diff options
Diffstat (limited to 'kernel')
68 files changed, 3538 insertions, 2369 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 7c9b0a585502..b8d4cd8ac0b9 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -58,7 +58,6 @@ obj-$(CONFIG_KEXEC) += kexec.o | |||
58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o | 58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o |
59 | obj-$(CONFIG_COMPAT) += compat.o | 59 | obj-$(CONFIG_COMPAT) += compat.o |
60 | obj-$(CONFIG_CGROUPS) += cgroup.o | 60 | obj-$(CONFIG_CGROUPS) += cgroup.o |
61 | obj-$(CONFIG_CGROUP_DEBUG) += cgroup_debug.o | ||
62 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o | 61 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o |
63 | obj-$(CONFIG_CPUSETS) += cpuset.o | 62 | obj-$(CONFIG_CPUSETS) += cpuset.o |
64 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o | 63 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o |
@@ -95,7 +94,7 @@ obj-$(CONFIG_X86_DS) += trace/ | |||
95 | obj-$(CONFIG_RING_BUFFER) += trace/ | 94 | obj-$(CONFIG_RING_BUFFER) += trace/ |
96 | obj-$(CONFIG_SMP) += sched_cpupri.o | 95 | obj-$(CONFIG_SMP) += sched_cpupri.o |
97 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 96 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
98 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | 97 | obj-$(CONFIG_PERF_EVENTS) += perf_event.o |
99 | 98 | ||
100 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 99 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
101 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 100 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/audit.c b/kernel/audit.c index defc2e6f1e3b..5feed232be9d 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
@@ -855,18 +855,24 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
855 | break; | 855 | break; |
856 | } | 856 | } |
857 | case AUDIT_SIGNAL_INFO: | 857 | case AUDIT_SIGNAL_INFO: |
858 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); | 858 | len = 0; |
859 | if (err) | 859 | if (audit_sig_sid) { |
860 | return err; | 860 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
861 | if (err) | ||
862 | return err; | ||
863 | } | ||
861 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 864 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
862 | if (!sig_data) { | 865 | if (!sig_data) { |
863 | security_release_secctx(ctx, len); | 866 | if (audit_sig_sid) |
867 | security_release_secctx(ctx, len); | ||
864 | return -ENOMEM; | 868 | return -ENOMEM; |
865 | } | 869 | } |
866 | sig_data->uid = audit_sig_uid; | 870 | sig_data->uid = audit_sig_uid; |
867 | sig_data->pid = audit_sig_pid; | 871 | sig_data->pid = audit_sig_pid; |
868 | memcpy(sig_data->ctx, ctx, len); | 872 | if (audit_sig_sid) { |
869 | security_release_secctx(ctx, len); | 873 | memcpy(sig_data->ctx, ctx, len); |
874 | security_release_secctx(ctx, len); | ||
875 | } | ||
870 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 876 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
871 | 0, 0, sig_data, sizeof(*sig_data) + len); | 877 | 0, 0, sig_data, sizeof(*sig_data) + len); |
872 | kfree(sig_data); | 878 | kfree(sig_data); |
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c index 0e96dbc60ea9..cc7e87936cbc 100644 --- a/kernel/audit_watch.c +++ b/kernel/audit_watch.c | |||
@@ -45,8 +45,8 @@ | |||
45 | 45 | ||
46 | struct audit_watch { | 46 | struct audit_watch { |
47 | atomic_t count; /* reference count */ | 47 | atomic_t count; /* reference count */ |
48 | char *path; /* insertion path */ | ||
49 | dev_t dev; /* associated superblock device */ | 48 | dev_t dev; /* associated superblock device */ |
49 | char *path; /* insertion path */ | ||
50 | unsigned long ino; /* associated inode number */ | 50 | unsigned long ino; /* associated inode number */ |
51 | struct audit_parent *parent; /* associated parent */ | 51 | struct audit_parent *parent; /* associated parent */ |
52 | struct list_head wlist; /* entry in parent->watches list */ | 52 | struct list_head wlist; /* entry in parent->watches list */ |
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index 68d3c6a0ecd6..267e484f0198 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
@@ -168,12 +168,12 @@ struct audit_context { | |||
168 | int in_syscall; /* 1 if task is in a syscall */ | 168 | int in_syscall; /* 1 if task is in a syscall */ |
169 | enum audit_state state, current_state; | 169 | enum audit_state state, current_state; |
170 | unsigned int serial; /* serial number for record */ | 170 | unsigned int serial; /* serial number for record */ |
171 | struct timespec ctime; /* time of syscall entry */ | ||
172 | int major; /* syscall number */ | 171 | int major; /* syscall number */ |
172 | struct timespec ctime; /* time of syscall entry */ | ||
173 | unsigned long argv[4]; /* syscall arguments */ | 173 | unsigned long argv[4]; /* syscall arguments */ |
174 | int return_valid; /* return code is valid */ | ||
175 | long return_code;/* syscall return code */ | 174 | long return_code;/* syscall return code */ |
176 | u64 prio; | 175 | u64 prio; |
176 | int return_valid; /* return code is valid */ | ||
177 | int name_count; | 177 | int name_count; |
178 | struct audit_names names[AUDIT_NAMES]; | 178 | struct audit_names names[AUDIT_NAMES]; |
179 | char * filterkey; /* key for rule that triggered record */ | 179 | char * filterkey; /* key for rule that triggered record */ |
@@ -198,8 +198,8 @@ struct audit_context { | |||
198 | char target_comm[TASK_COMM_LEN]; | 198 | char target_comm[TASK_COMM_LEN]; |
199 | 199 | ||
200 | struct audit_tree_refs *trees, *first_trees; | 200 | struct audit_tree_refs *trees, *first_trees; |
201 | int tree_count; | ||
202 | struct list_head killed_trees; | 201 | struct list_head killed_trees; |
202 | int tree_count; | ||
203 | 203 | ||
204 | int type; | 204 | int type; |
205 | union { | 205 | union { |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index c7ece8f027f2..ca83b73fba19 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -23,6 +23,7 @@ | |||
23 | */ | 23 | */ |
24 | 24 | ||
25 | #include <linux/cgroup.h> | 25 | #include <linux/cgroup.h> |
26 | #include <linux/ctype.h> | ||
26 | #include <linux/errno.h> | 27 | #include <linux/errno.h> |
27 | #include <linux/fs.h> | 28 | #include <linux/fs.h> |
28 | #include <linux/kernel.h> | 29 | #include <linux/kernel.h> |
@@ -48,6 +49,8 @@ | |||
48 | #include <linux/namei.h> | 49 | #include <linux/namei.h> |
49 | #include <linux/smp_lock.h> | 50 | #include <linux/smp_lock.h> |
50 | #include <linux/pid_namespace.h> | 51 | #include <linux/pid_namespace.h> |
52 | #include <linux/idr.h> | ||
53 | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ | ||
51 | 54 | ||
52 | #include <asm/atomic.h> | 55 | #include <asm/atomic.h> |
53 | 56 | ||
@@ -60,6 +63,8 @@ static struct cgroup_subsys *subsys[] = { | |||
60 | #include <linux/cgroup_subsys.h> | 63 | #include <linux/cgroup_subsys.h> |
61 | }; | 64 | }; |
62 | 65 | ||
66 | #define MAX_CGROUP_ROOT_NAMELEN 64 | ||
67 | |||
63 | /* | 68 | /* |
64 | * A cgroupfs_root represents the root of a cgroup hierarchy, | 69 | * A cgroupfs_root represents the root of a cgroup hierarchy, |
65 | * and may be associated with a superblock to form an active | 70 | * and may be associated with a superblock to form an active |
@@ -74,6 +79,9 @@ struct cgroupfs_root { | |||
74 | */ | 79 | */ |
75 | unsigned long subsys_bits; | 80 | unsigned long subsys_bits; |
76 | 81 | ||
82 | /* Unique id for this hierarchy. */ | ||
83 | int hierarchy_id; | ||
84 | |||
77 | /* The bitmask of subsystems currently attached to this hierarchy */ | 85 | /* The bitmask of subsystems currently attached to this hierarchy */ |
78 | unsigned long actual_subsys_bits; | 86 | unsigned long actual_subsys_bits; |
79 | 87 | ||
@@ -94,6 +102,9 @@ struct cgroupfs_root { | |||
94 | 102 | ||
95 | /* The path to use for release notifications. */ | 103 | /* The path to use for release notifications. */ |
96 | char release_agent_path[PATH_MAX]; | 104 | char release_agent_path[PATH_MAX]; |
105 | |||
106 | /* The name for this hierarchy - may be empty */ | ||
107 | char name[MAX_CGROUP_ROOT_NAMELEN]; | ||
97 | }; | 108 | }; |
98 | 109 | ||
99 | /* | 110 | /* |
@@ -141,6 +152,10 @@ struct css_id { | |||
141 | static LIST_HEAD(roots); | 152 | static LIST_HEAD(roots); |
142 | static int root_count; | 153 | static int root_count; |
143 | 154 | ||
155 | static DEFINE_IDA(hierarchy_ida); | ||
156 | static int next_hierarchy_id; | ||
157 | static DEFINE_SPINLOCK(hierarchy_id_lock); | ||
158 | |||
144 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 159 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |
145 | #define dummytop (&rootnode.top_cgroup) | 160 | #define dummytop (&rootnode.top_cgroup) |
146 | 161 | ||
@@ -201,6 +216,7 @@ struct cg_cgroup_link { | |||
201 | * cgroup, anchored on cgroup->css_sets | 216 | * cgroup, anchored on cgroup->css_sets |
202 | */ | 217 | */ |
203 | struct list_head cgrp_link_list; | 218 | struct list_head cgrp_link_list; |
219 | struct cgroup *cgrp; | ||
204 | /* | 220 | /* |
205 | * List running through cg_cgroup_links pointing at a | 221 | * List running through cg_cgroup_links pointing at a |
206 | * single css_set object, anchored on css_set->cg_links | 222 | * single css_set object, anchored on css_set->cg_links |
@@ -227,8 +243,11 @@ static int cgroup_subsys_init_idr(struct cgroup_subsys *ss); | |||
227 | static DEFINE_RWLOCK(css_set_lock); | 243 | static DEFINE_RWLOCK(css_set_lock); |
228 | static int css_set_count; | 244 | static int css_set_count; |
229 | 245 | ||
230 | /* hash table for cgroup groups. This improves the performance to | 246 | /* |
231 | * find an existing css_set */ | 247 | * hash table for cgroup groups. This improves the performance to find |
248 | * an existing css_set. This hash doesn't (currently) take into | ||
249 | * account cgroups in empty hierarchies. | ||
250 | */ | ||
232 | #define CSS_SET_HASH_BITS 7 | 251 | #define CSS_SET_HASH_BITS 7 |
233 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) | 252 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) |
234 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | 253 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; |
@@ -248,48 +267,22 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | |||
248 | return &css_set_table[index]; | 267 | return &css_set_table[index]; |
249 | } | 268 | } |
250 | 269 | ||
270 | static void free_css_set_rcu(struct rcu_head *obj) | ||
271 | { | ||
272 | struct css_set *cg = container_of(obj, struct css_set, rcu_head); | ||
273 | kfree(cg); | ||
274 | } | ||
275 | |||
251 | /* We don't maintain the lists running through each css_set to its | 276 | /* We don't maintain the lists running through each css_set to its |
252 | * task until after the first call to cgroup_iter_start(). This | 277 | * task until after the first call to cgroup_iter_start(). This |
253 | * reduces the fork()/exit() overhead for people who have cgroups | 278 | * reduces the fork()/exit() overhead for people who have cgroups |
254 | * compiled into their kernel but not actually in use */ | 279 | * compiled into their kernel but not actually in use */ |
255 | static int use_task_css_set_links __read_mostly; | 280 | static int use_task_css_set_links __read_mostly; |
256 | 281 | ||
257 | /* When we create or destroy a css_set, the operation simply | 282 | static void __put_css_set(struct css_set *cg, int taskexit) |
258 | * takes/releases a reference count on all the cgroups referenced | ||
259 | * by subsystems in this css_set. This can end up multiple-counting | ||
260 | * some cgroups, but that's OK - the ref-count is just a | ||
261 | * busy/not-busy indicator; ensuring that we only count each cgroup | ||
262 | * once would require taking a global lock to ensure that no | ||
263 | * subsystems moved between hierarchies while we were doing so. | ||
264 | * | ||
265 | * Possible TODO: decide at boot time based on the number of | ||
266 | * registered subsystems and the number of CPUs or NUMA nodes whether | ||
267 | * it's better for performance to ref-count every subsystem, or to | ||
268 | * take a global lock and only add one ref count to each hierarchy. | ||
269 | */ | ||
270 | |||
271 | /* | ||
272 | * unlink a css_set from the list and free it | ||
273 | */ | ||
274 | static void unlink_css_set(struct css_set *cg) | ||
275 | { | 283 | { |
276 | struct cg_cgroup_link *link; | 284 | struct cg_cgroup_link *link; |
277 | struct cg_cgroup_link *saved_link; | 285 | struct cg_cgroup_link *saved_link; |
278 | |||
279 | hlist_del(&cg->hlist); | ||
280 | css_set_count--; | ||
281 | |||
282 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
283 | cg_link_list) { | ||
284 | list_del(&link->cg_link_list); | ||
285 | list_del(&link->cgrp_link_list); | ||
286 | kfree(link); | ||
287 | } | ||
288 | } | ||
289 | |||
290 | static void __put_css_set(struct css_set *cg, int taskexit) | ||
291 | { | ||
292 | int i; | ||
293 | /* | 286 | /* |
294 | * Ensure that the refcount doesn't hit zero while any readers | 287 | * Ensure that the refcount doesn't hit zero while any readers |
295 | * can see it. Similar to atomic_dec_and_lock(), but for an | 288 | * can see it. Similar to atomic_dec_and_lock(), but for an |
@@ -302,21 +295,28 @@ static void __put_css_set(struct css_set *cg, int taskexit) | |||
302 | write_unlock(&css_set_lock); | 295 | write_unlock(&css_set_lock); |
303 | return; | 296 | return; |
304 | } | 297 | } |
305 | unlink_css_set(cg); | ||
306 | write_unlock(&css_set_lock); | ||
307 | 298 | ||
308 | rcu_read_lock(); | 299 | /* This css_set is dead. unlink it and release cgroup refcounts */ |
309 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 300 | hlist_del(&cg->hlist); |
310 | struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup); | 301 | css_set_count--; |
302 | |||
303 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
304 | cg_link_list) { | ||
305 | struct cgroup *cgrp = link->cgrp; | ||
306 | list_del(&link->cg_link_list); | ||
307 | list_del(&link->cgrp_link_list); | ||
311 | if (atomic_dec_and_test(&cgrp->count) && | 308 | if (atomic_dec_and_test(&cgrp->count) && |
312 | notify_on_release(cgrp)) { | 309 | notify_on_release(cgrp)) { |
313 | if (taskexit) | 310 | if (taskexit) |
314 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 311 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
315 | check_for_release(cgrp); | 312 | check_for_release(cgrp); |
316 | } | 313 | } |
314 | |||
315 | kfree(link); | ||
317 | } | 316 | } |
318 | rcu_read_unlock(); | 317 | |
319 | kfree(cg); | 318 | write_unlock(&css_set_lock); |
319 | call_rcu(&cg->rcu_head, free_css_set_rcu); | ||
320 | } | 320 | } |
321 | 321 | ||
322 | /* | 322 | /* |
@@ -338,6 +338,78 @@ static inline void put_css_set_taskexit(struct css_set *cg) | |||
338 | } | 338 | } |
339 | 339 | ||
340 | /* | 340 | /* |
341 | * compare_css_sets - helper function for find_existing_css_set(). | ||
342 | * @cg: candidate css_set being tested | ||
343 | * @old_cg: existing css_set for a task | ||
344 | * @new_cgrp: cgroup that's being entered by the task | ||
345 | * @template: desired set of css pointers in css_set (pre-calculated) | ||
346 | * | ||
347 | * Returns true if "cg" matches "old_cg" except for the hierarchy | ||
348 | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | ||
349 | */ | ||
350 | static bool compare_css_sets(struct css_set *cg, | ||
351 | struct css_set *old_cg, | ||
352 | struct cgroup *new_cgrp, | ||
353 | struct cgroup_subsys_state *template[]) | ||
354 | { | ||
355 | struct list_head *l1, *l2; | ||
356 | |||
357 | if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { | ||
358 | /* Not all subsystems matched */ | ||
359 | return false; | ||
360 | } | ||
361 | |||
362 | /* | ||
363 | * Compare cgroup pointers in order to distinguish between | ||
364 | * different cgroups in heirarchies with no subsystems. We | ||
365 | * could get by with just this check alone (and skip the | ||
366 | * memcmp above) but on most setups the memcmp check will | ||
367 | * avoid the need for this more expensive check on almost all | ||
368 | * candidates. | ||
369 | */ | ||
370 | |||
371 | l1 = &cg->cg_links; | ||
372 | l2 = &old_cg->cg_links; | ||
373 | while (1) { | ||
374 | struct cg_cgroup_link *cgl1, *cgl2; | ||
375 | struct cgroup *cg1, *cg2; | ||
376 | |||
377 | l1 = l1->next; | ||
378 | l2 = l2->next; | ||
379 | /* See if we reached the end - both lists are equal length. */ | ||
380 | if (l1 == &cg->cg_links) { | ||
381 | BUG_ON(l2 != &old_cg->cg_links); | ||
382 | break; | ||
383 | } else { | ||
384 | BUG_ON(l2 == &old_cg->cg_links); | ||
385 | } | ||
386 | /* Locate the cgroups associated with these links. */ | ||
387 | cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); | ||
388 | cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); | ||
389 | cg1 = cgl1->cgrp; | ||
390 | cg2 = cgl2->cgrp; | ||
391 | /* Hierarchies should be linked in the same order. */ | ||
392 | BUG_ON(cg1->root != cg2->root); | ||
393 | |||
394 | /* | ||
395 | * If this hierarchy is the hierarchy of the cgroup | ||
396 | * that's changing, then we need to check that this | ||
397 | * css_set points to the new cgroup; if it's any other | ||
398 | * hierarchy, then this css_set should point to the | ||
399 | * same cgroup as the old css_set. | ||
400 | */ | ||
401 | if (cg1->root == new_cgrp->root) { | ||
402 | if (cg1 != new_cgrp) | ||
403 | return false; | ||
404 | } else { | ||
405 | if (cg1 != cg2) | ||
406 | return false; | ||
407 | } | ||
408 | } | ||
409 | return true; | ||
410 | } | ||
411 | |||
412 | /* | ||
341 | * find_existing_css_set() is a helper for | 413 | * find_existing_css_set() is a helper for |
342 | * find_css_set(), and checks to see whether an existing | 414 | * find_css_set(), and checks to see whether an existing |
343 | * css_set is suitable. | 415 | * css_set is suitable. |
@@ -378,10 +450,11 @@ static struct css_set *find_existing_css_set( | |||
378 | 450 | ||
379 | hhead = css_set_hash(template); | 451 | hhead = css_set_hash(template); |
380 | hlist_for_each_entry(cg, node, hhead, hlist) { | 452 | hlist_for_each_entry(cg, node, hhead, hlist) { |
381 | if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 453 | if (!compare_css_sets(cg, oldcg, cgrp, template)) |
382 | /* All subsystems matched */ | 454 | continue; |
383 | return cg; | 455 | |
384 | } | 456 | /* This css_set matches what we need */ |
457 | return cg; | ||
385 | } | 458 | } |
386 | 459 | ||
387 | /* No existing cgroup group matched */ | 460 | /* No existing cgroup group matched */ |
@@ -435,8 +508,14 @@ static void link_css_set(struct list_head *tmp_cg_links, | |||
435 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, | 508 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, |
436 | cgrp_link_list); | 509 | cgrp_link_list); |
437 | link->cg = cg; | 510 | link->cg = cg; |
511 | link->cgrp = cgrp; | ||
512 | atomic_inc(&cgrp->count); | ||
438 | list_move(&link->cgrp_link_list, &cgrp->css_sets); | 513 | list_move(&link->cgrp_link_list, &cgrp->css_sets); |
439 | list_add(&link->cg_link_list, &cg->cg_links); | 514 | /* |
515 | * Always add links to the tail of the list so that the list | ||
516 | * is sorted by order of hierarchy creation | ||
517 | */ | ||
518 | list_add_tail(&link->cg_link_list, &cg->cg_links); | ||
440 | } | 519 | } |
441 | 520 | ||
442 | /* | 521 | /* |
@@ -451,11 +530,11 @@ static struct css_set *find_css_set( | |||
451 | { | 530 | { |
452 | struct css_set *res; | 531 | struct css_set *res; |
453 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 532 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; |
454 | int i; | ||
455 | 533 | ||
456 | struct list_head tmp_cg_links; | 534 | struct list_head tmp_cg_links; |
457 | 535 | ||
458 | struct hlist_head *hhead; | 536 | struct hlist_head *hhead; |
537 | struct cg_cgroup_link *link; | ||
459 | 538 | ||
460 | /* First see if we already have a cgroup group that matches | 539 | /* First see if we already have a cgroup group that matches |
461 | * the desired set */ | 540 | * the desired set */ |
@@ -489,20 +568,12 @@ static struct css_set *find_css_set( | |||
489 | 568 | ||
490 | write_lock(&css_set_lock); | 569 | write_lock(&css_set_lock); |
491 | /* Add reference counts and links from the new css_set. */ | 570 | /* Add reference counts and links from the new css_set. */ |
492 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 571 | list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { |
493 | struct cgroup *cgrp = res->subsys[i]->cgroup; | 572 | struct cgroup *c = link->cgrp; |
494 | struct cgroup_subsys *ss = subsys[i]; | 573 | if (c->root == cgrp->root) |
495 | atomic_inc(&cgrp->count); | 574 | c = cgrp; |
496 | /* | 575 | link_css_set(&tmp_cg_links, res, c); |
497 | * We want to add a link once per cgroup, so we | ||
498 | * only do it for the first subsystem in each | ||
499 | * hierarchy | ||
500 | */ | ||
501 | if (ss->root->subsys_list.next == &ss->sibling) | ||
502 | link_css_set(&tmp_cg_links, res, cgrp); | ||
503 | } | 576 | } |
504 | if (list_empty(&rootnode.subsys_list)) | ||
505 | link_css_set(&tmp_cg_links, res, dummytop); | ||
506 | 577 | ||
507 | BUG_ON(!list_empty(&tmp_cg_links)); | 578 | BUG_ON(!list_empty(&tmp_cg_links)); |
508 | 579 | ||
@@ -518,6 +589,41 @@ static struct css_set *find_css_set( | |||
518 | } | 589 | } |
519 | 590 | ||
520 | /* | 591 | /* |
592 | * Return the cgroup for "task" from the given hierarchy. Must be | ||
593 | * called with cgroup_mutex held. | ||
594 | */ | ||
595 | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | ||
596 | struct cgroupfs_root *root) | ||
597 | { | ||
598 | struct css_set *css; | ||
599 | struct cgroup *res = NULL; | ||
600 | |||
601 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | ||
602 | read_lock(&css_set_lock); | ||
603 | /* | ||
604 | * No need to lock the task - since we hold cgroup_mutex the | ||
605 | * task can't change groups, so the only thing that can happen | ||
606 | * is that it exits and its css is set back to init_css_set. | ||
607 | */ | ||
608 | css = task->cgroups; | ||
609 | if (css == &init_css_set) { | ||
610 | res = &root->top_cgroup; | ||
611 | } else { | ||
612 | struct cg_cgroup_link *link; | ||
613 | list_for_each_entry(link, &css->cg_links, cg_link_list) { | ||
614 | struct cgroup *c = link->cgrp; | ||
615 | if (c->root == root) { | ||
616 | res = c; | ||
617 | break; | ||
618 | } | ||
619 | } | ||
620 | } | ||
621 | read_unlock(&css_set_lock); | ||
622 | BUG_ON(!res); | ||
623 | return res; | ||
624 | } | ||
625 | |||
626 | /* | ||
521 | * There is one global cgroup mutex. We also require taking | 627 | * There is one global cgroup mutex. We also require taking |
522 | * task_lock() when dereferencing a task's cgroup subsys pointers. | 628 | * task_lock() when dereferencing a task's cgroup subsys pointers. |
523 | * See "The task_lock() exception", at the end of this comment. | 629 | * See "The task_lock() exception", at the end of this comment. |
@@ -596,8 +702,8 @@ void cgroup_unlock(void) | |||
596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 702 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 703 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
598 | static int cgroup_populate_dir(struct cgroup *cgrp); | 704 | static int cgroup_populate_dir(struct cgroup *cgrp); |
599 | static struct inode_operations cgroup_dir_inode_operations; | 705 | static const struct inode_operations cgroup_dir_inode_operations; |
600 | static struct file_operations proc_cgroupstats_operations; | 706 | static const struct file_operations proc_cgroupstats_operations; |
601 | 707 | ||
602 | static struct backing_dev_info cgroup_backing_dev_info = { | 708 | static struct backing_dev_info cgroup_backing_dev_info = { |
603 | .name = "cgroup", | 709 | .name = "cgroup", |
@@ -677,6 +783,12 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode) | |||
677 | */ | 783 | */ |
678 | deactivate_super(cgrp->root->sb); | 784 | deactivate_super(cgrp->root->sb); |
679 | 785 | ||
786 | /* | ||
787 | * if we're getting rid of the cgroup, refcount should ensure | ||
788 | * that there are no pidlists left. | ||
789 | */ | ||
790 | BUG_ON(!list_empty(&cgrp->pidlists)); | ||
791 | |||
680 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); | 792 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); |
681 | } | 793 | } |
682 | iput(inode); | 794 | iput(inode); |
@@ -841,6 +953,8 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | |||
841 | seq_puts(seq, ",noprefix"); | 953 | seq_puts(seq, ",noprefix"); |
842 | if (strlen(root->release_agent_path)) | 954 | if (strlen(root->release_agent_path)) |
843 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 955 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); |
956 | if (strlen(root->name)) | ||
957 | seq_printf(seq, ",name=%s", root->name); | ||
844 | mutex_unlock(&cgroup_mutex); | 958 | mutex_unlock(&cgroup_mutex); |
845 | return 0; | 959 | return 0; |
846 | } | 960 | } |
@@ -849,6 +963,12 @@ struct cgroup_sb_opts { | |||
849 | unsigned long subsys_bits; | 963 | unsigned long subsys_bits; |
850 | unsigned long flags; | 964 | unsigned long flags; |
851 | char *release_agent; | 965 | char *release_agent; |
966 | char *name; | ||
967 | /* User explicitly requested empty subsystem */ | ||
968 | bool none; | ||
969 | |||
970 | struct cgroupfs_root *new_root; | ||
971 | |||
852 | }; | 972 | }; |
853 | 973 | ||
854 | /* Convert a hierarchy specifier into a bitmask of subsystems and | 974 | /* Convert a hierarchy specifier into a bitmask of subsystems and |
@@ -863,9 +983,7 @@ static int parse_cgroupfs_options(char *data, | |||
863 | mask = ~(1UL << cpuset_subsys_id); | 983 | mask = ~(1UL << cpuset_subsys_id); |
864 | #endif | 984 | #endif |
865 | 985 | ||
866 | opts->subsys_bits = 0; | 986 | memset(opts, 0, sizeof(*opts)); |
867 | opts->flags = 0; | ||
868 | opts->release_agent = NULL; | ||
869 | 987 | ||
870 | while ((token = strsep(&o, ",")) != NULL) { | 988 | while ((token = strsep(&o, ",")) != NULL) { |
871 | if (!*token) | 989 | if (!*token) |
@@ -879,17 +997,42 @@ static int parse_cgroupfs_options(char *data, | |||
879 | if (!ss->disabled) | 997 | if (!ss->disabled) |
880 | opts->subsys_bits |= 1ul << i; | 998 | opts->subsys_bits |= 1ul << i; |
881 | } | 999 | } |
1000 | } else if (!strcmp(token, "none")) { | ||
1001 | /* Explicitly have no subsystems */ | ||
1002 | opts->none = true; | ||
882 | } else if (!strcmp(token, "noprefix")) { | 1003 | } else if (!strcmp(token, "noprefix")) { |
883 | set_bit(ROOT_NOPREFIX, &opts->flags); | 1004 | set_bit(ROOT_NOPREFIX, &opts->flags); |
884 | } else if (!strncmp(token, "release_agent=", 14)) { | 1005 | } else if (!strncmp(token, "release_agent=", 14)) { |
885 | /* Specifying two release agents is forbidden */ | 1006 | /* Specifying two release agents is forbidden */ |
886 | if (opts->release_agent) | 1007 | if (opts->release_agent) |
887 | return -EINVAL; | 1008 | return -EINVAL; |
888 | opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); | 1009 | opts->release_agent = |
1010 | kstrndup(token + 14, PATH_MAX, GFP_KERNEL); | ||
889 | if (!opts->release_agent) | 1011 | if (!opts->release_agent) |
890 | return -ENOMEM; | 1012 | return -ENOMEM; |
891 | strncpy(opts->release_agent, token + 14, PATH_MAX - 1); | 1013 | } else if (!strncmp(token, "name=", 5)) { |
892 | opts->release_agent[PATH_MAX - 1] = 0; | 1014 | int i; |
1015 | const char *name = token + 5; | ||
1016 | /* Can't specify an empty name */ | ||
1017 | if (!strlen(name)) | ||
1018 | return -EINVAL; | ||
1019 | /* Must match [\w.-]+ */ | ||
1020 | for (i = 0; i < strlen(name); i++) { | ||
1021 | char c = name[i]; | ||
1022 | if (isalnum(c)) | ||
1023 | continue; | ||
1024 | if ((c == '.') || (c == '-') || (c == '_')) | ||
1025 | continue; | ||
1026 | return -EINVAL; | ||
1027 | } | ||
1028 | /* Specifying two names is forbidden */ | ||
1029 | if (opts->name) | ||
1030 | return -EINVAL; | ||
1031 | opts->name = kstrndup(name, | ||
1032 | MAX_CGROUP_ROOT_NAMELEN, | ||
1033 | GFP_KERNEL); | ||
1034 | if (!opts->name) | ||
1035 | return -ENOMEM; | ||
893 | } else { | 1036 | } else { |
894 | struct cgroup_subsys *ss; | 1037 | struct cgroup_subsys *ss; |
895 | int i; | 1038 | int i; |
@@ -906,6 +1049,8 @@ static int parse_cgroupfs_options(char *data, | |||
906 | } | 1049 | } |
907 | } | 1050 | } |
908 | 1051 | ||
1052 | /* Consistency checks */ | ||
1053 | |||
909 | /* | 1054 | /* |
910 | * Option noprefix was introduced just for backward compatibility | 1055 | * Option noprefix was introduced just for backward compatibility |
911 | * with the old cpuset, so we allow noprefix only if mounting just | 1056 | * with the old cpuset, so we allow noprefix only if mounting just |
@@ -915,8 +1060,16 @@ static int parse_cgroupfs_options(char *data, | |||
915 | (opts->subsys_bits & mask)) | 1060 | (opts->subsys_bits & mask)) |
916 | return -EINVAL; | 1061 | return -EINVAL; |
917 | 1062 | ||
918 | /* We can't have an empty hierarchy */ | 1063 | |
919 | if (!opts->subsys_bits) | 1064 | /* Can't specify "none" and some subsystems */ |
1065 | if (opts->subsys_bits && opts->none) | ||
1066 | return -EINVAL; | ||
1067 | |||
1068 | /* | ||
1069 | * We either have to specify by name or by subsystems. (So all | ||
1070 | * empty hierarchies must have a name). | ||
1071 | */ | ||
1072 | if (!opts->subsys_bits && !opts->name) | ||
920 | return -EINVAL; | 1073 | return -EINVAL; |
921 | 1074 | ||
922 | return 0; | 1075 | return 0; |
@@ -944,6 +1097,12 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
944 | goto out_unlock; | 1097 | goto out_unlock; |
945 | } | 1098 | } |
946 | 1099 | ||
1100 | /* Don't allow name to change at remount */ | ||
1101 | if (opts.name && strcmp(opts.name, root->name)) { | ||
1102 | ret = -EINVAL; | ||
1103 | goto out_unlock; | ||
1104 | } | ||
1105 | |||
947 | ret = rebind_subsystems(root, opts.subsys_bits); | 1106 | ret = rebind_subsystems(root, opts.subsys_bits); |
948 | if (ret) | 1107 | if (ret) |
949 | goto out_unlock; | 1108 | goto out_unlock; |
@@ -955,13 +1114,14 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
955 | strcpy(root->release_agent_path, opts.release_agent); | 1114 | strcpy(root->release_agent_path, opts.release_agent); |
956 | out_unlock: | 1115 | out_unlock: |
957 | kfree(opts.release_agent); | 1116 | kfree(opts.release_agent); |
1117 | kfree(opts.name); | ||
958 | mutex_unlock(&cgroup_mutex); | 1118 | mutex_unlock(&cgroup_mutex); |
959 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 1119 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
960 | unlock_kernel(); | 1120 | unlock_kernel(); |
961 | return ret; | 1121 | return ret; |
962 | } | 1122 | } |
963 | 1123 | ||
964 | static struct super_operations cgroup_ops = { | 1124 | static const struct super_operations cgroup_ops = { |
965 | .statfs = simple_statfs, | 1125 | .statfs = simple_statfs, |
966 | .drop_inode = generic_delete_inode, | 1126 | .drop_inode = generic_delete_inode, |
967 | .show_options = cgroup_show_options, | 1127 | .show_options = cgroup_show_options, |
@@ -974,9 +1134,10 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp) | |||
974 | INIT_LIST_HEAD(&cgrp->children); | 1134 | INIT_LIST_HEAD(&cgrp->children); |
975 | INIT_LIST_HEAD(&cgrp->css_sets); | 1135 | INIT_LIST_HEAD(&cgrp->css_sets); |
976 | INIT_LIST_HEAD(&cgrp->release_list); | 1136 | INIT_LIST_HEAD(&cgrp->release_list); |
977 | INIT_LIST_HEAD(&cgrp->pids_list); | 1137 | INIT_LIST_HEAD(&cgrp->pidlists); |
978 | init_rwsem(&cgrp->pids_mutex); | 1138 | mutex_init(&cgrp->pidlist_mutex); |
979 | } | 1139 | } |
1140 | |||
980 | static void init_cgroup_root(struct cgroupfs_root *root) | 1141 | static void init_cgroup_root(struct cgroupfs_root *root) |
981 | { | 1142 | { |
982 | struct cgroup *cgrp = &root->top_cgroup; | 1143 | struct cgroup *cgrp = &root->top_cgroup; |
@@ -988,33 +1149,106 @@ static void init_cgroup_root(struct cgroupfs_root *root) | |||
988 | init_cgroup_housekeeping(cgrp); | 1149 | init_cgroup_housekeeping(cgrp); |
989 | } | 1150 | } |
990 | 1151 | ||
1152 | static bool init_root_id(struct cgroupfs_root *root) | ||
1153 | { | ||
1154 | int ret = 0; | ||
1155 | |||
1156 | do { | ||
1157 | if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) | ||
1158 | return false; | ||
1159 | spin_lock(&hierarchy_id_lock); | ||
1160 | /* Try to allocate the next unused ID */ | ||
1161 | ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, | ||
1162 | &root->hierarchy_id); | ||
1163 | if (ret == -ENOSPC) | ||
1164 | /* Try again starting from 0 */ | ||
1165 | ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); | ||
1166 | if (!ret) { | ||
1167 | next_hierarchy_id = root->hierarchy_id + 1; | ||
1168 | } else if (ret != -EAGAIN) { | ||
1169 | /* Can only get here if the 31-bit IDR is full ... */ | ||
1170 | BUG_ON(ret); | ||
1171 | } | ||
1172 | spin_unlock(&hierarchy_id_lock); | ||
1173 | } while (ret); | ||
1174 | return true; | ||
1175 | } | ||
1176 | |||
991 | static int cgroup_test_super(struct super_block *sb, void *data) | 1177 | static int cgroup_test_super(struct super_block *sb, void *data) |
992 | { | 1178 | { |
993 | struct cgroupfs_root *new = data; | 1179 | struct cgroup_sb_opts *opts = data; |
994 | struct cgroupfs_root *root = sb->s_fs_info; | 1180 | struct cgroupfs_root *root = sb->s_fs_info; |
995 | 1181 | ||
996 | /* First check subsystems */ | 1182 | /* If we asked for a name then it must match */ |
997 | if (new->subsys_bits != root->subsys_bits) | 1183 | if (opts->name && strcmp(opts->name, root->name)) |
998 | return 0; | 1184 | return 0; |
999 | 1185 | ||
1000 | /* Next check flags */ | 1186 | /* |
1001 | if (new->flags != root->flags) | 1187 | * If we asked for subsystems (or explicitly for no |
1188 | * subsystems) then they must match | ||
1189 | */ | ||
1190 | if ((opts->subsys_bits || opts->none) | ||
1191 | && (opts->subsys_bits != root->subsys_bits)) | ||
1002 | return 0; | 1192 | return 0; |
1003 | 1193 | ||
1004 | return 1; | 1194 | return 1; |
1005 | } | 1195 | } |
1006 | 1196 | ||
1197 | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) | ||
1198 | { | ||
1199 | struct cgroupfs_root *root; | ||
1200 | |||
1201 | if (!opts->subsys_bits && !opts->none) | ||
1202 | return NULL; | ||
1203 | |||
1204 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
1205 | if (!root) | ||
1206 | return ERR_PTR(-ENOMEM); | ||
1207 | |||
1208 | if (!init_root_id(root)) { | ||
1209 | kfree(root); | ||
1210 | return ERR_PTR(-ENOMEM); | ||
1211 | } | ||
1212 | init_cgroup_root(root); | ||
1213 | |||
1214 | root->subsys_bits = opts->subsys_bits; | ||
1215 | root->flags = opts->flags; | ||
1216 | if (opts->release_agent) | ||
1217 | strcpy(root->release_agent_path, opts->release_agent); | ||
1218 | if (opts->name) | ||
1219 | strcpy(root->name, opts->name); | ||
1220 | return root; | ||
1221 | } | ||
1222 | |||
1223 | static void cgroup_drop_root(struct cgroupfs_root *root) | ||
1224 | { | ||
1225 | if (!root) | ||
1226 | return; | ||
1227 | |||
1228 | BUG_ON(!root->hierarchy_id); | ||
1229 | spin_lock(&hierarchy_id_lock); | ||
1230 | ida_remove(&hierarchy_ida, root->hierarchy_id); | ||
1231 | spin_unlock(&hierarchy_id_lock); | ||
1232 | kfree(root); | ||
1233 | } | ||
1234 | |||
1007 | static int cgroup_set_super(struct super_block *sb, void *data) | 1235 | static int cgroup_set_super(struct super_block *sb, void *data) |
1008 | { | 1236 | { |
1009 | int ret; | 1237 | int ret; |
1010 | struct cgroupfs_root *root = data; | 1238 | struct cgroup_sb_opts *opts = data; |
1239 | |||
1240 | /* If we don't have a new root, we can't set up a new sb */ | ||
1241 | if (!opts->new_root) | ||
1242 | return -EINVAL; | ||
1243 | |||
1244 | BUG_ON(!opts->subsys_bits && !opts->none); | ||
1011 | 1245 | ||
1012 | ret = set_anon_super(sb, NULL); | 1246 | ret = set_anon_super(sb, NULL); |
1013 | if (ret) | 1247 | if (ret) |
1014 | return ret; | 1248 | return ret; |
1015 | 1249 | ||
1016 | sb->s_fs_info = root; | 1250 | sb->s_fs_info = opts->new_root; |
1017 | root->sb = sb; | 1251 | opts->new_root->sb = sb; |
1018 | 1252 | ||
1019 | sb->s_blocksize = PAGE_CACHE_SIZE; | 1253 | sb->s_blocksize = PAGE_CACHE_SIZE; |
1020 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 1254 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
@@ -1051,48 +1285,43 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1051 | void *data, struct vfsmount *mnt) | 1285 | void *data, struct vfsmount *mnt) |
1052 | { | 1286 | { |
1053 | struct cgroup_sb_opts opts; | 1287 | struct cgroup_sb_opts opts; |
1288 | struct cgroupfs_root *root; | ||
1054 | int ret = 0; | 1289 | int ret = 0; |
1055 | struct super_block *sb; | 1290 | struct super_block *sb; |
1056 | struct cgroupfs_root *root; | 1291 | struct cgroupfs_root *new_root; |
1057 | struct list_head tmp_cg_links; | ||
1058 | 1292 | ||
1059 | /* First find the desired set of subsystems */ | 1293 | /* First find the desired set of subsystems */ |
1060 | ret = parse_cgroupfs_options(data, &opts); | 1294 | ret = parse_cgroupfs_options(data, &opts); |
1061 | if (ret) { | 1295 | if (ret) |
1062 | kfree(opts.release_agent); | 1296 | goto out_err; |
1063 | return ret; | ||
1064 | } | ||
1065 | |||
1066 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
1067 | if (!root) { | ||
1068 | kfree(opts.release_agent); | ||
1069 | return -ENOMEM; | ||
1070 | } | ||
1071 | 1297 | ||
1072 | init_cgroup_root(root); | 1298 | /* |
1073 | root->subsys_bits = opts.subsys_bits; | 1299 | * Allocate a new cgroup root. We may not need it if we're |
1074 | root->flags = opts.flags; | 1300 | * reusing an existing hierarchy. |
1075 | if (opts.release_agent) { | 1301 | */ |
1076 | strcpy(root->release_agent_path, opts.release_agent); | 1302 | new_root = cgroup_root_from_opts(&opts); |
1077 | kfree(opts.release_agent); | 1303 | if (IS_ERR(new_root)) { |
1304 | ret = PTR_ERR(new_root); | ||
1305 | goto out_err; | ||
1078 | } | 1306 | } |
1307 | opts.new_root = new_root; | ||
1079 | 1308 | ||
1080 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); | 1309 | /* Locate an existing or new sb for this hierarchy */ |
1081 | 1310 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); | |
1082 | if (IS_ERR(sb)) { | 1311 | if (IS_ERR(sb)) { |
1083 | kfree(root); | 1312 | ret = PTR_ERR(sb); |
1084 | return PTR_ERR(sb); | 1313 | cgroup_drop_root(opts.new_root); |
1314 | goto out_err; | ||
1085 | } | 1315 | } |
1086 | 1316 | ||
1087 | if (sb->s_fs_info != root) { | 1317 | root = sb->s_fs_info; |
1088 | /* Reusing an existing superblock */ | 1318 | BUG_ON(!root); |
1089 | BUG_ON(sb->s_root == NULL); | 1319 | if (root == opts.new_root) { |
1090 | kfree(root); | 1320 | /* We used the new root structure, so this is a new hierarchy */ |
1091 | root = NULL; | 1321 | struct list_head tmp_cg_links; |
1092 | } else { | ||
1093 | /* New superblock */ | ||
1094 | struct cgroup *root_cgrp = &root->top_cgroup; | 1322 | struct cgroup *root_cgrp = &root->top_cgroup; |
1095 | struct inode *inode; | 1323 | struct inode *inode; |
1324 | struct cgroupfs_root *existing_root; | ||
1096 | int i; | 1325 | int i; |
1097 | 1326 | ||
1098 | BUG_ON(sb->s_root != NULL); | 1327 | BUG_ON(sb->s_root != NULL); |
@@ -1105,6 +1334,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1105 | mutex_lock(&inode->i_mutex); | 1334 | mutex_lock(&inode->i_mutex); |
1106 | mutex_lock(&cgroup_mutex); | 1335 | mutex_lock(&cgroup_mutex); |
1107 | 1336 | ||
1337 | if (strlen(root->name)) { | ||
1338 | /* Check for name clashes with existing mounts */ | ||
1339 | for_each_active_root(existing_root) { | ||
1340 | if (!strcmp(existing_root->name, root->name)) { | ||
1341 | ret = -EBUSY; | ||
1342 | mutex_unlock(&cgroup_mutex); | ||
1343 | mutex_unlock(&inode->i_mutex); | ||
1344 | goto drop_new_super; | ||
1345 | } | ||
1346 | } | ||
1347 | } | ||
1348 | |||
1108 | /* | 1349 | /* |
1109 | * We're accessing css_set_count without locking | 1350 | * We're accessing css_set_count without locking |
1110 | * css_set_lock here, but that's OK - it can only be | 1351 | * css_set_lock here, but that's OK - it can only be |
@@ -1123,7 +1364,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1123 | if (ret == -EBUSY) { | 1364 | if (ret == -EBUSY) { |
1124 | mutex_unlock(&cgroup_mutex); | 1365 | mutex_unlock(&cgroup_mutex); |
1125 | mutex_unlock(&inode->i_mutex); | 1366 | mutex_unlock(&inode->i_mutex); |
1126 | goto free_cg_links; | 1367 | free_cg_links(&tmp_cg_links); |
1368 | goto drop_new_super; | ||
1127 | } | 1369 | } |
1128 | 1370 | ||
1129 | /* EBUSY should be the only error here */ | 1371 | /* EBUSY should be the only error here */ |
@@ -1155,17 +1397,27 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1155 | BUG_ON(root->number_of_cgroups != 1); | 1397 | BUG_ON(root->number_of_cgroups != 1); |
1156 | 1398 | ||
1157 | cgroup_populate_dir(root_cgrp); | 1399 | cgroup_populate_dir(root_cgrp); |
1158 | mutex_unlock(&inode->i_mutex); | ||
1159 | mutex_unlock(&cgroup_mutex); | 1400 | mutex_unlock(&cgroup_mutex); |
1401 | mutex_unlock(&inode->i_mutex); | ||
1402 | } else { | ||
1403 | /* | ||
1404 | * We re-used an existing hierarchy - the new root (if | ||
1405 | * any) is not needed | ||
1406 | */ | ||
1407 | cgroup_drop_root(opts.new_root); | ||
1160 | } | 1408 | } |
1161 | 1409 | ||
1162 | simple_set_mnt(mnt, sb); | 1410 | simple_set_mnt(mnt, sb); |
1411 | kfree(opts.release_agent); | ||
1412 | kfree(opts.name); | ||
1163 | return 0; | 1413 | return 0; |
1164 | 1414 | ||
1165 | free_cg_links: | ||
1166 | free_cg_links(&tmp_cg_links); | ||
1167 | drop_new_super: | 1415 | drop_new_super: |
1168 | deactivate_locked_super(sb); | 1416 | deactivate_locked_super(sb); |
1417 | out_err: | ||
1418 | kfree(opts.release_agent); | ||
1419 | kfree(opts.name); | ||
1420 | |||
1169 | return ret; | 1421 | return ret; |
1170 | } | 1422 | } |
1171 | 1423 | ||
@@ -1211,7 +1463,7 @@ static void cgroup_kill_sb(struct super_block *sb) { | |||
1211 | mutex_unlock(&cgroup_mutex); | 1463 | mutex_unlock(&cgroup_mutex); |
1212 | 1464 | ||
1213 | kill_litter_super(sb); | 1465 | kill_litter_super(sb); |
1214 | kfree(root); | 1466 | cgroup_drop_root(root); |
1215 | } | 1467 | } |
1216 | 1468 | ||
1217 | static struct file_system_type cgroup_fs_type = { | 1469 | static struct file_system_type cgroup_fs_type = { |
@@ -1276,27 +1528,6 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | |||
1276 | return 0; | 1528 | return 0; |
1277 | } | 1529 | } |
1278 | 1530 | ||
1279 | /* | ||
1280 | * Return the first subsystem attached to a cgroup's hierarchy, and | ||
1281 | * its subsystem id. | ||
1282 | */ | ||
1283 | |||
1284 | static void get_first_subsys(const struct cgroup *cgrp, | ||
1285 | struct cgroup_subsys_state **css, int *subsys_id) | ||
1286 | { | ||
1287 | const struct cgroupfs_root *root = cgrp->root; | ||
1288 | const struct cgroup_subsys *test_ss; | ||
1289 | BUG_ON(list_empty(&root->subsys_list)); | ||
1290 | test_ss = list_entry(root->subsys_list.next, | ||
1291 | struct cgroup_subsys, sibling); | ||
1292 | if (css) { | ||
1293 | *css = cgrp->subsys[test_ss->subsys_id]; | ||
1294 | BUG_ON(!*css); | ||
1295 | } | ||
1296 | if (subsys_id) | ||
1297 | *subsys_id = test_ss->subsys_id; | ||
1298 | } | ||
1299 | |||
1300 | /** | 1531 | /** |
1301 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 1532 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' |
1302 | * @cgrp: the cgroup the task is attaching to | 1533 | * @cgrp: the cgroup the task is attaching to |
@@ -1313,18 +1544,15 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
1313 | struct css_set *cg; | 1544 | struct css_set *cg; |
1314 | struct css_set *newcg; | 1545 | struct css_set *newcg; |
1315 | struct cgroupfs_root *root = cgrp->root; | 1546 | struct cgroupfs_root *root = cgrp->root; |
1316 | int subsys_id; | ||
1317 | |||
1318 | get_first_subsys(cgrp, NULL, &subsys_id); | ||
1319 | 1547 | ||
1320 | /* Nothing to do if the task is already in that cgroup */ | 1548 | /* Nothing to do if the task is already in that cgroup */ |
1321 | oldcgrp = task_cgroup(tsk, subsys_id); | 1549 | oldcgrp = task_cgroup_from_root(tsk, root); |
1322 | if (cgrp == oldcgrp) | 1550 | if (cgrp == oldcgrp) |
1323 | return 0; | 1551 | return 0; |
1324 | 1552 | ||
1325 | for_each_subsys(root, ss) { | 1553 | for_each_subsys(root, ss) { |
1326 | if (ss->can_attach) { | 1554 | if (ss->can_attach) { |
1327 | retval = ss->can_attach(ss, cgrp, tsk); | 1555 | retval = ss->can_attach(ss, cgrp, tsk, false); |
1328 | if (retval) | 1556 | if (retval) |
1329 | return retval; | 1557 | return retval; |
1330 | } | 1558 | } |
@@ -1362,7 +1590,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
1362 | 1590 | ||
1363 | for_each_subsys(root, ss) { | 1591 | for_each_subsys(root, ss) { |
1364 | if (ss->attach) | 1592 | if (ss->attach) |
1365 | ss->attach(ss, cgrp, oldcgrp, tsk); | 1593 | ss->attach(ss, cgrp, oldcgrp, tsk, false); |
1366 | } | 1594 | } |
1367 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 1595 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); |
1368 | synchronize_rcu(); | 1596 | synchronize_rcu(); |
@@ -1423,15 +1651,6 @@ static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | |||
1423 | return ret; | 1651 | return ret; |
1424 | } | 1652 | } |
1425 | 1653 | ||
1426 | /* The various types of files and directories in a cgroup file system */ | ||
1427 | enum cgroup_filetype { | ||
1428 | FILE_ROOT, | ||
1429 | FILE_DIR, | ||
1430 | FILE_TASKLIST, | ||
1431 | FILE_NOTIFY_ON_RELEASE, | ||
1432 | FILE_RELEASE_AGENT, | ||
1433 | }; | ||
1434 | |||
1435 | /** | 1654 | /** |
1436 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 1655 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. |
1437 | * @cgrp: the cgroup to be checked for liveness | 1656 | * @cgrp: the cgroup to be checked for liveness |
@@ -1644,7 +1863,7 @@ static int cgroup_seqfile_release(struct inode *inode, struct file *file) | |||
1644 | return single_release(inode, file); | 1863 | return single_release(inode, file); |
1645 | } | 1864 | } |
1646 | 1865 | ||
1647 | static struct file_operations cgroup_seqfile_operations = { | 1866 | static const struct file_operations cgroup_seqfile_operations = { |
1648 | .read = seq_read, | 1867 | .read = seq_read, |
1649 | .write = cgroup_file_write, | 1868 | .write = cgroup_file_write, |
1650 | .llseek = seq_lseek, | 1869 | .llseek = seq_lseek, |
@@ -1703,7 +1922,7 @@ static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, | |||
1703 | return simple_rename(old_dir, old_dentry, new_dir, new_dentry); | 1922 | return simple_rename(old_dir, old_dentry, new_dir, new_dentry); |
1704 | } | 1923 | } |
1705 | 1924 | ||
1706 | static struct file_operations cgroup_file_operations = { | 1925 | static const struct file_operations cgroup_file_operations = { |
1707 | .read = cgroup_file_read, | 1926 | .read = cgroup_file_read, |
1708 | .write = cgroup_file_write, | 1927 | .write = cgroup_file_write, |
1709 | .llseek = generic_file_llseek, | 1928 | .llseek = generic_file_llseek, |
@@ -1711,7 +1930,7 @@ static struct file_operations cgroup_file_operations = { | |||
1711 | .release = cgroup_file_release, | 1930 | .release = cgroup_file_release, |
1712 | }; | 1931 | }; |
1713 | 1932 | ||
1714 | static struct inode_operations cgroup_dir_inode_operations = { | 1933 | static const struct inode_operations cgroup_dir_inode_operations = { |
1715 | .lookup = simple_lookup, | 1934 | .lookup = simple_lookup, |
1716 | .mkdir = cgroup_mkdir, | 1935 | .mkdir = cgroup_mkdir, |
1717 | .rmdir = cgroup_rmdir, | 1936 | .rmdir = cgroup_rmdir, |
@@ -1876,7 +2095,7 @@ int cgroup_task_count(const struct cgroup *cgrp) | |||
1876 | * the start of a css_set | 2095 | * the start of a css_set |
1877 | */ | 2096 | */ |
1878 | static void cgroup_advance_iter(struct cgroup *cgrp, | 2097 | static void cgroup_advance_iter(struct cgroup *cgrp, |
1879 | struct cgroup_iter *it) | 2098 | struct cgroup_iter *it) |
1880 | { | 2099 | { |
1881 | struct list_head *l = it->cg_link; | 2100 | struct list_head *l = it->cg_link; |
1882 | struct cg_cgroup_link *link; | 2101 | struct cg_cgroup_link *link; |
@@ -2129,7 +2348,7 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
2129 | } | 2348 | } |
2130 | 2349 | ||
2131 | /* | 2350 | /* |
2132 | * Stuff for reading the 'tasks' file. | 2351 | * Stuff for reading the 'tasks'/'procs' files. |
2133 | * | 2352 | * |
2134 | * Reading this file can return large amounts of data if a cgroup has | 2353 | * Reading this file can return large amounts of data if a cgroup has |
2135 | * *lots* of attached tasks. So it may need several calls to read(), | 2354 | * *lots* of attached tasks. So it may need several calls to read(), |
@@ -2139,27 +2358,196 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
2139 | */ | 2358 | */ |
2140 | 2359 | ||
2141 | /* | 2360 | /* |
2142 | * Load into 'pidarray' up to 'npids' of the tasks using cgroup | 2361 | * The following two functions "fix" the issue where there are more pids |
2143 | * 'cgrp'. Return actual number of pids loaded. No need to | 2362 | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
2144 | * task_lock(p) when reading out p->cgroup, since we're in an RCU | 2363 | * TODO: replace with a kernel-wide solution to this problem |
2145 | * read section, so the css_set can't go away, and is | 2364 | */ |
2146 | * immutable after creation. | 2365 | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
2366 | static void *pidlist_allocate(int count) | ||
2367 | { | ||
2368 | if (PIDLIST_TOO_LARGE(count)) | ||
2369 | return vmalloc(count * sizeof(pid_t)); | ||
2370 | else | ||
2371 | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | ||
2372 | } | ||
2373 | static void pidlist_free(void *p) | ||
2374 | { | ||
2375 | if (is_vmalloc_addr(p)) | ||
2376 | vfree(p); | ||
2377 | else | ||
2378 | kfree(p); | ||
2379 | } | ||
2380 | static void *pidlist_resize(void *p, int newcount) | ||
2381 | { | ||
2382 | void *newlist; | ||
2383 | /* note: if new alloc fails, old p will still be valid either way */ | ||
2384 | if (is_vmalloc_addr(p)) { | ||
2385 | newlist = vmalloc(newcount * sizeof(pid_t)); | ||
2386 | if (!newlist) | ||
2387 | return NULL; | ||
2388 | memcpy(newlist, p, newcount * sizeof(pid_t)); | ||
2389 | vfree(p); | ||
2390 | } else { | ||
2391 | newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); | ||
2392 | } | ||
2393 | return newlist; | ||
2394 | } | ||
2395 | |||
2396 | /* | ||
2397 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries | ||
2398 | * If the new stripped list is sufficiently smaller and there's enough memory | ||
2399 | * to allocate a new buffer, will let go of the unneeded memory. Returns the | ||
2400 | * number of unique elements. | ||
2401 | */ | ||
2402 | /* is the size difference enough that we should re-allocate the array? */ | ||
2403 | #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) | ||
2404 | static int pidlist_uniq(pid_t **p, int length) | ||
2405 | { | ||
2406 | int src, dest = 1; | ||
2407 | pid_t *list = *p; | ||
2408 | pid_t *newlist; | ||
2409 | |||
2410 | /* | ||
2411 | * we presume the 0th element is unique, so i starts at 1. trivial | ||
2412 | * edge cases first; no work needs to be done for either | ||
2413 | */ | ||
2414 | if (length == 0 || length == 1) | ||
2415 | return length; | ||
2416 | /* src and dest walk down the list; dest counts unique elements */ | ||
2417 | for (src = 1; src < length; src++) { | ||
2418 | /* find next unique element */ | ||
2419 | while (list[src] == list[src-1]) { | ||
2420 | src++; | ||
2421 | if (src == length) | ||
2422 | goto after; | ||
2423 | } | ||
2424 | /* dest always points to where the next unique element goes */ | ||
2425 | list[dest] = list[src]; | ||
2426 | dest++; | ||
2427 | } | ||
2428 | after: | ||
2429 | /* | ||
2430 | * if the length difference is large enough, we want to allocate a | ||
2431 | * smaller buffer to save memory. if this fails due to out of memory, | ||
2432 | * we'll just stay with what we've got. | ||
2433 | */ | ||
2434 | if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { | ||
2435 | newlist = pidlist_resize(list, dest); | ||
2436 | if (newlist) | ||
2437 | *p = newlist; | ||
2438 | } | ||
2439 | return dest; | ||
2440 | } | ||
2441 | |||
2442 | static int cmppid(const void *a, const void *b) | ||
2443 | { | ||
2444 | return *(pid_t *)a - *(pid_t *)b; | ||
2445 | } | ||
2446 | |||
2447 | /* | ||
2448 | * find the appropriate pidlist for our purpose (given procs vs tasks) | ||
2449 | * returns with the lock on that pidlist already held, and takes care | ||
2450 | * of the use count, or returns NULL with no locks held if we're out of | ||
2451 | * memory. | ||
2147 | */ | 2452 | */ |
2148 | static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) | 2453 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
2454 | enum cgroup_filetype type) | ||
2149 | { | 2455 | { |
2150 | int n = 0, pid; | 2456 | struct cgroup_pidlist *l; |
2457 | /* don't need task_nsproxy() if we're looking at ourself */ | ||
2458 | struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns); | ||
2459 | /* | ||
2460 | * We can't drop the pidlist_mutex before taking the l->mutex in case | ||
2461 | * the last ref-holder is trying to remove l from the list at the same | ||
2462 | * time. Holding the pidlist_mutex precludes somebody taking whichever | ||
2463 | * list we find out from under us - compare release_pid_array(). | ||
2464 | */ | ||
2465 | mutex_lock(&cgrp->pidlist_mutex); | ||
2466 | list_for_each_entry(l, &cgrp->pidlists, links) { | ||
2467 | if (l->key.type == type && l->key.ns == ns) { | ||
2468 | /* found a matching list - drop the extra refcount */ | ||
2469 | put_pid_ns(ns); | ||
2470 | /* make sure l doesn't vanish out from under us */ | ||
2471 | down_write(&l->mutex); | ||
2472 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2473 | l->use_count++; | ||
2474 | return l; | ||
2475 | } | ||
2476 | } | ||
2477 | /* entry not found; create a new one */ | ||
2478 | l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | ||
2479 | if (!l) { | ||
2480 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2481 | put_pid_ns(ns); | ||
2482 | return l; | ||
2483 | } | ||
2484 | init_rwsem(&l->mutex); | ||
2485 | down_write(&l->mutex); | ||
2486 | l->key.type = type; | ||
2487 | l->key.ns = ns; | ||
2488 | l->use_count = 0; /* don't increment here */ | ||
2489 | l->list = NULL; | ||
2490 | l->owner = cgrp; | ||
2491 | list_add(&l->links, &cgrp->pidlists); | ||
2492 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2493 | return l; | ||
2494 | } | ||
2495 | |||
2496 | /* | ||
2497 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | ||
2498 | */ | ||
2499 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, | ||
2500 | struct cgroup_pidlist **lp) | ||
2501 | { | ||
2502 | pid_t *array; | ||
2503 | int length; | ||
2504 | int pid, n = 0; /* used for populating the array */ | ||
2151 | struct cgroup_iter it; | 2505 | struct cgroup_iter it; |
2152 | struct task_struct *tsk; | 2506 | struct task_struct *tsk; |
2507 | struct cgroup_pidlist *l; | ||
2508 | |||
2509 | /* | ||
2510 | * If cgroup gets more users after we read count, we won't have | ||
2511 | * enough space - tough. This race is indistinguishable to the | ||
2512 | * caller from the case that the additional cgroup users didn't | ||
2513 | * show up until sometime later on. | ||
2514 | */ | ||
2515 | length = cgroup_task_count(cgrp); | ||
2516 | array = pidlist_allocate(length); | ||
2517 | if (!array) | ||
2518 | return -ENOMEM; | ||
2519 | /* now, populate the array */ | ||
2153 | cgroup_iter_start(cgrp, &it); | 2520 | cgroup_iter_start(cgrp, &it); |
2154 | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 2521 | while ((tsk = cgroup_iter_next(cgrp, &it))) { |
2155 | if (unlikely(n == npids)) | 2522 | if (unlikely(n == length)) |
2156 | break; | 2523 | break; |
2157 | pid = task_pid_vnr(tsk); | 2524 | /* get tgid or pid for procs or tasks file respectively */ |
2158 | if (pid > 0) | 2525 | if (type == CGROUP_FILE_PROCS) |
2159 | pidarray[n++] = pid; | 2526 | pid = task_tgid_vnr(tsk); |
2527 | else | ||
2528 | pid = task_pid_vnr(tsk); | ||
2529 | if (pid > 0) /* make sure to only use valid results */ | ||
2530 | array[n++] = pid; | ||
2160 | } | 2531 | } |
2161 | cgroup_iter_end(cgrp, &it); | 2532 | cgroup_iter_end(cgrp, &it); |
2162 | return n; | 2533 | length = n; |
2534 | /* now sort & (if procs) strip out duplicates */ | ||
2535 | sort(array, length, sizeof(pid_t), cmppid, NULL); | ||
2536 | if (type == CGROUP_FILE_PROCS) | ||
2537 | length = pidlist_uniq(&array, length); | ||
2538 | l = cgroup_pidlist_find(cgrp, type); | ||
2539 | if (!l) { | ||
2540 | pidlist_free(array); | ||
2541 | return -ENOMEM; | ||
2542 | } | ||
2543 | /* store array, freeing old if necessary - lock already held */ | ||
2544 | pidlist_free(l->list); | ||
2545 | l->list = array; | ||
2546 | l->length = length; | ||
2547 | l->use_count++; | ||
2548 | up_write(&l->mutex); | ||
2549 | *lp = l; | ||
2550 | return 0; | ||
2163 | } | 2551 | } |
2164 | 2552 | ||
2165 | /** | 2553 | /** |
@@ -2216,37 +2604,14 @@ err: | |||
2216 | return ret; | 2604 | return ret; |
2217 | } | 2605 | } |
2218 | 2606 | ||
2219 | /* | ||
2220 | * Cache pids for all threads in the same pid namespace that are | ||
2221 | * opening the same "tasks" file. | ||
2222 | */ | ||
2223 | struct cgroup_pids { | ||
2224 | /* The node in cgrp->pids_list */ | ||
2225 | struct list_head list; | ||
2226 | /* The cgroup those pids belong to */ | ||
2227 | struct cgroup *cgrp; | ||
2228 | /* The namepsace those pids belong to */ | ||
2229 | struct pid_namespace *ns; | ||
2230 | /* Array of process ids in the cgroup */ | ||
2231 | pid_t *tasks_pids; | ||
2232 | /* How many files are using the this tasks_pids array */ | ||
2233 | int use_count; | ||
2234 | /* Length of the current tasks_pids array */ | ||
2235 | int length; | ||
2236 | }; | ||
2237 | |||
2238 | static int cmppid(const void *a, const void *b) | ||
2239 | { | ||
2240 | return *(pid_t *)a - *(pid_t *)b; | ||
2241 | } | ||
2242 | 2607 | ||
2243 | /* | 2608 | /* |
2244 | * seq_file methods for the "tasks" file. The seq_file position is the | 2609 | * seq_file methods for the tasks/procs files. The seq_file position is the |
2245 | * next pid to display; the seq_file iterator is a pointer to the pid | 2610 | * next pid to display; the seq_file iterator is a pointer to the pid |
2246 | * in the cgroup->tasks_pids array. | 2611 | * in the cgroup->l->list array. |
2247 | */ | 2612 | */ |
2248 | 2613 | ||
2249 | static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | 2614 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
2250 | { | 2615 | { |
2251 | /* | 2616 | /* |
2252 | * Initially we receive a position value that corresponds to | 2617 | * Initially we receive a position value that corresponds to |
@@ -2254,48 +2619,45 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | |||
2254 | * after a seek to the start). Use a binary-search to find the | 2619 | * after a seek to the start). Use a binary-search to find the |
2255 | * next pid to display, if any | 2620 | * next pid to display, if any |
2256 | */ | 2621 | */ |
2257 | struct cgroup_pids *cp = s->private; | 2622 | struct cgroup_pidlist *l = s->private; |
2258 | struct cgroup *cgrp = cp->cgrp; | ||
2259 | int index = 0, pid = *pos; | 2623 | int index = 0, pid = *pos; |
2260 | int *iter; | 2624 | int *iter; |
2261 | 2625 | ||
2262 | down_read(&cgrp->pids_mutex); | 2626 | down_read(&l->mutex); |
2263 | if (pid) { | 2627 | if (pid) { |
2264 | int end = cp->length; | 2628 | int end = l->length; |
2265 | 2629 | ||
2266 | while (index < end) { | 2630 | while (index < end) { |
2267 | int mid = (index + end) / 2; | 2631 | int mid = (index + end) / 2; |
2268 | if (cp->tasks_pids[mid] == pid) { | 2632 | if (l->list[mid] == pid) { |
2269 | index = mid; | 2633 | index = mid; |
2270 | break; | 2634 | break; |
2271 | } else if (cp->tasks_pids[mid] <= pid) | 2635 | } else if (l->list[mid] <= pid) |
2272 | index = mid + 1; | 2636 | index = mid + 1; |
2273 | else | 2637 | else |
2274 | end = mid; | 2638 | end = mid; |
2275 | } | 2639 | } |
2276 | } | 2640 | } |
2277 | /* If we're off the end of the array, we're done */ | 2641 | /* If we're off the end of the array, we're done */ |
2278 | if (index >= cp->length) | 2642 | if (index >= l->length) |
2279 | return NULL; | 2643 | return NULL; |
2280 | /* Update the abstract position to be the actual pid that we found */ | 2644 | /* Update the abstract position to be the actual pid that we found */ |
2281 | iter = cp->tasks_pids + index; | 2645 | iter = l->list + index; |
2282 | *pos = *iter; | 2646 | *pos = *iter; |
2283 | return iter; | 2647 | return iter; |
2284 | } | 2648 | } |
2285 | 2649 | ||
2286 | static void cgroup_tasks_stop(struct seq_file *s, void *v) | 2650 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
2287 | { | 2651 | { |
2288 | struct cgroup_pids *cp = s->private; | 2652 | struct cgroup_pidlist *l = s->private; |
2289 | struct cgroup *cgrp = cp->cgrp; | 2653 | up_read(&l->mutex); |
2290 | up_read(&cgrp->pids_mutex); | ||
2291 | } | 2654 | } |
2292 | 2655 | ||
2293 | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | 2656 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
2294 | { | 2657 | { |
2295 | struct cgroup_pids *cp = s->private; | 2658 | struct cgroup_pidlist *l = s->private; |
2296 | int *p = v; | 2659 | pid_t *p = v; |
2297 | int *end = cp->tasks_pids + cp->length; | 2660 | pid_t *end = l->list + l->length; |
2298 | |||
2299 | /* | 2661 | /* |
2300 | * Advance to the next pid in the array. If this goes off the | 2662 | * Advance to the next pid in the array. If this goes off the |
2301 | * end, we're done | 2663 | * end, we're done |
@@ -2309,124 +2671,107 @@ static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | |||
2309 | } | 2671 | } |
2310 | } | 2672 | } |
2311 | 2673 | ||
2312 | static int cgroup_tasks_show(struct seq_file *s, void *v) | 2674 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
2313 | { | 2675 | { |
2314 | return seq_printf(s, "%d\n", *(int *)v); | 2676 | return seq_printf(s, "%d\n", *(int *)v); |
2315 | } | 2677 | } |
2316 | 2678 | ||
2317 | static struct seq_operations cgroup_tasks_seq_operations = { | 2679 | /* |
2318 | .start = cgroup_tasks_start, | 2680 | * seq_operations functions for iterating on pidlists through seq_file - |
2319 | .stop = cgroup_tasks_stop, | 2681 | * independent of whether it's tasks or procs |
2320 | .next = cgroup_tasks_next, | 2682 | */ |
2321 | .show = cgroup_tasks_show, | 2683 | static const struct seq_operations cgroup_pidlist_seq_operations = { |
2684 | .start = cgroup_pidlist_start, | ||
2685 | .stop = cgroup_pidlist_stop, | ||
2686 | .next = cgroup_pidlist_next, | ||
2687 | .show = cgroup_pidlist_show, | ||
2322 | }; | 2688 | }; |
2323 | 2689 | ||
2324 | static void release_cgroup_pid_array(struct cgroup_pids *cp) | 2690 | static void cgroup_release_pid_array(struct cgroup_pidlist *l) |
2325 | { | 2691 | { |
2326 | struct cgroup *cgrp = cp->cgrp; | 2692 | /* |
2327 | 2693 | * the case where we're the last user of this particular pidlist will | |
2328 | down_write(&cgrp->pids_mutex); | 2694 | * have us remove it from the cgroup's list, which entails taking the |
2329 | BUG_ON(!cp->use_count); | 2695 | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> |
2330 | if (!--cp->use_count) { | 2696 | * pidlist_mutex, we have to take pidlist_mutex first. |
2331 | list_del(&cp->list); | 2697 | */ |
2332 | put_pid_ns(cp->ns); | 2698 | mutex_lock(&l->owner->pidlist_mutex); |
2333 | kfree(cp->tasks_pids); | 2699 | down_write(&l->mutex); |
2334 | kfree(cp); | 2700 | BUG_ON(!l->use_count); |
2701 | if (!--l->use_count) { | ||
2702 | /* we're the last user if refcount is 0; remove and free */ | ||
2703 | list_del(&l->links); | ||
2704 | mutex_unlock(&l->owner->pidlist_mutex); | ||
2705 | pidlist_free(l->list); | ||
2706 | put_pid_ns(l->key.ns); | ||
2707 | up_write(&l->mutex); | ||
2708 | kfree(l); | ||
2709 | return; | ||
2335 | } | 2710 | } |
2336 | up_write(&cgrp->pids_mutex); | 2711 | mutex_unlock(&l->owner->pidlist_mutex); |
2712 | up_write(&l->mutex); | ||
2337 | } | 2713 | } |
2338 | 2714 | ||
2339 | static int cgroup_tasks_release(struct inode *inode, struct file *file) | 2715 | static int cgroup_pidlist_release(struct inode *inode, struct file *file) |
2340 | { | 2716 | { |
2341 | struct seq_file *seq; | 2717 | struct cgroup_pidlist *l; |
2342 | struct cgroup_pids *cp; | ||
2343 | |||
2344 | if (!(file->f_mode & FMODE_READ)) | 2718 | if (!(file->f_mode & FMODE_READ)) |
2345 | return 0; | 2719 | return 0; |
2346 | 2720 | /* | |
2347 | seq = file->private_data; | 2721 | * the seq_file will only be initialized if the file was opened for |
2348 | cp = seq->private; | 2722 | * reading; hence we check if it's not null only in that case. |
2349 | 2723 | */ | |
2350 | release_cgroup_pid_array(cp); | 2724 | l = ((struct seq_file *)file->private_data)->private; |
2725 | cgroup_release_pid_array(l); | ||
2351 | return seq_release(inode, file); | 2726 | return seq_release(inode, file); |
2352 | } | 2727 | } |
2353 | 2728 | ||
2354 | static struct file_operations cgroup_tasks_operations = { | 2729 | static const struct file_operations cgroup_pidlist_operations = { |
2355 | .read = seq_read, | 2730 | .read = seq_read, |
2356 | .llseek = seq_lseek, | 2731 | .llseek = seq_lseek, |
2357 | .write = cgroup_file_write, | 2732 | .write = cgroup_file_write, |
2358 | .release = cgroup_tasks_release, | 2733 | .release = cgroup_pidlist_release, |
2359 | }; | 2734 | }; |
2360 | 2735 | ||
2361 | /* | 2736 | /* |
2362 | * Handle an open on 'tasks' file. Prepare an array containing the | 2737 | * The following functions handle opens on a file that displays a pidlist |
2363 | * process id's of tasks currently attached to the cgroup being opened. | 2738 | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's |
2739 | * in the cgroup. | ||
2364 | */ | 2740 | */ |
2365 | 2741 | /* helper function for the two below it */ | |
2366 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 2742 | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) |
2367 | { | 2743 | { |
2368 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 2744 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
2369 | struct pid_namespace *ns = current->nsproxy->pid_ns; | 2745 | struct cgroup_pidlist *l; |
2370 | struct cgroup_pids *cp; | ||
2371 | pid_t *pidarray; | ||
2372 | int npids; | ||
2373 | int retval; | 2746 | int retval; |
2374 | 2747 | ||
2375 | /* Nothing to do for write-only files */ | 2748 | /* Nothing to do for write-only files */ |
2376 | if (!(file->f_mode & FMODE_READ)) | 2749 | if (!(file->f_mode & FMODE_READ)) |
2377 | return 0; | 2750 | return 0; |
2378 | 2751 | ||
2379 | /* | 2752 | /* have the array populated */ |
2380 | * If cgroup gets more users after we read count, we won't have | 2753 | retval = pidlist_array_load(cgrp, type, &l); |
2381 | * enough space - tough. This race is indistinguishable to the | 2754 | if (retval) |
2382 | * caller from the case that the additional cgroup users didn't | 2755 | return retval; |
2383 | * show up until sometime later on. | 2756 | /* configure file information */ |
2384 | */ | 2757 | file->f_op = &cgroup_pidlist_operations; |
2385 | npids = cgroup_task_count(cgrp); | ||
2386 | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | ||
2387 | if (!pidarray) | ||
2388 | return -ENOMEM; | ||
2389 | npids = pid_array_load(pidarray, npids, cgrp); | ||
2390 | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | ||
2391 | |||
2392 | /* | ||
2393 | * Store the array in the cgroup, freeing the old | ||
2394 | * array if necessary | ||
2395 | */ | ||
2396 | down_write(&cgrp->pids_mutex); | ||
2397 | |||
2398 | list_for_each_entry(cp, &cgrp->pids_list, list) { | ||
2399 | if (ns == cp->ns) | ||
2400 | goto found; | ||
2401 | } | ||
2402 | |||
2403 | cp = kzalloc(sizeof(*cp), GFP_KERNEL); | ||
2404 | if (!cp) { | ||
2405 | up_write(&cgrp->pids_mutex); | ||
2406 | kfree(pidarray); | ||
2407 | return -ENOMEM; | ||
2408 | } | ||
2409 | cp->cgrp = cgrp; | ||
2410 | cp->ns = ns; | ||
2411 | get_pid_ns(ns); | ||
2412 | list_add(&cp->list, &cgrp->pids_list); | ||
2413 | found: | ||
2414 | kfree(cp->tasks_pids); | ||
2415 | cp->tasks_pids = pidarray; | ||
2416 | cp->length = npids; | ||
2417 | cp->use_count++; | ||
2418 | up_write(&cgrp->pids_mutex); | ||
2419 | |||
2420 | file->f_op = &cgroup_tasks_operations; | ||
2421 | 2758 | ||
2422 | retval = seq_open(file, &cgroup_tasks_seq_operations); | 2759 | retval = seq_open(file, &cgroup_pidlist_seq_operations); |
2423 | if (retval) { | 2760 | if (retval) { |
2424 | release_cgroup_pid_array(cp); | 2761 | cgroup_release_pid_array(l); |
2425 | return retval; | 2762 | return retval; |
2426 | } | 2763 | } |
2427 | ((struct seq_file *)file->private_data)->private = cp; | 2764 | ((struct seq_file *)file->private_data)->private = l; |
2428 | return 0; | 2765 | return 0; |
2429 | } | 2766 | } |
2767 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | ||
2768 | { | ||
2769 | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); | ||
2770 | } | ||
2771 | static int cgroup_procs_open(struct inode *unused, struct file *file) | ||
2772 | { | ||
2773 | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); | ||
2774 | } | ||
2430 | 2775 | ||
2431 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 2776 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, |
2432 | struct cftype *cft) | 2777 | struct cftype *cft) |
@@ -2449,21 +2794,27 @@ static int cgroup_write_notify_on_release(struct cgroup *cgrp, | |||
2449 | /* | 2794 | /* |
2450 | * for the common functions, 'private' gives the type of file | 2795 | * for the common functions, 'private' gives the type of file |
2451 | */ | 2796 | */ |
2797 | /* for hysterical raisins, we can't put this on the older files */ | ||
2798 | #define CGROUP_FILE_GENERIC_PREFIX "cgroup." | ||
2452 | static struct cftype files[] = { | 2799 | static struct cftype files[] = { |
2453 | { | 2800 | { |
2454 | .name = "tasks", | 2801 | .name = "tasks", |
2455 | .open = cgroup_tasks_open, | 2802 | .open = cgroup_tasks_open, |
2456 | .write_u64 = cgroup_tasks_write, | 2803 | .write_u64 = cgroup_tasks_write, |
2457 | .release = cgroup_tasks_release, | 2804 | .release = cgroup_pidlist_release, |
2458 | .private = FILE_TASKLIST, | ||
2459 | .mode = S_IRUGO | S_IWUSR, | 2805 | .mode = S_IRUGO | S_IWUSR, |
2460 | }, | 2806 | }, |
2461 | 2807 | { | |
2808 | .name = CGROUP_FILE_GENERIC_PREFIX "procs", | ||
2809 | .open = cgroup_procs_open, | ||
2810 | /* .write_u64 = cgroup_procs_write, TODO */ | ||
2811 | .release = cgroup_pidlist_release, | ||
2812 | .mode = S_IRUGO, | ||
2813 | }, | ||
2462 | { | 2814 | { |
2463 | .name = "notify_on_release", | 2815 | .name = "notify_on_release", |
2464 | .read_u64 = cgroup_read_notify_on_release, | 2816 | .read_u64 = cgroup_read_notify_on_release, |
2465 | .write_u64 = cgroup_write_notify_on_release, | 2817 | .write_u64 = cgroup_write_notify_on_release, |
2466 | .private = FILE_NOTIFY_ON_RELEASE, | ||
2467 | }, | 2818 | }, |
2468 | }; | 2819 | }; |
2469 | 2820 | ||
@@ -2472,7 +2823,6 @@ static struct cftype cft_release_agent = { | |||
2472 | .read_seq_string = cgroup_release_agent_show, | 2823 | .read_seq_string = cgroup_release_agent_show, |
2473 | .write_string = cgroup_release_agent_write, | 2824 | .write_string = cgroup_release_agent_write, |
2474 | .max_write_len = PATH_MAX, | 2825 | .max_write_len = PATH_MAX, |
2475 | .private = FILE_RELEASE_AGENT, | ||
2476 | }; | 2826 | }; |
2477 | 2827 | ||
2478 | static int cgroup_populate_dir(struct cgroup *cgrp) | 2828 | static int cgroup_populate_dir(struct cgroup *cgrp) |
@@ -2879,6 +3229,7 @@ int __init cgroup_init_early(void) | |||
2879 | init_task.cgroups = &init_css_set; | 3229 | init_task.cgroups = &init_css_set; |
2880 | 3230 | ||
2881 | init_css_set_link.cg = &init_css_set; | 3231 | init_css_set_link.cg = &init_css_set; |
3232 | init_css_set_link.cgrp = dummytop; | ||
2882 | list_add(&init_css_set_link.cgrp_link_list, | 3233 | list_add(&init_css_set_link.cgrp_link_list, |
2883 | &rootnode.top_cgroup.css_sets); | 3234 | &rootnode.top_cgroup.css_sets); |
2884 | list_add(&init_css_set_link.cg_link_list, | 3235 | list_add(&init_css_set_link.cg_link_list, |
@@ -2933,7 +3284,7 @@ int __init cgroup_init(void) | |||
2933 | /* Add init_css_set to the hash table */ | 3284 | /* Add init_css_set to the hash table */ |
2934 | hhead = css_set_hash(init_css_set.subsys); | 3285 | hhead = css_set_hash(init_css_set.subsys); |
2935 | hlist_add_head(&init_css_set.hlist, hhead); | 3286 | hlist_add_head(&init_css_set.hlist, hhead); |
2936 | 3287 | BUG_ON(!init_root_id(&rootnode)); | |
2937 | err = register_filesystem(&cgroup_fs_type); | 3288 | err = register_filesystem(&cgroup_fs_type); |
2938 | if (err < 0) | 3289 | if (err < 0) |
2939 | goto out; | 3290 | goto out; |
@@ -2986,15 +3337,16 @@ static int proc_cgroup_show(struct seq_file *m, void *v) | |||
2986 | for_each_active_root(root) { | 3337 | for_each_active_root(root) { |
2987 | struct cgroup_subsys *ss; | 3338 | struct cgroup_subsys *ss; |
2988 | struct cgroup *cgrp; | 3339 | struct cgroup *cgrp; |
2989 | int subsys_id; | ||
2990 | int count = 0; | 3340 | int count = 0; |
2991 | 3341 | ||
2992 | seq_printf(m, "%lu:", root->subsys_bits); | 3342 | seq_printf(m, "%d:", root->hierarchy_id); |
2993 | for_each_subsys(root, ss) | 3343 | for_each_subsys(root, ss) |
2994 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 3344 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); |
3345 | if (strlen(root->name)) | ||
3346 | seq_printf(m, "%sname=%s", count ? "," : "", | ||
3347 | root->name); | ||
2995 | seq_putc(m, ':'); | 3348 | seq_putc(m, ':'); |
2996 | get_first_subsys(&root->top_cgroup, NULL, &subsys_id); | 3349 | cgrp = task_cgroup_from_root(tsk, root); |
2997 | cgrp = task_cgroup(tsk, subsys_id); | ||
2998 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 3350 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); |
2999 | if (retval < 0) | 3351 | if (retval < 0) |
3000 | goto out_unlock; | 3352 | goto out_unlock; |
@@ -3017,7 +3369,7 @@ static int cgroup_open(struct inode *inode, struct file *file) | |||
3017 | return single_open(file, proc_cgroup_show, pid); | 3369 | return single_open(file, proc_cgroup_show, pid); |
3018 | } | 3370 | } |
3019 | 3371 | ||
3020 | struct file_operations proc_cgroup_operations = { | 3372 | const struct file_operations proc_cgroup_operations = { |
3021 | .open = cgroup_open, | 3373 | .open = cgroup_open, |
3022 | .read = seq_read, | 3374 | .read = seq_read, |
3023 | .llseek = seq_lseek, | 3375 | .llseek = seq_lseek, |
@@ -3033,8 +3385,8 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v) | |||
3033 | mutex_lock(&cgroup_mutex); | 3385 | mutex_lock(&cgroup_mutex); |
3034 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 3386 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
3035 | struct cgroup_subsys *ss = subsys[i]; | 3387 | struct cgroup_subsys *ss = subsys[i]; |
3036 | seq_printf(m, "%s\t%lu\t%d\t%d\n", | 3388 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
3037 | ss->name, ss->root->subsys_bits, | 3389 | ss->name, ss->root->hierarchy_id, |
3038 | ss->root->number_of_cgroups, !ss->disabled); | 3390 | ss->root->number_of_cgroups, !ss->disabled); |
3039 | } | 3391 | } |
3040 | mutex_unlock(&cgroup_mutex); | 3392 | mutex_unlock(&cgroup_mutex); |
@@ -3046,7 +3398,7 @@ static int cgroupstats_open(struct inode *inode, struct file *file) | |||
3046 | return single_open(file, proc_cgroupstats_show, NULL); | 3398 | return single_open(file, proc_cgroupstats_show, NULL); |
3047 | } | 3399 | } |
3048 | 3400 | ||
3049 | static struct file_operations proc_cgroupstats_operations = { | 3401 | static const struct file_operations proc_cgroupstats_operations = { |
3050 | .open = cgroupstats_open, | 3402 | .open = cgroupstats_open, |
3051 | .read = seq_read, | 3403 | .read = seq_read, |
3052 | .llseek = seq_lseek, | 3404 | .llseek = seq_lseek, |
@@ -3320,13 +3672,11 @@ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) | |||
3320 | { | 3672 | { |
3321 | int ret; | 3673 | int ret; |
3322 | struct cgroup *target; | 3674 | struct cgroup *target; |
3323 | int subsys_id; | ||
3324 | 3675 | ||
3325 | if (cgrp == dummytop) | 3676 | if (cgrp == dummytop) |
3326 | return 1; | 3677 | return 1; |
3327 | 3678 | ||
3328 | get_first_subsys(cgrp, NULL, &subsys_id); | 3679 | target = task_cgroup_from_root(task, cgrp->root); |
3329 | target = task_cgroup(task, subsys_id); | ||
3330 | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 3680 | while (cgrp != target && cgrp!= cgrp->top_cgroup) |
3331 | cgrp = cgrp->parent; | 3681 | cgrp = cgrp->parent; |
3332 | ret = (cgrp == target); | 3682 | ret = (cgrp == target); |
@@ -3358,8 +3708,10 @@ static void check_for_release(struct cgroup *cgrp) | |||
3358 | void __css_put(struct cgroup_subsys_state *css) | 3708 | void __css_put(struct cgroup_subsys_state *css) |
3359 | { | 3709 | { |
3360 | struct cgroup *cgrp = css->cgroup; | 3710 | struct cgroup *cgrp = css->cgroup; |
3711 | int val; | ||
3361 | rcu_read_lock(); | 3712 | rcu_read_lock(); |
3362 | if (atomic_dec_return(&css->refcnt) == 1) { | 3713 | val = atomic_dec_return(&css->refcnt); |
3714 | if (val == 1) { | ||
3363 | if (notify_on_release(cgrp)) { | 3715 | if (notify_on_release(cgrp)) { |
3364 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 3716 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
3365 | check_for_release(cgrp); | 3717 | check_for_release(cgrp); |
@@ -3367,6 +3719,7 @@ void __css_put(struct cgroup_subsys_state *css) | |||
3367 | cgroup_wakeup_rmdir_waiter(cgrp); | 3719 | cgroup_wakeup_rmdir_waiter(cgrp); |
3368 | } | 3720 | } |
3369 | rcu_read_unlock(); | 3721 | rcu_read_unlock(); |
3722 | WARN_ON_ONCE(val < 1); | ||
3370 | } | 3723 | } |
3371 | 3724 | ||
3372 | /* | 3725 | /* |
@@ -3693,3 +4046,154 @@ css_get_next(struct cgroup_subsys *ss, int id, | |||
3693 | return ret; | 4046 | return ret; |
3694 | } | 4047 | } |
3695 | 4048 | ||
4049 | #ifdef CONFIG_CGROUP_DEBUG | ||
4050 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
4051 | struct cgroup *cont) | ||
4052 | { | ||
4053 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
4054 | |||
4055 | if (!css) | ||
4056 | return ERR_PTR(-ENOMEM); | ||
4057 | |||
4058 | return css; | ||
4059 | } | ||
4060 | |||
4061 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
4062 | { | ||
4063 | kfree(cont->subsys[debug_subsys_id]); | ||
4064 | } | ||
4065 | |||
4066 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
4067 | { | ||
4068 | return atomic_read(&cont->count); | ||
4069 | } | ||
4070 | |||
4071 | static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
4072 | { | ||
4073 | return cgroup_task_count(cont); | ||
4074 | } | ||
4075 | |||
4076 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
4077 | { | ||
4078 | return (u64)(unsigned long)current->cgroups; | ||
4079 | } | ||
4080 | |||
4081 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
4082 | struct cftype *cft) | ||
4083 | { | ||
4084 | u64 count; | ||
4085 | |||
4086 | rcu_read_lock(); | ||
4087 | count = atomic_read(¤t->cgroups->refcount); | ||
4088 | rcu_read_unlock(); | ||
4089 | return count; | ||
4090 | } | ||
4091 | |||
4092 | static int current_css_set_cg_links_read(struct cgroup *cont, | ||
4093 | struct cftype *cft, | ||
4094 | struct seq_file *seq) | ||
4095 | { | ||
4096 | struct cg_cgroup_link *link; | ||
4097 | struct css_set *cg; | ||
4098 | |||
4099 | read_lock(&css_set_lock); | ||
4100 | rcu_read_lock(); | ||
4101 | cg = rcu_dereference(current->cgroups); | ||
4102 | list_for_each_entry(link, &cg->cg_links, cg_link_list) { | ||
4103 | struct cgroup *c = link->cgrp; | ||
4104 | const char *name; | ||
4105 | |||
4106 | if (c->dentry) | ||
4107 | name = c->dentry->d_name.name; | ||
4108 | else | ||
4109 | name = "?"; | ||
4110 | seq_printf(seq, "Root %d group %s\n", | ||
4111 | c->root->hierarchy_id, name); | ||
4112 | } | ||
4113 | rcu_read_unlock(); | ||
4114 | read_unlock(&css_set_lock); | ||
4115 | return 0; | ||
4116 | } | ||
4117 | |||
4118 | #define MAX_TASKS_SHOWN_PER_CSS 25 | ||
4119 | static int cgroup_css_links_read(struct cgroup *cont, | ||
4120 | struct cftype *cft, | ||
4121 | struct seq_file *seq) | ||
4122 | { | ||
4123 | struct cg_cgroup_link *link; | ||
4124 | |||
4125 | read_lock(&css_set_lock); | ||
4126 | list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { | ||
4127 | struct css_set *cg = link->cg; | ||
4128 | struct task_struct *task; | ||
4129 | int count = 0; | ||
4130 | seq_printf(seq, "css_set %p\n", cg); | ||
4131 | list_for_each_entry(task, &cg->tasks, cg_list) { | ||
4132 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | ||
4133 | seq_puts(seq, " ...\n"); | ||
4134 | break; | ||
4135 | } else { | ||
4136 | seq_printf(seq, " task %d\n", | ||
4137 | task_pid_vnr(task)); | ||
4138 | } | ||
4139 | } | ||
4140 | } | ||
4141 | read_unlock(&css_set_lock); | ||
4142 | return 0; | ||
4143 | } | ||
4144 | |||
4145 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
4146 | { | ||
4147 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
4148 | } | ||
4149 | |||
4150 | static struct cftype debug_files[] = { | ||
4151 | { | ||
4152 | .name = "cgroup_refcount", | ||
4153 | .read_u64 = cgroup_refcount_read, | ||
4154 | }, | ||
4155 | { | ||
4156 | .name = "taskcount", | ||
4157 | .read_u64 = debug_taskcount_read, | ||
4158 | }, | ||
4159 | |||
4160 | { | ||
4161 | .name = "current_css_set", | ||
4162 | .read_u64 = current_css_set_read, | ||
4163 | }, | ||
4164 | |||
4165 | { | ||
4166 | .name = "current_css_set_refcount", | ||
4167 | .read_u64 = current_css_set_refcount_read, | ||
4168 | }, | ||
4169 | |||
4170 | { | ||
4171 | .name = "current_css_set_cg_links", | ||
4172 | .read_seq_string = current_css_set_cg_links_read, | ||
4173 | }, | ||
4174 | |||
4175 | { | ||
4176 | .name = "cgroup_css_links", | ||
4177 | .read_seq_string = cgroup_css_links_read, | ||
4178 | }, | ||
4179 | |||
4180 | { | ||
4181 | .name = "releasable", | ||
4182 | .read_u64 = releasable_read, | ||
4183 | }, | ||
4184 | }; | ||
4185 | |||
4186 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
4187 | { | ||
4188 | return cgroup_add_files(cont, ss, debug_files, | ||
4189 | ARRAY_SIZE(debug_files)); | ||
4190 | } | ||
4191 | |||
4192 | struct cgroup_subsys debug_subsys = { | ||
4193 | .name = "debug", | ||
4194 | .create = debug_create, | ||
4195 | .destroy = debug_destroy, | ||
4196 | .populate = debug_populate, | ||
4197 | .subsys_id = debug_subsys_id, | ||
4198 | }; | ||
4199 | #endif /* CONFIG_CGROUP_DEBUG */ | ||
diff --git a/kernel/cgroup_debug.c b/kernel/cgroup_debug.c deleted file mode 100644 index 0c92d797baa6..000000000000 --- a/kernel/cgroup_debug.c +++ /dev/null | |||
@@ -1,105 +0,0 @@ | |||
1 | /* | ||
2 | * kernel/cgroup_debug.c - Example cgroup subsystem that | ||
3 | * exposes debug info | ||
4 | * | ||
5 | * Copyright (C) Google Inc, 2007 | ||
6 | * | ||
7 | * Developed by Paul Menage (menage@google.com) | ||
8 | * | ||
9 | */ | ||
10 | |||
11 | #include <linux/cgroup.h> | ||
12 | #include <linux/fs.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/rcupdate.h> | ||
15 | |||
16 | #include <asm/atomic.h> | ||
17 | |||
18 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
19 | struct cgroup *cont) | ||
20 | { | ||
21 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
22 | |||
23 | if (!css) | ||
24 | return ERR_PTR(-ENOMEM); | ||
25 | |||
26 | return css; | ||
27 | } | ||
28 | |||
29 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
30 | { | ||
31 | kfree(cont->subsys[debug_subsys_id]); | ||
32 | } | ||
33 | |||
34 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
35 | { | ||
36 | return atomic_read(&cont->count); | ||
37 | } | ||
38 | |||
39 | static u64 taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
40 | { | ||
41 | u64 count; | ||
42 | |||
43 | count = cgroup_task_count(cont); | ||
44 | return count; | ||
45 | } | ||
46 | |||
47 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
48 | { | ||
49 | return (u64)(long)current->cgroups; | ||
50 | } | ||
51 | |||
52 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
53 | struct cftype *cft) | ||
54 | { | ||
55 | u64 count; | ||
56 | |||
57 | rcu_read_lock(); | ||
58 | count = atomic_read(¤t->cgroups->refcount); | ||
59 | rcu_read_unlock(); | ||
60 | return count; | ||
61 | } | ||
62 | |||
63 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
64 | { | ||
65 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
66 | } | ||
67 | |||
68 | static struct cftype files[] = { | ||
69 | { | ||
70 | .name = "cgroup_refcount", | ||
71 | .read_u64 = cgroup_refcount_read, | ||
72 | }, | ||
73 | { | ||
74 | .name = "taskcount", | ||
75 | .read_u64 = taskcount_read, | ||
76 | }, | ||
77 | |||
78 | { | ||
79 | .name = "current_css_set", | ||
80 | .read_u64 = current_css_set_read, | ||
81 | }, | ||
82 | |||
83 | { | ||
84 | .name = "current_css_set_refcount", | ||
85 | .read_u64 = current_css_set_refcount_read, | ||
86 | }, | ||
87 | |||
88 | { | ||
89 | .name = "releasable", | ||
90 | .read_u64 = releasable_read, | ||
91 | }, | ||
92 | }; | ||
93 | |||
94 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
95 | { | ||
96 | return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | ||
97 | } | ||
98 | |||
99 | struct cgroup_subsys debug_subsys = { | ||
100 | .name = "debug", | ||
101 | .create = debug_create, | ||
102 | .destroy = debug_destroy, | ||
103 | .populate = debug_populate, | ||
104 | .subsys_id = debug_subsys_id, | ||
105 | }; | ||
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index fb249e2bcada..59e9ef6aab40 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c | |||
@@ -159,7 +159,7 @@ static bool is_task_frozen_enough(struct task_struct *task) | |||
159 | */ | 159 | */ |
160 | static int freezer_can_attach(struct cgroup_subsys *ss, | 160 | static int freezer_can_attach(struct cgroup_subsys *ss, |
161 | struct cgroup *new_cgroup, | 161 | struct cgroup *new_cgroup, |
162 | struct task_struct *task) | 162 | struct task_struct *task, bool threadgroup) |
163 | { | 163 | { |
164 | struct freezer *freezer; | 164 | struct freezer *freezer; |
165 | 165 | ||
@@ -177,6 +177,19 @@ static int freezer_can_attach(struct cgroup_subsys *ss, | |||
177 | if (freezer->state == CGROUP_FROZEN) | 177 | if (freezer->state == CGROUP_FROZEN) |
178 | return -EBUSY; | 178 | return -EBUSY; |
179 | 179 | ||
180 | if (threadgroup) { | ||
181 | struct task_struct *c; | ||
182 | |||
183 | rcu_read_lock(); | ||
184 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
185 | if (is_task_frozen_enough(c)) { | ||
186 | rcu_read_unlock(); | ||
187 | return -EBUSY; | ||
188 | } | ||
189 | } | ||
190 | rcu_read_unlock(); | ||
191 | } | ||
192 | |||
180 | return 0; | 193 | return 0; |
181 | } | 194 | } |
182 | 195 | ||
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 7e75a41bd508..b5cb469d2545 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -1324,9 +1324,10 @@ static int fmeter_getrate(struct fmeter *fmp) | |||
1324 | static cpumask_var_t cpus_attach; | 1324 | static cpumask_var_t cpus_attach; |
1325 | 1325 | ||
1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, | 1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1328 | struct cgroup *cont, struct task_struct *tsk) | 1328 | struct task_struct *tsk, bool threadgroup) |
1329 | { | 1329 | { |
1330 | int ret; | ||
1330 | struct cpuset *cs = cgroup_cs(cont); | 1331 | struct cpuset *cs = cgroup_cs(cont); |
1331 | 1332 | ||
1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 1333 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
@@ -1343,18 +1344,51 @@ static int cpuset_can_attach(struct cgroup_subsys *ss, | |||
1343 | if (tsk->flags & PF_THREAD_BOUND) | 1344 | if (tsk->flags & PF_THREAD_BOUND) |
1344 | return -EINVAL; | 1345 | return -EINVAL; |
1345 | 1346 | ||
1346 | return security_task_setscheduler(tsk, 0, NULL); | 1347 | ret = security_task_setscheduler(tsk, 0, NULL); |
1348 | if (ret) | ||
1349 | return ret; | ||
1350 | if (threadgroup) { | ||
1351 | struct task_struct *c; | ||
1352 | |||
1353 | rcu_read_lock(); | ||
1354 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
1355 | ret = security_task_setscheduler(c, 0, NULL); | ||
1356 | if (ret) { | ||
1357 | rcu_read_unlock(); | ||
1358 | return ret; | ||
1359 | } | ||
1360 | } | ||
1361 | rcu_read_unlock(); | ||
1362 | } | ||
1363 | return 0; | ||
1364 | } | ||
1365 | |||
1366 | static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, | ||
1367 | struct cpuset *cs) | ||
1368 | { | ||
1369 | int err; | ||
1370 | /* | ||
1371 | * can_attach beforehand should guarantee that this doesn't fail. | ||
1372 | * TODO: have a better way to handle failure here | ||
1373 | */ | ||
1374 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
1375 | WARN_ON_ONCE(err); | ||
1376 | |||
1377 | task_lock(tsk); | ||
1378 | cpuset_change_task_nodemask(tsk, to); | ||
1379 | task_unlock(tsk); | ||
1380 | cpuset_update_task_spread_flag(cs, tsk); | ||
1381 | |||
1347 | } | 1382 | } |
1348 | 1383 | ||
1349 | static void cpuset_attach(struct cgroup_subsys *ss, | 1384 | static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1350 | struct cgroup *cont, struct cgroup *oldcont, | 1385 | struct cgroup *oldcont, struct task_struct *tsk, |
1351 | struct task_struct *tsk) | 1386 | bool threadgroup) |
1352 | { | 1387 | { |
1353 | nodemask_t from, to; | 1388 | nodemask_t from, to; |
1354 | struct mm_struct *mm; | 1389 | struct mm_struct *mm; |
1355 | struct cpuset *cs = cgroup_cs(cont); | 1390 | struct cpuset *cs = cgroup_cs(cont); |
1356 | struct cpuset *oldcs = cgroup_cs(oldcont); | 1391 | struct cpuset *oldcs = cgroup_cs(oldcont); |
1357 | int err; | ||
1358 | 1392 | ||
1359 | if (cs == &top_cpuset) { | 1393 | if (cs == &top_cpuset) { |
1360 | cpumask_copy(cpus_attach, cpu_possible_mask); | 1394 | cpumask_copy(cpus_attach, cpu_possible_mask); |
@@ -1363,15 +1397,19 @@ static void cpuset_attach(struct cgroup_subsys *ss, | |||
1363 | guarantee_online_cpus(cs, cpus_attach); | 1397 | guarantee_online_cpus(cs, cpus_attach); |
1364 | guarantee_online_mems(cs, &to); | 1398 | guarantee_online_mems(cs, &to); |
1365 | } | 1399 | } |
1366 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
1367 | if (err) | ||
1368 | return; | ||
1369 | 1400 | ||
1370 | task_lock(tsk); | 1401 | /* do per-task migration stuff possibly for each in the threadgroup */ |
1371 | cpuset_change_task_nodemask(tsk, &to); | 1402 | cpuset_attach_task(tsk, &to, cs); |
1372 | task_unlock(tsk); | 1403 | if (threadgroup) { |
1373 | cpuset_update_task_spread_flag(cs, tsk); | 1404 | struct task_struct *c; |
1405 | rcu_read_lock(); | ||
1406 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
1407 | cpuset_attach_task(c, &to, cs); | ||
1408 | } | ||
1409 | rcu_read_unlock(); | ||
1410 | } | ||
1374 | 1411 | ||
1412 | /* change mm; only needs to be done once even if threadgroup */ | ||
1375 | from = oldcs->mems_allowed; | 1413 | from = oldcs->mems_allowed; |
1376 | to = cs->mems_allowed; | 1414 | to = cs->mems_allowed; |
1377 | mm = get_task_mm(tsk); | 1415 | mm = get_task_mm(tsk); |
diff --git a/kernel/cred.c b/kernel/cred.c index d7f7a01082eb..dd76cfe5f5b0 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
@@ -782,6 +782,25 @@ EXPORT_SYMBOL(set_create_files_as); | |||
782 | 782 | ||
783 | #ifdef CONFIG_DEBUG_CREDENTIALS | 783 | #ifdef CONFIG_DEBUG_CREDENTIALS |
784 | 784 | ||
785 | bool creds_are_invalid(const struct cred *cred) | ||
786 | { | ||
787 | if (cred->magic != CRED_MAGIC) | ||
788 | return true; | ||
789 | if (atomic_read(&cred->usage) < atomic_read(&cred->subscribers)) | ||
790 | return true; | ||
791 | #ifdef CONFIG_SECURITY_SELINUX | ||
792 | if (selinux_is_enabled()) { | ||
793 | if ((unsigned long) cred->security < PAGE_SIZE) | ||
794 | return true; | ||
795 | if ((*(u32 *)cred->security & 0xffffff00) == | ||
796 | (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8)) | ||
797 | return true; | ||
798 | } | ||
799 | #endif | ||
800 | return false; | ||
801 | } | ||
802 | EXPORT_SYMBOL(creds_are_invalid); | ||
803 | |||
785 | /* | 804 | /* |
786 | * dump invalid credentials | 805 | * dump invalid credentials |
787 | */ | 806 | */ |
diff --git a/kernel/exit.c b/kernel/exit.c index bc2b1fdfc354..e61891f80123 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -47,7 +47,7 @@ | |||
47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
50 | #include <linux/perf_counter.h> | 50 | #include <linux/perf_event.h> |
51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
52 | 52 | ||
53 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
@@ -154,8 +154,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
154 | { | 154 | { |
155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
156 | 156 | ||
157 | #ifdef CONFIG_PERF_COUNTERS | 157 | #ifdef CONFIG_PERF_EVENTS |
158 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | 158 | WARN_ON_ONCE(tsk->perf_event_ctxp); |
159 | #endif | 159 | #endif |
160 | trace_sched_process_free(tsk); | 160 | trace_sched_process_free(tsk); |
161 | put_task_struct(tsk); | 161 | put_task_struct(tsk); |
@@ -359,8 +359,10 @@ void __set_special_pids(struct pid *pid) | |||
359 | { | 359 | { |
360 | struct task_struct *curr = current->group_leader; | 360 | struct task_struct *curr = current->group_leader; |
361 | 361 | ||
362 | if (task_session(curr) != pid) | 362 | if (task_session(curr) != pid) { |
363 | change_pid(curr, PIDTYPE_SID, pid); | 363 | change_pid(curr, PIDTYPE_SID, pid); |
364 | proc_sid_connector(curr); | ||
365 | } | ||
364 | 366 | ||
365 | if (task_pgrp(curr) != pid) | 367 | if (task_pgrp(curr) != pid) |
366 | change_pid(curr, PIDTYPE_PGID, pid); | 368 | change_pid(curr, PIDTYPE_PGID, pid); |
@@ -945,6 +947,8 @@ NORET_TYPE void do_exit(long code) | |||
945 | if (group_dead) { | 947 | if (group_dead) { |
946 | hrtimer_cancel(&tsk->signal->real_timer); | 948 | hrtimer_cancel(&tsk->signal->real_timer); |
947 | exit_itimers(tsk->signal); | 949 | exit_itimers(tsk->signal); |
950 | if (tsk->mm) | ||
951 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | ||
948 | } | 952 | } |
949 | acct_collect(code, group_dead); | 953 | acct_collect(code, group_dead); |
950 | if (group_dead) | 954 | if (group_dead) |
@@ -972,8 +976,6 @@ NORET_TYPE void do_exit(long code) | |||
972 | disassociate_ctty(1); | 976 | disassociate_ctty(1); |
973 | 977 | ||
974 | module_put(task_thread_info(tsk)->exec_domain->module); | 978 | module_put(task_thread_info(tsk)->exec_domain->module); |
975 | if (tsk->binfmt) | ||
976 | module_put(tsk->binfmt->module); | ||
977 | 979 | ||
978 | proc_exit_connector(tsk); | 980 | proc_exit_connector(tsk); |
979 | 981 | ||
@@ -981,7 +983,7 @@ NORET_TYPE void do_exit(long code) | |||
981 | * Flush inherited counters to the parent - before the parent | 983 | * Flush inherited counters to the parent - before the parent |
982 | * gets woken up by child-exit notifications. | 984 | * gets woken up by child-exit notifications. |
983 | */ | 985 | */ |
984 | perf_counter_exit_task(tsk); | 986 | perf_event_exit_task(tsk); |
985 | 987 | ||
986 | exit_notify(tsk, group_dead); | 988 | exit_notify(tsk, group_dead); |
987 | #ifdef CONFIG_NUMA | 989 | #ifdef CONFIG_NUMA |
@@ -1091,28 +1093,28 @@ struct wait_opts { | |||
1091 | int __user *wo_stat; | 1093 | int __user *wo_stat; |
1092 | struct rusage __user *wo_rusage; | 1094 | struct rusage __user *wo_rusage; |
1093 | 1095 | ||
1096 | wait_queue_t child_wait; | ||
1094 | int notask_error; | 1097 | int notask_error; |
1095 | }; | 1098 | }; |
1096 | 1099 | ||
1097 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 1100 | static inline |
1101 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | ||
1098 | { | 1102 | { |
1099 | struct pid *pid = NULL; | 1103 | if (type != PIDTYPE_PID) |
1100 | if (type == PIDTYPE_PID) | 1104 | task = task->group_leader; |
1101 | pid = task->pids[type].pid; | 1105 | return task->pids[type].pid; |
1102 | else if (type < PIDTYPE_MAX) | ||
1103 | pid = task->group_leader->pids[type].pid; | ||
1104 | return pid; | ||
1105 | } | 1106 | } |
1106 | 1107 | ||
1107 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 1108 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1108 | { | 1109 | { |
1109 | int err; | 1110 | return wo->wo_type == PIDTYPE_MAX || |
1110 | 1111 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
1111 | if (wo->wo_type < PIDTYPE_MAX) { | 1112 | } |
1112 | if (task_pid_type(p, wo->wo_type) != wo->wo_pid) | ||
1113 | return 0; | ||
1114 | } | ||
1115 | 1113 | ||
1114 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | ||
1115 | { | ||
1116 | if (!eligible_pid(wo, p)) | ||
1117 | return 0; | ||
1116 | /* Wait for all children (clone and not) if __WALL is set; | 1118 | /* Wait for all children (clone and not) if __WALL is set; |
1117 | * otherwise, wait for clone children *only* if __WCLONE is | 1119 | * otherwise, wait for clone children *only* if __WCLONE is |
1118 | * set; otherwise, wait for non-clone children *only*. (Note: | 1120 | * set; otherwise, wait for non-clone children *only*. (Note: |
@@ -1122,10 +1124,6 @@ static int eligible_child(struct wait_opts *wo, struct task_struct *p) | |||
1122 | && !(wo->wo_flags & __WALL)) | 1124 | && !(wo->wo_flags & __WALL)) |
1123 | return 0; | 1125 | return 0; |
1124 | 1126 | ||
1125 | err = security_task_wait(p); | ||
1126 | if (err) | ||
1127 | return err; | ||
1128 | |||
1129 | return 1; | 1127 | return 1; |
1130 | } | 1128 | } |
1131 | 1129 | ||
@@ -1138,18 +1136,20 @@ static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | |||
1138 | 1136 | ||
1139 | put_task_struct(p); | 1137 | put_task_struct(p); |
1140 | infop = wo->wo_info; | 1138 | infop = wo->wo_info; |
1141 | if (!retval) | 1139 | if (infop) { |
1142 | retval = put_user(SIGCHLD, &infop->si_signo); | 1140 | if (!retval) |
1143 | if (!retval) | 1141 | retval = put_user(SIGCHLD, &infop->si_signo); |
1144 | retval = put_user(0, &infop->si_errno); | 1142 | if (!retval) |
1145 | if (!retval) | 1143 | retval = put_user(0, &infop->si_errno); |
1146 | retval = put_user((short)why, &infop->si_code); | 1144 | if (!retval) |
1147 | if (!retval) | 1145 | retval = put_user((short)why, &infop->si_code); |
1148 | retval = put_user(pid, &infop->si_pid); | 1146 | if (!retval) |
1149 | if (!retval) | 1147 | retval = put_user(pid, &infop->si_pid); |
1150 | retval = put_user(uid, &infop->si_uid); | 1148 | if (!retval) |
1151 | if (!retval) | 1149 | retval = put_user(uid, &infop->si_uid); |
1152 | retval = put_user(status, &infop->si_status); | 1150 | if (!retval) |
1151 | retval = put_user(status, &infop->si_status); | ||
1152 | } | ||
1153 | if (!retval) | 1153 | if (!retval) |
1154 | retval = pid; | 1154 | retval = pid; |
1155 | return retval; | 1155 | return retval; |
@@ -1206,6 +1206,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1206 | if (likely(!traced) && likely(!task_detached(p))) { | 1206 | if (likely(!traced) && likely(!task_detached(p))) { |
1207 | struct signal_struct *psig; | 1207 | struct signal_struct *psig; |
1208 | struct signal_struct *sig; | 1208 | struct signal_struct *sig; |
1209 | unsigned long maxrss; | ||
1209 | 1210 | ||
1210 | /* | 1211 | /* |
1211 | * The resource counters for the group leader are in its | 1212 | * The resource counters for the group leader are in its |
@@ -1254,6 +1255,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1254 | psig->coublock += | 1255 | psig->coublock += |
1255 | task_io_get_oublock(p) + | 1256 | task_io_get_oublock(p) + |
1256 | sig->oublock + sig->coublock; | 1257 | sig->oublock + sig->coublock; |
1258 | maxrss = max(sig->maxrss, sig->cmaxrss); | ||
1259 | if (psig->cmaxrss < maxrss) | ||
1260 | psig->cmaxrss = maxrss; | ||
1257 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1261 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1258 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1262 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
1259 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1263 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
@@ -1475,13 +1479,14 @@ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | |||
1475 | * then ->notask_error is 0 if @p is an eligible child, | 1479 | * then ->notask_error is 0 if @p is an eligible child, |
1476 | * or another error from security_task_wait(), or still -ECHILD. | 1480 | * or another error from security_task_wait(), or still -ECHILD. |
1477 | */ | 1481 | */ |
1478 | static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, | 1482 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1479 | int ptrace, struct task_struct *p) | 1483 | struct task_struct *p) |
1480 | { | 1484 | { |
1481 | int ret = eligible_child(wo, p); | 1485 | int ret = eligible_child(wo, p); |
1482 | if (!ret) | 1486 | if (!ret) |
1483 | return ret; | 1487 | return ret; |
1484 | 1488 | ||
1489 | ret = security_task_wait(p); | ||
1485 | if (unlikely(ret < 0)) { | 1490 | if (unlikely(ret < 0)) { |
1486 | /* | 1491 | /* |
1487 | * If we have not yet seen any eligible child, | 1492 | * If we have not yet seen any eligible child, |
@@ -1543,7 +1548,7 @@ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | |||
1543 | * Do not consider detached threads. | 1548 | * Do not consider detached threads. |
1544 | */ | 1549 | */ |
1545 | if (!task_detached(p)) { | 1550 | if (!task_detached(p)) { |
1546 | int ret = wait_consider_task(wo, tsk, 0, p); | 1551 | int ret = wait_consider_task(wo, 0, p); |
1547 | if (ret) | 1552 | if (ret) |
1548 | return ret; | 1553 | return ret; |
1549 | } | 1554 | } |
@@ -1557,7 +1562,7 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
1557 | struct task_struct *p; | 1562 | struct task_struct *p; |
1558 | 1563 | ||
1559 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 1564 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
1560 | int ret = wait_consider_task(wo, tsk, 1, p); | 1565 | int ret = wait_consider_task(wo, 1, p); |
1561 | if (ret) | 1566 | if (ret) |
1562 | return ret; | 1567 | return ret; |
1563 | } | 1568 | } |
@@ -1565,15 +1570,38 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
1565 | return 0; | 1570 | return 0; |
1566 | } | 1571 | } |
1567 | 1572 | ||
1573 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | ||
1574 | int sync, void *key) | ||
1575 | { | ||
1576 | struct wait_opts *wo = container_of(wait, struct wait_opts, | ||
1577 | child_wait); | ||
1578 | struct task_struct *p = key; | ||
1579 | |||
1580 | if (!eligible_pid(wo, p)) | ||
1581 | return 0; | ||
1582 | |||
1583 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | ||
1584 | return 0; | ||
1585 | |||
1586 | return default_wake_function(wait, mode, sync, key); | ||
1587 | } | ||
1588 | |||
1589 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | ||
1590 | { | ||
1591 | __wake_up_sync_key(&parent->signal->wait_chldexit, | ||
1592 | TASK_INTERRUPTIBLE, 1, p); | ||
1593 | } | ||
1594 | |||
1568 | static long do_wait(struct wait_opts *wo) | 1595 | static long do_wait(struct wait_opts *wo) |
1569 | { | 1596 | { |
1570 | DECLARE_WAITQUEUE(wait, current); | ||
1571 | struct task_struct *tsk; | 1597 | struct task_struct *tsk; |
1572 | int retval; | 1598 | int retval; |
1573 | 1599 | ||
1574 | trace_sched_process_wait(wo->wo_pid); | 1600 | trace_sched_process_wait(wo->wo_pid); |
1575 | 1601 | ||
1576 | add_wait_queue(¤t->signal->wait_chldexit,&wait); | 1602 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1603 | wo->child_wait.private = current; | ||
1604 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | ||
1577 | repeat: | 1605 | repeat: |
1578 | /* | 1606 | /* |
1579 | * If there is nothing that can match our critiera just get out. | 1607 | * If there is nothing that can match our critiera just get out. |
@@ -1614,32 +1642,7 @@ notask: | |||
1614 | } | 1642 | } |
1615 | end: | 1643 | end: |
1616 | __set_current_state(TASK_RUNNING); | 1644 | __set_current_state(TASK_RUNNING); |
1617 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | 1645 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1618 | if (wo->wo_info) { | ||
1619 | struct siginfo __user *infop = wo->wo_info; | ||
1620 | |||
1621 | if (retval > 0) | ||
1622 | retval = 0; | ||
1623 | else { | ||
1624 | /* | ||
1625 | * For a WNOHANG return, clear out all the fields | ||
1626 | * we would set so the user can easily tell the | ||
1627 | * difference. | ||
1628 | */ | ||
1629 | if (!retval) | ||
1630 | retval = put_user(0, &infop->si_signo); | ||
1631 | if (!retval) | ||
1632 | retval = put_user(0, &infop->si_errno); | ||
1633 | if (!retval) | ||
1634 | retval = put_user(0, &infop->si_code); | ||
1635 | if (!retval) | ||
1636 | retval = put_user(0, &infop->si_pid); | ||
1637 | if (!retval) | ||
1638 | retval = put_user(0, &infop->si_uid); | ||
1639 | if (!retval) | ||
1640 | retval = put_user(0, &infop->si_status); | ||
1641 | } | ||
1642 | } | ||
1643 | return retval; | 1646 | return retval; |
1644 | } | 1647 | } |
1645 | 1648 | ||
@@ -1684,6 +1687,29 @@ SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | |||
1684 | wo.wo_stat = NULL; | 1687 | wo.wo_stat = NULL; |
1685 | wo.wo_rusage = ru; | 1688 | wo.wo_rusage = ru; |
1686 | ret = do_wait(&wo); | 1689 | ret = do_wait(&wo); |
1690 | |||
1691 | if (ret > 0) { | ||
1692 | ret = 0; | ||
1693 | } else if (infop) { | ||
1694 | /* | ||
1695 | * For a WNOHANG return, clear out all the fields | ||
1696 | * we would set so the user can easily tell the | ||
1697 | * difference. | ||
1698 | */ | ||
1699 | if (!ret) | ||
1700 | ret = put_user(0, &infop->si_signo); | ||
1701 | if (!ret) | ||
1702 | ret = put_user(0, &infop->si_errno); | ||
1703 | if (!ret) | ||
1704 | ret = put_user(0, &infop->si_code); | ||
1705 | if (!ret) | ||
1706 | ret = put_user(0, &infop->si_pid); | ||
1707 | if (!ret) | ||
1708 | ret = put_user(0, &infop->si_uid); | ||
1709 | if (!ret) | ||
1710 | ret = put_user(0, &infop->si_status); | ||
1711 | } | ||
1712 | |||
1687 | put_pid(pid); | 1713 | put_pid(pid); |
1688 | 1714 | ||
1689 | /* avoid REGPARM breakage on x86: */ | 1715 | /* avoid REGPARM breakage on x86: */ |
diff --git a/kernel/fork.c b/kernel/fork.c index 341965b0ab1c..4c20fff8c13a 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -49,6 +49,7 @@ | |||
49 | #include <linux/ftrace.h> | 49 | #include <linux/ftrace.h> |
50 | #include <linux/profile.h> | 50 | #include <linux/profile.h> |
51 | #include <linux/rmap.h> | 51 | #include <linux/rmap.h> |
52 | #include <linux/ksm.h> | ||
52 | #include <linux/acct.h> | 53 | #include <linux/acct.h> |
53 | #include <linux/tsacct_kern.h> | 54 | #include <linux/tsacct_kern.h> |
54 | #include <linux/cn_proc.h> | 55 | #include <linux/cn_proc.h> |
@@ -61,7 +62,8 @@ | |||
61 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
62 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
63 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
64 | #include <linux/perf_counter.h> | 65 | #include <linux/perf_event.h> |
66 | #include <linux/posix-timers.h> | ||
65 | 67 | ||
66 | #include <asm/pgtable.h> | 68 | #include <asm/pgtable.h> |
67 | #include <asm/pgalloc.h> | 69 | #include <asm/pgalloc.h> |
@@ -136,9 +138,17 @@ struct kmem_cache *vm_area_cachep; | |||
136 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 138 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
137 | static struct kmem_cache *mm_cachep; | 139 | static struct kmem_cache *mm_cachep; |
138 | 140 | ||
141 | static void account_kernel_stack(struct thread_info *ti, int account) | ||
142 | { | ||
143 | struct zone *zone = page_zone(virt_to_page(ti)); | ||
144 | |||
145 | mod_zone_page_state(zone, NR_KERNEL_STACK, account); | ||
146 | } | ||
147 | |||
139 | void free_task(struct task_struct *tsk) | 148 | void free_task(struct task_struct *tsk) |
140 | { | 149 | { |
141 | prop_local_destroy_single(&tsk->dirties); | 150 | prop_local_destroy_single(&tsk->dirties); |
151 | account_kernel_stack(tsk->stack, -1); | ||
142 | free_thread_info(tsk->stack); | 152 | free_thread_info(tsk->stack); |
143 | rt_mutex_debug_task_free(tsk); | 153 | rt_mutex_debug_task_free(tsk); |
144 | ftrace_graph_exit_task(tsk); | 154 | ftrace_graph_exit_task(tsk); |
@@ -253,6 +263,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
253 | tsk->btrace_seq = 0; | 263 | tsk->btrace_seq = 0; |
254 | #endif | 264 | #endif |
255 | tsk->splice_pipe = NULL; | 265 | tsk->splice_pipe = NULL; |
266 | |||
267 | account_kernel_stack(ti, 1); | ||
268 | |||
256 | return tsk; | 269 | return tsk; |
257 | 270 | ||
258 | out: | 271 | out: |
@@ -288,6 +301,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
288 | rb_link = &mm->mm_rb.rb_node; | 301 | rb_link = &mm->mm_rb.rb_node; |
289 | rb_parent = NULL; | 302 | rb_parent = NULL; |
290 | pprev = &mm->mmap; | 303 | pprev = &mm->mmap; |
304 | retval = ksm_fork(mm, oldmm); | ||
305 | if (retval) | ||
306 | goto out; | ||
291 | 307 | ||
292 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 308 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
293 | struct file *file; | 309 | struct file *file; |
@@ -418,22 +434,30 @@ __setup("coredump_filter=", coredump_filter_setup); | |||
418 | 434 | ||
419 | #include <linux/init_task.h> | 435 | #include <linux/init_task.h> |
420 | 436 | ||
437 | static void mm_init_aio(struct mm_struct *mm) | ||
438 | { | ||
439 | #ifdef CONFIG_AIO | ||
440 | spin_lock_init(&mm->ioctx_lock); | ||
441 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
442 | #endif | ||
443 | } | ||
444 | |||
421 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | 445 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) |
422 | { | 446 | { |
423 | atomic_set(&mm->mm_users, 1); | 447 | atomic_set(&mm->mm_users, 1); |
424 | atomic_set(&mm->mm_count, 1); | 448 | atomic_set(&mm->mm_count, 1); |
425 | init_rwsem(&mm->mmap_sem); | 449 | init_rwsem(&mm->mmap_sem); |
426 | INIT_LIST_HEAD(&mm->mmlist); | 450 | INIT_LIST_HEAD(&mm->mmlist); |
427 | mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; | 451 | mm->flags = (current->mm) ? |
452 | (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; | ||
428 | mm->core_state = NULL; | 453 | mm->core_state = NULL; |
429 | mm->nr_ptes = 0; | 454 | mm->nr_ptes = 0; |
430 | set_mm_counter(mm, file_rss, 0); | 455 | set_mm_counter(mm, file_rss, 0); |
431 | set_mm_counter(mm, anon_rss, 0); | 456 | set_mm_counter(mm, anon_rss, 0); |
432 | spin_lock_init(&mm->page_table_lock); | 457 | spin_lock_init(&mm->page_table_lock); |
433 | spin_lock_init(&mm->ioctx_lock); | ||
434 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
435 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 458 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
436 | mm->cached_hole_size = ~0UL; | 459 | mm->cached_hole_size = ~0UL; |
460 | mm_init_aio(mm); | ||
437 | mm_init_owner(mm, p); | 461 | mm_init_owner(mm, p); |
438 | 462 | ||
439 | if (likely(!mm_alloc_pgd(mm))) { | 463 | if (likely(!mm_alloc_pgd(mm))) { |
@@ -485,6 +509,7 @@ void mmput(struct mm_struct *mm) | |||
485 | 509 | ||
486 | if (atomic_dec_and_test(&mm->mm_users)) { | 510 | if (atomic_dec_and_test(&mm->mm_users)) { |
487 | exit_aio(mm); | 511 | exit_aio(mm); |
512 | ksm_exit(mm); | ||
488 | exit_mmap(mm); | 513 | exit_mmap(mm); |
489 | set_mm_exe_file(mm, NULL); | 514 | set_mm_exe_file(mm, NULL); |
490 | if (!list_empty(&mm->mmlist)) { | 515 | if (!list_empty(&mm->mmlist)) { |
@@ -493,6 +518,8 @@ void mmput(struct mm_struct *mm) | |||
493 | spin_unlock(&mmlist_lock); | 518 | spin_unlock(&mmlist_lock); |
494 | } | 519 | } |
495 | put_swap_token(mm); | 520 | put_swap_token(mm); |
521 | if (mm->binfmt) | ||
522 | module_put(mm->binfmt->module); | ||
496 | mmdrop(mm); | 523 | mmdrop(mm); |
497 | } | 524 | } |
498 | } | 525 | } |
@@ -624,9 +651,14 @@ struct mm_struct *dup_mm(struct task_struct *tsk) | |||
624 | mm->hiwater_rss = get_mm_rss(mm); | 651 | mm->hiwater_rss = get_mm_rss(mm); |
625 | mm->hiwater_vm = mm->total_vm; | 652 | mm->hiwater_vm = mm->total_vm; |
626 | 653 | ||
654 | if (mm->binfmt && !try_module_get(mm->binfmt->module)) | ||
655 | goto free_pt; | ||
656 | |||
627 | return mm; | 657 | return mm; |
628 | 658 | ||
629 | free_pt: | 659 | free_pt: |
660 | /* don't put binfmt in mmput, we haven't got module yet */ | ||
661 | mm->binfmt = NULL; | ||
630 | mmput(mm); | 662 | mmput(mm); |
631 | 663 | ||
632 | fail_nomem: | 664 | fail_nomem: |
@@ -794,10 +826,10 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig) | |||
794 | thread_group_cputime_init(sig); | 826 | thread_group_cputime_init(sig); |
795 | 827 | ||
796 | /* Expiration times and increments. */ | 828 | /* Expiration times and increments. */ |
797 | sig->it_virt_expires = cputime_zero; | 829 | sig->it[CPUCLOCK_PROF].expires = cputime_zero; |
798 | sig->it_virt_incr = cputime_zero; | 830 | sig->it[CPUCLOCK_PROF].incr = cputime_zero; |
799 | sig->it_prof_expires = cputime_zero; | 831 | sig->it[CPUCLOCK_VIRT].expires = cputime_zero; |
800 | sig->it_prof_incr = cputime_zero; | 832 | sig->it[CPUCLOCK_VIRT].incr = cputime_zero; |
801 | 833 | ||
802 | /* Cached expiration times. */ | 834 | /* Cached expiration times. */ |
803 | sig->cputime_expires.prof_exp = cputime_zero; | 835 | sig->cputime_expires.prof_exp = cputime_zero; |
@@ -855,6 +887,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
855 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 887 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
856 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 888 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
857 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 889 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; |
890 | sig->maxrss = sig->cmaxrss = 0; | ||
858 | task_io_accounting_init(&sig->ioac); | 891 | task_io_accounting_init(&sig->ioac); |
859 | sig->sum_sched_runtime = 0; | 892 | sig->sum_sched_runtime = 0; |
860 | taskstats_tgid_init(sig); | 893 | taskstats_tgid_init(sig); |
@@ -869,6 +902,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
869 | 902 | ||
870 | tty_audit_fork(sig); | 903 | tty_audit_fork(sig); |
871 | 904 | ||
905 | sig->oom_adj = current->signal->oom_adj; | ||
906 | |||
872 | return 0; | 907 | return 0; |
873 | } | 908 | } |
874 | 909 | ||
@@ -964,6 +999,16 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
964 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 999 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) |
965 | return ERR_PTR(-EINVAL); | 1000 | return ERR_PTR(-EINVAL); |
966 | 1001 | ||
1002 | /* | ||
1003 | * Siblings of global init remain as zombies on exit since they are | ||
1004 | * not reaped by their parent (swapper). To solve this and to avoid | ||
1005 | * multi-rooted process trees, prevent global and container-inits | ||
1006 | * from creating siblings. | ||
1007 | */ | ||
1008 | if ((clone_flags & CLONE_PARENT) && | ||
1009 | current->signal->flags & SIGNAL_UNKILLABLE) | ||
1010 | return ERR_PTR(-EINVAL); | ||
1011 | |||
967 | retval = security_task_create(clone_flags); | 1012 | retval = security_task_create(clone_flags); |
968 | if (retval) | 1013 | if (retval) |
969 | goto fork_out; | 1014 | goto fork_out; |
@@ -1005,9 +1050,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1005 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) | 1050 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
1006 | goto bad_fork_cleanup_count; | 1051 | goto bad_fork_cleanup_count; |
1007 | 1052 | ||
1008 | if (p->binfmt && !try_module_get(p->binfmt->module)) | ||
1009 | goto bad_fork_cleanup_put_domain; | ||
1010 | |||
1011 | p->did_exec = 0; | 1053 | p->did_exec = 0; |
1012 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ | 1054 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ |
1013 | copy_flags(clone_flags, p); | 1055 | copy_flags(clone_flags, p); |
@@ -1081,10 +1123,12 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1081 | 1123 | ||
1082 | p->bts = NULL; | 1124 | p->bts = NULL; |
1083 | 1125 | ||
1126 | p->stack_start = stack_start; | ||
1127 | |||
1084 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1128 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
1085 | sched_fork(p, clone_flags); | 1129 | sched_fork(p, clone_flags); |
1086 | 1130 | ||
1087 | retval = perf_counter_init_task(p); | 1131 | retval = perf_event_init_task(p); |
1088 | if (retval) | 1132 | if (retval) |
1089 | goto bad_fork_cleanup_policy; | 1133 | goto bad_fork_cleanup_policy; |
1090 | 1134 | ||
@@ -1259,7 +1303,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1259 | write_unlock_irq(&tasklist_lock); | 1303 | write_unlock_irq(&tasklist_lock); |
1260 | proc_fork_connector(p); | 1304 | proc_fork_connector(p); |
1261 | cgroup_post_fork(p); | 1305 | cgroup_post_fork(p); |
1262 | perf_counter_fork(p); | 1306 | perf_event_fork(p); |
1263 | return p; | 1307 | return p; |
1264 | 1308 | ||
1265 | bad_fork_free_pid: | 1309 | bad_fork_free_pid: |
@@ -1286,16 +1330,13 @@ bad_fork_cleanup_semundo: | |||
1286 | bad_fork_cleanup_audit: | 1330 | bad_fork_cleanup_audit: |
1287 | audit_free(p); | 1331 | audit_free(p); |
1288 | bad_fork_cleanup_policy: | 1332 | bad_fork_cleanup_policy: |
1289 | perf_counter_free_task(p); | 1333 | perf_event_free_task(p); |
1290 | #ifdef CONFIG_NUMA | 1334 | #ifdef CONFIG_NUMA |
1291 | mpol_put(p->mempolicy); | 1335 | mpol_put(p->mempolicy); |
1292 | bad_fork_cleanup_cgroup: | 1336 | bad_fork_cleanup_cgroup: |
1293 | #endif | 1337 | #endif |
1294 | cgroup_exit(p, cgroup_callbacks_done); | 1338 | cgroup_exit(p, cgroup_callbacks_done); |
1295 | delayacct_tsk_free(p); | 1339 | delayacct_tsk_free(p); |
1296 | if (p->binfmt) | ||
1297 | module_put(p->binfmt->module); | ||
1298 | bad_fork_cleanup_put_domain: | ||
1299 | module_put(task_thread_info(p)->exec_domain->module); | 1340 | module_put(task_thread_info(p)->exec_domain->module); |
1300 | bad_fork_cleanup_count: | 1341 | bad_fork_cleanup_count: |
1301 | atomic_dec(&p->cred->user->processes); | 1342 | atomic_dec(&p->cred->user->processes); |
diff --git a/kernel/futex.c b/kernel/futex.c index c3bb2fce11ba..4949d336d88d 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -1656,6 +1656,12 @@ out: | |||
1656 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | 1656 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, |
1657 | struct hrtimer_sleeper *timeout) | 1657 | struct hrtimer_sleeper *timeout) |
1658 | { | 1658 | { |
1659 | /* | ||
1660 | * The task state is guaranteed to be set before another task can | ||
1661 | * wake it. set_current_state() is implemented using set_mb() and | ||
1662 | * queue_me() calls spin_unlock() upon completion, both serializing | ||
1663 | * access to the hash list and forcing another memory barrier. | ||
1664 | */ | ||
1659 | set_current_state(TASK_INTERRUPTIBLE); | 1665 | set_current_state(TASK_INTERRUPTIBLE); |
1660 | queue_me(q, hb); | 1666 | queue_me(q, hb); |
1661 | 1667 | ||
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig index 654efd09f6a9..70a298d6da71 100644 --- a/kernel/gcov/Kconfig +++ b/kernel/gcov/Kconfig | |||
@@ -34,7 +34,7 @@ config GCOV_KERNEL | |||
34 | config GCOV_PROFILE_ALL | 34 | config GCOV_PROFILE_ALL |
35 | bool "Profile entire Kernel" | 35 | bool "Profile entire Kernel" |
36 | depends on GCOV_KERNEL | 36 | depends on GCOV_KERNEL |
37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) | 37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) || MICROBLAZE |
38 | default n | 38 | default n |
39 | ---help--- | 39 | ---help--- |
40 | This options activates profiling for the entire kernel. | 40 | This options activates profiling for the entire kernel. |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index c03f221fee44..3e1c36e7998f 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -48,6 +48,8 @@ | |||
48 | 48 | ||
49 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
50 | 50 | ||
51 | #include <trace/events/timer.h> | ||
52 | |||
51 | /* | 53 | /* |
52 | * The timer bases: | 54 | * The timer bases: |
53 | * | 55 | * |
@@ -442,6 +444,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |||
442 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 444 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
443 | #endif | 445 | #endif |
444 | 446 | ||
447 | static inline void | ||
448 | debug_init(struct hrtimer *timer, clockid_t clockid, | ||
449 | enum hrtimer_mode mode) | ||
450 | { | ||
451 | debug_hrtimer_init(timer); | ||
452 | trace_hrtimer_init(timer, clockid, mode); | ||
453 | } | ||
454 | |||
455 | static inline void debug_activate(struct hrtimer *timer) | ||
456 | { | ||
457 | debug_hrtimer_activate(timer); | ||
458 | trace_hrtimer_start(timer); | ||
459 | } | ||
460 | |||
461 | static inline void debug_deactivate(struct hrtimer *timer) | ||
462 | { | ||
463 | debug_hrtimer_deactivate(timer); | ||
464 | trace_hrtimer_cancel(timer); | ||
465 | } | ||
466 | |||
445 | /* High resolution timer related functions */ | 467 | /* High resolution timer related functions */ |
446 | #ifdef CONFIG_HIGH_RES_TIMERS | 468 | #ifdef CONFIG_HIGH_RES_TIMERS |
447 | 469 | ||
@@ -487,13 +509,14 @@ static inline int hrtimer_hres_active(void) | |||
487 | * next event | 509 | * next event |
488 | * Called with interrupts disabled and base->lock held | 510 | * Called with interrupts disabled and base->lock held |
489 | */ | 511 | */ |
490 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | 512 | static void |
513 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | ||
491 | { | 514 | { |
492 | int i; | 515 | int i; |
493 | struct hrtimer_clock_base *base = cpu_base->clock_base; | 516 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
494 | ktime_t expires; | 517 | ktime_t expires, expires_next; |
495 | 518 | ||
496 | cpu_base->expires_next.tv64 = KTIME_MAX; | 519 | expires_next.tv64 = KTIME_MAX; |
497 | 520 | ||
498 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 521 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { |
499 | struct hrtimer *timer; | 522 | struct hrtimer *timer; |
@@ -509,10 +532,15 @@ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | |||
509 | */ | 532 | */ |
510 | if (expires.tv64 < 0) | 533 | if (expires.tv64 < 0) |
511 | expires.tv64 = 0; | 534 | expires.tv64 = 0; |
512 | if (expires.tv64 < cpu_base->expires_next.tv64) | 535 | if (expires.tv64 < expires_next.tv64) |
513 | cpu_base->expires_next = expires; | 536 | expires_next = expires; |
514 | } | 537 | } |
515 | 538 | ||
539 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) | ||
540 | return; | ||
541 | |||
542 | cpu_base->expires_next.tv64 = expires_next.tv64; | ||
543 | |||
516 | if (cpu_base->expires_next.tv64 != KTIME_MAX) | 544 | if (cpu_base->expires_next.tv64 != KTIME_MAX) |
517 | tick_program_event(cpu_base->expires_next, 1); | 545 | tick_program_event(cpu_base->expires_next, 1); |
518 | } | 546 | } |
@@ -595,7 +623,7 @@ static void retrigger_next_event(void *arg) | |||
595 | base->clock_base[CLOCK_REALTIME].offset = | 623 | base->clock_base[CLOCK_REALTIME].offset = |
596 | timespec_to_ktime(realtime_offset); | 624 | timespec_to_ktime(realtime_offset); |
597 | 625 | ||
598 | hrtimer_force_reprogram(base); | 626 | hrtimer_force_reprogram(base, 0); |
599 | spin_unlock(&base->lock); | 627 | spin_unlock(&base->lock); |
600 | } | 628 | } |
601 | 629 | ||
@@ -698,8 +726,6 @@ static int hrtimer_switch_to_hres(void) | |||
698 | /* "Retrigger" the interrupt to get things going */ | 726 | /* "Retrigger" the interrupt to get things going */ |
699 | retrigger_next_event(NULL); | 727 | retrigger_next_event(NULL); |
700 | local_irq_restore(flags); | 728 | local_irq_restore(flags); |
701 | printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n", | ||
702 | smp_processor_id()); | ||
703 | return 1; | 729 | return 1; |
704 | } | 730 | } |
705 | 731 | ||
@@ -708,7 +734,8 @@ static int hrtimer_switch_to_hres(void) | |||
708 | static inline int hrtimer_hres_active(void) { return 0; } | 734 | static inline int hrtimer_hres_active(void) { return 0; } |
709 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 735 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
710 | static inline int hrtimer_switch_to_hres(void) { return 0; } | 736 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
711 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | 737 | static inline void |
738 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } | ||
712 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 739 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
713 | struct hrtimer_clock_base *base, | 740 | struct hrtimer_clock_base *base, |
714 | int wakeup) | 741 | int wakeup) |
@@ -798,7 +825,7 @@ static int enqueue_hrtimer(struct hrtimer *timer, | |||
798 | struct hrtimer *entry; | 825 | struct hrtimer *entry; |
799 | int leftmost = 1; | 826 | int leftmost = 1; |
800 | 827 | ||
801 | debug_hrtimer_activate(timer); | 828 | debug_activate(timer); |
802 | 829 | ||
803 | /* | 830 | /* |
804 | * Find the right place in the rbtree: | 831 | * Find the right place in the rbtree: |
@@ -851,19 +878,29 @@ static void __remove_hrtimer(struct hrtimer *timer, | |||
851 | struct hrtimer_clock_base *base, | 878 | struct hrtimer_clock_base *base, |
852 | unsigned long newstate, int reprogram) | 879 | unsigned long newstate, int reprogram) |
853 | { | 880 | { |
854 | if (timer->state & HRTIMER_STATE_ENQUEUED) { | 881 | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) |
855 | /* | 882 | goto out; |
856 | * Remove the timer from the rbtree and replace the | 883 | |
857 | * first entry pointer if necessary. | 884 | /* |
858 | */ | 885 | * Remove the timer from the rbtree and replace the first |
859 | if (base->first == &timer->node) { | 886 | * entry pointer if necessary. |
860 | base->first = rb_next(&timer->node); | 887 | */ |
861 | /* Reprogram the clock event device. if enabled */ | 888 | if (base->first == &timer->node) { |
862 | if (reprogram && hrtimer_hres_active()) | 889 | base->first = rb_next(&timer->node); |
863 | hrtimer_force_reprogram(base->cpu_base); | 890 | #ifdef CONFIG_HIGH_RES_TIMERS |
891 | /* Reprogram the clock event device. if enabled */ | ||
892 | if (reprogram && hrtimer_hres_active()) { | ||
893 | ktime_t expires; | ||
894 | |||
895 | expires = ktime_sub(hrtimer_get_expires(timer), | ||
896 | base->offset); | ||
897 | if (base->cpu_base->expires_next.tv64 == expires.tv64) | ||
898 | hrtimer_force_reprogram(base->cpu_base, 1); | ||
864 | } | 899 | } |
865 | rb_erase(&timer->node, &base->active); | 900 | #endif |
866 | } | 901 | } |
902 | rb_erase(&timer->node, &base->active); | ||
903 | out: | ||
867 | timer->state = newstate; | 904 | timer->state = newstate; |
868 | } | 905 | } |
869 | 906 | ||
@@ -884,7 +921,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | |||
884 | * reprogramming happens in the interrupt handler. This is a | 921 | * reprogramming happens in the interrupt handler. This is a |
885 | * rare case and less expensive than a smp call. | 922 | * rare case and less expensive than a smp call. |
886 | */ | 923 | */ |
887 | debug_hrtimer_deactivate(timer); | 924 | debug_deactivate(timer); |
888 | timer_stats_hrtimer_clear_start_info(timer); | 925 | timer_stats_hrtimer_clear_start_info(timer); |
889 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 926 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
890 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 927 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, |
@@ -1117,7 +1154,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
1117 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 1154 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1118 | enum hrtimer_mode mode) | 1155 | enum hrtimer_mode mode) |
1119 | { | 1156 | { |
1120 | debug_hrtimer_init(timer); | 1157 | debug_init(timer, clock_id, mode); |
1121 | __hrtimer_init(timer, clock_id, mode); | 1158 | __hrtimer_init(timer, clock_id, mode); |
1122 | } | 1159 | } |
1123 | EXPORT_SYMBOL_GPL(hrtimer_init); | 1160 | EXPORT_SYMBOL_GPL(hrtimer_init); |
@@ -1141,7 +1178,7 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
1141 | } | 1178 | } |
1142 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 1179 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
1143 | 1180 | ||
1144 | static void __run_hrtimer(struct hrtimer *timer) | 1181 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
1145 | { | 1182 | { |
1146 | struct hrtimer_clock_base *base = timer->base; | 1183 | struct hrtimer_clock_base *base = timer->base; |
1147 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 1184 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
@@ -1150,7 +1187,7 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1150 | 1187 | ||
1151 | WARN_ON(!irqs_disabled()); | 1188 | WARN_ON(!irqs_disabled()); |
1152 | 1189 | ||
1153 | debug_hrtimer_deactivate(timer); | 1190 | debug_deactivate(timer); |
1154 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 1191 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
1155 | timer_stats_account_hrtimer(timer); | 1192 | timer_stats_account_hrtimer(timer); |
1156 | fn = timer->function; | 1193 | fn = timer->function; |
@@ -1161,7 +1198,9 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1161 | * the timer base. | 1198 | * the timer base. |
1162 | */ | 1199 | */ |
1163 | spin_unlock(&cpu_base->lock); | 1200 | spin_unlock(&cpu_base->lock); |
1201 | trace_hrtimer_expire_entry(timer, now); | ||
1164 | restart = fn(timer); | 1202 | restart = fn(timer); |
1203 | trace_hrtimer_expire_exit(timer); | ||
1165 | spin_lock(&cpu_base->lock); | 1204 | spin_lock(&cpu_base->lock); |
1166 | 1205 | ||
1167 | /* | 1206 | /* |
@@ -1272,7 +1311,7 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
1272 | break; | 1311 | break; |
1273 | } | 1312 | } |
1274 | 1313 | ||
1275 | __run_hrtimer(timer); | 1314 | __run_hrtimer(timer, &basenow); |
1276 | } | 1315 | } |
1277 | base++; | 1316 | base++; |
1278 | } | 1317 | } |
@@ -1394,7 +1433,7 @@ void hrtimer_run_queues(void) | |||
1394 | hrtimer_get_expires_tv64(timer)) | 1433 | hrtimer_get_expires_tv64(timer)) |
1395 | break; | 1434 | break; |
1396 | 1435 | ||
1397 | __run_hrtimer(timer); | 1436 | __run_hrtimer(timer, &base->softirq_time); |
1398 | } | 1437 | } |
1399 | spin_unlock(&cpu_base->lock); | 1438 | spin_unlock(&cpu_base->lock); |
1400 | } | 1439 | } |
@@ -1571,7 +1610,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | |||
1571 | while ((node = rb_first(&old_base->active))) { | 1610 | while ((node = rb_first(&old_base->active))) { |
1572 | timer = rb_entry(node, struct hrtimer, node); | 1611 | timer = rb_entry(node, struct hrtimer, node); |
1573 | BUG_ON(hrtimer_callback_running(timer)); | 1612 | BUG_ON(hrtimer_callback_running(timer)); |
1574 | debug_hrtimer_deactivate(timer); | 1613 | debug_deactivate(timer); |
1575 | 1614 | ||
1576 | /* | 1615 | /* |
1577 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 1616 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the |
diff --git a/kernel/hung_task.c b/kernel/hung_task.c index 022a4927b785..d4e841747400 100644 --- a/kernel/hung_task.c +++ b/kernel/hung_task.c | |||
@@ -171,12 +171,12 @@ static unsigned long timeout_jiffies(unsigned long timeout) | |||
171 | * Process updating of timeout sysctl | 171 | * Process updating of timeout sysctl |
172 | */ | 172 | */ |
173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, | 173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, |
174 | struct file *filp, void __user *buffer, | 174 | void __user *buffer, |
175 | size_t *lenp, loff_t *ppos) | 175 | size_t *lenp, loff_t *ppos) |
176 | { | 176 | { |
177 | int ret; | 177 | int ret; |
178 | 178 | ||
179 | ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); | 179 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
180 | 180 | ||
181 | if (ret || !write) | 181 | if (ret || !write) |
182 | goto out; | 182 | goto out; |
diff --git a/kernel/itimer.c b/kernel/itimer.c index 58762f7077ec..b03451ede528 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
@@ -12,6 +12,7 @@ | |||
12 | #include <linux/time.h> | 12 | #include <linux/time.h> |
13 | #include <linux/posix-timers.h> | 13 | #include <linux/posix-timers.h> |
14 | #include <linux/hrtimer.h> | 14 | #include <linux/hrtimer.h> |
15 | #include <trace/events/timer.h> | ||
15 | 16 | ||
16 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
17 | 18 | ||
@@ -41,10 +42,43 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer) | |||
41 | return ktime_to_timeval(rem); | 42 | return ktime_to_timeval(rem); |
42 | } | 43 | } |
43 | 44 | ||
45 | static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
46 | struct itimerval *const value) | ||
47 | { | ||
48 | cputime_t cval, cinterval; | ||
49 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
50 | |||
51 | spin_lock_irq(&tsk->sighand->siglock); | ||
52 | |||
53 | cval = it->expires; | ||
54 | cinterval = it->incr; | ||
55 | if (!cputime_eq(cval, cputime_zero)) { | ||
56 | struct task_cputime cputime; | ||
57 | cputime_t t; | ||
58 | |||
59 | thread_group_cputimer(tsk, &cputime); | ||
60 | if (clock_id == CPUCLOCK_PROF) | ||
61 | t = cputime_add(cputime.utime, cputime.stime); | ||
62 | else | ||
63 | /* CPUCLOCK_VIRT */ | ||
64 | t = cputime.utime; | ||
65 | |||
66 | if (cputime_le(cval, t)) | ||
67 | /* about to fire */ | ||
68 | cval = cputime_one_jiffy; | ||
69 | else | ||
70 | cval = cputime_sub(cval, t); | ||
71 | } | ||
72 | |||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | |||
75 | cputime_to_timeval(cval, &value->it_value); | ||
76 | cputime_to_timeval(cinterval, &value->it_interval); | ||
77 | } | ||
78 | |||
44 | int do_getitimer(int which, struct itimerval *value) | 79 | int do_getitimer(int which, struct itimerval *value) |
45 | { | 80 | { |
46 | struct task_struct *tsk = current; | 81 | struct task_struct *tsk = current; |
47 | cputime_t cinterval, cval; | ||
48 | 82 | ||
49 | switch (which) { | 83 | switch (which) { |
50 | case ITIMER_REAL: | 84 | case ITIMER_REAL: |
@@ -55,44 +89,10 @@ int do_getitimer(int which, struct itimerval *value) | |||
55 | spin_unlock_irq(&tsk->sighand->siglock); | 89 | spin_unlock_irq(&tsk->sighand->siglock); |
56 | break; | 90 | break; |
57 | case ITIMER_VIRTUAL: | 91 | case ITIMER_VIRTUAL: |
58 | spin_lock_irq(&tsk->sighand->siglock); | 92 | get_cpu_itimer(tsk, CPUCLOCK_VIRT, value); |
59 | cval = tsk->signal->it_virt_expires; | ||
60 | cinterval = tsk->signal->it_virt_incr; | ||
61 | if (!cputime_eq(cval, cputime_zero)) { | ||
62 | struct task_cputime cputime; | ||
63 | cputime_t utime; | ||
64 | |||
65 | thread_group_cputimer(tsk, &cputime); | ||
66 | utime = cputime.utime; | ||
67 | if (cputime_le(cval, utime)) { /* about to fire */ | ||
68 | cval = jiffies_to_cputime(1); | ||
69 | } else { | ||
70 | cval = cputime_sub(cval, utime); | ||
71 | } | ||
72 | } | ||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | cputime_to_timeval(cval, &value->it_value); | ||
75 | cputime_to_timeval(cinterval, &value->it_interval); | ||
76 | break; | 93 | break; |
77 | case ITIMER_PROF: | 94 | case ITIMER_PROF: |
78 | spin_lock_irq(&tsk->sighand->siglock); | 95 | get_cpu_itimer(tsk, CPUCLOCK_PROF, value); |
79 | cval = tsk->signal->it_prof_expires; | ||
80 | cinterval = tsk->signal->it_prof_incr; | ||
81 | if (!cputime_eq(cval, cputime_zero)) { | ||
82 | struct task_cputime times; | ||
83 | cputime_t ptime; | ||
84 | |||
85 | thread_group_cputimer(tsk, ×); | ||
86 | ptime = cputime_add(times.utime, times.stime); | ||
87 | if (cputime_le(cval, ptime)) { /* about to fire */ | ||
88 | cval = jiffies_to_cputime(1); | ||
89 | } else { | ||
90 | cval = cputime_sub(cval, ptime); | ||
91 | } | ||
92 | } | ||
93 | spin_unlock_irq(&tsk->sighand->siglock); | ||
94 | cputime_to_timeval(cval, &value->it_value); | ||
95 | cputime_to_timeval(cinterval, &value->it_interval); | ||
96 | break; | 96 | break; |
97 | default: | 97 | default: |
98 | return(-EINVAL); | 98 | return(-EINVAL); |
@@ -123,11 +123,62 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer) | |||
123 | struct signal_struct *sig = | 123 | struct signal_struct *sig = |
124 | container_of(timer, struct signal_struct, real_timer); | 124 | container_of(timer, struct signal_struct, real_timer); |
125 | 125 | ||
126 | trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0); | ||
126 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); | 127 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); |
127 | 128 | ||
128 | return HRTIMER_NORESTART; | 129 | return HRTIMER_NORESTART; |
129 | } | 130 | } |
130 | 131 | ||
132 | static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns) | ||
133 | { | ||
134 | struct timespec ts; | ||
135 | s64 cpu_ns; | ||
136 | |||
137 | cputime_to_timespec(ct, &ts); | ||
138 | cpu_ns = timespec_to_ns(&ts); | ||
139 | |||
140 | return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns; | ||
141 | } | ||
142 | |||
143 | static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
144 | const struct itimerval *const value, | ||
145 | struct itimerval *const ovalue) | ||
146 | { | ||
147 | cputime_t cval, nval, cinterval, ninterval; | ||
148 | s64 ns_ninterval, ns_nval; | ||
149 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
150 | |||
151 | nval = timeval_to_cputime(&value->it_value); | ||
152 | ns_nval = timeval_to_ns(&value->it_value); | ||
153 | ninterval = timeval_to_cputime(&value->it_interval); | ||
154 | ns_ninterval = timeval_to_ns(&value->it_interval); | ||
155 | |||
156 | it->incr_error = cputime_sub_ns(ninterval, ns_ninterval); | ||
157 | it->error = cputime_sub_ns(nval, ns_nval); | ||
158 | |||
159 | spin_lock_irq(&tsk->sighand->siglock); | ||
160 | |||
161 | cval = it->expires; | ||
162 | cinterval = it->incr; | ||
163 | if (!cputime_eq(cval, cputime_zero) || | ||
164 | !cputime_eq(nval, cputime_zero)) { | ||
165 | if (cputime_gt(nval, cputime_zero)) | ||
166 | nval = cputime_add(nval, cputime_one_jiffy); | ||
167 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); | ||
168 | } | ||
169 | it->expires = nval; | ||
170 | it->incr = ninterval; | ||
171 | trace_itimer_state(clock_id == CPUCLOCK_VIRT ? | ||
172 | ITIMER_VIRTUAL : ITIMER_PROF, value, nval); | ||
173 | |||
174 | spin_unlock_irq(&tsk->sighand->siglock); | ||
175 | |||
176 | if (ovalue) { | ||
177 | cputime_to_timeval(cval, &ovalue->it_value); | ||
178 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
179 | } | ||
180 | } | ||
181 | |||
131 | /* | 182 | /* |
132 | * Returns true if the timeval is in canonical form | 183 | * Returns true if the timeval is in canonical form |
133 | */ | 184 | */ |
@@ -139,7 +190,6 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | |||
139 | struct task_struct *tsk = current; | 190 | struct task_struct *tsk = current; |
140 | struct hrtimer *timer; | 191 | struct hrtimer *timer; |
141 | ktime_t expires; | 192 | ktime_t expires; |
142 | cputime_t cval, cinterval, nval, ninterval; | ||
143 | 193 | ||
144 | /* | 194 | /* |
145 | * Validate the timevals in value. | 195 | * Validate the timevals in value. |
@@ -171,51 +221,14 @@ again: | |||
171 | } else | 221 | } else |
172 | tsk->signal->it_real_incr.tv64 = 0; | 222 | tsk->signal->it_real_incr.tv64 = 0; |
173 | 223 | ||
224 | trace_itimer_state(ITIMER_REAL, value, 0); | ||
174 | spin_unlock_irq(&tsk->sighand->siglock); | 225 | spin_unlock_irq(&tsk->sighand->siglock); |
175 | break; | 226 | break; |
176 | case ITIMER_VIRTUAL: | 227 | case ITIMER_VIRTUAL: |
177 | nval = timeval_to_cputime(&value->it_value); | 228 | set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue); |
178 | ninterval = timeval_to_cputime(&value->it_interval); | ||
179 | spin_lock_irq(&tsk->sighand->siglock); | ||
180 | cval = tsk->signal->it_virt_expires; | ||
181 | cinterval = tsk->signal->it_virt_incr; | ||
182 | if (!cputime_eq(cval, cputime_zero) || | ||
183 | !cputime_eq(nval, cputime_zero)) { | ||
184 | if (cputime_gt(nval, cputime_zero)) | ||
185 | nval = cputime_add(nval, | ||
186 | jiffies_to_cputime(1)); | ||
187 | set_process_cpu_timer(tsk, CPUCLOCK_VIRT, | ||
188 | &nval, &cval); | ||
189 | } | ||
190 | tsk->signal->it_virt_expires = nval; | ||
191 | tsk->signal->it_virt_incr = ninterval; | ||
192 | spin_unlock_irq(&tsk->sighand->siglock); | ||
193 | if (ovalue) { | ||
194 | cputime_to_timeval(cval, &ovalue->it_value); | ||
195 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
196 | } | ||
197 | break; | 229 | break; |
198 | case ITIMER_PROF: | 230 | case ITIMER_PROF: |
199 | nval = timeval_to_cputime(&value->it_value); | 231 | set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue); |
200 | ninterval = timeval_to_cputime(&value->it_interval); | ||
201 | spin_lock_irq(&tsk->sighand->siglock); | ||
202 | cval = tsk->signal->it_prof_expires; | ||
203 | cinterval = tsk->signal->it_prof_incr; | ||
204 | if (!cputime_eq(cval, cputime_zero) || | ||
205 | !cputime_eq(nval, cputime_zero)) { | ||
206 | if (cputime_gt(nval, cputime_zero)) | ||
207 | nval = cputime_add(nval, | ||
208 | jiffies_to_cputime(1)); | ||
209 | set_process_cpu_timer(tsk, CPUCLOCK_PROF, | ||
210 | &nval, &cval); | ||
211 | } | ||
212 | tsk->signal->it_prof_expires = nval; | ||
213 | tsk->signal->it_prof_incr = ninterval; | ||
214 | spin_unlock_irq(&tsk->sighand->siglock); | ||
215 | if (ovalue) { | ||
216 | cputime_to_timeval(cval, &ovalue->it_value); | ||
217 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
218 | } | ||
219 | break; | 232 | break; |
220 | default: | 233 | default: |
221 | return -EINVAL; | 234 | return -EINVAL; |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 3a29dbe7898e..8b6b8b697c68 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
@@ -59,7 +59,8 @@ static inline int is_kernel_inittext(unsigned long addr) | |||
59 | 59 | ||
60 | static inline int is_kernel_text(unsigned long addr) | 60 | static inline int is_kernel_text(unsigned long addr) |
61 | { | 61 | { |
62 | if (addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) | 62 | if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || |
63 | arch_is_kernel_text(addr)) | ||
63 | return 1; | 64 | return 1; |
64 | return in_gate_area_no_task(addr); | 65 | return in_gate_area_no_task(addr); |
65 | } | 66 | } |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index ef177d653b2c..5240d75f4c60 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -1321,7 +1321,7 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) | |||
1321 | return 0; | 1321 | return 0; |
1322 | } | 1322 | } |
1323 | 1323 | ||
1324 | static struct seq_operations kprobes_seq_ops = { | 1324 | static const struct seq_operations kprobes_seq_ops = { |
1325 | .start = kprobe_seq_start, | 1325 | .start = kprobe_seq_start, |
1326 | .next = kprobe_seq_next, | 1326 | .next = kprobe_seq_next, |
1327 | .stop = kprobe_seq_stop, | 1327 | .stop = kprobe_seq_stop, |
@@ -1333,7 +1333,7 @@ static int __kprobes kprobes_open(struct inode *inode, struct file *filp) | |||
1333 | return seq_open(filp, &kprobes_seq_ops); | 1333 | return seq_open(filp, &kprobes_seq_ops); |
1334 | } | 1334 | } |
1335 | 1335 | ||
1336 | static struct file_operations debugfs_kprobes_operations = { | 1336 | static const struct file_operations debugfs_kprobes_operations = { |
1337 | .open = kprobes_open, | 1337 | .open = kprobes_open, |
1338 | .read = seq_read, | 1338 | .read = seq_read, |
1339 | .llseek = seq_lseek, | 1339 | .llseek = seq_lseek, |
@@ -1515,7 +1515,7 @@ static ssize_t write_enabled_file_bool(struct file *file, | |||
1515 | return count; | 1515 | return count; |
1516 | } | 1516 | } |
1517 | 1517 | ||
1518 | static struct file_operations fops_kp = { | 1518 | static const struct file_operations fops_kp = { |
1519 | .read = read_enabled_file_bool, | 1519 | .read = read_enabled_file_bool, |
1520 | .write = write_enabled_file_bool, | 1520 | .write = write_enabled_file_bool, |
1521 | }; | 1521 | }; |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index f74d2d7aa605..3815ac1d58b2 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -578,6 +578,9 @@ static int static_obj(void *obj) | |||
578 | if ((addr >= start) && (addr < end)) | 578 | if ((addr >= start) && (addr < end)) |
579 | return 1; | 579 | return 1; |
580 | 580 | ||
581 | if (arch_is_kernel_data(addr)) | ||
582 | return 1; | ||
583 | |||
581 | #ifdef CONFIG_SMP | 584 | #ifdef CONFIG_SMP |
582 | /* | 585 | /* |
583 | * percpu var? | 586 | * percpu var? |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index d4b3dbc79fdb..d4aba4f3584c 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
@@ -594,7 +594,7 @@ static int ls_show(struct seq_file *m, void *v) | |||
594 | return 0; | 594 | return 0; |
595 | } | 595 | } |
596 | 596 | ||
597 | static struct seq_operations lockstat_ops = { | 597 | static const struct seq_operations lockstat_ops = { |
598 | .start = ls_start, | 598 | .start = ls_start, |
599 | .next = ls_next, | 599 | .next = ls_next, |
600 | .stop = ls_stop, | 600 | .stop = ls_stop, |
diff --git a/kernel/module.c b/kernel/module.c index b6ee424245dd..8b7d8805819d 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -47,6 +47,7 @@ | |||
47 | #include <linux/rculist.h> | 47 | #include <linux/rculist.h> |
48 | #include <asm/uaccess.h> | 48 | #include <asm/uaccess.h> |
49 | #include <asm/cacheflush.h> | 49 | #include <asm/cacheflush.h> |
50 | #include <asm/mmu_context.h> | ||
50 | #include <linux/license.h> | 51 | #include <linux/license.h> |
51 | #include <asm/sections.h> | 52 | #include <asm/sections.h> |
52 | #include <linux/tracepoint.h> | 53 | #include <linux/tracepoint.h> |
@@ -1535,6 +1536,10 @@ static void free_module(struct module *mod) | |||
1535 | 1536 | ||
1536 | /* Finally, free the core (containing the module structure) */ | 1537 | /* Finally, free the core (containing the module structure) */ |
1537 | module_free(mod, mod->module_core); | 1538 | module_free(mod, mod->module_core); |
1539 | |||
1540 | #ifdef CONFIG_MPU | ||
1541 | update_protections(current->mm); | ||
1542 | #endif | ||
1538 | } | 1543 | } |
1539 | 1544 | ||
1540 | void *__symbol_get(const char *symbol) | 1545 | void *__symbol_get(const char *symbol) |
@@ -1792,6 +1797,17 @@ static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs, | |||
1792 | } | 1797 | } |
1793 | } | 1798 | } |
1794 | 1799 | ||
1800 | static void free_modinfo(struct module *mod) | ||
1801 | { | ||
1802 | struct module_attribute *attr; | ||
1803 | int i; | ||
1804 | |||
1805 | for (i = 0; (attr = modinfo_attrs[i]); i++) { | ||
1806 | if (attr->free) | ||
1807 | attr->free(mod); | ||
1808 | } | ||
1809 | } | ||
1810 | |||
1795 | #ifdef CONFIG_KALLSYMS | 1811 | #ifdef CONFIG_KALLSYMS |
1796 | 1812 | ||
1797 | /* lookup symbol in given range of kernel_symbols */ | 1813 | /* lookup symbol in given range of kernel_symbols */ |
@@ -1857,13 +1873,93 @@ static char elf_type(const Elf_Sym *sym, | |||
1857 | return '?'; | 1873 | return '?'; |
1858 | } | 1874 | } |
1859 | 1875 | ||
1876 | static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs, | ||
1877 | unsigned int shnum) | ||
1878 | { | ||
1879 | const Elf_Shdr *sec; | ||
1880 | |||
1881 | if (src->st_shndx == SHN_UNDEF | ||
1882 | || src->st_shndx >= shnum | ||
1883 | || !src->st_name) | ||
1884 | return false; | ||
1885 | |||
1886 | sec = sechdrs + src->st_shndx; | ||
1887 | if (!(sec->sh_flags & SHF_ALLOC) | ||
1888 | #ifndef CONFIG_KALLSYMS_ALL | ||
1889 | || !(sec->sh_flags & SHF_EXECINSTR) | ||
1890 | #endif | ||
1891 | || (sec->sh_entsize & INIT_OFFSET_MASK)) | ||
1892 | return false; | ||
1893 | |||
1894 | return true; | ||
1895 | } | ||
1896 | |||
1897 | static unsigned long layout_symtab(struct module *mod, | ||
1898 | Elf_Shdr *sechdrs, | ||
1899 | unsigned int symindex, | ||
1900 | unsigned int strindex, | ||
1901 | const Elf_Ehdr *hdr, | ||
1902 | const char *secstrings, | ||
1903 | unsigned long *pstroffs, | ||
1904 | unsigned long *strmap) | ||
1905 | { | ||
1906 | unsigned long symoffs; | ||
1907 | Elf_Shdr *symsect = sechdrs + symindex; | ||
1908 | Elf_Shdr *strsect = sechdrs + strindex; | ||
1909 | const Elf_Sym *src; | ||
1910 | const char *strtab; | ||
1911 | unsigned int i, nsrc, ndst; | ||
1912 | |||
1913 | /* Put symbol section at end of init part of module. */ | ||
1914 | symsect->sh_flags |= SHF_ALLOC; | ||
1915 | symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect, | ||
1916 | symindex) | INIT_OFFSET_MASK; | ||
1917 | DEBUGP("\t%s\n", secstrings + symsect->sh_name); | ||
1918 | |||
1919 | src = (void *)hdr + symsect->sh_offset; | ||
1920 | nsrc = symsect->sh_size / sizeof(*src); | ||
1921 | strtab = (void *)hdr + strsect->sh_offset; | ||
1922 | for (ndst = i = 1; i < nsrc; ++i, ++src) | ||
1923 | if (is_core_symbol(src, sechdrs, hdr->e_shnum)) { | ||
1924 | unsigned int j = src->st_name; | ||
1925 | |||
1926 | while(!__test_and_set_bit(j, strmap) && strtab[j]) | ||
1927 | ++j; | ||
1928 | ++ndst; | ||
1929 | } | ||
1930 | |||
1931 | /* Append room for core symbols at end of core part. */ | ||
1932 | symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1); | ||
1933 | mod->core_size = symoffs + ndst * sizeof(Elf_Sym); | ||
1934 | |||
1935 | /* Put string table section at end of init part of module. */ | ||
1936 | strsect->sh_flags |= SHF_ALLOC; | ||
1937 | strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect, | ||
1938 | strindex) | INIT_OFFSET_MASK; | ||
1939 | DEBUGP("\t%s\n", secstrings + strsect->sh_name); | ||
1940 | |||
1941 | /* Append room for core symbols' strings at end of core part. */ | ||
1942 | *pstroffs = mod->core_size; | ||
1943 | __set_bit(0, strmap); | ||
1944 | mod->core_size += bitmap_weight(strmap, strsect->sh_size); | ||
1945 | |||
1946 | return symoffs; | ||
1947 | } | ||
1948 | |||
1860 | static void add_kallsyms(struct module *mod, | 1949 | static void add_kallsyms(struct module *mod, |
1861 | Elf_Shdr *sechdrs, | 1950 | Elf_Shdr *sechdrs, |
1951 | unsigned int shnum, | ||
1862 | unsigned int symindex, | 1952 | unsigned int symindex, |
1863 | unsigned int strindex, | 1953 | unsigned int strindex, |
1864 | const char *secstrings) | 1954 | unsigned long symoffs, |
1955 | unsigned long stroffs, | ||
1956 | const char *secstrings, | ||
1957 | unsigned long *strmap) | ||
1865 | { | 1958 | { |
1866 | unsigned int i; | 1959 | unsigned int i, ndst; |
1960 | const Elf_Sym *src; | ||
1961 | Elf_Sym *dst; | ||
1962 | char *s; | ||
1867 | 1963 | ||
1868 | mod->symtab = (void *)sechdrs[symindex].sh_addr; | 1964 | mod->symtab = (void *)sechdrs[symindex].sh_addr; |
1869 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); | 1965 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
@@ -1873,13 +1969,46 @@ static void add_kallsyms(struct module *mod, | |||
1873 | for (i = 0; i < mod->num_symtab; i++) | 1969 | for (i = 0; i < mod->num_symtab; i++) |
1874 | mod->symtab[i].st_info | 1970 | mod->symtab[i].st_info |
1875 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); | 1971 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); |
1972 | |||
1973 | mod->core_symtab = dst = mod->module_core + symoffs; | ||
1974 | src = mod->symtab; | ||
1975 | *dst = *src; | ||
1976 | for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) { | ||
1977 | if (!is_core_symbol(src, sechdrs, shnum)) | ||
1978 | continue; | ||
1979 | dst[ndst] = *src; | ||
1980 | dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name); | ||
1981 | ++ndst; | ||
1982 | } | ||
1983 | mod->core_num_syms = ndst; | ||
1984 | |||
1985 | mod->core_strtab = s = mod->module_core + stroffs; | ||
1986 | for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i) | ||
1987 | if (test_bit(i, strmap)) | ||
1988 | *++s = mod->strtab[i]; | ||
1876 | } | 1989 | } |
1877 | #else | 1990 | #else |
1991 | static inline unsigned long layout_symtab(struct module *mod, | ||
1992 | Elf_Shdr *sechdrs, | ||
1993 | unsigned int symindex, | ||
1994 | unsigned int strindex, | ||
1995 | const Elf_Ehdr *hdr, | ||
1996 | const char *secstrings, | ||
1997 | unsigned long *pstroffs, | ||
1998 | unsigned long *strmap) | ||
1999 | { | ||
2000 | return 0; | ||
2001 | } | ||
2002 | |||
1878 | static inline void add_kallsyms(struct module *mod, | 2003 | static inline void add_kallsyms(struct module *mod, |
1879 | Elf_Shdr *sechdrs, | 2004 | Elf_Shdr *sechdrs, |
2005 | unsigned int shnum, | ||
1880 | unsigned int symindex, | 2006 | unsigned int symindex, |
1881 | unsigned int strindex, | 2007 | unsigned int strindex, |
1882 | const char *secstrings) | 2008 | unsigned long symoffs, |
2009 | unsigned long stroffs, | ||
2010 | const char *secstrings, | ||
2011 | const unsigned long *strmap) | ||
1883 | { | 2012 | { |
1884 | } | 2013 | } |
1885 | #endif /* CONFIG_KALLSYMS */ | 2014 | #endif /* CONFIG_KALLSYMS */ |
@@ -1954,6 +2083,8 @@ static noinline struct module *load_module(void __user *umod, | |||
1954 | struct module *mod; | 2083 | struct module *mod; |
1955 | long err = 0; | 2084 | long err = 0; |
1956 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ | 2085 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ |
2086 | unsigned long symoffs, stroffs, *strmap; | ||
2087 | |||
1957 | mm_segment_t old_fs; | 2088 | mm_segment_t old_fs; |
1958 | 2089 | ||
1959 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", | 2090 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", |
@@ -2035,11 +2166,6 @@ static noinline struct module *load_module(void __user *umod, | |||
2035 | /* Don't keep modinfo and version sections. */ | 2166 | /* Don't keep modinfo and version sections. */ |
2036 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2167 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
2037 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2168 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
2038 | #ifdef CONFIG_KALLSYMS | ||
2039 | /* Keep symbol and string tables for decoding later. */ | ||
2040 | sechdrs[symindex].sh_flags |= SHF_ALLOC; | ||
2041 | sechdrs[strindex].sh_flags |= SHF_ALLOC; | ||
2042 | #endif | ||
2043 | 2169 | ||
2044 | /* Check module struct version now, before we try to use module. */ | 2170 | /* Check module struct version now, before we try to use module. */ |
2045 | if (!check_modstruct_version(sechdrs, versindex, mod)) { | 2171 | if (!check_modstruct_version(sechdrs, versindex, mod)) { |
@@ -2075,6 +2201,13 @@ static noinline struct module *load_module(void __user *umod, | |||
2075 | goto free_hdr; | 2201 | goto free_hdr; |
2076 | } | 2202 | } |
2077 | 2203 | ||
2204 | strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size) | ||
2205 | * sizeof(long), GFP_KERNEL); | ||
2206 | if (!strmap) { | ||
2207 | err = -ENOMEM; | ||
2208 | goto free_mod; | ||
2209 | } | ||
2210 | |||
2078 | if (find_module(mod->name)) { | 2211 | if (find_module(mod->name)) { |
2079 | err = -EEXIST; | 2212 | err = -EEXIST; |
2080 | goto free_mod; | 2213 | goto free_mod; |
@@ -2104,6 +2237,8 @@ static noinline struct module *load_module(void __user *umod, | |||
2104 | this is done generically; there doesn't appear to be any | 2237 | this is done generically; there doesn't appear to be any |
2105 | special cases for the architectures. */ | 2238 | special cases for the architectures. */ |
2106 | layout_sections(mod, hdr, sechdrs, secstrings); | 2239 | layout_sections(mod, hdr, sechdrs, secstrings); |
2240 | symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr, | ||
2241 | secstrings, &stroffs, strmap); | ||
2107 | 2242 | ||
2108 | /* Do the allocs. */ | 2243 | /* Do the allocs. */ |
2109 | ptr = module_alloc_update_bounds(mod->core_size); | 2244 | ptr = module_alloc_update_bounds(mod->core_size); |
@@ -2308,7 +2443,10 @@ static noinline struct module *load_module(void __user *umod, | |||
2308 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, | 2443 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, |
2309 | sechdrs[pcpuindex].sh_size); | 2444 | sechdrs[pcpuindex].sh_size); |
2310 | 2445 | ||
2311 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); | 2446 | add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex, |
2447 | symoffs, stroffs, secstrings, strmap); | ||
2448 | kfree(strmap); | ||
2449 | strmap = NULL; | ||
2312 | 2450 | ||
2313 | if (!mod->taints) { | 2451 | if (!mod->taints) { |
2314 | struct _ddebug *debug; | 2452 | struct _ddebug *debug; |
@@ -2380,13 +2518,14 @@ static noinline struct module *load_module(void __user *umod, | |||
2380 | synchronize_sched(); | 2518 | synchronize_sched(); |
2381 | module_arch_cleanup(mod); | 2519 | module_arch_cleanup(mod); |
2382 | cleanup: | 2520 | cleanup: |
2521 | free_modinfo(mod); | ||
2383 | kobject_del(&mod->mkobj.kobj); | 2522 | kobject_del(&mod->mkobj.kobj); |
2384 | kobject_put(&mod->mkobj.kobj); | 2523 | kobject_put(&mod->mkobj.kobj); |
2385 | free_unload: | 2524 | free_unload: |
2386 | module_unload_free(mod); | 2525 | module_unload_free(mod); |
2387 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) | 2526 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) |
2388 | free_init: | ||
2389 | percpu_modfree(mod->refptr); | 2527 | percpu_modfree(mod->refptr); |
2528 | free_init: | ||
2390 | #endif | 2529 | #endif |
2391 | module_free(mod, mod->module_init); | 2530 | module_free(mod, mod->module_init); |
2392 | free_core: | 2531 | free_core: |
@@ -2397,6 +2536,7 @@ static noinline struct module *load_module(void __user *umod, | |||
2397 | percpu_modfree(percpu); | 2536 | percpu_modfree(percpu); |
2398 | free_mod: | 2537 | free_mod: |
2399 | kfree(args); | 2538 | kfree(args); |
2539 | kfree(strmap); | ||
2400 | free_hdr: | 2540 | free_hdr: |
2401 | vfree(hdr); | 2541 | vfree(hdr); |
2402 | return ERR_PTR(err); | 2542 | return ERR_PTR(err); |
@@ -2486,6 +2626,11 @@ SYSCALL_DEFINE3(init_module, void __user *, umod, | |||
2486 | /* Drop initial reference. */ | 2626 | /* Drop initial reference. */ |
2487 | module_put(mod); | 2627 | module_put(mod); |
2488 | trim_init_extable(mod); | 2628 | trim_init_extable(mod); |
2629 | #ifdef CONFIG_KALLSYMS | ||
2630 | mod->num_symtab = mod->core_num_syms; | ||
2631 | mod->symtab = mod->core_symtab; | ||
2632 | mod->strtab = mod->core_strtab; | ||
2633 | #endif | ||
2489 | module_free(mod, mod->module_init); | 2634 | module_free(mod, mod->module_init); |
2490 | mod->module_init = NULL; | 2635 | mod->module_init = NULL; |
2491 | mod->init_size = 0; | 2636 | mod->init_size = 0; |
@@ -2947,7 +3092,6 @@ void module_layout(struct module *mod, | |||
2947 | struct modversion_info *ver, | 3092 | struct modversion_info *ver, |
2948 | struct kernel_param *kp, | 3093 | struct kernel_param *kp, |
2949 | struct kernel_symbol *ks, | 3094 | struct kernel_symbol *ks, |
2950 | struct marker *marker, | ||
2951 | struct tracepoint *tp) | 3095 | struct tracepoint *tp) |
2952 | { | 3096 | { |
2953 | } | 3097 | } |
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c index 5aa854f9e5ae..2a5dfec8efe0 100644 --- a/kernel/ns_cgroup.c +++ b/kernel/ns_cgroup.c | |||
@@ -42,8 +42,8 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid) | |||
42 | * (hence either you are in the same cgroup as task, or in an | 42 | * (hence either you are in the same cgroup as task, or in an |
43 | * ancestor cgroup thereof) | 43 | * ancestor cgroup thereof) |
44 | */ | 44 | */ |
45 | static int ns_can_attach(struct cgroup_subsys *ss, | 45 | static int ns_can_attach(struct cgroup_subsys *ss, struct cgroup *new_cgroup, |
46 | struct cgroup *new_cgroup, struct task_struct *task) | 46 | struct task_struct *task, bool threadgroup) |
47 | { | 47 | { |
48 | if (current != task) { | 48 | if (current != task) { |
49 | if (!capable(CAP_SYS_ADMIN)) | 49 | if (!capable(CAP_SYS_ADMIN)) |
@@ -56,6 +56,18 @@ static int ns_can_attach(struct cgroup_subsys *ss, | |||
56 | if (!cgroup_is_descendant(new_cgroup, task)) | 56 | if (!cgroup_is_descendant(new_cgroup, task)) |
57 | return -EPERM; | 57 | return -EPERM; |
58 | 58 | ||
59 | if (threadgroup) { | ||
60 | struct task_struct *c; | ||
61 | rcu_read_lock(); | ||
62 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
63 | if (!cgroup_is_descendant(new_cgroup, c)) { | ||
64 | rcu_read_unlock(); | ||
65 | return -EPERM; | ||
66 | } | ||
67 | } | ||
68 | rcu_read_unlock(); | ||
69 | } | ||
70 | |||
59 | return 0; | 71 | return 0; |
60 | } | 72 | } |
61 | 73 | ||
diff --git a/kernel/panic.c b/kernel/panic.c index bc4dcb6a389b..96b45d0b4ba5 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -178,7 +178,7 @@ static const struct tnt tnts[] = { | |||
178 | * 'W' - Taint on warning. | 178 | * 'W' - Taint on warning. |
179 | * 'C' - modules from drivers/staging are loaded. | 179 | * 'C' - modules from drivers/staging are loaded. |
180 | * | 180 | * |
181 | * The string is overwritten by the next call to print_taint(). | 181 | * The string is overwritten by the next call to print_tainted(). |
182 | */ | 182 | */ |
183 | const char *print_tainted(void) | 183 | const char *print_tainted(void) |
184 | { | 184 | { |
diff --git a/kernel/params.c b/kernel/params.c index 7f6912ced2ba..9da58eabdcb2 100644 --- a/kernel/params.c +++ b/kernel/params.c | |||
@@ -23,6 +23,7 @@ | |||
23 | #include <linux/device.h> | 23 | #include <linux/device.h> |
24 | #include <linux/err.h> | 24 | #include <linux/err.h> |
25 | #include <linux/slab.h> | 25 | #include <linux/slab.h> |
26 | #include <linux/ctype.h> | ||
26 | 27 | ||
27 | #if 0 | 28 | #if 0 |
28 | #define DEBUGP printk | 29 | #define DEBUGP printk |
@@ -87,7 +88,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
87 | } | 88 | } |
88 | 89 | ||
89 | for (i = 0; args[i]; i++) { | 90 | for (i = 0; args[i]; i++) { |
90 | if (args[i] == ' ' && !in_quote) | 91 | if (isspace(args[i]) && !in_quote) |
91 | break; | 92 | break; |
92 | if (equals == 0) { | 93 | if (equals == 0) { |
93 | if (args[i] == '=') | 94 | if (args[i] == '=') |
@@ -121,7 +122,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
121 | next = args + i; | 122 | next = args + i; |
122 | 123 | ||
123 | /* Chew up trailing spaces. */ | 124 | /* Chew up trailing spaces. */ |
124 | while (*next == ' ') | 125 | while (isspace(*next)) |
125 | next++; | 126 | next++; |
126 | return next; | 127 | return next; |
127 | } | 128 | } |
@@ -138,7 +139,7 @@ int parse_args(const char *name, | |||
138 | DEBUGP("Parsing ARGS: %s\n", args); | 139 | DEBUGP("Parsing ARGS: %s\n", args); |
139 | 140 | ||
140 | /* Chew leading spaces */ | 141 | /* Chew leading spaces */ |
141 | while (*args == ' ') | 142 | while (isspace(*args)) |
142 | args++; | 143 | args++; |
143 | 144 | ||
144 | while (*args) { | 145 | while (*args) { |
diff --git a/kernel/perf_counter.c b/kernel/perf_event.c index cc768ab81ac8..9d0b5c665883 100644 --- a/kernel/perf_counter.c +++ b/kernel/perf_event.c | |||
@@ -1,12 +1,12 @@ | |||
1 | /* | 1 | /* |
2 | * Performance counter core code | 2 | * Performance events core code: |
3 | * | 3 | * |
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
8 | * | 8 | * |
9 | * For licensing details see kernel-base/COPYING | 9 | * For licensing details see kernel-base/COPYING |
10 | */ | 10 | */ |
11 | 11 | ||
12 | #include <linux/fs.h> | 12 | #include <linux/fs.h> |
@@ -20,72 +20,73 @@ | |||
20 | #include <linux/percpu.h> | 20 | #include <linux/percpu.h> |
21 | #include <linux/ptrace.h> | 21 | #include <linux/ptrace.h> |
22 | #include <linux/vmstat.h> | 22 | #include <linux/vmstat.h> |
23 | #include <linux/vmalloc.h> | ||
23 | #include <linux/hardirq.h> | 24 | #include <linux/hardirq.h> |
24 | #include <linux/rculist.h> | 25 | #include <linux/rculist.h> |
25 | #include <linux/uaccess.h> | 26 | #include <linux/uaccess.h> |
26 | #include <linux/syscalls.h> | 27 | #include <linux/syscalls.h> |
27 | #include <linux/anon_inodes.h> | 28 | #include <linux/anon_inodes.h> |
28 | #include <linux/kernel_stat.h> | 29 | #include <linux/kernel_stat.h> |
29 | #include <linux/perf_counter.h> | 30 | #include <linux/perf_event.h> |
30 | 31 | ||
31 | #include <asm/irq_regs.h> | 32 | #include <asm/irq_regs.h> |
32 | 33 | ||
33 | /* | 34 | /* |
34 | * Each CPU has a list of per CPU counters: | 35 | * Each CPU has a list of per CPU events: |
35 | */ | 36 | */ |
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | 37 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); |
37 | 38 | ||
38 | int perf_max_counters __read_mostly = 1; | 39 | int perf_max_events __read_mostly = 1; |
39 | static int perf_reserved_percpu __read_mostly; | 40 | static int perf_reserved_percpu __read_mostly; |
40 | static int perf_overcommit __read_mostly = 1; | 41 | static int perf_overcommit __read_mostly = 1; |
41 | 42 | ||
42 | static atomic_t nr_counters __read_mostly; | 43 | static atomic_t nr_events __read_mostly; |
43 | static atomic_t nr_mmap_counters __read_mostly; | 44 | static atomic_t nr_mmap_events __read_mostly; |
44 | static atomic_t nr_comm_counters __read_mostly; | 45 | static atomic_t nr_comm_events __read_mostly; |
45 | static atomic_t nr_task_counters __read_mostly; | 46 | static atomic_t nr_task_events __read_mostly; |
46 | 47 | ||
47 | /* | 48 | /* |
48 | * perf counter paranoia level: | 49 | * perf event paranoia level: |
49 | * -1 - not paranoid at all | 50 | * -1 - not paranoid at all |
50 | * 0 - disallow raw tracepoint access for unpriv | 51 | * 0 - disallow raw tracepoint access for unpriv |
51 | * 1 - disallow cpu counters for unpriv | 52 | * 1 - disallow cpu events for unpriv |
52 | * 2 - disallow kernel profiling for unpriv | 53 | * 2 - disallow kernel profiling for unpriv |
53 | */ | 54 | */ |
54 | int sysctl_perf_counter_paranoid __read_mostly = 1; | 55 | int sysctl_perf_event_paranoid __read_mostly = 1; |
55 | 56 | ||
56 | static inline bool perf_paranoid_tracepoint_raw(void) | 57 | static inline bool perf_paranoid_tracepoint_raw(void) |
57 | { | 58 | { |
58 | return sysctl_perf_counter_paranoid > -1; | 59 | return sysctl_perf_event_paranoid > -1; |
59 | } | 60 | } |
60 | 61 | ||
61 | static inline bool perf_paranoid_cpu(void) | 62 | static inline bool perf_paranoid_cpu(void) |
62 | { | 63 | { |
63 | return sysctl_perf_counter_paranoid > 0; | 64 | return sysctl_perf_event_paranoid > 0; |
64 | } | 65 | } |
65 | 66 | ||
66 | static inline bool perf_paranoid_kernel(void) | 67 | static inline bool perf_paranoid_kernel(void) |
67 | { | 68 | { |
68 | return sysctl_perf_counter_paranoid > 1; | 69 | return sysctl_perf_event_paranoid > 1; |
69 | } | 70 | } |
70 | 71 | ||
71 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | 72 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ |
72 | 73 | ||
73 | /* | 74 | /* |
74 | * max perf counter sample rate | 75 | * max perf event sample rate |
75 | */ | 76 | */ |
76 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | 77 | int sysctl_perf_event_sample_rate __read_mostly = 100000; |
77 | 78 | ||
78 | static atomic64_t perf_counter_id; | 79 | static atomic64_t perf_event_id; |
79 | 80 | ||
80 | /* | 81 | /* |
81 | * Lock for (sysadmin-configurable) counter reservations: | 82 | * Lock for (sysadmin-configurable) event reservations: |
82 | */ | 83 | */ |
83 | static DEFINE_SPINLOCK(perf_resource_lock); | 84 | static DEFINE_SPINLOCK(perf_resource_lock); |
84 | 85 | ||
85 | /* | 86 | /* |
86 | * Architecture provided APIs - weak aliases: | 87 | * Architecture provided APIs - weak aliases: |
87 | */ | 88 | */ |
88 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | 89 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) |
89 | { | 90 | { |
90 | return NULL; | 91 | return NULL; |
91 | } | 92 | } |
@@ -93,18 +94,18 @@ extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counte | |||
93 | void __weak hw_perf_disable(void) { barrier(); } | 94 | void __weak hw_perf_disable(void) { barrier(); } |
94 | void __weak hw_perf_enable(void) { barrier(); } | 95 | void __weak hw_perf_enable(void) { barrier(); } |
95 | 96 | ||
96 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | 97 | void __weak hw_perf_event_setup(int cpu) { barrier(); } |
97 | void __weak hw_perf_counter_setup_online(int cpu) { barrier(); } | 98 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } |
98 | 99 | ||
99 | int __weak | 100 | int __weak |
100 | hw_perf_group_sched_in(struct perf_counter *group_leader, | 101 | hw_perf_group_sched_in(struct perf_event *group_leader, |
101 | struct perf_cpu_context *cpuctx, | 102 | struct perf_cpu_context *cpuctx, |
102 | struct perf_counter_context *ctx, int cpu) | 103 | struct perf_event_context *ctx, int cpu) |
103 | { | 104 | { |
104 | return 0; | 105 | return 0; |
105 | } | 106 | } |
106 | 107 | ||
107 | void __weak perf_counter_print_debug(void) { } | 108 | void __weak perf_event_print_debug(void) { } |
108 | 109 | ||
109 | static DEFINE_PER_CPU(int, perf_disable_count); | 110 | static DEFINE_PER_CPU(int, perf_disable_count); |
110 | 111 | ||
@@ -130,20 +131,20 @@ void perf_enable(void) | |||
130 | hw_perf_enable(); | 131 | hw_perf_enable(); |
131 | } | 132 | } |
132 | 133 | ||
133 | static void get_ctx(struct perf_counter_context *ctx) | 134 | static void get_ctx(struct perf_event_context *ctx) |
134 | { | 135 | { |
135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | 136 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); |
136 | } | 137 | } |
137 | 138 | ||
138 | static void free_ctx(struct rcu_head *head) | 139 | static void free_ctx(struct rcu_head *head) |
139 | { | 140 | { |
140 | struct perf_counter_context *ctx; | 141 | struct perf_event_context *ctx; |
141 | 142 | ||
142 | ctx = container_of(head, struct perf_counter_context, rcu_head); | 143 | ctx = container_of(head, struct perf_event_context, rcu_head); |
143 | kfree(ctx); | 144 | kfree(ctx); |
144 | } | 145 | } |
145 | 146 | ||
146 | static void put_ctx(struct perf_counter_context *ctx) | 147 | static void put_ctx(struct perf_event_context *ctx) |
147 | { | 148 | { |
148 | if (atomic_dec_and_test(&ctx->refcount)) { | 149 | if (atomic_dec_and_test(&ctx->refcount)) { |
149 | if (ctx->parent_ctx) | 150 | if (ctx->parent_ctx) |
@@ -154,7 +155,7 @@ static void put_ctx(struct perf_counter_context *ctx) | |||
154 | } | 155 | } |
155 | } | 156 | } |
156 | 157 | ||
157 | static void unclone_ctx(struct perf_counter_context *ctx) | 158 | static void unclone_ctx(struct perf_event_context *ctx) |
158 | { | 159 | { |
159 | if (ctx->parent_ctx) { | 160 | if (ctx->parent_ctx) { |
160 | put_ctx(ctx->parent_ctx); | 161 | put_ctx(ctx->parent_ctx); |
@@ -163,37 +164,37 @@ static void unclone_ctx(struct perf_counter_context *ctx) | |||
163 | } | 164 | } |
164 | 165 | ||
165 | /* | 166 | /* |
166 | * If we inherit counters we want to return the parent counter id | 167 | * If we inherit events we want to return the parent event id |
167 | * to userspace. | 168 | * to userspace. |
168 | */ | 169 | */ |
169 | static u64 primary_counter_id(struct perf_counter *counter) | 170 | static u64 primary_event_id(struct perf_event *event) |
170 | { | 171 | { |
171 | u64 id = counter->id; | 172 | u64 id = event->id; |
172 | 173 | ||
173 | if (counter->parent) | 174 | if (event->parent) |
174 | id = counter->parent->id; | 175 | id = event->parent->id; |
175 | 176 | ||
176 | return id; | 177 | return id; |
177 | } | 178 | } |
178 | 179 | ||
179 | /* | 180 | /* |
180 | * Get the perf_counter_context for a task and lock it. | 181 | * Get the perf_event_context for a task and lock it. |
181 | * This has to cope with with the fact that until it is locked, | 182 | * This has to cope with with the fact that until it is locked, |
182 | * the context could get moved to another task. | 183 | * the context could get moved to another task. |
183 | */ | 184 | */ |
184 | static struct perf_counter_context * | 185 | static struct perf_event_context * |
185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | 186 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) |
186 | { | 187 | { |
187 | struct perf_counter_context *ctx; | 188 | struct perf_event_context *ctx; |
188 | 189 | ||
189 | rcu_read_lock(); | 190 | rcu_read_lock(); |
190 | retry: | 191 | retry: |
191 | ctx = rcu_dereference(task->perf_counter_ctxp); | 192 | ctx = rcu_dereference(task->perf_event_ctxp); |
192 | if (ctx) { | 193 | if (ctx) { |
193 | /* | 194 | /* |
194 | * If this context is a clone of another, it might | 195 | * If this context is a clone of another, it might |
195 | * get swapped for another underneath us by | 196 | * get swapped for another underneath us by |
196 | * perf_counter_task_sched_out, though the | 197 | * perf_event_task_sched_out, though the |
197 | * rcu_read_lock() protects us from any context | 198 | * rcu_read_lock() protects us from any context |
198 | * getting freed. Lock the context and check if it | 199 | * getting freed. Lock the context and check if it |
199 | * got swapped before we could get the lock, and retry | 200 | * got swapped before we could get the lock, and retry |
@@ -201,7 +202,7 @@ perf_lock_task_context(struct task_struct *task, unsigned long *flags) | |||
201 | * can't get swapped on us any more. | 202 | * can't get swapped on us any more. |
202 | */ | 203 | */ |
203 | spin_lock_irqsave(&ctx->lock, *flags); | 204 | spin_lock_irqsave(&ctx->lock, *flags); |
204 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | 205 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { |
205 | spin_unlock_irqrestore(&ctx->lock, *flags); | 206 | spin_unlock_irqrestore(&ctx->lock, *flags); |
206 | goto retry; | 207 | goto retry; |
207 | } | 208 | } |
@@ -220,9 +221,9 @@ perf_lock_task_context(struct task_struct *task, unsigned long *flags) | |||
220 | * can't get swapped to another task. This also increments its | 221 | * can't get swapped to another task. This also increments its |
221 | * reference count so that the context can't get freed. | 222 | * reference count so that the context can't get freed. |
222 | */ | 223 | */ |
223 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | 224 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) |
224 | { | 225 | { |
225 | struct perf_counter_context *ctx; | 226 | struct perf_event_context *ctx; |
226 | unsigned long flags; | 227 | unsigned long flags; |
227 | 228 | ||
228 | ctx = perf_lock_task_context(task, &flags); | 229 | ctx = perf_lock_task_context(task, &flags); |
@@ -233,7 +234,7 @@ static struct perf_counter_context *perf_pin_task_context(struct task_struct *ta | |||
233 | return ctx; | 234 | return ctx; |
234 | } | 235 | } |
235 | 236 | ||
236 | static void perf_unpin_context(struct perf_counter_context *ctx) | 237 | static void perf_unpin_context(struct perf_event_context *ctx) |
237 | { | 238 | { |
238 | unsigned long flags; | 239 | unsigned long flags; |
239 | 240 | ||
@@ -244,123 +245,122 @@ static void perf_unpin_context(struct perf_counter_context *ctx) | |||
244 | } | 245 | } |
245 | 246 | ||
246 | /* | 247 | /* |
247 | * Add a counter from the lists for its context. | 248 | * Add a event from the lists for its context. |
248 | * Must be called with ctx->mutex and ctx->lock held. | 249 | * Must be called with ctx->mutex and ctx->lock held. |
249 | */ | 250 | */ |
250 | static void | 251 | static void |
251 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | 252 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) |
252 | { | 253 | { |
253 | struct perf_counter *group_leader = counter->group_leader; | 254 | struct perf_event *group_leader = event->group_leader; |
254 | 255 | ||
255 | /* | 256 | /* |
256 | * Depending on whether it is a standalone or sibling counter, | 257 | * Depending on whether it is a standalone or sibling event, |
257 | * add it straight to the context's counter list, or to the group | 258 | * add it straight to the context's event list, or to the group |
258 | * leader's sibling list: | 259 | * leader's sibling list: |
259 | */ | 260 | */ |
260 | if (group_leader == counter) | 261 | if (group_leader == event) |
261 | list_add_tail(&counter->list_entry, &ctx->counter_list); | 262 | list_add_tail(&event->group_entry, &ctx->group_list); |
262 | else { | 263 | else { |
263 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | 264 | list_add_tail(&event->group_entry, &group_leader->sibling_list); |
264 | group_leader->nr_siblings++; | 265 | group_leader->nr_siblings++; |
265 | } | 266 | } |
266 | 267 | ||
267 | list_add_rcu(&counter->event_entry, &ctx->event_list); | 268 | list_add_rcu(&event->event_entry, &ctx->event_list); |
268 | ctx->nr_counters++; | 269 | ctx->nr_events++; |
269 | if (counter->attr.inherit_stat) | 270 | if (event->attr.inherit_stat) |
270 | ctx->nr_stat++; | 271 | ctx->nr_stat++; |
271 | } | 272 | } |
272 | 273 | ||
273 | /* | 274 | /* |
274 | * Remove a counter from the lists for its context. | 275 | * Remove a event from the lists for its context. |
275 | * Must be called with ctx->mutex and ctx->lock held. | 276 | * Must be called with ctx->mutex and ctx->lock held. |
276 | */ | 277 | */ |
277 | static void | 278 | static void |
278 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | 279 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) |
279 | { | 280 | { |
280 | struct perf_counter *sibling, *tmp; | 281 | struct perf_event *sibling, *tmp; |
281 | 282 | ||
282 | if (list_empty(&counter->list_entry)) | 283 | if (list_empty(&event->group_entry)) |
283 | return; | 284 | return; |
284 | ctx->nr_counters--; | 285 | ctx->nr_events--; |
285 | if (counter->attr.inherit_stat) | 286 | if (event->attr.inherit_stat) |
286 | ctx->nr_stat--; | 287 | ctx->nr_stat--; |
287 | 288 | ||
288 | list_del_init(&counter->list_entry); | 289 | list_del_init(&event->group_entry); |
289 | list_del_rcu(&counter->event_entry); | 290 | list_del_rcu(&event->event_entry); |
290 | 291 | ||
291 | if (counter->group_leader != counter) | 292 | if (event->group_leader != event) |
292 | counter->group_leader->nr_siblings--; | 293 | event->group_leader->nr_siblings--; |
293 | 294 | ||
294 | /* | 295 | /* |
295 | * If this was a group counter with sibling counters then | 296 | * If this was a group event with sibling events then |
296 | * upgrade the siblings to singleton counters by adding them | 297 | * upgrade the siblings to singleton events by adding them |
297 | * to the context list directly: | 298 | * to the context list directly: |
298 | */ | 299 | */ |
299 | list_for_each_entry_safe(sibling, tmp, | 300 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { |
300 | &counter->sibling_list, list_entry) { | ||
301 | 301 | ||
302 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | 302 | list_move_tail(&sibling->group_entry, &ctx->group_list); |
303 | sibling->group_leader = sibling; | 303 | sibling->group_leader = sibling; |
304 | } | 304 | } |
305 | } | 305 | } |
306 | 306 | ||
307 | static void | 307 | static void |
308 | counter_sched_out(struct perf_counter *counter, | 308 | event_sched_out(struct perf_event *event, |
309 | struct perf_cpu_context *cpuctx, | 309 | struct perf_cpu_context *cpuctx, |
310 | struct perf_counter_context *ctx) | 310 | struct perf_event_context *ctx) |
311 | { | 311 | { |
312 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 312 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
313 | return; | 313 | return; |
314 | 314 | ||
315 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 315 | event->state = PERF_EVENT_STATE_INACTIVE; |
316 | if (counter->pending_disable) { | 316 | if (event->pending_disable) { |
317 | counter->pending_disable = 0; | 317 | event->pending_disable = 0; |
318 | counter->state = PERF_COUNTER_STATE_OFF; | 318 | event->state = PERF_EVENT_STATE_OFF; |
319 | } | 319 | } |
320 | counter->tstamp_stopped = ctx->time; | 320 | event->tstamp_stopped = ctx->time; |
321 | counter->pmu->disable(counter); | 321 | event->pmu->disable(event); |
322 | counter->oncpu = -1; | 322 | event->oncpu = -1; |
323 | 323 | ||
324 | if (!is_software_counter(counter)) | 324 | if (!is_software_event(event)) |
325 | cpuctx->active_oncpu--; | 325 | cpuctx->active_oncpu--; |
326 | ctx->nr_active--; | 326 | ctx->nr_active--; |
327 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | 327 | if (event->attr.exclusive || !cpuctx->active_oncpu) |
328 | cpuctx->exclusive = 0; | 328 | cpuctx->exclusive = 0; |
329 | } | 329 | } |
330 | 330 | ||
331 | static void | 331 | static void |
332 | group_sched_out(struct perf_counter *group_counter, | 332 | group_sched_out(struct perf_event *group_event, |
333 | struct perf_cpu_context *cpuctx, | 333 | struct perf_cpu_context *cpuctx, |
334 | struct perf_counter_context *ctx) | 334 | struct perf_event_context *ctx) |
335 | { | 335 | { |
336 | struct perf_counter *counter; | 336 | struct perf_event *event; |
337 | 337 | ||
338 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | 338 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) |
339 | return; | 339 | return; |
340 | 340 | ||
341 | counter_sched_out(group_counter, cpuctx, ctx); | 341 | event_sched_out(group_event, cpuctx, ctx); |
342 | 342 | ||
343 | /* | 343 | /* |
344 | * Schedule out siblings (if any): | 344 | * Schedule out siblings (if any): |
345 | */ | 345 | */ |
346 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | 346 | list_for_each_entry(event, &group_event->sibling_list, group_entry) |
347 | counter_sched_out(counter, cpuctx, ctx); | 347 | event_sched_out(event, cpuctx, ctx); |
348 | 348 | ||
349 | if (group_counter->attr.exclusive) | 349 | if (group_event->attr.exclusive) |
350 | cpuctx->exclusive = 0; | 350 | cpuctx->exclusive = 0; |
351 | } | 351 | } |
352 | 352 | ||
353 | /* | 353 | /* |
354 | * Cross CPU call to remove a performance counter | 354 | * Cross CPU call to remove a performance event |
355 | * | 355 | * |
356 | * We disable the counter on the hardware level first. After that we | 356 | * We disable the event on the hardware level first. After that we |
357 | * remove it from the context list. | 357 | * remove it from the context list. |
358 | */ | 358 | */ |
359 | static void __perf_counter_remove_from_context(void *info) | 359 | static void __perf_event_remove_from_context(void *info) |
360 | { | 360 | { |
361 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 361 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
362 | struct perf_counter *counter = info; | 362 | struct perf_event *event = info; |
363 | struct perf_counter_context *ctx = counter->ctx; | 363 | struct perf_event_context *ctx = event->ctx; |
364 | 364 | ||
365 | /* | 365 | /* |
366 | * If this is a task context, we need to check whether it is | 366 | * If this is a task context, we need to check whether it is |
@@ -373,22 +373,22 @@ static void __perf_counter_remove_from_context(void *info) | |||
373 | spin_lock(&ctx->lock); | 373 | spin_lock(&ctx->lock); |
374 | /* | 374 | /* |
375 | * Protect the list operation against NMI by disabling the | 375 | * Protect the list operation against NMI by disabling the |
376 | * counters on a global level. | 376 | * events on a global level. |
377 | */ | 377 | */ |
378 | perf_disable(); | 378 | perf_disable(); |
379 | 379 | ||
380 | counter_sched_out(counter, cpuctx, ctx); | 380 | event_sched_out(event, cpuctx, ctx); |
381 | 381 | ||
382 | list_del_counter(counter, ctx); | 382 | list_del_event(event, ctx); |
383 | 383 | ||
384 | if (!ctx->task) { | 384 | if (!ctx->task) { |
385 | /* | 385 | /* |
386 | * Allow more per task counters with respect to the | 386 | * Allow more per task events with respect to the |
387 | * reservation: | 387 | * reservation: |
388 | */ | 388 | */ |
389 | cpuctx->max_pertask = | 389 | cpuctx->max_pertask = |
390 | min(perf_max_counters - ctx->nr_counters, | 390 | min(perf_max_events - ctx->nr_events, |
391 | perf_max_counters - perf_reserved_percpu); | 391 | perf_max_events - perf_reserved_percpu); |
392 | } | 392 | } |
393 | 393 | ||
394 | perf_enable(); | 394 | perf_enable(); |
@@ -397,56 +397,56 @@ static void __perf_counter_remove_from_context(void *info) | |||
397 | 397 | ||
398 | 398 | ||
399 | /* | 399 | /* |
400 | * Remove the counter from a task's (or a CPU's) list of counters. | 400 | * Remove the event from a task's (or a CPU's) list of events. |
401 | * | 401 | * |
402 | * Must be called with ctx->mutex held. | 402 | * Must be called with ctx->mutex held. |
403 | * | 403 | * |
404 | * CPU counters are removed with a smp call. For task counters we only | 404 | * CPU events are removed with a smp call. For task events we only |
405 | * call when the task is on a CPU. | 405 | * call when the task is on a CPU. |
406 | * | 406 | * |
407 | * If counter->ctx is a cloned context, callers must make sure that | 407 | * If event->ctx is a cloned context, callers must make sure that |
408 | * every task struct that counter->ctx->task could possibly point to | 408 | * every task struct that event->ctx->task could possibly point to |
409 | * remains valid. This is OK when called from perf_release since | 409 | * remains valid. This is OK when called from perf_release since |
410 | * that only calls us on the top-level context, which can't be a clone. | 410 | * that only calls us on the top-level context, which can't be a clone. |
411 | * When called from perf_counter_exit_task, it's OK because the | 411 | * When called from perf_event_exit_task, it's OK because the |
412 | * context has been detached from its task. | 412 | * context has been detached from its task. |
413 | */ | 413 | */ |
414 | static void perf_counter_remove_from_context(struct perf_counter *counter) | 414 | static void perf_event_remove_from_context(struct perf_event *event) |
415 | { | 415 | { |
416 | struct perf_counter_context *ctx = counter->ctx; | 416 | struct perf_event_context *ctx = event->ctx; |
417 | struct task_struct *task = ctx->task; | 417 | struct task_struct *task = ctx->task; |
418 | 418 | ||
419 | if (!task) { | 419 | if (!task) { |
420 | /* | 420 | /* |
421 | * Per cpu counters are removed via an smp call and | 421 | * Per cpu events are removed via an smp call and |
422 | * the removal is always sucessful. | 422 | * the removal is always sucessful. |
423 | */ | 423 | */ |
424 | smp_call_function_single(counter->cpu, | 424 | smp_call_function_single(event->cpu, |
425 | __perf_counter_remove_from_context, | 425 | __perf_event_remove_from_context, |
426 | counter, 1); | 426 | event, 1); |
427 | return; | 427 | return; |
428 | } | 428 | } |
429 | 429 | ||
430 | retry: | 430 | retry: |
431 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | 431 | task_oncpu_function_call(task, __perf_event_remove_from_context, |
432 | counter); | 432 | event); |
433 | 433 | ||
434 | spin_lock_irq(&ctx->lock); | 434 | spin_lock_irq(&ctx->lock); |
435 | /* | 435 | /* |
436 | * If the context is active we need to retry the smp call. | 436 | * If the context is active we need to retry the smp call. |
437 | */ | 437 | */ |
438 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | 438 | if (ctx->nr_active && !list_empty(&event->group_entry)) { |
439 | spin_unlock_irq(&ctx->lock); | 439 | spin_unlock_irq(&ctx->lock); |
440 | goto retry; | 440 | goto retry; |
441 | } | 441 | } |
442 | 442 | ||
443 | /* | 443 | /* |
444 | * The lock prevents that this context is scheduled in so we | 444 | * The lock prevents that this context is scheduled in so we |
445 | * can remove the counter safely, if the call above did not | 445 | * can remove the event safely, if the call above did not |
446 | * succeed. | 446 | * succeed. |
447 | */ | 447 | */ |
448 | if (!list_empty(&counter->list_entry)) { | 448 | if (!list_empty(&event->group_entry)) { |
449 | list_del_counter(counter, ctx); | 449 | list_del_event(event, ctx); |
450 | } | 450 | } |
451 | spin_unlock_irq(&ctx->lock); | 451 | spin_unlock_irq(&ctx->lock); |
452 | } | 452 | } |
@@ -459,7 +459,7 @@ static inline u64 perf_clock(void) | |||
459 | /* | 459 | /* |
460 | * Update the record of the current time in a context. | 460 | * Update the record of the current time in a context. |
461 | */ | 461 | */ |
462 | static void update_context_time(struct perf_counter_context *ctx) | 462 | static void update_context_time(struct perf_event_context *ctx) |
463 | { | 463 | { |
464 | u64 now = perf_clock(); | 464 | u64 now = perf_clock(); |
465 | 465 | ||
@@ -468,51 +468,51 @@ static void update_context_time(struct perf_counter_context *ctx) | |||
468 | } | 468 | } |
469 | 469 | ||
470 | /* | 470 | /* |
471 | * Update the total_time_enabled and total_time_running fields for a counter. | 471 | * Update the total_time_enabled and total_time_running fields for a event. |
472 | */ | 472 | */ |
473 | static void update_counter_times(struct perf_counter *counter) | 473 | static void update_event_times(struct perf_event *event) |
474 | { | 474 | { |
475 | struct perf_counter_context *ctx = counter->ctx; | 475 | struct perf_event_context *ctx = event->ctx; |
476 | u64 run_end; | 476 | u64 run_end; |
477 | 477 | ||
478 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | 478 | if (event->state < PERF_EVENT_STATE_INACTIVE || |
479 | counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE) | 479 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) |
480 | return; | 480 | return; |
481 | 481 | ||
482 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | 482 | event->total_time_enabled = ctx->time - event->tstamp_enabled; |
483 | 483 | ||
484 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | 484 | if (event->state == PERF_EVENT_STATE_INACTIVE) |
485 | run_end = counter->tstamp_stopped; | 485 | run_end = event->tstamp_stopped; |
486 | else | 486 | else |
487 | run_end = ctx->time; | 487 | run_end = ctx->time; |
488 | 488 | ||
489 | counter->total_time_running = run_end - counter->tstamp_running; | 489 | event->total_time_running = run_end - event->tstamp_running; |
490 | } | 490 | } |
491 | 491 | ||
492 | /* | 492 | /* |
493 | * Update total_time_enabled and total_time_running for all counters in a group. | 493 | * Update total_time_enabled and total_time_running for all events in a group. |
494 | */ | 494 | */ |
495 | static void update_group_times(struct perf_counter *leader) | 495 | static void update_group_times(struct perf_event *leader) |
496 | { | 496 | { |
497 | struct perf_counter *counter; | 497 | struct perf_event *event; |
498 | 498 | ||
499 | update_counter_times(leader); | 499 | update_event_times(leader); |
500 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | 500 | list_for_each_entry(event, &leader->sibling_list, group_entry) |
501 | update_counter_times(counter); | 501 | update_event_times(event); |
502 | } | 502 | } |
503 | 503 | ||
504 | /* | 504 | /* |
505 | * Cross CPU call to disable a performance counter | 505 | * Cross CPU call to disable a performance event |
506 | */ | 506 | */ |
507 | static void __perf_counter_disable(void *info) | 507 | static void __perf_event_disable(void *info) |
508 | { | 508 | { |
509 | struct perf_counter *counter = info; | 509 | struct perf_event *event = info; |
510 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 510 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
511 | struct perf_counter_context *ctx = counter->ctx; | 511 | struct perf_event_context *ctx = event->ctx; |
512 | 512 | ||
513 | /* | 513 | /* |
514 | * If this is a per-task counter, need to check whether this | 514 | * If this is a per-task event, need to check whether this |
515 | * counter's task is the current task on this cpu. | 515 | * event's task is the current task on this cpu. |
516 | */ | 516 | */ |
517 | if (ctx->task && cpuctx->task_ctx != ctx) | 517 | if (ctx->task && cpuctx->task_ctx != ctx) |
518 | return; | 518 | return; |
@@ -520,57 +520,57 @@ static void __perf_counter_disable(void *info) | |||
520 | spin_lock(&ctx->lock); | 520 | spin_lock(&ctx->lock); |
521 | 521 | ||
522 | /* | 522 | /* |
523 | * If the counter is on, turn it off. | 523 | * If the event is on, turn it off. |
524 | * If it is in error state, leave it in error state. | 524 | * If it is in error state, leave it in error state. |
525 | */ | 525 | */ |
526 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | 526 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { |
527 | update_context_time(ctx); | 527 | update_context_time(ctx); |
528 | update_group_times(counter); | 528 | update_group_times(event); |
529 | if (counter == counter->group_leader) | 529 | if (event == event->group_leader) |
530 | group_sched_out(counter, cpuctx, ctx); | 530 | group_sched_out(event, cpuctx, ctx); |
531 | else | 531 | else |
532 | counter_sched_out(counter, cpuctx, ctx); | 532 | event_sched_out(event, cpuctx, ctx); |
533 | counter->state = PERF_COUNTER_STATE_OFF; | 533 | event->state = PERF_EVENT_STATE_OFF; |
534 | } | 534 | } |
535 | 535 | ||
536 | spin_unlock(&ctx->lock); | 536 | spin_unlock(&ctx->lock); |
537 | } | 537 | } |
538 | 538 | ||
539 | /* | 539 | /* |
540 | * Disable a counter. | 540 | * Disable a event. |
541 | * | 541 | * |
542 | * If counter->ctx is a cloned context, callers must make sure that | 542 | * If event->ctx is a cloned context, callers must make sure that |
543 | * every task struct that counter->ctx->task could possibly point to | 543 | * every task struct that event->ctx->task could possibly point to |
544 | * remains valid. This condition is satisifed when called through | 544 | * remains valid. This condition is satisifed when called through |
545 | * perf_counter_for_each_child or perf_counter_for_each because they | 545 | * perf_event_for_each_child or perf_event_for_each because they |
546 | * hold the top-level counter's child_mutex, so any descendant that | 546 | * hold the top-level event's child_mutex, so any descendant that |
547 | * goes to exit will block in sync_child_counter. | 547 | * goes to exit will block in sync_child_event. |
548 | * When called from perf_pending_counter it's OK because counter->ctx | 548 | * When called from perf_pending_event it's OK because event->ctx |
549 | * is the current context on this CPU and preemption is disabled, | 549 | * is the current context on this CPU and preemption is disabled, |
550 | * hence we can't get into perf_counter_task_sched_out for this context. | 550 | * hence we can't get into perf_event_task_sched_out for this context. |
551 | */ | 551 | */ |
552 | static void perf_counter_disable(struct perf_counter *counter) | 552 | static void perf_event_disable(struct perf_event *event) |
553 | { | 553 | { |
554 | struct perf_counter_context *ctx = counter->ctx; | 554 | struct perf_event_context *ctx = event->ctx; |
555 | struct task_struct *task = ctx->task; | 555 | struct task_struct *task = ctx->task; |
556 | 556 | ||
557 | if (!task) { | 557 | if (!task) { |
558 | /* | 558 | /* |
559 | * Disable the counter on the cpu that it's on | 559 | * Disable the event on the cpu that it's on |
560 | */ | 560 | */ |
561 | smp_call_function_single(counter->cpu, __perf_counter_disable, | 561 | smp_call_function_single(event->cpu, __perf_event_disable, |
562 | counter, 1); | 562 | event, 1); |
563 | return; | 563 | return; |
564 | } | 564 | } |
565 | 565 | ||
566 | retry: | 566 | retry: |
567 | task_oncpu_function_call(task, __perf_counter_disable, counter); | 567 | task_oncpu_function_call(task, __perf_event_disable, event); |
568 | 568 | ||
569 | spin_lock_irq(&ctx->lock); | 569 | spin_lock_irq(&ctx->lock); |
570 | /* | 570 | /* |
571 | * If the counter is still active, we need to retry the cross-call. | 571 | * If the event is still active, we need to retry the cross-call. |
572 | */ | 572 | */ |
573 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | 573 | if (event->state == PERF_EVENT_STATE_ACTIVE) { |
574 | spin_unlock_irq(&ctx->lock); | 574 | spin_unlock_irq(&ctx->lock); |
575 | goto retry; | 575 | goto retry; |
576 | } | 576 | } |
@@ -579,73 +579,73 @@ static void perf_counter_disable(struct perf_counter *counter) | |||
579 | * Since we have the lock this context can't be scheduled | 579 | * Since we have the lock this context can't be scheduled |
580 | * in, so we can change the state safely. | 580 | * in, so we can change the state safely. |
581 | */ | 581 | */ |
582 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 582 | if (event->state == PERF_EVENT_STATE_INACTIVE) { |
583 | update_group_times(counter); | 583 | update_group_times(event); |
584 | counter->state = PERF_COUNTER_STATE_OFF; | 584 | event->state = PERF_EVENT_STATE_OFF; |
585 | } | 585 | } |
586 | 586 | ||
587 | spin_unlock_irq(&ctx->lock); | 587 | spin_unlock_irq(&ctx->lock); |
588 | } | 588 | } |
589 | 589 | ||
590 | static int | 590 | static int |
591 | counter_sched_in(struct perf_counter *counter, | 591 | event_sched_in(struct perf_event *event, |
592 | struct perf_cpu_context *cpuctx, | 592 | struct perf_cpu_context *cpuctx, |
593 | struct perf_counter_context *ctx, | 593 | struct perf_event_context *ctx, |
594 | int cpu) | 594 | int cpu) |
595 | { | 595 | { |
596 | if (counter->state <= PERF_COUNTER_STATE_OFF) | 596 | if (event->state <= PERF_EVENT_STATE_OFF) |
597 | return 0; | 597 | return 0; |
598 | 598 | ||
599 | counter->state = PERF_COUNTER_STATE_ACTIVE; | 599 | event->state = PERF_EVENT_STATE_ACTIVE; |
600 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | 600 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ |
601 | /* | 601 | /* |
602 | * The new state must be visible before we turn it on in the hardware: | 602 | * The new state must be visible before we turn it on in the hardware: |
603 | */ | 603 | */ |
604 | smp_wmb(); | 604 | smp_wmb(); |
605 | 605 | ||
606 | if (counter->pmu->enable(counter)) { | 606 | if (event->pmu->enable(event)) { |
607 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 607 | event->state = PERF_EVENT_STATE_INACTIVE; |
608 | counter->oncpu = -1; | 608 | event->oncpu = -1; |
609 | return -EAGAIN; | 609 | return -EAGAIN; |
610 | } | 610 | } |
611 | 611 | ||
612 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | 612 | event->tstamp_running += ctx->time - event->tstamp_stopped; |
613 | 613 | ||
614 | if (!is_software_counter(counter)) | 614 | if (!is_software_event(event)) |
615 | cpuctx->active_oncpu++; | 615 | cpuctx->active_oncpu++; |
616 | ctx->nr_active++; | 616 | ctx->nr_active++; |
617 | 617 | ||
618 | if (counter->attr.exclusive) | 618 | if (event->attr.exclusive) |
619 | cpuctx->exclusive = 1; | 619 | cpuctx->exclusive = 1; |
620 | 620 | ||
621 | return 0; | 621 | return 0; |
622 | } | 622 | } |
623 | 623 | ||
624 | static int | 624 | static int |
625 | group_sched_in(struct perf_counter *group_counter, | 625 | group_sched_in(struct perf_event *group_event, |
626 | struct perf_cpu_context *cpuctx, | 626 | struct perf_cpu_context *cpuctx, |
627 | struct perf_counter_context *ctx, | 627 | struct perf_event_context *ctx, |
628 | int cpu) | 628 | int cpu) |
629 | { | 629 | { |
630 | struct perf_counter *counter, *partial_group; | 630 | struct perf_event *event, *partial_group; |
631 | int ret; | 631 | int ret; |
632 | 632 | ||
633 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | 633 | if (group_event->state == PERF_EVENT_STATE_OFF) |
634 | return 0; | 634 | return 0; |
635 | 635 | ||
636 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | 636 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); |
637 | if (ret) | 637 | if (ret) |
638 | return ret < 0 ? ret : 0; | 638 | return ret < 0 ? ret : 0; |
639 | 639 | ||
640 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | 640 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) |
641 | return -EAGAIN; | 641 | return -EAGAIN; |
642 | 642 | ||
643 | /* | 643 | /* |
644 | * Schedule in siblings as one group (if any): | 644 | * Schedule in siblings as one group (if any): |
645 | */ | 645 | */ |
646 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | 646 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
647 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | 647 | if (event_sched_in(event, cpuctx, ctx, cpu)) { |
648 | partial_group = counter; | 648 | partial_group = event; |
649 | goto group_error; | 649 | goto group_error; |
650 | } | 650 | } |
651 | } | 651 | } |
@@ -657,57 +657,57 @@ group_error: | |||
657 | * Groups can be scheduled in as one unit only, so undo any | 657 | * Groups can be scheduled in as one unit only, so undo any |
658 | * partial group before returning: | 658 | * partial group before returning: |
659 | */ | 659 | */ |
660 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | 660 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
661 | if (counter == partial_group) | 661 | if (event == partial_group) |
662 | break; | 662 | break; |
663 | counter_sched_out(counter, cpuctx, ctx); | 663 | event_sched_out(event, cpuctx, ctx); |
664 | } | 664 | } |
665 | counter_sched_out(group_counter, cpuctx, ctx); | 665 | event_sched_out(group_event, cpuctx, ctx); |
666 | 666 | ||
667 | return -EAGAIN; | 667 | return -EAGAIN; |
668 | } | 668 | } |
669 | 669 | ||
670 | /* | 670 | /* |
671 | * Return 1 for a group consisting entirely of software counters, | 671 | * Return 1 for a group consisting entirely of software events, |
672 | * 0 if the group contains any hardware counters. | 672 | * 0 if the group contains any hardware events. |
673 | */ | 673 | */ |
674 | static int is_software_only_group(struct perf_counter *leader) | 674 | static int is_software_only_group(struct perf_event *leader) |
675 | { | 675 | { |
676 | struct perf_counter *counter; | 676 | struct perf_event *event; |
677 | 677 | ||
678 | if (!is_software_counter(leader)) | 678 | if (!is_software_event(leader)) |
679 | return 0; | 679 | return 0; |
680 | 680 | ||
681 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | 681 | list_for_each_entry(event, &leader->sibling_list, group_entry) |
682 | if (!is_software_counter(counter)) | 682 | if (!is_software_event(event)) |
683 | return 0; | 683 | return 0; |
684 | 684 | ||
685 | return 1; | 685 | return 1; |
686 | } | 686 | } |
687 | 687 | ||
688 | /* | 688 | /* |
689 | * Work out whether we can put this counter group on the CPU now. | 689 | * Work out whether we can put this event group on the CPU now. |
690 | */ | 690 | */ |
691 | static int group_can_go_on(struct perf_counter *counter, | 691 | static int group_can_go_on(struct perf_event *event, |
692 | struct perf_cpu_context *cpuctx, | 692 | struct perf_cpu_context *cpuctx, |
693 | int can_add_hw) | 693 | int can_add_hw) |
694 | { | 694 | { |
695 | /* | 695 | /* |
696 | * Groups consisting entirely of software counters can always go on. | 696 | * Groups consisting entirely of software events can always go on. |
697 | */ | 697 | */ |
698 | if (is_software_only_group(counter)) | 698 | if (is_software_only_group(event)) |
699 | return 1; | 699 | return 1; |
700 | /* | 700 | /* |
701 | * If an exclusive group is already on, no other hardware | 701 | * If an exclusive group is already on, no other hardware |
702 | * counters can go on. | 702 | * events can go on. |
703 | */ | 703 | */ |
704 | if (cpuctx->exclusive) | 704 | if (cpuctx->exclusive) |
705 | return 0; | 705 | return 0; |
706 | /* | 706 | /* |
707 | * If this group is exclusive and there are already | 707 | * If this group is exclusive and there are already |
708 | * counters on the CPU, it can't go on. | 708 | * events on the CPU, it can't go on. |
709 | */ | 709 | */ |
710 | if (counter->attr.exclusive && cpuctx->active_oncpu) | 710 | if (event->attr.exclusive && cpuctx->active_oncpu) |
711 | return 0; | 711 | return 0; |
712 | /* | 712 | /* |
713 | * Otherwise, try to add it if all previous groups were able | 713 | * Otherwise, try to add it if all previous groups were able |
@@ -716,26 +716,26 @@ static int group_can_go_on(struct perf_counter *counter, | |||
716 | return can_add_hw; | 716 | return can_add_hw; |
717 | } | 717 | } |
718 | 718 | ||
719 | static void add_counter_to_ctx(struct perf_counter *counter, | 719 | static void add_event_to_ctx(struct perf_event *event, |
720 | struct perf_counter_context *ctx) | 720 | struct perf_event_context *ctx) |
721 | { | 721 | { |
722 | list_add_counter(counter, ctx); | 722 | list_add_event(event, ctx); |
723 | counter->tstamp_enabled = ctx->time; | 723 | event->tstamp_enabled = ctx->time; |
724 | counter->tstamp_running = ctx->time; | 724 | event->tstamp_running = ctx->time; |
725 | counter->tstamp_stopped = ctx->time; | 725 | event->tstamp_stopped = ctx->time; |
726 | } | 726 | } |
727 | 727 | ||
728 | /* | 728 | /* |
729 | * Cross CPU call to install and enable a performance counter | 729 | * Cross CPU call to install and enable a performance event |
730 | * | 730 | * |
731 | * Must be called with ctx->mutex held | 731 | * Must be called with ctx->mutex held |
732 | */ | 732 | */ |
733 | static void __perf_install_in_context(void *info) | 733 | static void __perf_install_in_context(void *info) |
734 | { | 734 | { |
735 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 735 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
736 | struct perf_counter *counter = info; | 736 | struct perf_event *event = info; |
737 | struct perf_counter_context *ctx = counter->ctx; | 737 | struct perf_event_context *ctx = event->ctx; |
738 | struct perf_counter *leader = counter->group_leader; | 738 | struct perf_event *leader = event->group_leader; |
739 | int cpu = smp_processor_id(); | 739 | int cpu = smp_processor_id(); |
740 | int err; | 740 | int err; |
741 | 741 | ||
@@ -744,7 +744,7 @@ static void __perf_install_in_context(void *info) | |||
744 | * the current task context of this cpu. If not it has been | 744 | * the current task context of this cpu. If not it has been |
745 | * scheduled out before the smp call arrived. | 745 | * scheduled out before the smp call arrived. |
746 | * Or possibly this is the right context but it isn't | 746 | * Or possibly this is the right context but it isn't |
747 | * on this cpu because it had no counters. | 747 | * on this cpu because it had no events. |
748 | */ | 748 | */ |
749 | if (ctx->task && cpuctx->task_ctx != ctx) { | 749 | if (ctx->task && cpuctx->task_ctx != ctx) { |
750 | if (cpuctx->task_ctx || ctx->task != current) | 750 | if (cpuctx->task_ctx || ctx->task != current) |
@@ -758,41 +758,41 @@ static void __perf_install_in_context(void *info) | |||
758 | 758 | ||
759 | /* | 759 | /* |
760 | * Protect the list operation against NMI by disabling the | 760 | * Protect the list operation against NMI by disabling the |
761 | * counters on a global level. NOP for non NMI based counters. | 761 | * events on a global level. NOP for non NMI based events. |
762 | */ | 762 | */ |
763 | perf_disable(); | 763 | perf_disable(); |
764 | 764 | ||
765 | add_counter_to_ctx(counter, ctx); | 765 | add_event_to_ctx(event, ctx); |
766 | 766 | ||
767 | /* | 767 | /* |
768 | * Don't put the counter on if it is disabled or if | 768 | * Don't put the event on if it is disabled or if |
769 | * it is in a group and the group isn't on. | 769 | * it is in a group and the group isn't on. |
770 | */ | 770 | */ |
771 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | 771 | if (event->state != PERF_EVENT_STATE_INACTIVE || |
772 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | 772 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) |
773 | goto unlock; | 773 | goto unlock; |
774 | 774 | ||
775 | /* | 775 | /* |
776 | * An exclusive counter can't go on if there are already active | 776 | * An exclusive event can't go on if there are already active |
777 | * hardware counters, and no hardware counter can go on if there | 777 | * hardware events, and no hardware event can go on if there |
778 | * is already an exclusive counter on. | 778 | * is already an exclusive event on. |
779 | */ | 779 | */ |
780 | if (!group_can_go_on(counter, cpuctx, 1)) | 780 | if (!group_can_go_on(event, cpuctx, 1)) |
781 | err = -EEXIST; | 781 | err = -EEXIST; |
782 | else | 782 | else |
783 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | 783 | err = event_sched_in(event, cpuctx, ctx, cpu); |
784 | 784 | ||
785 | if (err) { | 785 | if (err) { |
786 | /* | 786 | /* |
787 | * This counter couldn't go on. If it is in a group | 787 | * This event couldn't go on. If it is in a group |
788 | * then we have to pull the whole group off. | 788 | * then we have to pull the whole group off. |
789 | * If the counter group is pinned then put it in error state. | 789 | * If the event group is pinned then put it in error state. |
790 | */ | 790 | */ |
791 | if (leader != counter) | 791 | if (leader != event) |
792 | group_sched_out(leader, cpuctx, ctx); | 792 | group_sched_out(leader, cpuctx, ctx); |
793 | if (leader->attr.pinned) { | 793 | if (leader->attr.pinned) { |
794 | update_group_times(leader); | 794 | update_group_times(leader); |
795 | leader->state = PERF_COUNTER_STATE_ERROR; | 795 | leader->state = PERF_EVENT_STATE_ERROR; |
796 | } | 796 | } |
797 | } | 797 | } |
798 | 798 | ||
@@ -806,92 +806,92 @@ static void __perf_install_in_context(void *info) | |||
806 | } | 806 | } |
807 | 807 | ||
808 | /* | 808 | /* |
809 | * Attach a performance counter to a context | 809 | * Attach a performance event to a context |
810 | * | 810 | * |
811 | * First we add the counter to the list with the hardware enable bit | 811 | * First we add the event to the list with the hardware enable bit |
812 | * in counter->hw_config cleared. | 812 | * in event->hw_config cleared. |
813 | * | 813 | * |
814 | * If the counter is attached to a task which is on a CPU we use a smp | 814 | * If the event is attached to a task which is on a CPU we use a smp |
815 | * call to enable it in the task context. The task might have been | 815 | * call to enable it in the task context. The task might have been |
816 | * scheduled away, but we check this in the smp call again. | 816 | * scheduled away, but we check this in the smp call again. |
817 | * | 817 | * |
818 | * Must be called with ctx->mutex held. | 818 | * Must be called with ctx->mutex held. |
819 | */ | 819 | */ |
820 | static void | 820 | static void |
821 | perf_install_in_context(struct perf_counter_context *ctx, | 821 | perf_install_in_context(struct perf_event_context *ctx, |
822 | struct perf_counter *counter, | 822 | struct perf_event *event, |
823 | int cpu) | 823 | int cpu) |
824 | { | 824 | { |
825 | struct task_struct *task = ctx->task; | 825 | struct task_struct *task = ctx->task; |
826 | 826 | ||
827 | if (!task) { | 827 | if (!task) { |
828 | /* | 828 | /* |
829 | * Per cpu counters are installed via an smp call and | 829 | * Per cpu events are installed via an smp call and |
830 | * the install is always sucessful. | 830 | * the install is always sucessful. |
831 | */ | 831 | */ |
832 | smp_call_function_single(cpu, __perf_install_in_context, | 832 | smp_call_function_single(cpu, __perf_install_in_context, |
833 | counter, 1); | 833 | event, 1); |
834 | return; | 834 | return; |
835 | } | 835 | } |
836 | 836 | ||
837 | retry: | 837 | retry: |
838 | task_oncpu_function_call(task, __perf_install_in_context, | 838 | task_oncpu_function_call(task, __perf_install_in_context, |
839 | counter); | 839 | event); |
840 | 840 | ||
841 | spin_lock_irq(&ctx->lock); | 841 | spin_lock_irq(&ctx->lock); |
842 | /* | 842 | /* |
843 | * we need to retry the smp call. | 843 | * we need to retry the smp call. |
844 | */ | 844 | */ |
845 | if (ctx->is_active && list_empty(&counter->list_entry)) { | 845 | if (ctx->is_active && list_empty(&event->group_entry)) { |
846 | spin_unlock_irq(&ctx->lock); | 846 | spin_unlock_irq(&ctx->lock); |
847 | goto retry; | 847 | goto retry; |
848 | } | 848 | } |
849 | 849 | ||
850 | /* | 850 | /* |
851 | * The lock prevents that this context is scheduled in so we | 851 | * The lock prevents that this context is scheduled in so we |
852 | * can add the counter safely, if it the call above did not | 852 | * can add the event safely, if it the call above did not |
853 | * succeed. | 853 | * succeed. |
854 | */ | 854 | */ |
855 | if (list_empty(&counter->list_entry)) | 855 | if (list_empty(&event->group_entry)) |
856 | add_counter_to_ctx(counter, ctx); | 856 | add_event_to_ctx(event, ctx); |
857 | spin_unlock_irq(&ctx->lock); | 857 | spin_unlock_irq(&ctx->lock); |
858 | } | 858 | } |
859 | 859 | ||
860 | /* | 860 | /* |
861 | * Put a counter into inactive state and update time fields. | 861 | * Put a event into inactive state and update time fields. |
862 | * Enabling the leader of a group effectively enables all | 862 | * Enabling the leader of a group effectively enables all |
863 | * the group members that aren't explicitly disabled, so we | 863 | * the group members that aren't explicitly disabled, so we |
864 | * have to update their ->tstamp_enabled also. | 864 | * have to update their ->tstamp_enabled also. |
865 | * Note: this works for group members as well as group leaders | 865 | * Note: this works for group members as well as group leaders |
866 | * since the non-leader members' sibling_lists will be empty. | 866 | * since the non-leader members' sibling_lists will be empty. |
867 | */ | 867 | */ |
868 | static void __perf_counter_mark_enabled(struct perf_counter *counter, | 868 | static void __perf_event_mark_enabled(struct perf_event *event, |
869 | struct perf_counter_context *ctx) | 869 | struct perf_event_context *ctx) |
870 | { | 870 | { |
871 | struct perf_counter *sub; | 871 | struct perf_event *sub; |
872 | 872 | ||
873 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 873 | event->state = PERF_EVENT_STATE_INACTIVE; |
874 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | 874 | event->tstamp_enabled = ctx->time - event->total_time_enabled; |
875 | list_for_each_entry(sub, &counter->sibling_list, list_entry) | 875 | list_for_each_entry(sub, &event->sibling_list, group_entry) |
876 | if (sub->state >= PERF_COUNTER_STATE_INACTIVE) | 876 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) |
877 | sub->tstamp_enabled = | 877 | sub->tstamp_enabled = |
878 | ctx->time - sub->total_time_enabled; | 878 | ctx->time - sub->total_time_enabled; |
879 | } | 879 | } |
880 | 880 | ||
881 | /* | 881 | /* |
882 | * Cross CPU call to enable a performance counter | 882 | * Cross CPU call to enable a performance event |
883 | */ | 883 | */ |
884 | static void __perf_counter_enable(void *info) | 884 | static void __perf_event_enable(void *info) |
885 | { | 885 | { |
886 | struct perf_counter *counter = info; | 886 | struct perf_event *event = info; |
887 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 887 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
888 | struct perf_counter_context *ctx = counter->ctx; | 888 | struct perf_event_context *ctx = event->ctx; |
889 | struct perf_counter *leader = counter->group_leader; | 889 | struct perf_event *leader = event->group_leader; |
890 | int err; | 890 | int err; |
891 | 891 | ||
892 | /* | 892 | /* |
893 | * If this is a per-task counter, need to check whether this | 893 | * If this is a per-task event, need to check whether this |
894 | * counter's task is the current task on this cpu. | 894 | * event's task is the current task on this cpu. |
895 | */ | 895 | */ |
896 | if (ctx->task && cpuctx->task_ctx != ctx) { | 896 | if (ctx->task && cpuctx->task_ctx != ctx) { |
897 | if (cpuctx->task_ctx || ctx->task != current) | 897 | if (cpuctx->task_ctx || ctx->task != current) |
@@ -903,40 +903,40 @@ static void __perf_counter_enable(void *info) | |||
903 | ctx->is_active = 1; | 903 | ctx->is_active = 1; |
904 | update_context_time(ctx); | 904 | update_context_time(ctx); |
905 | 905 | ||
906 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 906 | if (event->state >= PERF_EVENT_STATE_INACTIVE) |
907 | goto unlock; | 907 | goto unlock; |
908 | __perf_counter_mark_enabled(counter, ctx); | 908 | __perf_event_mark_enabled(event, ctx); |
909 | 909 | ||
910 | /* | 910 | /* |
911 | * If the counter is in a group and isn't the group leader, | 911 | * If the event is in a group and isn't the group leader, |
912 | * then don't put it on unless the group is on. | 912 | * then don't put it on unless the group is on. |
913 | */ | 913 | */ |
914 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | 914 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) |
915 | goto unlock; | 915 | goto unlock; |
916 | 916 | ||
917 | if (!group_can_go_on(counter, cpuctx, 1)) { | 917 | if (!group_can_go_on(event, cpuctx, 1)) { |
918 | err = -EEXIST; | 918 | err = -EEXIST; |
919 | } else { | 919 | } else { |
920 | perf_disable(); | 920 | perf_disable(); |
921 | if (counter == leader) | 921 | if (event == leader) |
922 | err = group_sched_in(counter, cpuctx, ctx, | 922 | err = group_sched_in(event, cpuctx, ctx, |
923 | smp_processor_id()); | 923 | smp_processor_id()); |
924 | else | 924 | else |
925 | err = counter_sched_in(counter, cpuctx, ctx, | 925 | err = event_sched_in(event, cpuctx, ctx, |
926 | smp_processor_id()); | 926 | smp_processor_id()); |
927 | perf_enable(); | 927 | perf_enable(); |
928 | } | 928 | } |
929 | 929 | ||
930 | if (err) { | 930 | if (err) { |
931 | /* | 931 | /* |
932 | * If this counter can't go on and it's part of a | 932 | * If this event can't go on and it's part of a |
933 | * group, then the whole group has to come off. | 933 | * group, then the whole group has to come off. |
934 | */ | 934 | */ |
935 | if (leader != counter) | 935 | if (leader != event) |
936 | group_sched_out(leader, cpuctx, ctx); | 936 | group_sched_out(leader, cpuctx, ctx); |
937 | if (leader->attr.pinned) { | 937 | if (leader->attr.pinned) { |
938 | update_group_times(leader); | 938 | update_group_times(leader); |
939 | leader->state = PERF_COUNTER_STATE_ERROR; | 939 | leader->state = PERF_EVENT_STATE_ERROR; |
940 | } | 940 | } |
941 | } | 941 | } |
942 | 942 | ||
@@ -945,100 +945,96 @@ static void __perf_counter_enable(void *info) | |||
945 | } | 945 | } |
946 | 946 | ||
947 | /* | 947 | /* |
948 | * Enable a counter. | 948 | * Enable a event. |
949 | * | 949 | * |
950 | * If counter->ctx is a cloned context, callers must make sure that | 950 | * If event->ctx is a cloned context, callers must make sure that |
951 | * every task struct that counter->ctx->task could possibly point to | 951 | * every task struct that event->ctx->task could possibly point to |
952 | * remains valid. This condition is satisfied when called through | 952 | * remains valid. This condition is satisfied when called through |
953 | * perf_counter_for_each_child or perf_counter_for_each as described | 953 | * perf_event_for_each_child or perf_event_for_each as described |
954 | * for perf_counter_disable. | 954 | * for perf_event_disable. |
955 | */ | 955 | */ |
956 | static void perf_counter_enable(struct perf_counter *counter) | 956 | static void perf_event_enable(struct perf_event *event) |
957 | { | 957 | { |
958 | struct perf_counter_context *ctx = counter->ctx; | 958 | struct perf_event_context *ctx = event->ctx; |
959 | struct task_struct *task = ctx->task; | 959 | struct task_struct *task = ctx->task; |
960 | 960 | ||
961 | if (!task) { | 961 | if (!task) { |
962 | /* | 962 | /* |
963 | * Enable the counter on the cpu that it's on | 963 | * Enable the event on the cpu that it's on |
964 | */ | 964 | */ |
965 | smp_call_function_single(counter->cpu, __perf_counter_enable, | 965 | smp_call_function_single(event->cpu, __perf_event_enable, |
966 | counter, 1); | 966 | event, 1); |
967 | return; | 967 | return; |
968 | } | 968 | } |
969 | 969 | ||
970 | spin_lock_irq(&ctx->lock); | 970 | spin_lock_irq(&ctx->lock); |
971 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 971 | if (event->state >= PERF_EVENT_STATE_INACTIVE) |
972 | goto out; | 972 | goto out; |
973 | 973 | ||
974 | /* | 974 | /* |
975 | * If the counter is in error state, clear that first. | 975 | * If the event is in error state, clear that first. |
976 | * That way, if we see the counter in error state below, we | 976 | * That way, if we see the event in error state below, we |
977 | * know that it has gone back into error state, as distinct | 977 | * know that it has gone back into error state, as distinct |
978 | * from the task having been scheduled away before the | 978 | * from the task having been scheduled away before the |
979 | * cross-call arrived. | 979 | * cross-call arrived. |
980 | */ | 980 | */ |
981 | if (counter->state == PERF_COUNTER_STATE_ERROR) | 981 | if (event->state == PERF_EVENT_STATE_ERROR) |
982 | counter->state = PERF_COUNTER_STATE_OFF; | 982 | event->state = PERF_EVENT_STATE_OFF; |
983 | 983 | ||
984 | retry: | 984 | retry: |
985 | spin_unlock_irq(&ctx->lock); | 985 | spin_unlock_irq(&ctx->lock); |
986 | task_oncpu_function_call(task, __perf_counter_enable, counter); | 986 | task_oncpu_function_call(task, __perf_event_enable, event); |
987 | 987 | ||
988 | spin_lock_irq(&ctx->lock); | 988 | spin_lock_irq(&ctx->lock); |
989 | 989 | ||
990 | /* | 990 | /* |
991 | * If the context is active and the counter is still off, | 991 | * If the context is active and the event is still off, |
992 | * we need to retry the cross-call. | 992 | * we need to retry the cross-call. |
993 | */ | 993 | */ |
994 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | 994 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) |
995 | goto retry; | 995 | goto retry; |
996 | 996 | ||
997 | /* | 997 | /* |
998 | * Since we have the lock this context can't be scheduled | 998 | * Since we have the lock this context can't be scheduled |
999 | * in, so we can change the state safely. | 999 | * in, so we can change the state safely. |
1000 | */ | 1000 | */ |
1001 | if (counter->state == PERF_COUNTER_STATE_OFF) | 1001 | if (event->state == PERF_EVENT_STATE_OFF) |
1002 | __perf_counter_mark_enabled(counter, ctx); | 1002 | __perf_event_mark_enabled(event, ctx); |
1003 | 1003 | ||
1004 | out: | 1004 | out: |
1005 | spin_unlock_irq(&ctx->lock); | 1005 | spin_unlock_irq(&ctx->lock); |
1006 | } | 1006 | } |
1007 | 1007 | ||
1008 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | 1008 | static int perf_event_refresh(struct perf_event *event, int refresh) |
1009 | { | 1009 | { |
1010 | /* | 1010 | /* |
1011 | * not supported on inherited counters | 1011 | * not supported on inherited events |
1012 | */ | 1012 | */ |
1013 | if (counter->attr.inherit) | 1013 | if (event->attr.inherit) |
1014 | return -EINVAL; | 1014 | return -EINVAL; |
1015 | 1015 | ||
1016 | atomic_add(refresh, &counter->event_limit); | 1016 | atomic_add(refresh, &event->event_limit); |
1017 | perf_counter_enable(counter); | 1017 | perf_event_enable(event); |
1018 | 1018 | ||
1019 | return 0; | 1019 | return 0; |
1020 | } | 1020 | } |
1021 | 1021 | ||
1022 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | 1022 | void __perf_event_sched_out(struct perf_event_context *ctx, |
1023 | struct perf_cpu_context *cpuctx) | 1023 | struct perf_cpu_context *cpuctx) |
1024 | { | 1024 | { |
1025 | struct perf_counter *counter; | 1025 | struct perf_event *event; |
1026 | 1026 | ||
1027 | spin_lock(&ctx->lock); | 1027 | spin_lock(&ctx->lock); |
1028 | ctx->is_active = 0; | 1028 | ctx->is_active = 0; |
1029 | if (likely(!ctx->nr_counters)) | 1029 | if (likely(!ctx->nr_events)) |
1030 | goto out; | 1030 | goto out; |
1031 | update_context_time(ctx); | 1031 | update_context_time(ctx); |
1032 | 1032 | ||
1033 | perf_disable(); | 1033 | perf_disable(); |
1034 | if (ctx->nr_active) { | 1034 | if (ctx->nr_active) |
1035 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1035 | list_for_each_entry(event, &ctx->group_list, group_entry) |
1036 | if (counter != counter->group_leader) | 1036 | group_sched_out(event, cpuctx, ctx); |
1037 | counter_sched_out(counter, cpuctx, ctx); | 1037 | |
1038 | else | ||
1039 | group_sched_out(counter, cpuctx, ctx); | ||
1040 | } | ||
1041 | } | ||
1042 | perf_enable(); | 1038 | perf_enable(); |
1043 | out: | 1039 | out: |
1044 | spin_unlock(&ctx->lock); | 1040 | spin_unlock(&ctx->lock); |
@@ -1047,46 +1043,46 @@ void __perf_counter_sched_out(struct perf_counter_context *ctx, | |||
1047 | /* | 1043 | /* |
1048 | * Test whether two contexts are equivalent, i.e. whether they | 1044 | * Test whether two contexts are equivalent, i.e. whether they |
1049 | * have both been cloned from the same version of the same context | 1045 | * have both been cloned from the same version of the same context |
1050 | * and they both have the same number of enabled counters. | 1046 | * and they both have the same number of enabled events. |
1051 | * If the number of enabled counters is the same, then the set | 1047 | * If the number of enabled events is the same, then the set |
1052 | * of enabled counters should be the same, because these are both | 1048 | * of enabled events should be the same, because these are both |
1053 | * inherited contexts, therefore we can't access individual counters | 1049 | * inherited contexts, therefore we can't access individual events |
1054 | * in them directly with an fd; we can only enable/disable all | 1050 | * in them directly with an fd; we can only enable/disable all |
1055 | * counters via prctl, or enable/disable all counters in a family | 1051 | * events via prctl, or enable/disable all events in a family |
1056 | * via ioctl, which will have the same effect on both contexts. | 1052 | * via ioctl, which will have the same effect on both contexts. |
1057 | */ | 1053 | */ |
1058 | static int context_equiv(struct perf_counter_context *ctx1, | 1054 | static int context_equiv(struct perf_event_context *ctx1, |
1059 | struct perf_counter_context *ctx2) | 1055 | struct perf_event_context *ctx2) |
1060 | { | 1056 | { |
1061 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | 1057 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx |
1062 | && ctx1->parent_gen == ctx2->parent_gen | 1058 | && ctx1->parent_gen == ctx2->parent_gen |
1063 | && !ctx1->pin_count && !ctx2->pin_count; | 1059 | && !ctx1->pin_count && !ctx2->pin_count; |
1064 | } | 1060 | } |
1065 | 1061 | ||
1066 | static void __perf_counter_read(void *counter); | 1062 | static void __perf_event_read(void *event); |
1067 | 1063 | ||
1068 | static void __perf_counter_sync_stat(struct perf_counter *counter, | 1064 | static void __perf_event_sync_stat(struct perf_event *event, |
1069 | struct perf_counter *next_counter) | 1065 | struct perf_event *next_event) |
1070 | { | 1066 | { |
1071 | u64 value; | 1067 | u64 value; |
1072 | 1068 | ||
1073 | if (!counter->attr.inherit_stat) | 1069 | if (!event->attr.inherit_stat) |
1074 | return; | 1070 | return; |
1075 | 1071 | ||
1076 | /* | 1072 | /* |
1077 | * Update the counter value, we cannot use perf_counter_read() | 1073 | * Update the event value, we cannot use perf_event_read() |
1078 | * because we're in the middle of a context switch and have IRQs | 1074 | * because we're in the middle of a context switch and have IRQs |
1079 | * disabled, which upsets smp_call_function_single(), however | 1075 | * disabled, which upsets smp_call_function_single(), however |
1080 | * we know the counter must be on the current CPU, therefore we | 1076 | * we know the event must be on the current CPU, therefore we |
1081 | * don't need to use it. | 1077 | * don't need to use it. |
1082 | */ | 1078 | */ |
1083 | switch (counter->state) { | 1079 | switch (event->state) { |
1084 | case PERF_COUNTER_STATE_ACTIVE: | 1080 | case PERF_EVENT_STATE_ACTIVE: |
1085 | __perf_counter_read(counter); | 1081 | __perf_event_read(event); |
1086 | break; | 1082 | break; |
1087 | 1083 | ||
1088 | case PERF_COUNTER_STATE_INACTIVE: | 1084 | case PERF_EVENT_STATE_INACTIVE: |
1089 | update_counter_times(counter); | 1085 | update_event_times(event); |
1090 | break; | 1086 | break; |
1091 | 1087 | ||
1092 | default: | 1088 | default: |
@@ -1094,73 +1090,73 @@ static void __perf_counter_sync_stat(struct perf_counter *counter, | |||
1094 | } | 1090 | } |
1095 | 1091 | ||
1096 | /* | 1092 | /* |
1097 | * In order to keep per-task stats reliable we need to flip the counter | 1093 | * In order to keep per-task stats reliable we need to flip the event |
1098 | * values when we flip the contexts. | 1094 | * values when we flip the contexts. |
1099 | */ | 1095 | */ |
1100 | value = atomic64_read(&next_counter->count); | 1096 | value = atomic64_read(&next_event->count); |
1101 | value = atomic64_xchg(&counter->count, value); | 1097 | value = atomic64_xchg(&event->count, value); |
1102 | atomic64_set(&next_counter->count, value); | 1098 | atomic64_set(&next_event->count, value); |
1103 | 1099 | ||
1104 | swap(counter->total_time_enabled, next_counter->total_time_enabled); | 1100 | swap(event->total_time_enabled, next_event->total_time_enabled); |
1105 | swap(counter->total_time_running, next_counter->total_time_running); | 1101 | swap(event->total_time_running, next_event->total_time_running); |
1106 | 1102 | ||
1107 | /* | 1103 | /* |
1108 | * Since we swizzled the values, update the user visible data too. | 1104 | * Since we swizzled the values, update the user visible data too. |
1109 | */ | 1105 | */ |
1110 | perf_counter_update_userpage(counter); | 1106 | perf_event_update_userpage(event); |
1111 | perf_counter_update_userpage(next_counter); | 1107 | perf_event_update_userpage(next_event); |
1112 | } | 1108 | } |
1113 | 1109 | ||
1114 | #define list_next_entry(pos, member) \ | 1110 | #define list_next_entry(pos, member) \ |
1115 | list_entry(pos->member.next, typeof(*pos), member) | 1111 | list_entry(pos->member.next, typeof(*pos), member) |
1116 | 1112 | ||
1117 | static void perf_counter_sync_stat(struct perf_counter_context *ctx, | 1113 | static void perf_event_sync_stat(struct perf_event_context *ctx, |
1118 | struct perf_counter_context *next_ctx) | 1114 | struct perf_event_context *next_ctx) |
1119 | { | 1115 | { |
1120 | struct perf_counter *counter, *next_counter; | 1116 | struct perf_event *event, *next_event; |
1121 | 1117 | ||
1122 | if (!ctx->nr_stat) | 1118 | if (!ctx->nr_stat) |
1123 | return; | 1119 | return; |
1124 | 1120 | ||
1125 | counter = list_first_entry(&ctx->event_list, | 1121 | event = list_first_entry(&ctx->event_list, |
1126 | struct perf_counter, event_entry); | 1122 | struct perf_event, event_entry); |
1127 | 1123 | ||
1128 | next_counter = list_first_entry(&next_ctx->event_list, | 1124 | next_event = list_first_entry(&next_ctx->event_list, |
1129 | struct perf_counter, event_entry); | 1125 | struct perf_event, event_entry); |
1130 | 1126 | ||
1131 | while (&counter->event_entry != &ctx->event_list && | 1127 | while (&event->event_entry != &ctx->event_list && |
1132 | &next_counter->event_entry != &next_ctx->event_list) { | 1128 | &next_event->event_entry != &next_ctx->event_list) { |
1133 | 1129 | ||
1134 | __perf_counter_sync_stat(counter, next_counter); | 1130 | __perf_event_sync_stat(event, next_event); |
1135 | 1131 | ||
1136 | counter = list_next_entry(counter, event_entry); | 1132 | event = list_next_entry(event, event_entry); |
1137 | next_counter = list_next_entry(next_counter, event_entry); | 1133 | next_event = list_next_entry(next_event, event_entry); |
1138 | } | 1134 | } |
1139 | } | 1135 | } |
1140 | 1136 | ||
1141 | /* | 1137 | /* |
1142 | * Called from scheduler to remove the counters of the current task, | 1138 | * Called from scheduler to remove the events of the current task, |
1143 | * with interrupts disabled. | 1139 | * with interrupts disabled. |
1144 | * | 1140 | * |
1145 | * We stop each counter and update the counter value in counter->count. | 1141 | * We stop each event and update the event value in event->count. |
1146 | * | 1142 | * |
1147 | * This does not protect us against NMI, but disable() | 1143 | * This does not protect us against NMI, but disable() |
1148 | * sets the disabled bit in the control field of counter _before_ | 1144 | * sets the disabled bit in the control field of event _before_ |
1149 | * accessing the counter control register. If a NMI hits, then it will | 1145 | * accessing the event control register. If a NMI hits, then it will |
1150 | * not restart the counter. | 1146 | * not restart the event. |
1151 | */ | 1147 | */ |
1152 | void perf_counter_task_sched_out(struct task_struct *task, | 1148 | void perf_event_task_sched_out(struct task_struct *task, |
1153 | struct task_struct *next, int cpu) | 1149 | struct task_struct *next, int cpu) |
1154 | { | 1150 | { |
1155 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 1151 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
1156 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 1152 | struct perf_event_context *ctx = task->perf_event_ctxp; |
1157 | struct perf_counter_context *next_ctx; | 1153 | struct perf_event_context *next_ctx; |
1158 | struct perf_counter_context *parent; | 1154 | struct perf_event_context *parent; |
1159 | struct pt_regs *regs; | 1155 | struct pt_regs *regs; |
1160 | int do_switch = 1; | 1156 | int do_switch = 1; |
1161 | 1157 | ||
1162 | regs = task_pt_regs(task); | 1158 | regs = task_pt_regs(task); |
1163 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | 1159 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); |
1164 | 1160 | ||
1165 | if (likely(!ctx || !cpuctx->task_ctx)) | 1161 | if (likely(!ctx || !cpuctx->task_ctx)) |
1166 | return; | 1162 | return; |
@@ -1169,7 +1165,7 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1169 | 1165 | ||
1170 | rcu_read_lock(); | 1166 | rcu_read_lock(); |
1171 | parent = rcu_dereference(ctx->parent_ctx); | 1167 | parent = rcu_dereference(ctx->parent_ctx); |
1172 | next_ctx = next->perf_counter_ctxp; | 1168 | next_ctx = next->perf_event_ctxp; |
1173 | if (parent && next_ctx && | 1169 | if (parent && next_ctx && |
1174 | rcu_dereference(next_ctx->parent_ctx) == parent) { | 1170 | rcu_dereference(next_ctx->parent_ctx) == parent) { |
1175 | /* | 1171 | /* |
@@ -1186,15 +1182,15 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1186 | if (context_equiv(ctx, next_ctx)) { | 1182 | if (context_equiv(ctx, next_ctx)) { |
1187 | /* | 1183 | /* |
1188 | * XXX do we need a memory barrier of sorts | 1184 | * XXX do we need a memory barrier of sorts |
1189 | * wrt to rcu_dereference() of perf_counter_ctxp | 1185 | * wrt to rcu_dereference() of perf_event_ctxp |
1190 | */ | 1186 | */ |
1191 | task->perf_counter_ctxp = next_ctx; | 1187 | task->perf_event_ctxp = next_ctx; |
1192 | next->perf_counter_ctxp = ctx; | 1188 | next->perf_event_ctxp = ctx; |
1193 | ctx->task = next; | 1189 | ctx->task = next; |
1194 | next_ctx->task = task; | 1190 | next_ctx->task = task; |
1195 | do_switch = 0; | 1191 | do_switch = 0; |
1196 | 1192 | ||
1197 | perf_counter_sync_stat(ctx, next_ctx); | 1193 | perf_event_sync_stat(ctx, next_ctx); |
1198 | } | 1194 | } |
1199 | spin_unlock(&next_ctx->lock); | 1195 | spin_unlock(&next_ctx->lock); |
1200 | spin_unlock(&ctx->lock); | 1196 | spin_unlock(&ctx->lock); |
@@ -1202,7 +1198,7 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1202 | rcu_read_unlock(); | 1198 | rcu_read_unlock(); |
1203 | 1199 | ||
1204 | if (do_switch) { | 1200 | if (do_switch) { |
1205 | __perf_counter_sched_out(ctx, cpuctx); | 1201 | __perf_event_sched_out(ctx, cpuctx); |
1206 | cpuctx->task_ctx = NULL; | 1202 | cpuctx->task_ctx = NULL; |
1207 | } | 1203 | } |
1208 | } | 1204 | } |
@@ -1210,7 +1206,7 @@ void perf_counter_task_sched_out(struct task_struct *task, | |||
1210 | /* | 1206 | /* |
1211 | * Called with IRQs disabled | 1207 | * Called with IRQs disabled |
1212 | */ | 1208 | */ |
1213 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | 1209 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) |
1214 | { | 1210 | { |
1215 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 1211 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
1216 | 1212 | ||
@@ -1220,28 +1216,28 @@ static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | |||
1220 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | 1216 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) |
1221 | return; | 1217 | return; |
1222 | 1218 | ||
1223 | __perf_counter_sched_out(ctx, cpuctx); | 1219 | __perf_event_sched_out(ctx, cpuctx); |
1224 | cpuctx->task_ctx = NULL; | 1220 | cpuctx->task_ctx = NULL; |
1225 | } | 1221 | } |
1226 | 1222 | ||
1227 | /* | 1223 | /* |
1228 | * Called with IRQs disabled | 1224 | * Called with IRQs disabled |
1229 | */ | 1225 | */ |
1230 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | 1226 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) |
1231 | { | 1227 | { |
1232 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | 1228 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); |
1233 | } | 1229 | } |
1234 | 1230 | ||
1235 | static void | 1231 | static void |
1236 | __perf_counter_sched_in(struct perf_counter_context *ctx, | 1232 | __perf_event_sched_in(struct perf_event_context *ctx, |
1237 | struct perf_cpu_context *cpuctx, int cpu) | 1233 | struct perf_cpu_context *cpuctx, int cpu) |
1238 | { | 1234 | { |
1239 | struct perf_counter *counter; | 1235 | struct perf_event *event; |
1240 | int can_add_hw = 1; | 1236 | int can_add_hw = 1; |
1241 | 1237 | ||
1242 | spin_lock(&ctx->lock); | 1238 | spin_lock(&ctx->lock); |
1243 | ctx->is_active = 1; | 1239 | ctx->is_active = 1; |
1244 | if (likely(!ctx->nr_counters)) | 1240 | if (likely(!ctx->nr_events)) |
1245 | goto out; | 1241 | goto out; |
1246 | 1242 | ||
1247 | ctx->timestamp = perf_clock(); | 1243 | ctx->timestamp = perf_clock(); |
@@ -1252,55 +1248,45 @@ __perf_counter_sched_in(struct perf_counter_context *ctx, | |||
1252 | * First go through the list and put on any pinned groups | 1248 | * First go through the list and put on any pinned groups |
1253 | * in order to give them the best chance of going on. | 1249 | * in order to give them the best chance of going on. |
1254 | */ | 1250 | */ |
1255 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1251 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1256 | if (counter->state <= PERF_COUNTER_STATE_OFF || | 1252 | if (event->state <= PERF_EVENT_STATE_OFF || |
1257 | !counter->attr.pinned) | 1253 | !event->attr.pinned) |
1258 | continue; | 1254 | continue; |
1259 | if (counter->cpu != -1 && counter->cpu != cpu) | 1255 | if (event->cpu != -1 && event->cpu != cpu) |
1260 | continue; | 1256 | continue; |
1261 | 1257 | ||
1262 | if (counter != counter->group_leader) | 1258 | if (group_can_go_on(event, cpuctx, 1)) |
1263 | counter_sched_in(counter, cpuctx, ctx, cpu); | 1259 | group_sched_in(event, cpuctx, ctx, cpu); |
1264 | else { | ||
1265 | if (group_can_go_on(counter, cpuctx, 1)) | ||
1266 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
1267 | } | ||
1268 | 1260 | ||
1269 | /* | 1261 | /* |
1270 | * If this pinned group hasn't been scheduled, | 1262 | * If this pinned group hasn't been scheduled, |
1271 | * put it in error state. | 1263 | * put it in error state. |
1272 | */ | 1264 | */ |
1273 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 1265 | if (event->state == PERF_EVENT_STATE_INACTIVE) { |
1274 | update_group_times(counter); | 1266 | update_group_times(event); |
1275 | counter->state = PERF_COUNTER_STATE_ERROR; | 1267 | event->state = PERF_EVENT_STATE_ERROR; |
1276 | } | 1268 | } |
1277 | } | 1269 | } |
1278 | 1270 | ||
1279 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1271 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1280 | /* | 1272 | /* |
1281 | * Ignore counters in OFF or ERROR state, and | 1273 | * Ignore events in OFF or ERROR state, and |
1282 | * ignore pinned counters since we did them already. | 1274 | * ignore pinned events since we did them already. |
1283 | */ | 1275 | */ |
1284 | if (counter->state <= PERF_COUNTER_STATE_OFF || | 1276 | if (event->state <= PERF_EVENT_STATE_OFF || |
1285 | counter->attr.pinned) | 1277 | event->attr.pinned) |
1286 | continue; | 1278 | continue; |
1287 | 1279 | ||
1288 | /* | 1280 | /* |
1289 | * Listen to the 'cpu' scheduling filter constraint | 1281 | * Listen to the 'cpu' scheduling filter constraint |
1290 | * of counters: | 1282 | * of events: |
1291 | */ | 1283 | */ |
1292 | if (counter->cpu != -1 && counter->cpu != cpu) | 1284 | if (event->cpu != -1 && event->cpu != cpu) |
1293 | continue; | 1285 | continue; |
1294 | 1286 | ||
1295 | if (counter != counter->group_leader) { | 1287 | if (group_can_go_on(event, cpuctx, can_add_hw)) |
1296 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | 1288 | if (group_sched_in(event, cpuctx, ctx, cpu)) |
1297 | can_add_hw = 0; | 1289 | can_add_hw = 0; |
1298 | } else { | ||
1299 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
1300 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
1301 | can_add_hw = 0; | ||
1302 | } | ||
1303 | } | ||
1304 | } | 1290 | } |
1305 | perf_enable(); | 1291 | perf_enable(); |
1306 | out: | 1292 | out: |
@@ -1308,48 +1294,48 @@ __perf_counter_sched_in(struct perf_counter_context *ctx, | |||
1308 | } | 1294 | } |
1309 | 1295 | ||
1310 | /* | 1296 | /* |
1311 | * Called from scheduler to add the counters of the current task | 1297 | * Called from scheduler to add the events of the current task |
1312 | * with interrupts disabled. | 1298 | * with interrupts disabled. |
1313 | * | 1299 | * |
1314 | * We restore the counter value and then enable it. | 1300 | * We restore the event value and then enable it. |
1315 | * | 1301 | * |
1316 | * This does not protect us against NMI, but enable() | 1302 | * This does not protect us against NMI, but enable() |
1317 | * sets the enabled bit in the control field of counter _before_ | 1303 | * sets the enabled bit in the control field of event _before_ |
1318 | * accessing the counter control register. If a NMI hits, then it will | 1304 | * accessing the event control register. If a NMI hits, then it will |
1319 | * keep the counter running. | 1305 | * keep the event running. |
1320 | */ | 1306 | */ |
1321 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | 1307 | void perf_event_task_sched_in(struct task_struct *task, int cpu) |
1322 | { | 1308 | { |
1323 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 1309 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
1324 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 1310 | struct perf_event_context *ctx = task->perf_event_ctxp; |
1325 | 1311 | ||
1326 | if (likely(!ctx)) | 1312 | if (likely(!ctx)) |
1327 | return; | 1313 | return; |
1328 | if (cpuctx->task_ctx == ctx) | 1314 | if (cpuctx->task_ctx == ctx) |
1329 | return; | 1315 | return; |
1330 | __perf_counter_sched_in(ctx, cpuctx, cpu); | 1316 | __perf_event_sched_in(ctx, cpuctx, cpu); |
1331 | cpuctx->task_ctx = ctx; | 1317 | cpuctx->task_ctx = ctx; |
1332 | } | 1318 | } |
1333 | 1319 | ||
1334 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | 1320 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) |
1335 | { | 1321 | { |
1336 | struct perf_counter_context *ctx = &cpuctx->ctx; | 1322 | struct perf_event_context *ctx = &cpuctx->ctx; |
1337 | 1323 | ||
1338 | __perf_counter_sched_in(ctx, cpuctx, cpu); | 1324 | __perf_event_sched_in(ctx, cpuctx, cpu); |
1339 | } | 1325 | } |
1340 | 1326 | ||
1341 | #define MAX_INTERRUPTS (~0ULL) | 1327 | #define MAX_INTERRUPTS (~0ULL) |
1342 | 1328 | ||
1343 | static void perf_log_throttle(struct perf_counter *counter, int enable); | 1329 | static void perf_log_throttle(struct perf_event *event, int enable); |
1344 | 1330 | ||
1345 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | 1331 | static void perf_adjust_period(struct perf_event *event, u64 events) |
1346 | { | 1332 | { |
1347 | struct hw_perf_counter *hwc = &counter->hw; | 1333 | struct hw_perf_event *hwc = &event->hw; |
1348 | u64 period, sample_period; | 1334 | u64 period, sample_period; |
1349 | s64 delta; | 1335 | s64 delta; |
1350 | 1336 | ||
1351 | events *= hwc->sample_period; | 1337 | events *= hwc->sample_period; |
1352 | period = div64_u64(events, counter->attr.sample_freq); | 1338 | period = div64_u64(events, event->attr.sample_freq); |
1353 | 1339 | ||
1354 | delta = (s64)(period - hwc->sample_period); | 1340 | delta = (s64)(period - hwc->sample_period); |
1355 | delta = (delta + 7) / 8; /* low pass filter */ | 1341 | delta = (delta + 7) / 8; /* low pass filter */ |
@@ -1362,39 +1348,39 @@ static void perf_adjust_period(struct perf_counter *counter, u64 events) | |||
1362 | hwc->sample_period = sample_period; | 1348 | hwc->sample_period = sample_period; |
1363 | } | 1349 | } |
1364 | 1350 | ||
1365 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | 1351 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) |
1366 | { | 1352 | { |
1367 | struct perf_counter *counter; | 1353 | struct perf_event *event; |
1368 | struct hw_perf_counter *hwc; | 1354 | struct hw_perf_event *hwc; |
1369 | u64 interrupts, freq; | 1355 | u64 interrupts, freq; |
1370 | 1356 | ||
1371 | spin_lock(&ctx->lock); | 1357 | spin_lock(&ctx->lock); |
1372 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1358 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1373 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 1359 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
1374 | continue; | 1360 | continue; |
1375 | 1361 | ||
1376 | hwc = &counter->hw; | 1362 | hwc = &event->hw; |
1377 | 1363 | ||
1378 | interrupts = hwc->interrupts; | 1364 | interrupts = hwc->interrupts; |
1379 | hwc->interrupts = 0; | 1365 | hwc->interrupts = 0; |
1380 | 1366 | ||
1381 | /* | 1367 | /* |
1382 | * unthrottle counters on the tick | 1368 | * unthrottle events on the tick |
1383 | */ | 1369 | */ |
1384 | if (interrupts == MAX_INTERRUPTS) { | 1370 | if (interrupts == MAX_INTERRUPTS) { |
1385 | perf_log_throttle(counter, 1); | 1371 | perf_log_throttle(event, 1); |
1386 | counter->pmu->unthrottle(counter); | 1372 | event->pmu->unthrottle(event); |
1387 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | 1373 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; |
1388 | } | 1374 | } |
1389 | 1375 | ||
1390 | if (!counter->attr.freq || !counter->attr.sample_freq) | 1376 | if (!event->attr.freq || !event->attr.sample_freq) |
1391 | continue; | 1377 | continue; |
1392 | 1378 | ||
1393 | /* | 1379 | /* |
1394 | * if the specified freq < HZ then we need to skip ticks | 1380 | * if the specified freq < HZ then we need to skip ticks |
1395 | */ | 1381 | */ |
1396 | if (counter->attr.sample_freq < HZ) { | 1382 | if (event->attr.sample_freq < HZ) { |
1397 | freq = counter->attr.sample_freq; | 1383 | freq = event->attr.sample_freq; |
1398 | 1384 | ||
1399 | hwc->freq_count += freq; | 1385 | hwc->freq_count += freq; |
1400 | hwc->freq_interrupts += interrupts; | 1386 | hwc->freq_interrupts += interrupts; |
@@ -1408,7 +1394,7 @@ static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | |||
1408 | } else | 1394 | } else |
1409 | freq = HZ; | 1395 | freq = HZ; |
1410 | 1396 | ||
1411 | perf_adjust_period(counter, freq * interrupts); | 1397 | perf_adjust_period(event, freq * interrupts); |
1412 | 1398 | ||
1413 | /* | 1399 | /* |
1414 | * In order to avoid being stalled by an (accidental) huge | 1400 | * In order to avoid being stalled by an (accidental) huge |
@@ -1417,9 +1403,9 @@ static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | |||
1417 | */ | 1403 | */ |
1418 | if (!interrupts) { | 1404 | if (!interrupts) { |
1419 | perf_disable(); | 1405 | perf_disable(); |
1420 | counter->pmu->disable(counter); | 1406 | event->pmu->disable(event); |
1421 | atomic64_set(&hwc->period_left, 0); | 1407 | atomic64_set(&hwc->period_left, 0); |
1422 | counter->pmu->enable(counter); | 1408 | event->pmu->enable(event); |
1423 | perf_enable(); | 1409 | perf_enable(); |
1424 | } | 1410 | } |
1425 | } | 1411 | } |
@@ -1427,22 +1413,22 @@ static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | |||
1427 | } | 1413 | } |
1428 | 1414 | ||
1429 | /* | 1415 | /* |
1430 | * Round-robin a context's counters: | 1416 | * Round-robin a context's events: |
1431 | */ | 1417 | */ |
1432 | static void rotate_ctx(struct perf_counter_context *ctx) | 1418 | static void rotate_ctx(struct perf_event_context *ctx) |
1433 | { | 1419 | { |
1434 | struct perf_counter *counter; | 1420 | struct perf_event *event; |
1435 | 1421 | ||
1436 | if (!ctx->nr_counters) | 1422 | if (!ctx->nr_events) |
1437 | return; | 1423 | return; |
1438 | 1424 | ||
1439 | spin_lock(&ctx->lock); | 1425 | spin_lock(&ctx->lock); |
1440 | /* | 1426 | /* |
1441 | * Rotate the first entry last (works just fine for group counters too): | 1427 | * Rotate the first entry last (works just fine for group events too): |
1442 | */ | 1428 | */ |
1443 | perf_disable(); | 1429 | perf_disable(); |
1444 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1430 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1445 | list_move_tail(&counter->list_entry, &ctx->counter_list); | 1431 | list_move_tail(&event->group_entry, &ctx->group_list); |
1446 | break; | 1432 | break; |
1447 | } | 1433 | } |
1448 | perf_enable(); | 1434 | perf_enable(); |
@@ -1450,93 +1436,93 @@ static void rotate_ctx(struct perf_counter_context *ctx) | |||
1450 | spin_unlock(&ctx->lock); | 1436 | spin_unlock(&ctx->lock); |
1451 | } | 1437 | } |
1452 | 1438 | ||
1453 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | 1439 | void perf_event_task_tick(struct task_struct *curr, int cpu) |
1454 | { | 1440 | { |
1455 | struct perf_cpu_context *cpuctx; | 1441 | struct perf_cpu_context *cpuctx; |
1456 | struct perf_counter_context *ctx; | 1442 | struct perf_event_context *ctx; |
1457 | 1443 | ||
1458 | if (!atomic_read(&nr_counters)) | 1444 | if (!atomic_read(&nr_events)) |
1459 | return; | 1445 | return; |
1460 | 1446 | ||
1461 | cpuctx = &per_cpu(perf_cpu_context, cpu); | 1447 | cpuctx = &per_cpu(perf_cpu_context, cpu); |
1462 | ctx = curr->perf_counter_ctxp; | 1448 | ctx = curr->perf_event_ctxp; |
1463 | 1449 | ||
1464 | perf_ctx_adjust_freq(&cpuctx->ctx); | 1450 | perf_ctx_adjust_freq(&cpuctx->ctx); |
1465 | if (ctx) | 1451 | if (ctx) |
1466 | perf_ctx_adjust_freq(ctx); | 1452 | perf_ctx_adjust_freq(ctx); |
1467 | 1453 | ||
1468 | perf_counter_cpu_sched_out(cpuctx); | 1454 | perf_event_cpu_sched_out(cpuctx); |
1469 | if (ctx) | 1455 | if (ctx) |
1470 | __perf_counter_task_sched_out(ctx); | 1456 | __perf_event_task_sched_out(ctx); |
1471 | 1457 | ||
1472 | rotate_ctx(&cpuctx->ctx); | 1458 | rotate_ctx(&cpuctx->ctx); |
1473 | if (ctx) | 1459 | if (ctx) |
1474 | rotate_ctx(ctx); | 1460 | rotate_ctx(ctx); |
1475 | 1461 | ||
1476 | perf_counter_cpu_sched_in(cpuctx, cpu); | 1462 | perf_event_cpu_sched_in(cpuctx, cpu); |
1477 | if (ctx) | 1463 | if (ctx) |
1478 | perf_counter_task_sched_in(curr, cpu); | 1464 | perf_event_task_sched_in(curr, cpu); |
1479 | } | 1465 | } |
1480 | 1466 | ||
1481 | /* | 1467 | /* |
1482 | * Enable all of a task's counters that have been marked enable-on-exec. | 1468 | * Enable all of a task's events that have been marked enable-on-exec. |
1483 | * This expects task == current. | 1469 | * This expects task == current. |
1484 | */ | 1470 | */ |
1485 | static void perf_counter_enable_on_exec(struct task_struct *task) | 1471 | static void perf_event_enable_on_exec(struct task_struct *task) |
1486 | { | 1472 | { |
1487 | struct perf_counter_context *ctx; | 1473 | struct perf_event_context *ctx; |
1488 | struct perf_counter *counter; | 1474 | struct perf_event *event; |
1489 | unsigned long flags; | 1475 | unsigned long flags; |
1490 | int enabled = 0; | 1476 | int enabled = 0; |
1491 | 1477 | ||
1492 | local_irq_save(flags); | 1478 | local_irq_save(flags); |
1493 | ctx = task->perf_counter_ctxp; | 1479 | ctx = task->perf_event_ctxp; |
1494 | if (!ctx || !ctx->nr_counters) | 1480 | if (!ctx || !ctx->nr_events) |
1495 | goto out; | 1481 | goto out; |
1496 | 1482 | ||
1497 | __perf_counter_task_sched_out(ctx); | 1483 | __perf_event_task_sched_out(ctx); |
1498 | 1484 | ||
1499 | spin_lock(&ctx->lock); | 1485 | spin_lock(&ctx->lock); |
1500 | 1486 | ||
1501 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | 1487 | list_for_each_entry(event, &ctx->group_list, group_entry) { |
1502 | if (!counter->attr.enable_on_exec) | 1488 | if (!event->attr.enable_on_exec) |
1503 | continue; | 1489 | continue; |
1504 | counter->attr.enable_on_exec = 0; | 1490 | event->attr.enable_on_exec = 0; |
1505 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | 1491 | if (event->state >= PERF_EVENT_STATE_INACTIVE) |
1506 | continue; | 1492 | continue; |
1507 | __perf_counter_mark_enabled(counter, ctx); | 1493 | __perf_event_mark_enabled(event, ctx); |
1508 | enabled = 1; | 1494 | enabled = 1; |
1509 | } | 1495 | } |
1510 | 1496 | ||
1511 | /* | 1497 | /* |
1512 | * Unclone this context if we enabled any counter. | 1498 | * Unclone this context if we enabled any event. |
1513 | */ | 1499 | */ |
1514 | if (enabled) | 1500 | if (enabled) |
1515 | unclone_ctx(ctx); | 1501 | unclone_ctx(ctx); |
1516 | 1502 | ||
1517 | spin_unlock(&ctx->lock); | 1503 | spin_unlock(&ctx->lock); |
1518 | 1504 | ||
1519 | perf_counter_task_sched_in(task, smp_processor_id()); | 1505 | perf_event_task_sched_in(task, smp_processor_id()); |
1520 | out: | 1506 | out: |
1521 | local_irq_restore(flags); | 1507 | local_irq_restore(flags); |
1522 | } | 1508 | } |
1523 | 1509 | ||
1524 | /* | 1510 | /* |
1525 | * Cross CPU call to read the hardware counter | 1511 | * Cross CPU call to read the hardware event |
1526 | */ | 1512 | */ |
1527 | static void __perf_counter_read(void *info) | 1513 | static void __perf_event_read(void *info) |
1528 | { | 1514 | { |
1529 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 1515 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
1530 | struct perf_counter *counter = info; | 1516 | struct perf_event *event = info; |
1531 | struct perf_counter_context *ctx = counter->ctx; | 1517 | struct perf_event_context *ctx = event->ctx; |
1532 | unsigned long flags; | 1518 | unsigned long flags; |
1533 | 1519 | ||
1534 | /* | 1520 | /* |
1535 | * If this is a task context, we need to check whether it is | 1521 | * If this is a task context, we need to check whether it is |
1536 | * the current task context of this cpu. If not it has been | 1522 | * the current task context of this cpu. If not it has been |
1537 | * scheduled out before the smp call arrived. In that case | 1523 | * scheduled out before the smp call arrived. In that case |
1538 | * counter->count would have been updated to a recent sample | 1524 | * event->count would have been updated to a recent sample |
1539 | * when the counter was scheduled out. | 1525 | * when the event was scheduled out. |
1540 | */ | 1526 | */ |
1541 | if (ctx->task && cpuctx->task_ctx != ctx) | 1527 | if (ctx->task && cpuctx->task_ctx != ctx) |
1542 | return; | 1528 | return; |
@@ -1544,56 +1530,56 @@ static void __perf_counter_read(void *info) | |||
1544 | local_irq_save(flags); | 1530 | local_irq_save(flags); |
1545 | if (ctx->is_active) | 1531 | if (ctx->is_active) |
1546 | update_context_time(ctx); | 1532 | update_context_time(ctx); |
1547 | counter->pmu->read(counter); | 1533 | event->pmu->read(event); |
1548 | update_counter_times(counter); | 1534 | update_event_times(event); |
1549 | local_irq_restore(flags); | 1535 | local_irq_restore(flags); |
1550 | } | 1536 | } |
1551 | 1537 | ||
1552 | static u64 perf_counter_read(struct perf_counter *counter) | 1538 | static u64 perf_event_read(struct perf_event *event) |
1553 | { | 1539 | { |
1554 | /* | 1540 | /* |
1555 | * If counter is enabled and currently active on a CPU, update the | 1541 | * If event is enabled and currently active on a CPU, update the |
1556 | * value in the counter structure: | 1542 | * value in the event structure: |
1557 | */ | 1543 | */ |
1558 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | 1544 | if (event->state == PERF_EVENT_STATE_ACTIVE) { |
1559 | smp_call_function_single(counter->oncpu, | 1545 | smp_call_function_single(event->oncpu, |
1560 | __perf_counter_read, counter, 1); | 1546 | __perf_event_read, event, 1); |
1561 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | 1547 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { |
1562 | update_counter_times(counter); | 1548 | update_event_times(event); |
1563 | } | 1549 | } |
1564 | 1550 | ||
1565 | return atomic64_read(&counter->count); | 1551 | return atomic64_read(&event->count); |
1566 | } | 1552 | } |
1567 | 1553 | ||
1568 | /* | 1554 | /* |
1569 | * Initialize the perf_counter context in a task_struct: | 1555 | * Initialize the perf_event context in a task_struct: |
1570 | */ | 1556 | */ |
1571 | static void | 1557 | static void |
1572 | __perf_counter_init_context(struct perf_counter_context *ctx, | 1558 | __perf_event_init_context(struct perf_event_context *ctx, |
1573 | struct task_struct *task) | 1559 | struct task_struct *task) |
1574 | { | 1560 | { |
1575 | memset(ctx, 0, sizeof(*ctx)); | 1561 | memset(ctx, 0, sizeof(*ctx)); |
1576 | spin_lock_init(&ctx->lock); | 1562 | spin_lock_init(&ctx->lock); |
1577 | mutex_init(&ctx->mutex); | 1563 | mutex_init(&ctx->mutex); |
1578 | INIT_LIST_HEAD(&ctx->counter_list); | 1564 | INIT_LIST_HEAD(&ctx->group_list); |
1579 | INIT_LIST_HEAD(&ctx->event_list); | 1565 | INIT_LIST_HEAD(&ctx->event_list); |
1580 | atomic_set(&ctx->refcount, 1); | 1566 | atomic_set(&ctx->refcount, 1); |
1581 | ctx->task = task; | 1567 | ctx->task = task; |
1582 | } | 1568 | } |
1583 | 1569 | ||
1584 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | 1570 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) |
1585 | { | 1571 | { |
1586 | struct perf_counter_context *ctx; | 1572 | struct perf_event_context *ctx; |
1587 | struct perf_cpu_context *cpuctx; | 1573 | struct perf_cpu_context *cpuctx; |
1588 | struct task_struct *task; | 1574 | struct task_struct *task; |
1589 | unsigned long flags; | 1575 | unsigned long flags; |
1590 | int err; | 1576 | int err; |
1591 | 1577 | ||
1592 | /* | 1578 | /* |
1593 | * If cpu is not a wildcard then this is a percpu counter: | 1579 | * If cpu is not a wildcard then this is a percpu event: |
1594 | */ | 1580 | */ |
1595 | if (cpu != -1) { | 1581 | if (cpu != -1) { |
1596 | /* Must be root to operate on a CPU counter: */ | 1582 | /* Must be root to operate on a CPU event: */ |
1597 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | 1583 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
1598 | return ERR_PTR(-EACCES); | 1584 | return ERR_PTR(-EACCES); |
1599 | 1585 | ||
@@ -1601,7 +1587,7 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1601 | return ERR_PTR(-EINVAL); | 1587 | return ERR_PTR(-EINVAL); |
1602 | 1588 | ||
1603 | /* | 1589 | /* |
1604 | * We could be clever and allow to attach a counter to an | 1590 | * We could be clever and allow to attach a event to an |
1605 | * offline CPU and activate it when the CPU comes up, but | 1591 | * offline CPU and activate it when the CPU comes up, but |
1606 | * that's for later. | 1592 | * that's for later. |
1607 | */ | 1593 | */ |
@@ -1628,7 +1614,7 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1628 | return ERR_PTR(-ESRCH); | 1614 | return ERR_PTR(-ESRCH); |
1629 | 1615 | ||
1630 | /* | 1616 | /* |
1631 | * Can't attach counters to a dying task. | 1617 | * Can't attach events to a dying task. |
1632 | */ | 1618 | */ |
1633 | err = -ESRCH; | 1619 | err = -ESRCH; |
1634 | if (task->flags & PF_EXITING) | 1620 | if (task->flags & PF_EXITING) |
@@ -1647,13 +1633,13 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1647 | } | 1633 | } |
1648 | 1634 | ||
1649 | if (!ctx) { | 1635 | if (!ctx) { |
1650 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | 1636 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); |
1651 | err = -ENOMEM; | 1637 | err = -ENOMEM; |
1652 | if (!ctx) | 1638 | if (!ctx) |
1653 | goto errout; | 1639 | goto errout; |
1654 | __perf_counter_init_context(ctx, task); | 1640 | __perf_event_init_context(ctx, task); |
1655 | get_ctx(ctx); | 1641 | get_ctx(ctx); |
1656 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | 1642 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { |
1657 | /* | 1643 | /* |
1658 | * We raced with some other task; use | 1644 | * We raced with some other task; use |
1659 | * the context they set. | 1645 | * the context they set. |
@@ -1672,42 +1658,42 @@ static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | |||
1672 | return ERR_PTR(err); | 1658 | return ERR_PTR(err); |
1673 | } | 1659 | } |
1674 | 1660 | ||
1675 | static void free_counter_rcu(struct rcu_head *head) | 1661 | static void free_event_rcu(struct rcu_head *head) |
1676 | { | 1662 | { |
1677 | struct perf_counter *counter; | 1663 | struct perf_event *event; |
1678 | 1664 | ||
1679 | counter = container_of(head, struct perf_counter, rcu_head); | 1665 | event = container_of(head, struct perf_event, rcu_head); |
1680 | if (counter->ns) | 1666 | if (event->ns) |
1681 | put_pid_ns(counter->ns); | 1667 | put_pid_ns(event->ns); |
1682 | kfree(counter); | 1668 | kfree(event); |
1683 | } | 1669 | } |
1684 | 1670 | ||
1685 | static void perf_pending_sync(struct perf_counter *counter); | 1671 | static void perf_pending_sync(struct perf_event *event); |
1686 | 1672 | ||
1687 | static void free_counter(struct perf_counter *counter) | 1673 | static void free_event(struct perf_event *event) |
1688 | { | 1674 | { |
1689 | perf_pending_sync(counter); | 1675 | perf_pending_sync(event); |
1690 | 1676 | ||
1691 | if (!counter->parent) { | 1677 | if (!event->parent) { |
1692 | atomic_dec(&nr_counters); | 1678 | atomic_dec(&nr_events); |
1693 | if (counter->attr.mmap) | 1679 | if (event->attr.mmap) |
1694 | atomic_dec(&nr_mmap_counters); | 1680 | atomic_dec(&nr_mmap_events); |
1695 | if (counter->attr.comm) | 1681 | if (event->attr.comm) |
1696 | atomic_dec(&nr_comm_counters); | 1682 | atomic_dec(&nr_comm_events); |
1697 | if (counter->attr.task) | 1683 | if (event->attr.task) |
1698 | atomic_dec(&nr_task_counters); | 1684 | atomic_dec(&nr_task_events); |
1699 | } | 1685 | } |
1700 | 1686 | ||
1701 | if (counter->output) { | 1687 | if (event->output) { |
1702 | fput(counter->output->filp); | 1688 | fput(event->output->filp); |
1703 | counter->output = NULL; | 1689 | event->output = NULL; |
1704 | } | 1690 | } |
1705 | 1691 | ||
1706 | if (counter->destroy) | 1692 | if (event->destroy) |
1707 | counter->destroy(counter); | 1693 | event->destroy(event); |
1708 | 1694 | ||
1709 | put_ctx(counter->ctx); | 1695 | put_ctx(event->ctx); |
1710 | call_rcu(&counter->rcu_head, free_counter_rcu); | 1696 | call_rcu(&event->rcu_head, free_event_rcu); |
1711 | } | 1697 | } |
1712 | 1698 | ||
1713 | /* | 1699 | /* |
@@ -1715,43 +1701,43 @@ static void free_counter(struct perf_counter *counter) | |||
1715 | */ | 1701 | */ |
1716 | static int perf_release(struct inode *inode, struct file *file) | 1702 | static int perf_release(struct inode *inode, struct file *file) |
1717 | { | 1703 | { |
1718 | struct perf_counter *counter = file->private_data; | 1704 | struct perf_event *event = file->private_data; |
1719 | struct perf_counter_context *ctx = counter->ctx; | 1705 | struct perf_event_context *ctx = event->ctx; |
1720 | 1706 | ||
1721 | file->private_data = NULL; | 1707 | file->private_data = NULL; |
1722 | 1708 | ||
1723 | WARN_ON_ONCE(ctx->parent_ctx); | 1709 | WARN_ON_ONCE(ctx->parent_ctx); |
1724 | mutex_lock(&ctx->mutex); | 1710 | mutex_lock(&ctx->mutex); |
1725 | perf_counter_remove_from_context(counter); | 1711 | perf_event_remove_from_context(event); |
1726 | mutex_unlock(&ctx->mutex); | 1712 | mutex_unlock(&ctx->mutex); |
1727 | 1713 | ||
1728 | mutex_lock(&counter->owner->perf_counter_mutex); | 1714 | mutex_lock(&event->owner->perf_event_mutex); |
1729 | list_del_init(&counter->owner_entry); | 1715 | list_del_init(&event->owner_entry); |
1730 | mutex_unlock(&counter->owner->perf_counter_mutex); | 1716 | mutex_unlock(&event->owner->perf_event_mutex); |
1731 | put_task_struct(counter->owner); | 1717 | put_task_struct(event->owner); |
1732 | 1718 | ||
1733 | free_counter(counter); | 1719 | free_event(event); |
1734 | 1720 | ||
1735 | return 0; | 1721 | return 0; |
1736 | } | 1722 | } |
1737 | 1723 | ||
1738 | static int perf_counter_read_size(struct perf_counter *counter) | 1724 | static int perf_event_read_size(struct perf_event *event) |
1739 | { | 1725 | { |
1740 | int entry = sizeof(u64); /* value */ | 1726 | int entry = sizeof(u64); /* value */ |
1741 | int size = 0; | 1727 | int size = 0; |
1742 | int nr = 1; | 1728 | int nr = 1; |
1743 | 1729 | ||
1744 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 1730 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
1745 | size += sizeof(u64); | 1731 | size += sizeof(u64); |
1746 | 1732 | ||
1747 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 1733 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
1748 | size += sizeof(u64); | 1734 | size += sizeof(u64); |
1749 | 1735 | ||
1750 | if (counter->attr.read_format & PERF_FORMAT_ID) | 1736 | if (event->attr.read_format & PERF_FORMAT_ID) |
1751 | entry += sizeof(u64); | 1737 | entry += sizeof(u64); |
1752 | 1738 | ||
1753 | if (counter->attr.read_format & PERF_FORMAT_GROUP) { | 1739 | if (event->attr.read_format & PERF_FORMAT_GROUP) { |
1754 | nr += counter->group_leader->nr_siblings; | 1740 | nr += event->group_leader->nr_siblings; |
1755 | size += sizeof(u64); | 1741 | size += sizeof(u64); |
1756 | } | 1742 | } |
1757 | 1743 | ||
@@ -1760,27 +1746,27 @@ static int perf_counter_read_size(struct perf_counter *counter) | |||
1760 | return size; | 1746 | return size; |
1761 | } | 1747 | } |
1762 | 1748 | ||
1763 | static u64 perf_counter_read_value(struct perf_counter *counter) | 1749 | static u64 perf_event_read_value(struct perf_event *event) |
1764 | { | 1750 | { |
1765 | struct perf_counter *child; | 1751 | struct perf_event *child; |
1766 | u64 total = 0; | 1752 | u64 total = 0; |
1767 | 1753 | ||
1768 | total += perf_counter_read(counter); | 1754 | total += perf_event_read(event); |
1769 | list_for_each_entry(child, &counter->child_list, child_list) | 1755 | list_for_each_entry(child, &event->child_list, child_list) |
1770 | total += perf_counter_read(child); | 1756 | total += perf_event_read(child); |
1771 | 1757 | ||
1772 | return total; | 1758 | return total; |
1773 | } | 1759 | } |
1774 | 1760 | ||
1775 | static int perf_counter_read_entry(struct perf_counter *counter, | 1761 | static int perf_event_read_entry(struct perf_event *event, |
1776 | u64 read_format, char __user *buf) | 1762 | u64 read_format, char __user *buf) |
1777 | { | 1763 | { |
1778 | int n = 0, count = 0; | 1764 | int n = 0, count = 0; |
1779 | u64 values[2]; | 1765 | u64 values[2]; |
1780 | 1766 | ||
1781 | values[n++] = perf_counter_read_value(counter); | 1767 | values[n++] = perf_event_read_value(event); |
1782 | if (read_format & PERF_FORMAT_ID) | 1768 | if (read_format & PERF_FORMAT_ID) |
1783 | values[n++] = primary_counter_id(counter); | 1769 | values[n++] = primary_event_id(event); |
1784 | 1770 | ||
1785 | count = n * sizeof(u64); | 1771 | count = n * sizeof(u64); |
1786 | 1772 | ||
@@ -1790,10 +1776,10 @@ static int perf_counter_read_entry(struct perf_counter *counter, | |||
1790 | return count; | 1776 | return count; |
1791 | } | 1777 | } |
1792 | 1778 | ||
1793 | static int perf_counter_read_group(struct perf_counter *counter, | 1779 | static int perf_event_read_group(struct perf_event *event, |
1794 | u64 read_format, char __user *buf) | 1780 | u64 read_format, char __user *buf) |
1795 | { | 1781 | { |
1796 | struct perf_counter *leader = counter->group_leader, *sub; | 1782 | struct perf_event *leader = event->group_leader, *sub; |
1797 | int n = 0, size = 0, err = -EFAULT; | 1783 | int n = 0, size = 0, err = -EFAULT; |
1798 | u64 values[3]; | 1784 | u64 values[3]; |
1799 | 1785 | ||
@@ -1812,14 +1798,14 @@ static int perf_counter_read_group(struct perf_counter *counter, | |||
1812 | if (copy_to_user(buf, values, size)) | 1798 | if (copy_to_user(buf, values, size)) |
1813 | return -EFAULT; | 1799 | return -EFAULT; |
1814 | 1800 | ||
1815 | err = perf_counter_read_entry(leader, read_format, buf + size); | 1801 | err = perf_event_read_entry(leader, read_format, buf + size); |
1816 | if (err < 0) | 1802 | if (err < 0) |
1817 | return err; | 1803 | return err; |
1818 | 1804 | ||
1819 | size += err; | 1805 | size += err; |
1820 | 1806 | ||
1821 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | 1807 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
1822 | err = perf_counter_read_entry(sub, read_format, | 1808 | err = perf_event_read_entry(sub, read_format, |
1823 | buf + size); | 1809 | buf + size); |
1824 | if (err < 0) | 1810 | if (err < 0) |
1825 | return err; | 1811 | return err; |
@@ -1830,23 +1816,23 @@ static int perf_counter_read_group(struct perf_counter *counter, | |||
1830 | return size; | 1816 | return size; |
1831 | } | 1817 | } |
1832 | 1818 | ||
1833 | static int perf_counter_read_one(struct perf_counter *counter, | 1819 | static int perf_event_read_one(struct perf_event *event, |
1834 | u64 read_format, char __user *buf) | 1820 | u64 read_format, char __user *buf) |
1835 | { | 1821 | { |
1836 | u64 values[4]; | 1822 | u64 values[4]; |
1837 | int n = 0; | 1823 | int n = 0; |
1838 | 1824 | ||
1839 | values[n++] = perf_counter_read_value(counter); | 1825 | values[n++] = perf_event_read_value(event); |
1840 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 1826 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
1841 | values[n++] = counter->total_time_enabled + | 1827 | values[n++] = event->total_time_enabled + |
1842 | atomic64_read(&counter->child_total_time_enabled); | 1828 | atomic64_read(&event->child_total_time_enabled); |
1843 | } | 1829 | } |
1844 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 1830 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
1845 | values[n++] = counter->total_time_running + | 1831 | values[n++] = event->total_time_running + |
1846 | atomic64_read(&counter->child_total_time_running); | 1832 | atomic64_read(&event->child_total_time_running); |
1847 | } | 1833 | } |
1848 | if (read_format & PERF_FORMAT_ID) | 1834 | if (read_format & PERF_FORMAT_ID) |
1849 | values[n++] = primary_counter_id(counter); | 1835 | values[n++] = primary_event_id(event); |
1850 | 1836 | ||
1851 | if (copy_to_user(buf, values, n * sizeof(u64))) | 1837 | if (copy_to_user(buf, values, n * sizeof(u64))) |
1852 | return -EFAULT; | 1838 | return -EFAULT; |
@@ -1855,32 +1841,32 @@ static int perf_counter_read_one(struct perf_counter *counter, | |||
1855 | } | 1841 | } |
1856 | 1842 | ||
1857 | /* | 1843 | /* |
1858 | * Read the performance counter - simple non blocking version for now | 1844 | * Read the performance event - simple non blocking version for now |
1859 | */ | 1845 | */ |
1860 | static ssize_t | 1846 | static ssize_t |
1861 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | 1847 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) |
1862 | { | 1848 | { |
1863 | u64 read_format = counter->attr.read_format; | 1849 | u64 read_format = event->attr.read_format; |
1864 | int ret; | 1850 | int ret; |
1865 | 1851 | ||
1866 | /* | 1852 | /* |
1867 | * Return end-of-file for a read on a counter that is in | 1853 | * Return end-of-file for a read on a event that is in |
1868 | * error state (i.e. because it was pinned but it couldn't be | 1854 | * error state (i.e. because it was pinned but it couldn't be |
1869 | * scheduled on to the CPU at some point). | 1855 | * scheduled on to the CPU at some point). |
1870 | */ | 1856 | */ |
1871 | if (counter->state == PERF_COUNTER_STATE_ERROR) | 1857 | if (event->state == PERF_EVENT_STATE_ERROR) |
1872 | return 0; | 1858 | return 0; |
1873 | 1859 | ||
1874 | if (count < perf_counter_read_size(counter)) | 1860 | if (count < perf_event_read_size(event)) |
1875 | return -ENOSPC; | 1861 | return -ENOSPC; |
1876 | 1862 | ||
1877 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 1863 | WARN_ON_ONCE(event->ctx->parent_ctx); |
1878 | mutex_lock(&counter->child_mutex); | 1864 | mutex_lock(&event->child_mutex); |
1879 | if (read_format & PERF_FORMAT_GROUP) | 1865 | if (read_format & PERF_FORMAT_GROUP) |
1880 | ret = perf_counter_read_group(counter, read_format, buf); | 1866 | ret = perf_event_read_group(event, read_format, buf); |
1881 | else | 1867 | else |
1882 | ret = perf_counter_read_one(counter, read_format, buf); | 1868 | ret = perf_event_read_one(event, read_format, buf); |
1883 | mutex_unlock(&counter->child_mutex); | 1869 | mutex_unlock(&event->child_mutex); |
1884 | 1870 | ||
1885 | return ret; | 1871 | return ret; |
1886 | } | 1872 | } |
@@ -1888,79 +1874,79 @@ perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | |||
1888 | static ssize_t | 1874 | static ssize_t |
1889 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 1875 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) |
1890 | { | 1876 | { |
1891 | struct perf_counter *counter = file->private_data; | 1877 | struct perf_event *event = file->private_data; |
1892 | 1878 | ||
1893 | return perf_read_hw(counter, buf, count); | 1879 | return perf_read_hw(event, buf, count); |
1894 | } | 1880 | } |
1895 | 1881 | ||
1896 | static unsigned int perf_poll(struct file *file, poll_table *wait) | 1882 | static unsigned int perf_poll(struct file *file, poll_table *wait) |
1897 | { | 1883 | { |
1898 | struct perf_counter *counter = file->private_data; | 1884 | struct perf_event *event = file->private_data; |
1899 | struct perf_mmap_data *data; | 1885 | struct perf_mmap_data *data; |
1900 | unsigned int events = POLL_HUP; | 1886 | unsigned int events = POLL_HUP; |
1901 | 1887 | ||
1902 | rcu_read_lock(); | 1888 | rcu_read_lock(); |
1903 | data = rcu_dereference(counter->data); | 1889 | data = rcu_dereference(event->data); |
1904 | if (data) | 1890 | if (data) |
1905 | events = atomic_xchg(&data->poll, 0); | 1891 | events = atomic_xchg(&data->poll, 0); |
1906 | rcu_read_unlock(); | 1892 | rcu_read_unlock(); |
1907 | 1893 | ||
1908 | poll_wait(file, &counter->waitq, wait); | 1894 | poll_wait(file, &event->waitq, wait); |
1909 | 1895 | ||
1910 | return events; | 1896 | return events; |
1911 | } | 1897 | } |
1912 | 1898 | ||
1913 | static void perf_counter_reset(struct perf_counter *counter) | 1899 | static void perf_event_reset(struct perf_event *event) |
1914 | { | 1900 | { |
1915 | (void)perf_counter_read(counter); | 1901 | (void)perf_event_read(event); |
1916 | atomic64_set(&counter->count, 0); | 1902 | atomic64_set(&event->count, 0); |
1917 | perf_counter_update_userpage(counter); | 1903 | perf_event_update_userpage(event); |
1918 | } | 1904 | } |
1919 | 1905 | ||
1920 | /* | 1906 | /* |
1921 | * Holding the top-level counter's child_mutex means that any | 1907 | * Holding the top-level event's child_mutex means that any |
1922 | * descendant process that has inherited this counter will block | 1908 | * descendant process that has inherited this event will block |
1923 | * in sync_child_counter if it goes to exit, thus satisfying the | 1909 | * in sync_child_event if it goes to exit, thus satisfying the |
1924 | * task existence requirements of perf_counter_enable/disable. | 1910 | * task existence requirements of perf_event_enable/disable. |
1925 | */ | 1911 | */ |
1926 | static void perf_counter_for_each_child(struct perf_counter *counter, | 1912 | static void perf_event_for_each_child(struct perf_event *event, |
1927 | void (*func)(struct perf_counter *)) | 1913 | void (*func)(struct perf_event *)) |
1928 | { | 1914 | { |
1929 | struct perf_counter *child; | 1915 | struct perf_event *child; |
1930 | 1916 | ||
1931 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 1917 | WARN_ON_ONCE(event->ctx->parent_ctx); |
1932 | mutex_lock(&counter->child_mutex); | 1918 | mutex_lock(&event->child_mutex); |
1933 | func(counter); | 1919 | func(event); |
1934 | list_for_each_entry(child, &counter->child_list, child_list) | 1920 | list_for_each_entry(child, &event->child_list, child_list) |
1935 | func(child); | 1921 | func(child); |
1936 | mutex_unlock(&counter->child_mutex); | 1922 | mutex_unlock(&event->child_mutex); |
1937 | } | 1923 | } |
1938 | 1924 | ||
1939 | static void perf_counter_for_each(struct perf_counter *counter, | 1925 | static void perf_event_for_each(struct perf_event *event, |
1940 | void (*func)(struct perf_counter *)) | 1926 | void (*func)(struct perf_event *)) |
1941 | { | 1927 | { |
1942 | struct perf_counter_context *ctx = counter->ctx; | 1928 | struct perf_event_context *ctx = event->ctx; |
1943 | struct perf_counter *sibling; | 1929 | struct perf_event *sibling; |
1944 | 1930 | ||
1945 | WARN_ON_ONCE(ctx->parent_ctx); | 1931 | WARN_ON_ONCE(ctx->parent_ctx); |
1946 | mutex_lock(&ctx->mutex); | 1932 | mutex_lock(&ctx->mutex); |
1947 | counter = counter->group_leader; | 1933 | event = event->group_leader; |
1948 | 1934 | ||
1949 | perf_counter_for_each_child(counter, func); | 1935 | perf_event_for_each_child(event, func); |
1950 | func(counter); | 1936 | func(event); |
1951 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | 1937 | list_for_each_entry(sibling, &event->sibling_list, group_entry) |
1952 | perf_counter_for_each_child(counter, func); | 1938 | perf_event_for_each_child(event, func); |
1953 | mutex_unlock(&ctx->mutex); | 1939 | mutex_unlock(&ctx->mutex); |
1954 | } | 1940 | } |
1955 | 1941 | ||
1956 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | 1942 | static int perf_event_period(struct perf_event *event, u64 __user *arg) |
1957 | { | 1943 | { |
1958 | struct perf_counter_context *ctx = counter->ctx; | 1944 | struct perf_event_context *ctx = event->ctx; |
1959 | unsigned long size; | 1945 | unsigned long size; |
1960 | int ret = 0; | 1946 | int ret = 0; |
1961 | u64 value; | 1947 | u64 value; |
1962 | 1948 | ||
1963 | if (!counter->attr.sample_period) | 1949 | if (!event->attr.sample_period) |
1964 | return -EINVAL; | 1950 | return -EINVAL; |
1965 | 1951 | ||
1966 | size = copy_from_user(&value, arg, sizeof(value)); | 1952 | size = copy_from_user(&value, arg, sizeof(value)); |
@@ -1971,16 +1957,16 @@ static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | |||
1971 | return -EINVAL; | 1957 | return -EINVAL; |
1972 | 1958 | ||
1973 | spin_lock_irq(&ctx->lock); | 1959 | spin_lock_irq(&ctx->lock); |
1974 | if (counter->attr.freq) { | 1960 | if (event->attr.freq) { |
1975 | if (value > sysctl_perf_counter_sample_rate) { | 1961 | if (value > sysctl_perf_event_sample_rate) { |
1976 | ret = -EINVAL; | 1962 | ret = -EINVAL; |
1977 | goto unlock; | 1963 | goto unlock; |
1978 | } | 1964 | } |
1979 | 1965 | ||
1980 | counter->attr.sample_freq = value; | 1966 | event->attr.sample_freq = value; |
1981 | } else { | 1967 | } else { |
1982 | counter->attr.sample_period = value; | 1968 | event->attr.sample_period = value; |
1983 | counter->hw.sample_period = value; | 1969 | event->hw.sample_period = value; |
1984 | } | 1970 | } |
1985 | unlock: | 1971 | unlock: |
1986 | spin_unlock_irq(&ctx->lock); | 1972 | spin_unlock_irq(&ctx->lock); |
@@ -1988,80 +1974,80 @@ unlock: | |||
1988 | return ret; | 1974 | return ret; |
1989 | } | 1975 | } |
1990 | 1976 | ||
1991 | int perf_counter_set_output(struct perf_counter *counter, int output_fd); | 1977 | int perf_event_set_output(struct perf_event *event, int output_fd); |
1992 | 1978 | ||
1993 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 1979 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
1994 | { | 1980 | { |
1995 | struct perf_counter *counter = file->private_data; | 1981 | struct perf_event *event = file->private_data; |
1996 | void (*func)(struct perf_counter *); | 1982 | void (*func)(struct perf_event *); |
1997 | u32 flags = arg; | 1983 | u32 flags = arg; |
1998 | 1984 | ||
1999 | switch (cmd) { | 1985 | switch (cmd) { |
2000 | case PERF_COUNTER_IOC_ENABLE: | 1986 | case PERF_EVENT_IOC_ENABLE: |
2001 | func = perf_counter_enable; | 1987 | func = perf_event_enable; |
2002 | break; | 1988 | break; |
2003 | case PERF_COUNTER_IOC_DISABLE: | 1989 | case PERF_EVENT_IOC_DISABLE: |
2004 | func = perf_counter_disable; | 1990 | func = perf_event_disable; |
2005 | break; | 1991 | break; |
2006 | case PERF_COUNTER_IOC_RESET: | 1992 | case PERF_EVENT_IOC_RESET: |
2007 | func = perf_counter_reset; | 1993 | func = perf_event_reset; |
2008 | break; | 1994 | break; |
2009 | 1995 | ||
2010 | case PERF_COUNTER_IOC_REFRESH: | 1996 | case PERF_EVENT_IOC_REFRESH: |
2011 | return perf_counter_refresh(counter, arg); | 1997 | return perf_event_refresh(event, arg); |
2012 | 1998 | ||
2013 | case PERF_COUNTER_IOC_PERIOD: | 1999 | case PERF_EVENT_IOC_PERIOD: |
2014 | return perf_counter_period(counter, (u64 __user *)arg); | 2000 | return perf_event_period(event, (u64 __user *)arg); |
2015 | 2001 | ||
2016 | case PERF_COUNTER_IOC_SET_OUTPUT: | 2002 | case PERF_EVENT_IOC_SET_OUTPUT: |
2017 | return perf_counter_set_output(counter, arg); | 2003 | return perf_event_set_output(event, arg); |
2018 | 2004 | ||
2019 | default: | 2005 | default: |
2020 | return -ENOTTY; | 2006 | return -ENOTTY; |
2021 | } | 2007 | } |
2022 | 2008 | ||
2023 | if (flags & PERF_IOC_FLAG_GROUP) | 2009 | if (flags & PERF_IOC_FLAG_GROUP) |
2024 | perf_counter_for_each(counter, func); | 2010 | perf_event_for_each(event, func); |
2025 | else | 2011 | else |
2026 | perf_counter_for_each_child(counter, func); | 2012 | perf_event_for_each_child(event, func); |
2027 | 2013 | ||
2028 | return 0; | 2014 | return 0; |
2029 | } | 2015 | } |
2030 | 2016 | ||
2031 | int perf_counter_task_enable(void) | 2017 | int perf_event_task_enable(void) |
2032 | { | 2018 | { |
2033 | struct perf_counter *counter; | 2019 | struct perf_event *event; |
2034 | 2020 | ||
2035 | mutex_lock(¤t->perf_counter_mutex); | 2021 | mutex_lock(¤t->perf_event_mutex); |
2036 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | 2022 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
2037 | perf_counter_for_each_child(counter, perf_counter_enable); | 2023 | perf_event_for_each_child(event, perf_event_enable); |
2038 | mutex_unlock(¤t->perf_counter_mutex); | 2024 | mutex_unlock(¤t->perf_event_mutex); |
2039 | 2025 | ||
2040 | return 0; | 2026 | return 0; |
2041 | } | 2027 | } |
2042 | 2028 | ||
2043 | int perf_counter_task_disable(void) | 2029 | int perf_event_task_disable(void) |
2044 | { | 2030 | { |
2045 | struct perf_counter *counter; | 2031 | struct perf_event *event; |
2046 | 2032 | ||
2047 | mutex_lock(¤t->perf_counter_mutex); | 2033 | mutex_lock(¤t->perf_event_mutex); |
2048 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | 2034 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
2049 | perf_counter_for_each_child(counter, perf_counter_disable); | 2035 | perf_event_for_each_child(event, perf_event_disable); |
2050 | mutex_unlock(¤t->perf_counter_mutex); | 2036 | mutex_unlock(¤t->perf_event_mutex); |
2051 | 2037 | ||
2052 | return 0; | 2038 | return 0; |
2053 | } | 2039 | } |
2054 | 2040 | ||
2055 | #ifndef PERF_COUNTER_INDEX_OFFSET | 2041 | #ifndef PERF_EVENT_INDEX_OFFSET |
2056 | # define PERF_COUNTER_INDEX_OFFSET 0 | 2042 | # define PERF_EVENT_INDEX_OFFSET 0 |
2057 | #endif | 2043 | #endif |
2058 | 2044 | ||
2059 | static int perf_counter_index(struct perf_counter *counter) | 2045 | static int perf_event_index(struct perf_event *event) |
2060 | { | 2046 | { |
2061 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | 2047 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
2062 | return 0; | 2048 | return 0; |
2063 | 2049 | ||
2064 | return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET; | 2050 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; |
2065 | } | 2051 | } |
2066 | 2052 | ||
2067 | /* | 2053 | /* |
@@ -2069,13 +2055,13 @@ static int perf_counter_index(struct perf_counter *counter) | |||
2069 | * the seqlock logic goes bad. We can not serialize this because the arch | 2055 | * the seqlock logic goes bad. We can not serialize this because the arch |
2070 | * code calls this from NMI context. | 2056 | * code calls this from NMI context. |
2071 | */ | 2057 | */ |
2072 | void perf_counter_update_userpage(struct perf_counter *counter) | 2058 | void perf_event_update_userpage(struct perf_event *event) |
2073 | { | 2059 | { |
2074 | struct perf_counter_mmap_page *userpg; | 2060 | struct perf_event_mmap_page *userpg; |
2075 | struct perf_mmap_data *data; | 2061 | struct perf_mmap_data *data; |
2076 | 2062 | ||
2077 | rcu_read_lock(); | 2063 | rcu_read_lock(); |
2078 | data = rcu_dereference(counter->data); | 2064 | data = rcu_dereference(event->data); |
2079 | if (!data) | 2065 | if (!data) |
2080 | goto unlock; | 2066 | goto unlock; |
2081 | 2067 | ||
@@ -2088,16 +2074,16 @@ void perf_counter_update_userpage(struct perf_counter *counter) | |||
2088 | preempt_disable(); | 2074 | preempt_disable(); |
2089 | ++userpg->lock; | 2075 | ++userpg->lock; |
2090 | barrier(); | 2076 | barrier(); |
2091 | userpg->index = perf_counter_index(counter); | 2077 | userpg->index = perf_event_index(event); |
2092 | userpg->offset = atomic64_read(&counter->count); | 2078 | userpg->offset = atomic64_read(&event->count); |
2093 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | 2079 | if (event->state == PERF_EVENT_STATE_ACTIVE) |
2094 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | 2080 | userpg->offset -= atomic64_read(&event->hw.prev_count); |
2095 | 2081 | ||
2096 | userpg->time_enabled = counter->total_time_enabled + | 2082 | userpg->time_enabled = event->total_time_enabled + |
2097 | atomic64_read(&counter->child_total_time_enabled); | 2083 | atomic64_read(&event->child_total_time_enabled); |
2098 | 2084 | ||
2099 | userpg->time_running = counter->total_time_running + | 2085 | userpg->time_running = event->total_time_running + |
2100 | atomic64_read(&counter->child_total_time_running); | 2086 | atomic64_read(&event->child_total_time_running); |
2101 | 2087 | ||
2102 | barrier(); | 2088 | barrier(); |
2103 | ++userpg->lock; | 2089 | ++userpg->lock; |
@@ -2106,55 +2092,37 @@ unlock: | |||
2106 | rcu_read_unlock(); | 2092 | rcu_read_unlock(); |
2107 | } | 2093 | } |
2108 | 2094 | ||
2109 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 2095 | static unsigned long perf_data_size(struct perf_mmap_data *data) |
2110 | { | 2096 | { |
2111 | struct perf_counter *counter = vma->vm_file->private_data; | 2097 | return data->nr_pages << (PAGE_SHIFT + data->data_order); |
2112 | struct perf_mmap_data *data; | 2098 | } |
2113 | int ret = VM_FAULT_SIGBUS; | ||
2114 | |||
2115 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2116 | if (vmf->pgoff == 0) | ||
2117 | ret = 0; | ||
2118 | return ret; | ||
2119 | } | ||
2120 | |||
2121 | rcu_read_lock(); | ||
2122 | data = rcu_dereference(counter->data); | ||
2123 | if (!data) | ||
2124 | goto unlock; | ||
2125 | |||
2126 | if (vmf->pgoff == 0) { | ||
2127 | vmf->page = virt_to_page(data->user_page); | ||
2128 | } else { | ||
2129 | int nr = vmf->pgoff - 1; | ||
2130 | |||
2131 | if ((unsigned)nr > data->nr_pages) | ||
2132 | goto unlock; | ||
2133 | 2099 | ||
2134 | if (vmf->flags & FAULT_FLAG_WRITE) | 2100 | #ifndef CONFIG_PERF_USE_VMALLOC |
2135 | goto unlock; | ||
2136 | 2101 | ||
2137 | vmf->page = virt_to_page(data->data_pages[nr]); | 2102 | /* |
2138 | } | 2103 | * Back perf_mmap() with regular GFP_KERNEL-0 pages. |
2104 | */ | ||
2139 | 2105 | ||
2140 | get_page(vmf->page); | 2106 | static struct page * |
2141 | vmf->page->mapping = vma->vm_file->f_mapping; | 2107 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) |
2142 | vmf->page->index = vmf->pgoff; | 2108 | { |
2109 | if (pgoff > data->nr_pages) | ||
2110 | return NULL; | ||
2143 | 2111 | ||
2144 | ret = 0; | 2112 | if (pgoff == 0) |
2145 | unlock: | 2113 | return virt_to_page(data->user_page); |
2146 | rcu_read_unlock(); | ||
2147 | 2114 | ||
2148 | return ret; | 2115 | return virt_to_page(data->data_pages[pgoff - 1]); |
2149 | } | 2116 | } |
2150 | 2117 | ||
2151 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | 2118 | static struct perf_mmap_data * |
2119 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2152 | { | 2120 | { |
2153 | struct perf_mmap_data *data; | 2121 | struct perf_mmap_data *data; |
2154 | unsigned long size; | 2122 | unsigned long size; |
2155 | int i; | 2123 | int i; |
2156 | 2124 | ||
2157 | WARN_ON(atomic_read(&counter->mmap_count)); | 2125 | WARN_ON(atomic_read(&event->mmap_count)); |
2158 | 2126 | ||
2159 | size = sizeof(struct perf_mmap_data); | 2127 | size = sizeof(struct perf_mmap_data); |
2160 | size += nr_pages * sizeof(void *); | 2128 | size += nr_pages * sizeof(void *); |
@@ -2173,19 +2141,10 @@ static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | |||
2173 | goto fail_data_pages; | 2141 | goto fail_data_pages; |
2174 | } | 2142 | } |
2175 | 2143 | ||
2144 | data->data_order = 0; | ||
2176 | data->nr_pages = nr_pages; | 2145 | data->nr_pages = nr_pages; |
2177 | atomic_set(&data->lock, -1); | ||
2178 | |||
2179 | if (counter->attr.watermark) { | ||
2180 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | ||
2181 | counter->attr.wakeup_watermark); | ||
2182 | } | ||
2183 | if (!data->watermark) | ||
2184 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | ||
2185 | |||
2186 | rcu_assign_pointer(counter->data, data); | ||
2187 | 2146 | ||
2188 | return 0; | 2147 | return data; |
2189 | 2148 | ||
2190 | fail_data_pages: | 2149 | fail_data_pages: |
2191 | for (i--; i >= 0; i--) | 2150 | for (i--; i >= 0; i--) |
@@ -2197,7 +2156,7 @@ fail_user_page: | |||
2197 | kfree(data); | 2156 | kfree(data); |
2198 | 2157 | ||
2199 | fail: | 2158 | fail: |
2200 | return -ENOMEM; | 2159 | return NULL; |
2201 | } | 2160 | } |
2202 | 2161 | ||
2203 | static void perf_mmap_free_page(unsigned long addr) | 2162 | static void perf_mmap_free_page(unsigned long addr) |
@@ -2208,53 +2167,195 @@ static void perf_mmap_free_page(unsigned long addr) | |||
2208 | __free_page(page); | 2167 | __free_page(page); |
2209 | } | 2168 | } |
2210 | 2169 | ||
2211 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | 2170 | static void perf_mmap_data_free(struct perf_mmap_data *data) |
2212 | { | 2171 | { |
2213 | struct perf_mmap_data *data; | ||
2214 | int i; | 2172 | int i; |
2215 | 2173 | ||
2216 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2217 | |||
2218 | perf_mmap_free_page((unsigned long)data->user_page); | 2174 | perf_mmap_free_page((unsigned long)data->user_page); |
2219 | for (i = 0; i < data->nr_pages; i++) | 2175 | for (i = 0; i < data->nr_pages; i++) |
2220 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | 2176 | perf_mmap_free_page((unsigned long)data->data_pages[i]); |
2177 | } | ||
2178 | |||
2179 | #else | ||
2180 | |||
2181 | /* | ||
2182 | * Back perf_mmap() with vmalloc memory. | ||
2183 | * | ||
2184 | * Required for architectures that have d-cache aliasing issues. | ||
2185 | */ | ||
2186 | |||
2187 | static struct page * | ||
2188 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | ||
2189 | { | ||
2190 | if (pgoff > (1UL << data->data_order)) | ||
2191 | return NULL; | ||
2192 | |||
2193 | return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); | ||
2194 | } | ||
2195 | |||
2196 | static void perf_mmap_unmark_page(void *addr) | ||
2197 | { | ||
2198 | struct page *page = vmalloc_to_page(addr); | ||
2221 | 2199 | ||
2200 | page->mapping = NULL; | ||
2201 | } | ||
2202 | |||
2203 | static void perf_mmap_data_free_work(struct work_struct *work) | ||
2204 | { | ||
2205 | struct perf_mmap_data *data; | ||
2206 | void *base; | ||
2207 | int i, nr; | ||
2208 | |||
2209 | data = container_of(work, struct perf_mmap_data, work); | ||
2210 | nr = 1 << data->data_order; | ||
2211 | |||
2212 | base = data->user_page; | ||
2213 | for (i = 0; i < nr + 1; i++) | ||
2214 | perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | ||
2215 | |||
2216 | vfree(base); | ||
2217 | } | ||
2218 | |||
2219 | static void perf_mmap_data_free(struct perf_mmap_data *data) | ||
2220 | { | ||
2221 | schedule_work(&data->work); | ||
2222 | } | ||
2223 | |||
2224 | static struct perf_mmap_data * | ||
2225 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2226 | { | ||
2227 | struct perf_mmap_data *data; | ||
2228 | unsigned long size; | ||
2229 | void *all_buf; | ||
2230 | |||
2231 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2232 | |||
2233 | size = sizeof(struct perf_mmap_data); | ||
2234 | size += sizeof(void *); | ||
2235 | |||
2236 | data = kzalloc(size, GFP_KERNEL); | ||
2237 | if (!data) | ||
2238 | goto fail; | ||
2239 | |||
2240 | INIT_WORK(&data->work, perf_mmap_data_free_work); | ||
2241 | |||
2242 | all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | ||
2243 | if (!all_buf) | ||
2244 | goto fail_all_buf; | ||
2245 | |||
2246 | data->user_page = all_buf; | ||
2247 | data->data_pages[0] = all_buf + PAGE_SIZE; | ||
2248 | data->data_order = ilog2(nr_pages); | ||
2249 | data->nr_pages = 1; | ||
2250 | |||
2251 | return data; | ||
2252 | |||
2253 | fail_all_buf: | ||
2222 | kfree(data); | 2254 | kfree(data); |
2255 | |||
2256 | fail: | ||
2257 | return NULL; | ||
2223 | } | 2258 | } |
2224 | 2259 | ||
2225 | static void perf_mmap_data_free(struct perf_counter *counter) | 2260 | #endif |
2261 | |||
2262 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2226 | { | 2263 | { |
2227 | struct perf_mmap_data *data = counter->data; | 2264 | struct perf_event *event = vma->vm_file->private_data; |
2265 | struct perf_mmap_data *data; | ||
2266 | int ret = VM_FAULT_SIGBUS; | ||
2228 | 2267 | ||
2229 | WARN_ON(atomic_read(&counter->mmap_count)); | 2268 | if (vmf->flags & FAULT_FLAG_MKWRITE) { |
2269 | if (vmf->pgoff == 0) | ||
2270 | ret = 0; | ||
2271 | return ret; | ||
2272 | } | ||
2230 | 2273 | ||
2231 | rcu_assign_pointer(counter->data, NULL); | 2274 | rcu_read_lock(); |
2232 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | 2275 | data = rcu_dereference(event->data); |
2276 | if (!data) | ||
2277 | goto unlock; | ||
2278 | |||
2279 | if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | ||
2280 | goto unlock; | ||
2281 | |||
2282 | vmf->page = perf_mmap_to_page(data, vmf->pgoff); | ||
2283 | if (!vmf->page) | ||
2284 | goto unlock; | ||
2285 | |||
2286 | get_page(vmf->page); | ||
2287 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2288 | vmf->page->index = vmf->pgoff; | ||
2289 | |||
2290 | ret = 0; | ||
2291 | unlock: | ||
2292 | rcu_read_unlock(); | ||
2293 | |||
2294 | return ret; | ||
2295 | } | ||
2296 | |||
2297 | static void | ||
2298 | perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data) | ||
2299 | { | ||
2300 | long max_size = perf_data_size(data); | ||
2301 | |||
2302 | atomic_set(&data->lock, -1); | ||
2303 | |||
2304 | if (event->attr.watermark) { | ||
2305 | data->watermark = min_t(long, max_size, | ||
2306 | event->attr.wakeup_watermark); | ||
2307 | } | ||
2308 | |||
2309 | if (!data->watermark) | ||
2310 | data->watermark = max_t(long, PAGE_SIZE, max_size / 2); | ||
2311 | |||
2312 | |||
2313 | rcu_assign_pointer(event->data, data); | ||
2314 | } | ||
2315 | |||
2316 | static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head) | ||
2317 | { | ||
2318 | struct perf_mmap_data *data; | ||
2319 | |||
2320 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2321 | perf_mmap_data_free(data); | ||
2322 | kfree(data); | ||
2323 | } | ||
2324 | |||
2325 | static void perf_mmap_data_release(struct perf_event *event) | ||
2326 | { | ||
2327 | struct perf_mmap_data *data = event->data; | ||
2328 | |||
2329 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2330 | |||
2331 | rcu_assign_pointer(event->data, NULL); | ||
2332 | call_rcu(&data->rcu_head, perf_mmap_data_free_rcu); | ||
2233 | } | 2333 | } |
2234 | 2334 | ||
2235 | static void perf_mmap_open(struct vm_area_struct *vma) | 2335 | static void perf_mmap_open(struct vm_area_struct *vma) |
2236 | { | 2336 | { |
2237 | struct perf_counter *counter = vma->vm_file->private_data; | 2337 | struct perf_event *event = vma->vm_file->private_data; |
2238 | 2338 | ||
2239 | atomic_inc(&counter->mmap_count); | 2339 | atomic_inc(&event->mmap_count); |
2240 | } | 2340 | } |
2241 | 2341 | ||
2242 | static void perf_mmap_close(struct vm_area_struct *vma) | 2342 | static void perf_mmap_close(struct vm_area_struct *vma) |
2243 | { | 2343 | { |
2244 | struct perf_counter *counter = vma->vm_file->private_data; | 2344 | struct perf_event *event = vma->vm_file->private_data; |
2245 | 2345 | ||
2246 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 2346 | WARN_ON_ONCE(event->ctx->parent_ctx); |
2247 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | 2347 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { |
2348 | unsigned long size = perf_data_size(event->data); | ||
2248 | struct user_struct *user = current_user(); | 2349 | struct user_struct *user = current_user(); |
2249 | 2350 | ||
2250 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | 2351 | atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); |
2251 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | 2352 | vma->vm_mm->locked_vm -= event->data->nr_locked; |
2252 | perf_mmap_data_free(counter); | 2353 | perf_mmap_data_release(event); |
2253 | mutex_unlock(&counter->mmap_mutex); | 2354 | mutex_unlock(&event->mmap_mutex); |
2254 | } | 2355 | } |
2255 | } | 2356 | } |
2256 | 2357 | ||
2257 | static struct vm_operations_struct perf_mmap_vmops = { | 2358 | static const struct vm_operations_struct perf_mmap_vmops = { |
2258 | .open = perf_mmap_open, | 2359 | .open = perf_mmap_open, |
2259 | .close = perf_mmap_close, | 2360 | .close = perf_mmap_close, |
2260 | .fault = perf_mmap_fault, | 2361 | .fault = perf_mmap_fault, |
@@ -2263,10 +2364,11 @@ static struct vm_operations_struct perf_mmap_vmops = { | |||
2263 | 2364 | ||
2264 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | 2365 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) |
2265 | { | 2366 | { |
2266 | struct perf_counter *counter = file->private_data; | 2367 | struct perf_event *event = file->private_data; |
2267 | unsigned long user_locked, user_lock_limit; | 2368 | unsigned long user_locked, user_lock_limit; |
2268 | struct user_struct *user = current_user(); | 2369 | struct user_struct *user = current_user(); |
2269 | unsigned long locked, lock_limit; | 2370 | unsigned long locked, lock_limit; |
2371 | struct perf_mmap_data *data; | ||
2270 | unsigned long vma_size; | 2372 | unsigned long vma_size; |
2271 | unsigned long nr_pages; | 2373 | unsigned long nr_pages; |
2272 | long user_extra, extra; | 2374 | long user_extra, extra; |
@@ -2291,21 +2393,21 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma) | |||
2291 | if (vma->vm_pgoff != 0) | 2393 | if (vma->vm_pgoff != 0) |
2292 | return -EINVAL; | 2394 | return -EINVAL; |
2293 | 2395 | ||
2294 | WARN_ON_ONCE(counter->ctx->parent_ctx); | 2396 | WARN_ON_ONCE(event->ctx->parent_ctx); |
2295 | mutex_lock(&counter->mmap_mutex); | 2397 | mutex_lock(&event->mmap_mutex); |
2296 | if (counter->output) { | 2398 | if (event->output) { |
2297 | ret = -EINVAL; | 2399 | ret = -EINVAL; |
2298 | goto unlock; | 2400 | goto unlock; |
2299 | } | 2401 | } |
2300 | 2402 | ||
2301 | if (atomic_inc_not_zero(&counter->mmap_count)) { | 2403 | if (atomic_inc_not_zero(&event->mmap_count)) { |
2302 | if (nr_pages != counter->data->nr_pages) | 2404 | if (nr_pages != event->data->nr_pages) |
2303 | ret = -EINVAL; | 2405 | ret = -EINVAL; |
2304 | goto unlock; | 2406 | goto unlock; |
2305 | } | 2407 | } |
2306 | 2408 | ||
2307 | user_extra = nr_pages + 1; | 2409 | user_extra = nr_pages + 1; |
2308 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | 2410 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); |
2309 | 2411 | ||
2310 | /* | 2412 | /* |
2311 | * Increase the limit linearly with more CPUs: | 2413 | * Increase the limit linearly with more CPUs: |
@@ -2328,20 +2430,25 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma) | |||
2328 | goto unlock; | 2430 | goto unlock; |
2329 | } | 2431 | } |
2330 | 2432 | ||
2331 | WARN_ON(counter->data); | 2433 | WARN_ON(event->data); |
2332 | ret = perf_mmap_data_alloc(counter, nr_pages); | 2434 | |
2333 | if (ret) | 2435 | data = perf_mmap_data_alloc(event, nr_pages); |
2436 | ret = -ENOMEM; | ||
2437 | if (!data) | ||
2334 | goto unlock; | 2438 | goto unlock; |
2335 | 2439 | ||
2336 | atomic_set(&counter->mmap_count, 1); | 2440 | ret = 0; |
2441 | perf_mmap_data_init(event, data); | ||
2442 | |||
2443 | atomic_set(&event->mmap_count, 1); | ||
2337 | atomic_long_add(user_extra, &user->locked_vm); | 2444 | atomic_long_add(user_extra, &user->locked_vm); |
2338 | vma->vm_mm->locked_vm += extra; | 2445 | vma->vm_mm->locked_vm += extra; |
2339 | counter->data->nr_locked = extra; | 2446 | event->data->nr_locked = extra; |
2340 | if (vma->vm_flags & VM_WRITE) | 2447 | if (vma->vm_flags & VM_WRITE) |
2341 | counter->data->writable = 1; | 2448 | event->data->writable = 1; |
2342 | 2449 | ||
2343 | unlock: | 2450 | unlock: |
2344 | mutex_unlock(&counter->mmap_mutex); | 2451 | mutex_unlock(&event->mmap_mutex); |
2345 | 2452 | ||
2346 | vma->vm_flags |= VM_RESERVED; | 2453 | vma->vm_flags |= VM_RESERVED; |
2347 | vma->vm_ops = &perf_mmap_vmops; | 2454 | vma->vm_ops = &perf_mmap_vmops; |
@@ -2352,11 +2459,11 @@ unlock: | |||
2352 | static int perf_fasync(int fd, struct file *filp, int on) | 2459 | static int perf_fasync(int fd, struct file *filp, int on) |
2353 | { | 2460 | { |
2354 | struct inode *inode = filp->f_path.dentry->d_inode; | 2461 | struct inode *inode = filp->f_path.dentry->d_inode; |
2355 | struct perf_counter *counter = filp->private_data; | 2462 | struct perf_event *event = filp->private_data; |
2356 | int retval; | 2463 | int retval; |
2357 | 2464 | ||
2358 | mutex_lock(&inode->i_mutex); | 2465 | mutex_lock(&inode->i_mutex); |
2359 | retval = fasync_helper(fd, filp, on, &counter->fasync); | 2466 | retval = fasync_helper(fd, filp, on, &event->fasync); |
2360 | mutex_unlock(&inode->i_mutex); | 2467 | mutex_unlock(&inode->i_mutex); |
2361 | 2468 | ||
2362 | if (retval < 0) | 2469 | if (retval < 0) |
@@ -2376,19 +2483,19 @@ static const struct file_operations perf_fops = { | |||
2376 | }; | 2483 | }; |
2377 | 2484 | ||
2378 | /* | 2485 | /* |
2379 | * Perf counter wakeup | 2486 | * Perf event wakeup |
2380 | * | 2487 | * |
2381 | * If there's data, ensure we set the poll() state and publish everything | 2488 | * If there's data, ensure we set the poll() state and publish everything |
2382 | * to user-space before waking everybody up. | 2489 | * to user-space before waking everybody up. |
2383 | */ | 2490 | */ |
2384 | 2491 | ||
2385 | void perf_counter_wakeup(struct perf_counter *counter) | 2492 | void perf_event_wakeup(struct perf_event *event) |
2386 | { | 2493 | { |
2387 | wake_up_all(&counter->waitq); | 2494 | wake_up_all(&event->waitq); |
2388 | 2495 | ||
2389 | if (counter->pending_kill) { | 2496 | if (event->pending_kill) { |
2390 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | 2497 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); |
2391 | counter->pending_kill = 0; | 2498 | event->pending_kill = 0; |
2392 | } | 2499 | } |
2393 | } | 2500 | } |
2394 | 2501 | ||
@@ -2401,19 +2508,19 @@ void perf_counter_wakeup(struct perf_counter *counter) | |||
2401 | * single linked list and use cmpxchg() to add entries lockless. | 2508 | * single linked list and use cmpxchg() to add entries lockless. |
2402 | */ | 2509 | */ |
2403 | 2510 | ||
2404 | static void perf_pending_counter(struct perf_pending_entry *entry) | 2511 | static void perf_pending_event(struct perf_pending_entry *entry) |
2405 | { | 2512 | { |
2406 | struct perf_counter *counter = container_of(entry, | 2513 | struct perf_event *event = container_of(entry, |
2407 | struct perf_counter, pending); | 2514 | struct perf_event, pending); |
2408 | 2515 | ||
2409 | if (counter->pending_disable) { | 2516 | if (event->pending_disable) { |
2410 | counter->pending_disable = 0; | 2517 | event->pending_disable = 0; |
2411 | __perf_counter_disable(counter); | 2518 | __perf_event_disable(event); |
2412 | } | 2519 | } |
2413 | 2520 | ||
2414 | if (counter->pending_wakeup) { | 2521 | if (event->pending_wakeup) { |
2415 | counter->pending_wakeup = 0; | 2522 | event->pending_wakeup = 0; |
2416 | perf_counter_wakeup(counter); | 2523 | perf_event_wakeup(event); |
2417 | } | 2524 | } |
2418 | } | 2525 | } |
2419 | 2526 | ||
@@ -2439,7 +2546,7 @@ static void perf_pending_queue(struct perf_pending_entry *entry, | |||
2439 | entry->next = *head; | 2546 | entry->next = *head; |
2440 | } while (cmpxchg(head, entry->next, entry) != entry->next); | 2547 | } while (cmpxchg(head, entry->next, entry) != entry->next); |
2441 | 2548 | ||
2442 | set_perf_counter_pending(); | 2549 | set_perf_event_pending(); |
2443 | 2550 | ||
2444 | put_cpu_var(perf_pending_head); | 2551 | put_cpu_var(perf_pending_head); |
2445 | } | 2552 | } |
@@ -2472,7 +2579,7 @@ static int __perf_pending_run(void) | |||
2472 | return nr; | 2579 | return nr; |
2473 | } | 2580 | } |
2474 | 2581 | ||
2475 | static inline int perf_not_pending(struct perf_counter *counter) | 2582 | static inline int perf_not_pending(struct perf_event *event) |
2476 | { | 2583 | { |
2477 | /* | 2584 | /* |
2478 | * If we flush on whatever cpu we run, there is a chance we don't | 2585 | * If we flush on whatever cpu we run, there is a chance we don't |
@@ -2487,15 +2594,15 @@ static inline int perf_not_pending(struct perf_counter *counter) | |||
2487 | * so that we do not miss the wakeup. -- see perf_pending_handle() | 2594 | * so that we do not miss the wakeup. -- see perf_pending_handle() |
2488 | */ | 2595 | */ |
2489 | smp_rmb(); | 2596 | smp_rmb(); |
2490 | return counter->pending.next == NULL; | 2597 | return event->pending.next == NULL; |
2491 | } | 2598 | } |
2492 | 2599 | ||
2493 | static void perf_pending_sync(struct perf_counter *counter) | 2600 | static void perf_pending_sync(struct perf_event *event) |
2494 | { | 2601 | { |
2495 | wait_event(counter->waitq, perf_not_pending(counter)); | 2602 | wait_event(event->waitq, perf_not_pending(event)); |
2496 | } | 2603 | } |
2497 | 2604 | ||
2498 | void perf_counter_do_pending(void) | 2605 | void perf_event_do_pending(void) |
2499 | { | 2606 | { |
2500 | __perf_pending_run(); | 2607 | __perf_pending_run(); |
2501 | } | 2608 | } |
@@ -2520,7 +2627,7 @@ static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | |||
2520 | if (!data->writable) | 2627 | if (!data->writable) |
2521 | return true; | 2628 | return true; |
2522 | 2629 | ||
2523 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | 2630 | mask = perf_data_size(data) - 1; |
2524 | 2631 | ||
2525 | offset = (offset - tail) & mask; | 2632 | offset = (offset - tail) & mask; |
2526 | head = (head - tail) & mask; | 2633 | head = (head - tail) & mask; |
@@ -2536,25 +2643,25 @@ static void perf_output_wakeup(struct perf_output_handle *handle) | |||
2536 | atomic_set(&handle->data->poll, POLL_IN); | 2643 | atomic_set(&handle->data->poll, POLL_IN); |
2537 | 2644 | ||
2538 | if (handle->nmi) { | 2645 | if (handle->nmi) { |
2539 | handle->counter->pending_wakeup = 1; | 2646 | handle->event->pending_wakeup = 1; |
2540 | perf_pending_queue(&handle->counter->pending, | 2647 | perf_pending_queue(&handle->event->pending, |
2541 | perf_pending_counter); | 2648 | perf_pending_event); |
2542 | } else | 2649 | } else |
2543 | perf_counter_wakeup(handle->counter); | 2650 | perf_event_wakeup(handle->event); |
2544 | } | 2651 | } |
2545 | 2652 | ||
2546 | /* | 2653 | /* |
2547 | * Curious locking construct. | 2654 | * Curious locking construct. |
2548 | * | 2655 | * |
2549 | * We need to ensure a later event doesn't publish a head when a former | 2656 | * We need to ensure a later event_id doesn't publish a head when a former |
2550 | * event isn't done writing. However since we need to deal with NMIs we | 2657 | * event_id isn't done writing. However since we need to deal with NMIs we |
2551 | * cannot fully serialize things. | 2658 | * cannot fully serialize things. |
2552 | * | 2659 | * |
2553 | * What we do is serialize between CPUs so we only have to deal with NMI | 2660 | * What we do is serialize between CPUs so we only have to deal with NMI |
2554 | * nesting on a single CPU. | 2661 | * nesting on a single CPU. |
2555 | * | 2662 | * |
2556 | * We only publish the head (and generate a wakeup) when the outer-most | 2663 | * We only publish the head (and generate a wakeup) when the outer-most |
2557 | * event completes. | 2664 | * event_id completes. |
2558 | */ | 2665 | */ |
2559 | static void perf_output_lock(struct perf_output_handle *handle) | 2666 | static void perf_output_lock(struct perf_output_handle *handle) |
2560 | { | 2667 | { |
@@ -2625,7 +2732,7 @@ void perf_output_copy(struct perf_output_handle *handle, | |||
2625 | const void *buf, unsigned int len) | 2732 | const void *buf, unsigned int len) |
2626 | { | 2733 | { |
2627 | unsigned int pages_mask; | 2734 | unsigned int pages_mask; |
2628 | unsigned int offset; | 2735 | unsigned long offset; |
2629 | unsigned int size; | 2736 | unsigned int size; |
2630 | void **pages; | 2737 | void **pages; |
2631 | 2738 | ||
@@ -2634,12 +2741,14 @@ void perf_output_copy(struct perf_output_handle *handle, | |||
2634 | pages = handle->data->data_pages; | 2741 | pages = handle->data->data_pages; |
2635 | 2742 | ||
2636 | do { | 2743 | do { |
2637 | unsigned int page_offset; | 2744 | unsigned long page_offset; |
2745 | unsigned long page_size; | ||
2638 | int nr; | 2746 | int nr; |
2639 | 2747 | ||
2640 | nr = (offset >> PAGE_SHIFT) & pages_mask; | 2748 | nr = (offset >> PAGE_SHIFT) & pages_mask; |
2641 | page_offset = offset & (PAGE_SIZE - 1); | 2749 | page_size = 1UL << (handle->data->data_order + PAGE_SHIFT); |
2642 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | 2750 | page_offset = offset & (page_size - 1); |
2751 | size = min_t(unsigned int, page_size - page_offset, len); | ||
2643 | 2752 | ||
2644 | memcpy(pages[nr] + page_offset, buf, size); | 2753 | memcpy(pages[nr] + page_offset, buf, size); |
2645 | 2754 | ||
@@ -2658,10 +2767,10 @@ void perf_output_copy(struct perf_output_handle *handle, | |||
2658 | } | 2767 | } |
2659 | 2768 | ||
2660 | int perf_output_begin(struct perf_output_handle *handle, | 2769 | int perf_output_begin(struct perf_output_handle *handle, |
2661 | struct perf_counter *counter, unsigned int size, | 2770 | struct perf_event *event, unsigned int size, |
2662 | int nmi, int sample) | 2771 | int nmi, int sample) |
2663 | { | 2772 | { |
2664 | struct perf_counter *output_counter; | 2773 | struct perf_event *output_event; |
2665 | struct perf_mmap_data *data; | 2774 | struct perf_mmap_data *data; |
2666 | unsigned long tail, offset, head; | 2775 | unsigned long tail, offset, head; |
2667 | int have_lost; | 2776 | int have_lost; |
@@ -2673,21 +2782,21 @@ int perf_output_begin(struct perf_output_handle *handle, | |||
2673 | 2782 | ||
2674 | rcu_read_lock(); | 2783 | rcu_read_lock(); |
2675 | /* | 2784 | /* |
2676 | * For inherited counters we send all the output towards the parent. | 2785 | * For inherited events we send all the output towards the parent. |
2677 | */ | 2786 | */ |
2678 | if (counter->parent) | 2787 | if (event->parent) |
2679 | counter = counter->parent; | 2788 | event = event->parent; |
2680 | 2789 | ||
2681 | output_counter = rcu_dereference(counter->output); | 2790 | output_event = rcu_dereference(event->output); |
2682 | if (output_counter) | 2791 | if (output_event) |
2683 | counter = output_counter; | 2792 | event = output_event; |
2684 | 2793 | ||
2685 | data = rcu_dereference(counter->data); | 2794 | data = rcu_dereference(event->data); |
2686 | if (!data) | 2795 | if (!data) |
2687 | goto out; | 2796 | goto out; |
2688 | 2797 | ||
2689 | handle->data = data; | 2798 | handle->data = data; |
2690 | handle->counter = counter; | 2799 | handle->event = event; |
2691 | handle->nmi = nmi; | 2800 | handle->nmi = nmi; |
2692 | handle->sample = sample; | 2801 | handle->sample = sample; |
2693 | 2802 | ||
@@ -2721,10 +2830,10 @@ int perf_output_begin(struct perf_output_handle *handle, | |||
2721 | atomic_set(&data->wakeup, 1); | 2830 | atomic_set(&data->wakeup, 1); |
2722 | 2831 | ||
2723 | if (have_lost) { | 2832 | if (have_lost) { |
2724 | lost_event.header.type = PERF_EVENT_LOST; | 2833 | lost_event.header.type = PERF_RECORD_LOST; |
2725 | lost_event.header.misc = 0; | 2834 | lost_event.header.misc = 0; |
2726 | lost_event.header.size = sizeof(lost_event); | 2835 | lost_event.header.size = sizeof(lost_event); |
2727 | lost_event.id = counter->id; | 2836 | lost_event.id = event->id; |
2728 | lost_event.lost = atomic_xchg(&data->lost, 0); | 2837 | lost_event.lost = atomic_xchg(&data->lost, 0); |
2729 | 2838 | ||
2730 | perf_output_put(handle, lost_event); | 2839 | perf_output_put(handle, lost_event); |
@@ -2743,10 +2852,10 @@ out: | |||
2743 | 2852 | ||
2744 | void perf_output_end(struct perf_output_handle *handle) | 2853 | void perf_output_end(struct perf_output_handle *handle) |
2745 | { | 2854 | { |
2746 | struct perf_counter *counter = handle->counter; | 2855 | struct perf_event *event = handle->event; |
2747 | struct perf_mmap_data *data = handle->data; | 2856 | struct perf_mmap_data *data = handle->data; |
2748 | 2857 | ||
2749 | int wakeup_events = counter->attr.wakeup_events; | 2858 | int wakeup_events = event->attr.wakeup_events; |
2750 | 2859 | ||
2751 | if (handle->sample && wakeup_events) { | 2860 | if (handle->sample && wakeup_events) { |
2752 | int events = atomic_inc_return(&data->events); | 2861 | int events = atomic_inc_return(&data->events); |
@@ -2760,58 +2869,58 @@ void perf_output_end(struct perf_output_handle *handle) | |||
2760 | rcu_read_unlock(); | 2869 | rcu_read_unlock(); |
2761 | } | 2870 | } |
2762 | 2871 | ||
2763 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | 2872 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) |
2764 | { | 2873 | { |
2765 | /* | 2874 | /* |
2766 | * only top level counters have the pid namespace they were created in | 2875 | * only top level events have the pid namespace they were created in |
2767 | */ | 2876 | */ |
2768 | if (counter->parent) | 2877 | if (event->parent) |
2769 | counter = counter->parent; | 2878 | event = event->parent; |
2770 | 2879 | ||
2771 | return task_tgid_nr_ns(p, counter->ns); | 2880 | return task_tgid_nr_ns(p, event->ns); |
2772 | } | 2881 | } |
2773 | 2882 | ||
2774 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | 2883 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) |
2775 | { | 2884 | { |
2776 | /* | 2885 | /* |
2777 | * only top level counters have the pid namespace they were created in | 2886 | * only top level events have the pid namespace they were created in |
2778 | */ | 2887 | */ |
2779 | if (counter->parent) | 2888 | if (event->parent) |
2780 | counter = counter->parent; | 2889 | event = event->parent; |
2781 | 2890 | ||
2782 | return task_pid_nr_ns(p, counter->ns); | 2891 | return task_pid_nr_ns(p, event->ns); |
2783 | } | 2892 | } |
2784 | 2893 | ||
2785 | static void perf_output_read_one(struct perf_output_handle *handle, | 2894 | static void perf_output_read_one(struct perf_output_handle *handle, |
2786 | struct perf_counter *counter) | 2895 | struct perf_event *event) |
2787 | { | 2896 | { |
2788 | u64 read_format = counter->attr.read_format; | 2897 | u64 read_format = event->attr.read_format; |
2789 | u64 values[4]; | 2898 | u64 values[4]; |
2790 | int n = 0; | 2899 | int n = 0; |
2791 | 2900 | ||
2792 | values[n++] = atomic64_read(&counter->count); | 2901 | values[n++] = atomic64_read(&event->count); |
2793 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 2902 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
2794 | values[n++] = counter->total_time_enabled + | 2903 | values[n++] = event->total_time_enabled + |
2795 | atomic64_read(&counter->child_total_time_enabled); | 2904 | atomic64_read(&event->child_total_time_enabled); |
2796 | } | 2905 | } |
2797 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 2906 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
2798 | values[n++] = counter->total_time_running + | 2907 | values[n++] = event->total_time_running + |
2799 | atomic64_read(&counter->child_total_time_running); | 2908 | atomic64_read(&event->child_total_time_running); |
2800 | } | 2909 | } |
2801 | if (read_format & PERF_FORMAT_ID) | 2910 | if (read_format & PERF_FORMAT_ID) |
2802 | values[n++] = primary_counter_id(counter); | 2911 | values[n++] = primary_event_id(event); |
2803 | 2912 | ||
2804 | perf_output_copy(handle, values, n * sizeof(u64)); | 2913 | perf_output_copy(handle, values, n * sizeof(u64)); |
2805 | } | 2914 | } |
2806 | 2915 | ||
2807 | /* | 2916 | /* |
2808 | * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult. | 2917 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. |
2809 | */ | 2918 | */ |
2810 | static void perf_output_read_group(struct perf_output_handle *handle, | 2919 | static void perf_output_read_group(struct perf_output_handle *handle, |
2811 | struct perf_counter *counter) | 2920 | struct perf_event *event) |
2812 | { | 2921 | { |
2813 | struct perf_counter *leader = counter->group_leader, *sub; | 2922 | struct perf_event *leader = event->group_leader, *sub; |
2814 | u64 read_format = counter->attr.read_format; | 2923 | u64 read_format = event->attr.read_format; |
2815 | u64 values[5]; | 2924 | u64 values[5]; |
2816 | int n = 0; | 2925 | int n = 0; |
2817 | 2926 | ||
@@ -2823,42 +2932,42 @@ static void perf_output_read_group(struct perf_output_handle *handle, | |||
2823 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 2932 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
2824 | values[n++] = leader->total_time_running; | 2933 | values[n++] = leader->total_time_running; |
2825 | 2934 | ||
2826 | if (leader != counter) | 2935 | if (leader != event) |
2827 | leader->pmu->read(leader); | 2936 | leader->pmu->read(leader); |
2828 | 2937 | ||
2829 | values[n++] = atomic64_read(&leader->count); | 2938 | values[n++] = atomic64_read(&leader->count); |
2830 | if (read_format & PERF_FORMAT_ID) | 2939 | if (read_format & PERF_FORMAT_ID) |
2831 | values[n++] = primary_counter_id(leader); | 2940 | values[n++] = primary_event_id(leader); |
2832 | 2941 | ||
2833 | perf_output_copy(handle, values, n * sizeof(u64)); | 2942 | perf_output_copy(handle, values, n * sizeof(u64)); |
2834 | 2943 | ||
2835 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | 2944 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
2836 | n = 0; | 2945 | n = 0; |
2837 | 2946 | ||
2838 | if (sub != counter) | 2947 | if (sub != event) |
2839 | sub->pmu->read(sub); | 2948 | sub->pmu->read(sub); |
2840 | 2949 | ||
2841 | values[n++] = atomic64_read(&sub->count); | 2950 | values[n++] = atomic64_read(&sub->count); |
2842 | if (read_format & PERF_FORMAT_ID) | 2951 | if (read_format & PERF_FORMAT_ID) |
2843 | values[n++] = primary_counter_id(sub); | 2952 | values[n++] = primary_event_id(sub); |
2844 | 2953 | ||
2845 | perf_output_copy(handle, values, n * sizeof(u64)); | 2954 | perf_output_copy(handle, values, n * sizeof(u64)); |
2846 | } | 2955 | } |
2847 | } | 2956 | } |
2848 | 2957 | ||
2849 | static void perf_output_read(struct perf_output_handle *handle, | 2958 | static void perf_output_read(struct perf_output_handle *handle, |
2850 | struct perf_counter *counter) | 2959 | struct perf_event *event) |
2851 | { | 2960 | { |
2852 | if (counter->attr.read_format & PERF_FORMAT_GROUP) | 2961 | if (event->attr.read_format & PERF_FORMAT_GROUP) |
2853 | perf_output_read_group(handle, counter); | 2962 | perf_output_read_group(handle, event); |
2854 | else | 2963 | else |
2855 | perf_output_read_one(handle, counter); | 2964 | perf_output_read_one(handle, event); |
2856 | } | 2965 | } |
2857 | 2966 | ||
2858 | void perf_output_sample(struct perf_output_handle *handle, | 2967 | void perf_output_sample(struct perf_output_handle *handle, |
2859 | struct perf_event_header *header, | 2968 | struct perf_event_header *header, |
2860 | struct perf_sample_data *data, | 2969 | struct perf_sample_data *data, |
2861 | struct perf_counter *counter) | 2970 | struct perf_event *event) |
2862 | { | 2971 | { |
2863 | u64 sample_type = data->type; | 2972 | u64 sample_type = data->type; |
2864 | 2973 | ||
@@ -2889,7 +2998,7 @@ void perf_output_sample(struct perf_output_handle *handle, | |||
2889 | perf_output_put(handle, data->period); | 2998 | perf_output_put(handle, data->period); |
2890 | 2999 | ||
2891 | if (sample_type & PERF_SAMPLE_READ) | 3000 | if (sample_type & PERF_SAMPLE_READ) |
2892 | perf_output_read(handle, counter); | 3001 | perf_output_read(handle, event); |
2893 | 3002 | ||
2894 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 3003 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
2895 | if (data->callchain) { | 3004 | if (data->callchain) { |
@@ -2927,14 +3036,14 @@ void perf_output_sample(struct perf_output_handle *handle, | |||
2927 | 3036 | ||
2928 | void perf_prepare_sample(struct perf_event_header *header, | 3037 | void perf_prepare_sample(struct perf_event_header *header, |
2929 | struct perf_sample_data *data, | 3038 | struct perf_sample_data *data, |
2930 | struct perf_counter *counter, | 3039 | struct perf_event *event, |
2931 | struct pt_regs *regs) | 3040 | struct pt_regs *regs) |
2932 | { | 3041 | { |
2933 | u64 sample_type = counter->attr.sample_type; | 3042 | u64 sample_type = event->attr.sample_type; |
2934 | 3043 | ||
2935 | data->type = sample_type; | 3044 | data->type = sample_type; |
2936 | 3045 | ||
2937 | header->type = PERF_EVENT_SAMPLE; | 3046 | header->type = PERF_RECORD_SAMPLE; |
2938 | header->size = sizeof(*header); | 3047 | header->size = sizeof(*header); |
2939 | 3048 | ||
2940 | header->misc = 0; | 3049 | header->misc = 0; |
@@ -2948,8 +3057,8 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
2948 | 3057 | ||
2949 | if (sample_type & PERF_SAMPLE_TID) { | 3058 | if (sample_type & PERF_SAMPLE_TID) { |
2950 | /* namespace issues */ | 3059 | /* namespace issues */ |
2951 | data->tid_entry.pid = perf_counter_pid(counter, current); | 3060 | data->tid_entry.pid = perf_event_pid(event, current); |
2952 | data->tid_entry.tid = perf_counter_tid(counter, current); | 3061 | data->tid_entry.tid = perf_event_tid(event, current); |
2953 | 3062 | ||
2954 | header->size += sizeof(data->tid_entry); | 3063 | header->size += sizeof(data->tid_entry); |
2955 | } | 3064 | } |
@@ -2964,13 +3073,13 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
2964 | header->size += sizeof(data->addr); | 3073 | header->size += sizeof(data->addr); |
2965 | 3074 | ||
2966 | if (sample_type & PERF_SAMPLE_ID) { | 3075 | if (sample_type & PERF_SAMPLE_ID) { |
2967 | data->id = primary_counter_id(counter); | 3076 | data->id = primary_event_id(event); |
2968 | 3077 | ||
2969 | header->size += sizeof(data->id); | 3078 | header->size += sizeof(data->id); |
2970 | } | 3079 | } |
2971 | 3080 | ||
2972 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | 3081 | if (sample_type & PERF_SAMPLE_STREAM_ID) { |
2973 | data->stream_id = counter->id; | 3082 | data->stream_id = event->id; |
2974 | 3083 | ||
2975 | header->size += sizeof(data->stream_id); | 3084 | header->size += sizeof(data->stream_id); |
2976 | } | 3085 | } |
@@ -2986,7 +3095,7 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
2986 | header->size += sizeof(data->period); | 3095 | header->size += sizeof(data->period); |
2987 | 3096 | ||
2988 | if (sample_type & PERF_SAMPLE_READ) | 3097 | if (sample_type & PERF_SAMPLE_READ) |
2989 | header->size += perf_counter_read_size(counter); | 3098 | header->size += perf_event_read_size(event); |
2990 | 3099 | ||
2991 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 3100 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
2992 | int size = 1; | 3101 | int size = 1; |
@@ -3012,25 +3121,25 @@ void perf_prepare_sample(struct perf_event_header *header, | |||
3012 | } | 3121 | } |
3013 | } | 3122 | } |
3014 | 3123 | ||
3015 | static void perf_counter_output(struct perf_counter *counter, int nmi, | 3124 | static void perf_event_output(struct perf_event *event, int nmi, |
3016 | struct perf_sample_data *data, | 3125 | struct perf_sample_data *data, |
3017 | struct pt_regs *regs) | 3126 | struct pt_regs *regs) |
3018 | { | 3127 | { |
3019 | struct perf_output_handle handle; | 3128 | struct perf_output_handle handle; |
3020 | struct perf_event_header header; | 3129 | struct perf_event_header header; |
3021 | 3130 | ||
3022 | perf_prepare_sample(&header, data, counter, regs); | 3131 | perf_prepare_sample(&header, data, event, regs); |
3023 | 3132 | ||
3024 | if (perf_output_begin(&handle, counter, header.size, nmi, 1)) | 3133 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) |
3025 | return; | 3134 | return; |
3026 | 3135 | ||
3027 | perf_output_sample(&handle, &header, data, counter); | 3136 | perf_output_sample(&handle, &header, data, event); |
3028 | 3137 | ||
3029 | perf_output_end(&handle); | 3138 | perf_output_end(&handle); |
3030 | } | 3139 | } |
3031 | 3140 | ||
3032 | /* | 3141 | /* |
3033 | * read event | 3142 | * read event_id |
3034 | */ | 3143 | */ |
3035 | 3144 | ||
3036 | struct perf_read_event { | 3145 | struct perf_read_event { |
@@ -3041,27 +3150,27 @@ struct perf_read_event { | |||
3041 | }; | 3150 | }; |
3042 | 3151 | ||
3043 | static void | 3152 | static void |
3044 | perf_counter_read_event(struct perf_counter *counter, | 3153 | perf_event_read_event(struct perf_event *event, |
3045 | struct task_struct *task) | 3154 | struct task_struct *task) |
3046 | { | 3155 | { |
3047 | struct perf_output_handle handle; | 3156 | struct perf_output_handle handle; |
3048 | struct perf_read_event event = { | 3157 | struct perf_read_event read_event = { |
3049 | .header = { | 3158 | .header = { |
3050 | .type = PERF_EVENT_READ, | 3159 | .type = PERF_RECORD_READ, |
3051 | .misc = 0, | 3160 | .misc = 0, |
3052 | .size = sizeof(event) + perf_counter_read_size(counter), | 3161 | .size = sizeof(read_event) + perf_event_read_size(event), |
3053 | }, | 3162 | }, |
3054 | .pid = perf_counter_pid(counter, task), | 3163 | .pid = perf_event_pid(event, task), |
3055 | .tid = perf_counter_tid(counter, task), | 3164 | .tid = perf_event_tid(event, task), |
3056 | }; | 3165 | }; |
3057 | int ret; | 3166 | int ret; |
3058 | 3167 | ||
3059 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); | 3168 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); |
3060 | if (ret) | 3169 | if (ret) |
3061 | return; | 3170 | return; |
3062 | 3171 | ||
3063 | perf_output_put(&handle, event); | 3172 | perf_output_put(&handle, read_event); |
3064 | perf_output_read(&handle, counter); | 3173 | perf_output_read(&handle, event); |
3065 | 3174 | ||
3066 | perf_output_end(&handle); | 3175 | perf_output_end(&handle); |
3067 | } | 3176 | } |
@@ -3074,7 +3183,7 @@ perf_counter_read_event(struct perf_counter *counter, | |||
3074 | 3183 | ||
3075 | struct perf_task_event { | 3184 | struct perf_task_event { |
3076 | struct task_struct *task; | 3185 | struct task_struct *task; |
3077 | struct perf_counter_context *task_ctx; | 3186 | struct perf_event_context *task_ctx; |
3078 | 3187 | ||
3079 | struct { | 3188 | struct { |
3080 | struct perf_event_header header; | 3189 | struct perf_event_header header; |
@@ -3084,10 +3193,10 @@ struct perf_task_event { | |||
3084 | u32 tid; | 3193 | u32 tid; |
3085 | u32 ptid; | 3194 | u32 ptid; |
3086 | u64 time; | 3195 | u64 time; |
3087 | } event; | 3196 | } event_id; |
3088 | }; | 3197 | }; |
3089 | 3198 | ||
3090 | static void perf_counter_task_output(struct perf_counter *counter, | 3199 | static void perf_event_task_output(struct perf_event *event, |
3091 | struct perf_task_event *task_event) | 3200 | struct perf_task_event *task_event) |
3092 | { | 3201 | { |
3093 | struct perf_output_handle handle; | 3202 | struct perf_output_handle handle; |
@@ -3095,85 +3204,85 @@ static void perf_counter_task_output(struct perf_counter *counter, | |||
3095 | struct task_struct *task = task_event->task; | 3204 | struct task_struct *task = task_event->task; |
3096 | int ret; | 3205 | int ret; |
3097 | 3206 | ||
3098 | size = task_event->event.header.size; | 3207 | size = task_event->event_id.header.size; |
3099 | ret = perf_output_begin(&handle, counter, size, 0, 0); | 3208 | ret = perf_output_begin(&handle, event, size, 0, 0); |
3100 | 3209 | ||
3101 | if (ret) | 3210 | if (ret) |
3102 | return; | 3211 | return; |
3103 | 3212 | ||
3104 | task_event->event.pid = perf_counter_pid(counter, task); | 3213 | task_event->event_id.pid = perf_event_pid(event, task); |
3105 | task_event->event.ppid = perf_counter_pid(counter, current); | 3214 | task_event->event_id.ppid = perf_event_pid(event, current); |
3106 | 3215 | ||
3107 | task_event->event.tid = perf_counter_tid(counter, task); | 3216 | task_event->event_id.tid = perf_event_tid(event, task); |
3108 | task_event->event.ptid = perf_counter_tid(counter, current); | 3217 | task_event->event_id.ptid = perf_event_tid(event, current); |
3109 | 3218 | ||
3110 | task_event->event.time = perf_clock(); | 3219 | task_event->event_id.time = perf_clock(); |
3111 | 3220 | ||
3112 | perf_output_put(&handle, task_event->event); | 3221 | perf_output_put(&handle, task_event->event_id); |
3113 | 3222 | ||
3114 | perf_output_end(&handle); | 3223 | perf_output_end(&handle); |
3115 | } | 3224 | } |
3116 | 3225 | ||
3117 | static int perf_counter_task_match(struct perf_counter *counter) | 3226 | static int perf_event_task_match(struct perf_event *event) |
3118 | { | 3227 | { |
3119 | if (counter->attr.comm || counter->attr.mmap || counter->attr.task) | 3228 | if (event->attr.comm || event->attr.mmap || event->attr.task) |
3120 | return 1; | 3229 | return 1; |
3121 | 3230 | ||
3122 | return 0; | 3231 | return 0; |
3123 | } | 3232 | } |
3124 | 3233 | ||
3125 | static void perf_counter_task_ctx(struct perf_counter_context *ctx, | 3234 | static void perf_event_task_ctx(struct perf_event_context *ctx, |
3126 | struct perf_task_event *task_event) | 3235 | struct perf_task_event *task_event) |
3127 | { | 3236 | { |
3128 | struct perf_counter *counter; | 3237 | struct perf_event *event; |
3129 | 3238 | ||
3130 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3239 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3131 | return; | 3240 | return; |
3132 | 3241 | ||
3133 | rcu_read_lock(); | 3242 | rcu_read_lock(); |
3134 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3243 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3135 | if (perf_counter_task_match(counter)) | 3244 | if (perf_event_task_match(event)) |
3136 | perf_counter_task_output(counter, task_event); | 3245 | perf_event_task_output(event, task_event); |
3137 | } | 3246 | } |
3138 | rcu_read_unlock(); | 3247 | rcu_read_unlock(); |
3139 | } | 3248 | } |
3140 | 3249 | ||
3141 | static void perf_counter_task_event(struct perf_task_event *task_event) | 3250 | static void perf_event_task_event(struct perf_task_event *task_event) |
3142 | { | 3251 | { |
3143 | struct perf_cpu_context *cpuctx; | 3252 | struct perf_cpu_context *cpuctx; |
3144 | struct perf_counter_context *ctx = task_event->task_ctx; | 3253 | struct perf_event_context *ctx = task_event->task_ctx; |
3145 | 3254 | ||
3146 | cpuctx = &get_cpu_var(perf_cpu_context); | 3255 | cpuctx = &get_cpu_var(perf_cpu_context); |
3147 | perf_counter_task_ctx(&cpuctx->ctx, task_event); | 3256 | perf_event_task_ctx(&cpuctx->ctx, task_event); |
3148 | put_cpu_var(perf_cpu_context); | 3257 | put_cpu_var(perf_cpu_context); |
3149 | 3258 | ||
3150 | rcu_read_lock(); | 3259 | rcu_read_lock(); |
3151 | if (!ctx) | 3260 | if (!ctx) |
3152 | ctx = rcu_dereference(task_event->task->perf_counter_ctxp); | 3261 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); |
3153 | if (ctx) | 3262 | if (ctx) |
3154 | perf_counter_task_ctx(ctx, task_event); | 3263 | perf_event_task_ctx(ctx, task_event); |
3155 | rcu_read_unlock(); | 3264 | rcu_read_unlock(); |
3156 | } | 3265 | } |
3157 | 3266 | ||
3158 | static void perf_counter_task(struct task_struct *task, | 3267 | static void perf_event_task(struct task_struct *task, |
3159 | struct perf_counter_context *task_ctx, | 3268 | struct perf_event_context *task_ctx, |
3160 | int new) | 3269 | int new) |
3161 | { | 3270 | { |
3162 | struct perf_task_event task_event; | 3271 | struct perf_task_event task_event; |
3163 | 3272 | ||
3164 | if (!atomic_read(&nr_comm_counters) && | 3273 | if (!atomic_read(&nr_comm_events) && |
3165 | !atomic_read(&nr_mmap_counters) && | 3274 | !atomic_read(&nr_mmap_events) && |
3166 | !atomic_read(&nr_task_counters)) | 3275 | !atomic_read(&nr_task_events)) |
3167 | return; | 3276 | return; |
3168 | 3277 | ||
3169 | task_event = (struct perf_task_event){ | 3278 | task_event = (struct perf_task_event){ |
3170 | .task = task, | 3279 | .task = task, |
3171 | .task_ctx = task_ctx, | 3280 | .task_ctx = task_ctx, |
3172 | .event = { | 3281 | .event_id = { |
3173 | .header = { | 3282 | .header = { |
3174 | .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, | 3283 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, |
3175 | .misc = 0, | 3284 | .misc = 0, |
3176 | .size = sizeof(task_event.event), | 3285 | .size = sizeof(task_event.event_id), |
3177 | }, | 3286 | }, |
3178 | /* .pid */ | 3287 | /* .pid */ |
3179 | /* .ppid */ | 3288 | /* .ppid */ |
@@ -3182,12 +3291,12 @@ static void perf_counter_task(struct task_struct *task, | |||
3182 | }, | 3291 | }, |
3183 | }; | 3292 | }; |
3184 | 3293 | ||
3185 | perf_counter_task_event(&task_event); | 3294 | perf_event_task_event(&task_event); |
3186 | } | 3295 | } |
3187 | 3296 | ||
3188 | void perf_counter_fork(struct task_struct *task) | 3297 | void perf_event_fork(struct task_struct *task) |
3189 | { | 3298 | { |
3190 | perf_counter_task(task, NULL, 1); | 3299 | perf_event_task(task, NULL, 1); |
3191 | } | 3300 | } |
3192 | 3301 | ||
3193 | /* | 3302 | /* |
@@ -3204,56 +3313,56 @@ struct perf_comm_event { | |||
3204 | 3313 | ||
3205 | u32 pid; | 3314 | u32 pid; |
3206 | u32 tid; | 3315 | u32 tid; |
3207 | } event; | 3316 | } event_id; |
3208 | }; | 3317 | }; |
3209 | 3318 | ||
3210 | static void perf_counter_comm_output(struct perf_counter *counter, | 3319 | static void perf_event_comm_output(struct perf_event *event, |
3211 | struct perf_comm_event *comm_event) | 3320 | struct perf_comm_event *comm_event) |
3212 | { | 3321 | { |
3213 | struct perf_output_handle handle; | 3322 | struct perf_output_handle handle; |
3214 | int size = comm_event->event.header.size; | 3323 | int size = comm_event->event_id.header.size; |
3215 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 3324 | int ret = perf_output_begin(&handle, event, size, 0, 0); |
3216 | 3325 | ||
3217 | if (ret) | 3326 | if (ret) |
3218 | return; | 3327 | return; |
3219 | 3328 | ||
3220 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | 3329 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); |
3221 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | 3330 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); |
3222 | 3331 | ||
3223 | perf_output_put(&handle, comm_event->event); | 3332 | perf_output_put(&handle, comm_event->event_id); |
3224 | perf_output_copy(&handle, comm_event->comm, | 3333 | perf_output_copy(&handle, comm_event->comm, |
3225 | comm_event->comm_size); | 3334 | comm_event->comm_size); |
3226 | perf_output_end(&handle); | 3335 | perf_output_end(&handle); |
3227 | } | 3336 | } |
3228 | 3337 | ||
3229 | static int perf_counter_comm_match(struct perf_counter *counter) | 3338 | static int perf_event_comm_match(struct perf_event *event) |
3230 | { | 3339 | { |
3231 | if (counter->attr.comm) | 3340 | if (event->attr.comm) |
3232 | return 1; | 3341 | return 1; |
3233 | 3342 | ||
3234 | return 0; | 3343 | return 0; |
3235 | } | 3344 | } |
3236 | 3345 | ||
3237 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | 3346 | static void perf_event_comm_ctx(struct perf_event_context *ctx, |
3238 | struct perf_comm_event *comm_event) | 3347 | struct perf_comm_event *comm_event) |
3239 | { | 3348 | { |
3240 | struct perf_counter *counter; | 3349 | struct perf_event *event; |
3241 | 3350 | ||
3242 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3351 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3243 | return; | 3352 | return; |
3244 | 3353 | ||
3245 | rcu_read_lock(); | 3354 | rcu_read_lock(); |
3246 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3355 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3247 | if (perf_counter_comm_match(counter)) | 3356 | if (perf_event_comm_match(event)) |
3248 | perf_counter_comm_output(counter, comm_event); | 3357 | perf_event_comm_output(event, comm_event); |
3249 | } | 3358 | } |
3250 | rcu_read_unlock(); | 3359 | rcu_read_unlock(); |
3251 | } | 3360 | } |
3252 | 3361 | ||
3253 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | 3362 | static void perf_event_comm_event(struct perf_comm_event *comm_event) |
3254 | { | 3363 | { |
3255 | struct perf_cpu_context *cpuctx; | 3364 | struct perf_cpu_context *cpuctx; |
3256 | struct perf_counter_context *ctx; | 3365 | struct perf_event_context *ctx; |
3257 | unsigned int size; | 3366 | unsigned int size; |
3258 | char comm[TASK_COMM_LEN]; | 3367 | char comm[TASK_COMM_LEN]; |
3259 | 3368 | ||
@@ -3264,10 +3373,10 @@ static void perf_counter_comm_event(struct perf_comm_event *comm_event) | |||
3264 | comm_event->comm = comm; | 3373 | comm_event->comm = comm; |
3265 | comm_event->comm_size = size; | 3374 | comm_event->comm_size = size; |
3266 | 3375 | ||
3267 | comm_event->event.header.size = sizeof(comm_event->event) + size; | 3376 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; |
3268 | 3377 | ||
3269 | cpuctx = &get_cpu_var(perf_cpu_context); | 3378 | cpuctx = &get_cpu_var(perf_cpu_context); |
3270 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | 3379 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); |
3271 | put_cpu_var(perf_cpu_context); | 3380 | put_cpu_var(perf_cpu_context); |
3272 | 3381 | ||
3273 | rcu_read_lock(); | 3382 | rcu_read_lock(); |
@@ -3275,29 +3384,29 @@ static void perf_counter_comm_event(struct perf_comm_event *comm_event) | |||
3275 | * doesn't really matter which of the child contexts the | 3384 | * doesn't really matter which of the child contexts the |
3276 | * events ends up in. | 3385 | * events ends up in. |
3277 | */ | 3386 | */ |
3278 | ctx = rcu_dereference(current->perf_counter_ctxp); | 3387 | ctx = rcu_dereference(current->perf_event_ctxp); |
3279 | if (ctx) | 3388 | if (ctx) |
3280 | perf_counter_comm_ctx(ctx, comm_event); | 3389 | perf_event_comm_ctx(ctx, comm_event); |
3281 | rcu_read_unlock(); | 3390 | rcu_read_unlock(); |
3282 | } | 3391 | } |
3283 | 3392 | ||
3284 | void perf_counter_comm(struct task_struct *task) | 3393 | void perf_event_comm(struct task_struct *task) |
3285 | { | 3394 | { |
3286 | struct perf_comm_event comm_event; | 3395 | struct perf_comm_event comm_event; |
3287 | 3396 | ||
3288 | if (task->perf_counter_ctxp) | 3397 | if (task->perf_event_ctxp) |
3289 | perf_counter_enable_on_exec(task); | 3398 | perf_event_enable_on_exec(task); |
3290 | 3399 | ||
3291 | if (!atomic_read(&nr_comm_counters)) | 3400 | if (!atomic_read(&nr_comm_events)) |
3292 | return; | 3401 | return; |
3293 | 3402 | ||
3294 | comm_event = (struct perf_comm_event){ | 3403 | comm_event = (struct perf_comm_event){ |
3295 | .task = task, | 3404 | .task = task, |
3296 | /* .comm */ | 3405 | /* .comm */ |
3297 | /* .comm_size */ | 3406 | /* .comm_size */ |
3298 | .event = { | 3407 | .event_id = { |
3299 | .header = { | 3408 | .header = { |
3300 | .type = PERF_EVENT_COMM, | 3409 | .type = PERF_RECORD_COMM, |
3301 | .misc = 0, | 3410 | .misc = 0, |
3302 | /* .size */ | 3411 | /* .size */ |
3303 | }, | 3412 | }, |
@@ -3306,7 +3415,7 @@ void perf_counter_comm(struct task_struct *task) | |||
3306 | }, | 3415 | }, |
3307 | }; | 3416 | }; |
3308 | 3417 | ||
3309 | perf_counter_comm_event(&comm_event); | 3418 | perf_event_comm_event(&comm_event); |
3310 | } | 3419 | } |
3311 | 3420 | ||
3312 | /* | 3421 | /* |
@@ -3327,57 +3436,57 @@ struct perf_mmap_event { | |||
3327 | u64 start; | 3436 | u64 start; |
3328 | u64 len; | 3437 | u64 len; |
3329 | u64 pgoff; | 3438 | u64 pgoff; |
3330 | } event; | 3439 | } event_id; |
3331 | }; | 3440 | }; |
3332 | 3441 | ||
3333 | static void perf_counter_mmap_output(struct perf_counter *counter, | 3442 | static void perf_event_mmap_output(struct perf_event *event, |
3334 | struct perf_mmap_event *mmap_event) | 3443 | struct perf_mmap_event *mmap_event) |
3335 | { | 3444 | { |
3336 | struct perf_output_handle handle; | 3445 | struct perf_output_handle handle; |
3337 | int size = mmap_event->event.header.size; | 3446 | int size = mmap_event->event_id.header.size; |
3338 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | 3447 | int ret = perf_output_begin(&handle, event, size, 0, 0); |
3339 | 3448 | ||
3340 | if (ret) | 3449 | if (ret) |
3341 | return; | 3450 | return; |
3342 | 3451 | ||
3343 | mmap_event->event.pid = perf_counter_pid(counter, current); | 3452 | mmap_event->event_id.pid = perf_event_pid(event, current); |
3344 | mmap_event->event.tid = perf_counter_tid(counter, current); | 3453 | mmap_event->event_id.tid = perf_event_tid(event, current); |
3345 | 3454 | ||
3346 | perf_output_put(&handle, mmap_event->event); | 3455 | perf_output_put(&handle, mmap_event->event_id); |
3347 | perf_output_copy(&handle, mmap_event->file_name, | 3456 | perf_output_copy(&handle, mmap_event->file_name, |
3348 | mmap_event->file_size); | 3457 | mmap_event->file_size); |
3349 | perf_output_end(&handle); | 3458 | perf_output_end(&handle); |
3350 | } | 3459 | } |
3351 | 3460 | ||
3352 | static int perf_counter_mmap_match(struct perf_counter *counter, | 3461 | static int perf_event_mmap_match(struct perf_event *event, |
3353 | struct perf_mmap_event *mmap_event) | 3462 | struct perf_mmap_event *mmap_event) |
3354 | { | 3463 | { |
3355 | if (counter->attr.mmap) | 3464 | if (event->attr.mmap) |
3356 | return 1; | 3465 | return 1; |
3357 | 3466 | ||
3358 | return 0; | 3467 | return 0; |
3359 | } | 3468 | } |
3360 | 3469 | ||
3361 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | 3470 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, |
3362 | struct perf_mmap_event *mmap_event) | 3471 | struct perf_mmap_event *mmap_event) |
3363 | { | 3472 | { |
3364 | struct perf_counter *counter; | 3473 | struct perf_event *event; |
3365 | 3474 | ||
3366 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3475 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3367 | return; | 3476 | return; |
3368 | 3477 | ||
3369 | rcu_read_lock(); | 3478 | rcu_read_lock(); |
3370 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3479 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3371 | if (perf_counter_mmap_match(counter, mmap_event)) | 3480 | if (perf_event_mmap_match(event, mmap_event)) |
3372 | perf_counter_mmap_output(counter, mmap_event); | 3481 | perf_event_mmap_output(event, mmap_event); |
3373 | } | 3482 | } |
3374 | rcu_read_unlock(); | 3483 | rcu_read_unlock(); |
3375 | } | 3484 | } |
3376 | 3485 | ||
3377 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | 3486 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) |
3378 | { | 3487 | { |
3379 | struct perf_cpu_context *cpuctx; | 3488 | struct perf_cpu_context *cpuctx; |
3380 | struct perf_counter_context *ctx; | 3489 | struct perf_event_context *ctx; |
3381 | struct vm_area_struct *vma = mmap_event->vma; | 3490 | struct vm_area_struct *vma = mmap_event->vma; |
3382 | struct file *file = vma->vm_file; | 3491 | struct file *file = vma->vm_file; |
3383 | unsigned int size; | 3492 | unsigned int size; |
@@ -3425,10 +3534,10 @@ got_name: | |||
3425 | mmap_event->file_name = name; | 3534 | mmap_event->file_name = name; |
3426 | mmap_event->file_size = size; | 3535 | mmap_event->file_size = size; |
3427 | 3536 | ||
3428 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | 3537 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; |
3429 | 3538 | ||
3430 | cpuctx = &get_cpu_var(perf_cpu_context); | 3539 | cpuctx = &get_cpu_var(perf_cpu_context); |
3431 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | 3540 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); |
3432 | put_cpu_var(perf_cpu_context); | 3541 | put_cpu_var(perf_cpu_context); |
3433 | 3542 | ||
3434 | rcu_read_lock(); | 3543 | rcu_read_lock(); |
@@ -3436,28 +3545,28 @@ got_name: | |||
3436 | * doesn't really matter which of the child contexts the | 3545 | * doesn't really matter which of the child contexts the |
3437 | * events ends up in. | 3546 | * events ends up in. |
3438 | */ | 3547 | */ |
3439 | ctx = rcu_dereference(current->perf_counter_ctxp); | 3548 | ctx = rcu_dereference(current->perf_event_ctxp); |
3440 | if (ctx) | 3549 | if (ctx) |
3441 | perf_counter_mmap_ctx(ctx, mmap_event); | 3550 | perf_event_mmap_ctx(ctx, mmap_event); |
3442 | rcu_read_unlock(); | 3551 | rcu_read_unlock(); |
3443 | 3552 | ||
3444 | kfree(buf); | 3553 | kfree(buf); |
3445 | } | 3554 | } |
3446 | 3555 | ||
3447 | void __perf_counter_mmap(struct vm_area_struct *vma) | 3556 | void __perf_event_mmap(struct vm_area_struct *vma) |
3448 | { | 3557 | { |
3449 | struct perf_mmap_event mmap_event; | 3558 | struct perf_mmap_event mmap_event; |
3450 | 3559 | ||
3451 | if (!atomic_read(&nr_mmap_counters)) | 3560 | if (!atomic_read(&nr_mmap_events)) |
3452 | return; | 3561 | return; |
3453 | 3562 | ||
3454 | mmap_event = (struct perf_mmap_event){ | 3563 | mmap_event = (struct perf_mmap_event){ |
3455 | .vma = vma, | 3564 | .vma = vma, |
3456 | /* .file_name */ | 3565 | /* .file_name */ |
3457 | /* .file_size */ | 3566 | /* .file_size */ |
3458 | .event = { | 3567 | .event_id = { |
3459 | .header = { | 3568 | .header = { |
3460 | .type = PERF_EVENT_MMAP, | 3569 | .type = PERF_RECORD_MMAP, |
3461 | .misc = 0, | 3570 | .misc = 0, |
3462 | /* .size */ | 3571 | /* .size */ |
3463 | }, | 3572 | }, |
@@ -3469,14 +3578,14 @@ void __perf_counter_mmap(struct vm_area_struct *vma) | |||
3469 | }, | 3578 | }, |
3470 | }; | 3579 | }; |
3471 | 3580 | ||
3472 | perf_counter_mmap_event(&mmap_event); | 3581 | perf_event_mmap_event(&mmap_event); |
3473 | } | 3582 | } |
3474 | 3583 | ||
3475 | /* | 3584 | /* |
3476 | * IRQ throttle logging | 3585 | * IRQ throttle logging |
3477 | */ | 3586 | */ |
3478 | 3587 | ||
3479 | static void perf_log_throttle(struct perf_counter *counter, int enable) | 3588 | static void perf_log_throttle(struct perf_event *event, int enable) |
3480 | { | 3589 | { |
3481 | struct perf_output_handle handle; | 3590 | struct perf_output_handle handle; |
3482 | int ret; | 3591 | int ret; |
@@ -3488,19 +3597,19 @@ static void perf_log_throttle(struct perf_counter *counter, int enable) | |||
3488 | u64 stream_id; | 3597 | u64 stream_id; |
3489 | } throttle_event = { | 3598 | } throttle_event = { |
3490 | .header = { | 3599 | .header = { |
3491 | .type = PERF_EVENT_THROTTLE, | 3600 | .type = PERF_RECORD_THROTTLE, |
3492 | .misc = 0, | 3601 | .misc = 0, |
3493 | .size = sizeof(throttle_event), | 3602 | .size = sizeof(throttle_event), |
3494 | }, | 3603 | }, |
3495 | .time = perf_clock(), | 3604 | .time = perf_clock(), |
3496 | .id = primary_counter_id(counter), | 3605 | .id = primary_event_id(event), |
3497 | .stream_id = counter->id, | 3606 | .stream_id = event->id, |
3498 | }; | 3607 | }; |
3499 | 3608 | ||
3500 | if (enable) | 3609 | if (enable) |
3501 | throttle_event.header.type = PERF_EVENT_UNTHROTTLE; | 3610 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; |
3502 | 3611 | ||
3503 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | 3612 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); |
3504 | if (ret) | 3613 | if (ret) |
3505 | return; | 3614 | return; |
3506 | 3615 | ||
@@ -3509,18 +3618,18 @@ static void perf_log_throttle(struct perf_counter *counter, int enable) | |||
3509 | } | 3618 | } |
3510 | 3619 | ||
3511 | /* | 3620 | /* |
3512 | * Generic counter overflow handling, sampling. | 3621 | * Generic event overflow handling, sampling. |
3513 | */ | 3622 | */ |
3514 | 3623 | ||
3515 | static int __perf_counter_overflow(struct perf_counter *counter, int nmi, | 3624 | static int __perf_event_overflow(struct perf_event *event, int nmi, |
3516 | int throttle, struct perf_sample_data *data, | 3625 | int throttle, struct perf_sample_data *data, |
3517 | struct pt_regs *regs) | 3626 | struct pt_regs *regs) |
3518 | { | 3627 | { |
3519 | int events = atomic_read(&counter->event_limit); | 3628 | int events = atomic_read(&event->event_limit); |
3520 | struct hw_perf_counter *hwc = &counter->hw; | 3629 | struct hw_perf_event *hwc = &event->hw; |
3521 | int ret = 0; | 3630 | int ret = 0; |
3522 | 3631 | ||
3523 | throttle = (throttle && counter->pmu->unthrottle != NULL); | 3632 | throttle = (throttle && event->pmu->unthrottle != NULL); |
3524 | 3633 | ||
3525 | if (!throttle) { | 3634 | if (!throttle) { |
3526 | hwc->interrupts++; | 3635 | hwc->interrupts++; |
@@ -3528,73 +3637,73 @@ static int __perf_counter_overflow(struct perf_counter *counter, int nmi, | |||
3528 | if (hwc->interrupts != MAX_INTERRUPTS) { | 3637 | if (hwc->interrupts != MAX_INTERRUPTS) { |
3529 | hwc->interrupts++; | 3638 | hwc->interrupts++; |
3530 | if (HZ * hwc->interrupts > | 3639 | if (HZ * hwc->interrupts > |
3531 | (u64)sysctl_perf_counter_sample_rate) { | 3640 | (u64)sysctl_perf_event_sample_rate) { |
3532 | hwc->interrupts = MAX_INTERRUPTS; | 3641 | hwc->interrupts = MAX_INTERRUPTS; |
3533 | perf_log_throttle(counter, 0); | 3642 | perf_log_throttle(event, 0); |
3534 | ret = 1; | 3643 | ret = 1; |
3535 | } | 3644 | } |
3536 | } else { | 3645 | } else { |
3537 | /* | 3646 | /* |
3538 | * Keep re-disabling counters even though on the previous | 3647 | * Keep re-disabling events even though on the previous |
3539 | * pass we disabled it - just in case we raced with a | 3648 | * pass we disabled it - just in case we raced with a |
3540 | * sched-in and the counter got enabled again: | 3649 | * sched-in and the event got enabled again: |
3541 | */ | 3650 | */ |
3542 | ret = 1; | 3651 | ret = 1; |
3543 | } | 3652 | } |
3544 | } | 3653 | } |
3545 | 3654 | ||
3546 | if (counter->attr.freq) { | 3655 | if (event->attr.freq) { |
3547 | u64 now = perf_clock(); | 3656 | u64 now = perf_clock(); |
3548 | s64 delta = now - hwc->freq_stamp; | 3657 | s64 delta = now - hwc->freq_stamp; |
3549 | 3658 | ||
3550 | hwc->freq_stamp = now; | 3659 | hwc->freq_stamp = now; |
3551 | 3660 | ||
3552 | if (delta > 0 && delta < TICK_NSEC) | 3661 | if (delta > 0 && delta < TICK_NSEC) |
3553 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | 3662 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); |
3554 | } | 3663 | } |
3555 | 3664 | ||
3556 | /* | 3665 | /* |
3557 | * XXX event_limit might not quite work as expected on inherited | 3666 | * XXX event_limit might not quite work as expected on inherited |
3558 | * counters | 3667 | * events |
3559 | */ | 3668 | */ |
3560 | 3669 | ||
3561 | counter->pending_kill = POLL_IN; | 3670 | event->pending_kill = POLL_IN; |
3562 | if (events && atomic_dec_and_test(&counter->event_limit)) { | 3671 | if (events && atomic_dec_and_test(&event->event_limit)) { |
3563 | ret = 1; | 3672 | ret = 1; |
3564 | counter->pending_kill = POLL_HUP; | 3673 | event->pending_kill = POLL_HUP; |
3565 | if (nmi) { | 3674 | if (nmi) { |
3566 | counter->pending_disable = 1; | 3675 | event->pending_disable = 1; |
3567 | perf_pending_queue(&counter->pending, | 3676 | perf_pending_queue(&event->pending, |
3568 | perf_pending_counter); | 3677 | perf_pending_event); |
3569 | } else | 3678 | } else |
3570 | perf_counter_disable(counter); | 3679 | perf_event_disable(event); |
3571 | } | 3680 | } |
3572 | 3681 | ||
3573 | perf_counter_output(counter, nmi, data, regs); | 3682 | perf_event_output(event, nmi, data, regs); |
3574 | return ret; | 3683 | return ret; |
3575 | } | 3684 | } |
3576 | 3685 | ||
3577 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | 3686 | int perf_event_overflow(struct perf_event *event, int nmi, |
3578 | struct perf_sample_data *data, | 3687 | struct perf_sample_data *data, |
3579 | struct pt_regs *regs) | 3688 | struct pt_regs *regs) |
3580 | { | 3689 | { |
3581 | return __perf_counter_overflow(counter, nmi, 1, data, regs); | 3690 | return __perf_event_overflow(event, nmi, 1, data, regs); |
3582 | } | 3691 | } |
3583 | 3692 | ||
3584 | /* | 3693 | /* |
3585 | * Generic software counter infrastructure | 3694 | * Generic software event infrastructure |
3586 | */ | 3695 | */ |
3587 | 3696 | ||
3588 | /* | 3697 | /* |
3589 | * We directly increment counter->count and keep a second value in | 3698 | * We directly increment event->count and keep a second value in |
3590 | * counter->hw.period_left to count intervals. This period counter | 3699 | * event->hw.period_left to count intervals. This period event |
3591 | * is kept in the range [-sample_period, 0] so that we can use the | 3700 | * is kept in the range [-sample_period, 0] so that we can use the |
3592 | * sign as trigger. | 3701 | * sign as trigger. |
3593 | */ | 3702 | */ |
3594 | 3703 | ||
3595 | static u64 perf_swcounter_set_period(struct perf_counter *counter) | 3704 | static u64 perf_swevent_set_period(struct perf_event *event) |
3596 | { | 3705 | { |
3597 | struct hw_perf_counter *hwc = &counter->hw; | 3706 | struct hw_perf_event *hwc = &event->hw; |
3598 | u64 period = hwc->last_period; | 3707 | u64 period = hwc->last_period; |
3599 | u64 nr, offset; | 3708 | u64 nr, offset; |
3600 | s64 old, val; | 3709 | s64 old, val; |
@@ -3615,22 +3724,22 @@ again: | |||
3615 | return nr; | 3724 | return nr; |
3616 | } | 3725 | } |
3617 | 3726 | ||
3618 | static void perf_swcounter_overflow(struct perf_counter *counter, | 3727 | static void perf_swevent_overflow(struct perf_event *event, |
3619 | int nmi, struct perf_sample_data *data, | 3728 | int nmi, struct perf_sample_data *data, |
3620 | struct pt_regs *regs) | 3729 | struct pt_regs *regs) |
3621 | { | 3730 | { |
3622 | struct hw_perf_counter *hwc = &counter->hw; | 3731 | struct hw_perf_event *hwc = &event->hw; |
3623 | int throttle = 0; | 3732 | int throttle = 0; |
3624 | u64 overflow; | 3733 | u64 overflow; |
3625 | 3734 | ||
3626 | data->period = counter->hw.last_period; | 3735 | data->period = event->hw.last_period; |
3627 | overflow = perf_swcounter_set_period(counter); | 3736 | overflow = perf_swevent_set_period(event); |
3628 | 3737 | ||
3629 | if (hwc->interrupts == MAX_INTERRUPTS) | 3738 | if (hwc->interrupts == MAX_INTERRUPTS) |
3630 | return; | 3739 | return; |
3631 | 3740 | ||
3632 | for (; overflow; overflow--) { | 3741 | for (; overflow; overflow--) { |
3633 | if (__perf_counter_overflow(counter, nmi, throttle, | 3742 | if (__perf_event_overflow(event, nmi, throttle, |
3634 | data, regs)) { | 3743 | data, regs)) { |
3635 | /* | 3744 | /* |
3636 | * We inhibit the overflow from happening when | 3745 | * We inhibit the overflow from happening when |
@@ -3642,20 +3751,20 @@ static void perf_swcounter_overflow(struct perf_counter *counter, | |||
3642 | } | 3751 | } |
3643 | } | 3752 | } |
3644 | 3753 | ||
3645 | static void perf_swcounter_unthrottle(struct perf_counter *counter) | 3754 | static void perf_swevent_unthrottle(struct perf_event *event) |
3646 | { | 3755 | { |
3647 | /* | 3756 | /* |
3648 | * Nothing to do, we already reset hwc->interrupts. | 3757 | * Nothing to do, we already reset hwc->interrupts. |
3649 | */ | 3758 | */ |
3650 | } | 3759 | } |
3651 | 3760 | ||
3652 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | 3761 | static void perf_swevent_add(struct perf_event *event, u64 nr, |
3653 | int nmi, struct perf_sample_data *data, | 3762 | int nmi, struct perf_sample_data *data, |
3654 | struct pt_regs *regs) | 3763 | struct pt_regs *regs) |
3655 | { | 3764 | { |
3656 | struct hw_perf_counter *hwc = &counter->hw; | 3765 | struct hw_perf_event *hwc = &event->hw; |
3657 | 3766 | ||
3658 | atomic64_add(nr, &counter->count); | 3767 | atomic64_add(nr, &event->count); |
3659 | 3768 | ||
3660 | if (!hwc->sample_period) | 3769 | if (!hwc->sample_period) |
3661 | return; | 3770 | return; |
@@ -3664,29 +3773,29 @@ static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | |||
3664 | return; | 3773 | return; |
3665 | 3774 | ||
3666 | if (!atomic64_add_negative(nr, &hwc->period_left)) | 3775 | if (!atomic64_add_negative(nr, &hwc->period_left)) |
3667 | perf_swcounter_overflow(counter, nmi, data, regs); | 3776 | perf_swevent_overflow(event, nmi, data, regs); |
3668 | } | 3777 | } |
3669 | 3778 | ||
3670 | static int perf_swcounter_is_counting(struct perf_counter *counter) | 3779 | static int perf_swevent_is_counting(struct perf_event *event) |
3671 | { | 3780 | { |
3672 | /* | 3781 | /* |
3673 | * The counter is active, we're good! | 3782 | * The event is active, we're good! |
3674 | */ | 3783 | */ |
3675 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | 3784 | if (event->state == PERF_EVENT_STATE_ACTIVE) |
3676 | return 1; | 3785 | return 1; |
3677 | 3786 | ||
3678 | /* | 3787 | /* |
3679 | * The counter is off/error, not counting. | 3788 | * The event is off/error, not counting. |
3680 | */ | 3789 | */ |
3681 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | 3790 | if (event->state != PERF_EVENT_STATE_INACTIVE) |
3682 | return 0; | 3791 | return 0; |
3683 | 3792 | ||
3684 | /* | 3793 | /* |
3685 | * The counter is inactive, if the context is active | 3794 | * The event is inactive, if the context is active |
3686 | * we're part of a group that didn't make it on the 'pmu', | 3795 | * we're part of a group that didn't make it on the 'pmu', |
3687 | * not counting. | 3796 | * not counting. |
3688 | */ | 3797 | */ |
3689 | if (counter->ctx->is_active) | 3798 | if (event->ctx->is_active) |
3690 | return 0; | 3799 | return 0; |
3691 | 3800 | ||
3692 | /* | 3801 | /* |
@@ -3697,49 +3806,49 @@ static int perf_swcounter_is_counting(struct perf_counter *counter) | |||
3697 | return 1; | 3806 | return 1; |
3698 | } | 3807 | } |
3699 | 3808 | ||
3700 | static int perf_swcounter_match(struct perf_counter *counter, | 3809 | static int perf_swevent_match(struct perf_event *event, |
3701 | enum perf_type_id type, | 3810 | enum perf_type_id type, |
3702 | u32 event, struct pt_regs *regs) | 3811 | u32 event_id, struct pt_regs *regs) |
3703 | { | 3812 | { |
3704 | if (!perf_swcounter_is_counting(counter)) | 3813 | if (!perf_swevent_is_counting(event)) |
3705 | return 0; | 3814 | return 0; |
3706 | 3815 | ||
3707 | if (counter->attr.type != type) | 3816 | if (event->attr.type != type) |
3708 | return 0; | 3817 | return 0; |
3709 | if (counter->attr.config != event) | 3818 | if (event->attr.config != event_id) |
3710 | return 0; | 3819 | return 0; |
3711 | 3820 | ||
3712 | if (regs) { | 3821 | if (regs) { |
3713 | if (counter->attr.exclude_user && user_mode(regs)) | 3822 | if (event->attr.exclude_user && user_mode(regs)) |
3714 | return 0; | 3823 | return 0; |
3715 | 3824 | ||
3716 | if (counter->attr.exclude_kernel && !user_mode(regs)) | 3825 | if (event->attr.exclude_kernel && !user_mode(regs)) |
3717 | return 0; | 3826 | return 0; |
3718 | } | 3827 | } |
3719 | 3828 | ||
3720 | return 1; | 3829 | return 1; |
3721 | } | 3830 | } |
3722 | 3831 | ||
3723 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | 3832 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, |
3724 | enum perf_type_id type, | 3833 | enum perf_type_id type, |
3725 | u32 event, u64 nr, int nmi, | 3834 | u32 event_id, u64 nr, int nmi, |
3726 | struct perf_sample_data *data, | 3835 | struct perf_sample_data *data, |
3727 | struct pt_regs *regs) | 3836 | struct pt_regs *regs) |
3728 | { | 3837 | { |
3729 | struct perf_counter *counter; | 3838 | struct perf_event *event; |
3730 | 3839 | ||
3731 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 3840 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) |
3732 | return; | 3841 | return; |
3733 | 3842 | ||
3734 | rcu_read_lock(); | 3843 | rcu_read_lock(); |
3735 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | 3844 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
3736 | if (perf_swcounter_match(counter, type, event, regs)) | 3845 | if (perf_swevent_match(event, type, event_id, regs)) |
3737 | perf_swcounter_add(counter, nr, nmi, data, regs); | 3846 | perf_swevent_add(event, nr, nmi, data, regs); |
3738 | } | 3847 | } |
3739 | rcu_read_unlock(); | 3848 | rcu_read_unlock(); |
3740 | } | 3849 | } |
3741 | 3850 | ||
3742 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | 3851 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) |
3743 | { | 3852 | { |
3744 | if (in_nmi()) | 3853 | if (in_nmi()) |
3745 | return &cpuctx->recursion[3]; | 3854 | return &cpuctx->recursion[3]; |
@@ -3753,14 +3862,14 @@ static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | |||
3753 | return &cpuctx->recursion[0]; | 3862 | return &cpuctx->recursion[0]; |
3754 | } | 3863 | } |
3755 | 3864 | ||
3756 | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | 3865 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, |
3757 | u64 nr, int nmi, | 3866 | u64 nr, int nmi, |
3758 | struct perf_sample_data *data, | 3867 | struct perf_sample_data *data, |
3759 | struct pt_regs *regs) | 3868 | struct pt_regs *regs) |
3760 | { | 3869 | { |
3761 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | 3870 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); |
3762 | int *recursion = perf_swcounter_recursion_context(cpuctx); | 3871 | int *recursion = perf_swevent_recursion_context(cpuctx); |
3763 | struct perf_counter_context *ctx; | 3872 | struct perf_event_context *ctx; |
3764 | 3873 | ||
3765 | if (*recursion) | 3874 | if (*recursion) |
3766 | goto out; | 3875 | goto out; |
@@ -3768,16 +3877,16 @@ static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | |||
3768 | (*recursion)++; | 3877 | (*recursion)++; |
3769 | barrier(); | 3878 | barrier(); |
3770 | 3879 | ||
3771 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | 3880 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, |
3772 | nr, nmi, data, regs); | 3881 | nr, nmi, data, regs); |
3773 | rcu_read_lock(); | 3882 | rcu_read_lock(); |
3774 | /* | 3883 | /* |
3775 | * doesn't really matter which of the child contexts the | 3884 | * doesn't really matter which of the child contexts the |
3776 | * events ends up in. | 3885 | * events ends up in. |
3777 | */ | 3886 | */ |
3778 | ctx = rcu_dereference(current->perf_counter_ctxp); | 3887 | ctx = rcu_dereference(current->perf_event_ctxp); |
3779 | if (ctx) | 3888 | if (ctx) |
3780 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data, regs); | 3889 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); |
3781 | rcu_read_unlock(); | 3890 | rcu_read_unlock(); |
3782 | 3891 | ||
3783 | barrier(); | 3892 | barrier(); |
@@ -3787,57 +3896,57 @@ out: | |||
3787 | put_cpu_var(perf_cpu_context); | 3896 | put_cpu_var(perf_cpu_context); |
3788 | } | 3897 | } |
3789 | 3898 | ||
3790 | void __perf_swcounter_event(u32 event, u64 nr, int nmi, | 3899 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, |
3791 | struct pt_regs *regs, u64 addr) | 3900 | struct pt_regs *regs, u64 addr) |
3792 | { | 3901 | { |
3793 | struct perf_sample_data data = { | 3902 | struct perf_sample_data data = { |
3794 | .addr = addr, | 3903 | .addr = addr, |
3795 | }; | 3904 | }; |
3796 | 3905 | ||
3797 | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, | 3906 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, |
3798 | &data, regs); | 3907 | &data, regs); |
3799 | } | 3908 | } |
3800 | 3909 | ||
3801 | static void perf_swcounter_read(struct perf_counter *counter) | 3910 | static void perf_swevent_read(struct perf_event *event) |
3802 | { | 3911 | { |
3803 | } | 3912 | } |
3804 | 3913 | ||
3805 | static int perf_swcounter_enable(struct perf_counter *counter) | 3914 | static int perf_swevent_enable(struct perf_event *event) |
3806 | { | 3915 | { |
3807 | struct hw_perf_counter *hwc = &counter->hw; | 3916 | struct hw_perf_event *hwc = &event->hw; |
3808 | 3917 | ||
3809 | if (hwc->sample_period) { | 3918 | if (hwc->sample_period) { |
3810 | hwc->last_period = hwc->sample_period; | 3919 | hwc->last_period = hwc->sample_period; |
3811 | perf_swcounter_set_period(counter); | 3920 | perf_swevent_set_period(event); |
3812 | } | 3921 | } |
3813 | return 0; | 3922 | return 0; |
3814 | } | 3923 | } |
3815 | 3924 | ||
3816 | static void perf_swcounter_disable(struct perf_counter *counter) | 3925 | static void perf_swevent_disable(struct perf_event *event) |
3817 | { | 3926 | { |
3818 | } | 3927 | } |
3819 | 3928 | ||
3820 | static const struct pmu perf_ops_generic = { | 3929 | static const struct pmu perf_ops_generic = { |
3821 | .enable = perf_swcounter_enable, | 3930 | .enable = perf_swevent_enable, |
3822 | .disable = perf_swcounter_disable, | 3931 | .disable = perf_swevent_disable, |
3823 | .read = perf_swcounter_read, | 3932 | .read = perf_swevent_read, |
3824 | .unthrottle = perf_swcounter_unthrottle, | 3933 | .unthrottle = perf_swevent_unthrottle, |
3825 | }; | 3934 | }; |
3826 | 3935 | ||
3827 | /* | 3936 | /* |
3828 | * hrtimer based swcounter callback | 3937 | * hrtimer based swevent callback |
3829 | */ | 3938 | */ |
3830 | 3939 | ||
3831 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | 3940 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) |
3832 | { | 3941 | { |
3833 | enum hrtimer_restart ret = HRTIMER_RESTART; | 3942 | enum hrtimer_restart ret = HRTIMER_RESTART; |
3834 | struct perf_sample_data data; | 3943 | struct perf_sample_data data; |
3835 | struct pt_regs *regs; | 3944 | struct pt_regs *regs; |
3836 | struct perf_counter *counter; | 3945 | struct perf_event *event; |
3837 | u64 period; | 3946 | u64 period; |
3838 | 3947 | ||
3839 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | 3948 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); |
3840 | counter->pmu->read(counter); | 3949 | event->pmu->read(event); |
3841 | 3950 | ||
3842 | data.addr = 0; | 3951 | data.addr = 0; |
3843 | regs = get_irq_regs(); | 3952 | regs = get_irq_regs(); |
@@ -3845,45 +3954,45 @@ static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | |||
3845 | * In case we exclude kernel IPs or are somehow not in interrupt | 3954 | * In case we exclude kernel IPs or are somehow not in interrupt |
3846 | * context, provide the next best thing, the user IP. | 3955 | * context, provide the next best thing, the user IP. |
3847 | */ | 3956 | */ |
3848 | if ((counter->attr.exclude_kernel || !regs) && | 3957 | if ((event->attr.exclude_kernel || !regs) && |
3849 | !counter->attr.exclude_user) | 3958 | !event->attr.exclude_user) |
3850 | regs = task_pt_regs(current); | 3959 | regs = task_pt_regs(current); |
3851 | 3960 | ||
3852 | if (regs) { | 3961 | if (regs) { |
3853 | if (perf_counter_overflow(counter, 0, &data, regs)) | 3962 | if (perf_event_overflow(event, 0, &data, regs)) |
3854 | ret = HRTIMER_NORESTART; | 3963 | ret = HRTIMER_NORESTART; |
3855 | } | 3964 | } |
3856 | 3965 | ||
3857 | period = max_t(u64, 10000, counter->hw.sample_period); | 3966 | period = max_t(u64, 10000, event->hw.sample_period); |
3858 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | 3967 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); |
3859 | 3968 | ||
3860 | return ret; | 3969 | return ret; |
3861 | } | 3970 | } |
3862 | 3971 | ||
3863 | /* | 3972 | /* |
3864 | * Software counter: cpu wall time clock | 3973 | * Software event: cpu wall time clock |
3865 | */ | 3974 | */ |
3866 | 3975 | ||
3867 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | 3976 | static void cpu_clock_perf_event_update(struct perf_event *event) |
3868 | { | 3977 | { |
3869 | int cpu = raw_smp_processor_id(); | 3978 | int cpu = raw_smp_processor_id(); |
3870 | s64 prev; | 3979 | s64 prev; |
3871 | u64 now; | 3980 | u64 now; |
3872 | 3981 | ||
3873 | now = cpu_clock(cpu); | 3982 | now = cpu_clock(cpu); |
3874 | prev = atomic64_read(&counter->hw.prev_count); | 3983 | prev = atomic64_read(&event->hw.prev_count); |
3875 | atomic64_set(&counter->hw.prev_count, now); | 3984 | atomic64_set(&event->hw.prev_count, now); |
3876 | atomic64_add(now - prev, &counter->count); | 3985 | atomic64_add(now - prev, &event->count); |
3877 | } | 3986 | } |
3878 | 3987 | ||
3879 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | 3988 | static int cpu_clock_perf_event_enable(struct perf_event *event) |
3880 | { | 3989 | { |
3881 | struct hw_perf_counter *hwc = &counter->hw; | 3990 | struct hw_perf_event *hwc = &event->hw; |
3882 | int cpu = raw_smp_processor_id(); | 3991 | int cpu = raw_smp_processor_id(); |
3883 | 3992 | ||
3884 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | 3993 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); |
3885 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 3994 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
3886 | hwc->hrtimer.function = perf_swcounter_hrtimer; | 3995 | hwc->hrtimer.function = perf_swevent_hrtimer; |
3887 | if (hwc->sample_period) { | 3996 | if (hwc->sample_period) { |
3888 | u64 period = max_t(u64, 10000, hwc->sample_period); | 3997 | u64 period = max_t(u64, 10000, hwc->sample_period); |
3889 | __hrtimer_start_range_ns(&hwc->hrtimer, | 3998 | __hrtimer_start_range_ns(&hwc->hrtimer, |
@@ -3894,48 +4003,48 @@ static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | |||
3894 | return 0; | 4003 | return 0; |
3895 | } | 4004 | } |
3896 | 4005 | ||
3897 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | 4006 | static void cpu_clock_perf_event_disable(struct perf_event *event) |
3898 | { | 4007 | { |
3899 | if (counter->hw.sample_period) | 4008 | if (event->hw.sample_period) |
3900 | hrtimer_cancel(&counter->hw.hrtimer); | 4009 | hrtimer_cancel(&event->hw.hrtimer); |
3901 | cpu_clock_perf_counter_update(counter); | 4010 | cpu_clock_perf_event_update(event); |
3902 | } | 4011 | } |
3903 | 4012 | ||
3904 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | 4013 | static void cpu_clock_perf_event_read(struct perf_event *event) |
3905 | { | 4014 | { |
3906 | cpu_clock_perf_counter_update(counter); | 4015 | cpu_clock_perf_event_update(event); |
3907 | } | 4016 | } |
3908 | 4017 | ||
3909 | static const struct pmu perf_ops_cpu_clock = { | 4018 | static const struct pmu perf_ops_cpu_clock = { |
3910 | .enable = cpu_clock_perf_counter_enable, | 4019 | .enable = cpu_clock_perf_event_enable, |
3911 | .disable = cpu_clock_perf_counter_disable, | 4020 | .disable = cpu_clock_perf_event_disable, |
3912 | .read = cpu_clock_perf_counter_read, | 4021 | .read = cpu_clock_perf_event_read, |
3913 | }; | 4022 | }; |
3914 | 4023 | ||
3915 | /* | 4024 | /* |
3916 | * Software counter: task time clock | 4025 | * Software event: task time clock |
3917 | */ | 4026 | */ |
3918 | 4027 | ||
3919 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | 4028 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) |
3920 | { | 4029 | { |
3921 | u64 prev; | 4030 | u64 prev; |
3922 | s64 delta; | 4031 | s64 delta; |
3923 | 4032 | ||
3924 | prev = atomic64_xchg(&counter->hw.prev_count, now); | 4033 | prev = atomic64_xchg(&event->hw.prev_count, now); |
3925 | delta = now - prev; | 4034 | delta = now - prev; |
3926 | atomic64_add(delta, &counter->count); | 4035 | atomic64_add(delta, &event->count); |
3927 | } | 4036 | } |
3928 | 4037 | ||
3929 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | 4038 | static int task_clock_perf_event_enable(struct perf_event *event) |
3930 | { | 4039 | { |
3931 | struct hw_perf_counter *hwc = &counter->hw; | 4040 | struct hw_perf_event *hwc = &event->hw; |
3932 | u64 now; | 4041 | u64 now; |
3933 | 4042 | ||
3934 | now = counter->ctx->time; | 4043 | now = event->ctx->time; |
3935 | 4044 | ||
3936 | atomic64_set(&hwc->prev_count, now); | 4045 | atomic64_set(&hwc->prev_count, now); |
3937 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 4046 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
3938 | hwc->hrtimer.function = perf_swcounter_hrtimer; | 4047 | hwc->hrtimer.function = perf_swevent_hrtimer; |
3939 | if (hwc->sample_period) { | 4048 | if (hwc->sample_period) { |
3940 | u64 period = max_t(u64, 10000, hwc->sample_period); | 4049 | u64 period = max_t(u64, 10000, hwc->sample_period); |
3941 | __hrtimer_start_range_ns(&hwc->hrtimer, | 4050 | __hrtimer_start_range_ns(&hwc->hrtimer, |
@@ -3946,38 +4055,38 @@ static int task_clock_perf_counter_enable(struct perf_counter *counter) | |||
3946 | return 0; | 4055 | return 0; |
3947 | } | 4056 | } |
3948 | 4057 | ||
3949 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | 4058 | static void task_clock_perf_event_disable(struct perf_event *event) |
3950 | { | 4059 | { |
3951 | if (counter->hw.sample_period) | 4060 | if (event->hw.sample_period) |
3952 | hrtimer_cancel(&counter->hw.hrtimer); | 4061 | hrtimer_cancel(&event->hw.hrtimer); |
3953 | task_clock_perf_counter_update(counter, counter->ctx->time); | 4062 | task_clock_perf_event_update(event, event->ctx->time); |
3954 | 4063 | ||
3955 | } | 4064 | } |
3956 | 4065 | ||
3957 | static void task_clock_perf_counter_read(struct perf_counter *counter) | 4066 | static void task_clock_perf_event_read(struct perf_event *event) |
3958 | { | 4067 | { |
3959 | u64 time; | 4068 | u64 time; |
3960 | 4069 | ||
3961 | if (!in_nmi()) { | 4070 | if (!in_nmi()) { |
3962 | update_context_time(counter->ctx); | 4071 | update_context_time(event->ctx); |
3963 | time = counter->ctx->time; | 4072 | time = event->ctx->time; |
3964 | } else { | 4073 | } else { |
3965 | u64 now = perf_clock(); | 4074 | u64 now = perf_clock(); |
3966 | u64 delta = now - counter->ctx->timestamp; | 4075 | u64 delta = now - event->ctx->timestamp; |
3967 | time = counter->ctx->time + delta; | 4076 | time = event->ctx->time + delta; |
3968 | } | 4077 | } |
3969 | 4078 | ||
3970 | task_clock_perf_counter_update(counter, time); | 4079 | task_clock_perf_event_update(event, time); |
3971 | } | 4080 | } |
3972 | 4081 | ||
3973 | static const struct pmu perf_ops_task_clock = { | 4082 | static const struct pmu perf_ops_task_clock = { |
3974 | .enable = task_clock_perf_counter_enable, | 4083 | .enable = task_clock_perf_event_enable, |
3975 | .disable = task_clock_perf_counter_disable, | 4084 | .disable = task_clock_perf_event_disable, |
3976 | .read = task_clock_perf_counter_read, | 4085 | .read = task_clock_perf_event_read, |
3977 | }; | 4086 | }; |
3978 | 4087 | ||
3979 | #ifdef CONFIG_EVENT_PROFILE | 4088 | #ifdef CONFIG_EVENT_PROFILE |
3980 | void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | 4089 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, |
3981 | int entry_size) | 4090 | int entry_size) |
3982 | { | 4091 | { |
3983 | struct perf_raw_record raw = { | 4092 | struct perf_raw_record raw = { |
@@ -3995,78 +4104,78 @@ void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | |||
3995 | if (!regs) | 4104 | if (!regs) |
3996 | regs = task_pt_regs(current); | 4105 | regs = task_pt_regs(current); |
3997 | 4106 | ||
3998 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | 4107 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, |
3999 | &data, regs); | 4108 | &data, regs); |
4000 | } | 4109 | } |
4001 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | 4110 | EXPORT_SYMBOL_GPL(perf_tp_event); |
4002 | 4111 | ||
4003 | extern int ftrace_profile_enable(int); | 4112 | extern int ftrace_profile_enable(int); |
4004 | extern void ftrace_profile_disable(int); | 4113 | extern void ftrace_profile_disable(int); |
4005 | 4114 | ||
4006 | static void tp_perf_counter_destroy(struct perf_counter *counter) | 4115 | static void tp_perf_event_destroy(struct perf_event *event) |
4007 | { | 4116 | { |
4008 | ftrace_profile_disable(counter->attr.config); | 4117 | ftrace_profile_disable(event->attr.config); |
4009 | } | 4118 | } |
4010 | 4119 | ||
4011 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | 4120 | static const struct pmu *tp_perf_event_init(struct perf_event *event) |
4012 | { | 4121 | { |
4013 | /* | 4122 | /* |
4014 | * Raw tracepoint data is a severe data leak, only allow root to | 4123 | * Raw tracepoint data is a severe data leak, only allow root to |
4015 | * have these. | 4124 | * have these. |
4016 | */ | 4125 | */ |
4017 | if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && | 4126 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && |
4018 | perf_paranoid_tracepoint_raw() && | 4127 | perf_paranoid_tracepoint_raw() && |
4019 | !capable(CAP_SYS_ADMIN)) | 4128 | !capable(CAP_SYS_ADMIN)) |
4020 | return ERR_PTR(-EPERM); | 4129 | return ERR_PTR(-EPERM); |
4021 | 4130 | ||
4022 | if (ftrace_profile_enable(counter->attr.config)) | 4131 | if (ftrace_profile_enable(event->attr.config)) |
4023 | return NULL; | 4132 | return NULL; |
4024 | 4133 | ||
4025 | counter->destroy = tp_perf_counter_destroy; | 4134 | event->destroy = tp_perf_event_destroy; |
4026 | 4135 | ||
4027 | return &perf_ops_generic; | 4136 | return &perf_ops_generic; |
4028 | } | 4137 | } |
4029 | #else | 4138 | #else |
4030 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | 4139 | static const struct pmu *tp_perf_event_init(struct perf_event *event) |
4031 | { | 4140 | { |
4032 | return NULL; | 4141 | return NULL; |
4033 | } | 4142 | } |
4034 | #endif | 4143 | #endif |
4035 | 4144 | ||
4036 | atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX]; | 4145 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; |
4037 | 4146 | ||
4038 | static void sw_perf_counter_destroy(struct perf_counter *counter) | 4147 | static void sw_perf_event_destroy(struct perf_event *event) |
4039 | { | 4148 | { |
4040 | u64 event = counter->attr.config; | 4149 | u64 event_id = event->attr.config; |
4041 | 4150 | ||
4042 | WARN_ON(counter->parent); | 4151 | WARN_ON(event->parent); |
4043 | 4152 | ||
4044 | atomic_dec(&perf_swcounter_enabled[event]); | 4153 | atomic_dec(&perf_swevent_enabled[event_id]); |
4045 | } | 4154 | } |
4046 | 4155 | ||
4047 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | 4156 | static const struct pmu *sw_perf_event_init(struct perf_event *event) |
4048 | { | 4157 | { |
4049 | const struct pmu *pmu = NULL; | 4158 | const struct pmu *pmu = NULL; |
4050 | u64 event = counter->attr.config; | 4159 | u64 event_id = event->attr.config; |
4051 | 4160 | ||
4052 | /* | 4161 | /* |
4053 | * Software counters (currently) can't in general distinguish | 4162 | * Software events (currently) can't in general distinguish |
4054 | * between user, kernel and hypervisor events. | 4163 | * between user, kernel and hypervisor events. |
4055 | * However, context switches and cpu migrations are considered | 4164 | * However, context switches and cpu migrations are considered |
4056 | * to be kernel events, and page faults are never hypervisor | 4165 | * to be kernel events, and page faults are never hypervisor |
4057 | * events. | 4166 | * events. |
4058 | */ | 4167 | */ |
4059 | switch (event) { | 4168 | switch (event_id) { |
4060 | case PERF_COUNT_SW_CPU_CLOCK: | 4169 | case PERF_COUNT_SW_CPU_CLOCK: |
4061 | pmu = &perf_ops_cpu_clock; | 4170 | pmu = &perf_ops_cpu_clock; |
4062 | 4171 | ||
4063 | break; | 4172 | break; |
4064 | case PERF_COUNT_SW_TASK_CLOCK: | 4173 | case PERF_COUNT_SW_TASK_CLOCK: |
4065 | /* | 4174 | /* |
4066 | * If the user instantiates this as a per-cpu counter, | 4175 | * If the user instantiates this as a per-cpu event, |
4067 | * use the cpu_clock counter instead. | 4176 | * use the cpu_clock event instead. |
4068 | */ | 4177 | */ |
4069 | if (counter->ctx->task) | 4178 | if (event->ctx->task) |
4070 | pmu = &perf_ops_task_clock; | 4179 | pmu = &perf_ops_task_clock; |
4071 | else | 4180 | else |
4072 | pmu = &perf_ops_cpu_clock; | 4181 | pmu = &perf_ops_cpu_clock; |
@@ -4077,9 +4186,9 @@ static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | |||
4077 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | 4186 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: |
4078 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | 4187 | case PERF_COUNT_SW_CONTEXT_SWITCHES: |
4079 | case PERF_COUNT_SW_CPU_MIGRATIONS: | 4188 | case PERF_COUNT_SW_CPU_MIGRATIONS: |
4080 | if (!counter->parent) { | 4189 | if (!event->parent) { |
4081 | atomic_inc(&perf_swcounter_enabled[event]); | 4190 | atomic_inc(&perf_swevent_enabled[event_id]); |
4082 | counter->destroy = sw_perf_counter_destroy; | 4191 | event->destroy = sw_perf_event_destroy; |
4083 | } | 4192 | } |
4084 | pmu = &perf_ops_generic; | 4193 | pmu = &perf_ops_generic; |
4085 | break; | 4194 | break; |
@@ -4089,62 +4198,62 @@ static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | |||
4089 | } | 4198 | } |
4090 | 4199 | ||
4091 | /* | 4200 | /* |
4092 | * Allocate and initialize a counter structure | 4201 | * Allocate and initialize a event structure |
4093 | */ | 4202 | */ |
4094 | static struct perf_counter * | 4203 | static struct perf_event * |
4095 | perf_counter_alloc(struct perf_counter_attr *attr, | 4204 | perf_event_alloc(struct perf_event_attr *attr, |
4096 | int cpu, | 4205 | int cpu, |
4097 | struct perf_counter_context *ctx, | 4206 | struct perf_event_context *ctx, |
4098 | struct perf_counter *group_leader, | 4207 | struct perf_event *group_leader, |
4099 | struct perf_counter *parent_counter, | 4208 | struct perf_event *parent_event, |
4100 | gfp_t gfpflags) | 4209 | gfp_t gfpflags) |
4101 | { | 4210 | { |
4102 | const struct pmu *pmu; | 4211 | const struct pmu *pmu; |
4103 | struct perf_counter *counter; | 4212 | struct perf_event *event; |
4104 | struct hw_perf_counter *hwc; | 4213 | struct hw_perf_event *hwc; |
4105 | long err; | 4214 | long err; |
4106 | 4215 | ||
4107 | counter = kzalloc(sizeof(*counter), gfpflags); | 4216 | event = kzalloc(sizeof(*event), gfpflags); |
4108 | if (!counter) | 4217 | if (!event) |
4109 | return ERR_PTR(-ENOMEM); | 4218 | return ERR_PTR(-ENOMEM); |
4110 | 4219 | ||
4111 | /* | 4220 | /* |
4112 | * Single counters are their own group leaders, with an | 4221 | * Single events are their own group leaders, with an |
4113 | * empty sibling list: | 4222 | * empty sibling list: |
4114 | */ | 4223 | */ |
4115 | if (!group_leader) | 4224 | if (!group_leader) |
4116 | group_leader = counter; | 4225 | group_leader = event; |
4117 | 4226 | ||
4118 | mutex_init(&counter->child_mutex); | 4227 | mutex_init(&event->child_mutex); |
4119 | INIT_LIST_HEAD(&counter->child_list); | 4228 | INIT_LIST_HEAD(&event->child_list); |
4120 | 4229 | ||
4121 | INIT_LIST_HEAD(&counter->list_entry); | 4230 | INIT_LIST_HEAD(&event->group_entry); |
4122 | INIT_LIST_HEAD(&counter->event_entry); | 4231 | INIT_LIST_HEAD(&event->event_entry); |
4123 | INIT_LIST_HEAD(&counter->sibling_list); | 4232 | INIT_LIST_HEAD(&event->sibling_list); |
4124 | init_waitqueue_head(&counter->waitq); | 4233 | init_waitqueue_head(&event->waitq); |
4125 | 4234 | ||
4126 | mutex_init(&counter->mmap_mutex); | 4235 | mutex_init(&event->mmap_mutex); |
4127 | 4236 | ||
4128 | counter->cpu = cpu; | 4237 | event->cpu = cpu; |
4129 | counter->attr = *attr; | 4238 | event->attr = *attr; |
4130 | counter->group_leader = group_leader; | 4239 | event->group_leader = group_leader; |
4131 | counter->pmu = NULL; | 4240 | event->pmu = NULL; |
4132 | counter->ctx = ctx; | 4241 | event->ctx = ctx; |
4133 | counter->oncpu = -1; | 4242 | event->oncpu = -1; |
4134 | 4243 | ||
4135 | counter->parent = parent_counter; | 4244 | event->parent = parent_event; |
4136 | 4245 | ||
4137 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | 4246 | event->ns = get_pid_ns(current->nsproxy->pid_ns); |
4138 | counter->id = atomic64_inc_return(&perf_counter_id); | 4247 | event->id = atomic64_inc_return(&perf_event_id); |
4139 | 4248 | ||
4140 | counter->state = PERF_COUNTER_STATE_INACTIVE; | 4249 | event->state = PERF_EVENT_STATE_INACTIVE; |
4141 | 4250 | ||
4142 | if (attr->disabled) | 4251 | if (attr->disabled) |
4143 | counter->state = PERF_COUNTER_STATE_OFF; | 4252 | event->state = PERF_EVENT_STATE_OFF; |
4144 | 4253 | ||
4145 | pmu = NULL; | 4254 | pmu = NULL; |
4146 | 4255 | ||
4147 | hwc = &counter->hw; | 4256 | hwc = &event->hw; |
4148 | hwc->sample_period = attr->sample_period; | 4257 | hwc->sample_period = attr->sample_period; |
4149 | if (attr->freq && attr->sample_freq) | 4258 | if (attr->freq && attr->sample_freq) |
4150 | hwc->sample_period = 1; | 4259 | hwc->sample_period = 1; |
@@ -4153,7 +4262,7 @@ perf_counter_alloc(struct perf_counter_attr *attr, | |||
4153 | atomic64_set(&hwc->period_left, hwc->sample_period); | 4262 | atomic64_set(&hwc->period_left, hwc->sample_period); |
4154 | 4263 | ||
4155 | /* | 4264 | /* |
4156 | * we currently do not support PERF_FORMAT_GROUP on inherited counters | 4265 | * we currently do not support PERF_FORMAT_GROUP on inherited events |
4157 | */ | 4266 | */ |
4158 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | 4267 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) |
4159 | goto done; | 4268 | goto done; |
@@ -4162,15 +4271,15 @@ perf_counter_alloc(struct perf_counter_attr *attr, | |||
4162 | case PERF_TYPE_RAW: | 4271 | case PERF_TYPE_RAW: |
4163 | case PERF_TYPE_HARDWARE: | 4272 | case PERF_TYPE_HARDWARE: |
4164 | case PERF_TYPE_HW_CACHE: | 4273 | case PERF_TYPE_HW_CACHE: |
4165 | pmu = hw_perf_counter_init(counter); | 4274 | pmu = hw_perf_event_init(event); |
4166 | break; | 4275 | break; |
4167 | 4276 | ||
4168 | case PERF_TYPE_SOFTWARE: | 4277 | case PERF_TYPE_SOFTWARE: |
4169 | pmu = sw_perf_counter_init(counter); | 4278 | pmu = sw_perf_event_init(event); |
4170 | break; | 4279 | break; |
4171 | 4280 | ||
4172 | case PERF_TYPE_TRACEPOINT: | 4281 | case PERF_TYPE_TRACEPOINT: |
4173 | pmu = tp_perf_counter_init(counter); | 4282 | pmu = tp_perf_event_init(event); |
4174 | break; | 4283 | break; |
4175 | 4284 | ||
4176 | default: | 4285 | default: |
@@ -4184,29 +4293,29 @@ done: | |||
4184 | err = PTR_ERR(pmu); | 4293 | err = PTR_ERR(pmu); |
4185 | 4294 | ||
4186 | if (err) { | 4295 | if (err) { |
4187 | if (counter->ns) | 4296 | if (event->ns) |
4188 | put_pid_ns(counter->ns); | 4297 | put_pid_ns(event->ns); |
4189 | kfree(counter); | 4298 | kfree(event); |
4190 | return ERR_PTR(err); | 4299 | return ERR_PTR(err); |
4191 | } | 4300 | } |
4192 | 4301 | ||
4193 | counter->pmu = pmu; | 4302 | event->pmu = pmu; |
4194 | 4303 | ||
4195 | if (!counter->parent) { | 4304 | if (!event->parent) { |
4196 | atomic_inc(&nr_counters); | 4305 | atomic_inc(&nr_events); |
4197 | if (counter->attr.mmap) | 4306 | if (event->attr.mmap) |
4198 | atomic_inc(&nr_mmap_counters); | 4307 | atomic_inc(&nr_mmap_events); |
4199 | if (counter->attr.comm) | 4308 | if (event->attr.comm) |
4200 | atomic_inc(&nr_comm_counters); | 4309 | atomic_inc(&nr_comm_events); |
4201 | if (counter->attr.task) | 4310 | if (event->attr.task) |
4202 | atomic_inc(&nr_task_counters); | 4311 | atomic_inc(&nr_task_events); |
4203 | } | 4312 | } |
4204 | 4313 | ||
4205 | return counter; | 4314 | return event; |
4206 | } | 4315 | } |
4207 | 4316 | ||
4208 | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | 4317 | static int perf_copy_attr(struct perf_event_attr __user *uattr, |
4209 | struct perf_counter_attr *attr) | 4318 | struct perf_event_attr *attr) |
4210 | { | 4319 | { |
4211 | u32 size; | 4320 | u32 size; |
4212 | int ret; | 4321 | int ret; |
@@ -4285,11 +4394,11 @@ err_size: | |||
4285 | goto out; | 4394 | goto out; |
4286 | } | 4395 | } |
4287 | 4396 | ||
4288 | int perf_counter_set_output(struct perf_counter *counter, int output_fd) | 4397 | int perf_event_set_output(struct perf_event *event, int output_fd) |
4289 | { | 4398 | { |
4290 | struct perf_counter *output_counter = NULL; | 4399 | struct perf_event *output_event = NULL; |
4291 | struct file *output_file = NULL; | 4400 | struct file *output_file = NULL; |
4292 | struct perf_counter *old_output; | 4401 | struct perf_event *old_output; |
4293 | int fput_needed = 0; | 4402 | int fput_needed = 0; |
4294 | int ret = -EINVAL; | 4403 | int ret = -EINVAL; |
4295 | 4404 | ||
@@ -4303,28 +4412,28 @@ int perf_counter_set_output(struct perf_counter *counter, int output_fd) | |||
4303 | if (output_file->f_op != &perf_fops) | 4412 | if (output_file->f_op != &perf_fops) |
4304 | goto out; | 4413 | goto out; |
4305 | 4414 | ||
4306 | output_counter = output_file->private_data; | 4415 | output_event = output_file->private_data; |
4307 | 4416 | ||
4308 | /* Don't chain output fds */ | 4417 | /* Don't chain output fds */ |
4309 | if (output_counter->output) | 4418 | if (output_event->output) |
4310 | goto out; | 4419 | goto out; |
4311 | 4420 | ||
4312 | /* Don't set an output fd when we already have an output channel */ | 4421 | /* Don't set an output fd when we already have an output channel */ |
4313 | if (counter->data) | 4422 | if (event->data) |
4314 | goto out; | 4423 | goto out; |
4315 | 4424 | ||
4316 | atomic_long_inc(&output_file->f_count); | 4425 | atomic_long_inc(&output_file->f_count); |
4317 | 4426 | ||
4318 | set: | 4427 | set: |
4319 | mutex_lock(&counter->mmap_mutex); | 4428 | mutex_lock(&event->mmap_mutex); |
4320 | old_output = counter->output; | 4429 | old_output = event->output; |
4321 | rcu_assign_pointer(counter->output, output_counter); | 4430 | rcu_assign_pointer(event->output, output_event); |
4322 | mutex_unlock(&counter->mmap_mutex); | 4431 | mutex_unlock(&event->mmap_mutex); |
4323 | 4432 | ||
4324 | if (old_output) { | 4433 | if (old_output) { |
4325 | /* | 4434 | /* |
4326 | * we need to make sure no existing perf_output_*() | 4435 | * we need to make sure no existing perf_output_*() |
4327 | * is still referencing this counter. | 4436 | * is still referencing this event. |
4328 | */ | 4437 | */ |
4329 | synchronize_rcu(); | 4438 | synchronize_rcu(); |
4330 | fput(old_output->filp); | 4439 | fput(old_output->filp); |
@@ -4337,21 +4446,21 @@ out: | |||
4337 | } | 4446 | } |
4338 | 4447 | ||
4339 | /** | 4448 | /** |
4340 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | 4449 | * sys_perf_event_open - open a performance event, associate it to a task/cpu |
4341 | * | 4450 | * |
4342 | * @attr_uptr: event type attributes for monitoring/sampling | 4451 | * @attr_uptr: event_id type attributes for monitoring/sampling |
4343 | * @pid: target pid | 4452 | * @pid: target pid |
4344 | * @cpu: target cpu | 4453 | * @cpu: target cpu |
4345 | * @group_fd: group leader counter fd | 4454 | * @group_fd: group leader event fd |
4346 | */ | 4455 | */ |
4347 | SYSCALL_DEFINE5(perf_counter_open, | 4456 | SYSCALL_DEFINE5(perf_event_open, |
4348 | struct perf_counter_attr __user *, attr_uptr, | 4457 | struct perf_event_attr __user *, attr_uptr, |
4349 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | 4458 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) |
4350 | { | 4459 | { |
4351 | struct perf_counter *counter, *group_leader; | 4460 | struct perf_event *event, *group_leader; |
4352 | struct perf_counter_attr attr; | 4461 | struct perf_event_attr attr; |
4353 | struct perf_counter_context *ctx; | 4462 | struct perf_event_context *ctx; |
4354 | struct file *counter_file = NULL; | 4463 | struct file *event_file = NULL; |
4355 | struct file *group_file = NULL; | 4464 | struct file *group_file = NULL; |
4356 | int fput_needed = 0; | 4465 | int fput_needed = 0; |
4357 | int fput_needed2 = 0; | 4466 | int fput_needed2 = 0; |
@@ -4371,7 +4480,7 @@ SYSCALL_DEFINE5(perf_counter_open, | |||
4371 | } | 4480 | } |
4372 | 4481 | ||
4373 | if (attr.freq) { | 4482 | if (attr.freq) { |
4374 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | 4483 | if (attr.sample_freq > sysctl_perf_event_sample_rate) |
4375 | return -EINVAL; | 4484 | return -EINVAL; |
4376 | } | 4485 | } |
4377 | 4486 | ||
@@ -4383,7 +4492,7 @@ SYSCALL_DEFINE5(perf_counter_open, | |||
4383 | return PTR_ERR(ctx); | 4492 | return PTR_ERR(ctx); |
4384 | 4493 | ||
4385 | /* | 4494 | /* |
4386 | * Look up the group leader (we will attach this counter to it): | 4495 | * Look up the group leader (we will attach this event to it): |
4387 | */ | 4496 | */ |
4388 | group_leader = NULL; | 4497 | group_leader = NULL; |
4389 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | 4498 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { |
@@ -4414,45 +4523,45 @@ SYSCALL_DEFINE5(perf_counter_open, | |||
4414 | goto err_put_context; | 4523 | goto err_put_context; |
4415 | } | 4524 | } |
4416 | 4525 | ||
4417 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | 4526 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, |
4418 | NULL, GFP_KERNEL); | 4527 | NULL, GFP_KERNEL); |
4419 | err = PTR_ERR(counter); | 4528 | err = PTR_ERR(event); |
4420 | if (IS_ERR(counter)) | 4529 | if (IS_ERR(event)) |
4421 | goto err_put_context; | 4530 | goto err_put_context; |
4422 | 4531 | ||
4423 | err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | 4532 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); |
4424 | if (err < 0) | 4533 | if (err < 0) |
4425 | goto err_free_put_context; | 4534 | goto err_free_put_context; |
4426 | 4535 | ||
4427 | counter_file = fget_light(err, &fput_needed2); | 4536 | event_file = fget_light(err, &fput_needed2); |
4428 | if (!counter_file) | 4537 | if (!event_file) |
4429 | goto err_free_put_context; | 4538 | goto err_free_put_context; |
4430 | 4539 | ||
4431 | if (flags & PERF_FLAG_FD_OUTPUT) { | 4540 | if (flags & PERF_FLAG_FD_OUTPUT) { |
4432 | err = perf_counter_set_output(counter, group_fd); | 4541 | err = perf_event_set_output(event, group_fd); |
4433 | if (err) | 4542 | if (err) |
4434 | goto err_fput_free_put_context; | 4543 | goto err_fput_free_put_context; |
4435 | } | 4544 | } |
4436 | 4545 | ||
4437 | counter->filp = counter_file; | 4546 | event->filp = event_file; |
4438 | WARN_ON_ONCE(ctx->parent_ctx); | 4547 | WARN_ON_ONCE(ctx->parent_ctx); |
4439 | mutex_lock(&ctx->mutex); | 4548 | mutex_lock(&ctx->mutex); |
4440 | perf_install_in_context(ctx, counter, cpu); | 4549 | perf_install_in_context(ctx, event, cpu); |
4441 | ++ctx->generation; | 4550 | ++ctx->generation; |
4442 | mutex_unlock(&ctx->mutex); | 4551 | mutex_unlock(&ctx->mutex); |
4443 | 4552 | ||
4444 | counter->owner = current; | 4553 | event->owner = current; |
4445 | get_task_struct(current); | 4554 | get_task_struct(current); |
4446 | mutex_lock(¤t->perf_counter_mutex); | 4555 | mutex_lock(¤t->perf_event_mutex); |
4447 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | 4556 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); |
4448 | mutex_unlock(¤t->perf_counter_mutex); | 4557 | mutex_unlock(¤t->perf_event_mutex); |
4449 | 4558 | ||
4450 | err_fput_free_put_context: | 4559 | err_fput_free_put_context: |
4451 | fput_light(counter_file, fput_needed2); | 4560 | fput_light(event_file, fput_needed2); |
4452 | 4561 | ||
4453 | err_free_put_context: | 4562 | err_free_put_context: |
4454 | if (err < 0) | 4563 | if (err < 0) |
4455 | kfree(counter); | 4564 | kfree(event); |
4456 | 4565 | ||
4457 | err_put_context: | 4566 | err_put_context: |
4458 | if (err < 0) | 4567 | if (err < 0) |
@@ -4464,88 +4573,88 @@ err_put_context: | |||
4464 | } | 4573 | } |
4465 | 4574 | ||
4466 | /* | 4575 | /* |
4467 | * inherit a counter from parent task to child task: | 4576 | * inherit a event from parent task to child task: |
4468 | */ | 4577 | */ |
4469 | static struct perf_counter * | 4578 | static struct perf_event * |
4470 | inherit_counter(struct perf_counter *parent_counter, | 4579 | inherit_event(struct perf_event *parent_event, |
4471 | struct task_struct *parent, | 4580 | struct task_struct *parent, |
4472 | struct perf_counter_context *parent_ctx, | 4581 | struct perf_event_context *parent_ctx, |
4473 | struct task_struct *child, | 4582 | struct task_struct *child, |
4474 | struct perf_counter *group_leader, | 4583 | struct perf_event *group_leader, |
4475 | struct perf_counter_context *child_ctx) | 4584 | struct perf_event_context *child_ctx) |
4476 | { | 4585 | { |
4477 | struct perf_counter *child_counter; | 4586 | struct perf_event *child_event; |
4478 | 4587 | ||
4479 | /* | 4588 | /* |
4480 | * Instead of creating recursive hierarchies of counters, | 4589 | * Instead of creating recursive hierarchies of events, |
4481 | * we link inherited counters back to the original parent, | 4590 | * we link inherited events back to the original parent, |
4482 | * which has a filp for sure, which we use as the reference | 4591 | * which has a filp for sure, which we use as the reference |
4483 | * count: | 4592 | * count: |
4484 | */ | 4593 | */ |
4485 | if (parent_counter->parent) | 4594 | if (parent_event->parent) |
4486 | parent_counter = parent_counter->parent; | 4595 | parent_event = parent_event->parent; |
4487 | 4596 | ||
4488 | child_counter = perf_counter_alloc(&parent_counter->attr, | 4597 | child_event = perf_event_alloc(&parent_event->attr, |
4489 | parent_counter->cpu, child_ctx, | 4598 | parent_event->cpu, child_ctx, |
4490 | group_leader, parent_counter, | 4599 | group_leader, parent_event, |
4491 | GFP_KERNEL); | 4600 | GFP_KERNEL); |
4492 | if (IS_ERR(child_counter)) | 4601 | if (IS_ERR(child_event)) |
4493 | return child_counter; | 4602 | return child_event; |
4494 | get_ctx(child_ctx); | 4603 | get_ctx(child_ctx); |
4495 | 4604 | ||
4496 | /* | 4605 | /* |
4497 | * Make the child state follow the state of the parent counter, | 4606 | * Make the child state follow the state of the parent event, |
4498 | * not its attr.disabled bit. We hold the parent's mutex, | 4607 | * not its attr.disabled bit. We hold the parent's mutex, |
4499 | * so we won't race with perf_counter_{en, dis}able_family. | 4608 | * so we won't race with perf_event_{en, dis}able_family. |
4500 | */ | 4609 | */ |
4501 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | 4610 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) |
4502 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | 4611 | child_event->state = PERF_EVENT_STATE_INACTIVE; |
4503 | else | 4612 | else |
4504 | child_counter->state = PERF_COUNTER_STATE_OFF; | 4613 | child_event->state = PERF_EVENT_STATE_OFF; |
4505 | 4614 | ||
4506 | if (parent_counter->attr.freq) | 4615 | if (parent_event->attr.freq) |
4507 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | 4616 | child_event->hw.sample_period = parent_event->hw.sample_period; |
4508 | 4617 | ||
4509 | /* | 4618 | /* |
4510 | * Link it up in the child's context: | 4619 | * Link it up in the child's context: |
4511 | */ | 4620 | */ |
4512 | add_counter_to_ctx(child_counter, child_ctx); | 4621 | add_event_to_ctx(child_event, child_ctx); |
4513 | 4622 | ||
4514 | /* | 4623 | /* |
4515 | * Get a reference to the parent filp - we will fput it | 4624 | * Get a reference to the parent filp - we will fput it |
4516 | * when the child counter exits. This is safe to do because | 4625 | * when the child event exits. This is safe to do because |
4517 | * we are in the parent and we know that the filp still | 4626 | * we are in the parent and we know that the filp still |
4518 | * exists and has a nonzero count: | 4627 | * exists and has a nonzero count: |
4519 | */ | 4628 | */ |
4520 | atomic_long_inc(&parent_counter->filp->f_count); | 4629 | atomic_long_inc(&parent_event->filp->f_count); |
4521 | 4630 | ||
4522 | /* | 4631 | /* |
4523 | * Link this into the parent counter's child list | 4632 | * Link this into the parent event's child list |
4524 | */ | 4633 | */ |
4525 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | 4634 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
4526 | mutex_lock(&parent_counter->child_mutex); | 4635 | mutex_lock(&parent_event->child_mutex); |
4527 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | 4636 | list_add_tail(&child_event->child_list, &parent_event->child_list); |
4528 | mutex_unlock(&parent_counter->child_mutex); | 4637 | mutex_unlock(&parent_event->child_mutex); |
4529 | 4638 | ||
4530 | return child_counter; | 4639 | return child_event; |
4531 | } | 4640 | } |
4532 | 4641 | ||
4533 | static int inherit_group(struct perf_counter *parent_counter, | 4642 | static int inherit_group(struct perf_event *parent_event, |
4534 | struct task_struct *parent, | 4643 | struct task_struct *parent, |
4535 | struct perf_counter_context *parent_ctx, | 4644 | struct perf_event_context *parent_ctx, |
4536 | struct task_struct *child, | 4645 | struct task_struct *child, |
4537 | struct perf_counter_context *child_ctx) | 4646 | struct perf_event_context *child_ctx) |
4538 | { | 4647 | { |
4539 | struct perf_counter *leader; | 4648 | struct perf_event *leader; |
4540 | struct perf_counter *sub; | 4649 | struct perf_event *sub; |
4541 | struct perf_counter *child_ctr; | 4650 | struct perf_event *child_ctr; |
4542 | 4651 | ||
4543 | leader = inherit_counter(parent_counter, parent, parent_ctx, | 4652 | leader = inherit_event(parent_event, parent, parent_ctx, |
4544 | child, NULL, child_ctx); | 4653 | child, NULL, child_ctx); |
4545 | if (IS_ERR(leader)) | 4654 | if (IS_ERR(leader)) |
4546 | return PTR_ERR(leader); | 4655 | return PTR_ERR(leader); |
4547 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | 4656 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { |
4548 | child_ctr = inherit_counter(sub, parent, parent_ctx, | 4657 | child_ctr = inherit_event(sub, parent, parent_ctx, |
4549 | child, leader, child_ctx); | 4658 | child, leader, child_ctx); |
4550 | if (IS_ERR(child_ctr)) | 4659 | if (IS_ERR(child_ctr)) |
4551 | return PTR_ERR(child_ctr); | 4660 | return PTR_ERR(child_ctr); |
@@ -4553,74 +4662,74 @@ static int inherit_group(struct perf_counter *parent_counter, | |||
4553 | return 0; | 4662 | return 0; |
4554 | } | 4663 | } |
4555 | 4664 | ||
4556 | static void sync_child_counter(struct perf_counter *child_counter, | 4665 | static void sync_child_event(struct perf_event *child_event, |
4557 | struct task_struct *child) | 4666 | struct task_struct *child) |
4558 | { | 4667 | { |
4559 | struct perf_counter *parent_counter = child_counter->parent; | 4668 | struct perf_event *parent_event = child_event->parent; |
4560 | u64 child_val; | 4669 | u64 child_val; |
4561 | 4670 | ||
4562 | if (child_counter->attr.inherit_stat) | 4671 | if (child_event->attr.inherit_stat) |
4563 | perf_counter_read_event(child_counter, child); | 4672 | perf_event_read_event(child_event, child); |
4564 | 4673 | ||
4565 | child_val = atomic64_read(&child_counter->count); | 4674 | child_val = atomic64_read(&child_event->count); |
4566 | 4675 | ||
4567 | /* | 4676 | /* |
4568 | * Add back the child's count to the parent's count: | 4677 | * Add back the child's count to the parent's count: |
4569 | */ | 4678 | */ |
4570 | atomic64_add(child_val, &parent_counter->count); | 4679 | atomic64_add(child_val, &parent_event->count); |
4571 | atomic64_add(child_counter->total_time_enabled, | 4680 | atomic64_add(child_event->total_time_enabled, |
4572 | &parent_counter->child_total_time_enabled); | 4681 | &parent_event->child_total_time_enabled); |
4573 | atomic64_add(child_counter->total_time_running, | 4682 | atomic64_add(child_event->total_time_running, |
4574 | &parent_counter->child_total_time_running); | 4683 | &parent_event->child_total_time_running); |
4575 | 4684 | ||
4576 | /* | 4685 | /* |
4577 | * Remove this counter from the parent's list | 4686 | * Remove this event from the parent's list |
4578 | */ | 4687 | */ |
4579 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | 4688 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
4580 | mutex_lock(&parent_counter->child_mutex); | 4689 | mutex_lock(&parent_event->child_mutex); |
4581 | list_del_init(&child_counter->child_list); | 4690 | list_del_init(&child_event->child_list); |
4582 | mutex_unlock(&parent_counter->child_mutex); | 4691 | mutex_unlock(&parent_event->child_mutex); |
4583 | 4692 | ||
4584 | /* | 4693 | /* |
4585 | * Release the parent counter, if this was the last | 4694 | * Release the parent event, if this was the last |
4586 | * reference to it. | 4695 | * reference to it. |
4587 | */ | 4696 | */ |
4588 | fput(parent_counter->filp); | 4697 | fput(parent_event->filp); |
4589 | } | 4698 | } |
4590 | 4699 | ||
4591 | static void | 4700 | static void |
4592 | __perf_counter_exit_task(struct perf_counter *child_counter, | 4701 | __perf_event_exit_task(struct perf_event *child_event, |
4593 | struct perf_counter_context *child_ctx, | 4702 | struct perf_event_context *child_ctx, |
4594 | struct task_struct *child) | 4703 | struct task_struct *child) |
4595 | { | 4704 | { |
4596 | struct perf_counter *parent_counter; | 4705 | struct perf_event *parent_event; |
4597 | 4706 | ||
4598 | update_counter_times(child_counter); | 4707 | update_event_times(child_event); |
4599 | perf_counter_remove_from_context(child_counter); | 4708 | perf_event_remove_from_context(child_event); |
4600 | 4709 | ||
4601 | parent_counter = child_counter->parent; | 4710 | parent_event = child_event->parent; |
4602 | /* | 4711 | /* |
4603 | * It can happen that parent exits first, and has counters | 4712 | * It can happen that parent exits first, and has events |
4604 | * that are still around due to the child reference. These | 4713 | * that are still around due to the child reference. These |
4605 | * counters need to be zapped - but otherwise linger. | 4714 | * events need to be zapped - but otherwise linger. |
4606 | */ | 4715 | */ |
4607 | if (parent_counter) { | 4716 | if (parent_event) { |
4608 | sync_child_counter(child_counter, child); | 4717 | sync_child_event(child_event, child); |
4609 | free_counter(child_counter); | 4718 | free_event(child_event); |
4610 | } | 4719 | } |
4611 | } | 4720 | } |
4612 | 4721 | ||
4613 | /* | 4722 | /* |
4614 | * When a child task exits, feed back counter values to parent counters. | 4723 | * When a child task exits, feed back event values to parent events. |
4615 | */ | 4724 | */ |
4616 | void perf_counter_exit_task(struct task_struct *child) | 4725 | void perf_event_exit_task(struct task_struct *child) |
4617 | { | 4726 | { |
4618 | struct perf_counter *child_counter, *tmp; | 4727 | struct perf_event *child_event, *tmp; |
4619 | struct perf_counter_context *child_ctx; | 4728 | struct perf_event_context *child_ctx; |
4620 | unsigned long flags; | 4729 | unsigned long flags; |
4621 | 4730 | ||
4622 | if (likely(!child->perf_counter_ctxp)) { | 4731 | if (likely(!child->perf_event_ctxp)) { |
4623 | perf_counter_task(child, NULL, 0); | 4732 | perf_event_task(child, NULL, 0); |
4624 | return; | 4733 | return; |
4625 | } | 4734 | } |
4626 | 4735 | ||
@@ -4631,37 +4740,37 @@ void perf_counter_exit_task(struct task_struct *child) | |||
4631 | * scheduled, so we are now safe from rescheduling changing | 4740 | * scheduled, so we are now safe from rescheduling changing |
4632 | * our context. | 4741 | * our context. |
4633 | */ | 4742 | */ |
4634 | child_ctx = child->perf_counter_ctxp; | 4743 | child_ctx = child->perf_event_ctxp; |
4635 | __perf_counter_task_sched_out(child_ctx); | 4744 | __perf_event_task_sched_out(child_ctx); |
4636 | 4745 | ||
4637 | /* | 4746 | /* |
4638 | * Take the context lock here so that if find_get_context is | 4747 | * Take the context lock here so that if find_get_context is |
4639 | * reading child->perf_counter_ctxp, we wait until it has | 4748 | * reading child->perf_event_ctxp, we wait until it has |
4640 | * incremented the context's refcount before we do put_ctx below. | 4749 | * incremented the context's refcount before we do put_ctx below. |
4641 | */ | 4750 | */ |
4642 | spin_lock(&child_ctx->lock); | 4751 | spin_lock(&child_ctx->lock); |
4643 | child->perf_counter_ctxp = NULL; | 4752 | child->perf_event_ctxp = NULL; |
4644 | /* | 4753 | /* |
4645 | * If this context is a clone; unclone it so it can't get | 4754 | * If this context is a clone; unclone it so it can't get |
4646 | * swapped to another process while we're removing all | 4755 | * swapped to another process while we're removing all |
4647 | * the counters from it. | 4756 | * the events from it. |
4648 | */ | 4757 | */ |
4649 | unclone_ctx(child_ctx); | 4758 | unclone_ctx(child_ctx); |
4650 | spin_unlock_irqrestore(&child_ctx->lock, flags); | 4759 | spin_unlock_irqrestore(&child_ctx->lock, flags); |
4651 | 4760 | ||
4652 | /* | 4761 | /* |
4653 | * Report the task dead after unscheduling the counters so that we | 4762 | * Report the task dead after unscheduling the events so that we |
4654 | * won't get any samples after PERF_EVENT_EXIT. We can however still | 4763 | * won't get any samples after PERF_RECORD_EXIT. We can however still |
4655 | * get a few PERF_EVENT_READ events. | 4764 | * get a few PERF_RECORD_READ events. |
4656 | */ | 4765 | */ |
4657 | perf_counter_task(child, child_ctx, 0); | 4766 | perf_event_task(child, child_ctx, 0); |
4658 | 4767 | ||
4659 | /* | 4768 | /* |
4660 | * We can recurse on the same lock type through: | 4769 | * We can recurse on the same lock type through: |
4661 | * | 4770 | * |
4662 | * __perf_counter_exit_task() | 4771 | * __perf_event_exit_task() |
4663 | * sync_child_counter() | 4772 | * sync_child_event() |
4664 | * fput(parent_counter->filp) | 4773 | * fput(parent_event->filp) |
4665 | * perf_release() | 4774 | * perf_release() |
4666 | * mutex_lock(&ctx->mutex) | 4775 | * mutex_lock(&ctx->mutex) |
4667 | * | 4776 | * |
@@ -4670,16 +4779,16 @@ void perf_counter_exit_task(struct task_struct *child) | |||
4670 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | 4779 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); |
4671 | 4780 | ||
4672 | again: | 4781 | again: |
4673 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | 4782 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, |
4674 | list_entry) | 4783 | group_entry) |
4675 | __perf_counter_exit_task(child_counter, child_ctx, child); | 4784 | __perf_event_exit_task(child_event, child_ctx, child); |
4676 | 4785 | ||
4677 | /* | 4786 | /* |
4678 | * If the last counter was a group counter, it will have appended all | 4787 | * If the last event was a group event, it will have appended all |
4679 | * its siblings to the list, but we obtained 'tmp' before that which | 4788 | * its siblings to the list, but we obtained 'tmp' before that which |
4680 | * will still point to the list head terminating the iteration. | 4789 | * will still point to the list head terminating the iteration. |
4681 | */ | 4790 | */ |
4682 | if (!list_empty(&child_ctx->counter_list)) | 4791 | if (!list_empty(&child_ctx->group_list)) |
4683 | goto again; | 4792 | goto again; |
4684 | 4793 | ||
4685 | mutex_unlock(&child_ctx->mutex); | 4794 | mutex_unlock(&child_ctx->mutex); |
@@ -4691,33 +4800,33 @@ again: | |||
4691 | * free an unexposed, unused context as created by inheritance by | 4800 | * free an unexposed, unused context as created by inheritance by |
4692 | * init_task below, used by fork() in case of fail. | 4801 | * init_task below, used by fork() in case of fail. |
4693 | */ | 4802 | */ |
4694 | void perf_counter_free_task(struct task_struct *task) | 4803 | void perf_event_free_task(struct task_struct *task) |
4695 | { | 4804 | { |
4696 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | 4805 | struct perf_event_context *ctx = task->perf_event_ctxp; |
4697 | struct perf_counter *counter, *tmp; | 4806 | struct perf_event *event, *tmp; |
4698 | 4807 | ||
4699 | if (!ctx) | 4808 | if (!ctx) |
4700 | return; | 4809 | return; |
4701 | 4810 | ||
4702 | mutex_lock(&ctx->mutex); | 4811 | mutex_lock(&ctx->mutex); |
4703 | again: | 4812 | again: |
4704 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | 4813 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { |
4705 | struct perf_counter *parent = counter->parent; | 4814 | struct perf_event *parent = event->parent; |
4706 | 4815 | ||
4707 | if (WARN_ON_ONCE(!parent)) | 4816 | if (WARN_ON_ONCE(!parent)) |
4708 | continue; | 4817 | continue; |
4709 | 4818 | ||
4710 | mutex_lock(&parent->child_mutex); | 4819 | mutex_lock(&parent->child_mutex); |
4711 | list_del_init(&counter->child_list); | 4820 | list_del_init(&event->child_list); |
4712 | mutex_unlock(&parent->child_mutex); | 4821 | mutex_unlock(&parent->child_mutex); |
4713 | 4822 | ||
4714 | fput(parent->filp); | 4823 | fput(parent->filp); |
4715 | 4824 | ||
4716 | list_del_counter(counter, ctx); | 4825 | list_del_event(event, ctx); |
4717 | free_counter(counter); | 4826 | free_event(event); |
4718 | } | 4827 | } |
4719 | 4828 | ||
4720 | if (!list_empty(&ctx->counter_list)) | 4829 | if (!list_empty(&ctx->group_list)) |
4721 | goto again; | 4830 | goto again; |
4722 | 4831 | ||
4723 | mutex_unlock(&ctx->mutex); | 4832 | mutex_unlock(&ctx->mutex); |
@@ -4726,37 +4835,37 @@ again: | |||
4726 | } | 4835 | } |
4727 | 4836 | ||
4728 | /* | 4837 | /* |
4729 | * Initialize the perf_counter context in task_struct | 4838 | * Initialize the perf_event context in task_struct |
4730 | */ | 4839 | */ |
4731 | int perf_counter_init_task(struct task_struct *child) | 4840 | int perf_event_init_task(struct task_struct *child) |
4732 | { | 4841 | { |
4733 | struct perf_counter_context *child_ctx, *parent_ctx; | 4842 | struct perf_event_context *child_ctx, *parent_ctx; |
4734 | struct perf_counter_context *cloned_ctx; | 4843 | struct perf_event_context *cloned_ctx; |
4735 | struct perf_counter *counter; | 4844 | struct perf_event *event; |
4736 | struct task_struct *parent = current; | 4845 | struct task_struct *parent = current; |
4737 | int inherited_all = 1; | 4846 | int inherited_all = 1; |
4738 | int ret = 0; | 4847 | int ret = 0; |
4739 | 4848 | ||
4740 | child->perf_counter_ctxp = NULL; | 4849 | child->perf_event_ctxp = NULL; |
4741 | 4850 | ||
4742 | mutex_init(&child->perf_counter_mutex); | 4851 | mutex_init(&child->perf_event_mutex); |
4743 | INIT_LIST_HEAD(&child->perf_counter_list); | 4852 | INIT_LIST_HEAD(&child->perf_event_list); |
4744 | 4853 | ||
4745 | if (likely(!parent->perf_counter_ctxp)) | 4854 | if (likely(!parent->perf_event_ctxp)) |
4746 | return 0; | 4855 | return 0; |
4747 | 4856 | ||
4748 | /* | 4857 | /* |
4749 | * This is executed from the parent task context, so inherit | 4858 | * This is executed from the parent task context, so inherit |
4750 | * counters that have been marked for cloning. | 4859 | * events that have been marked for cloning. |
4751 | * First allocate and initialize a context for the child. | 4860 | * First allocate and initialize a context for the child. |
4752 | */ | 4861 | */ |
4753 | 4862 | ||
4754 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | 4863 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); |
4755 | if (!child_ctx) | 4864 | if (!child_ctx) |
4756 | return -ENOMEM; | 4865 | return -ENOMEM; |
4757 | 4866 | ||
4758 | __perf_counter_init_context(child_ctx, child); | 4867 | __perf_event_init_context(child_ctx, child); |
4759 | child->perf_counter_ctxp = child_ctx; | 4868 | child->perf_event_ctxp = child_ctx; |
4760 | get_task_struct(child); | 4869 | get_task_struct(child); |
4761 | 4870 | ||
4762 | /* | 4871 | /* |
@@ -4782,16 +4891,14 @@ int perf_counter_init_task(struct task_struct *child) | |||
4782 | * We dont have to disable NMIs - we are only looking at | 4891 | * We dont have to disable NMIs - we are only looking at |
4783 | * the list, not manipulating it: | 4892 | * the list, not manipulating it: |
4784 | */ | 4893 | */ |
4785 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | 4894 | list_for_each_entry(event, &parent_ctx->group_list, group_entry) { |
4786 | if (counter != counter->group_leader) | ||
4787 | continue; | ||
4788 | 4895 | ||
4789 | if (!counter->attr.inherit) { | 4896 | if (!event->attr.inherit) { |
4790 | inherited_all = 0; | 4897 | inherited_all = 0; |
4791 | continue; | 4898 | continue; |
4792 | } | 4899 | } |
4793 | 4900 | ||
4794 | ret = inherit_group(counter, parent, parent_ctx, | 4901 | ret = inherit_group(event, parent, parent_ctx, |
4795 | child, child_ctx); | 4902 | child, child_ctx); |
4796 | if (ret) { | 4903 | if (ret) { |
4797 | inherited_all = 0; | 4904 | inherited_all = 0; |
@@ -4805,7 +4912,7 @@ int perf_counter_init_task(struct task_struct *child) | |||
4805 | * context, or of whatever the parent is a clone of. | 4912 | * context, or of whatever the parent is a clone of. |
4806 | * Note that if the parent is a clone, it could get | 4913 | * Note that if the parent is a clone, it could get |
4807 | * uncloned at any point, but that doesn't matter | 4914 | * uncloned at any point, but that doesn't matter |
4808 | * because the list of counters and the generation | 4915 | * because the list of events and the generation |
4809 | * count can't have changed since we took the mutex. | 4916 | * count can't have changed since we took the mutex. |
4810 | */ | 4917 | */ |
4811 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | 4918 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); |
@@ -4826,41 +4933,41 @@ int perf_counter_init_task(struct task_struct *child) | |||
4826 | return ret; | 4933 | return ret; |
4827 | } | 4934 | } |
4828 | 4935 | ||
4829 | static void __cpuinit perf_counter_init_cpu(int cpu) | 4936 | static void __cpuinit perf_event_init_cpu(int cpu) |
4830 | { | 4937 | { |
4831 | struct perf_cpu_context *cpuctx; | 4938 | struct perf_cpu_context *cpuctx; |
4832 | 4939 | ||
4833 | cpuctx = &per_cpu(perf_cpu_context, cpu); | 4940 | cpuctx = &per_cpu(perf_cpu_context, cpu); |
4834 | __perf_counter_init_context(&cpuctx->ctx, NULL); | 4941 | __perf_event_init_context(&cpuctx->ctx, NULL); |
4835 | 4942 | ||
4836 | spin_lock(&perf_resource_lock); | 4943 | spin_lock(&perf_resource_lock); |
4837 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | 4944 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; |
4838 | spin_unlock(&perf_resource_lock); | 4945 | spin_unlock(&perf_resource_lock); |
4839 | 4946 | ||
4840 | hw_perf_counter_setup(cpu); | 4947 | hw_perf_event_setup(cpu); |
4841 | } | 4948 | } |
4842 | 4949 | ||
4843 | #ifdef CONFIG_HOTPLUG_CPU | 4950 | #ifdef CONFIG_HOTPLUG_CPU |
4844 | static void __perf_counter_exit_cpu(void *info) | 4951 | static void __perf_event_exit_cpu(void *info) |
4845 | { | 4952 | { |
4846 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 4953 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
4847 | struct perf_counter_context *ctx = &cpuctx->ctx; | 4954 | struct perf_event_context *ctx = &cpuctx->ctx; |
4848 | struct perf_counter *counter, *tmp; | 4955 | struct perf_event *event, *tmp; |
4849 | 4956 | ||
4850 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | 4957 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) |
4851 | __perf_counter_remove_from_context(counter); | 4958 | __perf_event_remove_from_context(event); |
4852 | } | 4959 | } |
4853 | static void perf_counter_exit_cpu(int cpu) | 4960 | static void perf_event_exit_cpu(int cpu) |
4854 | { | 4961 | { |
4855 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 4962 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
4856 | struct perf_counter_context *ctx = &cpuctx->ctx; | 4963 | struct perf_event_context *ctx = &cpuctx->ctx; |
4857 | 4964 | ||
4858 | mutex_lock(&ctx->mutex); | 4965 | mutex_lock(&ctx->mutex); |
4859 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | 4966 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); |
4860 | mutex_unlock(&ctx->mutex); | 4967 | mutex_unlock(&ctx->mutex); |
4861 | } | 4968 | } |
4862 | #else | 4969 | #else |
4863 | static inline void perf_counter_exit_cpu(int cpu) { } | 4970 | static inline void perf_event_exit_cpu(int cpu) { } |
4864 | #endif | 4971 | #endif |
4865 | 4972 | ||
4866 | static int __cpuinit | 4973 | static int __cpuinit |
@@ -4872,17 +4979,17 @@ perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | |||
4872 | 4979 | ||
4873 | case CPU_UP_PREPARE: | 4980 | case CPU_UP_PREPARE: |
4874 | case CPU_UP_PREPARE_FROZEN: | 4981 | case CPU_UP_PREPARE_FROZEN: |
4875 | perf_counter_init_cpu(cpu); | 4982 | perf_event_init_cpu(cpu); |
4876 | break; | 4983 | break; |
4877 | 4984 | ||
4878 | case CPU_ONLINE: | 4985 | case CPU_ONLINE: |
4879 | case CPU_ONLINE_FROZEN: | 4986 | case CPU_ONLINE_FROZEN: |
4880 | hw_perf_counter_setup_online(cpu); | 4987 | hw_perf_event_setup_online(cpu); |
4881 | break; | 4988 | break; |
4882 | 4989 | ||
4883 | case CPU_DOWN_PREPARE: | 4990 | case CPU_DOWN_PREPARE: |
4884 | case CPU_DOWN_PREPARE_FROZEN: | 4991 | case CPU_DOWN_PREPARE_FROZEN: |
4885 | perf_counter_exit_cpu(cpu); | 4992 | perf_event_exit_cpu(cpu); |
4886 | break; | 4993 | break; |
4887 | 4994 | ||
4888 | default: | 4995 | default: |
@@ -4900,7 +5007,7 @@ static struct notifier_block __cpuinitdata perf_cpu_nb = { | |||
4900 | .priority = 20, | 5007 | .priority = 20, |
4901 | }; | 5008 | }; |
4902 | 5009 | ||
4903 | void __init perf_counter_init(void) | 5010 | void __init perf_event_init(void) |
4904 | { | 5011 | { |
4905 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | 5012 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, |
4906 | (void *)(long)smp_processor_id()); | 5013 | (void *)(long)smp_processor_id()); |
@@ -4926,7 +5033,7 @@ perf_set_reserve_percpu(struct sysdev_class *class, | |||
4926 | err = strict_strtoul(buf, 10, &val); | 5033 | err = strict_strtoul(buf, 10, &val); |
4927 | if (err) | 5034 | if (err) |
4928 | return err; | 5035 | return err; |
4929 | if (val > perf_max_counters) | 5036 | if (val > perf_max_events) |
4930 | return -EINVAL; | 5037 | return -EINVAL; |
4931 | 5038 | ||
4932 | spin_lock(&perf_resource_lock); | 5039 | spin_lock(&perf_resource_lock); |
@@ -4934,8 +5041,8 @@ perf_set_reserve_percpu(struct sysdev_class *class, | |||
4934 | for_each_online_cpu(cpu) { | 5041 | for_each_online_cpu(cpu) { |
4935 | cpuctx = &per_cpu(perf_cpu_context, cpu); | 5042 | cpuctx = &per_cpu(perf_cpu_context, cpu); |
4936 | spin_lock_irq(&cpuctx->ctx.lock); | 5043 | spin_lock_irq(&cpuctx->ctx.lock); |
4937 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | 5044 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, |
4938 | perf_max_counters - perf_reserved_percpu); | 5045 | perf_max_events - perf_reserved_percpu); |
4939 | cpuctx->max_pertask = mpt; | 5046 | cpuctx->max_pertask = mpt; |
4940 | spin_unlock_irq(&cpuctx->ctx.lock); | 5047 | spin_unlock_irq(&cpuctx->ctx.lock); |
4941 | } | 5048 | } |
@@ -4990,12 +5097,12 @@ static struct attribute *perfclass_attrs[] = { | |||
4990 | 5097 | ||
4991 | static struct attribute_group perfclass_attr_group = { | 5098 | static struct attribute_group perfclass_attr_group = { |
4992 | .attrs = perfclass_attrs, | 5099 | .attrs = perfclass_attrs, |
4993 | .name = "perf_counters", | 5100 | .name = "perf_events", |
4994 | }; | 5101 | }; |
4995 | 5102 | ||
4996 | static int __init perf_counter_sysfs_init(void) | 5103 | static int __init perf_event_sysfs_init(void) |
4997 | { | 5104 | { |
4998 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | 5105 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, |
4999 | &perfclass_attr_group); | 5106 | &perfclass_attr_group); |
5000 | } | 5107 | } |
5001 | device_initcall(perf_counter_sysfs_init); | 5108 | device_initcall(perf_event_sysfs_init); |
diff --git a/kernel/pid.c b/kernel/pid.c index 31310b5d3f50..d3f722d20f9c 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -40,7 +40,7 @@ | |||
40 | #define pid_hashfn(nr, ns) \ | 40 | #define pid_hashfn(nr, ns) \ |
41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) |
42 | static struct hlist_head *pid_hash; | 42 | static struct hlist_head *pid_hash; |
43 | static int pidhash_shift; | 43 | static unsigned int pidhash_shift = 4; |
44 | struct pid init_struct_pid = INIT_STRUCT_PID; | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
45 | 45 | ||
46 | int pid_max = PID_MAX_DEFAULT; | 46 | int pid_max = PID_MAX_DEFAULT; |
@@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | |||
499 | void __init pidhash_init(void) | 499 | void __init pidhash_init(void) |
500 | { | 500 | { |
501 | int i, pidhash_size; | 501 | int i, pidhash_size; |
502 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
503 | 502 | ||
504 | pidhash_shift = max(4, fls(megabytes * 4)); | 503 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
505 | pidhash_shift = min(12, pidhash_shift); | 504 | HASH_EARLY | HASH_SMALL, |
505 | &pidhash_shift, NULL, 4096); | ||
506 | pidhash_size = 1 << pidhash_shift; | 506 | pidhash_size = 1 << pidhash_shift; |
507 | 507 | ||
508 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
509 | pidhash_size, pidhash_shift, | ||
510 | pidhash_size * sizeof(struct hlist_head)); | ||
511 | |||
512 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | ||
513 | if (!pid_hash) | ||
514 | panic("Could not alloc pidhash!\n"); | ||
515 | for (i = 0; i < pidhash_size; i++) | 508 | for (i = 0; i < pidhash_size; i++) |
516 | INIT_HLIST_HEAD(&pid_hash[i]); | 509 | INIT_HLIST_HEAD(&pid_hash[i]); |
517 | } | 510 | } |
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index 821722ae58a7..86b3796b0436 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c | |||
@@ -118,7 +118,7 @@ struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old | |||
118 | { | 118 | { |
119 | if (!(flags & CLONE_NEWPID)) | 119 | if (!(flags & CLONE_NEWPID)) |
120 | return get_pid_ns(old_ns); | 120 | return get_pid_ns(old_ns); |
121 | if (flags & CLONE_THREAD) | 121 | if (flags & (CLONE_THREAD|CLONE_PARENT)) |
122 | return ERR_PTR(-EINVAL); | 122 | return ERR_PTR(-EINVAL); |
123 | return create_pid_namespace(old_ns); | 123 | return create_pid_namespace(old_ns); |
124 | } | 124 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e33a21cb9407..5c9dc228747b 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -8,17 +8,18 @@ | |||
8 | #include <linux/math64.h> | 8 | #include <linux/math64.h> |
9 | #include <asm/uaccess.h> | 9 | #include <asm/uaccess.h> |
10 | #include <linux/kernel_stat.h> | 10 | #include <linux/kernel_stat.h> |
11 | #include <trace/events/timer.h> | ||
11 | 12 | ||
12 | /* | 13 | /* |
13 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. |
14 | */ | 15 | */ |
15 | void update_rlimit_cpu(unsigned long rlim_new) | 16 | void update_rlimit_cpu(unsigned long rlim_new) |
16 | { | 17 | { |
17 | cputime_t cputime; | 18 | cputime_t cputime = secs_to_cputime(rlim_new); |
19 | struct signal_struct *const sig = current->signal; | ||
18 | 20 | ||
19 | cputime = secs_to_cputime(rlim_new); | 21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || |
20 | if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { |
21 | cputime_gt(current->signal->it_prof_expires, cputime)) { | ||
22 | spin_lock_irq(¤t->sighand->siglock); | 23 | spin_lock_irq(¤t->sighand->siglock); |
23 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
24 | spin_unlock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
@@ -542,6 +543,17 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |||
542 | now); | 543 | now); |
543 | } | 544 | } |
544 | 545 | ||
546 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | ||
547 | { | ||
548 | return cputime_eq(expires, cputime_zero) || | ||
549 | cputime_gt(expires, new_exp); | ||
550 | } | ||
551 | |||
552 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
553 | { | ||
554 | return !cputime_eq(expires, cputime_zero) && | ||
555 | cputime_le(expires, new_exp); | ||
556 | } | ||
545 | /* | 557 | /* |
546 | * Insert the timer on the appropriate list before any timers that | 558 | * Insert the timer on the appropriate list before any timers that |
547 | * expire later. This must be called with the tasklist_lock held | 559 | * expire later. This must be called with the tasklist_lock held |
@@ -586,34 +598,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
586 | */ | 598 | */ |
587 | 599 | ||
588 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 600 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
601 | union cpu_time_count *exp = &nt->expires; | ||
602 | |||
589 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 603 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
590 | default: | 604 | default: |
591 | BUG(); | 605 | BUG(); |
592 | case CPUCLOCK_PROF: | 606 | case CPUCLOCK_PROF: |
593 | if (cputime_eq(p->cputime_expires.prof_exp, | 607 | if (expires_gt(p->cputime_expires.prof_exp, |
594 | cputime_zero) || | 608 | exp->cpu)) |
595 | cputime_gt(p->cputime_expires.prof_exp, | 609 | p->cputime_expires.prof_exp = exp->cpu; |
596 | nt->expires.cpu)) | ||
597 | p->cputime_expires.prof_exp = | ||
598 | nt->expires.cpu; | ||
599 | break; | 610 | break; |
600 | case CPUCLOCK_VIRT: | 611 | case CPUCLOCK_VIRT: |
601 | if (cputime_eq(p->cputime_expires.virt_exp, | 612 | if (expires_gt(p->cputime_expires.virt_exp, |
602 | cputime_zero) || | 613 | exp->cpu)) |
603 | cputime_gt(p->cputime_expires.virt_exp, | 614 | p->cputime_expires.virt_exp = exp->cpu; |
604 | nt->expires.cpu)) | ||
605 | p->cputime_expires.virt_exp = | ||
606 | nt->expires.cpu; | ||
607 | break; | 615 | break; |
608 | case CPUCLOCK_SCHED: | 616 | case CPUCLOCK_SCHED: |
609 | if (p->cputime_expires.sched_exp == 0 || | 617 | if (p->cputime_expires.sched_exp == 0 || |
610 | p->cputime_expires.sched_exp > | 618 | p->cputime_expires.sched_exp > exp->sched) |
611 | nt->expires.sched) | ||
612 | p->cputime_expires.sched_exp = | 619 | p->cputime_expires.sched_exp = |
613 | nt->expires.sched; | 620 | exp->sched; |
614 | break; | 621 | break; |
615 | } | 622 | } |
616 | } else { | 623 | } else { |
624 | struct signal_struct *const sig = p->signal; | ||
625 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
626 | |||
617 | /* | 627 | /* |
618 | * For a process timer, set the cached expiration time. | 628 | * For a process timer, set the cached expiration time. |
619 | */ | 629 | */ |
@@ -621,30 +631,23 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
621 | default: | 631 | default: |
622 | BUG(); | 632 | BUG(); |
623 | case CPUCLOCK_VIRT: | 633 | case CPUCLOCK_VIRT: |
624 | if (!cputime_eq(p->signal->it_virt_expires, | 634 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, |
625 | cputime_zero) && | 635 | exp->cpu)) |
626 | cputime_lt(p->signal->it_virt_expires, | ||
627 | timer->it.cpu.expires.cpu)) | ||
628 | break; | 636 | break; |
629 | p->signal->cputime_expires.virt_exp = | 637 | sig->cputime_expires.virt_exp = exp->cpu; |
630 | timer->it.cpu.expires.cpu; | ||
631 | break; | 638 | break; |
632 | case CPUCLOCK_PROF: | 639 | case CPUCLOCK_PROF: |
633 | if (!cputime_eq(p->signal->it_prof_expires, | 640 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, |
634 | cputime_zero) && | 641 | exp->cpu)) |
635 | cputime_lt(p->signal->it_prof_expires, | ||
636 | timer->it.cpu.expires.cpu)) | ||
637 | break; | 642 | break; |
638 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 643 | i = sig->rlim[RLIMIT_CPU].rlim_cur; |
639 | if (i != RLIM_INFINITY && | 644 | if (i != RLIM_INFINITY && |
640 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 645 | i <= cputime_to_secs(exp->cpu)) |
641 | break; | 646 | break; |
642 | p->signal->cputime_expires.prof_exp = | 647 | sig->cputime_expires.prof_exp = exp->cpu; |
643 | timer->it.cpu.expires.cpu; | ||
644 | break; | 648 | break; |
645 | case CPUCLOCK_SCHED: | 649 | case CPUCLOCK_SCHED: |
646 | p->signal->cputime_expires.sched_exp = | 650 | sig->cputime_expires.sched_exp = exp->sched; |
647 | timer->it.cpu.expires.sched; | ||
648 | break; | 651 | break; |
649 | } | 652 | } |
650 | } | 653 | } |
@@ -1071,6 +1074,40 @@ static void stop_process_timers(struct task_struct *tsk) | |||
1071 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1074 | spin_unlock_irqrestore(&cputimer->lock, flags); |
1072 | } | 1075 | } |
1073 | 1076 | ||
1077 | static u32 onecputick; | ||
1078 | |||
1079 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | ||
1080 | cputime_t *expires, cputime_t cur_time, int signo) | ||
1081 | { | ||
1082 | if (cputime_eq(it->expires, cputime_zero)) | ||
1083 | return; | ||
1084 | |||
1085 | if (cputime_ge(cur_time, it->expires)) { | ||
1086 | if (!cputime_eq(it->incr, cputime_zero)) { | ||
1087 | it->expires = cputime_add(it->expires, it->incr); | ||
1088 | it->error += it->incr_error; | ||
1089 | if (it->error >= onecputick) { | ||
1090 | it->expires = cputime_sub(it->expires, | ||
1091 | cputime_one_jiffy); | ||
1092 | it->error -= onecputick; | ||
1093 | } | ||
1094 | } else { | ||
1095 | it->expires = cputime_zero; | ||
1096 | } | ||
1097 | |||
1098 | trace_itimer_expire(signo == SIGPROF ? | ||
1099 | ITIMER_PROF : ITIMER_VIRTUAL, | ||
1100 | tsk->signal->leader_pid, cur_time); | ||
1101 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | ||
1102 | } | ||
1103 | |||
1104 | if (!cputime_eq(it->expires, cputime_zero) && | ||
1105 | (cputime_eq(*expires, cputime_zero) || | ||
1106 | cputime_lt(it->expires, *expires))) { | ||
1107 | *expires = it->expires; | ||
1108 | } | ||
1109 | } | ||
1110 | |||
1074 | /* | 1111 | /* |
1075 | * Check for any per-thread CPU timers that have fired and move them | 1112 | * Check for any per-thread CPU timers that have fired and move them |
1076 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1113 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
@@ -1090,10 +1127,10 @@ static void check_process_timers(struct task_struct *tsk, | |||
1090 | * Don't sample the current process CPU clocks if there are no timers. | 1127 | * Don't sample the current process CPU clocks if there are no timers. |
1091 | */ | 1128 | */ |
1092 | if (list_empty(&timers[CPUCLOCK_PROF]) && | 1129 | if (list_empty(&timers[CPUCLOCK_PROF]) && |
1093 | cputime_eq(sig->it_prof_expires, cputime_zero) && | 1130 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && |
1094 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 1131 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
1095 | list_empty(&timers[CPUCLOCK_VIRT]) && | 1132 | list_empty(&timers[CPUCLOCK_VIRT]) && |
1096 | cputime_eq(sig->it_virt_expires, cputime_zero) && | 1133 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && |
1097 | list_empty(&timers[CPUCLOCK_SCHED])) { | 1134 | list_empty(&timers[CPUCLOCK_SCHED])) { |
1098 | stop_process_timers(tsk); | 1135 | stop_process_timers(tsk); |
1099 | return; | 1136 | return; |
@@ -1153,38 +1190,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
1153 | /* | 1190 | /* |
1154 | * Check for the special case process timers. | 1191 | * Check for the special case process timers. |
1155 | */ | 1192 | */ |
1156 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1193 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
1157 | if (cputime_ge(ptime, sig->it_prof_expires)) { | 1194 | SIGPROF); |
1158 | /* ITIMER_PROF fires and reloads. */ | 1195 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
1159 | sig->it_prof_expires = sig->it_prof_incr; | 1196 | SIGVTALRM); |
1160 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1197 | |
1161 | sig->it_prof_expires = cputime_add( | ||
1162 | sig->it_prof_expires, ptime); | ||
1163 | } | ||
1164 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | ||
1165 | } | ||
1166 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
1167 | (cputime_eq(prof_expires, cputime_zero) || | ||
1168 | cputime_lt(sig->it_prof_expires, prof_expires))) { | ||
1169 | prof_expires = sig->it_prof_expires; | ||
1170 | } | ||
1171 | } | ||
1172 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1173 | if (cputime_ge(utime, sig->it_virt_expires)) { | ||
1174 | /* ITIMER_VIRTUAL fires and reloads. */ | ||
1175 | sig->it_virt_expires = sig->it_virt_incr; | ||
1176 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1177 | sig->it_virt_expires = cputime_add( | ||
1178 | sig->it_virt_expires, utime); | ||
1179 | } | ||
1180 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | ||
1181 | } | ||
1182 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
1183 | (cputime_eq(virt_expires, cputime_zero) || | ||
1184 | cputime_lt(sig->it_virt_expires, virt_expires))) { | ||
1185 | virt_expires = sig->it_virt_expires; | ||
1186 | } | ||
1187 | } | ||
1188 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 1198 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
1189 | unsigned long psecs = cputime_to_secs(ptime); | 1199 | unsigned long psecs = cputime_to_secs(ptime); |
1190 | cputime_t x; | 1200 | cputime_t x; |
@@ -1457,7 +1467,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
1457 | if (!cputime_eq(*oldval, cputime_zero)) { | 1467 | if (!cputime_eq(*oldval, cputime_zero)) { |
1458 | if (cputime_le(*oldval, now.cpu)) { | 1468 | if (cputime_le(*oldval, now.cpu)) { |
1459 | /* Just about to fire. */ | 1469 | /* Just about to fire. */ |
1460 | *oldval = jiffies_to_cputime(1); | 1470 | *oldval = cputime_one_jiffy; |
1461 | } else { | 1471 | } else { |
1462 | *oldval = cputime_sub(*oldval, now.cpu); | 1472 | *oldval = cputime_sub(*oldval, now.cpu); |
1463 | } | 1473 | } |
@@ -1703,10 +1713,15 @@ static __init int init_posix_cpu_timers(void) | |||
1703 | .nsleep = thread_cpu_nsleep, | 1713 | .nsleep = thread_cpu_nsleep, |
1704 | .nsleep_restart = thread_cpu_nsleep_restart, | 1714 | .nsleep_restart = thread_cpu_nsleep_restart, |
1705 | }; | 1715 | }; |
1716 | struct timespec ts; | ||
1706 | 1717 | ||
1707 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 1718 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
1708 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 1719 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
1709 | 1720 | ||
1721 | cputime_to_timespec(cputime_one_jiffy, &ts); | ||
1722 | onecputick = ts.tv_nsec; | ||
1723 | WARN_ON(ts.tv_sec != 0); | ||
1724 | |||
1710 | return 0; | 1725 | return 0; |
1711 | } | 1726 | } |
1712 | __initcall(init_posix_cpu_timers); | 1727 | __initcall(init_posix_cpu_timers); |
diff --git a/kernel/power/process.c b/kernel/power/process.c index da2072d73811..cc2e55373b68 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
@@ -9,6 +9,7 @@ | |||
9 | #undef DEBUG | 9 | #undef DEBUG |
10 | 10 | ||
11 | #include <linux/interrupt.h> | 11 | #include <linux/interrupt.h> |
12 | #include <linux/oom.h> | ||
12 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
14 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 97955b0e44f4..36cb168e4330 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, | |||
619 | BUG_ON(!region); | 619 | BUG_ON(!region); |
620 | } else | 620 | } else |
621 | /* This allocation cannot fail */ | 621 | /* This allocation cannot fail */ |
622 | region = alloc_bootmem_low(sizeof(struct nosave_region)); | 622 | region = alloc_bootmem(sizeof(struct nosave_region)); |
623 | region->start_pfn = start_pfn; | 623 | region->start_pfn = start_pfn; |
624 | region->end_pfn = end_pfn; | 624 | region->end_pfn = end_pfn; |
625 | list_add_tail(®ion->list, &nosave_regions); | 625 | list_add_tail(®ion->list, &nosave_regions); |
diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 8ba052c86d48..b101cdc4df3f 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c | |||
@@ -13,7 +13,6 @@ | |||
13 | 13 | ||
14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
15 | #include <linux/file.h> | 15 | #include <linux/file.h> |
16 | #include <linux/utsname.h> | ||
17 | #include <linux/delay.h> | 16 | #include <linux/delay.h> |
18 | #include <linux/bitops.h> | 17 | #include <linux/bitops.h> |
19 | #include <linux/genhd.h> | 18 | #include <linux/genhd.h> |
diff --git a/kernel/printk.c b/kernel/printk.c index 602033acd6c7..f38b07f78a4e 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -206,12 +206,11 @@ __setup("log_buf_len=", log_buf_len_setup); | |||
206 | #ifdef CONFIG_BOOT_PRINTK_DELAY | 206 | #ifdef CONFIG_BOOT_PRINTK_DELAY |
207 | 207 | ||
208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ | 208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ |
209 | static unsigned long long printk_delay_msec; /* per msec, based on boot_delay */ | 209 | static unsigned long long loops_per_msec; /* based on boot_delay */ |
210 | 210 | ||
211 | static int __init boot_delay_setup(char *str) | 211 | static int __init boot_delay_setup(char *str) |
212 | { | 212 | { |
213 | unsigned long lpj; | 213 | unsigned long lpj; |
214 | unsigned long long loops_per_msec; | ||
215 | 214 | ||
216 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ | 215 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ |
217 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; | 216 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; |
@@ -220,10 +219,9 @@ static int __init boot_delay_setup(char *str) | |||
220 | if (boot_delay > 10 * 1000) | 219 | if (boot_delay > 10 * 1000) |
221 | boot_delay = 0; | 220 | boot_delay = 0; |
222 | 221 | ||
223 | printk_delay_msec = loops_per_msec; | 222 | pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " |
224 | printk(KERN_DEBUG "boot_delay: %u, preset_lpj: %ld, lpj: %lu, " | 223 | "HZ: %d, loops_per_msec: %llu\n", |
225 | "HZ: %d, printk_delay_msec: %llu\n", | 224 | boot_delay, preset_lpj, lpj, HZ, loops_per_msec); |
226 | boot_delay, preset_lpj, lpj, HZ, printk_delay_msec); | ||
227 | return 1; | 225 | return 1; |
228 | } | 226 | } |
229 | __setup("boot_delay=", boot_delay_setup); | 227 | __setup("boot_delay=", boot_delay_setup); |
@@ -236,7 +234,7 @@ static void boot_delay_msec(void) | |||
236 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) | 234 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) |
237 | return; | 235 | return; |
238 | 236 | ||
239 | k = (unsigned long long)printk_delay_msec * boot_delay; | 237 | k = (unsigned long long)loops_per_msec * boot_delay; |
240 | 238 | ||
241 | timeout = jiffies + msecs_to_jiffies(boot_delay); | 239 | timeout = jiffies + msecs_to_jiffies(boot_delay); |
242 | while (k) { | 240 | while (k) { |
@@ -655,6 +653,20 @@ static int recursion_bug; | |||
655 | static int new_text_line = 1; | 653 | static int new_text_line = 1; |
656 | static char printk_buf[1024]; | 654 | static char printk_buf[1024]; |
657 | 655 | ||
656 | int printk_delay_msec __read_mostly; | ||
657 | |||
658 | static inline void printk_delay(void) | ||
659 | { | ||
660 | if (unlikely(printk_delay_msec)) { | ||
661 | int m = printk_delay_msec; | ||
662 | |||
663 | while (m--) { | ||
664 | mdelay(1); | ||
665 | touch_nmi_watchdog(); | ||
666 | } | ||
667 | } | ||
668 | } | ||
669 | |||
658 | asmlinkage int vprintk(const char *fmt, va_list args) | 670 | asmlinkage int vprintk(const char *fmt, va_list args) |
659 | { | 671 | { |
660 | int printed_len = 0; | 672 | int printed_len = 0; |
@@ -664,6 +676,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
664 | char *p; | 676 | char *p; |
665 | 677 | ||
666 | boot_delay_msec(); | 678 | boot_delay_msec(); |
679 | printk_delay(); | ||
667 | 680 | ||
668 | preempt_disable(); | 681 | preempt_disable(); |
669 | /* This stops the holder of console_sem just where we want him */ | 682 | /* This stops the holder of console_sem just where we want him */ |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 307c285af59e..23bd09cd042e 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
@@ -266,9 +266,10 @@ static int ignoring_children(struct sighand_struct *sigh) | |||
266 | * or self-reaping. Do notification now if it would have happened earlier. | 266 | * or self-reaping. Do notification now if it would have happened earlier. |
267 | * If it should reap itself, return true. | 267 | * If it should reap itself, return true. |
268 | * | 268 | * |
269 | * If it's our own child, there is no notification to do. | 269 | * If it's our own child, there is no notification to do. But if our normal |
270 | * But if our normal children self-reap, then this child | 270 | * children self-reap, then this child was prevented by ptrace and we must |
271 | * was prevented by ptrace and we must reap it now. | 271 | * reap it now, in that case we must also wake up sub-threads sleeping in |
272 | * do_wait(). | ||
272 | */ | 273 | */ |
273 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | 274 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) |
274 | { | 275 | { |
@@ -278,8 +279,10 @@ static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | |||
278 | if (!task_detached(p) && thread_group_empty(p)) { | 279 | if (!task_detached(p) && thread_group_empty(p)) { |
279 | if (!same_thread_group(p->real_parent, tracer)) | 280 | if (!same_thread_group(p->real_parent, tracer)) |
280 | do_notify_parent(p, p->exit_signal); | 281 | do_notify_parent(p, p->exit_signal); |
281 | else if (ignoring_children(tracer->sighand)) | 282 | else if (ignoring_children(tracer->sighand)) { |
283 | __wake_up_parent(p, tracer); | ||
282 | p->exit_signal = -1; | 284 | p->exit_signal = -1; |
285 | } | ||
283 | } | 286 | } |
284 | if (task_detached(p)) { | 287 | if (task_detached(p)) { |
285 | /* Mark it as in the process of being reaped. */ | 288 | /* Mark it as in the process of being reaped. */ |
diff --git a/kernel/relay.c b/kernel/relay.c index bc188549788f..760c26209a3c 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
@@ -60,7 +60,7 @@ static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
60 | /* | 60 | /* |
61 | * vm_ops for relay file mappings. | 61 | * vm_ops for relay file mappings. |
62 | */ | 62 | */ |
63 | static struct vm_operations_struct relay_file_mmap_ops = { | 63 | static const struct vm_operations_struct relay_file_mmap_ops = { |
64 | .fault = relay_buf_fault, | 64 | .fault = relay_buf_fault, |
65 | .close = relay_file_mmap_close, | 65 | .close = relay_file_mmap_close, |
66 | }; | 66 | }; |
diff --git a/kernel/res_counter.c b/kernel/res_counter.c index e1338f074314..bcdabf37c40b 100644 --- a/kernel/res_counter.c +++ b/kernel/res_counter.c | |||
@@ -19,6 +19,7 @@ void res_counter_init(struct res_counter *counter, struct res_counter *parent) | |||
19 | { | 19 | { |
20 | spin_lock_init(&counter->lock); | 20 | spin_lock_init(&counter->lock); |
21 | counter->limit = RESOURCE_MAX; | 21 | counter->limit = RESOURCE_MAX; |
22 | counter->soft_limit = RESOURCE_MAX; | ||
22 | counter->parent = parent; | 23 | counter->parent = parent; |
23 | } | 24 | } |
24 | 25 | ||
@@ -101,6 +102,8 @@ res_counter_member(struct res_counter *counter, int member) | |||
101 | return &counter->limit; | 102 | return &counter->limit; |
102 | case RES_FAILCNT: | 103 | case RES_FAILCNT: |
103 | return &counter->failcnt; | 104 | return &counter->failcnt; |
105 | case RES_SOFT_LIMIT: | ||
106 | return &counter->soft_limit; | ||
104 | }; | 107 | }; |
105 | 108 | ||
106 | BUG(); | 109 | BUG(); |
diff --git a/kernel/resource.c b/kernel/resource.c index 78b087221c15..fb11a58b9594 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
@@ -223,13 +223,13 @@ int release_resource(struct resource *old) | |||
223 | 223 | ||
224 | EXPORT_SYMBOL(release_resource); | 224 | EXPORT_SYMBOL(release_resource); |
225 | 225 | ||
226 | #if defined(CONFIG_MEMORY_HOTPLUG) && !defined(CONFIG_ARCH_HAS_WALK_MEMORY) | 226 | #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) |
227 | /* | 227 | /* |
228 | * Finds the lowest memory reosurce exists within [res->start.res->end) | 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) |
229 | * the caller must specify res->start, res->end, res->flags. | 229 | * the caller must specify res->start, res->end, res->flags and "name". |
230 | * If found, returns 0, res is overwritten, if not found, returns -1. | 230 | * If found, returns 0, res is overwritten, if not found, returns -1. |
231 | */ | 231 | */ |
232 | static int find_next_system_ram(struct resource *res) | 232 | static int find_next_system_ram(struct resource *res, char *name) |
233 | { | 233 | { |
234 | resource_size_t start, end; | 234 | resource_size_t start, end; |
235 | struct resource *p; | 235 | struct resource *p; |
@@ -245,6 +245,8 @@ static int find_next_system_ram(struct resource *res) | |||
245 | /* system ram is just marked as IORESOURCE_MEM */ | 245 | /* system ram is just marked as IORESOURCE_MEM */ |
246 | if (p->flags != res->flags) | 246 | if (p->flags != res->flags) |
247 | continue; | 247 | continue; |
248 | if (name && strcmp(p->name, name)) | ||
249 | continue; | ||
248 | if (p->start > end) { | 250 | if (p->start > end) { |
249 | p = NULL; | 251 | p = NULL; |
250 | break; | 252 | break; |
@@ -262,19 +264,26 @@ static int find_next_system_ram(struct resource *res) | |||
262 | res->end = p->end; | 264 | res->end = p->end; |
263 | return 0; | 265 | return 0; |
264 | } | 266 | } |
265 | int | 267 | |
266 | walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg, | 268 | /* |
267 | int (*func)(unsigned long, unsigned long, void *)) | 269 | * This function calls callback against all memory range of "System RAM" |
270 | * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. | ||
271 | * Now, this function is only for "System RAM". | ||
272 | */ | ||
273 | int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, | ||
274 | void *arg, int (*func)(unsigned long, unsigned long, void *)) | ||
268 | { | 275 | { |
269 | struct resource res; | 276 | struct resource res; |
270 | unsigned long pfn, len; | 277 | unsigned long pfn, len; |
271 | u64 orig_end; | 278 | u64 orig_end; |
272 | int ret = -1; | 279 | int ret = -1; |
280 | |||
273 | res.start = (u64) start_pfn << PAGE_SHIFT; | 281 | res.start = (u64) start_pfn << PAGE_SHIFT; |
274 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; | 282 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; |
275 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 283 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
276 | orig_end = res.end; | 284 | orig_end = res.end; |
277 | while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) { | 285 | while ((res.start < res.end) && |
286 | (find_next_system_ram(&res, "System RAM") >= 0)) { | ||
278 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); | 287 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); |
279 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); | 288 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); |
280 | ret = (*func)(pfn, len, arg); | 289 | ret = (*func)(pfn, len, arg); |
diff --git a/kernel/sched.c b/kernel/sched.c index 830967e18285..76c0e9691fc0 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -39,7 +39,7 @@ | |||
39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
42 | #include <linux/perf_counter.h> | 42 | #include <linux/perf_event.h> |
43 | #include <linux/security.h> | 43 | #include <linux/security.h> |
44 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
@@ -780,7 +780,7 @@ static int sched_feat_open(struct inode *inode, struct file *filp) | |||
780 | return single_open(filp, sched_feat_show, NULL); | 780 | return single_open(filp, sched_feat_show, NULL); |
781 | } | 781 | } |
782 | 782 | ||
783 | static struct file_operations sched_feat_fops = { | 783 | static const struct file_operations sched_feat_fops = { |
784 | .open = sched_feat_open, | 784 | .open = sched_feat_open, |
785 | .write = sched_feat_write, | 785 | .write = sched_feat_write, |
786 | .read = seq_read, | 786 | .read = seq_read, |
@@ -2053,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
2053 | if (task_hot(p, old_rq->clock, NULL)) | 2053 | if (task_hot(p, old_rq->clock, NULL)) |
2054 | schedstat_inc(p, se.nr_forced2_migrations); | 2054 | schedstat_inc(p, se.nr_forced2_migrations); |
2055 | #endif | 2055 | #endif |
2056 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2056 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
2057 | 1, 1, NULL, 0); | 2057 | 1, 1, NULL, 0); |
2058 | } | 2058 | } |
2059 | p->se.vruntime -= old_cfsrq->min_vruntime - | 2059 | p->se.vruntime -= old_cfsrq->min_vruntime - |
@@ -2515,22 +2515,17 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2515 | __sched_fork(p); | 2515 | __sched_fork(p); |
2516 | 2516 | ||
2517 | /* | 2517 | /* |
2518 | * Make sure we do not leak PI boosting priority to the child. | ||
2519 | */ | ||
2520 | p->prio = current->normal_prio; | ||
2521 | |||
2522 | /* | ||
2523 | * Revert to default priority/policy on fork if requested. | 2518 | * Revert to default priority/policy on fork if requested. |
2524 | */ | 2519 | */ |
2525 | if (unlikely(p->sched_reset_on_fork)) { | 2520 | if (unlikely(p->sched_reset_on_fork)) { |
2526 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) | 2521 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { |
2527 | p->policy = SCHED_NORMAL; | 2522 | p->policy = SCHED_NORMAL; |
2528 | 2523 | p->normal_prio = p->static_prio; | |
2529 | if (p->normal_prio < DEFAULT_PRIO) | 2524 | } |
2530 | p->prio = DEFAULT_PRIO; | ||
2531 | 2525 | ||
2532 | if (PRIO_TO_NICE(p->static_prio) < 0) { | 2526 | if (PRIO_TO_NICE(p->static_prio) < 0) { |
2533 | p->static_prio = NICE_TO_PRIO(0); | 2527 | p->static_prio = NICE_TO_PRIO(0); |
2528 | p->normal_prio = p->static_prio; | ||
2534 | set_load_weight(p); | 2529 | set_load_weight(p); |
2535 | } | 2530 | } |
2536 | 2531 | ||
@@ -2541,6 +2536,11 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2541 | p->sched_reset_on_fork = 0; | 2536 | p->sched_reset_on_fork = 0; |
2542 | } | 2537 | } |
2543 | 2538 | ||
2539 | /* | ||
2540 | * Make sure we do not leak PI boosting priority to the child. | ||
2541 | */ | ||
2542 | p->prio = current->normal_prio; | ||
2543 | |||
2544 | if (!rt_prio(p->prio)) | 2544 | if (!rt_prio(p->prio)) |
2545 | p->sched_class = &fair_sched_class; | 2545 | p->sched_class = &fair_sched_class; |
2546 | 2546 | ||
@@ -2581,8 +2581,6 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2581 | BUG_ON(p->state != TASK_RUNNING); | 2581 | BUG_ON(p->state != TASK_RUNNING); |
2582 | update_rq_clock(rq); | 2582 | update_rq_clock(rq); |
2583 | 2583 | ||
2584 | p->prio = effective_prio(p); | ||
2585 | |||
2586 | if (!p->sched_class->task_new || !current->se.on_rq) { | 2584 | if (!p->sched_class->task_new || !current->se.on_rq) { |
2587 | activate_task(rq, p, 0); | 2585 | activate_task(rq, p, 0); |
2588 | } else { | 2586 | } else { |
@@ -2718,7 +2716,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2718 | */ | 2716 | */ |
2719 | prev_state = prev->state; | 2717 | prev_state = prev->state; |
2720 | finish_arch_switch(prev); | 2718 | finish_arch_switch(prev); |
2721 | perf_counter_task_sched_in(current, cpu_of(rq)); | 2719 | perf_event_task_sched_in(current, cpu_of(rq)); |
2722 | finish_lock_switch(rq, prev); | 2720 | finish_lock_switch(rq, prev); |
2723 | 2721 | ||
2724 | fire_sched_in_preempt_notifiers(current); | 2722 | fire_sched_in_preempt_notifiers(current); |
@@ -2904,6 +2902,19 @@ unsigned long nr_iowait(void) | |||
2904 | return sum; | 2902 | return sum; |
2905 | } | 2903 | } |
2906 | 2904 | ||
2905 | unsigned long nr_iowait_cpu(void) | ||
2906 | { | ||
2907 | struct rq *this = this_rq(); | ||
2908 | return atomic_read(&this->nr_iowait); | ||
2909 | } | ||
2910 | |||
2911 | unsigned long this_cpu_load(void) | ||
2912 | { | ||
2913 | struct rq *this = this_rq(); | ||
2914 | return this->cpu_load[0]; | ||
2915 | } | ||
2916 | |||
2917 | |||
2907 | /* Variables and functions for calc_load */ | 2918 | /* Variables and functions for calc_load */ |
2908 | static atomic_long_t calc_load_tasks; | 2919 | static atomic_long_t calc_load_tasks; |
2909 | static unsigned long calc_load_update; | 2920 | static unsigned long calc_load_update; |
@@ -5079,17 +5090,16 @@ void account_idle_time(cputime_t cputime) | |||
5079 | */ | 5090 | */ |
5080 | void account_process_tick(struct task_struct *p, int user_tick) | 5091 | void account_process_tick(struct task_struct *p, int user_tick) |
5081 | { | 5092 | { |
5082 | cputime_t one_jiffy = jiffies_to_cputime(1); | 5093 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
5083 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | ||
5084 | struct rq *rq = this_rq(); | 5094 | struct rq *rq = this_rq(); |
5085 | 5095 | ||
5086 | if (user_tick) | 5096 | if (user_tick) |
5087 | account_user_time(p, one_jiffy, one_jiffy_scaled); | 5097 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
5088 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 5098 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
5089 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, | 5099 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
5090 | one_jiffy_scaled); | 5100 | one_jiffy_scaled); |
5091 | else | 5101 | else |
5092 | account_idle_time(one_jiffy); | 5102 | account_idle_time(cputime_one_jiffy); |
5093 | } | 5103 | } |
5094 | 5104 | ||
5095 | /* | 5105 | /* |
@@ -5193,7 +5203,7 @@ void scheduler_tick(void) | |||
5193 | curr->sched_class->task_tick(rq, curr, 0); | 5203 | curr->sched_class->task_tick(rq, curr, 0); |
5194 | spin_unlock(&rq->lock); | 5204 | spin_unlock(&rq->lock); |
5195 | 5205 | ||
5196 | perf_counter_task_tick(curr, cpu); | 5206 | perf_event_task_tick(curr, cpu); |
5197 | 5207 | ||
5198 | #ifdef CONFIG_SMP | 5208 | #ifdef CONFIG_SMP |
5199 | rq->idle_at_tick = idle_cpu(cpu); | 5209 | rq->idle_at_tick = idle_cpu(cpu); |
@@ -5409,7 +5419,7 @@ need_resched_nonpreemptible: | |||
5409 | 5419 | ||
5410 | if (likely(prev != next)) { | 5420 | if (likely(prev != next)) { |
5411 | sched_info_switch(prev, next); | 5421 | sched_info_switch(prev, next); |
5412 | perf_counter_task_sched_out(prev, next, cpu); | 5422 | perf_event_task_sched_out(prev, next, cpu); |
5413 | 5423 | ||
5414 | rq->nr_switches++; | 5424 | rq->nr_switches++; |
5415 | rq->curr = next; | 5425 | rq->curr = next; |
@@ -7671,7 +7681,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7671 | /* | 7681 | /* |
7672 | * Register at high priority so that task migration (migrate_all_tasks) | 7682 | * Register at high priority so that task migration (migrate_all_tasks) |
7673 | * happens before everything else. This has to be lower priority than | 7683 | * happens before everything else. This has to be lower priority than |
7674 | * the notifier in the perf_counter subsystem, though. | 7684 | * the notifier in the perf_event subsystem, though. |
7675 | */ | 7685 | */ |
7676 | static struct notifier_block __cpuinitdata migration_notifier = { | 7686 | static struct notifier_block __cpuinitdata migration_notifier = { |
7677 | .notifier_call = migration_call, | 7687 | .notifier_call = migration_call, |
@@ -9528,7 +9538,7 @@ void __init sched_init(void) | |||
9528 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9538 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
9529 | #endif /* SMP */ | 9539 | #endif /* SMP */ |
9530 | 9540 | ||
9531 | perf_counter_init(); | 9541 | perf_event_init(); |
9532 | 9542 | ||
9533 | scheduler_running = 1; | 9543 | scheduler_running = 1; |
9534 | } | 9544 | } |
@@ -10300,7 +10310,7 @@ static int sched_rt_global_constraints(void) | |||
10300 | #endif /* CONFIG_RT_GROUP_SCHED */ | 10310 | #endif /* CONFIG_RT_GROUP_SCHED */ |
10301 | 10311 | ||
10302 | int sched_rt_handler(struct ctl_table *table, int write, | 10312 | int sched_rt_handler(struct ctl_table *table, int write, |
10303 | struct file *filp, void __user *buffer, size_t *lenp, | 10313 | void __user *buffer, size_t *lenp, |
10304 | loff_t *ppos) | 10314 | loff_t *ppos) |
10305 | { | 10315 | { |
10306 | int ret; | 10316 | int ret; |
@@ -10311,7 +10321,7 @@ int sched_rt_handler(struct ctl_table *table, int write, | |||
10311 | old_period = sysctl_sched_rt_period; | 10321 | old_period = sysctl_sched_rt_period; |
10312 | old_runtime = sysctl_sched_rt_runtime; | 10322 | old_runtime = sysctl_sched_rt_runtime; |
10313 | 10323 | ||
10314 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | 10324 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
10315 | 10325 | ||
10316 | if (!ret && write) { | 10326 | if (!ret && write) { |
10317 | ret = sched_rt_global_constraints(); | 10327 | ret = sched_rt_global_constraints(); |
@@ -10365,8 +10375,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
10365 | } | 10375 | } |
10366 | 10376 | ||
10367 | static int | 10377 | static int |
10368 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10378 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
10369 | struct task_struct *tsk) | ||
10370 | { | 10379 | { |
10371 | #ifdef CONFIG_RT_GROUP_SCHED | 10380 | #ifdef CONFIG_RT_GROUP_SCHED |
10372 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | 10381 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
@@ -10376,15 +10385,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |||
10376 | if (tsk->sched_class != &fair_sched_class) | 10385 | if (tsk->sched_class != &fair_sched_class) |
10377 | return -EINVAL; | 10386 | return -EINVAL; |
10378 | #endif | 10387 | #endif |
10388 | return 0; | ||
10389 | } | ||
10379 | 10390 | ||
10391 | static int | ||
10392 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
10393 | struct task_struct *tsk, bool threadgroup) | ||
10394 | { | ||
10395 | int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | ||
10396 | if (retval) | ||
10397 | return retval; | ||
10398 | if (threadgroup) { | ||
10399 | struct task_struct *c; | ||
10400 | rcu_read_lock(); | ||
10401 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
10402 | retval = cpu_cgroup_can_attach_task(cgrp, c); | ||
10403 | if (retval) { | ||
10404 | rcu_read_unlock(); | ||
10405 | return retval; | ||
10406 | } | ||
10407 | } | ||
10408 | rcu_read_unlock(); | ||
10409 | } | ||
10380 | return 0; | 10410 | return 0; |
10381 | } | 10411 | } |
10382 | 10412 | ||
10383 | static void | 10413 | static void |
10384 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10414 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
10385 | struct cgroup *old_cont, struct task_struct *tsk) | 10415 | struct cgroup *old_cont, struct task_struct *tsk, |
10416 | bool threadgroup) | ||
10386 | { | 10417 | { |
10387 | sched_move_task(tsk); | 10418 | sched_move_task(tsk); |
10419 | if (threadgroup) { | ||
10420 | struct task_struct *c; | ||
10421 | rcu_read_lock(); | ||
10422 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
10423 | sched_move_task(c); | ||
10424 | } | ||
10425 | rcu_read_unlock(); | ||
10426 | } | ||
10388 | } | 10427 | } |
10389 | 10428 | ||
10390 | #ifdef CONFIG_FAIR_GROUP_SCHED | 10429 | #ifdef CONFIG_FAIR_GROUP_SCHED |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index ac2e1dc708bd..479ce5682d7c 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -127,7 +127,7 @@ again: | |||
127 | clock = wrap_max(clock, min_clock); | 127 | clock = wrap_max(clock, min_clock); |
128 | clock = wrap_min(clock, max_clock); | 128 | clock = wrap_min(clock, max_clock); |
129 | 129 | ||
130 | if (cmpxchg(&scd->clock, old_clock, clock) != old_clock) | 130 | if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) |
131 | goto again; | 131 | goto again; |
132 | 132 | ||
133 | return clock; | 133 | return clock; |
@@ -163,7 +163,7 @@ again: | |||
163 | val = remote_clock; | 163 | val = remote_clock; |
164 | } | 164 | } |
165 | 165 | ||
166 | if (cmpxchg(ptr, old_val, val) != old_val) | 166 | if (cmpxchg64(ptr, old_val, val) != old_val) |
167 | goto again; | 167 | goto again; |
168 | 168 | ||
169 | return val; | 169 | return val; |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index ecc637a0d591..4e777b47eeda 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -384,10 +384,10 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | |||
384 | 384 | ||
385 | #ifdef CONFIG_SCHED_DEBUG | 385 | #ifdef CONFIG_SCHED_DEBUG |
386 | int sched_nr_latency_handler(struct ctl_table *table, int write, | 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, |
387 | struct file *filp, void __user *buffer, size_t *lenp, | 387 | void __user *buffer, size_t *lenp, |
388 | loff_t *ppos) | 388 | loff_t *ppos) |
389 | { | 389 | { |
390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 390 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
391 | 391 | ||
392 | if (ret || !write) | 392 | if (ret || !write) |
393 | return ret; | 393 | return ret; |
diff --git a/kernel/signal.c b/kernel/signal.c index 64c5deeaca5d..6705320784fd 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -705,7 +705,7 @@ static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) | |||
705 | 705 | ||
706 | if (why) { | 706 | if (why) { |
707 | /* | 707 | /* |
708 | * The first thread which returns from finish_stop() | 708 | * The first thread which returns from do_signal_stop() |
709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
710 | * notify its parent. See get_signal_to_deliver(). | 710 | * notify its parent. See get_signal_to_deliver(). |
711 | */ | 711 | */ |
@@ -971,6 +971,20 @@ specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | |||
971 | return send_signal(sig, info, t, 0); | 971 | return send_signal(sig, info, t, 0); |
972 | } | 972 | } |
973 | 973 | ||
974 | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, | ||
975 | bool group) | ||
976 | { | ||
977 | unsigned long flags; | ||
978 | int ret = -ESRCH; | ||
979 | |||
980 | if (lock_task_sighand(p, &flags)) { | ||
981 | ret = send_signal(sig, info, p, group); | ||
982 | unlock_task_sighand(p, &flags); | ||
983 | } | ||
984 | |||
985 | return ret; | ||
986 | } | ||
987 | |||
974 | /* | 988 | /* |
975 | * Force a signal that the process can't ignore: if necessary | 989 | * Force a signal that the process can't ignore: if necessary |
976 | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 990 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
@@ -1036,12 +1050,6 @@ void zap_other_threads(struct task_struct *p) | |||
1036 | } | 1050 | } |
1037 | } | 1051 | } |
1038 | 1052 | ||
1039 | int __fatal_signal_pending(struct task_struct *tsk) | ||
1040 | { | ||
1041 | return sigismember(&tsk->pending.signal, SIGKILL); | ||
1042 | } | ||
1043 | EXPORT_SYMBOL(__fatal_signal_pending); | ||
1044 | |||
1045 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | 1053 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) |
1046 | { | 1054 | { |
1047 | struct sighand_struct *sighand; | 1055 | struct sighand_struct *sighand; |
@@ -1068,18 +1076,10 @@ struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long | |||
1068 | */ | 1076 | */ |
1069 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1077 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
1070 | { | 1078 | { |
1071 | unsigned long flags; | 1079 | int ret = check_kill_permission(sig, info, p); |
1072 | int ret; | ||
1073 | 1080 | ||
1074 | ret = check_kill_permission(sig, info, p); | 1081 | if (!ret && sig) |
1075 | 1082 | ret = do_send_sig_info(sig, info, p, true); | |
1076 | if (!ret && sig) { | ||
1077 | ret = -ESRCH; | ||
1078 | if (lock_task_sighand(p, &flags)) { | ||
1079 | ret = __group_send_sig_info(sig, info, p); | ||
1080 | unlock_task_sighand(p, &flags); | ||
1081 | } | ||
1082 | } | ||
1083 | 1083 | ||
1084 | return ret; | 1084 | return ret; |
1085 | } | 1085 | } |
@@ -1224,15 +1224,9 @@ static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | |||
1224 | * These are for backward compatibility with the rest of the kernel source. | 1224 | * These are for backward compatibility with the rest of the kernel source. |
1225 | */ | 1225 | */ |
1226 | 1226 | ||
1227 | /* | ||
1228 | * The caller must ensure the task can't exit. | ||
1229 | */ | ||
1230 | int | 1227 | int |
1231 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1228 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
1232 | { | 1229 | { |
1233 | int ret; | ||
1234 | unsigned long flags; | ||
1235 | |||
1236 | /* | 1230 | /* |
1237 | * Make sure legacy kernel users don't send in bad values | 1231 | * Make sure legacy kernel users don't send in bad values |
1238 | * (normal paths check this in check_kill_permission). | 1232 | * (normal paths check this in check_kill_permission). |
@@ -1240,10 +1234,7 @@ send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | |||
1240 | if (!valid_signal(sig)) | 1234 | if (!valid_signal(sig)) |
1241 | return -EINVAL; | 1235 | return -EINVAL; |
1242 | 1236 | ||
1243 | spin_lock_irqsave(&p->sighand->siglock, flags); | 1237 | return do_send_sig_info(sig, info, p, false); |
1244 | ret = specific_send_sig_info(sig, info, p); | ||
1245 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | ||
1246 | return ret; | ||
1247 | } | 1238 | } |
1248 | 1239 | ||
1249 | #define __si_special(priv) \ | 1240 | #define __si_special(priv) \ |
@@ -1383,15 +1374,6 @@ ret: | |||
1383 | } | 1374 | } |
1384 | 1375 | ||
1385 | /* | 1376 | /* |
1386 | * Wake up any threads in the parent blocked in wait* syscalls. | ||
1387 | */ | ||
1388 | static inline void __wake_up_parent(struct task_struct *p, | ||
1389 | struct task_struct *parent) | ||
1390 | { | ||
1391 | wake_up_interruptible_sync(&parent->signal->wait_chldexit); | ||
1392 | } | ||
1393 | |||
1394 | /* | ||
1395 | * Let a parent know about the death of a child. | 1377 | * Let a parent know about the death of a child. |
1396 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 1378 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
1397 | * | 1379 | * |
@@ -1673,29 +1655,6 @@ void ptrace_notify(int exit_code) | |||
1673 | spin_unlock_irq(¤t->sighand->siglock); | 1655 | spin_unlock_irq(¤t->sighand->siglock); |
1674 | } | 1656 | } |
1675 | 1657 | ||
1676 | static void | ||
1677 | finish_stop(int stop_count) | ||
1678 | { | ||
1679 | /* | ||
1680 | * If there are no other threads in the group, or if there is | ||
1681 | * a group stop in progress and we are the last to stop, | ||
1682 | * report to the parent. When ptraced, every thread reports itself. | ||
1683 | */ | ||
1684 | if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { | ||
1685 | read_lock(&tasklist_lock); | ||
1686 | do_notify_parent_cldstop(current, CLD_STOPPED); | ||
1687 | read_unlock(&tasklist_lock); | ||
1688 | } | ||
1689 | |||
1690 | do { | ||
1691 | schedule(); | ||
1692 | } while (try_to_freeze()); | ||
1693 | /* | ||
1694 | * Now we don't run again until continued. | ||
1695 | */ | ||
1696 | current->exit_code = 0; | ||
1697 | } | ||
1698 | |||
1699 | /* | 1658 | /* |
1700 | * This performs the stopping for SIGSTOP and other stop signals. | 1659 | * This performs the stopping for SIGSTOP and other stop signals. |
1701 | * We have to stop all threads in the thread group. | 1660 | * We have to stop all threads in the thread group. |
@@ -1705,15 +1664,9 @@ finish_stop(int stop_count) | |||
1705 | static int do_signal_stop(int signr) | 1664 | static int do_signal_stop(int signr) |
1706 | { | 1665 | { |
1707 | struct signal_struct *sig = current->signal; | 1666 | struct signal_struct *sig = current->signal; |
1708 | int stop_count; | 1667 | int notify; |
1709 | 1668 | ||
1710 | if (sig->group_stop_count > 0) { | 1669 | if (!sig->group_stop_count) { |
1711 | /* | ||
1712 | * There is a group stop in progress. We don't need to | ||
1713 | * start another one. | ||
1714 | */ | ||
1715 | stop_count = --sig->group_stop_count; | ||
1716 | } else { | ||
1717 | struct task_struct *t; | 1670 | struct task_struct *t; |
1718 | 1671 | ||
1719 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || | 1672 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || |
@@ -1725,7 +1678,7 @@ static int do_signal_stop(int signr) | |||
1725 | */ | 1678 | */ |
1726 | sig->group_exit_code = signr; | 1679 | sig->group_exit_code = signr; |
1727 | 1680 | ||
1728 | stop_count = 0; | 1681 | sig->group_stop_count = 1; |
1729 | for (t = next_thread(current); t != current; t = next_thread(t)) | 1682 | for (t = next_thread(current); t != current; t = next_thread(t)) |
1730 | /* | 1683 | /* |
1731 | * Setting state to TASK_STOPPED for a group | 1684 | * Setting state to TASK_STOPPED for a group |
@@ -1734,19 +1687,44 @@ static int do_signal_stop(int signr) | |||
1734 | */ | 1687 | */ |
1735 | if (!(t->flags & PF_EXITING) && | 1688 | if (!(t->flags & PF_EXITING) && |
1736 | !task_is_stopped_or_traced(t)) { | 1689 | !task_is_stopped_or_traced(t)) { |
1737 | stop_count++; | 1690 | sig->group_stop_count++; |
1738 | signal_wake_up(t, 0); | 1691 | signal_wake_up(t, 0); |
1739 | } | 1692 | } |
1740 | sig->group_stop_count = stop_count; | ||
1741 | } | 1693 | } |
1694 | /* | ||
1695 | * If there are no other threads in the group, or if there is | ||
1696 | * a group stop in progress and we are the last to stop, report | ||
1697 | * to the parent. When ptraced, every thread reports itself. | ||
1698 | */ | ||
1699 | notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; | ||
1700 | notify = tracehook_notify_jctl(notify, CLD_STOPPED); | ||
1701 | /* | ||
1702 | * tracehook_notify_jctl() can drop and reacquire siglock, so | ||
1703 | * we keep ->group_stop_count != 0 before the call. If SIGCONT | ||
1704 | * or SIGKILL comes in between ->group_stop_count == 0. | ||
1705 | */ | ||
1706 | if (sig->group_stop_count) { | ||
1707 | if (!--sig->group_stop_count) | ||
1708 | sig->flags = SIGNAL_STOP_STOPPED; | ||
1709 | current->exit_code = sig->group_exit_code; | ||
1710 | __set_current_state(TASK_STOPPED); | ||
1711 | } | ||
1712 | spin_unlock_irq(¤t->sighand->siglock); | ||
1742 | 1713 | ||
1743 | if (stop_count == 0) | 1714 | if (notify) { |
1744 | sig->flags = SIGNAL_STOP_STOPPED; | 1715 | read_lock(&tasklist_lock); |
1745 | current->exit_code = sig->group_exit_code; | 1716 | do_notify_parent_cldstop(current, notify); |
1746 | __set_current_state(TASK_STOPPED); | 1717 | read_unlock(&tasklist_lock); |
1718 | } | ||
1719 | |||
1720 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ | ||
1721 | do { | ||
1722 | schedule(); | ||
1723 | } while (try_to_freeze()); | ||
1724 | |||
1725 | tracehook_finish_jctl(); | ||
1726 | current->exit_code = 0; | ||
1747 | 1727 | ||
1748 | spin_unlock_irq(¤t->sighand->siglock); | ||
1749 | finish_stop(stop_count); | ||
1750 | return 1; | 1728 | return 1; |
1751 | } | 1729 | } |
1752 | 1730 | ||
@@ -1815,14 +1793,15 @@ relock: | |||
1815 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) | 1793 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) |
1816 | ? CLD_CONTINUED : CLD_STOPPED; | 1794 | ? CLD_CONTINUED : CLD_STOPPED; |
1817 | signal->flags &= ~SIGNAL_CLD_MASK; | 1795 | signal->flags &= ~SIGNAL_CLD_MASK; |
1818 | spin_unlock_irq(&sighand->siglock); | ||
1819 | 1796 | ||
1820 | if (unlikely(!tracehook_notify_jctl(1, why))) | 1797 | why = tracehook_notify_jctl(why, CLD_CONTINUED); |
1821 | goto relock; | 1798 | spin_unlock_irq(&sighand->siglock); |
1822 | 1799 | ||
1823 | read_lock(&tasklist_lock); | 1800 | if (why) { |
1824 | do_notify_parent_cldstop(current->group_leader, why); | 1801 | read_lock(&tasklist_lock); |
1825 | read_unlock(&tasklist_lock); | 1802 | do_notify_parent_cldstop(current->group_leader, why); |
1803 | read_unlock(&tasklist_lock); | ||
1804 | } | ||
1826 | goto relock; | 1805 | goto relock; |
1827 | } | 1806 | } |
1828 | 1807 | ||
@@ -1987,14 +1966,14 @@ void exit_signals(struct task_struct *tsk) | |||
1987 | if (unlikely(tsk->signal->group_stop_count) && | 1966 | if (unlikely(tsk->signal->group_stop_count) && |
1988 | !--tsk->signal->group_stop_count) { | 1967 | !--tsk->signal->group_stop_count) { |
1989 | tsk->signal->flags = SIGNAL_STOP_STOPPED; | 1968 | tsk->signal->flags = SIGNAL_STOP_STOPPED; |
1990 | group_stop = 1; | 1969 | group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); |
1991 | } | 1970 | } |
1992 | out: | 1971 | out: |
1993 | spin_unlock_irq(&tsk->sighand->siglock); | 1972 | spin_unlock_irq(&tsk->sighand->siglock); |
1994 | 1973 | ||
1995 | if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { | 1974 | if (unlikely(group_stop)) { |
1996 | read_lock(&tasklist_lock); | 1975 | read_lock(&tasklist_lock); |
1997 | do_notify_parent_cldstop(tsk, CLD_STOPPED); | 1976 | do_notify_parent_cldstop(tsk, group_stop); |
1998 | read_unlock(&tasklist_lock); | 1977 | read_unlock(&tasklist_lock); |
1999 | } | 1978 | } |
2000 | } | 1979 | } |
@@ -2290,7 +2269,6 @@ static int | |||
2290 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 2269 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) |
2291 | { | 2270 | { |
2292 | struct task_struct *p; | 2271 | struct task_struct *p; |
2293 | unsigned long flags; | ||
2294 | int error = -ESRCH; | 2272 | int error = -ESRCH; |
2295 | 2273 | ||
2296 | rcu_read_lock(); | 2274 | rcu_read_lock(); |
@@ -2300,14 +2278,16 @@ do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | |||
2300 | /* | 2278 | /* |
2301 | * The null signal is a permissions and process existence | 2279 | * The null signal is a permissions and process existence |
2302 | * probe. No signal is actually delivered. | 2280 | * probe. No signal is actually delivered. |
2303 | * | ||
2304 | * If lock_task_sighand() fails we pretend the task dies | ||
2305 | * after receiving the signal. The window is tiny, and the | ||
2306 | * signal is private anyway. | ||
2307 | */ | 2281 | */ |
2308 | if (!error && sig && lock_task_sighand(p, &flags)) { | 2282 | if (!error && sig) { |
2309 | error = specific_send_sig_info(sig, info, p); | 2283 | error = do_send_sig_info(sig, info, p, false); |
2310 | unlock_task_sighand(p, &flags); | 2284 | /* |
2285 | * If lock_task_sighand() failed we pretend the task | ||
2286 | * dies after receiving the signal. The window is tiny, | ||
2287 | * and the signal is private anyway. | ||
2288 | */ | ||
2289 | if (unlikely(error == -ESRCH)) | ||
2290 | error = 0; | ||
2311 | } | 2291 | } |
2312 | } | 2292 | } |
2313 | rcu_read_unlock(); | 2293 | rcu_read_unlock(); |
diff --git a/kernel/slow-work.c b/kernel/slow-work.c index 09d7519557d3..0d31135efbf4 100644 --- a/kernel/slow-work.c +++ b/kernel/slow-work.c | |||
@@ -26,10 +26,10 @@ static void slow_work_cull_timeout(unsigned long); | |||
26 | static void slow_work_oom_timeout(unsigned long); | 26 | static void slow_work_oom_timeout(unsigned long); |
27 | 27 | ||
28 | #ifdef CONFIG_SYSCTL | 28 | #ifdef CONFIG_SYSCTL |
29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *, | 29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, |
30 | void __user *, size_t *, loff_t *); | 30 | void __user *, size_t *, loff_t *); |
31 | 31 | ||
32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *, | 32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , |
33 | void __user *, size_t *, loff_t *); | 33 | void __user *, size_t *, loff_t *); |
34 | #endif | 34 | #endif |
35 | 35 | ||
@@ -493,10 +493,10 @@ static void slow_work_oom_timeout(unsigned long data) | |||
493 | * Handle adjustment of the minimum number of threads | 493 | * Handle adjustment of the minimum number of threads |
494 | */ | 494 | */ |
495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | 495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, |
496 | struct file *filp, void __user *buffer, | 496 | void __user *buffer, |
497 | size_t *lenp, loff_t *ppos) | 497 | size_t *lenp, loff_t *ppos) |
498 | { | 498 | { |
499 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 499 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
500 | int n; | 500 | int n; |
501 | 501 | ||
502 | if (ret == 0) { | 502 | if (ret == 0) { |
@@ -521,10 +521,10 @@ static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | |||
521 | * Handle adjustment of the maximum number of threads | 521 | * Handle adjustment of the maximum number of threads |
522 | */ | 522 | */ |
523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, | 523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, |
524 | struct file *filp, void __user *buffer, | 524 | void __user *buffer, |
525 | size_t *lenp, loff_t *ppos) | 525 | size_t *lenp, loff_t *ppos) |
526 | { | 526 | { |
527 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 527 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
528 | int n; | 528 | int n; |
529 | 529 | ||
530 | if (ret == 0) { | 530 | if (ret == 0) { |
diff --git a/kernel/smp.c b/kernel/smp.c index 8e218500ab14..c9d1c7835c2f 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
@@ -29,8 +29,7 @@ enum { | |||
29 | 29 | ||
30 | struct call_function_data { | 30 | struct call_function_data { |
31 | struct call_single_data csd; | 31 | struct call_single_data csd; |
32 | spinlock_t lock; | 32 | atomic_t refs; |
33 | unsigned int refs; | ||
34 | cpumask_var_t cpumask; | 33 | cpumask_var_t cpumask; |
35 | }; | 34 | }; |
36 | 35 | ||
@@ -39,9 +38,7 @@ struct call_single_queue { | |||
39 | spinlock_t lock; | 38 | spinlock_t lock; |
40 | }; | 39 | }; |
41 | 40 | ||
42 | static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { | 41 | static DEFINE_PER_CPU(struct call_function_data, cfd_data); |
43 | .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock), | ||
44 | }; | ||
45 | 42 | ||
46 | static int | 43 | static int |
47 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | 44 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) |
@@ -196,25 +193,18 @@ void generic_smp_call_function_interrupt(void) | |||
196 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { | 193 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { |
197 | int refs; | 194 | int refs; |
198 | 195 | ||
199 | spin_lock(&data->lock); | 196 | if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) |
200 | if (!cpumask_test_cpu(cpu, data->cpumask)) { | ||
201 | spin_unlock(&data->lock); | ||
202 | continue; | 197 | continue; |
203 | } | ||
204 | cpumask_clear_cpu(cpu, data->cpumask); | ||
205 | spin_unlock(&data->lock); | ||
206 | 198 | ||
207 | data->csd.func(data->csd.info); | 199 | data->csd.func(data->csd.info); |
208 | 200 | ||
209 | spin_lock(&data->lock); | 201 | refs = atomic_dec_return(&data->refs); |
210 | WARN_ON(data->refs == 0); | 202 | WARN_ON(refs < 0); |
211 | refs = --data->refs; | ||
212 | if (!refs) { | 203 | if (!refs) { |
213 | spin_lock(&call_function.lock); | 204 | spin_lock(&call_function.lock); |
214 | list_del_rcu(&data->csd.list); | 205 | list_del_rcu(&data->csd.list); |
215 | spin_unlock(&call_function.lock); | 206 | spin_unlock(&call_function.lock); |
216 | } | 207 | } |
217 | spin_unlock(&data->lock); | ||
218 | 208 | ||
219 | if (refs) | 209 | if (refs) |
220 | continue; | 210 | continue; |
@@ -357,13 +347,6 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
357 | generic_exec_single(cpu, data, wait); | 347 | generic_exec_single(cpu, data, wait); |
358 | } | 348 | } |
359 | 349 | ||
360 | /* Deprecated: shim for archs using old arch_send_call_function_ipi API. */ | ||
361 | |||
362 | #ifndef arch_send_call_function_ipi_mask | ||
363 | # define arch_send_call_function_ipi_mask(maskp) \ | ||
364 | arch_send_call_function_ipi(*(maskp)) | ||
365 | #endif | ||
366 | |||
367 | /** | 350 | /** |
368 | * smp_call_function_many(): Run a function on a set of other CPUs. | 351 | * smp_call_function_many(): Run a function on a set of other CPUs. |
369 | * @mask: The set of cpus to run on (only runs on online subset). | 352 | * @mask: The set of cpus to run on (only runs on online subset). |
@@ -419,23 +402,20 @@ void smp_call_function_many(const struct cpumask *mask, | |||
419 | data = &__get_cpu_var(cfd_data); | 402 | data = &__get_cpu_var(cfd_data); |
420 | csd_lock(&data->csd); | 403 | csd_lock(&data->csd); |
421 | 404 | ||
422 | spin_lock_irqsave(&data->lock, flags); | ||
423 | data->csd.func = func; | 405 | data->csd.func = func; |
424 | data->csd.info = info; | 406 | data->csd.info = info; |
425 | cpumask_and(data->cpumask, mask, cpu_online_mask); | 407 | cpumask_and(data->cpumask, mask, cpu_online_mask); |
426 | cpumask_clear_cpu(this_cpu, data->cpumask); | 408 | cpumask_clear_cpu(this_cpu, data->cpumask); |
427 | data->refs = cpumask_weight(data->cpumask); | 409 | atomic_set(&data->refs, cpumask_weight(data->cpumask)); |
428 | 410 | ||
429 | spin_lock(&call_function.lock); | 411 | spin_lock_irqsave(&call_function.lock, flags); |
430 | /* | 412 | /* |
431 | * Place entry at the _HEAD_ of the list, so that any cpu still | 413 | * Place entry at the _HEAD_ of the list, so that any cpu still |
432 | * observing the entry in generic_smp_call_function_interrupt() | 414 | * observing the entry in generic_smp_call_function_interrupt() |
433 | * will not miss any other list entries: | 415 | * will not miss any other list entries: |
434 | */ | 416 | */ |
435 | list_add_rcu(&data->csd.list, &call_function.queue); | 417 | list_add_rcu(&data->csd.list, &call_function.queue); |
436 | spin_unlock(&call_function.lock); | 418 | spin_unlock_irqrestore(&call_function.lock, flags); |
437 | |||
438 | spin_unlock_irqrestore(&data->lock, flags); | ||
439 | 419 | ||
440 | /* | 420 | /* |
441 | * Make the list addition visible before sending the ipi. | 421 | * Make the list addition visible before sending the ipi. |
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index 88796c330838..81324d12eb35 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
@@ -90,11 +90,11 @@ void touch_all_softlockup_watchdogs(void) | |||
90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); | 90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); |
91 | 91 | ||
92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, | 92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, |
93 | struct file *filp, void __user *buffer, | 93 | void __user *buffer, |
94 | size_t *lenp, loff_t *ppos) | 94 | size_t *lenp, loff_t *ppos) |
95 | { | 95 | { |
96 | touch_all_softlockup_watchdogs(); | 96 | touch_all_softlockup_watchdogs(); |
97 | return proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 97 | return proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
98 | } | 98 | } |
99 | 99 | ||
100 | /* | 100 | /* |
diff --git a/kernel/sys.c b/kernel/sys.c index b3f1097c76fa..255475d163e0 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -14,7 +14,7 @@ | |||
14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
17 | #include <linux/perf_counter.h> | 17 | #include <linux/perf_event.h> |
18 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
19 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
20 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
@@ -1338,6 +1338,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1338 | unsigned long flags; | 1338 | unsigned long flags; |
1339 | cputime_t utime, stime; | 1339 | cputime_t utime, stime; |
1340 | struct task_cputime cputime; | 1340 | struct task_cputime cputime; |
1341 | unsigned long maxrss = 0; | ||
1341 | 1342 | ||
1342 | memset((char *) r, 0, sizeof *r); | 1343 | memset((char *) r, 0, sizeof *r); |
1343 | utime = stime = cputime_zero; | 1344 | utime = stime = cputime_zero; |
@@ -1346,6 +1347,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1346 | utime = task_utime(current); | 1347 | utime = task_utime(current); |
1347 | stime = task_stime(current); | 1348 | stime = task_stime(current); |
1348 | accumulate_thread_rusage(p, r); | 1349 | accumulate_thread_rusage(p, r); |
1350 | maxrss = p->signal->maxrss; | ||
1349 | goto out; | 1351 | goto out; |
1350 | } | 1352 | } |
1351 | 1353 | ||
@@ -1363,6 +1365,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1363 | r->ru_majflt = p->signal->cmaj_flt; | 1365 | r->ru_majflt = p->signal->cmaj_flt; |
1364 | r->ru_inblock = p->signal->cinblock; | 1366 | r->ru_inblock = p->signal->cinblock; |
1365 | r->ru_oublock = p->signal->coublock; | 1367 | r->ru_oublock = p->signal->coublock; |
1368 | maxrss = p->signal->cmaxrss; | ||
1366 | 1369 | ||
1367 | if (who == RUSAGE_CHILDREN) | 1370 | if (who == RUSAGE_CHILDREN) |
1368 | break; | 1371 | break; |
@@ -1377,6 +1380,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1377 | r->ru_majflt += p->signal->maj_flt; | 1380 | r->ru_majflt += p->signal->maj_flt; |
1378 | r->ru_inblock += p->signal->inblock; | 1381 | r->ru_inblock += p->signal->inblock; |
1379 | r->ru_oublock += p->signal->oublock; | 1382 | r->ru_oublock += p->signal->oublock; |
1383 | if (maxrss < p->signal->maxrss) | ||
1384 | maxrss = p->signal->maxrss; | ||
1380 | t = p; | 1385 | t = p; |
1381 | do { | 1386 | do { |
1382 | accumulate_thread_rusage(t, r); | 1387 | accumulate_thread_rusage(t, r); |
@@ -1392,6 +1397,15 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1392 | out: | 1397 | out: |
1393 | cputime_to_timeval(utime, &r->ru_utime); | 1398 | cputime_to_timeval(utime, &r->ru_utime); |
1394 | cputime_to_timeval(stime, &r->ru_stime); | 1399 | cputime_to_timeval(stime, &r->ru_stime); |
1400 | |||
1401 | if (who != RUSAGE_CHILDREN) { | ||
1402 | struct mm_struct *mm = get_task_mm(p); | ||
1403 | if (mm) { | ||
1404 | setmax_mm_hiwater_rss(&maxrss, mm); | ||
1405 | mmput(mm); | ||
1406 | } | ||
1407 | } | ||
1408 | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | ||
1395 | } | 1409 | } |
1396 | 1410 | ||
1397 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 1411 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
@@ -1511,11 +1525,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1511 | case PR_SET_TSC: | 1525 | case PR_SET_TSC: |
1512 | error = SET_TSC_CTL(arg2); | 1526 | error = SET_TSC_CTL(arg2); |
1513 | break; | 1527 | break; |
1514 | case PR_TASK_PERF_COUNTERS_DISABLE: | 1528 | case PR_TASK_PERF_EVENTS_DISABLE: |
1515 | error = perf_counter_task_disable(); | 1529 | error = perf_event_task_disable(); |
1516 | break; | 1530 | break; |
1517 | case PR_TASK_PERF_COUNTERS_ENABLE: | 1531 | case PR_TASK_PERF_EVENTS_ENABLE: |
1518 | error = perf_counter_task_enable(); | 1532 | error = perf_event_task_enable(); |
1519 | break; | 1533 | break; |
1520 | case PR_GET_TIMERSLACK: | 1534 | case PR_GET_TIMERSLACK: |
1521 | error = current->timer_slack_ns; | 1535 | error = current->timer_slack_ns; |
@@ -1528,6 +1542,28 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1528 | current->timer_slack_ns = arg2; | 1542 | current->timer_slack_ns = arg2; |
1529 | error = 0; | 1543 | error = 0; |
1530 | break; | 1544 | break; |
1545 | case PR_MCE_KILL: | ||
1546 | if (arg4 | arg5) | ||
1547 | return -EINVAL; | ||
1548 | switch (arg2) { | ||
1549 | case 0: | ||
1550 | if (arg3 != 0) | ||
1551 | return -EINVAL; | ||
1552 | current->flags &= ~PF_MCE_PROCESS; | ||
1553 | break; | ||
1554 | case 1: | ||
1555 | current->flags |= PF_MCE_PROCESS; | ||
1556 | if (arg3 != 0) | ||
1557 | current->flags |= PF_MCE_EARLY; | ||
1558 | else | ||
1559 | current->flags &= ~PF_MCE_EARLY; | ||
1560 | break; | ||
1561 | default: | ||
1562 | return -EINVAL; | ||
1563 | } | ||
1564 | error = 0; | ||
1565 | break; | ||
1566 | |||
1531 | default: | 1567 | default: |
1532 | error = -EINVAL; | 1568 | error = -EINVAL; |
1533 | break; | 1569 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 68320f6b07b5..e06d0b8d1951 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
@@ -49,6 +49,7 @@ cond_syscall(sys_sendmsg); | |||
49 | cond_syscall(compat_sys_sendmsg); | 49 | cond_syscall(compat_sys_sendmsg); |
50 | cond_syscall(sys_recvmsg); | 50 | cond_syscall(sys_recvmsg); |
51 | cond_syscall(compat_sys_recvmsg); | 51 | cond_syscall(compat_sys_recvmsg); |
52 | cond_syscall(compat_sys_recvfrom); | ||
52 | cond_syscall(sys_socketcall); | 53 | cond_syscall(sys_socketcall); |
53 | cond_syscall(sys_futex); | 54 | cond_syscall(sys_futex); |
54 | cond_syscall(compat_sys_futex); | 55 | cond_syscall(compat_sys_futex); |
@@ -177,4 +178,4 @@ cond_syscall(sys_eventfd); | |||
177 | cond_syscall(sys_eventfd2); | 178 | cond_syscall(sys_eventfd2); |
178 | 179 | ||
179 | /* performance counters: */ | 180 | /* performance counters: */ |
180 | cond_syscall(sys_perf_counter_open); | 181 | cond_syscall(sys_perf_event_open); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 1a631ba684a4..0d949c517412 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -26,7 +26,6 @@ | |||
26 | #include <linux/proc_fs.h> | 26 | #include <linux/proc_fs.h> |
27 | #include <linux/security.h> | 27 | #include <linux/security.h> |
28 | #include <linux/ctype.h> | 28 | #include <linux/ctype.h> |
29 | #include <linux/utsname.h> | ||
30 | #include <linux/kmemcheck.h> | 29 | #include <linux/kmemcheck.h> |
31 | #include <linux/smp_lock.h> | 30 | #include <linux/smp_lock.h> |
32 | #include <linux/fs.h> | 31 | #include <linux/fs.h> |
@@ -50,7 +49,7 @@ | |||
50 | #include <linux/reboot.h> | 49 | #include <linux/reboot.h> |
51 | #include <linux/ftrace.h> | 50 | #include <linux/ftrace.h> |
52 | #include <linux/slow-work.h> | 51 | #include <linux/slow-work.h> |
53 | #include <linux/perf_counter.h> | 52 | #include <linux/perf_event.h> |
54 | 53 | ||
55 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
56 | #include <asm/processor.h> | 55 | #include <asm/processor.h> |
@@ -77,6 +76,7 @@ extern int max_threads; | |||
77 | extern int core_uses_pid; | 76 | extern int core_uses_pid; |
78 | extern int suid_dumpable; | 77 | extern int suid_dumpable; |
79 | extern char core_pattern[]; | 78 | extern char core_pattern[]; |
79 | extern unsigned int core_pipe_limit; | ||
80 | extern int pid_max; | 80 | extern int pid_max; |
81 | extern int min_free_kbytes; | 81 | extern int min_free_kbytes; |
82 | extern int pid_max_min, pid_max_max; | 82 | extern int pid_max_min, pid_max_max; |
@@ -106,6 +106,9 @@ static int __maybe_unused one = 1; | |||
106 | static int __maybe_unused two = 2; | 106 | static int __maybe_unused two = 2; |
107 | static unsigned long one_ul = 1; | 107 | static unsigned long one_ul = 1; |
108 | static int one_hundred = 100; | 108 | static int one_hundred = 100; |
109 | #ifdef CONFIG_PRINTK | ||
110 | static int ten_thousand = 10000; | ||
111 | #endif | ||
109 | 112 | ||
110 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ | 113 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
111 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; | 114 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
@@ -160,9 +163,9 @@ extern int max_lock_depth; | |||
160 | #endif | 163 | #endif |
161 | 164 | ||
162 | #ifdef CONFIG_PROC_SYSCTL | 165 | #ifdef CONFIG_PROC_SYSCTL |
163 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 166 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
164 | void __user *buffer, size_t *lenp, loff_t *ppos); | 167 | void __user *buffer, size_t *lenp, loff_t *ppos); |
165 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 168 | static int proc_taint(struct ctl_table *table, int write, |
166 | void __user *buffer, size_t *lenp, loff_t *ppos); | 169 | void __user *buffer, size_t *lenp, loff_t *ppos); |
167 | #endif | 170 | #endif |
168 | 171 | ||
@@ -421,6 +424,14 @@ static struct ctl_table kern_table[] = { | |||
421 | .proc_handler = &proc_dostring, | 424 | .proc_handler = &proc_dostring, |
422 | .strategy = &sysctl_string, | 425 | .strategy = &sysctl_string, |
423 | }, | 426 | }, |
427 | { | ||
428 | .ctl_name = CTL_UNNUMBERED, | ||
429 | .procname = "core_pipe_limit", | ||
430 | .data = &core_pipe_limit, | ||
431 | .maxlen = sizeof(unsigned int), | ||
432 | .mode = 0644, | ||
433 | .proc_handler = &proc_dointvec, | ||
434 | }, | ||
424 | #ifdef CONFIG_PROC_SYSCTL | 435 | #ifdef CONFIG_PROC_SYSCTL |
425 | { | 436 | { |
426 | .procname = "tainted", | 437 | .procname = "tainted", |
@@ -722,6 +733,17 @@ static struct ctl_table kern_table[] = { | |||
722 | .mode = 0644, | 733 | .mode = 0644, |
723 | .proc_handler = &proc_dointvec, | 734 | .proc_handler = &proc_dointvec, |
724 | }, | 735 | }, |
736 | { | ||
737 | .ctl_name = CTL_UNNUMBERED, | ||
738 | .procname = "printk_delay", | ||
739 | .data = &printk_delay_msec, | ||
740 | .maxlen = sizeof(int), | ||
741 | .mode = 0644, | ||
742 | .proc_handler = &proc_dointvec_minmax, | ||
743 | .strategy = &sysctl_intvec, | ||
744 | .extra1 = &zero, | ||
745 | .extra2 = &ten_thousand, | ||
746 | }, | ||
725 | #endif | 747 | #endif |
726 | { | 748 | { |
727 | .ctl_name = KERN_NGROUPS_MAX, | 749 | .ctl_name = KERN_NGROUPS_MAX, |
@@ -964,28 +986,28 @@ static struct ctl_table kern_table[] = { | |||
964 | .child = slow_work_sysctls, | 986 | .child = slow_work_sysctls, |
965 | }, | 987 | }, |
966 | #endif | 988 | #endif |
967 | #ifdef CONFIG_PERF_COUNTERS | 989 | #ifdef CONFIG_PERF_EVENTS |
968 | { | 990 | { |
969 | .ctl_name = CTL_UNNUMBERED, | 991 | .ctl_name = CTL_UNNUMBERED, |
970 | .procname = "perf_counter_paranoid", | 992 | .procname = "perf_event_paranoid", |
971 | .data = &sysctl_perf_counter_paranoid, | 993 | .data = &sysctl_perf_event_paranoid, |
972 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | 994 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
973 | .mode = 0644, | 995 | .mode = 0644, |
974 | .proc_handler = &proc_dointvec, | 996 | .proc_handler = &proc_dointvec, |
975 | }, | 997 | }, |
976 | { | 998 | { |
977 | .ctl_name = CTL_UNNUMBERED, | 999 | .ctl_name = CTL_UNNUMBERED, |
978 | .procname = "perf_counter_mlock_kb", | 1000 | .procname = "perf_event_mlock_kb", |
979 | .data = &sysctl_perf_counter_mlock, | 1001 | .data = &sysctl_perf_event_mlock, |
980 | .maxlen = sizeof(sysctl_perf_counter_mlock), | 1002 | .maxlen = sizeof(sysctl_perf_event_mlock), |
981 | .mode = 0644, | 1003 | .mode = 0644, |
982 | .proc_handler = &proc_dointvec, | 1004 | .proc_handler = &proc_dointvec, |
983 | }, | 1005 | }, |
984 | { | 1006 | { |
985 | .ctl_name = CTL_UNNUMBERED, | 1007 | .ctl_name = CTL_UNNUMBERED, |
986 | .procname = "perf_counter_max_sample_rate", | 1008 | .procname = "perf_event_max_sample_rate", |
987 | .data = &sysctl_perf_counter_sample_rate, | 1009 | .data = &sysctl_perf_event_sample_rate, |
988 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | 1010 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
989 | .mode = 0644, | 1011 | .mode = 0644, |
990 | .proc_handler = &proc_dointvec, | 1012 | .proc_handler = &proc_dointvec, |
991 | }, | 1013 | }, |
@@ -1376,6 +1398,31 @@ static struct ctl_table vm_table[] = { | |||
1376 | .mode = 0644, | 1398 | .mode = 0644, |
1377 | .proc_handler = &scan_unevictable_handler, | 1399 | .proc_handler = &scan_unevictable_handler, |
1378 | }, | 1400 | }, |
1401 | #ifdef CONFIG_MEMORY_FAILURE | ||
1402 | { | ||
1403 | .ctl_name = CTL_UNNUMBERED, | ||
1404 | .procname = "memory_failure_early_kill", | ||
1405 | .data = &sysctl_memory_failure_early_kill, | ||
1406 | .maxlen = sizeof(sysctl_memory_failure_early_kill), | ||
1407 | .mode = 0644, | ||
1408 | .proc_handler = &proc_dointvec_minmax, | ||
1409 | .strategy = &sysctl_intvec, | ||
1410 | .extra1 = &zero, | ||
1411 | .extra2 = &one, | ||
1412 | }, | ||
1413 | { | ||
1414 | .ctl_name = CTL_UNNUMBERED, | ||
1415 | .procname = "memory_failure_recovery", | ||
1416 | .data = &sysctl_memory_failure_recovery, | ||
1417 | .maxlen = sizeof(sysctl_memory_failure_recovery), | ||
1418 | .mode = 0644, | ||
1419 | .proc_handler = &proc_dointvec_minmax, | ||
1420 | .strategy = &sysctl_intvec, | ||
1421 | .extra1 = &zero, | ||
1422 | .extra2 = &one, | ||
1423 | }, | ||
1424 | #endif | ||
1425 | |||
1379 | /* | 1426 | /* |
1380 | * NOTE: do not add new entries to this table unless you have read | 1427 | * NOTE: do not add new entries to this table unless you have read |
1381 | * Documentation/sysctl/ctl_unnumbered.txt | 1428 | * Documentation/sysctl/ctl_unnumbered.txt |
@@ -2204,7 +2251,7 @@ void sysctl_head_put(struct ctl_table_header *head) | |||
2204 | #ifdef CONFIG_PROC_SYSCTL | 2251 | #ifdef CONFIG_PROC_SYSCTL |
2205 | 2252 | ||
2206 | static int _proc_do_string(void* data, int maxlen, int write, | 2253 | static int _proc_do_string(void* data, int maxlen, int write, |
2207 | struct file *filp, void __user *buffer, | 2254 | void __user *buffer, |
2208 | size_t *lenp, loff_t *ppos) | 2255 | size_t *lenp, loff_t *ppos) |
2209 | { | 2256 | { |
2210 | size_t len; | 2257 | size_t len; |
@@ -2265,7 +2312,6 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
2265 | * proc_dostring - read a string sysctl | 2312 | * proc_dostring - read a string sysctl |
2266 | * @table: the sysctl table | 2313 | * @table: the sysctl table |
2267 | * @write: %TRUE if this is a write to the sysctl file | 2314 | * @write: %TRUE if this is a write to the sysctl file |
2268 | * @filp: the file structure | ||
2269 | * @buffer: the user buffer | 2315 | * @buffer: the user buffer |
2270 | * @lenp: the size of the user buffer | 2316 | * @lenp: the size of the user buffer |
2271 | * @ppos: file position | 2317 | * @ppos: file position |
@@ -2279,10 +2325,10 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
2279 | * | 2325 | * |
2280 | * Returns 0 on success. | 2326 | * Returns 0 on success. |
2281 | */ | 2327 | */ |
2282 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2328 | int proc_dostring(struct ctl_table *table, int write, |
2283 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2329 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2284 | { | 2330 | { |
2285 | return _proc_do_string(table->data, table->maxlen, write, filp, | 2331 | return _proc_do_string(table->data, table->maxlen, write, |
2286 | buffer, lenp, ppos); | 2332 | buffer, lenp, ppos); |
2287 | } | 2333 | } |
2288 | 2334 | ||
@@ -2307,7 +2353,7 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | |||
2307 | } | 2353 | } |
2308 | 2354 | ||
2309 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | 2355 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, |
2310 | int write, struct file *filp, void __user *buffer, | 2356 | int write, void __user *buffer, |
2311 | size_t *lenp, loff_t *ppos, | 2357 | size_t *lenp, loff_t *ppos, |
2312 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2358 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
2313 | int write, void *data), | 2359 | int write, void *data), |
@@ -2414,13 +2460,13 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | |||
2414 | #undef TMPBUFLEN | 2460 | #undef TMPBUFLEN |
2415 | } | 2461 | } |
2416 | 2462 | ||
2417 | static int do_proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2463 | static int do_proc_dointvec(struct ctl_table *table, int write, |
2418 | void __user *buffer, size_t *lenp, loff_t *ppos, | 2464 | void __user *buffer, size_t *lenp, loff_t *ppos, |
2419 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2465 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
2420 | int write, void *data), | 2466 | int write, void *data), |
2421 | void *data) | 2467 | void *data) |
2422 | { | 2468 | { |
2423 | return __do_proc_dointvec(table->data, table, write, filp, | 2469 | return __do_proc_dointvec(table->data, table, write, |
2424 | buffer, lenp, ppos, conv, data); | 2470 | buffer, lenp, ppos, conv, data); |
2425 | } | 2471 | } |
2426 | 2472 | ||
@@ -2428,7 +2474,6 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
2428 | * proc_dointvec - read a vector of integers | 2474 | * proc_dointvec - read a vector of integers |
2429 | * @table: the sysctl table | 2475 | * @table: the sysctl table |
2430 | * @write: %TRUE if this is a write to the sysctl file | 2476 | * @write: %TRUE if this is a write to the sysctl file |
2431 | * @filp: the file structure | ||
2432 | * @buffer: the user buffer | 2477 | * @buffer: the user buffer |
2433 | * @lenp: the size of the user buffer | 2478 | * @lenp: the size of the user buffer |
2434 | * @ppos: file position | 2479 | * @ppos: file position |
@@ -2438,10 +2483,10 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
2438 | * | 2483 | * |
2439 | * Returns 0 on success. | 2484 | * Returns 0 on success. |
2440 | */ | 2485 | */ |
2441 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2486 | int proc_dointvec(struct ctl_table *table, int write, |
2442 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2487 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2443 | { | 2488 | { |
2444 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2489 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2445 | NULL,NULL); | 2490 | NULL,NULL); |
2446 | } | 2491 | } |
2447 | 2492 | ||
@@ -2449,7 +2494,7 @@ int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | |||
2449 | * Taint values can only be increased | 2494 | * Taint values can only be increased |
2450 | * This means we can safely use a temporary. | 2495 | * This means we can safely use a temporary. |
2451 | */ | 2496 | */ |
2452 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 2497 | static int proc_taint(struct ctl_table *table, int write, |
2453 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2498 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2454 | { | 2499 | { |
2455 | struct ctl_table t; | 2500 | struct ctl_table t; |
@@ -2461,7 +2506,7 @@ static int proc_taint(struct ctl_table *table, int write, struct file *filp, | |||
2461 | 2506 | ||
2462 | t = *table; | 2507 | t = *table; |
2463 | t.data = &tmptaint; | 2508 | t.data = &tmptaint; |
2464 | err = proc_doulongvec_minmax(&t, write, filp, buffer, lenp, ppos); | 2509 | err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); |
2465 | if (err < 0) | 2510 | if (err < 0) |
2466 | return err; | 2511 | return err; |
2467 | 2512 | ||
@@ -2513,7 +2558,6 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2513 | * proc_dointvec_minmax - read a vector of integers with min/max values | 2558 | * proc_dointvec_minmax - read a vector of integers with min/max values |
2514 | * @table: the sysctl table | 2559 | * @table: the sysctl table |
2515 | * @write: %TRUE if this is a write to the sysctl file | 2560 | * @write: %TRUE if this is a write to the sysctl file |
2516 | * @filp: the file structure | ||
2517 | * @buffer: the user buffer | 2561 | * @buffer: the user buffer |
2518 | * @lenp: the size of the user buffer | 2562 | * @lenp: the size of the user buffer |
2519 | * @ppos: file position | 2563 | * @ppos: file position |
@@ -2526,19 +2570,18 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2526 | * | 2570 | * |
2527 | * Returns 0 on success. | 2571 | * Returns 0 on success. |
2528 | */ | 2572 | */ |
2529 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2573 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
2530 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2574 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2531 | { | 2575 | { |
2532 | struct do_proc_dointvec_minmax_conv_param param = { | 2576 | struct do_proc_dointvec_minmax_conv_param param = { |
2533 | .min = (int *) table->extra1, | 2577 | .min = (int *) table->extra1, |
2534 | .max = (int *) table->extra2, | 2578 | .max = (int *) table->extra2, |
2535 | }; | 2579 | }; |
2536 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2580 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
2537 | do_proc_dointvec_minmax_conv, ¶m); | 2581 | do_proc_dointvec_minmax_conv, ¶m); |
2538 | } | 2582 | } |
2539 | 2583 | ||
2540 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, | 2584 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, |
2541 | struct file *filp, | ||
2542 | void __user *buffer, | 2585 | void __user *buffer, |
2543 | size_t *lenp, loff_t *ppos, | 2586 | size_t *lenp, loff_t *ppos, |
2544 | unsigned long convmul, | 2587 | unsigned long convmul, |
@@ -2643,21 +2686,19 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int | |||
2643 | } | 2686 | } |
2644 | 2687 | ||
2645 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | 2688 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, |
2646 | struct file *filp, | ||
2647 | void __user *buffer, | 2689 | void __user *buffer, |
2648 | size_t *lenp, loff_t *ppos, | 2690 | size_t *lenp, loff_t *ppos, |
2649 | unsigned long convmul, | 2691 | unsigned long convmul, |
2650 | unsigned long convdiv) | 2692 | unsigned long convdiv) |
2651 | { | 2693 | { |
2652 | return __do_proc_doulongvec_minmax(table->data, table, write, | 2694 | return __do_proc_doulongvec_minmax(table->data, table, write, |
2653 | filp, buffer, lenp, ppos, convmul, convdiv); | 2695 | buffer, lenp, ppos, convmul, convdiv); |
2654 | } | 2696 | } |
2655 | 2697 | ||
2656 | /** | 2698 | /** |
2657 | * proc_doulongvec_minmax - read a vector of long integers with min/max values | 2699 | * proc_doulongvec_minmax - read a vector of long integers with min/max values |
2658 | * @table: the sysctl table | 2700 | * @table: the sysctl table |
2659 | * @write: %TRUE if this is a write to the sysctl file | 2701 | * @write: %TRUE if this is a write to the sysctl file |
2660 | * @filp: the file structure | ||
2661 | * @buffer: the user buffer | 2702 | * @buffer: the user buffer |
2662 | * @lenp: the size of the user buffer | 2703 | * @lenp: the size of the user buffer |
2663 | * @ppos: file position | 2704 | * @ppos: file position |
@@ -2670,17 +2711,16 @@ static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | |||
2670 | * | 2711 | * |
2671 | * Returns 0 on success. | 2712 | * Returns 0 on success. |
2672 | */ | 2713 | */ |
2673 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2714 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
2674 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2715 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2675 | { | 2716 | { |
2676 | return do_proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos, 1l, 1l); | 2717 | return do_proc_doulongvec_minmax(table, write, buffer, lenp, ppos, 1l, 1l); |
2677 | } | 2718 | } |
2678 | 2719 | ||
2679 | /** | 2720 | /** |
2680 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values | 2721 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values |
2681 | * @table: the sysctl table | 2722 | * @table: the sysctl table |
2682 | * @write: %TRUE if this is a write to the sysctl file | 2723 | * @write: %TRUE if this is a write to the sysctl file |
2683 | * @filp: the file structure | ||
2684 | * @buffer: the user buffer | 2724 | * @buffer: the user buffer |
2685 | * @lenp: the size of the user buffer | 2725 | * @lenp: the size of the user buffer |
2686 | * @ppos: file position | 2726 | * @ppos: file position |
@@ -2695,11 +2735,10 @@ int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp | |||
2695 | * Returns 0 on success. | 2735 | * Returns 0 on success. |
2696 | */ | 2736 | */ |
2697 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2737 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
2698 | struct file *filp, | ||
2699 | void __user *buffer, | 2738 | void __user *buffer, |
2700 | size_t *lenp, loff_t *ppos) | 2739 | size_t *lenp, loff_t *ppos) |
2701 | { | 2740 | { |
2702 | return do_proc_doulongvec_minmax(table, write, filp, buffer, | 2741 | return do_proc_doulongvec_minmax(table, write, buffer, |
2703 | lenp, ppos, HZ, 1000l); | 2742 | lenp, ppos, HZ, 1000l); |
2704 | } | 2743 | } |
2705 | 2744 | ||
@@ -2775,7 +2814,6 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2775 | * proc_dointvec_jiffies - read a vector of integers as seconds | 2814 | * proc_dointvec_jiffies - read a vector of integers as seconds |
2776 | * @table: the sysctl table | 2815 | * @table: the sysctl table |
2777 | * @write: %TRUE if this is a write to the sysctl file | 2816 | * @write: %TRUE if this is a write to the sysctl file |
2778 | * @filp: the file structure | ||
2779 | * @buffer: the user buffer | 2817 | * @buffer: the user buffer |
2780 | * @lenp: the size of the user buffer | 2818 | * @lenp: the size of the user buffer |
2781 | * @ppos: file position | 2819 | * @ppos: file position |
@@ -2787,10 +2825,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2787 | * | 2825 | * |
2788 | * Returns 0 on success. | 2826 | * Returns 0 on success. |
2789 | */ | 2827 | */ |
2790 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2828 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
2791 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2829 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2792 | { | 2830 | { |
2793 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2831 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2794 | do_proc_dointvec_jiffies_conv,NULL); | 2832 | do_proc_dointvec_jiffies_conv,NULL); |
2795 | } | 2833 | } |
2796 | 2834 | ||
@@ -2798,7 +2836,6 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
2798 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds | 2836 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds |
2799 | * @table: the sysctl table | 2837 | * @table: the sysctl table |
2800 | * @write: %TRUE if this is a write to the sysctl file | 2838 | * @write: %TRUE if this is a write to the sysctl file |
2801 | * @filp: the file structure | ||
2802 | * @buffer: the user buffer | 2839 | * @buffer: the user buffer |
2803 | * @lenp: the size of the user buffer | 2840 | * @lenp: the size of the user buffer |
2804 | * @ppos: pointer to the file position | 2841 | * @ppos: pointer to the file position |
@@ -2810,10 +2847,10 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
2810 | * | 2847 | * |
2811 | * Returns 0 on success. | 2848 | * Returns 0 on success. |
2812 | */ | 2849 | */ |
2813 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2850 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
2814 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2851 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2815 | { | 2852 | { |
2816 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2853 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2817 | do_proc_dointvec_userhz_jiffies_conv,NULL); | 2854 | do_proc_dointvec_userhz_jiffies_conv,NULL); |
2818 | } | 2855 | } |
2819 | 2856 | ||
@@ -2821,7 +2858,6 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
2821 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds | 2858 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds |
2822 | * @table: the sysctl table | 2859 | * @table: the sysctl table |
2823 | * @write: %TRUE if this is a write to the sysctl file | 2860 | * @write: %TRUE if this is a write to the sysctl file |
2824 | * @filp: the file structure | ||
2825 | * @buffer: the user buffer | 2861 | * @buffer: the user buffer |
2826 | * @lenp: the size of the user buffer | 2862 | * @lenp: the size of the user buffer |
2827 | * @ppos: file position | 2863 | * @ppos: file position |
@@ -2834,14 +2870,14 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
2834 | * | 2870 | * |
2835 | * Returns 0 on success. | 2871 | * Returns 0 on success. |
2836 | */ | 2872 | */ |
2837 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2873 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
2838 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2874 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2839 | { | 2875 | { |
2840 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2876 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
2841 | do_proc_dointvec_ms_jiffies_conv, NULL); | 2877 | do_proc_dointvec_ms_jiffies_conv, NULL); |
2842 | } | 2878 | } |
2843 | 2879 | ||
2844 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 2880 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
2845 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2881 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2846 | { | 2882 | { |
2847 | struct pid *new_pid; | 2883 | struct pid *new_pid; |
@@ -2850,7 +2886,7 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
2850 | 2886 | ||
2851 | tmp = pid_vnr(cad_pid); | 2887 | tmp = pid_vnr(cad_pid); |
2852 | 2888 | ||
2853 | r = __do_proc_dointvec(&tmp, table, write, filp, buffer, | 2889 | r = __do_proc_dointvec(&tmp, table, write, buffer, |
2854 | lenp, ppos, NULL, NULL); | 2890 | lenp, ppos, NULL, NULL); |
2855 | if (r || !write) | 2891 | if (r || !write) |
2856 | return r; | 2892 | return r; |
@@ -2865,50 +2901,49 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
2865 | 2901 | ||
2866 | #else /* CONFIG_PROC_FS */ | 2902 | #else /* CONFIG_PROC_FS */ |
2867 | 2903 | ||
2868 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2904 | int proc_dostring(struct ctl_table *table, int write, |
2869 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2905 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2870 | { | 2906 | { |
2871 | return -ENOSYS; | 2907 | return -ENOSYS; |
2872 | } | 2908 | } |
2873 | 2909 | ||
2874 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2910 | int proc_dointvec(struct ctl_table *table, int write, |
2875 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2911 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2876 | { | 2912 | { |
2877 | return -ENOSYS; | 2913 | return -ENOSYS; |
2878 | } | 2914 | } |
2879 | 2915 | ||
2880 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2916 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
2881 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2917 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2882 | { | 2918 | { |
2883 | return -ENOSYS; | 2919 | return -ENOSYS; |
2884 | } | 2920 | } |
2885 | 2921 | ||
2886 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2922 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
2887 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2923 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2888 | { | 2924 | { |
2889 | return -ENOSYS; | 2925 | return -ENOSYS; |
2890 | } | 2926 | } |
2891 | 2927 | ||
2892 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2928 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
2893 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2929 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2894 | { | 2930 | { |
2895 | return -ENOSYS; | 2931 | return -ENOSYS; |
2896 | } | 2932 | } |
2897 | 2933 | ||
2898 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2934 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
2899 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2935 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2900 | { | 2936 | { |
2901 | return -ENOSYS; | 2937 | return -ENOSYS; |
2902 | } | 2938 | } |
2903 | 2939 | ||
2904 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2940 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
2905 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2941 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2906 | { | 2942 | { |
2907 | return -ENOSYS; | 2943 | return -ENOSYS; |
2908 | } | 2944 | } |
2909 | 2945 | ||
2910 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2946 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
2911 | struct file *filp, | ||
2912 | void __user *buffer, | 2947 | void __user *buffer, |
2913 | size_t *lenp, loff_t *ppos) | 2948 | size_t *lenp, loff_t *ppos) |
2914 | { | 2949 | { |
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 0b0a6366c9d4..ee266620b06c 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
@@ -1,4 +1,4 @@ | |||
1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o timeconv.o |
2 | 2 | ||
3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 09113347d328..5e18c6ab2c6a 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
@@ -394,15 +394,11 @@ void clocksource_resume(void) | |||
394 | { | 394 | { |
395 | struct clocksource *cs; | 395 | struct clocksource *cs; |
396 | 396 | ||
397 | mutex_lock(&clocksource_mutex); | ||
398 | |||
399 | list_for_each_entry(cs, &clocksource_list, list) | 397 | list_for_each_entry(cs, &clocksource_list, list) |
400 | if (cs->resume) | 398 | if (cs->resume) |
401 | cs->resume(); | 399 | cs->resume(); |
402 | 400 | ||
403 | clocksource_resume_watchdog(); | 401 | clocksource_resume_watchdog(); |
404 | |||
405 | mutex_unlock(&clocksource_mutex); | ||
406 | } | 402 | } |
407 | 403 | ||
408 | /** | 404 | /** |
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index e0f59a21c061..89aed5933ed4 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c | |||
@@ -231,6 +231,13 @@ void tick_nohz_stop_sched_tick(int inidle) | |||
231 | if (!inidle && !ts->inidle) | 231 | if (!inidle && !ts->inidle) |
232 | goto end; | 232 | goto end; |
233 | 233 | ||
234 | /* | ||
235 | * Set ts->inidle unconditionally. Even if the system did not | ||
236 | * switch to NOHZ mode the cpu frequency governers rely on the | ||
237 | * update of the idle time accounting in tick_nohz_start_idle(). | ||
238 | */ | ||
239 | ts->inidle = 1; | ||
240 | |||
234 | now = tick_nohz_start_idle(ts); | 241 | now = tick_nohz_start_idle(ts); |
235 | 242 | ||
236 | /* | 243 | /* |
@@ -248,8 +255,6 @@ void tick_nohz_stop_sched_tick(int inidle) | |||
248 | if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) | 255 | if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) |
249 | goto end; | 256 | goto end; |
250 | 257 | ||
251 | ts->inidle = 1; | ||
252 | |||
253 | if (need_resched()) | 258 | if (need_resched()) |
254 | goto end; | 259 | goto end; |
255 | 260 | ||
diff --git a/kernel/time/timeconv.c b/kernel/time/timeconv.c new file mode 100644 index 000000000000..86628e755f38 --- /dev/null +++ b/kernel/time/timeconv.c | |||
@@ -0,0 +1,127 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. | ||
3 | * This file is part of the GNU C Library. | ||
4 | * Contributed by Paul Eggert (eggert@twinsun.com). | ||
5 | * | ||
6 | * The GNU C Library is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU Library General Public License as | ||
8 | * published by the Free Software Foundation; either version 2 of the | ||
9 | * License, or (at your option) any later version. | ||
10 | * | ||
11 | * The GNU C Library is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | * Library General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU Library General Public | ||
17 | * License along with the GNU C Library; see the file COPYING.LIB. If not, | ||
18 | * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
19 | * Boston, MA 02111-1307, USA. | ||
20 | */ | ||
21 | |||
22 | /* | ||
23 | * Converts the calendar time to broken-down time representation | ||
24 | * Based on code from glibc-2.6 | ||
25 | * | ||
26 | * 2009-7-14: | ||
27 | * Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com> | ||
28 | */ | ||
29 | |||
30 | #include <linux/time.h> | ||
31 | #include <linux/module.h> | ||
32 | |||
33 | /* | ||
34 | * Nonzero if YEAR is a leap year (every 4 years, | ||
35 | * except every 100th isn't, and every 400th is). | ||
36 | */ | ||
37 | static int __isleap(long year) | ||
38 | { | ||
39 | return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0); | ||
40 | } | ||
41 | |||
42 | /* do a mathdiv for long type */ | ||
43 | static long math_div(long a, long b) | ||
44 | { | ||
45 | return a / b - (a % b < 0); | ||
46 | } | ||
47 | |||
48 | /* How many leap years between y1 and y2, y1 must less or equal to y2 */ | ||
49 | static long leaps_between(long y1, long y2) | ||
50 | { | ||
51 | long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100) | ||
52 | + math_div(y1 - 1, 400); | ||
53 | long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100) | ||
54 | + math_div(y2 - 1, 400); | ||
55 | return leaps2 - leaps1; | ||
56 | } | ||
57 | |||
58 | /* How many days come before each month (0-12). */ | ||
59 | static const unsigned short __mon_yday[2][13] = { | ||
60 | /* Normal years. */ | ||
61 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, | ||
62 | /* Leap years. */ | ||
63 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366} | ||
64 | }; | ||
65 | |||
66 | #define SECS_PER_HOUR (60 * 60) | ||
67 | #define SECS_PER_DAY (SECS_PER_HOUR * 24) | ||
68 | |||
69 | /** | ||
70 | * time_to_tm - converts the calendar time to local broken-down time | ||
71 | * | ||
72 | * @totalsecs the number of seconds elapsed since 00:00:00 on January 1, 1970, | ||
73 | * Coordinated Universal Time (UTC). | ||
74 | * @offset offset seconds adding to totalsecs. | ||
75 | * @result pointer to struct tm variable to receive broken-down time | ||
76 | */ | ||
77 | void time_to_tm(time_t totalsecs, int offset, struct tm *result) | ||
78 | { | ||
79 | long days, rem, y; | ||
80 | const unsigned short *ip; | ||
81 | |||
82 | days = totalsecs / SECS_PER_DAY; | ||
83 | rem = totalsecs % SECS_PER_DAY; | ||
84 | rem += offset; | ||
85 | while (rem < 0) { | ||
86 | rem += SECS_PER_DAY; | ||
87 | --days; | ||
88 | } | ||
89 | while (rem >= SECS_PER_DAY) { | ||
90 | rem -= SECS_PER_DAY; | ||
91 | ++days; | ||
92 | } | ||
93 | |||
94 | result->tm_hour = rem / SECS_PER_HOUR; | ||
95 | rem %= SECS_PER_HOUR; | ||
96 | result->tm_min = rem / 60; | ||
97 | result->tm_sec = rem % 60; | ||
98 | |||
99 | /* January 1, 1970 was a Thursday. */ | ||
100 | result->tm_wday = (4 + days) % 7; | ||
101 | if (result->tm_wday < 0) | ||
102 | result->tm_wday += 7; | ||
103 | |||
104 | y = 1970; | ||
105 | |||
106 | while (days < 0 || days >= (__isleap(y) ? 366 : 365)) { | ||
107 | /* Guess a corrected year, assuming 365 days per year. */ | ||
108 | long yg = y + math_div(days, 365); | ||
109 | |||
110 | /* Adjust DAYS and Y to match the guessed year. */ | ||
111 | days -= (yg - y) * 365 + leaps_between(y, yg); | ||
112 | y = yg; | ||
113 | } | ||
114 | |||
115 | result->tm_year = y - 1900; | ||
116 | |||
117 | result->tm_yday = days; | ||
118 | |||
119 | ip = __mon_yday[__isleap(y)]; | ||
120 | for (y = 11; days < ip[y]; y--) | ||
121 | continue; | ||
122 | days -= ip[y]; | ||
123 | |||
124 | result->tm_mon = y; | ||
125 | result->tm_mday = days + 1; | ||
126 | } | ||
127 | EXPORT_SYMBOL(time_to_tm); | ||
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c index fddd69d16e03..1b5b7aa2fdfd 100644 --- a/kernel/time/timer_list.c +++ b/kernel/time/timer_list.c | |||
@@ -275,7 +275,7 @@ static int timer_list_open(struct inode *inode, struct file *filp) | |||
275 | return single_open(filp, timer_list_show, NULL); | 275 | return single_open(filp, timer_list_show, NULL); |
276 | } | 276 | } |
277 | 277 | ||
278 | static struct file_operations timer_list_fops = { | 278 | static const struct file_operations timer_list_fops = { |
279 | .open = timer_list_open, | 279 | .open = timer_list_open, |
280 | .read = seq_read, | 280 | .read = seq_read, |
281 | .llseek = seq_lseek, | 281 | .llseek = seq_lseek, |
diff --git a/kernel/time/timer_stats.c b/kernel/time/timer_stats.c index 4cde8b9c716f..ee5681f8d7ec 100644 --- a/kernel/time/timer_stats.c +++ b/kernel/time/timer_stats.c | |||
@@ -395,7 +395,7 @@ static int tstats_open(struct inode *inode, struct file *filp) | |||
395 | return single_open(filp, tstats_show, NULL); | 395 | return single_open(filp, tstats_show, NULL); |
396 | } | 396 | } |
397 | 397 | ||
398 | static struct file_operations tstats_fops = { | 398 | static const struct file_operations tstats_fops = { |
399 | .open = tstats_open, | 399 | .open = tstats_open, |
400 | .read = seq_read, | 400 | .read = seq_read, |
401 | .write = tstats_write, | 401 | .write = tstats_write, |
diff --git a/kernel/timer.c b/kernel/timer.c index bbb51074680e..5db5a8d26811 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -37,7 +37,7 @@ | |||
37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
40 | #include <linux/perf_counter.h> | 40 | #include <linux/perf_event.h> |
41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
42 | 42 | ||
43 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
@@ -46,6 +46,9 @@ | |||
46 | #include <asm/timex.h> | 46 | #include <asm/timex.h> |
47 | #include <asm/io.h> | 47 | #include <asm/io.h> |
48 | 48 | ||
49 | #define CREATE_TRACE_POINTS | ||
50 | #include <trace/events/timer.h> | ||
51 | |||
49 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 52 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
50 | 53 | ||
51 | EXPORT_SYMBOL(jiffies_64); | 54 | EXPORT_SYMBOL(jiffies_64); |
@@ -521,6 +524,25 @@ static inline void debug_timer_activate(struct timer_list *timer) { } | |||
521 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | 524 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
522 | #endif | 525 | #endif |
523 | 526 | ||
527 | static inline void debug_init(struct timer_list *timer) | ||
528 | { | ||
529 | debug_timer_init(timer); | ||
530 | trace_timer_init(timer); | ||
531 | } | ||
532 | |||
533 | static inline void | ||
534 | debug_activate(struct timer_list *timer, unsigned long expires) | ||
535 | { | ||
536 | debug_timer_activate(timer); | ||
537 | trace_timer_start(timer, expires); | ||
538 | } | ||
539 | |||
540 | static inline void debug_deactivate(struct timer_list *timer) | ||
541 | { | ||
542 | debug_timer_deactivate(timer); | ||
543 | trace_timer_cancel(timer); | ||
544 | } | ||
545 | |||
524 | static void __init_timer(struct timer_list *timer, | 546 | static void __init_timer(struct timer_list *timer, |
525 | const char *name, | 547 | const char *name, |
526 | struct lock_class_key *key) | 548 | struct lock_class_key *key) |
@@ -549,7 +571,7 @@ void init_timer_key(struct timer_list *timer, | |||
549 | const char *name, | 571 | const char *name, |
550 | struct lock_class_key *key) | 572 | struct lock_class_key *key) |
551 | { | 573 | { |
552 | debug_timer_init(timer); | 574 | debug_init(timer); |
553 | __init_timer(timer, name, key); | 575 | __init_timer(timer, name, key); |
554 | } | 576 | } |
555 | EXPORT_SYMBOL(init_timer_key); | 577 | EXPORT_SYMBOL(init_timer_key); |
@@ -568,7 +590,7 @@ static inline void detach_timer(struct timer_list *timer, | |||
568 | { | 590 | { |
569 | struct list_head *entry = &timer->entry; | 591 | struct list_head *entry = &timer->entry; |
570 | 592 | ||
571 | debug_timer_deactivate(timer); | 593 | debug_deactivate(timer); |
572 | 594 | ||
573 | __list_del(entry->prev, entry->next); | 595 | __list_del(entry->prev, entry->next); |
574 | if (clear_pending) | 596 | if (clear_pending) |
@@ -632,7 +654,7 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
632 | goto out_unlock; | 654 | goto out_unlock; |
633 | } | 655 | } |
634 | 656 | ||
635 | debug_timer_activate(timer); | 657 | debug_activate(timer, expires); |
636 | 658 | ||
637 | new_base = __get_cpu_var(tvec_bases); | 659 | new_base = __get_cpu_var(tvec_bases); |
638 | 660 | ||
@@ -787,7 +809,7 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
787 | BUG_ON(timer_pending(timer) || !timer->function); | 809 | BUG_ON(timer_pending(timer) || !timer->function); |
788 | spin_lock_irqsave(&base->lock, flags); | 810 | spin_lock_irqsave(&base->lock, flags); |
789 | timer_set_base(timer, base); | 811 | timer_set_base(timer, base); |
790 | debug_timer_activate(timer); | 812 | debug_activate(timer, timer->expires); |
791 | if (time_before(timer->expires, base->next_timer) && | 813 | if (time_before(timer->expires, base->next_timer) && |
792 | !tbase_get_deferrable(timer->base)) | 814 | !tbase_get_deferrable(timer->base)) |
793 | base->next_timer = timer->expires; | 815 | base->next_timer = timer->expires; |
@@ -1000,7 +1022,9 @@ static inline void __run_timers(struct tvec_base *base) | |||
1000 | */ | 1022 | */ |
1001 | lock_map_acquire(&lockdep_map); | 1023 | lock_map_acquire(&lockdep_map); |
1002 | 1024 | ||
1025 | trace_timer_expire_entry(timer); | ||
1003 | fn(data); | 1026 | fn(data); |
1027 | trace_timer_expire_exit(timer); | ||
1004 | 1028 | ||
1005 | lock_map_release(&lockdep_map); | 1029 | lock_map_release(&lockdep_map); |
1006 | 1030 | ||
@@ -1187,7 +1211,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
1187 | { | 1211 | { |
1188 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1212 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1189 | 1213 | ||
1190 | perf_counter_do_pending(); | 1214 | perf_event_do_pending(); |
1191 | 1215 | ||
1192 | hrtimer_run_pending(); | 1216 | hrtimer_run_pending(); |
1193 | 1217 | ||
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index e71634604400..b416512ad17f 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
@@ -83,7 +83,7 @@ config RING_BUFFER_ALLOW_SWAP | |||
83 | # This allows those options to appear when no other tracer is selected. But the | 83 | # This allows those options to appear when no other tracer is selected. But the |
84 | # options do not appear when something else selects it. We need the two options | 84 | # options do not appear when something else selects it. We need the two options |
85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the | 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the |
86 | # hidding of the automatic options options. | 86 | # hidding of the automatic options. |
87 | 87 | ||
88 | config TRACING | 88 | config TRACING |
89 | bool | 89 | bool |
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c index 3eb159c277c8..d9d6206e0b14 100644 --- a/kernel/trace/blktrace.c +++ b/kernel/trace/blktrace.c | |||
@@ -856,6 +856,37 @@ static void blk_add_trace_remap(struct request_queue *q, struct bio *bio, | |||
856 | } | 856 | } |
857 | 857 | ||
858 | /** | 858 | /** |
859 | * blk_add_trace_rq_remap - Add a trace for a request-remap operation | ||
860 | * @q: queue the io is for | ||
861 | * @rq: the source request | ||
862 | * @dev: target device | ||
863 | * @from: source sector | ||
864 | * | ||
865 | * Description: | ||
866 | * Device mapper remaps request to other devices. | ||
867 | * Add a trace for that action. | ||
868 | * | ||
869 | **/ | ||
870 | static void blk_add_trace_rq_remap(struct request_queue *q, | ||
871 | struct request *rq, dev_t dev, | ||
872 | sector_t from) | ||
873 | { | ||
874 | struct blk_trace *bt = q->blk_trace; | ||
875 | struct blk_io_trace_remap r; | ||
876 | |||
877 | if (likely(!bt)) | ||
878 | return; | ||
879 | |||
880 | r.device_from = cpu_to_be32(dev); | ||
881 | r.device_to = cpu_to_be32(disk_devt(rq->rq_disk)); | ||
882 | r.sector_from = cpu_to_be64(from); | ||
883 | |||
884 | __blk_add_trace(bt, blk_rq_pos(rq), blk_rq_bytes(rq), | ||
885 | rq_data_dir(rq), BLK_TA_REMAP, !!rq->errors, | ||
886 | sizeof(r), &r); | ||
887 | } | ||
888 | |||
889 | /** | ||
859 | * blk_add_driver_data - Add binary message with driver-specific data | 890 | * blk_add_driver_data - Add binary message with driver-specific data |
860 | * @q: queue the io is for | 891 | * @q: queue the io is for |
861 | * @rq: io request | 892 | * @rq: io request |
@@ -922,10 +953,13 @@ static void blk_register_tracepoints(void) | |||
922 | WARN_ON(ret); | 953 | WARN_ON(ret); |
923 | ret = register_trace_block_remap(blk_add_trace_remap); | 954 | ret = register_trace_block_remap(blk_add_trace_remap); |
924 | WARN_ON(ret); | 955 | WARN_ON(ret); |
956 | ret = register_trace_block_rq_remap(blk_add_trace_rq_remap); | ||
957 | WARN_ON(ret); | ||
925 | } | 958 | } |
926 | 959 | ||
927 | static void blk_unregister_tracepoints(void) | 960 | static void blk_unregister_tracepoints(void) |
928 | { | 961 | { |
962 | unregister_trace_block_rq_remap(blk_add_trace_rq_remap); | ||
929 | unregister_trace_block_remap(blk_add_trace_remap); | 963 | unregister_trace_block_remap(blk_add_trace_remap); |
930 | unregister_trace_block_split(blk_add_trace_split); | 964 | unregister_trace_block_split(blk_add_trace_split); |
931 | unregister_trace_block_unplug_io(blk_add_trace_unplug_io); | 965 | unregister_trace_block_unplug_io(blk_add_trace_unplug_io); |
@@ -1657,6 +1691,11 @@ int blk_trace_init_sysfs(struct device *dev) | |||
1657 | return sysfs_create_group(&dev->kobj, &blk_trace_attr_group); | 1691 | return sysfs_create_group(&dev->kobj, &blk_trace_attr_group); |
1658 | } | 1692 | } |
1659 | 1693 | ||
1694 | void blk_trace_remove_sysfs(struct device *dev) | ||
1695 | { | ||
1696 | sysfs_remove_group(&dev->kobj, &blk_trace_attr_group); | ||
1697 | } | ||
1698 | |||
1660 | #endif /* CONFIG_BLK_DEV_IO_TRACE */ | 1699 | #endif /* CONFIG_BLK_DEV_IO_TRACE */ |
1661 | 1700 | ||
1662 | #ifdef CONFIG_EVENT_TRACING | 1701 | #ifdef CONFIG_EVENT_TRACING |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index c71e91bf7372..37ba67e33265 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
@@ -225,7 +225,11 @@ static void ftrace_update_pid_func(void) | |||
225 | if (ftrace_trace_function == ftrace_stub) | 225 | if (ftrace_trace_function == ftrace_stub) |
226 | return; | 226 | return; |
227 | 227 | ||
228 | #ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST | ||
228 | func = ftrace_trace_function; | 229 | func = ftrace_trace_function; |
230 | #else | ||
231 | func = __ftrace_trace_function; | ||
232 | #endif | ||
229 | 233 | ||
230 | if (ftrace_pid_trace) { | 234 | if (ftrace_pid_trace) { |
231 | set_ftrace_pid_function(func); | 235 | set_ftrace_pid_function(func); |
@@ -1074,14 +1078,9 @@ static void ftrace_replace_code(int enable) | |||
1074 | failed = __ftrace_replace_code(rec, enable); | 1078 | failed = __ftrace_replace_code(rec, enable); |
1075 | if (failed) { | 1079 | if (failed) { |
1076 | rec->flags |= FTRACE_FL_FAILED; | 1080 | rec->flags |= FTRACE_FL_FAILED; |
1077 | if ((system_state == SYSTEM_BOOTING) || | 1081 | ftrace_bug(failed, rec->ip); |
1078 | !core_kernel_text(rec->ip)) { | 1082 | /* Stop processing */ |
1079 | ftrace_free_rec(rec); | 1083 | return; |
1080 | } else { | ||
1081 | ftrace_bug(failed, rec->ip); | ||
1082 | /* Stop processing */ | ||
1083 | return; | ||
1084 | } | ||
1085 | } | 1084 | } |
1086 | } while_for_each_ftrace_rec(); | 1085 | } while_for_each_ftrace_rec(); |
1087 | } | 1086 | } |
@@ -1520,7 +1519,7 @@ static int t_show(struct seq_file *m, void *v) | |||
1520 | return 0; | 1519 | return 0; |
1521 | } | 1520 | } |
1522 | 1521 | ||
1523 | static struct seq_operations show_ftrace_seq_ops = { | 1522 | static const struct seq_operations show_ftrace_seq_ops = { |
1524 | .start = t_start, | 1523 | .start = t_start, |
1525 | .next = t_next, | 1524 | .next = t_next, |
1526 | .stop = t_stop, | 1525 | .stop = t_stop, |
@@ -1621,8 +1620,10 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable) | |||
1621 | if (!ret) { | 1620 | if (!ret) { |
1622 | struct seq_file *m = file->private_data; | 1621 | struct seq_file *m = file->private_data; |
1623 | m->private = iter; | 1622 | m->private = iter; |
1624 | } else | 1623 | } else { |
1624 | trace_parser_put(&iter->parser); | ||
1625 | kfree(iter); | 1625 | kfree(iter); |
1626 | } | ||
1626 | } else | 1627 | } else |
1627 | file->private_data = iter; | 1628 | file->private_data = iter; |
1628 | mutex_unlock(&ftrace_regex_lock); | 1629 | mutex_unlock(&ftrace_regex_lock); |
@@ -2202,7 +2203,7 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
2202 | struct trace_parser *parser; | 2203 | struct trace_parser *parser; |
2203 | ssize_t ret, read; | 2204 | ssize_t ret, read; |
2204 | 2205 | ||
2205 | if (!cnt || cnt < 0) | 2206 | if (!cnt) |
2206 | return 0; | 2207 | return 0; |
2207 | 2208 | ||
2208 | mutex_lock(&ftrace_regex_lock); | 2209 | mutex_lock(&ftrace_regex_lock); |
@@ -2216,7 +2217,7 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
2216 | parser = &iter->parser; | 2217 | parser = &iter->parser; |
2217 | read = trace_get_user(parser, ubuf, cnt, ppos); | 2218 | read = trace_get_user(parser, ubuf, cnt, ppos); |
2218 | 2219 | ||
2219 | if (trace_parser_loaded(parser) && | 2220 | if (read >= 0 && trace_parser_loaded(parser) && |
2220 | !trace_parser_cont(parser)) { | 2221 | !trace_parser_cont(parser)) { |
2221 | ret = ftrace_process_regex(parser->buffer, | 2222 | ret = ftrace_process_regex(parser->buffer, |
2222 | parser->idx, enable); | 2223 | parser->idx, enable); |
@@ -2459,7 +2460,7 @@ static int g_show(struct seq_file *m, void *v) | |||
2459 | return 0; | 2460 | return 0; |
2460 | } | 2461 | } |
2461 | 2462 | ||
2462 | static struct seq_operations ftrace_graph_seq_ops = { | 2463 | static const struct seq_operations ftrace_graph_seq_ops = { |
2463 | .start = g_start, | 2464 | .start = g_start, |
2464 | .next = g_next, | 2465 | .next = g_next, |
2465 | .stop = g_stop, | 2466 | .stop = g_stop, |
@@ -2552,8 +2553,7 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2552 | size_t cnt, loff_t *ppos) | 2553 | size_t cnt, loff_t *ppos) |
2553 | { | 2554 | { |
2554 | struct trace_parser parser; | 2555 | struct trace_parser parser; |
2555 | size_t read = 0; | 2556 | ssize_t read, ret; |
2556 | ssize_t ret; | ||
2557 | 2557 | ||
2558 | if (!cnt || cnt < 0) | 2558 | if (!cnt || cnt < 0) |
2559 | return 0; | 2559 | return 0; |
@@ -2562,29 +2562,31 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2562 | 2562 | ||
2563 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { | 2563 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { |
2564 | ret = -EBUSY; | 2564 | ret = -EBUSY; |
2565 | goto out; | 2565 | goto out_unlock; |
2566 | } | 2566 | } |
2567 | 2567 | ||
2568 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { | 2568 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { |
2569 | ret = -ENOMEM; | 2569 | ret = -ENOMEM; |
2570 | goto out; | 2570 | goto out_unlock; |
2571 | } | 2571 | } |
2572 | 2572 | ||
2573 | read = trace_get_user(&parser, ubuf, cnt, ppos); | 2573 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
2574 | 2574 | ||
2575 | if (trace_parser_loaded((&parser))) { | 2575 | if (read >= 0 && trace_parser_loaded((&parser))) { |
2576 | parser.buffer[parser.idx] = 0; | 2576 | parser.buffer[parser.idx] = 0; |
2577 | 2577 | ||
2578 | /* we allow only one expression at a time */ | 2578 | /* we allow only one expression at a time */ |
2579 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, | 2579 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, |
2580 | parser.buffer); | 2580 | parser.buffer); |
2581 | if (ret) | 2581 | if (ret) |
2582 | goto out; | 2582 | goto out_free; |
2583 | } | 2583 | } |
2584 | 2584 | ||
2585 | ret = read; | 2585 | ret = read; |
2586 | out: | 2586 | |
2587 | out_free: | ||
2587 | trace_parser_put(&parser); | 2588 | trace_parser_put(&parser); |
2589 | out_unlock: | ||
2588 | mutex_unlock(&graph_lock); | 2590 | mutex_unlock(&graph_lock); |
2589 | 2591 | ||
2590 | return ret; | 2592 | return ret; |
@@ -2655,19 +2657,17 @@ static int ftrace_convert_nops(struct module *mod, | |||
2655 | } | 2657 | } |
2656 | 2658 | ||
2657 | #ifdef CONFIG_MODULES | 2659 | #ifdef CONFIG_MODULES |
2658 | void ftrace_release(void *start, void *end) | 2660 | void ftrace_release_mod(struct module *mod) |
2659 | { | 2661 | { |
2660 | struct dyn_ftrace *rec; | 2662 | struct dyn_ftrace *rec; |
2661 | struct ftrace_page *pg; | 2663 | struct ftrace_page *pg; |
2662 | unsigned long s = (unsigned long)start; | ||
2663 | unsigned long e = (unsigned long)end; | ||
2664 | 2664 | ||
2665 | if (ftrace_disabled || !start || start == end) | 2665 | if (ftrace_disabled) |
2666 | return; | 2666 | return; |
2667 | 2667 | ||
2668 | mutex_lock(&ftrace_lock); | 2668 | mutex_lock(&ftrace_lock); |
2669 | do_for_each_ftrace_rec(pg, rec) { | 2669 | do_for_each_ftrace_rec(pg, rec) { |
2670 | if ((rec->ip >= s) && (rec->ip < e)) { | 2670 | if (within_module_core(rec->ip, mod)) { |
2671 | /* | 2671 | /* |
2672 | * rec->ip is changed in ftrace_free_rec() | 2672 | * rec->ip is changed in ftrace_free_rec() |
2673 | * It should not between s and e if record was freed. | 2673 | * It should not between s and e if record was freed. |
@@ -2699,9 +2699,7 @@ static int ftrace_module_notify(struct notifier_block *self, | |||
2699 | mod->num_ftrace_callsites); | 2699 | mod->num_ftrace_callsites); |
2700 | break; | 2700 | break; |
2701 | case MODULE_STATE_GOING: | 2701 | case MODULE_STATE_GOING: |
2702 | ftrace_release(mod->ftrace_callsites, | 2702 | ftrace_release_mod(mod); |
2703 | mod->ftrace_callsites + | ||
2704 | mod->num_ftrace_callsites); | ||
2705 | break; | 2703 | break; |
2706 | } | 2704 | } |
2707 | 2705 | ||
@@ -3015,7 +3013,7 @@ int unregister_ftrace_function(struct ftrace_ops *ops) | |||
3015 | 3013 | ||
3016 | int | 3014 | int |
3017 | ftrace_enable_sysctl(struct ctl_table *table, int write, | 3015 | ftrace_enable_sysctl(struct ctl_table *table, int write, |
3018 | struct file *file, void __user *buffer, size_t *lenp, | 3016 | void __user *buffer, size_t *lenp, |
3019 | loff_t *ppos) | 3017 | loff_t *ppos) |
3020 | { | 3018 | { |
3021 | int ret; | 3019 | int ret; |
@@ -3025,7 +3023,7 @@ ftrace_enable_sysctl(struct ctl_table *table, int write, | |||
3025 | 3023 | ||
3026 | mutex_lock(&ftrace_lock); | 3024 | mutex_lock(&ftrace_lock); |
3027 | 3025 | ||
3028 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 3026 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
3029 | 3027 | ||
3030 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) | 3028 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) |
3031 | goto out; | 3029 | goto out; |
diff --git a/kernel/trace/kmemtrace.c b/kernel/trace/kmemtrace.c index 81b1645c8549..a91da69f153a 100644 --- a/kernel/trace/kmemtrace.c +++ b/kernel/trace/kmemtrace.c | |||
@@ -501,7 +501,7 @@ static int __init init_kmem_tracer(void) | |||
501 | return 1; | 501 | return 1; |
502 | } | 502 | } |
503 | 503 | ||
504 | if (!register_tracer(&kmem_tracer)) { | 504 | if (register_tracer(&kmem_tracer) != 0) { |
505 | pr_warning("Warning: could not register the kmem tracer\n"); | 505 | pr_warning("Warning: could not register the kmem tracer\n"); |
506 | return 1; | 506 | return 1; |
507 | } | 507 | } |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index a35925d222ba..45068269ebb1 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
@@ -415,7 +415,7 @@ int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | |||
415 | 415 | ||
416 | /* read the non-space input */ | 416 | /* read the non-space input */ |
417 | while (cnt && !isspace(ch)) { | 417 | while (cnt && !isspace(ch)) { |
418 | if (parser->idx < parser->size) | 418 | if (parser->idx < parser->size - 1) |
419 | parser->buffer[parser->idx++] = ch; | 419 | parser->buffer[parser->idx++] = ch; |
420 | else { | 420 | else { |
421 | ret = -EINVAL; | 421 | ret = -EINVAL; |
@@ -1949,7 +1949,7 @@ static int s_show(struct seq_file *m, void *v) | |||
1949 | return 0; | 1949 | return 0; |
1950 | } | 1950 | } |
1951 | 1951 | ||
1952 | static struct seq_operations tracer_seq_ops = { | 1952 | static const struct seq_operations tracer_seq_ops = { |
1953 | .start = s_start, | 1953 | .start = s_start, |
1954 | .next = s_next, | 1954 | .next = s_next, |
1955 | .stop = s_stop, | 1955 | .stop = s_stop, |
@@ -1984,11 +1984,9 @@ __tracing_open(struct inode *inode, struct file *file) | |||
1984 | if (current_trace) | 1984 | if (current_trace) |
1985 | *iter->trace = *current_trace; | 1985 | *iter->trace = *current_trace; |
1986 | 1986 | ||
1987 | if (!alloc_cpumask_var(&iter->started, GFP_KERNEL)) | 1987 | if (!zalloc_cpumask_var(&iter->started, GFP_KERNEL)) |
1988 | goto fail; | 1988 | goto fail; |
1989 | 1989 | ||
1990 | cpumask_clear(iter->started); | ||
1991 | |||
1992 | if (current_trace && current_trace->print_max) | 1990 | if (current_trace && current_trace->print_max) |
1993 | iter->tr = &max_tr; | 1991 | iter->tr = &max_tr; |
1994 | else | 1992 | else |
@@ -2163,7 +2161,7 @@ static int t_show(struct seq_file *m, void *v) | |||
2163 | return 0; | 2161 | return 0; |
2164 | } | 2162 | } |
2165 | 2163 | ||
2166 | static struct seq_operations show_traces_seq_ops = { | 2164 | static const struct seq_operations show_traces_seq_ops = { |
2167 | .start = t_start, | 2165 | .start = t_start, |
2168 | .next = t_next, | 2166 | .next = t_next, |
2169 | .stop = t_stop, | 2167 | .stop = t_stop, |
@@ -4389,7 +4387,7 @@ __init static int tracer_alloc_buffers(void) | |||
4389 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) | 4387 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) |
4390 | goto out_free_buffer_mask; | 4388 | goto out_free_buffer_mask; |
4391 | 4389 | ||
4392 | if (!alloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) | 4390 | if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) |
4393 | goto out_free_tracing_cpumask; | 4391 | goto out_free_tracing_cpumask; |
4394 | 4392 | ||
4395 | /* To save memory, keep the ring buffer size to its minimum */ | 4393 | /* To save memory, keep the ring buffer size to its minimum */ |
@@ -4400,7 +4398,6 @@ __init static int tracer_alloc_buffers(void) | |||
4400 | 4398 | ||
4401 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); | 4399 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); |
4402 | cpumask_copy(tracing_cpumask, cpu_all_mask); | 4400 | cpumask_copy(tracing_cpumask, cpu_all_mask); |
4403 | cpumask_clear(tracing_reader_cpumask); | ||
4404 | 4401 | ||
4405 | /* TODO: make the number of buffers hot pluggable with CPUS */ | 4402 | /* TODO: make the number of buffers hot pluggable with CPUS */ |
4406 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, | 4403 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, |
diff --git a/kernel/trace/trace_branch.c b/kernel/trace/trace_branch.c index 7a7a9fd249a9..4a194f08f88c 100644 --- a/kernel/trace/trace_branch.c +++ b/kernel/trace/trace_branch.c | |||
@@ -34,6 +34,7 @@ probe_likely_condition(struct ftrace_branch_data *f, int val, int expect) | |||
34 | struct trace_array *tr = branch_tracer; | 34 | struct trace_array *tr = branch_tracer; |
35 | struct ring_buffer_event *event; | 35 | struct ring_buffer_event *event; |
36 | struct trace_branch *entry; | 36 | struct trace_branch *entry; |
37 | struct ring_buffer *buffer; | ||
37 | unsigned long flags; | 38 | unsigned long flags; |
38 | int cpu, pc; | 39 | int cpu, pc; |
39 | const char *p; | 40 | const char *p; |
@@ -54,7 +55,8 @@ probe_likely_condition(struct ftrace_branch_data *f, int val, int expect) | |||
54 | goto out; | 55 | goto out; |
55 | 56 | ||
56 | pc = preempt_count(); | 57 | pc = preempt_count(); |
57 | event = trace_buffer_lock_reserve(tr, TRACE_BRANCH, | 58 | buffer = tr->buffer; |
59 | event = trace_buffer_lock_reserve(buffer, TRACE_BRANCH, | ||
58 | sizeof(*entry), flags, pc); | 60 | sizeof(*entry), flags, pc); |
59 | if (!event) | 61 | if (!event) |
60 | goto out; | 62 | goto out; |
@@ -74,8 +76,8 @@ probe_likely_condition(struct ftrace_branch_data *f, int val, int expect) | |||
74 | entry->line = f->line; | 76 | entry->line = f->line; |
75 | entry->correct = val == expect; | 77 | entry->correct = val == expect; |
76 | 78 | ||
77 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 79 | if (!filter_check_discard(call, entry, buffer, event)) |
78 | ring_buffer_unlock_commit(tr->buffer, event); | 80 | ring_buffer_unlock_commit(buffer, event); |
79 | 81 | ||
80 | out: | 82 | out: |
81 | atomic_dec(&tr->data[cpu]->disabled); | 83 | atomic_dec(&tr->data[cpu]->disabled); |
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c index dd44b8768867..8d5c171cc998 100644 --- a/kernel/trace/trace_event_profile.c +++ b/kernel/trace/trace_event_profile.c | |||
@@ -31,7 +31,7 @@ static int ftrace_profile_enable_event(struct ftrace_event_call *event) | |||
31 | if (atomic_inc_return(&event->profile_count)) | 31 | if (atomic_inc_return(&event->profile_count)) |
32 | return 0; | 32 | return 0; |
33 | 33 | ||
34 | if (!total_profile_count++) { | 34 | if (!total_profile_count) { |
35 | buf = (char *)alloc_percpu(profile_buf_t); | 35 | buf = (char *)alloc_percpu(profile_buf_t); |
36 | if (!buf) | 36 | if (!buf) |
37 | goto fail_buf; | 37 | goto fail_buf; |
@@ -46,14 +46,19 @@ static int ftrace_profile_enable_event(struct ftrace_event_call *event) | |||
46 | } | 46 | } |
47 | 47 | ||
48 | ret = event->profile_enable(); | 48 | ret = event->profile_enable(); |
49 | if (!ret) | 49 | if (!ret) { |
50 | total_profile_count++; | ||
50 | return 0; | 51 | return 0; |
52 | } | ||
51 | 53 | ||
52 | kfree(trace_profile_buf_nmi); | ||
53 | fail_buf_nmi: | 54 | fail_buf_nmi: |
54 | kfree(trace_profile_buf); | 55 | if (!total_profile_count) { |
56 | free_percpu(trace_profile_buf_nmi); | ||
57 | free_percpu(trace_profile_buf); | ||
58 | trace_profile_buf_nmi = NULL; | ||
59 | trace_profile_buf = NULL; | ||
60 | } | ||
55 | fail_buf: | 61 | fail_buf: |
56 | total_profile_count--; | ||
57 | atomic_dec(&event->profile_count); | 62 | atomic_dec(&event->profile_count); |
58 | 63 | ||
59 | return ret; | 64 | return ret; |
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index 6f03c8a1105e..d128f65778e6 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
@@ -232,10 +232,9 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
232 | size_t cnt, loff_t *ppos) | 232 | size_t cnt, loff_t *ppos) |
233 | { | 233 | { |
234 | struct trace_parser parser; | 234 | struct trace_parser parser; |
235 | size_t read = 0; | 235 | ssize_t read, ret; |
236 | ssize_t ret; | ||
237 | 236 | ||
238 | if (!cnt || cnt < 0) | 237 | if (!cnt) |
239 | return 0; | 238 | return 0; |
240 | 239 | ||
241 | ret = tracing_update_buffers(); | 240 | ret = tracing_update_buffers(); |
@@ -247,7 +246,7 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
247 | 246 | ||
248 | read = trace_get_user(&parser, ubuf, cnt, ppos); | 247 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
249 | 248 | ||
250 | if (trace_parser_loaded((&parser))) { | 249 | if (read >= 0 && trace_parser_loaded((&parser))) { |
251 | int set = 1; | 250 | int set = 1; |
252 | 251 | ||
253 | if (*parser.buffer == '!') | 252 | if (*parser.buffer == '!') |
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c index ca7d7c4d0c2a..69543a905cd5 100644 --- a/kernel/trace/trace_hw_branches.c +++ b/kernel/trace/trace_hw_branches.c | |||
@@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | |||
155 | seq_print_ip_sym(seq, it->from, symflags) && | 155 | seq_print_ip_sym(seq, it->from, symflags) && |
156 | trace_seq_printf(seq, "\n")) | 156 | trace_seq_printf(seq, "\n")) |
157 | return TRACE_TYPE_HANDLED; | 157 | return TRACE_TYPE_HANDLED; |
158 | return TRACE_TYPE_PARTIAL_LINE;; | 158 | return TRACE_TYPE_PARTIAL_LINE; |
159 | } | 159 | } |
160 | return TRACE_TYPE_UNHANDLED; | 160 | return TRACE_TYPE_UNHANDLED; |
161 | } | 161 | } |
@@ -165,6 +165,7 @@ void trace_hw_branch(u64 from, u64 to) | |||
165 | struct ftrace_event_call *call = &event_hw_branch; | 165 | struct ftrace_event_call *call = &event_hw_branch; |
166 | struct trace_array *tr = hw_branch_trace; | 166 | struct trace_array *tr = hw_branch_trace; |
167 | struct ring_buffer_event *event; | 167 | struct ring_buffer_event *event; |
168 | struct ring_buffer *buf; | ||
168 | struct hw_branch_entry *entry; | 169 | struct hw_branch_entry *entry; |
169 | unsigned long irq1; | 170 | unsigned long irq1; |
170 | int cpu; | 171 | int cpu; |
@@ -180,7 +181,8 @@ void trace_hw_branch(u64 from, u64 to) | |||
180 | if (atomic_inc_return(&tr->data[cpu]->disabled) != 1) | 181 | if (atomic_inc_return(&tr->data[cpu]->disabled) != 1) |
181 | goto out; | 182 | goto out; |
182 | 183 | ||
183 | event = trace_buffer_lock_reserve(tr, TRACE_HW_BRANCHES, | 184 | buf = tr->buffer; |
185 | event = trace_buffer_lock_reserve(buf, TRACE_HW_BRANCHES, | ||
184 | sizeof(*entry), 0, 0); | 186 | sizeof(*entry), 0, 0); |
185 | if (!event) | 187 | if (!event) |
186 | goto out; | 188 | goto out; |
@@ -189,8 +191,8 @@ void trace_hw_branch(u64 from, u64 to) | |||
189 | entry->ent.type = TRACE_HW_BRANCHES; | 191 | entry->ent.type = TRACE_HW_BRANCHES; |
190 | entry->from = from; | 192 | entry->from = from; |
191 | entry->to = to; | 193 | entry->to = to; |
192 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 194 | if (!filter_check_discard(call, entry, buf, event)) |
193 | trace_buffer_unlock_commit(tr, event, 0, 0); | 195 | trace_buffer_unlock_commit(buf, event, 0, 0); |
194 | 196 | ||
195 | out: | 197 | out: |
196 | atomic_dec(&tr->data[cpu]->disabled); | 198 | atomic_dec(&tr->data[cpu]->disabled); |
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index f572f44c6e1e..ed17565826b0 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c | |||
@@ -486,16 +486,18 @@ int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry) | |||
486 | hardirq ? 'h' : softirq ? 's' : '.')) | 486 | hardirq ? 'h' : softirq ? 's' : '.')) |
487 | return 0; | 487 | return 0; |
488 | 488 | ||
489 | if (entry->lock_depth < 0) | 489 | if (entry->preempt_count) |
490 | ret = trace_seq_putc(s, '.'); | 490 | ret = trace_seq_printf(s, "%x", entry->preempt_count); |
491 | else | 491 | else |
492 | ret = trace_seq_printf(s, "%d", entry->lock_depth); | 492 | ret = trace_seq_putc(s, '.'); |
493 | |||
493 | if (!ret) | 494 | if (!ret) |
494 | return 0; | 495 | return 0; |
495 | 496 | ||
496 | if (entry->preempt_count) | 497 | if (entry->lock_depth < 0) |
497 | return trace_seq_printf(s, "%x", entry->preempt_count); | 498 | return trace_seq_putc(s, '.'); |
498 | return trace_seq_putc(s, '.'); | 499 | |
500 | return trace_seq_printf(s, "%d", entry->lock_depth); | ||
499 | } | 501 | } |
500 | 502 | ||
501 | static int | 503 | static int |
@@ -883,7 +885,7 @@ static int trace_ctxwake_raw(struct trace_iterator *iter, char S) | |||
883 | trace_assign_type(field, iter->ent); | 885 | trace_assign_type(field, iter->ent); |
884 | 886 | ||
885 | if (!S) | 887 | if (!S) |
886 | task_state_char(field->prev_state); | 888 | S = task_state_char(field->prev_state); |
887 | T = task_state_char(field->next_state); | 889 | T = task_state_char(field->next_state); |
888 | if (!trace_seq_printf(&iter->seq, "%d %d %c %d %d %d %c\n", | 890 | if (!trace_seq_printf(&iter->seq, "%d %d %c %d %d %d %c\n", |
889 | field->prev_pid, | 891 | field->prev_pid, |
@@ -918,7 +920,7 @@ static int trace_ctxwake_hex(struct trace_iterator *iter, char S) | |||
918 | trace_assign_type(field, iter->ent); | 920 | trace_assign_type(field, iter->ent); |
919 | 921 | ||
920 | if (!S) | 922 | if (!S) |
921 | task_state_char(field->prev_state); | 923 | S = task_state_char(field->prev_state); |
922 | T = task_state_char(field->next_state); | 924 | T = task_state_char(field->next_state); |
923 | 925 | ||
924 | SEQ_PUT_HEX_FIELD_RET(s, field->prev_pid); | 926 | SEQ_PUT_HEX_FIELD_RET(s, field->prev_pid); |
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c index 0f6facb050a1..8504ac71e4e8 100644 --- a/kernel/trace/trace_stack.c +++ b/kernel/trace/trace_stack.c | |||
@@ -296,14 +296,14 @@ static const struct file_operations stack_trace_fops = { | |||
296 | 296 | ||
297 | int | 297 | int |
298 | stack_trace_sysctl(struct ctl_table *table, int write, | 298 | stack_trace_sysctl(struct ctl_table *table, int write, |
299 | struct file *file, void __user *buffer, size_t *lenp, | 299 | void __user *buffer, size_t *lenp, |
300 | loff_t *ppos) | 300 | loff_t *ppos) |
301 | { | 301 | { |
302 | int ret; | 302 | int ret; |
303 | 303 | ||
304 | mutex_lock(&stack_sysctl_mutex); | 304 | mutex_lock(&stack_sysctl_mutex); |
305 | 305 | ||
306 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 306 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
307 | 307 | ||
308 | if (ret || !write || | 308 | if (ret || !write || |
309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) | 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) |
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 7a3550cf2597..527e17eae575 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
@@ -2,7 +2,7 @@ | |||
2 | #include <trace/events/syscalls.h> | 2 | #include <trace/events/syscalls.h> |
3 | #include <linux/kernel.h> | 3 | #include <linux/kernel.h> |
4 | #include <linux/ftrace.h> | 4 | #include <linux/ftrace.h> |
5 | #include <linux/perf_counter.h> | 5 | #include <linux/perf_event.h> |
6 | #include <asm/syscall.h> | 6 | #include <asm/syscall.h> |
7 | 7 | ||
8 | #include "trace_output.h" | 8 | #include "trace_output.h" |
@@ -166,7 +166,7 @@ int syscall_exit_format(struct ftrace_event_call *call, struct trace_seq *s) | |||
166 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | 166 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" |
167 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n", | 167 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n", |
168 | SYSCALL_FIELD(int, nr), | 168 | SYSCALL_FIELD(int, nr), |
169 | SYSCALL_FIELD(unsigned long, ret)); | 169 | SYSCALL_FIELD(long, ret)); |
170 | if (!ret) | 170 | if (!ret) |
171 | return 0; | 171 | return 0; |
172 | 172 | ||
@@ -212,7 +212,7 @@ int syscall_exit_define_fields(struct ftrace_event_call *call) | |||
212 | if (ret) | 212 | if (ret) |
213 | return ret; | 213 | return ret; |
214 | 214 | ||
215 | ret = trace_define_field(call, SYSCALL_FIELD(unsigned long, ret), 0, | 215 | ret = trace_define_field(call, SYSCALL_FIELD(long, ret), 0, |
216 | FILTER_OTHER); | 216 | FILTER_OTHER); |
217 | 217 | ||
218 | return ret; | 218 | return ret; |
@@ -433,7 +433,7 @@ static void prof_syscall_enter(struct pt_regs *regs, long id) | |||
433 | rec->nr = syscall_nr; | 433 | rec->nr = syscall_nr; |
434 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | 434 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, |
435 | (unsigned long *)&rec->args); | 435 | (unsigned long *)&rec->args); |
436 | perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size); | 436 | perf_tp_event(sys_data->enter_id, 0, 1, rec, size); |
437 | 437 | ||
438 | end: | 438 | end: |
439 | local_irq_restore(flags); | 439 | local_irq_restore(flags); |
@@ -532,7 +532,7 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret) | |||
532 | rec->nr = syscall_nr; | 532 | rec->nr = syscall_nr; |
533 | rec->ret = syscall_get_return_value(current, regs); | 533 | rec->ret = syscall_get_return_value(current, regs); |
534 | 534 | ||
535 | perf_tpcounter_event(sys_data->exit_id, 0, 1, rec, size); | 535 | perf_tp_event(sys_data->exit_id, 0, 1, rec, size); |
536 | 536 | ||
537 | end: | 537 | end: |
538 | local_irq_restore(flags); | 538 | local_irq_restore(flags); |
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index 9489a0a9b1be..cc89be5bc0f8 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
@@ -48,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
48 | 48 | ||
49 | /* | 49 | /* |
50 | * Note about RCU : | 50 | * Note about RCU : |
51 | * It is used to to delay the free of multiple probes array until a quiescent | 51 | * It is used to delay the free of multiple probes array until a quiescent |
52 | * state is reached. | 52 | * state is reached. |
53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. | 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. |
54 | */ | 54 | */ |
diff --git a/kernel/uid16.c b/kernel/uid16.c index 0314501688b9..419209893d87 100644 --- a/kernel/uid16.c +++ b/kernel/uid16.c | |||
@@ -4,7 +4,6 @@ | |||
4 | */ | 4 | */ |
5 | 5 | ||
6 | #include <linux/mm.h> | 6 | #include <linux/mm.h> |
7 | #include <linux/utsname.h> | ||
8 | #include <linux/mman.h> | 7 | #include <linux/mman.h> |
9 | #include <linux/notifier.h> | 8 | #include <linux/notifier.h> |
10 | #include <linux/reboot.h> | 9 | #include <linux/reboot.h> |
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c index 92359cc747a7..69eae358a726 100644 --- a/kernel/utsname_sysctl.c +++ b/kernel/utsname_sysctl.c | |||
@@ -42,14 +42,14 @@ static void put_uts(ctl_table *table, int write, void *which) | |||
42 | * Special case of dostring for the UTS structure. This has locks | 42 | * Special case of dostring for the UTS structure. This has locks |
43 | * to observe. Should this be in kernel/sys.c ???? | 43 | * to observe. Should this be in kernel/sys.c ???? |
44 | */ | 44 | */ |
45 | static int proc_do_uts_string(ctl_table *table, int write, struct file *filp, | 45 | static int proc_do_uts_string(ctl_table *table, int write, |
46 | void __user *buffer, size_t *lenp, loff_t *ppos) | 46 | void __user *buffer, size_t *lenp, loff_t *ppos) |
47 | { | 47 | { |
48 | struct ctl_table uts_table; | 48 | struct ctl_table uts_table; |
49 | int r; | 49 | int r; |
50 | memcpy(&uts_table, table, sizeof(uts_table)); | 50 | memcpy(&uts_table, table, sizeof(uts_table)); |
51 | uts_table.data = get_uts(table, write); | 51 | uts_table.data = get_uts(table, write); |
52 | r = proc_dostring(&uts_table,write,filp,buffer,lenp, ppos); | 52 | r = proc_dostring(&uts_table,write,buffer,lenp, ppos); |
53 | put_uts(table, write, uts_table.data); | 53 | put_uts(table, write, uts_table.data); |
54 | return r; | 54 | return r; |
55 | } | 55 | } |