diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Makefile | 1 | ||||
-rw-r--r-- | kernel/exit.c | 13 | ||||
-rw-r--r-- | kernel/fork.c | 1 | ||||
-rw-r--r-- | kernel/mutex.c | 2 | ||||
-rw-r--r-- | kernel/perf_counter.c | 3150 | ||||
-rw-r--r-- | kernel/sched.c | 67 | ||||
-rw-r--r-- | kernel/sys.c | 7 | ||||
-rw-r--r-- | kernel/sys_ni.c | 3 | ||||
-rw-r--r-- | kernel/timer.c | 3 |
9 files changed, 3239 insertions, 8 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 42423665660a..e914ca992d70 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -95,6 +95,7 @@ obj-$(CONFIG_FUNCTION_TRACER) += trace/ | |||
95 | obj-$(CONFIG_TRACING) += trace/ | 95 | obj-$(CONFIG_TRACING) += trace/ |
96 | obj-$(CONFIG_SMP) += sched_cpupri.o | 96 | obj-$(CONFIG_SMP) += sched_cpupri.o |
97 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 97 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
98 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | ||
98 | 99 | ||
99 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 100 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
100 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 101 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/exit.c b/kernel/exit.c index abf9cf3b95c6..4741376c8dec 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -158,6 +158,9 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
158 | { | 158 | { |
159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 159 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
160 | 160 | ||
161 | #ifdef CONFIG_PERF_COUNTERS | ||
162 | WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list)); | ||
163 | #endif | ||
161 | trace_sched_process_free(tsk); | 164 | trace_sched_process_free(tsk); |
162 | put_task_struct(tsk); | 165 | put_task_struct(tsk); |
163 | } | 166 | } |
@@ -981,10 +984,6 @@ NORET_TYPE void do_exit(long code) | |||
981 | tsk->mempolicy = NULL; | 984 | tsk->mempolicy = NULL; |
982 | #endif | 985 | #endif |
983 | #ifdef CONFIG_FUTEX | 986 | #ifdef CONFIG_FUTEX |
984 | /* | ||
985 | * This must happen late, after the PID is not | ||
986 | * hashed anymore: | ||
987 | */ | ||
988 | if (unlikely(!list_empty(&tsk->pi_state_list))) | 987 | if (unlikely(!list_empty(&tsk->pi_state_list))) |
989 | exit_pi_state_list(tsk); | 988 | exit_pi_state_list(tsk); |
990 | if (unlikely(current->pi_state_cache)) | 989 | if (unlikely(current->pi_state_cache)) |
@@ -1251,6 +1250,12 @@ static int wait_task_zombie(struct task_struct *p, int options, | |||
1251 | */ | 1250 | */ |
1252 | read_unlock(&tasklist_lock); | 1251 | read_unlock(&tasklist_lock); |
1253 | 1252 | ||
1253 | /* | ||
1254 | * Flush inherited counters to the parent - before the parent | ||
1255 | * gets woken up by child-exit notifications. | ||
1256 | */ | ||
1257 | perf_counter_exit_task(p); | ||
1258 | |||
1254 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 1259 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
1255 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 1260 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1256 | ? p->signal->group_exit_code : p->exit_code; | 1261 | ? p->signal->group_exit_code : p->exit_code; |
diff --git a/kernel/fork.c b/kernel/fork.c index 989c7c202b3d..89c1efb3ccf4 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -978,6 +978,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
978 | goto fork_out; | 978 | goto fork_out; |
979 | 979 | ||
980 | rt_mutex_init_task(p); | 980 | rt_mutex_init_task(p); |
981 | perf_counter_init_task(p); | ||
981 | 982 | ||
982 | #ifdef CONFIG_PROVE_LOCKING | 983 | #ifdef CONFIG_PROVE_LOCKING |
983 | DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); | 984 | DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); |
diff --git a/kernel/mutex.c b/kernel/mutex.c index 5d79781394a3..fd95eaa672e6 100644 --- a/kernel/mutex.c +++ b/kernel/mutex.c | |||
@@ -89,7 +89,7 @@ __mutex_lock_slowpath(atomic_t *lock_count); | |||
89 | * | 89 | * |
90 | * This function is similar to (but not equivalent to) down(). | 90 | * This function is similar to (but not equivalent to) down(). |
91 | */ | 91 | */ |
92 | void inline __sched mutex_lock(struct mutex *lock) | 92 | void __sched mutex_lock(struct mutex *lock) |
93 | { | 93 | { |
94 | might_sleep(); | 94 | might_sleep(); |
95 | /* | 95 | /* |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c new file mode 100644 index 000000000000..863703b3158f --- /dev/null +++ b/kernel/perf_counter.c | |||
@@ -0,0 +1,3150 @@ | |||
1 | /* | ||
2 | * Performance counter core code | ||
3 | * | ||
4 | * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar | ||
6 | * | ||
7 | * | ||
8 | * For licensing details see kernel-base/COPYING | ||
9 | */ | ||
10 | |||
11 | #include <linux/fs.h> | ||
12 | #include <linux/mm.h> | ||
13 | #include <linux/cpu.h> | ||
14 | #include <linux/smp.h> | ||
15 | #include <linux/file.h> | ||
16 | #include <linux/poll.h> | ||
17 | #include <linux/sysfs.h> | ||
18 | #include <linux/ptrace.h> | ||
19 | #include <linux/percpu.h> | ||
20 | #include <linux/vmstat.h> | ||
21 | #include <linux/hardirq.h> | ||
22 | #include <linux/rculist.h> | ||
23 | #include <linux/uaccess.h> | ||
24 | #include <linux/syscalls.h> | ||
25 | #include <linux/anon_inodes.h> | ||
26 | #include <linux/kernel_stat.h> | ||
27 | #include <linux/perf_counter.h> | ||
28 | #include <linux/dcache.h> | ||
29 | |||
30 | #include <asm/irq_regs.h> | ||
31 | |||
32 | /* | ||
33 | * Each CPU has a list of per CPU counters: | ||
34 | */ | ||
35 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
36 | |||
37 | int perf_max_counters __read_mostly = 1; | ||
38 | static int perf_reserved_percpu __read_mostly; | ||
39 | static int perf_overcommit __read_mostly = 1; | ||
40 | |||
41 | /* | ||
42 | * Mutex for (sysadmin-configurable) counter reservations: | ||
43 | */ | ||
44 | static DEFINE_MUTEX(perf_resource_mutex); | ||
45 | |||
46 | /* | ||
47 | * Architecture provided APIs - weak aliases: | ||
48 | */ | ||
49 | extern __weak const struct hw_perf_counter_ops * | ||
50 | hw_perf_counter_init(struct perf_counter *counter) | ||
51 | { | ||
52 | return NULL; | ||
53 | } | ||
54 | |||
55 | u64 __weak hw_perf_save_disable(void) { return 0; } | ||
56 | void __weak hw_perf_restore(u64 ctrl) { barrier(); } | ||
57 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
58 | int __weak hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
59 | struct perf_cpu_context *cpuctx, | ||
60 | struct perf_counter_context *ctx, int cpu) | ||
61 | { | ||
62 | return 0; | ||
63 | } | ||
64 | |||
65 | void __weak perf_counter_print_debug(void) { } | ||
66 | |||
67 | static void | ||
68 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
69 | { | ||
70 | struct perf_counter *group_leader = counter->group_leader; | ||
71 | |||
72 | /* | ||
73 | * Depending on whether it is a standalone or sibling counter, | ||
74 | * add it straight to the context's counter list, or to the group | ||
75 | * leader's sibling list: | ||
76 | */ | ||
77 | if (counter->group_leader == counter) | ||
78 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
79 | else { | ||
80 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
81 | group_leader->nr_siblings++; | ||
82 | } | ||
83 | |||
84 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
85 | } | ||
86 | |||
87 | static void | ||
88 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
89 | { | ||
90 | struct perf_counter *sibling, *tmp; | ||
91 | |||
92 | list_del_init(&counter->list_entry); | ||
93 | list_del_rcu(&counter->event_entry); | ||
94 | |||
95 | if (counter->group_leader != counter) | ||
96 | counter->group_leader->nr_siblings--; | ||
97 | |||
98 | /* | ||
99 | * If this was a group counter with sibling counters then | ||
100 | * upgrade the siblings to singleton counters by adding them | ||
101 | * to the context list directly: | ||
102 | */ | ||
103 | list_for_each_entry_safe(sibling, tmp, | ||
104 | &counter->sibling_list, list_entry) { | ||
105 | |||
106 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
107 | sibling->group_leader = sibling; | ||
108 | } | ||
109 | } | ||
110 | |||
111 | static void | ||
112 | counter_sched_out(struct perf_counter *counter, | ||
113 | struct perf_cpu_context *cpuctx, | ||
114 | struct perf_counter_context *ctx) | ||
115 | { | ||
116 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
117 | return; | ||
118 | |||
119 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
120 | counter->tstamp_stopped = ctx->time; | ||
121 | counter->hw_ops->disable(counter); | ||
122 | counter->oncpu = -1; | ||
123 | |||
124 | if (!is_software_counter(counter)) | ||
125 | cpuctx->active_oncpu--; | ||
126 | ctx->nr_active--; | ||
127 | if (counter->hw_event.exclusive || !cpuctx->active_oncpu) | ||
128 | cpuctx->exclusive = 0; | ||
129 | } | ||
130 | |||
131 | static void | ||
132 | group_sched_out(struct perf_counter *group_counter, | ||
133 | struct perf_cpu_context *cpuctx, | ||
134 | struct perf_counter_context *ctx) | ||
135 | { | ||
136 | struct perf_counter *counter; | ||
137 | |||
138 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
139 | return; | ||
140 | |||
141 | counter_sched_out(group_counter, cpuctx, ctx); | ||
142 | |||
143 | /* | ||
144 | * Schedule out siblings (if any): | ||
145 | */ | ||
146 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
147 | counter_sched_out(counter, cpuctx, ctx); | ||
148 | |||
149 | if (group_counter->hw_event.exclusive) | ||
150 | cpuctx->exclusive = 0; | ||
151 | } | ||
152 | |||
153 | /* | ||
154 | * Cross CPU call to remove a performance counter | ||
155 | * | ||
156 | * We disable the counter on the hardware level first. After that we | ||
157 | * remove it from the context list. | ||
158 | */ | ||
159 | static void __perf_counter_remove_from_context(void *info) | ||
160 | { | ||
161 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
162 | struct perf_counter *counter = info; | ||
163 | struct perf_counter_context *ctx = counter->ctx; | ||
164 | unsigned long flags; | ||
165 | u64 perf_flags; | ||
166 | |||
167 | /* | ||
168 | * If this is a task context, we need to check whether it is | ||
169 | * the current task context of this cpu. If not it has been | ||
170 | * scheduled out before the smp call arrived. | ||
171 | */ | ||
172 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
173 | return; | ||
174 | |||
175 | spin_lock_irqsave(&ctx->lock, flags); | ||
176 | |||
177 | counter_sched_out(counter, cpuctx, ctx); | ||
178 | |||
179 | counter->task = NULL; | ||
180 | ctx->nr_counters--; | ||
181 | |||
182 | /* | ||
183 | * Protect the list operation against NMI by disabling the | ||
184 | * counters on a global level. NOP for non NMI based counters. | ||
185 | */ | ||
186 | perf_flags = hw_perf_save_disable(); | ||
187 | list_del_counter(counter, ctx); | ||
188 | hw_perf_restore(perf_flags); | ||
189 | |||
190 | if (!ctx->task) { | ||
191 | /* | ||
192 | * Allow more per task counters with respect to the | ||
193 | * reservation: | ||
194 | */ | ||
195 | cpuctx->max_pertask = | ||
196 | min(perf_max_counters - ctx->nr_counters, | ||
197 | perf_max_counters - perf_reserved_percpu); | ||
198 | } | ||
199 | |||
200 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
201 | } | ||
202 | |||
203 | |||
204 | /* | ||
205 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
206 | * | ||
207 | * Must be called with counter->mutex and ctx->mutex held. | ||
208 | * | ||
209 | * CPU counters are removed with a smp call. For task counters we only | ||
210 | * call when the task is on a CPU. | ||
211 | */ | ||
212 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
213 | { | ||
214 | struct perf_counter_context *ctx = counter->ctx; | ||
215 | struct task_struct *task = ctx->task; | ||
216 | |||
217 | if (!task) { | ||
218 | /* | ||
219 | * Per cpu counters are removed via an smp call and | ||
220 | * the removal is always sucessful. | ||
221 | */ | ||
222 | smp_call_function_single(counter->cpu, | ||
223 | __perf_counter_remove_from_context, | ||
224 | counter, 1); | ||
225 | return; | ||
226 | } | ||
227 | |||
228 | retry: | ||
229 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
230 | counter); | ||
231 | |||
232 | spin_lock_irq(&ctx->lock); | ||
233 | /* | ||
234 | * If the context is active we need to retry the smp call. | ||
235 | */ | ||
236 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
237 | spin_unlock_irq(&ctx->lock); | ||
238 | goto retry; | ||
239 | } | ||
240 | |||
241 | /* | ||
242 | * The lock prevents that this context is scheduled in so we | ||
243 | * can remove the counter safely, if the call above did not | ||
244 | * succeed. | ||
245 | */ | ||
246 | if (!list_empty(&counter->list_entry)) { | ||
247 | ctx->nr_counters--; | ||
248 | list_del_counter(counter, ctx); | ||
249 | counter->task = NULL; | ||
250 | } | ||
251 | spin_unlock_irq(&ctx->lock); | ||
252 | } | ||
253 | |||
254 | static inline u64 perf_clock(void) | ||
255 | { | ||
256 | return cpu_clock(smp_processor_id()); | ||
257 | } | ||
258 | |||
259 | /* | ||
260 | * Update the record of the current time in a context. | ||
261 | */ | ||
262 | static void update_context_time(struct perf_counter_context *ctx) | ||
263 | { | ||
264 | u64 now = perf_clock(); | ||
265 | |||
266 | ctx->time += now - ctx->timestamp; | ||
267 | ctx->timestamp = now; | ||
268 | } | ||
269 | |||
270 | /* | ||
271 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
272 | */ | ||
273 | static void update_counter_times(struct perf_counter *counter) | ||
274 | { | ||
275 | struct perf_counter_context *ctx = counter->ctx; | ||
276 | u64 run_end; | ||
277 | |||
278 | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | ||
279 | return; | ||
280 | |||
281 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
282 | |||
283 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
284 | run_end = counter->tstamp_stopped; | ||
285 | else | ||
286 | run_end = ctx->time; | ||
287 | |||
288 | counter->total_time_running = run_end - counter->tstamp_running; | ||
289 | } | ||
290 | |||
291 | /* | ||
292 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
293 | */ | ||
294 | static void update_group_times(struct perf_counter *leader) | ||
295 | { | ||
296 | struct perf_counter *counter; | ||
297 | |||
298 | update_counter_times(leader); | ||
299 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
300 | update_counter_times(counter); | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Cross CPU call to disable a performance counter | ||
305 | */ | ||
306 | static void __perf_counter_disable(void *info) | ||
307 | { | ||
308 | struct perf_counter *counter = info; | ||
309 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
310 | struct perf_counter_context *ctx = counter->ctx; | ||
311 | unsigned long flags; | ||
312 | |||
313 | /* | ||
314 | * If this is a per-task counter, need to check whether this | ||
315 | * counter's task is the current task on this cpu. | ||
316 | */ | ||
317 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
318 | return; | ||
319 | |||
320 | spin_lock_irqsave(&ctx->lock, flags); | ||
321 | |||
322 | update_context_time(ctx); | ||
323 | |||
324 | /* | ||
325 | * If the counter is on, turn it off. | ||
326 | * If it is in error state, leave it in error state. | ||
327 | */ | ||
328 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
329 | update_context_time(ctx); | ||
330 | update_counter_times(counter); | ||
331 | if (counter == counter->group_leader) | ||
332 | group_sched_out(counter, cpuctx, ctx); | ||
333 | else | ||
334 | counter_sched_out(counter, cpuctx, ctx); | ||
335 | counter->state = PERF_COUNTER_STATE_OFF; | ||
336 | } | ||
337 | |||
338 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
339 | } | ||
340 | |||
341 | /* | ||
342 | * Disable a counter. | ||
343 | */ | ||
344 | static void perf_counter_disable(struct perf_counter *counter) | ||
345 | { | ||
346 | struct perf_counter_context *ctx = counter->ctx; | ||
347 | struct task_struct *task = ctx->task; | ||
348 | |||
349 | if (!task) { | ||
350 | /* | ||
351 | * Disable the counter on the cpu that it's on | ||
352 | */ | ||
353 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
354 | counter, 1); | ||
355 | return; | ||
356 | } | ||
357 | |||
358 | retry: | ||
359 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
360 | |||
361 | spin_lock_irq(&ctx->lock); | ||
362 | /* | ||
363 | * If the counter is still active, we need to retry the cross-call. | ||
364 | */ | ||
365 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
366 | spin_unlock_irq(&ctx->lock); | ||
367 | goto retry; | ||
368 | } | ||
369 | |||
370 | /* | ||
371 | * Since we have the lock this context can't be scheduled | ||
372 | * in, so we can change the state safely. | ||
373 | */ | ||
374 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
375 | update_counter_times(counter); | ||
376 | counter->state = PERF_COUNTER_STATE_OFF; | ||
377 | } | ||
378 | |||
379 | spin_unlock_irq(&ctx->lock); | ||
380 | } | ||
381 | |||
382 | /* | ||
383 | * Disable a counter and all its children. | ||
384 | */ | ||
385 | static void perf_counter_disable_family(struct perf_counter *counter) | ||
386 | { | ||
387 | struct perf_counter *child; | ||
388 | |||
389 | perf_counter_disable(counter); | ||
390 | |||
391 | /* | ||
392 | * Lock the mutex to protect the list of children | ||
393 | */ | ||
394 | mutex_lock(&counter->mutex); | ||
395 | list_for_each_entry(child, &counter->child_list, child_list) | ||
396 | perf_counter_disable(child); | ||
397 | mutex_unlock(&counter->mutex); | ||
398 | } | ||
399 | |||
400 | static int | ||
401 | counter_sched_in(struct perf_counter *counter, | ||
402 | struct perf_cpu_context *cpuctx, | ||
403 | struct perf_counter_context *ctx, | ||
404 | int cpu) | ||
405 | { | ||
406 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
407 | return 0; | ||
408 | |||
409 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
410 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
411 | /* | ||
412 | * The new state must be visible before we turn it on in the hardware: | ||
413 | */ | ||
414 | smp_wmb(); | ||
415 | |||
416 | if (counter->hw_ops->enable(counter)) { | ||
417 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
418 | counter->oncpu = -1; | ||
419 | return -EAGAIN; | ||
420 | } | ||
421 | |||
422 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
423 | |||
424 | if (!is_software_counter(counter)) | ||
425 | cpuctx->active_oncpu++; | ||
426 | ctx->nr_active++; | ||
427 | |||
428 | if (counter->hw_event.exclusive) | ||
429 | cpuctx->exclusive = 1; | ||
430 | |||
431 | return 0; | ||
432 | } | ||
433 | |||
434 | /* | ||
435 | * Return 1 for a group consisting entirely of software counters, | ||
436 | * 0 if the group contains any hardware counters. | ||
437 | */ | ||
438 | static int is_software_only_group(struct perf_counter *leader) | ||
439 | { | ||
440 | struct perf_counter *counter; | ||
441 | |||
442 | if (!is_software_counter(leader)) | ||
443 | return 0; | ||
444 | |||
445 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
446 | if (!is_software_counter(counter)) | ||
447 | return 0; | ||
448 | |||
449 | return 1; | ||
450 | } | ||
451 | |||
452 | /* | ||
453 | * Work out whether we can put this counter group on the CPU now. | ||
454 | */ | ||
455 | static int group_can_go_on(struct perf_counter *counter, | ||
456 | struct perf_cpu_context *cpuctx, | ||
457 | int can_add_hw) | ||
458 | { | ||
459 | /* | ||
460 | * Groups consisting entirely of software counters can always go on. | ||
461 | */ | ||
462 | if (is_software_only_group(counter)) | ||
463 | return 1; | ||
464 | /* | ||
465 | * If an exclusive group is already on, no other hardware | ||
466 | * counters can go on. | ||
467 | */ | ||
468 | if (cpuctx->exclusive) | ||
469 | return 0; | ||
470 | /* | ||
471 | * If this group is exclusive and there are already | ||
472 | * counters on the CPU, it can't go on. | ||
473 | */ | ||
474 | if (counter->hw_event.exclusive && cpuctx->active_oncpu) | ||
475 | return 0; | ||
476 | /* | ||
477 | * Otherwise, try to add it if all previous groups were able | ||
478 | * to go on. | ||
479 | */ | ||
480 | return can_add_hw; | ||
481 | } | ||
482 | |||
483 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
484 | struct perf_counter_context *ctx) | ||
485 | { | ||
486 | list_add_counter(counter, ctx); | ||
487 | ctx->nr_counters++; | ||
488 | counter->prev_state = PERF_COUNTER_STATE_OFF; | ||
489 | counter->tstamp_enabled = ctx->time; | ||
490 | counter->tstamp_running = ctx->time; | ||
491 | counter->tstamp_stopped = ctx->time; | ||
492 | } | ||
493 | |||
494 | /* | ||
495 | * Cross CPU call to install and enable a performance counter | ||
496 | */ | ||
497 | static void __perf_install_in_context(void *info) | ||
498 | { | ||
499 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
500 | struct perf_counter *counter = info; | ||
501 | struct perf_counter_context *ctx = counter->ctx; | ||
502 | struct perf_counter *leader = counter->group_leader; | ||
503 | int cpu = smp_processor_id(); | ||
504 | unsigned long flags; | ||
505 | u64 perf_flags; | ||
506 | int err; | ||
507 | |||
508 | /* | ||
509 | * If this is a task context, we need to check whether it is | ||
510 | * the current task context of this cpu. If not it has been | ||
511 | * scheduled out before the smp call arrived. | ||
512 | */ | ||
513 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
514 | return; | ||
515 | |||
516 | spin_lock_irqsave(&ctx->lock, flags); | ||
517 | update_context_time(ctx); | ||
518 | |||
519 | /* | ||
520 | * Protect the list operation against NMI by disabling the | ||
521 | * counters on a global level. NOP for non NMI based counters. | ||
522 | */ | ||
523 | perf_flags = hw_perf_save_disable(); | ||
524 | |||
525 | add_counter_to_ctx(counter, ctx); | ||
526 | |||
527 | /* | ||
528 | * Don't put the counter on if it is disabled or if | ||
529 | * it is in a group and the group isn't on. | ||
530 | */ | ||
531 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
532 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
533 | goto unlock; | ||
534 | |||
535 | /* | ||
536 | * An exclusive counter can't go on if there are already active | ||
537 | * hardware counters, and no hardware counter can go on if there | ||
538 | * is already an exclusive counter on. | ||
539 | */ | ||
540 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
541 | err = -EEXIST; | ||
542 | else | ||
543 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
544 | |||
545 | if (err) { | ||
546 | /* | ||
547 | * This counter couldn't go on. If it is in a group | ||
548 | * then we have to pull the whole group off. | ||
549 | * If the counter group is pinned then put it in error state. | ||
550 | */ | ||
551 | if (leader != counter) | ||
552 | group_sched_out(leader, cpuctx, ctx); | ||
553 | if (leader->hw_event.pinned) { | ||
554 | update_group_times(leader); | ||
555 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
556 | } | ||
557 | } | ||
558 | |||
559 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
560 | cpuctx->max_pertask--; | ||
561 | |||
562 | unlock: | ||
563 | hw_perf_restore(perf_flags); | ||
564 | |||
565 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
566 | } | ||
567 | |||
568 | /* | ||
569 | * Attach a performance counter to a context | ||
570 | * | ||
571 | * First we add the counter to the list with the hardware enable bit | ||
572 | * in counter->hw_config cleared. | ||
573 | * | ||
574 | * If the counter is attached to a task which is on a CPU we use a smp | ||
575 | * call to enable it in the task context. The task might have been | ||
576 | * scheduled away, but we check this in the smp call again. | ||
577 | * | ||
578 | * Must be called with ctx->mutex held. | ||
579 | */ | ||
580 | static void | ||
581 | perf_install_in_context(struct perf_counter_context *ctx, | ||
582 | struct perf_counter *counter, | ||
583 | int cpu) | ||
584 | { | ||
585 | struct task_struct *task = ctx->task; | ||
586 | |||
587 | if (!task) { | ||
588 | /* | ||
589 | * Per cpu counters are installed via an smp call and | ||
590 | * the install is always sucessful. | ||
591 | */ | ||
592 | smp_call_function_single(cpu, __perf_install_in_context, | ||
593 | counter, 1); | ||
594 | return; | ||
595 | } | ||
596 | |||
597 | counter->task = task; | ||
598 | retry: | ||
599 | task_oncpu_function_call(task, __perf_install_in_context, | ||
600 | counter); | ||
601 | |||
602 | spin_lock_irq(&ctx->lock); | ||
603 | /* | ||
604 | * we need to retry the smp call. | ||
605 | */ | ||
606 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
607 | spin_unlock_irq(&ctx->lock); | ||
608 | goto retry; | ||
609 | } | ||
610 | |||
611 | /* | ||
612 | * The lock prevents that this context is scheduled in so we | ||
613 | * can add the counter safely, if it the call above did not | ||
614 | * succeed. | ||
615 | */ | ||
616 | if (list_empty(&counter->list_entry)) | ||
617 | add_counter_to_ctx(counter, ctx); | ||
618 | spin_unlock_irq(&ctx->lock); | ||
619 | } | ||
620 | |||
621 | /* | ||
622 | * Cross CPU call to enable a performance counter | ||
623 | */ | ||
624 | static void __perf_counter_enable(void *info) | ||
625 | { | ||
626 | struct perf_counter *counter = info; | ||
627 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
628 | struct perf_counter_context *ctx = counter->ctx; | ||
629 | struct perf_counter *leader = counter->group_leader; | ||
630 | unsigned long flags; | ||
631 | int err; | ||
632 | |||
633 | /* | ||
634 | * If this is a per-task counter, need to check whether this | ||
635 | * counter's task is the current task on this cpu. | ||
636 | */ | ||
637 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
638 | return; | ||
639 | |||
640 | spin_lock_irqsave(&ctx->lock, flags); | ||
641 | update_context_time(ctx); | ||
642 | |||
643 | counter->prev_state = counter->state; | ||
644 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
645 | goto unlock; | ||
646 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
647 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
648 | |||
649 | /* | ||
650 | * If the counter is in a group and isn't the group leader, | ||
651 | * then don't put it on unless the group is on. | ||
652 | */ | ||
653 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
654 | goto unlock; | ||
655 | |||
656 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
657 | err = -EEXIST; | ||
658 | else | ||
659 | err = counter_sched_in(counter, cpuctx, ctx, | ||
660 | smp_processor_id()); | ||
661 | |||
662 | if (err) { | ||
663 | /* | ||
664 | * If this counter can't go on and it's part of a | ||
665 | * group, then the whole group has to come off. | ||
666 | */ | ||
667 | if (leader != counter) | ||
668 | group_sched_out(leader, cpuctx, ctx); | ||
669 | if (leader->hw_event.pinned) { | ||
670 | update_group_times(leader); | ||
671 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
672 | } | ||
673 | } | ||
674 | |||
675 | unlock: | ||
676 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
677 | } | ||
678 | |||
679 | /* | ||
680 | * Enable a counter. | ||
681 | */ | ||
682 | static void perf_counter_enable(struct perf_counter *counter) | ||
683 | { | ||
684 | struct perf_counter_context *ctx = counter->ctx; | ||
685 | struct task_struct *task = ctx->task; | ||
686 | |||
687 | if (!task) { | ||
688 | /* | ||
689 | * Enable the counter on the cpu that it's on | ||
690 | */ | ||
691 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
692 | counter, 1); | ||
693 | return; | ||
694 | } | ||
695 | |||
696 | spin_lock_irq(&ctx->lock); | ||
697 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
698 | goto out; | ||
699 | |||
700 | /* | ||
701 | * If the counter is in error state, clear that first. | ||
702 | * That way, if we see the counter in error state below, we | ||
703 | * know that it has gone back into error state, as distinct | ||
704 | * from the task having been scheduled away before the | ||
705 | * cross-call arrived. | ||
706 | */ | ||
707 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
708 | counter->state = PERF_COUNTER_STATE_OFF; | ||
709 | |||
710 | retry: | ||
711 | spin_unlock_irq(&ctx->lock); | ||
712 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
713 | |||
714 | spin_lock_irq(&ctx->lock); | ||
715 | |||
716 | /* | ||
717 | * If the context is active and the counter is still off, | ||
718 | * we need to retry the cross-call. | ||
719 | */ | ||
720 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
721 | goto retry; | ||
722 | |||
723 | /* | ||
724 | * Since we have the lock this context can't be scheduled | ||
725 | * in, so we can change the state safely. | ||
726 | */ | ||
727 | if (counter->state == PERF_COUNTER_STATE_OFF) { | ||
728 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
729 | counter->tstamp_enabled = | ||
730 | ctx->time - counter->total_time_enabled; | ||
731 | } | ||
732 | out: | ||
733 | spin_unlock_irq(&ctx->lock); | ||
734 | } | ||
735 | |||
736 | static void perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
737 | { | ||
738 | atomic_add(refresh, &counter->event_limit); | ||
739 | perf_counter_enable(counter); | ||
740 | } | ||
741 | |||
742 | /* | ||
743 | * Enable a counter and all its children. | ||
744 | */ | ||
745 | static void perf_counter_enable_family(struct perf_counter *counter) | ||
746 | { | ||
747 | struct perf_counter *child; | ||
748 | |||
749 | perf_counter_enable(counter); | ||
750 | |||
751 | /* | ||
752 | * Lock the mutex to protect the list of children | ||
753 | */ | ||
754 | mutex_lock(&counter->mutex); | ||
755 | list_for_each_entry(child, &counter->child_list, child_list) | ||
756 | perf_counter_enable(child); | ||
757 | mutex_unlock(&counter->mutex); | ||
758 | } | ||
759 | |||
760 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
761 | struct perf_cpu_context *cpuctx) | ||
762 | { | ||
763 | struct perf_counter *counter; | ||
764 | u64 flags; | ||
765 | |||
766 | spin_lock(&ctx->lock); | ||
767 | ctx->is_active = 0; | ||
768 | if (likely(!ctx->nr_counters)) | ||
769 | goto out; | ||
770 | update_context_time(ctx); | ||
771 | |||
772 | flags = hw_perf_save_disable(); | ||
773 | if (ctx->nr_active) { | ||
774 | list_for_each_entry(counter, &ctx->counter_list, list_entry) | ||
775 | group_sched_out(counter, cpuctx, ctx); | ||
776 | } | ||
777 | hw_perf_restore(flags); | ||
778 | out: | ||
779 | spin_unlock(&ctx->lock); | ||
780 | } | ||
781 | |||
782 | /* | ||
783 | * Called from scheduler to remove the counters of the current task, | ||
784 | * with interrupts disabled. | ||
785 | * | ||
786 | * We stop each counter and update the counter value in counter->count. | ||
787 | * | ||
788 | * This does not protect us against NMI, but disable() | ||
789 | * sets the disabled bit in the control field of counter _before_ | ||
790 | * accessing the counter control register. If a NMI hits, then it will | ||
791 | * not restart the counter. | ||
792 | */ | ||
793 | void perf_counter_task_sched_out(struct task_struct *task, int cpu) | ||
794 | { | ||
795 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
796 | struct perf_counter_context *ctx = &task->perf_counter_ctx; | ||
797 | struct pt_regs *regs; | ||
798 | |||
799 | if (likely(!cpuctx->task_ctx)) | ||
800 | return; | ||
801 | |||
802 | update_context_time(ctx); | ||
803 | |||
804 | regs = task_pt_regs(task); | ||
805 | perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs); | ||
806 | __perf_counter_sched_out(ctx, cpuctx); | ||
807 | |||
808 | cpuctx->task_ctx = NULL; | ||
809 | } | ||
810 | |||
811 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
812 | { | ||
813 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
814 | } | ||
815 | |||
816 | static int | ||
817 | group_sched_in(struct perf_counter *group_counter, | ||
818 | struct perf_cpu_context *cpuctx, | ||
819 | struct perf_counter_context *ctx, | ||
820 | int cpu) | ||
821 | { | ||
822 | struct perf_counter *counter, *partial_group; | ||
823 | int ret; | ||
824 | |||
825 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
826 | return 0; | ||
827 | |||
828 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
829 | if (ret) | ||
830 | return ret < 0 ? ret : 0; | ||
831 | |||
832 | group_counter->prev_state = group_counter->state; | ||
833 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
834 | return -EAGAIN; | ||
835 | |||
836 | /* | ||
837 | * Schedule in siblings as one group (if any): | ||
838 | */ | ||
839 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
840 | counter->prev_state = counter->state; | ||
841 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
842 | partial_group = counter; | ||
843 | goto group_error; | ||
844 | } | ||
845 | } | ||
846 | |||
847 | return 0; | ||
848 | |||
849 | group_error: | ||
850 | /* | ||
851 | * Groups can be scheduled in as one unit only, so undo any | ||
852 | * partial group before returning: | ||
853 | */ | ||
854 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
855 | if (counter == partial_group) | ||
856 | break; | ||
857 | counter_sched_out(counter, cpuctx, ctx); | ||
858 | } | ||
859 | counter_sched_out(group_counter, cpuctx, ctx); | ||
860 | |||
861 | return -EAGAIN; | ||
862 | } | ||
863 | |||
864 | static void | ||
865 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
866 | struct perf_cpu_context *cpuctx, int cpu) | ||
867 | { | ||
868 | struct perf_counter *counter; | ||
869 | u64 flags; | ||
870 | int can_add_hw = 1; | ||
871 | |||
872 | spin_lock(&ctx->lock); | ||
873 | ctx->is_active = 1; | ||
874 | if (likely(!ctx->nr_counters)) | ||
875 | goto out; | ||
876 | |||
877 | ctx->timestamp = perf_clock(); | ||
878 | |||
879 | flags = hw_perf_save_disable(); | ||
880 | |||
881 | /* | ||
882 | * First go through the list and put on any pinned groups | ||
883 | * in order to give them the best chance of going on. | ||
884 | */ | ||
885 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
886 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
887 | !counter->hw_event.pinned) | ||
888 | continue; | ||
889 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
890 | continue; | ||
891 | |||
892 | if (group_can_go_on(counter, cpuctx, 1)) | ||
893 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
894 | |||
895 | /* | ||
896 | * If this pinned group hasn't been scheduled, | ||
897 | * put it in error state. | ||
898 | */ | ||
899 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
900 | update_group_times(counter); | ||
901 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
902 | } | ||
903 | } | ||
904 | |||
905 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
906 | /* | ||
907 | * Ignore counters in OFF or ERROR state, and | ||
908 | * ignore pinned counters since we did them already. | ||
909 | */ | ||
910 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
911 | counter->hw_event.pinned) | ||
912 | continue; | ||
913 | |||
914 | /* | ||
915 | * Listen to the 'cpu' scheduling filter constraint | ||
916 | * of counters: | ||
917 | */ | ||
918 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
919 | continue; | ||
920 | |||
921 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
922 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
923 | can_add_hw = 0; | ||
924 | } | ||
925 | } | ||
926 | hw_perf_restore(flags); | ||
927 | out: | ||
928 | spin_unlock(&ctx->lock); | ||
929 | } | ||
930 | |||
931 | /* | ||
932 | * Called from scheduler to add the counters of the current task | ||
933 | * with interrupts disabled. | ||
934 | * | ||
935 | * We restore the counter value and then enable it. | ||
936 | * | ||
937 | * This does not protect us against NMI, but enable() | ||
938 | * sets the enabled bit in the control field of counter _before_ | ||
939 | * accessing the counter control register. If a NMI hits, then it will | ||
940 | * keep the counter running. | ||
941 | */ | ||
942 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
943 | { | ||
944 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
945 | struct perf_counter_context *ctx = &task->perf_counter_ctx; | ||
946 | |||
947 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
948 | cpuctx->task_ctx = ctx; | ||
949 | } | ||
950 | |||
951 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
952 | { | ||
953 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
954 | |||
955 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
956 | } | ||
957 | |||
958 | int perf_counter_task_disable(void) | ||
959 | { | ||
960 | struct task_struct *curr = current; | ||
961 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
962 | struct perf_counter *counter; | ||
963 | unsigned long flags; | ||
964 | u64 perf_flags; | ||
965 | int cpu; | ||
966 | |||
967 | if (likely(!ctx->nr_counters)) | ||
968 | return 0; | ||
969 | |||
970 | local_irq_save(flags); | ||
971 | cpu = smp_processor_id(); | ||
972 | |||
973 | perf_counter_task_sched_out(curr, cpu); | ||
974 | |||
975 | spin_lock(&ctx->lock); | ||
976 | |||
977 | /* | ||
978 | * Disable all the counters: | ||
979 | */ | ||
980 | perf_flags = hw_perf_save_disable(); | ||
981 | |||
982 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
983 | if (counter->state != PERF_COUNTER_STATE_ERROR) { | ||
984 | update_group_times(counter); | ||
985 | counter->state = PERF_COUNTER_STATE_OFF; | ||
986 | } | ||
987 | } | ||
988 | |||
989 | hw_perf_restore(perf_flags); | ||
990 | |||
991 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
992 | |||
993 | return 0; | ||
994 | } | ||
995 | |||
996 | int perf_counter_task_enable(void) | ||
997 | { | ||
998 | struct task_struct *curr = current; | ||
999 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
1000 | struct perf_counter *counter; | ||
1001 | unsigned long flags; | ||
1002 | u64 perf_flags; | ||
1003 | int cpu; | ||
1004 | |||
1005 | if (likely(!ctx->nr_counters)) | ||
1006 | return 0; | ||
1007 | |||
1008 | local_irq_save(flags); | ||
1009 | cpu = smp_processor_id(); | ||
1010 | |||
1011 | perf_counter_task_sched_out(curr, cpu); | ||
1012 | |||
1013 | spin_lock(&ctx->lock); | ||
1014 | |||
1015 | /* | ||
1016 | * Disable all the counters: | ||
1017 | */ | ||
1018 | perf_flags = hw_perf_save_disable(); | ||
1019 | |||
1020 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1021 | if (counter->state > PERF_COUNTER_STATE_OFF) | ||
1022 | continue; | ||
1023 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
1024 | counter->tstamp_enabled = | ||
1025 | ctx->time - counter->total_time_enabled; | ||
1026 | counter->hw_event.disabled = 0; | ||
1027 | } | ||
1028 | hw_perf_restore(perf_flags); | ||
1029 | |||
1030 | spin_unlock(&ctx->lock); | ||
1031 | |||
1032 | perf_counter_task_sched_in(curr, cpu); | ||
1033 | |||
1034 | local_irq_restore(flags); | ||
1035 | |||
1036 | return 0; | ||
1037 | } | ||
1038 | |||
1039 | /* | ||
1040 | * Round-robin a context's counters: | ||
1041 | */ | ||
1042 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
1043 | { | ||
1044 | struct perf_counter *counter; | ||
1045 | u64 perf_flags; | ||
1046 | |||
1047 | if (!ctx->nr_counters) | ||
1048 | return; | ||
1049 | |||
1050 | spin_lock(&ctx->lock); | ||
1051 | /* | ||
1052 | * Rotate the first entry last (works just fine for group counters too): | ||
1053 | */ | ||
1054 | perf_flags = hw_perf_save_disable(); | ||
1055 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1056 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
1057 | break; | ||
1058 | } | ||
1059 | hw_perf_restore(perf_flags); | ||
1060 | |||
1061 | spin_unlock(&ctx->lock); | ||
1062 | } | ||
1063 | |||
1064 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
1065 | { | ||
1066 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1067 | struct perf_counter_context *ctx = &curr->perf_counter_ctx; | ||
1068 | const int rotate_percpu = 0; | ||
1069 | |||
1070 | if (rotate_percpu) | ||
1071 | perf_counter_cpu_sched_out(cpuctx); | ||
1072 | perf_counter_task_sched_out(curr, cpu); | ||
1073 | |||
1074 | if (rotate_percpu) | ||
1075 | rotate_ctx(&cpuctx->ctx); | ||
1076 | rotate_ctx(ctx); | ||
1077 | |||
1078 | if (rotate_percpu) | ||
1079 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
1080 | perf_counter_task_sched_in(curr, cpu); | ||
1081 | } | ||
1082 | |||
1083 | /* | ||
1084 | * Cross CPU call to read the hardware counter | ||
1085 | */ | ||
1086 | static void __read(void *info) | ||
1087 | { | ||
1088 | struct perf_counter *counter = info; | ||
1089 | struct perf_counter_context *ctx = counter->ctx; | ||
1090 | unsigned long flags; | ||
1091 | |||
1092 | local_irq_save(flags); | ||
1093 | if (ctx->is_active) | ||
1094 | update_context_time(ctx); | ||
1095 | counter->hw_ops->read(counter); | ||
1096 | update_counter_times(counter); | ||
1097 | local_irq_restore(flags); | ||
1098 | } | ||
1099 | |||
1100 | static u64 perf_counter_read(struct perf_counter *counter) | ||
1101 | { | ||
1102 | /* | ||
1103 | * If counter is enabled and currently active on a CPU, update the | ||
1104 | * value in the counter structure: | ||
1105 | */ | ||
1106 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
1107 | smp_call_function_single(counter->oncpu, | ||
1108 | __read, counter, 1); | ||
1109 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1110 | update_counter_times(counter); | ||
1111 | } | ||
1112 | |||
1113 | return atomic64_read(&counter->count); | ||
1114 | } | ||
1115 | |||
1116 | static void put_context(struct perf_counter_context *ctx) | ||
1117 | { | ||
1118 | if (ctx->task) | ||
1119 | put_task_struct(ctx->task); | ||
1120 | } | ||
1121 | |||
1122 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
1123 | { | ||
1124 | struct perf_cpu_context *cpuctx; | ||
1125 | struct perf_counter_context *ctx; | ||
1126 | struct task_struct *task; | ||
1127 | |||
1128 | /* | ||
1129 | * If cpu is not a wildcard then this is a percpu counter: | ||
1130 | */ | ||
1131 | if (cpu != -1) { | ||
1132 | /* Must be root to operate on a CPU counter: */ | ||
1133 | if (!capable(CAP_SYS_ADMIN)) | ||
1134 | return ERR_PTR(-EACCES); | ||
1135 | |||
1136 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1137 | return ERR_PTR(-EINVAL); | ||
1138 | |||
1139 | /* | ||
1140 | * We could be clever and allow to attach a counter to an | ||
1141 | * offline CPU and activate it when the CPU comes up, but | ||
1142 | * that's for later. | ||
1143 | */ | ||
1144 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1145 | return ERR_PTR(-ENODEV); | ||
1146 | |||
1147 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1148 | ctx = &cpuctx->ctx; | ||
1149 | |||
1150 | return ctx; | ||
1151 | } | ||
1152 | |||
1153 | rcu_read_lock(); | ||
1154 | if (!pid) | ||
1155 | task = current; | ||
1156 | else | ||
1157 | task = find_task_by_vpid(pid); | ||
1158 | if (task) | ||
1159 | get_task_struct(task); | ||
1160 | rcu_read_unlock(); | ||
1161 | |||
1162 | if (!task) | ||
1163 | return ERR_PTR(-ESRCH); | ||
1164 | |||
1165 | ctx = &task->perf_counter_ctx; | ||
1166 | ctx->task = task; | ||
1167 | |||
1168 | /* Reuse ptrace permission checks for now. */ | ||
1169 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) { | ||
1170 | put_context(ctx); | ||
1171 | return ERR_PTR(-EACCES); | ||
1172 | } | ||
1173 | |||
1174 | return ctx; | ||
1175 | } | ||
1176 | |||
1177 | static void free_counter_rcu(struct rcu_head *head) | ||
1178 | { | ||
1179 | struct perf_counter *counter; | ||
1180 | |||
1181 | counter = container_of(head, struct perf_counter, rcu_head); | ||
1182 | kfree(counter); | ||
1183 | } | ||
1184 | |||
1185 | static void perf_pending_sync(struct perf_counter *counter); | ||
1186 | |||
1187 | static void free_counter(struct perf_counter *counter) | ||
1188 | { | ||
1189 | perf_pending_sync(counter); | ||
1190 | |||
1191 | if (counter->destroy) | ||
1192 | counter->destroy(counter); | ||
1193 | |||
1194 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
1195 | } | ||
1196 | |||
1197 | /* | ||
1198 | * Called when the last reference to the file is gone. | ||
1199 | */ | ||
1200 | static int perf_release(struct inode *inode, struct file *file) | ||
1201 | { | ||
1202 | struct perf_counter *counter = file->private_data; | ||
1203 | struct perf_counter_context *ctx = counter->ctx; | ||
1204 | |||
1205 | file->private_data = NULL; | ||
1206 | |||
1207 | mutex_lock(&ctx->mutex); | ||
1208 | mutex_lock(&counter->mutex); | ||
1209 | |||
1210 | perf_counter_remove_from_context(counter); | ||
1211 | |||
1212 | mutex_unlock(&counter->mutex); | ||
1213 | mutex_unlock(&ctx->mutex); | ||
1214 | |||
1215 | free_counter(counter); | ||
1216 | put_context(ctx); | ||
1217 | |||
1218 | return 0; | ||
1219 | } | ||
1220 | |||
1221 | /* | ||
1222 | * Read the performance counter - simple non blocking version for now | ||
1223 | */ | ||
1224 | static ssize_t | ||
1225 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
1226 | { | ||
1227 | u64 values[3]; | ||
1228 | int n; | ||
1229 | |||
1230 | /* | ||
1231 | * Return end-of-file for a read on a counter that is in | ||
1232 | * error state (i.e. because it was pinned but it couldn't be | ||
1233 | * scheduled on to the CPU at some point). | ||
1234 | */ | ||
1235 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
1236 | return 0; | ||
1237 | |||
1238 | mutex_lock(&counter->mutex); | ||
1239 | values[0] = perf_counter_read(counter); | ||
1240 | n = 1; | ||
1241 | if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1242 | values[n++] = counter->total_time_enabled + | ||
1243 | atomic64_read(&counter->child_total_time_enabled); | ||
1244 | if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1245 | values[n++] = counter->total_time_running + | ||
1246 | atomic64_read(&counter->child_total_time_running); | ||
1247 | mutex_unlock(&counter->mutex); | ||
1248 | |||
1249 | if (count < n * sizeof(u64)) | ||
1250 | return -EINVAL; | ||
1251 | count = n * sizeof(u64); | ||
1252 | |||
1253 | if (copy_to_user(buf, values, count)) | ||
1254 | return -EFAULT; | ||
1255 | |||
1256 | return count; | ||
1257 | } | ||
1258 | |||
1259 | static ssize_t | ||
1260 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1261 | { | ||
1262 | struct perf_counter *counter = file->private_data; | ||
1263 | |||
1264 | return perf_read_hw(counter, buf, count); | ||
1265 | } | ||
1266 | |||
1267 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1268 | { | ||
1269 | struct perf_counter *counter = file->private_data; | ||
1270 | struct perf_mmap_data *data; | ||
1271 | unsigned int events; | ||
1272 | |||
1273 | rcu_read_lock(); | ||
1274 | data = rcu_dereference(counter->data); | ||
1275 | if (data) | ||
1276 | events = atomic_xchg(&data->wakeup, 0); | ||
1277 | else | ||
1278 | events = POLL_HUP; | ||
1279 | rcu_read_unlock(); | ||
1280 | |||
1281 | poll_wait(file, &counter->waitq, wait); | ||
1282 | |||
1283 | return events; | ||
1284 | } | ||
1285 | |||
1286 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1287 | { | ||
1288 | struct perf_counter *counter = file->private_data; | ||
1289 | int err = 0; | ||
1290 | |||
1291 | switch (cmd) { | ||
1292 | case PERF_COUNTER_IOC_ENABLE: | ||
1293 | perf_counter_enable_family(counter); | ||
1294 | break; | ||
1295 | case PERF_COUNTER_IOC_DISABLE: | ||
1296 | perf_counter_disable_family(counter); | ||
1297 | break; | ||
1298 | case PERF_COUNTER_IOC_REFRESH: | ||
1299 | perf_counter_refresh(counter, arg); | ||
1300 | break; | ||
1301 | default: | ||
1302 | err = -ENOTTY; | ||
1303 | } | ||
1304 | return err; | ||
1305 | } | ||
1306 | |||
1307 | /* | ||
1308 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
1309 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
1310 | * code calls this from NMI context. | ||
1311 | */ | ||
1312 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
1313 | { | ||
1314 | struct perf_mmap_data *data; | ||
1315 | struct perf_counter_mmap_page *userpg; | ||
1316 | |||
1317 | rcu_read_lock(); | ||
1318 | data = rcu_dereference(counter->data); | ||
1319 | if (!data) | ||
1320 | goto unlock; | ||
1321 | |||
1322 | userpg = data->user_page; | ||
1323 | |||
1324 | /* | ||
1325 | * Disable preemption so as to not let the corresponding user-space | ||
1326 | * spin too long if we get preempted. | ||
1327 | */ | ||
1328 | preempt_disable(); | ||
1329 | ++userpg->lock; | ||
1330 | barrier(); | ||
1331 | userpg->index = counter->hw.idx; | ||
1332 | userpg->offset = atomic64_read(&counter->count); | ||
1333 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
1334 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
1335 | |||
1336 | barrier(); | ||
1337 | ++userpg->lock; | ||
1338 | preempt_enable(); | ||
1339 | unlock: | ||
1340 | rcu_read_unlock(); | ||
1341 | } | ||
1342 | |||
1343 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
1344 | { | ||
1345 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1346 | struct perf_mmap_data *data; | ||
1347 | int ret = VM_FAULT_SIGBUS; | ||
1348 | |||
1349 | rcu_read_lock(); | ||
1350 | data = rcu_dereference(counter->data); | ||
1351 | if (!data) | ||
1352 | goto unlock; | ||
1353 | |||
1354 | if (vmf->pgoff == 0) { | ||
1355 | vmf->page = virt_to_page(data->user_page); | ||
1356 | } else { | ||
1357 | int nr = vmf->pgoff - 1; | ||
1358 | |||
1359 | if ((unsigned)nr > data->nr_pages) | ||
1360 | goto unlock; | ||
1361 | |||
1362 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
1363 | } | ||
1364 | get_page(vmf->page); | ||
1365 | ret = 0; | ||
1366 | unlock: | ||
1367 | rcu_read_unlock(); | ||
1368 | |||
1369 | return ret; | ||
1370 | } | ||
1371 | |||
1372 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
1373 | { | ||
1374 | struct perf_mmap_data *data; | ||
1375 | unsigned long size; | ||
1376 | int i; | ||
1377 | |||
1378 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1379 | |||
1380 | size = sizeof(struct perf_mmap_data); | ||
1381 | size += nr_pages * sizeof(void *); | ||
1382 | |||
1383 | data = kzalloc(size, GFP_KERNEL); | ||
1384 | if (!data) | ||
1385 | goto fail; | ||
1386 | |||
1387 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
1388 | if (!data->user_page) | ||
1389 | goto fail_user_page; | ||
1390 | |||
1391 | for (i = 0; i < nr_pages; i++) { | ||
1392 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
1393 | if (!data->data_pages[i]) | ||
1394 | goto fail_data_pages; | ||
1395 | } | ||
1396 | |||
1397 | data->nr_pages = nr_pages; | ||
1398 | |||
1399 | rcu_assign_pointer(counter->data, data); | ||
1400 | |||
1401 | return 0; | ||
1402 | |||
1403 | fail_data_pages: | ||
1404 | for (i--; i >= 0; i--) | ||
1405 | free_page((unsigned long)data->data_pages[i]); | ||
1406 | |||
1407 | free_page((unsigned long)data->user_page); | ||
1408 | |||
1409 | fail_user_page: | ||
1410 | kfree(data); | ||
1411 | |||
1412 | fail: | ||
1413 | return -ENOMEM; | ||
1414 | } | ||
1415 | |||
1416 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
1417 | { | ||
1418 | struct perf_mmap_data *data = container_of(rcu_head, | ||
1419 | struct perf_mmap_data, rcu_head); | ||
1420 | int i; | ||
1421 | |||
1422 | free_page((unsigned long)data->user_page); | ||
1423 | for (i = 0; i < data->nr_pages; i++) | ||
1424 | free_page((unsigned long)data->data_pages[i]); | ||
1425 | kfree(data); | ||
1426 | } | ||
1427 | |||
1428 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
1429 | { | ||
1430 | struct perf_mmap_data *data = counter->data; | ||
1431 | |||
1432 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
1433 | |||
1434 | rcu_assign_pointer(counter->data, NULL); | ||
1435 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
1436 | } | ||
1437 | |||
1438 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
1439 | { | ||
1440 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1441 | |||
1442 | atomic_inc(&counter->mmap_count); | ||
1443 | } | ||
1444 | |||
1445 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
1446 | { | ||
1447 | struct perf_counter *counter = vma->vm_file->private_data; | ||
1448 | |||
1449 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, | ||
1450 | &counter->mmap_mutex)) { | ||
1451 | vma->vm_mm->locked_vm -= counter->data->nr_pages + 1; | ||
1452 | perf_mmap_data_free(counter); | ||
1453 | mutex_unlock(&counter->mmap_mutex); | ||
1454 | } | ||
1455 | } | ||
1456 | |||
1457 | static struct vm_operations_struct perf_mmap_vmops = { | ||
1458 | .open = perf_mmap_open, | ||
1459 | .close = perf_mmap_close, | ||
1460 | .fault = perf_mmap_fault, | ||
1461 | }; | ||
1462 | |||
1463 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
1464 | { | ||
1465 | struct perf_counter *counter = file->private_data; | ||
1466 | unsigned long vma_size; | ||
1467 | unsigned long nr_pages; | ||
1468 | unsigned long locked, lock_limit; | ||
1469 | int ret = 0; | ||
1470 | |||
1471 | if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE)) | ||
1472 | return -EINVAL; | ||
1473 | |||
1474 | vma_size = vma->vm_end - vma->vm_start; | ||
1475 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
1476 | |||
1477 | /* | ||
1478 | * If we have data pages ensure they're a power-of-two number, so we | ||
1479 | * can do bitmasks instead of modulo. | ||
1480 | */ | ||
1481 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
1482 | return -EINVAL; | ||
1483 | |||
1484 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
1485 | return -EINVAL; | ||
1486 | |||
1487 | if (vma->vm_pgoff != 0) | ||
1488 | return -EINVAL; | ||
1489 | |||
1490 | mutex_lock(&counter->mmap_mutex); | ||
1491 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
1492 | if (nr_pages != counter->data->nr_pages) | ||
1493 | ret = -EINVAL; | ||
1494 | goto unlock; | ||
1495 | } | ||
1496 | |||
1497 | locked = vma->vm_mm->locked_vm; | ||
1498 | locked += nr_pages + 1; | ||
1499 | |||
1500 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
1501 | lock_limit >>= PAGE_SHIFT; | ||
1502 | |||
1503 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
1504 | ret = -EPERM; | ||
1505 | goto unlock; | ||
1506 | } | ||
1507 | |||
1508 | WARN_ON(counter->data); | ||
1509 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
1510 | if (ret) | ||
1511 | goto unlock; | ||
1512 | |||
1513 | atomic_set(&counter->mmap_count, 1); | ||
1514 | vma->vm_mm->locked_vm += nr_pages + 1; | ||
1515 | unlock: | ||
1516 | mutex_unlock(&counter->mmap_mutex); | ||
1517 | |||
1518 | vma->vm_flags &= ~VM_MAYWRITE; | ||
1519 | vma->vm_flags |= VM_RESERVED; | ||
1520 | vma->vm_ops = &perf_mmap_vmops; | ||
1521 | |||
1522 | return ret; | ||
1523 | } | ||
1524 | |||
1525 | static int perf_fasync(int fd, struct file *filp, int on) | ||
1526 | { | ||
1527 | struct perf_counter *counter = filp->private_data; | ||
1528 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
1529 | int retval; | ||
1530 | |||
1531 | mutex_lock(&inode->i_mutex); | ||
1532 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
1533 | mutex_unlock(&inode->i_mutex); | ||
1534 | |||
1535 | if (retval < 0) | ||
1536 | return retval; | ||
1537 | |||
1538 | return 0; | ||
1539 | } | ||
1540 | |||
1541 | static const struct file_operations perf_fops = { | ||
1542 | .release = perf_release, | ||
1543 | .read = perf_read, | ||
1544 | .poll = perf_poll, | ||
1545 | .unlocked_ioctl = perf_ioctl, | ||
1546 | .compat_ioctl = perf_ioctl, | ||
1547 | .mmap = perf_mmap, | ||
1548 | .fasync = perf_fasync, | ||
1549 | }; | ||
1550 | |||
1551 | /* | ||
1552 | * Perf counter wakeup | ||
1553 | * | ||
1554 | * If there's data, ensure we set the poll() state and publish everything | ||
1555 | * to user-space before waking everybody up. | ||
1556 | */ | ||
1557 | |||
1558 | void perf_counter_wakeup(struct perf_counter *counter) | ||
1559 | { | ||
1560 | struct perf_mmap_data *data; | ||
1561 | |||
1562 | rcu_read_lock(); | ||
1563 | data = rcu_dereference(counter->data); | ||
1564 | if (data) { | ||
1565 | atomic_set(&data->wakeup, POLL_IN); | ||
1566 | /* | ||
1567 | * Ensure all data writes are issued before updating the | ||
1568 | * user-space data head information. The matching rmb() | ||
1569 | * will be in userspace after reading this value. | ||
1570 | */ | ||
1571 | smp_wmb(); | ||
1572 | data->user_page->data_head = atomic_read(&data->head); | ||
1573 | } | ||
1574 | rcu_read_unlock(); | ||
1575 | |||
1576 | wake_up_all(&counter->waitq); | ||
1577 | |||
1578 | if (counter->pending_kill) { | ||
1579 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
1580 | counter->pending_kill = 0; | ||
1581 | } | ||
1582 | } | ||
1583 | |||
1584 | /* | ||
1585 | * Pending wakeups | ||
1586 | * | ||
1587 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
1588 | * | ||
1589 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
1590 | * single linked list and use cmpxchg() to add entries lockless. | ||
1591 | */ | ||
1592 | |||
1593 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
1594 | { | ||
1595 | struct perf_counter *counter = container_of(entry, | ||
1596 | struct perf_counter, pending); | ||
1597 | |||
1598 | if (counter->pending_disable) { | ||
1599 | counter->pending_disable = 0; | ||
1600 | perf_counter_disable(counter); | ||
1601 | } | ||
1602 | |||
1603 | if (counter->pending_wakeup) { | ||
1604 | counter->pending_wakeup = 0; | ||
1605 | perf_counter_wakeup(counter); | ||
1606 | } | ||
1607 | } | ||
1608 | |||
1609 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
1610 | |||
1611 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
1612 | PENDING_TAIL, | ||
1613 | }; | ||
1614 | |||
1615 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
1616 | void (*func)(struct perf_pending_entry *)) | ||
1617 | { | ||
1618 | struct perf_pending_entry **head; | ||
1619 | |||
1620 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
1621 | return; | ||
1622 | |||
1623 | entry->func = func; | ||
1624 | |||
1625 | head = &get_cpu_var(perf_pending_head); | ||
1626 | |||
1627 | do { | ||
1628 | entry->next = *head; | ||
1629 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
1630 | |||
1631 | set_perf_counter_pending(); | ||
1632 | |||
1633 | put_cpu_var(perf_pending_head); | ||
1634 | } | ||
1635 | |||
1636 | static int __perf_pending_run(void) | ||
1637 | { | ||
1638 | struct perf_pending_entry *list; | ||
1639 | int nr = 0; | ||
1640 | |||
1641 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
1642 | while (list != PENDING_TAIL) { | ||
1643 | void (*func)(struct perf_pending_entry *); | ||
1644 | struct perf_pending_entry *entry = list; | ||
1645 | |||
1646 | list = list->next; | ||
1647 | |||
1648 | func = entry->func; | ||
1649 | entry->next = NULL; | ||
1650 | /* | ||
1651 | * Ensure we observe the unqueue before we issue the wakeup, | ||
1652 | * so that we won't be waiting forever. | ||
1653 | * -- see perf_not_pending(). | ||
1654 | */ | ||
1655 | smp_wmb(); | ||
1656 | |||
1657 | func(entry); | ||
1658 | nr++; | ||
1659 | } | ||
1660 | |||
1661 | return nr; | ||
1662 | } | ||
1663 | |||
1664 | static inline int perf_not_pending(struct perf_counter *counter) | ||
1665 | { | ||
1666 | /* | ||
1667 | * If we flush on whatever cpu we run, there is a chance we don't | ||
1668 | * need to wait. | ||
1669 | */ | ||
1670 | get_cpu(); | ||
1671 | __perf_pending_run(); | ||
1672 | put_cpu(); | ||
1673 | |||
1674 | /* | ||
1675 | * Ensure we see the proper queue state before going to sleep | ||
1676 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
1677 | */ | ||
1678 | smp_rmb(); | ||
1679 | return counter->pending.next == NULL; | ||
1680 | } | ||
1681 | |||
1682 | static void perf_pending_sync(struct perf_counter *counter) | ||
1683 | { | ||
1684 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
1685 | } | ||
1686 | |||
1687 | void perf_counter_do_pending(void) | ||
1688 | { | ||
1689 | __perf_pending_run(); | ||
1690 | } | ||
1691 | |||
1692 | /* | ||
1693 | * Callchain support -- arch specific | ||
1694 | */ | ||
1695 | |||
1696 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
1697 | { | ||
1698 | return NULL; | ||
1699 | } | ||
1700 | |||
1701 | /* | ||
1702 | * Output | ||
1703 | */ | ||
1704 | |||
1705 | struct perf_output_handle { | ||
1706 | struct perf_counter *counter; | ||
1707 | struct perf_mmap_data *data; | ||
1708 | unsigned int offset; | ||
1709 | unsigned int head; | ||
1710 | int wakeup; | ||
1711 | int nmi; | ||
1712 | int overflow; | ||
1713 | }; | ||
1714 | |||
1715 | static inline void __perf_output_wakeup(struct perf_output_handle *handle) | ||
1716 | { | ||
1717 | if (handle->nmi) { | ||
1718 | handle->counter->pending_wakeup = 1; | ||
1719 | perf_pending_queue(&handle->counter->pending, | ||
1720 | perf_pending_counter); | ||
1721 | } else | ||
1722 | perf_counter_wakeup(handle->counter); | ||
1723 | } | ||
1724 | |||
1725 | static int perf_output_begin(struct perf_output_handle *handle, | ||
1726 | struct perf_counter *counter, unsigned int size, | ||
1727 | int nmi, int overflow) | ||
1728 | { | ||
1729 | struct perf_mmap_data *data; | ||
1730 | unsigned int offset, head; | ||
1731 | |||
1732 | rcu_read_lock(); | ||
1733 | data = rcu_dereference(counter->data); | ||
1734 | if (!data) | ||
1735 | goto out; | ||
1736 | |||
1737 | handle->counter = counter; | ||
1738 | handle->nmi = nmi; | ||
1739 | handle->overflow = overflow; | ||
1740 | |||
1741 | if (!data->nr_pages) | ||
1742 | goto fail; | ||
1743 | |||
1744 | do { | ||
1745 | offset = head = atomic_read(&data->head); | ||
1746 | head += size; | ||
1747 | } while (atomic_cmpxchg(&data->head, offset, head) != offset); | ||
1748 | |||
1749 | handle->data = data; | ||
1750 | handle->offset = offset; | ||
1751 | handle->head = head; | ||
1752 | handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT); | ||
1753 | |||
1754 | return 0; | ||
1755 | |||
1756 | fail: | ||
1757 | __perf_output_wakeup(handle); | ||
1758 | out: | ||
1759 | rcu_read_unlock(); | ||
1760 | |||
1761 | return -ENOSPC; | ||
1762 | } | ||
1763 | |||
1764 | static void perf_output_copy(struct perf_output_handle *handle, | ||
1765 | void *buf, unsigned int len) | ||
1766 | { | ||
1767 | unsigned int pages_mask; | ||
1768 | unsigned int offset; | ||
1769 | unsigned int size; | ||
1770 | void **pages; | ||
1771 | |||
1772 | offset = handle->offset; | ||
1773 | pages_mask = handle->data->nr_pages - 1; | ||
1774 | pages = handle->data->data_pages; | ||
1775 | |||
1776 | do { | ||
1777 | unsigned int page_offset; | ||
1778 | int nr; | ||
1779 | |||
1780 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
1781 | page_offset = offset & (PAGE_SIZE - 1); | ||
1782 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
1783 | |||
1784 | memcpy(pages[nr] + page_offset, buf, size); | ||
1785 | |||
1786 | len -= size; | ||
1787 | buf += size; | ||
1788 | offset += size; | ||
1789 | } while (len); | ||
1790 | |||
1791 | handle->offset = offset; | ||
1792 | |||
1793 | WARN_ON_ONCE(handle->offset > handle->head); | ||
1794 | } | ||
1795 | |||
1796 | #define perf_output_put(handle, x) \ | ||
1797 | perf_output_copy((handle), &(x), sizeof(x)) | ||
1798 | |||
1799 | static void perf_output_end(struct perf_output_handle *handle) | ||
1800 | { | ||
1801 | int wakeup_events = handle->counter->hw_event.wakeup_events; | ||
1802 | |||
1803 | if (handle->overflow && wakeup_events) { | ||
1804 | int events = atomic_inc_return(&handle->data->events); | ||
1805 | if (events >= wakeup_events) { | ||
1806 | atomic_sub(wakeup_events, &handle->data->events); | ||
1807 | __perf_output_wakeup(handle); | ||
1808 | } | ||
1809 | } else if (handle->wakeup) | ||
1810 | __perf_output_wakeup(handle); | ||
1811 | rcu_read_unlock(); | ||
1812 | } | ||
1813 | |||
1814 | static void perf_counter_output(struct perf_counter *counter, | ||
1815 | int nmi, struct pt_regs *regs) | ||
1816 | { | ||
1817 | int ret; | ||
1818 | u64 record_type = counter->hw_event.record_type; | ||
1819 | struct perf_output_handle handle; | ||
1820 | struct perf_event_header header; | ||
1821 | u64 ip; | ||
1822 | struct { | ||
1823 | u32 pid, tid; | ||
1824 | } tid_entry; | ||
1825 | struct { | ||
1826 | u64 event; | ||
1827 | u64 counter; | ||
1828 | } group_entry; | ||
1829 | struct perf_callchain_entry *callchain = NULL; | ||
1830 | int callchain_size = 0; | ||
1831 | u64 time; | ||
1832 | |||
1833 | header.type = PERF_EVENT_COUNTER_OVERFLOW; | ||
1834 | header.size = sizeof(header); | ||
1835 | |||
1836 | if (record_type & PERF_RECORD_IP) { | ||
1837 | ip = instruction_pointer(regs); | ||
1838 | header.type |= __PERF_EVENT_IP; | ||
1839 | header.size += sizeof(ip); | ||
1840 | } | ||
1841 | |||
1842 | if (record_type & PERF_RECORD_TID) { | ||
1843 | /* namespace issues */ | ||
1844 | tid_entry.pid = current->group_leader->pid; | ||
1845 | tid_entry.tid = current->pid; | ||
1846 | |||
1847 | header.type |= __PERF_EVENT_TID; | ||
1848 | header.size += sizeof(tid_entry); | ||
1849 | } | ||
1850 | |||
1851 | if (record_type & PERF_RECORD_GROUP) { | ||
1852 | header.type |= __PERF_EVENT_GROUP; | ||
1853 | header.size += sizeof(u64) + | ||
1854 | counter->nr_siblings * sizeof(group_entry); | ||
1855 | } | ||
1856 | |||
1857 | if (record_type & PERF_RECORD_CALLCHAIN) { | ||
1858 | callchain = perf_callchain(regs); | ||
1859 | |||
1860 | if (callchain) { | ||
1861 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
1862 | |||
1863 | header.type |= __PERF_EVENT_CALLCHAIN; | ||
1864 | header.size += callchain_size; | ||
1865 | } | ||
1866 | } | ||
1867 | |||
1868 | if (record_type & PERF_RECORD_TIME) { | ||
1869 | /* | ||
1870 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
1871 | */ | ||
1872 | time = sched_clock(); | ||
1873 | |||
1874 | header.type |= __PERF_EVENT_TIME; | ||
1875 | header.size += sizeof(u64); | ||
1876 | } | ||
1877 | |||
1878 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
1879 | if (ret) | ||
1880 | return; | ||
1881 | |||
1882 | perf_output_put(&handle, header); | ||
1883 | |||
1884 | if (record_type & PERF_RECORD_IP) | ||
1885 | perf_output_put(&handle, ip); | ||
1886 | |||
1887 | if (record_type & PERF_RECORD_TID) | ||
1888 | perf_output_put(&handle, tid_entry); | ||
1889 | |||
1890 | if (record_type & PERF_RECORD_GROUP) { | ||
1891 | struct perf_counter *leader, *sub; | ||
1892 | u64 nr = counter->nr_siblings; | ||
1893 | |||
1894 | perf_output_put(&handle, nr); | ||
1895 | |||
1896 | leader = counter->group_leader; | ||
1897 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
1898 | if (sub != counter) | ||
1899 | sub->hw_ops->read(sub); | ||
1900 | |||
1901 | group_entry.event = sub->hw_event.config; | ||
1902 | group_entry.counter = atomic64_read(&sub->count); | ||
1903 | |||
1904 | perf_output_put(&handle, group_entry); | ||
1905 | } | ||
1906 | } | ||
1907 | |||
1908 | if (callchain) | ||
1909 | perf_output_copy(&handle, callchain, callchain_size); | ||
1910 | |||
1911 | if (record_type & PERF_RECORD_TIME) | ||
1912 | perf_output_put(&handle, time); | ||
1913 | |||
1914 | perf_output_end(&handle); | ||
1915 | } | ||
1916 | |||
1917 | /* | ||
1918 | * mmap tracking | ||
1919 | */ | ||
1920 | |||
1921 | struct perf_mmap_event { | ||
1922 | struct file *file; | ||
1923 | char *file_name; | ||
1924 | int file_size; | ||
1925 | |||
1926 | struct { | ||
1927 | struct perf_event_header header; | ||
1928 | |||
1929 | u32 pid; | ||
1930 | u32 tid; | ||
1931 | u64 start; | ||
1932 | u64 len; | ||
1933 | u64 pgoff; | ||
1934 | } event; | ||
1935 | }; | ||
1936 | |||
1937 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
1938 | struct perf_mmap_event *mmap_event) | ||
1939 | { | ||
1940 | struct perf_output_handle handle; | ||
1941 | int size = mmap_event->event.header.size; | ||
1942 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
1943 | |||
1944 | if (ret) | ||
1945 | return; | ||
1946 | |||
1947 | perf_output_put(&handle, mmap_event->event); | ||
1948 | perf_output_copy(&handle, mmap_event->file_name, | ||
1949 | mmap_event->file_size); | ||
1950 | perf_output_end(&handle); | ||
1951 | } | ||
1952 | |||
1953 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
1954 | struct perf_mmap_event *mmap_event) | ||
1955 | { | ||
1956 | if (counter->hw_event.mmap && | ||
1957 | mmap_event->event.header.type == PERF_EVENT_MMAP) | ||
1958 | return 1; | ||
1959 | |||
1960 | if (counter->hw_event.munmap && | ||
1961 | mmap_event->event.header.type == PERF_EVENT_MUNMAP) | ||
1962 | return 1; | ||
1963 | |||
1964 | return 0; | ||
1965 | } | ||
1966 | |||
1967 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
1968 | struct perf_mmap_event *mmap_event) | ||
1969 | { | ||
1970 | struct perf_counter *counter; | ||
1971 | |||
1972 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
1973 | return; | ||
1974 | |||
1975 | rcu_read_lock(); | ||
1976 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
1977 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
1978 | perf_counter_mmap_output(counter, mmap_event); | ||
1979 | } | ||
1980 | rcu_read_unlock(); | ||
1981 | } | ||
1982 | |||
1983 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
1984 | { | ||
1985 | struct perf_cpu_context *cpuctx; | ||
1986 | struct file *file = mmap_event->file; | ||
1987 | unsigned int size; | ||
1988 | char tmp[16]; | ||
1989 | char *buf = NULL; | ||
1990 | char *name; | ||
1991 | |||
1992 | if (file) { | ||
1993 | buf = kzalloc(PATH_MAX, GFP_KERNEL); | ||
1994 | if (!buf) { | ||
1995 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
1996 | goto got_name; | ||
1997 | } | ||
1998 | name = dentry_path(file->f_dentry, buf, PATH_MAX); | ||
1999 | if (IS_ERR(name)) { | ||
2000 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
2001 | goto got_name; | ||
2002 | } | ||
2003 | } else { | ||
2004 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
2005 | goto got_name; | ||
2006 | } | ||
2007 | |||
2008 | got_name: | ||
2009 | size = ALIGN(strlen(name), sizeof(u64)); | ||
2010 | |||
2011 | mmap_event->file_name = name; | ||
2012 | mmap_event->file_size = size; | ||
2013 | |||
2014 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
2015 | |||
2016 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
2017 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
2018 | put_cpu_var(perf_cpu_context); | ||
2019 | |||
2020 | perf_counter_mmap_ctx(¤t->perf_counter_ctx, mmap_event); | ||
2021 | |||
2022 | kfree(buf); | ||
2023 | } | ||
2024 | |||
2025 | void perf_counter_mmap(unsigned long addr, unsigned long len, | ||
2026 | unsigned long pgoff, struct file *file) | ||
2027 | { | ||
2028 | struct perf_mmap_event mmap_event = { | ||
2029 | .file = file, | ||
2030 | .event = { | ||
2031 | .header = { .type = PERF_EVENT_MMAP, }, | ||
2032 | .pid = current->group_leader->pid, | ||
2033 | .tid = current->pid, | ||
2034 | .start = addr, | ||
2035 | .len = len, | ||
2036 | .pgoff = pgoff, | ||
2037 | }, | ||
2038 | }; | ||
2039 | |||
2040 | perf_counter_mmap_event(&mmap_event); | ||
2041 | } | ||
2042 | |||
2043 | void perf_counter_munmap(unsigned long addr, unsigned long len, | ||
2044 | unsigned long pgoff, struct file *file) | ||
2045 | { | ||
2046 | struct perf_mmap_event mmap_event = { | ||
2047 | .file = file, | ||
2048 | .event = { | ||
2049 | .header = { .type = PERF_EVENT_MUNMAP, }, | ||
2050 | .pid = current->group_leader->pid, | ||
2051 | .tid = current->pid, | ||
2052 | .start = addr, | ||
2053 | .len = len, | ||
2054 | .pgoff = pgoff, | ||
2055 | }, | ||
2056 | }; | ||
2057 | |||
2058 | perf_counter_mmap_event(&mmap_event); | ||
2059 | } | ||
2060 | |||
2061 | /* | ||
2062 | * Generic counter overflow handling. | ||
2063 | */ | ||
2064 | |||
2065 | int perf_counter_overflow(struct perf_counter *counter, | ||
2066 | int nmi, struct pt_regs *regs) | ||
2067 | { | ||
2068 | int events = atomic_read(&counter->event_limit); | ||
2069 | int ret = 0; | ||
2070 | |||
2071 | counter->pending_kill = POLL_IN; | ||
2072 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
2073 | ret = 1; | ||
2074 | counter->pending_kill = POLL_HUP; | ||
2075 | if (nmi) { | ||
2076 | counter->pending_disable = 1; | ||
2077 | perf_pending_queue(&counter->pending, | ||
2078 | perf_pending_counter); | ||
2079 | } else | ||
2080 | perf_counter_disable(counter); | ||
2081 | } | ||
2082 | |||
2083 | perf_counter_output(counter, nmi, regs); | ||
2084 | return ret; | ||
2085 | } | ||
2086 | |||
2087 | /* | ||
2088 | * Generic software counter infrastructure | ||
2089 | */ | ||
2090 | |||
2091 | static void perf_swcounter_update(struct perf_counter *counter) | ||
2092 | { | ||
2093 | struct hw_perf_counter *hwc = &counter->hw; | ||
2094 | u64 prev, now; | ||
2095 | s64 delta; | ||
2096 | |||
2097 | again: | ||
2098 | prev = atomic64_read(&hwc->prev_count); | ||
2099 | now = atomic64_read(&hwc->count); | ||
2100 | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | ||
2101 | goto again; | ||
2102 | |||
2103 | delta = now - prev; | ||
2104 | |||
2105 | atomic64_add(delta, &counter->count); | ||
2106 | atomic64_sub(delta, &hwc->period_left); | ||
2107 | } | ||
2108 | |||
2109 | static void perf_swcounter_set_period(struct perf_counter *counter) | ||
2110 | { | ||
2111 | struct hw_perf_counter *hwc = &counter->hw; | ||
2112 | s64 left = atomic64_read(&hwc->period_left); | ||
2113 | s64 period = hwc->irq_period; | ||
2114 | |||
2115 | if (unlikely(left <= -period)) { | ||
2116 | left = period; | ||
2117 | atomic64_set(&hwc->period_left, left); | ||
2118 | } | ||
2119 | |||
2120 | if (unlikely(left <= 0)) { | ||
2121 | left += period; | ||
2122 | atomic64_add(period, &hwc->period_left); | ||
2123 | } | ||
2124 | |||
2125 | atomic64_set(&hwc->prev_count, -left); | ||
2126 | atomic64_set(&hwc->count, -left); | ||
2127 | } | ||
2128 | |||
2129 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
2130 | { | ||
2131 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
2132 | struct perf_counter *counter; | ||
2133 | struct pt_regs *regs; | ||
2134 | |||
2135 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
2136 | counter->hw_ops->read(counter); | ||
2137 | |||
2138 | regs = get_irq_regs(); | ||
2139 | /* | ||
2140 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
2141 | * context, provide the next best thing, the user IP. | ||
2142 | */ | ||
2143 | if ((counter->hw_event.exclude_kernel || !regs) && | ||
2144 | !counter->hw_event.exclude_user) | ||
2145 | regs = task_pt_regs(current); | ||
2146 | |||
2147 | if (regs) { | ||
2148 | if (perf_counter_overflow(counter, 0, regs)) | ||
2149 | ret = HRTIMER_NORESTART; | ||
2150 | } | ||
2151 | |||
2152 | hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period)); | ||
2153 | |||
2154 | return ret; | ||
2155 | } | ||
2156 | |||
2157 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
2158 | int nmi, struct pt_regs *regs) | ||
2159 | { | ||
2160 | perf_swcounter_update(counter); | ||
2161 | perf_swcounter_set_period(counter); | ||
2162 | if (perf_counter_overflow(counter, nmi, regs)) | ||
2163 | /* soft-disable the counter */ | ||
2164 | ; | ||
2165 | |||
2166 | } | ||
2167 | |||
2168 | static int perf_swcounter_match(struct perf_counter *counter, | ||
2169 | enum perf_event_types type, | ||
2170 | u32 event, struct pt_regs *regs) | ||
2171 | { | ||
2172 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
2173 | return 0; | ||
2174 | |||
2175 | if (perf_event_raw(&counter->hw_event)) | ||
2176 | return 0; | ||
2177 | |||
2178 | if (perf_event_type(&counter->hw_event) != type) | ||
2179 | return 0; | ||
2180 | |||
2181 | if (perf_event_id(&counter->hw_event) != event) | ||
2182 | return 0; | ||
2183 | |||
2184 | if (counter->hw_event.exclude_user && user_mode(regs)) | ||
2185 | return 0; | ||
2186 | |||
2187 | if (counter->hw_event.exclude_kernel && !user_mode(regs)) | ||
2188 | return 0; | ||
2189 | |||
2190 | return 1; | ||
2191 | } | ||
2192 | |||
2193 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
2194 | int nmi, struct pt_regs *regs) | ||
2195 | { | ||
2196 | int neg = atomic64_add_negative(nr, &counter->hw.count); | ||
2197 | if (counter->hw.irq_period && !neg) | ||
2198 | perf_swcounter_overflow(counter, nmi, regs); | ||
2199 | } | ||
2200 | |||
2201 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
2202 | enum perf_event_types type, u32 event, | ||
2203 | u64 nr, int nmi, struct pt_regs *regs) | ||
2204 | { | ||
2205 | struct perf_counter *counter; | ||
2206 | |||
2207 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
2208 | return; | ||
2209 | |||
2210 | rcu_read_lock(); | ||
2211 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
2212 | if (perf_swcounter_match(counter, type, event, regs)) | ||
2213 | perf_swcounter_add(counter, nr, nmi, regs); | ||
2214 | } | ||
2215 | rcu_read_unlock(); | ||
2216 | } | ||
2217 | |||
2218 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
2219 | { | ||
2220 | if (in_nmi()) | ||
2221 | return &cpuctx->recursion[3]; | ||
2222 | |||
2223 | if (in_irq()) | ||
2224 | return &cpuctx->recursion[2]; | ||
2225 | |||
2226 | if (in_softirq()) | ||
2227 | return &cpuctx->recursion[1]; | ||
2228 | |||
2229 | return &cpuctx->recursion[0]; | ||
2230 | } | ||
2231 | |||
2232 | static void __perf_swcounter_event(enum perf_event_types type, u32 event, | ||
2233 | u64 nr, int nmi, struct pt_regs *regs) | ||
2234 | { | ||
2235 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
2236 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
2237 | |||
2238 | if (*recursion) | ||
2239 | goto out; | ||
2240 | |||
2241 | (*recursion)++; | ||
2242 | barrier(); | ||
2243 | |||
2244 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs); | ||
2245 | if (cpuctx->task_ctx) { | ||
2246 | perf_swcounter_ctx_event(cpuctx->task_ctx, type, event, | ||
2247 | nr, nmi, regs); | ||
2248 | } | ||
2249 | |||
2250 | barrier(); | ||
2251 | (*recursion)--; | ||
2252 | |||
2253 | out: | ||
2254 | put_cpu_var(perf_cpu_context); | ||
2255 | } | ||
2256 | |||
2257 | void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs) | ||
2258 | { | ||
2259 | __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs); | ||
2260 | } | ||
2261 | |||
2262 | static void perf_swcounter_read(struct perf_counter *counter) | ||
2263 | { | ||
2264 | perf_swcounter_update(counter); | ||
2265 | } | ||
2266 | |||
2267 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
2268 | { | ||
2269 | perf_swcounter_set_period(counter); | ||
2270 | return 0; | ||
2271 | } | ||
2272 | |||
2273 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
2274 | { | ||
2275 | perf_swcounter_update(counter); | ||
2276 | } | ||
2277 | |||
2278 | static const struct hw_perf_counter_ops perf_ops_generic = { | ||
2279 | .enable = perf_swcounter_enable, | ||
2280 | .disable = perf_swcounter_disable, | ||
2281 | .read = perf_swcounter_read, | ||
2282 | }; | ||
2283 | |||
2284 | /* | ||
2285 | * Software counter: cpu wall time clock | ||
2286 | */ | ||
2287 | |||
2288 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
2289 | { | ||
2290 | int cpu = raw_smp_processor_id(); | ||
2291 | s64 prev; | ||
2292 | u64 now; | ||
2293 | |||
2294 | now = cpu_clock(cpu); | ||
2295 | prev = atomic64_read(&counter->hw.prev_count); | ||
2296 | atomic64_set(&counter->hw.prev_count, now); | ||
2297 | atomic64_add(now - prev, &counter->count); | ||
2298 | } | ||
2299 | |||
2300 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
2301 | { | ||
2302 | struct hw_perf_counter *hwc = &counter->hw; | ||
2303 | int cpu = raw_smp_processor_id(); | ||
2304 | |||
2305 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
2306 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2307 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
2308 | if (hwc->irq_period) { | ||
2309 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
2310 | ns_to_ktime(hwc->irq_period), 0, | ||
2311 | HRTIMER_MODE_REL, 0); | ||
2312 | } | ||
2313 | |||
2314 | return 0; | ||
2315 | } | ||
2316 | |||
2317 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
2318 | { | ||
2319 | hrtimer_cancel(&counter->hw.hrtimer); | ||
2320 | cpu_clock_perf_counter_update(counter); | ||
2321 | } | ||
2322 | |||
2323 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
2324 | { | ||
2325 | cpu_clock_perf_counter_update(counter); | ||
2326 | } | ||
2327 | |||
2328 | static const struct hw_perf_counter_ops perf_ops_cpu_clock = { | ||
2329 | .enable = cpu_clock_perf_counter_enable, | ||
2330 | .disable = cpu_clock_perf_counter_disable, | ||
2331 | .read = cpu_clock_perf_counter_read, | ||
2332 | }; | ||
2333 | |||
2334 | /* | ||
2335 | * Software counter: task time clock | ||
2336 | */ | ||
2337 | |||
2338 | static void task_clock_perf_counter_update(struct perf_counter *counter) | ||
2339 | { | ||
2340 | u64 prev, now; | ||
2341 | s64 delta; | ||
2342 | |||
2343 | now = counter->ctx->time; | ||
2344 | |||
2345 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
2346 | delta = now - prev; | ||
2347 | atomic64_add(delta, &counter->count); | ||
2348 | } | ||
2349 | |||
2350 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
2351 | { | ||
2352 | struct hw_perf_counter *hwc = &counter->hw; | ||
2353 | u64 now; | ||
2354 | |||
2355 | now = counter->ctx->time; | ||
2356 | |||
2357 | atomic64_set(&hwc->prev_count, now); | ||
2358 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
2359 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
2360 | if (hwc->irq_period) { | ||
2361 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
2362 | ns_to_ktime(hwc->irq_period), 0, | ||
2363 | HRTIMER_MODE_REL, 0); | ||
2364 | } | ||
2365 | |||
2366 | return 0; | ||
2367 | } | ||
2368 | |||
2369 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
2370 | { | ||
2371 | hrtimer_cancel(&counter->hw.hrtimer); | ||
2372 | task_clock_perf_counter_update(counter); | ||
2373 | } | ||
2374 | |||
2375 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
2376 | { | ||
2377 | update_context_time(counter->ctx); | ||
2378 | task_clock_perf_counter_update(counter); | ||
2379 | } | ||
2380 | |||
2381 | static const struct hw_perf_counter_ops perf_ops_task_clock = { | ||
2382 | .enable = task_clock_perf_counter_enable, | ||
2383 | .disable = task_clock_perf_counter_disable, | ||
2384 | .read = task_clock_perf_counter_read, | ||
2385 | }; | ||
2386 | |||
2387 | /* | ||
2388 | * Software counter: cpu migrations | ||
2389 | */ | ||
2390 | |||
2391 | static inline u64 get_cpu_migrations(struct perf_counter *counter) | ||
2392 | { | ||
2393 | struct task_struct *curr = counter->ctx->task; | ||
2394 | |||
2395 | if (curr) | ||
2396 | return curr->se.nr_migrations; | ||
2397 | return cpu_nr_migrations(smp_processor_id()); | ||
2398 | } | ||
2399 | |||
2400 | static void cpu_migrations_perf_counter_update(struct perf_counter *counter) | ||
2401 | { | ||
2402 | u64 prev, now; | ||
2403 | s64 delta; | ||
2404 | |||
2405 | prev = atomic64_read(&counter->hw.prev_count); | ||
2406 | now = get_cpu_migrations(counter); | ||
2407 | |||
2408 | atomic64_set(&counter->hw.prev_count, now); | ||
2409 | |||
2410 | delta = now - prev; | ||
2411 | |||
2412 | atomic64_add(delta, &counter->count); | ||
2413 | } | ||
2414 | |||
2415 | static void cpu_migrations_perf_counter_read(struct perf_counter *counter) | ||
2416 | { | ||
2417 | cpu_migrations_perf_counter_update(counter); | ||
2418 | } | ||
2419 | |||
2420 | static int cpu_migrations_perf_counter_enable(struct perf_counter *counter) | ||
2421 | { | ||
2422 | if (counter->prev_state <= PERF_COUNTER_STATE_OFF) | ||
2423 | atomic64_set(&counter->hw.prev_count, | ||
2424 | get_cpu_migrations(counter)); | ||
2425 | return 0; | ||
2426 | } | ||
2427 | |||
2428 | static void cpu_migrations_perf_counter_disable(struct perf_counter *counter) | ||
2429 | { | ||
2430 | cpu_migrations_perf_counter_update(counter); | ||
2431 | } | ||
2432 | |||
2433 | static const struct hw_perf_counter_ops perf_ops_cpu_migrations = { | ||
2434 | .enable = cpu_migrations_perf_counter_enable, | ||
2435 | .disable = cpu_migrations_perf_counter_disable, | ||
2436 | .read = cpu_migrations_perf_counter_read, | ||
2437 | }; | ||
2438 | |||
2439 | #ifdef CONFIG_EVENT_PROFILE | ||
2440 | void perf_tpcounter_event(int event_id) | ||
2441 | { | ||
2442 | struct pt_regs *regs = get_irq_regs(); | ||
2443 | |||
2444 | if (!regs) | ||
2445 | regs = task_pt_regs(current); | ||
2446 | |||
2447 | __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs); | ||
2448 | } | ||
2449 | |||
2450 | extern int ftrace_profile_enable(int); | ||
2451 | extern void ftrace_profile_disable(int); | ||
2452 | |||
2453 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
2454 | { | ||
2455 | ftrace_profile_disable(perf_event_id(&counter->hw_event)); | ||
2456 | } | ||
2457 | |||
2458 | static const struct hw_perf_counter_ops * | ||
2459 | tp_perf_counter_init(struct perf_counter *counter) | ||
2460 | { | ||
2461 | int event_id = perf_event_id(&counter->hw_event); | ||
2462 | int ret; | ||
2463 | |||
2464 | ret = ftrace_profile_enable(event_id); | ||
2465 | if (ret) | ||
2466 | return NULL; | ||
2467 | |||
2468 | counter->destroy = tp_perf_counter_destroy; | ||
2469 | counter->hw.irq_period = counter->hw_event.irq_period; | ||
2470 | |||
2471 | return &perf_ops_generic; | ||
2472 | } | ||
2473 | #else | ||
2474 | static const struct hw_perf_counter_ops * | ||
2475 | tp_perf_counter_init(struct perf_counter *counter) | ||
2476 | { | ||
2477 | return NULL; | ||
2478 | } | ||
2479 | #endif | ||
2480 | |||
2481 | static const struct hw_perf_counter_ops * | ||
2482 | sw_perf_counter_init(struct perf_counter *counter) | ||
2483 | { | ||
2484 | struct perf_counter_hw_event *hw_event = &counter->hw_event; | ||
2485 | const struct hw_perf_counter_ops *hw_ops = NULL; | ||
2486 | struct hw_perf_counter *hwc = &counter->hw; | ||
2487 | |||
2488 | /* | ||
2489 | * Software counters (currently) can't in general distinguish | ||
2490 | * between user, kernel and hypervisor events. | ||
2491 | * However, context switches and cpu migrations are considered | ||
2492 | * to be kernel events, and page faults are never hypervisor | ||
2493 | * events. | ||
2494 | */ | ||
2495 | switch (perf_event_id(&counter->hw_event)) { | ||
2496 | case PERF_COUNT_CPU_CLOCK: | ||
2497 | hw_ops = &perf_ops_cpu_clock; | ||
2498 | |||
2499 | if (hw_event->irq_period && hw_event->irq_period < 10000) | ||
2500 | hw_event->irq_period = 10000; | ||
2501 | break; | ||
2502 | case PERF_COUNT_TASK_CLOCK: | ||
2503 | /* | ||
2504 | * If the user instantiates this as a per-cpu counter, | ||
2505 | * use the cpu_clock counter instead. | ||
2506 | */ | ||
2507 | if (counter->ctx->task) | ||
2508 | hw_ops = &perf_ops_task_clock; | ||
2509 | else | ||
2510 | hw_ops = &perf_ops_cpu_clock; | ||
2511 | |||
2512 | if (hw_event->irq_period && hw_event->irq_period < 10000) | ||
2513 | hw_event->irq_period = 10000; | ||
2514 | break; | ||
2515 | case PERF_COUNT_PAGE_FAULTS: | ||
2516 | case PERF_COUNT_PAGE_FAULTS_MIN: | ||
2517 | case PERF_COUNT_PAGE_FAULTS_MAJ: | ||
2518 | case PERF_COUNT_CONTEXT_SWITCHES: | ||
2519 | hw_ops = &perf_ops_generic; | ||
2520 | break; | ||
2521 | case PERF_COUNT_CPU_MIGRATIONS: | ||
2522 | if (!counter->hw_event.exclude_kernel) | ||
2523 | hw_ops = &perf_ops_cpu_migrations; | ||
2524 | break; | ||
2525 | } | ||
2526 | |||
2527 | if (hw_ops) | ||
2528 | hwc->irq_period = hw_event->irq_period; | ||
2529 | |||
2530 | return hw_ops; | ||
2531 | } | ||
2532 | |||
2533 | /* | ||
2534 | * Allocate and initialize a counter structure | ||
2535 | */ | ||
2536 | static struct perf_counter * | ||
2537 | perf_counter_alloc(struct perf_counter_hw_event *hw_event, | ||
2538 | int cpu, | ||
2539 | struct perf_counter_context *ctx, | ||
2540 | struct perf_counter *group_leader, | ||
2541 | gfp_t gfpflags) | ||
2542 | { | ||
2543 | const struct hw_perf_counter_ops *hw_ops; | ||
2544 | struct perf_counter *counter; | ||
2545 | long err; | ||
2546 | |||
2547 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
2548 | if (!counter) | ||
2549 | return ERR_PTR(-ENOMEM); | ||
2550 | |||
2551 | /* | ||
2552 | * Single counters are their own group leaders, with an | ||
2553 | * empty sibling list: | ||
2554 | */ | ||
2555 | if (!group_leader) | ||
2556 | group_leader = counter; | ||
2557 | |||
2558 | mutex_init(&counter->mutex); | ||
2559 | INIT_LIST_HEAD(&counter->list_entry); | ||
2560 | INIT_LIST_HEAD(&counter->event_entry); | ||
2561 | INIT_LIST_HEAD(&counter->sibling_list); | ||
2562 | init_waitqueue_head(&counter->waitq); | ||
2563 | |||
2564 | mutex_init(&counter->mmap_mutex); | ||
2565 | |||
2566 | INIT_LIST_HEAD(&counter->child_list); | ||
2567 | |||
2568 | counter->cpu = cpu; | ||
2569 | counter->hw_event = *hw_event; | ||
2570 | counter->group_leader = group_leader; | ||
2571 | counter->hw_ops = NULL; | ||
2572 | counter->ctx = ctx; | ||
2573 | |||
2574 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
2575 | if (hw_event->disabled) | ||
2576 | counter->state = PERF_COUNTER_STATE_OFF; | ||
2577 | |||
2578 | hw_ops = NULL; | ||
2579 | |||
2580 | if (perf_event_raw(hw_event)) { | ||
2581 | hw_ops = hw_perf_counter_init(counter); | ||
2582 | goto done; | ||
2583 | } | ||
2584 | |||
2585 | switch (perf_event_type(hw_event)) { | ||
2586 | case PERF_TYPE_HARDWARE: | ||
2587 | hw_ops = hw_perf_counter_init(counter); | ||
2588 | break; | ||
2589 | |||
2590 | case PERF_TYPE_SOFTWARE: | ||
2591 | hw_ops = sw_perf_counter_init(counter); | ||
2592 | break; | ||
2593 | |||
2594 | case PERF_TYPE_TRACEPOINT: | ||
2595 | hw_ops = tp_perf_counter_init(counter); | ||
2596 | break; | ||
2597 | } | ||
2598 | done: | ||
2599 | err = 0; | ||
2600 | if (!hw_ops) | ||
2601 | err = -EINVAL; | ||
2602 | else if (IS_ERR(hw_ops)) | ||
2603 | err = PTR_ERR(hw_ops); | ||
2604 | |||
2605 | if (err) { | ||
2606 | kfree(counter); | ||
2607 | return ERR_PTR(err); | ||
2608 | } | ||
2609 | |||
2610 | counter->hw_ops = hw_ops; | ||
2611 | |||
2612 | return counter; | ||
2613 | } | ||
2614 | |||
2615 | /** | ||
2616 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
2617 | * | ||
2618 | * @hw_event_uptr: event type attributes for monitoring/sampling | ||
2619 | * @pid: target pid | ||
2620 | * @cpu: target cpu | ||
2621 | * @group_fd: group leader counter fd | ||
2622 | */ | ||
2623 | SYSCALL_DEFINE5(perf_counter_open, | ||
2624 | const struct perf_counter_hw_event __user *, hw_event_uptr, | ||
2625 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
2626 | { | ||
2627 | struct perf_counter *counter, *group_leader; | ||
2628 | struct perf_counter_hw_event hw_event; | ||
2629 | struct perf_counter_context *ctx; | ||
2630 | struct file *counter_file = NULL; | ||
2631 | struct file *group_file = NULL; | ||
2632 | int fput_needed = 0; | ||
2633 | int fput_needed2 = 0; | ||
2634 | int ret; | ||
2635 | |||
2636 | /* for future expandability... */ | ||
2637 | if (flags) | ||
2638 | return -EINVAL; | ||
2639 | |||
2640 | if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0) | ||
2641 | return -EFAULT; | ||
2642 | |||
2643 | /* | ||
2644 | * Get the target context (task or percpu): | ||
2645 | */ | ||
2646 | ctx = find_get_context(pid, cpu); | ||
2647 | if (IS_ERR(ctx)) | ||
2648 | return PTR_ERR(ctx); | ||
2649 | |||
2650 | /* | ||
2651 | * Look up the group leader (we will attach this counter to it): | ||
2652 | */ | ||
2653 | group_leader = NULL; | ||
2654 | if (group_fd != -1) { | ||
2655 | ret = -EINVAL; | ||
2656 | group_file = fget_light(group_fd, &fput_needed); | ||
2657 | if (!group_file) | ||
2658 | goto err_put_context; | ||
2659 | if (group_file->f_op != &perf_fops) | ||
2660 | goto err_put_context; | ||
2661 | |||
2662 | group_leader = group_file->private_data; | ||
2663 | /* | ||
2664 | * Do not allow a recursive hierarchy (this new sibling | ||
2665 | * becoming part of another group-sibling): | ||
2666 | */ | ||
2667 | if (group_leader->group_leader != group_leader) | ||
2668 | goto err_put_context; | ||
2669 | /* | ||
2670 | * Do not allow to attach to a group in a different | ||
2671 | * task or CPU context: | ||
2672 | */ | ||
2673 | if (group_leader->ctx != ctx) | ||
2674 | goto err_put_context; | ||
2675 | /* | ||
2676 | * Only a group leader can be exclusive or pinned | ||
2677 | */ | ||
2678 | if (hw_event.exclusive || hw_event.pinned) | ||
2679 | goto err_put_context; | ||
2680 | } | ||
2681 | |||
2682 | counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader, | ||
2683 | GFP_KERNEL); | ||
2684 | ret = PTR_ERR(counter); | ||
2685 | if (IS_ERR(counter)) | ||
2686 | goto err_put_context; | ||
2687 | |||
2688 | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
2689 | if (ret < 0) | ||
2690 | goto err_free_put_context; | ||
2691 | |||
2692 | counter_file = fget_light(ret, &fput_needed2); | ||
2693 | if (!counter_file) | ||
2694 | goto err_free_put_context; | ||
2695 | |||
2696 | counter->filp = counter_file; | ||
2697 | mutex_lock(&ctx->mutex); | ||
2698 | perf_install_in_context(ctx, counter, cpu); | ||
2699 | mutex_unlock(&ctx->mutex); | ||
2700 | |||
2701 | fput_light(counter_file, fput_needed2); | ||
2702 | |||
2703 | out_fput: | ||
2704 | fput_light(group_file, fput_needed); | ||
2705 | |||
2706 | return ret; | ||
2707 | |||
2708 | err_free_put_context: | ||
2709 | kfree(counter); | ||
2710 | |||
2711 | err_put_context: | ||
2712 | put_context(ctx); | ||
2713 | |||
2714 | goto out_fput; | ||
2715 | } | ||
2716 | |||
2717 | /* | ||
2718 | * Initialize the perf_counter context in a task_struct: | ||
2719 | */ | ||
2720 | static void | ||
2721 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
2722 | struct task_struct *task) | ||
2723 | { | ||
2724 | memset(ctx, 0, sizeof(*ctx)); | ||
2725 | spin_lock_init(&ctx->lock); | ||
2726 | mutex_init(&ctx->mutex); | ||
2727 | INIT_LIST_HEAD(&ctx->counter_list); | ||
2728 | INIT_LIST_HEAD(&ctx->event_list); | ||
2729 | ctx->task = task; | ||
2730 | } | ||
2731 | |||
2732 | /* | ||
2733 | * inherit a counter from parent task to child task: | ||
2734 | */ | ||
2735 | static struct perf_counter * | ||
2736 | inherit_counter(struct perf_counter *parent_counter, | ||
2737 | struct task_struct *parent, | ||
2738 | struct perf_counter_context *parent_ctx, | ||
2739 | struct task_struct *child, | ||
2740 | struct perf_counter *group_leader, | ||
2741 | struct perf_counter_context *child_ctx) | ||
2742 | { | ||
2743 | struct perf_counter *child_counter; | ||
2744 | |||
2745 | /* | ||
2746 | * Instead of creating recursive hierarchies of counters, | ||
2747 | * we link inherited counters back to the original parent, | ||
2748 | * which has a filp for sure, which we use as the reference | ||
2749 | * count: | ||
2750 | */ | ||
2751 | if (parent_counter->parent) | ||
2752 | parent_counter = parent_counter->parent; | ||
2753 | |||
2754 | child_counter = perf_counter_alloc(&parent_counter->hw_event, | ||
2755 | parent_counter->cpu, child_ctx, | ||
2756 | group_leader, GFP_KERNEL); | ||
2757 | if (IS_ERR(child_counter)) | ||
2758 | return child_counter; | ||
2759 | |||
2760 | /* | ||
2761 | * Link it up in the child's context: | ||
2762 | */ | ||
2763 | child_counter->task = child; | ||
2764 | add_counter_to_ctx(child_counter, child_ctx); | ||
2765 | |||
2766 | child_counter->parent = parent_counter; | ||
2767 | /* | ||
2768 | * inherit into child's child as well: | ||
2769 | */ | ||
2770 | child_counter->hw_event.inherit = 1; | ||
2771 | |||
2772 | /* | ||
2773 | * Get a reference to the parent filp - we will fput it | ||
2774 | * when the child counter exits. This is safe to do because | ||
2775 | * we are in the parent and we know that the filp still | ||
2776 | * exists and has a nonzero count: | ||
2777 | */ | ||
2778 | atomic_long_inc(&parent_counter->filp->f_count); | ||
2779 | |||
2780 | /* | ||
2781 | * Link this into the parent counter's child list | ||
2782 | */ | ||
2783 | mutex_lock(&parent_counter->mutex); | ||
2784 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
2785 | |||
2786 | /* | ||
2787 | * Make the child state follow the state of the parent counter, | ||
2788 | * not its hw_event.disabled bit. We hold the parent's mutex, | ||
2789 | * so we won't race with perf_counter_{en,dis}able_family. | ||
2790 | */ | ||
2791 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
2792 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
2793 | else | ||
2794 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
2795 | |||
2796 | mutex_unlock(&parent_counter->mutex); | ||
2797 | |||
2798 | return child_counter; | ||
2799 | } | ||
2800 | |||
2801 | static int inherit_group(struct perf_counter *parent_counter, | ||
2802 | struct task_struct *parent, | ||
2803 | struct perf_counter_context *parent_ctx, | ||
2804 | struct task_struct *child, | ||
2805 | struct perf_counter_context *child_ctx) | ||
2806 | { | ||
2807 | struct perf_counter *leader; | ||
2808 | struct perf_counter *sub; | ||
2809 | struct perf_counter *child_ctr; | ||
2810 | |||
2811 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
2812 | child, NULL, child_ctx); | ||
2813 | if (IS_ERR(leader)) | ||
2814 | return PTR_ERR(leader); | ||
2815 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
2816 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
2817 | child, leader, child_ctx); | ||
2818 | if (IS_ERR(child_ctr)) | ||
2819 | return PTR_ERR(child_ctr); | ||
2820 | } | ||
2821 | return 0; | ||
2822 | } | ||
2823 | |||
2824 | static void sync_child_counter(struct perf_counter *child_counter, | ||
2825 | struct perf_counter *parent_counter) | ||
2826 | { | ||
2827 | u64 parent_val, child_val; | ||
2828 | |||
2829 | parent_val = atomic64_read(&parent_counter->count); | ||
2830 | child_val = atomic64_read(&child_counter->count); | ||
2831 | |||
2832 | /* | ||
2833 | * Add back the child's count to the parent's count: | ||
2834 | */ | ||
2835 | atomic64_add(child_val, &parent_counter->count); | ||
2836 | atomic64_add(child_counter->total_time_enabled, | ||
2837 | &parent_counter->child_total_time_enabled); | ||
2838 | atomic64_add(child_counter->total_time_running, | ||
2839 | &parent_counter->child_total_time_running); | ||
2840 | |||
2841 | /* | ||
2842 | * Remove this counter from the parent's list | ||
2843 | */ | ||
2844 | mutex_lock(&parent_counter->mutex); | ||
2845 | list_del_init(&child_counter->child_list); | ||
2846 | mutex_unlock(&parent_counter->mutex); | ||
2847 | |||
2848 | /* | ||
2849 | * Release the parent counter, if this was the last | ||
2850 | * reference to it. | ||
2851 | */ | ||
2852 | fput(parent_counter->filp); | ||
2853 | } | ||
2854 | |||
2855 | static void | ||
2856 | __perf_counter_exit_task(struct task_struct *child, | ||
2857 | struct perf_counter *child_counter, | ||
2858 | struct perf_counter_context *child_ctx) | ||
2859 | { | ||
2860 | struct perf_counter *parent_counter; | ||
2861 | struct perf_counter *sub, *tmp; | ||
2862 | |||
2863 | /* | ||
2864 | * If we do not self-reap then we have to wait for the | ||
2865 | * child task to unschedule (it will happen for sure), | ||
2866 | * so that its counter is at its final count. (This | ||
2867 | * condition triggers rarely - child tasks usually get | ||
2868 | * off their CPU before the parent has a chance to | ||
2869 | * get this far into the reaping action) | ||
2870 | */ | ||
2871 | if (child != current) { | ||
2872 | wait_task_inactive(child, 0); | ||
2873 | list_del_init(&child_counter->list_entry); | ||
2874 | update_counter_times(child_counter); | ||
2875 | } else { | ||
2876 | struct perf_cpu_context *cpuctx; | ||
2877 | unsigned long flags; | ||
2878 | u64 perf_flags; | ||
2879 | |||
2880 | /* | ||
2881 | * Disable and unlink this counter. | ||
2882 | * | ||
2883 | * Be careful about zapping the list - IRQ/NMI context | ||
2884 | * could still be processing it: | ||
2885 | */ | ||
2886 | local_irq_save(flags); | ||
2887 | perf_flags = hw_perf_save_disable(); | ||
2888 | |||
2889 | cpuctx = &__get_cpu_var(perf_cpu_context); | ||
2890 | |||
2891 | group_sched_out(child_counter, cpuctx, child_ctx); | ||
2892 | update_counter_times(child_counter); | ||
2893 | |||
2894 | list_del_init(&child_counter->list_entry); | ||
2895 | |||
2896 | child_ctx->nr_counters--; | ||
2897 | |||
2898 | hw_perf_restore(perf_flags); | ||
2899 | local_irq_restore(flags); | ||
2900 | } | ||
2901 | |||
2902 | parent_counter = child_counter->parent; | ||
2903 | /* | ||
2904 | * It can happen that parent exits first, and has counters | ||
2905 | * that are still around due to the child reference. These | ||
2906 | * counters need to be zapped - but otherwise linger. | ||
2907 | */ | ||
2908 | if (parent_counter) { | ||
2909 | sync_child_counter(child_counter, parent_counter); | ||
2910 | list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list, | ||
2911 | list_entry) { | ||
2912 | if (sub->parent) { | ||
2913 | sync_child_counter(sub, sub->parent); | ||
2914 | free_counter(sub); | ||
2915 | } | ||
2916 | } | ||
2917 | free_counter(child_counter); | ||
2918 | } | ||
2919 | } | ||
2920 | |||
2921 | /* | ||
2922 | * When a child task exits, feed back counter values to parent counters. | ||
2923 | * | ||
2924 | * Note: we may be running in child context, but the PID is not hashed | ||
2925 | * anymore so new counters will not be added. | ||
2926 | */ | ||
2927 | void perf_counter_exit_task(struct task_struct *child) | ||
2928 | { | ||
2929 | struct perf_counter *child_counter, *tmp; | ||
2930 | struct perf_counter_context *child_ctx; | ||
2931 | |||
2932 | child_ctx = &child->perf_counter_ctx; | ||
2933 | |||
2934 | if (likely(!child_ctx->nr_counters)) | ||
2935 | return; | ||
2936 | |||
2937 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
2938 | list_entry) | ||
2939 | __perf_counter_exit_task(child, child_counter, child_ctx); | ||
2940 | } | ||
2941 | |||
2942 | /* | ||
2943 | * Initialize the perf_counter context in task_struct | ||
2944 | */ | ||
2945 | void perf_counter_init_task(struct task_struct *child) | ||
2946 | { | ||
2947 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
2948 | struct perf_counter *counter; | ||
2949 | struct task_struct *parent = current; | ||
2950 | |||
2951 | child_ctx = &child->perf_counter_ctx; | ||
2952 | parent_ctx = &parent->perf_counter_ctx; | ||
2953 | |||
2954 | __perf_counter_init_context(child_ctx, child); | ||
2955 | |||
2956 | /* | ||
2957 | * This is executed from the parent task context, so inherit | ||
2958 | * counters that have been marked for cloning: | ||
2959 | */ | ||
2960 | |||
2961 | if (likely(!parent_ctx->nr_counters)) | ||
2962 | return; | ||
2963 | |||
2964 | /* | ||
2965 | * Lock the parent list. No need to lock the child - not PID | ||
2966 | * hashed yet and not running, so nobody can access it. | ||
2967 | */ | ||
2968 | mutex_lock(&parent_ctx->mutex); | ||
2969 | |||
2970 | /* | ||
2971 | * We dont have to disable NMIs - we are only looking at | ||
2972 | * the list, not manipulating it: | ||
2973 | */ | ||
2974 | list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) { | ||
2975 | if (!counter->hw_event.inherit) | ||
2976 | continue; | ||
2977 | |||
2978 | if (inherit_group(counter, parent, | ||
2979 | parent_ctx, child, child_ctx)) | ||
2980 | break; | ||
2981 | } | ||
2982 | |||
2983 | mutex_unlock(&parent_ctx->mutex); | ||
2984 | } | ||
2985 | |||
2986 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
2987 | { | ||
2988 | struct perf_cpu_context *cpuctx; | ||
2989 | |||
2990 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
2991 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
2992 | |||
2993 | mutex_lock(&perf_resource_mutex); | ||
2994 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
2995 | mutex_unlock(&perf_resource_mutex); | ||
2996 | |||
2997 | hw_perf_counter_setup(cpu); | ||
2998 | } | ||
2999 | |||
3000 | #ifdef CONFIG_HOTPLUG_CPU | ||
3001 | static void __perf_counter_exit_cpu(void *info) | ||
3002 | { | ||
3003 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
3004 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
3005 | struct perf_counter *counter, *tmp; | ||
3006 | |||
3007 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
3008 | __perf_counter_remove_from_context(counter); | ||
3009 | } | ||
3010 | static void perf_counter_exit_cpu(int cpu) | ||
3011 | { | ||
3012 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3013 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
3014 | |||
3015 | mutex_lock(&ctx->mutex); | ||
3016 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
3017 | mutex_unlock(&ctx->mutex); | ||
3018 | } | ||
3019 | #else | ||
3020 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
3021 | #endif | ||
3022 | |||
3023 | static int __cpuinit | ||
3024 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
3025 | { | ||
3026 | unsigned int cpu = (long)hcpu; | ||
3027 | |||
3028 | switch (action) { | ||
3029 | |||
3030 | case CPU_UP_PREPARE: | ||
3031 | case CPU_UP_PREPARE_FROZEN: | ||
3032 | perf_counter_init_cpu(cpu); | ||
3033 | break; | ||
3034 | |||
3035 | case CPU_DOWN_PREPARE: | ||
3036 | case CPU_DOWN_PREPARE_FROZEN: | ||
3037 | perf_counter_exit_cpu(cpu); | ||
3038 | break; | ||
3039 | |||
3040 | default: | ||
3041 | break; | ||
3042 | } | ||
3043 | |||
3044 | return NOTIFY_OK; | ||
3045 | } | ||
3046 | |||
3047 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
3048 | .notifier_call = perf_cpu_notify, | ||
3049 | }; | ||
3050 | |||
3051 | static int __init perf_counter_init(void) | ||
3052 | { | ||
3053 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
3054 | (void *)(long)smp_processor_id()); | ||
3055 | register_cpu_notifier(&perf_cpu_nb); | ||
3056 | |||
3057 | return 0; | ||
3058 | } | ||
3059 | early_initcall(perf_counter_init); | ||
3060 | |||
3061 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
3062 | { | ||
3063 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
3064 | } | ||
3065 | |||
3066 | static ssize_t | ||
3067 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
3068 | const char *buf, | ||
3069 | size_t count) | ||
3070 | { | ||
3071 | struct perf_cpu_context *cpuctx; | ||
3072 | unsigned long val; | ||
3073 | int err, cpu, mpt; | ||
3074 | |||
3075 | err = strict_strtoul(buf, 10, &val); | ||
3076 | if (err) | ||
3077 | return err; | ||
3078 | if (val > perf_max_counters) | ||
3079 | return -EINVAL; | ||
3080 | |||
3081 | mutex_lock(&perf_resource_mutex); | ||
3082 | perf_reserved_percpu = val; | ||
3083 | for_each_online_cpu(cpu) { | ||
3084 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
3085 | spin_lock_irq(&cpuctx->ctx.lock); | ||
3086 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
3087 | perf_max_counters - perf_reserved_percpu); | ||
3088 | cpuctx->max_pertask = mpt; | ||
3089 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
3090 | } | ||
3091 | mutex_unlock(&perf_resource_mutex); | ||
3092 | |||
3093 | return count; | ||
3094 | } | ||
3095 | |||
3096 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
3097 | { | ||
3098 | return sprintf(buf, "%d\n", perf_overcommit); | ||
3099 | } | ||
3100 | |||
3101 | static ssize_t | ||
3102 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
3103 | { | ||
3104 | unsigned long val; | ||
3105 | int err; | ||
3106 | |||
3107 | err = strict_strtoul(buf, 10, &val); | ||
3108 | if (err) | ||
3109 | return err; | ||
3110 | if (val > 1) | ||
3111 | return -EINVAL; | ||
3112 | |||
3113 | mutex_lock(&perf_resource_mutex); | ||
3114 | perf_overcommit = val; | ||
3115 | mutex_unlock(&perf_resource_mutex); | ||
3116 | |||
3117 | return count; | ||
3118 | } | ||
3119 | |||
3120 | static SYSDEV_CLASS_ATTR( | ||
3121 | reserve_percpu, | ||
3122 | 0644, | ||
3123 | perf_show_reserve_percpu, | ||
3124 | perf_set_reserve_percpu | ||
3125 | ); | ||
3126 | |||
3127 | static SYSDEV_CLASS_ATTR( | ||
3128 | overcommit, | ||
3129 | 0644, | ||
3130 | perf_show_overcommit, | ||
3131 | perf_set_overcommit | ||
3132 | ); | ||
3133 | |||
3134 | static struct attribute *perfclass_attrs[] = { | ||
3135 | &attr_reserve_percpu.attr, | ||
3136 | &attr_overcommit.attr, | ||
3137 | NULL | ||
3138 | }; | ||
3139 | |||
3140 | static struct attribute_group perfclass_attr_group = { | ||
3141 | .attrs = perfclass_attrs, | ||
3142 | .name = "perf_counters", | ||
3143 | }; | ||
3144 | |||
3145 | static int __init perf_counter_sysfs_init(void) | ||
3146 | { | ||
3147 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
3148 | &perfclass_attr_group); | ||
3149 | } | ||
3150 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/sched.c b/kernel/sched.c index 6cc1fd5d5072..b66a08c2480e 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -584,6 +584,7 @@ struct rq { | |||
584 | struct load_weight load; | 584 | struct load_weight load; |
585 | unsigned long nr_load_updates; | 585 | unsigned long nr_load_updates; |
586 | u64 nr_switches; | 586 | u64 nr_switches; |
587 | u64 nr_migrations_in; | ||
587 | 588 | ||
588 | struct cfs_rq cfs; | 589 | struct cfs_rq cfs; |
589 | struct rt_rq rt; | 590 | struct rt_rq rt; |
@@ -692,7 +693,7 @@ static inline int cpu_of(struct rq *rq) | |||
692 | #define task_rq(p) cpu_rq(task_cpu(p)) | 693 | #define task_rq(p) cpu_rq(task_cpu(p)) |
693 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | 694 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
694 | 695 | ||
695 | static inline void update_rq_clock(struct rq *rq) | 696 | inline void update_rq_clock(struct rq *rq) |
696 | { | 697 | { |
697 | rq->clock = sched_clock_cpu(cpu_of(rq)); | 698 | rq->clock = sched_clock_cpu(cpu_of(rq)); |
698 | } | 699 | } |
@@ -1955,12 +1956,15 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
1955 | p->se.sleep_start -= clock_offset; | 1956 | p->se.sleep_start -= clock_offset; |
1956 | if (p->se.block_start) | 1957 | if (p->se.block_start) |
1957 | p->se.block_start -= clock_offset; | 1958 | p->se.block_start -= clock_offset; |
1959 | #endif | ||
1958 | if (old_cpu != new_cpu) { | 1960 | if (old_cpu != new_cpu) { |
1959 | schedstat_inc(p, se.nr_migrations); | 1961 | p->se.nr_migrations++; |
1962 | new_rq->nr_migrations_in++; | ||
1963 | #ifdef CONFIG_SCHEDSTATS | ||
1960 | if (task_hot(p, old_rq->clock, NULL)) | 1964 | if (task_hot(p, old_rq->clock, NULL)) |
1961 | schedstat_inc(p, se.nr_forced2_migrations); | 1965 | schedstat_inc(p, se.nr_forced2_migrations); |
1962 | } | ||
1963 | #endif | 1966 | #endif |
1967 | } | ||
1964 | p->se.vruntime -= old_cfsrq->min_vruntime - | 1968 | p->se.vruntime -= old_cfsrq->min_vruntime - |
1965 | new_cfsrq->min_vruntime; | 1969 | new_cfsrq->min_vruntime; |
1966 | 1970 | ||
@@ -2312,6 +2316,27 @@ static int sched_balance_self(int cpu, int flag) | |||
2312 | 2316 | ||
2313 | #endif /* CONFIG_SMP */ | 2317 | #endif /* CONFIG_SMP */ |
2314 | 2318 | ||
2319 | /** | ||
2320 | * task_oncpu_function_call - call a function on the cpu on which a task runs | ||
2321 | * @p: the task to evaluate | ||
2322 | * @func: the function to be called | ||
2323 | * @info: the function call argument | ||
2324 | * | ||
2325 | * Calls the function @func when the task is currently running. This might | ||
2326 | * be on the current CPU, which just calls the function directly | ||
2327 | */ | ||
2328 | void task_oncpu_function_call(struct task_struct *p, | ||
2329 | void (*func) (void *info), void *info) | ||
2330 | { | ||
2331 | int cpu; | ||
2332 | |||
2333 | preempt_disable(); | ||
2334 | cpu = task_cpu(p); | ||
2335 | if (task_curr(p)) | ||
2336 | smp_call_function_single(cpu, func, info, 1); | ||
2337 | preempt_enable(); | ||
2338 | } | ||
2339 | |||
2315 | /*** | 2340 | /*** |
2316 | * try_to_wake_up - wake up a thread | 2341 | * try_to_wake_up - wake up a thread |
2317 | * @p: the to-be-woken-up thread | 2342 | * @p: the to-be-woken-up thread |
@@ -2468,6 +2493,7 @@ static void __sched_fork(struct task_struct *p) | |||
2468 | p->se.exec_start = 0; | 2493 | p->se.exec_start = 0; |
2469 | p->se.sum_exec_runtime = 0; | 2494 | p->se.sum_exec_runtime = 0; |
2470 | p->se.prev_sum_exec_runtime = 0; | 2495 | p->se.prev_sum_exec_runtime = 0; |
2496 | p->se.nr_migrations = 0; | ||
2471 | p->se.last_wakeup = 0; | 2497 | p->se.last_wakeup = 0; |
2472 | p->se.avg_overlap = 0; | 2498 | p->se.avg_overlap = 0; |
2473 | p->se.start_runtime = 0; | 2499 | p->se.start_runtime = 0; |
@@ -2698,6 +2724,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2698 | */ | 2724 | */ |
2699 | prev_state = prev->state; | 2725 | prev_state = prev->state; |
2700 | finish_arch_switch(prev); | 2726 | finish_arch_switch(prev); |
2727 | perf_counter_task_sched_in(current, cpu_of(rq)); | ||
2701 | finish_lock_switch(rq, prev); | 2728 | finish_lock_switch(rq, prev); |
2702 | #ifdef CONFIG_SMP | 2729 | #ifdef CONFIG_SMP |
2703 | if (post_schedule) | 2730 | if (post_schedule) |
@@ -2860,6 +2887,15 @@ unsigned long nr_active(void) | |||
2860 | } | 2887 | } |
2861 | 2888 | ||
2862 | /* | 2889 | /* |
2890 | * Externally visible per-cpu scheduler statistics: | ||
2891 | * cpu_nr_migrations(cpu) - number of migrations into that cpu | ||
2892 | */ | ||
2893 | u64 cpu_nr_migrations(int cpu) | ||
2894 | { | ||
2895 | return cpu_rq(cpu)->nr_migrations_in; | ||
2896 | } | ||
2897 | |||
2898 | /* | ||
2863 | * Update rq->cpu_load[] statistics. This function is usually called every | 2899 | * Update rq->cpu_load[] statistics. This function is usually called every |
2864 | * scheduler tick (TICK_NSEC). | 2900 | * scheduler tick (TICK_NSEC). |
2865 | */ | 2901 | */ |
@@ -4514,6 +4550,29 @@ EXPORT_PER_CPU_SYMBOL(kstat); | |||
4514 | * Return any ns on the sched_clock that have not yet been banked in | 4550 | * Return any ns on the sched_clock that have not yet been banked in |
4515 | * @p in case that task is currently running. | 4551 | * @p in case that task is currently running. |
4516 | */ | 4552 | */ |
4553 | unsigned long long __task_delta_exec(struct task_struct *p, int update) | ||
4554 | { | ||
4555 | s64 delta_exec; | ||
4556 | struct rq *rq; | ||
4557 | |||
4558 | rq = task_rq(p); | ||
4559 | WARN_ON_ONCE(!runqueue_is_locked()); | ||
4560 | WARN_ON_ONCE(!task_current(rq, p)); | ||
4561 | |||
4562 | if (update) | ||
4563 | update_rq_clock(rq); | ||
4564 | |||
4565 | delta_exec = rq->clock - p->se.exec_start; | ||
4566 | |||
4567 | WARN_ON_ONCE(delta_exec < 0); | ||
4568 | |||
4569 | return delta_exec; | ||
4570 | } | ||
4571 | |||
4572 | /* | ||
4573 | * Return any ns on the sched_clock that have not yet been banked in | ||
4574 | * @p in case that task is currently running. | ||
4575 | */ | ||
4517 | unsigned long long task_delta_exec(struct task_struct *p) | 4576 | unsigned long long task_delta_exec(struct task_struct *p) |
4518 | { | 4577 | { |
4519 | unsigned long flags; | 4578 | unsigned long flags; |
@@ -4773,6 +4832,7 @@ void scheduler_tick(void) | |||
4773 | update_rq_clock(rq); | 4832 | update_rq_clock(rq); |
4774 | update_cpu_load(rq); | 4833 | update_cpu_load(rq); |
4775 | curr->sched_class->task_tick(rq, curr, 0); | 4834 | curr->sched_class->task_tick(rq, curr, 0); |
4835 | perf_counter_task_tick(curr, cpu); | ||
4776 | spin_unlock(&rq->lock); | 4836 | spin_unlock(&rq->lock); |
4777 | 4837 | ||
4778 | #ifdef CONFIG_SMP | 4838 | #ifdef CONFIG_SMP |
@@ -4988,6 +5048,7 @@ need_resched_nonpreemptible: | |||
4988 | 5048 | ||
4989 | if (likely(prev != next)) { | 5049 | if (likely(prev != next)) { |
4990 | sched_info_switch(prev, next); | 5050 | sched_info_switch(prev, next); |
5051 | perf_counter_task_sched_out(prev, cpu); | ||
4991 | 5052 | ||
4992 | rq->nr_switches++; | 5053 | rq->nr_switches++; |
4993 | rq->curr = next; | 5054 | rq->curr = next; |
diff --git a/kernel/sys.c b/kernel/sys.c index 51dbb55604e8..14c4c5613118 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -14,6 +14,7 @@ | |||
14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
17 | #include <linux/perf_counter.h> | ||
17 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
18 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
19 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
@@ -1799,6 +1800,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1799 | case PR_SET_TSC: | 1800 | case PR_SET_TSC: |
1800 | error = SET_TSC_CTL(arg2); | 1801 | error = SET_TSC_CTL(arg2); |
1801 | break; | 1802 | break; |
1803 | case PR_TASK_PERF_COUNTERS_DISABLE: | ||
1804 | error = perf_counter_task_disable(); | ||
1805 | break; | ||
1806 | case PR_TASK_PERF_COUNTERS_ENABLE: | ||
1807 | error = perf_counter_task_enable(); | ||
1808 | break; | ||
1802 | case PR_GET_TIMERSLACK: | 1809 | case PR_GET_TIMERSLACK: |
1803 | error = current->timer_slack_ns; | 1810 | error = current->timer_slack_ns; |
1804 | break; | 1811 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 27dad2967387..68320f6b07b5 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
@@ -175,3 +175,6 @@ cond_syscall(compat_sys_timerfd_settime); | |||
175 | cond_syscall(compat_sys_timerfd_gettime); | 175 | cond_syscall(compat_sys_timerfd_gettime); |
176 | cond_syscall(sys_eventfd); | 176 | cond_syscall(sys_eventfd); |
177 | cond_syscall(sys_eventfd2); | 177 | cond_syscall(sys_eventfd2); |
178 | |||
179 | /* performance counters: */ | ||
180 | cond_syscall(sys_perf_counter_open); | ||
diff --git a/kernel/timer.c b/kernel/timer.c index b4555568b4e4..672ca25fbc43 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -37,6 +37,7 @@ | |||
37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
40 | #include <linux/perf_counter.h> | ||
40 | 41 | ||
41 | #include <asm/uaccess.h> | 42 | #include <asm/uaccess.h> |
42 | #include <asm/unistd.h> | 43 | #include <asm/unistd.h> |
@@ -1167,6 +1168,8 @@ static void run_timer_softirq(struct softirq_action *h) | |||
1167 | { | 1168 | { |
1168 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1169 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1169 | 1170 | ||
1171 | perf_counter_do_pending(); | ||
1172 | |||
1170 | hrtimer_run_pending(); | 1173 | hrtimer_run_pending(); |
1171 | 1174 | ||
1172 | if (time_after_eq(jiffies, base->timer_jiffies)) | 1175 | if (time_after_eq(jiffies, base->timer_jiffies)) |