diff options
Diffstat (limited to 'kernel/workqueue.c')
-rw-r--r-- | kernel/workqueue.c | 3182 |
1 files changed, 2778 insertions, 404 deletions
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 327d2deb4451..8bd600c020e5 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -33,41 +33,290 @@ | |||
33 | #include <linux/kallsyms.h> | 33 | #include <linux/kallsyms.h> |
34 | #include <linux/debug_locks.h> | 34 | #include <linux/debug_locks.h> |
35 | #include <linux/lockdep.h> | 35 | #include <linux/lockdep.h> |
36 | #include <linux/idr.h> | ||
37 | |||
36 | #define CREATE_TRACE_POINTS | 38 | #define CREATE_TRACE_POINTS |
37 | #include <trace/events/workqueue.h> | 39 | #include <trace/events/workqueue.h> |
38 | 40 | ||
41 | #include "workqueue_sched.h" | ||
42 | |||
43 | enum { | ||
44 | /* global_cwq flags */ | ||
45 | GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ | ||
46 | GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ | ||
47 | GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ | ||
48 | GCWQ_FREEZING = 1 << 3, /* freeze in progress */ | ||
49 | GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ | ||
50 | |||
51 | /* worker flags */ | ||
52 | WORKER_STARTED = 1 << 0, /* started */ | ||
53 | WORKER_DIE = 1 << 1, /* die die die */ | ||
54 | WORKER_IDLE = 1 << 2, /* is idle */ | ||
55 | WORKER_PREP = 1 << 3, /* preparing to run works */ | ||
56 | WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ | ||
57 | WORKER_REBIND = 1 << 5, /* mom is home, come back */ | ||
58 | WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ | ||
59 | WORKER_UNBOUND = 1 << 7, /* worker is unbound */ | ||
60 | |||
61 | WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | | ||
62 | WORKER_CPU_INTENSIVE | WORKER_UNBOUND, | ||
63 | |||
64 | /* gcwq->trustee_state */ | ||
65 | TRUSTEE_START = 0, /* start */ | ||
66 | TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ | ||
67 | TRUSTEE_BUTCHER = 2, /* butcher workers */ | ||
68 | TRUSTEE_RELEASE = 3, /* release workers */ | ||
69 | TRUSTEE_DONE = 4, /* trustee is done */ | ||
70 | |||
71 | BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ | ||
72 | BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, | ||
73 | BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, | ||
74 | |||
75 | MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ | ||
76 | IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ | ||
77 | |||
78 | MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ | ||
79 | MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ | ||
80 | CREATE_COOLDOWN = HZ, /* time to breath after fail */ | ||
81 | TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ | ||
82 | |||
83 | /* | ||
84 | * Rescue workers are used only on emergencies and shared by | ||
85 | * all cpus. Give -20. | ||
86 | */ | ||
87 | RESCUER_NICE_LEVEL = -20, | ||
88 | }; | ||
89 | |||
39 | /* | 90 | /* |
40 | * The per-CPU workqueue (if single thread, we always use the first | 91 | * Structure fields follow one of the following exclusion rules. |
41 | * possible cpu). | 92 | * |
93 | * I: Set during initialization and read-only afterwards. | ||
94 | * | ||
95 | * P: Preemption protected. Disabling preemption is enough and should | ||
96 | * only be modified and accessed from the local cpu. | ||
97 | * | ||
98 | * L: gcwq->lock protected. Access with gcwq->lock held. | ||
99 | * | ||
100 | * X: During normal operation, modification requires gcwq->lock and | ||
101 | * should be done only from local cpu. Either disabling preemption | ||
102 | * on local cpu or grabbing gcwq->lock is enough for read access. | ||
103 | * If GCWQ_DISASSOCIATED is set, it's identical to L. | ||
104 | * | ||
105 | * F: wq->flush_mutex protected. | ||
106 | * | ||
107 | * W: workqueue_lock protected. | ||
42 | */ | 108 | */ |
43 | struct cpu_workqueue_struct { | ||
44 | 109 | ||
45 | spinlock_t lock; | 110 | struct global_cwq; |
111 | |||
112 | /* | ||
113 | * The poor guys doing the actual heavy lifting. All on-duty workers | ||
114 | * are either serving the manager role, on idle list or on busy hash. | ||
115 | */ | ||
116 | struct worker { | ||
117 | /* on idle list while idle, on busy hash table while busy */ | ||
118 | union { | ||
119 | struct list_head entry; /* L: while idle */ | ||
120 | struct hlist_node hentry; /* L: while busy */ | ||
121 | }; | ||
122 | |||
123 | struct work_struct *current_work; /* L: work being processed */ | ||
124 | struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ | ||
125 | struct list_head scheduled; /* L: scheduled works */ | ||
126 | struct task_struct *task; /* I: worker task */ | ||
127 | struct global_cwq *gcwq; /* I: the associated gcwq */ | ||
128 | /* 64 bytes boundary on 64bit, 32 on 32bit */ | ||
129 | unsigned long last_active; /* L: last active timestamp */ | ||
130 | unsigned int flags; /* X: flags */ | ||
131 | int id; /* I: worker id */ | ||
132 | struct work_struct rebind_work; /* L: rebind worker to cpu */ | ||
133 | }; | ||
134 | |||
135 | /* | ||
136 | * Global per-cpu workqueue. There's one and only one for each cpu | ||
137 | * and all works are queued and processed here regardless of their | ||
138 | * target workqueues. | ||
139 | */ | ||
140 | struct global_cwq { | ||
141 | spinlock_t lock; /* the gcwq lock */ | ||
142 | struct list_head worklist; /* L: list of pending works */ | ||
143 | unsigned int cpu; /* I: the associated cpu */ | ||
144 | unsigned int flags; /* L: GCWQ_* flags */ | ||
46 | 145 | ||
47 | struct list_head worklist; | 146 | int nr_workers; /* L: total number of workers */ |
48 | wait_queue_head_t more_work; | 147 | int nr_idle; /* L: currently idle ones */ |
49 | struct work_struct *current_work; | ||
50 | 148 | ||
51 | struct workqueue_struct *wq; | 149 | /* workers are chained either in the idle_list or busy_hash */ |
52 | struct task_struct *thread; | 150 | struct list_head idle_list; /* X: list of idle workers */ |
53 | } ____cacheline_aligned; | 151 | struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; |
152 | /* L: hash of busy workers */ | ||
153 | |||
154 | struct timer_list idle_timer; /* L: worker idle timeout */ | ||
155 | struct timer_list mayday_timer; /* L: SOS timer for dworkers */ | ||
156 | |||
157 | struct ida worker_ida; /* L: for worker IDs */ | ||
158 | |||
159 | struct task_struct *trustee; /* L: for gcwq shutdown */ | ||
160 | unsigned int trustee_state; /* L: trustee state */ | ||
161 | wait_queue_head_t trustee_wait; /* trustee wait */ | ||
162 | struct worker *first_idle; /* L: first idle worker */ | ||
163 | } ____cacheline_aligned_in_smp; | ||
164 | |||
165 | /* | ||
166 | * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of | ||
167 | * work_struct->data are used for flags and thus cwqs need to be | ||
168 | * aligned at two's power of the number of flag bits. | ||
169 | */ | ||
170 | struct cpu_workqueue_struct { | ||
171 | struct global_cwq *gcwq; /* I: the associated gcwq */ | ||
172 | struct workqueue_struct *wq; /* I: the owning workqueue */ | ||
173 | int work_color; /* L: current color */ | ||
174 | int flush_color; /* L: flushing color */ | ||
175 | int nr_in_flight[WORK_NR_COLORS]; | ||
176 | /* L: nr of in_flight works */ | ||
177 | int nr_active; /* L: nr of active works */ | ||
178 | int max_active; /* L: max active works */ | ||
179 | struct list_head delayed_works; /* L: delayed works */ | ||
180 | }; | ||
181 | |||
182 | /* | ||
183 | * Structure used to wait for workqueue flush. | ||
184 | */ | ||
185 | struct wq_flusher { | ||
186 | struct list_head list; /* F: list of flushers */ | ||
187 | int flush_color; /* F: flush color waiting for */ | ||
188 | struct completion done; /* flush completion */ | ||
189 | }; | ||
190 | |||
191 | /* | ||
192 | * All cpumasks are assumed to be always set on UP and thus can't be | ||
193 | * used to determine whether there's something to be done. | ||
194 | */ | ||
195 | #ifdef CONFIG_SMP | ||
196 | typedef cpumask_var_t mayday_mask_t; | ||
197 | #define mayday_test_and_set_cpu(cpu, mask) \ | ||
198 | cpumask_test_and_set_cpu((cpu), (mask)) | ||
199 | #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) | ||
200 | #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) | ||
201 | #define alloc_mayday_mask(maskp, gfp) alloc_cpumask_var((maskp), (gfp)) | ||
202 | #define free_mayday_mask(mask) free_cpumask_var((mask)) | ||
203 | #else | ||
204 | typedef unsigned long mayday_mask_t; | ||
205 | #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) | ||
206 | #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) | ||
207 | #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) | ||
208 | #define alloc_mayday_mask(maskp, gfp) true | ||
209 | #define free_mayday_mask(mask) do { } while (0) | ||
210 | #endif | ||
54 | 211 | ||
55 | /* | 212 | /* |
56 | * The externally visible workqueue abstraction is an array of | 213 | * The externally visible workqueue abstraction is an array of |
57 | * per-CPU workqueues: | 214 | * per-CPU workqueues: |
58 | */ | 215 | */ |
59 | struct workqueue_struct { | 216 | struct workqueue_struct { |
60 | struct cpu_workqueue_struct *cpu_wq; | 217 | unsigned int flags; /* I: WQ_* flags */ |
61 | struct list_head list; | 218 | union { |
62 | const char *name; | 219 | struct cpu_workqueue_struct __percpu *pcpu; |
63 | int singlethread; | 220 | struct cpu_workqueue_struct *single; |
64 | int freezeable; /* Freeze threads during suspend */ | 221 | unsigned long v; |
65 | int rt; | 222 | } cpu_wq; /* I: cwq's */ |
223 | struct list_head list; /* W: list of all workqueues */ | ||
224 | |||
225 | struct mutex flush_mutex; /* protects wq flushing */ | ||
226 | int work_color; /* F: current work color */ | ||
227 | int flush_color; /* F: current flush color */ | ||
228 | atomic_t nr_cwqs_to_flush; /* flush in progress */ | ||
229 | struct wq_flusher *first_flusher; /* F: first flusher */ | ||
230 | struct list_head flusher_queue; /* F: flush waiters */ | ||
231 | struct list_head flusher_overflow; /* F: flush overflow list */ | ||
232 | |||
233 | mayday_mask_t mayday_mask; /* cpus requesting rescue */ | ||
234 | struct worker *rescuer; /* I: rescue worker */ | ||
235 | |||
236 | int saved_max_active; /* W: saved cwq max_active */ | ||
237 | const char *name; /* I: workqueue name */ | ||
66 | #ifdef CONFIG_LOCKDEP | 238 | #ifdef CONFIG_LOCKDEP |
67 | struct lockdep_map lockdep_map; | 239 | struct lockdep_map lockdep_map; |
68 | #endif | 240 | #endif |
69 | }; | 241 | }; |
70 | 242 | ||
243 | struct workqueue_struct *system_wq __read_mostly; | ||
244 | struct workqueue_struct *system_long_wq __read_mostly; | ||
245 | struct workqueue_struct *system_nrt_wq __read_mostly; | ||
246 | struct workqueue_struct *system_unbound_wq __read_mostly; | ||
247 | EXPORT_SYMBOL_GPL(system_wq); | ||
248 | EXPORT_SYMBOL_GPL(system_long_wq); | ||
249 | EXPORT_SYMBOL_GPL(system_nrt_wq); | ||
250 | EXPORT_SYMBOL_GPL(system_unbound_wq); | ||
251 | |||
252 | #define for_each_busy_worker(worker, i, pos, gcwq) \ | ||
253 | for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ | ||
254 | hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) | ||
255 | |||
256 | static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, | ||
257 | unsigned int sw) | ||
258 | { | ||
259 | if (cpu < nr_cpu_ids) { | ||
260 | if (sw & 1) { | ||
261 | cpu = cpumask_next(cpu, mask); | ||
262 | if (cpu < nr_cpu_ids) | ||
263 | return cpu; | ||
264 | } | ||
265 | if (sw & 2) | ||
266 | return WORK_CPU_UNBOUND; | ||
267 | } | ||
268 | return WORK_CPU_NONE; | ||
269 | } | ||
270 | |||
271 | static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, | ||
272 | struct workqueue_struct *wq) | ||
273 | { | ||
274 | return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); | ||
275 | } | ||
276 | |||
277 | /* | ||
278 | * CPU iterators | ||
279 | * | ||
280 | * An extra gcwq is defined for an invalid cpu number | ||
281 | * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any | ||
282 | * specific CPU. The following iterators are similar to | ||
283 | * for_each_*_cpu() iterators but also considers the unbound gcwq. | ||
284 | * | ||
285 | * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND | ||
286 | * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND | ||
287 | * for_each_cwq_cpu() : possible CPUs for bound workqueues, | ||
288 | * WORK_CPU_UNBOUND for unbound workqueues | ||
289 | */ | ||
290 | #define for_each_gcwq_cpu(cpu) \ | ||
291 | for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ | ||
292 | (cpu) < WORK_CPU_NONE; \ | ||
293 | (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) | ||
294 | |||
295 | #define for_each_online_gcwq_cpu(cpu) \ | ||
296 | for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ | ||
297 | (cpu) < WORK_CPU_NONE; \ | ||
298 | (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) | ||
299 | |||
300 | #define for_each_cwq_cpu(cpu, wq) \ | ||
301 | for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ | ||
302 | (cpu) < WORK_CPU_NONE; \ | ||
303 | (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) | ||
304 | |||
305 | #ifdef CONFIG_LOCKDEP | ||
306 | /** | ||
307 | * in_workqueue_context() - in context of specified workqueue? | ||
308 | * @wq: the workqueue of interest | ||
309 | * | ||
310 | * Checks lockdep state to see if the current task is executing from | ||
311 | * within a workqueue item. This function exists only if lockdep is | ||
312 | * enabled. | ||
313 | */ | ||
314 | int in_workqueue_context(struct workqueue_struct *wq) | ||
315 | { | ||
316 | return lock_is_held(&wq->lockdep_map); | ||
317 | } | ||
318 | #endif | ||
319 | |||
71 | #ifdef CONFIG_DEBUG_OBJECTS_WORK | 320 | #ifdef CONFIG_DEBUG_OBJECTS_WORK |
72 | 321 | ||
73 | static struct debug_obj_descr work_debug_descr; | 322 | static struct debug_obj_descr work_debug_descr; |
@@ -107,7 +356,7 @@ static int work_fixup_activate(void *addr, enum debug_obj_state state) | |||
107 | * statically initialized. We just make sure that it | 356 | * statically initialized. We just make sure that it |
108 | * is tracked in the object tracker. | 357 | * is tracked in the object tracker. |
109 | */ | 358 | */ |
110 | if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) { | 359 | if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { |
111 | debug_object_init(work, &work_debug_descr); | 360 | debug_object_init(work, &work_debug_descr); |
112 | debug_object_activate(work, &work_debug_descr); | 361 | debug_object_activate(work, &work_debug_descr); |
113 | return 0; | 362 | return 0; |
@@ -181,94 +430,575 @@ static inline void debug_work_deactivate(struct work_struct *work) { } | |||
181 | /* Serializes the accesses to the list of workqueues. */ | 430 | /* Serializes the accesses to the list of workqueues. */ |
182 | static DEFINE_SPINLOCK(workqueue_lock); | 431 | static DEFINE_SPINLOCK(workqueue_lock); |
183 | static LIST_HEAD(workqueues); | 432 | static LIST_HEAD(workqueues); |
433 | static bool workqueue_freezing; /* W: have wqs started freezing? */ | ||
434 | |||
435 | /* | ||
436 | * The almighty global cpu workqueues. nr_running is the only field | ||
437 | * which is expected to be used frequently by other cpus via | ||
438 | * try_to_wake_up(). Put it in a separate cacheline. | ||
439 | */ | ||
440 | static DEFINE_PER_CPU(struct global_cwq, global_cwq); | ||
441 | static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); | ||
184 | 442 | ||
185 | static int singlethread_cpu __read_mostly; | ||
186 | static const struct cpumask *cpu_singlethread_map __read_mostly; | ||
187 | /* | 443 | /* |
188 | * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD | 444 | * Global cpu workqueue and nr_running counter for unbound gcwq. The |
189 | * flushes cwq->worklist. This means that flush_workqueue/wait_on_work | 445 | * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its |
190 | * which comes in between can't use for_each_online_cpu(). We could | 446 | * workers have WORKER_UNBOUND set. |
191 | * use cpu_possible_map, the cpumask below is more a documentation | ||
192 | * than optimization. | ||
193 | */ | 447 | */ |
194 | static cpumask_var_t cpu_populated_map __read_mostly; | 448 | static struct global_cwq unbound_global_cwq; |
449 | static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ | ||
450 | |||
451 | static int worker_thread(void *__worker); | ||
452 | |||
453 | static struct global_cwq *get_gcwq(unsigned int cpu) | ||
454 | { | ||
455 | if (cpu != WORK_CPU_UNBOUND) | ||
456 | return &per_cpu(global_cwq, cpu); | ||
457 | else | ||
458 | return &unbound_global_cwq; | ||
459 | } | ||
460 | |||
461 | static atomic_t *get_gcwq_nr_running(unsigned int cpu) | ||
462 | { | ||
463 | if (cpu != WORK_CPU_UNBOUND) | ||
464 | return &per_cpu(gcwq_nr_running, cpu); | ||
465 | else | ||
466 | return &unbound_gcwq_nr_running; | ||
467 | } | ||
195 | 468 | ||
196 | /* If it's single threaded, it isn't in the list of workqueues. */ | 469 | static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, |
197 | static inline int is_wq_single_threaded(struct workqueue_struct *wq) | 470 | struct workqueue_struct *wq) |
198 | { | 471 | { |
199 | return wq->singlethread; | 472 | if (!(wq->flags & WQ_UNBOUND)) { |
473 | if (likely(cpu < nr_cpu_ids)) { | ||
474 | #ifdef CONFIG_SMP | ||
475 | return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); | ||
476 | #else | ||
477 | return wq->cpu_wq.single; | ||
478 | #endif | ||
479 | } | ||
480 | } else if (likely(cpu == WORK_CPU_UNBOUND)) | ||
481 | return wq->cpu_wq.single; | ||
482 | return NULL; | ||
200 | } | 483 | } |
201 | 484 | ||
202 | static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq) | 485 | static unsigned int work_color_to_flags(int color) |
203 | { | 486 | { |
204 | return is_wq_single_threaded(wq) | 487 | return color << WORK_STRUCT_COLOR_SHIFT; |
205 | ? cpu_singlethread_map : cpu_populated_map; | ||
206 | } | 488 | } |
207 | 489 | ||
208 | static | 490 | static int get_work_color(struct work_struct *work) |
209 | struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) | ||
210 | { | 491 | { |
211 | if (unlikely(is_wq_single_threaded(wq))) | 492 | return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & |
212 | cpu = singlethread_cpu; | 493 | ((1 << WORK_STRUCT_COLOR_BITS) - 1); |
213 | return per_cpu_ptr(wq->cpu_wq, cpu); | 494 | } |
495 | |||
496 | static int work_next_color(int color) | ||
497 | { | ||
498 | return (color + 1) % WORK_NR_COLORS; | ||
214 | } | 499 | } |
215 | 500 | ||
216 | /* | 501 | /* |
217 | * Set the workqueue on which a work item is to be run | 502 | * A work's data points to the cwq with WORK_STRUCT_CWQ set while the |
218 | * - Must *only* be called if the pending flag is set | 503 | * work is on queue. Once execution starts, WORK_STRUCT_CWQ is |
504 | * cleared and the work data contains the cpu number it was last on. | ||
505 | * | ||
506 | * set_work_{cwq|cpu}() and clear_work_data() can be used to set the | ||
507 | * cwq, cpu or clear work->data. These functions should only be | ||
508 | * called while the work is owned - ie. while the PENDING bit is set. | ||
509 | * | ||
510 | * get_work_[g]cwq() can be used to obtain the gcwq or cwq | ||
511 | * corresponding to a work. gcwq is available once the work has been | ||
512 | * queued anywhere after initialization. cwq is available only from | ||
513 | * queueing until execution starts. | ||
219 | */ | 514 | */ |
220 | static inline void set_wq_data(struct work_struct *work, | 515 | static inline void set_work_data(struct work_struct *work, unsigned long data, |
221 | struct cpu_workqueue_struct *cwq) | 516 | unsigned long flags) |
222 | { | 517 | { |
223 | unsigned long new; | ||
224 | |||
225 | BUG_ON(!work_pending(work)); | 518 | BUG_ON(!work_pending(work)); |
519 | atomic_long_set(&work->data, data | flags | work_static(work)); | ||
520 | } | ||
226 | 521 | ||
227 | new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); | 522 | static void set_work_cwq(struct work_struct *work, |
228 | new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); | 523 | struct cpu_workqueue_struct *cwq, |
229 | atomic_long_set(&work->data, new); | 524 | unsigned long extra_flags) |
525 | { | ||
526 | set_work_data(work, (unsigned long)cwq, | ||
527 | WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); | ||
528 | } | ||
529 | |||
530 | static void set_work_cpu(struct work_struct *work, unsigned int cpu) | ||
531 | { | ||
532 | set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); | ||
533 | } | ||
534 | |||
535 | static void clear_work_data(struct work_struct *work) | ||
536 | { | ||
537 | set_work_data(work, WORK_STRUCT_NO_CPU, 0); | ||
538 | } | ||
539 | |||
540 | static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) | ||
541 | { | ||
542 | unsigned long data = atomic_long_read(&work->data); | ||
543 | |||
544 | if (data & WORK_STRUCT_CWQ) | ||
545 | return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); | ||
546 | else | ||
547 | return NULL; | ||
548 | } | ||
549 | |||
550 | static struct global_cwq *get_work_gcwq(struct work_struct *work) | ||
551 | { | ||
552 | unsigned long data = atomic_long_read(&work->data); | ||
553 | unsigned int cpu; | ||
554 | |||
555 | if (data & WORK_STRUCT_CWQ) | ||
556 | return ((struct cpu_workqueue_struct *) | ||
557 | (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; | ||
558 | |||
559 | cpu = data >> WORK_STRUCT_FLAG_BITS; | ||
560 | if (cpu == WORK_CPU_NONE) | ||
561 | return NULL; | ||
562 | |||
563 | BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); | ||
564 | return get_gcwq(cpu); | ||
565 | } | ||
566 | |||
567 | /* | ||
568 | * Policy functions. These define the policies on how the global | ||
569 | * worker pool is managed. Unless noted otherwise, these functions | ||
570 | * assume that they're being called with gcwq->lock held. | ||
571 | */ | ||
572 | |||
573 | static bool __need_more_worker(struct global_cwq *gcwq) | ||
574 | { | ||
575 | return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || | ||
576 | gcwq->flags & GCWQ_HIGHPRI_PENDING; | ||
230 | } | 577 | } |
231 | 578 | ||
232 | /* | 579 | /* |
233 | * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued. | 580 | * Need to wake up a worker? Called from anything but currently |
581 | * running workers. | ||
234 | */ | 582 | */ |
235 | static inline void clear_wq_data(struct work_struct *work) | 583 | static bool need_more_worker(struct global_cwq *gcwq) |
236 | { | 584 | { |
237 | unsigned long flags = *work_data_bits(work) & | 585 | return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); |
238 | (1UL << WORK_STRUCT_STATIC); | ||
239 | atomic_long_set(&work->data, flags); | ||
240 | } | 586 | } |
241 | 587 | ||
242 | static inline | 588 | /* Can I start working? Called from busy but !running workers. */ |
243 | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) | 589 | static bool may_start_working(struct global_cwq *gcwq) |
244 | { | 590 | { |
245 | return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); | 591 | return gcwq->nr_idle; |
246 | } | 592 | } |
247 | 593 | ||
594 | /* Do I need to keep working? Called from currently running workers. */ | ||
595 | static bool keep_working(struct global_cwq *gcwq) | ||
596 | { | ||
597 | atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); | ||
598 | |||
599 | return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1; | ||
600 | } | ||
601 | |||
602 | /* Do we need a new worker? Called from manager. */ | ||
603 | static bool need_to_create_worker(struct global_cwq *gcwq) | ||
604 | { | ||
605 | return need_more_worker(gcwq) && !may_start_working(gcwq); | ||
606 | } | ||
607 | |||
608 | /* Do I need to be the manager? */ | ||
609 | static bool need_to_manage_workers(struct global_cwq *gcwq) | ||
610 | { | ||
611 | return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; | ||
612 | } | ||
613 | |||
614 | /* Do we have too many workers and should some go away? */ | ||
615 | static bool too_many_workers(struct global_cwq *gcwq) | ||
616 | { | ||
617 | bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; | ||
618 | int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ | ||
619 | int nr_busy = gcwq->nr_workers - nr_idle; | ||
620 | |||
621 | return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; | ||
622 | } | ||
623 | |||
624 | /* | ||
625 | * Wake up functions. | ||
626 | */ | ||
627 | |||
628 | /* Return the first worker. Safe with preemption disabled */ | ||
629 | static struct worker *first_worker(struct global_cwq *gcwq) | ||
630 | { | ||
631 | if (unlikely(list_empty(&gcwq->idle_list))) | ||
632 | return NULL; | ||
633 | |||
634 | return list_first_entry(&gcwq->idle_list, struct worker, entry); | ||
635 | } | ||
636 | |||
637 | /** | ||
638 | * wake_up_worker - wake up an idle worker | ||
639 | * @gcwq: gcwq to wake worker for | ||
640 | * | ||
641 | * Wake up the first idle worker of @gcwq. | ||
642 | * | ||
643 | * CONTEXT: | ||
644 | * spin_lock_irq(gcwq->lock). | ||
645 | */ | ||
646 | static void wake_up_worker(struct global_cwq *gcwq) | ||
647 | { | ||
648 | struct worker *worker = first_worker(gcwq); | ||
649 | |||
650 | if (likely(worker)) | ||
651 | wake_up_process(worker->task); | ||
652 | } | ||
653 | |||
654 | /** | ||
655 | * wq_worker_waking_up - a worker is waking up | ||
656 | * @task: task waking up | ||
657 | * @cpu: CPU @task is waking up to | ||
658 | * | ||
659 | * This function is called during try_to_wake_up() when a worker is | ||
660 | * being awoken. | ||
661 | * | ||
662 | * CONTEXT: | ||
663 | * spin_lock_irq(rq->lock) | ||
664 | */ | ||
665 | void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) | ||
666 | { | ||
667 | struct worker *worker = kthread_data(task); | ||
668 | |||
669 | if (likely(!(worker->flags & WORKER_NOT_RUNNING))) | ||
670 | atomic_inc(get_gcwq_nr_running(cpu)); | ||
671 | } | ||
672 | |||
673 | /** | ||
674 | * wq_worker_sleeping - a worker is going to sleep | ||
675 | * @task: task going to sleep | ||
676 | * @cpu: CPU in question, must be the current CPU number | ||
677 | * | ||
678 | * This function is called during schedule() when a busy worker is | ||
679 | * going to sleep. Worker on the same cpu can be woken up by | ||
680 | * returning pointer to its task. | ||
681 | * | ||
682 | * CONTEXT: | ||
683 | * spin_lock_irq(rq->lock) | ||
684 | * | ||
685 | * RETURNS: | ||
686 | * Worker task on @cpu to wake up, %NULL if none. | ||
687 | */ | ||
688 | struct task_struct *wq_worker_sleeping(struct task_struct *task, | ||
689 | unsigned int cpu) | ||
690 | { | ||
691 | struct worker *worker = kthread_data(task), *to_wakeup = NULL; | ||
692 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
693 | atomic_t *nr_running = get_gcwq_nr_running(cpu); | ||
694 | |||
695 | if (unlikely(worker->flags & WORKER_NOT_RUNNING)) | ||
696 | return NULL; | ||
697 | |||
698 | /* this can only happen on the local cpu */ | ||
699 | BUG_ON(cpu != raw_smp_processor_id()); | ||
700 | |||
701 | /* | ||
702 | * The counterpart of the following dec_and_test, implied mb, | ||
703 | * worklist not empty test sequence is in insert_work(). | ||
704 | * Please read comment there. | ||
705 | * | ||
706 | * NOT_RUNNING is clear. This means that trustee is not in | ||
707 | * charge and we're running on the local cpu w/ rq lock held | ||
708 | * and preemption disabled, which in turn means that none else | ||
709 | * could be manipulating idle_list, so dereferencing idle_list | ||
710 | * without gcwq lock is safe. | ||
711 | */ | ||
712 | if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) | ||
713 | to_wakeup = first_worker(gcwq); | ||
714 | return to_wakeup ? to_wakeup->task : NULL; | ||
715 | } | ||
716 | |||
717 | /** | ||
718 | * worker_set_flags - set worker flags and adjust nr_running accordingly | ||
719 | * @worker: self | ||
720 | * @flags: flags to set | ||
721 | * @wakeup: wakeup an idle worker if necessary | ||
722 | * | ||
723 | * Set @flags in @worker->flags and adjust nr_running accordingly. If | ||
724 | * nr_running becomes zero and @wakeup is %true, an idle worker is | ||
725 | * woken up. | ||
726 | * | ||
727 | * CONTEXT: | ||
728 | * spin_lock_irq(gcwq->lock) | ||
729 | */ | ||
730 | static inline void worker_set_flags(struct worker *worker, unsigned int flags, | ||
731 | bool wakeup) | ||
732 | { | ||
733 | struct global_cwq *gcwq = worker->gcwq; | ||
734 | |||
735 | WARN_ON_ONCE(worker->task != current); | ||
736 | |||
737 | /* | ||
738 | * If transitioning into NOT_RUNNING, adjust nr_running and | ||
739 | * wake up an idle worker as necessary if requested by | ||
740 | * @wakeup. | ||
741 | */ | ||
742 | if ((flags & WORKER_NOT_RUNNING) && | ||
743 | !(worker->flags & WORKER_NOT_RUNNING)) { | ||
744 | atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); | ||
745 | |||
746 | if (wakeup) { | ||
747 | if (atomic_dec_and_test(nr_running) && | ||
748 | !list_empty(&gcwq->worklist)) | ||
749 | wake_up_worker(gcwq); | ||
750 | } else | ||
751 | atomic_dec(nr_running); | ||
752 | } | ||
753 | |||
754 | worker->flags |= flags; | ||
755 | } | ||
756 | |||
757 | /** | ||
758 | * worker_clr_flags - clear worker flags and adjust nr_running accordingly | ||
759 | * @worker: self | ||
760 | * @flags: flags to clear | ||
761 | * | ||
762 | * Clear @flags in @worker->flags and adjust nr_running accordingly. | ||
763 | * | ||
764 | * CONTEXT: | ||
765 | * spin_lock_irq(gcwq->lock) | ||
766 | */ | ||
767 | static inline void worker_clr_flags(struct worker *worker, unsigned int flags) | ||
768 | { | ||
769 | struct global_cwq *gcwq = worker->gcwq; | ||
770 | unsigned int oflags = worker->flags; | ||
771 | |||
772 | WARN_ON_ONCE(worker->task != current); | ||
773 | |||
774 | worker->flags &= ~flags; | ||
775 | |||
776 | /* if transitioning out of NOT_RUNNING, increment nr_running */ | ||
777 | if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) | ||
778 | if (!(worker->flags & WORKER_NOT_RUNNING)) | ||
779 | atomic_inc(get_gcwq_nr_running(gcwq->cpu)); | ||
780 | } | ||
781 | |||
782 | /** | ||
783 | * busy_worker_head - return the busy hash head for a work | ||
784 | * @gcwq: gcwq of interest | ||
785 | * @work: work to be hashed | ||
786 | * | ||
787 | * Return hash head of @gcwq for @work. | ||
788 | * | ||
789 | * CONTEXT: | ||
790 | * spin_lock_irq(gcwq->lock). | ||
791 | * | ||
792 | * RETURNS: | ||
793 | * Pointer to the hash head. | ||
794 | */ | ||
795 | static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, | ||
796 | struct work_struct *work) | ||
797 | { | ||
798 | const int base_shift = ilog2(sizeof(struct work_struct)); | ||
799 | unsigned long v = (unsigned long)work; | ||
800 | |||
801 | /* simple shift and fold hash, do we need something better? */ | ||
802 | v >>= base_shift; | ||
803 | v += v >> BUSY_WORKER_HASH_ORDER; | ||
804 | v &= BUSY_WORKER_HASH_MASK; | ||
805 | |||
806 | return &gcwq->busy_hash[v]; | ||
807 | } | ||
808 | |||
809 | /** | ||
810 | * __find_worker_executing_work - find worker which is executing a work | ||
811 | * @gcwq: gcwq of interest | ||
812 | * @bwh: hash head as returned by busy_worker_head() | ||
813 | * @work: work to find worker for | ||
814 | * | ||
815 | * Find a worker which is executing @work on @gcwq. @bwh should be | ||
816 | * the hash head obtained by calling busy_worker_head() with the same | ||
817 | * work. | ||
818 | * | ||
819 | * CONTEXT: | ||
820 | * spin_lock_irq(gcwq->lock). | ||
821 | * | ||
822 | * RETURNS: | ||
823 | * Pointer to worker which is executing @work if found, NULL | ||
824 | * otherwise. | ||
825 | */ | ||
826 | static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, | ||
827 | struct hlist_head *bwh, | ||
828 | struct work_struct *work) | ||
829 | { | ||
830 | struct worker *worker; | ||
831 | struct hlist_node *tmp; | ||
832 | |||
833 | hlist_for_each_entry(worker, tmp, bwh, hentry) | ||
834 | if (worker->current_work == work) | ||
835 | return worker; | ||
836 | return NULL; | ||
837 | } | ||
838 | |||
839 | /** | ||
840 | * find_worker_executing_work - find worker which is executing a work | ||
841 | * @gcwq: gcwq of interest | ||
842 | * @work: work to find worker for | ||
843 | * | ||
844 | * Find a worker which is executing @work on @gcwq. This function is | ||
845 | * identical to __find_worker_executing_work() except that this | ||
846 | * function calculates @bwh itself. | ||
847 | * | ||
848 | * CONTEXT: | ||
849 | * spin_lock_irq(gcwq->lock). | ||
850 | * | ||
851 | * RETURNS: | ||
852 | * Pointer to worker which is executing @work if found, NULL | ||
853 | * otherwise. | ||
854 | */ | ||
855 | static struct worker *find_worker_executing_work(struct global_cwq *gcwq, | ||
856 | struct work_struct *work) | ||
857 | { | ||
858 | return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), | ||
859 | work); | ||
860 | } | ||
861 | |||
862 | /** | ||
863 | * gcwq_determine_ins_pos - find insertion position | ||
864 | * @gcwq: gcwq of interest | ||
865 | * @cwq: cwq a work is being queued for | ||
866 | * | ||
867 | * A work for @cwq is about to be queued on @gcwq, determine insertion | ||
868 | * position for the work. If @cwq is for HIGHPRI wq, the work is | ||
869 | * queued at the head of the queue but in FIFO order with respect to | ||
870 | * other HIGHPRI works; otherwise, at the end of the queue. This | ||
871 | * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that | ||
872 | * there are HIGHPRI works pending. | ||
873 | * | ||
874 | * CONTEXT: | ||
875 | * spin_lock_irq(gcwq->lock). | ||
876 | * | ||
877 | * RETURNS: | ||
878 | * Pointer to inserstion position. | ||
879 | */ | ||
880 | static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, | ||
881 | struct cpu_workqueue_struct *cwq) | ||
882 | { | ||
883 | struct work_struct *twork; | ||
884 | |||
885 | if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) | ||
886 | return &gcwq->worklist; | ||
887 | |||
888 | list_for_each_entry(twork, &gcwq->worklist, entry) { | ||
889 | struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); | ||
890 | |||
891 | if (!(tcwq->wq->flags & WQ_HIGHPRI)) | ||
892 | break; | ||
893 | } | ||
894 | |||
895 | gcwq->flags |= GCWQ_HIGHPRI_PENDING; | ||
896 | return &twork->entry; | ||
897 | } | ||
898 | |||
899 | /** | ||
900 | * insert_work - insert a work into gcwq | ||
901 | * @cwq: cwq @work belongs to | ||
902 | * @work: work to insert | ||
903 | * @head: insertion point | ||
904 | * @extra_flags: extra WORK_STRUCT_* flags to set | ||
905 | * | ||
906 | * Insert @work which belongs to @cwq into @gcwq after @head. | ||
907 | * @extra_flags is or'd to work_struct flags. | ||
908 | * | ||
909 | * CONTEXT: | ||
910 | * spin_lock_irq(gcwq->lock). | ||
911 | */ | ||
248 | static void insert_work(struct cpu_workqueue_struct *cwq, | 912 | static void insert_work(struct cpu_workqueue_struct *cwq, |
249 | struct work_struct *work, struct list_head *head) | 913 | struct work_struct *work, struct list_head *head, |
914 | unsigned int extra_flags) | ||
250 | { | 915 | { |
251 | trace_workqueue_insertion(cwq->thread, work); | 916 | struct global_cwq *gcwq = cwq->gcwq; |
917 | |||
918 | /* we own @work, set data and link */ | ||
919 | set_work_cwq(work, cwq, extra_flags); | ||
252 | 920 | ||
253 | set_wq_data(work, cwq); | ||
254 | /* | 921 | /* |
255 | * Ensure that we get the right work->data if we see the | 922 | * Ensure that we get the right work->data if we see the |
256 | * result of list_add() below, see try_to_grab_pending(). | 923 | * result of list_add() below, see try_to_grab_pending(). |
257 | */ | 924 | */ |
258 | smp_wmb(); | 925 | smp_wmb(); |
926 | |||
259 | list_add_tail(&work->entry, head); | 927 | list_add_tail(&work->entry, head); |
260 | wake_up(&cwq->more_work); | 928 | |
929 | /* | ||
930 | * Ensure either worker_sched_deactivated() sees the above | ||
931 | * list_add_tail() or we see zero nr_running to avoid workers | ||
932 | * lying around lazily while there are works to be processed. | ||
933 | */ | ||
934 | smp_mb(); | ||
935 | |||
936 | if (__need_more_worker(gcwq)) | ||
937 | wake_up_worker(gcwq); | ||
261 | } | 938 | } |
262 | 939 | ||
263 | static void __queue_work(struct cpu_workqueue_struct *cwq, | 940 | static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, |
264 | struct work_struct *work) | 941 | struct work_struct *work) |
265 | { | 942 | { |
943 | struct global_cwq *gcwq; | ||
944 | struct cpu_workqueue_struct *cwq; | ||
945 | struct list_head *worklist; | ||
266 | unsigned long flags; | 946 | unsigned long flags; |
267 | 947 | ||
268 | debug_work_activate(work); | 948 | debug_work_activate(work); |
269 | spin_lock_irqsave(&cwq->lock, flags); | 949 | |
270 | insert_work(cwq, work, &cwq->worklist); | 950 | /* determine gcwq to use */ |
271 | spin_unlock_irqrestore(&cwq->lock, flags); | 951 | if (!(wq->flags & WQ_UNBOUND)) { |
952 | struct global_cwq *last_gcwq; | ||
953 | |||
954 | if (unlikely(cpu == WORK_CPU_UNBOUND)) | ||
955 | cpu = raw_smp_processor_id(); | ||
956 | |||
957 | /* | ||
958 | * It's multi cpu. If @wq is non-reentrant and @work | ||
959 | * was previously on a different cpu, it might still | ||
960 | * be running there, in which case the work needs to | ||
961 | * be queued on that cpu to guarantee non-reentrance. | ||
962 | */ | ||
963 | gcwq = get_gcwq(cpu); | ||
964 | if (wq->flags & WQ_NON_REENTRANT && | ||
965 | (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { | ||
966 | struct worker *worker; | ||
967 | |||
968 | spin_lock_irqsave(&last_gcwq->lock, flags); | ||
969 | |||
970 | worker = find_worker_executing_work(last_gcwq, work); | ||
971 | |||
972 | if (worker && worker->current_cwq->wq == wq) | ||
973 | gcwq = last_gcwq; | ||
974 | else { | ||
975 | /* meh... not running there, queue here */ | ||
976 | spin_unlock_irqrestore(&last_gcwq->lock, flags); | ||
977 | spin_lock_irqsave(&gcwq->lock, flags); | ||
978 | } | ||
979 | } else | ||
980 | spin_lock_irqsave(&gcwq->lock, flags); | ||
981 | } else { | ||
982 | gcwq = get_gcwq(WORK_CPU_UNBOUND); | ||
983 | spin_lock_irqsave(&gcwq->lock, flags); | ||
984 | } | ||
985 | |||
986 | /* gcwq determined, get cwq and queue */ | ||
987 | cwq = get_cwq(gcwq->cpu, wq); | ||
988 | |||
989 | BUG_ON(!list_empty(&work->entry)); | ||
990 | |||
991 | cwq->nr_in_flight[cwq->work_color]++; | ||
992 | |||
993 | if (likely(cwq->nr_active < cwq->max_active)) { | ||
994 | cwq->nr_active++; | ||
995 | worklist = gcwq_determine_ins_pos(gcwq, cwq); | ||
996 | } else | ||
997 | worklist = &cwq->delayed_works; | ||
998 | |||
999 | insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color)); | ||
1000 | |||
1001 | spin_unlock_irqrestore(&gcwq->lock, flags); | ||
272 | } | 1002 | } |
273 | 1003 | ||
274 | /** | 1004 | /** |
@@ -308,9 +1038,8 @@ queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) | |||
308 | { | 1038 | { |
309 | int ret = 0; | 1039 | int ret = 0; |
310 | 1040 | ||
311 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 1041 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
312 | BUG_ON(!list_empty(&work->entry)); | 1042 | __queue_work(cpu, wq, work); |
313 | __queue_work(wq_per_cpu(wq, cpu), work); | ||
314 | ret = 1; | 1043 | ret = 1; |
315 | } | 1044 | } |
316 | return ret; | 1045 | return ret; |
@@ -320,10 +1049,9 @@ EXPORT_SYMBOL_GPL(queue_work_on); | |||
320 | static void delayed_work_timer_fn(unsigned long __data) | 1049 | static void delayed_work_timer_fn(unsigned long __data) |
321 | { | 1050 | { |
322 | struct delayed_work *dwork = (struct delayed_work *)__data; | 1051 | struct delayed_work *dwork = (struct delayed_work *)__data; |
323 | struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); | 1052 | struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); |
324 | struct workqueue_struct *wq = cwq->wq; | ||
325 | 1053 | ||
326 | __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); | 1054 | __queue_work(smp_processor_id(), cwq->wq, &dwork->work); |
327 | } | 1055 | } |
328 | 1056 | ||
329 | /** | 1057 | /** |
@@ -360,14 +1088,31 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
360 | struct timer_list *timer = &dwork->timer; | 1088 | struct timer_list *timer = &dwork->timer; |
361 | struct work_struct *work = &dwork->work; | 1089 | struct work_struct *work = &dwork->work; |
362 | 1090 | ||
363 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 1091 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
1092 | unsigned int lcpu; | ||
1093 | |||
364 | BUG_ON(timer_pending(timer)); | 1094 | BUG_ON(timer_pending(timer)); |
365 | BUG_ON(!list_empty(&work->entry)); | 1095 | BUG_ON(!list_empty(&work->entry)); |
366 | 1096 | ||
367 | timer_stats_timer_set_start_info(&dwork->timer); | 1097 | timer_stats_timer_set_start_info(&dwork->timer); |
368 | 1098 | ||
369 | /* This stores cwq for the moment, for the timer_fn */ | 1099 | /* |
370 | set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); | 1100 | * This stores cwq for the moment, for the timer_fn. |
1101 | * Note that the work's gcwq is preserved to allow | ||
1102 | * reentrance detection for delayed works. | ||
1103 | */ | ||
1104 | if (!(wq->flags & WQ_UNBOUND)) { | ||
1105 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
1106 | |||
1107 | if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) | ||
1108 | lcpu = gcwq->cpu; | ||
1109 | else | ||
1110 | lcpu = raw_smp_processor_id(); | ||
1111 | } else | ||
1112 | lcpu = WORK_CPU_UNBOUND; | ||
1113 | |||
1114 | set_work_cwq(work, get_cwq(lcpu, wq), 0); | ||
1115 | |||
371 | timer->expires = jiffies + delay; | 1116 | timer->expires = jiffies + delay; |
372 | timer->data = (unsigned long)dwork; | 1117 | timer->data = (unsigned long)dwork; |
373 | timer->function = delayed_work_timer_fn; | 1118 | timer->function = delayed_work_timer_fn; |
@@ -382,80 +1127,878 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
382 | } | 1127 | } |
383 | EXPORT_SYMBOL_GPL(queue_delayed_work_on); | 1128 | EXPORT_SYMBOL_GPL(queue_delayed_work_on); |
384 | 1129 | ||
385 | static void run_workqueue(struct cpu_workqueue_struct *cwq) | 1130 | /** |
1131 | * worker_enter_idle - enter idle state | ||
1132 | * @worker: worker which is entering idle state | ||
1133 | * | ||
1134 | * @worker is entering idle state. Update stats and idle timer if | ||
1135 | * necessary. | ||
1136 | * | ||
1137 | * LOCKING: | ||
1138 | * spin_lock_irq(gcwq->lock). | ||
1139 | */ | ||
1140 | static void worker_enter_idle(struct worker *worker) | ||
386 | { | 1141 | { |
387 | spin_lock_irq(&cwq->lock); | 1142 | struct global_cwq *gcwq = worker->gcwq; |
388 | while (!list_empty(&cwq->worklist)) { | 1143 | |
389 | struct work_struct *work = list_entry(cwq->worklist.next, | 1144 | BUG_ON(worker->flags & WORKER_IDLE); |
390 | struct work_struct, entry); | 1145 | BUG_ON(!list_empty(&worker->entry) && |
391 | work_func_t f = work->func; | 1146 | (worker->hentry.next || worker->hentry.pprev)); |
392 | #ifdef CONFIG_LOCKDEP | 1147 | |
1148 | /* can't use worker_set_flags(), also called from start_worker() */ | ||
1149 | worker->flags |= WORKER_IDLE; | ||
1150 | gcwq->nr_idle++; | ||
1151 | worker->last_active = jiffies; | ||
1152 | |||
1153 | /* idle_list is LIFO */ | ||
1154 | list_add(&worker->entry, &gcwq->idle_list); | ||
1155 | |||
1156 | if (likely(!(worker->flags & WORKER_ROGUE))) { | ||
1157 | if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) | ||
1158 | mod_timer(&gcwq->idle_timer, | ||
1159 | jiffies + IDLE_WORKER_TIMEOUT); | ||
1160 | } else | ||
1161 | wake_up_all(&gcwq->trustee_wait); | ||
1162 | |||
1163 | /* sanity check nr_running */ | ||
1164 | WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && | ||
1165 | atomic_read(get_gcwq_nr_running(gcwq->cpu))); | ||
1166 | } | ||
1167 | |||
1168 | /** | ||
1169 | * worker_leave_idle - leave idle state | ||
1170 | * @worker: worker which is leaving idle state | ||
1171 | * | ||
1172 | * @worker is leaving idle state. Update stats. | ||
1173 | * | ||
1174 | * LOCKING: | ||
1175 | * spin_lock_irq(gcwq->lock). | ||
1176 | */ | ||
1177 | static void worker_leave_idle(struct worker *worker) | ||
1178 | { | ||
1179 | struct global_cwq *gcwq = worker->gcwq; | ||
1180 | |||
1181 | BUG_ON(!(worker->flags & WORKER_IDLE)); | ||
1182 | worker_clr_flags(worker, WORKER_IDLE); | ||
1183 | gcwq->nr_idle--; | ||
1184 | list_del_init(&worker->entry); | ||
1185 | } | ||
1186 | |||
1187 | /** | ||
1188 | * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq | ||
1189 | * @worker: self | ||
1190 | * | ||
1191 | * Works which are scheduled while the cpu is online must at least be | ||
1192 | * scheduled to a worker which is bound to the cpu so that if they are | ||
1193 | * flushed from cpu callbacks while cpu is going down, they are | ||
1194 | * guaranteed to execute on the cpu. | ||
1195 | * | ||
1196 | * This function is to be used by rogue workers and rescuers to bind | ||
1197 | * themselves to the target cpu and may race with cpu going down or | ||
1198 | * coming online. kthread_bind() can't be used because it may put the | ||
1199 | * worker to already dead cpu and set_cpus_allowed_ptr() can't be used | ||
1200 | * verbatim as it's best effort and blocking and gcwq may be | ||
1201 | * [dis]associated in the meantime. | ||
1202 | * | ||
1203 | * This function tries set_cpus_allowed() and locks gcwq and verifies | ||
1204 | * the binding against GCWQ_DISASSOCIATED which is set during | ||
1205 | * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters | ||
1206 | * idle state or fetches works without dropping lock, it can guarantee | ||
1207 | * the scheduling requirement described in the first paragraph. | ||
1208 | * | ||
1209 | * CONTEXT: | ||
1210 | * Might sleep. Called without any lock but returns with gcwq->lock | ||
1211 | * held. | ||
1212 | * | ||
1213 | * RETURNS: | ||
1214 | * %true if the associated gcwq is online (@worker is successfully | ||
1215 | * bound), %false if offline. | ||
1216 | */ | ||
1217 | static bool worker_maybe_bind_and_lock(struct worker *worker) | ||
1218 | { | ||
1219 | struct global_cwq *gcwq = worker->gcwq; | ||
1220 | struct task_struct *task = worker->task; | ||
1221 | |||
1222 | while (true) { | ||
393 | /* | 1223 | /* |
394 | * It is permissible to free the struct work_struct | 1224 | * The following call may fail, succeed or succeed |
395 | * from inside the function that is called from it, | 1225 | * without actually migrating the task to the cpu if |
396 | * this we need to take into account for lockdep too. | 1226 | * it races with cpu hotunplug operation. Verify |
397 | * To avoid bogus "held lock freed" warnings as well | 1227 | * against GCWQ_DISASSOCIATED. |
398 | * as problems when looking into work->lockdep_map, | ||
399 | * make a copy and use that here. | ||
400 | */ | 1228 | */ |
401 | struct lockdep_map lockdep_map = work->lockdep_map; | 1229 | if (!(gcwq->flags & GCWQ_DISASSOCIATED)) |
402 | #endif | 1230 | set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); |
403 | trace_workqueue_execution(cwq->thread, work); | 1231 | |
404 | debug_work_deactivate(work); | 1232 | spin_lock_irq(&gcwq->lock); |
405 | cwq->current_work = work; | 1233 | if (gcwq->flags & GCWQ_DISASSOCIATED) |
406 | list_del_init(cwq->worklist.next); | 1234 | return false; |
407 | spin_unlock_irq(&cwq->lock); | 1235 | if (task_cpu(task) == gcwq->cpu && |
408 | 1236 | cpumask_equal(¤t->cpus_allowed, | |
409 | BUG_ON(get_wq_data(work) != cwq); | 1237 | get_cpu_mask(gcwq->cpu))) |
410 | work_clear_pending(work); | 1238 | return true; |
411 | lock_map_acquire(&cwq->wq->lockdep_map); | 1239 | spin_unlock_irq(&gcwq->lock); |
412 | lock_map_acquire(&lockdep_map); | 1240 | |
413 | f(work); | 1241 | /* CPU has come up inbetween, retry migration */ |
414 | lock_map_release(&lockdep_map); | 1242 | cpu_relax(); |
415 | lock_map_release(&cwq->wq->lockdep_map); | 1243 | } |
416 | 1244 | } | |
417 | if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { | 1245 | |
418 | printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " | 1246 | /* |
419 | "%s/0x%08x/%d\n", | 1247 | * Function for worker->rebind_work used to rebind rogue busy workers |
420 | current->comm, preempt_count(), | 1248 | * to the associated cpu which is coming back online. This is |
421 | task_pid_nr(current)); | 1249 | * scheduled by cpu up but can race with other cpu hotplug operations |
422 | printk(KERN_ERR " last function: "); | 1250 | * and may be executed twice without intervening cpu down. |
423 | print_symbol("%s\n", (unsigned long)f); | 1251 | */ |
424 | debug_show_held_locks(current); | 1252 | static void worker_rebind_fn(struct work_struct *work) |
425 | dump_stack(); | 1253 | { |
1254 | struct worker *worker = container_of(work, struct worker, rebind_work); | ||
1255 | struct global_cwq *gcwq = worker->gcwq; | ||
1256 | |||
1257 | if (worker_maybe_bind_and_lock(worker)) | ||
1258 | worker_clr_flags(worker, WORKER_REBIND); | ||
1259 | |||
1260 | spin_unlock_irq(&gcwq->lock); | ||
1261 | } | ||
1262 | |||
1263 | static struct worker *alloc_worker(void) | ||
1264 | { | ||
1265 | struct worker *worker; | ||
1266 | |||
1267 | worker = kzalloc(sizeof(*worker), GFP_KERNEL); | ||
1268 | if (worker) { | ||
1269 | INIT_LIST_HEAD(&worker->entry); | ||
1270 | INIT_LIST_HEAD(&worker->scheduled); | ||
1271 | INIT_WORK(&worker->rebind_work, worker_rebind_fn); | ||
1272 | /* on creation a worker is in !idle && prep state */ | ||
1273 | worker->flags = WORKER_PREP; | ||
1274 | } | ||
1275 | return worker; | ||
1276 | } | ||
1277 | |||
1278 | /** | ||
1279 | * create_worker - create a new workqueue worker | ||
1280 | * @gcwq: gcwq the new worker will belong to | ||
1281 | * @bind: whether to set affinity to @cpu or not | ||
1282 | * | ||
1283 | * Create a new worker which is bound to @gcwq. The returned worker | ||
1284 | * can be started by calling start_worker() or destroyed using | ||
1285 | * destroy_worker(). | ||
1286 | * | ||
1287 | * CONTEXT: | ||
1288 | * Might sleep. Does GFP_KERNEL allocations. | ||
1289 | * | ||
1290 | * RETURNS: | ||
1291 | * Pointer to the newly created worker. | ||
1292 | */ | ||
1293 | static struct worker *create_worker(struct global_cwq *gcwq, bool bind) | ||
1294 | { | ||
1295 | bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; | ||
1296 | struct worker *worker = NULL; | ||
1297 | int id = -1; | ||
1298 | |||
1299 | spin_lock_irq(&gcwq->lock); | ||
1300 | while (ida_get_new(&gcwq->worker_ida, &id)) { | ||
1301 | spin_unlock_irq(&gcwq->lock); | ||
1302 | if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) | ||
1303 | goto fail; | ||
1304 | spin_lock_irq(&gcwq->lock); | ||
1305 | } | ||
1306 | spin_unlock_irq(&gcwq->lock); | ||
1307 | |||
1308 | worker = alloc_worker(); | ||
1309 | if (!worker) | ||
1310 | goto fail; | ||
1311 | |||
1312 | worker->gcwq = gcwq; | ||
1313 | worker->id = id; | ||
1314 | |||
1315 | if (!on_unbound_cpu) | ||
1316 | worker->task = kthread_create(worker_thread, worker, | ||
1317 | "kworker/%u:%d", gcwq->cpu, id); | ||
1318 | else | ||
1319 | worker->task = kthread_create(worker_thread, worker, | ||
1320 | "kworker/u:%d", id); | ||
1321 | if (IS_ERR(worker->task)) | ||
1322 | goto fail; | ||
1323 | |||
1324 | /* | ||
1325 | * A rogue worker will become a regular one if CPU comes | ||
1326 | * online later on. Make sure every worker has | ||
1327 | * PF_THREAD_BOUND set. | ||
1328 | */ | ||
1329 | if (bind && !on_unbound_cpu) | ||
1330 | kthread_bind(worker->task, gcwq->cpu); | ||
1331 | else { | ||
1332 | worker->task->flags |= PF_THREAD_BOUND; | ||
1333 | if (on_unbound_cpu) | ||
1334 | worker->flags |= WORKER_UNBOUND; | ||
1335 | } | ||
1336 | |||
1337 | return worker; | ||
1338 | fail: | ||
1339 | if (id >= 0) { | ||
1340 | spin_lock_irq(&gcwq->lock); | ||
1341 | ida_remove(&gcwq->worker_ida, id); | ||
1342 | spin_unlock_irq(&gcwq->lock); | ||
1343 | } | ||
1344 | kfree(worker); | ||
1345 | return NULL; | ||
1346 | } | ||
1347 | |||
1348 | /** | ||
1349 | * start_worker - start a newly created worker | ||
1350 | * @worker: worker to start | ||
1351 | * | ||
1352 | * Make the gcwq aware of @worker and start it. | ||
1353 | * | ||
1354 | * CONTEXT: | ||
1355 | * spin_lock_irq(gcwq->lock). | ||
1356 | */ | ||
1357 | static void start_worker(struct worker *worker) | ||
1358 | { | ||
1359 | worker->flags |= WORKER_STARTED; | ||
1360 | worker->gcwq->nr_workers++; | ||
1361 | worker_enter_idle(worker); | ||
1362 | wake_up_process(worker->task); | ||
1363 | } | ||
1364 | |||
1365 | /** | ||
1366 | * destroy_worker - destroy a workqueue worker | ||
1367 | * @worker: worker to be destroyed | ||
1368 | * | ||
1369 | * Destroy @worker and adjust @gcwq stats accordingly. | ||
1370 | * | ||
1371 | * CONTEXT: | ||
1372 | * spin_lock_irq(gcwq->lock) which is released and regrabbed. | ||
1373 | */ | ||
1374 | static void destroy_worker(struct worker *worker) | ||
1375 | { | ||
1376 | struct global_cwq *gcwq = worker->gcwq; | ||
1377 | int id = worker->id; | ||
1378 | |||
1379 | /* sanity check frenzy */ | ||
1380 | BUG_ON(worker->current_work); | ||
1381 | BUG_ON(!list_empty(&worker->scheduled)); | ||
1382 | |||
1383 | if (worker->flags & WORKER_STARTED) | ||
1384 | gcwq->nr_workers--; | ||
1385 | if (worker->flags & WORKER_IDLE) | ||
1386 | gcwq->nr_idle--; | ||
1387 | |||
1388 | list_del_init(&worker->entry); | ||
1389 | worker->flags |= WORKER_DIE; | ||
1390 | |||
1391 | spin_unlock_irq(&gcwq->lock); | ||
1392 | |||
1393 | kthread_stop(worker->task); | ||
1394 | kfree(worker); | ||
1395 | |||
1396 | spin_lock_irq(&gcwq->lock); | ||
1397 | ida_remove(&gcwq->worker_ida, id); | ||
1398 | } | ||
1399 | |||
1400 | static void idle_worker_timeout(unsigned long __gcwq) | ||
1401 | { | ||
1402 | struct global_cwq *gcwq = (void *)__gcwq; | ||
1403 | |||
1404 | spin_lock_irq(&gcwq->lock); | ||
1405 | |||
1406 | if (too_many_workers(gcwq)) { | ||
1407 | struct worker *worker; | ||
1408 | unsigned long expires; | ||
1409 | |||
1410 | /* idle_list is kept in LIFO order, check the last one */ | ||
1411 | worker = list_entry(gcwq->idle_list.prev, struct worker, entry); | ||
1412 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; | ||
1413 | |||
1414 | if (time_before(jiffies, expires)) | ||
1415 | mod_timer(&gcwq->idle_timer, expires); | ||
1416 | else { | ||
1417 | /* it's been idle for too long, wake up manager */ | ||
1418 | gcwq->flags |= GCWQ_MANAGE_WORKERS; | ||
1419 | wake_up_worker(gcwq); | ||
426 | } | 1420 | } |
1421 | } | ||
427 | 1422 | ||
428 | spin_lock_irq(&cwq->lock); | 1423 | spin_unlock_irq(&gcwq->lock); |
429 | cwq->current_work = NULL; | 1424 | } |
1425 | |||
1426 | static bool send_mayday(struct work_struct *work) | ||
1427 | { | ||
1428 | struct cpu_workqueue_struct *cwq = get_work_cwq(work); | ||
1429 | struct workqueue_struct *wq = cwq->wq; | ||
1430 | unsigned int cpu; | ||
1431 | |||
1432 | if (!(wq->flags & WQ_RESCUER)) | ||
1433 | return false; | ||
1434 | |||
1435 | /* mayday mayday mayday */ | ||
1436 | cpu = cwq->gcwq->cpu; | ||
1437 | /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ | ||
1438 | if (cpu == WORK_CPU_UNBOUND) | ||
1439 | cpu = 0; | ||
1440 | if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) | ||
1441 | wake_up_process(wq->rescuer->task); | ||
1442 | return true; | ||
1443 | } | ||
1444 | |||
1445 | static void gcwq_mayday_timeout(unsigned long __gcwq) | ||
1446 | { | ||
1447 | struct global_cwq *gcwq = (void *)__gcwq; | ||
1448 | struct work_struct *work; | ||
1449 | |||
1450 | spin_lock_irq(&gcwq->lock); | ||
1451 | |||
1452 | if (need_to_create_worker(gcwq)) { | ||
1453 | /* | ||
1454 | * We've been trying to create a new worker but | ||
1455 | * haven't been successful. We might be hitting an | ||
1456 | * allocation deadlock. Send distress signals to | ||
1457 | * rescuers. | ||
1458 | */ | ||
1459 | list_for_each_entry(work, &gcwq->worklist, entry) | ||
1460 | send_mayday(work); | ||
430 | } | 1461 | } |
431 | spin_unlock_irq(&cwq->lock); | 1462 | |
1463 | spin_unlock_irq(&gcwq->lock); | ||
1464 | |||
1465 | mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); | ||
432 | } | 1466 | } |
433 | 1467 | ||
434 | static int worker_thread(void *__cwq) | 1468 | /** |
1469 | * maybe_create_worker - create a new worker if necessary | ||
1470 | * @gcwq: gcwq to create a new worker for | ||
1471 | * | ||
1472 | * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to | ||
1473 | * have at least one idle worker on return from this function. If | ||
1474 | * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is | ||
1475 | * sent to all rescuers with works scheduled on @gcwq to resolve | ||
1476 | * possible allocation deadlock. | ||
1477 | * | ||
1478 | * On return, need_to_create_worker() is guaranteed to be false and | ||
1479 | * may_start_working() true. | ||
1480 | * | ||
1481 | * LOCKING: | ||
1482 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1483 | * multiple times. Does GFP_KERNEL allocations. Called only from | ||
1484 | * manager. | ||
1485 | * | ||
1486 | * RETURNS: | ||
1487 | * false if no action was taken and gcwq->lock stayed locked, true | ||
1488 | * otherwise. | ||
1489 | */ | ||
1490 | static bool maybe_create_worker(struct global_cwq *gcwq) | ||
435 | { | 1491 | { |
436 | struct cpu_workqueue_struct *cwq = __cwq; | 1492 | if (!need_to_create_worker(gcwq)) |
437 | DEFINE_WAIT(wait); | 1493 | return false; |
1494 | restart: | ||
1495 | spin_unlock_irq(&gcwq->lock); | ||
1496 | |||
1497 | /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ | ||
1498 | mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); | ||
1499 | |||
1500 | while (true) { | ||
1501 | struct worker *worker; | ||
1502 | |||
1503 | worker = create_worker(gcwq, true); | ||
1504 | if (worker) { | ||
1505 | del_timer_sync(&gcwq->mayday_timer); | ||
1506 | spin_lock_irq(&gcwq->lock); | ||
1507 | start_worker(worker); | ||
1508 | BUG_ON(need_to_create_worker(gcwq)); | ||
1509 | return true; | ||
1510 | } | ||
1511 | |||
1512 | if (!need_to_create_worker(gcwq)) | ||
1513 | break; | ||
438 | 1514 | ||
439 | if (cwq->wq->freezeable) | 1515 | __set_current_state(TASK_INTERRUPTIBLE); |
440 | set_freezable(); | 1516 | schedule_timeout(CREATE_COOLDOWN); |
441 | 1517 | ||
442 | for (;;) { | 1518 | if (!need_to_create_worker(gcwq)) |
443 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); | 1519 | break; |
444 | if (!freezing(current) && | 1520 | } |
445 | !kthread_should_stop() && | ||
446 | list_empty(&cwq->worklist)) | ||
447 | schedule(); | ||
448 | finish_wait(&cwq->more_work, &wait); | ||
449 | 1521 | ||
450 | try_to_freeze(); | 1522 | del_timer_sync(&gcwq->mayday_timer); |
1523 | spin_lock_irq(&gcwq->lock); | ||
1524 | if (need_to_create_worker(gcwq)) | ||
1525 | goto restart; | ||
1526 | return true; | ||
1527 | } | ||
451 | 1528 | ||
452 | if (kthread_should_stop()) | 1529 | /** |
1530 | * maybe_destroy_worker - destroy workers which have been idle for a while | ||
1531 | * @gcwq: gcwq to destroy workers for | ||
1532 | * | ||
1533 | * Destroy @gcwq workers which have been idle for longer than | ||
1534 | * IDLE_WORKER_TIMEOUT. | ||
1535 | * | ||
1536 | * LOCKING: | ||
1537 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1538 | * multiple times. Called only from manager. | ||
1539 | * | ||
1540 | * RETURNS: | ||
1541 | * false if no action was taken and gcwq->lock stayed locked, true | ||
1542 | * otherwise. | ||
1543 | */ | ||
1544 | static bool maybe_destroy_workers(struct global_cwq *gcwq) | ||
1545 | { | ||
1546 | bool ret = false; | ||
1547 | |||
1548 | while (too_many_workers(gcwq)) { | ||
1549 | struct worker *worker; | ||
1550 | unsigned long expires; | ||
1551 | |||
1552 | worker = list_entry(gcwq->idle_list.prev, struct worker, entry); | ||
1553 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; | ||
1554 | |||
1555 | if (time_before(jiffies, expires)) { | ||
1556 | mod_timer(&gcwq->idle_timer, expires); | ||
453 | break; | 1557 | break; |
1558 | } | ||
454 | 1559 | ||
455 | run_workqueue(cwq); | 1560 | destroy_worker(worker); |
1561 | ret = true; | ||
456 | } | 1562 | } |
457 | 1563 | ||
458 | return 0; | 1564 | return ret; |
1565 | } | ||
1566 | |||
1567 | /** | ||
1568 | * manage_workers - manage worker pool | ||
1569 | * @worker: self | ||
1570 | * | ||
1571 | * Assume the manager role and manage gcwq worker pool @worker belongs | ||
1572 | * to. At any given time, there can be only zero or one manager per | ||
1573 | * gcwq. The exclusion is handled automatically by this function. | ||
1574 | * | ||
1575 | * The caller can safely start processing works on false return. On | ||
1576 | * true return, it's guaranteed that need_to_create_worker() is false | ||
1577 | * and may_start_working() is true. | ||
1578 | * | ||
1579 | * CONTEXT: | ||
1580 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1581 | * multiple times. Does GFP_KERNEL allocations. | ||
1582 | * | ||
1583 | * RETURNS: | ||
1584 | * false if no action was taken and gcwq->lock stayed locked, true if | ||
1585 | * some action was taken. | ||
1586 | */ | ||
1587 | static bool manage_workers(struct worker *worker) | ||
1588 | { | ||
1589 | struct global_cwq *gcwq = worker->gcwq; | ||
1590 | bool ret = false; | ||
1591 | |||
1592 | if (gcwq->flags & GCWQ_MANAGING_WORKERS) | ||
1593 | return ret; | ||
1594 | |||
1595 | gcwq->flags &= ~GCWQ_MANAGE_WORKERS; | ||
1596 | gcwq->flags |= GCWQ_MANAGING_WORKERS; | ||
1597 | |||
1598 | /* | ||
1599 | * Destroy and then create so that may_start_working() is true | ||
1600 | * on return. | ||
1601 | */ | ||
1602 | ret |= maybe_destroy_workers(gcwq); | ||
1603 | ret |= maybe_create_worker(gcwq); | ||
1604 | |||
1605 | gcwq->flags &= ~GCWQ_MANAGING_WORKERS; | ||
1606 | |||
1607 | /* | ||
1608 | * The trustee might be waiting to take over the manager | ||
1609 | * position, tell it we're done. | ||
1610 | */ | ||
1611 | if (unlikely(gcwq->trustee)) | ||
1612 | wake_up_all(&gcwq->trustee_wait); | ||
1613 | |||
1614 | return ret; | ||
1615 | } | ||
1616 | |||
1617 | /** | ||
1618 | * move_linked_works - move linked works to a list | ||
1619 | * @work: start of series of works to be scheduled | ||
1620 | * @head: target list to append @work to | ||
1621 | * @nextp: out paramter for nested worklist walking | ||
1622 | * | ||
1623 | * Schedule linked works starting from @work to @head. Work series to | ||
1624 | * be scheduled starts at @work and includes any consecutive work with | ||
1625 | * WORK_STRUCT_LINKED set in its predecessor. | ||
1626 | * | ||
1627 | * If @nextp is not NULL, it's updated to point to the next work of | ||
1628 | * the last scheduled work. This allows move_linked_works() to be | ||
1629 | * nested inside outer list_for_each_entry_safe(). | ||
1630 | * | ||
1631 | * CONTEXT: | ||
1632 | * spin_lock_irq(gcwq->lock). | ||
1633 | */ | ||
1634 | static void move_linked_works(struct work_struct *work, struct list_head *head, | ||
1635 | struct work_struct **nextp) | ||
1636 | { | ||
1637 | struct work_struct *n; | ||
1638 | |||
1639 | /* | ||
1640 | * Linked worklist will always end before the end of the list, | ||
1641 | * use NULL for list head. | ||
1642 | */ | ||
1643 | list_for_each_entry_safe_from(work, n, NULL, entry) { | ||
1644 | list_move_tail(&work->entry, head); | ||
1645 | if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) | ||
1646 | break; | ||
1647 | } | ||
1648 | |||
1649 | /* | ||
1650 | * If we're already inside safe list traversal and have moved | ||
1651 | * multiple works to the scheduled queue, the next position | ||
1652 | * needs to be updated. | ||
1653 | */ | ||
1654 | if (nextp) | ||
1655 | *nextp = n; | ||
1656 | } | ||
1657 | |||
1658 | static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) | ||
1659 | { | ||
1660 | struct work_struct *work = list_first_entry(&cwq->delayed_works, | ||
1661 | struct work_struct, entry); | ||
1662 | struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); | ||
1663 | |||
1664 | move_linked_works(work, pos, NULL); | ||
1665 | cwq->nr_active++; | ||
1666 | } | ||
1667 | |||
1668 | /** | ||
1669 | * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight | ||
1670 | * @cwq: cwq of interest | ||
1671 | * @color: color of work which left the queue | ||
1672 | * | ||
1673 | * A work either has completed or is removed from pending queue, | ||
1674 | * decrement nr_in_flight of its cwq and handle workqueue flushing. | ||
1675 | * | ||
1676 | * CONTEXT: | ||
1677 | * spin_lock_irq(gcwq->lock). | ||
1678 | */ | ||
1679 | static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color) | ||
1680 | { | ||
1681 | /* ignore uncolored works */ | ||
1682 | if (color == WORK_NO_COLOR) | ||
1683 | return; | ||
1684 | |||
1685 | cwq->nr_in_flight[color]--; | ||
1686 | cwq->nr_active--; | ||
1687 | |||
1688 | if (!list_empty(&cwq->delayed_works)) { | ||
1689 | /* one down, submit a delayed one */ | ||
1690 | if (cwq->nr_active < cwq->max_active) | ||
1691 | cwq_activate_first_delayed(cwq); | ||
1692 | } | ||
1693 | |||
1694 | /* is flush in progress and are we at the flushing tip? */ | ||
1695 | if (likely(cwq->flush_color != color)) | ||
1696 | return; | ||
1697 | |||
1698 | /* are there still in-flight works? */ | ||
1699 | if (cwq->nr_in_flight[color]) | ||
1700 | return; | ||
1701 | |||
1702 | /* this cwq is done, clear flush_color */ | ||
1703 | cwq->flush_color = -1; | ||
1704 | |||
1705 | /* | ||
1706 | * If this was the last cwq, wake up the first flusher. It | ||
1707 | * will handle the rest. | ||
1708 | */ | ||
1709 | if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) | ||
1710 | complete(&cwq->wq->first_flusher->done); | ||
1711 | } | ||
1712 | |||
1713 | /** | ||
1714 | * process_one_work - process single work | ||
1715 | * @worker: self | ||
1716 | * @work: work to process | ||
1717 | * | ||
1718 | * Process @work. This function contains all the logics necessary to | ||
1719 | * process a single work including synchronization against and | ||
1720 | * interaction with other workers on the same cpu, queueing and | ||
1721 | * flushing. As long as context requirement is met, any worker can | ||
1722 | * call this function to process a work. | ||
1723 | * | ||
1724 | * CONTEXT: | ||
1725 | * spin_lock_irq(gcwq->lock) which is released and regrabbed. | ||
1726 | */ | ||
1727 | static void process_one_work(struct worker *worker, struct work_struct *work) | ||
1728 | { | ||
1729 | struct cpu_workqueue_struct *cwq = get_work_cwq(work); | ||
1730 | struct global_cwq *gcwq = cwq->gcwq; | ||
1731 | struct hlist_head *bwh = busy_worker_head(gcwq, work); | ||
1732 | bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; | ||
1733 | work_func_t f = work->func; | ||
1734 | int work_color; | ||
1735 | struct worker *collision; | ||
1736 | #ifdef CONFIG_LOCKDEP | ||
1737 | /* | ||
1738 | * It is permissible to free the struct work_struct from | ||
1739 | * inside the function that is called from it, this we need to | ||
1740 | * take into account for lockdep too. To avoid bogus "held | ||
1741 | * lock freed" warnings as well as problems when looking into | ||
1742 | * work->lockdep_map, make a copy and use that here. | ||
1743 | */ | ||
1744 | struct lockdep_map lockdep_map = work->lockdep_map; | ||
1745 | #endif | ||
1746 | /* | ||
1747 | * A single work shouldn't be executed concurrently by | ||
1748 | * multiple workers on a single cpu. Check whether anyone is | ||
1749 | * already processing the work. If so, defer the work to the | ||
1750 | * currently executing one. | ||
1751 | */ | ||
1752 | collision = __find_worker_executing_work(gcwq, bwh, work); | ||
1753 | if (unlikely(collision)) { | ||
1754 | move_linked_works(work, &collision->scheduled, NULL); | ||
1755 | return; | ||
1756 | } | ||
1757 | |||
1758 | /* claim and process */ | ||
1759 | debug_work_deactivate(work); | ||
1760 | hlist_add_head(&worker->hentry, bwh); | ||
1761 | worker->current_work = work; | ||
1762 | worker->current_cwq = cwq; | ||
1763 | work_color = get_work_color(work); | ||
1764 | |||
1765 | /* record the current cpu number in the work data and dequeue */ | ||
1766 | set_work_cpu(work, gcwq->cpu); | ||
1767 | list_del_init(&work->entry); | ||
1768 | |||
1769 | /* | ||
1770 | * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, | ||
1771 | * wake up another worker; otherwise, clear HIGHPRI_PENDING. | ||
1772 | */ | ||
1773 | if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { | ||
1774 | struct work_struct *nwork = list_first_entry(&gcwq->worklist, | ||
1775 | struct work_struct, entry); | ||
1776 | |||
1777 | if (!list_empty(&gcwq->worklist) && | ||
1778 | get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) | ||
1779 | wake_up_worker(gcwq); | ||
1780 | else | ||
1781 | gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; | ||
1782 | } | ||
1783 | |||
1784 | /* | ||
1785 | * CPU intensive works don't participate in concurrency | ||
1786 | * management. They're the scheduler's responsibility. | ||
1787 | */ | ||
1788 | if (unlikely(cpu_intensive)) | ||
1789 | worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); | ||
1790 | |||
1791 | spin_unlock_irq(&gcwq->lock); | ||
1792 | |||
1793 | work_clear_pending(work); | ||
1794 | lock_map_acquire(&cwq->wq->lockdep_map); | ||
1795 | lock_map_acquire(&lockdep_map); | ||
1796 | trace_workqueue_execute_start(work); | ||
1797 | f(work); | ||
1798 | /* | ||
1799 | * While we must be careful to not use "work" after this, the trace | ||
1800 | * point will only record its address. | ||
1801 | */ | ||
1802 | trace_workqueue_execute_end(work); | ||
1803 | lock_map_release(&lockdep_map); | ||
1804 | lock_map_release(&cwq->wq->lockdep_map); | ||
1805 | |||
1806 | if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { | ||
1807 | printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " | ||
1808 | "%s/0x%08x/%d\n", | ||
1809 | current->comm, preempt_count(), task_pid_nr(current)); | ||
1810 | printk(KERN_ERR " last function: "); | ||
1811 | print_symbol("%s\n", (unsigned long)f); | ||
1812 | debug_show_held_locks(current); | ||
1813 | dump_stack(); | ||
1814 | } | ||
1815 | |||
1816 | spin_lock_irq(&gcwq->lock); | ||
1817 | |||
1818 | /* clear cpu intensive status */ | ||
1819 | if (unlikely(cpu_intensive)) | ||
1820 | worker_clr_flags(worker, WORKER_CPU_INTENSIVE); | ||
1821 | |||
1822 | /* we're done with it, release */ | ||
1823 | hlist_del_init(&worker->hentry); | ||
1824 | worker->current_work = NULL; | ||
1825 | worker->current_cwq = NULL; | ||
1826 | cwq_dec_nr_in_flight(cwq, work_color); | ||
1827 | } | ||
1828 | |||
1829 | /** | ||
1830 | * process_scheduled_works - process scheduled works | ||
1831 | * @worker: self | ||
1832 | * | ||
1833 | * Process all scheduled works. Please note that the scheduled list | ||
1834 | * may change while processing a work, so this function repeatedly | ||
1835 | * fetches a work from the top and executes it. | ||
1836 | * | ||
1837 | * CONTEXT: | ||
1838 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1839 | * multiple times. | ||
1840 | */ | ||
1841 | static void process_scheduled_works(struct worker *worker) | ||
1842 | { | ||
1843 | while (!list_empty(&worker->scheduled)) { | ||
1844 | struct work_struct *work = list_first_entry(&worker->scheduled, | ||
1845 | struct work_struct, entry); | ||
1846 | process_one_work(worker, work); | ||
1847 | } | ||
1848 | } | ||
1849 | |||
1850 | /** | ||
1851 | * worker_thread - the worker thread function | ||
1852 | * @__worker: self | ||
1853 | * | ||
1854 | * The gcwq worker thread function. There's a single dynamic pool of | ||
1855 | * these per each cpu. These workers process all works regardless of | ||
1856 | * their specific target workqueue. The only exception is works which | ||
1857 | * belong to workqueues with a rescuer which will be explained in | ||
1858 | * rescuer_thread(). | ||
1859 | */ | ||
1860 | static int worker_thread(void *__worker) | ||
1861 | { | ||
1862 | struct worker *worker = __worker; | ||
1863 | struct global_cwq *gcwq = worker->gcwq; | ||
1864 | |||
1865 | /* tell the scheduler that this is a workqueue worker */ | ||
1866 | worker->task->flags |= PF_WQ_WORKER; | ||
1867 | woke_up: | ||
1868 | spin_lock_irq(&gcwq->lock); | ||
1869 | |||
1870 | /* DIE can be set only while we're idle, checking here is enough */ | ||
1871 | if (worker->flags & WORKER_DIE) { | ||
1872 | spin_unlock_irq(&gcwq->lock); | ||
1873 | worker->task->flags &= ~PF_WQ_WORKER; | ||
1874 | return 0; | ||
1875 | } | ||
1876 | |||
1877 | worker_leave_idle(worker); | ||
1878 | recheck: | ||
1879 | /* no more worker necessary? */ | ||
1880 | if (!need_more_worker(gcwq)) | ||
1881 | goto sleep; | ||
1882 | |||
1883 | /* do we need to manage? */ | ||
1884 | if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) | ||
1885 | goto recheck; | ||
1886 | |||
1887 | /* | ||
1888 | * ->scheduled list can only be filled while a worker is | ||
1889 | * preparing to process a work or actually processing it. | ||
1890 | * Make sure nobody diddled with it while I was sleeping. | ||
1891 | */ | ||
1892 | BUG_ON(!list_empty(&worker->scheduled)); | ||
1893 | |||
1894 | /* | ||
1895 | * When control reaches this point, we're guaranteed to have | ||
1896 | * at least one idle worker or that someone else has already | ||
1897 | * assumed the manager role. | ||
1898 | */ | ||
1899 | worker_clr_flags(worker, WORKER_PREP); | ||
1900 | |||
1901 | do { | ||
1902 | struct work_struct *work = | ||
1903 | list_first_entry(&gcwq->worklist, | ||
1904 | struct work_struct, entry); | ||
1905 | |||
1906 | if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { | ||
1907 | /* optimization path, not strictly necessary */ | ||
1908 | process_one_work(worker, work); | ||
1909 | if (unlikely(!list_empty(&worker->scheduled))) | ||
1910 | process_scheduled_works(worker); | ||
1911 | } else { | ||
1912 | move_linked_works(work, &worker->scheduled, NULL); | ||
1913 | process_scheduled_works(worker); | ||
1914 | } | ||
1915 | } while (keep_working(gcwq)); | ||
1916 | |||
1917 | worker_set_flags(worker, WORKER_PREP, false); | ||
1918 | sleep: | ||
1919 | if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) | ||
1920 | goto recheck; | ||
1921 | |||
1922 | /* | ||
1923 | * gcwq->lock is held and there's no work to process and no | ||
1924 | * need to manage, sleep. Workers are woken up only while | ||
1925 | * holding gcwq->lock or from local cpu, so setting the | ||
1926 | * current state before releasing gcwq->lock is enough to | ||
1927 | * prevent losing any event. | ||
1928 | */ | ||
1929 | worker_enter_idle(worker); | ||
1930 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1931 | spin_unlock_irq(&gcwq->lock); | ||
1932 | schedule(); | ||
1933 | goto woke_up; | ||
1934 | } | ||
1935 | |||
1936 | /** | ||
1937 | * rescuer_thread - the rescuer thread function | ||
1938 | * @__wq: the associated workqueue | ||
1939 | * | ||
1940 | * Workqueue rescuer thread function. There's one rescuer for each | ||
1941 | * workqueue which has WQ_RESCUER set. | ||
1942 | * | ||
1943 | * Regular work processing on a gcwq may block trying to create a new | ||
1944 | * worker which uses GFP_KERNEL allocation which has slight chance of | ||
1945 | * developing into deadlock if some works currently on the same queue | ||
1946 | * need to be processed to satisfy the GFP_KERNEL allocation. This is | ||
1947 | * the problem rescuer solves. | ||
1948 | * | ||
1949 | * When such condition is possible, the gcwq summons rescuers of all | ||
1950 | * workqueues which have works queued on the gcwq and let them process | ||
1951 | * those works so that forward progress can be guaranteed. | ||
1952 | * | ||
1953 | * This should happen rarely. | ||
1954 | */ | ||
1955 | static int rescuer_thread(void *__wq) | ||
1956 | { | ||
1957 | struct workqueue_struct *wq = __wq; | ||
1958 | struct worker *rescuer = wq->rescuer; | ||
1959 | struct list_head *scheduled = &rescuer->scheduled; | ||
1960 | bool is_unbound = wq->flags & WQ_UNBOUND; | ||
1961 | unsigned int cpu; | ||
1962 | |||
1963 | set_user_nice(current, RESCUER_NICE_LEVEL); | ||
1964 | repeat: | ||
1965 | set_current_state(TASK_INTERRUPTIBLE); | ||
1966 | |||
1967 | if (kthread_should_stop()) | ||
1968 | return 0; | ||
1969 | |||
1970 | /* | ||
1971 | * See whether any cpu is asking for help. Unbounded | ||
1972 | * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. | ||
1973 | */ | ||
1974 | for_each_mayday_cpu(cpu, wq->mayday_mask) { | ||
1975 | unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; | ||
1976 | struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); | ||
1977 | struct global_cwq *gcwq = cwq->gcwq; | ||
1978 | struct work_struct *work, *n; | ||
1979 | |||
1980 | __set_current_state(TASK_RUNNING); | ||
1981 | mayday_clear_cpu(cpu, wq->mayday_mask); | ||
1982 | |||
1983 | /* migrate to the target cpu if possible */ | ||
1984 | rescuer->gcwq = gcwq; | ||
1985 | worker_maybe_bind_and_lock(rescuer); | ||
1986 | |||
1987 | /* | ||
1988 | * Slurp in all works issued via this workqueue and | ||
1989 | * process'em. | ||
1990 | */ | ||
1991 | BUG_ON(!list_empty(&rescuer->scheduled)); | ||
1992 | list_for_each_entry_safe(work, n, &gcwq->worklist, entry) | ||
1993 | if (get_work_cwq(work) == cwq) | ||
1994 | move_linked_works(work, scheduled, &n); | ||
1995 | |||
1996 | process_scheduled_works(rescuer); | ||
1997 | spin_unlock_irq(&gcwq->lock); | ||
1998 | } | ||
1999 | |||
2000 | schedule(); | ||
2001 | goto repeat; | ||
459 | } | 2002 | } |
460 | 2003 | ||
461 | struct wq_barrier { | 2004 | struct wq_barrier { |
@@ -469,44 +2012,137 @@ static void wq_barrier_func(struct work_struct *work) | |||
469 | complete(&barr->done); | 2012 | complete(&barr->done); |
470 | } | 2013 | } |
471 | 2014 | ||
2015 | /** | ||
2016 | * insert_wq_barrier - insert a barrier work | ||
2017 | * @cwq: cwq to insert barrier into | ||
2018 | * @barr: wq_barrier to insert | ||
2019 | * @target: target work to attach @barr to | ||
2020 | * @worker: worker currently executing @target, NULL if @target is not executing | ||
2021 | * | ||
2022 | * @barr is linked to @target such that @barr is completed only after | ||
2023 | * @target finishes execution. Please note that the ordering | ||
2024 | * guarantee is observed only with respect to @target and on the local | ||
2025 | * cpu. | ||
2026 | * | ||
2027 | * Currently, a queued barrier can't be canceled. This is because | ||
2028 | * try_to_grab_pending() can't determine whether the work to be | ||
2029 | * grabbed is at the head of the queue and thus can't clear LINKED | ||
2030 | * flag of the previous work while there must be a valid next work | ||
2031 | * after a work with LINKED flag set. | ||
2032 | * | ||
2033 | * Note that when @worker is non-NULL, @target may be modified | ||
2034 | * underneath us, so we can't reliably determine cwq from @target. | ||
2035 | * | ||
2036 | * CONTEXT: | ||
2037 | * spin_lock_irq(gcwq->lock). | ||
2038 | */ | ||
472 | static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, | 2039 | static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, |
473 | struct wq_barrier *barr, struct list_head *head) | 2040 | struct wq_barrier *barr, |
2041 | struct work_struct *target, struct worker *worker) | ||
474 | { | 2042 | { |
2043 | struct list_head *head; | ||
2044 | unsigned int linked = 0; | ||
2045 | |||
475 | /* | 2046 | /* |
476 | * debugobject calls are safe here even with cwq->lock locked | 2047 | * debugobject calls are safe here even with gcwq->lock locked |
477 | * as we know for sure that this will not trigger any of the | 2048 | * as we know for sure that this will not trigger any of the |
478 | * checks and call back into the fixup functions where we | 2049 | * checks and call back into the fixup functions where we |
479 | * might deadlock. | 2050 | * might deadlock. |
480 | */ | 2051 | */ |
481 | INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); | 2052 | INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); |
482 | __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); | 2053 | __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); |
483 | |||
484 | init_completion(&barr->done); | 2054 | init_completion(&barr->done); |
485 | 2055 | ||
2056 | /* | ||
2057 | * If @target is currently being executed, schedule the | ||
2058 | * barrier to the worker; otherwise, put it after @target. | ||
2059 | */ | ||
2060 | if (worker) | ||
2061 | head = worker->scheduled.next; | ||
2062 | else { | ||
2063 | unsigned long *bits = work_data_bits(target); | ||
2064 | |||
2065 | head = target->entry.next; | ||
2066 | /* there can already be other linked works, inherit and set */ | ||
2067 | linked = *bits & WORK_STRUCT_LINKED; | ||
2068 | __set_bit(WORK_STRUCT_LINKED_BIT, bits); | ||
2069 | } | ||
2070 | |||
486 | debug_work_activate(&barr->work); | 2071 | debug_work_activate(&barr->work); |
487 | insert_work(cwq, &barr->work, head); | 2072 | insert_work(cwq, &barr->work, head, |
2073 | work_color_to_flags(WORK_NO_COLOR) | linked); | ||
488 | } | 2074 | } |
489 | 2075 | ||
490 | static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | 2076 | /** |
2077 | * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing | ||
2078 | * @wq: workqueue being flushed | ||
2079 | * @flush_color: new flush color, < 0 for no-op | ||
2080 | * @work_color: new work color, < 0 for no-op | ||
2081 | * | ||
2082 | * Prepare cwqs for workqueue flushing. | ||
2083 | * | ||
2084 | * If @flush_color is non-negative, flush_color on all cwqs should be | ||
2085 | * -1. If no cwq has in-flight commands at the specified color, all | ||
2086 | * cwq->flush_color's stay at -1 and %false is returned. If any cwq | ||
2087 | * has in flight commands, its cwq->flush_color is set to | ||
2088 | * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq | ||
2089 | * wakeup logic is armed and %true is returned. | ||
2090 | * | ||
2091 | * The caller should have initialized @wq->first_flusher prior to | ||
2092 | * calling this function with non-negative @flush_color. If | ||
2093 | * @flush_color is negative, no flush color update is done and %false | ||
2094 | * is returned. | ||
2095 | * | ||
2096 | * If @work_color is non-negative, all cwqs should have the same | ||
2097 | * work_color which is previous to @work_color and all will be | ||
2098 | * advanced to @work_color. | ||
2099 | * | ||
2100 | * CONTEXT: | ||
2101 | * mutex_lock(wq->flush_mutex). | ||
2102 | * | ||
2103 | * RETURNS: | ||
2104 | * %true if @flush_color >= 0 and there's something to flush. %false | ||
2105 | * otherwise. | ||
2106 | */ | ||
2107 | static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, | ||
2108 | int flush_color, int work_color) | ||
491 | { | 2109 | { |
492 | int active = 0; | 2110 | bool wait = false; |
493 | struct wq_barrier barr; | 2111 | unsigned int cpu; |
494 | |||
495 | WARN_ON(cwq->thread == current); | ||
496 | 2112 | ||
497 | spin_lock_irq(&cwq->lock); | 2113 | if (flush_color >= 0) { |
498 | if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { | 2114 | BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); |
499 | insert_wq_barrier(cwq, &barr, &cwq->worklist); | 2115 | atomic_set(&wq->nr_cwqs_to_flush, 1); |
500 | active = 1; | ||
501 | } | 2116 | } |
502 | spin_unlock_irq(&cwq->lock); | ||
503 | 2117 | ||
504 | if (active) { | 2118 | for_each_cwq_cpu(cpu, wq) { |
505 | wait_for_completion(&barr.done); | 2119 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
506 | destroy_work_on_stack(&barr.work); | 2120 | struct global_cwq *gcwq = cwq->gcwq; |
2121 | |||
2122 | spin_lock_irq(&gcwq->lock); | ||
2123 | |||
2124 | if (flush_color >= 0) { | ||
2125 | BUG_ON(cwq->flush_color != -1); | ||
2126 | |||
2127 | if (cwq->nr_in_flight[flush_color]) { | ||
2128 | cwq->flush_color = flush_color; | ||
2129 | atomic_inc(&wq->nr_cwqs_to_flush); | ||
2130 | wait = true; | ||
2131 | } | ||
2132 | } | ||
2133 | |||
2134 | if (work_color >= 0) { | ||
2135 | BUG_ON(work_color != work_next_color(cwq->work_color)); | ||
2136 | cwq->work_color = work_color; | ||
2137 | } | ||
2138 | |||
2139 | spin_unlock_irq(&gcwq->lock); | ||
507 | } | 2140 | } |
508 | 2141 | ||
509 | return active; | 2142 | if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) |
2143 | complete(&wq->first_flusher->done); | ||
2144 | |||
2145 | return wait; | ||
510 | } | 2146 | } |
511 | 2147 | ||
512 | /** | 2148 | /** |
@@ -518,20 +2154,150 @@ static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | |||
518 | * | 2154 | * |
519 | * We sleep until all works which were queued on entry have been handled, | 2155 | * We sleep until all works which were queued on entry have been handled, |
520 | * but we are not livelocked by new incoming ones. | 2156 | * but we are not livelocked by new incoming ones. |
521 | * | ||
522 | * This function used to run the workqueues itself. Now we just wait for the | ||
523 | * helper threads to do it. | ||
524 | */ | 2157 | */ |
525 | void flush_workqueue(struct workqueue_struct *wq) | 2158 | void flush_workqueue(struct workqueue_struct *wq) |
526 | { | 2159 | { |
527 | const struct cpumask *cpu_map = wq_cpu_map(wq); | 2160 | struct wq_flusher this_flusher = { |
528 | int cpu; | 2161 | .list = LIST_HEAD_INIT(this_flusher.list), |
2162 | .flush_color = -1, | ||
2163 | .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), | ||
2164 | }; | ||
2165 | int next_color; | ||
529 | 2166 | ||
530 | might_sleep(); | ||
531 | lock_map_acquire(&wq->lockdep_map); | 2167 | lock_map_acquire(&wq->lockdep_map); |
532 | lock_map_release(&wq->lockdep_map); | 2168 | lock_map_release(&wq->lockdep_map); |
533 | for_each_cpu(cpu, cpu_map) | 2169 | |
534 | flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); | 2170 | mutex_lock(&wq->flush_mutex); |
2171 | |||
2172 | /* | ||
2173 | * Start-to-wait phase | ||
2174 | */ | ||
2175 | next_color = work_next_color(wq->work_color); | ||
2176 | |||
2177 | if (next_color != wq->flush_color) { | ||
2178 | /* | ||
2179 | * Color space is not full. The current work_color | ||
2180 | * becomes our flush_color and work_color is advanced | ||
2181 | * by one. | ||
2182 | */ | ||
2183 | BUG_ON(!list_empty(&wq->flusher_overflow)); | ||
2184 | this_flusher.flush_color = wq->work_color; | ||
2185 | wq->work_color = next_color; | ||
2186 | |||
2187 | if (!wq->first_flusher) { | ||
2188 | /* no flush in progress, become the first flusher */ | ||
2189 | BUG_ON(wq->flush_color != this_flusher.flush_color); | ||
2190 | |||
2191 | wq->first_flusher = &this_flusher; | ||
2192 | |||
2193 | if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, | ||
2194 | wq->work_color)) { | ||
2195 | /* nothing to flush, done */ | ||
2196 | wq->flush_color = next_color; | ||
2197 | wq->first_flusher = NULL; | ||
2198 | goto out_unlock; | ||
2199 | } | ||
2200 | } else { | ||
2201 | /* wait in queue */ | ||
2202 | BUG_ON(wq->flush_color == this_flusher.flush_color); | ||
2203 | list_add_tail(&this_flusher.list, &wq->flusher_queue); | ||
2204 | flush_workqueue_prep_cwqs(wq, -1, wq->work_color); | ||
2205 | } | ||
2206 | } else { | ||
2207 | /* | ||
2208 | * Oops, color space is full, wait on overflow queue. | ||
2209 | * The next flush completion will assign us | ||
2210 | * flush_color and transfer to flusher_queue. | ||
2211 | */ | ||
2212 | list_add_tail(&this_flusher.list, &wq->flusher_overflow); | ||
2213 | } | ||
2214 | |||
2215 | mutex_unlock(&wq->flush_mutex); | ||
2216 | |||
2217 | wait_for_completion(&this_flusher.done); | ||
2218 | |||
2219 | /* | ||
2220 | * Wake-up-and-cascade phase | ||
2221 | * | ||
2222 | * First flushers are responsible for cascading flushes and | ||
2223 | * handling overflow. Non-first flushers can simply return. | ||
2224 | */ | ||
2225 | if (wq->first_flusher != &this_flusher) | ||
2226 | return; | ||
2227 | |||
2228 | mutex_lock(&wq->flush_mutex); | ||
2229 | |||
2230 | /* we might have raced, check again with mutex held */ | ||
2231 | if (wq->first_flusher != &this_flusher) | ||
2232 | goto out_unlock; | ||
2233 | |||
2234 | wq->first_flusher = NULL; | ||
2235 | |||
2236 | BUG_ON(!list_empty(&this_flusher.list)); | ||
2237 | BUG_ON(wq->flush_color != this_flusher.flush_color); | ||
2238 | |||
2239 | while (true) { | ||
2240 | struct wq_flusher *next, *tmp; | ||
2241 | |||
2242 | /* complete all the flushers sharing the current flush color */ | ||
2243 | list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { | ||
2244 | if (next->flush_color != wq->flush_color) | ||
2245 | break; | ||
2246 | list_del_init(&next->list); | ||
2247 | complete(&next->done); | ||
2248 | } | ||
2249 | |||
2250 | BUG_ON(!list_empty(&wq->flusher_overflow) && | ||
2251 | wq->flush_color != work_next_color(wq->work_color)); | ||
2252 | |||
2253 | /* this flush_color is finished, advance by one */ | ||
2254 | wq->flush_color = work_next_color(wq->flush_color); | ||
2255 | |||
2256 | /* one color has been freed, handle overflow queue */ | ||
2257 | if (!list_empty(&wq->flusher_overflow)) { | ||
2258 | /* | ||
2259 | * Assign the same color to all overflowed | ||
2260 | * flushers, advance work_color and append to | ||
2261 | * flusher_queue. This is the start-to-wait | ||
2262 | * phase for these overflowed flushers. | ||
2263 | */ | ||
2264 | list_for_each_entry(tmp, &wq->flusher_overflow, list) | ||
2265 | tmp->flush_color = wq->work_color; | ||
2266 | |||
2267 | wq->work_color = work_next_color(wq->work_color); | ||
2268 | |||
2269 | list_splice_tail_init(&wq->flusher_overflow, | ||
2270 | &wq->flusher_queue); | ||
2271 | flush_workqueue_prep_cwqs(wq, -1, wq->work_color); | ||
2272 | } | ||
2273 | |||
2274 | if (list_empty(&wq->flusher_queue)) { | ||
2275 | BUG_ON(wq->flush_color != wq->work_color); | ||
2276 | break; | ||
2277 | } | ||
2278 | |||
2279 | /* | ||
2280 | * Need to flush more colors. Make the next flusher | ||
2281 | * the new first flusher and arm cwqs. | ||
2282 | */ | ||
2283 | BUG_ON(wq->flush_color == wq->work_color); | ||
2284 | BUG_ON(wq->flush_color != next->flush_color); | ||
2285 | |||
2286 | list_del_init(&next->list); | ||
2287 | wq->first_flusher = next; | ||
2288 | |||
2289 | if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) | ||
2290 | break; | ||
2291 | |||
2292 | /* | ||
2293 | * Meh... this color is already done, clear first | ||
2294 | * flusher and repeat cascading. | ||
2295 | */ | ||
2296 | wq->first_flusher = NULL; | ||
2297 | } | ||
2298 | |||
2299 | out_unlock: | ||
2300 | mutex_unlock(&wq->flush_mutex); | ||
535 | } | 2301 | } |
536 | EXPORT_SYMBOL_GPL(flush_workqueue); | 2302 | EXPORT_SYMBOL_GPL(flush_workqueue); |
537 | 2303 | ||
@@ -547,43 +2313,46 @@ EXPORT_SYMBOL_GPL(flush_workqueue); | |||
547 | */ | 2313 | */ |
548 | int flush_work(struct work_struct *work) | 2314 | int flush_work(struct work_struct *work) |
549 | { | 2315 | { |
2316 | struct worker *worker = NULL; | ||
2317 | struct global_cwq *gcwq; | ||
550 | struct cpu_workqueue_struct *cwq; | 2318 | struct cpu_workqueue_struct *cwq; |
551 | struct list_head *prev; | ||
552 | struct wq_barrier barr; | 2319 | struct wq_barrier barr; |
553 | 2320 | ||
554 | might_sleep(); | 2321 | might_sleep(); |
555 | cwq = get_wq_data(work); | 2322 | gcwq = get_work_gcwq(work); |
556 | if (!cwq) | 2323 | if (!gcwq) |
557 | return 0; | 2324 | return 0; |
558 | 2325 | ||
559 | lock_map_acquire(&cwq->wq->lockdep_map); | 2326 | spin_lock_irq(&gcwq->lock); |
560 | lock_map_release(&cwq->wq->lockdep_map); | ||
561 | |||
562 | prev = NULL; | ||
563 | spin_lock_irq(&cwq->lock); | ||
564 | if (!list_empty(&work->entry)) { | 2327 | if (!list_empty(&work->entry)) { |
565 | /* | 2328 | /* |
566 | * See the comment near try_to_grab_pending()->smp_rmb(). | 2329 | * See the comment near try_to_grab_pending()->smp_rmb(). |
567 | * If it was re-queued under us we are not going to wait. | 2330 | * If it was re-queued to a different gcwq under us, we |
2331 | * are not going to wait. | ||
568 | */ | 2332 | */ |
569 | smp_rmb(); | 2333 | smp_rmb(); |
570 | if (unlikely(cwq != get_wq_data(work))) | 2334 | cwq = get_work_cwq(work); |
571 | goto out; | 2335 | if (unlikely(!cwq || gcwq != cwq->gcwq)) |
572 | prev = &work->entry; | 2336 | goto already_gone; |
573 | } else { | 2337 | } else { |
574 | if (cwq->current_work != work) | 2338 | worker = find_worker_executing_work(gcwq, work); |
575 | goto out; | 2339 | if (!worker) |
576 | prev = &cwq->worklist; | 2340 | goto already_gone; |
2341 | cwq = worker->current_cwq; | ||
577 | } | 2342 | } |
578 | insert_wq_barrier(cwq, &barr, prev->next); | 2343 | |
579 | out: | 2344 | insert_wq_barrier(cwq, &barr, work, worker); |
580 | spin_unlock_irq(&cwq->lock); | 2345 | spin_unlock_irq(&gcwq->lock); |
581 | if (!prev) | 2346 | |
582 | return 0; | 2347 | lock_map_acquire(&cwq->wq->lockdep_map); |
2348 | lock_map_release(&cwq->wq->lockdep_map); | ||
583 | 2349 | ||
584 | wait_for_completion(&barr.done); | 2350 | wait_for_completion(&barr.done); |
585 | destroy_work_on_stack(&barr.work); | 2351 | destroy_work_on_stack(&barr.work); |
586 | return 1; | 2352 | return 1; |
2353 | already_gone: | ||
2354 | spin_unlock_irq(&gcwq->lock); | ||
2355 | return 0; | ||
587 | } | 2356 | } |
588 | EXPORT_SYMBOL_GPL(flush_work); | 2357 | EXPORT_SYMBOL_GPL(flush_work); |
589 | 2358 | ||
@@ -593,54 +2362,55 @@ EXPORT_SYMBOL_GPL(flush_work); | |||
593 | */ | 2362 | */ |
594 | static int try_to_grab_pending(struct work_struct *work) | 2363 | static int try_to_grab_pending(struct work_struct *work) |
595 | { | 2364 | { |
596 | struct cpu_workqueue_struct *cwq; | 2365 | struct global_cwq *gcwq; |
597 | int ret = -1; | 2366 | int ret = -1; |
598 | 2367 | ||
599 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) | 2368 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) |
600 | return 0; | 2369 | return 0; |
601 | 2370 | ||
602 | /* | 2371 | /* |
603 | * The queueing is in progress, or it is already queued. Try to | 2372 | * The queueing is in progress, or it is already queued. Try to |
604 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. | 2373 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. |
605 | */ | 2374 | */ |
606 | 2375 | gcwq = get_work_gcwq(work); | |
607 | cwq = get_wq_data(work); | 2376 | if (!gcwq) |
608 | if (!cwq) | ||
609 | return ret; | 2377 | return ret; |
610 | 2378 | ||
611 | spin_lock_irq(&cwq->lock); | 2379 | spin_lock_irq(&gcwq->lock); |
612 | if (!list_empty(&work->entry)) { | 2380 | if (!list_empty(&work->entry)) { |
613 | /* | 2381 | /* |
614 | * This work is queued, but perhaps we locked the wrong cwq. | 2382 | * This work is queued, but perhaps we locked the wrong gcwq. |
615 | * In that case we must see the new value after rmb(), see | 2383 | * In that case we must see the new value after rmb(), see |
616 | * insert_work()->wmb(). | 2384 | * insert_work()->wmb(). |
617 | */ | 2385 | */ |
618 | smp_rmb(); | 2386 | smp_rmb(); |
619 | if (cwq == get_wq_data(work)) { | 2387 | if (gcwq == get_work_gcwq(work)) { |
620 | debug_work_deactivate(work); | 2388 | debug_work_deactivate(work); |
621 | list_del_init(&work->entry); | 2389 | list_del_init(&work->entry); |
2390 | cwq_dec_nr_in_flight(get_work_cwq(work), | ||
2391 | get_work_color(work)); | ||
622 | ret = 1; | 2392 | ret = 1; |
623 | } | 2393 | } |
624 | } | 2394 | } |
625 | spin_unlock_irq(&cwq->lock); | 2395 | spin_unlock_irq(&gcwq->lock); |
626 | 2396 | ||
627 | return ret; | 2397 | return ret; |
628 | } | 2398 | } |
629 | 2399 | ||
630 | static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, | 2400 | static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) |
631 | struct work_struct *work) | ||
632 | { | 2401 | { |
633 | struct wq_barrier barr; | 2402 | struct wq_barrier barr; |
634 | int running = 0; | 2403 | struct worker *worker; |
635 | 2404 | ||
636 | spin_lock_irq(&cwq->lock); | 2405 | spin_lock_irq(&gcwq->lock); |
637 | if (unlikely(cwq->current_work == work)) { | ||
638 | insert_wq_barrier(cwq, &barr, cwq->worklist.next); | ||
639 | running = 1; | ||
640 | } | ||
641 | spin_unlock_irq(&cwq->lock); | ||
642 | 2406 | ||
643 | if (unlikely(running)) { | 2407 | worker = find_worker_executing_work(gcwq, work); |
2408 | if (unlikely(worker)) | ||
2409 | insert_wq_barrier(worker->current_cwq, &barr, work, worker); | ||
2410 | |||
2411 | spin_unlock_irq(&gcwq->lock); | ||
2412 | |||
2413 | if (unlikely(worker)) { | ||
644 | wait_for_completion(&barr.done); | 2414 | wait_for_completion(&barr.done); |
645 | destroy_work_on_stack(&barr.work); | 2415 | destroy_work_on_stack(&barr.work); |
646 | } | 2416 | } |
@@ -648,9 +2418,6 @@ static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, | |||
648 | 2418 | ||
649 | static void wait_on_work(struct work_struct *work) | 2419 | static void wait_on_work(struct work_struct *work) |
650 | { | 2420 | { |
651 | struct cpu_workqueue_struct *cwq; | ||
652 | struct workqueue_struct *wq; | ||
653 | const struct cpumask *cpu_map; | ||
654 | int cpu; | 2421 | int cpu; |
655 | 2422 | ||
656 | might_sleep(); | 2423 | might_sleep(); |
@@ -658,15 +2425,8 @@ static void wait_on_work(struct work_struct *work) | |||
658 | lock_map_acquire(&work->lockdep_map); | 2425 | lock_map_acquire(&work->lockdep_map); |
659 | lock_map_release(&work->lockdep_map); | 2426 | lock_map_release(&work->lockdep_map); |
660 | 2427 | ||
661 | cwq = get_wq_data(work); | 2428 | for_each_gcwq_cpu(cpu) |
662 | if (!cwq) | 2429 | wait_on_cpu_work(get_gcwq(cpu), work); |
663 | return; | ||
664 | |||
665 | wq = cwq->wq; | ||
666 | cpu_map = wq_cpu_map(wq); | ||
667 | |||
668 | for_each_cpu(cpu, cpu_map) | ||
669 | wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); | ||
670 | } | 2430 | } |
671 | 2431 | ||
672 | static int __cancel_work_timer(struct work_struct *work, | 2432 | static int __cancel_work_timer(struct work_struct *work, |
@@ -681,7 +2441,7 @@ static int __cancel_work_timer(struct work_struct *work, | |||
681 | wait_on_work(work); | 2441 | wait_on_work(work); |
682 | } while (unlikely(ret < 0)); | 2442 | } while (unlikely(ret < 0)); |
683 | 2443 | ||
684 | clear_wq_data(work); | 2444 | clear_work_data(work); |
685 | return ret; | 2445 | return ret; |
686 | } | 2446 | } |
687 | 2447 | ||
@@ -727,8 +2487,6 @@ int cancel_delayed_work_sync(struct delayed_work *dwork) | |||
727 | } | 2487 | } |
728 | EXPORT_SYMBOL(cancel_delayed_work_sync); | 2488 | EXPORT_SYMBOL(cancel_delayed_work_sync); |
729 | 2489 | ||
730 | static struct workqueue_struct *keventd_wq __read_mostly; | ||
731 | |||
732 | /** | 2490 | /** |
733 | * schedule_work - put work task in global workqueue | 2491 | * schedule_work - put work task in global workqueue |
734 | * @work: job to be done | 2492 | * @work: job to be done |
@@ -742,7 +2500,7 @@ static struct workqueue_struct *keventd_wq __read_mostly; | |||
742 | */ | 2500 | */ |
743 | int schedule_work(struct work_struct *work) | 2501 | int schedule_work(struct work_struct *work) |
744 | { | 2502 | { |
745 | return queue_work(keventd_wq, work); | 2503 | return queue_work(system_wq, work); |
746 | } | 2504 | } |
747 | EXPORT_SYMBOL(schedule_work); | 2505 | EXPORT_SYMBOL(schedule_work); |
748 | 2506 | ||
@@ -755,7 +2513,7 @@ EXPORT_SYMBOL(schedule_work); | |||
755 | */ | 2513 | */ |
756 | int schedule_work_on(int cpu, struct work_struct *work) | 2514 | int schedule_work_on(int cpu, struct work_struct *work) |
757 | { | 2515 | { |
758 | return queue_work_on(cpu, keventd_wq, work); | 2516 | return queue_work_on(cpu, system_wq, work); |
759 | } | 2517 | } |
760 | EXPORT_SYMBOL(schedule_work_on); | 2518 | EXPORT_SYMBOL(schedule_work_on); |
761 | 2519 | ||
@@ -770,7 +2528,7 @@ EXPORT_SYMBOL(schedule_work_on); | |||
770 | int schedule_delayed_work(struct delayed_work *dwork, | 2528 | int schedule_delayed_work(struct delayed_work *dwork, |
771 | unsigned long delay) | 2529 | unsigned long delay) |
772 | { | 2530 | { |
773 | return queue_delayed_work(keventd_wq, dwork, delay); | 2531 | return queue_delayed_work(system_wq, dwork, delay); |
774 | } | 2532 | } |
775 | EXPORT_SYMBOL(schedule_delayed_work); | 2533 | EXPORT_SYMBOL(schedule_delayed_work); |
776 | 2534 | ||
@@ -783,9 +2541,8 @@ EXPORT_SYMBOL(schedule_delayed_work); | |||
783 | void flush_delayed_work(struct delayed_work *dwork) | 2541 | void flush_delayed_work(struct delayed_work *dwork) |
784 | { | 2542 | { |
785 | if (del_timer_sync(&dwork->timer)) { | 2543 | if (del_timer_sync(&dwork->timer)) { |
786 | struct cpu_workqueue_struct *cwq; | 2544 | __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq, |
787 | cwq = wq_per_cpu(get_wq_data(&dwork->work)->wq, get_cpu()); | 2545 | &dwork->work); |
788 | __queue_work(cwq, &dwork->work); | ||
789 | put_cpu(); | 2546 | put_cpu(); |
790 | } | 2547 | } |
791 | flush_work(&dwork->work); | 2548 | flush_work(&dwork->work); |
@@ -804,7 +2561,7 @@ EXPORT_SYMBOL(flush_delayed_work); | |||
804 | int schedule_delayed_work_on(int cpu, | 2561 | int schedule_delayed_work_on(int cpu, |
805 | struct delayed_work *dwork, unsigned long delay) | 2562 | struct delayed_work *dwork, unsigned long delay) |
806 | { | 2563 | { |
807 | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); | 2564 | return queue_delayed_work_on(cpu, system_wq, dwork, delay); |
808 | } | 2565 | } |
809 | EXPORT_SYMBOL(schedule_delayed_work_on); | 2566 | EXPORT_SYMBOL(schedule_delayed_work_on); |
810 | 2567 | ||
@@ -820,8 +2577,7 @@ EXPORT_SYMBOL(schedule_delayed_work_on); | |||
820 | int schedule_on_each_cpu(work_func_t func) | 2577 | int schedule_on_each_cpu(work_func_t func) |
821 | { | 2578 | { |
822 | int cpu; | 2579 | int cpu; |
823 | int orig = -1; | 2580 | struct work_struct __percpu *works; |
824 | struct work_struct *works; | ||
825 | 2581 | ||
826 | works = alloc_percpu(struct work_struct); | 2582 | works = alloc_percpu(struct work_struct); |
827 | if (!works) | 2583 | if (!works) |
@@ -829,23 +2585,12 @@ int schedule_on_each_cpu(work_func_t func) | |||
829 | 2585 | ||
830 | get_online_cpus(); | 2586 | get_online_cpus(); |
831 | 2587 | ||
832 | /* | ||
833 | * When running in keventd don't schedule a work item on | ||
834 | * itself. Can just call directly because the work queue is | ||
835 | * already bound. This also is faster. | ||
836 | */ | ||
837 | if (current_is_keventd()) | ||
838 | orig = raw_smp_processor_id(); | ||
839 | |||
840 | for_each_online_cpu(cpu) { | 2588 | for_each_online_cpu(cpu) { |
841 | struct work_struct *work = per_cpu_ptr(works, cpu); | 2589 | struct work_struct *work = per_cpu_ptr(works, cpu); |
842 | 2590 | ||
843 | INIT_WORK(work, func); | 2591 | INIT_WORK(work, func); |
844 | if (cpu != orig) | 2592 | schedule_work_on(cpu, work); |
845 | schedule_work_on(cpu, work); | ||
846 | } | 2593 | } |
847 | if (orig >= 0) | ||
848 | func(per_cpu_ptr(works, orig)); | ||
849 | 2594 | ||
850 | for_each_online_cpu(cpu) | 2595 | for_each_online_cpu(cpu) |
851 | flush_work(per_cpu_ptr(works, cpu)); | 2596 | flush_work(per_cpu_ptr(works, cpu)); |
@@ -881,7 +2626,7 @@ int schedule_on_each_cpu(work_func_t func) | |||
881 | */ | 2626 | */ |
882 | void flush_scheduled_work(void) | 2627 | void flush_scheduled_work(void) |
883 | { | 2628 | { |
884 | flush_workqueue(keventd_wq); | 2629 | flush_workqueue(system_wq); |
885 | } | 2630 | } |
886 | EXPORT_SYMBOL(flush_scheduled_work); | 2631 | EXPORT_SYMBOL(flush_scheduled_work); |
887 | 2632 | ||
@@ -913,170 +2658,170 @@ EXPORT_SYMBOL_GPL(execute_in_process_context); | |||
913 | 2658 | ||
914 | int keventd_up(void) | 2659 | int keventd_up(void) |
915 | { | 2660 | { |
916 | return keventd_wq != NULL; | 2661 | return system_wq != NULL; |
917 | } | 2662 | } |
918 | 2663 | ||
919 | int current_is_keventd(void) | 2664 | static int alloc_cwqs(struct workqueue_struct *wq) |
920 | { | 2665 | { |
921 | struct cpu_workqueue_struct *cwq; | 2666 | /* |
922 | int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ | 2667 | * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. |
923 | int ret = 0; | 2668 | * Make sure that the alignment isn't lower than that of |
924 | 2669 | * unsigned long long. | |
925 | BUG_ON(!keventd_wq); | 2670 | */ |
2671 | const size_t size = sizeof(struct cpu_workqueue_struct); | ||
2672 | const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, | ||
2673 | __alignof__(unsigned long long)); | ||
2674 | #ifdef CONFIG_SMP | ||
2675 | bool percpu = !(wq->flags & WQ_UNBOUND); | ||
2676 | #else | ||
2677 | bool percpu = false; | ||
2678 | #endif | ||
926 | 2679 | ||
927 | cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); | 2680 | if (percpu) |
928 | if (current == cwq->thread) | 2681 | wq->cpu_wq.pcpu = __alloc_percpu(size, align); |
929 | ret = 1; | 2682 | else { |
2683 | void *ptr; | ||
930 | 2684 | ||
931 | return ret; | 2685 | /* |
2686 | * Allocate enough room to align cwq and put an extra | ||
2687 | * pointer at the end pointing back to the originally | ||
2688 | * allocated pointer which will be used for free. | ||
2689 | */ | ||
2690 | ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); | ||
2691 | if (ptr) { | ||
2692 | wq->cpu_wq.single = PTR_ALIGN(ptr, align); | ||
2693 | *(void **)(wq->cpu_wq.single + 1) = ptr; | ||
2694 | } | ||
2695 | } | ||
932 | 2696 | ||
2697 | /* just in case, make sure it's actually aligned */ | ||
2698 | BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); | ||
2699 | return wq->cpu_wq.v ? 0 : -ENOMEM; | ||
933 | } | 2700 | } |
934 | 2701 | ||
935 | static struct cpu_workqueue_struct * | 2702 | static void free_cwqs(struct workqueue_struct *wq) |
936 | init_cpu_workqueue(struct workqueue_struct *wq, int cpu) | ||
937 | { | 2703 | { |
938 | struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 2704 | #ifdef CONFIG_SMP |
939 | 2705 | bool percpu = !(wq->flags & WQ_UNBOUND); | |
940 | cwq->wq = wq; | 2706 | #else |
941 | spin_lock_init(&cwq->lock); | 2707 | bool percpu = false; |
942 | INIT_LIST_HEAD(&cwq->worklist); | 2708 | #endif |
943 | init_waitqueue_head(&cwq->more_work); | ||
944 | 2709 | ||
945 | return cwq; | 2710 | if (percpu) |
2711 | free_percpu(wq->cpu_wq.pcpu); | ||
2712 | else if (wq->cpu_wq.single) { | ||
2713 | /* the pointer to free is stored right after the cwq */ | ||
2714 | kfree(*(void **)(wq->cpu_wq.single + 1)); | ||
2715 | } | ||
946 | } | 2716 | } |
947 | 2717 | ||
948 | static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 2718 | static int wq_clamp_max_active(int max_active, unsigned int flags, |
2719 | const char *name) | ||
949 | { | 2720 | { |
950 | struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; | 2721 | int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; |
951 | struct workqueue_struct *wq = cwq->wq; | ||
952 | const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d"; | ||
953 | struct task_struct *p; | ||
954 | 2722 | ||
955 | p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); | 2723 | if (max_active < 1 || max_active > lim) |
956 | /* | 2724 | printk(KERN_WARNING "workqueue: max_active %d requested for %s " |
957 | * Nobody can add the work_struct to this cwq, | 2725 | "is out of range, clamping between %d and %d\n", |
958 | * if (caller is __create_workqueue) | 2726 | max_active, name, 1, lim); |
959 | * nobody should see this wq | ||
960 | * else // caller is CPU_UP_PREPARE | ||
961 | * cpu is not on cpu_online_map | ||
962 | * so we can abort safely. | ||
963 | */ | ||
964 | if (IS_ERR(p)) | ||
965 | return PTR_ERR(p); | ||
966 | if (cwq->wq->rt) | ||
967 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | ||
968 | cwq->thread = p; | ||
969 | |||
970 | trace_workqueue_creation(cwq->thread, cpu); | ||
971 | 2727 | ||
972 | return 0; | 2728 | return clamp_val(max_active, 1, lim); |
973 | } | 2729 | } |
974 | 2730 | ||
975 | static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 2731 | struct workqueue_struct *__alloc_workqueue_key(const char *name, |
2732 | unsigned int flags, | ||
2733 | int max_active, | ||
2734 | struct lock_class_key *key, | ||
2735 | const char *lock_name) | ||
976 | { | 2736 | { |
977 | struct task_struct *p = cwq->thread; | 2737 | struct workqueue_struct *wq; |
2738 | unsigned int cpu; | ||
978 | 2739 | ||
979 | if (p != NULL) { | 2740 | /* |
980 | if (cpu >= 0) | 2741 | * Unbound workqueues aren't concurrency managed and should be |
981 | kthread_bind(p, cpu); | 2742 | * dispatched to workers immediately. |
982 | wake_up_process(p); | 2743 | */ |
983 | } | 2744 | if (flags & WQ_UNBOUND) |
984 | } | 2745 | flags |= WQ_HIGHPRI; |
985 | 2746 | ||
986 | struct workqueue_struct *__create_workqueue_key(const char *name, | 2747 | max_active = max_active ?: WQ_DFL_ACTIVE; |
987 | int singlethread, | 2748 | max_active = wq_clamp_max_active(max_active, flags, name); |
988 | int freezeable, | ||
989 | int rt, | ||
990 | struct lock_class_key *key, | ||
991 | const char *lock_name) | ||
992 | { | ||
993 | struct workqueue_struct *wq; | ||
994 | struct cpu_workqueue_struct *cwq; | ||
995 | int err = 0, cpu; | ||
996 | 2749 | ||
997 | wq = kzalloc(sizeof(*wq), GFP_KERNEL); | 2750 | wq = kzalloc(sizeof(*wq), GFP_KERNEL); |
998 | if (!wq) | 2751 | if (!wq) |
999 | return NULL; | 2752 | goto err; |
1000 | 2753 | ||
1001 | wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); | 2754 | wq->flags = flags; |
1002 | if (!wq->cpu_wq) { | 2755 | wq->saved_max_active = max_active; |
1003 | kfree(wq); | 2756 | mutex_init(&wq->flush_mutex); |
1004 | return NULL; | 2757 | atomic_set(&wq->nr_cwqs_to_flush, 0); |
1005 | } | 2758 | INIT_LIST_HEAD(&wq->flusher_queue); |
2759 | INIT_LIST_HEAD(&wq->flusher_overflow); | ||
1006 | 2760 | ||
1007 | wq->name = name; | 2761 | wq->name = name; |
1008 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); | 2762 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); |
1009 | wq->singlethread = singlethread; | ||
1010 | wq->freezeable = freezeable; | ||
1011 | wq->rt = rt; | ||
1012 | INIT_LIST_HEAD(&wq->list); | 2763 | INIT_LIST_HEAD(&wq->list); |
1013 | 2764 | ||
1014 | if (singlethread) { | 2765 | if (alloc_cwqs(wq) < 0) |
1015 | cwq = init_cpu_workqueue(wq, singlethread_cpu); | 2766 | goto err; |
1016 | err = create_workqueue_thread(cwq, singlethread_cpu); | 2767 | |
1017 | start_workqueue_thread(cwq, -1); | 2768 | for_each_cwq_cpu(cpu, wq) { |
1018 | } else { | 2769 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
1019 | cpu_maps_update_begin(); | 2770 | struct global_cwq *gcwq = get_gcwq(cpu); |
1020 | /* | 2771 | |
1021 | * We must place this wq on list even if the code below fails. | 2772 | BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); |
1022 | * cpu_down(cpu) can remove cpu from cpu_populated_map before | 2773 | cwq->gcwq = gcwq; |
1023 | * destroy_workqueue() takes the lock, in that case we leak | 2774 | cwq->wq = wq; |
1024 | * cwq[cpu]->thread. | 2775 | cwq->flush_color = -1; |
1025 | */ | 2776 | cwq->max_active = max_active; |
1026 | spin_lock(&workqueue_lock); | 2777 | INIT_LIST_HEAD(&cwq->delayed_works); |
1027 | list_add(&wq->list, &workqueues); | ||
1028 | spin_unlock(&workqueue_lock); | ||
1029 | /* | ||
1030 | * We must initialize cwqs for each possible cpu even if we | ||
1031 | * are going to call destroy_workqueue() finally. Otherwise | ||
1032 | * cpu_up() can hit the uninitialized cwq once we drop the | ||
1033 | * lock. | ||
1034 | */ | ||
1035 | for_each_possible_cpu(cpu) { | ||
1036 | cwq = init_cpu_workqueue(wq, cpu); | ||
1037 | if (err || !cpu_online(cpu)) | ||
1038 | continue; | ||
1039 | err = create_workqueue_thread(cwq, cpu); | ||
1040 | start_workqueue_thread(cwq, cpu); | ||
1041 | } | ||
1042 | cpu_maps_update_done(); | ||
1043 | } | 2778 | } |
1044 | 2779 | ||
1045 | if (err) { | 2780 | if (flags & WQ_RESCUER) { |
1046 | destroy_workqueue(wq); | 2781 | struct worker *rescuer; |
1047 | wq = NULL; | 2782 | |
2783 | if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) | ||
2784 | goto err; | ||
2785 | |||
2786 | wq->rescuer = rescuer = alloc_worker(); | ||
2787 | if (!rescuer) | ||
2788 | goto err; | ||
2789 | |||
2790 | rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); | ||
2791 | if (IS_ERR(rescuer->task)) | ||
2792 | goto err; | ||
2793 | |||
2794 | wq->rescuer = rescuer; | ||
2795 | rescuer->task->flags |= PF_THREAD_BOUND; | ||
2796 | wake_up_process(rescuer->task); | ||
1048 | } | 2797 | } |
1049 | return wq; | ||
1050 | } | ||
1051 | EXPORT_SYMBOL_GPL(__create_workqueue_key); | ||
1052 | 2798 | ||
1053 | static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) | ||
1054 | { | ||
1055 | /* | 2799 | /* |
1056 | * Our caller is either destroy_workqueue() or CPU_POST_DEAD, | 2800 | * workqueue_lock protects global freeze state and workqueues |
1057 | * cpu_add_remove_lock protects cwq->thread. | 2801 | * list. Grab it, set max_active accordingly and add the new |
2802 | * workqueue to workqueues list. | ||
1058 | */ | 2803 | */ |
1059 | if (cwq->thread == NULL) | 2804 | spin_lock(&workqueue_lock); |
1060 | return; | ||
1061 | 2805 | ||
1062 | lock_map_acquire(&cwq->wq->lockdep_map); | 2806 | if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) |
1063 | lock_map_release(&cwq->wq->lockdep_map); | 2807 | for_each_cwq_cpu(cpu, wq) |
2808 | get_cwq(cpu, wq)->max_active = 0; | ||
1064 | 2809 | ||
1065 | flush_cpu_workqueue(cwq); | 2810 | list_add(&wq->list, &workqueues); |
1066 | /* | 2811 | |
1067 | * If the caller is CPU_POST_DEAD and cwq->worklist was not empty, | 2812 | spin_unlock(&workqueue_lock); |
1068 | * a concurrent flush_workqueue() can insert a barrier after us. | 2813 | |
1069 | * However, in that case run_workqueue() won't return and check | 2814 | return wq; |
1070 | * kthread_should_stop() until it flushes all work_struct's. | 2815 | err: |
1071 | * When ->worklist becomes empty it is safe to exit because no | 2816 | if (wq) { |
1072 | * more work_structs can be queued on this cwq: flush_workqueue | 2817 | free_cwqs(wq); |
1073 | * checks list_empty(), and a "normal" queue_work() can't use | 2818 | free_mayday_mask(wq->mayday_mask); |
1074 | * a dead CPU. | 2819 | kfree(wq->rescuer); |
1075 | */ | 2820 | kfree(wq); |
1076 | trace_workqueue_destruction(cwq->thread); | 2821 | } |
1077 | kthread_stop(cwq->thread); | 2822 | return NULL; |
1078 | cwq->thread = NULL; | ||
1079 | } | 2823 | } |
2824 | EXPORT_SYMBOL_GPL(__alloc_workqueue_key); | ||
1080 | 2825 | ||
1081 | /** | 2826 | /** |
1082 | * destroy_workqueue - safely terminate a workqueue | 2827 | * destroy_workqueue - safely terminate a workqueue |
@@ -1086,72 +2831,516 @@ static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) | |||
1086 | */ | 2831 | */ |
1087 | void destroy_workqueue(struct workqueue_struct *wq) | 2832 | void destroy_workqueue(struct workqueue_struct *wq) |
1088 | { | 2833 | { |
1089 | const struct cpumask *cpu_map = wq_cpu_map(wq); | 2834 | unsigned int cpu; |
1090 | int cpu; | 2835 | |
2836 | flush_workqueue(wq); | ||
1091 | 2837 | ||
1092 | cpu_maps_update_begin(); | 2838 | /* |
2839 | * wq list is used to freeze wq, remove from list after | ||
2840 | * flushing is complete in case freeze races us. | ||
2841 | */ | ||
1093 | spin_lock(&workqueue_lock); | 2842 | spin_lock(&workqueue_lock); |
1094 | list_del(&wq->list); | 2843 | list_del(&wq->list); |
1095 | spin_unlock(&workqueue_lock); | 2844 | spin_unlock(&workqueue_lock); |
1096 | 2845 | ||
1097 | for_each_cpu(cpu, cpu_map) | 2846 | /* sanity check */ |
1098 | cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); | 2847 | for_each_cwq_cpu(cpu, wq) { |
1099 | cpu_maps_update_done(); | 2848 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
2849 | int i; | ||
2850 | |||
2851 | for (i = 0; i < WORK_NR_COLORS; i++) | ||
2852 | BUG_ON(cwq->nr_in_flight[i]); | ||
2853 | BUG_ON(cwq->nr_active); | ||
2854 | BUG_ON(!list_empty(&cwq->delayed_works)); | ||
2855 | } | ||
2856 | |||
2857 | if (wq->flags & WQ_RESCUER) { | ||
2858 | kthread_stop(wq->rescuer->task); | ||
2859 | free_mayday_mask(wq->mayday_mask); | ||
2860 | } | ||
1100 | 2861 | ||
1101 | free_percpu(wq->cpu_wq); | 2862 | free_cwqs(wq); |
1102 | kfree(wq); | 2863 | kfree(wq); |
1103 | } | 2864 | } |
1104 | EXPORT_SYMBOL_GPL(destroy_workqueue); | 2865 | EXPORT_SYMBOL_GPL(destroy_workqueue); |
1105 | 2866 | ||
2867 | /** | ||
2868 | * workqueue_set_max_active - adjust max_active of a workqueue | ||
2869 | * @wq: target workqueue | ||
2870 | * @max_active: new max_active value. | ||
2871 | * | ||
2872 | * Set max_active of @wq to @max_active. | ||
2873 | * | ||
2874 | * CONTEXT: | ||
2875 | * Don't call from IRQ context. | ||
2876 | */ | ||
2877 | void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) | ||
2878 | { | ||
2879 | unsigned int cpu; | ||
2880 | |||
2881 | max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); | ||
2882 | |||
2883 | spin_lock(&workqueue_lock); | ||
2884 | |||
2885 | wq->saved_max_active = max_active; | ||
2886 | |||
2887 | for_each_cwq_cpu(cpu, wq) { | ||
2888 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
2889 | |||
2890 | spin_lock_irq(&gcwq->lock); | ||
2891 | |||
2892 | if (!(wq->flags & WQ_FREEZEABLE) || | ||
2893 | !(gcwq->flags & GCWQ_FREEZING)) | ||
2894 | get_cwq(gcwq->cpu, wq)->max_active = max_active; | ||
2895 | |||
2896 | spin_unlock_irq(&gcwq->lock); | ||
2897 | } | ||
2898 | |||
2899 | spin_unlock(&workqueue_lock); | ||
2900 | } | ||
2901 | EXPORT_SYMBOL_GPL(workqueue_set_max_active); | ||
2902 | |||
2903 | /** | ||
2904 | * workqueue_congested - test whether a workqueue is congested | ||
2905 | * @cpu: CPU in question | ||
2906 | * @wq: target workqueue | ||
2907 | * | ||
2908 | * Test whether @wq's cpu workqueue for @cpu is congested. There is | ||
2909 | * no synchronization around this function and the test result is | ||
2910 | * unreliable and only useful as advisory hints or for debugging. | ||
2911 | * | ||
2912 | * RETURNS: | ||
2913 | * %true if congested, %false otherwise. | ||
2914 | */ | ||
2915 | bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) | ||
2916 | { | ||
2917 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
2918 | |||
2919 | return !list_empty(&cwq->delayed_works); | ||
2920 | } | ||
2921 | EXPORT_SYMBOL_GPL(workqueue_congested); | ||
2922 | |||
2923 | /** | ||
2924 | * work_cpu - return the last known associated cpu for @work | ||
2925 | * @work: the work of interest | ||
2926 | * | ||
2927 | * RETURNS: | ||
2928 | * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. | ||
2929 | */ | ||
2930 | unsigned int work_cpu(struct work_struct *work) | ||
2931 | { | ||
2932 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
2933 | |||
2934 | return gcwq ? gcwq->cpu : WORK_CPU_NONE; | ||
2935 | } | ||
2936 | EXPORT_SYMBOL_GPL(work_cpu); | ||
2937 | |||
2938 | /** | ||
2939 | * work_busy - test whether a work is currently pending or running | ||
2940 | * @work: the work to be tested | ||
2941 | * | ||
2942 | * Test whether @work is currently pending or running. There is no | ||
2943 | * synchronization around this function and the test result is | ||
2944 | * unreliable and only useful as advisory hints or for debugging. | ||
2945 | * Especially for reentrant wqs, the pending state might hide the | ||
2946 | * running state. | ||
2947 | * | ||
2948 | * RETURNS: | ||
2949 | * OR'd bitmask of WORK_BUSY_* bits. | ||
2950 | */ | ||
2951 | unsigned int work_busy(struct work_struct *work) | ||
2952 | { | ||
2953 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
2954 | unsigned long flags; | ||
2955 | unsigned int ret = 0; | ||
2956 | |||
2957 | if (!gcwq) | ||
2958 | return false; | ||
2959 | |||
2960 | spin_lock_irqsave(&gcwq->lock, flags); | ||
2961 | |||
2962 | if (work_pending(work)) | ||
2963 | ret |= WORK_BUSY_PENDING; | ||
2964 | if (find_worker_executing_work(gcwq, work)) | ||
2965 | ret |= WORK_BUSY_RUNNING; | ||
2966 | |||
2967 | spin_unlock_irqrestore(&gcwq->lock, flags); | ||
2968 | |||
2969 | return ret; | ||
2970 | } | ||
2971 | EXPORT_SYMBOL_GPL(work_busy); | ||
2972 | |||
2973 | /* | ||
2974 | * CPU hotplug. | ||
2975 | * | ||
2976 | * There are two challenges in supporting CPU hotplug. Firstly, there | ||
2977 | * are a lot of assumptions on strong associations among work, cwq and | ||
2978 | * gcwq which make migrating pending and scheduled works very | ||
2979 | * difficult to implement without impacting hot paths. Secondly, | ||
2980 | * gcwqs serve mix of short, long and very long running works making | ||
2981 | * blocked draining impractical. | ||
2982 | * | ||
2983 | * This is solved by allowing a gcwq to be detached from CPU, running | ||
2984 | * it with unbound (rogue) workers and allowing it to be reattached | ||
2985 | * later if the cpu comes back online. A separate thread is created | ||
2986 | * to govern a gcwq in such state and is called the trustee of the | ||
2987 | * gcwq. | ||
2988 | * | ||
2989 | * Trustee states and their descriptions. | ||
2990 | * | ||
2991 | * START Command state used on startup. On CPU_DOWN_PREPARE, a | ||
2992 | * new trustee is started with this state. | ||
2993 | * | ||
2994 | * IN_CHARGE Once started, trustee will enter this state after | ||
2995 | * assuming the manager role and making all existing | ||
2996 | * workers rogue. DOWN_PREPARE waits for trustee to | ||
2997 | * enter this state. After reaching IN_CHARGE, trustee | ||
2998 | * tries to execute the pending worklist until it's empty | ||
2999 | * and the state is set to BUTCHER, or the state is set | ||
3000 | * to RELEASE. | ||
3001 | * | ||
3002 | * BUTCHER Command state which is set by the cpu callback after | ||
3003 | * the cpu has went down. Once this state is set trustee | ||
3004 | * knows that there will be no new works on the worklist | ||
3005 | * and once the worklist is empty it can proceed to | ||
3006 | * killing idle workers. | ||
3007 | * | ||
3008 | * RELEASE Command state which is set by the cpu callback if the | ||
3009 | * cpu down has been canceled or it has come online | ||
3010 | * again. After recognizing this state, trustee stops | ||
3011 | * trying to drain or butcher and clears ROGUE, rebinds | ||
3012 | * all remaining workers back to the cpu and releases | ||
3013 | * manager role. | ||
3014 | * | ||
3015 | * DONE Trustee will enter this state after BUTCHER or RELEASE | ||
3016 | * is complete. | ||
3017 | * | ||
3018 | * trustee CPU draining | ||
3019 | * took over down complete | ||
3020 | * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE | ||
3021 | * | | ^ | ||
3022 | * | CPU is back online v return workers | | ||
3023 | * ----------------> RELEASE -------------- | ||
3024 | */ | ||
3025 | |||
3026 | /** | ||
3027 | * trustee_wait_event_timeout - timed event wait for trustee | ||
3028 | * @cond: condition to wait for | ||
3029 | * @timeout: timeout in jiffies | ||
3030 | * | ||
3031 | * wait_event_timeout() for trustee to use. Handles locking and | ||
3032 | * checks for RELEASE request. | ||
3033 | * | ||
3034 | * CONTEXT: | ||
3035 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3036 | * multiple times. To be used by trustee. | ||
3037 | * | ||
3038 | * RETURNS: | ||
3039 | * Positive indicating left time if @cond is satisfied, 0 if timed | ||
3040 | * out, -1 if canceled. | ||
3041 | */ | ||
3042 | #define trustee_wait_event_timeout(cond, timeout) ({ \ | ||
3043 | long __ret = (timeout); \ | ||
3044 | while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ | ||
3045 | __ret) { \ | ||
3046 | spin_unlock_irq(&gcwq->lock); \ | ||
3047 | __wait_event_timeout(gcwq->trustee_wait, (cond) || \ | ||
3048 | (gcwq->trustee_state == TRUSTEE_RELEASE), \ | ||
3049 | __ret); \ | ||
3050 | spin_lock_irq(&gcwq->lock); \ | ||
3051 | } \ | ||
3052 | gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ | ||
3053 | }) | ||
3054 | |||
3055 | /** | ||
3056 | * trustee_wait_event - event wait for trustee | ||
3057 | * @cond: condition to wait for | ||
3058 | * | ||
3059 | * wait_event() for trustee to use. Automatically handles locking and | ||
3060 | * checks for CANCEL request. | ||
3061 | * | ||
3062 | * CONTEXT: | ||
3063 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3064 | * multiple times. To be used by trustee. | ||
3065 | * | ||
3066 | * RETURNS: | ||
3067 | * 0 if @cond is satisfied, -1 if canceled. | ||
3068 | */ | ||
3069 | #define trustee_wait_event(cond) ({ \ | ||
3070 | long __ret1; \ | ||
3071 | __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ | ||
3072 | __ret1 < 0 ? -1 : 0; \ | ||
3073 | }) | ||
3074 | |||
3075 | static int __cpuinit trustee_thread(void *__gcwq) | ||
3076 | { | ||
3077 | struct global_cwq *gcwq = __gcwq; | ||
3078 | struct worker *worker; | ||
3079 | struct work_struct *work; | ||
3080 | struct hlist_node *pos; | ||
3081 | long rc; | ||
3082 | int i; | ||
3083 | |||
3084 | BUG_ON(gcwq->cpu != smp_processor_id()); | ||
3085 | |||
3086 | spin_lock_irq(&gcwq->lock); | ||
3087 | /* | ||
3088 | * Claim the manager position and make all workers rogue. | ||
3089 | * Trustee must be bound to the target cpu and can't be | ||
3090 | * cancelled. | ||
3091 | */ | ||
3092 | BUG_ON(gcwq->cpu != smp_processor_id()); | ||
3093 | rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); | ||
3094 | BUG_ON(rc < 0); | ||
3095 | |||
3096 | gcwq->flags |= GCWQ_MANAGING_WORKERS; | ||
3097 | |||
3098 | list_for_each_entry(worker, &gcwq->idle_list, entry) | ||
3099 | worker->flags |= WORKER_ROGUE; | ||
3100 | |||
3101 | for_each_busy_worker(worker, i, pos, gcwq) | ||
3102 | worker->flags |= WORKER_ROGUE; | ||
3103 | |||
3104 | /* | ||
3105 | * Call schedule() so that we cross rq->lock and thus can | ||
3106 | * guarantee sched callbacks see the rogue flag. This is | ||
3107 | * necessary as scheduler callbacks may be invoked from other | ||
3108 | * cpus. | ||
3109 | */ | ||
3110 | spin_unlock_irq(&gcwq->lock); | ||
3111 | schedule(); | ||
3112 | spin_lock_irq(&gcwq->lock); | ||
3113 | |||
3114 | /* | ||
3115 | * Sched callbacks are disabled now. Zap nr_running. After | ||
3116 | * this, nr_running stays zero and need_more_worker() and | ||
3117 | * keep_working() are always true as long as the worklist is | ||
3118 | * not empty. | ||
3119 | */ | ||
3120 | atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); | ||
3121 | |||
3122 | spin_unlock_irq(&gcwq->lock); | ||
3123 | del_timer_sync(&gcwq->idle_timer); | ||
3124 | spin_lock_irq(&gcwq->lock); | ||
3125 | |||
3126 | /* | ||
3127 | * We're now in charge. Notify and proceed to drain. We need | ||
3128 | * to keep the gcwq running during the whole CPU down | ||
3129 | * procedure as other cpu hotunplug callbacks may need to | ||
3130 | * flush currently running tasks. | ||
3131 | */ | ||
3132 | gcwq->trustee_state = TRUSTEE_IN_CHARGE; | ||
3133 | wake_up_all(&gcwq->trustee_wait); | ||
3134 | |||
3135 | /* | ||
3136 | * The original cpu is in the process of dying and may go away | ||
3137 | * anytime now. When that happens, we and all workers would | ||
3138 | * be migrated to other cpus. Try draining any left work. We | ||
3139 | * want to get it over with ASAP - spam rescuers, wake up as | ||
3140 | * many idlers as necessary and create new ones till the | ||
3141 | * worklist is empty. Note that if the gcwq is frozen, there | ||
3142 | * may be frozen works in freezeable cwqs. Don't declare | ||
3143 | * completion while frozen. | ||
3144 | */ | ||
3145 | while (gcwq->nr_workers != gcwq->nr_idle || | ||
3146 | gcwq->flags & GCWQ_FREEZING || | ||
3147 | gcwq->trustee_state == TRUSTEE_IN_CHARGE) { | ||
3148 | int nr_works = 0; | ||
3149 | |||
3150 | list_for_each_entry(work, &gcwq->worklist, entry) { | ||
3151 | send_mayday(work); | ||
3152 | nr_works++; | ||
3153 | } | ||
3154 | |||
3155 | list_for_each_entry(worker, &gcwq->idle_list, entry) { | ||
3156 | if (!nr_works--) | ||
3157 | break; | ||
3158 | wake_up_process(worker->task); | ||
3159 | } | ||
3160 | |||
3161 | if (need_to_create_worker(gcwq)) { | ||
3162 | spin_unlock_irq(&gcwq->lock); | ||
3163 | worker = create_worker(gcwq, false); | ||
3164 | spin_lock_irq(&gcwq->lock); | ||
3165 | if (worker) { | ||
3166 | worker->flags |= WORKER_ROGUE; | ||
3167 | start_worker(worker); | ||
3168 | } | ||
3169 | } | ||
3170 | |||
3171 | /* give a breather */ | ||
3172 | if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) | ||
3173 | break; | ||
3174 | } | ||
3175 | |||
3176 | /* | ||
3177 | * Either all works have been scheduled and cpu is down, or | ||
3178 | * cpu down has already been canceled. Wait for and butcher | ||
3179 | * all workers till we're canceled. | ||
3180 | */ | ||
3181 | do { | ||
3182 | rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); | ||
3183 | while (!list_empty(&gcwq->idle_list)) | ||
3184 | destroy_worker(list_first_entry(&gcwq->idle_list, | ||
3185 | struct worker, entry)); | ||
3186 | } while (gcwq->nr_workers && rc >= 0); | ||
3187 | |||
3188 | /* | ||
3189 | * At this point, either draining has completed and no worker | ||
3190 | * is left, or cpu down has been canceled or the cpu is being | ||
3191 | * brought back up. There shouldn't be any idle one left. | ||
3192 | * Tell the remaining busy ones to rebind once it finishes the | ||
3193 | * currently scheduled works by scheduling the rebind_work. | ||
3194 | */ | ||
3195 | WARN_ON(!list_empty(&gcwq->idle_list)); | ||
3196 | |||
3197 | for_each_busy_worker(worker, i, pos, gcwq) { | ||
3198 | struct work_struct *rebind_work = &worker->rebind_work; | ||
3199 | |||
3200 | /* | ||
3201 | * Rebind_work may race with future cpu hotplug | ||
3202 | * operations. Use a separate flag to mark that | ||
3203 | * rebinding is scheduled. | ||
3204 | */ | ||
3205 | worker->flags |= WORKER_REBIND; | ||
3206 | worker->flags &= ~WORKER_ROGUE; | ||
3207 | |||
3208 | /* queue rebind_work, wq doesn't matter, use the default one */ | ||
3209 | if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, | ||
3210 | work_data_bits(rebind_work))) | ||
3211 | continue; | ||
3212 | |||
3213 | debug_work_activate(rebind_work); | ||
3214 | insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, | ||
3215 | worker->scheduled.next, | ||
3216 | work_color_to_flags(WORK_NO_COLOR)); | ||
3217 | } | ||
3218 | |||
3219 | /* relinquish manager role */ | ||
3220 | gcwq->flags &= ~GCWQ_MANAGING_WORKERS; | ||
3221 | |||
3222 | /* notify completion */ | ||
3223 | gcwq->trustee = NULL; | ||
3224 | gcwq->trustee_state = TRUSTEE_DONE; | ||
3225 | wake_up_all(&gcwq->trustee_wait); | ||
3226 | spin_unlock_irq(&gcwq->lock); | ||
3227 | return 0; | ||
3228 | } | ||
3229 | |||
3230 | /** | ||
3231 | * wait_trustee_state - wait for trustee to enter the specified state | ||
3232 | * @gcwq: gcwq the trustee of interest belongs to | ||
3233 | * @state: target state to wait for | ||
3234 | * | ||
3235 | * Wait for the trustee to reach @state. DONE is already matched. | ||
3236 | * | ||
3237 | * CONTEXT: | ||
3238 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3239 | * multiple times. To be used by cpu_callback. | ||
3240 | */ | ||
3241 | static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) | ||
3242 | { | ||
3243 | if (!(gcwq->trustee_state == state || | ||
3244 | gcwq->trustee_state == TRUSTEE_DONE)) { | ||
3245 | spin_unlock_irq(&gcwq->lock); | ||
3246 | __wait_event(gcwq->trustee_wait, | ||
3247 | gcwq->trustee_state == state || | ||
3248 | gcwq->trustee_state == TRUSTEE_DONE); | ||
3249 | spin_lock_irq(&gcwq->lock); | ||
3250 | } | ||
3251 | } | ||
3252 | |||
1106 | static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, | 3253 | static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, |
1107 | unsigned long action, | 3254 | unsigned long action, |
1108 | void *hcpu) | 3255 | void *hcpu) |
1109 | { | 3256 | { |
1110 | unsigned int cpu = (unsigned long)hcpu; | 3257 | unsigned int cpu = (unsigned long)hcpu; |
1111 | struct cpu_workqueue_struct *cwq; | 3258 | struct global_cwq *gcwq = get_gcwq(cpu); |
1112 | struct workqueue_struct *wq; | 3259 | struct task_struct *new_trustee = NULL; |
1113 | int err = 0; | 3260 | struct worker *uninitialized_var(new_worker); |
3261 | unsigned long flags; | ||
1114 | 3262 | ||
1115 | action &= ~CPU_TASKS_FROZEN; | 3263 | action &= ~CPU_TASKS_FROZEN; |
1116 | 3264 | ||
1117 | switch (action) { | 3265 | switch (action) { |
3266 | case CPU_DOWN_PREPARE: | ||
3267 | new_trustee = kthread_create(trustee_thread, gcwq, | ||
3268 | "workqueue_trustee/%d\n", cpu); | ||
3269 | if (IS_ERR(new_trustee)) | ||
3270 | return notifier_from_errno(PTR_ERR(new_trustee)); | ||
3271 | kthread_bind(new_trustee, cpu); | ||
3272 | /* fall through */ | ||
1118 | case CPU_UP_PREPARE: | 3273 | case CPU_UP_PREPARE: |
1119 | cpumask_set_cpu(cpu, cpu_populated_map); | 3274 | BUG_ON(gcwq->first_idle); |
1120 | } | 3275 | new_worker = create_worker(gcwq, false); |
1121 | undo: | 3276 | if (!new_worker) { |
1122 | list_for_each_entry(wq, &workqueues, list) { | 3277 | if (new_trustee) |
1123 | cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 3278 | kthread_stop(new_trustee); |
1124 | 3279 | return NOTIFY_BAD; | |
1125 | switch (action) { | ||
1126 | case CPU_UP_PREPARE: | ||
1127 | err = create_workqueue_thread(cwq, cpu); | ||
1128 | if (!err) | ||
1129 | break; | ||
1130 | printk(KERN_ERR "workqueue [%s] for %i failed\n", | ||
1131 | wq->name, cpu); | ||
1132 | action = CPU_UP_CANCELED; | ||
1133 | err = -ENOMEM; | ||
1134 | goto undo; | ||
1135 | |||
1136 | case CPU_ONLINE: | ||
1137 | start_workqueue_thread(cwq, cpu); | ||
1138 | break; | ||
1139 | |||
1140 | case CPU_UP_CANCELED: | ||
1141 | start_workqueue_thread(cwq, -1); | ||
1142 | case CPU_POST_DEAD: | ||
1143 | cleanup_workqueue_thread(cwq); | ||
1144 | break; | ||
1145 | } | 3280 | } |
1146 | } | 3281 | } |
1147 | 3282 | ||
3283 | /* some are called w/ irq disabled, don't disturb irq status */ | ||
3284 | spin_lock_irqsave(&gcwq->lock, flags); | ||
3285 | |||
1148 | switch (action) { | 3286 | switch (action) { |
1149 | case CPU_UP_CANCELED: | 3287 | case CPU_DOWN_PREPARE: |
3288 | /* initialize trustee and tell it to acquire the gcwq */ | ||
3289 | BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); | ||
3290 | gcwq->trustee = new_trustee; | ||
3291 | gcwq->trustee_state = TRUSTEE_START; | ||
3292 | wake_up_process(gcwq->trustee); | ||
3293 | wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); | ||
3294 | /* fall through */ | ||
3295 | case CPU_UP_PREPARE: | ||
3296 | BUG_ON(gcwq->first_idle); | ||
3297 | gcwq->first_idle = new_worker; | ||
3298 | break; | ||
3299 | |||
3300 | case CPU_DYING: | ||
3301 | /* | ||
3302 | * Before this, the trustee and all workers except for | ||
3303 | * the ones which are still executing works from | ||
3304 | * before the last CPU down must be on the cpu. After | ||
3305 | * this, they'll all be diasporas. | ||
3306 | */ | ||
3307 | gcwq->flags |= GCWQ_DISASSOCIATED; | ||
3308 | break; | ||
3309 | |||
1150 | case CPU_POST_DEAD: | 3310 | case CPU_POST_DEAD: |
1151 | cpumask_clear_cpu(cpu, cpu_populated_map); | 3311 | gcwq->trustee_state = TRUSTEE_BUTCHER; |
3312 | /* fall through */ | ||
3313 | case CPU_UP_CANCELED: | ||
3314 | destroy_worker(gcwq->first_idle); | ||
3315 | gcwq->first_idle = NULL; | ||
3316 | break; | ||
3317 | |||
3318 | case CPU_DOWN_FAILED: | ||
3319 | case CPU_ONLINE: | ||
3320 | gcwq->flags &= ~GCWQ_DISASSOCIATED; | ||
3321 | if (gcwq->trustee_state != TRUSTEE_DONE) { | ||
3322 | gcwq->trustee_state = TRUSTEE_RELEASE; | ||
3323 | wake_up_process(gcwq->trustee); | ||
3324 | wait_trustee_state(gcwq, TRUSTEE_DONE); | ||
3325 | } | ||
3326 | |||
3327 | /* | ||
3328 | * Trustee is done and there might be no worker left. | ||
3329 | * Put the first_idle in and request a real manager to | ||
3330 | * take a look. | ||
3331 | */ | ||
3332 | spin_unlock_irq(&gcwq->lock); | ||
3333 | kthread_bind(gcwq->first_idle->task, cpu); | ||
3334 | spin_lock_irq(&gcwq->lock); | ||
3335 | gcwq->flags |= GCWQ_MANAGE_WORKERS; | ||
3336 | start_worker(gcwq->first_idle); | ||
3337 | gcwq->first_idle = NULL; | ||
3338 | break; | ||
1152 | } | 3339 | } |
1153 | 3340 | ||
1154 | return notifier_from_errno(err); | 3341 | spin_unlock_irqrestore(&gcwq->lock, flags); |
3342 | |||
3343 | return notifier_from_errno(0); | ||
1155 | } | 3344 | } |
1156 | 3345 | ||
1157 | #ifdef CONFIG_SMP | 3346 | #ifdef CONFIG_SMP |
@@ -1201,14 +3390,199 @@ long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) | |||
1201 | EXPORT_SYMBOL_GPL(work_on_cpu); | 3390 | EXPORT_SYMBOL_GPL(work_on_cpu); |
1202 | #endif /* CONFIG_SMP */ | 3391 | #endif /* CONFIG_SMP */ |
1203 | 3392 | ||
1204 | void __init init_workqueues(void) | 3393 | #ifdef CONFIG_FREEZER |
3394 | |||
3395 | /** | ||
3396 | * freeze_workqueues_begin - begin freezing workqueues | ||
3397 | * | ||
3398 | * Start freezing workqueues. After this function returns, all | ||
3399 | * freezeable workqueues will queue new works to their frozen_works | ||
3400 | * list instead of gcwq->worklist. | ||
3401 | * | ||
3402 | * CONTEXT: | ||
3403 | * Grabs and releases workqueue_lock and gcwq->lock's. | ||
3404 | */ | ||
3405 | void freeze_workqueues_begin(void) | ||
1205 | { | 3406 | { |
1206 | alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL); | 3407 | unsigned int cpu; |
1207 | 3408 | ||
1208 | cpumask_copy(cpu_populated_map, cpu_online_mask); | 3409 | spin_lock(&workqueue_lock); |
1209 | singlethread_cpu = cpumask_first(cpu_possible_mask); | 3410 | |
1210 | cpu_singlethread_map = cpumask_of(singlethread_cpu); | 3411 | BUG_ON(workqueue_freezing); |
1211 | hotcpu_notifier(workqueue_cpu_callback, 0); | 3412 | workqueue_freezing = true; |
1212 | keventd_wq = create_workqueue("events"); | 3413 | |
1213 | BUG_ON(!keventd_wq); | 3414 | for_each_gcwq_cpu(cpu) { |
3415 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3416 | struct workqueue_struct *wq; | ||
3417 | |||
3418 | spin_lock_irq(&gcwq->lock); | ||
3419 | |||
3420 | BUG_ON(gcwq->flags & GCWQ_FREEZING); | ||
3421 | gcwq->flags |= GCWQ_FREEZING; | ||
3422 | |||
3423 | list_for_each_entry(wq, &workqueues, list) { | ||
3424 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3425 | |||
3426 | if (cwq && wq->flags & WQ_FREEZEABLE) | ||
3427 | cwq->max_active = 0; | ||
3428 | } | ||
3429 | |||
3430 | spin_unlock_irq(&gcwq->lock); | ||
3431 | } | ||
3432 | |||
3433 | spin_unlock(&workqueue_lock); | ||
3434 | } | ||
3435 | |||
3436 | /** | ||
3437 | * freeze_workqueues_busy - are freezeable workqueues still busy? | ||
3438 | * | ||
3439 | * Check whether freezing is complete. This function must be called | ||
3440 | * between freeze_workqueues_begin() and thaw_workqueues(). | ||
3441 | * | ||
3442 | * CONTEXT: | ||
3443 | * Grabs and releases workqueue_lock. | ||
3444 | * | ||
3445 | * RETURNS: | ||
3446 | * %true if some freezeable workqueues are still busy. %false if | ||
3447 | * freezing is complete. | ||
3448 | */ | ||
3449 | bool freeze_workqueues_busy(void) | ||
3450 | { | ||
3451 | unsigned int cpu; | ||
3452 | bool busy = false; | ||
3453 | |||
3454 | spin_lock(&workqueue_lock); | ||
3455 | |||
3456 | BUG_ON(!workqueue_freezing); | ||
3457 | |||
3458 | for_each_gcwq_cpu(cpu) { | ||
3459 | struct workqueue_struct *wq; | ||
3460 | /* | ||
3461 | * nr_active is monotonically decreasing. It's safe | ||
3462 | * to peek without lock. | ||
3463 | */ | ||
3464 | list_for_each_entry(wq, &workqueues, list) { | ||
3465 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3466 | |||
3467 | if (!cwq || !(wq->flags & WQ_FREEZEABLE)) | ||
3468 | continue; | ||
3469 | |||
3470 | BUG_ON(cwq->nr_active < 0); | ||
3471 | if (cwq->nr_active) { | ||
3472 | busy = true; | ||
3473 | goto out_unlock; | ||
3474 | } | ||
3475 | } | ||
3476 | } | ||
3477 | out_unlock: | ||
3478 | spin_unlock(&workqueue_lock); | ||
3479 | return busy; | ||
3480 | } | ||
3481 | |||
3482 | /** | ||
3483 | * thaw_workqueues - thaw workqueues | ||
3484 | * | ||
3485 | * Thaw workqueues. Normal queueing is restored and all collected | ||
3486 | * frozen works are transferred to their respective gcwq worklists. | ||
3487 | * | ||
3488 | * CONTEXT: | ||
3489 | * Grabs and releases workqueue_lock and gcwq->lock's. | ||
3490 | */ | ||
3491 | void thaw_workqueues(void) | ||
3492 | { | ||
3493 | unsigned int cpu; | ||
3494 | |||
3495 | spin_lock(&workqueue_lock); | ||
3496 | |||
3497 | if (!workqueue_freezing) | ||
3498 | goto out_unlock; | ||
3499 | |||
3500 | for_each_gcwq_cpu(cpu) { | ||
3501 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3502 | struct workqueue_struct *wq; | ||
3503 | |||
3504 | spin_lock_irq(&gcwq->lock); | ||
3505 | |||
3506 | BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); | ||
3507 | gcwq->flags &= ~GCWQ_FREEZING; | ||
3508 | |||
3509 | list_for_each_entry(wq, &workqueues, list) { | ||
3510 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3511 | |||
3512 | if (!cwq || !(wq->flags & WQ_FREEZEABLE)) | ||
3513 | continue; | ||
3514 | |||
3515 | /* restore max_active and repopulate worklist */ | ||
3516 | cwq->max_active = wq->saved_max_active; | ||
3517 | |||
3518 | while (!list_empty(&cwq->delayed_works) && | ||
3519 | cwq->nr_active < cwq->max_active) | ||
3520 | cwq_activate_first_delayed(cwq); | ||
3521 | } | ||
3522 | |||
3523 | wake_up_worker(gcwq); | ||
3524 | |||
3525 | spin_unlock_irq(&gcwq->lock); | ||
3526 | } | ||
3527 | |||
3528 | workqueue_freezing = false; | ||
3529 | out_unlock: | ||
3530 | spin_unlock(&workqueue_lock); | ||
3531 | } | ||
3532 | #endif /* CONFIG_FREEZER */ | ||
3533 | |||
3534 | static int __init init_workqueues(void) | ||
3535 | { | ||
3536 | unsigned int cpu; | ||
3537 | int i; | ||
3538 | |||
3539 | cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); | ||
3540 | |||
3541 | /* initialize gcwqs */ | ||
3542 | for_each_gcwq_cpu(cpu) { | ||
3543 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3544 | |||
3545 | spin_lock_init(&gcwq->lock); | ||
3546 | INIT_LIST_HEAD(&gcwq->worklist); | ||
3547 | gcwq->cpu = cpu; | ||
3548 | if (cpu == WORK_CPU_UNBOUND) | ||
3549 | gcwq->flags |= GCWQ_DISASSOCIATED; | ||
3550 | |||
3551 | INIT_LIST_HEAD(&gcwq->idle_list); | ||
3552 | for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) | ||
3553 | INIT_HLIST_HEAD(&gcwq->busy_hash[i]); | ||
3554 | |||
3555 | init_timer_deferrable(&gcwq->idle_timer); | ||
3556 | gcwq->idle_timer.function = idle_worker_timeout; | ||
3557 | gcwq->idle_timer.data = (unsigned long)gcwq; | ||
3558 | |||
3559 | setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, | ||
3560 | (unsigned long)gcwq); | ||
3561 | |||
3562 | ida_init(&gcwq->worker_ida); | ||
3563 | |||
3564 | gcwq->trustee_state = TRUSTEE_DONE; | ||
3565 | init_waitqueue_head(&gcwq->trustee_wait); | ||
3566 | } | ||
3567 | |||
3568 | /* create the initial worker */ | ||
3569 | for_each_online_gcwq_cpu(cpu) { | ||
3570 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3571 | struct worker *worker; | ||
3572 | |||
3573 | worker = create_worker(gcwq, true); | ||
3574 | BUG_ON(!worker); | ||
3575 | spin_lock_irq(&gcwq->lock); | ||
3576 | start_worker(worker); | ||
3577 | spin_unlock_irq(&gcwq->lock); | ||
3578 | } | ||
3579 | |||
3580 | system_wq = alloc_workqueue("events", 0, 0); | ||
3581 | system_long_wq = alloc_workqueue("events_long", 0, 0); | ||
3582 | system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); | ||
3583 | system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, | ||
3584 | WQ_UNBOUND_MAX_ACTIVE); | ||
3585 | BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq); | ||
3586 | return 0; | ||
1214 | } | 3587 | } |
3588 | early_initcall(init_workqueues); | ||