshot, PAGE_SIZE);
diff --git a/kernel/power/swsusp.c b/kernel/power/swsusp.c
deleted file mode 100644
index 5b3601bd1893..000000000000
--- a/kernel/power/swsusp.c
+++ /dev/null
@@ -1,58 +0,0 @@
1/*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file provides code to write suspend image to swap and read it back.
5 *
6 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
8 *
9 * This file is released under the GPLv2.
10 *
11 * I'd like to thank the following people for their work:
12 *
13 * Pavel Machek <pavel@ucw.cz>:
14 * Modifications, defectiveness pointing, being with me at the very beginning,
15 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
16 *
17 * Steve Doddi <dirk@loth.demon.co.uk>:
18 * Support the possibility of hardware state restoring.
19 *
20 * Raph <grey.havens@earthling.net>:
21 * Support for preserving states of network devices and virtual console
22 * (including X and svgatextmode)
23 *
24 * Kurt Garloff <garloff@suse.de>:
25 * Straightened the critical function in order to prevent compilers from
26 * playing tricks with local variables.
27 *
28 * Andreas Mohr <a.mohr@mailto.de>
29 *
30 * Alex Badea <vampire@go.ro>:
31 * Fixed runaway init
32 *
33 * Rafael J. Wysocki <rjw@sisk.pl>
34 * Reworked the freeing of memory and the handling of swap
35 *
36 * More state savers are welcome. Especially for the scsi layer...
37 *
38 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
39 */
40
41#include <linux/mm.h>
42#include <linux/suspend.h>
43#include <linux/spinlock.h>
44#include <linux/kernel.h>
45#include <linux/major.h>
46#include <linux/swap.h>
47#include <linux/pm.h>
48#include <linux/swapops.h>
49#include <linux/bootmem.h>
50#include <linux/syscalls.h>
51#include <linux/highmem.h>
52#include <linux/time.h>
53#include <linux/rbtree.h>
54#include <linux/io.h>
55
56#include "power.h"
57
58int in_suspend __nosavedata = 0;
diff --git a/kernel/power/user.c b/kernel/power/user.c
index bf0014d6a5f0..4d2289626a84 100644
--- a/kernel/power/user.c
+++ b/kernel/power/user.c
@@ -195,6 +195,15 @@ static ssize_t snapshot_write(struct file *filp, const char __user *buf,
195 return res; 195 return res;
196} 196}
197 197
198static void snapshot_deprecated_ioctl(unsigned int cmd)
199{
200 if (printk_ratelimit())
201 printk(KERN_NOTICE "%pf: ioctl '%.8x' is deprecated and will "
202 "be removed soon, update your suspend-to-disk "
203 "utilities\n",
204 __builtin_return_address(0), cmd);
205}
206
198static long snapshot_ioctl(struct file *filp, unsigned int cmd, 207static long snapshot_ioctl(struct file *filp, unsigned int cmd,
199 unsigned long arg) 208 unsigned long arg)
200{ 209{
@@ -246,8 +255,9 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd,
246 data->frozen = 0; 255 data->frozen = 0;
247 break; 256 break;
248 257
249 case SNAPSHOT_CREATE_IMAGE:
250 case SNAPSHOT_ATOMIC_SNAPSHOT: 258 case SNAPSHOT_ATOMIC_SNAPSHOT:
259 snapshot_deprecated_ioctl(cmd);
260 case SNAPSHOT_CREATE_IMAGE:
251 if (data->mode != O_RDONLY || !data->frozen || data->ready) { 261 if (data->mode != O_RDONLY || !data->frozen || data->ready) {
252 error = -EPERM; 262 error = -EPERM;
253 break; 263 break;
@@ -275,8 +285,9 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd,
275 data->ready = 0; 285 data->ready = 0;
276 break; 286 break;
277 287
278 case SNAPSHOT_PREF_IMAGE_SIZE:
279 case SNAPSHOT_SET_IMAGE_SIZE: 288 case SNAPSHOT_SET_IMAGE_SIZE:
289 snapshot_deprecated_ioctl(cmd);
290 case SNAPSHOT_PREF_IMAGE_SIZE:
280 image_size = arg; 291 image_size = arg;
281 break; 292 break;
282 293
@@ -290,15 +301,17 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd,
290 error = put_user(size, (loff_t __user *)arg); 301 error = put_user(size, (loff_t __user *)arg);
291 break; 302 break;
292 303
293 case SNAPSHOT_AVAIL_SWAP_SIZE:
294 case SNAPSHOT_AVAIL_SWAP: 304 case SNAPSHOT_AVAIL_SWAP:
305 snapshot_deprecated_ioctl(cmd);
306 case SNAPSHOT_AVAIL_SWAP_SIZE:
295 size = count_swap_pages(data->swap, 1); 307 size = count_swap_pages(data->swap, 1);
296 size <<= PAGE_SHIFT; 308 size <<= PAGE_SHIFT;
297 error = put_user(size, (loff_t __user *)arg); 309 error = put_user(size, (loff_t __user *)arg);
298 break; 310 break;
299 311
300 case SNAPSHOT_ALLOC_SWAP_PAGE:
301 case SNAPSHOT_GET_SWAP_PAGE: 312 case SNAPSHOT_GET_SWAP_PAGE:
313 snapshot_deprecated_ioctl(cmd);
314 case SNAPSHOT_ALLOC_SWAP_PAGE:
302 if (data->swap < 0 || data->swap >= MAX_SWAPFILES) { 315 if (data->swap < 0 || data->swap >= MAX_SWAPFILES) {
303 error = -ENODEV; 316 error = -ENODEV;
304 break; 317 break;
@@ -321,6 +334,7 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd,
321 break; 334 break;
322 335
323 case SNAPSHOT_SET_SWAP_FILE: /* This ioctl is deprecated */ 336 case SNAPSHOT_SET_SWAP_FILE: /* This ioctl is deprecated */
337 snapshot_deprecated_ioctl(cmd);
324 if (!swsusp_swap_in_use()) { 338 if (!swsusp_swap_in_use()) {
325 /* 339 /*
326 * User space encodes device types as two-byte values, 340 * User space encodes device types as two-byte values,
@@ -362,6 +376,7 @@ static long snapshot_ioctl(struct file *filp, unsigned int cmd,
362 break; 376 break;
363 377
364 case SNAPSHOT_PMOPS: /* This ioctl is deprecated */ 378 case SNAPSHOT_PMOPS: /* This ioctl is deprecated */
379 snapshot_deprecated_ioctl(cmd);
365 error = -EINVAL; 380 error = -EINVAL;
366 381
367 switch (arg) { 382 switch (arg) {
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
index 23bd09cd042e..42ad8ae729a0 100644
--- a/kernel/ptrace.c
+++ b/kernel/ptrace.c
@@ -22,6 +22,7 @@
22#include <linux/pid_namespace.h> 22#include <linux/pid_namespace.h>
23#include <linux/syscalls.h> 23#include <linux/syscalls.h>
24#include <linux/uaccess.h> 24#include <linux/uaccess.h>
25#include <linux/regset.h>
25 26
26 27
27/* 28/*
@@ -511,6 +512,47 @@ static int ptrace_resume(struct task_struct *child, long request, long data)
511 return 0; 512 return 0;
512} 513}
513 514
515#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
516
517static const struct user_regset *
518find_regset(const struct user_regset_view *view, unsigned int type)
519{
520 const struct user_regset *regset;
521 int n;
522
523 for (n = 0; n < view->n; ++n) {
524 regset = view->regsets + n;
525 if (regset->core_note_type == type)
526 return regset;
527 }
528
529 return NULL;
530}
531
532static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
533 struct iovec *kiov)
534{
535 const struct user_regset_view *view = task_user_regset_view(task);
536 const struct user_regset *regset = find_regset(view, type);
537 int regset_no;
538
539 if (!regset || (kiov->iov_len % regset->size) != 0)
540 return -EINVAL;
541
542 regset_no = regset - view->regsets;
543 kiov->iov_len = min(kiov->iov_len,
544 (__kernel_size_t) (regset->n * regset->size));
545
546 if (req == PTRACE_GETREGSET)
547 return copy_regset_to_user(task, view, regset_no, 0,
548 kiov->iov_len, kiov->iov_base);
549 else
550 return copy_regset_from_user(task, view, regset_no, 0,
551 kiov->iov_len, kiov->iov_base);
552}
553
554#endif
555
514int ptrace_request(struct task_struct *child, long request, 556int ptrace_request(struct task_struct *child, long request,
515 long addr, long data) 557 long addr, long data)
516{ 558{
@@ -573,6 +615,26 @@ int ptrace_request(struct task_struct *child, long request,
573 return 0; 615 return 0;
574 return ptrace_resume(child, request, SIGKILL); 616 return ptrace_resume(child, request, SIGKILL);
575 617
618#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
619 case PTRACE_GETREGSET:
620 case PTRACE_SETREGSET:
621 {
622 struct iovec kiov;
623 struct iovec __user *uiov = (struct iovec __user *) data;
624
625 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
626 return -EFAULT;
627
628 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
629 __get_user(kiov.iov_len, &uiov->iov_len))
630 return -EFAULT;
631
632 ret = ptrace_regset(child, request, addr, &kiov);
633 if (!ret)
634 ret = __put_user(kiov.iov_len, &uiov->iov_len);
635 break;
636 }
637#endif
576 default: 638 default:
577 break; 639 break;
578 } 640 }
@@ -711,6 +773,32 @@ int compat_ptrace_request(struct task_struct *child, compat_long_t request,
711 else 773 else
712 ret = ptrace_setsiginfo(child, &siginfo); 774 ret = ptrace_setsiginfo(child, &siginfo);
713 break; 775 break;
776#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
777 case PTRACE_GETREGSET:
778 case PTRACE_SETREGSET:
779 {
780 struct iovec kiov;
781 struct compat_iovec __user *uiov =
782 (struct compat_iovec __user *) datap;
783 compat_uptr_t ptr;
784 compat_size_t len;
785
786 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
787 return -EFAULT;
788
789 if (__get_user(ptr, &uiov->iov_base) ||
790 __get_user(len, &uiov->iov_len))
791 return -EFAULT;
792
793 kiov.iov_base = compat_ptr(ptr);
794 kiov.iov_len = len;
795
796 ret = ptrace_regset(child, request, addr, &kiov);
797 if (!ret)
798 ret = __put_user(kiov.iov_len, &uiov->iov_len);
799 break;
800 }
801#endif
714 802
715 default: 803 default:
716 ret = ptrace_request(child, request, addr, data); 804 ret = ptrace_request(child, request, addr, data);
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c
index 9b7fd4723878..f1125c1a6321 100644
--- a/kernel/rcupdate.c
+++ b/kernel/rcupdate.c
@@ -44,14 +44,43 @@
44#include <linux/cpu.h> 44#include <linux/cpu.h>
45#include <linux/mutex.h> 45#include <linux/mutex.h>
46#include <linux/module.h> 46#include <linux/module.h>
47#include <linux/kernel_stat.h>
47 48
48#ifdef CONFIG_DEBUG_LOCK_ALLOC 49#ifdef CONFIG_DEBUG_LOCK_ALLOC
49static struct lock_class_key rcu_lock_key; 50static struct lock_class_key rcu_lock_key;
50struct lockdep_map rcu_lock_map = 51struct lockdep_map rcu_lock_map =
51 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); 52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
52EXPORT_SYMBOL_GPL(rcu_lock_map); 53EXPORT_SYMBOL_GPL(rcu_lock_map);
54
55static struct lock_class_key rcu_bh_lock_key;
56struct lockdep_map rcu_bh_lock_map =
57 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
58EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
59
60static struct lock_class_key rcu_sched_lock_key;
61struct lockdep_map rcu_sched_lock_map =
62 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
63EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
53#endif 64#endif
54 65
66int rcu_scheduler_active __read_mostly;
67EXPORT_SYMBOL_GPL(rcu_scheduler_active);
68
69/*
70 * This function is invoked towards the end of the scheduler's initialization
71 * process. Before this is called, the idle task might contain
72 * RCU read-side critical sections (during which time, this idle
73 * task is booting the system). After this function is called, the
74 * idle tasks are prohibited from containing RCU read-side critical
75 * sections.
76 */
77void rcu_scheduler_starting(void)
78{
79 WARN_ON(num_online_cpus() != 1);
80 WARN_ON(nr_context_switches() > 0);
81 rcu_scheduler_active = 1;
82}
83
55/* 84/*
56 * Awaken the corresponding synchronize_rcu() instance now that a 85 * Awaken the corresponding synchronize_rcu() instance now that a
57 * grace period has elapsed. 86 * grace period has elapsed.
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c
index 9bb52177af02..258cdf0a91eb 100644
--- a/kernel/rcutorture.c
+++ b/kernel/rcutorture.c
@@ -61,6 +61,9 @@ static int test_no_idle_hz; /* Test RCU's support for tickless idle CPUs. */
61static int shuffle_interval = 3; /* Interval between shuffles (in sec)*/ 61static int shuffle_interval = 3; /* Interval between shuffles (in sec)*/
62static int stutter = 5; /* Start/stop testing interval (in sec) */ 62static int stutter = 5; /* Start/stop testing interval (in sec) */
63static int irqreader = 1; /* RCU readers from irq (timers). */ 63static int irqreader = 1; /* RCU readers from irq (timers). */
64static int fqs_duration = 0; /* Duration of bursts (us), 0 to disable. */
65static int fqs_holdoff = 0; /* Hold time within burst (us). */
66static int fqs_stutter = 3; /* Wait time between bursts (s). */
64static char *torture_type = "rcu"; /* What RCU implementation to torture. */ 67static char *torture_type = "rcu"; /* What RCU implementation to torture. */
65 68
66module_param(nreaders, int, 0444); 69module_param(nreaders, int, 0444);
@@ -79,6 +82,12 @@ module_param(stutter, int, 0444);
79MODULE_PARM_DESC(stutter, "Number of seconds to run/halt test"); 82MODULE_PARM_DESC(stutter, "Number of seconds to run/halt test");
80module_param(irqreader, int, 0444); 83module_param(irqreader, int, 0444);
81MODULE_PARM_DESC(irqreader, "Allow RCU readers from irq handlers"); 84MODULE_PARM_DESC(irqreader, "Allow RCU readers from irq handlers");
85module_param(fqs_duration, int, 0444);
86MODULE_PARM_DESC(fqs_duration, "Duration of fqs bursts (us)");
87module_param(fqs_holdoff, int, 0444);
88MODULE_PARM_DESC(fqs_holdoff, "Holdoff time within fqs bursts (us)");
89module_param(fqs_stutter, int, 0444);
90MODULE_PARM_DESC(fqs_stutter, "Wait time between fqs bursts (s)");
82module_param(torture_type, charp, 0444); 91module_param(torture_type, charp, 0444);
83MODULE_PARM_DESC(torture_type, "Type of RCU to torture (rcu, rcu_bh, srcu)"); 92MODULE_PARM_DESC(torture_type, "Type of RCU to torture (rcu, rcu_bh, srcu)");
84 93
@@ -99,6 +108,7 @@ static struct task_struct **reader_tasks;
99static struct task_struct *stats_task; 108static struct task_struct *stats_task;
100static struct task_struct *shuffler_task; 109static struct task_struct *shuffler_task;
101static struct task_struct *stutter_task; 110static struct task_struct *stutter_task;
111static struct task_struct *fqs_task;
102 112
103#define RCU_TORTURE_PIPE_LEN 10 113#define RCU_TORTURE_PIPE_LEN 10
104 114
@@ -263,6 +273,7 @@ struct rcu_torture_ops {
263 void (*deferred_free)(struct rcu_torture *p); 273 void (*deferred_free)(struct rcu_torture *p);
264 void (*sync)(void); 274 void (*sync)(void);
265 void (*cb_barrier)(void); 275 void (*cb_barrier)(void);
276 void (*fqs)(void);
266 int (*stats)(char *page); 277 int (*stats)(char *page);
267 int irq_capable; 278 int irq_capable;
268 char *name; 279 char *name;
@@ -347,6 +358,7 @@ static struct rcu_torture_ops rcu_ops = {
347 .deferred_free = rcu_torture_deferred_free, 358 .deferred_free = rcu_torture_deferred_free,
348 .sync = synchronize_rcu, 359 .sync = synchronize_rcu,
349 .cb_barrier = rcu_barrier, 360 .cb_barrier = rcu_barrier,
361 .fqs = rcu_force_quiescent_state,
350 .stats = NULL, 362 .stats = NULL,
351 .irq_capable = 1, 363 .irq_capable = 1,
352 .name = "rcu" 364 .name = "rcu"
@@ -388,6 +400,7 @@ static struct rcu_torture_ops rcu_sync_ops = {
388 .deferred_free = rcu_sync_torture_deferred_free, 400 .deferred_free = rcu_sync_torture_deferred_free,
389 .sync = synchronize_rcu, 401 .sync = synchronize_rcu,
390 .cb_barrier = NULL, 402 .cb_barrier = NULL,
403 .fqs = rcu_force_quiescent_state,
391 .stats = NULL, 404 .stats = NULL,
392 .irq_capable = 1, 405 .irq_capable = 1,
393 .name = "rcu_sync" 406 .name = "rcu_sync"
@@ -403,6 +416,7 @@ static struct rcu_torture_ops rcu_expedited_ops = {
403 .deferred_free = rcu_sync_torture_deferred_free, 416 .deferred_free = rcu_sync_torture_deferred_free,
404 .sync = synchronize_rcu_expedited, 417 .sync = synchronize_rcu_expedited,
405 .cb_barrier = NULL, 418 .cb_barrier = NULL,
419 .fqs = rcu_force_quiescent_state,
406 .stats = NULL, 420 .stats = NULL,
407 .irq_capable = 1, 421 .irq_capable = 1,
408 .name = "rcu_expedited" 422 .name = "rcu_expedited"
@@ -465,6 +479,7 @@ static struct rcu_torture_ops rcu_bh_ops = {
465 .deferred_free = rcu_bh_torture_deferred_free, 479 .deferred_free = rcu_bh_torture_deferred_free,
466 .sync = rcu_bh_torture_synchronize, 480 .sync = rcu_bh_torture_synchronize,
467 .cb_barrier = rcu_barrier_bh, 481 .cb_barrier = rcu_barrier_bh,
482 .fqs = rcu_bh_force_quiescent_state,
468 .stats = NULL, 483 .stats = NULL,
469 .irq_capable = 1, 484 .irq_capable = 1,
470 .name = "rcu_bh" 485 .name = "rcu_bh"
@@ -480,6 +495,7 @@ static struct rcu_torture_ops rcu_bh_sync_ops = {
480 .deferred_free = rcu_sync_torture_deferred_free, 495 .deferred_free = rcu_sync_torture_deferred_free,
481 .sync = rcu_bh_torture_synchronize, 496 .sync = rcu_bh_torture_synchronize,
482 .cb_barrier = NULL, 497 .cb_barrier = NULL,
498 .fqs = rcu_bh_force_quiescent_state,
483 .stats = NULL, 499 .stats = NULL,
484 .irq_capable = 1, 500 .irq_capable = 1,
485 .name = "rcu_bh_sync" 501 .name = "rcu_bh_sync"
@@ -621,6 +637,7 @@ static struct rcu_torture_ops sched_ops = {
621 .deferred_free = rcu_sched_torture_deferred_free, 637 .deferred_free = rcu_sched_torture_deferred_free,
622 .sync = sched_torture_synchronize, 638 .sync = sched_torture_synchronize,
623 .cb_barrier = rcu_barrier_sched, 639 .cb_barrier = rcu_barrier_sched,
640 .fqs = rcu_sched_force_quiescent_state,
624 .stats = NULL, 641 .stats = NULL,
625 .irq_capable = 1, 642 .irq_capable = 1,
626 .name = "sched" 643 .name = "sched"
@@ -636,6 +653,7 @@ static struct rcu_torture_ops sched_sync_ops = {
636 .deferred_free = rcu_sync_torture_deferred_free, 653 .deferred_free = rcu_sync_torture_deferred_free,
637 .sync = sched_torture_synchronize, 654 .sync = sched_torture_synchronize,
638 .cb_barrier = NULL, 655 .cb_barrier = NULL,
656 .fqs = rcu_sched_force_quiescent_state,
639 .stats = NULL, 657 .stats = NULL,
640 .name = "sched_sync" 658 .name = "sched_sync"
641}; 659};
@@ -650,12 +668,45 @@ static struct rcu_torture_ops sched_expedited_ops = {
650 .deferred_free = rcu_sync_torture_deferred_free, 668 .deferred_free = rcu_sync_torture_deferred_free,
651 .sync = synchronize_sched_expedited, 669 .sync = synchronize_sched_expedited,
652 .cb_barrier = NULL, 670 .cb_barrier = NULL,
671 .fqs = rcu_sched_force_quiescent_state,
653 .stats = rcu_expedited_torture_stats, 672 .stats = rcu_expedited_torture_stats,
654 .irq_capable = 1, 673 .irq_capable = 1,
655 .name = "sched_expedited" 674 .name = "sched_expedited"
656}; 675};
657 676
658/* 677/*
678 * RCU torture force-quiescent-state kthread. Repeatedly induces
679 * bursts of calls to force_quiescent_state(), increasing the probability
680 * of occurrence of some important types of race conditions.
681 */
682static int
683rcu_torture_fqs(void *arg)
684{
685 unsigned long fqs_resume_time;
686 int fqs_burst_remaining;
687
688 VERBOSE_PRINTK_STRING("rcu_torture_fqs task started");
689 do {
690 fqs_resume_time = jiffies + fqs_stutter * HZ;
691 while (jiffies - fqs_resume_time > LONG_MAX) {
692 schedule_timeout_interruptible(1);
693 }
694 fqs_burst_remaining = fqs_duration;
695 while (fqs_burst_remaining > 0) {
696 cur_ops->fqs();
697 udelay(fqs_holdoff);
698 fqs_burst_remaining -= fqs_holdoff;
699 }
700 rcu_stutter_wait("rcu_torture_fqs");
701 } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP);
702 VERBOSE_PRINTK_STRING("rcu_torture_fqs task stopping");
703 rcutorture_shutdown_absorb("rcu_torture_fqs");
704 while (!kthread_should_stop())
705 schedule_timeout_uninterruptible(1);
706 return 0;
707}
708
709/*
659 * RCU torture writer kthread. Repeatedly substitutes a new structure 710 * RCU torture writer kthread. Repeatedly substitutes a new structure
660 * for that pointed to by rcu_torture_current, freeing the old structure 711 * for that pointed to by rcu_torture_current, freeing the old structure
661 * after a series of grace periods (the "pipeline"). 712 * after a series of grace periods (the "pipeline").
@@ -745,7 +796,11 @@ static void rcu_torture_timer(unsigned long unused)
745 796
746 idx = cur_ops->readlock(); 797 idx = cur_ops->readlock();
747 completed = cur_ops->completed(); 798 completed = cur_ops->completed();
748 p = rcu_dereference(rcu_torture_current); 799 p = rcu_dereference_check(rcu_torture_current,
800 rcu_read_lock_held() ||
801 rcu_read_lock_bh_held() ||
802 rcu_read_lock_sched_held() ||
803 srcu_read_lock_held(&srcu_ctl));
749 if (p == NULL) { 804 if (p == NULL) {
750 /* Leave because rcu_torture_writer is not yet underway */ 805 /* Leave because rcu_torture_writer is not yet underway */
751 cur_ops->readunlock(idx); 806 cur_ops->readunlock(idx);
@@ -798,11 +853,15 @@ rcu_torture_reader(void *arg)
798 do { 853 do {
799 if (irqreader && cur_ops->irq_capable) { 854 if (irqreader && cur_ops->irq_capable) {
800 if (!timer_pending(&t)) 855 if (!timer_pending(&t))
801 mod_timer(&t, 1); 856 mod_timer(&t, jiffies + 1);
802 } 857 }
803 idx = cur_ops->readlock(); 858 idx = cur_ops->readlock();
804 completed = cur_ops->completed(); 859 completed = cur_ops->completed();
805 p = rcu_dereference(rcu_torture_current); 860 p = rcu_dereference_check(rcu_torture_current,
861 rcu_read_lock_held() ||
862 rcu_read_lock_bh_held() ||
863 rcu_read_lock_sched_held() ||
864 srcu_read_lock_held(&srcu_ctl));
806 if (p == NULL) { 865 if (p == NULL) {
807 /* Wait for rcu_torture_writer to get underway */ 866 /* Wait for rcu_torture_writer to get underway */
808 cur_ops->readunlock(idx); 867 cur_ops->readunlock(idx);
@@ -1030,10 +1089,11 @@ rcu_torture_print_module_parms(char *tag)
1030 printk(KERN_ALERT "%s" TORTURE_FLAG 1089 printk(KERN_ALERT "%s" TORTURE_FLAG
1031 "--- %s: nreaders=%d nfakewriters=%d " 1090 "--- %s: nreaders=%d nfakewriters=%d "
1032 "stat_interval=%d verbose=%d test_no_idle_hz=%d " 1091 "stat_interval=%d verbose=%d test_no_idle_hz=%d "
1033 "shuffle_interval=%d stutter=%d irqreader=%d\n", 1092 "shuffle_interval=%d stutter=%d irqreader=%d "
1093 "fqs_duration=%d fqs_holdoff=%d fqs_stutter=%d\n",
1034 torture_type, tag, nrealreaders, nfakewriters, 1094 torture_type, tag, nrealreaders, nfakewriters,
1035 stat_interval, verbose, test_no_idle_hz, shuffle_interval, 1095 stat_interval, verbose, test_no_idle_hz, shuffle_interval,
1036 stutter, irqreader); 1096 stutter, irqreader, fqs_duration, fqs_holdoff, fqs_stutter);
1037} 1097}
1038 1098
1039static struct notifier_block rcutorture_nb = { 1099static struct notifier_block rcutorture_nb = {
@@ -1109,6 +1169,12 @@ rcu_torture_cleanup(void)
1109 } 1169 }
1110 stats_task = NULL; 1170 stats_task = NULL;
1111 1171
1172 if (fqs_task) {
1173 VERBOSE_PRINTK_STRING("Stopping rcu_torture_fqs task");
1174 kthread_stop(fqs_task);
1175 }
1176 fqs_task = NULL;
1177
1112 /* Wait for all RCU callbacks to fire. */ 1178 /* Wait for all RCU callbacks to fire. */
1113 1179
1114 if (cur_ops->cb_barrier != NULL) 1180 if (cur_ops->cb_barrier != NULL)
@@ -1154,6 +1220,11 @@ rcu_torture_init(void)
1154 mutex_unlock(&fullstop_mutex); 1220 mutex_unlock(&fullstop_mutex);
1155 return -EINVAL; 1221 return -EINVAL;
1156 } 1222 }
1223 if (cur_ops->fqs == NULL && fqs_duration != 0) {
1224 printk(KERN_ALERT "rcu-torture: ->fqs NULL and non-zero "
1225 "fqs_duration, fqs disabled.\n");
1226 fqs_duration = 0;
1227 }
1157 if (cur_ops->init) 1228 if (cur_ops->init)
1158 cur_ops->init(); /* no "goto unwind" prior to this point!!! */ 1229 cur_ops->init(); /* no "goto unwind" prior to this point!!! */
1159 1230
@@ -1282,6 +1353,19 @@ rcu_torture_init(void)
1282 goto unwind; 1353 goto unwind;
1283 } 1354 }
1284 } 1355 }
1356 if (fqs_duration < 0)
1357 fqs_duration = 0;
1358 if (fqs_duration) {
1359 /* Create the stutter thread */
1360 fqs_task = kthread_run(rcu_torture_fqs, NULL,
1361 "rcu_torture_fqs");
1362 if (IS_ERR(fqs_task)) {
1363 firsterr = PTR_ERR(fqs_task);
1364 VERBOSE_PRINTK_ERRSTRING("Failed to create fqs");
1365 fqs_task = NULL;
1366 goto unwind;
1367 }
1368 }
1285 register_reboot_notifier(&rcutorture_nb); 1369 register_reboot_notifier(&rcutorture_nb);
1286 mutex_unlock(&fullstop_mutex); 1370 mutex_unlock(&fullstop_mutex);
1287 return 0; 1371 return 0;
diff --git a/kernel/rcutree.c b/kernel/rcutree.c
index 53ae9598f798..3ec8160fc75f 100644
--- a/kernel/rcutree.c
+++ b/kernel/rcutree.c
@@ -46,7 +46,6 @@
46#include <linux/cpu.h> 46#include <linux/cpu.h>
47#include <linux/mutex.h> 47#include <linux/mutex.h>
48#include <linux/time.h> 48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50 49
51#include "rcutree.h" 50#include "rcutree.h"
52 51
@@ -66,11 +65,11 @@ static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
66 .signaled = RCU_GP_IDLE, \ 65 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \ 66 .gpnum = -300, \
68 .completed = -300, \ 67 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ 68 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .orphan_cbs_list = NULL, \ 69 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \ 70 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \ 71 .orphan_qlen = 0, \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ 72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \ 73 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \ 74 .n_force_qs_ngp = 0, \
76} 75}
@@ -81,9 +80,6 @@ DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); 80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); 81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83 82
84static int rcu_scheduler_active __read_mostly;
85
86
87/* 83/*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 84 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node 85 * permit this function to be invoked without holding the root rcu_node
@@ -157,6 +153,24 @@ long rcu_batches_completed_bh(void)
157EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 153EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
158 154
159/* 155/*
156 * Force a quiescent state for RCU BH.
157 */
158void rcu_bh_force_quiescent_state(void)
159{
160 force_quiescent_state(&rcu_bh_state, 0);
161}
162EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
163
164/*
165 * Force a quiescent state for RCU-sched.
166 */
167void rcu_sched_force_quiescent_state(void)
168{
169 force_quiescent_state(&rcu_sched_state, 0);
170}
171EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
172
173/*
160 * Does the CPU have callbacks ready to be invoked? 174 * Does the CPU have callbacks ready to be invoked?
161 */ 175 */
162static int 176static int
@@ -439,10 +453,10 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
439 453
440 /* Only let one CPU complain about others per time interval. */ 454 /* Only let one CPU complain about others per time interval. */
441 455
442 spin_lock_irqsave(&rnp->lock, flags); 456 raw_spin_lock_irqsave(&rnp->lock, flags);
443 delta = jiffies - rsp->jiffies_stall; 457 delta = jiffies - rsp->jiffies_stall;
444 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 458 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
445 spin_unlock_irqrestore(&rnp->lock, flags); 459 raw_spin_unlock_irqrestore(&rnp->lock, flags);
446 return; 460 return;
447 } 461 }
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 462 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
@@ -452,13 +466,15 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
452 * due to CPU offlining. 466 * due to CPU offlining.
453 */ 467 */
454 rcu_print_task_stall(rnp); 468 rcu_print_task_stall(rnp);
455 spin_unlock_irqrestore(&rnp->lock, flags); 469 raw_spin_unlock_irqrestore(&rnp->lock, flags);
456 470
457 /* OK, time to rat on our buddy... */ 471 /* OK, time to rat on our buddy... */
458 472
459 printk(KERN_ERR "INFO: RCU detected CPU stalls:"); 473 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
460 rcu_for_each_leaf_node(rsp, rnp) { 474 rcu_for_each_leaf_node(rsp, rnp) {
475 raw_spin_lock_irqsave(&rnp->lock, flags);
461 rcu_print_task_stall(rnp); 476 rcu_print_task_stall(rnp);
477 raw_spin_unlock_irqrestore(&rnp->lock, flags);
462 if (rnp->qsmask == 0) 478 if (rnp->qsmask == 0)
463 continue; 479 continue;
464 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 480 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
@@ -469,6 +485,10 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
469 smp_processor_id(), (long)(jiffies - rsp->gp_start)); 485 smp_processor_id(), (long)(jiffies - rsp->gp_start));
470 trigger_all_cpu_backtrace(); 486 trigger_all_cpu_backtrace();
471 487
488 /* If so configured, complain about tasks blocking the grace period. */
489
490 rcu_print_detail_task_stall(rsp);
491
472 force_quiescent_state(rsp, 0); /* Kick them all. */ 492 force_quiescent_state(rsp, 0); /* Kick them all. */
473} 493}
474 494
@@ -481,11 +501,11 @@ static void print_cpu_stall(struct rcu_state *rsp)
481 smp_processor_id(), jiffies - rsp->gp_start); 501 smp_processor_id(), jiffies - rsp->gp_start);
482 trigger_all_cpu_backtrace(); 502 trigger_all_cpu_backtrace();
483 503
484 spin_lock_irqsave(&rnp->lock, flags); 504 raw_spin_lock_irqsave(&rnp->lock, flags);
485 if ((long)(jiffies - rsp->jiffies_stall) >= 0) 505 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
486 rsp->jiffies_stall = 506 rsp->jiffies_stall =
487 jiffies + RCU_SECONDS_TILL_STALL_RECHECK; 507 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
488 spin_unlock_irqrestore(&rnp->lock, flags); 508 raw_spin_unlock_irqrestore(&rnp->lock, flags);
489 509
490 set_need_resched(); /* kick ourselves to get things going. */ 510 set_need_resched(); /* kick ourselves to get things going. */
491} 511}
@@ -545,12 +565,12 @@ static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
545 local_irq_save(flags); 565 local_irq_save(flags);
546 rnp = rdp->mynode; 566 rnp = rdp->mynode;
547 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ 567 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
548 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ 568 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
549 local_irq_restore(flags); 569 local_irq_restore(flags);
550 return; 570 return;
551 } 571 }
552 __note_new_gpnum(rsp, rnp, rdp); 572 __note_new_gpnum(rsp, rnp, rdp);
553 spin_unlock_irqrestore(&rnp->lock, flags); 573 raw_spin_unlock_irqrestore(&rnp->lock, flags);
554} 574}
555 575
556/* 576/*
@@ -609,12 +629,12 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
609 local_irq_save(flags); 629 local_irq_save(flags);
610 rnp = rdp->mynode; 630 rnp = rdp->mynode;
611 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ 631 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
612 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */ 632 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
613 local_irq_restore(flags); 633 local_irq_restore(flags);
614 return; 634 return;
615 } 635 }
616 __rcu_process_gp_end(rsp, rnp, rdp); 636 __rcu_process_gp_end(rsp, rnp, rdp);
617 spin_unlock_irqrestore(&rnp->lock, flags); 637 raw_spin_unlock_irqrestore(&rnp->lock, flags);
618} 638}
619 639
620/* 640/*
@@ -659,12 +679,14 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
659 struct rcu_data *rdp = rsp->rda[smp_processor_id()]; 679 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
660 struct rcu_node *rnp = rcu_get_root(rsp); 680 struct rcu_node *rnp = rcu_get_root(rsp);
661 681
662 if (!cpu_needs_another_gp(rsp, rdp)) { 682 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
683 if (cpu_needs_another_gp(rsp, rdp))
684 rsp->fqs_need_gp = 1;
663 if (rnp->completed == rsp->completed) { 685 if (rnp->completed == rsp->completed) {
664 spin_unlock_irqrestore(&rnp->lock, flags); 686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
665 return; 687 return;
666 } 688 }
667 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 689 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
668 690
669 /* 691 /*
670 * Propagate new ->completed value to rcu_node structures 692 * Propagate new ->completed value to rcu_node structures
@@ -672,9 +694,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
672 * of the next grace period to process their callbacks. 694 * of the next grace period to process their callbacks.
673 */ 695 */
674 rcu_for_each_node_breadth_first(rsp, rnp) { 696 rcu_for_each_node_breadth_first(rsp, rnp) {
675 spin_lock(&rnp->lock); /* irqs already disabled. */ 697 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
676 rnp->completed = rsp->completed; 698 rnp->completed = rsp->completed;
677 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 699 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
678 } 700 }
679 local_irq_restore(flags); 701 local_irq_restore(flags);
680 return; 702 return;
@@ -695,15 +717,15 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
695 rnp->completed = rsp->completed; 717 rnp->completed = rsp->completed;
696 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ 718 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
697 rcu_start_gp_per_cpu(rsp, rnp, rdp); 719 rcu_start_gp_per_cpu(rsp, rnp, rdp);
698 spin_unlock_irqrestore(&rnp->lock, flags); 720 raw_spin_unlock_irqrestore(&rnp->lock, flags);
699 return; 721 return;
700 } 722 }
701 723
702 spin_unlock(&rnp->lock); /* leave irqs disabled. */ 724 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
703 725
704 726
705 /* Exclude any concurrent CPU-hotplug operations. */ 727 /* Exclude any concurrent CPU-hotplug operations. */
706 spin_lock(&rsp->onofflock); /* irqs already disabled. */ 728 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
707 729
708 /* 730 /*
709 * Set the quiescent-state-needed bits in all the rcu_node 731 * Set the quiescent-state-needed bits in all the rcu_node
@@ -723,21 +745,21 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
723 * irqs disabled. 745 * irqs disabled.
724 */ 746 */
725 rcu_for_each_node_breadth_first(rsp, rnp) { 747 rcu_for_each_node_breadth_first(rsp, rnp) {
726 spin_lock(&rnp->lock); /* irqs already disabled. */ 748 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
727 rcu_preempt_check_blocked_tasks(rnp); 749 rcu_preempt_check_blocked_tasks(rnp);
728 rnp->qsmask = rnp->qsmaskinit; 750 rnp->qsmask = rnp->qsmaskinit;
729 rnp->gpnum = rsp->gpnum; 751 rnp->gpnum = rsp->gpnum;
730 rnp->completed = rsp->completed; 752 rnp->completed = rsp->completed;
731 if (rnp == rdp->mynode) 753 if (rnp == rdp->mynode)
732 rcu_start_gp_per_cpu(rsp, rnp, rdp); 754 rcu_start_gp_per_cpu(rsp, rnp, rdp);
733 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 755 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
734 } 756 }
735 757
736 rnp = rcu_get_root(rsp); 758 rnp = rcu_get_root(rsp);
737 spin_lock(&rnp->lock); /* irqs already disabled. */ 759 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
738 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ 760 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
739 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 761 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
740 spin_unlock_irqrestore(&rsp->onofflock, flags); 762 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
741} 763}
742 764
743/* 765/*
@@ -776,14 +798,14 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
776 if (!(rnp->qsmask & mask)) { 798 if (!(rnp->qsmask & mask)) {
777 799
778 /* Our bit has already been cleared, so done. */ 800 /* Our bit has already been cleared, so done. */
779 spin_unlock_irqrestore(&rnp->lock, flags); 801 raw_spin_unlock_irqrestore(&rnp->lock, flags);
780 return; 802 return;
781 } 803 }
782 rnp->qsmask &= ~mask; 804 rnp->qsmask &= ~mask;
783 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { 805 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
784 806
785 /* Other bits still set at this level, so done. */ 807 /* Other bits still set at this level, so done. */
786 spin_unlock_irqrestore(&rnp->lock, flags); 808 raw_spin_unlock_irqrestore(&rnp->lock, flags);
787 return; 809 return;
788 } 810 }
789 mask = rnp->grpmask; 811 mask = rnp->grpmask;
@@ -793,10 +815,10 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
793 815
794 break; 816 break;
795 } 817 }
796 spin_unlock_irqrestore(&rnp->lock, flags); 818 raw_spin_unlock_irqrestore(&rnp->lock, flags);
797 rnp_c = rnp; 819 rnp_c = rnp;
798 rnp = rnp->parent; 820 rnp = rnp->parent;
799 spin_lock_irqsave(&rnp->lock, flags); 821 raw_spin_lock_irqsave(&rnp->lock, flags);
800 WARN_ON_ONCE(rnp_c->qsmask); 822 WARN_ON_ONCE(rnp_c->qsmask);
801 } 823 }
802 824
@@ -825,7 +847,7 @@ rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long las
825 struct rcu_node *rnp; 847 struct rcu_node *rnp;
826 848
827 rnp = rdp->mynode; 849 rnp = rdp->mynode;
828 spin_lock_irqsave(&rnp->lock, flags); 850 raw_spin_lock_irqsave(&rnp->lock, flags);
829 if (lastcomp != rnp->completed) { 851 if (lastcomp != rnp->completed) {
830 852
831 /* 853 /*
@@ -837,12 +859,12 @@ rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long las
837 * race occurred. 859 * race occurred.
838 */ 860 */
839 rdp->passed_quiesc = 0; /* try again later! */ 861 rdp->passed_quiesc = 0; /* try again later! */
840 spin_unlock_irqrestore(&rnp->lock, flags); 862 raw_spin_unlock_irqrestore(&rnp->lock, flags);
841 return; 863 return;
842 } 864 }
843 mask = rdp->grpmask; 865 mask = rdp->grpmask;
844 if ((rnp->qsmask & mask) == 0) { 866 if ((rnp->qsmask & mask) == 0) {
845 spin_unlock_irqrestore(&rnp->lock, flags); 867 raw_spin_unlock_irqrestore(&rnp->lock, flags);
846 } else { 868 } else {
847 rdp->qs_pending = 0; 869 rdp->qs_pending = 0;
848 870
@@ -906,7 +928,7 @@ static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
906 928
907 if (rdp->nxtlist == NULL) 929 if (rdp->nxtlist == NULL)
908 return; /* irqs disabled, so comparison is stable. */ 930 return; /* irqs disabled, so comparison is stable. */
909 spin_lock(&rsp->onofflock); /* irqs already disabled. */ 931 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
910 *rsp->orphan_cbs_tail = rdp->nxtlist; 932 *rsp->orphan_cbs_tail = rdp->nxtlist;
911 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL]; 933 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
912 rdp->nxtlist = NULL; 934 rdp->nxtlist = NULL;
@@ -914,7 +936,7 @@ static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
914 rdp->nxttail[i] = &rdp->nxtlist; 936 rdp->nxttail[i] = &rdp->nxtlist;
915 rsp->orphan_qlen += rdp->qlen; 937 rsp->orphan_qlen += rdp->qlen;
916 rdp->qlen = 0; 938 rdp->qlen = 0;
917 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 939 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
918} 940}
919 941
920/* 942/*
@@ -925,10 +947,10 @@ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
925 unsigned long flags; 947 unsigned long flags;
926 struct rcu_data *rdp; 948 struct rcu_data *rdp;
927 949
928 spin_lock_irqsave(&rsp->onofflock, flags); 950 raw_spin_lock_irqsave(&rsp->onofflock, flags);
929 rdp = rsp->rda[smp_processor_id()]; 951 rdp = rsp->rda[smp_processor_id()];
930 if (rsp->orphan_cbs_list == NULL) { 952 if (rsp->orphan_cbs_list == NULL) {
931 spin_unlock_irqrestore(&rsp->onofflock, flags); 953 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
932 return; 954 return;
933 } 955 }
934 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list; 956 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
@@ -937,7 +959,7 @@ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
937 rsp->orphan_cbs_list = NULL; 959 rsp->orphan_cbs_list = NULL;
938 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list; 960 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
939 rsp->orphan_qlen = 0; 961 rsp->orphan_qlen = 0;
940 spin_unlock_irqrestore(&rsp->onofflock, flags); 962 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
941} 963}
942 964
943/* 965/*
@@ -953,23 +975,23 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
953 struct rcu_node *rnp; 975 struct rcu_node *rnp;
954 976
955 /* Exclude any attempts to start a new grace period. */ 977 /* Exclude any attempts to start a new grace period. */
956 spin_lock_irqsave(&rsp->onofflock, flags); 978 raw_spin_lock_irqsave(&rsp->onofflock, flags);
957 979
958 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ 980 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
959 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ 981 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
960 mask = rdp->grpmask; /* rnp->grplo is constant. */ 982 mask = rdp->grpmask; /* rnp->grplo is constant. */
961 do { 983 do {
962 spin_lock(&rnp->lock); /* irqs already disabled. */ 984 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
963 rnp->qsmaskinit &= ~mask; 985 rnp->qsmaskinit &= ~mask;
964 if (rnp->qsmaskinit != 0) { 986 if (rnp->qsmaskinit != 0) {
965 if (rnp != rdp->mynode) 987 if (rnp != rdp->mynode)
966 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 988 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
967 break; 989 break;
968 } 990 }
969 if (rnp == rdp->mynode) 991 if (rnp == rdp->mynode)
970 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); 992 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
971 else 993 else
972 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 994 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
973 mask = rnp->grpmask; 995 mask = rnp->grpmask;
974 rnp = rnp->parent; 996 rnp = rnp->parent;
975 } while (rnp != NULL); 997 } while (rnp != NULL);
@@ -980,12 +1002,12 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
980 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock 1002 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
981 * held leads to deadlock. 1003 * held leads to deadlock.
982 */ 1004 */
983 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ 1005 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
984 rnp = rdp->mynode; 1006 rnp = rdp->mynode;
985 if (need_report & RCU_OFL_TASKS_NORM_GP) 1007 if (need_report & RCU_OFL_TASKS_NORM_GP)
986 rcu_report_unblock_qs_rnp(rnp, flags); 1008 rcu_report_unblock_qs_rnp(rnp, flags);
987 else 1009 else
988 spin_unlock_irqrestore(&rnp->lock, flags); 1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
989 if (need_report & RCU_OFL_TASKS_EXP_GP) 1011 if (need_report & RCU_OFL_TASKS_EXP_GP)
990 rcu_report_exp_rnp(rsp, rnp); 1012 rcu_report_exp_rnp(rsp, rnp);
991 1013
@@ -1144,11 +1166,9 @@ void rcu_check_callbacks(int cpu, int user)
1144/* 1166/*
1145 * Scan the leaf rcu_node structures, processing dyntick state for any that 1167 * Scan the leaf rcu_node structures, processing dyntick state for any that
1146 * have not yet encountered a quiescent state, using the function specified. 1168 * have not yet encountered a quiescent state, using the function specified.
1147 * Returns 1 if the current grace period ends while scanning (possibly 1169 * The caller must have suppressed start of new grace periods.
1148 * because we made it end).
1149 */ 1170 */
1150static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, 1171static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1151 int (*f)(struct rcu_data *))
1152{ 1172{
1153 unsigned long bit; 1173 unsigned long bit;
1154 int cpu; 1174 int cpu;
@@ -1158,13 +1178,13 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1158 1178
1159 rcu_for_each_leaf_node(rsp, rnp) { 1179 rcu_for_each_leaf_node(rsp, rnp) {
1160 mask = 0; 1180 mask = 0;
1161 spin_lock_irqsave(&rnp->lock, flags); 1181 raw_spin_lock_irqsave(&rnp->lock, flags);
1162 if (rnp->completed != lastcomp) { 1182 if (!rcu_gp_in_progress(rsp)) {
1163 spin_unlock_irqrestore(&rnp->lock, flags); 1183 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1164 return 1; 1184 return;
1165 } 1185 }
1166 if (rnp->qsmask == 0) { 1186 if (rnp->qsmask == 0) {
1167 spin_unlock_irqrestore(&rnp->lock, flags); 1187 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1168 continue; 1188 continue;
1169 } 1189 }
1170 cpu = rnp->grplo; 1190 cpu = rnp->grplo;
@@ -1173,15 +1193,14 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1173 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu])) 1193 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1174 mask |= bit; 1194 mask |= bit;
1175 } 1195 }
1176 if (mask != 0 && rnp->completed == lastcomp) { 1196 if (mask != 0) {
1177 1197
1178 /* rcu_report_qs_rnp() releases rnp->lock. */ 1198 /* rcu_report_qs_rnp() releases rnp->lock. */
1179 rcu_report_qs_rnp(mask, rsp, rnp, flags); 1199 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1180 continue; 1200 continue;
1181 } 1201 }
1182 spin_unlock_irqrestore(&rnp->lock, flags); 1202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183 } 1203 }
1184 return 0;
1185} 1204}
1186 1205
1187/* 1206/*
@@ -1191,32 +1210,26 @@ static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1191static void force_quiescent_state(struct rcu_state *rsp, int relaxed) 1210static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1192{ 1211{
1193 unsigned long flags; 1212 unsigned long flags;
1194 long lastcomp;
1195 struct rcu_node *rnp = rcu_get_root(rsp); 1213 struct rcu_node *rnp = rcu_get_root(rsp);
1196 u8 signaled;
1197 u8 forcenow;
1198 1214
1199 if (!rcu_gp_in_progress(rsp)) 1215 if (!rcu_gp_in_progress(rsp))
1200 return; /* No grace period in progress, nothing to force. */ 1216 return; /* No grace period in progress, nothing to force. */
1201 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { 1217 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1202 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ 1218 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1203 return; /* Someone else is already on the job. */ 1219 return; /* Someone else is already on the job. */
1204 } 1220 }
1205 if (relaxed && 1221 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1206 (long)(rsp->jiffies_force_qs - jiffies) >= 0) 1222 goto unlock_fqs_ret; /* no emergency and done recently. */
1207 goto unlock_ret; /* no emergency and done recently. */
1208 rsp->n_force_qs++; 1223 rsp->n_force_qs++;
1209 spin_lock(&rnp->lock); 1224 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1210 lastcomp = rsp->gpnum - 1;
1211 signaled = rsp->signaled;
1212 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; 1225 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1213 if(!rcu_gp_in_progress(rsp)) { 1226 if(!rcu_gp_in_progress(rsp)) {
1214 rsp->n_force_qs_ngp++; 1227 rsp->n_force_qs_ngp++;
1215 spin_unlock(&rnp->lock); 1228 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1216 goto unlock_ret; /* no GP in progress, time updated. */ 1229 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1217 } 1230 }
1218 spin_unlock(&rnp->lock); 1231 rsp->fqs_active = 1;
1219 switch (signaled) { 1232 switch (rsp->signaled) {
1220 case RCU_GP_IDLE: 1233 case RCU_GP_IDLE:
1221 case RCU_GP_INIT: 1234 case RCU_GP_INIT:
1222 1235
@@ -1224,45 +1237,38 @@ static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1224 1237
1225 case RCU_SAVE_DYNTICK: 1238 case RCU_SAVE_DYNTICK:
1226 1239
1240 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1227 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) 1241 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1228 break; /* So gcc recognizes the dead code. */ 1242 break; /* So gcc recognizes the dead code. */
1229 1243
1230 /* Record dyntick-idle state. */ 1244 /* Record dyntick-idle state. */
1231 if (rcu_process_dyntick(rsp, lastcomp, 1245 force_qs_rnp(rsp, dyntick_save_progress_counter);
1232 dyntick_save_progress_counter)) 1246 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1233 goto unlock_ret; 1247 if (rcu_gp_in_progress(rsp))
1234 /* fall into next case. */
1235
1236 case RCU_SAVE_COMPLETED:
1237
1238 /* Update state, record completion counter. */
1239 forcenow = 0;
1240 spin_lock(&rnp->lock);
1241 if (lastcomp + 1 == rsp->gpnum &&
1242 lastcomp == rsp->completed &&
1243 rsp->signaled == signaled) {
1244 rsp->signaled = RCU_FORCE_QS; 1248 rsp->signaled = RCU_FORCE_QS;
1245 rsp->completed_fqs = lastcomp; 1249 break;
1246 forcenow = signaled == RCU_SAVE_COMPLETED;
1247 }
1248 spin_unlock(&rnp->lock);
1249 if (!forcenow)
1250 break;
1251 /* fall into next case. */
1252 1250
1253 case RCU_FORCE_QS: 1251 case RCU_FORCE_QS:
1254 1252
1255 /* Check dyntick-idle state, send IPI to laggarts. */ 1253 /* Check dyntick-idle state, send IPI to laggarts. */
1256 if (rcu_process_dyntick(rsp, rsp->completed_fqs, 1254 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1257 rcu_implicit_dynticks_qs)) 1255 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1258 goto unlock_ret;
1259 1256
1260 /* Leave state in case more forcing is required. */ 1257 /* Leave state in case more forcing is required. */
1261 1258
1259 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1262 break; 1260 break;
1263 } 1261 }
1264unlock_ret: 1262 rsp->fqs_active = 0;
1265 spin_unlock_irqrestore(&rsp->fqslock, flags); 1263 if (rsp->fqs_need_gp) {
1264 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1265 rsp->fqs_need_gp = 0;
1266 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1267 return;
1268 }
1269 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1270unlock_fqs_ret:
1271 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1266} 1272}
1267 1273
1268#else /* #ifdef CONFIG_SMP */ 1274#else /* #ifdef CONFIG_SMP */
@@ -1290,7 +1296,7 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1290 * If an RCU GP has gone long enough, go check for dyntick 1296 * If an RCU GP has gone long enough, go check for dyntick
1291 * idle CPUs and, if needed, send resched IPIs. 1297 * idle CPUs and, if needed, send resched IPIs.
1292 */ 1298 */
1293 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) 1299 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1294 force_quiescent_state(rsp, 1); 1300 force_quiescent_state(rsp, 1);
1295 1301
1296 /* 1302 /*
@@ -1304,7 +1310,7 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1304 1310
1305 /* Does this CPU require a not-yet-started grace period? */ 1311 /* Does this CPU require a not-yet-started grace period? */
1306 if (cpu_needs_another_gp(rsp, rdp)) { 1312 if (cpu_needs_another_gp(rsp, rdp)) {
1307 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); 1313 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1308 rcu_start_gp(rsp, flags); /* releases above lock */ 1314 rcu_start_gp(rsp, flags); /* releases above lock */
1309 } 1315 }
1310 1316
@@ -1335,6 +1341,9 @@ static void rcu_process_callbacks(struct softirq_action *unused)
1335 * grace-period manipulations above. 1341 * grace-period manipulations above.
1336 */ 1342 */
1337 smp_mb(); /* See above block comment. */ 1343 smp_mb(); /* See above block comment. */
1344
1345 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1346 rcu_needs_cpu_flush();
1338} 1347}
1339 1348
1340static void 1349static void
@@ -1369,7 +1378,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1369 unsigned long nestflag; 1378 unsigned long nestflag;
1370 struct rcu_node *rnp_root = rcu_get_root(rsp); 1379 struct rcu_node *rnp_root = rcu_get_root(rsp);
1371 1380
1372 spin_lock_irqsave(&rnp_root->lock, nestflag); 1381 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1373 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ 1382 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1374 } 1383 }
1375 1384
@@ -1387,7 +1396,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1387 force_quiescent_state(rsp, 0); 1396 force_quiescent_state(rsp, 0);
1388 rdp->n_force_qs_snap = rsp->n_force_qs; 1397 rdp->n_force_qs_snap = rsp->n_force_qs;
1389 rdp->qlen_last_fqs_check = rdp->qlen; 1398 rdp->qlen_last_fqs_check = rdp->qlen;
1390 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0) 1399 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1391 force_quiescent_state(rsp, 1); 1400 force_quiescent_state(rsp, 1);
1392 local_irq_restore(flags); 1401 local_irq_restore(flags);
1393} 1402}
@@ -1520,7 +1529,7 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1520 1529
1521 /* Has an RCU GP gone long enough to send resched IPIs &c? */ 1530 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1522 if (rcu_gp_in_progress(rsp) && 1531 if (rcu_gp_in_progress(rsp) &&
1523 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) { 1532 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1524 rdp->n_rp_need_fqs++; 1533 rdp->n_rp_need_fqs++;
1525 return 1; 1534 return 1;
1526 } 1535 }
@@ -1545,10 +1554,9 @@ static int rcu_pending(int cpu)
1545/* 1554/*
1546 * Check to see if any future RCU-related work will need to be done 1555 * Check to see if any future RCU-related work will need to be done
1547 * by the current CPU, even if none need be done immediately, returning 1556 * by the current CPU, even if none need be done immediately, returning
1548 * 1 if so. This function is part of the RCU implementation; it is -not- 1557 * 1 if so.
1549 * an exported member of the RCU API.
1550 */ 1558 */
1551int rcu_needs_cpu(int cpu) 1559static int rcu_needs_cpu_quick_check(int cpu)
1552{ 1560{
1553 /* RCU callbacks either ready or pending? */ 1561 /* RCU callbacks either ready or pending? */
1554 return per_cpu(rcu_sched_data, cpu).nxtlist || 1562 return per_cpu(rcu_sched_data, cpu).nxtlist ||
@@ -1556,21 +1564,6 @@ int rcu_needs_cpu(int cpu)
1556 rcu_preempt_needs_cpu(cpu); 1564 rcu_preempt_needs_cpu(cpu);
1557} 1565}
1558 1566
1559/*
1560 * This function is invoked towards the end of the scheduler's initialization
1561 * process. Before this is called, the idle task might contain
1562 * RCU read-side critical sections (during which time, this idle
1563 * task is booting the system). After this function is called, the
1564 * idle tasks are prohibited from containing RCU read-side critical
1565 * sections.
1566 */
1567void rcu_scheduler_starting(void)
1568{
1569 WARN_ON(num_online_cpus() != 1);
1570 WARN_ON(nr_context_switches() > 0);
1571 rcu_scheduler_active = 1;
1572}
1573
1574static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; 1567static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1575static atomic_t rcu_barrier_cpu_count; 1568static atomic_t rcu_barrier_cpu_count;
1576static DEFINE_MUTEX(rcu_barrier_mutex); 1569static DEFINE_MUTEX(rcu_barrier_mutex);
@@ -1659,7 +1652,7 @@ rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1659 struct rcu_node *rnp = rcu_get_root(rsp); 1652 struct rcu_node *rnp = rcu_get_root(rsp);
1660 1653
1661 /* Set up local state, ensuring consistent view of global state. */ 1654 /* Set up local state, ensuring consistent view of global state. */
1662 spin_lock_irqsave(&rnp->lock, flags); 1655 raw_spin_lock_irqsave(&rnp->lock, flags);
1663 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 1656 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1664 rdp->nxtlist = NULL; 1657 rdp->nxtlist = NULL;
1665 for (i = 0; i < RCU_NEXT_SIZE; i++) 1658 for (i = 0; i < RCU_NEXT_SIZE; i++)
@@ -1669,7 +1662,7 @@ rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1669 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 1662 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1670#endif /* #ifdef CONFIG_NO_HZ */ 1663#endif /* #ifdef CONFIG_NO_HZ */
1671 rdp->cpu = cpu; 1664 rdp->cpu = cpu;
1672 spin_unlock_irqrestore(&rnp->lock, flags); 1665 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1673} 1666}
1674 1667
1675/* 1668/*
@@ -1687,7 +1680,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1687 struct rcu_node *rnp = rcu_get_root(rsp); 1680 struct rcu_node *rnp = rcu_get_root(rsp);
1688 1681
1689 /* Set up local state, ensuring consistent view of global state. */ 1682 /* Set up local state, ensuring consistent view of global state. */
1690 spin_lock_irqsave(&rnp->lock, flags); 1683 raw_spin_lock_irqsave(&rnp->lock, flags);
1691 rdp->passed_quiesc = 0; /* We could be racing with new GP, */ 1684 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1692 rdp->qs_pending = 1; /* so set up to respond to current GP. */ 1685 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1693 rdp->beenonline = 1; /* We have now been online. */ 1686 rdp->beenonline = 1; /* We have now been online. */
@@ -1695,7 +1688,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1695 rdp->qlen_last_fqs_check = 0; 1688 rdp->qlen_last_fqs_check = 0;
1696 rdp->n_force_qs_snap = rsp->n_force_qs; 1689 rdp->n_force_qs_snap = rsp->n_force_qs;
1697 rdp->blimit = blimit; 1690 rdp->blimit = blimit;
1698 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1691 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1699 1692
1700 /* 1693 /*
1701 * A new grace period might start here. If so, we won't be part 1694 * A new grace period might start here. If so, we won't be part
@@ -1703,14 +1696,14 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1703 */ 1696 */
1704 1697
1705 /* Exclude any attempts to start a new GP on large systems. */ 1698 /* Exclude any attempts to start a new GP on large systems. */
1706 spin_lock(&rsp->onofflock); /* irqs already disabled. */ 1699 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1707 1700
1708 /* Add CPU to rcu_node bitmasks. */ 1701 /* Add CPU to rcu_node bitmasks. */
1709 rnp = rdp->mynode; 1702 rnp = rdp->mynode;
1710 mask = rdp->grpmask; 1703 mask = rdp->grpmask;
1711 do { 1704 do {
1712 /* Exclude any attempts to start a new GP on small systems. */ 1705 /* Exclude any attempts to start a new GP on small systems. */
1713 spin_lock(&rnp->lock); /* irqs already disabled. */ 1706 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1714 rnp->qsmaskinit |= mask; 1707 rnp->qsmaskinit |= mask;
1715 mask = rnp->grpmask; 1708 mask = rnp->grpmask;
1716 if (rnp == rdp->mynode) { 1709 if (rnp == rdp->mynode) {
@@ -1718,11 +1711,11 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1718 rdp->completed = rnp->completed; 1711 rdp->completed = rnp->completed;
1719 rdp->passed_quiesc_completed = rnp->completed - 1; 1712 rdp->passed_quiesc_completed = rnp->completed - 1;
1720 } 1713 }
1721 spin_unlock(&rnp->lock); /* irqs already disabled. */ 1714 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1722 rnp = rnp->parent; 1715 rnp = rnp->parent;
1723 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 1716 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1724 1717
1725 spin_unlock_irqrestore(&rsp->onofflock, flags); 1718 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1726} 1719}
1727 1720
1728static void __cpuinit rcu_online_cpu(int cpu) 1721static void __cpuinit rcu_online_cpu(int cpu)
@@ -1806,11 +1799,17 @@ static void __init rcu_init_levelspread(struct rcu_state *rsp)
1806 */ 1799 */
1807static void __init rcu_init_one(struct rcu_state *rsp) 1800static void __init rcu_init_one(struct rcu_state *rsp)
1808{ 1801{
1802 static char *buf[] = { "rcu_node_level_0",
1803 "rcu_node_level_1",
1804 "rcu_node_level_2",
1805 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1809 int cpustride = 1; 1806 int cpustride = 1;
1810 int i; 1807 int i;
1811 int j; 1808 int j;
1812 struct rcu_node *rnp; 1809 struct rcu_node *rnp;
1813 1810
1811 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1812
1814 /* Initialize the level-tracking arrays. */ 1813 /* Initialize the level-tracking arrays. */
1815 1814
1816 for (i = 1; i < NUM_RCU_LVLS; i++) 1815 for (i = 1; i < NUM_RCU_LVLS; i++)
@@ -1823,8 +1822,9 @@ static void __init rcu_init_one(struct rcu_state *rsp)
1823 cpustride *= rsp->levelspread[i]; 1822 cpustride *= rsp->levelspread[i];
1824 rnp = rsp->level[i]; 1823 rnp = rsp->level[i];
1825 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 1824 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1826 spin_lock_init(&rnp->lock); 1825 raw_spin_lock_init(&rnp->lock);
1827 lockdep_set_class(&rnp->lock, &rcu_node_class[i]); 1826 lockdep_set_class_and_name(&rnp->lock,
1827 &rcu_node_class[i], buf[i]);
1828 rnp->gpnum = 0; 1828 rnp->gpnum = 0;
1829 rnp->qsmask = 0; 1829 rnp->qsmask = 0;
1830 rnp->qsmaskinit = 0; 1830 rnp->qsmaskinit = 0;
@@ -1876,7 +1876,7 @@ do { \
1876 1876
1877void __init rcu_init(void) 1877void __init rcu_init(void)
1878{ 1878{
1879 int i; 1879 int cpu;
1880 1880
1881 rcu_bootup_announce(); 1881 rcu_bootup_announce();
1882#ifdef CONFIG_RCU_CPU_STALL_DETECTOR 1882#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
@@ -1896,8 +1896,8 @@ void __init rcu_init(void)
1896 * or the scheduler are operational. 1896 * or the scheduler are operational.
1897 */ 1897 */
1898 cpu_notifier(rcu_cpu_notify, 0); 1898 cpu_notifier(rcu_cpu_notify, 0);
1899 for_each_online_cpu(i) 1899 for_each_online_cpu(cpu)
1900 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i); 1900 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1901} 1901}
1902 1902
1903#include "rcutree_plugin.h" 1903#include "rcutree_plugin.h"
diff --git a/kernel/rcutree.h b/kernel/rcutree.h
index d2a0046f63b2..1439eb504c22 100644
--- a/kernel/rcutree.h
+++ b/kernel/rcutree.h
@@ -90,12 +90,12 @@ struct rcu_dynticks {
90 * Definition for node within the RCU grace-period-detection hierarchy. 90 * Definition for node within the RCU grace-period-detection hierarchy.
91 */ 91 */
92struct rcu_node { 92struct rcu_node {
93 spinlock_t lock; /* Root rcu_node's lock protects some */ 93 raw_spinlock_t lock; /* Root rcu_node's lock protects some */
94 /* rcu_state fields as well as following. */ 94 /* rcu_state fields as well as following. */
95 long gpnum; /* Current grace period for this node. */ 95 unsigned long gpnum; /* Current grace period for this node. */
96 /* This will either be equal to or one */ 96 /* This will either be equal to or one */
97 /* behind the root rcu_node's gpnum. */ 97 /* behind the root rcu_node's gpnum. */
98 long completed; /* Last grace period completed for this node. */ 98 unsigned long completed; /* Last GP completed for this node. */
99 /* This will either be equal to or one */ 99 /* This will either be equal to or one */
100 /* behind the root rcu_node's gpnum. */ 100 /* behind the root rcu_node's gpnum. */
101 unsigned long qsmask; /* CPUs or groups that need to switch in */ 101 unsigned long qsmask; /* CPUs or groups that need to switch in */
@@ -161,11 +161,11 @@ struct rcu_node {
161/* Per-CPU data for read-copy update. */ 161/* Per-CPU data for read-copy update. */
162struct rcu_data { 162struct rcu_data {
163 /* 1) quiescent-state and grace-period handling : */ 163 /* 1) quiescent-state and grace-period handling : */
164 long completed; /* Track rsp->completed gp number */ 164 unsigned long completed; /* Track rsp->completed gp number */
165 /* in order to detect GP end. */ 165 /* in order to detect GP end. */
166 long gpnum; /* Highest gp number that this CPU */ 166 unsigned long gpnum; /* Highest gp number that this CPU */
167 /* is aware of having started. */ 167 /* is aware of having started. */
168 long passed_quiesc_completed; 168 unsigned long passed_quiesc_completed;
169 /* Value of completed at time of qs. */ 169 /* Value of completed at time of qs. */
170 bool passed_quiesc; /* User-mode/idle loop etc. */ 170 bool passed_quiesc; /* User-mode/idle loop etc. */
171 bool qs_pending; /* Core waits for quiesc state. */ 171 bool qs_pending; /* Core waits for quiesc state. */
@@ -221,14 +221,14 @@ struct rcu_data {
221 unsigned long resched_ipi; /* Sent a resched IPI. */ 221 unsigned long resched_ipi; /* Sent a resched IPI. */
222 222
223 /* 5) __rcu_pending() statistics. */ 223 /* 5) __rcu_pending() statistics. */
224 long n_rcu_pending; /* rcu_pending() calls since boot. */ 224 unsigned long n_rcu_pending; /* rcu_pending() calls since boot. */
225 long n_rp_qs_pending; 225 unsigned long n_rp_qs_pending;
226 long n_rp_cb_ready; 226 unsigned long n_rp_cb_ready;
227 long n_rp_cpu_needs_gp; 227 unsigned long n_rp_cpu_needs_gp;
228 long n_rp_gp_completed; 228 unsigned long n_rp_gp_completed;
229 long n_rp_gp_started; 229 unsigned long n_rp_gp_started;
230 long n_rp_need_fqs; 230 unsigned long n_rp_need_fqs;
231 long n_rp_need_nothing; 231 unsigned long n_rp_need_nothing;
232 232
233 int cpu; 233 int cpu;
234}; 234};
@@ -237,12 +237,11 @@ struct rcu_data {
237#define RCU_GP_IDLE 0 /* No grace period in progress. */ 237#define RCU_GP_IDLE 0 /* No grace period in progress. */
238#define RCU_GP_INIT 1 /* Grace period being initialized. */ 238#define RCU_GP_INIT 1 /* Grace period being initialized. */
239#define RCU_SAVE_DYNTICK 2 /* Need to scan dyntick state. */ 239#define RCU_SAVE_DYNTICK 2 /* Need to scan dyntick state. */
240#define RCU_SAVE_COMPLETED 3 /* Need to save rsp->completed. */ 240#define RCU_FORCE_QS 3 /* Need to force quiescent state. */
241#define RCU_FORCE_QS 4 /* Need to force quiescent state. */
242#ifdef CONFIG_NO_HZ 241#ifdef CONFIG_NO_HZ
243#define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK 242#define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK
244#else /* #ifdef CONFIG_NO_HZ */ 243#else /* #ifdef CONFIG_NO_HZ */
245#define RCU_SIGNAL_INIT RCU_SAVE_COMPLETED 244#define RCU_SIGNAL_INIT RCU_FORCE_QS
246#endif /* #else #ifdef CONFIG_NO_HZ */ 245#endif /* #else #ifdef CONFIG_NO_HZ */
247 246
248#define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */ 247#define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */
@@ -256,6 +255,9 @@ struct rcu_data {
256 255
257#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 256#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
258 257
258#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
259#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
260
259/* 261/*
260 * RCU global state, including node hierarchy. This hierarchy is 262 * RCU global state, including node hierarchy. This hierarchy is
261 * represented in "heap" form in a dense array. The root (first level) 263 * represented in "heap" form in a dense array. The root (first level)
@@ -277,12 +279,19 @@ struct rcu_state {
277 279
278 u8 signaled ____cacheline_internodealigned_in_smp; 280 u8 signaled ____cacheline_internodealigned_in_smp;
279 /* Force QS state. */ 281 /* Force QS state. */
280 long gpnum; /* Current gp number. */ 282 u8 fqs_active; /* force_quiescent_state() */
281 long completed; /* # of last completed gp. */ 283 /* is running. */
284 u8 fqs_need_gp; /* A CPU was prevented from */
285 /* starting a new grace */
286 /* period because */
287 /* force_quiescent_state() */
288 /* was running. */
289 unsigned long gpnum; /* Current gp number. */
290 unsigned long completed; /* # of last completed gp. */
282 291
283 /* End of fields guarded by root rcu_node's lock. */ 292 /* End of fields guarded by root rcu_node's lock. */
284 293
285 spinlock_t onofflock; /* exclude on/offline and */ 294 raw_spinlock_t onofflock; /* exclude on/offline and */
286 /* starting new GP. Also */ 295 /* starting new GP. Also */
287 /* protects the following */ 296 /* protects the following */
288 /* orphan_cbs fields. */ 297 /* orphan_cbs fields. */
@@ -292,10 +301,8 @@ struct rcu_state {
292 /* going offline. */ 301 /* going offline. */
293 struct rcu_head **orphan_cbs_tail; /* And tail pointer. */ 302 struct rcu_head **orphan_cbs_tail; /* And tail pointer. */
294 long orphan_qlen; /* Number of orphaned cbs. */ 303 long orphan_qlen; /* Number of orphaned cbs. */
295 spinlock_t fqslock; /* Only one task forcing */ 304 raw_spinlock_t fqslock; /* Only one task forcing */
296 /* quiescent states. */ 305 /* quiescent states. */
297 long completed_fqs; /* Value of completed @ snap. */
298 /* Protected by fqslock. */
299 unsigned long jiffies_force_qs; /* Time at which to invoke */ 306 unsigned long jiffies_force_qs; /* Time at which to invoke */
300 /* force_quiescent_state(). */ 307 /* force_quiescent_state(). */
301 unsigned long n_force_qs; /* Number of calls to */ 308 unsigned long n_force_qs; /* Number of calls to */
@@ -319,8 +326,6 @@ struct rcu_state {
319#define RCU_OFL_TASKS_EXP_GP 0x2 /* Tasks blocking expedited */ 326#define RCU_OFL_TASKS_EXP_GP 0x2 /* Tasks blocking expedited */
320 /* GP were moved to root. */ 327 /* GP were moved to root. */
321 328
322#ifdef RCU_TREE_NONCORE
323
324/* 329/*
325 * RCU implementation internal declarations: 330 * RCU implementation internal declarations:
326 */ 331 */
@@ -335,7 +340,7 @@ extern struct rcu_state rcu_preempt_state;
335DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data); 340DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data);
336#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 341#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
337 342
338#else /* #ifdef RCU_TREE_NONCORE */ 343#ifndef RCU_TREE_NONCORE
339 344
340/* Forward declarations for rcutree_plugin.h */ 345/* Forward declarations for rcutree_plugin.h */
341static void rcu_bootup_announce(void); 346static void rcu_bootup_announce(void);
@@ -347,6 +352,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp,
347 unsigned long flags); 352 unsigned long flags);
348#endif /* #ifdef CONFIG_HOTPLUG_CPU */ 353#endif /* #ifdef CONFIG_HOTPLUG_CPU */
349#ifdef CONFIG_RCU_CPU_STALL_DETECTOR 354#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
355static void rcu_print_detail_task_stall(struct rcu_state *rsp);
350static void rcu_print_task_stall(struct rcu_node *rnp); 356static void rcu_print_task_stall(struct rcu_node *rnp);
351#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ 357#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
352static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp); 358static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp);
@@ -367,5 +373,6 @@ static int rcu_preempt_needs_cpu(int cpu);
367static void __cpuinit rcu_preempt_init_percpu_data(int cpu); 373static void __cpuinit rcu_preempt_init_percpu_data(int cpu);
368static void rcu_preempt_send_cbs_to_orphanage(void); 374static void rcu_preempt_send_cbs_to_orphanage(void);
369static void __init __rcu_init_preempt(void); 375static void __init __rcu_init_preempt(void);
376static void rcu_needs_cpu_flush(void);
370 377
371#endif /* #else #ifdef RCU_TREE_NONCORE */ 378#endif /* #ifndef RCU_TREE_NONCORE */
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
index 37fbccdf41d5..464ad2cdee00 100644
--- a/kernel/rcutree_plugin.h
+++ b/kernel/rcutree_plugin.h
@@ -62,6 +62,15 @@ long rcu_batches_completed(void)
62EXPORT_SYMBOL_GPL(rcu_batches_completed); 62EXPORT_SYMBOL_GPL(rcu_batches_completed);
63 63
64/* 64/*
65 * Force a quiescent state for preemptible RCU.
66 */
67void rcu_force_quiescent_state(void)
68{
69 force_quiescent_state(&rcu_preempt_state, 0);
70}
71EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
72
73/*
65 * Record a preemptable-RCU quiescent state for the specified CPU. Note 74 * Record a preemptable-RCU quiescent state for the specified CPU. Note
66 * that this just means that the task currently running on the CPU is 75 * that this just means that the task currently running on the CPU is
67 * not in a quiescent state. There might be any number of tasks blocked 76 * not in a quiescent state. There might be any number of tasks blocked
@@ -102,7 +111,7 @@ static void rcu_preempt_note_context_switch(int cpu)
102 /* Possibly blocking in an RCU read-side critical section. */ 111 /* Possibly blocking in an RCU read-side critical section. */
103 rdp = rcu_preempt_state.rda[cpu]; 112 rdp = rcu_preempt_state.rda[cpu];
104 rnp = rdp->mynode; 113 rnp = rdp->mynode;
105 spin_lock_irqsave(&rnp->lock, flags); 114 raw_spin_lock_irqsave(&rnp->lock, flags);
106 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; 115 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
107 t->rcu_blocked_node = rnp; 116 t->rcu_blocked_node = rnp;
108 117
@@ -123,7 +132,7 @@ static void rcu_preempt_note_context_switch(int cpu)
123 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 132 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
124 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; 133 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
125 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); 134 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
126 spin_unlock_irqrestore(&rnp->lock, flags); 135 raw_spin_unlock_irqrestore(&rnp->lock, flags);
127 } 136 }
128 137
129 /* 138 /*
@@ -180,7 +189,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
180 struct rcu_node *rnp_p; 189 struct rcu_node *rnp_p;
181 190
182 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { 191 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
183 spin_unlock_irqrestore(&rnp->lock, flags); 192 raw_spin_unlock_irqrestore(&rnp->lock, flags);
184 return; /* Still need more quiescent states! */ 193 return; /* Still need more quiescent states! */
185 } 194 }
186 195
@@ -197,8 +206,8 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
197 206
198 /* Report up the rest of the hierarchy. */ 207 /* Report up the rest of the hierarchy. */
199 mask = rnp->grpmask; 208 mask = rnp->grpmask;
200 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 209 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
201 spin_lock(&rnp_p->lock); /* irqs already disabled. */ 210 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
202 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); 211 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
203} 212}
204 213
@@ -248,10 +257,10 @@ static void rcu_read_unlock_special(struct task_struct *t)
248 */ 257 */
249 for (;;) { 258 for (;;) {
250 rnp = t->rcu_blocked_node; 259 rnp = t->rcu_blocked_node;
251 spin_lock(&rnp->lock); /* irqs already disabled. */ 260 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
252 if (rnp == t->rcu_blocked_node) 261 if (rnp == t->rcu_blocked_node)
253 break; 262 break;
254 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 263 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
255 } 264 }
256 empty = !rcu_preempted_readers(rnp); 265 empty = !rcu_preempted_readers(rnp);
257 empty_exp = !rcu_preempted_readers_exp(rnp); 266 empty_exp = !rcu_preempted_readers_exp(rnp);
@@ -265,7 +274,7 @@ static void rcu_read_unlock_special(struct task_struct *t)
265 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock. 274 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
266 */ 275 */
267 if (empty) 276 if (empty)
268 spin_unlock_irqrestore(&rnp->lock, flags); 277 raw_spin_unlock_irqrestore(&rnp->lock, flags);
269 else 278 else
270 rcu_report_unblock_qs_rnp(rnp, flags); 279 rcu_report_unblock_qs_rnp(rnp, flags);
271 280
@@ -295,29 +304,73 @@ void __rcu_read_unlock(void)
295 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && 304 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
296 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) 305 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
297 rcu_read_unlock_special(t); 306 rcu_read_unlock_special(t);
307#ifdef CONFIG_PROVE_LOCKING
308 WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
309#endif /* #ifdef CONFIG_PROVE_LOCKING */
298} 310}
299EXPORT_SYMBOL_GPL(__rcu_read_unlock); 311EXPORT_SYMBOL_GPL(__rcu_read_unlock);
300 312
301#ifdef CONFIG_RCU_CPU_STALL_DETECTOR 313#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
302 314
315#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
316
317/*
318 * Dump detailed information for all tasks blocking the current RCU
319 * grace period on the specified rcu_node structure.
320 */
321static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
322{
323 unsigned long flags;
324 struct list_head *lp;
325 int phase;
326 struct task_struct *t;
327
328 if (rcu_preempted_readers(rnp)) {
329 raw_spin_lock_irqsave(&rnp->lock, flags);
330 phase = rnp->gpnum & 0x1;
331 lp = &rnp->blocked_tasks[phase];
332 list_for_each_entry(t, lp, rcu_node_entry)
333 sched_show_task(t);
334 raw_spin_unlock_irqrestore(&rnp->lock, flags);
335 }
336}
337
338/*
339 * Dump detailed information for all tasks blocking the current RCU
340 * grace period.
341 */
342static void rcu_print_detail_task_stall(struct rcu_state *rsp)
343{
344 struct rcu_node *rnp = rcu_get_root(rsp);
345
346 rcu_print_detail_task_stall_rnp(rnp);
347 rcu_for_each_leaf_node(rsp, rnp)
348 rcu_print_detail_task_stall_rnp(rnp);
349}
350
351#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
352
353static void rcu_print_detail_task_stall(struct rcu_state *rsp)
354{
355}
356
357#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
358
303/* 359/*
304 * Scan the current list of tasks blocked within RCU read-side critical 360 * Scan the current list of tasks blocked within RCU read-side critical
305 * sections, printing out the tid of each. 361 * sections, printing out the tid of each.
306 */ 362 */
307static void rcu_print_task_stall(struct rcu_node *rnp) 363static void rcu_print_task_stall(struct rcu_node *rnp)
308{ 364{
309 unsigned long flags;
310 struct list_head *lp; 365 struct list_head *lp;
311 int phase; 366 int phase;
312 struct task_struct *t; 367 struct task_struct *t;
313 368
314 if (rcu_preempted_readers(rnp)) { 369 if (rcu_preempted_readers(rnp)) {
315 spin_lock_irqsave(&rnp->lock, flags);
316 phase = rnp->gpnum & 0x1; 370 phase = rnp->gpnum & 0x1;
317 lp = &rnp->blocked_tasks[phase]; 371 lp = &rnp->blocked_tasks[phase];
318 list_for_each_entry(t, lp, rcu_node_entry) 372 list_for_each_entry(t, lp, rcu_node_entry)
319 printk(" P%d", t->pid); 373 printk(" P%d", t->pid);
320 spin_unlock_irqrestore(&rnp->lock, flags);
321 } 374 }
322} 375}
323 376
@@ -388,11 +441,11 @@ static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
388 lp_root = &rnp_root->blocked_tasks[i]; 441 lp_root = &rnp_root->blocked_tasks[i];
389 while (!list_empty(lp)) { 442 while (!list_empty(lp)) {
390 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry); 443 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
391 spin_lock(&rnp_root->lock); /* irqs already disabled */ 444 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
392 list_del(&tp->rcu_node_entry); 445 list_del(&tp->rcu_node_entry);
393 tp->rcu_blocked_node = rnp_root; 446 tp->rcu_blocked_node = rnp_root;
394 list_add(&tp->rcu_node_entry, lp_root); 447 list_add(&tp->rcu_node_entry, lp_root);
395 spin_unlock(&rnp_root->lock); /* irqs remain disabled */ 448 raw_spin_unlock(&rnp_root->lock); /* irqs remain disabled */
396 } 449 }
397 } 450 }
398 return retval; 451 return retval;
@@ -516,7 +569,7 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
516 unsigned long flags; 569 unsigned long flags;
517 unsigned long mask; 570 unsigned long mask;
518 571
519 spin_lock_irqsave(&rnp->lock, flags); 572 raw_spin_lock_irqsave(&rnp->lock, flags);
520 for (;;) { 573 for (;;) {
521 if (!sync_rcu_preempt_exp_done(rnp)) 574 if (!sync_rcu_preempt_exp_done(rnp))
522 break; 575 break;
@@ -525,12 +578,12 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
525 break; 578 break;
526 } 579 }
527 mask = rnp->grpmask; 580 mask = rnp->grpmask;
528 spin_unlock(&rnp->lock); /* irqs remain disabled */ 581 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
529 rnp = rnp->parent; 582 rnp = rnp->parent;
530 spin_lock(&rnp->lock); /* irqs already disabled */ 583 raw_spin_lock(&rnp->lock); /* irqs already disabled */
531 rnp->expmask &= ~mask; 584 rnp->expmask &= ~mask;
532 } 585 }
533 spin_unlock_irqrestore(&rnp->lock, flags); 586 raw_spin_unlock_irqrestore(&rnp->lock, flags);
534} 587}
535 588
536/* 589/*
@@ -545,11 +598,11 @@ sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
545{ 598{
546 int must_wait; 599 int must_wait;
547 600
548 spin_lock(&rnp->lock); /* irqs already disabled */ 601 raw_spin_lock(&rnp->lock); /* irqs already disabled */
549 list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]); 602 list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]);
550 list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]); 603 list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]);
551 must_wait = rcu_preempted_readers_exp(rnp); 604 must_wait = rcu_preempted_readers_exp(rnp);
552 spin_unlock(&rnp->lock); /* irqs remain disabled */ 605 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
553 if (!must_wait) 606 if (!must_wait)
554 rcu_report_exp_rnp(rsp, rnp); 607 rcu_report_exp_rnp(rsp, rnp);
555} 608}
@@ -594,13 +647,13 @@ void synchronize_rcu_expedited(void)
594 /* force all RCU readers onto blocked_tasks[]. */ 647 /* force all RCU readers onto blocked_tasks[]. */
595 synchronize_sched_expedited(); 648 synchronize_sched_expedited();
596 649
597 spin_lock_irqsave(&rsp->onofflock, flags); 650 raw_spin_lock_irqsave(&rsp->onofflock, flags);
598 651
599 /* Initialize ->expmask for all non-leaf rcu_node structures. */ 652 /* Initialize ->expmask for all non-leaf rcu_node structures. */
600 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { 653 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
601 spin_lock(&rnp->lock); /* irqs already disabled. */ 654 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
602 rnp->expmask = rnp->qsmaskinit; 655 rnp->expmask = rnp->qsmaskinit;
603 spin_unlock(&rnp->lock); /* irqs remain disabled. */ 656 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
604 } 657 }
605 658
606 /* Snapshot current state of ->blocked_tasks[] lists. */ 659 /* Snapshot current state of ->blocked_tasks[] lists. */
@@ -609,7 +662,7 @@ void synchronize_rcu_expedited(void)
609 if (NUM_RCU_NODES > 1) 662 if (NUM_RCU_NODES > 1)
610 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); 663 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
611 664
612 spin_unlock_irqrestore(&rsp->onofflock, flags); 665 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
613 666
614 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */ 667 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
615 rnp = rcu_get_root(rsp); 668 rnp = rcu_get_root(rsp);
@@ -713,6 +766,16 @@ long rcu_batches_completed(void)
713EXPORT_SYMBOL_GPL(rcu_batches_completed); 766EXPORT_SYMBOL_GPL(rcu_batches_completed);
714 767
715/* 768/*
769 * Force a quiescent state for RCU, which, because there is no preemptible
770 * RCU, becomes the same as rcu-sched.
771 */
772void rcu_force_quiescent_state(void)
773{
774 rcu_sched_force_quiescent_state();
775}
776EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
777
778/*
716 * Because preemptable RCU does not exist, we never have to check for 779 * Because preemptable RCU does not exist, we never have to check for
717 * CPUs being in quiescent states. 780 * CPUs being in quiescent states.
718 */ 781 */
@@ -734,7 +797,7 @@ static int rcu_preempted_readers(struct rcu_node *rnp)
734/* Because preemptible RCU does not exist, no quieting of tasks. */ 797/* Because preemptible RCU does not exist, no quieting of tasks. */
735static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 798static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
736{ 799{
737 spin_unlock_irqrestore(&rnp->lock, flags); 800 raw_spin_unlock_irqrestore(&rnp->lock, flags);
738} 801}
739 802
740#endif /* #ifdef CONFIG_HOTPLUG_CPU */ 803#endif /* #ifdef CONFIG_HOTPLUG_CPU */
@@ -745,6 +808,14 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
745 * Because preemptable RCU does not exist, we never have to check for 808 * Because preemptable RCU does not exist, we never have to check for
746 * tasks blocked within RCU read-side critical sections. 809 * tasks blocked within RCU read-side critical sections.
747 */ 810 */
811static void rcu_print_detail_task_stall(struct rcu_state *rsp)
812{
813}
814
815/*
816 * Because preemptable RCU does not exist, we never have to check for
817 * tasks blocked within RCU read-side critical sections.
818 */
748static void rcu_print_task_stall(struct rcu_node *rnp) 819static void rcu_print_task_stall(struct rcu_node *rnp)
749{ 820{
750} 821}
@@ -884,3 +955,113 @@ static void __init __rcu_init_preempt(void)
884} 955}
885 956
886#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ 957#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
958
959#if !defined(CONFIG_RCU_FAST_NO_HZ)
960
961/*
962 * Check to see if any future RCU-related work will need to be done
963 * by the current CPU, even if none need be done immediately, returning
964 * 1 if so. This function is part of the RCU implementation; it is -not-
965 * an exported member of the RCU API.
966 *
967 * Because we have preemptible RCU, just check whether this CPU needs
968 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
969 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
970 */
971int rcu_needs_cpu(int cpu)
972{
973 return rcu_needs_cpu_quick_check(cpu);
974}
975
976/*
977 * Check to see if we need to continue a callback-flush operations to
978 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
979 * entry is not configured, so we never do need to.
980 */
981static void rcu_needs_cpu_flush(void)
982{
983}
984
985#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
986
987#define RCU_NEEDS_CPU_FLUSHES 5
988static DEFINE_PER_CPU(int, rcu_dyntick_drain);
989static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
990
991/*
992 * Check to see if any future RCU-related work will need to be done
993 * by the current CPU, even if none need be done immediately, returning
994 * 1 if so. This function is part of the RCU implementation; it is -not-
995 * an exported member of the RCU API.
996 *
997 * Because we are not supporting preemptible RCU, attempt to accelerate
998 * any current grace periods so that RCU no longer needs this CPU, but
999 * only if all other CPUs are already in dynticks-idle mode. This will
1000 * allow the CPU cores to be powered down immediately, as opposed to after
1001 * waiting many milliseconds for grace periods to elapse.
1002 *
1003 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1004 * disabled, we do one pass of force_quiescent_state(), then do a
1005 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
1006 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1007 */
1008int rcu_needs_cpu(int cpu)
1009{
1010 int c = 0;
1011 int thatcpu;
1012
1013 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1014 for_each_cpu_not(thatcpu, nohz_cpu_mask)
1015 if (thatcpu != cpu) {
1016 per_cpu(rcu_dyntick_drain, cpu) = 0;
1017 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1018 return rcu_needs_cpu_quick_check(cpu);
1019 }
1020
1021 /* Check and update the rcu_dyntick_drain sequencing. */
1022 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1023 /* First time through, initialize the counter. */
1024 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1025 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1026 /* We have hit the limit, so time to give up. */
1027 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1028 return rcu_needs_cpu_quick_check(cpu);
1029 }
1030
1031 /* Do one step pushing remaining RCU callbacks through. */
1032 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1033 rcu_sched_qs(cpu);
1034 force_quiescent_state(&rcu_sched_state, 0);
1035 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1036 }
1037 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1038 rcu_bh_qs(cpu);
1039 force_quiescent_state(&rcu_bh_state, 0);
1040 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1041 }
1042
1043 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1044 if (c) {
1045 raise_softirq(RCU_SOFTIRQ);
1046 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1047 }
1048 return c;
1049}
1050
1051/*
1052 * Check to see if we need to continue a callback-flush operations to
1053 * allow the last CPU to enter dyntick-idle mode.
1054 */
1055static void rcu_needs_cpu_flush(void)
1056{
1057 int cpu = smp_processor_id();
1058 unsigned long flags;
1059
1060 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
1061 return;
1062 local_irq_save(flags);
1063 (void)rcu_needs_cpu(cpu);
1064 local_irq_restore(flags);
1065}
1066
1067#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c
index 9d2c88423b31..d45db2e35d27 100644
--- a/kernel/rcutree_trace.c
+++ b/kernel/rcutree_trace.c
@@ -50,7 +50,7 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp)
50{ 50{
51 if (!rdp->beenonline) 51 if (!rdp->beenonline)
52 return; 52 return;
53 seq_printf(m, "%3d%cc=%ld g=%ld pq=%d pqc=%ld qp=%d", 53 seq_printf(m, "%3d%cc=%lu g=%lu pq=%d pqc=%lu qp=%d",
54 rdp->cpu, 54 rdp->cpu,
55 cpu_is_offline(rdp->cpu) ? '!' : ' ', 55 cpu_is_offline(rdp->cpu) ? '!' : ' ',
56 rdp->completed, rdp->gpnum, 56 rdp->completed, rdp->gpnum,
@@ -105,7 +105,7 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp)
105{ 105{
106 if (!rdp->beenonline) 106 if (!rdp->beenonline)
107 return; 107 return;
108 seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", 108 seq_printf(m, "%d,%s,%lu,%lu,%d,%lu,%d",
109 rdp->cpu, 109 rdp->cpu,
110 cpu_is_offline(rdp->cpu) ? "\"N\"" : "\"Y\"", 110 cpu_is_offline(rdp->cpu) ? "\"N\"" : "\"Y\"",
111 rdp->completed, rdp->gpnum, 111 rdp->completed, rdp->gpnum,
@@ -155,13 +155,13 @@ static const struct file_operations rcudata_csv_fops = {
155 155
156static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp) 156static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp)
157{ 157{
158 long gpnum; 158 unsigned long gpnum;
159 int level = 0; 159 int level = 0;
160 int phase; 160 int phase;
161 struct rcu_node *rnp; 161 struct rcu_node *rnp;
162 162
163 gpnum = rsp->gpnum; 163 gpnum = rsp->gpnum;
164 seq_printf(m, "c=%ld g=%ld s=%d jfq=%ld j=%x " 164 seq_printf(m, "c=%lu g=%lu s=%d jfq=%ld j=%x "
165 "nfqs=%lu/nfqsng=%lu(%lu) fqlh=%lu oqlen=%ld\n", 165 "nfqs=%lu/nfqsng=%lu(%lu) fqlh=%lu oqlen=%ld\n",
166 rsp->completed, gpnum, rsp->signaled, 166 rsp->completed, gpnum, rsp->signaled,
167 (long)(rsp->jiffies_force_qs - jiffies), 167 (long)(rsp->jiffies_force_qs - jiffies),
@@ -215,12 +215,12 @@ static const struct file_operations rcuhier_fops = {
215static int show_rcugp(struct seq_file *m, void *unused) 215static int show_rcugp(struct seq_file *m, void *unused)
216{ 216{
217#ifdef CONFIG_TREE_PREEMPT_RCU 217#ifdef CONFIG_TREE_PREEMPT_RCU
218 seq_printf(m, "rcu_preempt: completed=%ld gpnum=%ld\n", 218 seq_printf(m, "rcu_preempt: completed=%ld gpnum=%lu\n",
219 rcu_preempt_state.completed, rcu_preempt_state.gpnum); 219 rcu_preempt_state.completed, rcu_preempt_state.gpnum);
220#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 220#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
221 seq_printf(m, "rcu_sched: completed=%ld gpnum=%ld\n", 221 seq_printf(m, "rcu_sched: completed=%ld gpnum=%lu\n",
222 rcu_sched_state.completed, rcu_sched_state.gpnum); 222 rcu_sched_state.completed, rcu_sched_state.gpnum);
223 seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", 223 seq_printf(m, "rcu_bh: completed=%ld gpnum=%lu\n",
224 rcu_bh_state.completed, rcu_bh_state.gpnum); 224 rcu_bh_state.completed, rcu_bh_state.gpnum);
225 return 0; 225 return 0;
226} 226}
diff --git a/kernel/resource.c b/kernel/resource.c
index af96c1e4b54b..4e9d87fd7bc5 100644
--- a/kernel/resource.c
+++ b/kernel/resource.c
@@ -188,6 +188,36 @@ static int __release_resource(struct resource *old)
188 return -EINVAL; 188 return -EINVAL;
189} 189}
190 190
191static void __release_child_resources(struct resource *r)
192{
193 struct resource *tmp, *p;
194 resource_size_t size;
195
196 p = r->child;
197 r->child = NULL;
198 while (p) {
199 tmp = p;
200 p = p->sibling;
201
202 tmp->parent = NULL;
203 tmp->sibling = NULL;
204 __release_child_resources(tmp);
205
206 printk(KERN_DEBUG "release child resource %pR\n", tmp);
207 /* need to restore size, and keep flags */
208 size = resource_size(tmp);
209 tmp->start = 0;
210 tmp->end = size - 1;
211 }
212}
213
214void release_child_resources(struct resource *r)
215{
216 write_lock(&resource_lock);
217 __release_child_resources(r);
218 write_unlock(&resource_lock);
219}
220
191/** 221/**
192 * request_resource - request and reserve an I/O or memory resource 222 * request_resource - request and reserve an I/O or memory resource
193 * @root: root resource descriptor 223 * @root: root resource descriptor
@@ -297,14 +327,29 @@ int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
297 327
298#endif 328#endif
299 329
330static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
331{
332 return 1;
333}
334/*
335 * This generic page_is_ram() returns true if specified address is
336 * registered as "System RAM" in iomem_resource list.
337 */
338int __weak page_is_ram(unsigned long pfn)
339{
340 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
341}
342
300/* 343/*
301 * Find empty slot in the resource tree given range and alignment. 344 * Find empty slot in the resource tree given range and alignment.
302 */ 345 */
303static int find_resource(struct resource *root, struct resource *new, 346static int find_resource(struct resource *root, struct resource *new,
304 resource_size_t size, resource_size_t min, 347 resource_size_t size, resource_size_t min,
305 resource_size_t max, resource_size_t align, 348 resource_size_t max, resource_size_t align,
306 void (*alignf)(void *, struct resource *, 349 resource_size_t (*alignf)(void *,
307 resource_size_t, resource_size_t), 350 const struct resource *,
351 resource_size_t,
352 resource_size_t),
308 void *alignf_data) 353 void *alignf_data)
309{ 354{
310 struct resource *this = root->child; 355 struct resource *this = root->child;
@@ -330,7 +375,7 @@ static int find_resource(struct resource *root, struct resource *new,
330 tmp.end = max; 375 tmp.end = max;
331 tmp.start = ALIGN(tmp.start, align); 376 tmp.start = ALIGN(tmp.start, align);
332 if (alignf) 377 if (alignf)
333 alignf(alignf_data, &tmp, size, align); 378 tmp.start = alignf(alignf_data, &tmp, size, align);
334 if (tmp.start < tmp.end && tmp.end - tmp.start >= size - 1) { 379 if (tmp.start < tmp.end && tmp.end - tmp.start >= size - 1) {
335 new->start = tmp.start; 380 new->start = tmp.start;
336 new->end = tmp.start + size - 1; 381 new->end = tmp.start + size - 1;
@@ -358,8 +403,10 @@ static int find_resource(struct resource *root, struct resource *new,
358int allocate_resource(struct resource *root, struct resource *new, 403int allocate_resource(struct resource *root, struct resource *new,
359 resource_size_t size, resource_size_t min, 404 resource_size_t size, resource_size_t min,
360 resource_size_t max, resource_size_t align, 405 resource_size_t max, resource_size_t align,
361 void (*alignf)(void *, struct resource *, 406 resource_size_t (*alignf)(void *,
362 resource_size_t, resource_size_t), 407 const struct resource *,
408 resource_size_t,
409 resource_size_t),
363 void *alignf_data) 410 void *alignf_data)
364{ 411{
365 int err; 412 int err;
diff --git a/kernel/sched.c b/kernel/sched.c
index 3a8fb30a91b1..6a212c97f523 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 */ 233 */
234static DEFINE_MUTEX(sched_domains_mutex); 234static DEFINE_MUTEX(sched_domains_mutex);
235 235
236#ifdef CONFIG_GROUP_SCHED 236#ifdef CONFIG_CGROUP_SCHED
237 237
238#include <linux/cgroup.h> 238#include <linux/cgroup.h>
239 239
@@ -243,13 +243,7 @@ static LIST_HEAD(task_groups);
243 243
244/* task group related information */ 244/* task group related information */
245struct task_group { 245struct task_group {
246#ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css; 246 struct cgroup_subsys_state css;
248#endif
249
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253 247
254#ifdef CONFIG_FAIR_GROUP_SCHED 248#ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */ 249 /* schedulable entities of this group on each cpu */
@@ -274,35 +268,7 @@ struct task_group {
274 struct list_head children; 268 struct list_head children;
275}; 269};
276 270
277#ifdef CONFIG_USER_SCHED
278
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
285/*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290struct task_group root_task_group;
291
292#ifdef CONFIG_FAIR_GROUP_SCHED
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297#endif /* CONFIG_FAIR_GROUP_SCHED */
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_USER_SCHED */
304#define root_task_group init_task_group 271#define root_task_group init_task_group
305#endif /* CONFIG_USER_SCHED */
306 272
307/* task_group_lock serializes add/remove of task groups and also changes to 273/* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares. 274 * a task group's cpu shares.
@@ -318,11 +284,7 @@ static int root_task_group_empty(void)
318} 284}
319#endif 285#endif
320 286
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323#else /* !CONFIG_USER_SCHED */
324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325#endif /* CONFIG_USER_SCHED */
326 288
327/* 289/*
328 * A weight of 0 or 1 can cause arithmetics problems. 290 * A weight of 0 or 1 can cause arithmetics problems.
@@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p)
348{ 310{
349 struct task_group *tg; 311 struct task_group *tg;
350 312
351#ifdef CONFIG_USER_SCHED 313#ifdef CONFIG_CGROUP_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355#elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), 314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css); 315 struct task_group, css);
358#else 316#else
@@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p)
383 return NULL; 341 return NULL;
384} 342}
385 343
386#endif /* CONFIG_GROUP_SCHED */ 344#endif /* CONFIG_CGROUP_SCHED */
387 345
388/* CFS-related fields in a runqueue */ 346/* CFS-related fields in a runqueue */
389struct cfs_rq { 347struct cfs_rq {
@@ -478,7 +436,6 @@ struct rt_rq {
478 struct rq *rq; 436 struct rq *rq;
479 struct list_head leaf_rt_rq_list; 437 struct list_head leaf_rt_rq_list;
480 struct task_group *tg; 438 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif 439#endif
483}; 440};
484 441
@@ -645,6 +602,11 @@ static inline int cpu_of(struct rq *rq)
645#endif 602#endif
646} 603}
647 604
605#define rcu_dereference_check_sched_domain(p) \
606 rcu_dereference_check((p), \
607 rcu_read_lock_sched_held() || \
608 lockdep_is_held(&sched_domains_mutex))
609
648/* 610/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details. 612 * See detach_destroy_domains: synchronize_sched for details.
@@ -653,7 +615,7 @@ static inline int cpu_of(struct rq *rq)
653 * preempt-disabled sections. 615 * preempt-disabled sections.
654 */ 616 */
655#define for_each_domain(cpu, __sd) \ 617#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) 618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 619
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 620#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues)) 621#define this_rq() (&__get_cpu_var(runqueues))
@@ -941,16 +903,33 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 903#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942 904
943/* 905/*
906 * Check whether the task is waking, we use this to synchronize against
907 * ttwu() so that task_cpu() reports a stable number.
908 *
909 * We need to make an exception for PF_STARTING tasks because the fork
910 * path might require task_rq_lock() to work, eg. it can call
911 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
912 */
913static inline int task_is_waking(struct task_struct *p)
914{
915 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
916}
917
918/*
944 * __task_rq_lock - lock the runqueue a given task resides on. 919 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled. 920 * Must be called interrupts disabled.
946 */ 921 */
947static inline struct rq *__task_rq_lock(struct task_struct *p) 922static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock) 923 __acquires(rq->lock)
949{ 924{
925 struct rq *rq;
926
950 for (;;) { 927 for (;;) {
951 struct rq *rq = task_rq(p); 928 while (task_is_waking(p))
929 cpu_relax();
930 rq = task_rq(p);
952 raw_spin_lock(&rq->lock); 931 raw_spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p))) 932 if (likely(rq == task_rq(p) && !task_is_waking(p)))
954 return rq; 933 return rq;
955 raw_spin_unlock(&rq->lock); 934 raw_spin_unlock(&rq->lock);
956 } 935 }
@@ -967,10 +946,12 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 struct rq *rq; 946 struct rq *rq;
968 947
969 for (;;) { 948 for (;;) {
949 while (task_is_waking(p))
950 cpu_relax();
970 local_irq_save(*flags); 951 local_irq_save(*flags);
971 rq = task_rq(p); 952 rq = task_rq(p);
972 raw_spin_lock(&rq->lock); 953 raw_spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p))) 954 if (likely(rq == task_rq(p) && !task_is_waking(p)))
974 return rq; 955 return rq;
975 raw_spin_unlock_irqrestore(&rq->lock, *flags); 956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
976 } 957 }
@@ -1390,32 +1371,6 @@ static const u32 prio_to_wmult[40] = {
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391}; 1372};
1392 1373
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417#endif
1418
1419/* Time spent by the tasks of the cpu accounting group executing in ... */ 1374/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index { 1375enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */ 1376 CPUACCT_STAT_USER, /* ... user mode */
@@ -1531,7 +1486,7 @@ static unsigned long target_load(int cpu, int type)
1531 1486
1532static struct sched_group *group_of(int cpu) 1487static struct sched_group *group_of(int cpu)
1533{ 1488{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); 1489 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1535 1490
1536 if (!sd) 1491 if (!sd)
1537 return NULL; 1492 return NULL;
@@ -1701,16 +1656,6 @@ static void update_shares(struct sched_domain *sd)
1701 } 1656 }
1702} 1657}
1703 1658
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
1706 if (root_task_group_empty())
1707 return;
1708
1709 raw_spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 raw_spin_lock(&rq->lock);
1712}
1713
1714static void update_h_load(long cpu) 1659static void update_h_load(long cpu)
1715{ 1660{
1716 if (root_task_group_empty()) 1661 if (root_task_group_empty())
@@ -1725,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd)
1725{ 1670{
1726} 1671}
1727 1672
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
1732#endif 1673#endif
1733 1674
1734#ifdef CONFIG_PREEMPT 1675#ifdef CONFIG_PREEMPT
@@ -1805,6 +1746,51 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 raw_spin_unlock(&busiest->lock); 1746 raw_spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807} 1748}
1749
1750/*
1751 * double_rq_lock - safely lock two runqueues
1752 *
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1755 */
1756static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock)
1759{
1760 BUG_ON(!irqs_disabled());
1761 if (rq1 == rq2) {
1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1764 } else {
1765 if (rq1 < rq2) {
1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1768 } else {
1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1771 }
1772 }
1773 update_rq_clock(rq1);
1774 update_rq_clock(rq2);
1775}
1776
1777/*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786{
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792}
1793
1808#endif 1794#endif
1809 1795
1810#ifdef CONFIG_FAIR_GROUP_SCHED 1796#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1834,18 +1820,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1834#endif 1820#endif
1835} 1821}
1836 1822
1837#include "sched_stats.h" 1823static const struct sched_class rt_sched_class;
1838#include "sched_idletask.c"
1839#include "sched_fair.c"
1840#include "sched_rt.c"
1841#ifdef CONFIG_SCHED_DEBUG
1842# include "sched_debug.c"
1843#endif
1844 1824
1845#define sched_class_highest (&rt_sched_class) 1825#define sched_class_highest (&rt_sched_class)
1846#define for_each_class(class) \ 1826#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next) 1827 for (class = sched_class_highest; class; class = class->next)
1848 1828
1829#include "sched_stats.h"
1830
1849static void inc_nr_running(struct rq *rq) 1831static void inc_nr_running(struct rq *rq)
1850{ 1832{
1851 rq->nr_running++; 1833 rq->nr_running++;
@@ -1883,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample)
1883 *avg += diff >> 3; 1865 *avg += diff >> 3;
1884} 1866}
1885 1867
1886static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) 1868static void
1869enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1887{ 1870{
1888 if (wakeup) 1871 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime; 1872 p->se.start_runtime = p->se.sum_exec_runtime;
1890 1873
1891 sched_info_queued(p); 1874 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, wakeup); 1875 p->sched_class->enqueue_task(rq, p, wakeup, head);
1893 p->se.on_rq = 1; 1876 p->se.on_rq = 1;
1894} 1877}
1895 1878
@@ -1912,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1912} 1895}
1913 1896
1914/* 1897/*
1898 * activate_task - move a task to the runqueue.
1899 */
1900static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1901{
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1904
1905 enqueue_task(rq, p, wakeup, false);
1906 inc_nr_running(rq);
1907}
1908
1909/*
1910 * deactivate_task - remove a task from the runqueue.
1911 */
1912static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1913{
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1916
1917 dequeue_task(rq, p, sleep);
1918 dec_nr_running(rq);
1919}
1920
1921#include "sched_idletask.c"
1922#include "sched_fair.c"
1923#include "sched_rt.c"
1924#ifdef CONFIG_SCHED_DEBUG
1925# include "sched_debug.c"
1926#endif
1927
1928/*
1915 * __normal_prio - return the priority that is based on the static prio 1929 * __normal_prio - return the priority that is based on the static prio
1916 */ 1930 */
1917static inline int __normal_prio(struct task_struct *p) 1931static inline int __normal_prio(struct task_struct *p)
@@ -1957,30 +1971,6 @@ static int effective_prio(struct task_struct *p)
1957 return p->prio; 1971 return p->prio;
1958} 1972}
1959 1973
1960/*
1961 * activate_task - move a task to the runqueue.
1962 */
1963static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1964{
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1967
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1970}
1971
1972/*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
1975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1976{
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1979
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1982}
1983
1984/** 1974/**
1985 * task_curr - is this task currently executing on a CPU? 1975 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question. 1976 * @p: the task in question.
@@ -2408,14 +2398,27 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2408 __task_rq_unlock(rq); 2398 __task_rq_unlock(rq);
2409 2399
2410 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 2400 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2411 if (cpu != orig_cpu) 2401 if (cpu != orig_cpu) {
2402 /*
2403 * Since we migrate the task without holding any rq->lock,
2404 * we need to be careful with task_rq_lock(), since that
2405 * might end up locking an invalid rq.
2406 */
2412 set_task_cpu(p, cpu); 2407 set_task_cpu(p, cpu);
2408 }
2413 2409
2414 rq = __task_rq_lock(p); 2410 rq = cpu_rq(cpu);
2411 raw_spin_lock(&rq->lock);
2415 update_rq_clock(rq); 2412 update_rq_clock(rq);
2416 2413
2414 /*
2415 * We migrated the task without holding either rq->lock, however
2416 * since the task is not on the task list itself, nobody else
2417 * will try and migrate the task, hence the rq should match the
2418 * cpu we just moved it to.
2419 */
2420 WARN_ON(task_cpu(p) != cpu);
2417 WARN_ON(p->state != TASK_WAKING); 2421 WARN_ON(p->state != TASK_WAKING);
2418 cpu = task_cpu(p);
2419 2422
2420#ifdef CONFIG_SCHEDSTATS 2423#ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count); 2424 schedstat_inc(rq, ttwu_count);
@@ -2663,7 +2666,13 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2663 set_task_cpu(p, cpu); 2666 set_task_cpu(p, cpu);
2664#endif 2667#endif
2665 2668
2666 rq = task_rq_lock(p, &flags); 2669 /*
2670 * Since the task is not on the rq and we still have TASK_WAKING set
2671 * nobody else will migrate this task.
2672 */
2673 rq = cpu_rq(cpu);
2674 raw_spin_lock_irqsave(&rq->lock, flags);
2675
2667 BUG_ON(p->state != TASK_WAKING); 2676 BUG_ON(p->state != TASK_WAKING);
2668 p->state = TASK_RUNNING; 2677 p->state = TASK_RUNNING;
2669 update_rq_clock(rq); 2678 update_rq_clock(rq);
@@ -2794,7 +2803,13 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2794 */ 2803 */
2795 prev_state = prev->state; 2804 prev_state = prev->state;
2796 finish_arch_switch(prev); 2805 finish_arch_switch(prev);
2797 perf_event_task_sched_in(current, cpu_of(rq)); 2806#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2807 local_irq_disable();
2808#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2809 perf_event_task_sched_in(current);
2810#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2811 local_irq_enable();
2812#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2798 finish_lock_switch(rq, prev); 2813 finish_lock_switch(rq, prev);
2799 2814
2800 fire_sched_in_preempt_notifiers(current); 2815 fire_sched_in_preempt_notifiers(current);
@@ -3099,50 +3114,6 @@ static void update_cpu_load(struct rq *this_rq)
3099#ifdef CONFIG_SMP 3114#ifdef CONFIG_SMP
3100 3115
3101/* 3116/*
3102 * double_rq_lock - safely lock two runqueues
3103 *
3104 * Note this does not disable interrupts like task_rq_lock,
3105 * you need to do so manually before calling.
3106 */
3107static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3108 __acquires(rq1->lock)
3109 __acquires(rq2->lock)
3110{
3111 BUG_ON(!irqs_disabled());
3112 if (rq1 == rq2) {
3113 raw_spin_lock(&rq1->lock);
3114 __acquire(rq2->lock); /* Fake it out ;) */
3115 } else {
3116 if (rq1 < rq2) {
3117 raw_spin_lock(&rq1->lock);
3118 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3119 } else {
3120 raw_spin_lock(&rq2->lock);
3121 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3122 }
3123 }
3124 update_rq_clock(rq1);
3125 update_rq_clock(rq2);
3126}
3127
3128/*
3129 * double_rq_unlock - safely unlock two runqueues
3130 *
3131 * Note this does not restore interrupts like task_rq_unlock,
3132 * you need to do so manually after calling.
3133 */
3134static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3135 __releases(rq1->lock)
3136 __releases(rq2->lock)
3137{
3138 raw_spin_unlock(&rq1->lock);
3139 if (rq1 != rq2)
3140 raw_spin_unlock(&rq2->lock);
3141 else
3142 __release(rq2->lock);
3143}
3144
3145/*
3146 * sched_exec - execve() is a valuable balancing opportunity, because at 3117 * sched_exec - execve() is a valuable balancing opportunity, because at
3147 * this point the task has the smallest effective memory and cache footprint. 3118 * this point the task has the smallest effective memory and cache footprint.
3148 */ 3119 */
@@ -3190,1771 +3161,6 @@ again:
3190 task_rq_unlock(rq, &flags); 3161 task_rq_unlock(rq, &flags);
3191} 3162}
3192 3163
3193/*
3194 * pull_task - move a task from a remote runqueue to the local runqueue.
3195 * Both runqueues must be locked.
3196 */
3197static void pull_task(struct rq *src_rq, struct task_struct *p,
3198 struct rq *this_rq, int this_cpu)
3199{
3200 deactivate_task(src_rq, p, 0);
3201 set_task_cpu(p, this_cpu);
3202 activate_task(this_rq, p, 0);
3203 check_preempt_curr(this_rq, p, 0);
3204}
3205
3206/*
3207 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3208 */
3209static
3210int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3211 struct sched_domain *sd, enum cpu_idle_type idle,
3212 int *all_pinned)
3213{
3214 int tsk_cache_hot = 0;
3215 /*
3216 * We do not migrate tasks that are:
3217 * 1) running (obviously), or
3218 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3219 * 3) are cache-hot on their current CPU.
3220 */
3221 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3222 schedstat_inc(p, se.nr_failed_migrations_affine);
3223 return 0;
3224 }
3225 *all_pinned = 0;
3226
3227 if (task_running(rq, p)) {
3228 schedstat_inc(p, se.nr_failed_migrations_running);
3229 return 0;
3230 }
3231
3232 /*
3233 * Aggressive migration if:
3234 * 1) task is cache cold, or
3235 * 2) too many balance attempts have failed.
3236 */
3237
3238 tsk_cache_hot = task_hot(p, rq->clock, sd);
3239 if (!tsk_cache_hot ||
3240 sd->nr_balance_failed > sd->cache_nice_tries) {
3241#ifdef CONFIG_SCHEDSTATS
3242 if (tsk_cache_hot) {
3243 schedstat_inc(sd, lb_hot_gained[idle]);
3244 schedstat_inc(p, se.nr_forced_migrations);
3245 }
3246#endif
3247 return 1;
3248 }
3249
3250 if (tsk_cache_hot) {
3251 schedstat_inc(p, se.nr_failed_migrations_hot);
3252 return 0;
3253 }
3254 return 1;
3255}
3256
3257static unsigned long
3258balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3259 unsigned long max_load_move, struct sched_domain *sd,
3260 enum cpu_idle_type idle, int *all_pinned,
3261 int *this_best_prio, struct rq_iterator *iterator)
3262{
3263 int loops = 0, pulled = 0, pinned = 0;
3264 struct task_struct *p;
3265 long rem_load_move = max_load_move;
3266
3267 if (max_load_move == 0)
3268 goto out;
3269
3270 pinned = 1;
3271
3272 /*
3273 * Start the load-balancing iterator:
3274 */
3275 p = iterator->start(iterator->arg);
3276next:
3277 if (!p || loops++ > sysctl_sched_nr_migrate)
3278 goto out;
3279
3280 if ((p->se.load.weight >> 1) > rem_load_move ||
3281 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3282 p = iterator->next(iterator->arg);
3283 goto next;
3284 }
3285
3286 pull_task(busiest, p, this_rq, this_cpu);
3287 pulled++;
3288 rem_load_move -= p->se.load.weight;
3289
3290#ifdef CONFIG_PREEMPT
3291 /*
3292 * NEWIDLE balancing is a source of latency, so preemptible kernels
3293 * will stop after the first task is pulled to minimize the critical
3294 * section.
3295 */
3296 if (idle == CPU_NEWLY_IDLE)
3297 goto out;
3298#endif
3299
3300 /*
3301 * We only want to steal up to the prescribed amount of weighted load.
3302 */
3303 if (rem_load_move > 0) {
3304 if (p->prio < *this_best_prio)
3305 *this_best_prio = p->prio;
3306 p = iterator->next(iterator->arg);
3307 goto next;
3308 }
3309out:
3310 /*
3311 * Right now, this is one of only two places pull_task() is called,
3312 * so we can safely collect pull_task() stats here rather than
3313 * inside pull_task().
3314 */
3315 schedstat_add(sd, lb_gained[idle], pulled);
3316
3317 if (all_pinned)
3318 *all_pinned = pinned;
3319
3320 return max_load_move - rem_load_move;
3321}
3322
3323/*
3324 * move_tasks tries to move up to max_load_move weighted load from busiest to
3325 * this_rq, as part of a balancing operation within domain "sd".
3326 * Returns 1 if successful and 0 otherwise.
3327 *
3328 * Called with both runqueues locked.
3329 */
3330static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3331 unsigned long max_load_move,
3332 struct sched_domain *sd, enum cpu_idle_type idle,
3333 int *all_pinned)
3334{
3335 const struct sched_class *class = sched_class_highest;
3336 unsigned long total_load_moved = 0;
3337 int this_best_prio = this_rq->curr->prio;
3338
3339 do {
3340 total_load_moved +=
3341 class->load_balance(this_rq, this_cpu, busiest,
3342 max_load_move - total_load_moved,
3343 sd, idle, all_pinned, &this_best_prio);
3344 class = class->next;
3345
3346#ifdef CONFIG_PREEMPT
3347 /*
3348 * NEWIDLE balancing is a source of latency, so preemptible
3349 * kernels will stop after the first task is pulled to minimize
3350 * the critical section.
3351 */
3352 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3353 break;
3354#endif
3355 } while (class && max_load_move > total_load_moved);
3356
3357 return total_load_moved > 0;
3358}
3359
3360static int
3361iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3362 struct sched_domain *sd, enum cpu_idle_type idle,
3363 struct rq_iterator *iterator)
3364{
3365 struct task_struct *p = iterator->start(iterator->arg);
3366 int pinned = 0;
3367
3368 while (p) {
3369 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3370 pull_task(busiest, p, this_rq, this_cpu);
3371 /*
3372 * Right now, this is only the second place pull_task()
3373 * is called, so we can safely collect pull_task()
3374 * stats here rather than inside pull_task().
3375 */
3376 schedstat_inc(sd, lb_gained[idle]);
3377
3378 return 1;
3379 }
3380 p = iterator->next(iterator->arg);
3381 }
3382
3383 return 0;
3384}
3385
3386/*
3387 * move_one_task tries to move exactly one task from busiest to this_rq, as
3388 * part of active balancing operations within "domain".
3389 * Returns 1 if successful and 0 otherwise.
3390 *
3391 * Called with both runqueues locked.
3392 */
3393static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3394 struct sched_domain *sd, enum cpu_idle_type idle)
3395{
3396 const struct sched_class *class;
3397
3398 for_each_class(class) {
3399 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3400 return 1;
3401 }
3402
3403 return 0;
3404}
3405/********** Helpers for find_busiest_group ************************/
3406/*
3407 * sd_lb_stats - Structure to store the statistics of a sched_domain
3408 * during load balancing.
3409 */
3410struct sd_lb_stats {
3411 struct sched_group *busiest; /* Busiest group in this sd */
3412 struct sched_group *this; /* Local group in this sd */
3413 unsigned long total_load; /* Total load of all groups in sd */
3414 unsigned long total_pwr; /* Total power of all groups in sd */
3415 unsigned long avg_load; /* Average load across all groups in sd */
3416
3417 /** Statistics of this group */
3418 unsigned long this_load;
3419 unsigned long this_load_per_task;
3420 unsigned long this_nr_running;
3421
3422 /* Statistics of the busiest group */
3423 unsigned long max_load;
3424 unsigned long busiest_load_per_task;
3425 unsigned long busiest_nr_running;
3426
3427 int group_imb; /* Is there imbalance in this sd */
3428#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3429 int power_savings_balance; /* Is powersave balance needed for this sd */
3430 struct sched_group *group_min; /* Least loaded group in sd */
3431 struct sched_group *group_leader; /* Group which relieves group_min */
3432 unsigned long min_load_per_task; /* load_per_task in group_min */
3433 unsigned long leader_nr_running; /* Nr running of group_leader */
3434 unsigned long min_nr_running; /* Nr running of group_min */
3435#endif
3436};
3437
3438/*
3439 * sg_lb_stats - stats of a sched_group required for load_balancing
3440 */
3441struct sg_lb_stats {
3442 unsigned long avg_load; /*Avg load across the CPUs of the group */
3443 unsigned long group_load; /* Total load over the CPUs of the group */
3444 unsigned long sum_nr_running; /* Nr tasks running in the group */
3445 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3446 unsigned long group_capacity;
3447 int group_imb; /* Is there an imbalance in the group ? */
3448};
3449
3450/**
3451 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3452 * @group: The group whose first cpu is to be returned.
3453 */
3454static inline unsigned int group_first_cpu(struct sched_group *group)
3455{
3456 return cpumask_first(sched_group_cpus(group));
3457}
3458
3459/**
3460 * get_sd_load_idx - Obtain the load index for a given sched domain.
3461 * @sd: The sched_domain whose load_idx is to be obtained.
3462 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3463 */
3464static inline int get_sd_load_idx(struct sched_domain *sd,
3465 enum cpu_idle_type idle)
3466{
3467 int load_idx;
3468
3469 switch (idle) {
3470 case CPU_NOT_IDLE:
3471 load_idx = sd->busy_idx;
3472 break;
3473
3474 case CPU_NEWLY_IDLE:
3475 load_idx = sd->newidle_idx;
3476 break;
3477 default:
3478 load_idx = sd->idle_idx;
3479 break;
3480 }
3481
3482 return load_idx;
3483}
3484
3485
3486#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3487/**
3488 * init_sd_power_savings_stats - Initialize power savings statistics for
3489 * the given sched_domain, during load balancing.
3490 *
3491 * @sd: Sched domain whose power-savings statistics are to be initialized.
3492 * @sds: Variable containing the statistics for sd.
3493 * @idle: Idle status of the CPU at which we're performing load-balancing.
3494 */
3495static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3496 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3497{
3498 /*
3499 * Busy processors will not participate in power savings
3500 * balance.
3501 */
3502 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3503 sds->power_savings_balance = 0;
3504 else {
3505 sds->power_savings_balance = 1;
3506 sds->min_nr_running = ULONG_MAX;
3507 sds->leader_nr_running = 0;
3508 }
3509}
3510
3511/**
3512 * update_sd_power_savings_stats - Update the power saving stats for a
3513 * sched_domain while performing load balancing.
3514 *
3515 * @group: sched_group belonging to the sched_domain under consideration.
3516 * @sds: Variable containing the statistics of the sched_domain
3517 * @local_group: Does group contain the CPU for which we're performing
3518 * load balancing ?
3519 * @sgs: Variable containing the statistics of the group.
3520 */
3521static inline void update_sd_power_savings_stats(struct sched_group *group,
3522 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3523{
3524
3525 if (!sds->power_savings_balance)
3526 return;
3527
3528 /*
3529 * If the local group is idle or completely loaded
3530 * no need to do power savings balance at this domain
3531 */
3532 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3533 !sds->this_nr_running))
3534 sds->power_savings_balance = 0;
3535
3536 /*
3537 * If a group is already running at full capacity or idle,
3538 * don't include that group in power savings calculations
3539 */
3540 if (!sds->power_savings_balance ||
3541 sgs->sum_nr_running >= sgs->group_capacity ||
3542 !sgs->sum_nr_running)
3543 return;
3544
3545 /*
3546 * Calculate the group which has the least non-idle load.
3547 * This is the group from where we need to pick up the load
3548 * for saving power
3549 */
3550 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3551 (sgs->sum_nr_running == sds->min_nr_running &&
3552 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3553 sds->group_min = group;
3554 sds->min_nr_running = sgs->sum_nr_running;
3555 sds->min_load_per_task = sgs->sum_weighted_load /
3556 sgs->sum_nr_running;
3557 }
3558
3559 /*
3560 * Calculate the group which is almost near its
3561 * capacity but still has some space to pick up some load
3562 * from other group and save more power
3563 */
3564 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3565 return;
3566
3567 if (sgs->sum_nr_running > sds->leader_nr_running ||
3568 (sgs->sum_nr_running == sds->leader_nr_running &&
3569 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3570 sds->group_leader = group;
3571 sds->leader_nr_running = sgs->sum_nr_running;
3572 }
3573}
3574
3575/**
3576 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3577 * @sds: Variable containing the statistics of the sched_domain
3578 * under consideration.
3579 * @this_cpu: Cpu at which we're currently performing load-balancing.
3580 * @imbalance: Variable to store the imbalance.
3581 *
3582 * Description:
3583 * Check if we have potential to perform some power-savings balance.
3584 * If yes, set the busiest group to be the least loaded group in the
3585 * sched_domain, so that it's CPUs can be put to idle.
3586 *
3587 * Returns 1 if there is potential to perform power-savings balance.
3588 * Else returns 0.
3589 */
3590static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3591 int this_cpu, unsigned long *imbalance)
3592{
3593 if (!sds->power_savings_balance)
3594 return 0;
3595
3596 if (sds->this != sds->group_leader ||
3597 sds->group_leader == sds->group_min)
3598 return 0;
3599
3600 *imbalance = sds->min_load_per_task;
3601 sds->busiest = sds->group_min;
3602
3603 return 1;
3604
3605}
3606#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3607static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3608 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3609{
3610 return;
3611}
3612
3613static inline void update_sd_power_savings_stats(struct sched_group *group,
3614 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3615{
3616 return;
3617}
3618
3619static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3620 int this_cpu, unsigned long *imbalance)
3621{
3622 return 0;
3623}
3624#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3625
3626
3627unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3628{
3629 return SCHED_LOAD_SCALE;
3630}
3631
3632unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3633{
3634 return default_scale_freq_power(sd, cpu);
3635}
3636
3637unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3638{
3639 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3640 unsigned long smt_gain = sd->smt_gain;
3641
3642 smt_gain /= weight;
3643
3644 return smt_gain;
3645}
3646
3647unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3648{
3649 return default_scale_smt_power(sd, cpu);
3650}
3651
3652unsigned long scale_rt_power(int cpu)
3653{
3654 struct rq *rq = cpu_rq(cpu);
3655 u64 total, available;
3656
3657 sched_avg_update(rq);
3658
3659 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3660 available = total - rq->rt_avg;
3661
3662 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3663 total = SCHED_LOAD_SCALE;
3664
3665 total >>= SCHED_LOAD_SHIFT;
3666
3667 return div_u64(available, total);
3668}
3669
3670static void update_cpu_power(struct sched_domain *sd, int cpu)
3671{
3672 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3673 unsigned long power = SCHED_LOAD_SCALE;
3674 struct sched_group *sdg = sd->groups;
3675
3676 if (sched_feat(ARCH_POWER))
3677 power *= arch_scale_freq_power(sd, cpu);
3678 else
3679 power *= default_scale_freq_power(sd, cpu);
3680
3681 power >>= SCHED_LOAD_SHIFT;
3682
3683 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3684 if (sched_feat(ARCH_POWER))
3685 power *= arch_scale_smt_power(sd, cpu);
3686 else
3687 power *= default_scale_smt_power(sd, cpu);
3688
3689 power >>= SCHED_LOAD_SHIFT;
3690 }
3691
3692 power *= scale_rt_power(cpu);
3693 power >>= SCHED_LOAD_SHIFT;
3694
3695 if (!power)
3696 power = 1;
3697
3698 sdg->cpu_power = power;
3699}
3700
3701static void update_group_power(struct sched_domain *sd, int cpu)
3702{
3703 struct sched_domain *child = sd->child;
3704 struct sched_group *group, *sdg = sd->groups;
3705 unsigned long power;
3706
3707 if (!child) {
3708 update_cpu_power(sd, cpu);
3709 return;
3710 }
3711
3712 power = 0;
3713
3714 group = child->groups;
3715 do {
3716 power += group->cpu_power;
3717 group = group->next;
3718 } while (group != child->groups);
3719
3720 sdg->cpu_power = power;
3721}
3722
3723/**
3724 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3725 * @sd: The sched_domain whose statistics are to be updated.
3726 * @group: sched_group whose statistics are to be updated.
3727 * @this_cpu: Cpu for which load balance is currently performed.
3728 * @idle: Idle status of this_cpu
3729 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3730 * @sd_idle: Idle status of the sched_domain containing group.
3731 * @local_group: Does group contain this_cpu.
3732 * @cpus: Set of cpus considered for load balancing.
3733 * @balance: Should we balance.
3734 * @sgs: variable to hold the statistics for this group.
3735 */
3736static inline void update_sg_lb_stats(struct sched_domain *sd,
3737 struct sched_group *group, int this_cpu,
3738 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3739 int local_group, const struct cpumask *cpus,
3740 int *balance, struct sg_lb_stats *sgs)
3741{
3742 unsigned long load, max_cpu_load, min_cpu_load;
3743 int i;
3744 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3745 unsigned long sum_avg_load_per_task;
3746 unsigned long avg_load_per_task;
3747
3748 if (local_group) {
3749 balance_cpu = group_first_cpu(group);
3750 if (balance_cpu == this_cpu)
3751 update_group_power(sd, this_cpu);
3752 }
3753
3754 /* Tally up the load of all CPUs in the group */
3755 sum_avg_load_per_task = avg_load_per_task = 0;
3756 max_cpu_load = 0;
3757 min_cpu_load = ~0UL;
3758
3759 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3760 struct rq *rq = cpu_rq(i);
3761
3762 if (*sd_idle && rq->nr_running)
3763 *sd_idle = 0;
3764
3765 /* Bias balancing toward cpus of our domain */
3766 if (local_group) {
3767 if (idle_cpu(i) && !first_idle_cpu) {
3768 first_idle_cpu = 1;
3769 balance_cpu = i;
3770 }
3771
3772 load = target_load(i, load_idx);
3773 } else {
3774 load = source_load(i, load_idx);
3775 if (load > max_cpu_load)
3776 max_cpu_load = load;
3777 if (min_cpu_load > load)
3778 min_cpu_load = load;
3779 }
3780
3781 sgs->group_load += load;
3782 sgs->sum_nr_running += rq->nr_running;
3783 sgs->sum_weighted_load += weighted_cpuload(i);
3784
3785 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3786 }
3787
3788 /*
3789 * First idle cpu or the first cpu(busiest) in this sched group
3790 * is eligible for doing load balancing at this and above
3791 * domains. In the newly idle case, we will allow all the cpu's
3792 * to do the newly idle load balance.
3793 */
3794 if (idle != CPU_NEWLY_IDLE && local_group &&
3795 balance_cpu != this_cpu && balance) {
3796 *balance = 0;
3797 return;
3798 }
3799
3800 /* Adjust by relative CPU power of the group */
3801 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3802
3803
3804 /*
3805 * Consider the group unbalanced when the imbalance is larger
3806 * than the average weight of two tasks.
3807 *
3808 * APZ: with cgroup the avg task weight can vary wildly and
3809 * might not be a suitable number - should we keep a
3810 * normalized nr_running number somewhere that negates
3811 * the hierarchy?
3812 */
3813 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3814 group->cpu_power;
3815
3816 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3817 sgs->group_imb = 1;
3818
3819 sgs->group_capacity =
3820 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3821}
3822
3823/**
3824 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3825 * @sd: sched_domain whose statistics are to be updated.
3826 * @this_cpu: Cpu for which load balance is currently performed.
3827 * @idle: Idle status of this_cpu
3828 * @sd_idle: Idle status of the sched_domain containing group.
3829 * @cpus: Set of cpus considered for load balancing.
3830 * @balance: Should we balance.
3831 * @sds: variable to hold the statistics for this sched_domain.
3832 */
3833static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3834 enum cpu_idle_type idle, int *sd_idle,
3835 const struct cpumask *cpus, int *balance,
3836 struct sd_lb_stats *sds)
3837{
3838 struct sched_domain *child = sd->child;
3839 struct sched_group *group = sd->groups;
3840 struct sg_lb_stats sgs;
3841 int load_idx, prefer_sibling = 0;
3842
3843 if (child && child->flags & SD_PREFER_SIBLING)
3844 prefer_sibling = 1;
3845
3846 init_sd_power_savings_stats(sd, sds, idle);
3847 load_idx = get_sd_load_idx(sd, idle);
3848
3849 do {
3850 int local_group;
3851
3852 local_group = cpumask_test_cpu(this_cpu,
3853 sched_group_cpus(group));
3854 memset(&sgs, 0, sizeof(sgs));
3855 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3856 local_group, cpus, balance, &sgs);
3857
3858 if (local_group && balance && !(*balance))
3859 return;
3860
3861 sds->total_load += sgs.group_load;
3862 sds->total_pwr += group->cpu_power;
3863
3864 /*
3865 * In case the child domain prefers tasks go to siblings
3866 * first, lower the group capacity to one so that we'll try
3867 * and move all the excess tasks away.
3868 */
3869 if (prefer_sibling)
3870 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3871
3872 if (local_group) {
3873 sds->this_load = sgs.avg_load;
3874 sds->this = group;
3875 sds->this_nr_running = sgs.sum_nr_running;
3876 sds->this_load_per_task = sgs.sum_weighted_load;
3877 } else if (sgs.avg_load > sds->max_load &&
3878 (sgs.sum_nr_running > sgs.group_capacity ||
3879 sgs.group_imb)) {
3880 sds->max_load = sgs.avg_load;
3881 sds->busiest = group;
3882 sds->busiest_nr_running = sgs.sum_nr_running;
3883 sds->busiest_load_per_task = sgs.sum_weighted_load;
3884 sds->group_imb = sgs.group_imb;
3885 }
3886
3887 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3888 group = group->next;
3889 } while (group != sd->groups);
3890}
3891
3892/**
3893 * fix_small_imbalance - Calculate the minor imbalance that exists
3894 * amongst the groups of a sched_domain, during
3895 * load balancing.
3896 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3897 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3898 * @imbalance: Variable to store the imbalance.
3899 */
3900static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3901 int this_cpu, unsigned long *imbalance)
3902{
3903 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3904 unsigned int imbn = 2;
3905
3906 if (sds->this_nr_running) {
3907 sds->this_load_per_task /= sds->this_nr_running;
3908 if (sds->busiest_load_per_task >
3909 sds->this_load_per_task)
3910 imbn = 1;
3911 } else
3912 sds->this_load_per_task =
3913 cpu_avg_load_per_task(this_cpu);
3914
3915 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3916 sds->busiest_load_per_task * imbn) {
3917 *imbalance = sds->busiest_load_per_task;
3918 return;
3919 }
3920
3921 /*
3922 * OK, we don't have enough imbalance to justify moving tasks,
3923 * however we may be able to increase total CPU power used by
3924 * moving them.
3925 */
3926
3927 pwr_now += sds->busiest->cpu_power *
3928 min(sds->busiest_load_per_task, sds->max_load);
3929 pwr_now += sds->this->cpu_power *
3930 min(sds->this_load_per_task, sds->this_load);
3931 pwr_now /= SCHED_LOAD_SCALE;
3932
3933 /* Amount of load we'd subtract */
3934 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3935 sds->busiest->cpu_power;
3936 if (sds->max_load > tmp)
3937 pwr_move += sds->busiest->cpu_power *
3938 min(sds->busiest_load_per_task, sds->max_load - tmp);
3939
3940 /* Amount of load we'd add */
3941 if (sds->max_load * sds->busiest->cpu_power <
3942 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3943 tmp = (sds->max_load * sds->busiest->cpu_power) /
3944 sds->this->cpu_power;
3945 else
3946 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3947 sds->this->cpu_power;
3948 pwr_move += sds->this->cpu_power *
3949 min(sds->this_load_per_task, sds->this_load + tmp);
3950 pwr_move /= SCHED_LOAD_SCALE;
3951
3952 /* Move if we gain throughput */
3953 if (pwr_move > pwr_now)
3954 *imbalance = sds->busiest_load_per_task;
3955}
3956
3957/**
3958 * calculate_imbalance - Calculate the amount of imbalance present within the
3959 * groups of a given sched_domain during load balance.
3960 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3961 * @this_cpu: Cpu for which currently load balance is being performed.
3962 * @imbalance: The variable to store the imbalance.
3963 */
3964static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3965 unsigned long *imbalance)
3966{
3967 unsigned long max_pull;
3968 /*
3969 * In the presence of smp nice balancing, certain scenarios can have
3970 * max load less than avg load(as we skip the groups at or below
3971 * its cpu_power, while calculating max_load..)
3972 */
3973 if (sds->max_load < sds->avg_load) {
3974 *imbalance = 0;
3975 return fix_small_imbalance(sds, this_cpu, imbalance);
3976 }
3977
3978 /* Don't want to pull so many tasks that a group would go idle */
3979 max_pull = min(sds->max_load - sds->avg_load,
3980 sds->max_load - sds->busiest_load_per_task);
3981
3982 /* How much load to actually move to equalise the imbalance */
3983 *imbalance = min(max_pull * sds->busiest->cpu_power,
3984 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3985 / SCHED_LOAD_SCALE;
3986
3987 /*
3988 * if *imbalance is less than the average load per runnable task
3989 * there is no gaurantee that any tasks will be moved so we'll have
3990 * a think about bumping its value to force at least one task to be
3991 * moved
3992 */
3993 if (*imbalance < sds->busiest_load_per_task)
3994 return fix_small_imbalance(sds, this_cpu, imbalance);
3995
3996}
3997/******* find_busiest_group() helpers end here *********************/
3998
3999/**
4000 * find_busiest_group - Returns the busiest group within the sched_domain
4001 * if there is an imbalance. If there isn't an imbalance, and
4002 * the user has opted for power-savings, it returns a group whose
4003 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4004 * such a group exists.
4005 *
4006 * Also calculates the amount of weighted load which should be moved
4007 * to restore balance.
4008 *
4009 * @sd: The sched_domain whose busiest group is to be returned.
4010 * @this_cpu: The cpu for which load balancing is currently being performed.
4011 * @imbalance: Variable which stores amount of weighted load which should
4012 * be moved to restore balance/put a group to idle.
4013 * @idle: The idle status of this_cpu.
4014 * @sd_idle: The idleness of sd
4015 * @cpus: The set of CPUs under consideration for load-balancing.
4016 * @balance: Pointer to a variable indicating if this_cpu
4017 * is the appropriate cpu to perform load balancing at this_level.
4018 *
4019 * Returns: - the busiest group if imbalance exists.
4020 * - If no imbalance and user has opted for power-savings balance,
4021 * return the least loaded group whose CPUs can be
4022 * put to idle by rebalancing its tasks onto our group.
4023 */
4024static struct sched_group *
4025find_busiest_group(struct sched_domain *sd, int this_cpu,
4026 unsigned long *imbalance, enum cpu_idle_type idle,
4027 int *sd_idle, const struct cpumask *cpus, int *balance)
4028{
4029 struct sd_lb_stats sds;
4030
4031 memset(&sds, 0, sizeof(sds));
4032
4033 /*
4034 * Compute the various statistics relavent for load balancing at
4035 * this level.
4036 */
4037 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4038 balance, &sds);
4039
4040 /* Cases where imbalance does not exist from POV of this_cpu */
4041 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4042 * at this level.
4043 * 2) There is no busy sibling group to pull from.
4044 * 3) This group is the busiest group.
4045 * 4) This group is more busy than the avg busieness at this
4046 * sched_domain.
4047 * 5) The imbalance is within the specified limit.
4048 * 6) Any rebalance would lead to ping-pong
4049 */
4050 if (balance && !(*balance))
4051 goto ret;
4052
4053 if (!sds.busiest || sds.busiest_nr_running == 0)
4054 goto out_balanced;
4055
4056 if (sds.this_load >= sds.max_load)
4057 goto out_balanced;
4058
4059 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4060
4061 if (sds.this_load >= sds.avg_load)
4062 goto out_balanced;
4063
4064 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4065 goto out_balanced;
4066
4067 sds.busiest_load_per_task /= sds.busiest_nr_running;
4068 if (sds.group_imb)
4069 sds.busiest_load_per_task =
4070 min(sds.busiest_load_per_task, sds.avg_load);
4071
4072 /*
4073 * We're trying to get all the cpus to the average_load, so we don't
4074 * want to push ourselves above the average load, nor do we wish to
4075 * reduce the max loaded cpu below the average load, as either of these
4076 * actions would just result in more rebalancing later, and ping-pong
4077 * tasks around. Thus we look for the minimum possible imbalance.
4078 * Negative imbalances (*we* are more loaded than anyone else) will
4079 * be counted as no imbalance for these purposes -- we can't fix that
4080 * by pulling tasks to us. Be careful of negative numbers as they'll
4081 * appear as very large values with unsigned longs.
4082 */
4083 if (sds.max_load <= sds.busiest_load_per_task)
4084 goto out_balanced;
4085
4086 /* Looks like there is an imbalance. Compute it */
4087 calculate_imbalance(&sds, this_cpu, imbalance);
4088 return sds.busiest;
4089
4090out_balanced:
4091 /*
4092 * There is no obvious imbalance. But check if we can do some balancing
4093 * to save power.
4094 */
4095 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4096 return sds.busiest;
4097ret:
4098 *imbalance = 0;
4099 return NULL;
4100}
4101
4102/*
4103 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4104 */
4105static struct rq *
4106find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4107 unsigned long imbalance, const struct cpumask *cpus)
4108{
4109 struct rq *busiest = NULL, *rq;
4110 unsigned long max_load = 0;
4111 int i;
4112
4113 for_each_cpu(i, sched_group_cpus(group)) {
4114 unsigned long power = power_of(i);
4115 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4116 unsigned long wl;
4117
4118 if (!cpumask_test_cpu(i, cpus))
4119 continue;
4120
4121 rq = cpu_rq(i);
4122 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4123 wl /= power;
4124
4125 if (capacity && rq->nr_running == 1 && wl > imbalance)
4126 continue;
4127
4128 if (wl > max_load) {
4129 max_load = wl;
4130 busiest = rq;
4131 }
4132 }
4133
4134 return busiest;
4135}
4136
4137/*
4138 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4139 * so long as it is large enough.
4140 */
4141#define MAX_PINNED_INTERVAL 512
4142
4143/* Working cpumask for load_balance and load_balance_newidle. */
4144static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4145
4146/*
4147 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4148 * tasks if there is an imbalance.
4149 */
4150static int load_balance(int this_cpu, struct rq *this_rq,
4151 struct sched_domain *sd, enum cpu_idle_type idle,
4152 int *balance)
4153{
4154 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4155 struct sched_group *group;
4156 unsigned long imbalance;
4157 struct rq *busiest;
4158 unsigned long flags;
4159 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4160
4161 cpumask_copy(cpus, cpu_active_mask);
4162
4163 /*
4164 * When power savings policy is enabled for the parent domain, idle
4165 * sibling can pick up load irrespective of busy siblings. In this case,
4166 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4167 * portraying it as CPU_NOT_IDLE.
4168 */
4169 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4170 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4171 sd_idle = 1;
4172
4173 schedstat_inc(sd, lb_count[idle]);
4174
4175redo:
4176 update_shares(sd);
4177 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4178 cpus, balance);
4179
4180 if (*balance == 0)
4181 goto out_balanced;
4182
4183 if (!group) {
4184 schedstat_inc(sd, lb_nobusyg[idle]);
4185 goto out_balanced;
4186 }
4187
4188 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4189 if (!busiest) {
4190 schedstat_inc(sd, lb_nobusyq[idle]);
4191 goto out_balanced;
4192 }
4193
4194 BUG_ON(busiest == this_rq);
4195
4196 schedstat_add(sd, lb_imbalance[idle], imbalance);
4197
4198 ld_moved = 0;
4199 if (busiest->nr_running > 1) {
4200 /*
4201 * Attempt to move tasks. If find_busiest_group has found
4202 * an imbalance but busiest->nr_running <= 1, the group is
4203 * still unbalanced. ld_moved simply stays zero, so it is
4204 * correctly treated as an imbalance.
4205 */
4206 local_irq_save(flags);
4207 double_rq_lock(this_rq, busiest);
4208 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4209 imbalance, sd, idle, &all_pinned);
4210 double_rq_unlock(this_rq, busiest);
4211 local_irq_restore(flags);
4212
4213 /*
4214 * some other cpu did the load balance for us.
4215 */
4216 if (ld_moved && this_cpu != smp_processor_id())
4217 resched_cpu(this_cpu);
4218
4219 /* All tasks on this runqueue were pinned by CPU affinity */
4220 if (unlikely(all_pinned)) {
4221 cpumask_clear_cpu(cpu_of(busiest), cpus);
4222 if (!cpumask_empty(cpus))
4223 goto redo;
4224 goto out_balanced;
4225 }
4226 }
4227
4228 if (!ld_moved) {
4229 schedstat_inc(sd, lb_failed[idle]);
4230 sd->nr_balance_failed++;
4231
4232 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4233
4234 raw_spin_lock_irqsave(&busiest->lock, flags);
4235
4236 /* don't kick the migration_thread, if the curr
4237 * task on busiest cpu can't be moved to this_cpu
4238 */
4239 if (!cpumask_test_cpu(this_cpu,
4240 &busiest->curr->cpus_allowed)) {
4241 raw_spin_unlock_irqrestore(&busiest->lock,
4242 flags);
4243 all_pinned = 1;
4244 goto out_one_pinned;
4245 }
4246
4247 if (!busiest->active_balance) {
4248 busiest->active_balance = 1;
4249 busiest->push_cpu = this_cpu;
4250 active_balance = 1;
4251 }
4252 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4253 if (active_balance)
4254 wake_up_process(busiest->migration_thread);
4255
4256 /*
4257 * We've kicked active balancing, reset the failure
4258 * counter.
4259 */
4260 sd->nr_balance_failed = sd->cache_nice_tries+1;
4261 }
4262 } else
4263 sd->nr_balance_failed = 0;
4264
4265 if (likely(!active_balance)) {
4266 /* We were unbalanced, so reset the balancing interval */
4267 sd->balance_interval = sd->min_interval;
4268 } else {
4269 /*
4270 * If we've begun active balancing, start to back off. This
4271 * case may not be covered by the all_pinned logic if there
4272 * is only 1 task on the busy runqueue (because we don't call
4273 * move_tasks).
4274 */
4275 if (sd->balance_interval < sd->max_interval)
4276 sd->balance_interval *= 2;
4277 }
4278
4279 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4280 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4281 ld_moved = -1;
4282
4283 goto out;
4284
4285out_balanced:
4286 schedstat_inc(sd, lb_balanced[idle]);
4287
4288 sd->nr_balance_failed = 0;
4289
4290out_one_pinned:
4291 /* tune up the balancing interval */
4292 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4293 (sd->balance_interval < sd->max_interval))
4294 sd->balance_interval *= 2;
4295
4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4298 ld_moved = -1;
4299 else
4300 ld_moved = 0;
4301out:
4302 if (ld_moved)
4303 update_shares(sd);
4304 return ld_moved;
4305}
4306
4307/*
4308 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4309 * tasks if there is an imbalance.
4310 *
4311 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4312 * this_rq is locked.
4313 */
4314static int
4315load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4316{
4317 struct sched_group *group;
4318 struct rq *busiest = NULL;
4319 unsigned long imbalance;
4320 int ld_moved = 0;
4321 int sd_idle = 0;
4322 int all_pinned = 0;
4323 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4324
4325 cpumask_copy(cpus, cpu_active_mask);
4326
4327 /*
4328 * When power savings policy is enabled for the parent domain, idle
4329 * sibling can pick up load irrespective of busy siblings. In this case,
4330 * let the state of idle sibling percolate up as IDLE, instead of
4331 * portraying it as CPU_NOT_IDLE.
4332 */
4333 if (sd->flags & SD_SHARE_CPUPOWER &&
4334 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4335 sd_idle = 1;
4336
4337 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4338redo:
4339 update_shares_locked(this_rq, sd);
4340 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4341 &sd_idle, cpus, NULL);
4342 if (!group) {
4343 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4344 goto out_balanced;
4345 }
4346
4347 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4348 if (!busiest) {
4349 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4350 goto out_balanced;
4351 }
4352
4353 BUG_ON(busiest == this_rq);
4354
4355 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4356
4357 ld_moved = 0;
4358 if (busiest->nr_running > 1) {
4359 /* Attempt to move tasks */
4360 double_lock_balance(this_rq, busiest);
4361 /* this_rq->clock is already updated */
4362 update_rq_clock(busiest);
4363 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4364 imbalance, sd, CPU_NEWLY_IDLE,
4365 &all_pinned);
4366 double_unlock_balance(this_rq, busiest);
4367
4368 if (unlikely(all_pinned)) {
4369 cpumask_clear_cpu(cpu_of(busiest), cpus);
4370 if (!cpumask_empty(cpus))
4371 goto redo;
4372 }
4373 }
4374
4375 if (!ld_moved) {
4376 int active_balance = 0;
4377
4378 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4379 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4380 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4381 return -1;
4382
4383 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4384 return -1;
4385
4386 if (sd->nr_balance_failed++ < 2)
4387 return -1;
4388
4389 /*
4390 * The only task running in a non-idle cpu can be moved to this
4391 * cpu in an attempt to completely freeup the other CPU
4392 * package. The same method used to move task in load_balance()
4393 * have been extended for load_balance_newidle() to speedup
4394 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4395 *
4396 * The package power saving logic comes from
4397 * find_busiest_group(). If there are no imbalance, then
4398 * f_b_g() will return NULL. However when sched_mc={1,2} then
4399 * f_b_g() will select a group from which a running task may be
4400 * pulled to this cpu in order to make the other package idle.
4401 * If there is no opportunity to make a package idle and if
4402 * there are no imbalance, then f_b_g() will return NULL and no
4403 * action will be taken in load_balance_newidle().
4404 *
4405 * Under normal task pull operation due to imbalance, there
4406 * will be more than one task in the source run queue and
4407 * move_tasks() will succeed. ld_moved will be true and this
4408 * active balance code will not be triggered.
4409 */
4410
4411 /* Lock busiest in correct order while this_rq is held */
4412 double_lock_balance(this_rq, busiest);
4413
4414 /*
4415 * don't kick the migration_thread, if the curr
4416 * task on busiest cpu can't be moved to this_cpu
4417 */
4418 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4419 double_unlock_balance(this_rq, busiest);
4420 all_pinned = 1;
4421 return ld_moved;
4422 }
4423
4424 if (!busiest->active_balance) {
4425 busiest->active_balance = 1;
4426 busiest->push_cpu = this_cpu;
4427 active_balance = 1;
4428 }
4429
4430 double_unlock_balance(this_rq, busiest);
4431 /*
4432 * Should not call ttwu while holding a rq->lock
4433 */
4434 raw_spin_unlock(&this_rq->lock);
4435 if (active_balance)
4436 wake_up_process(busiest->migration_thread);
4437 raw_spin_lock(&this_rq->lock);
4438
4439 } else
4440 sd->nr_balance_failed = 0;
4441
4442 update_shares_locked(this_rq, sd);
4443 return ld_moved;
4444
4445out_balanced:
4446 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4447 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4448 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4449 return -1;
4450 sd->nr_balance_failed = 0;
4451
4452 return 0;
4453}
4454
4455/*
4456 * idle_balance is called by schedule() if this_cpu is about to become
4457 * idle. Attempts to pull tasks from other CPUs.
4458 */
4459static void idle_balance(int this_cpu, struct rq *this_rq)
4460{
4461 struct sched_domain *sd;
4462 int pulled_task = 0;
4463 unsigned long next_balance = jiffies + HZ;
4464
4465 this_rq->idle_stamp = this_rq->clock;
4466
4467 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4468 return;
4469
4470 for_each_domain(this_cpu, sd) {
4471 unsigned long interval;
4472
4473 if (!(sd->flags & SD_LOAD_BALANCE))
4474 continue;
4475
4476 if (sd->flags & SD_BALANCE_NEWIDLE)
4477 /* If we've pulled tasks over stop searching: */
4478 pulled_task = load_balance_newidle(this_cpu, this_rq,
4479 sd);
4480
4481 interval = msecs_to_jiffies(sd->balance_interval);
4482 if (time_after(next_balance, sd->last_balance + interval))
4483 next_balance = sd->last_balance + interval;
4484 if (pulled_task) {
4485 this_rq->idle_stamp = 0;
4486 break;
4487 }
4488 }
4489 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4490 /*
4491 * We are going idle. next_balance may be set based on
4492 * a busy processor. So reset next_balance.
4493 */
4494 this_rq->next_balance = next_balance;
4495 }
4496}
4497
4498/*
4499 * active_load_balance is run by migration threads. It pushes running tasks
4500 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4501 * running on each physical CPU where possible, and avoids physical /
4502 * logical imbalances.
4503 *
4504 * Called with busiest_rq locked.
4505 */
4506static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4507{
4508 int target_cpu = busiest_rq->push_cpu;
4509 struct sched_domain *sd;
4510 struct rq *target_rq;
4511
4512 /* Is there any task to move? */
4513 if (busiest_rq->nr_running <= 1)
4514 return;
4515
4516 target_rq = cpu_rq(target_cpu);
4517
4518 /*
4519 * This condition is "impossible", if it occurs
4520 * we need to fix it. Originally reported by
4521 * Bjorn Helgaas on a 128-cpu setup.
4522 */
4523 BUG_ON(busiest_rq == target_rq);
4524
4525 /* move a task from busiest_rq to target_rq */
4526 double_lock_balance(busiest_rq, target_rq);
4527 update_rq_clock(busiest_rq);
4528 update_rq_clock(target_rq);
4529
4530 /* Search for an sd spanning us and the target CPU. */
4531 for_each_domain(target_cpu, sd) {
4532 if ((sd->flags & SD_LOAD_BALANCE) &&
4533 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4534 break;
4535 }
4536
4537 if (likely(sd)) {
4538 schedstat_inc(sd, alb_count);
4539
4540 if (move_one_task(target_rq, target_cpu, busiest_rq,
4541 sd, CPU_IDLE))
4542 schedstat_inc(sd, alb_pushed);
4543 else
4544 schedstat_inc(sd, alb_failed);
4545 }
4546 double_unlock_balance(busiest_rq, target_rq);
4547}
4548
4549#ifdef CONFIG_NO_HZ
4550static struct {
4551 atomic_t load_balancer;
4552 cpumask_var_t cpu_mask;
4553 cpumask_var_t ilb_grp_nohz_mask;
4554} nohz ____cacheline_aligned = {
4555 .load_balancer = ATOMIC_INIT(-1),
4556};
4557
4558int get_nohz_load_balancer(void)
4559{
4560 return atomic_read(&nohz.load_balancer);
4561}
4562
4563#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4564/**
4565 * lowest_flag_domain - Return lowest sched_domain containing flag.
4566 * @cpu: The cpu whose lowest level of sched domain is to
4567 * be returned.
4568 * @flag: The flag to check for the lowest sched_domain
4569 * for the given cpu.
4570 *
4571 * Returns the lowest sched_domain of a cpu which contains the given flag.
4572 */
4573static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4574{
4575 struct sched_domain *sd;
4576
4577 for_each_domain(cpu, sd)
4578 if (sd && (sd->flags & flag))
4579 break;
4580
4581 return sd;
4582}
4583
4584/**
4585 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4586 * @cpu: The cpu whose domains we're iterating over.
4587 * @sd: variable holding the value of the power_savings_sd
4588 * for cpu.
4589 * @flag: The flag to filter the sched_domains to be iterated.
4590 *
4591 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4592 * set, starting from the lowest sched_domain to the highest.
4593 */
4594#define for_each_flag_domain(cpu, sd, flag) \
4595 for (sd = lowest_flag_domain(cpu, flag); \
4596 (sd && (sd->flags & flag)); sd = sd->parent)
4597
4598/**
4599 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4600 * @ilb_group: group to be checked for semi-idleness
4601 *
4602 * Returns: 1 if the group is semi-idle. 0 otherwise.
4603 *
4604 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4605 * and atleast one non-idle CPU. This helper function checks if the given
4606 * sched_group is semi-idle or not.
4607 */
4608static inline int is_semi_idle_group(struct sched_group *ilb_group)
4609{
4610 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4611 sched_group_cpus(ilb_group));
4612
4613 /*
4614 * A sched_group is semi-idle when it has atleast one busy cpu
4615 * and atleast one idle cpu.
4616 */
4617 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4618 return 0;
4619
4620 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4621 return 0;
4622
4623 return 1;
4624}
4625/**
4626 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4627 * @cpu: The cpu which is nominating a new idle_load_balancer.
4628 *
4629 * Returns: Returns the id of the idle load balancer if it exists,
4630 * Else, returns >= nr_cpu_ids.
4631 *
4632 * This algorithm picks the idle load balancer such that it belongs to a
4633 * semi-idle powersavings sched_domain. The idea is to try and avoid
4634 * completely idle packages/cores just for the purpose of idle load balancing
4635 * when there are other idle cpu's which are better suited for that job.
4636 */
4637static int find_new_ilb(int cpu)
4638{
4639 struct sched_domain *sd;
4640 struct sched_group *ilb_group;
4641
4642 /*
4643 * Have idle load balancer selection from semi-idle packages only
4644 * when power-aware load balancing is enabled
4645 */
4646 if (!(sched_smt_power_savings || sched_mc_power_savings))
4647 goto out_done;
4648
4649 /*
4650 * Optimize for the case when we have no idle CPUs or only one
4651 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4652 */
4653 if (cpumask_weight(nohz.cpu_mask) < 2)
4654 goto out_done;
4655
4656 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4657 ilb_group = sd->groups;
4658
4659 do {
4660 if (is_semi_idle_group(ilb_group))
4661 return cpumask_first(nohz.ilb_grp_nohz_mask);
4662
4663 ilb_group = ilb_group->next;
4664
4665 } while (ilb_group != sd->groups);
4666 }
4667
4668out_done:
4669 return cpumask_first(nohz.cpu_mask);
4670}
4671#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4672static inline int find_new_ilb(int call_cpu)
4673{
4674 return cpumask_first(nohz.cpu_mask);
4675}
4676#endif
4677
4678/*
4679 * This routine will try to nominate the ilb (idle load balancing)
4680 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4681 * load balancing on behalf of all those cpus. If all the cpus in the system
4682 * go into this tickless mode, then there will be no ilb owner (as there is
4683 * no need for one) and all the cpus will sleep till the next wakeup event
4684 * arrives...
4685 *
4686 * For the ilb owner, tick is not stopped. And this tick will be used
4687 * for idle load balancing. ilb owner will still be part of
4688 * nohz.cpu_mask..
4689 *
4690 * While stopping the tick, this cpu will become the ilb owner if there
4691 * is no other owner. And will be the owner till that cpu becomes busy
4692 * or if all cpus in the system stop their ticks at which point
4693 * there is no need for ilb owner.
4694 *
4695 * When the ilb owner becomes busy, it nominates another owner, during the
4696 * next busy scheduler_tick()
4697 */
4698int select_nohz_load_balancer(int stop_tick)
4699{
4700 int cpu = smp_processor_id();
4701
4702 if (stop_tick) {
4703 cpu_rq(cpu)->in_nohz_recently = 1;
4704
4705 if (!cpu_active(cpu)) {
4706 if (atomic_read(&nohz.load_balancer) != cpu)
4707 return 0;
4708
4709 /*
4710 * If we are going offline and still the leader,
4711 * give up!
4712 */
4713 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4714 BUG();
4715
4716 return 0;
4717 }
4718
4719 cpumask_set_cpu(cpu, nohz.cpu_mask);
4720
4721 /* time for ilb owner also to sleep */
4722 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4723 if (atomic_read(&nohz.load_balancer) == cpu)
4724 atomic_set(&nohz.load_balancer, -1);
4725 return 0;
4726 }
4727
4728 if (atomic_read(&nohz.load_balancer) == -1) {
4729 /* make me the ilb owner */
4730 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4731 return 1;
4732 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4733 int new_ilb;
4734
4735 if (!(sched_smt_power_savings ||
4736 sched_mc_power_savings))
4737 return 1;
4738 /*
4739 * Check to see if there is a more power-efficient
4740 * ilb.
4741 */
4742 new_ilb = find_new_ilb(cpu);
4743 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4744 atomic_set(&nohz.load_balancer, -1);
4745 resched_cpu(new_ilb);
4746 return 0;
4747 }
4748 return 1;
4749 }
4750 } else {
4751 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4752 return 0;
4753
4754 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4755
4756 if (atomic_read(&nohz.load_balancer) == cpu)
4757 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4758 BUG();
4759 }
4760 return 0;
4761}
4762#endif
4763
4764static DEFINE_SPINLOCK(balancing);
4765
4766/*
4767 * It checks each scheduling domain to see if it is due to be balanced,
4768 * and initiates a balancing operation if so.
4769 *
4770 * Balancing parameters are set up in arch_init_sched_domains.
4771 */
4772static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4773{
4774 int balance = 1;
4775 struct rq *rq = cpu_rq(cpu);
4776 unsigned long interval;
4777 struct sched_domain *sd;
4778 /* Earliest time when we have to do rebalance again */
4779 unsigned long next_balance = jiffies + 60*HZ;
4780 int update_next_balance = 0;
4781 int need_serialize;
4782
4783 for_each_domain(cpu, sd) {
4784 if (!(sd->flags & SD_LOAD_BALANCE))
4785 continue;
4786
4787 interval = sd->balance_interval;
4788 if (idle != CPU_IDLE)
4789 interval *= sd->busy_factor;
4790
4791 /* scale ms to jiffies */
4792 interval = msecs_to_jiffies(interval);
4793 if (unlikely(!interval))
4794 interval = 1;
4795 if (interval > HZ*NR_CPUS/10)
4796 interval = HZ*NR_CPUS/10;
4797
4798 need_serialize = sd->flags & SD_SERIALIZE;
4799
4800 if (need_serialize) {
4801 if (!spin_trylock(&balancing))
4802 goto out;
4803 }
4804
4805 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4806 if (load_balance(cpu, rq, sd, idle, &balance)) {
4807 /*
4808 * We've pulled tasks over so either we're no
4809 * longer idle, or one of our SMT siblings is
4810 * not idle.
4811 */
4812 idle = CPU_NOT_IDLE;
4813 }
4814 sd->last_balance = jiffies;
4815 }
4816 if (need_serialize)
4817 spin_unlock(&balancing);
4818out:
4819 if (time_after(next_balance, sd->last_balance + interval)) {
4820 next_balance = sd->last_balance + interval;
4821 update_next_balance = 1;
4822 }
4823
4824 /*
4825 * Stop the load balance at this level. There is another
4826 * CPU in our sched group which is doing load balancing more
4827 * actively.
4828 */
4829 if (!balance)
4830 break;
4831 }
4832
4833 /*
4834 * next_balance will be updated only when there is a need.
4835 * When the cpu is attached to null domain for ex, it will not be
4836 * updated.
4837 */
4838 if (likely(update_next_balance))
4839 rq->next_balance = next_balance;
4840}
4841
4842/*
4843 * run_rebalance_domains is triggered when needed from the scheduler tick.
4844 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4845 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4846 */
4847static void run_rebalance_domains(struct softirq_action *h)
4848{
4849 int this_cpu = smp_processor_id();
4850 struct rq *this_rq = cpu_rq(this_cpu);
4851 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4852 CPU_IDLE : CPU_NOT_IDLE;
4853
4854 rebalance_domains(this_cpu, idle);
4855
4856#ifdef CONFIG_NO_HZ
4857 /*
4858 * If this cpu is the owner for idle load balancing, then do the
4859 * balancing on behalf of the other idle cpus whose ticks are
4860 * stopped.
4861 */
4862 if (this_rq->idle_at_tick &&
4863 atomic_read(&nohz.load_balancer) == this_cpu) {
4864 struct rq *rq;
4865 int balance_cpu;
4866
4867 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4868 if (balance_cpu == this_cpu)
4869 continue;
4870
4871 /*
4872 * If this cpu gets work to do, stop the load balancing
4873 * work being done for other cpus. Next load
4874 * balancing owner will pick it up.
4875 */
4876 if (need_resched())
4877 break;
4878
4879 rebalance_domains(balance_cpu, CPU_IDLE);
4880
4881 rq = cpu_rq(balance_cpu);
4882 if (time_after(this_rq->next_balance, rq->next_balance))
4883 this_rq->next_balance = rq->next_balance;
4884 }
4885 }
4886#endif
4887}
4888
4889static inline int on_null_domain(int cpu)
4890{
4891 return !rcu_dereference(cpu_rq(cpu)->sd);
4892}
4893
4894/*
4895 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4896 *
4897 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4898 * idle load balancing owner or decide to stop the periodic load balancing,
4899 * if the whole system is idle.
4900 */
4901static inline void trigger_load_balance(struct rq *rq, int cpu)
4902{
4903#ifdef CONFIG_NO_HZ
4904 /*
4905 * If we were in the nohz mode recently and busy at the current
4906 * scheduler tick, then check if we need to nominate new idle
4907 * load balancer.
4908 */
4909 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4910 rq->in_nohz_recently = 0;
4911
4912 if (atomic_read(&nohz.load_balancer) == cpu) {
4913 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4914 atomic_set(&nohz.load_balancer, -1);
4915 }
4916
4917 if (atomic_read(&nohz.load_balancer) == -1) {
4918 int ilb = find_new_ilb(cpu);
4919
4920 if (ilb < nr_cpu_ids)
4921 resched_cpu(ilb);
4922 }
4923 }
4924
4925 /*
4926 * If this cpu is idle and doing idle load balancing for all the
4927 * cpus with ticks stopped, is it time for that to stop?
4928 */
4929 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4930 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4931 resched_cpu(cpu);
4932 return;
4933 }
4934
4935 /*
4936 * If this cpu is idle and the idle load balancing is done by
4937 * someone else, then no need raise the SCHED_SOFTIRQ
4938 */
4939 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4940 cpumask_test_cpu(cpu, nohz.cpu_mask))
4941 return;
4942#endif
4943 /* Don't need to rebalance while attached to NULL domain */
4944 if (time_after_eq(jiffies, rq->next_balance) &&
4945 likely(!on_null_domain(cpu)))
4946 raise_softirq(SCHED_SOFTIRQ);
4947}
4948
4949#else /* CONFIG_SMP */
4950
4951/*
4952 * on UP we do not need to balance between CPUs:
4953 */
4954static inline void idle_balance(int cpu, struct rq *rq)
4955{
4956}
4957
4958#endif 3164#endif
4959 3165
4960DEFINE_PER_CPU(struct kernel_stat, kstat); 3166DEFINE_PER_CPU(struct kernel_stat, kstat);
@@ -5309,7 +3515,7 @@ void scheduler_tick(void)
5309 curr->sched_class->task_tick(rq, curr, 0); 3515 curr->sched_class->task_tick(rq, curr, 0);
5310 raw_spin_unlock(&rq->lock); 3516 raw_spin_unlock(&rq->lock);
5311 3517
5312 perf_event_task_tick(curr, cpu); 3518 perf_event_task_tick(curr);
5313 3519
5314#ifdef CONFIG_SMP 3520#ifdef CONFIG_SMP
5315 rq->idle_at_tick = idle_cpu(cpu); 3521 rq->idle_at_tick = idle_cpu(cpu);
@@ -5523,7 +3729,7 @@ need_resched_nonpreemptible:
5523 3729
5524 if (likely(prev != next)) { 3730 if (likely(prev != next)) {
5525 sched_info_switch(prev, next); 3731 sched_info_switch(prev, next);
5526 perf_event_task_sched_out(prev, next, cpu); 3732 perf_event_task_sched_out(prev, next);
5527 3733
5528 rq->nr_switches++; 3734 rq->nr_switches++;
5529 rq->curr = next; 3735 rq->curr = next;
@@ -6054,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
6054 unsigned long flags; 4260 unsigned long flags;
6055 int oldprio, on_rq, running; 4261 int oldprio, on_rq, running;
6056 struct rq *rq; 4262 struct rq *rq;
6057 const struct sched_class *prev_class = p->sched_class; 4263 const struct sched_class *prev_class;
6058 4264
6059 BUG_ON(prio < 0 || prio > MAX_PRIO); 4265 BUG_ON(prio < 0 || prio > MAX_PRIO);
6060 4266
@@ -6062,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
6062 update_rq_clock(rq); 4268 update_rq_clock(rq);
6063 4269
6064 oldprio = p->prio; 4270 oldprio = p->prio;
4271 prev_class = p->sched_class;
6065 on_rq = p->se.on_rq; 4272 on_rq = p->se.on_rq;
6066 running = task_current(rq, p); 4273 running = task_current(rq, p);
6067 if (on_rq) 4274 if (on_rq)
@@ -6079,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
6079 if (running) 4286 if (running)
6080 p->sched_class->set_curr_task(rq); 4287 p->sched_class->set_curr_task(rq);
6081 if (on_rq) { 4288 if (on_rq) {
6082 enqueue_task(rq, p, 0); 4289 enqueue_task(rq, p, 0, oldprio < prio);
6083 4290
6084 check_class_changed(rq, p, prev_class, oldprio, running); 4291 check_class_changed(rq, p, prev_class, oldprio, running);
6085 } 4292 }
@@ -6123,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice)
6123 delta = p->prio - old_prio; 4330 delta = p->prio - old_prio;
6124 4331
6125 if (on_rq) { 4332 if (on_rq) {
6126 enqueue_task(rq, p, 0); 4333 enqueue_task(rq, p, 0, false);
6127 /* 4334 /*
6128 * If the task increased its priority or is running and 4335 * If the task increased its priority or is running and
6129 * lowered its priority, then reschedule its CPU: 4336 * lowered its priority, then reschedule its CPU:
@@ -6281,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy,
6281{ 4488{
6282 int retval, oldprio, oldpolicy = -1, on_rq, running; 4489 int retval, oldprio, oldpolicy = -1, on_rq, running;
6283 unsigned long flags; 4490 unsigned long flags;
6284 const struct sched_class *prev_class = p->sched_class; 4491 const struct sched_class *prev_class;
6285 struct rq *rq; 4492 struct rq *rq;
6286 int reset_on_fork; 4493 int reset_on_fork;
6287 4494
@@ -6395,6 +4602,7 @@ recheck:
6395 p->sched_reset_on_fork = reset_on_fork; 4602 p->sched_reset_on_fork = reset_on_fork;
6396 4603
6397 oldprio = p->prio; 4604 oldprio = p->prio;
4605 prev_class = p->sched_class;
6398 __setscheduler(rq, p, policy, param->sched_priority); 4606 __setscheduler(rq, p, policy, param->sched_priority);
6399 4607
6400 if (running) 4608 if (running)
@@ -7145,27 +5353,8 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7145 struct rq *rq; 5353 struct rq *rq;
7146 int ret = 0; 5354 int ret = 0;
7147 5355
7148 /*
7149 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7150 * the ->cpus_allowed mask from under waking tasks, which would be
7151 * possible when we change rq->lock in ttwu(), so synchronize against
7152 * TASK_WAKING to avoid that.
7153 *
7154 * Make an exception for freshly cloned tasks, since cpuset namespaces
7155 * might move the task about, we have to validate the target in
7156 * wake_up_new_task() anyway since the cpu might have gone away.
7157 */
7158again:
7159 while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
7160 cpu_relax();
7161
7162 rq = task_rq_lock(p, &flags); 5356 rq = task_rq_lock(p, &flags);
7163 5357
7164 if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
7165 task_rq_unlock(rq, &flags);
7166 goto again;
7167 }
7168
7169 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 5358 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7170 ret = -EINVAL; 5359 ret = -EINVAL;
7171 goto out; 5360 goto out;
@@ -9452,7 +7641,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9452 tg->rt_rq[cpu] = rt_rq; 7641 tg->rt_rq[cpu] = rt_rq;
9453 init_rt_rq(rt_rq, rq); 7642 init_rt_rq(rt_rq, rq);
9454 rt_rq->tg = tg; 7643 rt_rq->tg = tg;
9455 rt_rq->rt_se = rt_se;
9456 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 7644 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9457 if (add) 7645 if (add)
9458 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); 7646 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
@@ -9483,9 +7671,6 @@ void __init sched_init(void)
9483#ifdef CONFIG_RT_GROUP_SCHED 7671#ifdef CONFIG_RT_GROUP_SCHED
9484 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7672 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9485#endif 7673#endif
9486#ifdef CONFIG_USER_SCHED
9487 alloc_size *= 2;
9488#endif
9489#ifdef CONFIG_CPUMASK_OFFSTACK 7674#ifdef CONFIG_CPUMASK_OFFSTACK
9490 alloc_size += num_possible_cpus() * cpumask_size(); 7675 alloc_size += num_possible_cpus() * cpumask_size();
9491#endif 7676#endif
@@ -9499,13 +7684,6 @@ void __init sched_init(void)
9499 init_task_group.cfs_rq = (struct cfs_rq **)ptr; 7684 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **); 7685 ptr += nr_cpu_ids * sizeof(void **);
9501 7686
9502#ifdef CONFIG_USER_SCHED
9503 root_task_group.se = (struct sched_entity **)ptr;
9504 ptr += nr_cpu_ids * sizeof(void **);
9505
9506 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9507 ptr += nr_cpu_ids * sizeof(void **);
9508#endif /* CONFIG_USER_SCHED */
9509#endif /* CONFIG_FAIR_GROUP_SCHED */ 7687#endif /* CONFIG_FAIR_GROUP_SCHED */
9510#ifdef CONFIG_RT_GROUP_SCHED 7688#ifdef CONFIG_RT_GROUP_SCHED
9511 init_task_group.rt_se = (struct sched_rt_entity **)ptr; 7689 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
@@ -9514,13 +7692,6 @@ void __init sched_init(void)
9514 init_task_group.rt_rq = (struct rt_rq **)ptr; 7692 init_task_group.rt_rq = (struct rt_rq **)ptr;
9515 ptr += nr_cpu_ids * sizeof(void **); 7693 ptr += nr_cpu_ids * sizeof(void **);
9516 7694
9517#ifdef CONFIG_USER_SCHED
9518 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9519 ptr += nr_cpu_ids * sizeof(void **);
9520
9521 root_task_group.rt_rq = (struct rt_rq **)ptr;
9522 ptr += nr_cpu_ids * sizeof(void **);
9523#endif /* CONFIG_USER_SCHED */
9524#endif /* CONFIG_RT_GROUP_SCHED */ 7695#endif /* CONFIG_RT_GROUP_SCHED */
9525#ifdef CONFIG_CPUMASK_OFFSTACK 7696#ifdef CONFIG_CPUMASK_OFFSTACK
9526 for_each_possible_cpu(i) { 7697 for_each_possible_cpu(i) {
@@ -9540,22 +7711,13 @@ void __init sched_init(void)
9540#ifdef CONFIG_RT_GROUP_SCHED 7711#ifdef CONFIG_RT_GROUP_SCHED
9541 init_rt_bandwidth(&init_task_group.rt_bandwidth, 7712 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9542 global_rt_period(), global_rt_runtime()); 7713 global_rt_period(), global_rt_runtime());
9543#ifdef CONFIG_USER_SCHED
9544 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9545 global_rt_period(), RUNTIME_INF);
9546#endif /* CONFIG_USER_SCHED */
9547#endif /* CONFIG_RT_GROUP_SCHED */ 7714#endif /* CONFIG_RT_GROUP_SCHED */
9548 7715
9549#ifdef CONFIG_GROUP_SCHED 7716#ifdef CONFIG_CGROUP_SCHED
9550 list_add(&init_task_group.list, &task_groups); 7717 list_add(&init_task_group.list, &task_groups);
9551 INIT_LIST_HEAD(&init_task_group.children); 7718 INIT_LIST_HEAD(&init_task_group.children);
9552 7719
9553#ifdef CONFIG_USER_SCHED 7720#endif /* CONFIG_CGROUP_SCHED */
9554 INIT_LIST_HEAD(&root_task_group.children);
9555 init_task_group.parent = &root_task_group;
9556 list_add(&init_task_group.siblings, &root_task_group.children);
9557#endif /* CONFIG_USER_SCHED */
9558#endif /* CONFIG_GROUP_SCHED */
9559 7721
9560#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP 7722#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9561 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), 7723 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
@@ -9595,25 +7757,6 @@ void __init sched_init(void)
9595 * directly in rq->cfs (i.e init_task_group->se[] = NULL). 7757 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9596 */ 7758 */
9597 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); 7759 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9598#elif defined CONFIG_USER_SCHED
9599 root_task_group.shares = NICE_0_LOAD;
9600 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9601 /*
9602 * In case of task-groups formed thr' the user id of tasks,
9603 * init_task_group represents tasks belonging to root user.
9604 * Hence it forms a sibling of all subsequent groups formed.
9605 * In this case, init_task_group gets only a fraction of overall
9606 * system cpu resource, based on the weight assigned to root
9607 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9608 * by letting tasks of init_task_group sit in a separate cfs_rq
9609 * (init_tg_cfs_rq) and having one entity represent this group of
9610 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9611 */
9612 init_tg_cfs_entry(&init_task_group,
9613 &per_cpu(init_tg_cfs_rq, i),
9614 &per_cpu(init_sched_entity, i), i, 1,
9615 root_task_group.se[i]);
9616
9617#endif 7760#endif
9618#endif /* CONFIG_FAIR_GROUP_SCHED */ 7761#endif /* CONFIG_FAIR_GROUP_SCHED */
9619 7762
@@ -9622,12 +7765,6 @@ void __init sched_init(void)
9622 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 7765 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9623#ifdef CONFIG_CGROUP_SCHED 7766#ifdef CONFIG_CGROUP_SCHED
9624 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); 7767 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9625#elif defined CONFIG_USER_SCHED
9626 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9627 init_tg_rt_entry(&init_task_group,
9628 &per_cpu(init_rt_rq_var, i),
9629 &per_cpu(init_sched_rt_entity, i), i, 1,
9630 root_task_group.rt_se[i]);
9631#endif 7768#endif
9632#endif 7769#endif
9633 7770
@@ -9712,7 +7849,7 @@ static inline int preempt_count_equals(int preempt_offset)
9712 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); 7849 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9713} 7850}
9714 7851
9715void __might_sleep(char *file, int line, int preempt_offset) 7852void __might_sleep(const char *file, int line, int preempt_offset)
9716{ 7853{
9717#ifdef in_atomic 7854#ifdef in_atomic
9718 static unsigned long prev_jiffy; /* ratelimiting */ 7855 static unsigned long prev_jiffy; /* ratelimiting */
@@ -10023,7 +8160,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10023} 8160}
10024#endif /* CONFIG_RT_GROUP_SCHED */ 8161#endif /* CONFIG_RT_GROUP_SCHED */
10025 8162
10026#ifdef CONFIG_GROUP_SCHED 8163#ifdef CONFIG_CGROUP_SCHED
10027static void free_sched_group(struct task_group *tg) 8164static void free_sched_group(struct task_group *tg)
10028{ 8165{
10029 free_fair_sched_group(tg); 8166 free_fair_sched_group(tg);
@@ -10128,11 +8265,11 @@ void sched_move_task(struct task_struct *tsk)
10128 if (unlikely(running)) 8265 if (unlikely(running))
10129 tsk->sched_class->set_curr_task(rq); 8266 tsk->sched_class->set_curr_task(rq);
10130 if (on_rq) 8267 if (on_rq)
10131 enqueue_task(rq, tsk, 0); 8268 enqueue_task(rq, tsk, 0, false);
10132 8269
10133 task_rq_unlock(rq, &flags); 8270 task_rq_unlock(rq, &flags);
10134} 8271}
10135#endif /* CONFIG_GROUP_SCHED */ 8272#endif /* CONFIG_CGROUP_SCHED */
10136 8273
10137#ifdef CONFIG_FAIR_GROUP_SCHED 8274#ifdef CONFIG_FAIR_GROUP_SCHED
10138static void __set_se_shares(struct sched_entity *se, unsigned long shares) 8275static void __set_se_shares(struct sched_entity *se, unsigned long shares)
@@ -10274,13 +8411,6 @@ static int tg_schedulable(struct task_group *tg, void *data)
10274 runtime = d->rt_runtime; 8411 runtime = d->rt_runtime;
10275 } 8412 }
10276 8413
10277#ifdef CONFIG_USER_SCHED
10278 if (tg == &root_task_group) {
10279 period = global_rt_period();
10280 runtime = global_rt_runtime();
10281 }
10282#endif
10283
10284 /* 8414 /*
10285 * Cannot have more runtime than the period. 8415 * Cannot have more runtime than the period.
10286 */ 8416 */
@@ -10900,12 +9030,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10900} 9030}
10901 9031
10902/* 9032/*
9033 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9034 * in cputime_t units. As a result, cpuacct_update_stats calls
9035 * percpu_counter_add with values large enough to always overflow the
9036 * per cpu batch limit causing bad SMP scalability.
9037 *
9038 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9039 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9040 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9041 */
9042#ifdef CONFIG_SMP
9043#define CPUACCT_BATCH \
9044 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9045#else
9046#define CPUACCT_BATCH 0
9047#endif
9048
9049/*
10903 * Charge the system/user time to the task's accounting group. 9050 * Charge the system/user time to the task's accounting group.
10904 */ 9051 */
10905static void cpuacct_update_stats(struct task_struct *tsk, 9052static void cpuacct_update_stats(struct task_struct *tsk,
10906 enum cpuacct_stat_index idx, cputime_t val) 9053 enum cpuacct_stat_index idx, cputime_t val)
10907{ 9054{
10908 struct cpuacct *ca; 9055 struct cpuacct *ca;
9056 int batch = CPUACCT_BATCH;
10909 9057
10910 if (unlikely(!cpuacct_subsys.active)) 9058 if (unlikely(!cpuacct_subsys.active))
10911 return; 9059 return;
@@ -10914,7 +9062,7 @@ static void cpuacct_update_stats(struct task_struct *tsk,
10914 ca = task_ca(tsk); 9062 ca = task_ca(tsk);
10915 9063
10916 do { 9064 do {
10917 percpu_counter_add(&ca->cpustat[idx], val); 9065 __percpu_counter_add(&ca->cpustat[idx], val, batch);
10918 ca = ca->parent; 9066 ca = ca->parent;
10919 } while (ca); 9067 } while (ca);
10920 rcu_read_unlock(); 9068 rcu_read_unlock();
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c
index 597b33099dfa..eeb3506c4834 100644
--- a/kernel/sched_cpupri.c
+++ b/kernel/sched_cpupri.c
@@ -47,9 +47,7 @@ static int convert_prio(int prio)
47} 47}
48 48
49#define for_each_cpupri_active(array, idx) \ 49#define for_each_cpupri_active(array, idx) \
50 for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \ 50 for_each_bit(idx, array, CPUPRI_NR_PRIORITIES)
51 idx < CPUPRI_NR_PRIORITIES; \
52 idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))
53 51
54/** 52/**
55 * cpupri_find - find the best (lowest-pri) CPU in the system 53 * cpupri_find - find the best (lowest-pri) CPU in the system
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 8fe7ee81c552..3e1fd96c6cf9 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -1053,7 +1053,8 @@ static inline void hrtick_update(struct rq *rq)
1053 * increased. Here we update the fair scheduling stats and 1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree: 1054 * then put the task into the rbtree:
1055 */ 1055 */
1056static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) 1056static void
1057enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1057{ 1058{
1058 struct cfs_rq *cfs_rq; 1059 struct cfs_rq *cfs_rq;
1059 struct sched_entity *se = &p->se; 1060 struct sched_entity *se = &p->se;
@@ -1815,57 +1816,164 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1815 */ 1816 */
1816 1817
1817/* 1818/*
1818 * Load-balancing iterator. Note: while the runqueue stays locked 1819 * pull_task - move a task from a remote runqueue to the local runqueue.
1819 * during the whole iteration, the current task might be 1820 * Both runqueues must be locked.
1820 * dequeued so the iterator has to be dequeue-safe. Here we
1821 * achieve that by always pre-iterating before returning
1822 * the current task:
1823 */ 1821 */
1824static struct task_struct * 1822static void pull_task(struct rq *src_rq, struct task_struct *p,
1825__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) 1823 struct rq *this_rq, int this_cpu)
1826{ 1824{
1827 struct task_struct *p = NULL; 1825 deactivate_task(src_rq, p, 0);
1828 struct sched_entity *se; 1826 set_task_cpu(p, this_cpu);
1827 activate_task(this_rq, p, 0);
1828 check_preempt_curr(this_rq, p, 0);
1829}
1829 1830
1830 if (next == &cfs_rq->tasks) 1831/*
1831 return NULL; 1832 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1833 */
1834static
1835int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1836 struct sched_domain *sd, enum cpu_idle_type idle,
1837 int *all_pinned)
1838{
1839 int tsk_cache_hot = 0;
1840 /*
1841 * We do not migrate tasks that are:
1842 * 1) running (obviously), or
1843 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1844 * 3) are cache-hot on their current CPU.
1845 */
1846 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1847 schedstat_inc(p, se.nr_failed_migrations_affine);
1848 return 0;
1849 }
1850 *all_pinned = 0;
1832 1851
1833 se = list_entry(next, struct sched_entity, group_node); 1852 if (task_running(rq, p)) {
1834 p = task_of(se); 1853 schedstat_inc(p, se.nr_failed_migrations_running);
1835 cfs_rq->balance_iterator = next->next; 1854 return 0;
1855 }
1836 1856
1837 return p; 1857 /*
1838} 1858 * Aggressive migration if:
1859 * 1) task is cache cold, or
1860 * 2) too many balance attempts have failed.
1861 */
1839 1862
1840static struct task_struct *load_balance_start_fair(void *arg) 1863 tsk_cache_hot = task_hot(p, rq->clock, sd);
1841{ 1864 if (!tsk_cache_hot ||
1842 struct cfs_rq *cfs_rq = arg; 1865 sd->nr_balance_failed > sd->cache_nice_tries) {
1866#ifdef CONFIG_SCHEDSTATS
1867 if (tsk_cache_hot) {
1868 schedstat_inc(sd, lb_hot_gained[idle]);
1869 schedstat_inc(p, se.nr_forced_migrations);
1870 }
1871#endif
1872 return 1;
1873 }
1843 1874
1844 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); 1875 if (tsk_cache_hot) {
1876 schedstat_inc(p, se.nr_failed_migrations_hot);
1877 return 0;
1878 }
1879 return 1;
1845} 1880}
1846 1881
1847static struct task_struct *load_balance_next_fair(void *arg) 1882/*
1883 * move_one_task tries to move exactly one task from busiest to this_rq, as
1884 * part of active balancing operations within "domain".
1885 * Returns 1 if successful and 0 otherwise.
1886 *
1887 * Called with both runqueues locked.
1888 */
1889static int
1890move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1891 struct sched_domain *sd, enum cpu_idle_type idle)
1848{ 1892{
1849 struct cfs_rq *cfs_rq = arg; 1893 struct task_struct *p, *n;
1894 struct cfs_rq *cfs_rq;
1895 int pinned = 0;
1896
1897 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1898 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1899
1900 if (!can_migrate_task(p, busiest, this_cpu,
1901 sd, idle, &pinned))
1902 continue;
1850 1903
1851 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); 1904 pull_task(busiest, p, this_rq, this_cpu);
1905 /*
1906 * Right now, this is only the second place pull_task()
1907 * is called, so we can safely collect pull_task()
1908 * stats here rather than inside pull_task().
1909 */
1910 schedstat_inc(sd, lb_gained[idle]);
1911 return 1;
1912 }
1913 }
1914
1915 return 0;
1852} 1916}
1853 1917
1854static unsigned long 1918static unsigned long
1855__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 1919balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1856 unsigned long max_load_move, struct sched_domain *sd, 1920 unsigned long max_load_move, struct sched_domain *sd,
1857 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, 1921 enum cpu_idle_type idle, int *all_pinned,
1858 struct cfs_rq *cfs_rq) 1922 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1859{ 1923{
1860 struct rq_iterator cfs_rq_iterator; 1924 int loops = 0, pulled = 0, pinned = 0;
1925 long rem_load_move = max_load_move;
1926 struct task_struct *p, *n;
1861 1927
1862 cfs_rq_iterator.start = load_balance_start_fair; 1928 if (max_load_move == 0)
1863 cfs_rq_iterator.next = load_balance_next_fair; 1929 goto out;
1864 cfs_rq_iterator.arg = cfs_rq;
1865 1930
1866 return balance_tasks(this_rq, this_cpu, busiest, 1931 pinned = 1;
1867 max_load_move, sd, idle, all_pinned, 1932
1868 this_best_prio, &cfs_rq_iterator); 1933 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1934 if (loops++ > sysctl_sched_nr_migrate)
1935 break;
1936
1937 if ((p->se.load.weight >> 1) > rem_load_move ||
1938 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1939 continue;
1940
1941 pull_task(busiest, p, this_rq, this_cpu);
1942 pulled++;
1943 rem_load_move -= p->se.load.weight;
1944
1945#ifdef CONFIG_PREEMPT
1946 /*
1947 * NEWIDLE balancing is a source of latency, so preemptible
1948 * kernels will stop after the first task is pulled to minimize
1949 * the critical section.
1950 */
1951 if (idle == CPU_NEWLY_IDLE)
1952 break;
1953#endif
1954
1955 /*
1956 * We only want to steal up to the prescribed amount of
1957 * weighted load.
1958 */
1959 if (rem_load_move <= 0)
1960 break;
1961
1962 if (p->prio < *this_best_prio)
1963 *this_best_prio = p->prio;
1964 }
1965out:
1966 /*
1967 * Right now, this is one of only two places pull_task() is called,
1968 * so we can safely collect pull_task() stats here rather than
1969 * inside pull_task().
1970 */
1971 schedstat_add(sd, lb_gained[idle], pulled);
1972
1973 if (all_pinned)
1974 *all_pinned = pinned;
1975
1976 return max_load_move - rem_load_move;
1869} 1977}
1870 1978
1871#ifdef CONFIG_FAIR_GROUP_SCHED 1979#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1897,9 +2005,9 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1897 rem_load = (u64)rem_load_move * busiest_weight; 2005 rem_load = (u64)rem_load_move * busiest_weight;
1898 rem_load = div_u64(rem_load, busiest_h_load + 1); 2006 rem_load = div_u64(rem_load, busiest_h_load + 1);
1899 2007
1900 moved_load = __load_balance_fair(this_rq, this_cpu, busiest, 2008 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1901 rem_load, sd, idle, all_pinned, this_best_prio, 2009 rem_load, sd, idle, all_pinned, this_best_prio,
1902 tg->cfs_rq[busiest_cpu]); 2010 busiest_cfs_rq);
1903 2011
1904 if (!moved_load) 2012 if (!moved_load)
1905 continue; 2013 continue;
@@ -1922,35 +2030,1509 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1922 struct sched_domain *sd, enum cpu_idle_type idle, 2030 struct sched_domain *sd, enum cpu_idle_type idle,
1923 int *all_pinned, int *this_best_prio) 2031 int *all_pinned, int *this_best_prio)
1924{ 2032{
1925 return __load_balance_fair(this_rq, this_cpu, busiest, 2033 return balance_tasks(this_rq, this_cpu, busiest,
1926 max_load_move, sd, idle, all_pinned, 2034 max_load_move, sd, idle, all_pinned,
1927 this_best_prio, &busiest->cfs); 2035 this_best_prio, &busiest->cfs);
1928} 2036}
1929#endif 2037#endif
1930 2038
1931static int 2039/*
1932move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 2040 * move_tasks tries to move up to max_load_move weighted load from busiest to
1933 struct sched_domain *sd, enum cpu_idle_type idle) 2041 * this_rq, as part of a balancing operation within domain "sd".
2042 * Returns 1 if successful and 0 otherwise.
2043 *
2044 * Called with both runqueues locked.
2045 */
2046static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2047 unsigned long max_load_move,
2048 struct sched_domain *sd, enum cpu_idle_type idle,
2049 int *all_pinned)
1934{ 2050{
1935 struct cfs_rq *busy_cfs_rq; 2051 unsigned long total_load_moved = 0, load_moved;
1936 struct rq_iterator cfs_rq_iterator; 2052 int this_best_prio = this_rq->curr->prio;
1937 2053
1938 cfs_rq_iterator.start = load_balance_start_fair; 2054 do {
1939 cfs_rq_iterator.next = load_balance_next_fair; 2055 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2056 max_load_move - total_load_moved,
2057 sd, idle, all_pinned, &this_best_prio);
1940 2058
1941 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { 2059 total_load_moved += load_moved;
2060
2061#ifdef CONFIG_PREEMPT
1942 /* 2062 /*
1943 * pass busy_cfs_rq argument into 2063 * NEWIDLE balancing is a source of latency, so preemptible
1944 * load_balance_[start|next]_fair iterators 2064 * kernels will stop after the first task is pulled to minimize
2065 * the critical section.
1945 */ 2066 */
1946 cfs_rq_iterator.arg = busy_cfs_rq; 2067 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
1947 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, 2068 break;
1948 &cfs_rq_iterator)) 2069
1949 return 1; 2070 if (raw_spin_is_contended(&this_rq->lock) ||
2071 raw_spin_is_contended(&busiest->lock))
2072 break;
2073#endif
2074 } while (load_moved && max_load_move > total_load_moved);
2075
2076 return total_load_moved > 0;
2077}
2078
2079/********** Helpers for find_busiest_group ************************/
2080/*
2081 * sd_lb_stats - Structure to store the statistics of a sched_domain
2082 * during load balancing.
2083 */
2084struct sd_lb_stats {
2085 struct sched_group *busiest; /* Busiest group in this sd */
2086 struct sched_group *this; /* Local group in this sd */
2087 unsigned long total_load; /* Total load of all groups in sd */
2088 unsigned long total_pwr; /* Total power of all groups in sd */
2089 unsigned long avg_load; /* Average load across all groups in sd */
2090
2091 /** Statistics of this group */
2092 unsigned long this_load;
2093 unsigned long this_load_per_task;
2094 unsigned long this_nr_running;
2095
2096 /* Statistics of the busiest group */
2097 unsigned long max_load;
2098 unsigned long busiest_load_per_task;
2099 unsigned long busiest_nr_running;
2100 unsigned long busiest_group_capacity;
2101
2102 int group_imb; /* Is there imbalance in this sd */
2103#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2104 int power_savings_balance; /* Is powersave balance needed for this sd */
2105 struct sched_group *group_min; /* Least loaded group in sd */
2106 struct sched_group *group_leader; /* Group which relieves group_min */
2107 unsigned long min_load_per_task; /* load_per_task in group_min */
2108 unsigned long leader_nr_running; /* Nr running of group_leader */
2109 unsigned long min_nr_running; /* Nr running of group_min */
2110#endif
2111};
2112
2113/*
2114 * sg_lb_stats - stats of a sched_group required for load_balancing
2115 */
2116struct sg_lb_stats {
2117 unsigned long avg_load; /*Avg load across the CPUs of the group */
2118 unsigned long group_load; /* Total load over the CPUs of the group */
2119 unsigned long sum_nr_running; /* Nr tasks running in the group */
2120 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2121 unsigned long group_capacity;
2122 int group_imb; /* Is there an imbalance in the group ? */
2123};
2124
2125/**
2126 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2127 * @group: The group whose first cpu is to be returned.
2128 */
2129static inline unsigned int group_first_cpu(struct sched_group *group)
2130{
2131 return cpumask_first(sched_group_cpus(group));
2132}
2133
2134/**
2135 * get_sd_load_idx - Obtain the load index for a given sched domain.
2136 * @sd: The sched_domain whose load_idx is to be obtained.
2137 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2138 */
2139static inline int get_sd_load_idx(struct sched_domain *sd,
2140 enum cpu_idle_type idle)
2141{
2142 int load_idx;
2143
2144 switch (idle) {
2145 case CPU_NOT_IDLE:
2146 load_idx = sd->busy_idx;
2147 break;
2148
2149 case CPU_NEWLY_IDLE:
2150 load_idx = sd->newidle_idx;
2151 break;
2152 default:
2153 load_idx = sd->idle_idx;
2154 break;
1950 } 2155 }
1951 2156
2157 return load_idx;
2158}
2159
2160
2161#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2162/**
2163 * init_sd_power_savings_stats - Initialize power savings statistics for
2164 * the given sched_domain, during load balancing.
2165 *
2166 * @sd: Sched domain whose power-savings statistics are to be initialized.
2167 * @sds: Variable containing the statistics for sd.
2168 * @idle: Idle status of the CPU at which we're performing load-balancing.
2169 */
2170static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2171 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2172{
2173 /*
2174 * Busy processors will not participate in power savings
2175 * balance.
2176 */
2177 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2178 sds->power_savings_balance = 0;
2179 else {
2180 sds->power_savings_balance = 1;
2181 sds->min_nr_running = ULONG_MAX;
2182 sds->leader_nr_running = 0;
2183 }
2184}
2185
2186/**
2187 * update_sd_power_savings_stats - Update the power saving stats for a
2188 * sched_domain while performing load balancing.
2189 *
2190 * @group: sched_group belonging to the sched_domain under consideration.
2191 * @sds: Variable containing the statistics of the sched_domain
2192 * @local_group: Does group contain the CPU for which we're performing
2193 * load balancing ?
2194 * @sgs: Variable containing the statistics of the group.
2195 */
2196static inline void update_sd_power_savings_stats(struct sched_group *group,
2197 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2198{
2199
2200 if (!sds->power_savings_balance)
2201 return;
2202
2203 /*
2204 * If the local group is idle or completely loaded
2205 * no need to do power savings balance at this domain
2206 */
2207 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2208 !sds->this_nr_running))
2209 sds->power_savings_balance = 0;
2210
2211 /*
2212 * If a group is already running at full capacity or idle,
2213 * don't include that group in power savings calculations
2214 */
2215 if (!sds->power_savings_balance ||
2216 sgs->sum_nr_running >= sgs->group_capacity ||
2217 !sgs->sum_nr_running)
2218 return;
2219
2220 /*
2221 * Calculate the group which has the least non-idle load.
2222 * This is the group from where we need to pick up the load
2223 * for saving power
2224 */
2225 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2226 (sgs->sum_nr_running == sds->min_nr_running &&
2227 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2228 sds->group_min = group;
2229 sds->min_nr_running = sgs->sum_nr_running;
2230 sds->min_load_per_task = sgs->sum_weighted_load /
2231 sgs->sum_nr_running;
2232 }
2233
2234 /*
2235 * Calculate the group which is almost near its
2236 * capacity but still has some space to pick up some load
2237 * from other group and save more power
2238 */
2239 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2240 return;
2241
2242 if (sgs->sum_nr_running > sds->leader_nr_running ||
2243 (sgs->sum_nr_running == sds->leader_nr_running &&
2244 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2245 sds->group_leader = group;
2246 sds->leader_nr_running = sgs->sum_nr_running;
2247 }
2248}
2249
2250/**
2251 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2252 * @sds: Variable containing the statistics of the sched_domain
2253 * under consideration.
2254 * @this_cpu: Cpu at which we're currently performing load-balancing.
2255 * @imbalance: Variable to store the imbalance.
2256 *
2257 * Description:
2258 * Check if we have potential to perform some power-savings balance.
2259 * If yes, set the busiest group to be the least loaded group in the
2260 * sched_domain, so that it's CPUs can be put to idle.
2261 *
2262 * Returns 1 if there is potential to perform power-savings balance.
2263 * Else returns 0.
2264 */
2265static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2266 int this_cpu, unsigned long *imbalance)
2267{
2268 if (!sds->power_savings_balance)
2269 return 0;
2270
2271 if (sds->this != sds->group_leader ||
2272 sds->group_leader == sds->group_min)
2273 return 0;
2274
2275 *imbalance = sds->min_load_per_task;
2276 sds->busiest = sds->group_min;
2277
2278 return 1;
2279
2280}
2281#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2282static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2284{
2285 return;
2286}
2287
2288static inline void update_sd_power_savings_stats(struct sched_group *group,
2289 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2290{
2291 return;
2292}
2293
2294static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2295 int this_cpu, unsigned long *imbalance)
2296{
1952 return 0; 2297 return 0;
1953} 2298}
2299#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2300
2301
2302unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2303{
2304 return SCHED_LOAD_SCALE;
2305}
2306
2307unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2308{
2309 return default_scale_freq_power(sd, cpu);
2310}
2311
2312unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2313{
2314 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2315 unsigned long smt_gain = sd->smt_gain;
2316
2317 smt_gain /= weight;
2318
2319 return smt_gain;
2320}
2321
2322unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2323{
2324 return default_scale_smt_power(sd, cpu);
2325}
2326
2327unsigned long scale_rt_power(int cpu)
2328{
2329 struct rq *rq = cpu_rq(cpu);
2330 u64 total, available;
2331
2332 sched_avg_update(rq);
2333
2334 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2335 available = total - rq->rt_avg;
2336
2337 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2338 total = SCHED_LOAD_SCALE;
2339
2340 total >>= SCHED_LOAD_SHIFT;
2341
2342 return div_u64(available, total);
2343}
2344
2345static void update_cpu_power(struct sched_domain *sd, int cpu)
2346{
2347 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2348 unsigned long power = SCHED_LOAD_SCALE;
2349 struct sched_group *sdg = sd->groups;
2350
2351 if (sched_feat(ARCH_POWER))
2352 power *= arch_scale_freq_power(sd, cpu);
2353 else
2354 power *= default_scale_freq_power(sd, cpu);
2355
2356 power >>= SCHED_LOAD_SHIFT;
2357
2358 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2359 if (sched_feat(ARCH_POWER))
2360 power *= arch_scale_smt_power(sd, cpu);
2361 else
2362 power *= default_scale_smt_power(sd, cpu);
2363
2364 power >>= SCHED_LOAD_SHIFT;
2365 }
2366
2367 power *= scale_rt_power(cpu);
2368 power >>= SCHED_LOAD_SHIFT;
2369
2370 if (!power)
2371 power = 1;
2372
2373 sdg->cpu_power = power;
2374}
2375
2376static void update_group_power(struct sched_domain *sd, int cpu)
2377{
2378 struct sched_domain *child = sd->child;
2379 struct sched_group *group, *sdg = sd->groups;
2380 unsigned long power;
2381
2382 if (!child) {
2383 update_cpu_power(sd, cpu);
2384 return;
2385 }
2386
2387 power = 0;
2388
2389 group = child->groups;
2390 do {
2391 power += group->cpu_power;
2392 group = group->next;
2393 } while (group != child->groups);
2394
2395 sdg->cpu_power = power;
2396}
2397
2398/**
2399 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2400 * @sd: The sched_domain whose statistics are to be updated.
2401 * @group: sched_group whose statistics are to be updated.
2402 * @this_cpu: Cpu for which load balance is currently performed.
2403 * @idle: Idle status of this_cpu
2404 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2405 * @sd_idle: Idle status of the sched_domain containing group.
2406 * @local_group: Does group contain this_cpu.
2407 * @cpus: Set of cpus considered for load balancing.
2408 * @balance: Should we balance.
2409 * @sgs: variable to hold the statistics for this group.
2410 */
2411static inline void update_sg_lb_stats(struct sched_domain *sd,
2412 struct sched_group *group, int this_cpu,
2413 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2414 int local_group, const struct cpumask *cpus,
2415 int *balance, struct sg_lb_stats *sgs)
2416{
2417 unsigned long load, max_cpu_load, min_cpu_load;
2418 int i;
2419 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2420 unsigned long avg_load_per_task = 0;
2421
2422 if (local_group)
2423 balance_cpu = group_first_cpu(group);
2424
2425 /* Tally up the load of all CPUs in the group */
2426 max_cpu_load = 0;
2427 min_cpu_load = ~0UL;
2428
2429 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2430 struct rq *rq = cpu_rq(i);
2431
2432 if (*sd_idle && rq->nr_running)
2433 *sd_idle = 0;
2434
2435 /* Bias balancing toward cpus of our domain */
2436 if (local_group) {
2437 if (idle_cpu(i) && !first_idle_cpu) {
2438 first_idle_cpu = 1;
2439 balance_cpu = i;
2440 }
2441
2442 load = target_load(i, load_idx);
2443 } else {
2444 load = source_load(i, load_idx);
2445 if (load > max_cpu_load)
2446 max_cpu_load = load;
2447 if (min_cpu_load > load)
2448 min_cpu_load = load;
2449 }
2450
2451 sgs->group_load += load;
2452 sgs->sum_nr_running += rq->nr_running;
2453 sgs->sum_weighted_load += weighted_cpuload(i);
2454
2455 }
2456
2457 /*
2458 * First idle cpu or the first cpu(busiest) in this sched group
2459 * is eligible for doing load balancing at this and above
2460 * domains. In the newly idle case, we will allow all the cpu's
2461 * to do the newly idle load balance.
2462 */
2463 if (idle != CPU_NEWLY_IDLE && local_group &&
2464 balance_cpu != this_cpu) {
2465 *balance = 0;
2466 return;
2467 }
2468
2469 update_group_power(sd, this_cpu);
2470
2471 /* Adjust by relative CPU power of the group */
2472 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2473
2474 /*
2475 * Consider the group unbalanced when the imbalance is larger
2476 * than the average weight of two tasks.
2477 *
2478 * APZ: with cgroup the avg task weight can vary wildly and
2479 * might not be a suitable number - should we keep a
2480 * normalized nr_running number somewhere that negates
2481 * the hierarchy?
2482 */
2483 if (sgs->sum_nr_running)
2484 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2485
2486 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2487 sgs->group_imb = 1;
2488
2489 sgs->group_capacity =
2490 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2491}
2492
2493/**
2494 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2495 * @sd: sched_domain whose statistics are to be updated.
2496 * @this_cpu: Cpu for which load balance is currently performed.
2497 * @idle: Idle status of this_cpu
2498 * @sd_idle: Idle status of the sched_domain containing group.
2499 * @cpus: Set of cpus considered for load balancing.
2500 * @balance: Should we balance.
2501 * @sds: variable to hold the statistics for this sched_domain.
2502 */
2503static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2504 enum cpu_idle_type idle, int *sd_idle,
2505 const struct cpumask *cpus, int *balance,
2506 struct sd_lb_stats *sds)
2507{
2508 struct sched_domain *child = sd->child;
2509 struct sched_group *group = sd->groups;
2510 struct sg_lb_stats sgs;
2511 int load_idx, prefer_sibling = 0;
2512
2513 if (child && child->flags & SD_PREFER_SIBLING)
2514 prefer_sibling = 1;
2515
2516 init_sd_power_savings_stats(sd, sds, idle);
2517 load_idx = get_sd_load_idx(sd, idle);
2518
2519 do {
2520 int local_group;
2521
2522 local_group = cpumask_test_cpu(this_cpu,
2523 sched_group_cpus(group));
2524 memset(&sgs, 0, sizeof(sgs));
2525 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2526 local_group, cpus, balance, &sgs);
2527
2528 if (local_group && !(*balance))
2529 return;
2530
2531 sds->total_load += sgs.group_load;
2532 sds->total_pwr += group->cpu_power;
2533
2534 /*
2535 * In case the child domain prefers tasks go to siblings
2536 * first, lower the group capacity to one so that we'll try
2537 * and move all the excess tasks away.
2538 */
2539 if (prefer_sibling)
2540 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2541
2542 if (local_group) {
2543 sds->this_load = sgs.avg_load;
2544 sds->this = group;
2545 sds->this_nr_running = sgs.sum_nr_running;
2546 sds->this_load_per_task = sgs.sum_weighted_load;
2547 } else if (sgs.avg_load > sds->max_load &&
2548 (sgs.sum_nr_running > sgs.group_capacity ||
2549 sgs.group_imb)) {
2550 sds->max_load = sgs.avg_load;
2551 sds->busiest = group;
2552 sds->busiest_nr_running = sgs.sum_nr_running;
2553 sds->busiest_group_capacity = sgs.group_capacity;
2554 sds->busiest_load_per_task = sgs.sum_weighted_load;
2555 sds->group_imb = sgs.group_imb;
2556 }
2557
2558 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2559 group = group->next;
2560 } while (group != sd->groups);
2561}
2562
2563/**
2564 * fix_small_imbalance - Calculate the minor imbalance that exists
2565 * amongst the groups of a sched_domain, during
2566 * load balancing.
2567 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2568 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2569 * @imbalance: Variable to store the imbalance.
2570 */
2571static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2572 int this_cpu, unsigned long *imbalance)
2573{
2574 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2575 unsigned int imbn = 2;
2576 unsigned long scaled_busy_load_per_task;
2577
2578 if (sds->this_nr_running) {
2579 sds->this_load_per_task /= sds->this_nr_running;
2580 if (sds->busiest_load_per_task >
2581 sds->this_load_per_task)
2582 imbn = 1;
2583 } else
2584 sds->this_load_per_task =
2585 cpu_avg_load_per_task(this_cpu);
2586
2587 scaled_busy_load_per_task = sds->busiest_load_per_task
2588 * SCHED_LOAD_SCALE;
2589 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2590
2591 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2592 (scaled_busy_load_per_task * imbn)) {
2593 *imbalance = sds->busiest_load_per_task;
2594 return;
2595 }
2596
2597 /*
2598 * OK, we don't have enough imbalance to justify moving tasks,
2599 * however we may be able to increase total CPU power used by
2600 * moving them.
2601 */
2602
2603 pwr_now += sds->busiest->cpu_power *
2604 min(sds->busiest_load_per_task, sds->max_load);
2605 pwr_now += sds->this->cpu_power *
2606 min(sds->this_load_per_task, sds->this_load);
2607 pwr_now /= SCHED_LOAD_SCALE;
2608
2609 /* Amount of load we'd subtract */
2610 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2611 sds->busiest->cpu_power;
2612 if (sds->max_load > tmp)
2613 pwr_move += sds->busiest->cpu_power *
2614 min(sds->busiest_load_per_task, sds->max_load - tmp);
2615
2616 /* Amount of load we'd add */
2617 if (sds->max_load * sds->busiest->cpu_power <
2618 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2619 tmp = (sds->max_load * sds->busiest->cpu_power) /
2620 sds->this->cpu_power;
2621 else
2622 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2623 sds->this->cpu_power;
2624 pwr_move += sds->this->cpu_power *
2625 min(sds->this_load_per_task, sds->this_load + tmp);
2626 pwr_move /= SCHED_LOAD_SCALE;
2627
2628 /* Move if we gain throughput */
2629 if (pwr_move > pwr_now)
2630 *imbalance = sds->busiest_load_per_task;
2631}
2632
2633/**
2634 * calculate_imbalance - Calculate the amount of imbalance present within the
2635 * groups of a given sched_domain during load balance.
2636 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2637 * @this_cpu: Cpu for which currently load balance is being performed.
2638 * @imbalance: The variable to store the imbalance.
2639 */
2640static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2641 unsigned long *imbalance)
2642{
2643 unsigned long max_pull, load_above_capacity = ~0UL;
2644
2645 sds->busiest_load_per_task /= sds->busiest_nr_running;
2646 if (sds->group_imb) {
2647 sds->busiest_load_per_task =
2648 min(sds->busiest_load_per_task, sds->avg_load);
2649 }
2650
2651 /*
2652 * In the presence of smp nice balancing, certain scenarios can have
2653 * max load less than avg load(as we skip the groups at or below
2654 * its cpu_power, while calculating max_load..)
2655 */
2656 if (sds->max_load < sds->avg_load) {
2657 *imbalance = 0;
2658 return fix_small_imbalance(sds, this_cpu, imbalance);
2659 }
2660
2661 if (!sds->group_imb) {
2662 /*
2663 * Don't want to pull so many tasks that a group would go idle.
2664 */
2665 load_above_capacity = (sds->busiest_nr_running -
2666 sds->busiest_group_capacity);
2667
2668 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2669
2670 load_above_capacity /= sds->busiest->cpu_power;
2671 }
2672
2673 /*
2674 * We're trying to get all the cpus to the average_load, so we don't
2675 * want to push ourselves above the average load, nor do we wish to
2676 * reduce the max loaded cpu below the average load. At the same time,
2677 * we also don't want to reduce the group load below the group capacity
2678 * (so that we can implement power-savings policies etc). Thus we look
2679 * for the minimum possible imbalance.
2680 * Be careful of negative numbers as they'll appear as very large values
2681 * with unsigned longs.
2682 */
2683 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2684
2685 /* How much load to actually move to equalise the imbalance */
2686 *imbalance = min(max_pull * sds->busiest->cpu_power,
2687 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2688 / SCHED_LOAD_SCALE;
2689
2690 /*
2691 * if *imbalance is less than the average load per runnable task
2692 * there is no gaurantee that any tasks will be moved so we'll have
2693 * a think about bumping its value to force at least one task to be
2694 * moved
2695 */
2696 if (*imbalance < sds->busiest_load_per_task)
2697 return fix_small_imbalance(sds, this_cpu, imbalance);
2698
2699}
2700/******* find_busiest_group() helpers end here *********************/
2701
2702/**
2703 * find_busiest_group - Returns the busiest group within the sched_domain
2704 * if there is an imbalance. If there isn't an imbalance, and
2705 * the user has opted for power-savings, it returns a group whose
2706 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2707 * such a group exists.
2708 *
2709 * Also calculates the amount of weighted load which should be moved
2710 * to restore balance.
2711 *
2712 * @sd: The sched_domain whose busiest group is to be returned.
2713 * @this_cpu: The cpu for which load balancing is currently being performed.
2714 * @imbalance: Variable which stores amount of weighted load which should
2715 * be moved to restore balance/put a group to idle.
2716 * @idle: The idle status of this_cpu.
2717 * @sd_idle: The idleness of sd
2718 * @cpus: The set of CPUs under consideration for load-balancing.
2719 * @balance: Pointer to a variable indicating if this_cpu
2720 * is the appropriate cpu to perform load balancing at this_level.
2721 *
2722 * Returns: - the busiest group if imbalance exists.
2723 * - If no imbalance and user has opted for power-savings balance,
2724 * return the least loaded group whose CPUs can be
2725 * put to idle by rebalancing its tasks onto our group.
2726 */
2727static struct sched_group *
2728find_busiest_group(struct sched_domain *sd, int this_cpu,
2729 unsigned long *imbalance, enum cpu_idle_type idle,
2730 int *sd_idle, const struct cpumask *cpus, int *balance)
2731{
2732 struct sd_lb_stats sds;
2733
2734 memset(&sds, 0, sizeof(sds));
2735
2736 /*
2737 * Compute the various statistics relavent for load balancing at
2738 * this level.
2739 */
2740 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2741 balance, &sds);
2742
2743 /* Cases where imbalance does not exist from POV of this_cpu */
2744 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2745 * at this level.
2746 * 2) There is no busy sibling group to pull from.
2747 * 3) This group is the busiest group.
2748 * 4) This group is more busy than the avg busieness at this
2749 * sched_domain.
2750 * 5) The imbalance is within the specified limit.
2751 */
2752 if (!(*balance))
2753 goto ret;
2754
2755 if (!sds.busiest || sds.busiest_nr_running == 0)
2756 goto out_balanced;
2757
2758 if (sds.this_load >= sds.max_load)
2759 goto out_balanced;
2760
2761 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2762
2763 if (sds.this_load >= sds.avg_load)
2764 goto out_balanced;
2765
2766 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2767 goto out_balanced;
2768
2769 /* Looks like there is an imbalance. Compute it */
2770 calculate_imbalance(&sds, this_cpu, imbalance);
2771 return sds.busiest;
2772
2773out_balanced:
2774 /*
2775 * There is no obvious imbalance. But check if we can do some balancing
2776 * to save power.
2777 */
2778 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2779 return sds.busiest;
2780ret:
2781 *imbalance = 0;
2782 return NULL;
2783}
2784
2785/*
2786 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2787 */
2788static struct rq *
2789find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2790 unsigned long imbalance, const struct cpumask *cpus)
2791{
2792 struct rq *busiest = NULL, *rq;
2793 unsigned long max_load = 0;
2794 int i;
2795
2796 for_each_cpu(i, sched_group_cpus(group)) {
2797 unsigned long power = power_of(i);
2798 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2799 unsigned long wl;
2800
2801 if (!cpumask_test_cpu(i, cpus))
2802 continue;
2803
2804 rq = cpu_rq(i);
2805 wl = weighted_cpuload(i);
2806
2807 /*
2808 * When comparing with imbalance, use weighted_cpuload()
2809 * which is not scaled with the cpu power.
2810 */
2811 if (capacity && rq->nr_running == 1 && wl > imbalance)
2812 continue;
2813
2814 /*
2815 * For the load comparisons with the other cpu's, consider
2816 * the weighted_cpuload() scaled with the cpu power, so that
2817 * the load can be moved away from the cpu that is potentially
2818 * running at a lower capacity.
2819 */
2820 wl = (wl * SCHED_LOAD_SCALE) / power;
2821
2822 if (wl > max_load) {
2823 max_load = wl;
2824 busiest = rq;
2825 }
2826 }
2827
2828 return busiest;
2829}
2830
2831/*
2832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2833 * so long as it is large enough.
2834 */
2835#define MAX_PINNED_INTERVAL 512
2836
2837/* Working cpumask for load_balance and load_balance_newidle. */
2838static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2839
2840static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2841{
2842 if (idle == CPU_NEWLY_IDLE) {
2843 /*
2844 * The only task running in a non-idle cpu can be moved to this
2845 * cpu in an attempt to completely freeup the other CPU
2846 * package.
2847 *
2848 * The package power saving logic comes from
2849 * find_busiest_group(). If there are no imbalance, then
2850 * f_b_g() will return NULL. However when sched_mc={1,2} then
2851 * f_b_g() will select a group from which a running task may be
2852 * pulled to this cpu in order to make the other package idle.
2853 * If there is no opportunity to make a package idle and if
2854 * there are no imbalance, then f_b_g() will return NULL and no
2855 * action will be taken in load_balance_newidle().
2856 *
2857 * Under normal task pull operation due to imbalance, there
2858 * will be more than one task in the source run queue and
2859 * move_tasks() will succeed. ld_moved will be true and this
2860 * active balance code will not be triggered.
2861 */
2862 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2863 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2864 return 0;
2865
2866 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2867 return 0;
2868 }
2869
2870 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2871}
2872
2873/*
2874 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2875 * tasks if there is an imbalance.
2876 */
2877static int load_balance(int this_cpu, struct rq *this_rq,
2878 struct sched_domain *sd, enum cpu_idle_type idle,
2879 int *balance)
2880{
2881 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2882 struct sched_group *group;
2883 unsigned long imbalance;
2884 struct rq *busiest;
2885 unsigned long flags;
2886 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2887
2888 cpumask_copy(cpus, cpu_active_mask);
2889
2890 /*
2891 * When power savings policy is enabled for the parent domain, idle
2892 * sibling can pick up load irrespective of busy siblings. In this case,
2893 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2894 * portraying it as CPU_NOT_IDLE.
2895 */
2896 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2897 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2898 sd_idle = 1;
2899
2900 schedstat_inc(sd, lb_count[idle]);
2901
2902redo:
2903 update_shares(sd);
2904 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2905 cpus, balance);
2906
2907 if (*balance == 0)
2908 goto out_balanced;
2909
2910 if (!group) {
2911 schedstat_inc(sd, lb_nobusyg[idle]);
2912 goto out_balanced;
2913 }
2914
2915 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2916 if (!busiest) {
2917 schedstat_inc(sd, lb_nobusyq[idle]);
2918 goto out_balanced;
2919 }
2920
2921 BUG_ON(busiest == this_rq);
2922
2923 schedstat_add(sd, lb_imbalance[idle], imbalance);
2924
2925 ld_moved = 0;
2926 if (busiest->nr_running > 1) {
2927 /*
2928 * Attempt to move tasks. If find_busiest_group has found
2929 * an imbalance but busiest->nr_running <= 1, the group is
2930 * still unbalanced. ld_moved simply stays zero, so it is
2931 * correctly treated as an imbalance.
2932 */
2933 local_irq_save(flags);
2934 double_rq_lock(this_rq, busiest);
2935 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2936 imbalance, sd, idle, &all_pinned);
2937 double_rq_unlock(this_rq, busiest);
2938 local_irq_restore(flags);
2939
2940 /*
2941 * some other cpu did the load balance for us.
2942 */
2943 if (ld_moved && this_cpu != smp_processor_id())
2944 resched_cpu(this_cpu);
2945
2946 /* All tasks on this runqueue were pinned by CPU affinity */
2947 if (unlikely(all_pinned)) {
2948 cpumask_clear_cpu(cpu_of(busiest), cpus);
2949 if (!cpumask_empty(cpus))
2950 goto redo;
2951 goto out_balanced;
2952 }
2953 }
2954
2955 if (!ld_moved) {
2956 schedstat_inc(sd, lb_failed[idle]);
2957 sd->nr_balance_failed++;
2958
2959 if (need_active_balance(sd, sd_idle, idle)) {
2960 raw_spin_lock_irqsave(&busiest->lock, flags);
2961
2962 /* don't kick the migration_thread, if the curr
2963 * task on busiest cpu can't be moved to this_cpu
2964 */
2965 if (!cpumask_test_cpu(this_cpu,
2966 &busiest->curr->cpus_allowed)) {
2967 raw_spin_unlock_irqrestore(&busiest->lock,
2968 flags);
2969 all_pinned = 1;
2970 goto out_one_pinned;
2971 }
2972
2973 if (!busiest->active_balance) {
2974 busiest->active_balance = 1;
2975 busiest->push_cpu = this_cpu;
2976 active_balance = 1;
2977 }
2978 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2979 if (active_balance)
2980 wake_up_process(busiest->migration_thread);
2981
2982 /*
2983 * We've kicked active balancing, reset the failure
2984 * counter.
2985 */
2986 sd->nr_balance_failed = sd->cache_nice_tries+1;
2987 }
2988 } else
2989 sd->nr_balance_failed = 0;
2990
2991 if (likely(!active_balance)) {
2992 /* We were unbalanced, so reset the balancing interval */
2993 sd->balance_interval = sd->min_interval;
2994 } else {
2995 /*
2996 * If we've begun active balancing, start to back off. This
2997 * case may not be covered by the all_pinned logic if there
2998 * is only 1 task on the busy runqueue (because we don't call
2999 * move_tasks).
3000 */
3001 if (sd->balance_interval < sd->max_interval)
3002 sd->balance_interval *= 2;
3003 }
3004
3005 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3006 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3007 ld_moved = -1;
3008
3009 goto out;
3010
3011out_balanced:
3012 schedstat_inc(sd, lb_balanced[idle]);
3013
3014 sd->nr_balance_failed = 0;
3015
3016out_one_pinned:
3017 /* tune up the balancing interval */
3018 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3019 (sd->balance_interval < sd->max_interval))
3020 sd->balance_interval *= 2;
3021
3022 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3024 ld_moved = -1;
3025 else
3026 ld_moved = 0;
3027out:
3028 if (ld_moved)
3029 update_shares(sd);
3030 return ld_moved;
3031}
3032
3033/*
3034 * idle_balance is called by schedule() if this_cpu is about to become
3035 * idle. Attempts to pull tasks from other CPUs.
3036 */
3037static void idle_balance(int this_cpu, struct rq *this_rq)
3038{
3039 struct sched_domain *sd;
3040 int pulled_task = 0;
3041 unsigned long next_balance = jiffies + HZ;
3042
3043 this_rq->idle_stamp = this_rq->clock;
3044
3045 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3046 return;
3047
3048 /*
3049 * Drop the rq->lock, but keep IRQ/preempt disabled.
3050 */
3051 raw_spin_unlock(&this_rq->lock);
3052
3053 for_each_domain(this_cpu, sd) {
3054 unsigned long interval;
3055 int balance = 1;
3056
3057 if (!(sd->flags & SD_LOAD_BALANCE))
3058 continue;
3059
3060 if (sd->flags & SD_BALANCE_NEWIDLE) {
3061 /* If we've pulled tasks over stop searching: */
3062 pulled_task = load_balance(this_cpu, this_rq,
3063 sd, CPU_NEWLY_IDLE, &balance);
3064 }
3065
3066 interval = msecs_to_jiffies(sd->balance_interval);
3067 if (time_after(next_balance, sd->last_balance + interval))
3068 next_balance = sd->last_balance + interval;
3069 if (pulled_task) {
3070 this_rq->idle_stamp = 0;
3071 break;
3072 }
3073 }
3074
3075 raw_spin_lock(&this_rq->lock);
3076
3077 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3078 /*
3079 * We are going idle. next_balance may be set based on
3080 * a busy processor. So reset next_balance.
3081 */
3082 this_rq->next_balance = next_balance;
3083 }
3084}
3085
3086/*
3087 * active_load_balance is run by migration threads. It pushes running tasks
3088 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3089 * running on each physical CPU where possible, and avoids physical /
3090 * logical imbalances.
3091 *
3092 * Called with busiest_rq locked.
3093 */
3094static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3095{
3096 int target_cpu = busiest_rq->push_cpu;
3097 struct sched_domain *sd;
3098 struct rq *target_rq;
3099
3100 /* Is there any task to move? */
3101 if (busiest_rq->nr_running <= 1)
3102 return;
3103
3104 target_rq = cpu_rq(target_cpu);
3105
3106 /*
3107 * This condition is "impossible", if it occurs
3108 * we need to fix it. Originally reported by
3109 * Bjorn Helgaas on a 128-cpu setup.
3110 */
3111 BUG_ON(busiest_rq == target_rq);
3112
3113 /* move a task from busiest_rq to target_rq */
3114 double_lock_balance(busiest_rq, target_rq);
3115 update_rq_clock(busiest_rq);
3116 update_rq_clock(target_rq);
3117
3118 /* Search for an sd spanning us and the target CPU. */
3119 for_each_domain(target_cpu, sd) {
3120 if ((sd->flags & SD_LOAD_BALANCE) &&
3121 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3122 break;
3123 }
3124
3125 if (likely(sd)) {
3126 schedstat_inc(sd, alb_count);
3127
3128 if (move_one_task(target_rq, target_cpu, busiest_rq,
3129 sd, CPU_IDLE))
3130 schedstat_inc(sd, alb_pushed);
3131 else
3132 schedstat_inc(sd, alb_failed);
3133 }
3134 double_unlock_balance(busiest_rq, target_rq);
3135}
3136
3137#ifdef CONFIG_NO_HZ
3138static struct {
3139 atomic_t load_balancer;
3140 cpumask_var_t cpu_mask;
3141 cpumask_var_t ilb_grp_nohz_mask;
3142} nohz ____cacheline_aligned = {
3143 .load_balancer = ATOMIC_INIT(-1),
3144};
3145
3146int get_nohz_load_balancer(void)
3147{
3148 return atomic_read(&nohz.load_balancer);
3149}
3150
3151#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3152/**
3153 * lowest_flag_domain - Return lowest sched_domain containing flag.
3154 * @cpu: The cpu whose lowest level of sched domain is to
3155 * be returned.
3156 * @flag: The flag to check for the lowest sched_domain
3157 * for the given cpu.
3158 *
3159 * Returns the lowest sched_domain of a cpu which contains the given flag.
3160 */
3161static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3162{
3163 struct sched_domain *sd;
3164
3165 for_each_domain(cpu, sd)
3166 if (sd && (sd->flags & flag))
3167 break;
3168
3169 return sd;
3170}
3171
3172/**
3173 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3174 * @cpu: The cpu whose domains we're iterating over.
3175 * @sd: variable holding the value of the power_savings_sd
3176 * for cpu.
3177 * @flag: The flag to filter the sched_domains to be iterated.
3178 *
3179 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3180 * set, starting from the lowest sched_domain to the highest.
3181 */
3182#define for_each_flag_domain(cpu, sd, flag) \
3183 for (sd = lowest_flag_domain(cpu, flag); \
3184 (sd && (sd->flags & flag)); sd = sd->parent)
3185
3186/**
3187 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3188 * @ilb_group: group to be checked for semi-idleness
3189 *
3190 * Returns: 1 if the group is semi-idle. 0 otherwise.
3191 *
3192 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3193 * and atleast one non-idle CPU. This helper function checks if the given
3194 * sched_group is semi-idle or not.
3195 */
3196static inline int is_semi_idle_group(struct sched_group *ilb_group)
3197{
3198 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3199 sched_group_cpus(ilb_group));
3200
3201 /*
3202 * A sched_group is semi-idle when it has atleast one busy cpu
3203 * and atleast one idle cpu.
3204 */
3205 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3206 return 0;
3207
3208 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3209 return 0;
3210
3211 return 1;
3212}
3213/**
3214 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3215 * @cpu: The cpu which is nominating a new idle_load_balancer.
3216 *
3217 * Returns: Returns the id of the idle load balancer if it exists,
3218 * Else, returns >= nr_cpu_ids.
3219 *
3220 * This algorithm picks the idle load balancer such that it belongs to a
3221 * semi-idle powersavings sched_domain. The idea is to try and avoid
3222 * completely idle packages/cores just for the purpose of idle load balancing
3223 * when there are other idle cpu's which are better suited for that job.
3224 */
3225static int find_new_ilb(int cpu)
3226{
3227 struct sched_domain *sd;
3228 struct sched_group *ilb_group;
3229
3230 /*
3231 * Have idle load balancer selection from semi-idle packages only
3232 * when power-aware load balancing is enabled
3233 */
3234 if (!(sched_smt_power_savings || sched_mc_power_savings))
3235 goto out_done;
3236
3237 /*
3238 * Optimize for the case when we have no idle CPUs or only one
3239 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3240 */
3241 if (cpumask_weight(nohz.cpu_mask) < 2)
3242 goto out_done;
3243
3244 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3245 ilb_group = sd->groups;
3246
3247 do {
3248 if (is_semi_idle_group(ilb_group))
3249 return cpumask_first(nohz.ilb_grp_nohz_mask);
3250
3251 ilb_group = ilb_group->next;
3252
3253 } while (ilb_group != sd->groups);
3254 }
3255
3256out_done:
3257 return cpumask_first(nohz.cpu_mask);
3258}
3259#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3260static inline int find_new_ilb(int call_cpu)
3261{
3262 return cpumask_first(nohz.cpu_mask);
3263}
3264#endif
3265
3266/*
3267 * This routine will try to nominate the ilb (idle load balancing)
3268 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3269 * load balancing on behalf of all those cpus. If all the cpus in the system
3270 * go into this tickless mode, then there will be no ilb owner (as there is
3271 * no need for one) and all the cpus will sleep till the next wakeup event
3272 * arrives...
3273 *
3274 * For the ilb owner, tick is not stopped. And this tick will be used
3275 * for idle load balancing. ilb owner will still be part of
3276 * nohz.cpu_mask..
3277 *
3278 * While stopping the tick, this cpu will become the ilb owner if there
3279 * is no other owner. And will be the owner till that cpu becomes busy
3280 * or if all cpus in the system stop their ticks at which point
3281 * there is no need for ilb owner.
3282 *
3283 * When the ilb owner becomes busy, it nominates another owner, during the
3284 * next busy scheduler_tick()
3285 */
3286int select_nohz_load_balancer(int stop_tick)
3287{
3288 int cpu = smp_processor_id();
3289
3290 if (stop_tick) {
3291 cpu_rq(cpu)->in_nohz_recently = 1;
3292
3293 if (!cpu_active(cpu)) {
3294 if (atomic_read(&nohz.load_balancer) != cpu)
3295 return 0;
3296
3297 /*
3298 * If we are going offline and still the leader,
3299 * give up!
3300 */
3301 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3302 BUG();
3303
3304 return 0;
3305 }
3306
3307 cpumask_set_cpu(cpu, nohz.cpu_mask);
3308
3309 /* time for ilb owner also to sleep */
3310 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3311 if (atomic_read(&nohz.load_balancer) == cpu)
3312 atomic_set(&nohz.load_balancer, -1);
3313 return 0;
3314 }
3315
3316 if (atomic_read(&nohz.load_balancer) == -1) {
3317 /* make me the ilb owner */
3318 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3319 return 1;
3320 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3321 int new_ilb;
3322
3323 if (!(sched_smt_power_savings ||
3324 sched_mc_power_savings))
3325 return 1;
3326 /*
3327 * Check to see if there is a more power-efficient
3328 * ilb.
3329 */
3330 new_ilb = find_new_ilb(cpu);
3331 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3332 atomic_set(&nohz.load_balancer, -1);
3333 resched_cpu(new_ilb);
3334 return 0;
3335 }
3336 return 1;
3337 }
3338 } else {
3339 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3340 return 0;
3341
3342 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3343
3344 if (atomic_read(&nohz.load_balancer) == cpu)
3345 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3346 BUG();
3347 }
3348 return 0;
3349}
3350#endif
3351
3352static DEFINE_SPINLOCK(balancing);
3353
3354/*
3355 * It checks each scheduling domain to see if it is due to be balanced,
3356 * and initiates a balancing operation if so.
3357 *
3358 * Balancing parameters are set up in arch_init_sched_domains.
3359 */
3360static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3361{
3362 int balance = 1;
3363 struct rq *rq = cpu_rq(cpu);
3364 unsigned long interval;
3365 struct sched_domain *sd;
3366 /* Earliest time when we have to do rebalance again */
3367 unsigned long next_balance = jiffies + 60*HZ;
3368 int update_next_balance = 0;
3369 int need_serialize;
3370
3371 for_each_domain(cpu, sd) {
3372 if (!(sd->flags & SD_LOAD_BALANCE))
3373 continue;
3374
3375 interval = sd->balance_interval;
3376 if (idle != CPU_IDLE)
3377 interval *= sd->busy_factor;
3378
3379 /* scale ms to jiffies */
3380 interval = msecs_to_jiffies(interval);
3381 if (unlikely(!interval))
3382 interval = 1;
3383 if (interval > HZ*NR_CPUS/10)
3384 interval = HZ*NR_CPUS/10;
3385
3386 need_serialize = sd->flags & SD_SERIALIZE;
3387
3388 if (need_serialize) {
3389 if (!spin_trylock(&balancing))
3390 goto out;
3391 }
3392
3393 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3394 if (load_balance(cpu, rq, sd, idle, &balance)) {
3395 /*
3396 * We've pulled tasks over so either we're no
3397 * longer idle, or one of our SMT siblings is
3398 * not idle.
3399 */
3400 idle = CPU_NOT_IDLE;
3401 }
3402 sd->last_balance = jiffies;
3403 }
3404 if (need_serialize)
3405 spin_unlock(&balancing);
3406out:
3407 if (time_after(next_balance, sd->last_balance + interval)) {
3408 next_balance = sd->last_balance + interval;
3409 update_next_balance = 1;
3410 }
3411
3412 /*
3413 * Stop the load balance at this level. There is another
3414 * CPU in our sched group which is doing load balancing more
3415 * actively.
3416 */
3417 if (!balance)
3418 break;
3419 }
3420
3421 /*
3422 * next_balance will be updated only when there is a need.
3423 * When the cpu is attached to null domain for ex, it will not be
3424 * updated.
3425 */
3426 if (likely(update_next_balance))
3427 rq->next_balance = next_balance;
3428}
3429
3430/*
3431 * run_rebalance_domains is triggered when needed from the scheduler tick.
3432 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3433 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3434 */
3435static void run_rebalance_domains(struct softirq_action *h)
3436{
3437 int this_cpu = smp_processor_id();
3438 struct rq *this_rq = cpu_rq(this_cpu);
3439 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3440 CPU_IDLE : CPU_NOT_IDLE;
3441
3442 rebalance_domains(this_cpu, idle);
3443
3444#ifdef CONFIG_NO_HZ
3445 /*
3446 * If this cpu is the owner for idle load balancing, then do the
3447 * balancing on behalf of the other idle cpus whose ticks are
3448 * stopped.
3449 */
3450 if (this_rq->idle_at_tick &&
3451 atomic_read(&nohz.load_balancer) == this_cpu) {
3452 struct rq *rq;
3453 int balance_cpu;
3454
3455 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3456 if (balance_cpu == this_cpu)
3457 continue;
3458
3459 /*
3460 * If this cpu gets work to do, stop the load balancing
3461 * work being done for other cpus. Next load
3462 * balancing owner will pick it up.
3463 */
3464 if (need_resched())
3465 break;
3466
3467 rebalance_domains(balance_cpu, CPU_IDLE);
3468
3469 rq = cpu_rq(balance_cpu);
3470 if (time_after(this_rq->next_balance, rq->next_balance))
3471 this_rq->next_balance = rq->next_balance;
3472 }
3473 }
3474#endif
3475}
3476
3477static inline int on_null_domain(int cpu)
3478{
3479 return !rcu_dereference(cpu_rq(cpu)->sd);
3480}
3481
3482/*
3483 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3484 *
3485 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3486 * idle load balancing owner or decide to stop the periodic load balancing,
3487 * if the whole system is idle.
3488 */
3489static inline void trigger_load_balance(struct rq *rq, int cpu)
3490{
3491#ifdef CONFIG_NO_HZ
3492 /*
3493 * If we were in the nohz mode recently and busy at the current
3494 * scheduler tick, then check if we need to nominate new idle
3495 * load balancer.
3496 */
3497 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3498 rq->in_nohz_recently = 0;
3499
3500 if (atomic_read(&nohz.load_balancer) == cpu) {
3501 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3502 atomic_set(&nohz.load_balancer, -1);
3503 }
3504
3505 if (atomic_read(&nohz.load_balancer) == -1) {
3506 int ilb = find_new_ilb(cpu);
3507
3508 if (ilb < nr_cpu_ids)
3509 resched_cpu(ilb);
3510 }
3511 }
3512
3513 /*
3514 * If this cpu is idle and doing idle load balancing for all the
3515 * cpus with ticks stopped, is it time for that to stop?
3516 */
3517 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3518 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3519 resched_cpu(cpu);
3520 return;
3521 }
3522
3523 /*
3524 * If this cpu is idle and the idle load balancing is done by
3525 * someone else, then no need raise the SCHED_SOFTIRQ
3526 */
3527 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3528 cpumask_test_cpu(cpu, nohz.cpu_mask))
3529 return;
3530#endif
3531 /* Don't need to rebalance while attached to NULL domain */
3532 if (time_after_eq(jiffies, rq->next_balance) &&
3533 likely(!on_null_domain(cpu)))
3534 raise_softirq(SCHED_SOFTIRQ);
3535}
1954 3536
1955static void rq_online_fair(struct rq *rq) 3537static void rq_online_fair(struct rq *rq)
1956{ 3538{
@@ -1962,6 +3544,15 @@ static void rq_offline_fair(struct rq *rq)
1962 update_sysctl(); 3544 update_sysctl();
1963} 3545}
1964 3546
3547#else /* CONFIG_SMP */
3548
3549/*
3550 * on UP we do not need to balance between CPUs:
3551 */
3552static inline void idle_balance(int cpu, struct rq *rq)
3553{
3554}
3555
1965#endif /* CONFIG_SMP */ 3556#endif /* CONFIG_SMP */
1966 3557
1967/* 3558/*
@@ -2076,7 +3667,7 @@ static void moved_group_fair(struct task_struct *p, int on_rq)
2076} 3667}
2077#endif 3668#endif
2078 3669
2079unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 3670static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2080{ 3671{
2081 struct sched_entity *se = &task->se; 3672 struct sched_entity *se = &task->se;
2082 unsigned int rr_interval = 0; 3673 unsigned int rr_interval = 0;
@@ -2108,8 +3699,6 @@ static const struct sched_class fair_sched_class = {
2108#ifdef CONFIG_SMP 3699#ifdef CONFIG_SMP
2109 .select_task_rq = select_task_rq_fair, 3700 .select_task_rq = select_task_rq_fair,
2110 3701
2111 .load_balance = load_balance_fair,
2112 .move_one_task = move_one_task_fair,
2113 .rq_online = rq_online_fair, 3702 .rq_online = rq_online_fair,
2114 .rq_offline = rq_offline_fair, 3703 .rq_offline = rq_offline_fair,
2115 3704
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
index 5f93b570d383..a8a6d8a50947 100644
--- a/kernel/sched_idletask.c
+++ b/kernel/sched_idletask.c
@@ -44,24 +44,6 @@ static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
44{ 44{
45} 45}
46 46
47#ifdef CONFIG_SMP
48static unsigned long
49load_balance_idle(struct rq *this_rq, int this_cpu, struct rq *busiest,
50 unsigned long max_load_move,
51 struct sched_domain *sd, enum cpu_idle_type idle,
52 int *all_pinned, int *this_best_prio)
53{
54 return 0;
55}
56
57static int
58move_one_task_idle(struct rq *this_rq, int this_cpu, struct rq *busiest,
59 struct sched_domain *sd, enum cpu_idle_type idle)
60{
61 return 0;
62}
63#endif
64
65static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) 47static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
66{ 48{
67} 49}
@@ -97,7 +79,7 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p,
97 check_preempt_curr(rq, p, 0); 79 check_preempt_curr(rq, p, 0);
98} 80}
99 81
100unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task) 82static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task)
101{ 83{
102 return 0; 84 return 0;
103} 85}
@@ -119,9 +101,6 @@ static const struct sched_class idle_sched_class = {
119 101
120#ifdef CONFIG_SMP 102#ifdef CONFIG_SMP
121 .select_task_rq = select_task_rq_idle, 103 .select_task_rq = select_task_rq_idle,
122
123 .load_balance = load_balance_idle,
124 .move_one_task = move_one_task_idle,
125#endif 104#endif
126 105
127 .set_curr_task = set_curr_task_idle, 106 .set_curr_task = set_curr_task_idle,
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index f48328ac216f..bf3e38fdbe6d 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -194,17 +194,20 @@ static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
194 return rt_se->my_q; 194 return rt_se->my_q;
195} 195}
196 196
197static void enqueue_rt_entity(struct sched_rt_entity *rt_se); 197static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
198static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 198static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199 199
200static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 200static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201{ 201{
202 int this_cpu = smp_processor_id();
202 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 203 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
203 struct sched_rt_entity *rt_se = rt_rq->rt_se; 204 struct sched_rt_entity *rt_se;
205
206 rt_se = rt_rq->tg->rt_se[this_cpu];
204 207
205 if (rt_rq->rt_nr_running) { 208 if (rt_rq->rt_nr_running) {
206 if (rt_se && !on_rt_rq(rt_se)) 209 if (rt_se && !on_rt_rq(rt_se))
207 enqueue_rt_entity(rt_se); 210 enqueue_rt_entity(rt_se, false);
208 if (rt_rq->highest_prio.curr < curr->prio) 211 if (rt_rq->highest_prio.curr < curr->prio)
209 resched_task(curr); 212 resched_task(curr);
210 } 213 }
@@ -212,7 +215,10 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
212 215
213static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 216static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
214{ 217{
215 struct sched_rt_entity *rt_se = rt_rq->rt_se; 218 int this_cpu = smp_processor_id();
219 struct sched_rt_entity *rt_se;
220
221 rt_se = rt_rq->tg->rt_se[this_cpu];
216 222
217 if (rt_se && on_rt_rq(rt_se)) 223 if (rt_se && on_rt_rq(rt_se))
218 dequeue_rt_entity(rt_se); 224 dequeue_rt_entity(rt_se);
@@ -803,7 +809,7 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
803 dec_rt_group(rt_se, rt_rq); 809 dec_rt_group(rt_se, rt_rq);
804} 810}
805 811
806static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) 812static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
807{ 813{
808 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 814 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
809 struct rt_prio_array *array = &rt_rq->active; 815 struct rt_prio_array *array = &rt_rq->active;
@@ -819,7 +825,10 @@ static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
819 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 825 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
820 return; 826 return;
821 827
822 list_add_tail(&rt_se->run_list, queue); 828 if (head)
829 list_add(&rt_se->run_list, queue);
830 else
831 list_add_tail(&rt_se->run_list, queue);
823 __set_bit(rt_se_prio(rt_se), array->bitmap); 832 __set_bit(rt_se_prio(rt_se), array->bitmap);
824 833
825 inc_rt_tasks(rt_se, rt_rq); 834 inc_rt_tasks(rt_se, rt_rq);
@@ -856,11 +865,11 @@ static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
856 } 865 }
857} 866}
858 867
859static void enqueue_rt_entity(struct sched_rt_entity *rt_se) 868static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
860{ 869{
861 dequeue_rt_stack(rt_se); 870 dequeue_rt_stack(rt_se);
862 for_each_sched_rt_entity(rt_se) 871 for_each_sched_rt_entity(rt_se)
863 __enqueue_rt_entity(rt_se); 872 __enqueue_rt_entity(rt_se, head);
864} 873}
865 874
866static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 875static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
@@ -871,21 +880,22 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
871 struct rt_rq *rt_rq = group_rt_rq(rt_se); 880 struct rt_rq *rt_rq = group_rt_rq(rt_se);
872 881
873 if (rt_rq && rt_rq->rt_nr_running) 882 if (rt_rq && rt_rq->rt_nr_running)
874 __enqueue_rt_entity(rt_se); 883 __enqueue_rt_entity(rt_se, false);
875 } 884 }
876} 885}
877 886
878/* 887/*
879 * Adding/removing a task to/from a priority array: 888 * Adding/removing a task to/from a priority array:
880 */ 889 */
881static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) 890static void
891enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
882{ 892{
883 struct sched_rt_entity *rt_se = &p->rt; 893 struct sched_rt_entity *rt_se = &p->rt;
884 894
885 if (wakeup) 895 if (wakeup)
886 rt_se->timeout = 0; 896 rt_se->timeout = 0;
887 897
888 enqueue_rt_entity(rt_se); 898 enqueue_rt_entity(rt_se, head);
889 899
890 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) 900 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
891 enqueue_pushable_task(rq, p); 901 enqueue_pushable_task(rq, p);
@@ -1481,24 +1491,6 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p)
1481 push_rt_tasks(rq); 1491 push_rt_tasks(rq);
1482} 1492}
1483 1493
1484static unsigned long
1485load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1486 unsigned long max_load_move,
1487 struct sched_domain *sd, enum cpu_idle_type idle,
1488 int *all_pinned, int *this_best_prio)
1489{
1490 /* don't touch RT tasks */
1491 return 0;
1492}
1493
1494static int
1495move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1496 struct sched_domain *sd, enum cpu_idle_type idle)
1497{
1498 /* don't touch RT tasks */
1499 return 0;
1500}
1501
1502static void set_cpus_allowed_rt(struct task_struct *p, 1494static void set_cpus_allowed_rt(struct task_struct *p,
1503 const struct cpumask *new_mask) 1495 const struct cpumask *new_mask)
1504{ 1496{
@@ -1721,7 +1713,7 @@ static void set_curr_task_rt(struct rq *rq)
1721 dequeue_pushable_task(rq, p); 1713 dequeue_pushable_task(rq, p);
1722} 1714}
1723 1715
1724unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 1716static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1725{ 1717{
1726 /* 1718 /*
1727 * Time slice is 0 for SCHED_FIFO tasks 1719 * Time slice is 0 for SCHED_FIFO tasks
@@ -1746,8 +1738,6 @@ static const struct sched_class rt_sched_class = {
1746#ifdef CONFIG_SMP 1738#ifdef CONFIG_SMP
1747 .select_task_rq = select_task_rq_rt, 1739 .select_task_rq = select_task_rq_rt,
1748 1740
1749 .load_balance = load_balance_rt,
1750 .move_one_task = move_one_task_rt,
1751 .set_cpus_allowed = set_cpus_allowed_rt, 1741 .set_cpus_allowed = set_cpus_allowed_rt,
1752 .rq_online = rq_online_rt, 1742 .rq_online = rq_online_rt,
1753 .rq_offline = rq_offline_rt, 1743 .rq_offline = rq_offline_rt,
diff --git a/kernel/smp.c b/kernel/smp.c
index f10408422444..9867b6bfefce 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -12,8 +12,6 @@
12#include <linux/smp.h> 12#include <linux/smp.h>
13#include <linux/cpu.h> 13#include <linux/cpu.h>
14 14
15static DEFINE_PER_CPU(struct call_single_queue, call_single_queue);
16
17static struct { 15static struct {
18 struct list_head queue; 16 struct list_head queue;
19 raw_spinlock_t lock; 17 raw_spinlock_t lock;
@@ -33,12 +31,14 @@ struct call_function_data {
33 cpumask_var_t cpumask; 31 cpumask_var_t cpumask;
34}; 32};
35 33
34static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_function_data, cfd_data);
35
36struct call_single_queue { 36struct call_single_queue {
37 struct list_head list; 37 struct list_head list;
38 raw_spinlock_t lock; 38 raw_spinlock_t lock;
39}; 39};
40 40
41static DEFINE_PER_CPU(struct call_function_data, cfd_data); 41static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_queue, call_single_queue);
42 42
43static int 43static int
44hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) 44hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu)
@@ -256,7 +256,7 @@ void generic_smp_call_function_single_interrupt(void)
256 } 256 }
257} 257}
258 258
259static DEFINE_PER_CPU(struct call_single_data, csd_data); 259static DEFINE_PER_CPU_SHARED_ALIGNED(struct call_single_data, csd_data);
260 260
261/* 261/*
262 * smp_call_function_single - Run a function on a specific CPU 262 * smp_call_function_single - Run a function on a specific CPU
diff --git a/kernel/srcu.c b/kernel/srcu.c
index 818d7d9aa03c..bde4295774c8 100644
--- a/kernel/srcu.c
+++ b/kernel/srcu.c
@@ -34,6 +34,30 @@
34#include <linux/smp.h> 34#include <linux/smp.h>
35#include <linux/srcu.h> 35#include <linux/srcu.h>
36 36
37static int init_srcu_struct_fields(struct srcu_struct *sp)
38{
39 sp->completed = 0;
40 mutex_init(&sp->mutex);
41 sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
42 return sp->per_cpu_ref ? 0 : -ENOMEM;
43}
44
45#ifdef CONFIG_DEBUG_LOCK_ALLOC
46
47int __init_srcu_struct(struct srcu_struct *sp, const char *name,
48 struct lock_class_key *key)
49{
50#ifdef CONFIG_DEBUG_LOCK_ALLOC
51 /* Don't re-initialize a lock while it is held. */
52 debug_check_no_locks_freed((void *)sp, sizeof(*sp));
53 lockdep_init_map(&sp->dep_map, name, key, 0);
54#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
55 return init_srcu_struct_fields(sp);
56}
57EXPORT_SYMBOL_GPL(__init_srcu_struct);
58
59#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
60
37/** 61/**
38 * init_srcu_struct - initialize a sleep-RCU structure 62 * init_srcu_struct - initialize a sleep-RCU structure
39 * @sp: structure to initialize. 63 * @sp: structure to initialize.
@@ -44,13 +68,12 @@
44 */ 68 */
45int init_srcu_struct(struct srcu_struct *sp) 69int init_srcu_struct(struct srcu_struct *sp)
46{ 70{
47 sp->completed = 0; 71 return init_srcu_struct_fields(sp);
48 mutex_init(&sp->mutex);
49 sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
50 return (sp->per_cpu_ref ? 0 : -ENOMEM);
51} 72}
52EXPORT_SYMBOL_GPL(init_srcu_struct); 73EXPORT_SYMBOL_GPL(init_srcu_struct);
53 74
75#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
76
54/* 77/*
55 * srcu_readers_active_idx -- returns approximate number of readers 78 * srcu_readers_active_idx -- returns approximate number of readers
56 * active on the specified rank of per-CPU counters. 79 * active on the specified rank of per-CPU counters.
@@ -100,15 +123,12 @@ void cleanup_srcu_struct(struct srcu_struct *sp)
100} 123}
101EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 124EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
102 125
103/** 126/*
104 * srcu_read_lock - register a new reader for an SRCU-protected structure.
105 * @sp: srcu_struct in which to register the new reader.
106 *
107 * Counts the new reader in the appropriate per-CPU element of the 127 * Counts the new reader in the appropriate per-CPU element of the
108 * srcu_struct. Must be called from process context. 128 * srcu_struct. Must be called from process context.
109 * Returns an index that must be passed to the matching srcu_read_unlock(). 129 * Returns an index that must be passed to the matching srcu_read_unlock().
110 */ 130 */
111int srcu_read_lock(struct srcu_struct *sp) 131int __srcu_read_lock(struct srcu_struct *sp)
112{ 132{
113 int idx; 133 int idx;
114 134
@@ -120,31 +140,27 @@ int srcu_read_lock(struct srcu_struct *sp)
120 preempt_enable(); 140 preempt_enable();
121 return idx; 141 return idx;
122} 142}
123EXPORT_SYMBOL_GPL(srcu_read_lock); 143EXPORT_SYMBOL_GPL(__srcu_read_lock);
124 144
125/** 145/*
126 * srcu_read_unlock - unregister a old reader from an SRCU-protected structure.
127 * @sp: srcu_struct in which to unregister the old reader.
128 * @idx: return value from corresponding srcu_read_lock().
129 *
130 * Removes the count for the old reader from the appropriate per-CPU 146 * Removes the count for the old reader from the appropriate per-CPU
131 * element of the srcu_struct. Note that this may well be a different 147 * element of the srcu_struct. Note that this may well be a different
132 * CPU than that which was incremented by the corresponding srcu_read_lock(). 148 * CPU than that which was incremented by the corresponding srcu_read_lock().
133 * Must be called from process context. 149 * Must be called from process context.
134 */ 150 */
135void srcu_read_unlock(struct srcu_struct *sp, int idx) 151void __srcu_read_unlock(struct srcu_struct *sp, int idx)
136{ 152{
137 preempt_disable(); 153 preempt_disable();
138 srcu_barrier(); /* ensure compiler won't misorder critical section. */ 154 srcu_barrier(); /* ensure compiler won't misorder critical section. */
139 per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--; 155 per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--;
140 preempt_enable(); 156 preempt_enable();
141} 157}
142EXPORT_SYMBOL_GPL(srcu_read_unlock); 158EXPORT_SYMBOL_GPL(__srcu_read_unlock);
143 159
144/* 160/*
145 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 161 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
146 */ 162 */
147void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)) 163static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void))
148{ 164{
149 int idx; 165 int idx;
150 166
diff --git a/kernel/sys.c b/kernel/sys.c
index 18bde979f346..877fe4f8e05e 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -571,11 +571,6 @@ static int set_user(struct cred *new)
571 if (!new_user) 571 if (!new_user)
572 return -EAGAIN; 572 return -EAGAIN;
573 573
574 if (!task_can_switch_user(new_user, current)) {
575 free_uid(new_user);
576 return -EINVAL;
577 }
578
579 if (atomic_read(&new_user->processes) >= 574 if (atomic_read(&new_user->processes) >=
580 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 575 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
581 new_user != INIT_USER) { 576 new_user != INIT_USER) {
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 13700833c181..1f663d23e85e 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -453,6 +453,18 @@ static inline int clocksource_watchdog_kthread(void *data) { return 0; }
453#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 453#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
454 454
455/** 455/**
456 * clocksource_suspend - suspend the clocksource(s)
457 */
458void clocksource_suspend(void)
459{
460 struct clocksource *cs;
461
462 list_for_each_entry_reverse(cs, &clocksource_list, list)
463 if (cs->suspend)
464 cs->suspend(cs);
465}
466
467/**
456 * clocksource_resume - resume the clocksource(s) 468 * clocksource_resume - resume the clocksource(s)
457 */ 469 */
458void clocksource_resume(void) 470void clocksource_resume(void)
@@ -461,7 +473,7 @@ void clocksource_resume(void)
461 473
462 list_for_each_entry(cs, &clocksource_list, list) 474 list_for_each_entry(cs, &clocksource_list, list)
463 if (cs->resume) 475 if (cs->resume)
464 cs->resume(); 476 cs->resume(cs);
465 477
466 clocksource_resume_watchdog(); 478 clocksource_resume_watchdog();
467} 479}
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 4800f933910e..7c0f180d6e9d 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -58,10 +58,10 @@ static s64 time_offset;
58static long time_constant = 2; 58static long time_constant = 2;
59 59
60/* maximum error (usecs): */ 60/* maximum error (usecs): */
61long time_maxerror = NTP_PHASE_LIMIT; 61static long time_maxerror = NTP_PHASE_LIMIT;
62 62
63/* estimated error (usecs): */ 63/* estimated error (usecs): */
64long time_esterror = NTP_PHASE_LIMIT; 64static long time_esterror = NTP_PHASE_LIMIT;
65 65
66/* frequency offset (scaled nsecs/secs): */ 66/* frequency offset (scaled nsecs/secs): */
67static s64 time_freq; 67static s64 time_freq;
@@ -142,11 +142,11 @@ static void ntp_update_offset(long offset)
142 * Select how the frequency is to be controlled 142 * Select how the frequency is to be controlled
143 * and in which mode (PLL or FLL). 143 * and in which mode (PLL or FLL).
144 */ 144 */
145 secs = xtime.tv_sec - time_reftime; 145 secs = get_seconds() - time_reftime;
146 if (unlikely(time_status & STA_FREQHOLD)) 146 if (unlikely(time_status & STA_FREQHOLD))
147 secs = 0; 147 secs = 0;
148 148
149 time_reftime = xtime.tv_sec; 149 time_reftime = get_seconds();
150 150
151 offset64 = offset; 151 offset64 = offset;
152 freq_adj = (offset64 * secs) << 152 freq_adj = (offset64 * secs) <<
@@ -368,7 +368,7 @@ static inline void process_adj_status(struct timex *txc, struct timespec *ts)
368 * reference time to current time. 368 * reference time to current time.
369 */ 369 */
370 if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) 370 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
371 time_reftime = xtime.tv_sec; 371 time_reftime = get_seconds();
372 372
373 /* only set allowed bits */ 373 /* only set allowed bits */
374 time_status &= STA_RONLY; 374 time_status &= STA_RONLY;
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index e2ab064c6d41..16736379a9ca 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -622,6 +622,7 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
622 write_sequnlock_irqrestore(&xtime_lock, flags); 622 write_sequnlock_irqrestore(&xtime_lock, flags);
623 623
624 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); 624 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
625 clocksource_suspend();
625 626
626 return 0; 627 return 0;
627} 628}
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig
index 60e2ce0181ee..13e13d428cd3 100644
--- a/kernel/trace/Kconfig
+++ b/kernel/trace/Kconfig
@@ -328,15 +328,6 @@ config BRANCH_TRACER
328 328
329 Say N if unsure. 329 Say N if unsure.
330 330
331config POWER_TRACER
332 bool "Trace power consumption behavior"
333 depends on X86
334 select GENERIC_TRACER
335 help
336 This tracer helps developers to analyze and optimize the kernel's
337 power management decisions, specifically the C-state and P-state
338 behavior.
339
340config KSYM_TRACER 331config KSYM_TRACER
341 bool "Trace read and write access on kernel memory locations" 332 bool "Trace read and write access on kernel memory locations"
342 depends on HAVE_HW_BREAKPOINT 333 depends on HAVE_HW_BREAKPOINT
@@ -449,7 +440,7 @@ config BLK_DEV_IO_TRACE
449 440
450config KPROBE_EVENT 441config KPROBE_EVENT
451 depends on KPROBES 442 depends on KPROBES
452 depends on X86 443 depends on HAVE_REGS_AND_STACK_ACCESS_API
453 bool "Enable kprobes-based dynamic events" 444 bool "Enable kprobes-based dynamic events"
454 select TRACING 445 select TRACING
455 default y 446 default y
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile
index cd9ecd89ec77..d00c6fe23f54 100644
--- a/kernel/trace/Makefile
+++ b/kernel/trace/Makefile
@@ -51,7 +51,9 @@ endif
51obj-$(CONFIG_EVENT_TRACING) += trace_events.o 51obj-$(CONFIG_EVENT_TRACING) += trace_events.o
52obj-$(CONFIG_EVENT_TRACING) += trace_export.o 52obj-$(CONFIG_EVENT_TRACING) += trace_export.o
53obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o 53obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o
54obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o 54ifeq ($(CONFIG_PERF_EVENTS),y)
55obj-$(CONFIG_EVENT_TRACING) += trace_event_profile.o
56endif
55obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o 57obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o
56obj-$(CONFIG_KPROBE_EVENT) += trace_kprobe.o 58obj-$(CONFIG_KPROBE_EVENT) += trace_kprobe.o
57obj-$(CONFIG_KSYM_TRACER) += trace_ksym.o 59obj-$(CONFIG_KSYM_TRACER) += trace_ksym.o
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 1e6640f80454..83783579378f 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -22,7 +22,6 @@
22#include <linux/hardirq.h> 22#include <linux/hardirq.h>
23#include <linux/kthread.h> 23#include <linux/kthread.h>
24#include <linux/uaccess.h> 24#include <linux/uaccess.h>
25#include <linux/kprobes.h>
26#include <linux/ftrace.h> 25#include <linux/ftrace.h>
27#include <linux/sysctl.h> 26#include <linux/sysctl.h>
28#include <linux/ctype.h> 27#include <linux/ctype.h>
@@ -898,36 +897,6 @@ static struct dyn_ftrace *ftrace_free_records;
898 } \ 897 } \
899 } 898 }
900 899
901#ifdef CONFIG_KPROBES
902
903static int frozen_record_count;
904
905static inline void freeze_record(struct dyn_ftrace *rec)
906{
907 if (!(rec->flags & FTRACE_FL_FROZEN)) {
908 rec->flags |= FTRACE_FL_FROZEN;
909 frozen_record_count++;
910 }
911}
912
913static inline void unfreeze_record(struct dyn_ftrace *rec)
914{
915 if (rec->flags & FTRACE_FL_FROZEN) {
916 rec->flags &= ~FTRACE_FL_FROZEN;
917 frozen_record_count--;
918 }
919}
920
921static inline int record_frozen(struct dyn_ftrace *rec)
922{
923 return rec->flags & FTRACE_FL_FROZEN;
924}
925#else
926# define freeze_record(rec) ({ 0; })
927# define unfreeze_record(rec) ({ 0; })
928# define record_frozen(rec) ({ 0; })
929#endif /* CONFIG_KPROBES */
930
931static void ftrace_free_rec(struct dyn_ftrace *rec) 900static void ftrace_free_rec(struct dyn_ftrace *rec)
932{ 901{
933 rec->freelist = ftrace_free_records; 902 rec->freelist = ftrace_free_records;
@@ -1025,6 +994,21 @@ static void ftrace_bug(int failed, unsigned long ip)
1025} 994}
1026 995
1027 996
997/* Return 1 if the address range is reserved for ftrace */
998int ftrace_text_reserved(void *start, void *end)
999{
1000 struct dyn_ftrace *rec;
1001 struct ftrace_page *pg;
1002
1003 do_for_each_ftrace_rec(pg, rec) {
1004 if (rec->ip <= (unsigned long)end &&
1005 rec->ip + MCOUNT_INSN_SIZE > (unsigned long)start)
1006 return 1;
1007 } while_for_each_ftrace_rec();
1008 return 0;
1009}
1010
1011
1028static int 1012static int
1029__ftrace_replace_code(struct dyn_ftrace *rec, int enable) 1013__ftrace_replace_code(struct dyn_ftrace *rec, int enable)
1030{ 1014{
@@ -1076,14 +1060,6 @@ static void ftrace_replace_code(int enable)
1076 !(rec->flags & FTRACE_FL_CONVERTED)) 1060 !(rec->flags & FTRACE_FL_CONVERTED))
1077 continue; 1061 continue;
1078 1062
1079 /* ignore updates to this record's mcount site */
1080 if (get_kprobe((void *)rec->ip)) {
1081 freeze_record(rec);
1082 continue;
1083 } else {
1084 unfreeze_record(rec);
1085 }
1086
1087 failed = __ftrace_replace_code(rec, enable); 1063 failed = __ftrace_replace_code(rec, enable);
1088 if (failed) { 1064 if (failed) {
1089 rec->flags |= FTRACE_FL_FAILED; 1065 rec->flags |= FTRACE_FL_FAILED;
@@ -2426,6 +2402,7 @@ static const struct file_operations ftrace_notrace_fops = {
2426static DEFINE_MUTEX(graph_lock); 2402static DEFINE_MUTEX(graph_lock);
2427 2403
2428int ftrace_graph_count; 2404int ftrace_graph_count;
2405int ftrace_graph_filter_enabled;
2429unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; 2406unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly;
2430 2407
2431static void * 2408static void *
@@ -2448,7 +2425,7 @@ static void *g_start(struct seq_file *m, loff_t *pos)
2448 mutex_lock(&graph_lock); 2425 mutex_lock(&graph_lock);
2449 2426
2450 /* Nothing, tell g_show to print all functions are enabled */ 2427 /* Nothing, tell g_show to print all functions are enabled */
2451 if (!ftrace_graph_count && !*pos) 2428 if (!ftrace_graph_filter_enabled && !*pos)
2452 return (void *)1; 2429 return (void *)1;
2453 2430
2454 return __g_next(m, pos); 2431 return __g_next(m, pos);
@@ -2494,6 +2471,7 @@ ftrace_graph_open(struct inode *inode, struct file *file)
2494 mutex_lock(&graph_lock); 2471 mutex_lock(&graph_lock);
2495 if ((file->f_mode & FMODE_WRITE) && 2472 if ((file->f_mode & FMODE_WRITE) &&
2496 (file->f_flags & O_TRUNC)) { 2473 (file->f_flags & O_TRUNC)) {
2474 ftrace_graph_filter_enabled = 0;
2497 ftrace_graph_count = 0; 2475 ftrace_graph_count = 0;
2498 memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); 2476 memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs));
2499 } 2477 }
@@ -2519,7 +2497,7 @@ ftrace_set_func(unsigned long *array, int *idx, char *buffer)
2519 struct dyn_ftrace *rec; 2497 struct dyn_ftrace *rec;
2520 struct ftrace_page *pg; 2498 struct ftrace_page *pg;
2521 int search_len; 2499 int search_len;
2522 int found = 0; 2500 int fail = 1;
2523 int type, not; 2501 int type, not;
2524 char *search; 2502 char *search;
2525 bool exists; 2503 bool exists;
@@ -2530,37 +2508,51 @@ ftrace_set_func(unsigned long *array, int *idx, char *buffer)
2530 2508
2531 /* decode regex */ 2509 /* decode regex */
2532 type = filter_parse_regex(buffer, strlen(buffer), &search, &not); 2510 type = filter_parse_regex(buffer, strlen(buffer), &search, &not);
2533 if (not) 2511 if (!not && *idx >= FTRACE_GRAPH_MAX_FUNCS)
2534 return -EINVAL; 2512 return -EBUSY;
2535 2513
2536 search_len = strlen(search); 2514 search_len = strlen(search);
2537 2515
2538 mutex_lock(&ftrace_lock); 2516 mutex_lock(&ftrace_lock);
2539 do_for_each_ftrace_rec(pg, rec) { 2517 do_for_each_ftrace_rec(pg, rec) {
2540 2518
2541 if (*idx >= FTRACE_GRAPH_MAX_FUNCS)
2542 break;
2543
2544 if (rec->flags & (FTRACE_FL_FAILED | FTRACE_FL_FREE)) 2519 if (rec->flags & (FTRACE_FL_FAILED | FTRACE_FL_FREE))
2545 continue; 2520 continue;
2546 2521
2547 if (ftrace_match_record(rec, search, search_len, type)) { 2522 if (ftrace_match_record(rec, search, search_len, type)) {
2548 /* ensure it is not already in the array */ 2523 /* if it is in the array */
2549 exists = false; 2524 exists = false;
2550 for (i = 0; i < *idx; i++) 2525 for (i = 0; i < *idx; i++) {
2551 if (array[i] == rec->ip) { 2526 if (array[i] == rec->ip) {
2552 exists = true; 2527 exists = true;
2553 break; 2528 break;
2554 } 2529 }
2555 if (!exists) 2530 }
2556 array[(*idx)++] = rec->ip; 2531
2557 found = 1; 2532 if (!not) {
2533 fail = 0;
2534 if (!exists) {
2535 array[(*idx)++] = rec->ip;
2536 if (*idx >= FTRACE_GRAPH_MAX_FUNCS)
2537 goto out;
2538 }
2539 } else {
2540 if (exists) {
2541 array[i] = array[--(*idx)];
2542 array[*idx] = 0;
2543 fail = 0;
2544 }
2545 }
2558 } 2546 }
2559 } while_for_each_ftrace_rec(); 2547 } while_for_each_ftrace_rec();
2560 2548out:
2561 mutex_unlock(&ftrace_lock); 2549 mutex_unlock(&ftrace_lock);
2562 2550
2563 return found ? 0 : -EINVAL; 2551 if (fail)
2552 return -EINVAL;
2553
2554 ftrace_graph_filter_enabled = 1;
2555 return 0;
2564} 2556}
2565 2557
2566static ssize_t 2558static ssize_t
@@ -2570,16 +2562,11 @@ ftrace_graph_write(struct file *file, const char __user *ubuf,
2570 struct trace_parser parser; 2562 struct trace_parser parser;
2571 ssize_t read, ret; 2563 ssize_t read, ret;
2572 2564
2573 if (!cnt || cnt < 0) 2565 if (!cnt)
2574 return 0; 2566 return 0;
2575 2567
2576 mutex_lock(&graph_lock); 2568 mutex_lock(&graph_lock);
2577 2569
2578 if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) {
2579 ret = -EBUSY;
2580 goto out_unlock;
2581 }
2582
2583 if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { 2570 if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) {
2584 ret = -ENOMEM; 2571 ret = -ENOMEM;
2585 goto out_unlock; 2572 goto out_unlock;
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index eac6875cb990..032c57ca6502 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -32,6 +32,7 @@
32#include <linux/splice.h> 32#include <linux/splice.h>
33#include <linux/kdebug.h> 33#include <linux/kdebug.h>
34#include <linux/string.h> 34#include <linux/string.h>
35#include <linux/rwsem.h>
35#include <linux/ctype.h> 36#include <linux/ctype.h>
36#include <linux/init.h> 37#include <linux/init.h>
37#include <linux/poll.h> 38#include <linux/poll.h>
@@ -102,9 +103,6 @@ static inline void ftrace_enable_cpu(void)
102 103
103static cpumask_var_t __read_mostly tracing_buffer_mask; 104static cpumask_var_t __read_mostly tracing_buffer_mask;
104 105
105/* Define which cpu buffers are currently read in trace_pipe */
106static cpumask_var_t tracing_reader_cpumask;
107
108#define for_each_tracing_cpu(cpu) \ 106#define for_each_tracing_cpu(cpu) \
109 for_each_cpu(cpu, tracing_buffer_mask) 107 for_each_cpu(cpu, tracing_buffer_mask)
110 108
@@ -243,12 +241,91 @@ static struct tracer *current_trace __read_mostly;
243 241
244/* 242/*
245 * trace_types_lock is used to protect the trace_types list. 243 * trace_types_lock is used to protect the trace_types list.
246 * This lock is also used to keep user access serialized.
247 * Accesses from userspace will grab this lock while userspace
248 * activities happen inside the kernel.
249 */ 244 */
250static DEFINE_MUTEX(trace_types_lock); 245static DEFINE_MUTEX(trace_types_lock);
251 246
247/*
248 * serialize the access of the ring buffer
249 *
250 * ring buffer serializes readers, but it is low level protection.
251 * The validity of the events (which returns by ring_buffer_peek() ..etc)
252 * are not protected by ring buffer.
253 *
254 * The content of events may become garbage if we allow other process consumes
255 * these events concurrently:
256 * A) the page of the consumed events may become a normal page
257 * (not reader page) in ring buffer, and this page will be rewrited
258 * by events producer.
259 * B) The page of the consumed events may become a page for splice_read,
260 * and this page will be returned to system.
261 *
262 * These primitives allow multi process access to different cpu ring buffer
263 * concurrently.
264 *
265 * These primitives don't distinguish read-only and read-consume access.
266 * Multi read-only access are also serialized.
267 */
268
269#ifdef CONFIG_SMP
270static DECLARE_RWSEM(all_cpu_access_lock);
271static DEFINE_PER_CPU(struct mutex, cpu_access_lock);
272
273static inline void trace_access_lock(int cpu)
274{
275 if (cpu == TRACE_PIPE_ALL_CPU) {
276 /* gain it for accessing the whole ring buffer. */
277 down_write(&all_cpu_access_lock);
278 } else {
279 /* gain it for accessing a cpu ring buffer. */
280
281 /* Firstly block other trace_access_lock(TRACE_PIPE_ALL_CPU). */
282 down_read(&all_cpu_access_lock);
283
284 /* Secondly block other access to this @cpu ring buffer. */
285 mutex_lock(&per_cpu(cpu_access_lock, cpu));
286 }
287}
288
289static inline void trace_access_unlock(int cpu)
290{
291 if (cpu == TRACE_PIPE_ALL_CPU) {
292 up_write(&all_cpu_access_lock);
293 } else {
294 mutex_unlock(&per_cpu(cpu_access_lock, cpu));
295 up_read(&all_cpu_access_lock);
296 }
297}
298
299static inline void trace_access_lock_init(void)
300{
301 int cpu;
302
303 for_each_possible_cpu(cpu)
304 mutex_init(&per_cpu(cpu_access_lock, cpu));
305}
306
307#else
308
309static DEFINE_MUTEX(access_lock);
310
311static inline void trace_access_lock(int cpu)
312{
313 (void)cpu;
314 mutex_lock(&access_lock);
315}
316
317static inline void trace_access_unlock(int cpu)
318{
319 (void)cpu;
320 mutex_unlock(&access_lock);
321}
322
323static inline void trace_access_lock_init(void)
324{
325}
326
327#endif
328
252/* trace_wait is a waitqueue for tasks blocked on trace_poll */ 329/* trace_wait is a waitqueue for tasks blocked on trace_poll */
253static DECLARE_WAIT_QUEUE_HEAD(trace_wait); 330static DECLARE_WAIT_QUEUE_HEAD(trace_wait);
254 331
@@ -1320,8 +1397,10 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args)
1320 entry->fmt = fmt; 1397 entry->fmt = fmt;
1321 1398
1322 memcpy(entry->buf, trace_buf, sizeof(u32) * len); 1399 memcpy(entry->buf, trace_buf, sizeof(u32) * len);
1323 if (!filter_check_discard(call, entry, buffer, event)) 1400 if (!filter_check_discard(call, entry, buffer, event)) {
1324 ring_buffer_unlock_commit(buffer, event); 1401 ring_buffer_unlock_commit(buffer, event);
1402 ftrace_trace_stack(buffer, flags, 6, pc);
1403 }
1325 1404
1326out_unlock: 1405out_unlock:
1327 arch_spin_unlock(&trace_buf_lock); 1406 arch_spin_unlock(&trace_buf_lock);
@@ -1394,8 +1473,10 @@ int trace_array_vprintk(struct trace_array *tr,
1394 1473
1395 memcpy(&entry->buf, trace_buf, len); 1474 memcpy(&entry->buf, trace_buf, len);
1396 entry->buf[len] = '\0'; 1475 entry->buf[len] = '\0';
1397 if (!filter_check_discard(call, entry, buffer, event)) 1476 if (!filter_check_discard(call, entry, buffer, event)) {
1398 ring_buffer_unlock_commit(buffer, event); 1477 ring_buffer_unlock_commit(buffer, event);
1478 ftrace_trace_stack(buffer, irq_flags, 6, pc);
1479 }
1399 1480
1400 out_unlock: 1481 out_unlock:
1401 arch_spin_unlock(&trace_buf_lock); 1482 arch_spin_unlock(&trace_buf_lock);
@@ -1585,12 +1666,6 @@ static void tracing_iter_reset(struct trace_iterator *iter, int cpu)
1585} 1666}
1586 1667
1587/* 1668/*
1588 * No necessary locking here. The worst thing which can
1589 * happen is loosing events consumed at the same time
1590 * by a trace_pipe reader.
1591 * Other than that, we don't risk to crash the ring buffer
1592 * because it serializes the readers.
1593 *
1594 * The current tracer is copied to avoid a global locking 1669 * The current tracer is copied to avoid a global locking
1595 * all around. 1670 * all around.
1596 */ 1671 */
@@ -1645,12 +1720,16 @@ static void *s_start(struct seq_file *m, loff_t *pos)
1645 } 1720 }
1646 1721
1647 trace_event_read_lock(); 1722 trace_event_read_lock();
1723 trace_access_lock(cpu_file);
1648 return p; 1724 return p;
1649} 1725}
1650 1726
1651static void s_stop(struct seq_file *m, void *p) 1727static void s_stop(struct seq_file *m, void *p)
1652{ 1728{
1729 struct trace_iterator *iter = m->private;
1730
1653 atomic_dec(&trace_record_cmdline_disabled); 1731 atomic_dec(&trace_record_cmdline_disabled);
1732 trace_access_unlock(iter->cpu_file);
1654 trace_event_read_unlock(); 1733 trace_event_read_unlock();
1655} 1734}
1656 1735
@@ -2841,22 +2920,6 @@ static int tracing_open_pipe(struct inode *inode, struct file *filp)
2841 2920
2842 mutex_lock(&trace_types_lock); 2921 mutex_lock(&trace_types_lock);
2843 2922
2844 /* We only allow one reader per cpu */
2845 if (cpu_file == TRACE_PIPE_ALL_CPU) {
2846 if (!cpumask_empty(tracing_reader_cpumask)) {
2847 ret = -EBUSY;
2848 goto out;
2849 }
2850 cpumask_setall(tracing_reader_cpumask);
2851 } else {
2852 if (!cpumask_test_cpu(cpu_file, tracing_reader_cpumask))
2853 cpumask_set_cpu(cpu_file, tracing_reader_cpumask);
2854 else {
2855 ret = -EBUSY;
2856 goto out;
2857 }
2858 }
2859
2860 /* create a buffer to store the information to pass to userspace */ 2923 /* create a buffer to store the information to pass to userspace */
2861 iter = kzalloc(sizeof(*iter), GFP_KERNEL); 2924 iter = kzalloc(sizeof(*iter), GFP_KERNEL);
2862 if (!iter) { 2925 if (!iter) {
@@ -2912,12 +2975,6 @@ static int tracing_release_pipe(struct inode *inode, struct file *file)
2912 2975
2913 mutex_lock(&trace_types_lock); 2976 mutex_lock(&trace_types_lock);
2914 2977
2915 if (iter->cpu_file == TRACE_PIPE_ALL_CPU)
2916 cpumask_clear(tracing_reader_cpumask);
2917 else
2918 cpumask_clear_cpu(iter->cpu_file, tracing_reader_cpumask);
2919
2920
2921 if (iter->trace->pipe_close) 2978 if (iter->trace->pipe_close)
2922 iter->trace->pipe_close(iter); 2979 iter->trace->pipe_close(iter);
2923 2980
@@ -3079,6 +3136,7 @@ waitagain:
3079 iter->pos = -1; 3136 iter->pos = -1;
3080 3137
3081 trace_event_read_lock(); 3138 trace_event_read_lock();
3139 trace_access_lock(iter->cpu_file);
3082 while (find_next_entry_inc(iter) != NULL) { 3140 while (find_next_entry_inc(iter) != NULL) {
3083 enum print_line_t ret; 3141 enum print_line_t ret;
3084 int len = iter->seq.len; 3142 int len = iter->seq.len;
@@ -3095,6 +3153,7 @@ waitagain:
3095 if (iter->seq.len >= cnt) 3153 if (iter->seq.len >= cnt)
3096 break; 3154 break;
3097 } 3155 }
3156 trace_access_unlock(iter->cpu_file);
3098 trace_event_read_unlock(); 3157 trace_event_read_unlock();
3099 3158
3100 /* Now copy what we have to the user */ 3159 /* Now copy what we have to the user */
@@ -3220,6 +3279,7 @@ static ssize_t tracing_splice_read_pipe(struct file *filp,
3220 } 3279 }
3221 3280
3222 trace_event_read_lock(); 3281 trace_event_read_lock();
3282 trace_access_lock(iter->cpu_file);
3223 3283
3224 /* Fill as many pages as possible. */ 3284 /* Fill as many pages as possible. */
3225 for (i = 0, rem = len; i < PIPE_BUFFERS && rem; i++) { 3285 for (i = 0, rem = len; i < PIPE_BUFFERS && rem; i++) {
@@ -3243,6 +3303,7 @@ static ssize_t tracing_splice_read_pipe(struct file *filp,
3243 trace_seq_init(&iter->seq); 3303 trace_seq_init(&iter->seq);
3244 } 3304 }
3245 3305
3306 trace_access_unlock(iter->cpu_file);
3246 trace_event_read_unlock(); 3307 trace_event_read_unlock();
3247 mutex_unlock(&iter->mutex); 3308 mutex_unlock(&iter->mutex);
3248 3309
@@ -3544,10 +3605,12 @@ tracing_buffers_read(struct file *filp, char __user *ubuf,
3544 3605
3545 info->read = 0; 3606 info->read = 0;
3546 3607
3608 trace_access_lock(info->cpu);
3547 ret = ring_buffer_read_page(info->tr->buffer, 3609 ret = ring_buffer_read_page(info->tr->buffer,
3548 &info->spare, 3610 &info->spare,
3549 count, 3611 count,
3550 info->cpu, 0); 3612 info->cpu, 0);
3613 trace_access_unlock(info->cpu);
3551 if (ret < 0) 3614 if (ret < 0)
3552 return 0; 3615 return 0;
3553 3616
@@ -3675,6 +3738,7 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos,
3675 len &= PAGE_MASK; 3738 len &= PAGE_MASK;
3676 } 3739 }
3677 3740
3741 trace_access_lock(info->cpu);
3678 entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); 3742 entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu);
3679 3743
3680 for (i = 0; i < PIPE_BUFFERS && len && entries; i++, len -= PAGE_SIZE) { 3744 for (i = 0; i < PIPE_BUFFERS && len && entries; i++, len -= PAGE_SIZE) {
@@ -3722,6 +3786,7 @@ tracing_buffers_splice_read(struct file *file, loff_t *ppos,
3722 entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu); 3786 entries = ring_buffer_entries_cpu(info->tr->buffer, info->cpu);
3723 } 3787 }
3724 3788
3789 trace_access_unlock(info->cpu);
3725 spd.nr_pages = i; 3790 spd.nr_pages = i;
3726 3791
3727 /* did we read anything? */ 3792 /* did we read anything? */
@@ -4158,6 +4223,8 @@ static __init int tracer_init_debugfs(void)
4158 struct dentry *d_tracer; 4223 struct dentry *d_tracer;
4159 int cpu; 4224 int cpu;
4160 4225
4226 trace_access_lock_init();
4227
4161 d_tracer = tracing_init_dentry(); 4228 d_tracer = tracing_init_dentry();
4162 4229
4163 trace_create_file("tracing_enabled", 0644, d_tracer, 4230 trace_create_file("tracing_enabled", 0644, d_tracer,
@@ -4392,9 +4459,6 @@ __init static int tracer_alloc_buffers(void)
4392 if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) 4459 if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL))
4393 goto out_free_buffer_mask; 4460 goto out_free_buffer_mask;
4394 4461
4395 if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL))
4396 goto out_free_tracing_cpumask;
4397
4398 /* To save memory, keep the ring buffer size to its minimum */ 4462 /* To save memory, keep the ring buffer size to its minimum */
4399 if (ring_buffer_expanded) 4463 if (ring_buffer_expanded)
4400 ring_buf_size = trace_buf_size; 4464 ring_buf_size = trace_buf_size;
@@ -4452,8 +4516,6 @@ __init static int tracer_alloc_buffers(void)
4452 return 0; 4516 return 0;
4453 4517
4454out_free_cpumask: 4518out_free_cpumask:
4455 free_cpumask_var(tracing_reader_cpumask);
4456out_free_tracing_cpumask:
4457 free_cpumask_var(tracing_cpumask); 4519 free_cpumask_var(tracing_cpumask);
4458out_free_buffer_mask: 4520out_free_buffer_mask:
4459 free_cpumask_var(tracing_buffer_mask); 4521 free_cpumask_var(tracing_buffer_mask);
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index 4df6a77eb196..fd05bcaf91b0 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -497,6 +497,7 @@ trace_print_graph_duration(unsigned long long duration, struct trace_seq *s);
497#ifdef CONFIG_DYNAMIC_FTRACE 497#ifdef CONFIG_DYNAMIC_FTRACE
498/* TODO: make this variable */ 498/* TODO: make this variable */
499#define FTRACE_GRAPH_MAX_FUNCS 32 499#define FTRACE_GRAPH_MAX_FUNCS 32
500extern int ftrace_graph_filter_enabled;
500extern int ftrace_graph_count; 501extern int ftrace_graph_count;
501extern unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS]; 502extern unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS];
502 503
@@ -504,7 +505,7 @@ static inline int ftrace_graph_addr(unsigned long addr)
504{ 505{
505 int i; 506 int i;
506 507
507 if (!ftrace_graph_count || test_tsk_trace_graph(current)) 508 if (!ftrace_graph_filter_enabled)
508 return 1; 509 return 1;
509 510
510 for (i = 0; i < ftrace_graph_count; i++) { 511 for (i = 0; i < ftrace_graph_count; i++) {
@@ -791,7 +792,8 @@ extern const char *__stop___trace_bprintk_fmt[];
791 792
792#undef FTRACE_ENTRY 793#undef FTRACE_ENTRY
793#define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \ 794#define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \
794 extern struct ftrace_event_call event_##call; 795 extern struct ftrace_event_call \
796 __attribute__((__aligned__(4))) event_##call;
795#undef FTRACE_ENTRY_DUP 797#undef FTRACE_ENTRY_DUP
796#define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \ 798#define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \
797 FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) 799 FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print))
diff --git a/kernel/trace/trace_branch.c b/kernel/trace/trace_branch.c
index 4a194f08f88c..b9bc4d470177 100644
--- a/kernel/trace/trace_branch.c
+++ b/kernel/trace/trace_branch.c
@@ -307,8 +307,23 @@ static int annotated_branch_stat_cmp(void *p1, void *p2)
307 return -1; 307 return -1;
308 if (percent_a > percent_b) 308 if (percent_a > percent_b)
309 return 1; 309 return 1;
310 else 310
311 return 0; 311 if (a->incorrect < b->incorrect)
312 return -1;
313 if (a->incorrect > b->incorrect)
314 return 1;
315
316 /*
317 * Since the above shows worse (incorrect) cases
318 * first, we continue that by showing best (correct)
319 * cases last.
320 */
321 if (a->correct > b->correct)
322 return -1;
323 if (a->correct < b->correct)
324 return 1;
325
326 return 0;
312} 327}
313 328
314static struct tracer_stat annotated_branch_stats = { 329static struct tracer_stat annotated_branch_stats = {
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c
index 9e25573242cf..f0d693005075 100644
--- a/kernel/trace/trace_event_profile.c
+++ b/kernel/trace/trace_event_profile.c
@@ -6,14 +6,12 @@
6 */ 6 */
7 7
8#include <linux/module.h> 8#include <linux/module.h>
9#include <linux/kprobes.h>
9#include "trace.h" 10#include "trace.h"
10 11
11 12
12char *perf_trace_buf; 13static char *perf_trace_buf;
13EXPORT_SYMBOL_GPL(perf_trace_buf); 14static char *perf_trace_buf_nmi;
14
15char *perf_trace_buf_nmi;
16EXPORT_SYMBOL_GPL(perf_trace_buf_nmi);
17 15
18typedef typeof(char [FTRACE_MAX_PROFILE_SIZE]) perf_trace_t ; 16typedef typeof(char [FTRACE_MAX_PROFILE_SIZE]) perf_trace_t ;
19 17
@@ -120,3 +118,47 @@ void ftrace_profile_disable(int event_id)
120 } 118 }
121 mutex_unlock(&event_mutex); 119 mutex_unlock(&event_mutex);
122} 120}
121
122__kprobes void *ftrace_perf_buf_prepare(int size, unsigned short type,
123 int *rctxp, unsigned long *irq_flags)
124{
125 struct trace_entry *entry;
126 char *trace_buf, *raw_data;
127 int pc, cpu;
128
129 pc = preempt_count();
130
131 /* Protect the per cpu buffer, begin the rcu read side */
132 local_irq_save(*irq_flags);
133
134 *rctxp = perf_swevent_get_recursion_context();
135 if (*rctxp < 0)
136 goto err_recursion;
137
138 cpu = smp_processor_id();
139
140 if (in_nmi())
141 trace_buf = rcu_dereference(perf_trace_buf_nmi);
142 else
143 trace_buf = rcu_dereference(perf_trace_buf);
144
145 if (!trace_buf)
146 goto err;
147
148 raw_data = per_cpu_ptr(trace_buf, cpu);
149
150 /* zero the dead bytes from align to not leak stack to user */
151 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
152
153 entry = (struct trace_entry *)raw_data;
154 tracing_generic_entry_update(entry, *irq_flags, pc);
155 entry->type = type;
156
157 return raw_data;
158err:
159 perf_swevent_put_recursion_context(*rctxp);
160err_recursion:
161 local_irq_restore(*irq_flags);
162 return NULL;
163}
164EXPORT_SYMBOL_GPL(ftrace_perf_buf_prepare);
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c
index 189b09baf4fb..3f972ad98d04 100644
--- a/kernel/trace/trace_events.c
+++ b/kernel/trace/trace_events.c
@@ -60,10 +60,8 @@ int trace_define_field(struct ftrace_event_call *call, const char *type,
60 return 0; 60 return 0;
61 61
62err: 62err:
63 if (field) { 63 if (field)
64 kfree(field->name); 64 kfree(field->name);
65 kfree(field->type);
66 }
67 kfree(field); 65 kfree(field);
68 66
69 return -ENOMEM; 67 return -ENOMEM;
@@ -520,41 +518,16 @@ out:
520 return ret; 518 return ret;
521} 519}
522 520
523extern char *__bad_type_size(void);
524
525#undef FIELD
526#define FIELD(type, name) \
527 sizeof(type) != sizeof(field.name) ? __bad_type_size() : \
528 #type, "common_" #name, offsetof(typeof(field), name), \
529 sizeof(field.name), is_signed_type(type)
530
531static int trace_write_header(struct trace_seq *s)
532{
533 struct trace_entry field;
534
535 /* struct trace_entry */
536 return trace_seq_printf(s,
537 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n"
538 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n"
539 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n"
540 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n"
541 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\tsigned:%u;\n"
542 "\n",
543 FIELD(unsigned short, type),
544 FIELD(unsigned char, flags),
545 FIELD(unsigned char, preempt_count),
546 FIELD(int, pid),
547 FIELD(int, lock_depth));
548}
549
550static ssize_t 521static ssize_t
551event_format_read(struct file *filp, char __user *ubuf, size_t cnt, 522event_format_read(struct file *filp, char __user *ubuf, size_t cnt,
552 loff_t *ppos) 523 loff_t *ppos)
553{ 524{
554 struct ftrace_event_call *call = filp->private_data; 525 struct ftrace_event_call *call = filp->private_data;
526 struct ftrace_event_field *field;
555 struct trace_seq *s; 527 struct trace_seq *s;
528 int common_field_count = 5;
556 char *buf; 529 char *buf;
557 int r; 530 int r = 0;
558 531
559 if (*ppos) 532 if (*ppos)
560 return 0; 533 return 0;
@@ -565,14 +538,48 @@ event_format_read(struct file *filp, char __user *ubuf, size_t cnt,
565 538
566 trace_seq_init(s); 539 trace_seq_init(s);
567 540
568 /* If any of the first writes fail, so will the show_format. */
569
570 trace_seq_printf(s, "name: %s\n", call->name); 541 trace_seq_printf(s, "name: %s\n", call->name);
571 trace_seq_printf(s, "ID: %d\n", call->id); 542 trace_seq_printf(s, "ID: %d\n", call->id);
572 trace_seq_printf(s, "format:\n"); 543 trace_seq_printf(s, "format:\n");
573 trace_write_header(s);
574 544
575 r = call->show_format(call, s); 545 list_for_each_entry_reverse(field, &call->fields, link) {
546 /*
547 * Smartly shows the array type(except dynamic array).
548 * Normal:
549 * field:TYPE VAR
550 * If TYPE := TYPE[LEN], it is shown:
551 * field:TYPE VAR[LEN]
552 */
553 const char *array_descriptor = strchr(field->type, '[');
554
555 if (!strncmp(field->type, "__data_loc", 10))
556 array_descriptor = NULL;
557
558 if (!array_descriptor) {
559 r = trace_seq_printf(s, "\tfield:%s %s;\toffset:%u;"
560 "\tsize:%u;\tsigned:%d;\n",
561 field->type, field->name, field->offset,
562 field->size, !!field->is_signed);
563 } else {
564 r = trace_seq_printf(s, "\tfield:%.*s %s%s;\toffset:%u;"
565 "\tsize:%u;\tsigned:%d;\n",
566 (int)(array_descriptor - field->type),
567 field->type, field->name,
568 array_descriptor, field->offset,
569 field->size, !!field->is_signed);
570 }
571
572 if (--common_field_count == 0)
573 r = trace_seq_printf(s, "\n");
574
575 if (!r)
576 break;
577 }
578
579 if (r)
580 r = trace_seq_printf(s, "\nprint fmt: %s\n",
581 call->print_fmt);
582
576 if (!r) { 583 if (!r) {
577 /* 584 /*
578 * ug! The format output is bigger than a PAGE!! 585 * ug! The format output is bigger than a PAGE!!
@@ -948,10 +955,6 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events,
948 filter); 955 filter);
949 } 956 }
950 957
951 /* A trace may not want to export its format */
952 if (!call->show_format)
953 return 0;
954
955 trace_create_file("format", 0444, call->dir, call, 958 trace_create_file("format", 0444, call->dir, call,
956 format); 959 format);
957 960
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c
index e42af9aad69f..4615f62a04f1 100644
--- a/kernel/trace/trace_events_filter.c
+++ b/kernel/trace/trace_events_filter.c
@@ -1371,7 +1371,7 @@ out_unlock:
1371 return err; 1371 return err;
1372} 1372}
1373 1373
1374#ifdef CONFIG_EVENT_PROFILE 1374#ifdef CONFIG_PERF_EVENTS
1375 1375
1376void ftrace_profile_free_filter(struct perf_event *event) 1376void ftrace_profile_free_filter(struct perf_event *event)
1377{ 1377{
@@ -1439,5 +1439,5 @@ out_unlock:
1439 return err; 1439 return err;
1440} 1440}
1441 1441
1442#endif /* CONFIG_EVENT_PROFILE */ 1442#endif /* CONFIG_PERF_EVENTS */
1443 1443
diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c
index d4fa5dc1ee4e..e091f64ba6ce 100644
--- a/kernel/trace/trace_export.c
+++ b/kernel/trace/trace_export.c
@@ -62,78 +62,6 @@ static void __always_unused ____ftrace_check_##name(void) \
62 62
63#include "trace_entries.h" 63#include "trace_entries.h"
64 64
65
66#undef __field
67#define __field(type, item) \
68 ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \
69 "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \
70 offsetof(typeof(field), item), \
71 sizeof(field.item), is_signed_type(type)); \
72 if (!ret) \
73 return 0;
74
75#undef __field_desc
76#define __field_desc(type, container, item) \
77 ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \
78 "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \
79 offsetof(typeof(field), container.item), \
80 sizeof(field.container.item), \
81 is_signed_type(type)); \
82 if (!ret) \
83 return 0;
84
85#undef __array
86#define __array(type, item, len) \
87 ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \
88 "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \
89 offsetof(typeof(field), item), \
90 sizeof(field.item), is_signed_type(type)); \
91 if (!ret) \
92 return 0;
93
94#undef __array_desc
95#define __array_desc(type, container, item, len) \
96 ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \
97 "offset:%zu;\tsize:%zu;\tsigned:%u;\n", \
98 offsetof(typeof(field), container.item), \
99 sizeof(field.container.item), \
100 is_signed_type(type)); \
101 if (!ret) \
102 return 0;
103
104#undef __dynamic_array
105#define __dynamic_array(type, item) \
106 ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \
107 "offset:%zu;\tsize:0;\tsigned:%u;\n", \
108 offsetof(typeof(field), item), \
109 is_signed_type(type)); \
110 if (!ret) \
111 return 0;
112
113#undef F_printk
114#define F_printk(fmt, args...) "%s, %s\n", #fmt, __stringify(args)
115
116#undef __entry
117#define __entry REC
118
119#undef FTRACE_ENTRY
120#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \
121static int \
122ftrace_format_##name(struct ftrace_event_call *unused, \
123 struct trace_seq *s) \
124{ \
125 struct struct_name field __attribute__((unused)); \
126 int ret = 0; \
127 \
128 tstruct; \
129 \
130 trace_seq_printf(s, "\nprint fmt: " print); \
131 \
132 return ret; \
133}
134
135#include "trace_entries.h"
136
137#undef __field 65#undef __field
138#define __field(type, item) \ 66#define __field(type, item) \
139 ret = trace_define_field(event_call, #type, #item, \ 67 ret = trace_define_field(event_call, #type, #item, \
@@ -175,7 +103,12 @@ ftrace_format_##name(struct ftrace_event_call *unused, \
175 return ret; 103 return ret;
176 104
177#undef __dynamic_array 105#undef __dynamic_array
178#define __dynamic_array(type, item) 106#define __dynamic_array(type, item) \
107 ret = trace_define_field(event_call, #type, #item, \
108 offsetof(typeof(field), item), \
109 0, is_signed_type(type), FILTER_OTHER);\
110 if (ret) \
111 return ret;
179 112
180#undef FTRACE_ENTRY 113#undef FTRACE_ENTRY
181#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ 114#define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \
@@ -198,6 +131,9 @@ static int ftrace_raw_init_event(struct ftrace_event_call *call)
198 return 0; 131 return 0;
199} 132}
200 133
134#undef __entry
135#define __entry REC
136
201#undef __field 137#undef __field
202#define __field(type, item) 138#define __field(type, item)
203 139
@@ -213,6 +149,9 @@ static int ftrace_raw_init_event(struct ftrace_event_call *call)
213#undef __dynamic_array 149#undef __dynamic_array
214#define __dynamic_array(type, item) 150#define __dynamic_array(type, item)
215 151
152#undef F_printk
153#define F_printk(fmt, args...) #fmt ", " __stringify(args)
154
216#undef FTRACE_ENTRY 155#undef FTRACE_ENTRY
217#define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \ 156#define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \
218 \ 157 \
@@ -223,7 +162,7 @@ __attribute__((section("_ftrace_events"))) event_##call = { \
223 .id = type, \ 162 .id = type, \
224 .system = __stringify(TRACE_SYSTEM), \ 163 .system = __stringify(TRACE_SYSTEM), \
225 .raw_init = ftrace_raw_init_event, \ 164 .raw_init = ftrace_raw_init_event, \
226 .show_format = ftrace_format_##call, \ 165 .print_fmt = print, \
227 .define_fields = ftrace_define_fields_##call, \ 166 .define_fields = ftrace_define_fields_##call, \
228}; \ 167}; \
229 168
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c
index b1342c5d37cf..e998a824e9db 100644
--- a/kernel/trace/trace_functions_graph.c
+++ b/kernel/trace/trace_functions_graph.c
@@ -18,6 +18,7 @@ struct fgraph_cpu_data {
18 pid_t last_pid; 18 pid_t last_pid;
19 int depth; 19 int depth;
20 int ignore; 20 int ignore;
21 unsigned long enter_funcs[FTRACE_RETFUNC_DEPTH];
21}; 22};
22 23
23struct fgraph_data { 24struct fgraph_data {
@@ -212,13 +213,11 @@ int trace_graph_entry(struct ftrace_graph_ent *trace)
212 int cpu; 213 int cpu;
213 int pc; 214 int pc;
214 215
215 if (unlikely(!tr))
216 return 0;
217
218 if (!ftrace_trace_task(current)) 216 if (!ftrace_trace_task(current))
219 return 0; 217 return 0;
220 218
221 if (!ftrace_graph_addr(trace->func)) 219 /* trace it when it is-nested-in or is a function enabled. */
220 if (!(trace->depth || ftrace_graph_addr(trace->func)))
222 return 0; 221 return 0;
223 222
224 local_irq_save(flags); 223 local_irq_save(flags);
@@ -231,9 +230,6 @@ int trace_graph_entry(struct ftrace_graph_ent *trace)
231 } else { 230 } else {
232 ret = 0; 231 ret = 0;
233 } 232 }
234 /* Only do the atomic if it is not already set */
235 if (!test_tsk_trace_graph(current))
236 set_tsk_trace_graph(current);
237 233
238 atomic_dec(&data->disabled); 234 atomic_dec(&data->disabled);
239 local_irq_restore(flags); 235 local_irq_restore(flags);
@@ -281,17 +277,24 @@ void trace_graph_return(struct ftrace_graph_ret *trace)
281 pc = preempt_count(); 277 pc = preempt_count();
282 __trace_graph_return(tr, trace, flags, pc); 278 __trace_graph_return(tr, trace, flags, pc);
283 } 279 }
284 if (!trace->depth)
285 clear_tsk_trace_graph(current);
286 atomic_dec(&data->disabled); 280 atomic_dec(&data->disabled);
287 local_irq_restore(flags); 281 local_irq_restore(flags);
288} 282}
289 283
284void set_graph_array(struct trace_array *tr)
285{
286 graph_array = tr;
287
288 /* Make graph_array visible before we start tracing */
289
290 smp_mb();
291}
292
290static int graph_trace_init(struct trace_array *tr) 293static int graph_trace_init(struct trace_array *tr)
291{ 294{
292 int ret; 295 int ret;
293 296
294 graph_array = tr; 297 set_graph_array(tr);
295 ret = register_ftrace_graph(&trace_graph_return, 298 ret = register_ftrace_graph(&trace_graph_return,
296 &trace_graph_entry); 299 &trace_graph_entry);
297 if (ret) 300 if (ret)
@@ -301,11 +304,6 @@ static int graph_trace_init(struct trace_array *tr)
301 return 0; 304 return 0;
302} 305}
303 306
304void set_graph_array(struct trace_array *tr)
305{
306 graph_array = tr;
307}
308
309static void graph_trace_reset(struct trace_array *tr) 307static void graph_trace_reset(struct trace_array *tr)
310{ 308{
311 tracing_stop_cmdline_record(); 309 tracing_stop_cmdline_record();
@@ -673,15 +671,21 @@ print_graph_entry_leaf(struct trace_iterator *iter,
673 duration = graph_ret->rettime - graph_ret->calltime; 671 duration = graph_ret->rettime - graph_ret->calltime;
674 672
675 if (data) { 673 if (data) {
674 struct fgraph_cpu_data *cpu_data;
676 int cpu = iter->cpu; 675 int cpu = iter->cpu;
677 int *depth = &(per_cpu_ptr(data->cpu_data, cpu)->depth); 676
677 cpu_data = per_cpu_ptr(data->cpu_data, cpu);
678 678
679 /* 679 /*
680 * Comments display at + 1 to depth. Since 680 * Comments display at + 1 to depth. Since
681 * this is a leaf function, keep the comments 681 * this is a leaf function, keep the comments
682 * equal to this depth. 682 * equal to this depth.
683 */ 683 */
684 *depth = call->depth - 1; 684 cpu_data->depth = call->depth - 1;
685
686 /* No need to keep this function around for this depth */
687 if (call->depth < FTRACE_RETFUNC_DEPTH)
688 cpu_data->enter_funcs[call->depth] = 0;
685 } 689 }
686 690
687 /* Overhead */ 691 /* Overhead */
@@ -721,10 +725,15 @@ print_graph_entry_nested(struct trace_iterator *iter,
721 int i; 725 int i;
722 726
723 if (data) { 727 if (data) {
728 struct fgraph_cpu_data *cpu_data;
724 int cpu = iter->cpu; 729 int cpu = iter->cpu;
725 int *depth = &(per_cpu_ptr(data->cpu_data, cpu)->depth);
726 730
727 *depth = call->depth; 731 cpu_data = per_cpu_ptr(data->cpu_data, cpu);
732 cpu_data->depth = call->depth;
733
734 /* Save this function pointer to see if the exit matches */
735 if (call->depth < FTRACE_RETFUNC_DEPTH)
736 cpu_data->enter_funcs[call->depth] = call->func;
728 } 737 }
729 738
730 /* No overhead */ 739 /* No overhead */
@@ -854,19 +863,28 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s,
854 struct fgraph_data *data = iter->private; 863 struct fgraph_data *data = iter->private;
855 pid_t pid = ent->pid; 864 pid_t pid = ent->pid;
856 int cpu = iter->cpu; 865 int cpu = iter->cpu;
866 int func_match = 1;
857 int ret; 867 int ret;
858 int i; 868 int i;
859 869
860 if (data) { 870 if (data) {
871 struct fgraph_cpu_data *cpu_data;
861 int cpu = iter->cpu; 872 int cpu = iter->cpu;
862 int *depth = &(per_cpu_ptr(data->cpu_data, cpu)->depth); 873
874 cpu_data = per_cpu_ptr(data->cpu_data, cpu);
863 875
864 /* 876 /*
865 * Comments display at + 1 to depth. This is the 877 * Comments display at + 1 to depth. This is the
866 * return from a function, we now want the comments 878 * return from a function, we now want the comments
867 * to display at the same level of the bracket. 879 * to display at the same level of the bracket.
868 */ 880 */
869 *depth = trace->depth - 1; 881 cpu_data->depth = trace->depth - 1;
882
883 if (trace->depth < FTRACE_RETFUNC_DEPTH) {
884 if (cpu_data->enter_funcs[trace->depth] != trace->func)
885 func_match = 0;
886 cpu_data->enter_funcs[trace->depth] = 0;
887 }
870 } 888 }
871 889
872 if (print_graph_prologue(iter, s, 0, 0)) 890 if (print_graph_prologue(iter, s, 0, 0))
@@ -891,9 +909,21 @@ print_graph_return(struct ftrace_graph_ret *trace, struct trace_seq *s,
891 return TRACE_TYPE_PARTIAL_LINE; 909 return TRACE_TYPE_PARTIAL_LINE;
892 } 910 }
893 911
894 ret = trace_seq_printf(s, "}\n"); 912 /*
895 if (!ret) 913 * If the return function does not have a matching entry,
896 return TRACE_TYPE_PARTIAL_LINE; 914 * then the entry was lost. Instead of just printing
915 * the '}' and letting the user guess what function this
916 * belongs to, write out the function name.
917 */
918 if (func_match) {
919 ret = trace_seq_printf(s, "}\n");
920 if (!ret)
921 return TRACE_TYPE_PARTIAL_LINE;
922 } else {
923 ret = trace_seq_printf(s, "} (%ps)\n", (void *)trace->func);
924 if (!ret)
925 return TRACE_TYPE_PARTIAL_LINE;
926 }
897 927
898 /* Overrun */ 928 /* Overrun */
899 if (tracer_flags.val & TRACE_GRAPH_PRINT_OVERRUN) { 929 if (tracer_flags.val & TRACE_GRAPH_PRINT_OVERRUN) {
diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c
index 50b1b8239806..505c92273b1a 100644
--- a/kernel/trace/trace_kprobe.c
+++ b/kernel/trace/trace_kprobe.c
@@ -91,11 +91,6 @@ static __kprobes unsigned long fetch_memory(struct pt_regs *regs, void *addr)
91 return retval; 91 return retval;
92} 92}
93 93
94static __kprobes unsigned long fetch_argument(struct pt_regs *regs, void *num)
95{
96 return regs_get_argument_nth(regs, (unsigned int)((unsigned long)num));
97}
98
99static __kprobes unsigned long fetch_retvalue(struct pt_regs *regs, 94static __kprobes unsigned long fetch_retvalue(struct pt_regs *regs,
100 void *dummy) 95 void *dummy)
101{ 96{
@@ -231,9 +226,7 @@ static int probe_arg_string(char *buf, size_t n, struct fetch_func *ff)
231{ 226{
232 int ret = -EINVAL; 227 int ret = -EINVAL;
233 228
234 if (ff->func == fetch_argument) 229 if (ff->func == fetch_register) {
235 ret = snprintf(buf, n, "$arg%lu", (unsigned long)ff->data);
236 else if (ff->func == fetch_register) {
237 const char *name; 230 const char *name;
238 name = regs_query_register_name((unsigned int)((long)ff->data)); 231 name = regs_query_register_name((unsigned int)((long)ff->data));
239 ret = snprintf(buf, n, "%%%s", name); 232 ret = snprintf(buf, n, "%%%s", name);
@@ -489,14 +482,6 @@ static int parse_probe_vars(char *arg, struct fetch_func *ff, int is_return)
489 } 482 }
490 } else 483 } else
491 ret = -EINVAL; 484 ret = -EINVAL;
492 } else if (strncmp(arg, "arg", 3) == 0 && isdigit(arg[3])) {
493 ret = strict_strtoul(arg + 3, 10, &param);
494 if (ret || param > PARAM_MAX_ARGS)
495 ret = -EINVAL;
496 else {
497 ff->func = fetch_argument;
498 ff->data = (void *)param;
499 }
500 } else 485 } else
501 ret = -EINVAL; 486 ret = -EINVAL;
502 return ret; 487 return ret;
@@ -611,7 +596,6 @@ static int create_trace_probe(int argc, char **argv)
611 * - Add kprobe: p[:[GRP/]EVENT] KSYM[+OFFS]|KADDR [FETCHARGS] 596 * - Add kprobe: p[:[GRP/]EVENT] KSYM[+OFFS]|KADDR [FETCHARGS]
612 * - Add kretprobe: r[:[GRP/]EVENT] KSYM[+0] [FETCHARGS] 597 * - Add kretprobe: r[:[GRP/]EVENT] KSYM[+0] [FETCHARGS]
613 * Fetch args: 598 * Fetch args:
614 * $argN : fetch Nth of function argument. (N:0-)
615 * $retval : fetch return value 599 * $retval : fetch return value
616 * $stack : fetch stack address 600 * $stack : fetch stack address
617 * $stackN : fetch Nth of stack (N:0-) 601 * $stackN : fetch Nth of stack (N:0-)
@@ -651,12 +635,12 @@ static int create_trace_probe(int argc, char **argv)
651 event = strchr(group, '/') + 1; 635 event = strchr(group, '/') + 1;
652 event[-1] = '\0'; 636 event[-1] = '\0';
653 if (strlen(group) == 0) { 637 if (strlen(group) == 0) {
654 pr_info("Group name is not specifiled\n"); 638 pr_info("Group name is not specified\n");
655 return -EINVAL; 639 return -EINVAL;
656 } 640 }
657 } 641 }
658 if (strlen(event) == 0) { 642 if (strlen(event) == 0) {
659 pr_info("Event name is not specifiled\n"); 643 pr_info("Event name is not specified\n");
660 return -EINVAL; 644 return -EINVAL;
661 } 645 }
662 } 646 }
@@ -958,7 +942,7 @@ static const struct file_operations kprobe_profile_ops = {
958}; 942};
959 943
960/* Kprobe handler */ 944/* Kprobe handler */
961static __kprobes int kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs) 945static __kprobes void kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs)
962{ 946{
963 struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); 947 struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp);
964 struct kprobe_trace_entry *entry; 948 struct kprobe_trace_entry *entry;
@@ -978,7 +962,7 @@ static __kprobes int kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs)
978 event = trace_current_buffer_lock_reserve(&buffer, call->id, size, 962 event = trace_current_buffer_lock_reserve(&buffer, call->id, size,
979 irq_flags, pc); 963 irq_flags, pc);
980 if (!event) 964 if (!event)
981 return 0; 965 return;
982 966
983 entry = ring_buffer_event_data(event); 967 entry = ring_buffer_event_data(event);
984 entry->nargs = tp->nr_args; 968 entry->nargs = tp->nr_args;
@@ -988,11 +972,10 @@ static __kprobes int kprobe_trace_func(struct kprobe *kp, struct pt_regs *regs)
988 972
989 if (!filter_current_check_discard(buffer, call, entry, event)) 973 if (!filter_current_check_discard(buffer, call, entry, event))
990 trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); 974 trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc);
991 return 0;
992} 975}
993 976
994/* Kretprobe handler */ 977/* Kretprobe handler */
995static __kprobes int kretprobe_trace_func(struct kretprobe_instance *ri, 978static __kprobes void kretprobe_trace_func(struct kretprobe_instance *ri,
996 struct pt_regs *regs) 979 struct pt_regs *regs)
997{ 980{
998 struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); 981 struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp);
@@ -1011,7 +994,7 @@ static __kprobes int kretprobe_trace_func(struct kretprobe_instance *ri,
1011 event = trace_current_buffer_lock_reserve(&buffer, call->id, size, 994 event = trace_current_buffer_lock_reserve(&buffer, call->id, size,
1012 irq_flags, pc); 995 irq_flags, pc);
1013 if (!event) 996 if (!event)
1014 return 0; 997 return;
1015 998
1016 entry = ring_buffer_event_data(event); 999 entry = ring_buffer_event_data(event);
1017 entry->nargs = tp->nr_args; 1000 entry->nargs = tp->nr_args;
@@ -1022,8 +1005,6 @@ static __kprobes int kretprobe_trace_func(struct kretprobe_instance *ri,
1022 1005
1023 if (!filter_current_check_discard(buffer, call, entry, event)) 1006 if (!filter_current_check_discard(buffer, call, entry, event))
1024 trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc); 1007 trace_nowake_buffer_unlock_commit(buffer, event, irq_flags, pc);
1025
1026 return 0;
1027} 1008}
1028 1009
1029/* Event entry printers */ 1010/* Event entry printers */
@@ -1174,213 +1155,123 @@ static int kretprobe_event_define_fields(struct ftrace_event_call *event_call)
1174 return 0; 1155 return 0;
1175} 1156}
1176 1157
1177static int __probe_event_show_format(struct trace_seq *s, 1158static int __set_print_fmt(struct trace_probe *tp, char *buf, int len)
1178 struct trace_probe *tp, const char *fmt,
1179 const char *arg)
1180{ 1159{
1181 int i; 1160 int i;
1161 int pos = 0;
1182 1162
1183 /* Show format */ 1163 const char *fmt, *arg;
1184 if (!trace_seq_printf(s, "\nprint fmt: \"%s", fmt))
1185 return 0;
1186 1164
1187 for (i = 0; i < tp->nr_args; i++) 1165 if (!probe_is_return(tp)) {
1188 if (!trace_seq_printf(s, " %s=%%lx", tp->args[i].name)) 1166 fmt = "(%lx)";
1189 return 0; 1167 arg = "REC->" FIELD_STRING_IP;
1168 } else {
1169 fmt = "(%lx <- %lx)";
1170 arg = "REC->" FIELD_STRING_FUNC ", REC->" FIELD_STRING_RETIP;
1171 }
1190 1172
1191 if (!trace_seq_printf(s, "\", %s", arg)) 1173 /* When len=0, we just calculate the needed length */
1192 return 0; 1174#define LEN_OR_ZERO (len ? len - pos : 0)
1193 1175
1194 for (i = 0; i < tp->nr_args; i++) 1176 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"%s", fmt);
1195 if (!trace_seq_printf(s, ", REC->%s", tp->args[i].name))
1196 return 0;
1197
1198 return trace_seq_puts(s, "\n");
1199}
1200 1177
1201#undef SHOW_FIELD 1178 for (i = 0; i < tp->nr_args; i++) {
1202#define SHOW_FIELD(type, item, name) \ 1179 pos += snprintf(buf + pos, LEN_OR_ZERO, " %s=%%lx",
1203 do { \ 1180 tp->args[i].name);
1204 ret = trace_seq_printf(s, "\tfield:" #type " %s;\t" \ 1181 }
1205 "offset:%u;\tsize:%u;\tsigned:%d;\n", name,\
1206 (unsigned int)offsetof(typeof(field), item),\
1207 (unsigned int)sizeof(type), \
1208 is_signed_type(type)); \
1209 if (!ret) \
1210 return 0; \
1211 } while (0)
1212 1182
1213static int kprobe_event_show_format(struct ftrace_event_call *call, 1183 pos += snprintf(buf + pos, LEN_OR_ZERO, "\", %s", arg);
1214 struct trace_seq *s)
1215{
1216 struct kprobe_trace_entry field __attribute__((unused));
1217 int ret, i;
1218 struct trace_probe *tp = (struct trace_probe *)call->data;
1219 1184
1220 SHOW_FIELD(unsigned long, ip, FIELD_STRING_IP); 1185 for (i = 0; i < tp->nr_args; i++) {
1221 SHOW_FIELD(int, nargs, FIELD_STRING_NARGS); 1186 pos += snprintf(buf + pos, LEN_OR_ZERO, ", REC->%s",
1187 tp->args[i].name);
1188 }
1222 1189
1223 /* Show fields */ 1190#undef LEN_OR_ZERO
1224 for (i = 0; i < tp->nr_args; i++)
1225 SHOW_FIELD(unsigned long, args[i], tp->args[i].name);
1226 trace_seq_puts(s, "\n");
1227 1191
1228 return __probe_event_show_format(s, tp, "(%lx)", 1192 /* return the length of print_fmt */
1229 "REC->" FIELD_STRING_IP); 1193 return pos;
1230} 1194}
1231 1195
1232static int kretprobe_event_show_format(struct ftrace_event_call *call, 1196static int set_print_fmt(struct trace_probe *tp)
1233 struct trace_seq *s)
1234{ 1197{
1235 struct kretprobe_trace_entry field __attribute__((unused)); 1198 int len;
1236 int ret, i; 1199 char *print_fmt;
1237 struct trace_probe *tp = (struct trace_probe *)call->data;
1238 1200
1239 SHOW_FIELD(unsigned long, func, FIELD_STRING_FUNC); 1201 /* First: called with 0 length to calculate the needed length */
1240 SHOW_FIELD(unsigned long, ret_ip, FIELD_STRING_RETIP); 1202 len = __set_print_fmt(tp, NULL, 0);
1241 SHOW_FIELD(int, nargs, FIELD_STRING_NARGS); 1203 print_fmt = kmalloc(len + 1, GFP_KERNEL);
1204 if (!print_fmt)
1205 return -ENOMEM;
1242 1206
1243 /* Show fields */ 1207 /* Second: actually write the @print_fmt */
1244 for (i = 0; i < tp->nr_args; i++) 1208 __set_print_fmt(tp, print_fmt, len + 1);
1245 SHOW_FIELD(unsigned long, args[i], tp->args[i].name); 1209 tp->call.print_fmt = print_fmt;
1246 trace_seq_puts(s, "\n");
1247 1210
1248 return __probe_event_show_format(s, tp, "(%lx <- %lx)", 1211 return 0;
1249 "REC->" FIELD_STRING_FUNC
1250 ", REC->" FIELD_STRING_RETIP);
1251} 1212}
1252 1213
1253#ifdef CONFIG_EVENT_PROFILE 1214#ifdef CONFIG_PERF_EVENTS
1254 1215
1255/* Kprobe profile handler */ 1216/* Kprobe profile handler */
1256static __kprobes int kprobe_profile_func(struct kprobe *kp, 1217static __kprobes void kprobe_profile_func(struct kprobe *kp,
1257 struct pt_regs *regs) 1218 struct pt_regs *regs)
1258{ 1219{
1259 struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp); 1220 struct trace_probe *tp = container_of(kp, struct trace_probe, rp.kp);
1260 struct ftrace_event_call *call = &tp->call; 1221 struct ftrace_event_call *call = &tp->call;
1261 struct kprobe_trace_entry *entry; 1222 struct kprobe_trace_entry *entry;
1262 struct trace_entry *ent; 1223 int size, __size, i;
1263 int size, __size, i, pc, __cpu;
1264 unsigned long irq_flags; 1224 unsigned long irq_flags;
1265 char *trace_buf;
1266 char *raw_data;
1267 int rctx; 1225 int rctx;
1268 1226
1269 pc = preempt_count();
1270 __size = SIZEOF_KPROBE_TRACE_ENTRY(tp->nr_args); 1227 __size = SIZEOF_KPROBE_TRACE_ENTRY(tp->nr_args);
1271 size = ALIGN(__size + sizeof(u32), sizeof(u64)); 1228 size = ALIGN(__size + sizeof(u32), sizeof(u64));
1272 size -= sizeof(u32); 1229 size -= sizeof(u32);
1273 if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, 1230 if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE,
1274 "profile buffer not large enough")) 1231 "profile buffer not large enough"))
1275 return 0; 1232 return;
1276
1277 /*
1278 * Protect the non nmi buffer
1279 * This also protects the rcu read side
1280 */
1281 local_irq_save(irq_flags);
1282
1283 rctx = perf_swevent_get_recursion_context();
1284 if (rctx < 0)
1285 goto end_recursion;
1286
1287 __cpu = smp_processor_id();
1288
1289 if (in_nmi())
1290 trace_buf = rcu_dereference(perf_trace_buf_nmi);
1291 else
1292 trace_buf = rcu_dereference(perf_trace_buf);
1293 1233
1294 if (!trace_buf) 1234 entry = ftrace_perf_buf_prepare(size, call->id, &rctx, &irq_flags);
1295 goto end; 1235 if (!entry)
1296 1236 return;
1297 raw_data = per_cpu_ptr(trace_buf, __cpu);
1298
1299 /* Zero dead bytes from alignment to avoid buffer leak to userspace */
1300 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
1301 entry = (struct kprobe_trace_entry *)raw_data;
1302 ent = &entry->ent;
1303 1237
1304 tracing_generic_entry_update(ent, irq_flags, pc);
1305 ent->type = call->id;
1306 entry->nargs = tp->nr_args; 1238 entry->nargs = tp->nr_args;
1307 entry->ip = (unsigned long)kp->addr; 1239 entry->ip = (unsigned long)kp->addr;
1308 for (i = 0; i < tp->nr_args; i++) 1240 for (i = 0; i < tp->nr_args; i++)
1309 entry->args[i] = call_fetch(&tp->args[i].fetch, regs); 1241 entry->args[i] = call_fetch(&tp->args[i].fetch, regs);
1310 perf_tp_event(call->id, entry->ip, 1, entry, size);
1311
1312end:
1313 perf_swevent_put_recursion_context(rctx);
1314end_recursion:
1315 local_irq_restore(irq_flags);
1316 1242
1317 return 0; 1243 ftrace_perf_buf_submit(entry, size, rctx, entry->ip, 1, irq_flags);
1318} 1244}
1319 1245
1320/* Kretprobe profile handler */ 1246/* Kretprobe profile handler */
1321static __kprobes int kretprobe_profile_func(struct kretprobe_instance *ri, 1247static __kprobes void kretprobe_profile_func(struct kretprobe_instance *ri,
1322 struct pt_regs *regs) 1248 struct pt_regs *regs)
1323{ 1249{
1324 struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp); 1250 struct trace_probe *tp = container_of(ri->rp, struct trace_probe, rp);
1325 struct ftrace_event_call *call = &tp->call; 1251 struct ftrace_event_call *call = &tp->call;
1326 struct kretprobe_trace_entry *entry; 1252 struct kretprobe_trace_entry *entry;
1327 struct trace_entry *ent; 1253 int size, __size, i;
1328 int size, __size, i, pc, __cpu;
1329 unsigned long irq_flags; 1254 unsigned long irq_flags;
1330 char *trace_buf;
1331 char *raw_data;
1332 int rctx; 1255 int rctx;
1333 1256
1334 pc = preempt_count();
1335 __size = SIZEOF_KRETPROBE_TRACE_ENTRY(tp->nr_args); 1257 __size = SIZEOF_KRETPROBE_TRACE_ENTRY(tp->nr_args);
1336 size = ALIGN(__size + sizeof(u32), sizeof(u64)); 1258 size = ALIGN(__size + sizeof(u32), sizeof(u64));
1337 size -= sizeof(u32); 1259 size -= sizeof(u32);
1338 if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, 1260 if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE,
1339 "profile buffer not large enough")) 1261 "profile buffer not large enough"))
1340 return 0; 1262 return;
1341
1342 /*
1343 * Protect the non nmi buffer
1344 * This also protects the rcu read side
1345 */
1346 local_irq_save(irq_flags);
1347
1348 rctx = perf_swevent_get_recursion_context();
1349 if (rctx < 0)
1350 goto end_recursion;
1351
1352 __cpu = smp_processor_id();
1353 1263
1354 if (in_nmi()) 1264 entry = ftrace_perf_buf_prepare(size, call->id, &rctx, &irq_flags);
1355 trace_buf = rcu_dereference(perf_trace_buf_nmi); 1265 if (!entry)
1356 else 1266 return;
1357 trace_buf = rcu_dereference(perf_trace_buf);
1358
1359 if (!trace_buf)
1360 goto end;
1361
1362 raw_data = per_cpu_ptr(trace_buf, __cpu);
1363
1364 /* Zero dead bytes from alignment to avoid buffer leak to userspace */
1365 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
1366 entry = (struct kretprobe_trace_entry *)raw_data;
1367 ent = &entry->ent;
1368 1267
1369 tracing_generic_entry_update(ent, irq_flags, pc);
1370 ent->type = call->id;
1371 entry->nargs = tp->nr_args; 1268 entry->nargs = tp->nr_args;
1372 entry->func = (unsigned long)tp->rp.kp.addr; 1269 entry->func = (unsigned long)tp->rp.kp.addr;
1373 entry->ret_ip = (unsigned long)ri->ret_addr; 1270 entry->ret_ip = (unsigned long)ri->ret_addr;
1374 for (i = 0; i < tp->nr_args; i++) 1271 for (i = 0; i < tp->nr_args; i++)
1375 entry->args[i] = call_fetch(&tp->args[i].fetch, regs); 1272 entry->args[i] = call_fetch(&tp->args[i].fetch, regs);
1376 perf_tp_event(call->id, entry->ret_ip, 1, entry, size);
1377
1378end:
1379 perf_swevent_put_recursion_context(rctx);
1380end_recursion:
1381 local_irq_restore(irq_flags);
1382 1273
1383 return 0; 1274 ftrace_perf_buf_submit(entry, size, rctx, entry->ret_ip, 1, irq_flags);
1384} 1275}
1385 1276
1386static int probe_profile_enable(struct ftrace_event_call *call) 1277static int probe_profile_enable(struct ftrace_event_call *call)
@@ -1408,7 +1299,7 @@ static void probe_profile_disable(struct ftrace_event_call *call)
1408 disable_kprobe(&tp->rp.kp); 1299 disable_kprobe(&tp->rp.kp);
1409 } 1300 }
1410} 1301}
1411#endif /* CONFIG_EVENT_PROFILE */ 1302#endif /* CONFIG_PERF_EVENTS */
1412 1303
1413 1304
1414static __kprobes 1305static __kprobes
@@ -1418,10 +1309,10 @@ int kprobe_dispatcher(struct kprobe *kp, struct pt_regs *regs)
1418 1309
1419 if (tp->flags & TP_FLAG_TRACE) 1310 if (tp->flags & TP_FLAG_TRACE)
1420 kprobe_trace_func(kp, regs); 1311 kprobe_trace_func(kp, regs);
1421#ifdef CONFIG_EVENT_PROFILE 1312#ifdef CONFIG_PERF_EVENTS
1422 if (tp->flags & TP_FLAG_PROFILE) 1313 if (tp->flags & TP_FLAG_PROFILE)
1423 kprobe_profile_func(kp, regs); 1314 kprobe_profile_func(kp, regs);
1424#endif /* CONFIG_EVENT_PROFILE */ 1315#endif
1425 return 0; /* We don't tweek kernel, so just return 0 */ 1316 return 0; /* We don't tweek kernel, so just return 0 */
1426} 1317}
1427 1318
@@ -1432,10 +1323,10 @@ int kretprobe_dispatcher(struct kretprobe_instance *ri, struct pt_regs *regs)
1432 1323
1433 if (tp->flags & TP_FLAG_TRACE) 1324 if (tp->flags & TP_FLAG_TRACE)
1434 kretprobe_trace_func(ri, regs); 1325 kretprobe_trace_func(ri, regs);
1435#ifdef CONFIG_EVENT_PROFILE 1326#ifdef CONFIG_PERF_EVENTS
1436 if (tp->flags & TP_FLAG_PROFILE) 1327 if (tp->flags & TP_FLAG_PROFILE)
1437 kretprobe_profile_func(ri, regs); 1328 kretprobe_profile_func(ri, regs);
1438#endif /* CONFIG_EVENT_PROFILE */ 1329#endif
1439 return 0; /* We don't tweek kernel, so just return 0 */ 1330 return 0; /* We don't tweek kernel, so just return 0 */
1440} 1331}
1441 1332
@@ -1448,23 +1339,25 @@ static int register_probe_event(struct trace_probe *tp)
1448 if (probe_is_return(tp)) { 1339 if (probe_is_return(tp)) {
1449 tp->event.trace = print_kretprobe_event; 1340 tp->event.trace = print_kretprobe_event;
1450 call->raw_init = probe_event_raw_init; 1341 call->raw_init = probe_event_raw_init;
1451 call->show_format = kretprobe_event_show_format;
1452 call->define_fields = kretprobe_event_define_fields; 1342 call->define_fields = kretprobe_event_define_fields;
1453 } else { 1343 } else {
1454 tp->event.trace = print_kprobe_event; 1344 tp->event.trace = print_kprobe_event;
1455 call->raw_init = probe_event_raw_init; 1345 call->raw_init = probe_event_raw_init;
1456 call->show_format = kprobe_event_show_format;
1457 call->define_fields = kprobe_event_define_fields; 1346 call->define_fields = kprobe_event_define_fields;
1458 } 1347 }
1348 if (set_print_fmt(tp) < 0)
1349 return -ENOMEM;
1459 call->event = &tp->event; 1350 call->event = &tp->event;
1460 call->id = register_ftrace_event(&tp->event); 1351 call->id = register_ftrace_event(&tp->event);
1461 if (!call->id) 1352 if (!call->id) {
1353 kfree(call->print_fmt);
1462 return -ENODEV; 1354 return -ENODEV;
1355 }
1463 call->enabled = 0; 1356 call->enabled = 0;
1464 call->regfunc = probe_event_enable; 1357 call->regfunc = probe_event_enable;
1465 call->unregfunc = probe_event_disable; 1358 call->unregfunc = probe_event_disable;
1466 1359
1467#ifdef CONFIG_EVENT_PROFILE 1360#ifdef CONFIG_PERF_EVENTS
1468 call->profile_enable = probe_profile_enable; 1361 call->profile_enable = probe_profile_enable;
1469 call->profile_disable = probe_profile_disable; 1362 call->profile_disable = probe_profile_disable;
1470#endif 1363#endif
@@ -1472,6 +1365,7 @@ static int register_probe_event(struct trace_probe *tp)
1472 ret = trace_add_event_call(call); 1365 ret = trace_add_event_call(call);
1473 if (ret) { 1366 if (ret) {
1474 pr_info("Failed to register kprobe event: %s\n", call->name); 1367 pr_info("Failed to register kprobe event: %s\n", call->name);
1368 kfree(call->print_fmt);
1475 unregister_ftrace_event(&tp->event); 1369 unregister_ftrace_event(&tp->event);
1476 } 1370 }
1477 return ret; 1371 return ret;
@@ -1481,6 +1375,7 @@ static void unregister_probe_event(struct trace_probe *tp)
1481{ 1375{
1482 /* tp->event is unregistered in trace_remove_event_call() */ 1376 /* tp->event is unregistered in trace_remove_event_call() */
1483 trace_remove_event_call(&tp->call); 1377 trace_remove_event_call(&tp->call);
1378 kfree(tp->call.print_fmt);
1484} 1379}
1485 1380
1486/* Make a debugfs interface for controling probe points */ 1381/* Make a debugfs interface for controling probe points */
@@ -1523,28 +1418,67 @@ static int kprobe_trace_selftest_target(int a1, int a2, int a3,
1523 1418
1524static __init int kprobe_trace_self_tests_init(void) 1419static __init int kprobe_trace_self_tests_init(void)
1525{ 1420{
1526 int ret; 1421 int ret, warn = 0;
1527 int (*target)(int, int, int, int, int, int); 1422 int (*target)(int, int, int, int, int, int);
1423 struct trace_probe *tp;
1528 1424
1529 target = kprobe_trace_selftest_target; 1425 target = kprobe_trace_selftest_target;
1530 1426
1531 pr_info("Testing kprobe tracing: "); 1427 pr_info("Testing kprobe tracing: ");
1532 1428
1533 ret = command_trace_probe("p:testprobe kprobe_trace_selftest_target " 1429 ret = command_trace_probe("p:testprobe kprobe_trace_selftest_target "
1534 "$arg1 $arg2 $arg3 $arg4 $stack $stack0"); 1430 "$stack $stack0 +0($stack)");
1535 if (WARN_ON_ONCE(ret)) 1431 if (WARN_ON_ONCE(ret)) {
1536 pr_warning("error enabling function entry\n"); 1432 pr_warning("error on probing function entry.\n");
1433 warn++;
1434 } else {
1435 /* Enable trace point */
1436 tp = find_probe_event("testprobe", KPROBE_EVENT_SYSTEM);
1437 if (WARN_ON_ONCE(tp == NULL)) {
1438 pr_warning("error on getting new probe.\n");
1439 warn++;
1440 } else
1441 probe_event_enable(&tp->call);
1442 }
1537 1443
1538 ret = command_trace_probe("r:testprobe2 kprobe_trace_selftest_target " 1444 ret = command_trace_probe("r:testprobe2 kprobe_trace_selftest_target "
1539 "$retval"); 1445 "$retval");
1540 if (WARN_ON_ONCE(ret)) 1446 if (WARN_ON_ONCE(ret)) {
1541 pr_warning("error enabling function return\n"); 1447 pr_warning("error on probing function return.\n");
1448 warn++;
1449 } else {
1450 /* Enable trace point */
1451 tp = find_probe_event("testprobe2", KPROBE_EVENT_SYSTEM);
1452 if (WARN_ON_ONCE(tp == NULL)) {
1453 pr_warning("error on getting new probe.\n");
1454 warn++;
1455 } else
1456 probe_event_enable(&tp->call);
1457 }
1458
1459 if (warn)
1460 goto end;
1542 1461
1543 ret = target(1, 2, 3, 4, 5, 6); 1462 ret = target(1, 2, 3, 4, 5, 6);
1544 1463
1545 cleanup_all_probes(); 1464 ret = command_trace_probe("-:testprobe");
1465 if (WARN_ON_ONCE(ret)) {
1466 pr_warning("error on deleting a probe.\n");
1467 warn++;
1468 }
1546 1469
1547 pr_cont("OK\n"); 1470 ret = command_trace_probe("-:testprobe2");
1471 if (WARN_ON_ONCE(ret)) {
1472 pr_warning("error on deleting a probe.\n");
1473 warn++;
1474 }
1475
1476end:
1477 cleanup_all_probes();
1478 if (warn)
1479 pr_cont("NG: Some tests are failed. Please check them.\n");
1480 else
1481 pr_cont("OK\n");
1548 return 0; 1482 return 0;
1549} 1483}
1550 1484
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c
index 75289f372dd2..cba47d7935cc 100644
--- a/kernel/trace/trace_syscalls.c
+++ b/kernel/trace/trace_syscalls.c
@@ -143,70 +143,65 @@ extern char *__bad_type_size(void);
143 #type, #name, offsetof(typeof(trace), name), \ 143 #type, #name, offsetof(typeof(trace), name), \
144 sizeof(trace.name), is_signed_type(type) 144 sizeof(trace.name), is_signed_type(type)
145 145
146int syscall_enter_format(struct ftrace_event_call *call, struct trace_seq *s) 146static
147int __set_enter_print_fmt(struct syscall_metadata *entry, char *buf, int len)
147{ 148{
148 int i; 149 int i;
149 int ret; 150 int pos = 0;
150 struct syscall_metadata *entry = call->data;
151 struct syscall_trace_enter trace;
152 int offset = offsetof(struct syscall_trace_enter, args);
153 151
154 ret = trace_seq_printf(s, "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" 152 /* When len=0, we just calculate the needed length */
155 "\tsigned:%u;\n", 153#define LEN_OR_ZERO (len ? len - pos : 0)
156 SYSCALL_FIELD(int, nr));
157 if (!ret)
158 return 0;
159 154
155 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
160 for (i = 0; i < entry->nb_args; i++) { 156 for (i = 0; i < entry->nb_args; i++) {
161 ret = trace_seq_printf(s, "\tfield:%s %s;", entry->types[i], 157 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s: 0x%%0%zulx%s",
162 entry->args[i]); 158 entry->args[i], sizeof(unsigned long),
163 if (!ret) 159 i == entry->nb_args - 1 ? "" : ", ");
164 return 0;
165 ret = trace_seq_printf(s, "\toffset:%d;\tsize:%zu;"
166 "\tsigned:%u;\n", offset,
167 sizeof(unsigned long),
168 is_signed_type(unsigned long));
169 if (!ret)
170 return 0;
171 offset += sizeof(unsigned long);
172 } 160 }
161 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
173 162
174 trace_seq_puts(s, "\nprint fmt: \"");
175 for (i = 0; i < entry->nb_args; i++) { 163 for (i = 0; i < entry->nb_args; i++) {
176 ret = trace_seq_printf(s, "%s: 0x%%0%zulx%s", entry->args[i], 164 pos += snprintf(buf + pos, LEN_OR_ZERO,
177 sizeof(unsigned long), 165 ", ((unsigned long)(REC->%s))", entry->args[i]);
178 i == entry->nb_args - 1 ? "" : ", ");
179 if (!ret)
180 return 0;
181 } 166 }
182 trace_seq_putc(s, '"');
183 167
184 for (i = 0; i < entry->nb_args; i++) { 168#undef LEN_OR_ZERO
185 ret = trace_seq_printf(s, ", ((unsigned long)(REC->%s))",
186 entry->args[i]);
187 if (!ret)
188 return 0;
189 }
190 169
191 return trace_seq_putc(s, '\n'); 170 /* return the length of print_fmt */
171 return pos;
192} 172}
193 173
194int syscall_exit_format(struct ftrace_event_call *call, struct trace_seq *s) 174static int set_syscall_print_fmt(struct ftrace_event_call *call)
195{ 175{
196 int ret; 176 char *print_fmt;
197 struct syscall_trace_exit trace; 177 int len;
178 struct syscall_metadata *entry = call->data;
198 179
199 ret = trace_seq_printf(s, 180 if (entry->enter_event != call) {
200 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;" 181 call->print_fmt = "\"0x%lx\", REC->ret";
201 "\tsigned:%u;\n"
202 "\tfield:%s %s;\toffset:%zu;\tsize:%zu;"
203 "\tsigned:%u;\n",
204 SYSCALL_FIELD(int, nr),
205 SYSCALL_FIELD(long, ret));
206 if (!ret)
207 return 0; 182 return 0;
183 }
184
185 /* First: called with 0 length to calculate the needed length */
186 len = __set_enter_print_fmt(entry, NULL, 0);
187
188 print_fmt = kmalloc(len + 1, GFP_KERNEL);
189 if (!print_fmt)
190 return -ENOMEM;
191
192 /* Second: actually write the @print_fmt */
193 __set_enter_print_fmt(entry, print_fmt, len + 1);
194 call->print_fmt = print_fmt;
208 195
209 return trace_seq_printf(s, "\nprint fmt: \"0x%%lx\", REC->ret\n"); 196 return 0;
197}
198
199static void free_syscall_print_fmt(struct ftrace_event_call *call)
200{
201 struct syscall_metadata *entry = call->data;
202
203 if (entry->enter_event == call)
204 kfree(call->print_fmt);
210} 205}
211 206
212int syscall_enter_define_fields(struct ftrace_event_call *call) 207int syscall_enter_define_fields(struct ftrace_event_call *call)
@@ -386,12 +381,22 @@ int init_syscall_trace(struct ftrace_event_call *call)
386{ 381{
387 int id; 382 int id;
388 383
389 id = register_ftrace_event(call->event); 384 if (set_syscall_print_fmt(call) < 0)
390 if (!id) 385 return -ENOMEM;
391 return -ENODEV; 386
392 call->id = id; 387 id = trace_event_raw_init(call);
393 INIT_LIST_HEAD(&call->fields); 388
394 return 0; 389 if (id < 0) {
390 free_syscall_print_fmt(call);
391 return id;
392 }
393
394 return id;
395}
396
397unsigned long __init arch_syscall_addr(int nr)
398{
399 return (unsigned long)sys_call_table[nr];
395} 400}
396 401
397int __init init_ftrace_syscalls(void) 402int __init init_ftrace_syscalls(void)
@@ -421,7 +426,7 @@ int __init init_ftrace_syscalls(void)
421} 426}
422core_initcall(init_ftrace_syscalls); 427core_initcall(init_ftrace_syscalls);
423 428
424#ifdef CONFIG_EVENT_PROFILE 429#ifdef CONFIG_PERF_EVENTS
425 430
426static DECLARE_BITMAP(enabled_prof_enter_syscalls, NR_syscalls); 431static DECLARE_BITMAP(enabled_prof_enter_syscalls, NR_syscalls);
427static DECLARE_BITMAP(enabled_prof_exit_syscalls, NR_syscalls); 432static DECLARE_BITMAP(enabled_prof_exit_syscalls, NR_syscalls);
@@ -433,12 +438,9 @@ static void prof_syscall_enter(struct pt_regs *regs, long id)
433 struct syscall_metadata *sys_data; 438 struct syscall_metadata *sys_data;
434 struct syscall_trace_enter *rec; 439 struct syscall_trace_enter *rec;
435 unsigned long flags; 440 unsigned long flags;
436 char *trace_buf;
437 char *raw_data;
438 int syscall_nr; 441 int syscall_nr;
439 int rctx; 442 int rctx;
440 int size; 443 int size;
441 int cpu;
442 444
443 syscall_nr = syscall_get_nr(current, regs); 445 syscall_nr = syscall_get_nr(current, regs);
444 if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) 446 if (!test_bit(syscall_nr, enabled_prof_enter_syscalls))
@@ -457,37 +459,15 @@ static void prof_syscall_enter(struct pt_regs *regs, long id)
457 "profile buffer not large enough")) 459 "profile buffer not large enough"))
458 return; 460 return;
459 461
460 /* Protect the per cpu buffer, begin the rcu read side */ 462 rec = (struct syscall_trace_enter *)ftrace_perf_buf_prepare(size,
461 local_irq_save(flags); 463 sys_data->enter_event->id, &rctx, &flags);
462 464 if (!rec)
463 rctx = perf_swevent_get_recursion_context(); 465 return;
464 if (rctx < 0)
465 goto end_recursion;
466
467 cpu = smp_processor_id();
468
469 trace_buf = rcu_dereference(perf_trace_buf);
470
471 if (!trace_buf)
472 goto end;
473
474 raw_data = per_cpu_ptr(trace_buf, cpu);
475
476 /* zero the dead bytes from align to not leak stack to user */
477 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
478 466
479 rec = (struct syscall_trace_enter *) raw_data;
480 tracing_generic_entry_update(&rec->ent, 0, 0);
481 rec->ent.type = sys_data->enter_event->id;
482 rec->nr = syscall_nr; 467 rec->nr = syscall_nr;
483 syscall_get_arguments(current, regs, 0, sys_data->nb_args, 468 syscall_get_arguments(current, regs, 0, sys_data->nb_args,
484 (unsigned long *)&rec->args); 469 (unsigned long *)&rec->args);
485 perf_tp_event(sys_data->enter_event->id, 0, 1, rec, size); 470 ftrace_perf_buf_submit(rec, size, rctx, 0, 1, flags);
486
487end:
488 perf_swevent_put_recursion_context(rctx);
489end_recursion:
490 local_irq_restore(flags);
491} 471}
492 472
493int prof_sysenter_enable(struct ftrace_event_call *call) 473int prof_sysenter_enable(struct ftrace_event_call *call)
@@ -531,11 +511,8 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret)
531 struct syscall_trace_exit *rec; 511 struct syscall_trace_exit *rec;
532 unsigned long flags; 512 unsigned long flags;
533 int syscall_nr; 513 int syscall_nr;
534 char *trace_buf;
535 char *raw_data;
536 int rctx; 514 int rctx;
537 int size; 515 int size;
538 int cpu;
539 516
540 syscall_nr = syscall_get_nr(current, regs); 517 syscall_nr = syscall_get_nr(current, regs);
541 if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) 518 if (!test_bit(syscall_nr, enabled_prof_exit_syscalls))
@@ -557,38 +534,15 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret)
557 "exit event has grown above profile buffer size")) 534 "exit event has grown above profile buffer size"))
558 return; 535 return;
559 536
560 /* Protect the per cpu buffer, begin the rcu read side */ 537 rec = (struct syscall_trace_exit *)ftrace_perf_buf_prepare(size,
561 local_irq_save(flags); 538 sys_data->exit_event->id, &rctx, &flags);
562 539 if (!rec)
563 rctx = perf_swevent_get_recursion_context(); 540 return;
564 if (rctx < 0)
565 goto end_recursion;
566
567 cpu = smp_processor_id();
568
569 trace_buf = rcu_dereference(perf_trace_buf);
570
571 if (!trace_buf)
572 goto end;
573
574 raw_data = per_cpu_ptr(trace_buf, cpu);
575
576 /* zero the dead bytes from align to not leak stack to user */
577 *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL;
578
579 rec = (struct syscall_trace_exit *)raw_data;
580 541
581 tracing_generic_entry_update(&rec->ent, 0, 0);
582 rec->ent.type = sys_data->exit_event->id;
583 rec->nr = syscall_nr; 542 rec->nr = syscall_nr;
584 rec->ret = syscall_get_return_value(current, regs); 543 rec->ret = syscall_get_return_value(current, regs);
585 544
586 perf_tp_event(sys_data->exit_event->id, 0, 1, rec, size); 545 ftrace_perf_buf_submit(rec, size, rctx, 0, 1, flags);
587
588end:
589 perf_swevent_put_recursion_context(rctx);
590end_recursion:
591 local_irq_restore(flags);
592} 546}
593 547
594int prof_sysexit_enable(struct ftrace_event_call *call) 548int prof_sysexit_enable(struct ftrace_event_call *call)
@@ -603,7 +557,7 @@ int prof_sysexit_enable(struct ftrace_event_call *call)
603 ret = register_trace_sys_exit(prof_syscall_exit); 557 ret = register_trace_sys_exit(prof_syscall_exit);
604 if (ret) { 558 if (ret) {
605 pr_info("event trace: Could not activate" 559 pr_info("event trace: Could not activate"
606 "syscall entry trace point"); 560 "syscall exit trace point");
607 } else { 561 } else {
608 set_bit(num, enabled_prof_exit_syscalls); 562 set_bit(num, enabled_prof_exit_syscalls);
609 sys_prof_refcount_exit++; 563 sys_prof_refcount_exit++;
@@ -626,6 +580,5 @@ void prof_sysexit_disable(struct ftrace_event_call *call)
626 mutex_unlock(&syscall_trace_lock); 580 mutex_unlock(&syscall_trace_lock);
627} 581}
628 582
629#endif 583#endif /* CONFIG_PERF_EVENTS */
630
631 584
diff --git a/kernel/user.c b/kernel/user.c
index 46d0165ca70c..766467b3bcb7 100644
--- a/kernel/user.c
+++ b/kernel/user.c
@@ -56,9 +56,6 @@ struct user_struct root_user = {
56 .sigpending = ATOMIC_INIT(0), 56 .sigpending = ATOMIC_INIT(0),
57 .locked_shm = 0, 57 .locked_shm = 0,
58 .user_ns = &init_user_ns, 58 .user_ns = &init_user_ns,
59#ifdef CONFIG_USER_SCHED
60 .tg = &init_task_group,
61#endif
62}; 59};
63 60
64/* 61/*
@@ -75,268 +72,6 @@ static void uid_hash_remove(struct user_struct *up)
75 put_user_ns(up->user_ns); 72 put_user_ns(up->user_ns);
76} 73}
77 74
78#ifdef CONFIG_USER_SCHED
79
80static void sched_destroy_user(struct user_struct *up)
81{
82 sched_destroy_group(up->tg);
83}
84
85static int sched_create_user(struct user_struct *up)
86{
87 int rc = 0;
88
89 up->tg = sched_create_group(&root_task_group);
90 if (IS_ERR(up->tg))
91 rc = -ENOMEM;
92
93 set_tg_uid(up);
94
95 return rc;
96}
97
98#else /* CONFIG_USER_SCHED */
99
100static void sched_destroy_user(struct user_struct *up) { }
101static int sched_create_user(struct user_struct *up) { return 0; }
102
103#endif /* CONFIG_USER_SCHED */
104
105#if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS)
106
107static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
108{
109 struct user_struct *user;
110 struct hlist_node *h;
111
112 hlist_for_each_entry(user, h, hashent, uidhash_node) {
113 if (user->uid == uid) {
114 /* possibly resurrect an "almost deleted" object */
115 if (atomic_inc_return(&user->__count) == 1)
116 cancel_delayed_work(&user->work);
117 return user;
118 }
119 }
120
121 return NULL;
122}
123
124static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */
125static DEFINE_MUTEX(uids_mutex);
126
127static inline void uids_mutex_lock(void)
128{
129 mutex_lock(&uids_mutex);
130}
131
132static inline void uids_mutex_unlock(void)
133{
134 mutex_unlock(&uids_mutex);
135}
136
137/* uid directory attributes */
138#ifdef CONFIG_FAIR_GROUP_SCHED
139static ssize_t cpu_shares_show(struct kobject *kobj,
140 struct kobj_attribute *attr,
141 char *buf)
142{
143 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
144
145 return sprintf(buf, "%lu\n", sched_group_shares(up->tg));
146}
147
148static ssize_t cpu_shares_store(struct kobject *kobj,
149 struct kobj_attribute *attr,
150 const char *buf, size_t size)
151{
152 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
153 unsigned long shares;
154 int rc;
155
156 sscanf(buf, "%lu", &shares);
157
158 rc = sched_group_set_shares(up->tg, shares);
159
160 return (rc ? rc : size);
161}
162
163static struct kobj_attribute cpu_share_attr =
164 __ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store);
165#endif
166
167#ifdef CONFIG_RT_GROUP_SCHED
168static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 char *buf)
171{
172 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
173
174 return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg));
175}
176
177static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
178 struct kobj_attribute *attr,
179 const char *buf, size_t size)
180{
181 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
182 unsigned long rt_runtime;
183 int rc;
184
185 sscanf(buf, "%ld", &rt_runtime);
186
187 rc = sched_group_set_rt_runtime(up->tg, rt_runtime);
188
189 return (rc ? rc : size);
190}
191
192static struct kobj_attribute cpu_rt_runtime_attr =
193 __ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store);
194
195static ssize_t cpu_rt_period_show(struct kobject *kobj,
196 struct kobj_attribute *attr,
197 char *buf)
198{
199 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
200
201 return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg));
202}
203
204static ssize_t cpu_rt_period_store(struct kobject *kobj,
205 struct kobj_attribute *attr,
206 const char *buf, size_t size)
207{
208 struct user_struct *up = container_of(kobj, struct user_struct, kobj);
209 unsigned long rt_period;
210 int rc;
211
212 sscanf(buf, "%lu", &rt_period);
213
214 rc = sched_group_set_rt_period(up->tg, rt_period);
215
216 return (rc ? rc : size);
217}
218
219static struct kobj_attribute cpu_rt_period_attr =
220 __ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store);
221#endif
222
223/* default attributes per uid directory */
224static struct attribute *uids_attributes[] = {
225#ifdef CONFIG_FAIR_GROUP_SCHED
226 &cpu_share_attr.attr,
227#endif
228#ifdef CONFIG_RT_GROUP_SCHED
229 &cpu_rt_runtime_attr.attr,
230 &cpu_rt_period_attr.attr,
231#endif
232 NULL
233};
234
235/* the lifetime of user_struct is not managed by the core (now) */
236static void uids_release(struct kobject *kobj)
237{
238 return;
239}
240
241static struct kobj_type uids_ktype = {
242 .sysfs_ops = &kobj_sysfs_ops,
243 .default_attrs = uids_attributes,
244 .release = uids_release,
245};
246
247/*
248 * Create /sys/kernel/uids/<uid>/cpu_share file for this user
249 * We do not create this file for users in a user namespace (until
250 * sysfs tagging is implemented).
251 *
252 * See Documentation/scheduler/sched-design-CFS.txt for ramifications.
253 */
254static int uids_user_create(struct user_struct *up)
255{
256 struct kobject *kobj = &up->kobj;
257 int error;
258
259 memset(kobj, 0, sizeof(struct kobject));
260 if (up->user_ns != &init_user_ns)
261 return 0;
262 kobj->kset = uids_kset;
263 error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid);
264 if (error) {
265 kobject_put(kobj);
266 goto done;
267 }
268
269 kobject_uevent(kobj, KOBJ_ADD);
270done:
271 return error;
272}
273
274/* create these entries in sysfs:
275 * "/sys/kernel/uids" directory
276 * "/sys/kernel/uids/0" directory (for root user)
277 * "/sys/kernel/uids/0/cpu_share" file (for root user)
278 */
279int __init uids_sysfs_init(void)
280{
281 uids_kset = kset_create_and_add("uids", NULL, kernel_kobj);
282 if (!uids_kset)
283 return -ENOMEM;
284
285 return uids_user_create(&root_user);
286}
287
288/* delayed work function to remove sysfs directory for a user and free up
289 * corresponding structures.
290 */
291static void cleanup_user_struct(struct work_struct *w)
292{
293 struct user_struct *up = container_of(w, struct user_struct, work.work);
294 unsigned long flags;
295 int remove_user = 0;
296
297 /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
298 * atomic.
299 */
300 uids_mutex_lock();
301
302 spin_lock_irqsave(&uidhash_lock, flags);
303 if (atomic_read(&up->__count) == 0) {
304 uid_hash_remove(up);
305 remove_user = 1;
306 }
307 spin_unlock_irqrestore(&uidhash_lock, flags);
308
309 if (!remove_user)
310 goto done;
311
312 if (up->user_ns == &init_user_ns) {
313 kobject_uevent(&up->kobj, KOBJ_REMOVE);
314 kobject_del(&up->kobj);
315 kobject_put(&up->kobj);
316 }
317
318 sched_destroy_user(up);
319 key_put(up->uid_keyring);
320 key_put(up->session_keyring);
321 kmem_cache_free(uid_cachep, up);
322
323done:
324 uids_mutex_unlock();
325}
326
327/* IRQs are disabled and uidhash_lock is held upon function entry.
328 * IRQ state (as stored in flags) is restored and uidhash_lock released
329 * upon function exit.
330 */
331static void free_user(struct user_struct *up, unsigned long flags)
332{
333 INIT_DELAYED_WORK(&up->work, cleanup_user_struct);
334 schedule_delayed_work(&up->work, msecs_to_jiffies(1000));
335 spin_unlock_irqrestore(&uidhash_lock, flags);
336}
337
338#else /* CONFIG_USER_SCHED && CONFIG_SYSFS */
339
340static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) 75static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
341{ 76{
342 struct user_struct *user; 77 struct user_struct *user;
@@ -352,11 +87,6 @@ static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
352 return NULL; 87 return NULL;
353} 88}
354 89
355int uids_sysfs_init(void) { return 0; }
356static inline int uids_user_create(struct user_struct *up) { return 0; }
357static inline void uids_mutex_lock(void) { }
358static inline void uids_mutex_unlock(void) { }
359
360/* IRQs are disabled and uidhash_lock is held upon function entry. 90/* IRQs are disabled and uidhash_lock is held upon function entry.
361 * IRQ state (as stored in flags) is restored and uidhash_lock released 91 * IRQ state (as stored in flags) is restored and uidhash_lock released
362 * upon function exit. 92 * upon function exit.
@@ -365,32 +95,11 @@ static void free_user(struct user_struct *up, unsigned long flags)
365{ 95{
366 uid_hash_remove(up); 96 uid_hash_remove(up);
367 spin_unlock_irqrestore(&uidhash_lock, flags); 97 spin_unlock_irqrestore(&uidhash_lock, flags);
368 sched_destroy_user(up);
369 key_put(up->uid_keyring); 98 key_put(up->uid_keyring);
370 key_put(up->session_keyring); 99 key_put(up->session_keyring);
371 kmem_cache_free(uid_cachep, up); 100 kmem_cache_free(uid_cachep, up);
372} 101}
373 102
374#endif
375
376#if defined(CONFIG_RT_GROUP_SCHED) && defined(CONFIG_USER_SCHED)
377/*
378 * We need to check if a setuid can take place. This function should be called
379 * before successfully completing the setuid.
380 */
381int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
382{
383
384 return sched_rt_can_attach(up->tg, tsk);
385
386}
387#else
388int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
389{
390 return 1;
391}
392#endif
393
394/* 103/*
395 * Locate the user_struct for the passed UID. If found, take a ref on it. The 104 * Locate the user_struct for the passed UID. If found, take a ref on it. The
396 * caller must undo that ref with free_uid(). 105 * caller must undo that ref with free_uid().
@@ -431,8 +140,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
431 /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() 140 /* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
432 * atomic. 141 * atomic.
433 */ 142 */
434 uids_mutex_lock();
435
436 spin_lock_irq(&uidhash_lock); 143 spin_lock_irq(&uidhash_lock);
437 up = uid_hash_find(uid, hashent); 144 up = uid_hash_find(uid, hashent);
438 spin_unlock_irq(&uidhash_lock); 145 spin_unlock_irq(&uidhash_lock);
@@ -445,14 +152,8 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
445 new->uid = uid; 152 new->uid = uid;
446 atomic_set(&new->__count, 1); 153 atomic_set(&new->__count, 1);
447 154
448 if (sched_create_user(new) < 0)
449 goto out_free_user;
450
451 new->user_ns = get_user_ns(ns); 155 new->user_ns = get_user_ns(ns);
452 156
453 if (uids_user_create(new))
454 goto out_destoy_sched;
455
456 /* 157 /*
457 * Before adding this, check whether we raced 158 * Before adding this, check whether we raced
458 * on adding the same user already.. 159 * on adding the same user already..
@@ -475,17 +176,11 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
475 spin_unlock_irq(&uidhash_lock); 176 spin_unlock_irq(&uidhash_lock);
476 } 177 }
477 178
478 uids_mutex_unlock();
479
480 return up; 179 return up;
481 180
482out_destoy_sched:
483 sched_destroy_user(new);
484 put_user_ns(new->user_ns); 181 put_user_ns(new->user_ns);
485out_free_user:
486 kmem_cache_free(uid_cachep, new); 182 kmem_cache_free(uid_cachep, new);
487out_unlock: 183out_unlock:
488 uids_mutex_unlock();
489 return NULL; 184 return NULL;
490} 185}
491 186