diff options
Diffstat (limited to 'kernel/workqueue.c')
-rw-r--r-- | kernel/workqueue.c | 3478 |
1 files changed, 2981 insertions, 497 deletions
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 327d2deb4451..90db1bd1a978 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -1,19 +1,26 @@ | |||
1 | /* | 1 | /* |
2 | * linux/kernel/workqueue.c | 2 | * kernel/workqueue.c - generic async execution with shared worker pool |
3 | * | 3 | * |
4 | * Generic mechanism for defining kernel helper threads for running | 4 | * Copyright (C) 2002 Ingo Molnar |
5 | * arbitrary tasks in process context. | ||
6 | * | 5 | * |
7 | * Started by Ingo Molnar, Copyright (C) 2002 | 6 | * Derived from the taskqueue/keventd code by: |
7 | * David Woodhouse <dwmw2@infradead.org> | ||
8 | * Andrew Morton | ||
9 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> | ||
10 | * Theodore Ts'o <tytso@mit.edu> | ||
8 | * | 11 | * |
9 | * Derived from the taskqueue/keventd code by: | 12 | * Made to use alloc_percpu by Christoph Lameter. |
10 | * | 13 | * |
11 | * David Woodhouse <dwmw2@infradead.org> | 14 | * Copyright (C) 2010 SUSE Linux Products GmbH |
12 | * Andrew Morton | 15 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> |
13 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> | ||
14 | * Theodore Ts'o <tytso@mit.edu> | ||
15 | * | 16 | * |
16 | * Made to use alloc_percpu by Christoph Lameter. | 17 | * This is the generic async execution mechanism. Work items as are |
18 | * executed in process context. The worker pool is shared and | ||
19 | * automatically managed. There is one worker pool for each CPU and | ||
20 | * one extra for works which are better served by workers which are | ||
21 | * not bound to any specific CPU. | ||
22 | * | ||
23 | * Please read Documentation/workqueue.txt for details. | ||
17 | */ | 24 | */ |
18 | 25 | ||
19 | #include <linux/module.h> | 26 | #include <linux/module.h> |
@@ -33,41 +40,276 @@ | |||
33 | #include <linux/kallsyms.h> | 40 | #include <linux/kallsyms.h> |
34 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
35 | #include <linux/lockdep.h> | 42 | #include <linux/lockdep.h> |
36 | #define CREATE_TRACE_POINTS | 43 | #include <linux/idr.h> |
37 | #include <trace/events/workqueue.h> | 44 | |
45 | #include "workqueue_sched.h" | ||
46 | |||
47 | enum { | ||
48 | /* global_cwq flags */ | ||
49 | GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ | ||
50 | GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ | ||
51 | GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ | ||
52 | GCWQ_FREEZING = 1 << 3, /* freeze in progress */ | ||
53 | GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ | ||
54 | |||
55 | /* worker flags */ | ||
56 | WORKER_STARTED = 1 << 0, /* started */ | ||
57 | WORKER_DIE = 1 << 1, /* die die die */ | ||
58 | WORKER_IDLE = 1 << 2, /* is idle */ | ||
59 | WORKER_PREP = 1 << 3, /* preparing to run works */ | ||
60 | WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ | ||
61 | WORKER_REBIND = 1 << 5, /* mom is home, come back */ | ||
62 | WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ | ||
63 | WORKER_UNBOUND = 1 << 7, /* worker is unbound */ | ||
64 | |||
65 | WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | | ||
66 | WORKER_CPU_INTENSIVE | WORKER_UNBOUND, | ||
67 | |||
68 | /* gcwq->trustee_state */ | ||
69 | TRUSTEE_START = 0, /* start */ | ||
70 | TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ | ||
71 | TRUSTEE_BUTCHER = 2, /* butcher workers */ | ||
72 | TRUSTEE_RELEASE = 3, /* release workers */ | ||
73 | TRUSTEE_DONE = 4, /* trustee is done */ | ||
74 | |||
75 | BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ | ||
76 | BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, | ||
77 | BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, | ||
78 | |||
79 | MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ | ||
80 | IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ | ||
81 | |||
82 | MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ | ||
83 | MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ | ||
84 | CREATE_COOLDOWN = HZ, /* time to breath after fail */ | ||
85 | TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ | ||
86 | |||
87 | /* | ||
88 | * Rescue workers are used only on emergencies and shared by | ||
89 | * all cpus. Give -20. | ||
90 | */ | ||
91 | RESCUER_NICE_LEVEL = -20, | ||
92 | }; | ||
38 | 93 | ||
39 | /* | 94 | /* |
40 | * The per-CPU workqueue (if single thread, we always use the first | 95 | * Structure fields follow one of the following exclusion rules. |
41 | * possible cpu). | 96 | * |
97 | * I: Modifiable by initialization/destruction paths and read-only for | ||
98 | * everyone else. | ||
99 | * | ||
100 | * P: Preemption protected. Disabling preemption is enough and should | ||
101 | * only be modified and accessed from the local cpu. | ||
102 | * | ||
103 | * L: gcwq->lock protected. Access with gcwq->lock held. | ||
104 | * | ||
105 | * X: During normal operation, modification requires gcwq->lock and | ||
106 | * should be done only from local cpu. Either disabling preemption | ||
107 | * on local cpu or grabbing gcwq->lock is enough for read access. | ||
108 | * If GCWQ_DISASSOCIATED is set, it's identical to L. | ||
109 | * | ||
110 | * F: wq->flush_mutex protected. | ||
111 | * | ||
112 | * W: workqueue_lock protected. | ||
42 | */ | 113 | */ |
43 | struct cpu_workqueue_struct { | ||
44 | 114 | ||
45 | spinlock_t lock; | 115 | struct global_cwq; |
46 | 116 | ||
47 | struct list_head worklist; | 117 | /* |
48 | wait_queue_head_t more_work; | 118 | * The poor guys doing the actual heavy lifting. All on-duty workers |
49 | struct work_struct *current_work; | 119 | * are either serving the manager role, on idle list or on busy hash. |
120 | */ | ||
121 | struct worker { | ||
122 | /* on idle list while idle, on busy hash table while busy */ | ||
123 | union { | ||
124 | struct list_head entry; /* L: while idle */ | ||
125 | struct hlist_node hentry; /* L: while busy */ | ||
126 | }; | ||
50 | 127 | ||
51 | struct workqueue_struct *wq; | 128 | struct work_struct *current_work; /* L: work being processed */ |
52 | struct task_struct *thread; | 129 | struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ |
53 | } ____cacheline_aligned; | 130 | struct list_head scheduled; /* L: scheduled works */ |
131 | struct task_struct *task; /* I: worker task */ | ||
132 | struct global_cwq *gcwq; /* I: the associated gcwq */ | ||
133 | /* 64 bytes boundary on 64bit, 32 on 32bit */ | ||
134 | unsigned long last_active; /* L: last active timestamp */ | ||
135 | unsigned int flags; /* X: flags */ | ||
136 | int id; /* I: worker id */ | ||
137 | struct work_struct rebind_work; /* L: rebind worker to cpu */ | ||
138 | }; | ||
139 | |||
140 | /* | ||
141 | * Global per-cpu workqueue. There's one and only one for each cpu | ||
142 | * and all works are queued and processed here regardless of their | ||
143 | * target workqueues. | ||
144 | */ | ||
145 | struct global_cwq { | ||
146 | spinlock_t lock; /* the gcwq lock */ | ||
147 | struct list_head worklist; /* L: list of pending works */ | ||
148 | unsigned int cpu; /* I: the associated cpu */ | ||
149 | unsigned int flags; /* L: GCWQ_* flags */ | ||
150 | |||
151 | int nr_workers; /* L: total number of workers */ | ||
152 | int nr_idle; /* L: currently idle ones */ | ||
153 | |||
154 | /* workers are chained either in the idle_list or busy_hash */ | ||
155 | struct list_head idle_list; /* X: list of idle workers */ | ||
156 | struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; | ||
157 | /* L: hash of busy workers */ | ||
158 | |||
159 | struct timer_list idle_timer; /* L: worker idle timeout */ | ||
160 | struct timer_list mayday_timer; /* L: SOS timer for dworkers */ | ||
161 | |||
162 | struct ida worker_ida; /* L: for worker IDs */ | ||
163 | |||
164 | struct task_struct *trustee; /* L: for gcwq shutdown */ | ||
165 | unsigned int trustee_state; /* L: trustee state */ | ||
166 | wait_queue_head_t trustee_wait; /* trustee wait */ | ||
167 | struct worker *first_idle; /* L: first idle worker */ | ||
168 | } ____cacheline_aligned_in_smp; | ||
169 | |||
170 | /* | ||
171 | * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of | ||
172 | * work_struct->data are used for flags and thus cwqs need to be | ||
173 | * aligned at two's power of the number of flag bits. | ||
174 | */ | ||
175 | struct cpu_workqueue_struct { | ||
176 | struct global_cwq *gcwq; /* I: the associated gcwq */ | ||
177 | struct workqueue_struct *wq; /* I: the owning workqueue */ | ||
178 | int work_color; /* L: current color */ | ||
179 | int flush_color; /* L: flushing color */ | ||
180 | int nr_in_flight[WORK_NR_COLORS]; | ||
181 | /* L: nr of in_flight works */ | ||
182 | int nr_active; /* L: nr of active works */ | ||
183 | int max_active; /* L: max active works */ | ||
184 | struct list_head delayed_works; /* L: delayed works */ | ||
185 | }; | ||
186 | |||
187 | /* | ||
188 | * Structure used to wait for workqueue flush. | ||
189 | */ | ||
190 | struct wq_flusher { | ||
191 | struct list_head list; /* F: list of flushers */ | ||
192 | int flush_color; /* F: flush color waiting for */ | ||
193 | struct completion done; /* flush completion */ | ||
194 | }; | ||
195 | |||
196 | /* | ||
197 | * All cpumasks are assumed to be always set on UP and thus can't be | ||
198 | * used to determine whether there's something to be done. | ||
199 | */ | ||
200 | #ifdef CONFIG_SMP | ||
201 | typedef cpumask_var_t mayday_mask_t; | ||
202 | #define mayday_test_and_set_cpu(cpu, mask) \ | ||
203 | cpumask_test_and_set_cpu((cpu), (mask)) | ||
204 | #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) | ||
205 | #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) | ||
206 | #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) | ||
207 | #define free_mayday_mask(mask) free_cpumask_var((mask)) | ||
208 | #else | ||
209 | typedef unsigned long mayday_mask_t; | ||
210 | #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) | ||
211 | #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) | ||
212 | #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) | ||
213 | #define alloc_mayday_mask(maskp, gfp) true | ||
214 | #define free_mayday_mask(mask) do { } while (0) | ||
215 | #endif | ||
54 | 216 | ||
55 | /* | 217 | /* |
56 | * The externally visible workqueue abstraction is an array of | 218 | * The externally visible workqueue abstraction is an array of |
57 | * per-CPU workqueues: | 219 | * per-CPU workqueues: |
58 | */ | 220 | */ |
59 | struct workqueue_struct { | 221 | struct workqueue_struct { |
60 | struct cpu_workqueue_struct *cpu_wq; | 222 | unsigned int flags; /* I: WQ_* flags */ |
61 | struct list_head list; | 223 | union { |
62 | const char *name; | 224 | struct cpu_workqueue_struct __percpu *pcpu; |
63 | int singlethread; | 225 | struct cpu_workqueue_struct *single; |
64 | int freezeable; /* Freeze threads during suspend */ | 226 | unsigned long v; |
65 | int rt; | 227 | } cpu_wq; /* I: cwq's */ |
228 | struct list_head list; /* W: list of all workqueues */ | ||
229 | |||
230 | struct mutex flush_mutex; /* protects wq flushing */ | ||
231 | int work_color; /* F: current work color */ | ||
232 | int flush_color; /* F: current flush color */ | ||
233 | atomic_t nr_cwqs_to_flush; /* flush in progress */ | ||
234 | struct wq_flusher *first_flusher; /* F: first flusher */ | ||
235 | struct list_head flusher_queue; /* F: flush waiters */ | ||
236 | struct list_head flusher_overflow; /* F: flush overflow list */ | ||
237 | |||
238 | mayday_mask_t mayday_mask; /* cpus requesting rescue */ | ||
239 | struct worker *rescuer; /* I: rescue worker */ | ||
240 | |||
241 | int saved_max_active; /* W: saved cwq max_active */ | ||
242 | const char *name; /* I: workqueue name */ | ||
66 | #ifdef CONFIG_LOCKDEP | 243 | #ifdef CONFIG_LOCKDEP |
67 | struct lockdep_map lockdep_map; | 244 | struct lockdep_map lockdep_map; |
68 | #endif | 245 | #endif |
69 | }; | 246 | }; |
70 | 247 | ||
248 | struct workqueue_struct *system_wq __read_mostly; | ||
249 | struct workqueue_struct *system_long_wq __read_mostly; | ||
250 | struct workqueue_struct *system_nrt_wq __read_mostly; | ||
251 | struct workqueue_struct *system_unbound_wq __read_mostly; | ||
252 | EXPORT_SYMBOL_GPL(system_wq); | ||
253 | EXPORT_SYMBOL_GPL(system_long_wq); | ||
254 | EXPORT_SYMBOL_GPL(system_nrt_wq); | ||
255 | EXPORT_SYMBOL_GPL(system_unbound_wq); | ||
256 | |||
257 | #define CREATE_TRACE_POINTS | ||
258 | #include <trace/events/workqueue.h> | ||
259 | |||
260 | #define for_each_busy_worker(worker, i, pos, gcwq) \ | ||
261 | for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ | ||
262 | hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) | ||
263 | |||
264 | static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, | ||
265 | unsigned int sw) | ||
266 | { | ||
267 | if (cpu < nr_cpu_ids) { | ||
268 | if (sw & 1) { | ||
269 | cpu = cpumask_next(cpu, mask); | ||
270 | if (cpu < nr_cpu_ids) | ||
271 | return cpu; | ||
272 | } | ||
273 | if (sw & 2) | ||
274 | return WORK_CPU_UNBOUND; | ||
275 | } | ||
276 | return WORK_CPU_NONE; | ||
277 | } | ||
278 | |||
279 | static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, | ||
280 | struct workqueue_struct *wq) | ||
281 | { | ||
282 | return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * CPU iterators | ||
287 | * | ||
288 | * An extra gcwq is defined for an invalid cpu number | ||
289 | * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any | ||
290 | * specific CPU. The following iterators are similar to | ||
291 | * for_each_*_cpu() iterators but also considers the unbound gcwq. | ||
292 | * | ||
293 | * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND | ||
294 | * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND | ||
295 | * for_each_cwq_cpu() : possible CPUs for bound workqueues, | ||
296 | * WORK_CPU_UNBOUND for unbound workqueues | ||
297 | */ | ||
298 | #define for_each_gcwq_cpu(cpu) \ | ||
299 | for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ | ||
300 | (cpu) < WORK_CPU_NONE; \ | ||
301 | (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) | ||
302 | |||
303 | #define for_each_online_gcwq_cpu(cpu) \ | ||
304 | for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ | ||
305 | (cpu) < WORK_CPU_NONE; \ | ||
306 | (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) | ||
307 | |||
308 | #define for_each_cwq_cpu(cpu, wq) \ | ||
309 | for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ | ||
310 | (cpu) < WORK_CPU_NONE; \ | ||
311 | (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) | ||
312 | |||
71 | #ifdef CONFIG_DEBUG_OBJECTS_WORK | 313 | #ifdef CONFIG_DEBUG_OBJECTS_WORK |
72 | 314 | ||
73 | static struct debug_obj_descr work_debug_descr; | 315 | static struct debug_obj_descr work_debug_descr; |
@@ -107,7 +349,7 @@ static int work_fixup_activate(void *addr, enum debug_obj_state state) | |||
107 | * statically initialized. We just make sure that it | 349 | * statically initialized. We just make sure that it |
108 | * is tracked in the object tracker. | 350 | * is tracked in the object tracker. |
109 | */ | 351 | */ |
110 | if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) { | 352 | if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { |
111 | debug_object_init(work, &work_debug_descr); | 353 | debug_object_init(work, &work_debug_descr); |
112 | debug_object_activate(work, &work_debug_descr); | 354 | debug_object_activate(work, &work_debug_descr); |
113 | return 0; | 355 | return 0; |
@@ -181,94 +423,586 @@ static inline void debug_work_deactivate(struct work_struct *work) { } | |||
181 | /* Serializes the accesses to the list of workqueues. */ | 423 | /* Serializes the accesses to the list of workqueues. */ |
182 | static DEFINE_SPINLOCK(workqueue_lock); | 424 | static DEFINE_SPINLOCK(workqueue_lock); |
183 | static LIST_HEAD(workqueues); | 425 | static LIST_HEAD(workqueues); |
426 | static bool workqueue_freezing; /* W: have wqs started freezing? */ | ||
184 | 427 | ||
185 | static int singlethread_cpu __read_mostly; | ||
186 | static const struct cpumask *cpu_singlethread_map __read_mostly; | ||
187 | /* | 428 | /* |
188 | * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD | 429 | * The almighty global cpu workqueues. nr_running is the only field |
189 | * flushes cwq->worklist. This means that flush_workqueue/wait_on_work | 430 | * which is expected to be used frequently by other cpus via |
190 | * which comes in between can't use for_each_online_cpu(). We could | 431 | * try_to_wake_up(). Put it in a separate cacheline. |
191 | * use cpu_possible_map, the cpumask below is more a documentation | ||
192 | * than optimization. | ||
193 | */ | 432 | */ |
194 | static cpumask_var_t cpu_populated_map __read_mostly; | 433 | static DEFINE_PER_CPU(struct global_cwq, global_cwq); |
434 | static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); | ||
195 | 435 | ||
196 | /* If it's single threaded, it isn't in the list of workqueues. */ | 436 | /* |
197 | static inline int is_wq_single_threaded(struct workqueue_struct *wq) | 437 | * Global cpu workqueue and nr_running counter for unbound gcwq. The |
438 | * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its | ||
439 | * workers have WORKER_UNBOUND set. | ||
440 | */ | ||
441 | static struct global_cwq unbound_global_cwq; | ||
442 | static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ | ||
443 | |||
444 | static int worker_thread(void *__worker); | ||
445 | |||
446 | static struct global_cwq *get_gcwq(unsigned int cpu) | ||
447 | { | ||
448 | if (cpu != WORK_CPU_UNBOUND) | ||
449 | return &per_cpu(global_cwq, cpu); | ||
450 | else | ||
451 | return &unbound_global_cwq; | ||
452 | } | ||
453 | |||
454 | static atomic_t *get_gcwq_nr_running(unsigned int cpu) | ||
455 | { | ||
456 | if (cpu != WORK_CPU_UNBOUND) | ||
457 | return &per_cpu(gcwq_nr_running, cpu); | ||
458 | else | ||
459 | return &unbound_gcwq_nr_running; | ||
460 | } | ||
461 | |||
462 | static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, | ||
463 | struct workqueue_struct *wq) | ||
464 | { | ||
465 | if (!(wq->flags & WQ_UNBOUND)) { | ||
466 | if (likely(cpu < nr_cpu_ids)) { | ||
467 | #ifdef CONFIG_SMP | ||
468 | return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); | ||
469 | #else | ||
470 | return wq->cpu_wq.single; | ||
471 | #endif | ||
472 | } | ||
473 | } else if (likely(cpu == WORK_CPU_UNBOUND)) | ||
474 | return wq->cpu_wq.single; | ||
475 | return NULL; | ||
476 | } | ||
477 | |||
478 | static unsigned int work_color_to_flags(int color) | ||
198 | { | 479 | { |
199 | return wq->singlethread; | 480 | return color << WORK_STRUCT_COLOR_SHIFT; |
200 | } | 481 | } |
201 | 482 | ||
202 | static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq) | 483 | static int get_work_color(struct work_struct *work) |
203 | { | 484 | { |
204 | return is_wq_single_threaded(wq) | 485 | return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & |
205 | ? cpu_singlethread_map : cpu_populated_map; | 486 | ((1 << WORK_STRUCT_COLOR_BITS) - 1); |
206 | } | 487 | } |
207 | 488 | ||
208 | static | 489 | static int work_next_color(int color) |
209 | struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) | ||
210 | { | 490 | { |
211 | if (unlikely(is_wq_single_threaded(wq))) | 491 | return (color + 1) % WORK_NR_COLORS; |
212 | cpu = singlethread_cpu; | ||
213 | return per_cpu_ptr(wq->cpu_wq, cpu); | ||
214 | } | 492 | } |
215 | 493 | ||
216 | /* | 494 | /* |
217 | * Set the workqueue on which a work item is to be run | 495 | * A work's data points to the cwq with WORK_STRUCT_CWQ set while the |
218 | * - Must *only* be called if the pending flag is set | 496 | * work is on queue. Once execution starts, WORK_STRUCT_CWQ is |
497 | * cleared and the work data contains the cpu number it was last on. | ||
498 | * | ||
499 | * set_work_{cwq|cpu}() and clear_work_data() can be used to set the | ||
500 | * cwq, cpu or clear work->data. These functions should only be | ||
501 | * called while the work is owned - ie. while the PENDING bit is set. | ||
502 | * | ||
503 | * get_work_[g]cwq() can be used to obtain the gcwq or cwq | ||
504 | * corresponding to a work. gcwq is available once the work has been | ||
505 | * queued anywhere after initialization. cwq is available only from | ||
506 | * queueing until execution starts. | ||
219 | */ | 507 | */ |
220 | static inline void set_wq_data(struct work_struct *work, | 508 | static inline void set_work_data(struct work_struct *work, unsigned long data, |
221 | struct cpu_workqueue_struct *cwq) | 509 | unsigned long flags) |
222 | { | 510 | { |
223 | unsigned long new; | ||
224 | |||
225 | BUG_ON(!work_pending(work)); | 511 | BUG_ON(!work_pending(work)); |
512 | atomic_long_set(&work->data, data | flags | work_static(work)); | ||
513 | } | ||
514 | |||
515 | static void set_work_cwq(struct work_struct *work, | ||
516 | struct cpu_workqueue_struct *cwq, | ||
517 | unsigned long extra_flags) | ||
518 | { | ||
519 | set_work_data(work, (unsigned long)cwq, | ||
520 | WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); | ||
521 | } | ||
522 | |||
523 | static void set_work_cpu(struct work_struct *work, unsigned int cpu) | ||
524 | { | ||
525 | set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); | ||
526 | } | ||
527 | |||
528 | static void clear_work_data(struct work_struct *work) | ||
529 | { | ||
530 | set_work_data(work, WORK_STRUCT_NO_CPU, 0); | ||
531 | } | ||
532 | |||
533 | static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) | ||
534 | { | ||
535 | unsigned long data = atomic_long_read(&work->data); | ||
536 | |||
537 | if (data & WORK_STRUCT_CWQ) | ||
538 | return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); | ||
539 | else | ||
540 | return NULL; | ||
541 | } | ||
542 | |||
543 | static struct global_cwq *get_work_gcwq(struct work_struct *work) | ||
544 | { | ||
545 | unsigned long data = atomic_long_read(&work->data); | ||
546 | unsigned int cpu; | ||
547 | |||
548 | if (data & WORK_STRUCT_CWQ) | ||
549 | return ((struct cpu_workqueue_struct *) | ||
550 | (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; | ||
551 | |||
552 | cpu = data >> WORK_STRUCT_FLAG_BITS; | ||
553 | if (cpu == WORK_CPU_NONE) | ||
554 | return NULL; | ||
555 | |||
556 | BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); | ||
557 | return get_gcwq(cpu); | ||
558 | } | ||
559 | |||
560 | /* | ||
561 | * Policy functions. These define the policies on how the global | ||
562 | * worker pool is managed. Unless noted otherwise, these functions | ||
563 | * assume that they're being called with gcwq->lock held. | ||
564 | */ | ||
565 | |||
566 | static bool __need_more_worker(struct global_cwq *gcwq) | ||
567 | { | ||
568 | return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || | ||
569 | gcwq->flags & GCWQ_HIGHPRI_PENDING; | ||
570 | } | ||
571 | |||
572 | /* | ||
573 | * Need to wake up a worker? Called from anything but currently | ||
574 | * running workers. | ||
575 | */ | ||
576 | static bool need_more_worker(struct global_cwq *gcwq) | ||
577 | { | ||
578 | return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); | ||
579 | } | ||
580 | |||
581 | /* Can I start working? Called from busy but !running workers. */ | ||
582 | static bool may_start_working(struct global_cwq *gcwq) | ||
583 | { | ||
584 | return gcwq->nr_idle; | ||
585 | } | ||
586 | |||
587 | /* Do I need to keep working? Called from currently running workers. */ | ||
588 | static bool keep_working(struct global_cwq *gcwq) | ||
589 | { | ||
590 | atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); | ||
591 | |||
592 | return !list_empty(&gcwq->worklist) && | ||
593 | (atomic_read(nr_running) <= 1 || | ||
594 | gcwq->flags & GCWQ_HIGHPRI_PENDING); | ||
595 | } | ||
596 | |||
597 | /* Do we need a new worker? Called from manager. */ | ||
598 | static bool need_to_create_worker(struct global_cwq *gcwq) | ||
599 | { | ||
600 | return need_more_worker(gcwq) && !may_start_working(gcwq); | ||
601 | } | ||
602 | |||
603 | /* Do I need to be the manager? */ | ||
604 | static bool need_to_manage_workers(struct global_cwq *gcwq) | ||
605 | { | ||
606 | return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; | ||
607 | } | ||
226 | 608 | ||
227 | new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); | 609 | /* Do we have too many workers and should some go away? */ |
228 | new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); | 610 | static bool too_many_workers(struct global_cwq *gcwq) |
229 | atomic_long_set(&work->data, new); | 611 | { |
612 | bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; | ||
613 | int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ | ||
614 | int nr_busy = gcwq->nr_workers - nr_idle; | ||
615 | |||
616 | return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; | ||
230 | } | 617 | } |
231 | 618 | ||
232 | /* | 619 | /* |
233 | * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued. | 620 | * Wake up functions. |
621 | */ | ||
622 | |||
623 | /* Return the first worker. Safe with preemption disabled */ | ||
624 | static struct worker *first_worker(struct global_cwq *gcwq) | ||
625 | { | ||
626 | if (unlikely(list_empty(&gcwq->idle_list))) | ||
627 | return NULL; | ||
628 | |||
629 | return list_first_entry(&gcwq->idle_list, struct worker, entry); | ||
630 | } | ||
631 | |||
632 | /** | ||
633 | * wake_up_worker - wake up an idle worker | ||
634 | * @gcwq: gcwq to wake worker for | ||
635 | * | ||
636 | * Wake up the first idle worker of @gcwq. | ||
637 | * | ||
638 | * CONTEXT: | ||
639 | * spin_lock_irq(gcwq->lock). | ||
640 | */ | ||
641 | static void wake_up_worker(struct global_cwq *gcwq) | ||
642 | { | ||
643 | struct worker *worker = first_worker(gcwq); | ||
644 | |||
645 | if (likely(worker)) | ||
646 | wake_up_process(worker->task); | ||
647 | } | ||
648 | |||
649 | /** | ||
650 | * wq_worker_waking_up - a worker is waking up | ||
651 | * @task: task waking up | ||
652 | * @cpu: CPU @task is waking up to | ||
653 | * | ||
654 | * This function is called during try_to_wake_up() when a worker is | ||
655 | * being awoken. | ||
656 | * | ||
657 | * CONTEXT: | ||
658 | * spin_lock_irq(rq->lock) | ||
659 | */ | ||
660 | void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) | ||
661 | { | ||
662 | struct worker *worker = kthread_data(task); | ||
663 | |||
664 | if (likely(!(worker->flags & WORKER_NOT_RUNNING))) | ||
665 | atomic_inc(get_gcwq_nr_running(cpu)); | ||
666 | } | ||
667 | |||
668 | /** | ||
669 | * wq_worker_sleeping - a worker is going to sleep | ||
670 | * @task: task going to sleep | ||
671 | * @cpu: CPU in question, must be the current CPU number | ||
672 | * | ||
673 | * This function is called during schedule() when a busy worker is | ||
674 | * going to sleep. Worker on the same cpu can be woken up by | ||
675 | * returning pointer to its task. | ||
676 | * | ||
677 | * CONTEXT: | ||
678 | * spin_lock_irq(rq->lock) | ||
679 | * | ||
680 | * RETURNS: | ||
681 | * Worker task on @cpu to wake up, %NULL if none. | ||
682 | */ | ||
683 | struct task_struct *wq_worker_sleeping(struct task_struct *task, | ||
684 | unsigned int cpu) | ||
685 | { | ||
686 | struct worker *worker = kthread_data(task), *to_wakeup = NULL; | ||
687 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
688 | atomic_t *nr_running = get_gcwq_nr_running(cpu); | ||
689 | |||
690 | if (unlikely(worker->flags & WORKER_NOT_RUNNING)) | ||
691 | return NULL; | ||
692 | |||
693 | /* this can only happen on the local cpu */ | ||
694 | BUG_ON(cpu != raw_smp_processor_id()); | ||
695 | |||
696 | /* | ||
697 | * The counterpart of the following dec_and_test, implied mb, | ||
698 | * worklist not empty test sequence is in insert_work(). | ||
699 | * Please read comment there. | ||
700 | * | ||
701 | * NOT_RUNNING is clear. This means that trustee is not in | ||
702 | * charge and we're running on the local cpu w/ rq lock held | ||
703 | * and preemption disabled, which in turn means that none else | ||
704 | * could be manipulating idle_list, so dereferencing idle_list | ||
705 | * without gcwq lock is safe. | ||
706 | */ | ||
707 | if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) | ||
708 | to_wakeup = first_worker(gcwq); | ||
709 | return to_wakeup ? to_wakeup->task : NULL; | ||
710 | } | ||
711 | |||
712 | /** | ||
713 | * worker_set_flags - set worker flags and adjust nr_running accordingly | ||
714 | * @worker: self | ||
715 | * @flags: flags to set | ||
716 | * @wakeup: wakeup an idle worker if necessary | ||
717 | * | ||
718 | * Set @flags in @worker->flags and adjust nr_running accordingly. If | ||
719 | * nr_running becomes zero and @wakeup is %true, an idle worker is | ||
720 | * woken up. | ||
721 | * | ||
722 | * CONTEXT: | ||
723 | * spin_lock_irq(gcwq->lock) | ||
234 | */ | 724 | */ |
235 | static inline void clear_wq_data(struct work_struct *work) | 725 | static inline void worker_set_flags(struct worker *worker, unsigned int flags, |
726 | bool wakeup) | ||
236 | { | 727 | { |
237 | unsigned long flags = *work_data_bits(work) & | 728 | struct global_cwq *gcwq = worker->gcwq; |
238 | (1UL << WORK_STRUCT_STATIC); | 729 | |
239 | atomic_long_set(&work->data, flags); | 730 | WARN_ON_ONCE(worker->task != current); |
731 | |||
732 | /* | ||
733 | * If transitioning into NOT_RUNNING, adjust nr_running and | ||
734 | * wake up an idle worker as necessary if requested by | ||
735 | * @wakeup. | ||
736 | */ | ||
737 | if ((flags & WORKER_NOT_RUNNING) && | ||
738 | !(worker->flags & WORKER_NOT_RUNNING)) { | ||
739 | atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); | ||
740 | |||
741 | if (wakeup) { | ||
742 | if (atomic_dec_and_test(nr_running) && | ||
743 | !list_empty(&gcwq->worklist)) | ||
744 | wake_up_worker(gcwq); | ||
745 | } else | ||
746 | atomic_dec(nr_running); | ||
747 | } | ||
748 | |||
749 | worker->flags |= flags; | ||
240 | } | 750 | } |
241 | 751 | ||
242 | static inline | 752 | /** |
243 | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) | 753 | * worker_clr_flags - clear worker flags and adjust nr_running accordingly |
754 | * @worker: self | ||
755 | * @flags: flags to clear | ||
756 | * | ||
757 | * Clear @flags in @worker->flags and adjust nr_running accordingly. | ||
758 | * | ||
759 | * CONTEXT: | ||
760 | * spin_lock_irq(gcwq->lock) | ||
761 | */ | ||
762 | static inline void worker_clr_flags(struct worker *worker, unsigned int flags) | ||
244 | { | 763 | { |
245 | return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); | 764 | struct global_cwq *gcwq = worker->gcwq; |
765 | unsigned int oflags = worker->flags; | ||
766 | |||
767 | WARN_ON_ONCE(worker->task != current); | ||
768 | |||
769 | worker->flags &= ~flags; | ||
770 | |||
771 | /* if transitioning out of NOT_RUNNING, increment nr_running */ | ||
772 | if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) | ||
773 | if (!(worker->flags & WORKER_NOT_RUNNING)) | ||
774 | atomic_inc(get_gcwq_nr_running(gcwq->cpu)); | ||
246 | } | 775 | } |
247 | 776 | ||
777 | /** | ||
778 | * busy_worker_head - return the busy hash head for a work | ||
779 | * @gcwq: gcwq of interest | ||
780 | * @work: work to be hashed | ||
781 | * | ||
782 | * Return hash head of @gcwq for @work. | ||
783 | * | ||
784 | * CONTEXT: | ||
785 | * spin_lock_irq(gcwq->lock). | ||
786 | * | ||
787 | * RETURNS: | ||
788 | * Pointer to the hash head. | ||
789 | */ | ||
790 | static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, | ||
791 | struct work_struct *work) | ||
792 | { | ||
793 | const int base_shift = ilog2(sizeof(struct work_struct)); | ||
794 | unsigned long v = (unsigned long)work; | ||
795 | |||
796 | /* simple shift and fold hash, do we need something better? */ | ||
797 | v >>= base_shift; | ||
798 | v += v >> BUSY_WORKER_HASH_ORDER; | ||
799 | v &= BUSY_WORKER_HASH_MASK; | ||
800 | |||
801 | return &gcwq->busy_hash[v]; | ||
802 | } | ||
803 | |||
804 | /** | ||
805 | * __find_worker_executing_work - find worker which is executing a work | ||
806 | * @gcwq: gcwq of interest | ||
807 | * @bwh: hash head as returned by busy_worker_head() | ||
808 | * @work: work to find worker for | ||
809 | * | ||
810 | * Find a worker which is executing @work on @gcwq. @bwh should be | ||
811 | * the hash head obtained by calling busy_worker_head() with the same | ||
812 | * work. | ||
813 | * | ||
814 | * CONTEXT: | ||
815 | * spin_lock_irq(gcwq->lock). | ||
816 | * | ||
817 | * RETURNS: | ||
818 | * Pointer to worker which is executing @work if found, NULL | ||
819 | * otherwise. | ||
820 | */ | ||
821 | static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, | ||
822 | struct hlist_head *bwh, | ||
823 | struct work_struct *work) | ||
824 | { | ||
825 | struct worker *worker; | ||
826 | struct hlist_node *tmp; | ||
827 | |||
828 | hlist_for_each_entry(worker, tmp, bwh, hentry) | ||
829 | if (worker->current_work == work) | ||
830 | return worker; | ||
831 | return NULL; | ||
832 | } | ||
833 | |||
834 | /** | ||
835 | * find_worker_executing_work - find worker which is executing a work | ||
836 | * @gcwq: gcwq of interest | ||
837 | * @work: work to find worker for | ||
838 | * | ||
839 | * Find a worker which is executing @work on @gcwq. This function is | ||
840 | * identical to __find_worker_executing_work() except that this | ||
841 | * function calculates @bwh itself. | ||
842 | * | ||
843 | * CONTEXT: | ||
844 | * spin_lock_irq(gcwq->lock). | ||
845 | * | ||
846 | * RETURNS: | ||
847 | * Pointer to worker which is executing @work if found, NULL | ||
848 | * otherwise. | ||
849 | */ | ||
850 | static struct worker *find_worker_executing_work(struct global_cwq *gcwq, | ||
851 | struct work_struct *work) | ||
852 | { | ||
853 | return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), | ||
854 | work); | ||
855 | } | ||
856 | |||
857 | /** | ||
858 | * gcwq_determine_ins_pos - find insertion position | ||
859 | * @gcwq: gcwq of interest | ||
860 | * @cwq: cwq a work is being queued for | ||
861 | * | ||
862 | * A work for @cwq is about to be queued on @gcwq, determine insertion | ||
863 | * position for the work. If @cwq is for HIGHPRI wq, the work is | ||
864 | * queued at the head of the queue but in FIFO order with respect to | ||
865 | * other HIGHPRI works; otherwise, at the end of the queue. This | ||
866 | * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that | ||
867 | * there are HIGHPRI works pending. | ||
868 | * | ||
869 | * CONTEXT: | ||
870 | * spin_lock_irq(gcwq->lock). | ||
871 | * | ||
872 | * RETURNS: | ||
873 | * Pointer to inserstion position. | ||
874 | */ | ||
875 | static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, | ||
876 | struct cpu_workqueue_struct *cwq) | ||
877 | { | ||
878 | struct work_struct *twork; | ||
879 | |||
880 | if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) | ||
881 | return &gcwq->worklist; | ||
882 | |||
883 | list_for_each_entry(twork, &gcwq->worklist, entry) { | ||
884 | struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); | ||
885 | |||
886 | if (!(tcwq->wq->flags & WQ_HIGHPRI)) | ||
887 | break; | ||
888 | } | ||
889 | |||
890 | gcwq->flags |= GCWQ_HIGHPRI_PENDING; | ||
891 | return &twork->entry; | ||
892 | } | ||
893 | |||
894 | /** | ||
895 | * insert_work - insert a work into gcwq | ||
896 | * @cwq: cwq @work belongs to | ||
897 | * @work: work to insert | ||
898 | * @head: insertion point | ||
899 | * @extra_flags: extra WORK_STRUCT_* flags to set | ||
900 | * | ||
901 | * Insert @work which belongs to @cwq into @gcwq after @head. | ||
902 | * @extra_flags is or'd to work_struct flags. | ||
903 | * | ||
904 | * CONTEXT: | ||
905 | * spin_lock_irq(gcwq->lock). | ||
906 | */ | ||
248 | static void insert_work(struct cpu_workqueue_struct *cwq, | 907 | static void insert_work(struct cpu_workqueue_struct *cwq, |
249 | struct work_struct *work, struct list_head *head) | 908 | struct work_struct *work, struct list_head *head, |
909 | unsigned int extra_flags) | ||
250 | { | 910 | { |
251 | trace_workqueue_insertion(cwq->thread, work); | 911 | struct global_cwq *gcwq = cwq->gcwq; |
912 | |||
913 | /* we own @work, set data and link */ | ||
914 | set_work_cwq(work, cwq, extra_flags); | ||
252 | 915 | ||
253 | set_wq_data(work, cwq); | ||
254 | /* | 916 | /* |
255 | * Ensure that we get the right work->data if we see the | 917 | * Ensure that we get the right work->data if we see the |
256 | * result of list_add() below, see try_to_grab_pending(). | 918 | * result of list_add() below, see try_to_grab_pending(). |
257 | */ | 919 | */ |
258 | smp_wmb(); | 920 | smp_wmb(); |
921 | |||
259 | list_add_tail(&work->entry, head); | 922 | list_add_tail(&work->entry, head); |
260 | wake_up(&cwq->more_work); | 923 | |
924 | /* | ||
925 | * Ensure either worker_sched_deactivated() sees the above | ||
926 | * list_add_tail() or we see zero nr_running to avoid workers | ||
927 | * lying around lazily while there are works to be processed. | ||
928 | */ | ||
929 | smp_mb(); | ||
930 | |||
931 | if (__need_more_worker(gcwq)) | ||
932 | wake_up_worker(gcwq); | ||
261 | } | 933 | } |
262 | 934 | ||
263 | static void __queue_work(struct cpu_workqueue_struct *cwq, | 935 | static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, |
264 | struct work_struct *work) | 936 | struct work_struct *work) |
265 | { | 937 | { |
938 | struct global_cwq *gcwq; | ||
939 | struct cpu_workqueue_struct *cwq; | ||
940 | struct list_head *worklist; | ||
941 | unsigned int work_flags; | ||
266 | unsigned long flags; | 942 | unsigned long flags; |
267 | 943 | ||
268 | debug_work_activate(work); | 944 | debug_work_activate(work); |
269 | spin_lock_irqsave(&cwq->lock, flags); | 945 | |
270 | insert_work(cwq, work, &cwq->worklist); | 946 | if (WARN_ON_ONCE(wq->flags & WQ_DYING)) |
271 | spin_unlock_irqrestore(&cwq->lock, flags); | 947 | return; |
948 | |||
949 | /* determine gcwq to use */ | ||
950 | if (!(wq->flags & WQ_UNBOUND)) { | ||
951 | struct global_cwq *last_gcwq; | ||
952 | |||
953 | if (unlikely(cpu == WORK_CPU_UNBOUND)) | ||
954 | cpu = raw_smp_processor_id(); | ||
955 | |||
956 | /* | ||
957 | * It's multi cpu. If @wq is non-reentrant and @work | ||
958 | * was previously on a different cpu, it might still | ||
959 | * be running there, in which case the work needs to | ||
960 | * be queued on that cpu to guarantee non-reentrance. | ||
961 | */ | ||
962 | gcwq = get_gcwq(cpu); | ||
963 | if (wq->flags & WQ_NON_REENTRANT && | ||
964 | (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { | ||
965 | struct worker *worker; | ||
966 | |||
967 | spin_lock_irqsave(&last_gcwq->lock, flags); | ||
968 | |||
969 | worker = find_worker_executing_work(last_gcwq, work); | ||
970 | |||
971 | if (worker && worker->current_cwq->wq == wq) | ||
972 | gcwq = last_gcwq; | ||
973 | else { | ||
974 | /* meh... not running there, queue here */ | ||
975 | spin_unlock_irqrestore(&last_gcwq->lock, flags); | ||
976 | spin_lock_irqsave(&gcwq->lock, flags); | ||
977 | } | ||
978 | } else | ||
979 | spin_lock_irqsave(&gcwq->lock, flags); | ||
980 | } else { | ||
981 | gcwq = get_gcwq(WORK_CPU_UNBOUND); | ||
982 | spin_lock_irqsave(&gcwq->lock, flags); | ||
983 | } | ||
984 | |||
985 | /* gcwq determined, get cwq and queue */ | ||
986 | cwq = get_cwq(gcwq->cpu, wq); | ||
987 | trace_workqueue_queue_work(cpu, cwq, work); | ||
988 | |||
989 | BUG_ON(!list_empty(&work->entry)); | ||
990 | |||
991 | cwq->nr_in_flight[cwq->work_color]++; | ||
992 | work_flags = work_color_to_flags(cwq->work_color); | ||
993 | |||
994 | if (likely(cwq->nr_active < cwq->max_active)) { | ||
995 | trace_workqueue_activate_work(work); | ||
996 | cwq->nr_active++; | ||
997 | worklist = gcwq_determine_ins_pos(gcwq, cwq); | ||
998 | } else { | ||
999 | work_flags |= WORK_STRUCT_DELAYED; | ||
1000 | worklist = &cwq->delayed_works; | ||
1001 | } | ||
1002 | |||
1003 | insert_work(cwq, work, worklist, work_flags); | ||
1004 | |||
1005 | spin_unlock_irqrestore(&gcwq->lock, flags); | ||
272 | } | 1006 | } |
273 | 1007 | ||
274 | /** | 1008 | /** |
@@ -308,9 +1042,8 @@ queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) | |||
308 | { | 1042 | { |
309 | int ret = 0; | 1043 | int ret = 0; |
310 | 1044 | ||
311 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 1045 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
312 | BUG_ON(!list_empty(&work->entry)); | 1046 | __queue_work(cpu, wq, work); |
313 | __queue_work(wq_per_cpu(wq, cpu), work); | ||
314 | ret = 1; | 1047 | ret = 1; |
315 | } | 1048 | } |
316 | return ret; | 1049 | return ret; |
@@ -320,10 +1053,9 @@ EXPORT_SYMBOL_GPL(queue_work_on); | |||
320 | static void delayed_work_timer_fn(unsigned long __data) | 1053 | static void delayed_work_timer_fn(unsigned long __data) |
321 | { | 1054 | { |
322 | struct delayed_work *dwork = (struct delayed_work *)__data; | 1055 | struct delayed_work *dwork = (struct delayed_work *)__data; |
323 | struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); | 1056 | struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); |
324 | struct workqueue_struct *wq = cwq->wq; | ||
325 | 1057 | ||
326 | __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); | 1058 | __queue_work(smp_processor_id(), cwq->wq, &dwork->work); |
327 | } | 1059 | } |
328 | 1060 | ||
329 | /** | 1061 | /** |
@@ -360,14 +1092,31 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
360 | struct timer_list *timer = &dwork->timer; | 1092 | struct timer_list *timer = &dwork->timer; |
361 | struct work_struct *work = &dwork->work; | 1093 | struct work_struct *work = &dwork->work; |
362 | 1094 | ||
363 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 1095 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
1096 | unsigned int lcpu; | ||
1097 | |||
364 | BUG_ON(timer_pending(timer)); | 1098 | BUG_ON(timer_pending(timer)); |
365 | BUG_ON(!list_empty(&work->entry)); | 1099 | BUG_ON(!list_empty(&work->entry)); |
366 | 1100 | ||
367 | timer_stats_timer_set_start_info(&dwork->timer); | 1101 | timer_stats_timer_set_start_info(&dwork->timer); |
368 | 1102 | ||
369 | /* This stores cwq for the moment, for the timer_fn */ | 1103 | /* |
370 | set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); | 1104 | * This stores cwq for the moment, for the timer_fn. |
1105 | * Note that the work's gcwq is preserved to allow | ||
1106 | * reentrance detection for delayed works. | ||
1107 | */ | ||
1108 | if (!(wq->flags & WQ_UNBOUND)) { | ||
1109 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
1110 | |||
1111 | if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) | ||
1112 | lcpu = gcwq->cpu; | ||
1113 | else | ||
1114 | lcpu = raw_smp_processor_id(); | ||
1115 | } else | ||
1116 | lcpu = WORK_CPU_UNBOUND; | ||
1117 | |||
1118 | set_work_cwq(work, get_cwq(lcpu, wq), 0); | ||
1119 | |||
371 | timer->expires = jiffies + delay; | 1120 | timer->expires = jiffies + delay; |
372 | timer->data = (unsigned long)dwork; | 1121 | timer->data = (unsigned long)dwork; |
373 | timer->function = delayed_work_timer_fn; | 1122 | timer->function = delayed_work_timer_fn; |
@@ -382,80 +1131,889 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
382 | } | 1131 | } |
383 | EXPORT_SYMBOL_GPL(queue_delayed_work_on); | 1132 | EXPORT_SYMBOL_GPL(queue_delayed_work_on); |
384 | 1133 | ||
385 | static void run_workqueue(struct cpu_workqueue_struct *cwq) | 1134 | /** |
1135 | * worker_enter_idle - enter idle state | ||
1136 | * @worker: worker which is entering idle state | ||
1137 | * | ||
1138 | * @worker is entering idle state. Update stats and idle timer if | ||
1139 | * necessary. | ||
1140 | * | ||
1141 | * LOCKING: | ||
1142 | * spin_lock_irq(gcwq->lock). | ||
1143 | */ | ||
1144 | static void worker_enter_idle(struct worker *worker) | ||
386 | { | 1145 | { |
387 | spin_lock_irq(&cwq->lock); | 1146 | struct global_cwq *gcwq = worker->gcwq; |
388 | while (!list_empty(&cwq->worklist)) { | 1147 | |
389 | struct work_struct *work = list_entry(cwq->worklist.next, | 1148 | BUG_ON(worker->flags & WORKER_IDLE); |
390 | struct work_struct, entry); | 1149 | BUG_ON(!list_empty(&worker->entry) && |
391 | work_func_t f = work->func; | 1150 | (worker->hentry.next || worker->hentry.pprev)); |
392 | #ifdef CONFIG_LOCKDEP | 1151 | |
1152 | /* can't use worker_set_flags(), also called from start_worker() */ | ||
1153 | worker->flags |= WORKER_IDLE; | ||
1154 | gcwq->nr_idle++; | ||
1155 | worker->last_active = jiffies; | ||
1156 | |||
1157 | /* idle_list is LIFO */ | ||
1158 | list_add(&worker->entry, &gcwq->idle_list); | ||
1159 | |||
1160 | if (likely(!(worker->flags & WORKER_ROGUE))) { | ||
1161 | if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) | ||
1162 | mod_timer(&gcwq->idle_timer, | ||
1163 | jiffies + IDLE_WORKER_TIMEOUT); | ||
1164 | } else | ||
1165 | wake_up_all(&gcwq->trustee_wait); | ||
1166 | |||
1167 | /* sanity check nr_running */ | ||
1168 | WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && | ||
1169 | atomic_read(get_gcwq_nr_running(gcwq->cpu))); | ||
1170 | } | ||
1171 | |||
1172 | /** | ||
1173 | * worker_leave_idle - leave idle state | ||
1174 | * @worker: worker which is leaving idle state | ||
1175 | * | ||
1176 | * @worker is leaving idle state. Update stats. | ||
1177 | * | ||
1178 | * LOCKING: | ||
1179 | * spin_lock_irq(gcwq->lock). | ||
1180 | */ | ||
1181 | static void worker_leave_idle(struct worker *worker) | ||
1182 | { | ||
1183 | struct global_cwq *gcwq = worker->gcwq; | ||
1184 | |||
1185 | BUG_ON(!(worker->flags & WORKER_IDLE)); | ||
1186 | worker_clr_flags(worker, WORKER_IDLE); | ||
1187 | gcwq->nr_idle--; | ||
1188 | list_del_init(&worker->entry); | ||
1189 | } | ||
1190 | |||
1191 | /** | ||
1192 | * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq | ||
1193 | * @worker: self | ||
1194 | * | ||
1195 | * Works which are scheduled while the cpu is online must at least be | ||
1196 | * scheduled to a worker which is bound to the cpu so that if they are | ||
1197 | * flushed from cpu callbacks while cpu is going down, they are | ||
1198 | * guaranteed to execute on the cpu. | ||
1199 | * | ||
1200 | * This function is to be used by rogue workers and rescuers to bind | ||
1201 | * themselves to the target cpu and may race with cpu going down or | ||
1202 | * coming online. kthread_bind() can't be used because it may put the | ||
1203 | * worker to already dead cpu and set_cpus_allowed_ptr() can't be used | ||
1204 | * verbatim as it's best effort and blocking and gcwq may be | ||
1205 | * [dis]associated in the meantime. | ||
1206 | * | ||
1207 | * This function tries set_cpus_allowed() and locks gcwq and verifies | ||
1208 | * the binding against GCWQ_DISASSOCIATED which is set during | ||
1209 | * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters | ||
1210 | * idle state or fetches works without dropping lock, it can guarantee | ||
1211 | * the scheduling requirement described in the first paragraph. | ||
1212 | * | ||
1213 | * CONTEXT: | ||
1214 | * Might sleep. Called without any lock but returns with gcwq->lock | ||
1215 | * held. | ||
1216 | * | ||
1217 | * RETURNS: | ||
1218 | * %true if the associated gcwq is online (@worker is successfully | ||
1219 | * bound), %false if offline. | ||
1220 | */ | ||
1221 | static bool worker_maybe_bind_and_lock(struct worker *worker) | ||
1222 | __acquires(&gcwq->lock) | ||
1223 | { | ||
1224 | struct global_cwq *gcwq = worker->gcwq; | ||
1225 | struct task_struct *task = worker->task; | ||
1226 | |||
1227 | while (true) { | ||
393 | /* | 1228 | /* |
394 | * It is permissible to free the struct work_struct | 1229 | * The following call may fail, succeed or succeed |
395 | * from inside the function that is called from it, | 1230 | * without actually migrating the task to the cpu if |
396 | * this we need to take into account for lockdep too. | 1231 | * it races with cpu hotunplug operation. Verify |
397 | * To avoid bogus "held lock freed" warnings as well | 1232 | * against GCWQ_DISASSOCIATED. |
398 | * as problems when looking into work->lockdep_map, | ||
399 | * make a copy and use that here. | ||
400 | */ | 1233 | */ |
401 | struct lockdep_map lockdep_map = work->lockdep_map; | 1234 | if (!(gcwq->flags & GCWQ_DISASSOCIATED)) |
402 | #endif | 1235 | set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); |
403 | trace_workqueue_execution(cwq->thread, work); | 1236 | |
404 | debug_work_deactivate(work); | 1237 | spin_lock_irq(&gcwq->lock); |
405 | cwq->current_work = work; | 1238 | if (gcwq->flags & GCWQ_DISASSOCIATED) |
406 | list_del_init(cwq->worklist.next); | 1239 | return false; |
407 | spin_unlock_irq(&cwq->lock); | 1240 | if (task_cpu(task) == gcwq->cpu && |
408 | 1241 | cpumask_equal(¤t->cpus_allowed, | |
409 | BUG_ON(get_wq_data(work) != cwq); | 1242 | get_cpu_mask(gcwq->cpu))) |
410 | work_clear_pending(work); | 1243 | return true; |
411 | lock_map_acquire(&cwq->wq->lockdep_map); | 1244 | spin_unlock_irq(&gcwq->lock); |
412 | lock_map_acquire(&lockdep_map); | 1245 | |
413 | f(work); | 1246 | /* CPU has come up inbetween, retry migration */ |
414 | lock_map_release(&lockdep_map); | 1247 | cpu_relax(); |
415 | lock_map_release(&cwq->wq->lockdep_map); | 1248 | } |
416 | 1249 | } | |
417 | if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { | 1250 | |
418 | printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " | 1251 | /* |
419 | "%s/0x%08x/%d\n", | 1252 | * Function for worker->rebind_work used to rebind rogue busy workers |
420 | current->comm, preempt_count(), | 1253 | * to the associated cpu which is coming back online. This is |
421 | task_pid_nr(current)); | 1254 | * scheduled by cpu up but can race with other cpu hotplug operations |
422 | printk(KERN_ERR " last function: "); | 1255 | * and may be executed twice without intervening cpu down. |
423 | print_symbol("%s\n", (unsigned long)f); | 1256 | */ |
424 | debug_show_held_locks(current); | 1257 | static void worker_rebind_fn(struct work_struct *work) |
425 | dump_stack(); | 1258 | { |
1259 | struct worker *worker = container_of(work, struct worker, rebind_work); | ||
1260 | struct global_cwq *gcwq = worker->gcwq; | ||
1261 | |||
1262 | if (worker_maybe_bind_and_lock(worker)) | ||
1263 | worker_clr_flags(worker, WORKER_REBIND); | ||
1264 | |||
1265 | spin_unlock_irq(&gcwq->lock); | ||
1266 | } | ||
1267 | |||
1268 | static struct worker *alloc_worker(void) | ||
1269 | { | ||
1270 | struct worker *worker; | ||
1271 | |||
1272 | worker = kzalloc(sizeof(*worker), GFP_KERNEL); | ||
1273 | if (worker) { | ||
1274 | INIT_LIST_HEAD(&worker->entry); | ||
1275 | INIT_LIST_HEAD(&worker->scheduled); | ||
1276 | INIT_WORK(&worker->rebind_work, worker_rebind_fn); | ||
1277 | /* on creation a worker is in !idle && prep state */ | ||
1278 | worker->flags = WORKER_PREP; | ||
1279 | } | ||
1280 | return worker; | ||
1281 | } | ||
1282 | |||
1283 | /** | ||
1284 | * create_worker - create a new workqueue worker | ||
1285 | * @gcwq: gcwq the new worker will belong to | ||
1286 | * @bind: whether to set affinity to @cpu or not | ||
1287 | * | ||
1288 | * Create a new worker which is bound to @gcwq. The returned worker | ||
1289 | * can be started by calling start_worker() or destroyed using | ||
1290 | * destroy_worker(). | ||
1291 | * | ||
1292 | * CONTEXT: | ||
1293 | * Might sleep. Does GFP_KERNEL allocations. | ||
1294 | * | ||
1295 | * RETURNS: | ||
1296 | * Pointer to the newly created worker. | ||
1297 | */ | ||
1298 | static struct worker *create_worker(struct global_cwq *gcwq, bool bind) | ||
1299 | { | ||
1300 | bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; | ||
1301 | struct worker *worker = NULL; | ||
1302 | int id = -1; | ||
1303 | |||
1304 | spin_lock_irq(&gcwq->lock); | ||
1305 | while (ida_get_new(&gcwq->worker_ida, &id)) { | ||
1306 | spin_unlock_irq(&gcwq->lock); | ||
1307 | if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) | ||
1308 | goto fail; | ||
1309 | spin_lock_irq(&gcwq->lock); | ||
1310 | } | ||
1311 | spin_unlock_irq(&gcwq->lock); | ||
1312 | |||
1313 | worker = alloc_worker(); | ||
1314 | if (!worker) | ||
1315 | goto fail; | ||
1316 | |||
1317 | worker->gcwq = gcwq; | ||
1318 | worker->id = id; | ||
1319 | |||
1320 | if (!on_unbound_cpu) | ||
1321 | worker->task = kthread_create(worker_thread, worker, | ||
1322 | "kworker/%u:%d", gcwq->cpu, id); | ||
1323 | else | ||
1324 | worker->task = kthread_create(worker_thread, worker, | ||
1325 | "kworker/u:%d", id); | ||
1326 | if (IS_ERR(worker->task)) | ||
1327 | goto fail; | ||
1328 | |||
1329 | /* | ||
1330 | * A rogue worker will become a regular one if CPU comes | ||
1331 | * online later on. Make sure every worker has | ||
1332 | * PF_THREAD_BOUND set. | ||
1333 | */ | ||
1334 | if (bind && !on_unbound_cpu) | ||
1335 | kthread_bind(worker->task, gcwq->cpu); | ||
1336 | else { | ||
1337 | worker->task->flags |= PF_THREAD_BOUND; | ||
1338 | if (on_unbound_cpu) | ||
1339 | worker->flags |= WORKER_UNBOUND; | ||
1340 | } | ||
1341 | |||
1342 | return worker; | ||
1343 | fail: | ||
1344 | if (id >= 0) { | ||
1345 | spin_lock_irq(&gcwq->lock); | ||
1346 | ida_remove(&gcwq->worker_ida, id); | ||
1347 | spin_unlock_irq(&gcwq->lock); | ||
1348 | } | ||
1349 | kfree(worker); | ||
1350 | return NULL; | ||
1351 | } | ||
1352 | |||
1353 | /** | ||
1354 | * start_worker - start a newly created worker | ||
1355 | * @worker: worker to start | ||
1356 | * | ||
1357 | * Make the gcwq aware of @worker and start it. | ||
1358 | * | ||
1359 | * CONTEXT: | ||
1360 | * spin_lock_irq(gcwq->lock). | ||
1361 | */ | ||
1362 | static void start_worker(struct worker *worker) | ||
1363 | { | ||
1364 | worker->flags |= WORKER_STARTED; | ||
1365 | worker->gcwq->nr_workers++; | ||
1366 | worker_enter_idle(worker); | ||
1367 | wake_up_process(worker->task); | ||
1368 | } | ||
1369 | |||
1370 | /** | ||
1371 | * destroy_worker - destroy a workqueue worker | ||
1372 | * @worker: worker to be destroyed | ||
1373 | * | ||
1374 | * Destroy @worker and adjust @gcwq stats accordingly. | ||
1375 | * | ||
1376 | * CONTEXT: | ||
1377 | * spin_lock_irq(gcwq->lock) which is released and regrabbed. | ||
1378 | */ | ||
1379 | static void destroy_worker(struct worker *worker) | ||
1380 | { | ||
1381 | struct global_cwq *gcwq = worker->gcwq; | ||
1382 | int id = worker->id; | ||
1383 | |||
1384 | /* sanity check frenzy */ | ||
1385 | BUG_ON(worker->current_work); | ||
1386 | BUG_ON(!list_empty(&worker->scheduled)); | ||
1387 | |||
1388 | if (worker->flags & WORKER_STARTED) | ||
1389 | gcwq->nr_workers--; | ||
1390 | if (worker->flags & WORKER_IDLE) | ||
1391 | gcwq->nr_idle--; | ||
1392 | |||
1393 | list_del_init(&worker->entry); | ||
1394 | worker->flags |= WORKER_DIE; | ||
1395 | |||
1396 | spin_unlock_irq(&gcwq->lock); | ||
1397 | |||
1398 | kthread_stop(worker->task); | ||
1399 | kfree(worker); | ||
1400 | |||
1401 | spin_lock_irq(&gcwq->lock); | ||
1402 | ida_remove(&gcwq->worker_ida, id); | ||
1403 | } | ||
1404 | |||
1405 | static void idle_worker_timeout(unsigned long __gcwq) | ||
1406 | { | ||
1407 | struct global_cwq *gcwq = (void *)__gcwq; | ||
1408 | |||
1409 | spin_lock_irq(&gcwq->lock); | ||
1410 | |||
1411 | if (too_many_workers(gcwq)) { | ||
1412 | struct worker *worker; | ||
1413 | unsigned long expires; | ||
1414 | |||
1415 | /* idle_list is kept in LIFO order, check the last one */ | ||
1416 | worker = list_entry(gcwq->idle_list.prev, struct worker, entry); | ||
1417 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; | ||
1418 | |||
1419 | if (time_before(jiffies, expires)) | ||
1420 | mod_timer(&gcwq->idle_timer, expires); | ||
1421 | else { | ||
1422 | /* it's been idle for too long, wake up manager */ | ||
1423 | gcwq->flags |= GCWQ_MANAGE_WORKERS; | ||
1424 | wake_up_worker(gcwq); | ||
426 | } | 1425 | } |
1426 | } | ||
1427 | |||
1428 | spin_unlock_irq(&gcwq->lock); | ||
1429 | } | ||
1430 | |||
1431 | static bool send_mayday(struct work_struct *work) | ||
1432 | { | ||
1433 | struct cpu_workqueue_struct *cwq = get_work_cwq(work); | ||
1434 | struct workqueue_struct *wq = cwq->wq; | ||
1435 | unsigned int cpu; | ||
1436 | |||
1437 | if (!(wq->flags & WQ_RESCUER)) | ||
1438 | return false; | ||
1439 | |||
1440 | /* mayday mayday mayday */ | ||
1441 | cpu = cwq->gcwq->cpu; | ||
1442 | /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ | ||
1443 | if (cpu == WORK_CPU_UNBOUND) | ||
1444 | cpu = 0; | ||
1445 | if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) | ||
1446 | wake_up_process(wq->rescuer->task); | ||
1447 | return true; | ||
1448 | } | ||
1449 | |||
1450 | static void gcwq_mayday_timeout(unsigned long __gcwq) | ||
1451 | { | ||
1452 | struct global_cwq *gcwq = (void *)__gcwq; | ||
1453 | struct work_struct *work; | ||
1454 | |||
1455 | spin_lock_irq(&gcwq->lock); | ||
427 | 1456 | ||
428 | spin_lock_irq(&cwq->lock); | 1457 | if (need_to_create_worker(gcwq)) { |
429 | cwq->current_work = NULL; | 1458 | /* |
1459 | * We've been trying to create a new worker but | ||
1460 | * haven't been successful. We might be hitting an | ||
1461 | * allocation deadlock. Send distress signals to | ||
1462 | * rescuers. | ||
1463 | */ | ||
1464 | list_for_each_entry(work, &gcwq->worklist, entry) | ||
1465 | send_mayday(work); | ||
430 | } | 1466 | } |
431 | spin_unlock_irq(&cwq->lock); | 1467 | |
1468 | spin_unlock_irq(&gcwq->lock); | ||
1469 | |||
1470 | mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); | ||
432 | } | 1471 | } |
433 | 1472 | ||
434 | static int worker_thread(void *__cwq) | 1473 | /** |
1474 | * maybe_create_worker - create a new worker if necessary | ||
1475 | * @gcwq: gcwq to create a new worker for | ||
1476 | * | ||
1477 | * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to | ||
1478 | * have at least one idle worker on return from this function. If | ||
1479 | * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is | ||
1480 | * sent to all rescuers with works scheduled on @gcwq to resolve | ||
1481 | * possible allocation deadlock. | ||
1482 | * | ||
1483 | * On return, need_to_create_worker() is guaranteed to be false and | ||
1484 | * may_start_working() true. | ||
1485 | * | ||
1486 | * LOCKING: | ||
1487 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1488 | * multiple times. Does GFP_KERNEL allocations. Called only from | ||
1489 | * manager. | ||
1490 | * | ||
1491 | * RETURNS: | ||
1492 | * false if no action was taken and gcwq->lock stayed locked, true | ||
1493 | * otherwise. | ||
1494 | */ | ||
1495 | static bool maybe_create_worker(struct global_cwq *gcwq) | ||
1496 | __releases(&gcwq->lock) | ||
1497 | __acquires(&gcwq->lock) | ||
435 | { | 1498 | { |
436 | struct cpu_workqueue_struct *cwq = __cwq; | 1499 | if (!need_to_create_worker(gcwq)) |
437 | DEFINE_WAIT(wait); | 1500 | return false; |
1501 | restart: | ||
1502 | spin_unlock_irq(&gcwq->lock); | ||
1503 | |||
1504 | /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ | ||
1505 | mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); | ||
1506 | |||
1507 | while (true) { | ||
1508 | struct worker *worker; | ||
1509 | |||
1510 | worker = create_worker(gcwq, true); | ||
1511 | if (worker) { | ||
1512 | del_timer_sync(&gcwq->mayday_timer); | ||
1513 | spin_lock_irq(&gcwq->lock); | ||
1514 | start_worker(worker); | ||
1515 | BUG_ON(need_to_create_worker(gcwq)); | ||
1516 | return true; | ||
1517 | } | ||
1518 | |||
1519 | if (!need_to_create_worker(gcwq)) | ||
1520 | break; | ||
1521 | |||
1522 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1523 | schedule_timeout(CREATE_COOLDOWN); | ||
1524 | |||
1525 | if (!need_to_create_worker(gcwq)) | ||
1526 | break; | ||
1527 | } | ||
1528 | |||
1529 | del_timer_sync(&gcwq->mayday_timer); | ||
1530 | spin_lock_irq(&gcwq->lock); | ||
1531 | if (need_to_create_worker(gcwq)) | ||
1532 | goto restart; | ||
1533 | return true; | ||
1534 | } | ||
438 | 1535 | ||
439 | if (cwq->wq->freezeable) | 1536 | /** |
440 | set_freezable(); | 1537 | * maybe_destroy_worker - destroy workers which have been idle for a while |
1538 | * @gcwq: gcwq to destroy workers for | ||
1539 | * | ||
1540 | * Destroy @gcwq workers which have been idle for longer than | ||
1541 | * IDLE_WORKER_TIMEOUT. | ||
1542 | * | ||
1543 | * LOCKING: | ||
1544 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1545 | * multiple times. Called only from manager. | ||
1546 | * | ||
1547 | * RETURNS: | ||
1548 | * false if no action was taken and gcwq->lock stayed locked, true | ||
1549 | * otherwise. | ||
1550 | */ | ||
1551 | static bool maybe_destroy_workers(struct global_cwq *gcwq) | ||
1552 | { | ||
1553 | bool ret = false; | ||
441 | 1554 | ||
442 | for (;;) { | 1555 | while (too_many_workers(gcwq)) { |
443 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); | 1556 | struct worker *worker; |
444 | if (!freezing(current) && | 1557 | unsigned long expires; |
445 | !kthread_should_stop() && | ||
446 | list_empty(&cwq->worklist)) | ||
447 | schedule(); | ||
448 | finish_wait(&cwq->more_work, &wait); | ||
449 | 1558 | ||
450 | try_to_freeze(); | 1559 | worker = list_entry(gcwq->idle_list.prev, struct worker, entry); |
1560 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; | ||
451 | 1561 | ||
452 | if (kthread_should_stop()) | 1562 | if (time_before(jiffies, expires)) { |
1563 | mod_timer(&gcwq->idle_timer, expires); | ||
453 | break; | 1564 | break; |
1565 | } | ||
454 | 1566 | ||
455 | run_workqueue(cwq); | 1567 | destroy_worker(worker); |
1568 | ret = true; | ||
456 | } | 1569 | } |
457 | 1570 | ||
458 | return 0; | 1571 | return ret; |
1572 | } | ||
1573 | |||
1574 | /** | ||
1575 | * manage_workers - manage worker pool | ||
1576 | * @worker: self | ||
1577 | * | ||
1578 | * Assume the manager role and manage gcwq worker pool @worker belongs | ||
1579 | * to. At any given time, there can be only zero or one manager per | ||
1580 | * gcwq. The exclusion is handled automatically by this function. | ||
1581 | * | ||
1582 | * The caller can safely start processing works on false return. On | ||
1583 | * true return, it's guaranteed that need_to_create_worker() is false | ||
1584 | * and may_start_working() is true. | ||
1585 | * | ||
1586 | * CONTEXT: | ||
1587 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1588 | * multiple times. Does GFP_KERNEL allocations. | ||
1589 | * | ||
1590 | * RETURNS: | ||
1591 | * false if no action was taken and gcwq->lock stayed locked, true if | ||
1592 | * some action was taken. | ||
1593 | */ | ||
1594 | static bool manage_workers(struct worker *worker) | ||
1595 | { | ||
1596 | struct global_cwq *gcwq = worker->gcwq; | ||
1597 | bool ret = false; | ||
1598 | |||
1599 | if (gcwq->flags & GCWQ_MANAGING_WORKERS) | ||
1600 | return ret; | ||
1601 | |||
1602 | gcwq->flags &= ~GCWQ_MANAGE_WORKERS; | ||
1603 | gcwq->flags |= GCWQ_MANAGING_WORKERS; | ||
1604 | |||
1605 | /* | ||
1606 | * Destroy and then create so that may_start_working() is true | ||
1607 | * on return. | ||
1608 | */ | ||
1609 | ret |= maybe_destroy_workers(gcwq); | ||
1610 | ret |= maybe_create_worker(gcwq); | ||
1611 | |||
1612 | gcwq->flags &= ~GCWQ_MANAGING_WORKERS; | ||
1613 | |||
1614 | /* | ||
1615 | * The trustee might be waiting to take over the manager | ||
1616 | * position, tell it we're done. | ||
1617 | */ | ||
1618 | if (unlikely(gcwq->trustee)) | ||
1619 | wake_up_all(&gcwq->trustee_wait); | ||
1620 | |||
1621 | return ret; | ||
1622 | } | ||
1623 | |||
1624 | /** | ||
1625 | * move_linked_works - move linked works to a list | ||
1626 | * @work: start of series of works to be scheduled | ||
1627 | * @head: target list to append @work to | ||
1628 | * @nextp: out paramter for nested worklist walking | ||
1629 | * | ||
1630 | * Schedule linked works starting from @work to @head. Work series to | ||
1631 | * be scheduled starts at @work and includes any consecutive work with | ||
1632 | * WORK_STRUCT_LINKED set in its predecessor. | ||
1633 | * | ||
1634 | * If @nextp is not NULL, it's updated to point to the next work of | ||
1635 | * the last scheduled work. This allows move_linked_works() to be | ||
1636 | * nested inside outer list_for_each_entry_safe(). | ||
1637 | * | ||
1638 | * CONTEXT: | ||
1639 | * spin_lock_irq(gcwq->lock). | ||
1640 | */ | ||
1641 | static void move_linked_works(struct work_struct *work, struct list_head *head, | ||
1642 | struct work_struct **nextp) | ||
1643 | { | ||
1644 | struct work_struct *n; | ||
1645 | |||
1646 | /* | ||
1647 | * Linked worklist will always end before the end of the list, | ||
1648 | * use NULL for list head. | ||
1649 | */ | ||
1650 | list_for_each_entry_safe_from(work, n, NULL, entry) { | ||
1651 | list_move_tail(&work->entry, head); | ||
1652 | if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) | ||
1653 | break; | ||
1654 | } | ||
1655 | |||
1656 | /* | ||
1657 | * If we're already inside safe list traversal and have moved | ||
1658 | * multiple works to the scheduled queue, the next position | ||
1659 | * needs to be updated. | ||
1660 | */ | ||
1661 | if (nextp) | ||
1662 | *nextp = n; | ||
1663 | } | ||
1664 | |||
1665 | static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) | ||
1666 | { | ||
1667 | struct work_struct *work = list_first_entry(&cwq->delayed_works, | ||
1668 | struct work_struct, entry); | ||
1669 | struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); | ||
1670 | |||
1671 | trace_workqueue_activate_work(work); | ||
1672 | move_linked_works(work, pos, NULL); | ||
1673 | __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); | ||
1674 | cwq->nr_active++; | ||
1675 | } | ||
1676 | |||
1677 | /** | ||
1678 | * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight | ||
1679 | * @cwq: cwq of interest | ||
1680 | * @color: color of work which left the queue | ||
1681 | * @delayed: for a delayed work | ||
1682 | * | ||
1683 | * A work either has completed or is removed from pending queue, | ||
1684 | * decrement nr_in_flight of its cwq and handle workqueue flushing. | ||
1685 | * | ||
1686 | * CONTEXT: | ||
1687 | * spin_lock_irq(gcwq->lock). | ||
1688 | */ | ||
1689 | static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, | ||
1690 | bool delayed) | ||
1691 | { | ||
1692 | /* ignore uncolored works */ | ||
1693 | if (color == WORK_NO_COLOR) | ||
1694 | return; | ||
1695 | |||
1696 | cwq->nr_in_flight[color]--; | ||
1697 | |||
1698 | if (!delayed) { | ||
1699 | cwq->nr_active--; | ||
1700 | if (!list_empty(&cwq->delayed_works)) { | ||
1701 | /* one down, submit a delayed one */ | ||
1702 | if (cwq->nr_active < cwq->max_active) | ||
1703 | cwq_activate_first_delayed(cwq); | ||
1704 | } | ||
1705 | } | ||
1706 | |||
1707 | /* is flush in progress and are we at the flushing tip? */ | ||
1708 | if (likely(cwq->flush_color != color)) | ||
1709 | return; | ||
1710 | |||
1711 | /* are there still in-flight works? */ | ||
1712 | if (cwq->nr_in_flight[color]) | ||
1713 | return; | ||
1714 | |||
1715 | /* this cwq is done, clear flush_color */ | ||
1716 | cwq->flush_color = -1; | ||
1717 | |||
1718 | /* | ||
1719 | * If this was the last cwq, wake up the first flusher. It | ||
1720 | * will handle the rest. | ||
1721 | */ | ||
1722 | if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) | ||
1723 | complete(&cwq->wq->first_flusher->done); | ||
1724 | } | ||
1725 | |||
1726 | /** | ||
1727 | * process_one_work - process single work | ||
1728 | * @worker: self | ||
1729 | * @work: work to process | ||
1730 | * | ||
1731 | * Process @work. This function contains all the logics necessary to | ||
1732 | * process a single work including synchronization against and | ||
1733 | * interaction with other workers on the same cpu, queueing and | ||
1734 | * flushing. As long as context requirement is met, any worker can | ||
1735 | * call this function to process a work. | ||
1736 | * | ||
1737 | * CONTEXT: | ||
1738 | * spin_lock_irq(gcwq->lock) which is released and regrabbed. | ||
1739 | */ | ||
1740 | static void process_one_work(struct worker *worker, struct work_struct *work) | ||
1741 | __releases(&gcwq->lock) | ||
1742 | __acquires(&gcwq->lock) | ||
1743 | { | ||
1744 | struct cpu_workqueue_struct *cwq = get_work_cwq(work); | ||
1745 | struct global_cwq *gcwq = cwq->gcwq; | ||
1746 | struct hlist_head *bwh = busy_worker_head(gcwq, work); | ||
1747 | bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; | ||
1748 | work_func_t f = work->func; | ||
1749 | int work_color; | ||
1750 | struct worker *collision; | ||
1751 | #ifdef CONFIG_LOCKDEP | ||
1752 | /* | ||
1753 | * It is permissible to free the struct work_struct from | ||
1754 | * inside the function that is called from it, this we need to | ||
1755 | * take into account for lockdep too. To avoid bogus "held | ||
1756 | * lock freed" warnings as well as problems when looking into | ||
1757 | * work->lockdep_map, make a copy and use that here. | ||
1758 | */ | ||
1759 | struct lockdep_map lockdep_map = work->lockdep_map; | ||
1760 | #endif | ||
1761 | /* | ||
1762 | * A single work shouldn't be executed concurrently by | ||
1763 | * multiple workers on a single cpu. Check whether anyone is | ||
1764 | * already processing the work. If so, defer the work to the | ||
1765 | * currently executing one. | ||
1766 | */ | ||
1767 | collision = __find_worker_executing_work(gcwq, bwh, work); | ||
1768 | if (unlikely(collision)) { | ||
1769 | move_linked_works(work, &collision->scheduled, NULL); | ||
1770 | return; | ||
1771 | } | ||
1772 | |||
1773 | /* claim and process */ | ||
1774 | debug_work_deactivate(work); | ||
1775 | hlist_add_head(&worker->hentry, bwh); | ||
1776 | worker->current_work = work; | ||
1777 | worker->current_cwq = cwq; | ||
1778 | work_color = get_work_color(work); | ||
1779 | |||
1780 | /* record the current cpu number in the work data and dequeue */ | ||
1781 | set_work_cpu(work, gcwq->cpu); | ||
1782 | list_del_init(&work->entry); | ||
1783 | |||
1784 | /* | ||
1785 | * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, | ||
1786 | * wake up another worker; otherwise, clear HIGHPRI_PENDING. | ||
1787 | */ | ||
1788 | if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { | ||
1789 | struct work_struct *nwork = list_first_entry(&gcwq->worklist, | ||
1790 | struct work_struct, entry); | ||
1791 | |||
1792 | if (!list_empty(&gcwq->worklist) && | ||
1793 | get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) | ||
1794 | wake_up_worker(gcwq); | ||
1795 | else | ||
1796 | gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; | ||
1797 | } | ||
1798 | |||
1799 | /* | ||
1800 | * CPU intensive works don't participate in concurrency | ||
1801 | * management. They're the scheduler's responsibility. | ||
1802 | */ | ||
1803 | if (unlikely(cpu_intensive)) | ||
1804 | worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); | ||
1805 | |||
1806 | spin_unlock_irq(&gcwq->lock); | ||
1807 | |||
1808 | work_clear_pending(work); | ||
1809 | lock_map_acquire(&cwq->wq->lockdep_map); | ||
1810 | lock_map_acquire(&lockdep_map); | ||
1811 | trace_workqueue_execute_start(work); | ||
1812 | f(work); | ||
1813 | /* | ||
1814 | * While we must be careful to not use "work" after this, the trace | ||
1815 | * point will only record its address. | ||
1816 | */ | ||
1817 | trace_workqueue_execute_end(work); | ||
1818 | lock_map_release(&lockdep_map); | ||
1819 | lock_map_release(&cwq->wq->lockdep_map); | ||
1820 | |||
1821 | if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { | ||
1822 | printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " | ||
1823 | "%s/0x%08x/%d\n", | ||
1824 | current->comm, preempt_count(), task_pid_nr(current)); | ||
1825 | printk(KERN_ERR " last function: "); | ||
1826 | print_symbol("%s\n", (unsigned long)f); | ||
1827 | debug_show_held_locks(current); | ||
1828 | dump_stack(); | ||
1829 | } | ||
1830 | |||
1831 | spin_lock_irq(&gcwq->lock); | ||
1832 | |||
1833 | /* clear cpu intensive status */ | ||
1834 | if (unlikely(cpu_intensive)) | ||
1835 | worker_clr_flags(worker, WORKER_CPU_INTENSIVE); | ||
1836 | |||
1837 | /* we're done with it, release */ | ||
1838 | hlist_del_init(&worker->hentry); | ||
1839 | worker->current_work = NULL; | ||
1840 | worker->current_cwq = NULL; | ||
1841 | cwq_dec_nr_in_flight(cwq, work_color, false); | ||
1842 | } | ||
1843 | |||
1844 | /** | ||
1845 | * process_scheduled_works - process scheduled works | ||
1846 | * @worker: self | ||
1847 | * | ||
1848 | * Process all scheduled works. Please note that the scheduled list | ||
1849 | * may change while processing a work, so this function repeatedly | ||
1850 | * fetches a work from the top and executes it. | ||
1851 | * | ||
1852 | * CONTEXT: | ||
1853 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1854 | * multiple times. | ||
1855 | */ | ||
1856 | static void process_scheduled_works(struct worker *worker) | ||
1857 | { | ||
1858 | while (!list_empty(&worker->scheduled)) { | ||
1859 | struct work_struct *work = list_first_entry(&worker->scheduled, | ||
1860 | struct work_struct, entry); | ||
1861 | process_one_work(worker, work); | ||
1862 | } | ||
1863 | } | ||
1864 | |||
1865 | /** | ||
1866 | * worker_thread - the worker thread function | ||
1867 | * @__worker: self | ||
1868 | * | ||
1869 | * The gcwq worker thread function. There's a single dynamic pool of | ||
1870 | * these per each cpu. These workers process all works regardless of | ||
1871 | * their specific target workqueue. The only exception is works which | ||
1872 | * belong to workqueues with a rescuer which will be explained in | ||
1873 | * rescuer_thread(). | ||
1874 | */ | ||
1875 | static int worker_thread(void *__worker) | ||
1876 | { | ||
1877 | struct worker *worker = __worker; | ||
1878 | struct global_cwq *gcwq = worker->gcwq; | ||
1879 | |||
1880 | /* tell the scheduler that this is a workqueue worker */ | ||
1881 | worker->task->flags |= PF_WQ_WORKER; | ||
1882 | woke_up: | ||
1883 | spin_lock_irq(&gcwq->lock); | ||
1884 | |||
1885 | /* DIE can be set only while we're idle, checking here is enough */ | ||
1886 | if (worker->flags & WORKER_DIE) { | ||
1887 | spin_unlock_irq(&gcwq->lock); | ||
1888 | worker->task->flags &= ~PF_WQ_WORKER; | ||
1889 | return 0; | ||
1890 | } | ||
1891 | |||
1892 | worker_leave_idle(worker); | ||
1893 | recheck: | ||
1894 | /* no more worker necessary? */ | ||
1895 | if (!need_more_worker(gcwq)) | ||
1896 | goto sleep; | ||
1897 | |||
1898 | /* do we need to manage? */ | ||
1899 | if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) | ||
1900 | goto recheck; | ||
1901 | |||
1902 | /* | ||
1903 | * ->scheduled list can only be filled while a worker is | ||
1904 | * preparing to process a work or actually processing it. | ||
1905 | * Make sure nobody diddled with it while I was sleeping. | ||
1906 | */ | ||
1907 | BUG_ON(!list_empty(&worker->scheduled)); | ||
1908 | |||
1909 | /* | ||
1910 | * When control reaches this point, we're guaranteed to have | ||
1911 | * at least one idle worker or that someone else has already | ||
1912 | * assumed the manager role. | ||
1913 | */ | ||
1914 | worker_clr_flags(worker, WORKER_PREP); | ||
1915 | |||
1916 | do { | ||
1917 | struct work_struct *work = | ||
1918 | list_first_entry(&gcwq->worklist, | ||
1919 | struct work_struct, entry); | ||
1920 | |||
1921 | if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { | ||
1922 | /* optimization path, not strictly necessary */ | ||
1923 | process_one_work(worker, work); | ||
1924 | if (unlikely(!list_empty(&worker->scheduled))) | ||
1925 | process_scheduled_works(worker); | ||
1926 | } else { | ||
1927 | move_linked_works(work, &worker->scheduled, NULL); | ||
1928 | process_scheduled_works(worker); | ||
1929 | } | ||
1930 | } while (keep_working(gcwq)); | ||
1931 | |||
1932 | worker_set_flags(worker, WORKER_PREP, false); | ||
1933 | sleep: | ||
1934 | if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) | ||
1935 | goto recheck; | ||
1936 | |||
1937 | /* | ||
1938 | * gcwq->lock is held and there's no work to process and no | ||
1939 | * need to manage, sleep. Workers are woken up only while | ||
1940 | * holding gcwq->lock or from local cpu, so setting the | ||
1941 | * current state before releasing gcwq->lock is enough to | ||
1942 | * prevent losing any event. | ||
1943 | */ | ||
1944 | worker_enter_idle(worker); | ||
1945 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1946 | spin_unlock_irq(&gcwq->lock); | ||
1947 | schedule(); | ||
1948 | goto woke_up; | ||
1949 | } | ||
1950 | |||
1951 | /** | ||
1952 | * rescuer_thread - the rescuer thread function | ||
1953 | * @__wq: the associated workqueue | ||
1954 | * | ||
1955 | * Workqueue rescuer thread function. There's one rescuer for each | ||
1956 | * workqueue which has WQ_RESCUER set. | ||
1957 | * | ||
1958 | * Regular work processing on a gcwq may block trying to create a new | ||
1959 | * worker which uses GFP_KERNEL allocation which has slight chance of | ||
1960 | * developing into deadlock if some works currently on the same queue | ||
1961 | * need to be processed to satisfy the GFP_KERNEL allocation. This is | ||
1962 | * the problem rescuer solves. | ||
1963 | * | ||
1964 | * When such condition is possible, the gcwq summons rescuers of all | ||
1965 | * workqueues which have works queued on the gcwq and let them process | ||
1966 | * those works so that forward progress can be guaranteed. | ||
1967 | * | ||
1968 | * This should happen rarely. | ||
1969 | */ | ||
1970 | static int rescuer_thread(void *__wq) | ||
1971 | { | ||
1972 | struct workqueue_struct *wq = __wq; | ||
1973 | struct worker *rescuer = wq->rescuer; | ||
1974 | struct list_head *scheduled = &rescuer->scheduled; | ||
1975 | bool is_unbound = wq->flags & WQ_UNBOUND; | ||
1976 | unsigned int cpu; | ||
1977 | |||
1978 | set_user_nice(current, RESCUER_NICE_LEVEL); | ||
1979 | repeat: | ||
1980 | set_current_state(TASK_INTERRUPTIBLE); | ||
1981 | |||
1982 | if (kthread_should_stop()) | ||
1983 | return 0; | ||
1984 | |||
1985 | /* | ||
1986 | * See whether any cpu is asking for help. Unbounded | ||
1987 | * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. | ||
1988 | */ | ||
1989 | for_each_mayday_cpu(cpu, wq->mayday_mask) { | ||
1990 | unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; | ||
1991 | struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); | ||
1992 | struct global_cwq *gcwq = cwq->gcwq; | ||
1993 | struct work_struct *work, *n; | ||
1994 | |||
1995 | __set_current_state(TASK_RUNNING); | ||
1996 | mayday_clear_cpu(cpu, wq->mayday_mask); | ||
1997 | |||
1998 | /* migrate to the target cpu if possible */ | ||
1999 | rescuer->gcwq = gcwq; | ||
2000 | worker_maybe_bind_and_lock(rescuer); | ||
2001 | |||
2002 | /* | ||
2003 | * Slurp in all works issued via this workqueue and | ||
2004 | * process'em. | ||
2005 | */ | ||
2006 | BUG_ON(!list_empty(&rescuer->scheduled)); | ||
2007 | list_for_each_entry_safe(work, n, &gcwq->worklist, entry) | ||
2008 | if (get_work_cwq(work) == cwq) | ||
2009 | move_linked_works(work, scheduled, &n); | ||
2010 | |||
2011 | process_scheduled_works(rescuer); | ||
2012 | spin_unlock_irq(&gcwq->lock); | ||
2013 | } | ||
2014 | |||
2015 | schedule(); | ||
2016 | goto repeat; | ||
459 | } | 2017 | } |
460 | 2018 | ||
461 | struct wq_barrier { | 2019 | struct wq_barrier { |
@@ -469,44 +2027,137 @@ static void wq_barrier_func(struct work_struct *work) | |||
469 | complete(&barr->done); | 2027 | complete(&barr->done); |
470 | } | 2028 | } |
471 | 2029 | ||
2030 | /** | ||
2031 | * insert_wq_barrier - insert a barrier work | ||
2032 | * @cwq: cwq to insert barrier into | ||
2033 | * @barr: wq_barrier to insert | ||
2034 | * @target: target work to attach @barr to | ||
2035 | * @worker: worker currently executing @target, NULL if @target is not executing | ||
2036 | * | ||
2037 | * @barr is linked to @target such that @barr is completed only after | ||
2038 | * @target finishes execution. Please note that the ordering | ||
2039 | * guarantee is observed only with respect to @target and on the local | ||
2040 | * cpu. | ||
2041 | * | ||
2042 | * Currently, a queued barrier can't be canceled. This is because | ||
2043 | * try_to_grab_pending() can't determine whether the work to be | ||
2044 | * grabbed is at the head of the queue and thus can't clear LINKED | ||
2045 | * flag of the previous work while there must be a valid next work | ||
2046 | * after a work with LINKED flag set. | ||
2047 | * | ||
2048 | * Note that when @worker is non-NULL, @target may be modified | ||
2049 | * underneath us, so we can't reliably determine cwq from @target. | ||
2050 | * | ||
2051 | * CONTEXT: | ||
2052 | * spin_lock_irq(gcwq->lock). | ||
2053 | */ | ||
472 | static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, | 2054 | static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, |
473 | struct wq_barrier *barr, struct list_head *head) | 2055 | struct wq_barrier *barr, |
2056 | struct work_struct *target, struct worker *worker) | ||
474 | { | 2057 | { |
2058 | struct list_head *head; | ||
2059 | unsigned int linked = 0; | ||
2060 | |||
475 | /* | 2061 | /* |
476 | * debugobject calls are safe here even with cwq->lock locked | 2062 | * debugobject calls are safe here even with gcwq->lock locked |
477 | * as we know for sure that this will not trigger any of the | 2063 | * as we know for sure that this will not trigger any of the |
478 | * checks and call back into the fixup functions where we | 2064 | * checks and call back into the fixup functions where we |
479 | * might deadlock. | 2065 | * might deadlock. |
480 | */ | 2066 | */ |
481 | INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); | 2067 | INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); |
482 | __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); | 2068 | __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); |
483 | |||
484 | init_completion(&barr->done); | 2069 | init_completion(&barr->done); |
485 | 2070 | ||
2071 | /* | ||
2072 | * If @target is currently being executed, schedule the | ||
2073 | * barrier to the worker; otherwise, put it after @target. | ||
2074 | */ | ||
2075 | if (worker) | ||
2076 | head = worker->scheduled.next; | ||
2077 | else { | ||
2078 | unsigned long *bits = work_data_bits(target); | ||
2079 | |||
2080 | head = target->entry.next; | ||
2081 | /* there can already be other linked works, inherit and set */ | ||
2082 | linked = *bits & WORK_STRUCT_LINKED; | ||
2083 | __set_bit(WORK_STRUCT_LINKED_BIT, bits); | ||
2084 | } | ||
2085 | |||
486 | debug_work_activate(&barr->work); | 2086 | debug_work_activate(&barr->work); |
487 | insert_work(cwq, &barr->work, head); | 2087 | insert_work(cwq, &barr->work, head, |
2088 | work_color_to_flags(WORK_NO_COLOR) | linked); | ||
488 | } | 2089 | } |
489 | 2090 | ||
490 | static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | 2091 | /** |
2092 | * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing | ||
2093 | * @wq: workqueue being flushed | ||
2094 | * @flush_color: new flush color, < 0 for no-op | ||
2095 | * @work_color: new work color, < 0 for no-op | ||
2096 | * | ||
2097 | * Prepare cwqs for workqueue flushing. | ||
2098 | * | ||
2099 | * If @flush_color is non-negative, flush_color on all cwqs should be | ||
2100 | * -1. If no cwq has in-flight commands at the specified color, all | ||
2101 | * cwq->flush_color's stay at -1 and %false is returned. If any cwq | ||
2102 | * has in flight commands, its cwq->flush_color is set to | ||
2103 | * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq | ||
2104 | * wakeup logic is armed and %true is returned. | ||
2105 | * | ||
2106 | * The caller should have initialized @wq->first_flusher prior to | ||
2107 | * calling this function with non-negative @flush_color. If | ||
2108 | * @flush_color is negative, no flush color update is done and %false | ||
2109 | * is returned. | ||
2110 | * | ||
2111 | * If @work_color is non-negative, all cwqs should have the same | ||
2112 | * work_color which is previous to @work_color and all will be | ||
2113 | * advanced to @work_color. | ||
2114 | * | ||
2115 | * CONTEXT: | ||
2116 | * mutex_lock(wq->flush_mutex). | ||
2117 | * | ||
2118 | * RETURNS: | ||
2119 | * %true if @flush_color >= 0 and there's something to flush. %false | ||
2120 | * otherwise. | ||
2121 | */ | ||
2122 | static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, | ||
2123 | int flush_color, int work_color) | ||
491 | { | 2124 | { |
492 | int active = 0; | 2125 | bool wait = false; |
493 | struct wq_barrier barr; | 2126 | unsigned int cpu; |
494 | |||
495 | WARN_ON(cwq->thread == current); | ||
496 | 2127 | ||
497 | spin_lock_irq(&cwq->lock); | 2128 | if (flush_color >= 0) { |
498 | if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { | 2129 | BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); |
499 | insert_wq_barrier(cwq, &barr, &cwq->worklist); | 2130 | atomic_set(&wq->nr_cwqs_to_flush, 1); |
500 | active = 1; | ||
501 | } | 2131 | } |
502 | spin_unlock_irq(&cwq->lock); | ||
503 | 2132 | ||
504 | if (active) { | 2133 | for_each_cwq_cpu(cpu, wq) { |
505 | wait_for_completion(&barr.done); | 2134 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
506 | destroy_work_on_stack(&barr.work); | 2135 | struct global_cwq *gcwq = cwq->gcwq; |
2136 | |||
2137 | spin_lock_irq(&gcwq->lock); | ||
2138 | |||
2139 | if (flush_color >= 0) { | ||
2140 | BUG_ON(cwq->flush_color != -1); | ||
2141 | |||
2142 | if (cwq->nr_in_flight[flush_color]) { | ||
2143 | cwq->flush_color = flush_color; | ||
2144 | atomic_inc(&wq->nr_cwqs_to_flush); | ||
2145 | wait = true; | ||
2146 | } | ||
2147 | } | ||
2148 | |||
2149 | if (work_color >= 0) { | ||
2150 | BUG_ON(work_color != work_next_color(cwq->work_color)); | ||
2151 | cwq->work_color = work_color; | ||
2152 | } | ||
2153 | |||
2154 | spin_unlock_irq(&gcwq->lock); | ||
507 | } | 2155 | } |
508 | 2156 | ||
509 | return active; | 2157 | if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) |
2158 | complete(&wq->first_flusher->done); | ||
2159 | |||
2160 | return wait; | ||
510 | } | 2161 | } |
511 | 2162 | ||
512 | /** | 2163 | /** |
@@ -518,158 +2169,340 @@ static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | |||
518 | * | 2169 | * |
519 | * We sleep until all works which were queued on entry have been handled, | 2170 | * We sleep until all works which were queued on entry have been handled, |
520 | * but we are not livelocked by new incoming ones. | 2171 | * but we are not livelocked by new incoming ones. |
521 | * | ||
522 | * This function used to run the workqueues itself. Now we just wait for the | ||
523 | * helper threads to do it. | ||
524 | */ | 2172 | */ |
525 | void flush_workqueue(struct workqueue_struct *wq) | 2173 | void flush_workqueue(struct workqueue_struct *wq) |
526 | { | 2174 | { |
527 | const struct cpumask *cpu_map = wq_cpu_map(wq); | 2175 | struct wq_flusher this_flusher = { |
528 | int cpu; | 2176 | .list = LIST_HEAD_INIT(this_flusher.list), |
2177 | .flush_color = -1, | ||
2178 | .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), | ||
2179 | }; | ||
2180 | int next_color; | ||
529 | 2181 | ||
530 | might_sleep(); | ||
531 | lock_map_acquire(&wq->lockdep_map); | 2182 | lock_map_acquire(&wq->lockdep_map); |
532 | lock_map_release(&wq->lockdep_map); | 2183 | lock_map_release(&wq->lockdep_map); |
533 | for_each_cpu(cpu, cpu_map) | 2184 | |
534 | flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); | 2185 | mutex_lock(&wq->flush_mutex); |
2186 | |||
2187 | /* | ||
2188 | * Start-to-wait phase | ||
2189 | */ | ||
2190 | next_color = work_next_color(wq->work_color); | ||
2191 | |||
2192 | if (next_color != wq->flush_color) { | ||
2193 | /* | ||
2194 | * Color space is not full. The current work_color | ||
2195 | * becomes our flush_color and work_color is advanced | ||
2196 | * by one. | ||
2197 | */ | ||
2198 | BUG_ON(!list_empty(&wq->flusher_overflow)); | ||
2199 | this_flusher.flush_color = wq->work_color; | ||
2200 | wq->work_color = next_color; | ||
2201 | |||
2202 | if (!wq->first_flusher) { | ||
2203 | /* no flush in progress, become the first flusher */ | ||
2204 | BUG_ON(wq->flush_color != this_flusher.flush_color); | ||
2205 | |||
2206 | wq->first_flusher = &this_flusher; | ||
2207 | |||
2208 | if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, | ||
2209 | wq->work_color)) { | ||
2210 | /* nothing to flush, done */ | ||
2211 | wq->flush_color = next_color; | ||
2212 | wq->first_flusher = NULL; | ||
2213 | goto out_unlock; | ||
2214 | } | ||
2215 | } else { | ||
2216 | /* wait in queue */ | ||
2217 | BUG_ON(wq->flush_color == this_flusher.flush_color); | ||
2218 | list_add_tail(&this_flusher.list, &wq->flusher_queue); | ||
2219 | flush_workqueue_prep_cwqs(wq, -1, wq->work_color); | ||
2220 | } | ||
2221 | } else { | ||
2222 | /* | ||
2223 | * Oops, color space is full, wait on overflow queue. | ||
2224 | * The next flush completion will assign us | ||
2225 | * flush_color and transfer to flusher_queue. | ||
2226 | */ | ||
2227 | list_add_tail(&this_flusher.list, &wq->flusher_overflow); | ||
2228 | } | ||
2229 | |||
2230 | mutex_unlock(&wq->flush_mutex); | ||
2231 | |||
2232 | wait_for_completion(&this_flusher.done); | ||
2233 | |||
2234 | /* | ||
2235 | * Wake-up-and-cascade phase | ||
2236 | * | ||
2237 | * First flushers are responsible for cascading flushes and | ||
2238 | * handling overflow. Non-first flushers can simply return. | ||
2239 | */ | ||
2240 | if (wq->first_flusher != &this_flusher) | ||
2241 | return; | ||
2242 | |||
2243 | mutex_lock(&wq->flush_mutex); | ||
2244 | |||
2245 | /* we might have raced, check again with mutex held */ | ||
2246 | if (wq->first_flusher != &this_flusher) | ||
2247 | goto out_unlock; | ||
2248 | |||
2249 | wq->first_flusher = NULL; | ||
2250 | |||
2251 | BUG_ON(!list_empty(&this_flusher.list)); | ||
2252 | BUG_ON(wq->flush_color != this_flusher.flush_color); | ||
2253 | |||
2254 | while (true) { | ||
2255 | struct wq_flusher *next, *tmp; | ||
2256 | |||
2257 | /* complete all the flushers sharing the current flush color */ | ||
2258 | list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { | ||
2259 | if (next->flush_color != wq->flush_color) | ||
2260 | break; | ||
2261 | list_del_init(&next->list); | ||
2262 | complete(&next->done); | ||
2263 | } | ||
2264 | |||
2265 | BUG_ON(!list_empty(&wq->flusher_overflow) && | ||
2266 | wq->flush_color != work_next_color(wq->work_color)); | ||
2267 | |||
2268 | /* this flush_color is finished, advance by one */ | ||
2269 | wq->flush_color = work_next_color(wq->flush_color); | ||
2270 | |||
2271 | /* one color has been freed, handle overflow queue */ | ||
2272 | if (!list_empty(&wq->flusher_overflow)) { | ||
2273 | /* | ||
2274 | * Assign the same color to all overflowed | ||
2275 | * flushers, advance work_color and append to | ||
2276 | * flusher_queue. This is the start-to-wait | ||
2277 | * phase for these overflowed flushers. | ||
2278 | */ | ||
2279 | list_for_each_entry(tmp, &wq->flusher_overflow, list) | ||
2280 | tmp->flush_color = wq->work_color; | ||
2281 | |||
2282 | wq->work_color = work_next_color(wq->work_color); | ||
2283 | |||
2284 | list_splice_tail_init(&wq->flusher_overflow, | ||
2285 | &wq->flusher_queue); | ||
2286 | flush_workqueue_prep_cwqs(wq, -1, wq->work_color); | ||
2287 | } | ||
2288 | |||
2289 | if (list_empty(&wq->flusher_queue)) { | ||
2290 | BUG_ON(wq->flush_color != wq->work_color); | ||
2291 | break; | ||
2292 | } | ||
2293 | |||
2294 | /* | ||
2295 | * Need to flush more colors. Make the next flusher | ||
2296 | * the new first flusher and arm cwqs. | ||
2297 | */ | ||
2298 | BUG_ON(wq->flush_color == wq->work_color); | ||
2299 | BUG_ON(wq->flush_color != next->flush_color); | ||
2300 | |||
2301 | list_del_init(&next->list); | ||
2302 | wq->first_flusher = next; | ||
2303 | |||
2304 | if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) | ||
2305 | break; | ||
2306 | |||
2307 | /* | ||
2308 | * Meh... this color is already done, clear first | ||
2309 | * flusher and repeat cascading. | ||
2310 | */ | ||
2311 | wq->first_flusher = NULL; | ||
2312 | } | ||
2313 | |||
2314 | out_unlock: | ||
2315 | mutex_unlock(&wq->flush_mutex); | ||
535 | } | 2316 | } |
536 | EXPORT_SYMBOL_GPL(flush_workqueue); | 2317 | EXPORT_SYMBOL_GPL(flush_workqueue); |
537 | 2318 | ||
538 | /** | 2319 | static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, |
539 | * flush_work - block until a work_struct's callback has terminated | 2320 | bool wait_executing) |
540 | * @work: the work which is to be flushed | ||
541 | * | ||
542 | * Returns false if @work has already terminated. | ||
543 | * | ||
544 | * It is expected that, prior to calling flush_work(), the caller has | ||
545 | * arranged for the work to not be requeued, otherwise it doesn't make | ||
546 | * sense to use this function. | ||
547 | */ | ||
548 | int flush_work(struct work_struct *work) | ||
549 | { | 2321 | { |
2322 | struct worker *worker = NULL; | ||
2323 | struct global_cwq *gcwq; | ||
550 | struct cpu_workqueue_struct *cwq; | 2324 | struct cpu_workqueue_struct *cwq; |
551 | struct list_head *prev; | ||
552 | struct wq_barrier barr; | ||
553 | 2325 | ||
554 | might_sleep(); | 2326 | might_sleep(); |
555 | cwq = get_wq_data(work); | 2327 | gcwq = get_work_gcwq(work); |
556 | if (!cwq) | 2328 | if (!gcwq) |
557 | return 0; | 2329 | return false; |
558 | |||
559 | lock_map_acquire(&cwq->wq->lockdep_map); | ||
560 | lock_map_release(&cwq->wq->lockdep_map); | ||
561 | 2330 | ||
562 | prev = NULL; | 2331 | spin_lock_irq(&gcwq->lock); |
563 | spin_lock_irq(&cwq->lock); | ||
564 | if (!list_empty(&work->entry)) { | 2332 | if (!list_empty(&work->entry)) { |
565 | /* | 2333 | /* |
566 | * See the comment near try_to_grab_pending()->smp_rmb(). | 2334 | * See the comment near try_to_grab_pending()->smp_rmb(). |
567 | * If it was re-queued under us we are not going to wait. | 2335 | * If it was re-queued to a different gcwq under us, we |
2336 | * are not going to wait. | ||
568 | */ | 2337 | */ |
569 | smp_rmb(); | 2338 | smp_rmb(); |
570 | if (unlikely(cwq != get_wq_data(work))) | 2339 | cwq = get_work_cwq(work); |
571 | goto out; | 2340 | if (unlikely(!cwq || gcwq != cwq->gcwq)) |
572 | prev = &work->entry; | 2341 | goto already_gone; |
573 | } else { | 2342 | } else if (wait_executing) { |
574 | if (cwq->current_work != work) | 2343 | worker = find_worker_executing_work(gcwq, work); |
575 | goto out; | 2344 | if (!worker) |
576 | prev = &cwq->worklist; | 2345 | goto already_gone; |
577 | } | 2346 | cwq = worker->current_cwq; |
578 | insert_wq_barrier(cwq, &barr, prev->next); | 2347 | } else |
579 | out: | 2348 | goto already_gone; |
580 | spin_unlock_irq(&cwq->lock); | 2349 | |
581 | if (!prev) | 2350 | insert_wq_barrier(cwq, barr, work, worker); |
582 | return 0; | 2351 | spin_unlock_irq(&gcwq->lock); |
583 | 2352 | ||
584 | wait_for_completion(&barr.done); | 2353 | lock_map_acquire(&cwq->wq->lockdep_map); |
585 | destroy_work_on_stack(&barr.work); | 2354 | lock_map_release(&cwq->wq->lockdep_map); |
586 | return 1; | 2355 | return true; |
2356 | already_gone: | ||
2357 | spin_unlock_irq(&gcwq->lock); | ||
2358 | return false; | ||
2359 | } | ||
2360 | |||
2361 | /** | ||
2362 | * flush_work - wait for a work to finish executing the last queueing instance | ||
2363 | * @work: the work to flush | ||
2364 | * | ||
2365 | * Wait until @work has finished execution. This function considers | ||
2366 | * only the last queueing instance of @work. If @work has been | ||
2367 | * enqueued across different CPUs on a non-reentrant workqueue or on | ||
2368 | * multiple workqueues, @work might still be executing on return on | ||
2369 | * some of the CPUs from earlier queueing. | ||
2370 | * | ||
2371 | * If @work was queued only on a non-reentrant, ordered or unbound | ||
2372 | * workqueue, @work is guaranteed to be idle on return if it hasn't | ||
2373 | * been requeued since flush started. | ||
2374 | * | ||
2375 | * RETURNS: | ||
2376 | * %true if flush_work() waited for the work to finish execution, | ||
2377 | * %false if it was already idle. | ||
2378 | */ | ||
2379 | bool flush_work(struct work_struct *work) | ||
2380 | { | ||
2381 | struct wq_barrier barr; | ||
2382 | |||
2383 | if (start_flush_work(work, &barr, true)) { | ||
2384 | wait_for_completion(&barr.done); | ||
2385 | destroy_work_on_stack(&barr.work); | ||
2386 | return true; | ||
2387 | } else | ||
2388 | return false; | ||
587 | } | 2389 | } |
588 | EXPORT_SYMBOL_GPL(flush_work); | 2390 | EXPORT_SYMBOL_GPL(flush_work); |
589 | 2391 | ||
2392 | static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) | ||
2393 | { | ||
2394 | struct wq_barrier barr; | ||
2395 | struct worker *worker; | ||
2396 | |||
2397 | spin_lock_irq(&gcwq->lock); | ||
2398 | |||
2399 | worker = find_worker_executing_work(gcwq, work); | ||
2400 | if (unlikely(worker)) | ||
2401 | insert_wq_barrier(worker->current_cwq, &barr, work, worker); | ||
2402 | |||
2403 | spin_unlock_irq(&gcwq->lock); | ||
2404 | |||
2405 | if (unlikely(worker)) { | ||
2406 | wait_for_completion(&barr.done); | ||
2407 | destroy_work_on_stack(&barr.work); | ||
2408 | return true; | ||
2409 | } else | ||
2410 | return false; | ||
2411 | } | ||
2412 | |||
2413 | static bool wait_on_work(struct work_struct *work) | ||
2414 | { | ||
2415 | bool ret = false; | ||
2416 | int cpu; | ||
2417 | |||
2418 | might_sleep(); | ||
2419 | |||
2420 | lock_map_acquire(&work->lockdep_map); | ||
2421 | lock_map_release(&work->lockdep_map); | ||
2422 | |||
2423 | for_each_gcwq_cpu(cpu) | ||
2424 | ret |= wait_on_cpu_work(get_gcwq(cpu), work); | ||
2425 | return ret; | ||
2426 | } | ||
2427 | |||
2428 | /** | ||
2429 | * flush_work_sync - wait until a work has finished execution | ||
2430 | * @work: the work to flush | ||
2431 | * | ||
2432 | * Wait until @work has finished execution. On return, it's | ||
2433 | * guaranteed that all queueing instances of @work which happened | ||
2434 | * before this function is called are finished. In other words, if | ||
2435 | * @work hasn't been requeued since this function was called, @work is | ||
2436 | * guaranteed to be idle on return. | ||
2437 | * | ||
2438 | * RETURNS: | ||
2439 | * %true if flush_work_sync() waited for the work to finish execution, | ||
2440 | * %false if it was already idle. | ||
2441 | */ | ||
2442 | bool flush_work_sync(struct work_struct *work) | ||
2443 | { | ||
2444 | struct wq_barrier barr; | ||
2445 | bool pending, waited; | ||
2446 | |||
2447 | /* we'll wait for executions separately, queue barr only if pending */ | ||
2448 | pending = start_flush_work(work, &barr, false); | ||
2449 | |||
2450 | /* wait for executions to finish */ | ||
2451 | waited = wait_on_work(work); | ||
2452 | |||
2453 | /* wait for the pending one */ | ||
2454 | if (pending) { | ||
2455 | wait_for_completion(&barr.done); | ||
2456 | destroy_work_on_stack(&barr.work); | ||
2457 | } | ||
2458 | |||
2459 | return pending || waited; | ||
2460 | } | ||
2461 | EXPORT_SYMBOL_GPL(flush_work_sync); | ||
2462 | |||
590 | /* | 2463 | /* |
591 | * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, | 2464 | * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, |
592 | * so this work can't be re-armed in any way. | 2465 | * so this work can't be re-armed in any way. |
593 | */ | 2466 | */ |
594 | static int try_to_grab_pending(struct work_struct *work) | 2467 | static int try_to_grab_pending(struct work_struct *work) |
595 | { | 2468 | { |
596 | struct cpu_workqueue_struct *cwq; | 2469 | struct global_cwq *gcwq; |
597 | int ret = -1; | 2470 | int ret = -1; |
598 | 2471 | ||
599 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) | 2472 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) |
600 | return 0; | 2473 | return 0; |
601 | 2474 | ||
602 | /* | 2475 | /* |
603 | * The queueing is in progress, or it is already queued. Try to | 2476 | * The queueing is in progress, or it is already queued. Try to |
604 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. | 2477 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. |
605 | */ | 2478 | */ |
606 | 2479 | gcwq = get_work_gcwq(work); | |
607 | cwq = get_wq_data(work); | 2480 | if (!gcwq) |
608 | if (!cwq) | ||
609 | return ret; | 2481 | return ret; |
610 | 2482 | ||
611 | spin_lock_irq(&cwq->lock); | 2483 | spin_lock_irq(&gcwq->lock); |
612 | if (!list_empty(&work->entry)) { | 2484 | if (!list_empty(&work->entry)) { |
613 | /* | 2485 | /* |
614 | * This work is queued, but perhaps we locked the wrong cwq. | 2486 | * This work is queued, but perhaps we locked the wrong gcwq. |
615 | * In that case we must see the new value after rmb(), see | 2487 | * In that case we must see the new value after rmb(), see |
616 | * insert_work()->wmb(). | 2488 | * insert_work()->wmb(). |
617 | */ | 2489 | */ |
618 | smp_rmb(); | 2490 | smp_rmb(); |
619 | if (cwq == get_wq_data(work)) { | 2491 | if (gcwq == get_work_gcwq(work)) { |
620 | debug_work_deactivate(work); | 2492 | debug_work_deactivate(work); |
621 | list_del_init(&work->entry); | 2493 | list_del_init(&work->entry); |
2494 | cwq_dec_nr_in_flight(get_work_cwq(work), | ||
2495 | get_work_color(work), | ||
2496 | *work_data_bits(work) & WORK_STRUCT_DELAYED); | ||
622 | ret = 1; | 2497 | ret = 1; |
623 | } | 2498 | } |
624 | } | 2499 | } |
625 | spin_unlock_irq(&cwq->lock); | 2500 | spin_unlock_irq(&gcwq->lock); |
626 | 2501 | ||
627 | return ret; | 2502 | return ret; |
628 | } | 2503 | } |
629 | 2504 | ||
630 | static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, | 2505 | static bool __cancel_work_timer(struct work_struct *work, |
631 | struct work_struct *work) | ||
632 | { | ||
633 | struct wq_barrier barr; | ||
634 | int running = 0; | ||
635 | |||
636 | spin_lock_irq(&cwq->lock); | ||
637 | if (unlikely(cwq->current_work == work)) { | ||
638 | insert_wq_barrier(cwq, &barr, cwq->worklist.next); | ||
639 | running = 1; | ||
640 | } | ||
641 | spin_unlock_irq(&cwq->lock); | ||
642 | |||
643 | if (unlikely(running)) { | ||
644 | wait_for_completion(&barr.done); | ||
645 | destroy_work_on_stack(&barr.work); | ||
646 | } | ||
647 | } | ||
648 | |||
649 | static void wait_on_work(struct work_struct *work) | ||
650 | { | ||
651 | struct cpu_workqueue_struct *cwq; | ||
652 | struct workqueue_struct *wq; | ||
653 | const struct cpumask *cpu_map; | ||
654 | int cpu; | ||
655 | |||
656 | might_sleep(); | ||
657 | |||
658 | lock_map_acquire(&work->lockdep_map); | ||
659 | lock_map_release(&work->lockdep_map); | ||
660 | |||
661 | cwq = get_wq_data(work); | ||
662 | if (!cwq) | ||
663 | return; | ||
664 | |||
665 | wq = cwq->wq; | ||
666 | cpu_map = wq_cpu_map(wq); | ||
667 | |||
668 | for_each_cpu(cpu, cpu_map) | ||
669 | wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); | ||
670 | } | ||
671 | |||
672 | static int __cancel_work_timer(struct work_struct *work, | ||
673 | struct timer_list* timer) | 2506 | struct timer_list* timer) |
674 | { | 2507 | { |
675 | int ret; | 2508 | int ret; |
@@ -681,54 +2514,91 @@ static int __cancel_work_timer(struct work_struct *work, | |||
681 | wait_on_work(work); | 2514 | wait_on_work(work); |
682 | } while (unlikely(ret < 0)); | 2515 | } while (unlikely(ret < 0)); |
683 | 2516 | ||
684 | clear_wq_data(work); | 2517 | clear_work_data(work); |
685 | return ret; | 2518 | return ret; |
686 | } | 2519 | } |
687 | 2520 | ||
688 | /** | 2521 | /** |
689 | * cancel_work_sync - block until a work_struct's callback has terminated | 2522 | * cancel_work_sync - cancel a work and wait for it to finish |
690 | * @work: the work which is to be flushed | 2523 | * @work: the work to cancel |
691 | * | ||
692 | * Returns true if @work was pending. | ||
693 | * | 2524 | * |
694 | * cancel_work_sync() will cancel the work if it is queued. If the work's | 2525 | * Cancel @work and wait for its execution to finish. This function |
695 | * callback appears to be running, cancel_work_sync() will block until it | 2526 | * can be used even if the work re-queues itself or migrates to |
696 | * has completed. | 2527 | * another workqueue. On return from this function, @work is |
2528 | * guaranteed to be not pending or executing on any CPU. | ||
697 | * | 2529 | * |
698 | * It is possible to use this function if the work re-queues itself. It can | 2530 | * cancel_work_sync(&delayed_work->work) must not be used for |
699 | * cancel the work even if it migrates to another workqueue, however in that | 2531 | * delayed_work's. Use cancel_delayed_work_sync() instead. |
700 | * case it only guarantees that work->func() has completed on the last queued | ||
701 | * workqueue. | ||
702 | * | ||
703 | * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not | ||
704 | * pending, otherwise it goes into a busy-wait loop until the timer expires. | ||
705 | * | 2532 | * |
706 | * The caller must ensure that workqueue_struct on which this work was last | 2533 | * The caller must ensure that the workqueue on which @work was last |
707 | * queued can't be destroyed before this function returns. | 2534 | * queued can't be destroyed before this function returns. |
2535 | * | ||
2536 | * RETURNS: | ||
2537 | * %true if @work was pending, %false otherwise. | ||
708 | */ | 2538 | */ |
709 | int cancel_work_sync(struct work_struct *work) | 2539 | bool cancel_work_sync(struct work_struct *work) |
710 | { | 2540 | { |
711 | return __cancel_work_timer(work, NULL); | 2541 | return __cancel_work_timer(work, NULL); |
712 | } | 2542 | } |
713 | EXPORT_SYMBOL_GPL(cancel_work_sync); | 2543 | EXPORT_SYMBOL_GPL(cancel_work_sync); |
714 | 2544 | ||
715 | /** | 2545 | /** |
716 | * cancel_delayed_work_sync - reliably kill off a delayed work. | 2546 | * flush_delayed_work - wait for a dwork to finish executing the last queueing |
717 | * @dwork: the delayed work struct | 2547 | * @dwork: the delayed work to flush |
718 | * | 2548 | * |
719 | * Returns true if @dwork was pending. | 2549 | * Delayed timer is cancelled and the pending work is queued for |
2550 | * immediate execution. Like flush_work(), this function only | ||
2551 | * considers the last queueing instance of @dwork. | ||
720 | * | 2552 | * |
721 | * It is possible to use this function if @dwork rearms itself via queue_work() | 2553 | * RETURNS: |
722 | * or queue_delayed_work(). See also the comment for cancel_work_sync(). | 2554 | * %true if flush_work() waited for the work to finish execution, |
2555 | * %false if it was already idle. | ||
723 | */ | 2556 | */ |
724 | int cancel_delayed_work_sync(struct delayed_work *dwork) | 2557 | bool flush_delayed_work(struct delayed_work *dwork) |
2558 | { | ||
2559 | if (del_timer_sync(&dwork->timer)) | ||
2560 | __queue_work(raw_smp_processor_id(), | ||
2561 | get_work_cwq(&dwork->work)->wq, &dwork->work); | ||
2562 | return flush_work(&dwork->work); | ||
2563 | } | ||
2564 | EXPORT_SYMBOL(flush_delayed_work); | ||
2565 | |||
2566 | /** | ||
2567 | * flush_delayed_work_sync - wait for a dwork to finish | ||
2568 | * @dwork: the delayed work to flush | ||
2569 | * | ||
2570 | * Delayed timer is cancelled and the pending work is queued for | ||
2571 | * execution immediately. Other than timer handling, its behavior | ||
2572 | * is identical to flush_work_sync(). | ||
2573 | * | ||
2574 | * RETURNS: | ||
2575 | * %true if flush_work_sync() waited for the work to finish execution, | ||
2576 | * %false if it was already idle. | ||
2577 | */ | ||
2578 | bool flush_delayed_work_sync(struct delayed_work *dwork) | ||
2579 | { | ||
2580 | if (del_timer_sync(&dwork->timer)) | ||
2581 | __queue_work(raw_smp_processor_id(), | ||
2582 | get_work_cwq(&dwork->work)->wq, &dwork->work); | ||
2583 | return flush_work_sync(&dwork->work); | ||
2584 | } | ||
2585 | EXPORT_SYMBOL(flush_delayed_work_sync); | ||
2586 | |||
2587 | /** | ||
2588 | * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish | ||
2589 | * @dwork: the delayed work cancel | ||
2590 | * | ||
2591 | * This is cancel_work_sync() for delayed works. | ||
2592 | * | ||
2593 | * RETURNS: | ||
2594 | * %true if @dwork was pending, %false otherwise. | ||
2595 | */ | ||
2596 | bool cancel_delayed_work_sync(struct delayed_work *dwork) | ||
725 | { | 2597 | { |
726 | return __cancel_work_timer(&dwork->work, &dwork->timer); | 2598 | return __cancel_work_timer(&dwork->work, &dwork->timer); |
727 | } | 2599 | } |
728 | EXPORT_SYMBOL(cancel_delayed_work_sync); | 2600 | EXPORT_SYMBOL(cancel_delayed_work_sync); |
729 | 2601 | ||
730 | static struct workqueue_struct *keventd_wq __read_mostly; | ||
731 | |||
732 | /** | 2602 | /** |
733 | * schedule_work - put work task in global workqueue | 2603 | * schedule_work - put work task in global workqueue |
734 | * @work: job to be done | 2604 | * @work: job to be done |
@@ -742,7 +2612,7 @@ static struct workqueue_struct *keventd_wq __read_mostly; | |||
742 | */ | 2612 | */ |
743 | int schedule_work(struct work_struct *work) | 2613 | int schedule_work(struct work_struct *work) |
744 | { | 2614 | { |
745 | return queue_work(keventd_wq, work); | 2615 | return queue_work(system_wq, work); |
746 | } | 2616 | } |
747 | EXPORT_SYMBOL(schedule_work); | 2617 | EXPORT_SYMBOL(schedule_work); |
748 | 2618 | ||
@@ -755,7 +2625,7 @@ EXPORT_SYMBOL(schedule_work); | |||
755 | */ | 2625 | */ |
756 | int schedule_work_on(int cpu, struct work_struct *work) | 2626 | int schedule_work_on(int cpu, struct work_struct *work) |
757 | { | 2627 | { |
758 | return queue_work_on(cpu, keventd_wq, work); | 2628 | return queue_work_on(cpu, system_wq, work); |
759 | } | 2629 | } |
760 | EXPORT_SYMBOL(schedule_work_on); | 2630 | EXPORT_SYMBOL(schedule_work_on); |
761 | 2631 | ||
@@ -770,29 +2640,11 @@ EXPORT_SYMBOL(schedule_work_on); | |||
770 | int schedule_delayed_work(struct delayed_work *dwork, | 2640 | int schedule_delayed_work(struct delayed_work *dwork, |
771 | unsigned long delay) | 2641 | unsigned long delay) |
772 | { | 2642 | { |
773 | return queue_delayed_work(keventd_wq, dwork, delay); | 2643 | return queue_delayed_work(system_wq, dwork, delay); |
774 | } | 2644 | } |
775 | EXPORT_SYMBOL(schedule_delayed_work); | 2645 | EXPORT_SYMBOL(schedule_delayed_work); |
776 | 2646 | ||
777 | /** | 2647 | /** |
778 | * flush_delayed_work - block until a dwork_struct's callback has terminated | ||
779 | * @dwork: the delayed work which is to be flushed | ||
780 | * | ||
781 | * Any timeout is cancelled, and any pending work is run immediately. | ||
782 | */ | ||
783 | void flush_delayed_work(struct delayed_work *dwork) | ||
784 | { | ||
785 | if (del_timer_sync(&dwork->timer)) { | ||
786 | struct cpu_workqueue_struct *cwq; | ||
787 | cwq = wq_per_cpu(get_wq_data(&dwork->work)->wq, get_cpu()); | ||
788 | __queue_work(cwq, &dwork->work); | ||
789 | put_cpu(); | ||
790 | } | ||
791 | flush_work(&dwork->work); | ||
792 | } | ||
793 | EXPORT_SYMBOL(flush_delayed_work); | ||
794 | |||
795 | /** | ||
796 | * schedule_delayed_work_on - queue work in global workqueue on CPU after delay | 2648 | * schedule_delayed_work_on - queue work in global workqueue on CPU after delay |
797 | * @cpu: cpu to use | 2649 | * @cpu: cpu to use |
798 | * @dwork: job to be done | 2650 | * @dwork: job to be done |
@@ -804,24 +2656,25 @@ EXPORT_SYMBOL(flush_delayed_work); | |||
804 | int schedule_delayed_work_on(int cpu, | 2656 | int schedule_delayed_work_on(int cpu, |
805 | struct delayed_work *dwork, unsigned long delay) | 2657 | struct delayed_work *dwork, unsigned long delay) |
806 | { | 2658 | { |
807 | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); | 2659 | return queue_delayed_work_on(cpu, system_wq, dwork, delay); |
808 | } | 2660 | } |
809 | EXPORT_SYMBOL(schedule_delayed_work_on); | 2661 | EXPORT_SYMBOL(schedule_delayed_work_on); |
810 | 2662 | ||
811 | /** | 2663 | /** |
812 | * schedule_on_each_cpu - call a function on each online CPU from keventd | 2664 | * schedule_on_each_cpu - execute a function synchronously on each online CPU |
813 | * @func: the function to call | 2665 | * @func: the function to call |
814 | * | 2666 | * |
815 | * Returns zero on success. | 2667 | * schedule_on_each_cpu() executes @func on each online CPU using the |
816 | * Returns -ve errno on failure. | 2668 | * system workqueue and blocks until all CPUs have completed. |
817 | * | ||
818 | * schedule_on_each_cpu() is very slow. | 2669 | * schedule_on_each_cpu() is very slow. |
2670 | * | ||
2671 | * RETURNS: | ||
2672 | * 0 on success, -errno on failure. | ||
819 | */ | 2673 | */ |
820 | int schedule_on_each_cpu(work_func_t func) | 2674 | int schedule_on_each_cpu(work_func_t func) |
821 | { | 2675 | { |
822 | int cpu; | 2676 | int cpu; |
823 | int orig = -1; | 2677 | struct work_struct __percpu *works; |
824 | struct work_struct *works; | ||
825 | 2678 | ||
826 | works = alloc_percpu(struct work_struct); | 2679 | works = alloc_percpu(struct work_struct); |
827 | if (!works) | 2680 | if (!works) |
@@ -829,23 +2682,12 @@ int schedule_on_each_cpu(work_func_t func) | |||
829 | 2682 | ||
830 | get_online_cpus(); | 2683 | get_online_cpus(); |
831 | 2684 | ||
832 | /* | ||
833 | * When running in keventd don't schedule a work item on | ||
834 | * itself. Can just call directly because the work queue is | ||
835 | * already bound. This also is faster. | ||
836 | */ | ||
837 | if (current_is_keventd()) | ||
838 | orig = raw_smp_processor_id(); | ||
839 | |||
840 | for_each_online_cpu(cpu) { | 2685 | for_each_online_cpu(cpu) { |
841 | struct work_struct *work = per_cpu_ptr(works, cpu); | 2686 | struct work_struct *work = per_cpu_ptr(works, cpu); |
842 | 2687 | ||
843 | INIT_WORK(work, func); | 2688 | INIT_WORK(work, func); |
844 | if (cpu != orig) | 2689 | schedule_work_on(cpu, work); |
845 | schedule_work_on(cpu, work); | ||
846 | } | 2690 | } |
847 | if (orig >= 0) | ||
848 | func(per_cpu_ptr(works, orig)); | ||
849 | 2691 | ||
850 | for_each_online_cpu(cpu) | 2692 | for_each_online_cpu(cpu) |
851 | flush_work(per_cpu_ptr(works, cpu)); | 2693 | flush_work(per_cpu_ptr(works, cpu)); |
@@ -881,7 +2723,7 @@ int schedule_on_each_cpu(work_func_t func) | |||
881 | */ | 2723 | */ |
882 | void flush_scheduled_work(void) | 2724 | void flush_scheduled_work(void) |
883 | { | 2725 | { |
884 | flush_workqueue(keventd_wq); | 2726 | flush_workqueue(system_wq); |
885 | } | 2727 | } |
886 | EXPORT_SYMBOL(flush_scheduled_work); | 2728 | EXPORT_SYMBOL(flush_scheduled_work); |
887 | 2729 | ||
@@ -913,170 +2755,178 @@ EXPORT_SYMBOL_GPL(execute_in_process_context); | |||
913 | 2755 | ||
914 | int keventd_up(void) | 2756 | int keventd_up(void) |
915 | { | 2757 | { |
916 | return keventd_wq != NULL; | 2758 | return system_wq != NULL; |
917 | } | 2759 | } |
918 | 2760 | ||
919 | int current_is_keventd(void) | 2761 | static int alloc_cwqs(struct workqueue_struct *wq) |
920 | { | 2762 | { |
921 | struct cpu_workqueue_struct *cwq; | 2763 | /* |
922 | int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ | 2764 | * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. |
923 | int ret = 0; | 2765 | * Make sure that the alignment isn't lower than that of |
924 | 2766 | * unsigned long long. | |
925 | BUG_ON(!keventd_wq); | 2767 | */ |
2768 | const size_t size = sizeof(struct cpu_workqueue_struct); | ||
2769 | const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, | ||
2770 | __alignof__(unsigned long long)); | ||
2771 | #ifdef CONFIG_SMP | ||
2772 | bool percpu = !(wq->flags & WQ_UNBOUND); | ||
2773 | #else | ||
2774 | bool percpu = false; | ||
2775 | #endif | ||
926 | 2776 | ||
927 | cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); | 2777 | if (percpu) |
928 | if (current == cwq->thread) | 2778 | wq->cpu_wq.pcpu = __alloc_percpu(size, align); |
929 | ret = 1; | 2779 | else { |
2780 | void *ptr; | ||
930 | 2781 | ||
931 | return ret; | 2782 | /* |
2783 | * Allocate enough room to align cwq and put an extra | ||
2784 | * pointer at the end pointing back to the originally | ||
2785 | * allocated pointer which will be used for free. | ||
2786 | */ | ||
2787 | ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); | ||
2788 | if (ptr) { | ||
2789 | wq->cpu_wq.single = PTR_ALIGN(ptr, align); | ||
2790 | *(void **)(wq->cpu_wq.single + 1) = ptr; | ||
2791 | } | ||
2792 | } | ||
932 | 2793 | ||
2794 | /* just in case, make sure it's actually aligned | ||
2795 | * - this is affected by PERCPU() alignment in vmlinux.lds.S | ||
2796 | */ | ||
2797 | BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); | ||
2798 | return wq->cpu_wq.v ? 0 : -ENOMEM; | ||
933 | } | 2799 | } |
934 | 2800 | ||
935 | static struct cpu_workqueue_struct * | 2801 | static void free_cwqs(struct workqueue_struct *wq) |
936 | init_cpu_workqueue(struct workqueue_struct *wq, int cpu) | ||
937 | { | 2802 | { |
938 | struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 2803 | #ifdef CONFIG_SMP |
939 | 2804 | bool percpu = !(wq->flags & WQ_UNBOUND); | |
940 | cwq->wq = wq; | 2805 | #else |
941 | spin_lock_init(&cwq->lock); | 2806 | bool percpu = false; |
942 | INIT_LIST_HEAD(&cwq->worklist); | 2807 | #endif |
943 | init_waitqueue_head(&cwq->more_work); | ||
944 | 2808 | ||
945 | return cwq; | 2809 | if (percpu) |
2810 | free_percpu(wq->cpu_wq.pcpu); | ||
2811 | else if (wq->cpu_wq.single) { | ||
2812 | /* the pointer to free is stored right after the cwq */ | ||
2813 | kfree(*(void **)(wq->cpu_wq.single + 1)); | ||
2814 | } | ||
946 | } | 2815 | } |
947 | 2816 | ||
948 | static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 2817 | static int wq_clamp_max_active(int max_active, unsigned int flags, |
2818 | const char *name) | ||
949 | { | 2819 | { |
950 | struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; | 2820 | int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; |
951 | struct workqueue_struct *wq = cwq->wq; | ||
952 | const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d"; | ||
953 | struct task_struct *p; | ||
954 | 2821 | ||
955 | p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); | 2822 | if (max_active < 1 || max_active > lim) |
956 | /* | 2823 | printk(KERN_WARNING "workqueue: max_active %d requested for %s " |
957 | * Nobody can add the work_struct to this cwq, | 2824 | "is out of range, clamping between %d and %d\n", |
958 | * if (caller is __create_workqueue) | 2825 | max_active, name, 1, lim); |
959 | * nobody should see this wq | ||
960 | * else // caller is CPU_UP_PREPARE | ||
961 | * cpu is not on cpu_online_map | ||
962 | * so we can abort safely. | ||
963 | */ | ||
964 | if (IS_ERR(p)) | ||
965 | return PTR_ERR(p); | ||
966 | if (cwq->wq->rt) | ||
967 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | ||
968 | cwq->thread = p; | ||
969 | 2826 | ||
970 | trace_workqueue_creation(cwq->thread, cpu); | 2827 | return clamp_val(max_active, 1, lim); |
971 | |||
972 | return 0; | ||
973 | } | 2828 | } |
974 | 2829 | ||
975 | static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 2830 | struct workqueue_struct *__alloc_workqueue_key(const char *name, |
2831 | unsigned int flags, | ||
2832 | int max_active, | ||
2833 | struct lock_class_key *key, | ||
2834 | const char *lock_name) | ||
976 | { | 2835 | { |
977 | struct task_struct *p = cwq->thread; | 2836 | struct workqueue_struct *wq; |
2837 | unsigned int cpu; | ||
978 | 2838 | ||
979 | if (p != NULL) { | 2839 | /* |
980 | if (cpu >= 0) | 2840 | * Workqueues which may be used during memory reclaim should |
981 | kthread_bind(p, cpu); | 2841 | * have a rescuer to guarantee forward progress. |
982 | wake_up_process(p); | 2842 | */ |
983 | } | 2843 | if (flags & WQ_MEM_RECLAIM) |
984 | } | 2844 | flags |= WQ_RESCUER; |
985 | 2845 | ||
986 | struct workqueue_struct *__create_workqueue_key(const char *name, | 2846 | /* |
987 | int singlethread, | 2847 | * Unbound workqueues aren't concurrency managed and should be |
988 | int freezeable, | 2848 | * dispatched to workers immediately. |
989 | int rt, | 2849 | */ |
990 | struct lock_class_key *key, | 2850 | if (flags & WQ_UNBOUND) |
991 | const char *lock_name) | 2851 | flags |= WQ_HIGHPRI; |
992 | { | 2852 | |
993 | struct workqueue_struct *wq; | 2853 | max_active = max_active ?: WQ_DFL_ACTIVE; |
994 | struct cpu_workqueue_struct *cwq; | 2854 | max_active = wq_clamp_max_active(max_active, flags, name); |
995 | int err = 0, cpu; | ||
996 | 2855 | ||
997 | wq = kzalloc(sizeof(*wq), GFP_KERNEL); | 2856 | wq = kzalloc(sizeof(*wq), GFP_KERNEL); |
998 | if (!wq) | 2857 | if (!wq) |
999 | return NULL; | 2858 | goto err; |
1000 | 2859 | ||
1001 | wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); | 2860 | wq->flags = flags; |
1002 | if (!wq->cpu_wq) { | 2861 | wq->saved_max_active = max_active; |
1003 | kfree(wq); | 2862 | mutex_init(&wq->flush_mutex); |
1004 | return NULL; | 2863 | atomic_set(&wq->nr_cwqs_to_flush, 0); |
1005 | } | 2864 | INIT_LIST_HEAD(&wq->flusher_queue); |
2865 | INIT_LIST_HEAD(&wq->flusher_overflow); | ||
1006 | 2866 | ||
1007 | wq->name = name; | 2867 | wq->name = name; |
1008 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); | 2868 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); |
1009 | wq->singlethread = singlethread; | ||
1010 | wq->freezeable = freezeable; | ||
1011 | wq->rt = rt; | ||
1012 | INIT_LIST_HEAD(&wq->list); | 2869 | INIT_LIST_HEAD(&wq->list); |
1013 | 2870 | ||
1014 | if (singlethread) { | 2871 | if (alloc_cwqs(wq) < 0) |
1015 | cwq = init_cpu_workqueue(wq, singlethread_cpu); | 2872 | goto err; |
1016 | err = create_workqueue_thread(cwq, singlethread_cpu); | 2873 | |
1017 | start_workqueue_thread(cwq, -1); | 2874 | for_each_cwq_cpu(cpu, wq) { |
1018 | } else { | 2875 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
1019 | cpu_maps_update_begin(); | 2876 | struct global_cwq *gcwq = get_gcwq(cpu); |
1020 | /* | 2877 | |
1021 | * We must place this wq on list even if the code below fails. | 2878 | BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); |
1022 | * cpu_down(cpu) can remove cpu from cpu_populated_map before | 2879 | cwq->gcwq = gcwq; |
1023 | * destroy_workqueue() takes the lock, in that case we leak | 2880 | cwq->wq = wq; |
1024 | * cwq[cpu]->thread. | 2881 | cwq->flush_color = -1; |
1025 | */ | 2882 | cwq->max_active = max_active; |
1026 | spin_lock(&workqueue_lock); | 2883 | INIT_LIST_HEAD(&cwq->delayed_works); |
1027 | list_add(&wq->list, &workqueues); | ||
1028 | spin_unlock(&workqueue_lock); | ||
1029 | /* | ||
1030 | * We must initialize cwqs for each possible cpu even if we | ||
1031 | * are going to call destroy_workqueue() finally. Otherwise | ||
1032 | * cpu_up() can hit the uninitialized cwq once we drop the | ||
1033 | * lock. | ||
1034 | */ | ||
1035 | for_each_possible_cpu(cpu) { | ||
1036 | cwq = init_cpu_workqueue(wq, cpu); | ||
1037 | if (err || !cpu_online(cpu)) | ||
1038 | continue; | ||
1039 | err = create_workqueue_thread(cwq, cpu); | ||
1040 | start_workqueue_thread(cwq, cpu); | ||
1041 | } | ||
1042 | cpu_maps_update_done(); | ||
1043 | } | 2884 | } |
1044 | 2885 | ||
1045 | if (err) { | 2886 | if (flags & WQ_RESCUER) { |
1046 | destroy_workqueue(wq); | 2887 | struct worker *rescuer; |
1047 | wq = NULL; | 2888 | |
2889 | if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) | ||
2890 | goto err; | ||
2891 | |||
2892 | wq->rescuer = rescuer = alloc_worker(); | ||
2893 | if (!rescuer) | ||
2894 | goto err; | ||
2895 | |||
2896 | rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); | ||
2897 | if (IS_ERR(rescuer->task)) | ||
2898 | goto err; | ||
2899 | |||
2900 | rescuer->task->flags |= PF_THREAD_BOUND; | ||
2901 | wake_up_process(rescuer->task); | ||
1048 | } | 2902 | } |
1049 | return wq; | ||
1050 | } | ||
1051 | EXPORT_SYMBOL_GPL(__create_workqueue_key); | ||
1052 | 2903 | ||
1053 | static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) | ||
1054 | { | ||
1055 | /* | 2904 | /* |
1056 | * Our caller is either destroy_workqueue() or CPU_POST_DEAD, | 2905 | * workqueue_lock protects global freeze state and workqueues |
1057 | * cpu_add_remove_lock protects cwq->thread. | 2906 | * list. Grab it, set max_active accordingly and add the new |
2907 | * workqueue to workqueues list. | ||
1058 | */ | 2908 | */ |
1059 | if (cwq->thread == NULL) | 2909 | spin_lock(&workqueue_lock); |
1060 | return; | ||
1061 | 2910 | ||
1062 | lock_map_acquire(&cwq->wq->lockdep_map); | 2911 | if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) |
1063 | lock_map_release(&cwq->wq->lockdep_map); | 2912 | for_each_cwq_cpu(cpu, wq) |
2913 | get_cwq(cpu, wq)->max_active = 0; | ||
1064 | 2914 | ||
1065 | flush_cpu_workqueue(cwq); | 2915 | list_add(&wq->list, &workqueues); |
1066 | /* | 2916 | |
1067 | * If the caller is CPU_POST_DEAD and cwq->worklist was not empty, | 2917 | spin_unlock(&workqueue_lock); |
1068 | * a concurrent flush_workqueue() can insert a barrier after us. | 2918 | |
1069 | * However, in that case run_workqueue() won't return and check | 2919 | return wq; |
1070 | * kthread_should_stop() until it flushes all work_struct's. | 2920 | err: |
1071 | * When ->worklist becomes empty it is safe to exit because no | 2921 | if (wq) { |
1072 | * more work_structs can be queued on this cwq: flush_workqueue | 2922 | free_cwqs(wq); |
1073 | * checks list_empty(), and a "normal" queue_work() can't use | 2923 | free_mayday_mask(wq->mayday_mask); |
1074 | * a dead CPU. | 2924 | kfree(wq->rescuer); |
1075 | */ | 2925 | kfree(wq); |
1076 | trace_workqueue_destruction(cwq->thread); | 2926 | } |
1077 | kthread_stop(cwq->thread); | 2927 | return NULL; |
1078 | cwq->thread = NULL; | ||
1079 | } | 2928 | } |
2929 | EXPORT_SYMBOL_GPL(__alloc_workqueue_key); | ||
1080 | 2930 | ||
1081 | /** | 2931 | /** |
1082 | * destroy_workqueue - safely terminate a workqueue | 2932 | * destroy_workqueue - safely terminate a workqueue |
@@ -1086,72 +2936,520 @@ static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) | |||
1086 | */ | 2936 | */ |
1087 | void destroy_workqueue(struct workqueue_struct *wq) | 2937 | void destroy_workqueue(struct workqueue_struct *wq) |
1088 | { | 2938 | { |
1089 | const struct cpumask *cpu_map = wq_cpu_map(wq); | 2939 | unsigned int cpu; |
1090 | int cpu; | 2940 | |
2941 | wq->flags |= WQ_DYING; | ||
2942 | flush_workqueue(wq); | ||
1091 | 2943 | ||
1092 | cpu_maps_update_begin(); | 2944 | /* |
2945 | * wq list is used to freeze wq, remove from list after | ||
2946 | * flushing is complete in case freeze races us. | ||
2947 | */ | ||
1093 | spin_lock(&workqueue_lock); | 2948 | spin_lock(&workqueue_lock); |
1094 | list_del(&wq->list); | 2949 | list_del(&wq->list); |
1095 | spin_unlock(&workqueue_lock); | 2950 | spin_unlock(&workqueue_lock); |
1096 | 2951 | ||
1097 | for_each_cpu(cpu, cpu_map) | 2952 | /* sanity check */ |
1098 | cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); | 2953 | for_each_cwq_cpu(cpu, wq) { |
1099 | cpu_maps_update_done(); | 2954 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
2955 | int i; | ||
2956 | |||
2957 | for (i = 0; i < WORK_NR_COLORS; i++) | ||
2958 | BUG_ON(cwq->nr_in_flight[i]); | ||
2959 | BUG_ON(cwq->nr_active); | ||
2960 | BUG_ON(!list_empty(&cwq->delayed_works)); | ||
2961 | } | ||
2962 | |||
2963 | if (wq->flags & WQ_RESCUER) { | ||
2964 | kthread_stop(wq->rescuer->task); | ||
2965 | free_mayday_mask(wq->mayday_mask); | ||
2966 | kfree(wq->rescuer); | ||
2967 | } | ||
1100 | 2968 | ||
1101 | free_percpu(wq->cpu_wq); | 2969 | free_cwqs(wq); |
1102 | kfree(wq); | 2970 | kfree(wq); |
1103 | } | 2971 | } |
1104 | EXPORT_SYMBOL_GPL(destroy_workqueue); | 2972 | EXPORT_SYMBOL_GPL(destroy_workqueue); |
1105 | 2973 | ||
2974 | /** | ||
2975 | * workqueue_set_max_active - adjust max_active of a workqueue | ||
2976 | * @wq: target workqueue | ||
2977 | * @max_active: new max_active value. | ||
2978 | * | ||
2979 | * Set max_active of @wq to @max_active. | ||
2980 | * | ||
2981 | * CONTEXT: | ||
2982 | * Don't call from IRQ context. | ||
2983 | */ | ||
2984 | void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) | ||
2985 | { | ||
2986 | unsigned int cpu; | ||
2987 | |||
2988 | max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); | ||
2989 | |||
2990 | spin_lock(&workqueue_lock); | ||
2991 | |||
2992 | wq->saved_max_active = max_active; | ||
2993 | |||
2994 | for_each_cwq_cpu(cpu, wq) { | ||
2995 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
2996 | |||
2997 | spin_lock_irq(&gcwq->lock); | ||
2998 | |||
2999 | if (!(wq->flags & WQ_FREEZEABLE) || | ||
3000 | !(gcwq->flags & GCWQ_FREEZING)) | ||
3001 | get_cwq(gcwq->cpu, wq)->max_active = max_active; | ||
3002 | |||
3003 | spin_unlock_irq(&gcwq->lock); | ||
3004 | } | ||
3005 | |||
3006 | spin_unlock(&workqueue_lock); | ||
3007 | } | ||
3008 | EXPORT_SYMBOL_GPL(workqueue_set_max_active); | ||
3009 | |||
3010 | /** | ||
3011 | * workqueue_congested - test whether a workqueue is congested | ||
3012 | * @cpu: CPU in question | ||
3013 | * @wq: target workqueue | ||
3014 | * | ||
3015 | * Test whether @wq's cpu workqueue for @cpu is congested. There is | ||
3016 | * no synchronization around this function and the test result is | ||
3017 | * unreliable and only useful as advisory hints or for debugging. | ||
3018 | * | ||
3019 | * RETURNS: | ||
3020 | * %true if congested, %false otherwise. | ||
3021 | */ | ||
3022 | bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) | ||
3023 | { | ||
3024 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3025 | |||
3026 | return !list_empty(&cwq->delayed_works); | ||
3027 | } | ||
3028 | EXPORT_SYMBOL_GPL(workqueue_congested); | ||
3029 | |||
3030 | /** | ||
3031 | * work_cpu - return the last known associated cpu for @work | ||
3032 | * @work: the work of interest | ||
3033 | * | ||
3034 | * RETURNS: | ||
3035 | * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. | ||
3036 | */ | ||
3037 | unsigned int work_cpu(struct work_struct *work) | ||
3038 | { | ||
3039 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
3040 | |||
3041 | return gcwq ? gcwq->cpu : WORK_CPU_NONE; | ||
3042 | } | ||
3043 | EXPORT_SYMBOL_GPL(work_cpu); | ||
3044 | |||
3045 | /** | ||
3046 | * work_busy - test whether a work is currently pending or running | ||
3047 | * @work: the work to be tested | ||
3048 | * | ||
3049 | * Test whether @work is currently pending or running. There is no | ||
3050 | * synchronization around this function and the test result is | ||
3051 | * unreliable and only useful as advisory hints or for debugging. | ||
3052 | * Especially for reentrant wqs, the pending state might hide the | ||
3053 | * running state. | ||
3054 | * | ||
3055 | * RETURNS: | ||
3056 | * OR'd bitmask of WORK_BUSY_* bits. | ||
3057 | */ | ||
3058 | unsigned int work_busy(struct work_struct *work) | ||
3059 | { | ||
3060 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
3061 | unsigned long flags; | ||
3062 | unsigned int ret = 0; | ||
3063 | |||
3064 | if (!gcwq) | ||
3065 | return false; | ||
3066 | |||
3067 | spin_lock_irqsave(&gcwq->lock, flags); | ||
3068 | |||
3069 | if (work_pending(work)) | ||
3070 | ret |= WORK_BUSY_PENDING; | ||
3071 | if (find_worker_executing_work(gcwq, work)) | ||
3072 | ret |= WORK_BUSY_RUNNING; | ||
3073 | |||
3074 | spin_unlock_irqrestore(&gcwq->lock, flags); | ||
3075 | |||
3076 | return ret; | ||
3077 | } | ||
3078 | EXPORT_SYMBOL_GPL(work_busy); | ||
3079 | |||
3080 | /* | ||
3081 | * CPU hotplug. | ||
3082 | * | ||
3083 | * There are two challenges in supporting CPU hotplug. Firstly, there | ||
3084 | * are a lot of assumptions on strong associations among work, cwq and | ||
3085 | * gcwq which make migrating pending and scheduled works very | ||
3086 | * difficult to implement without impacting hot paths. Secondly, | ||
3087 | * gcwqs serve mix of short, long and very long running works making | ||
3088 | * blocked draining impractical. | ||
3089 | * | ||
3090 | * This is solved by allowing a gcwq to be detached from CPU, running | ||
3091 | * it with unbound (rogue) workers and allowing it to be reattached | ||
3092 | * later if the cpu comes back online. A separate thread is created | ||
3093 | * to govern a gcwq in such state and is called the trustee of the | ||
3094 | * gcwq. | ||
3095 | * | ||
3096 | * Trustee states and their descriptions. | ||
3097 | * | ||
3098 | * START Command state used on startup. On CPU_DOWN_PREPARE, a | ||
3099 | * new trustee is started with this state. | ||
3100 | * | ||
3101 | * IN_CHARGE Once started, trustee will enter this state after | ||
3102 | * assuming the manager role and making all existing | ||
3103 | * workers rogue. DOWN_PREPARE waits for trustee to | ||
3104 | * enter this state. After reaching IN_CHARGE, trustee | ||
3105 | * tries to execute the pending worklist until it's empty | ||
3106 | * and the state is set to BUTCHER, or the state is set | ||
3107 | * to RELEASE. | ||
3108 | * | ||
3109 | * BUTCHER Command state which is set by the cpu callback after | ||
3110 | * the cpu has went down. Once this state is set trustee | ||
3111 | * knows that there will be no new works on the worklist | ||
3112 | * and once the worklist is empty it can proceed to | ||
3113 | * killing idle workers. | ||
3114 | * | ||
3115 | * RELEASE Command state which is set by the cpu callback if the | ||
3116 | * cpu down has been canceled or it has come online | ||
3117 | * again. After recognizing this state, trustee stops | ||
3118 | * trying to drain or butcher and clears ROGUE, rebinds | ||
3119 | * all remaining workers back to the cpu and releases | ||
3120 | * manager role. | ||
3121 | * | ||
3122 | * DONE Trustee will enter this state after BUTCHER or RELEASE | ||
3123 | * is complete. | ||
3124 | * | ||
3125 | * trustee CPU draining | ||
3126 | * took over down complete | ||
3127 | * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE | ||
3128 | * | | ^ | ||
3129 | * | CPU is back online v return workers | | ||
3130 | * ----------------> RELEASE -------------- | ||
3131 | */ | ||
3132 | |||
3133 | /** | ||
3134 | * trustee_wait_event_timeout - timed event wait for trustee | ||
3135 | * @cond: condition to wait for | ||
3136 | * @timeout: timeout in jiffies | ||
3137 | * | ||
3138 | * wait_event_timeout() for trustee to use. Handles locking and | ||
3139 | * checks for RELEASE request. | ||
3140 | * | ||
3141 | * CONTEXT: | ||
3142 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3143 | * multiple times. To be used by trustee. | ||
3144 | * | ||
3145 | * RETURNS: | ||
3146 | * Positive indicating left time if @cond is satisfied, 0 if timed | ||
3147 | * out, -1 if canceled. | ||
3148 | */ | ||
3149 | #define trustee_wait_event_timeout(cond, timeout) ({ \ | ||
3150 | long __ret = (timeout); \ | ||
3151 | while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ | ||
3152 | __ret) { \ | ||
3153 | spin_unlock_irq(&gcwq->lock); \ | ||
3154 | __wait_event_timeout(gcwq->trustee_wait, (cond) || \ | ||
3155 | (gcwq->trustee_state == TRUSTEE_RELEASE), \ | ||
3156 | __ret); \ | ||
3157 | spin_lock_irq(&gcwq->lock); \ | ||
3158 | } \ | ||
3159 | gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ | ||
3160 | }) | ||
3161 | |||
3162 | /** | ||
3163 | * trustee_wait_event - event wait for trustee | ||
3164 | * @cond: condition to wait for | ||
3165 | * | ||
3166 | * wait_event() for trustee to use. Automatically handles locking and | ||
3167 | * checks for CANCEL request. | ||
3168 | * | ||
3169 | * CONTEXT: | ||
3170 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3171 | * multiple times. To be used by trustee. | ||
3172 | * | ||
3173 | * RETURNS: | ||
3174 | * 0 if @cond is satisfied, -1 if canceled. | ||
3175 | */ | ||
3176 | #define trustee_wait_event(cond) ({ \ | ||
3177 | long __ret1; \ | ||
3178 | __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ | ||
3179 | __ret1 < 0 ? -1 : 0; \ | ||
3180 | }) | ||
3181 | |||
3182 | static int __cpuinit trustee_thread(void *__gcwq) | ||
3183 | { | ||
3184 | struct global_cwq *gcwq = __gcwq; | ||
3185 | struct worker *worker; | ||
3186 | struct work_struct *work; | ||
3187 | struct hlist_node *pos; | ||
3188 | long rc; | ||
3189 | int i; | ||
3190 | |||
3191 | BUG_ON(gcwq->cpu != smp_processor_id()); | ||
3192 | |||
3193 | spin_lock_irq(&gcwq->lock); | ||
3194 | /* | ||
3195 | * Claim the manager position and make all workers rogue. | ||
3196 | * Trustee must be bound to the target cpu and can't be | ||
3197 | * cancelled. | ||
3198 | */ | ||
3199 | BUG_ON(gcwq->cpu != smp_processor_id()); | ||
3200 | rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); | ||
3201 | BUG_ON(rc < 0); | ||
3202 | |||
3203 | gcwq->flags |= GCWQ_MANAGING_WORKERS; | ||
3204 | |||
3205 | list_for_each_entry(worker, &gcwq->idle_list, entry) | ||
3206 | worker->flags |= WORKER_ROGUE; | ||
3207 | |||
3208 | for_each_busy_worker(worker, i, pos, gcwq) | ||
3209 | worker->flags |= WORKER_ROGUE; | ||
3210 | |||
3211 | /* | ||
3212 | * Call schedule() so that we cross rq->lock and thus can | ||
3213 | * guarantee sched callbacks see the rogue flag. This is | ||
3214 | * necessary as scheduler callbacks may be invoked from other | ||
3215 | * cpus. | ||
3216 | */ | ||
3217 | spin_unlock_irq(&gcwq->lock); | ||
3218 | schedule(); | ||
3219 | spin_lock_irq(&gcwq->lock); | ||
3220 | |||
3221 | /* | ||
3222 | * Sched callbacks are disabled now. Zap nr_running. After | ||
3223 | * this, nr_running stays zero and need_more_worker() and | ||
3224 | * keep_working() are always true as long as the worklist is | ||
3225 | * not empty. | ||
3226 | */ | ||
3227 | atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); | ||
3228 | |||
3229 | spin_unlock_irq(&gcwq->lock); | ||
3230 | del_timer_sync(&gcwq->idle_timer); | ||
3231 | spin_lock_irq(&gcwq->lock); | ||
3232 | |||
3233 | /* | ||
3234 | * We're now in charge. Notify and proceed to drain. We need | ||
3235 | * to keep the gcwq running during the whole CPU down | ||
3236 | * procedure as other cpu hotunplug callbacks may need to | ||
3237 | * flush currently running tasks. | ||
3238 | */ | ||
3239 | gcwq->trustee_state = TRUSTEE_IN_CHARGE; | ||
3240 | wake_up_all(&gcwq->trustee_wait); | ||
3241 | |||
3242 | /* | ||
3243 | * The original cpu is in the process of dying and may go away | ||
3244 | * anytime now. When that happens, we and all workers would | ||
3245 | * be migrated to other cpus. Try draining any left work. We | ||
3246 | * want to get it over with ASAP - spam rescuers, wake up as | ||
3247 | * many idlers as necessary and create new ones till the | ||
3248 | * worklist is empty. Note that if the gcwq is frozen, there | ||
3249 | * may be frozen works in freezeable cwqs. Don't declare | ||
3250 | * completion while frozen. | ||
3251 | */ | ||
3252 | while (gcwq->nr_workers != gcwq->nr_idle || | ||
3253 | gcwq->flags & GCWQ_FREEZING || | ||
3254 | gcwq->trustee_state == TRUSTEE_IN_CHARGE) { | ||
3255 | int nr_works = 0; | ||
3256 | |||
3257 | list_for_each_entry(work, &gcwq->worklist, entry) { | ||
3258 | send_mayday(work); | ||
3259 | nr_works++; | ||
3260 | } | ||
3261 | |||
3262 | list_for_each_entry(worker, &gcwq->idle_list, entry) { | ||
3263 | if (!nr_works--) | ||
3264 | break; | ||
3265 | wake_up_process(worker->task); | ||
3266 | } | ||
3267 | |||
3268 | if (need_to_create_worker(gcwq)) { | ||
3269 | spin_unlock_irq(&gcwq->lock); | ||
3270 | worker = create_worker(gcwq, false); | ||
3271 | spin_lock_irq(&gcwq->lock); | ||
3272 | if (worker) { | ||
3273 | worker->flags |= WORKER_ROGUE; | ||
3274 | start_worker(worker); | ||
3275 | } | ||
3276 | } | ||
3277 | |||
3278 | /* give a breather */ | ||
3279 | if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) | ||
3280 | break; | ||
3281 | } | ||
3282 | |||
3283 | /* | ||
3284 | * Either all works have been scheduled and cpu is down, or | ||
3285 | * cpu down has already been canceled. Wait for and butcher | ||
3286 | * all workers till we're canceled. | ||
3287 | */ | ||
3288 | do { | ||
3289 | rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); | ||
3290 | while (!list_empty(&gcwq->idle_list)) | ||
3291 | destroy_worker(list_first_entry(&gcwq->idle_list, | ||
3292 | struct worker, entry)); | ||
3293 | } while (gcwq->nr_workers && rc >= 0); | ||
3294 | |||
3295 | /* | ||
3296 | * At this point, either draining has completed and no worker | ||
3297 | * is left, or cpu down has been canceled or the cpu is being | ||
3298 | * brought back up. There shouldn't be any idle one left. | ||
3299 | * Tell the remaining busy ones to rebind once it finishes the | ||
3300 | * currently scheduled works by scheduling the rebind_work. | ||
3301 | */ | ||
3302 | WARN_ON(!list_empty(&gcwq->idle_list)); | ||
3303 | |||
3304 | for_each_busy_worker(worker, i, pos, gcwq) { | ||
3305 | struct work_struct *rebind_work = &worker->rebind_work; | ||
3306 | |||
3307 | /* | ||
3308 | * Rebind_work may race with future cpu hotplug | ||
3309 | * operations. Use a separate flag to mark that | ||
3310 | * rebinding is scheduled. | ||
3311 | */ | ||
3312 | worker->flags |= WORKER_REBIND; | ||
3313 | worker->flags &= ~WORKER_ROGUE; | ||
3314 | |||
3315 | /* queue rebind_work, wq doesn't matter, use the default one */ | ||
3316 | if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, | ||
3317 | work_data_bits(rebind_work))) | ||
3318 | continue; | ||
3319 | |||
3320 | debug_work_activate(rebind_work); | ||
3321 | insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, | ||
3322 | worker->scheduled.next, | ||
3323 | work_color_to_flags(WORK_NO_COLOR)); | ||
3324 | } | ||
3325 | |||
3326 | /* relinquish manager role */ | ||
3327 | gcwq->flags &= ~GCWQ_MANAGING_WORKERS; | ||
3328 | |||
3329 | /* notify completion */ | ||
3330 | gcwq->trustee = NULL; | ||
3331 | gcwq->trustee_state = TRUSTEE_DONE; | ||
3332 | wake_up_all(&gcwq->trustee_wait); | ||
3333 | spin_unlock_irq(&gcwq->lock); | ||
3334 | return 0; | ||
3335 | } | ||
3336 | |||
3337 | /** | ||
3338 | * wait_trustee_state - wait for trustee to enter the specified state | ||
3339 | * @gcwq: gcwq the trustee of interest belongs to | ||
3340 | * @state: target state to wait for | ||
3341 | * | ||
3342 | * Wait for the trustee to reach @state. DONE is already matched. | ||
3343 | * | ||
3344 | * CONTEXT: | ||
3345 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3346 | * multiple times. To be used by cpu_callback. | ||
3347 | */ | ||
3348 | static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) | ||
3349 | __releases(&gcwq->lock) | ||
3350 | __acquires(&gcwq->lock) | ||
3351 | { | ||
3352 | if (!(gcwq->trustee_state == state || | ||
3353 | gcwq->trustee_state == TRUSTEE_DONE)) { | ||
3354 | spin_unlock_irq(&gcwq->lock); | ||
3355 | __wait_event(gcwq->trustee_wait, | ||
3356 | gcwq->trustee_state == state || | ||
3357 | gcwq->trustee_state == TRUSTEE_DONE); | ||
3358 | spin_lock_irq(&gcwq->lock); | ||
3359 | } | ||
3360 | } | ||
3361 | |||
1106 | static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, | 3362 | static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, |
1107 | unsigned long action, | 3363 | unsigned long action, |
1108 | void *hcpu) | 3364 | void *hcpu) |
1109 | { | 3365 | { |
1110 | unsigned int cpu = (unsigned long)hcpu; | 3366 | unsigned int cpu = (unsigned long)hcpu; |
1111 | struct cpu_workqueue_struct *cwq; | 3367 | struct global_cwq *gcwq = get_gcwq(cpu); |
1112 | struct workqueue_struct *wq; | 3368 | struct task_struct *new_trustee = NULL; |
1113 | int err = 0; | 3369 | struct worker *uninitialized_var(new_worker); |
3370 | unsigned long flags; | ||
1114 | 3371 | ||
1115 | action &= ~CPU_TASKS_FROZEN; | 3372 | action &= ~CPU_TASKS_FROZEN; |
1116 | 3373 | ||
1117 | switch (action) { | 3374 | switch (action) { |
3375 | case CPU_DOWN_PREPARE: | ||
3376 | new_trustee = kthread_create(trustee_thread, gcwq, | ||
3377 | "workqueue_trustee/%d\n", cpu); | ||
3378 | if (IS_ERR(new_trustee)) | ||
3379 | return notifier_from_errno(PTR_ERR(new_trustee)); | ||
3380 | kthread_bind(new_trustee, cpu); | ||
3381 | /* fall through */ | ||
1118 | case CPU_UP_PREPARE: | 3382 | case CPU_UP_PREPARE: |
1119 | cpumask_set_cpu(cpu, cpu_populated_map); | 3383 | BUG_ON(gcwq->first_idle); |
1120 | } | 3384 | new_worker = create_worker(gcwq, false); |
1121 | undo: | 3385 | if (!new_worker) { |
1122 | list_for_each_entry(wq, &workqueues, list) { | 3386 | if (new_trustee) |
1123 | cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 3387 | kthread_stop(new_trustee); |
1124 | 3388 | return NOTIFY_BAD; | |
1125 | switch (action) { | ||
1126 | case CPU_UP_PREPARE: | ||
1127 | err = create_workqueue_thread(cwq, cpu); | ||
1128 | if (!err) | ||
1129 | break; | ||
1130 | printk(KERN_ERR "workqueue [%s] for %i failed\n", | ||
1131 | wq->name, cpu); | ||
1132 | action = CPU_UP_CANCELED; | ||
1133 | err = -ENOMEM; | ||
1134 | goto undo; | ||
1135 | |||
1136 | case CPU_ONLINE: | ||
1137 | start_workqueue_thread(cwq, cpu); | ||
1138 | break; | ||
1139 | |||
1140 | case CPU_UP_CANCELED: | ||
1141 | start_workqueue_thread(cwq, -1); | ||
1142 | case CPU_POST_DEAD: | ||
1143 | cleanup_workqueue_thread(cwq); | ||
1144 | break; | ||
1145 | } | 3389 | } |
1146 | } | 3390 | } |
1147 | 3391 | ||
3392 | /* some are called w/ irq disabled, don't disturb irq status */ | ||
3393 | spin_lock_irqsave(&gcwq->lock, flags); | ||
3394 | |||
1148 | switch (action) { | 3395 | switch (action) { |
1149 | case CPU_UP_CANCELED: | 3396 | case CPU_DOWN_PREPARE: |
3397 | /* initialize trustee and tell it to acquire the gcwq */ | ||
3398 | BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); | ||
3399 | gcwq->trustee = new_trustee; | ||
3400 | gcwq->trustee_state = TRUSTEE_START; | ||
3401 | wake_up_process(gcwq->trustee); | ||
3402 | wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); | ||
3403 | /* fall through */ | ||
3404 | case CPU_UP_PREPARE: | ||
3405 | BUG_ON(gcwq->first_idle); | ||
3406 | gcwq->first_idle = new_worker; | ||
3407 | break; | ||
3408 | |||
3409 | case CPU_DYING: | ||
3410 | /* | ||
3411 | * Before this, the trustee and all workers except for | ||
3412 | * the ones which are still executing works from | ||
3413 | * before the last CPU down must be on the cpu. After | ||
3414 | * this, they'll all be diasporas. | ||
3415 | */ | ||
3416 | gcwq->flags |= GCWQ_DISASSOCIATED; | ||
3417 | break; | ||
3418 | |||
1150 | case CPU_POST_DEAD: | 3419 | case CPU_POST_DEAD: |
1151 | cpumask_clear_cpu(cpu, cpu_populated_map); | 3420 | gcwq->trustee_state = TRUSTEE_BUTCHER; |
3421 | /* fall through */ | ||
3422 | case CPU_UP_CANCELED: | ||
3423 | destroy_worker(gcwq->first_idle); | ||
3424 | gcwq->first_idle = NULL; | ||
3425 | break; | ||
3426 | |||
3427 | case CPU_DOWN_FAILED: | ||
3428 | case CPU_ONLINE: | ||
3429 | gcwq->flags &= ~GCWQ_DISASSOCIATED; | ||
3430 | if (gcwq->trustee_state != TRUSTEE_DONE) { | ||
3431 | gcwq->trustee_state = TRUSTEE_RELEASE; | ||
3432 | wake_up_process(gcwq->trustee); | ||
3433 | wait_trustee_state(gcwq, TRUSTEE_DONE); | ||
3434 | } | ||
3435 | |||
3436 | /* | ||
3437 | * Trustee is done and there might be no worker left. | ||
3438 | * Put the first_idle in and request a real manager to | ||
3439 | * take a look. | ||
3440 | */ | ||
3441 | spin_unlock_irq(&gcwq->lock); | ||
3442 | kthread_bind(gcwq->first_idle->task, cpu); | ||
3443 | spin_lock_irq(&gcwq->lock); | ||
3444 | gcwq->flags |= GCWQ_MANAGE_WORKERS; | ||
3445 | start_worker(gcwq->first_idle); | ||
3446 | gcwq->first_idle = NULL; | ||
3447 | break; | ||
1152 | } | 3448 | } |
1153 | 3449 | ||
1154 | return notifier_from_errno(err); | 3450 | spin_unlock_irqrestore(&gcwq->lock, flags); |
3451 | |||
3452 | return notifier_from_errno(0); | ||
1155 | } | 3453 | } |
1156 | 3454 | ||
1157 | #ifdef CONFIG_SMP | 3455 | #ifdef CONFIG_SMP |
@@ -1201,14 +3499,200 @@ long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) | |||
1201 | EXPORT_SYMBOL_GPL(work_on_cpu); | 3499 | EXPORT_SYMBOL_GPL(work_on_cpu); |
1202 | #endif /* CONFIG_SMP */ | 3500 | #endif /* CONFIG_SMP */ |
1203 | 3501 | ||
1204 | void __init init_workqueues(void) | 3502 | #ifdef CONFIG_FREEZER |
3503 | |||
3504 | /** | ||
3505 | * freeze_workqueues_begin - begin freezing workqueues | ||
3506 | * | ||
3507 | * Start freezing workqueues. After this function returns, all | ||
3508 | * freezeable workqueues will queue new works to their frozen_works | ||
3509 | * list instead of gcwq->worklist. | ||
3510 | * | ||
3511 | * CONTEXT: | ||
3512 | * Grabs and releases workqueue_lock and gcwq->lock's. | ||
3513 | */ | ||
3514 | void freeze_workqueues_begin(void) | ||
3515 | { | ||
3516 | unsigned int cpu; | ||
3517 | |||
3518 | spin_lock(&workqueue_lock); | ||
3519 | |||
3520 | BUG_ON(workqueue_freezing); | ||
3521 | workqueue_freezing = true; | ||
3522 | |||
3523 | for_each_gcwq_cpu(cpu) { | ||
3524 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3525 | struct workqueue_struct *wq; | ||
3526 | |||
3527 | spin_lock_irq(&gcwq->lock); | ||
3528 | |||
3529 | BUG_ON(gcwq->flags & GCWQ_FREEZING); | ||
3530 | gcwq->flags |= GCWQ_FREEZING; | ||
3531 | |||
3532 | list_for_each_entry(wq, &workqueues, list) { | ||
3533 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3534 | |||
3535 | if (cwq && wq->flags & WQ_FREEZEABLE) | ||
3536 | cwq->max_active = 0; | ||
3537 | } | ||
3538 | |||
3539 | spin_unlock_irq(&gcwq->lock); | ||
3540 | } | ||
3541 | |||
3542 | spin_unlock(&workqueue_lock); | ||
3543 | } | ||
3544 | |||
3545 | /** | ||
3546 | * freeze_workqueues_busy - are freezeable workqueues still busy? | ||
3547 | * | ||
3548 | * Check whether freezing is complete. This function must be called | ||
3549 | * between freeze_workqueues_begin() and thaw_workqueues(). | ||
3550 | * | ||
3551 | * CONTEXT: | ||
3552 | * Grabs and releases workqueue_lock. | ||
3553 | * | ||
3554 | * RETURNS: | ||
3555 | * %true if some freezeable workqueues are still busy. %false if | ||
3556 | * freezing is complete. | ||
3557 | */ | ||
3558 | bool freeze_workqueues_busy(void) | ||
3559 | { | ||
3560 | unsigned int cpu; | ||
3561 | bool busy = false; | ||
3562 | |||
3563 | spin_lock(&workqueue_lock); | ||
3564 | |||
3565 | BUG_ON(!workqueue_freezing); | ||
3566 | |||
3567 | for_each_gcwq_cpu(cpu) { | ||
3568 | struct workqueue_struct *wq; | ||
3569 | /* | ||
3570 | * nr_active is monotonically decreasing. It's safe | ||
3571 | * to peek without lock. | ||
3572 | */ | ||
3573 | list_for_each_entry(wq, &workqueues, list) { | ||
3574 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3575 | |||
3576 | if (!cwq || !(wq->flags & WQ_FREEZEABLE)) | ||
3577 | continue; | ||
3578 | |||
3579 | BUG_ON(cwq->nr_active < 0); | ||
3580 | if (cwq->nr_active) { | ||
3581 | busy = true; | ||
3582 | goto out_unlock; | ||
3583 | } | ||
3584 | } | ||
3585 | } | ||
3586 | out_unlock: | ||
3587 | spin_unlock(&workqueue_lock); | ||
3588 | return busy; | ||
3589 | } | ||
3590 | |||
3591 | /** | ||
3592 | * thaw_workqueues - thaw workqueues | ||
3593 | * | ||
3594 | * Thaw workqueues. Normal queueing is restored and all collected | ||
3595 | * frozen works are transferred to their respective gcwq worklists. | ||
3596 | * | ||
3597 | * CONTEXT: | ||
3598 | * Grabs and releases workqueue_lock and gcwq->lock's. | ||
3599 | */ | ||
3600 | void thaw_workqueues(void) | ||
1205 | { | 3601 | { |
1206 | alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL); | 3602 | unsigned int cpu; |
1207 | 3603 | ||
1208 | cpumask_copy(cpu_populated_map, cpu_online_mask); | 3604 | spin_lock(&workqueue_lock); |
1209 | singlethread_cpu = cpumask_first(cpu_possible_mask); | 3605 | |
1210 | cpu_singlethread_map = cpumask_of(singlethread_cpu); | 3606 | if (!workqueue_freezing) |
1211 | hotcpu_notifier(workqueue_cpu_callback, 0); | 3607 | goto out_unlock; |
1212 | keventd_wq = create_workqueue("events"); | 3608 | |
1213 | BUG_ON(!keventd_wq); | 3609 | for_each_gcwq_cpu(cpu) { |
3610 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3611 | struct workqueue_struct *wq; | ||
3612 | |||
3613 | spin_lock_irq(&gcwq->lock); | ||
3614 | |||
3615 | BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); | ||
3616 | gcwq->flags &= ~GCWQ_FREEZING; | ||
3617 | |||
3618 | list_for_each_entry(wq, &workqueues, list) { | ||
3619 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3620 | |||
3621 | if (!cwq || !(wq->flags & WQ_FREEZEABLE)) | ||
3622 | continue; | ||
3623 | |||
3624 | /* restore max_active and repopulate worklist */ | ||
3625 | cwq->max_active = wq->saved_max_active; | ||
3626 | |||
3627 | while (!list_empty(&cwq->delayed_works) && | ||
3628 | cwq->nr_active < cwq->max_active) | ||
3629 | cwq_activate_first_delayed(cwq); | ||
3630 | } | ||
3631 | |||
3632 | wake_up_worker(gcwq); | ||
3633 | |||
3634 | spin_unlock_irq(&gcwq->lock); | ||
3635 | } | ||
3636 | |||
3637 | workqueue_freezing = false; | ||
3638 | out_unlock: | ||
3639 | spin_unlock(&workqueue_lock); | ||
3640 | } | ||
3641 | #endif /* CONFIG_FREEZER */ | ||
3642 | |||
3643 | static int __init init_workqueues(void) | ||
3644 | { | ||
3645 | unsigned int cpu; | ||
3646 | int i; | ||
3647 | |||
3648 | cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); | ||
3649 | |||
3650 | /* initialize gcwqs */ | ||
3651 | for_each_gcwq_cpu(cpu) { | ||
3652 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3653 | |||
3654 | spin_lock_init(&gcwq->lock); | ||
3655 | INIT_LIST_HEAD(&gcwq->worklist); | ||
3656 | gcwq->cpu = cpu; | ||
3657 | gcwq->flags |= GCWQ_DISASSOCIATED; | ||
3658 | |||
3659 | INIT_LIST_HEAD(&gcwq->idle_list); | ||
3660 | for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) | ||
3661 | INIT_HLIST_HEAD(&gcwq->busy_hash[i]); | ||
3662 | |||
3663 | init_timer_deferrable(&gcwq->idle_timer); | ||
3664 | gcwq->idle_timer.function = idle_worker_timeout; | ||
3665 | gcwq->idle_timer.data = (unsigned long)gcwq; | ||
3666 | |||
3667 | setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, | ||
3668 | (unsigned long)gcwq); | ||
3669 | |||
3670 | ida_init(&gcwq->worker_ida); | ||
3671 | |||
3672 | gcwq->trustee_state = TRUSTEE_DONE; | ||
3673 | init_waitqueue_head(&gcwq->trustee_wait); | ||
3674 | } | ||
3675 | |||
3676 | /* create the initial worker */ | ||
3677 | for_each_online_gcwq_cpu(cpu) { | ||
3678 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3679 | struct worker *worker; | ||
3680 | |||
3681 | if (cpu != WORK_CPU_UNBOUND) | ||
3682 | gcwq->flags &= ~GCWQ_DISASSOCIATED; | ||
3683 | worker = create_worker(gcwq, true); | ||
3684 | BUG_ON(!worker); | ||
3685 | spin_lock_irq(&gcwq->lock); | ||
3686 | start_worker(worker); | ||
3687 | spin_unlock_irq(&gcwq->lock); | ||
3688 | } | ||
3689 | |||
3690 | system_wq = alloc_workqueue("events", 0, 0); | ||
3691 | system_long_wq = alloc_workqueue("events_long", 0, 0); | ||
3692 | system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); | ||
3693 | system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, | ||
3694 | WQ_UNBOUND_MAX_ACTIVE); | ||
3695 | BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq); | ||
3696 | return 0; | ||
1214 | } | 3697 | } |
3698 | early_initcall(init_workqueues); | ||