diff options
Diffstat (limited to 'kernel/workqueue.c')
-rw-r--r-- | kernel/workqueue.c | 3255 |
1 files changed, 2847 insertions, 408 deletions
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 5bfb213984b2..f77afd939229 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -1,19 +1,26 @@ | |||
1 | /* | 1 | /* |
2 | * linux/kernel/workqueue.c | 2 | * kernel/workqueue.c - generic async execution with shared worker pool |
3 | * | 3 | * |
4 | * Generic mechanism for defining kernel helper threads for running | 4 | * Copyright (C) 2002 Ingo Molnar |
5 | * arbitrary tasks in process context. | ||
6 | * | 5 | * |
7 | * Started by Ingo Molnar, Copyright (C) 2002 | 6 | * Derived from the taskqueue/keventd code by: |
7 | * David Woodhouse <dwmw2@infradead.org> | ||
8 | * Andrew Morton | ||
9 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> | ||
10 | * Theodore Ts'o <tytso@mit.edu> | ||
8 | * | 11 | * |
9 | * Derived from the taskqueue/keventd code by: | 12 | * Made to use alloc_percpu by Christoph Lameter. |
10 | * | 13 | * |
11 | * David Woodhouse <dwmw2@infradead.org> | 14 | * Copyright (C) 2010 SUSE Linux Products GmbH |
12 | * Andrew Morton | 15 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> |
13 | * Kai Petzke <wpp@marie.physik.tu-berlin.de> | ||
14 | * Theodore Ts'o <tytso@mit.edu> | ||
15 | * | 16 | * |
16 | * Made to use alloc_percpu by Christoph Lameter. | 17 | * This is the generic async execution mechanism. Work items as are |
18 | * executed in process context. The worker pool is shared and | ||
19 | * automatically managed. There is one worker pool for each CPU and | ||
20 | * one extra for works which are better served by workers which are | ||
21 | * not bound to any specific CPU. | ||
22 | * | ||
23 | * Please read Documentation/workqueue.txt for details. | ||
17 | */ | 24 | */ |
18 | 25 | ||
19 | #include <linux/module.h> | 26 | #include <linux/module.h> |
@@ -33,41 +40,291 @@ | |||
33 | #include <linux/kallsyms.h> | 40 | #include <linux/kallsyms.h> |
34 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
35 | #include <linux/lockdep.h> | 42 | #include <linux/lockdep.h> |
43 | #include <linux/idr.h> | ||
44 | |||
36 | #define CREATE_TRACE_POINTS | 45 | #define CREATE_TRACE_POINTS |
37 | #include <trace/events/workqueue.h> | 46 | #include <trace/events/workqueue.h> |
38 | 47 | ||
48 | #include "workqueue_sched.h" | ||
49 | |||
50 | enum { | ||
51 | /* global_cwq flags */ | ||
52 | GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ | ||
53 | GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ | ||
54 | GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ | ||
55 | GCWQ_FREEZING = 1 << 3, /* freeze in progress */ | ||
56 | GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ | ||
57 | |||
58 | /* worker flags */ | ||
59 | WORKER_STARTED = 1 << 0, /* started */ | ||
60 | WORKER_DIE = 1 << 1, /* die die die */ | ||
61 | WORKER_IDLE = 1 << 2, /* is idle */ | ||
62 | WORKER_PREP = 1 << 3, /* preparing to run works */ | ||
63 | WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ | ||
64 | WORKER_REBIND = 1 << 5, /* mom is home, come back */ | ||
65 | WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ | ||
66 | WORKER_UNBOUND = 1 << 7, /* worker is unbound */ | ||
67 | |||
68 | WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | | ||
69 | WORKER_CPU_INTENSIVE | WORKER_UNBOUND, | ||
70 | |||
71 | /* gcwq->trustee_state */ | ||
72 | TRUSTEE_START = 0, /* start */ | ||
73 | TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ | ||
74 | TRUSTEE_BUTCHER = 2, /* butcher workers */ | ||
75 | TRUSTEE_RELEASE = 3, /* release workers */ | ||
76 | TRUSTEE_DONE = 4, /* trustee is done */ | ||
77 | |||
78 | BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ | ||
79 | BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, | ||
80 | BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, | ||
81 | |||
82 | MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ | ||
83 | IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ | ||
84 | |||
85 | MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ | ||
86 | MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ | ||
87 | CREATE_COOLDOWN = HZ, /* time to breath after fail */ | ||
88 | TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ | ||
89 | |||
90 | /* | ||
91 | * Rescue workers are used only on emergencies and shared by | ||
92 | * all cpus. Give -20. | ||
93 | */ | ||
94 | RESCUER_NICE_LEVEL = -20, | ||
95 | }; | ||
96 | |||
39 | /* | 97 | /* |
40 | * The per-CPU workqueue (if single thread, we always use the first | 98 | * Structure fields follow one of the following exclusion rules. |
41 | * possible cpu). | 99 | * |
100 | * I: Modifiable by initialization/destruction paths and read-only for | ||
101 | * everyone else. | ||
102 | * | ||
103 | * P: Preemption protected. Disabling preemption is enough and should | ||
104 | * only be modified and accessed from the local cpu. | ||
105 | * | ||
106 | * L: gcwq->lock protected. Access with gcwq->lock held. | ||
107 | * | ||
108 | * X: During normal operation, modification requires gcwq->lock and | ||
109 | * should be done only from local cpu. Either disabling preemption | ||
110 | * on local cpu or grabbing gcwq->lock is enough for read access. | ||
111 | * If GCWQ_DISASSOCIATED is set, it's identical to L. | ||
112 | * | ||
113 | * F: wq->flush_mutex protected. | ||
114 | * | ||
115 | * W: workqueue_lock protected. | ||
42 | */ | 116 | */ |
43 | struct cpu_workqueue_struct { | ||
44 | 117 | ||
45 | spinlock_t lock; | 118 | struct global_cwq; |
46 | 119 | ||
47 | struct list_head worklist; | 120 | /* |
48 | wait_queue_head_t more_work; | 121 | * The poor guys doing the actual heavy lifting. All on-duty workers |
49 | struct work_struct *current_work; | 122 | * are either serving the manager role, on idle list or on busy hash. |
123 | */ | ||
124 | struct worker { | ||
125 | /* on idle list while idle, on busy hash table while busy */ | ||
126 | union { | ||
127 | struct list_head entry; /* L: while idle */ | ||
128 | struct hlist_node hentry; /* L: while busy */ | ||
129 | }; | ||
50 | 130 | ||
51 | struct workqueue_struct *wq; | 131 | struct work_struct *current_work; /* L: work being processed */ |
52 | struct task_struct *thread; | 132 | struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ |
53 | } ____cacheline_aligned; | 133 | struct list_head scheduled; /* L: scheduled works */ |
134 | struct task_struct *task; /* I: worker task */ | ||
135 | struct global_cwq *gcwq; /* I: the associated gcwq */ | ||
136 | /* 64 bytes boundary on 64bit, 32 on 32bit */ | ||
137 | unsigned long last_active; /* L: last active timestamp */ | ||
138 | unsigned int flags; /* X: flags */ | ||
139 | int id; /* I: worker id */ | ||
140 | struct work_struct rebind_work; /* L: rebind worker to cpu */ | ||
141 | }; | ||
142 | |||
143 | /* | ||
144 | * Global per-cpu workqueue. There's one and only one for each cpu | ||
145 | * and all works are queued and processed here regardless of their | ||
146 | * target workqueues. | ||
147 | */ | ||
148 | struct global_cwq { | ||
149 | spinlock_t lock; /* the gcwq lock */ | ||
150 | struct list_head worklist; /* L: list of pending works */ | ||
151 | unsigned int cpu; /* I: the associated cpu */ | ||
152 | unsigned int flags; /* L: GCWQ_* flags */ | ||
153 | |||
154 | int nr_workers; /* L: total number of workers */ | ||
155 | int nr_idle; /* L: currently idle ones */ | ||
156 | |||
157 | /* workers are chained either in the idle_list or busy_hash */ | ||
158 | struct list_head idle_list; /* X: list of idle workers */ | ||
159 | struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; | ||
160 | /* L: hash of busy workers */ | ||
161 | |||
162 | struct timer_list idle_timer; /* L: worker idle timeout */ | ||
163 | struct timer_list mayday_timer; /* L: SOS timer for dworkers */ | ||
164 | |||
165 | struct ida worker_ida; /* L: for worker IDs */ | ||
166 | |||
167 | struct task_struct *trustee; /* L: for gcwq shutdown */ | ||
168 | unsigned int trustee_state; /* L: trustee state */ | ||
169 | wait_queue_head_t trustee_wait; /* trustee wait */ | ||
170 | struct worker *first_idle; /* L: first idle worker */ | ||
171 | } ____cacheline_aligned_in_smp; | ||
172 | |||
173 | /* | ||
174 | * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of | ||
175 | * work_struct->data are used for flags and thus cwqs need to be | ||
176 | * aligned at two's power of the number of flag bits. | ||
177 | */ | ||
178 | struct cpu_workqueue_struct { | ||
179 | struct global_cwq *gcwq; /* I: the associated gcwq */ | ||
180 | struct workqueue_struct *wq; /* I: the owning workqueue */ | ||
181 | int work_color; /* L: current color */ | ||
182 | int flush_color; /* L: flushing color */ | ||
183 | int nr_in_flight[WORK_NR_COLORS]; | ||
184 | /* L: nr of in_flight works */ | ||
185 | int nr_active; /* L: nr of active works */ | ||
186 | int max_active; /* L: max active works */ | ||
187 | struct list_head delayed_works; /* L: delayed works */ | ||
188 | }; | ||
189 | |||
190 | /* | ||
191 | * Structure used to wait for workqueue flush. | ||
192 | */ | ||
193 | struct wq_flusher { | ||
194 | struct list_head list; /* F: list of flushers */ | ||
195 | int flush_color; /* F: flush color waiting for */ | ||
196 | struct completion done; /* flush completion */ | ||
197 | }; | ||
198 | |||
199 | /* | ||
200 | * All cpumasks are assumed to be always set on UP and thus can't be | ||
201 | * used to determine whether there's something to be done. | ||
202 | */ | ||
203 | #ifdef CONFIG_SMP | ||
204 | typedef cpumask_var_t mayday_mask_t; | ||
205 | #define mayday_test_and_set_cpu(cpu, mask) \ | ||
206 | cpumask_test_and_set_cpu((cpu), (mask)) | ||
207 | #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) | ||
208 | #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) | ||
209 | #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) | ||
210 | #define free_mayday_mask(mask) free_cpumask_var((mask)) | ||
211 | #else | ||
212 | typedef unsigned long mayday_mask_t; | ||
213 | #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) | ||
214 | #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) | ||
215 | #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) | ||
216 | #define alloc_mayday_mask(maskp, gfp) true | ||
217 | #define free_mayday_mask(mask) do { } while (0) | ||
218 | #endif | ||
54 | 219 | ||
55 | /* | 220 | /* |
56 | * The externally visible workqueue abstraction is an array of | 221 | * The externally visible workqueue abstraction is an array of |
57 | * per-CPU workqueues: | 222 | * per-CPU workqueues: |
58 | */ | 223 | */ |
59 | struct workqueue_struct { | 224 | struct workqueue_struct { |
60 | struct cpu_workqueue_struct *cpu_wq; | 225 | unsigned int flags; /* I: WQ_* flags */ |
61 | struct list_head list; | 226 | union { |
62 | const char *name; | 227 | struct cpu_workqueue_struct __percpu *pcpu; |
63 | int singlethread; | 228 | struct cpu_workqueue_struct *single; |
64 | int freezeable; /* Freeze threads during suspend */ | 229 | unsigned long v; |
65 | int rt; | 230 | } cpu_wq; /* I: cwq's */ |
231 | struct list_head list; /* W: list of all workqueues */ | ||
232 | |||
233 | struct mutex flush_mutex; /* protects wq flushing */ | ||
234 | int work_color; /* F: current work color */ | ||
235 | int flush_color; /* F: current flush color */ | ||
236 | atomic_t nr_cwqs_to_flush; /* flush in progress */ | ||
237 | struct wq_flusher *first_flusher; /* F: first flusher */ | ||
238 | struct list_head flusher_queue; /* F: flush waiters */ | ||
239 | struct list_head flusher_overflow; /* F: flush overflow list */ | ||
240 | |||
241 | mayday_mask_t mayday_mask; /* cpus requesting rescue */ | ||
242 | struct worker *rescuer; /* I: rescue worker */ | ||
243 | |||
244 | int saved_max_active; /* W: saved cwq max_active */ | ||
245 | const char *name; /* I: workqueue name */ | ||
66 | #ifdef CONFIG_LOCKDEP | 246 | #ifdef CONFIG_LOCKDEP |
67 | struct lockdep_map lockdep_map; | 247 | struct lockdep_map lockdep_map; |
68 | #endif | 248 | #endif |
69 | }; | 249 | }; |
70 | 250 | ||
251 | struct workqueue_struct *system_wq __read_mostly; | ||
252 | struct workqueue_struct *system_long_wq __read_mostly; | ||
253 | struct workqueue_struct *system_nrt_wq __read_mostly; | ||
254 | struct workqueue_struct *system_unbound_wq __read_mostly; | ||
255 | EXPORT_SYMBOL_GPL(system_wq); | ||
256 | EXPORT_SYMBOL_GPL(system_long_wq); | ||
257 | EXPORT_SYMBOL_GPL(system_nrt_wq); | ||
258 | EXPORT_SYMBOL_GPL(system_unbound_wq); | ||
259 | |||
260 | #define for_each_busy_worker(worker, i, pos, gcwq) \ | ||
261 | for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ | ||
262 | hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) | ||
263 | |||
264 | static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, | ||
265 | unsigned int sw) | ||
266 | { | ||
267 | if (cpu < nr_cpu_ids) { | ||
268 | if (sw & 1) { | ||
269 | cpu = cpumask_next(cpu, mask); | ||
270 | if (cpu < nr_cpu_ids) | ||
271 | return cpu; | ||
272 | } | ||
273 | if (sw & 2) | ||
274 | return WORK_CPU_UNBOUND; | ||
275 | } | ||
276 | return WORK_CPU_NONE; | ||
277 | } | ||
278 | |||
279 | static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, | ||
280 | struct workqueue_struct *wq) | ||
281 | { | ||
282 | return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * CPU iterators | ||
287 | * | ||
288 | * An extra gcwq is defined for an invalid cpu number | ||
289 | * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any | ||
290 | * specific CPU. The following iterators are similar to | ||
291 | * for_each_*_cpu() iterators but also considers the unbound gcwq. | ||
292 | * | ||
293 | * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND | ||
294 | * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND | ||
295 | * for_each_cwq_cpu() : possible CPUs for bound workqueues, | ||
296 | * WORK_CPU_UNBOUND for unbound workqueues | ||
297 | */ | ||
298 | #define for_each_gcwq_cpu(cpu) \ | ||
299 | for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ | ||
300 | (cpu) < WORK_CPU_NONE; \ | ||
301 | (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) | ||
302 | |||
303 | #define for_each_online_gcwq_cpu(cpu) \ | ||
304 | for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ | ||
305 | (cpu) < WORK_CPU_NONE; \ | ||
306 | (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) | ||
307 | |||
308 | #define for_each_cwq_cpu(cpu, wq) \ | ||
309 | for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ | ||
310 | (cpu) < WORK_CPU_NONE; \ | ||
311 | (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) | ||
312 | |||
313 | #ifdef CONFIG_LOCKDEP | ||
314 | /** | ||
315 | * in_workqueue_context() - in context of specified workqueue? | ||
316 | * @wq: the workqueue of interest | ||
317 | * | ||
318 | * Checks lockdep state to see if the current task is executing from | ||
319 | * within a workqueue item. This function exists only if lockdep is | ||
320 | * enabled. | ||
321 | */ | ||
322 | int in_workqueue_context(struct workqueue_struct *wq) | ||
323 | { | ||
324 | return lock_is_held(&wq->lockdep_map); | ||
325 | } | ||
326 | #endif | ||
327 | |||
71 | #ifdef CONFIG_DEBUG_OBJECTS_WORK | 328 | #ifdef CONFIG_DEBUG_OBJECTS_WORK |
72 | 329 | ||
73 | static struct debug_obj_descr work_debug_descr; | 330 | static struct debug_obj_descr work_debug_descr; |
@@ -107,7 +364,7 @@ static int work_fixup_activate(void *addr, enum debug_obj_state state) | |||
107 | * statically initialized. We just make sure that it | 364 | * statically initialized. We just make sure that it |
108 | * is tracked in the object tracker. | 365 | * is tracked in the object tracker. |
109 | */ | 366 | */ |
110 | if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) { | 367 | if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { |
111 | debug_object_init(work, &work_debug_descr); | 368 | debug_object_init(work, &work_debug_descr); |
112 | debug_object_activate(work, &work_debug_descr); | 369 | debug_object_activate(work, &work_debug_descr); |
113 | return 0; | 370 | return 0; |
@@ -181,84 +438,582 @@ static inline void debug_work_deactivate(struct work_struct *work) { } | |||
181 | /* Serializes the accesses to the list of workqueues. */ | 438 | /* Serializes the accesses to the list of workqueues. */ |
182 | static DEFINE_SPINLOCK(workqueue_lock); | 439 | static DEFINE_SPINLOCK(workqueue_lock); |
183 | static LIST_HEAD(workqueues); | 440 | static LIST_HEAD(workqueues); |
441 | static bool workqueue_freezing; /* W: have wqs started freezing? */ | ||
184 | 442 | ||
185 | static int singlethread_cpu __read_mostly; | ||
186 | static const struct cpumask *cpu_singlethread_map __read_mostly; | ||
187 | /* | 443 | /* |
188 | * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD | 444 | * The almighty global cpu workqueues. nr_running is the only field |
189 | * flushes cwq->worklist. This means that flush_workqueue/wait_on_work | 445 | * which is expected to be used frequently by other cpus via |
190 | * which comes in between can't use for_each_online_cpu(). We could | 446 | * try_to_wake_up(). Put it in a separate cacheline. |
191 | * use cpu_possible_map, the cpumask below is more a documentation | ||
192 | * than optimization. | ||
193 | */ | 447 | */ |
194 | static cpumask_var_t cpu_populated_map __read_mostly; | 448 | static DEFINE_PER_CPU(struct global_cwq, global_cwq); |
449 | static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); | ||
450 | |||
451 | /* | ||
452 | * Global cpu workqueue and nr_running counter for unbound gcwq. The | ||
453 | * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its | ||
454 | * workers have WORKER_UNBOUND set. | ||
455 | */ | ||
456 | static struct global_cwq unbound_global_cwq; | ||
457 | static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ | ||
458 | |||
459 | static int worker_thread(void *__worker); | ||
460 | |||
461 | static struct global_cwq *get_gcwq(unsigned int cpu) | ||
462 | { | ||
463 | if (cpu != WORK_CPU_UNBOUND) | ||
464 | return &per_cpu(global_cwq, cpu); | ||
465 | else | ||
466 | return &unbound_global_cwq; | ||
467 | } | ||
468 | |||
469 | static atomic_t *get_gcwq_nr_running(unsigned int cpu) | ||
470 | { | ||
471 | if (cpu != WORK_CPU_UNBOUND) | ||
472 | return &per_cpu(gcwq_nr_running, cpu); | ||
473 | else | ||
474 | return &unbound_gcwq_nr_running; | ||
475 | } | ||
195 | 476 | ||
196 | /* If it's single threaded, it isn't in the list of workqueues. */ | 477 | static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, |
197 | static inline int is_wq_single_threaded(struct workqueue_struct *wq) | 478 | struct workqueue_struct *wq) |
198 | { | 479 | { |
199 | return wq->singlethread; | 480 | if (!(wq->flags & WQ_UNBOUND)) { |
481 | if (likely(cpu < nr_cpu_ids)) { | ||
482 | #ifdef CONFIG_SMP | ||
483 | return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); | ||
484 | #else | ||
485 | return wq->cpu_wq.single; | ||
486 | #endif | ||
487 | } | ||
488 | } else if (likely(cpu == WORK_CPU_UNBOUND)) | ||
489 | return wq->cpu_wq.single; | ||
490 | return NULL; | ||
200 | } | 491 | } |
201 | 492 | ||
202 | static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq) | 493 | static unsigned int work_color_to_flags(int color) |
203 | { | 494 | { |
204 | return is_wq_single_threaded(wq) | 495 | return color << WORK_STRUCT_COLOR_SHIFT; |
205 | ? cpu_singlethread_map : cpu_populated_map; | ||
206 | } | 496 | } |
207 | 497 | ||
208 | static | 498 | static int get_work_color(struct work_struct *work) |
209 | struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) | ||
210 | { | 499 | { |
211 | if (unlikely(is_wq_single_threaded(wq))) | 500 | return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & |
212 | cpu = singlethread_cpu; | 501 | ((1 << WORK_STRUCT_COLOR_BITS) - 1); |
213 | return per_cpu_ptr(wq->cpu_wq, cpu); | 502 | } |
503 | |||
504 | static int work_next_color(int color) | ||
505 | { | ||
506 | return (color + 1) % WORK_NR_COLORS; | ||
214 | } | 507 | } |
215 | 508 | ||
216 | /* | 509 | /* |
217 | * Set the workqueue on which a work item is to be run | 510 | * A work's data points to the cwq with WORK_STRUCT_CWQ set while the |
218 | * - Must *only* be called if the pending flag is set | 511 | * work is on queue. Once execution starts, WORK_STRUCT_CWQ is |
512 | * cleared and the work data contains the cpu number it was last on. | ||
513 | * | ||
514 | * set_work_{cwq|cpu}() and clear_work_data() can be used to set the | ||
515 | * cwq, cpu or clear work->data. These functions should only be | ||
516 | * called while the work is owned - ie. while the PENDING bit is set. | ||
517 | * | ||
518 | * get_work_[g]cwq() can be used to obtain the gcwq or cwq | ||
519 | * corresponding to a work. gcwq is available once the work has been | ||
520 | * queued anywhere after initialization. cwq is available only from | ||
521 | * queueing until execution starts. | ||
219 | */ | 522 | */ |
220 | static inline void set_wq_data(struct work_struct *work, | 523 | static inline void set_work_data(struct work_struct *work, unsigned long data, |
221 | struct cpu_workqueue_struct *cwq) | 524 | unsigned long flags) |
222 | { | 525 | { |
223 | unsigned long new; | ||
224 | |||
225 | BUG_ON(!work_pending(work)); | 526 | BUG_ON(!work_pending(work)); |
527 | atomic_long_set(&work->data, data | flags | work_static(work)); | ||
528 | } | ||
529 | |||
530 | static void set_work_cwq(struct work_struct *work, | ||
531 | struct cpu_workqueue_struct *cwq, | ||
532 | unsigned long extra_flags) | ||
533 | { | ||
534 | set_work_data(work, (unsigned long)cwq, | ||
535 | WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); | ||
536 | } | ||
537 | |||
538 | static void set_work_cpu(struct work_struct *work, unsigned int cpu) | ||
539 | { | ||
540 | set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); | ||
541 | } | ||
542 | |||
543 | static void clear_work_data(struct work_struct *work) | ||
544 | { | ||
545 | set_work_data(work, WORK_STRUCT_NO_CPU, 0); | ||
546 | } | ||
547 | |||
548 | static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) | ||
549 | { | ||
550 | unsigned long data = atomic_long_read(&work->data); | ||
551 | |||
552 | if (data & WORK_STRUCT_CWQ) | ||
553 | return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); | ||
554 | else | ||
555 | return NULL; | ||
556 | } | ||
557 | |||
558 | static struct global_cwq *get_work_gcwq(struct work_struct *work) | ||
559 | { | ||
560 | unsigned long data = atomic_long_read(&work->data); | ||
561 | unsigned int cpu; | ||
562 | |||
563 | if (data & WORK_STRUCT_CWQ) | ||
564 | return ((struct cpu_workqueue_struct *) | ||
565 | (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; | ||
566 | |||
567 | cpu = data >> WORK_STRUCT_FLAG_BITS; | ||
568 | if (cpu == WORK_CPU_NONE) | ||
569 | return NULL; | ||
226 | 570 | ||
227 | new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); | 571 | BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); |
228 | new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); | 572 | return get_gcwq(cpu); |
229 | atomic_long_set(&work->data, new); | 573 | } |
574 | |||
575 | /* | ||
576 | * Policy functions. These define the policies on how the global | ||
577 | * worker pool is managed. Unless noted otherwise, these functions | ||
578 | * assume that they're being called with gcwq->lock held. | ||
579 | */ | ||
580 | |||
581 | static bool __need_more_worker(struct global_cwq *gcwq) | ||
582 | { | ||
583 | return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || | ||
584 | gcwq->flags & GCWQ_HIGHPRI_PENDING; | ||
585 | } | ||
586 | |||
587 | /* | ||
588 | * Need to wake up a worker? Called from anything but currently | ||
589 | * running workers. | ||
590 | */ | ||
591 | static bool need_more_worker(struct global_cwq *gcwq) | ||
592 | { | ||
593 | return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); | ||
230 | } | 594 | } |
231 | 595 | ||
232 | static inline | 596 | /* Can I start working? Called from busy but !running workers. */ |
233 | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) | 597 | static bool may_start_working(struct global_cwq *gcwq) |
234 | { | 598 | { |
235 | return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); | 599 | return gcwq->nr_idle; |
236 | } | 600 | } |
237 | 601 | ||
602 | /* Do I need to keep working? Called from currently running workers. */ | ||
603 | static bool keep_working(struct global_cwq *gcwq) | ||
604 | { | ||
605 | atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); | ||
606 | |||
607 | return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1; | ||
608 | } | ||
609 | |||
610 | /* Do we need a new worker? Called from manager. */ | ||
611 | static bool need_to_create_worker(struct global_cwq *gcwq) | ||
612 | { | ||
613 | return need_more_worker(gcwq) && !may_start_working(gcwq); | ||
614 | } | ||
615 | |||
616 | /* Do I need to be the manager? */ | ||
617 | static bool need_to_manage_workers(struct global_cwq *gcwq) | ||
618 | { | ||
619 | return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; | ||
620 | } | ||
621 | |||
622 | /* Do we have too many workers and should some go away? */ | ||
623 | static bool too_many_workers(struct global_cwq *gcwq) | ||
624 | { | ||
625 | bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; | ||
626 | int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ | ||
627 | int nr_busy = gcwq->nr_workers - nr_idle; | ||
628 | |||
629 | return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; | ||
630 | } | ||
631 | |||
632 | /* | ||
633 | * Wake up functions. | ||
634 | */ | ||
635 | |||
636 | /* Return the first worker. Safe with preemption disabled */ | ||
637 | static struct worker *first_worker(struct global_cwq *gcwq) | ||
638 | { | ||
639 | if (unlikely(list_empty(&gcwq->idle_list))) | ||
640 | return NULL; | ||
641 | |||
642 | return list_first_entry(&gcwq->idle_list, struct worker, entry); | ||
643 | } | ||
644 | |||
645 | /** | ||
646 | * wake_up_worker - wake up an idle worker | ||
647 | * @gcwq: gcwq to wake worker for | ||
648 | * | ||
649 | * Wake up the first idle worker of @gcwq. | ||
650 | * | ||
651 | * CONTEXT: | ||
652 | * spin_lock_irq(gcwq->lock). | ||
653 | */ | ||
654 | static void wake_up_worker(struct global_cwq *gcwq) | ||
655 | { | ||
656 | struct worker *worker = first_worker(gcwq); | ||
657 | |||
658 | if (likely(worker)) | ||
659 | wake_up_process(worker->task); | ||
660 | } | ||
661 | |||
662 | /** | ||
663 | * wq_worker_waking_up - a worker is waking up | ||
664 | * @task: task waking up | ||
665 | * @cpu: CPU @task is waking up to | ||
666 | * | ||
667 | * This function is called during try_to_wake_up() when a worker is | ||
668 | * being awoken. | ||
669 | * | ||
670 | * CONTEXT: | ||
671 | * spin_lock_irq(rq->lock) | ||
672 | */ | ||
673 | void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) | ||
674 | { | ||
675 | struct worker *worker = kthread_data(task); | ||
676 | |||
677 | if (likely(!(worker->flags & WORKER_NOT_RUNNING))) | ||
678 | atomic_inc(get_gcwq_nr_running(cpu)); | ||
679 | } | ||
680 | |||
681 | /** | ||
682 | * wq_worker_sleeping - a worker is going to sleep | ||
683 | * @task: task going to sleep | ||
684 | * @cpu: CPU in question, must be the current CPU number | ||
685 | * | ||
686 | * This function is called during schedule() when a busy worker is | ||
687 | * going to sleep. Worker on the same cpu can be woken up by | ||
688 | * returning pointer to its task. | ||
689 | * | ||
690 | * CONTEXT: | ||
691 | * spin_lock_irq(rq->lock) | ||
692 | * | ||
693 | * RETURNS: | ||
694 | * Worker task on @cpu to wake up, %NULL if none. | ||
695 | */ | ||
696 | struct task_struct *wq_worker_sleeping(struct task_struct *task, | ||
697 | unsigned int cpu) | ||
698 | { | ||
699 | struct worker *worker = kthread_data(task), *to_wakeup = NULL; | ||
700 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
701 | atomic_t *nr_running = get_gcwq_nr_running(cpu); | ||
702 | |||
703 | if (unlikely(worker->flags & WORKER_NOT_RUNNING)) | ||
704 | return NULL; | ||
705 | |||
706 | /* this can only happen on the local cpu */ | ||
707 | BUG_ON(cpu != raw_smp_processor_id()); | ||
708 | |||
709 | /* | ||
710 | * The counterpart of the following dec_and_test, implied mb, | ||
711 | * worklist not empty test sequence is in insert_work(). | ||
712 | * Please read comment there. | ||
713 | * | ||
714 | * NOT_RUNNING is clear. This means that trustee is not in | ||
715 | * charge and we're running on the local cpu w/ rq lock held | ||
716 | * and preemption disabled, which in turn means that none else | ||
717 | * could be manipulating idle_list, so dereferencing idle_list | ||
718 | * without gcwq lock is safe. | ||
719 | */ | ||
720 | if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) | ||
721 | to_wakeup = first_worker(gcwq); | ||
722 | return to_wakeup ? to_wakeup->task : NULL; | ||
723 | } | ||
724 | |||
725 | /** | ||
726 | * worker_set_flags - set worker flags and adjust nr_running accordingly | ||
727 | * @worker: self | ||
728 | * @flags: flags to set | ||
729 | * @wakeup: wakeup an idle worker if necessary | ||
730 | * | ||
731 | * Set @flags in @worker->flags and adjust nr_running accordingly. If | ||
732 | * nr_running becomes zero and @wakeup is %true, an idle worker is | ||
733 | * woken up. | ||
734 | * | ||
735 | * CONTEXT: | ||
736 | * spin_lock_irq(gcwq->lock) | ||
737 | */ | ||
738 | static inline void worker_set_flags(struct worker *worker, unsigned int flags, | ||
739 | bool wakeup) | ||
740 | { | ||
741 | struct global_cwq *gcwq = worker->gcwq; | ||
742 | |||
743 | WARN_ON_ONCE(worker->task != current); | ||
744 | |||
745 | /* | ||
746 | * If transitioning into NOT_RUNNING, adjust nr_running and | ||
747 | * wake up an idle worker as necessary if requested by | ||
748 | * @wakeup. | ||
749 | */ | ||
750 | if ((flags & WORKER_NOT_RUNNING) && | ||
751 | !(worker->flags & WORKER_NOT_RUNNING)) { | ||
752 | atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); | ||
753 | |||
754 | if (wakeup) { | ||
755 | if (atomic_dec_and_test(nr_running) && | ||
756 | !list_empty(&gcwq->worklist)) | ||
757 | wake_up_worker(gcwq); | ||
758 | } else | ||
759 | atomic_dec(nr_running); | ||
760 | } | ||
761 | |||
762 | worker->flags |= flags; | ||
763 | } | ||
764 | |||
765 | /** | ||
766 | * worker_clr_flags - clear worker flags and adjust nr_running accordingly | ||
767 | * @worker: self | ||
768 | * @flags: flags to clear | ||
769 | * | ||
770 | * Clear @flags in @worker->flags and adjust nr_running accordingly. | ||
771 | * | ||
772 | * CONTEXT: | ||
773 | * spin_lock_irq(gcwq->lock) | ||
774 | */ | ||
775 | static inline void worker_clr_flags(struct worker *worker, unsigned int flags) | ||
776 | { | ||
777 | struct global_cwq *gcwq = worker->gcwq; | ||
778 | unsigned int oflags = worker->flags; | ||
779 | |||
780 | WARN_ON_ONCE(worker->task != current); | ||
781 | |||
782 | worker->flags &= ~flags; | ||
783 | |||
784 | /* if transitioning out of NOT_RUNNING, increment nr_running */ | ||
785 | if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) | ||
786 | if (!(worker->flags & WORKER_NOT_RUNNING)) | ||
787 | atomic_inc(get_gcwq_nr_running(gcwq->cpu)); | ||
788 | } | ||
789 | |||
790 | /** | ||
791 | * busy_worker_head - return the busy hash head for a work | ||
792 | * @gcwq: gcwq of interest | ||
793 | * @work: work to be hashed | ||
794 | * | ||
795 | * Return hash head of @gcwq for @work. | ||
796 | * | ||
797 | * CONTEXT: | ||
798 | * spin_lock_irq(gcwq->lock). | ||
799 | * | ||
800 | * RETURNS: | ||
801 | * Pointer to the hash head. | ||
802 | */ | ||
803 | static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, | ||
804 | struct work_struct *work) | ||
805 | { | ||
806 | const int base_shift = ilog2(sizeof(struct work_struct)); | ||
807 | unsigned long v = (unsigned long)work; | ||
808 | |||
809 | /* simple shift and fold hash, do we need something better? */ | ||
810 | v >>= base_shift; | ||
811 | v += v >> BUSY_WORKER_HASH_ORDER; | ||
812 | v &= BUSY_WORKER_HASH_MASK; | ||
813 | |||
814 | return &gcwq->busy_hash[v]; | ||
815 | } | ||
816 | |||
817 | /** | ||
818 | * __find_worker_executing_work - find worker which is executing a work | ||
819 | * @gcwq: gcwq of interest | ||
820 | * @bwh: hash head as returned by busy_worker_head() | ||
821 | * @work: work to find worker for | ||
822 | * | ||
823 | * Find a worker which is executing @work on @gcwq. @bwh should be | ||
824 | * the hash head obtained by calling busy_worker_head() with the same | ||
825 | * work. | ||
826 | * | ||
827 | * CONTEXT: | ||
828 | * spin_lock_irq(gcwq->lock). | ||
829 | * | ||
830 | * RETURNS: | ||
831 | * Pointer to worker which is executing @work if found, NULL | ||
832 | * otherwise. | ||
833 | */ | ||
834 | static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, | ||
835 | struct hlist_head *bwh, | ||
836 | struct work_struct *work) | ||
837 | { | ||
838 | struct worker *worker; | ||
839 | struct hlist_node *tmp; | ||
840 | |||
841 | hlist_for_each_entry(worker, tmp, bwh, hentry) | ||
842 | if (worker->current_work == work) | ||
843 | return worker; | ||
844 | return NULL; | ||
845 | } | ||
846 | |||
847 | /** | ||
848 | * find_worker_executing_work - find worker which is executing a work | ||
849 | * @gcwq: gcwq of interest | ||
850 | * @work: work to find worker for | ||
851 | * | ||
852 | * Find a worker which is executing @work on @gcwq. This function is | ||
853 | * identical to __find_worker_executing_work() except that this | ||
854 | * function calculates @bwh itself. | ||
855 | * | ||
856 | * CONTEXT: | ||
857 | * spin_lock_irq(gcwq->lock). | ||
858 | * | ||
859 | * RETURNS: | ||
860 | * Pointer to worker which is executing @work if found, NULL | ||
861 | * otherwise. | ||
862 | */ | ||
863 | static struct worker *find_worker_executing_work(struct global_cwq *gcwq, | ||
864 | struct work_struct *work) | ||
865 | { | ||
866 | return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), | ||
867 | work); | ||
868 | } | ||
869 | |||
870 | /** | ||
871 | * gcwq_determine_ins_pos - find insertion position | ||
872 | * @gcwq: gcwq of interest | ||
873 | * @cwq: cwq a work is being queued for | ||
874 | * | ||
875 | * A work for @cwq is about to be queued on @gcwq, determine insertion | ||
876 | * position for the work. If @cwq is for HIGHPRI wq, the work is | ||
877 | * queued at the head of the queue but in FIFO order with respect to | ||
878 | * other HIGHPRI works; otherwise, at the end of the queue. This | ||
879 | * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that | ||
880 | * there are HIGHPRI works pending. | ||
881 | * | ||
882 | * CONTEXT: | ||
883 | * spin_lock_irq(gcwq->lock). | ||
884 | * | ||
885 | * RETURNS: | ||
886 | * Pointer to inserstion position. | ||
887 | */ | ||
888 | static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, | ||
889 | struct cpu_workqueue_struct *cwq) | ||
890 | { | ||
891 | struct work_struct *twork; | ||
892 | |||
893 | if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) | ||
894 | return &gcwq->worklist; | ||
895 | |||
896 | list_for_each_entry(twork, &gcwq->worklist, entry) { | ||
897 | struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); | ||
898 | |||
899 | if (!(tcwq->wq->flags & WQ_HIGHPRI)) | ||
900 | break; | ||
901 | } | ||
902 | |||
903 | gcwq->flags |= GCWQ_HIGHPRI_PENDING; | ||
904 | return &twork->entry; | ||
905 | } | ||
906 | |||
907 | /** | ||
908 | * insert_work - insert a work into gcwq | ||
909 | * @cwq: cwq @work belongs to | ||
910 | * @work: work to insert | ||
911 | * @head: insertion point | ||
912 | * @extra_flags: extra WORK_STRUCT_* flags to set | ||
913 | * | ||
914 | * Insert @work which belongs to @cwq into @gcwq after @head. | ||
915 | * @extra_flags is or'd to work_struct flags. | ||
916 | * | ||
917 | * CONTEXT: | ||
918 | * spin_lock_irq(gcwq->lock). | ||
919 | */ | ||
238 | static void insert_work(struct cpu_workqueue_struct *cwq, | 920 | static void insert_work(struct cpu_workqueue_struct *cwq, |
239 | struct work_struct *work, struct list_head *head) | 921 | struct work_struct *work, struct list_head *head, |
922 | unsigned int extra_flags) | ||
240 | { | 923 | { |
241 | trace_workqueue_insertion(cwq->thread, work); | 924 | struct global_cwq *gcwq = cwq->gcwq; |
925 | |||
926 | /* we own @work, set data and link */ | ||
927 | set_work_cwq(work, cwq, extra_flags); | ||
242 | 928 | ||
243 | set_wq_data(work, cwq); | ||
244 | /* | 929 | /* |
245 | * Ensure that we get the right work->data if we see the | 930 | * Ensure that we get the right work->data if we see the |
246 | * result of list_add() below, see try_to_grab_pending(). | 931 | * result of list_add() below, see try_to_grab_pending(). |
247 | */ | 932 | */ |
248 | smp_wmb(); | 933 | smp_wmb(); |
934 | |||
249 | list_add_tail(&work->entry, head); | 935 | list_add_tail(&work->entry, head); |
250 | wake_up(&cwq->more_work); | 936 | |
937 | /* | ||
938 | * Ensure either worker_sched_deactivated() sees the above | ||
939 | * list_add_tail() or we see zero nr_running to avoid workers | ||
940 | * lying around lazily while there are works to be processed. | ||
941 | */ | ||
942 | smp_mb(); | ||
943 | |||
944 | if (__need_more_worker(gcwq)) | ||
945 | wake_up_worker(gcwq); | ||
251 | } | 946 | } |
252 | 947 | ||
253 | static void __queue_work(struct cpu_workqueue_struct *cwq, | 948 | static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, |
254 | struct work_struct *work) | 949 | struct work_struct *work) |
255 | { | 950 | { |
951 | struct global_cwq *gcwq; | ||
952 | struct cpu_workqueue_struct *cwq; | ||
953 | struct list_head *worklist; | ||
954 | unsigned int work_flags; | ||
256 | unsigned long flags; | 955 | unsigned long flags; |
257 | 956 | ||
258 | debug_work_activate(work); | 957 | debug_work_activate(work); |
259 | spin_lock_irqsave(&cwq->lock, flags); | 958 | |
260 | insert_work(cwq, work, &cwq->worklist); | 959 | if (WARN_ON_ONCE(wq->flags & WQ_DYING)) |
261 | spin_unlock_irqrestore(&cwq->lock, flags); | 960 | return; |
961 | |||
962 | /* determine gcwq to use */ | ||
963 | if (!(wq->flags & WQ_UNBOUND)) { | ||
964 | struct global_cwq *last_gcwq; | ||
965 | |||
966 | if (unlikely(cpu == WORK_CPU_UNBOUND)) | ||
967 | cpu = raw_smp_processor_id(); | ||
968 | |||
969 | /* | ||
970 | * It's multi cpu. If @wq is non-reentrant and @work | ||
971 | * was previously on a different cpu, it might still | ||
972 | * be running there, in which case the work needs to | ||
973 | * be queued on that cpu to guarantee non-reentrance. | ||
974 | */ | ||
975 | gcwq = get_gcwq(cpu); | ||
976 | if (wq->flags & WQ_NON_REENTRANT && | ||
977 | (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { | ||
978 | struct worker *worker; | ||
979 | |||
980 | spin_lock_irqsave(&last_gcwq->lock, flags); | ||
981 | |||
982 | worker = find_worker_executing_work(last_gcwq, work); | ||
983 | |||
984 | if (worker && worker->current_cwq->wq == wq) | ||
985 | gcwq = last_gcwq; | ||
986 | else { | ||
987 | /* meh... not running there, queue here */ | ||
988 | spin_unlock_irqrestore(&last_gcwq->lock, flags); | ||
989 | spin_lock_irqsave(&gcwq->lock, flags); | ||
990 | } | ||
991 | } else | ||
992 | spin_lock_irqsave(&gcwq->lock, flags); | ||
993 | } else { | ||
994 | gcwq = get_gcwq(WORK_CPU_UNBOUND); | ||
995 | spin_lock_irqsave(&gcwq->lock, flags); | ||
996 | } | ||
997 | |||
998 | /* gcwq determined, get cwq and queue */ | ||
999 | cwq = get_cwq(gcwq->cpu, wq); | ||
1000 | |||
1001 | BUG_ON(!list_empty(&work->entry)); | ||
1002 | |||
1003 | cwq->nr_in_flight[cwq->work_color]++; | ||
1004 | work_flags = work_color_to_flags(cwq->work_color); | ||
1005 | |||
1006 | if (likely(cwq->nr_active < cwq->max_active)) { | ||
1007 | cwq->nr_active++; | ||
1008 | worklist = gcwq_determine_ins_pos(gcwq, cwq); | ||
1009 | } else { | ||
1010 | work_flags |= WORK_STRUCT_DELAYED; | ||
1011 | worklist = &cwq->delayed_works; | ||
1012 | } | ||
1013 | |||
1014 | insert_work(cwq, work, worklist, work_flags); | ||
1015 | |||
1016 | spin_unlock_irqrestore(&gcwq->lock, flags); | ||
262 | } | 1017 | } |
263 | 1018 | ||
264 | /** | 1019 | /** |
@@ -298,9 +1053,8 @@ queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) | |||
298 | { | 1053 | { |
299 | int ret = 0; | 1054 | int ret = 0; |
300 | 1055 | ||
301 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 1056 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
302 | BUG_ON(!list_empty(&work->entry)); | 1057 | __queue_work(cpu, wq, work); |
303 | __queue_work(wq_per_cpu(wq, cpu), work); | ||
304 | ret = 1; | 1058 | ret = 1; |
305 | } | 1059 | } |
306 | return ret; | 1060 | return ret; |
@@ -310,10 +1064,9 @@ EXPORT_SYMBOL_GPL(queue_work_on); | |||
310 | static void delayed_work_timer_fn(unsigned long __data) | 1064 | static void delayed_work_timer_fn(unsigned long __data) |
311 | { | 1065 | { |
312 | struct delayed_work *dwork = (struct delayed_work *)__data; | 1066 | struct delayed_work *dwork = (struct delayed_work *)__data; |
313 | struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); | 1067 | struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); |
314 | struct workqueue_struct *wq = cwq->wq; | ||
315 | 1068 | ||
316 | __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); | 1069 | __queue_work(smp_processor_id(), cwq->wq, &dwork->work); |
317 | } | 1070 | } |
318 | 1071 | ||
319 | /** | 1072 | /** |
@@ -350,14 +1103,31 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
350 | struct timer_list *timer = &dwork->timer; | 1103 | struct timer_list *timer = &dwork->timer; |
351 | struct work_struct *work = &dwork->work; | 1104 | struct work_struct *work = &dwork->work; |
352 | 1105 | ||
353 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 1106 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { |
1107 | unsigned int lcpu; | ||
1108 | |||
354 | BUG_ON(timer_pending(timer)); | 1109 | BUG_ON(timer_pending(timer)); |
355 | BUG_ON(!list_empty(&work->entry)); | 1110 | BUG_ON(!list_empty(&work->entry)); |
356 | 1111 | ||
357 | timer_stats_timer_set_start_info(&dwork->timer); | 1112 | timer_stats_timer_set_start_info(&dwork->timer); |
358 | 1113 | ||
359 | /* This stores cwq for the moment, for the timer_fn */ | 1114 | /* |
360 | set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); | 1115 | * This stores cwq for the moment, for the timer_fn. |
1116 | * Note that the work's gcwq is preserved to allow | ||
1117 | * reentrance detection for delayed works. | ||
1118 | */ | ||
1119 | if (!(wq->flags & WQ_UNBOUND)) { | ||
1120 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
1121 | |||
1122 | if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) | ||
1123 | lcpu = gcwq->cpu; | ||
1124 | else | ||
1125 | lcpu = raw_smp_processor_id(); | ||
1126 | } else | ||
1127 | lcpu = WORK_CPU_UNBOUND; | ||
1128 | |||
1129 | set_work_cwq(work, get_cwq(lcpu, wq), 0); | ||
1130 | |||
361 | timer->expires = jiffies + delay; | 1131 | timer->expires = jiffies + delay; |
362 | timer->data = (unsigned long)dwork; | 1132 | timer->data = (unsigned long)dwork; |
363 | timer->function = delayed_work_timer_fn; | 1133 | timer->function = delayed_work_timer_fn; |
@@ -372,80 +1142,888 @@ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
372 | } | 1142 | } |
373 | EXPORT_SYMBOL_GPL(queue_delayed_work_on); | 1143 | EXPORT_SYMBOL_GPL(queue_delayed_work_on); |
374 | 1144 | ||
375 | static void run_workqueue(struct cpu_workqueue_struct *cwq) | 1145 | /** |
1146 | * worker_enter_idle - enter idle state | ||
1147 | * @worker: worker which is entering idle state | ||
1148 | * | ||
1149 | * @worker is entering idle state. Update stats and idle timer if | ||
1150 | * necessary. | ||
1151 | * | ||
1152 | * LOCKING: | ||
1153 | * spin_lock_irq(gcwq->lock). | ||
1154 | */ | ||
1155 | static void worker_enter_idle(struct worker *worker) | ||
376 | { | 1156 | { |
377 | spin_lock_irq(&cwq->lock); | 1157 | struct global_cwq *gcwq = worker->gcwq; |
378 | while (!list_empty(&cwq->worklist)) { | 1158 | |
379 | struct work_struct *work = list_entry(cwq->worklist.next, | 1159 | BUG_ON(worker->flags & WORKER_IDLE); |
380 | struct work_struct, entry); | 1160 | BUG_ON(!list_empty(&worker->entry) && |
381 | work_func_t f = work->func; | 1161 | (worker->hentry.next || worker->hentry.pprev)); |
382 | #ifdef CONFIG_LOCKDEP | 1162 | |
1163 | /* can't use worker_set_flags(), also called from start_worker() */ | ||
1164 | worker->flags |= WORKER_IDLE; | ||
1165 | gcwq->nr_idle++; | ||
1166 | worker->last_active = jiffies; | ||
1167 | |||
1168 | /* idle_list is LIFO */ | ||
1169 | list_add(&worker->entry, &gcwq->idle_list); | ||
1170 | |||
1171 | if (likely(!(worker->flags & WORKER_ROGUE))) { | ||
1172 | if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) | ||
1173 | mod_timer(&gcwq->idle_timer, | ||
1174 | jiffies + IDLE_WORKER_TIMEOUT); | ||
1175 | } else | ||
1176 | wake_up_all(&gcwq->trustee_wait); | ||
1177 | |||
1178 | /* sanity check nr_running */ | ||
1179 | WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && | ||
1180 | atomic_read(get_gcwq_nr_running(gcwq->cpu))); | ||
1181 | } | ||
1182 | |||
1183 | /** | ||
1184 | * worker_leave_idle - leave idle state | ||
1185 | * @worker: worker which is leaving idle state | ||
1186 | * | ||
1187 | * @worker is leaving idle state. Update stats. | ||
1188 | * | ||
1189 | * LOCKING: | ||
1190 | * spin_lock_irq(gcwq->lock). | ||
1191 | */ | ||
1192 | static void worker_leave_idle(struct worker *worker) | ||
1193 | { | ||
1194 | struct global_cwq *gcwq = worker->gcwq; | ||
1195 | |||
1196 | BUG_ON(!(worker->flags & WORKER_IDLE)); | ||
1197 | worker_clr_flags(worker, WORKER_IDLE); | ||
1198 | gcwq->nr_idle--; | ||
1199 | list_del_init(&worker->entry); | ||
1200 | } | ||
1201 | |||
1202 | /** | ||
1203 | * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq | ||
1204 | * @worker: self | ||
1205 | * | ||
1206 | * Works which are scheduled while the cpu is online must at least be | ||
1207 | * scheduled to a worker which is bound to the cpu so that if they are | ||
1208 | * flushed from cpu callbacks while cpu is going down, they are | ||
1209 | * guaranteed to execute on the cpu. | ||
1210 | * | ||
1211 | * This function is to be used by rogue workers and rescuers to bind | ||
1212 | * themselves to the target cpu and may race with cpu going down or | ||
1213 | * coming online. kthread_bind() can't be used because it may put the | ||
1214 | * worker to already dead cpu and set_cpus_allowed_ptr() can't be used | ||
1215 | * verbatim as it's best effort and blocking and gcwq may be | ||
1216 | * [dis]associated in the meantime. | ||
1217 | * | ||
1218 | * This function tries set_cpus_allowed() and locks gcwq and verifies | ||
1219 | * the binding against GCWQ_DISASSOCIATED which is set during | ||
1220 | * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters | ||
1221 | * idle state or fetches works without dropping lock, it can guarantee | ||
1222 | * the scheduling requirement described in the first paragraph. | ||
1223 | * | ||
1224 | * CONTEXT: | ||
1225 | * Might sleep. Called without any lock but returns with gcwq->lock | ||
1226 | * held. | ||
1227 | * | ||
1228 | * RETURNS: | ||
1229 | * %true if the associated gcwq is online (@worker is successfully | ||
1230 | * bound), %false if offline. | ||
1231 | */ | ||
1232 | static bool worker_maybe_bind_and_lock(struct worker *worker) | ||
1233 | __acquires(&gcwq->lock) | ||
1234 | { | ||
1235 | struct global_cwq *gcwq = worker->gcwq; | ||
1236 | struct task_struct *task = worker->task; | ||
1237 | |||
1238 | while (true) { | ||
383 | /* | 1239 | /* |
384 | * It is permissible to free the struct work_struct | 1240 | * The following call may fail, succeed or succeed |
385 | * from inside the function that is called from it, | 1241 | * without actually migrating the task to the cpu if |
386 | * this we need to take into account for lockdep too. | 1242 | * it races with cpu hotunplug operation. Verify |
387 | * To avoid bogus "held lock freed" warnings as well | 1243 | * against GCWQ_DISASSOCIATED. |
388 | * as problems when looking into work->lockdep_map, | ||
389 | * make a copy and use that here. | ||
390 | */ | 1244 | */ |
391 | struct lockdep_map lockdep_map = work->lockdep_map; | 1245 | if (!(gcwq->flags & GCWQ_DISASSOCIATED)) |
392 | #endif | 1246 | set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); |
393 | trace_workqueue_execution(cwq->thread, work); | 1247 | |
394 | debug_work_deactivate(work); | 1248 | spin_lock_irq(&gcwq->lock); |
395 | cwq->current_work = work; | 1249 | if (gcwq->flags & GCWQ_DISASSOCIATED) |
396 | list_del_init(cwq->worklist.next); | 1250 | return false; |
397 | spin_unlock_irq(&cwq->lock); | 1251 | if (task_cpu(task) == gcwq->cpu && |
398 | 1252 | cpumask_equal(¤t->cpus_allowed, | |
399 | BUG_ON(get_wq_data(work) != cwq); | 1253 | get_cpu_mask(gcwq->cpu))) |
400 | work_clear_pending(work); | 1254 | return true; |
401 | lock_map_acquire(&cwq->wq->lockdep_map); | 1255 | spin_unlock_irq(&gcwq->lock); |
402 | lock_map_acquire(&lockdep_map); | 1256 | |
403 | f(work); | 1257 | /* CPU has come up inbetween, retry migration */ |
404 | lock_map_release(&lockdep_map); | 1258 | cpu_relax(); |
405 | lock_map_release(&cwq->wq->lockdep_map); | 1259 | } |
406 | 1260 | } | |
407 | if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { | 1261 | |
408 | printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " | 1262 | /* |
409 | "%s/0x%08x/%d\n", | 1263 | * Function for worker->rebind_work used to rebind rogue busy workers |
410 | current->comm, preempt_count(), | 1264 | * to the associated cpu which is coming back online. This is |
411 | task_pid_nr(current)); | 1265 | * scheduled by cpu up but can race with other cpu hotplug operations |
412 | printk(KERN_ERR " last function: "); | 1266 | * and may be executed twice without intervening cpu down. |
413 | print_symbol("%s\n", (unsigned long)f); | 1267 | */ |
414 | debug_show_held_locks(current); | 1268 | static void worker_rebind_fn(struct work_struct *work) |
415 | dump_stack(); | 1269 | { |
1270 | struct worker *worker = container_of(work, struct worker, rebind_work); | ||
1271 | struct global_cwq *gcwq = worker->gcwq; | ||
1272 | |||
1273 | if (worker_maybe_bind_and_lock(worker)) | ||
1274 | worker_clr_flags(worker, WORKER_REBIND); | ||
1275 | |||
1276 | spin_unlock_irq(&gcwq->lock); | ||
1277 | } | ||
1278 | |||
1279 | static struct worker *alloc_worker(void) | ||
1280 | { | ||
1281 | struct worker *worker; | ||
1282 | |||
1283 | worker = kzalloc(sizeof(*worker), GFP_KERNEL); | ||
1284 | if (worker) { | ||
1285 | INIT_LIST_HEAD(&worker->entry); | ||
1286 | INIT_LIST_HEAD(&worker->scheduled); | ||
1287 | INIT_WORK(&worker->rebind_work, worker_rebind_fn); | ||
1288 | /* on creation a worker is in !idle && prep state */ | ||
1289 | worker->flags = WORKER_PREP; | ||
1290 | } | ||
1291 | return worker; | ||
1292 | } | ||
1293 | |||
1294 | /** | ||
1295 | * create_worker - create a new workqueue worker | ||
1296 | * @gcwq: gcwq the new worker will belong to | ||
1297 | * @bind: whether to set affinity to @cpu or not | ||
1298 | * | ||
1299 | * Create a new worker which is bound to @gcwq. The returned worker | ||
1300 | * can be started by calling start_worker() or destroyed using | ||
1301 | * destroy_worker(). | ||
1302 | * | ||
1303 | * CONTEXT: | ||
1304 | * Might sleep. Does GFP_KERNEL allocations. | ||
1305 | * | ||
1306 | * RETURNS: | ||
1307 | * Pointer to the newly created worker. | ||
1308 | */ | ||
1309 | static struct worker *create_worker(struct global_cwq *gcwq, bool bind) | ||
1310 | { | ||
1311 | bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; | ||
1312 | struct worker *worker = NULL; | ||
1313 | int id = -1; | ||
1314 | |||
1315 | spin_lock_irq(&gcwq->lock); | ||
1316 | while (ida_get_new(&gcwq->worker_ida, &id)) { | ||
1317 | spin_unlock_irq(&gcwq->lock); | ||
1318 | if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) | ||
1319 | goto fail; | ||
1320 | spin_lock_irq(&gcwq->lock); | ||
1321 | } | ||
1322 | spin_unlock_irq(&gcwq->lock); | ||
1323 | |||
1324 | worker = alloc_worker(); | ||
1325 | if (!worker) | ||
1326 | goto fail; | ||
1327 | |||
1328 | worker->gcwq = gcwq; | ||
1329 | worker->id = id; | ||
1330 | |||
1331 | if (!on_unbound_cpu) | ||
1332 | worker->task = kthread_create(worker_thread, worker, | ||
1333 | "kworker/%u:%d", gcwq->cpu, id); | ||
1334 | else | ||
1335 | worker->task = kthread_create(worker_thread, worker, | ||
1336 | "kworker/u:%d", id); | ||
1337 | if (IS_ERR(worker->task)) | ||
1338 | goto fail; | ||
1339 | |||
1340 | /* | ||
1341 | * A rogue worker will become a regular one if CPU comes | ||
1342 | * online later on. Make sure every worker has | ||
1343 | * PF_THREAD_BOUND set. | ||
1344 | */ | ||
1345 | if (bind && !on_unbound_cpu) | ||
1346 | kthread_bind(worker->task, gcwq->cpu); | ||
1347 | else { | ||
1348 | worker->task->flags |= PF_THREAD_BOUND; | ||
1349 | if (on_unbound_cpu) | ||
1350 | worker->flags |= WORKER_UNBOUND; | ||
1351 | } | ||
1352 | |||
1353 | return worker; | ||
1354 | fail: | ||
1355 | if (id >= 0) { | ||
1356 | spin_lock_irq(&gcwq->lock); | ||
1357 | ida_remove(&gcwq->worker_ida, id); | ||
1358 | spin_unlock_irq(&gcwq->lock); | ||
1359 | } | ||
1360 | kfree(worker); | ||
1361 | return NULL; | ||
1362 | } | ||
1363 | |||
1364 | /** | ||
1365 | * start_worker - start a newly created worker | ||
1366 | * @worker: worker to start | ||
1367 | * | ||
1368 | * Make the gcwq aware of @worker and start it. | ||
1369 | * | ||
1370 | * CONTEXT: | ||
1371 | * spin_lock_irq(gcwq->lock). | ||
1372 | */ | ||
1373 | static void start_worker(struct worker *worker) | ||
1374 | { | ||
1375 | worker->flags |= WORKER_STARTED; | ||
1376 | worker->gcwq->nr_workers++; | ||
1377 | worker_enter_idle(worker); | ||
1378 | wake_up_process(worker->task); | ||
1379 | } | ||
1380 | |||
1381 | /** | ||
1382 | * destroy_worker - destroy a workqueue worker | ||
1383 | * @worker: worker to be destroyed | ||
1384 | * | ||
1385 | * Destroy @worker and adjust @gcwq stats accordingly. | ||
1386 | * | ||
1387 | * CONTEXT: | ||
1388 | * spin_lock_irq(gcwq->lock) which is released and regrabbed. | ||
1389 | */ | ||
1390 | static void destroy_worker(struct worker *worker) | ||
1391 | { | ||
1392 | struct global_cwq *gcwq = worker->gcwq; | ||
1393 | int id = worker->id; | ||
1394 | |||
1395 | /* sanity check frenzy */ | ||
1396 | BUG_ON(worker->current_work); | ||
1397 | BUG_ON(!list_empty(&worker->scheduled)); | ||
1398 | |||
1399 | if (worker->flags & WORKER_STARTED) | ||
1400 | gcwq->nr_workers--; | ||
1401 | if (worker->flags & WORKER_IDLE) | ||
1402 | gcwq->nr_idle--; | ||
1403 | |||
1404 | list_del_init(&worker->entry); | ||
1405 | worker->flags |= WORKER_DIE; | ||
1406 | |||
1407 | spin_unlock_irq(&gcwq->lock); | ||
1408 | |||
1409 | kthread_stop(worker->task); | ||
1410 | kfree(worker); | ||
1411 | |||
1412 | spin_lock_irq(&gcwq->lock); | ||
1413 | ida_remove(&gcwq->worker_ida, id); | ||
1414 | } | ||
1415 | |||
1416 | static void idle_worker_timeout(unsigned long __gcwq) | ||
1417 | { | ||
1418 | struct global_cwq *gcwq = (void *)__gcwq; | ||
1419 | |||
1420 | spin_lock_irq(&gcwq->lock); | ||
1421 | |||
1422 | if (too_many_workers(gcwq)) { | ||
1423 | struct worker *worker; | ||
1424 | unsigned long expires; | ||
1425 | |||
1426 | /* idle_list is kept in LIFO order, check the last one */ | ||
1427 | worker = list_entry(gcwq->idle_list.prev, struct worker, entry); | ||
1428 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; | ||
1429 | |||
1430 | if (time_before(jiffies, expires)) | ||
1431 | mod_timer(&gcwq->idle_timer, expires); | ||
1432 | else { | ||
1433 | /* it's been idle for too long, wake up manager */ | ||
1434 | gcwq->flags |= GCWQ_MANAGE_WORKERS; | ||
1435 | wake_up_worker(gcwq); | ||
416 | } | 1436 | } |
1437 | } | ||
417 | 1438 | ||
418 | spin_lock_irq(&cwq->lock); | 1439 | spin_unlock_irq(&gcwq->lock); |
419 | cwq->current_work = NULL; | 1440 | } |
1441 | |||
1442 | static bool send_mayday(struct work_struct *work) | ||
1443 | { | ||
1444 | struct cpu_workqueue_struct *cwq = get_work_cwq(work); | ||
1445 | struct workqueue_struct *wq = cwq->wq; | ||
1446 | unsigned int cpu; | ||
1447 | |||
1448 | if (!(wq->flags & WQ_RESCUER)) | ||
1449 | return false; | ||
1450 | |||
1451 | /* mayday mayday mayday */ | ||
1452 | cpu = cwq->gcwq->cpu; | ||
1453 | /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ | ||
1454 | if (cpu == WORK_CPU_UNBOUND) | ||
1455 | cpu = 0; | ||
1456 | if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) | ||
1457 | wake_up_process(wq->rescuer->task); | ||
1458 | return true; | ||
1459 | } | ||
1460 | |||
1461 | static void gcwq_mayday_timeout(unsigned long __gcwq) | ||
1462 | { | ||
1463 | struct global_cwq *gcwq = (void *)__gcwq; | ||
1464 | struct work_struct *work; | ||
1465 | |||
1466 | spin_lock_irq(&gcwq->lock); | ||
1467 | |||
1468 | if (need_to_create_worker(gcwq)) { | ||
1469 | /* | ||
1470 | * We've been trying to create a new worker but | ||
1471 | * haven't been successful. We might be hitting an | ||
1472 | * allocation deadlock. Send distress signals to | ||
1473 | * rescuers. | ||
1474 | */ | ||
1475 | list_for_each_entry(work, &gcwq->worklist, entry) | ||
1476 | send_mayday(work); | ||
420 | } | 1477 | } |
421 | spin_unlock_irq(&cwq->lock); | 1478 | |
1479 | spin_unlock_irq(&gcwq->lock); | ||
1480 | |||
1481 | mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); | ||
422 | } | 1482 | } |
423 | 1483 | ||
424 | static int worker_thread(void *__cwq) | 1484 | /** |
1485 | * maybe_create_worker - create a new worker if necessary | ||
1486 | * @gcwq: gcwq to create a new worker for | ||
1487 | * | ||
1488 | * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to | ||
1489 | * have at least one idle worker on return from this function. If | ||
1490 | * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is | ||
1491 | * sent to all rescuers with works scheduled on @gcwq to resolve | ||
1492 | * possible allocation deadlock. | ||
1493 | * | ||
1494 | * On return, need_to_create_worker() is guaranteed to be false and | ||
1495 | * may_start_working() true. | ||
1496 | * | ||
1497 | * LOCKING: | ||
1498 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1499 | * multiple times. Does GFP_KERNEL allocations. Called only from | ||
1500 | * manager. | ||
1501 | * | ||
1502 | * RETURNS: | ||
1503 | * false if no action was taken and gcwq->lock stayed locked, true | ||
1504 | * otherwise. | ||
1505 | */ | ||
1506 | static bool maybe_create_worker(struct global_cwq *gcwq) | ||
1507 | __releases(&gcwq->lock) | ||
1508 | __acquires(&gcwq->lock) | ||
425 | { | 1509 | { |
426 | struct cpu_workqueue_struct *cwq = __cwq; | 1510 | if (!need_to_create_worker(gcwq)) |
427 | DEFINE_WAIT(wait); | 1511 | return false; |
1512 | restart: | ||
1513 | spin_unlock_irq(&gcwq->lock); | ||
1514 | |||
1515 | /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ | ||
1516 | mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); | ||
1517 | |||
1518 | while (true) { | ||
1519 | struct worker *worker; | ||
1520 | |||
1521 | worker = create_worker(gcwq, true); | ||
1522 | if (worker) { | ||
1523 | del_timer_sync(&gcwq->mayday_timer); | ||
1524 | spin_lock_irq(&gcwq->lock); | ||
1525 | start_worker(worker); | ||
1526 | BUG_ON(need_to_create_worker(gcwq)); | ||
1527 | return true; | ||
1528 | } | ||
1529 | |||
1530 | if (!need_to_create_worker(gcwq)) | ||
1531 | break; | ||
1532 | |||
1533 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1534 | schedule_timeout(CREATE_COOLDOWN); | ||
428 | 1535 | ||
429 | if (cwq->wq->freezeable) | 1536 | if (!need_to_create_worker(gcwq)) |
430 | set_freezable(); | 1537 | break; |
1538 | } | ||
1539 | |||
1540 | del_timer_sync(&gcwq->mayday_timer); | ||
1541 | spin_lock_irq(&gcwq->lock); | ||
1542 | if (need_to_create_worker(gcwq)) | ||
1543 | goto restart; | ||
1544 | return true; | ||
1545 | } | ||
1546 | |||
1547 | /** | ||
1548 | * maybe_destroy_worker - destroy workers which have been idle for a while | ||
1549 | * @gcwq: gcwq to destroy workers for | ||
1550 | * | ||
1551 | * Destroy @gcwq workers which have been idle for longer than | ||
1552 | * IDLE_WORKER_TIMEOUT. | ||
1553 | * | ||
1554 | * LOCKING: | ||
1555 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1556 | * multiple times. Called only from manager. | ||
1557 | * | ||
1558 | * RETURNS: | ||
1559 | * false if no action was taken and gcwq->lock stayed locked, true | ||
1560 | * otherwise. | ||
1561 | */ | ||
1562 | static bool maybe_destroy_workers(struct global_cwq *gcwq) | ||
1563 | { | ||
1564 | bool ret = false; | ||
431 | 1565 | ||
432 | for (;;) { | 1566 | while (too_many_workers(gcwq)) { |
433 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); | 1567 | struct worker *worker; |
434 | if (!freezing(current) && | 1568 | unsigned long expires; |
435 | !kthread_should_stop() && | ||
436 | list_empty(&cwq->worklist)) | ||
437 | schedule(); | ||
438 | finish_wait(&cwq->more_work, &wait); | ||
439 | 1569 | ||
440 | try_to_freeze(); | 1570 | worker = list_entry(gcwq->idle_list.prev, struct worker, entry); |
1571 | expires = worker->last_active + IDLE_WORKER_TIMEOUT; | ||
441 | 1572 | ||
442 | if (kthread_should_stop()) | 1573 | if (time_before(jiffies, expires)) { |
1574 | mod_timer(&gcwq->idle_timer, expires); | ||
443 | break; | 1575 | break; |
1576 | } | ||
444 | 1577 | ||
445 | run_workqueue(cwq); | 1578 | destroy_worker(worker); |
1579 | ret = true; | ||
446 | } | 1580 | } |
447 | 1581 | ||
448 | return 0; | 1582 | return ret; |
1583 | } | ||
1584 | |||
1585 | /** | ||
1586 | * manage_workers - manage worker pool | ||
1587 | * @worker: self | ||
1588 | * | ||
1589 | * Assume the manager role and manage gcwq worker pool @worker belongs | ||
1590 | * to. At any given time, there can be only zero or one manager per | ||
1591 | * gcwq. The exclusion is handled automatically by this function. | ||
1592 | * | ||
1593 | * The caller can safely start processing works on false return. On | ||
1594 | * true return, it's guaranteed that need_to_create_worker() is false | ||
1595 | * and may_start_working() is true. | ||
1596 | * | ||
1597 | * CONTEXT: | ||
1598 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1599 | * multiple times. Does GFP_KERNEL allocations. | ||
1600 | * | ||
1601 | * RETURNS: | ||
1602 | * false if no action was taken and gcwq->lock stayed locked, true if | ||
1603 | * some action was taken. | ||
1604 | */ | ||
1605 | static bool manage_workers(struct worker *worker) | ||
1606 | { | ||
1607 | struct global_cwq *gcwq = worker->gcwq; | ||
1608 | bool ret = false; | ||
1609 | |||
1610 | if (gcwq->flags & GCWQ_MANAGING_WORKERS) | ||
1611 | return ret; | ||
1612 | |||
1613 | gcwq->flags &= ~GCWQ_MANAGE_WORKERS; | ||
1614 | gcwq->flags |= GCWQ_MANAGING_WORKERS; | ||
1615 | |||
1616 | /* | ||
1617 | * Destroy and then create so that may_start_working() is true | ||
1618 | * on return. | ||
1619 | */ | ||
1620 | ret |= maybe_destroy_workers(gcwq); | ||
1621 | ret |= maybe_create_worker(gcwq); | ||
1622 | |||
1623 | gcwq->flags &= ~GCWQ_MANAGING_WORKERS; | ||
1624 | |||
1625 | /* | ||
1626 | * The trustee might be waiting to take over the manager | ||
1627 | * position, tell it we're done. | ||
1628 | */ | ||
1629 | if (unlikely(gcwq->trustee)) | ||
1630 | wake_up_all(&gcwq->trustee_wait); | ||
1631 | |||
1632 | return ret; | ||
1633 | } | ||
1634 | |||
1635 | /** | ||
1636 | * move_linked_works - move linked works to a list | ||
1637 | * @work: start of series of works to be scheduled | ||
1638 | * @head: target list to append @work to | ||
1639 | * @nextp: out paramter for nested worklist walking | ||
1640 | * | ||
1641 | * Schedule linked works starting from @work to @head. Work series to | ||
1642 | * be scheduled starts at @work and includes any consecutive work with | ||
1643 | * WORK_STRUCT_LINKED set in its predecessor. | ||
1644 | * | ||
1645 | * If @nextp is not NULL, it's updated to point to the next work of | ||
1646 | * the last scheduled work. This allows move_linked_works() to be | ||
1647 | * nested inside outer list_for_each_entry_safe(). | ||
1648 | * | ||
1649 | * CONTEXT: | ||
1650 | * spin_lock_irq(gcwq->lock). | ||
1651 | */ | ||
1652 | static void move_linked_works(struct work_struct *work, struct list_head *head, | ||
1653 | struct work_struct **nextp) | ||
1654 | { | ||
1655 | struct work_struct *n; | ||
1656 | |||
1657 | /* | ||
1658 | * Linked worklist will always end before the end of the list, | ||
1659 | * use NULL for list head. | ||
1660 | */ | ||
1661 | list_for_each_entry_safe_from(work, n, NULL, entry) { | ||
1662 | list_move_tail(&work->entry, head); | ||
1663 | if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) | ||
1664 | break; | ||
1665 | } | ||
1666 | |||
1667 | /* | ||
1668 | * If we're already inside safe list traversal and have moved | ||
1669 | * multiple works to the scheduled queue, the next position | ||
1670 | * needs to be updated. | ||
1671 | */ | ||
1672 | if (nextp) | ||
1673 | *nextp = n; | ||
1674 | } | ||
1675 | |||
1676 | static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) | ||
1677 | { | ||
1678 | struct work_struct *work = list_first_entry(&cwq->delayed_works, | ||
1679 | struct work_struct, entry); | ||
1680 | struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); | ||
1681 | |||
1682 | move_linked_works(work, pos, NULL); | ||
1683 | __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); | ||
1684 | cwq->nr_active++; | ||
1685 | } | ||
1686 | |||
1687 | /** | ||
1688 | * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight | ||
1689 | * @cwq: cwq of interest | ||
1690 | * @color: color of work which left the queue | ||
1691 | * @delayed: for a delayed work | ||
1692 | * | ||
1693 | * A work either has completed or is removed from pending queue, | ||
1694 | * decrement nr_in_flight of its cwq and handle workqueue flushing. | ||
1695 | * | ||
1696 | * CONTEXT: | ||
1697 | * spin_lock_irq(gcwq->lock). | ||
1698 | */ | ||
1699 | static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, | ||
1700 | bool delayed) | ||
1701 | { | ||
1702 | /* ignore uncolored works */ | ||
1703 | if (color == WORK_NO_COLOR) | ||
1704 | return; | ||
1705 | |||
1706 | cwq->nr_in_flight[color]--; | ||
1707 | |||
1708 | if (!delayed) { | ||
1709 | cwq->nr_active--; | ||
1710 | if (!list_empty(&cwq->delayed_works)) { | ||
1711 | /* one down, submit a delayed one */ | ||
1712 | if (cwq->nr_active < cwq->max_active) | ||
1713 | cwq_activate_first_delayed(cwq); | ||
1714 | } | ||
1715 | } | ||
1716 | |||
1717 | /* is flush in progress and are we at the flushing tip? */ | ||
1718 | if (likely(cwq->flush_color != color)) | ||
1719 | return; | ||
1720 | |||
1721 | /* are there still in-flight works? */ | ||
1722 | if (cwq->nr_in_flight[color]) | ||
1723 | return; | ||
1724 | |||
1725 | /* this cwq is done, clear flush_color */ | ||
1726 | cwq->flush_color = -1; | ||
1727 | |||
1728 | /* | ||
1729 | * If this was the last cwq, wake up the first flusher. It | ||
1730 | * will handle the rest. | ||
1731 | */ | ||
1732 | if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) | ||
1733 | complete(&cwq->wq->first_flusher->done); | ||
1734 | } | ||
1735 | |||
1736 | /** | ||
1737 | * process_one_work - process single work | ||
1738 | * @worker: self | ||
1739 | * @work: work to process | ||
1740 | * | ||
1741 | * Process @work. This function contains all the logics necessary to | ||
1742 | * process a single work including synchronization against and | ||
1743 | * interaction with other workers on the same cpu, queueing and | ||
1744 | * flushing. As long as context requirement is met, any worker can | ||
1745 | * call this function to process a work. | ||
1746 | * | ||
1747 | * CONTEXT: | ||
1748 | * spin_lock_irq(gcwq->lock) which is released and regrabbed. | ||
1749 | */ | ||
1750 | static void process_one_work(struct worker *worker, struct work_struct *work) | ||
1751 | __releases(&gcwq->lock) | ||
1752 | __acquires(&gcwq->lock) | ||
1753 | { | ||
1754 | struct cpu_workqueue_struct *cwq = get_work_cwq(work); | ||
1755 | struct global_cwq *gcwq = cwq->gcwq; | ||
1756 | struct hlist_head *bwh = busy_worker_head(gcwq, work); | ||
1757 | bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; | ||
1758 | work_func_t f = work->func; | ||
1759 | int work_color; | ||
1760 | struct worker *collision; | ||
1761 | #ifdef CONFIG_LOCKDEP | ||
1762 | /* | ||
1763 | * It is permissible to free the struct work_struct from | ||
1764 | * inside the function that is called from it, this we need to | ||
1765 | * take into account for lockdep too. To avoid bogus "held | ||
1766 | * lock freed" warnings as well as problems when looking into | ||
1767 | * work->lockdep_map, make a copy and use that here. | ||
1768 | */ | ||
1769 | struct lockdep_map lockdep_map = work->lockdep_map; | ||
1770 | #endif | ||
1771 | /* | ||
1772 | * A single work shouldn't be executed concurrently by | ||
1773 | * multiple workers on a single cpu. Check whether anyone is | ||
1774 | * already processing the work. If so, defer the work to the | ||
1775 | * currently executing one. | ||
1776 | */ | ||
1777 | collision = __find_worker_executing_work(gcwq, bwh, work); | ||
1778 | if (unlikely(collision)) { | ||
1779 | move_linked_works(work, &collision->scheduled, NULL); | ||
1780 | return; | ||
1781 | } | ||
1782 | |||
1783 | /* claim and process */ | ||
1784 | debug_work_deactivate(work); | ||
1785 | hlist_add_head(&worker->hentry, bwh); | ||
1786 | worker->current_work = work; | ||
1787 | worker->current_cwq = cwq; | ||
1788 | work_color = get_work_color(work); | ||
1789 | |||
1790 | /* record the current cpu number in the work data and dequeue */ | ||
1791 | set_work_cpu(work, gcwq->cpu); | ||
1792 | list_del_init(&work->entry); | ||
1793 | |||
1794 | /* | ||
1795 | * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, | ||
1796 | * wake up another worker; otherwise, clear HIGHPRI_PENDING. | ||
1797 | */ | ||
1798 | if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { | ||
1799 | struct work_struct *nwork = list_first_entry(&gcwq->worklist, | ||
1800 | struct work_struct, entry); | ||
1801 | |||
1802 | if (!list_empty(&gcwq->worklist) && | ||
1803 | get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) | ||
1804 | wake_up_worker(gcwq); | ||
1805 | else | ||
1806 | gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; | ||
1807 | } | ||
1808 | |||
1809 | /* | ||
1810 | * CPU intensive works don't participate in concurrency | ||
1811 | * management. They're the scheduler's responsibility. | ||
1812 | */ | ||
1813 | if (unlikely(cpu_intensive)) | ||
1814 | worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); | ||
1815 | |||
1816 | spin_unlock_irq(&gcwq->lock); | ||
1817 | |||
1818 | work_clear_pending(work); | ||
1819 | lock_map_acquire(&cwq->wq->lockdep_map); | ||
1820 | lock_map_acquire(&lockdep_map); | ||
1821 | trace_workqueue_execute_start(work); | ||
1822 | f(work); | ||
1823 | /* | ||
1824 | * While we must be careful to not use "work" after this, the trace | ||
1825 | * point will only record its address. | ||
1826 | */ | ||
1827 | trace_workqueue_execute_end(work); | ||
1828 | lock_map_release(&lockdep_map); | ||
1829 | lock_map_release(&cwq->wq->lockdep_map); | ||
1830 | |||
1831 | if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { | ||
1832 | printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " | ||
1833 | "%s/0x%08x/%d\n", | ||
1834 | current->comm, preempt_count(), task_pid_nr(current)); | ||
1835 | printk(KERN_ERR " last function: "); | ||
1836 | print_symbol("%s\n", (unsigned long)f); | ||
1837 | debug_show_held_locks(current); | ||
1838 | dump_stack(); | ||
1839 | } | ||
1840 | |||
1841 | spin_lock_irq(&gcwq->lock); | ||
1842 | |||
1843 | /* clear cpu intensive status */ | ||
1844 | if (unlikely(cpu_intensive)) | ||
1845 | worker_clr_flags(worker, WORKER_CPU_INTENSIVE); | ||
1846 | |||
1847 | /* we're done with it, release */ | ||
1848 | hlist_del_init(&worker->hentry); | ||
1849 | worker->current_work = NULL; | ||
1850 | worker->current_cwq = NULL; | ||
1851 | cwq_dec_nr_in_flight(cwq, work_color, false); | ||
1852 | } | ||
1853 | |||
1854 | /** | ||
1855 | * process_scheduled_works - process scheduled works | ||
1856 | * @worker: self | ||
1857 | * | ||
1858 | * Process all scheduled works. Please note that the scheduled list | ||
1859 | * may change while processing a work, so this function repeatedly | ||
1860 | * fetches a work from the top and executes it. | ||
1861 | * | ||
1862 | * CONTEXT: | ||
1863 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
1864 | * multiple times. | ||
1865 | */ | ||
1866 | static void process_scheduled_works(struct worker *worker) | ||
1867 | { | ||
1868 | while (!list_empty(&worker->scheduled)) { | ||
1869 | struct work_struct *work = list_first_entry(&worker->scheduled, | ||
1870 | struct work_struct, entry); | ||
1871 | process_one_work(worker, work); | ||
1872 | } | ||
1873 | } | ||
1874 | |||
1875 | /** | ||
1876 | * worker_thread - the worker thread function | ||
1877 | * @__worker: self | ||
1878 | * | ||
1879 | * The gcwq worker thread function. There's a single dynamic pool of | ||
1880 | * these per each cpu. These workers process all works regardless of | ||
1881 | * their specific target workqueue. The only exception is works which | ||
1882 | * belong to workqueues with a rescuer which will be explained in | ||
1883 | * rescuer_thread(). | ||
1884 | */ | ||
1885 | static int worker_thread(void *__worker) | ||
1886 | { | ||
1887 | struct worker *worker = __worker; | ||
1888 | struct global_cwq *gcwq = worker->gcwq; | ||
1889 | |||
1890 | /* tell the scheduler that this is a workqueue worker */ | ||
1891 | worker->task->flags |= PF_WQ_WORKER; | ||
1892 | woke_up: | ||
1893 | spin_lock_irq(&gcwq->lock); | ||
1894 | |||
1895 | /* DIE can be set only while we're idle, checking here is enough */ | ||
1896 | if (worker->flags & WORKER_DIE) { | ||
1897 | spin_unlock_irq(&gcwq->lock); | ||
1898 | worker->task->flags &= ~PF_WQ_WORKER; | ||
1899 | return 0; | ||
1900 | } | ||
1901 | |||
1902 | worker_leave_idle(worker); | ||
1903 | recheck: | ||
1904 | /* no more worker necessary? */ | ||
1905 | if (!need_more_worker(gcwq)) | ||
1906 | goto sleep; | ||
1907 | |||
1908 | /* do we need to manage? */ | ||
1909 | if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) | ||
1910 | goto recheck; | ||
1911 | |||
1912 | /* | ||
1913 | * ->scheduled list can only be filled while a worker is | ||
1914 | * preparing to process a work or actually processing it. | ||
1915 | * Make sure nobody diddled with it while I was sleeping. | ||
1916 | */ | ||
1917 | BUG_ON(!list_empty(&worker->scheduled)); | ||
1918 | |||
1919 | /* | ||
1920 | * When control reaches this point, we're guaranteed to have | ||
1921 | * at least one idle worker or that someone else has already | ||
1922 | * assumed the manager role. | ||
1923 | */ | ||
1924 | worker_clr_flags(worker, WORKER_PREP); | ||
1925 | |||
1926 | do { | ||
1927 | struct work_struct *work = | ||
1928 | list_first_entry(&gcwq->worklist, | ||
1929 | struct work_struct, entry); | ||
1930 | |||
1931 | if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { | ||
1932 | /* optimization path, not strictly necessary */ | ||
1933 | process_one_work(worker, work); | ||
1934 | if (unlikely(!list_empty(&worker->scheduled))) | ||
1935 | process_scheduled_works(worker); | ||
1936 | } else { | ||
1937 | move_linked_works(work, &worker->scheduled, NULL); | ||
1938 | process_scheduled_works(worker); | ||
1939 | } | ||
1940 | } while (keep_working(gcwq)); | ||
1941 | |||
1942 | worker_set_flags(worker, WORKER_PREP, false); | ||
1943 | sleep: | ||
1944 | if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) | ||
1945 | goto recheck; | ||
1946 | |||
1947 | /* | ||
1948 | * gcwq->lock is held and there's no work to process and no | ||
1949 | * need to manage, sleep. Workers are woken up only while | ||
1950 | * holding gcwq->lock or from local cpu, so setting the | ||
1951 | * current state before releasing gcwq->lock is enough to | ||
1952 | * prevent losing any event. | ||
1953 | */ | ||
1954 | worker_enter_idle(worker); | ||
1955 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1956 | spin_unlock_irq(&gcwq->lock); | ||
1957 | schedule(); | ||
1958 | goto woke_up; | ||
1959 | } | ||
1960 | |||
1961 | /** | ||
1962 | * rescuer_thread - the rescuer thread function | ||
1963 | * @__wq: the associated workqueue | ||
1964 | * | ||
1965 | * Workqueue rescuer thread function. There's one rescuer for each | ||
1966 | * workqueue which has WQ_RESCUER set. | ||
1967 | * | ||
1968 | * Regular work processing on a gcwq may block trying to create a new | ||
1969 | * worker which uses GFP_KERNEL allocation which has slight chance of | ||
1970 | * developing into deadlock if some works currently on the same queue | ||
1971 | * need to be processed to satisfy the GFP_KERNEL allocation. This is | ||
1972 | * the problem rescuer solves. | ||
1973 | * | ||
1974 | * When such condition is possible, the gcwq summons rescuers of all | ||
1975 | * workqueues which have works queued on the gcwq and let them process | ||
1976 | * those works so that forward progress can be guaranteed. | ||
1977 | * | ||
1978 | * This should happen rarely. | ||
1979 | */ | ||
1980 | static int rescuer_thread(void *__wq) | ||
1981 | { | ||
1982 | struct workqueue_struct *wq = __wq; | ||
1983 | struct worker *rescuer = wq->rescuer; | ||
1984 | struct list_head *scheduled = &rescuer->scheduled; | ||
1985 | bool is_unbound = wq->flags & WQ_UNBOUND; | ||
1986 | unsigned int cpu; | ||
1987 | |||
1988 | set_user_nice(current, RESCUER_NICE_LEVEL); | ||
1989 | repeat: | ||
1990 | set_current_state(TASK_INTERRUPTIBLE); | ||
1991 | |||
1992 | if (kthread_should_stop()) | ||
1993 | return 0; | ||
1994 | |||
1995 | /* | ||
1996 | * See whether any cpu is asking for help. Unbounded | ||
1997 | * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. | ||
1998 | */ | ||
1999 | for_each_mayday_cpu(cpu, wq->mayday_mask) { | ||
2000 | unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; | ||
2001 | struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); | ||
2002 | struct global_cwq *gcwq = cwq->gcwq; | ||
2003 | struct work_struct *work, *n; | ||
2004 | |||
2005 | __set_current_state(TASK_RUNNING); | ||
2006 | mayday_clear_cpu(cpu, wq->mayday_mask); | ||
2007 | |||
2008 | /* migrate to the target cpu if possible */ | ||
2009 | rescuer->gcwq = gcwq; | ||
2010 | worker_maybe_bind_and_lock(rescuer); | ||
2011 | |||
2012 | /* | ||
2013 | * Slurp in all works issued via this workqueue and | ||
2014 | * process'em. | ||
2015 | */ | ||
2016 | BUG_ON(!list_empty(&rescuer->scheduled)); | ||
2017 | list_for_each_entry_safe(work, n, &gcwq->worklist, entry) | ||
2018 | if (get_work_cwq(work) == cwq) | ||
2019 | move_linked_works(work, scheduled, &n); | ||
2020 | |||
2021 | process_scheduled_works(rescuer); | ||
2022 | spin_unlock_irq(&gcwq->lock); | ||
2023 | } | ||
2024 | |||
2025 | schedule(); | ||
2026 | goto repeat; | ||
449 | } | 2027 | } |
450 | 2028 | ||
451 | struct wq_barrier { | 2029 | struct wq_barrier { |
@@ -459,44 +2037,137 @@ static void wq_barrier_func(struct work_struct *work) | |||
459 | complete(&barr->done); | 2037 | complete(&barr->done); |
460 | } | 2038 | } |
461 | 2039 | ||
2040 | /** | ||
2041 | * insert_wq_barrier - insert a barrier work | ||
2042 | * @cwq: cwq to insert barrier into | ||
2043 | * @barr: wq_barrier to insert | ||
2044 | * @target: target work to attach @barr to | ||
2045 | * @worker: worker currently executing @target, NULL if @target is not executing | ||
2046 | * | ||
2047 | * @barr is linked to @target such that @barr is completed only after | ||
2048 | * @target finishes execution. Please note that the ordering | ||
2049 | * guarantee is observed only with respect to @target and on the local | ||
2050 | * cpu. | ||
2051 | * | ||
2052 | * Currently, a queued barrier can't be canceled. This is because | ||
2053 | * try_to_grab_pending() can't determine whether the work to be | ||
2054 | * grabbed is at the head of the queue and thus can't clear LINKED | ||
2055 | * flag of the previous work while there must be a valid next work | ||
2056 | * after a work with LINKED flag set. | ||
2057 | * | ||
2058 | * Note that when @worker is non-NULL, @target may be modified | ||
2059 | * underneath us, so we can't reliably determine cwq from @target. | ||
2060 | * | ||
2061 | * CONTEXT: | ||
2062 | * spin_lock_irq(gcwq->lock). | ||
2063 | */ | ||
462 | static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, | 2064 | static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, |
463 | struct wq_barrier *barr, struct list_head *head) | 2065 | struct wq_barrier *barr, |
2066 | struct work_struct *target, struct worker *worker) | ||
464 | { | 2067 | { |
2068 | struct list_head *head; | ||
2069 | unsigned int linked = 0; | ||
2070 | |||
465 | /* | 2071 | /* |
466 | * debugobject calls are safe here even with cwq->lock locked | 2072 | * debugobject calls are safe here even with gcwq->lock locked |
467 | * as we know for sure that this will not trigger any of the | 2073 | * as we know for sure that this will not trigger any of the |
468 | * checks and call back into the fixup functions where we | 2074 | * checks and call back into the fixup functions where we |
469 | * might deadlock. | 2075 | * might deadlock. |
470 | */ | 2076 | */ |
471 | INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); | 2077 | INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); |
472 | __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); | 2078 | __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); |
473 | |||
474 | init_completion(&barr->done); | 2079 | init_completion(&barr->done); |
475 | 2080 | ||
2081 | /* | ||
2082 | * If @target is currently being executed, schedule the | ||
2083 | * barrier to the worker; otherwise, put it after @target. | ||
2084 | */ | ||
2085 | if (worker) | ||
2086 | head = worker->scheduled.next; | ||
2087 | else { | ||
2088 | unsigned long *bits = work_data_bits(target); | ||
2089 | |||
2090 | head = target->entry.next; | ||
2091 | /* there can already be other linked works, inherit and set */ | ||
2092 | linked = *bits & WORK_STRUCT_LINKED; | ||
2093 | __set_bit(WORK_STRUCT_LINKED_BIT, bits); | ||
2094 | } | ||
2095 | |||
476 | debug_work_activate(&barr->work); | 2096 | debug_work_activate(&barr->work); |
477 | insert_work(cwq, &barr->work, head); | 2097 | insert_work(cwq, &barr->work, head, |
2098 | work_color_to_flags(WORK_NO_COLOR) | linked); | ||
478 | } | 2099 | } |
479 | 2100 | ||
480 | static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | 2101 | /** |
2102 | * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing | ||
2103 | * @wq: workqueue being flushed | ||
2104 | * @flush_color: new flush color, < 0 for no-op | ||
2105 | * @work_color: new work color, < 0 for no-op | ||
2106 | * | ||
2107 | * Prepare cwqs for workqueue flushing. | ||
2108 | * | ||
2109 | * If @flush_color is non-negative, flush_color on all cwqs should be | ||
2110 | * -1. If no cwq has in-flight commands at the specified color, all | ||
2111 | * cwq->flush_color's stay at -1 and %false is returned. If any cwq | ||
2112 | * has in flight commands, its cwq->flush_color is set to | ||
2113 | * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq | ||
2114 | * wakeup logic is armed and %true is returned. | ||
2115 | * | ||
2116 | * The caller should have initialized @wq->first_flusher prior to | ||
2117 | * calling this function with non-negative @flush_color. If | ||
2118 | * @flush_color is negative, no flush color update is done and %false | ||
2119 | * is returned. | ||
2120 | * | ||
2121 | * If @work_color is non-negative, all cwqs should have the same | ||
2122 | * work_color which is previous to @work_color and all will be | ||
2123 | * advanced to @work_color. | ||
2124 | * | ||
2125 | * CONTEXT: | ||
2126 | * mutex_lock(wq->flush_mutex). | ||
2127 | * | ||
2128 | * RETURNS: | ||
2129 | * %true if @flush_color >= 0 and there's something to flush. %false | ||
2130 | * otherwise. | ||
2131 | */ | ||
2132 | static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, | ||
2133 | int flush_color, int work_color) | ||
481 | { | 2134 | { |
482 | int active = 0; | 2135 | bool wait = false; |
483 | struct wq_barrier barr; | 2136 | unsigned int cpu; |
484 | |||
485 | WARN_ON(cwq->thread == current); | ||
486 | 2137 | ||
487 | spin_lock_irq(&cwq->lock); | 2138 | if (flush_color >= 0) { |
488 | if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { | 2139 | BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); |
489 | insert_wq_barrier(cwq, &barr, &cwq->worklist); | 2140 | atomic_set(&wq->nr_cwqs_to_flush, 1); |
490 | active = 1; | ||
491 | } | 2141 | } |
492 | spin_unlock_irq(&cwq->lock); | ||
493 | 2142 | ||
494 | if (active) { | 2143 | for_each_cwq_cpu(cpu, wq) { |
495 | wait_for_completion(&barr.done); | 2144 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
496 | destroy_work_on_stack(&barr.work); | 2145 | struct global_cwq *gcwq = cwq->gcwq; |
2146 | |||
2147 | spin_lock_irq(&gcwq->lock); | ||
2148 | |||
2149 | if (flush_color >= 0) { | ||
2150 | BUG_ON(cwq->flush_color != -1); | ||
2151 | |||
2152 | if (cwq->nr_in_flight[flush_color]) { | ||
2153 | cwq->flush_color = flush_color; | ||
2154 | atomic_inc(&wq->nr_cwqs_to_flush); | ||
2155 | wait = true; | ||
2156 | } | ||
2157 | } | ||
2158 | |||
2159 | if (work_color >= 0) { | ||
2160 | BUG_ON(work_color != work_next_color(cwq->work_color)); | ||
2161 | cwq->work_color = work_color; | ||
2162 | } | ||
2163 | |||
2164 | spin_unlock_irq(&gcwq->lock); | ||
497 | } | 2165 | } |
498 | 2166 | ||
499 | return active; | 2167 | if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) |
2168 | complete(&wq->first_flusher->done); | ||
2169 | |||
2170 | return wait; | ||
500 | } | 2171 | } |
501 | 2172 | ||
502 | /** | 2173 | /** |
@@ -508,20 +2179,150 @@ static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | |||
508 | * | 2179 | * |
509 | * We sleep until all works which were queued on entry have been handled, | 2180 | * We sleep until all works which were queued on entry have been handled, |
510 | * but we are not livelocked by new incoming ones. | 2181 | * but we are not livelocked by new incoming ones. |
511 | * | ||
512 | * This function used to run the workqueues itself. Now we just wait for the | ||
513 | * helper threads to do it. | ||
514 | */ | 2182 | */ |
515 | void flush_workqueue(struct workqueue_struct *wq) | 2183 | void flush_workqueue(struct workqueue_struct *wq) |
516 | { | 2184 | { |
517 | const struct cpumask *cpu_map = wq_cpu_map(wq); | 2185 | struct wq_flusher this_flusher = { |
518 | int cpu; | 2186 | .list = LIST_HEAD_INIT(this_flusher.list), |
2187 | .flush_color = -1, | ||
2188 | .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), | ||
2189 | }; | ||
2190 | int next_color; | ||
519 | 2191 | ||
520 | might_sleep(); | ||
521 | lock_map_acquire(&wq->lockdep_map); | 2192 | lock_map_acquire(&wq->lockdep_map); |
522 | lock_map_release(&wq->lockdep_map); | 2193 | lock_map_release(&wq->lockdep_map); |
523 | for_each_cpu(cpu, cpu_map) | 2194 | |
524 | flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); | 2195 | mutex_lock(&wq->flush_mutex); |
2196 | |||
2197 | /* | ||
2198 | * Start-to-wait phase | ||
2199 | */ | ||
2200 | next_color = work_next_color(wq->work_color); | ||
2201 | |||
2202 | if (next_color != wq->flush_color) { | ||
2203 | /* | ||
2204 | * Color space is not full. The current work_color | ||
2205 | * becomes our flush_color and work_color is advanced | ||
2206 | * by one. | ||
2207 | */ | ||
2208 | BUG_ON(!list_empty(&wq->flusher_overflow)); | ||
2209 | this_flusher.flush_color = wq->work_color; | ||
2210 | wq->work_color = next_color; | ||
2211 | |||
2212 | if (!wq->first_flusher) { | ||
2213 | /* no flush in progress, become the first flusher */ | ||
2214 | BUG_ON(wq->flush_color != this_flusher.flush_color); | ||
2215 | |||
2216 | wq->first_flusher = &this_flusher; | ||
2217 | |||
2218 | if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, | ||
2219 | wq->work_color)) { | ||
2220 | /* nothing to flush, done */ | ||
2221 | wq->flush_color = next_color; | ||
2222 | wq->first_flusher = NULL; | ||
2223 | goto out_unlock; | ||
2224 | } | ||
2225 | } else { | ||
2226 | /* wait in queue */ | ||
2227 | BUG_ON(wq->flush_color == this_flusher.flush_color); | ||
2228 | list_add_tail(&this_flusher.list, &wq->flusher_queue); | ||
2229 | flush_workqueue_prep_cwqs(wq, -1, wq->work_color); | ||
2230 | } | ||
2231 | } else { | ||
2232 | /* | ||
2233 | * Oops, color space is full, wait on overflow queue. | ||
2234 | * The next flush completion will assign us | ||
2235 | * flush_color and transfer to flusher_queue. | ||
2236 | */ | ||
2237 | list_add_tail(&this_flusher.list, &wq->flusher_overflow); | ||
2238 | } | ||
2239 | |||
2240 | mutex_unlock(&wq->flush_mutex); | ||
2241 | |||
2242 | wait_for_completion(&this_flusher.done); | ||
2243 | |||
2244 | /* | ||
2245 | * Wake-up-and-cascade phase | ||
2246 | * | ||
2247 | * First flushers are responsible for cascading flushes and | ||
2248 | * handling overflow. Non-first flushers can simply return. | ||
2249 | */ | ||
2250 | if (wq->first_flusher != &this_flusher) | ||
2251 | return; | ||
2252 | |||
2253 | mutex_lock(&wq->flush_mutex); | ||
2254 | |||
2255 | /* we might have raced, check again with mutex held */ | ||
2256 | if (wq->first_flusher != &this_flusher) | ||
2257 | goto out_unlock; | ||
2258 | |||
2259 | wq->first_flusher = NULL; | ||
2260 | |||
2261 | BUG_ON(!list_empty(&this_flusher.list)); | ||
2262 | BUG_ON(wq->flush_color != this_flusher.flush_color); | ||
2263 | |||
2264 | while (true) { | ||
2265 | struct wq_flusher *next, *tmp; | ||
2266 | |||
2267 | /* complete all the flushers sharing the current flush color */ | ||
2268 | list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { | ||
2269 | if (next->flush_color != wq->flush_color) | ||
2270 | break; | ||
2271 | list_del_init(&next->list); | ||
2272 | complete(&next->done); | ||
2273 | } | ||
2274 | |||
2275 | BUG_ON(!list_empty(&wq->flusher_overflow) && | ||
2276 | wq->flush_color != work_next_color(wq->work_color)); | ||
2277 | |||
2278 | /* this flush_color is finished, advance by one */ | ||
2279 | wq->flush_color = work_next_color(wq->flush_color); | ||
2280 | |||
2281 | /* one color has been freed, handle overflow queue */ | ||
2282 | if (!list_empty(&wq->flusher_overflow)) { | ||
2283 | /* | ||
2284 | * Assign the same color to all overflowed | ||
2285 | * flushers, advance work_color and append to | ||
2286 | * flusher_queue. This is the start-to-wait | ||
2287 | * phase for these overflowed flushers. | ||
2288 | */ | ||
2289 | list_for_each_entry(tmp, &wq->flusher_overflow, list) | ||
2290 | tmp->flush_color = wq->work_color; | ||
2291 | |||
2292 | wq->work_color = work_next_color(wq->work_color); | ||
2293 | |||
2294 | list_splice_tail_init(&wq->flusher_overflow, | ||
2295 | &wq->flusher_queue); | ||
2296 | flush_workqueue_prep_cwqs(wq, -1, wq->work_color); | ||
2297 | } | ||
2298 | |||
2299 | if (list_empty(&wq->flusher_queue)) { | ||
2300 | BUG_ON(wq->flush_color != wq->work_color); | ||
2301 | break; | ||
2302 | } | ||
2303 | |||
2304 | /* | ||
2305 | * Need to flush more colors. Make the next flusher | ||
2306 | * the new first flusher and arm cwqs. | ||
2307 | */ | ||
2308 | BUG_ON(wq->flush_color == wq->work_color); | ||
2309 | BUG_ON(wq->flush_color != next->flush_color); | ||
2310 | |||
2311 | list_del_init(&next->list); | ||
2312 | wq->first_flusher = next; | ||
2313 | |||
2314 | if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) | ||
2315 | break; | ||
2316 | |||
2317 | /* | ||
2318 | * Meh... this color is already done, clear first | ||
2319 | * flusher and repeat cascading. | ||
2320 | */ | ||
2321 | wq->first_flusher = NULL; | ||
2322 | } | ||
2323 | |||
2324 | out_unlock: | ||
2325 | mutex_unlock(&wq->flush_mutex); | ||
525 | } | 2326 | } |
526 | EXPORT_SYMBOL_GPL(flush_workqueue); | 2327 | EXPORT_SYMBOL_GPL(flush_workqueue); |
527 | 2328 | ||
@@ -537,43 +2338,46 @@ EXPORT_SYMBOL_GPL(flush_workqueue); | |||
537 | */ | 2338 | */ |
538 | int flush_work(struct work_struct *work) | 2339 | int flush_work(struct work_struct *work) |
539 | { | 2340 | { |
2341 | struct worker *worker = NULL; | ||
2342 | struct global_cwq *gcwq; | ||
540 | struct cpu_workqueue_struct *cwq; | 2343 | struct cpu_workqueue_struct *cwq; |
541 | struct list_head *prev; | ||
542 | struct wq_barrier barr; | 2344 | struct wq_barrier barr; |
543 | 2345 | ||
544 | might_sleep(); | 2346 | might_sleep(); |
545 | cwq = get_wq_data(work); | 2347 | gcwq = get_work_gcwq(work); |
546 | if (!cwq) | 2348 | if (!gcwq) |
547 | return 0; | 2349 | return 0; |
548 | 2350 | ||
549 | lock_map_acquire(&cwq->wq->lockdep_map); | 2351 | spin_lock_irq(&gcwq->lock); |
550 | lock_map_release(&cwq->wq->lockdep_map); | ||
551 | |||
552 | prev = NULL; | ||
553 | spin_lock_irq(&cwq->lock); | ||
554 | if (!list_empty(&work->entry)) { | 2352 | if (!list_empty(&work->entry)) { |
555 | /* | 2353 | /* |
556 | * See the comment near try_to_grab_pending()->smp_rmb(). | 2354 | * See the comment near try_to_grab_pending()->smp_rmb(). |
557 | * If it was re-queued under us we are not going to wait. | 2355 | * If it was re-queued to a different gcwq under us, we |
2356 | * are not going to wait. | ||
558 | */ | 2357 | */ |
559 | smp_rmb(); | 2358 | smp_rmb(); |
560 | if (unlikely(cwq != get_wq_data(work))) | 2359 | cwq = get_work_cwq(work); |
561 | goto out; | 2360 | if (unlikely(!cwq || gcwq != cwq->gcwq)) |
562 | prev = &work->entry; | 2361 | goto already_gone; |
563 | } else { | 2362 | } else { |
564 | if (cwq->current_work != work) | 2363 | worker = find_worker_executing_work(gcwq, work); |
565 | goto out; | 2364 | if (!worker) |
566 | prev = &cwq->worklist; | 2365 | goto already_gone; |
2366 | cwq = worker->current_cwq; | ||
567 | } | 2367 | } |
568 | insert_wq_barrier(cwq, &barr, prev->next); | 2368 | |
569 | out: | 2369 | insert_wq_barrier(cwq, &barr, work, worker); |
570 | spin_unlock_irq(&cwq->lock); | 2370 | spin_unlock_irq(&gcwq->lock); |
571 | if (!prev) | 2371 | |
572 | return 0; | 2372 | lock_map_acquire(&cwq->wq->lockdep_map); |
2373 | lock_map_release(&cwq->wq->lockdep_map); | ||
573 | 2374 | ||
574 | wait_for_completion(&barr.done); | 2375 | wait_for_completion(&barr.done); |
575 | destroy_work_on_stack(&barr.work); | 2376 | destroy_work_on_stack(&barr.work); |
576 | return 1; | 2377 | return 1; |
2378 | already_gone: | ||
2379 | spin_unlock_irq(&gcwq->lock); | ||
2380 | return 0; | ||
577 | } | 2381 | } |
578 | EXPORT_SYMBOL_GPL(flush_work); | 2382 | EXPORT_SYMBOL_GPL(flush_work); |
579 | 2383 | ||
@@ -583,54 +2387,56 @@ EXPORT_SYMBOL_GPL(flush_work); | |||
583 | */ | 2387 | */ |
584 | static int try_to_grab_pending(struct work_struct *work) | 2388 | static int try_to_grab_pending(struct work_struct *work) |
585 | { | 2389 | { |
586 | struct cpu_workqueue_struct *cwq; | 2390 | struct global_cwq *gcwq; |
587 | int ret = -1; | 2391 | int ret = -1; |
588 | 2392 | ||
589 | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) | 2393 | if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) |
590 | return 0; | 2394 | return 0; |
591 | 2395 | ||
592 | /* | 2396 | /* |
593 | * The queueing is in progress, or it is already queued. Try to | 2397 | * The queueing is in progress, or it is already queued. Try to |
594 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. | 2398 | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. |
595 | */ | 2399 | */ |
596 | 2400 | gcwq = get_work_gcwq(work); | |
597 | cwq = get_wq_data(work); | 2401 | if (!gcwq) |
598 | if (!cwq) | ||
599 | return ret; | 2402 | return ret; |
600 | 2403 | ||
601 | spin_lock_irq(&cwq->lock); | 2404 | spin_lock_irq(&gcwq->lock); |
602 | if (!list_empty(&work->entry)) { | 2405 | if (!list_empty(&work->entry)) { |
603 | /* | 2406 | /* |
604 | * This work is queued, but perhaps we locked the wrong cwq. | 2407 | * This work is queued, but perhaps we locked the wrong gcwq. |
605 | * In that case we must see the new value after rmb(), see | 2408 | * In that case we must see the new value after rmb(), see |
606 | * insert_work()->wmb(). | 2409 | * insert_work()->wmb(). |
607 | */ | 2410 | */ |
608 | smp_rmb(); | 2411 | smp_rmb(); |
609 | if (cwq == get_wq_data(work)) { | 2412 | if (gcwq == get_work_gcwq(work)) { |
610 | debug_work_deactivate(work); | 2413 | debug_work_deactivate(work); |
611 | list_del_init(&work->entry); | 2414 | list_del_init(&work->entry); |
2415 | cwq_dec_nr_in_flight(get_work_cwq(work), | ||
2416 | get_work_color(work), | ||
2417 | *work_data_bits(work) & WORK_STRUCT_DELAYED); | ||
612 | ret = 1; | 2418 | ret = 1; |
613 | } | 2419 | } |
614 | } | 2420 | } |
615 | spin_unlock_irq(&cwq->lock); | 2421 | spin_unlock_irq(&gcwq->lock); |
616 | 2422 | ||
617 | return ret; | 2423 | return ret; |
618 | } | 2424 | } |
619 | 2425 | ||
620 | static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, | 2426 | static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) |
621 | struct work_struct *work) | ||
622 | { | 2427 | { |
623 | struct wq_barrier barr; | 2428 | struct wq_barrier barr; |
624 | int running = 0; | 2429 | struct worker *worker; |
625 | 2430 | ||
626 | spin_lock_irq(&cwq->lock); | 2431 | spin_lock_irq(&gcwq->lock); |
627 | if (unlikely(cwq->current_work == work)) { | 2432 | |
628 | insert_wq_barrier(cwq, &barr, cwq->worklist.next); | 2433 | worker = find_worker_executing_work(gcwq, work); |
629 | running = 1; | 2434 | if (unlikely(worker)) |
630 | } | 2435 | insert_wq_barrier(worker->current_cwq, &barr, work, worker); |
631 | spin_unlock_irq(&cwq->lock); | ||
632 | 2436 | ||
633 | if (unlikely(running)) { | 2437 | spin_unlock_irq(&gcwq->lock); |
2438 | |||
2439 | if (unlikely(worker)) { | ||
634 | wait_for_completion(&barr.done); | 2440 | wait_for_completion(&barr.done); |
635 | destroy_work_on_stack(&barr.work); | 2441 | destroy_work_on_stack(&barr.work); |
636 | } | 2442 | } |
@@ -638,9 +2444,6 @@ static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, | |||
638 | 2444 | ||
639 | static void wait_on_work(struct work_struct *work) | 2445 | static void wait_on_work(struct work_struct *work) |
640 | { | 2446 | { |
641 | struct cpu_workqueue_struct *cwq; | ||
642 | struct workqueue_struct *wq; | ||
643 | const struct cpumask *cpu_map; | ||
644 | int cpu; | 2447 | int cpu; |
645 | 2448 | ||
646 | might_sleep(); | 2449 | might_sleep(); |
@@ -648,15 +2451,8 @@ static void wait_on_work(struct work_struct *work) | |||
648 | lock_map_acquire(&work->lockdep_map); | 2451 | lock_map_acquire(&work->lockdep_map); |
649 | lock_map_release(&work->lockdep_map); | 2452 | lock_map_release(&work->lockdep_map); |
650 | 2453 | ||
651 | cwq = get_wq_data(work); | 2454 | for_each_gcwq_cpu(cpu) |
652 | if (!cwq) | 2455 | wait_on_cpu_work(get_gcwq(cpu), work); |
653 | return; | ||
654 | |||
655 | wq = cwq->wq; | ||
656 | cpu_map = wq_cpu_map(wq); | ||
657 | |||
658 | for_each_cpu(cpu, cpu_map) | ||
659 | wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); | ||
660 | } | 2456 | } |
661 | 2457 | ||
662 | static int __cancel_work_timer(struct work_struct *work, | 2458 | static int __cancel_work_timer(struct work_struct *work, |
@@ -671,7 +2467,7 @@ static int __cancel_work_timer(struct work_struct *work, | |||
671 | wait_on_work(work); | 2467 | wait_on_work(work); |
672 | } while (unlikely(ret < 0)); | 2468 | } while (unlikely(ret < 0)); |
673 | 2469 | ||
674 | work_clear_pending(work); | 2470 | clear_work_data(work); |
675 | return ret; | 2471 | return ret; |
676 | } | 2472 | } |
677 | 2473 | ||
@@ -717,8 +2513,6 @@ int cancel_delayed_work_sync(struct delayed_work *dwork) | |||
717 | } | 2513 | } |
718 | EXPORT_SYMBOL(cancel_delayed_work_sync); | 2514 | EXPORT_SYMBOL(cancel_delayed_work_sync); |
719 | 2515 | ||
720 | static struct workqueue_struct *keventd_wq __read_mostly; | ||
721 | |||
722 | /** | 2516 | /** |
723 | * schedule_work - put work task in global workqueue | 2517 | * schedule_work - put work task in global workqueue |
724 | * @work: job to be done | 2518 | * @work: job to be done |
@@ -732,7 +2526,7 @@ static struct workqueue_struct *keventd_wq __read_mostly; | |||
732 | */ | 2526 | */ |
733 | int schedule_work(struct work_struct *work) | 2527 | int schedule_work(struct work_struct *work) |
734 | { | 2528 | { |
735 | return queue_work(keventd_wq, work); | 2529 | return queue_work(system_wq, work); |
736 | } | 2530 | } |
737 | EXPORT_SYMBOL(schedule_work); | 2531 | EXPORT_SYMBOL(schedule_work); |
738 | 2532 | ||
@@ -745,7 +2539,7 @@ EXPORT_SYMBOL(schedule_work); | |||
745 | */ | 2539 | */ |
746 | int schedule_work_on(int cpu, struct work_struct *work) | 2540 | int schedule_work_on(int cpu, struct work_struct *work) |
747 | { | 2541 | { |
748 | return queue_work_on(cpu, keventd_wq, work); | 2542 | return queue_work_on(cpu, system_wq, work); |
749 | } | 2543 | } |
750 | EXPORT_SYMBOL(schedule_work_on); | 2544 | EXPORT_SYMBOL(schedule_work_on); |
751 | 2545 | ||
@@ -760,7 +2554,7 @@ EXPORT_SYMBOL(schedule_work_on); | |||
760 | int schedule_delayed_work(struct delayed_work *dwork, | 2554 | int schedule_delayed_work(struct delayed_work *dwork, |
761 | unsigned long delay) | 2555 | unsigned long delay) |
762 | { | 2556 | { |
763 | return queue_delayed_work(keventd_wq, dwork, delay); | 2557 | return queue_delayed_work(system_wq, dwork, delay); |
764 | } | 2558 | } |
765 | EXPORT_SYMBOL(schedule_delayed_work); | 2559 | EXPORT_SYMBOL(schedule_delayed_work); |
766 | 2560 | ||
@@ -773,9 +2567,8 @@ EXPORT_SYMBOL(schedule_delayed_work); | |||
773 | void flush_delayed_work(struct delayed_work *dwork) | 2567 | void flush_delayed_work(struct delayed_work *dwork) |
774 | { | 2568 | { |
775 | if (del_timer_sync(&dwork->timer)) { | 2569 | if (del_timer_sync(&dwork->timer)) { |
776 | struct cpu_workqueue_struct *cwq; | 2570 | __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq, |
777 | cwq = wq_per_cpu(get_wq_data(&dwork->work)->wq, get_cpu()); | 2571 | &dwork->work); |
778 | __queue_work(cwq, &dwork->work); | ||
779 | put_cpu(); | 2572 | put_cpu(); |
780 | } | 2573 | } |
781 | flush_work(&dwork->work); | 2574 | flush_work(&dwork->work); |
@@ -794,7 +2587,7 @@ EXPORT_SYMBOL(flush_delayed_work); | |||
794 | int schedule_delayed_work_on(int cpu, | 2587 | int schedule_delayed_work_on(int cpu, |
795 | struct delayed_work *dwork, unsigned long delay) | 2588 | struct delayed_work *dwork, unsigned long delay) |
796 | { | 2589 | { |
797 | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); | 2590 | return queue_delayed_work_on(cpu, system_wq, dwork, delay); |
798 | } | 2591 | } |
799 | EXPORT_SYMBOL(schedule_delayed_work_on); | 2592 | EXPORT_SYMBOL(schedule_delayed_work_on); |
800 | 2593 | ||
@@ -810,8 +2603,7 @@ EXPORT_SYMBOL(schedule_delayed_work_on); | |||
810 | int schedule_on_each_cpu(work_func_t func) | 2603 | int schedule_on_each_cpu(work_func_t func) |
811 | { | 2604 | { |
812 | int cpu; | 2605 | int cpu; |
813 | int orig = -1; | 2606 | struct work_struct __percpu *works; |
814 | struct work_struct *works; | ||
815 | 2607 | ||
816 | works = alloc_percpu(struct work_struct); | 2608 | works = alloc_percpu(struct work_struct); |
817 | if (!works) | 2609 | if (!works) |
@@ -819,23 +2611,12 @@ int schedule_on_each_cpu(work_func_t func) | |||
819 | 2611 | ||
820 | get_online_cpus(); | 2612 | get_online_cpus(); |
821 | 2613 | ||
822 | /* | ||
823 | * When running in keventd don't schedule a work item on | ||
824 | * itself. Can just call directly because the work queue is | ||
825 | * already bound. This also is faster. | ||
826 | */ | ||
827 | if (current_is_keventd()) | ||
828 | orig = raw_smp_processor_id(); | ||
829 | |||
830 | for_each_online_cpu(cpu) { | 2614 | for_each_online_cpu(cpu) { |
831 | struct work_struct *work = per_cpu_ptr(works, cpu); | 2615 | struct work_struct *work = per_cpu_ptr(works, cpu); |
832 | 2616 | ||
833 | INIT_WORK(work, func); | 2617 | INIT_WORK(work, func); |
834 | if (cpu != orig) | 2618 | schedule_work_on(cpu, work); |
835 | schedule_work_on(cpu, work); | ||
836 | } | 2619 | } |
837 | if (orig >= 0) | ||
838 | func(per_cpu_ptr(works, orig)); | ||
839 | 2620 | ||
840 | for_each_online_cpu(cpu) | 2621 | for_each_online_cpu(cpu) |
841 | flush_work(per_cpu_ptr(works, cpu)); | 2622 | flush_work(per_cpu_ptr(works, cpu)); |
@@ -845,9 +2626,33 @@ int schedule_on_each_cpu(work_func_t func) | |||
845 | return 0; | 2626 | return 0; |
846 | } | 2627 | } |
847 | 2628 | ||
2629 | /** | ||
2630 | * flush_scheduled_work - ensure that any scheduled work has run to completion. | ||
2631 | * | ||
2632 | * Forces execution of the kernel-global workqueue and blocks until its | ||
2633 | * completion. | ||
2634 | * | ||
2635 | * Think twice before calling this function! It's very easy to get into | ||
2636 | * trouble if you don't take great care. Either of the following situations | ||
2637 | * will lead to deadlock: | ||
2638 | * | ||
2639 | * One of the work items currently on the workqueue needs to acquire | ||
2640 | * a lock held by your code or its caller. | ||
2641 | * | ||
2642 | * Your code is running in the context of a work routine. | ||
2643 | * | ||
2644 | * They will be detected by lockdep when they occur, but the first might not | ||
2645 | * occur very often. It depends on what work items are on the workqueue and | ||
2646 | * what locks they need, which you have no control over. | ||
2647 | * | ||
2648 | * In most situations flushing the entire workqueue is overkill; you merely | ||
2649 | * need to know that a particular work item isn't queued and isn't running. | ||
2650 | * In such cases you should use cancel_delayed_work_sync() or | ||
2651 | * cancel_work_sync() instead. | ||
2652 | */ | ||
848 | void flush_scheduled_work(void) | 2653 | void flush_scheduled_work(void) |
849 | { | 2654 | { |
850 | flush_workqueue(keventd_wq); | 2655 | flush_workqueue(system_wq); |
851 | } | 2656 | } |
852 | EXPORT_SYMBOL(flush_scheduled_work); | 2657 | EXPORT_SYMBOL(flush_scheduled_work); |
853 | 2658 | ||
@@ -879,170 +2684,169 @@ EXPORT_SYMBOL_GPL(execute_in_process_context); | |||
879 | 2684 | ||
880 | int keventd_up(void) | 2685 | int keventd_up(void) |
881 | { | 2686 | { |
882 | return keventd_wq != NULL; | 2687 | return system_wq != NULL; |
883 | } | 2688 | } |
884 | 2689 | ||
885 | int current_is_keventd(void) | 2690 | static int alloc_cwqs(struct workqueue_struct *wq) |
886 | { | 2691 | { |
887 | struct cpu_workqueue_struct *cwq; | 2692 | /* |
888 | int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ | 2693 | * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. |
889 | int ret = 0; | 2694 | * Make sure that the alignment isn't lower than that of |
890 | 2695 | * unsigned long long. | |
891 | BUG_ON(!keventd_wq); | 2696 | */ |
2697 | const size_t size = sizeof(struct cpu_workqueue_struct); | ||
2698 | const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, | ||
2699 | __alignof__(unsigned long long)); | ||
2700 | #ifdef CONFIG_SMP | ||
2701 | bool percpu = !(wq->flags & WQ_UNBOUND); | ||
2702 | #else | ||
2703 | bool percpu = false; | ||
2704 | #endif | ||
892 | 2705 | ||
893 | cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); | 2706 | if (percpu) |
894 | if (current == cwq->thread) | 2707 | wq->cpu_wq.pcpu = __alloc_percpu(size, align); |
895 | ret = 1; | 2708 | else { |
2709 | void *ptr; | ||
896 | 2710 | ||
897 | return ret; | 2711 | /* |
2712 | * Allocate enough room to align cwq and put an extra | ||
2713 | * pointer at the end pointing back to the originally | ||
2714 | * allocated pointer which will be used for free. | ||
2715 | */ | ||
2716 | ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); | ||
2717 | if (ptr) { | ||
2718 | wq->cpu_wq.single = PTR_ALIGN(ptr, align); | ||
2719 | *(void **)(wq->cpu_wq.single + 1) = ptr; | ||
2720 | } | ||
2721 | } | ||
898 | 2722 | ||
2723 | /* just in case, make sure it's actually aligned */ | ||
2724 | BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); | ||
2725 | return wq->cpu_wq.v ? 0 : -ENOMEM; | ||
899 | } | 2726 | } |
900 | 2727 | ||
901 | static struct cpu_workqueue_struct * | 2728 | static void free_cwqs(struct workqueue_struct *wq) |
902 | init_cpu_workqueue(struct workqueue_struct *wq, int cpu) | ||
903 | { | 2729 | { |
904 | struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 2730 | #ifdef CONFIG_SMP |
905 | 2731 | bool percpu = !(wq->flags & WQ_UNBOUND); | |
906 | cwq->wq = wq; | 2732 | #else |
907 | spin_lock_init(&cwq->lock); | 2733 | bool percpu = false; |
908 | INIT_LIST_HEAD(&cwq->worklist); | 2734 | #endif |
909 | init_waitqueue_head(&cwq->more_work); | ||
910 | 2735 | ||
911 | return cwq; | 2736 | if (percpu) |
2737 | free_percpu(wq->cpu_wq.pcpu); | ||
2738 | else if (wq->cpu_wq.single) { | ||
2739 | /* the pointer to free is stored right after the cwq */ | ||
2740 | kfree(*(void **)(wq->cpu_wq.single + 1)); | ||
2741 | } | ||
912 | } | 2742 | } |
913 | 2743 | ||
914 | static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 2744 | static int wq_clamp_max_active(int max_active, unsigned int flags, |
2745 | const char *name) | ||
915 | { | 2746 | { |
916 | struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; | 2747 | int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; |
917 | struct workqueue_struct *wq = cwq->wq; | ||
918 | const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d"; | ||
919 | struct task_struct *p; | ||
920 | 2748 | ||
921 | p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); | 2749 | if (max_active < 1 || max_active > lim) |
922 | /* | 2750 | printk(KERN_WARNING "workqueue: max_active %d requested for %s " |
923 | * Nobody can add the work_struct to this cwq, | 2751 | "is out of range, clamping between %d and %d\n", |
924 | * if (caller is __create_workqueue) | 2752 | max_active, name, 1, lim); |
925 | * nobody should see this wq | ||
926 | * else // caller is CPU_UP_PREPARE | ||
927 | * cpu is not on cpu_online_map | ||
928 | * so we can abort safely. | ||
929 | */ | ||
930 | if (IS_ERR(p)) | ||
931 | return PTR_ERR(p); | ||
932 | if (cwq->wq->rt) | ||
933 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | ||
934 | cwq->thread = p; | ||
935 | 2753 | ||
936 | trace_workqueue_creation(cwq->thread, cpu); | 2754 | return clamp_val(max_active, 1, lim); |
937 | |||
938 | return 0; | ||
939 | } | 2755 | } |
940 | 2756 | ||
941 | static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 2757 | struct workqueue_struct *__alloc_workqueue_key(const char *name, |
2758 | unsigned int flags, | ||
2759 | int max_active, | ||
2760 | struct lock_class_key *key, | ||
2761 | const char *lock_name) | ||
942 | { | 2762 | { |
943 | struct task_struct *p = cwq->thread; | 2763 | struct workqueue_struct *wq; |
2764 | unsigned int cpu; | ||
944 | 2765 | ||
945 | if (p != NULL) { | 2766 | /* |
946 | if (cpu >= 0) | 2767 | * Unbound workqueues aren't concurrency managed and should be |
947 | kthread_bind(p, cpu); | 2768 | * dispatched to workers immediately. |
948 | wake_up_process(p); | 2769 | */ |
949 | } | 2770 | if (flags & WQ_UNBOUND) |
950 | } | 2771 | flags |= WQ_HIGHPRI; |
951 | 2772 | ||
952 | struct workqueue_struct *__create_workqueue_key(const char *name, | 2773 | max_active = max_active ?: WQ_DFL_ACTIVE; |
953 | int singlethread, | 2774 | max_active = wq_clamp_max_active(max_active, flags, name); |
954 | int freezeable, | ||
955 | int rt, | ||
956 | struct lock_class_key *key, | ||
957 | const char *lock_name) | ||
958 | { | ||
959 | struct workqueue_struct *wq; | ||
960 | struct cpu_workqueue_struct *cwq; | ||
961 | int err = 0, cpu; | ||
962 | 2775 | ||
963 | wq = kzalloc(sizeof(*wq), GFP_KERNEL); | 2776 | wq = kzalloc(sizeof(*wq), GFP_KERNEL); |
964 | if (!wq) | 2777 | if (!wq) |
965 | return NULL; | 2778 | goto err; |
966 | 2779 | ||
967 | wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); | 2780 | wq->flags = flags; |
968 | if (!wq->cpu_wq) { | 2781 | wq->saved_max_active = max_active; |
969 | kfree(wq); | 2782 | mutex_init(&wq->flush_mutex); |
970 | return NULL; | 2783 | atomic_set(&wq->nr_cwqs_to_flush, 0); |
971 | } | 2784 | INIT_LIST_HEAD(&wq->flusher_queue); |
2785 | INIT_LIST_HEAD(&wq->flusher_overflow); | ||
972 | 2786 | ||
973 | wq->name = name; | 2787 | wq->name = name; |
974 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); | 2788 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); |
975 | wq->singlethread = singlethread; | ||
976 | wq->freezeable = freezeable; | ||
977 | wq->rt = rt; | ||
978 | INIT_LIST_HEAD(&wq->list); | 2789 | INIT_LIST_HEAD(&wq->list); |
979 | 2790 | ||
980 | if (singlethread) { | 2791 | if (alloc_cwqs(wq) < 0) |
981 | cwq = init_cpu_workqueue(wq, singlethread_cpu); | 2792 | goto err; |
982 | err = create_workqueue_thread(cwq, singlethread_cpu); | 2793 | |
983 | start_workqueue_thread(cwq, -1); | 2794 | for_each_cwq_cpu(cpu, wq) { |
984 | } else { | 2795 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
985 | cpu_maps_update_begin(); | 2796 | struct global_cwq *gcwq = get_gcwq(cpu); |
986 | /* | 2797 | |
987 | * We must place this wq on list even if the code below fails. | 2798 | BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); |
988 | * cpu_down(cpu) can remove cpu from cpu_populated_map before | 2799 | cwq->gcwq = gcwq; |
989 | * destroy_workqueue() takes the lock, in that case we leak | 2800 | cwq->wq = wq; |
990 | * cwq[cpu]->thread. | 2801 | cwq->flush_color = -1; |
991 | */ | 2802 | cwq->max_active = max_active; |
992 | spin_lock(&workqueue_lock); | 2803 | INIT_LIST_HEAD(&cwq->delayed_works); |
993 | list_add(&wq->list, &workqueues); | ||
994 | spin_unlock(&workqueue_lock); | ||
995 | /* | ||
996 | * We must initialize cwqs for each possible cpu even if we | ||
997 | * are going to call destroy_workqueue() finally. Otherwise | ||
998 | * cpu_up() can hit the uninitialized cwq once we drop the | ||
999 | * lock. | ||
1000 | */ | ||
1001 | for_each_possible_cpu(cpu) { | ||
1002 | cwq = init_cpu_workqueue(wq, cpu); | ||
1003 | if (err || !cpu_online(cpu)) | ||
1004 | continue; | ||
1005 | err = create_workqueue_thread(cwq, cpu); | ||
1006 | start_workqueue_thread(cwq, cpu); | ||
1007 | } | ||
1008 | cpu_maps_update_done(); | ||
1009 | } | 2804 | } |
1010 | 2805 | ||
1011 | if (err) { | 2806 | if (flags & WQ_RESCUER) { |
1012 | destroy_workqueue(wq); | 2807 | struct worker *rescuer; |
1013 | wq = NULL; | 2808 | |
2809 | if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) | ||
2810 | goto err; | ||
2811 | |||
2812 | wq->rescuer = rescuer = alloc_worker(); | ||
2813 | if (!rescuer) | ||
2814 | goto err; | ||
2815 | |||
2816 | rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); | ||
2817 | if (IS_ERR(rescuer->task)) | ||
2818 | goto err; | ||
2819 | |||
2820 | rescuer->task->flags |= PF_THREAD_BOUND; | ||
2821 | wake_up_process(rescuer->task); | ||
1014 | } | 2822 | } |
1015 | return wq; | ||
1016 | } | ||
1017 | EXPORT_SYMBOL_GPL(__create_workqueue_key); | ||
1018 | 2823 | ||
1019 | static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) | ||
1020 | { | ||
1021 | /* | 2824 | /* |
1022 | * Our caller is either destroy_workqueue() or CPU_POST_DEAD, | 2825 | * workqueue_lock protects global freeze state and workqueues |
1023 | * cpu_add_remove_lock protects cwq->thread. | 2826 | * list. Grab it, set max_active accordingly and add the new |
2827 | * workqueue to workqueues list. | ||
1024 | */ | 2828 | */ |
1025 | if (cwq->thread == NULL) | 2829 | spin_lock(&workqueue_lock); |
1026 | return; | ||
1027 | 2830 | ||
1028 | lock_map_acquire(&cwq->wq->lockdep_map); | 2831 | if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) |
1029 | lock_map_release(&cwq->wq->lockdep_map); | 2832 | for_each_cwq_cpu(cpu, wq) |
2833 | get_cwq(cpu, wq)->max_active = 0; | ||
1030 | 2834 | ||
1031 | flush_cpu_workqueue(cwq); | 2835 | list_add(&wq->list, &workqueues); |
1032 | /* | 2836 | |
1033 | * If the caller is CPU_POST_DEAD and cwq->worklist was not empty, | 2837 | spin_unlock(&workqueue_lock); |
1034 | * a concurrent flush_workqueue() can insert a barrier after us. | 2838 | |
1035 | * However, in that case run_workqueue() won't return and check | 2839 | return wq; |
1036 | * kthread_should_stop() until it flushes all work_struct's. | 2840 | err: |
1037 | * When ->worklist becomes empty it is safe to exit because no | 2841 | if (wq) { |
1038 | * more work_structs can be queued on this cwq: flush_workqueue | 2842 | free_cwqs(wq); |
1039 | * checks list_empty(), and a "normal" queue_work() can't use | 2843 | free_mayday_mask(wq->mayday_mask); |
1040 | * a dead CPU. | 2844 | kfree(wq->rescuer); |
1041 | */ | 2845 | kfree(wq); |
1042 | trace_workqueue_destruction(cwq->thread); | 2846 | } |
1043 | kthread_stop(cwq->thread); | 2847 | return NULL; |
1044 | cwq->thread = NULL; | ||
1045 | } | 2848 | } |
2849 | EXPORT_SYMBOL_GPL(__alloc_workqueue_key); | ||
1046 | 2850 | ||
1047 | /** | 2851 | /** |
1048 | * destroy_workqueue - safely terminate a workqueue | 2852 | * destroy_workqueue - safely terminate a workqueue |
@@ -1052,71 +2856,520 @@ static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) | |||
1052 | */ | 2856 | */ |
1053 | void destroy_workqueue(struct workqueue_struct *wq) | 2857 | void destroy_workqueue(struct workqueue_struct *wq) |
1054 | { | 2858 | { |
1055 | const struct cpumask *cpu_map = wq_cpu_map(wq); | 2859 | unsigned int cpu; |
1056 | int cpu; | ||
1057 | 2860 | ||
1058 | cpu_maps_update_begin(); | 2861 | wq->flags |= WQ_DYING; |
2862 | flush_workqueue(wq); | ||
2863 | |||
2864 | /* | ||
2865 | * wq list is used to freeze wq, remove from list after | ||
2866 | * flushing is complete in case freeze races us. | ||
2867 | */ | ||
1059 | spin_lock(&workqueue_lock); | 2868 | spin_lock(&workqueue_lock); |
1060 | list_del(&wq->list); | 2869 | list_del(&wq->list); |
1061 | spin_unlock(&workqueue_lock); | 2870 | spin_unlock(&workqueue_lock); |
1062 | 2871 | ||
1063 | for_each_cpu(cpu, cpu_map) | 2872 | /* sanity check */ |
1064 | cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); | 2873 | for_each_cwq_cpu(cpu, wq) { |
1065 | cpu_maps_update_done(); | 2874 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); |
2875 | int i; | ||
2876 | |||
2877 | for (i = 0; i < WORK_NR_COLORS; i++) | ||
2878 | BUG_ON(cwq->nr_in_flight[i]); | ||
2879 | BUG_ON(cwq->nr_active); | ||
2880 | BUG_ON(!list_empty(&cwq->delayed_works)); | ||
2881 | } | ||
2882 | |||
2883 | if (wq->flags & WQ_RESCUER) { | ||
2884 | kthread_stop(wq->rescuer->task); | ||
2885 | free_mayday_mask(wq->mayday_mask); | ||
2886 | kfree(wq->rescuer); | ||
2887 | } | ||
1066 | 2888 | ||
1067 | free_percpu(wq->cpu_wq); | 2889 | free_cwqs(wq); |
1068 | kfree(wq); | 2890 | kfree(wq); |
1069 | } | 2891 | } |
1070 | EXPORT_SYMBOL_GPL(destroy_workqueue); | 2892 | EXPORT_SYMBOL_GPL(destroy_workqueue); |
1071 | 2893 | ||
2894 | /** | ||
2895 | * workqueue_set_max_active - adjust max_active of a workqueue | ||
2896 | * @wq: target workqueue | ||
2897 | * @max_active: new max_active value. | ||
2898 | * | ||
2899 | * Set max_active of @wq to @max_active. | ||
2900 | * | ||
2901 | * CONTEXT: | ||
2902 | * Don't call from IRQ context. | ||
2903 | */ | ||
2904 | void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) | ||
2905 | { | ||
2906 | unsigned int cpu; | ||
2907 | |||
2908 | max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); | ||
2909 | |||
2910 | spin_lock(&workqueue_lock); | ||
2911 | |||
2912 | wq->saved_max_active = max_active; | ||
2913 | |||
2914 | for_each_cwq_cpu(cpu, wq) { | ||
2915 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
2916 | |||
2917 | spin_lock_irq(&gcwq->lock); | ||
2918 | |||
2919 | if (!(wq->flags & WQ_FREEZEABLE) || | ||
2920 | !(gcwq->flags & GCWQ_FREEZING)) | ||
2921 | get_cwq(gcwq->cpu, wq)->max_active = max_active; | ||
2922 | |||
2923 | spin_unlock_irq(&gcwq->lock); | ||
2924 | } | ||
2925 | |||
2926 | spin_unlock(&workqueue_lock); | ||
2927 | } | ||
2928 | EXPORT_SYMBOL_GPL(workqueue_set_max_active); | ||
2929 | |||
2930 | /** | ||
2931 | * workqueue_congested - test whether a workqueue is congested | ||
2932 | * @cpu: CPU in question | ||
2933 | * @wq: target workqueue | ||
2934 | * | ||
2935 | * Test whether @wq's cpu workqueue for @cpu is congested. There is | ||
2936 | * no synchronization around this function and the test result is | ||
2937 | * unreliable and only useful as advisory hints or for debugging. | ||
2938 | * | ||
2939 | * RETURNS: | ||
2940 | * %true if congested, %false otherwise. | ||
2941 | */ | ||
2942 | bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) | ||
2943 | { | ||
2944 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
2945 | |||
2946 | return !list_empty(&cwq->delayed_works); | ||
2947 | } | ||
2948 | EXPORT_SYMBOL_GPL(workqueue_congested); | ||
2949 | |||
2950 | /** | ||
2951 | * work_cpu - return the last known associated cpu for @work | ||
2952 | * @work: the work of interest | ||
2953 | * | ||
2954 | * RETURNS: | ||
2955 | * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. | ||
2956 | */ | ||
2957 | unsigned int work_cpu(struct work_struct *work) | ||
2958 | { | ||
2959 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
2960 | |||
2961 | return gcwq ? gcwq->cpu : WORK_CPU_NONE; | ||
2962 | } | ||
2963 | EXPORT_SYMBOL_GPL(work_cpu); | ||
2964 | |||
2965 | /** | ||
2966 | * work_busy - test whether a work is currently pending or running | ||
2967 | * @work: the work to be tested | ||
2968 | * | ||
2969 | * Test whether @work is currently pending or running. There is no | ||
2970 | * synchronization around this function and the test result is | ||
2971 | * unreliable and only useful as advisory hints or for debugging. | ||
2972 | * Especially for reentrant wqs, the pending state might hide the | ||
2973 | * running state. | ||
2974 | * | ||
2975 | * RETURNS: | ||
2976 | * OR'd bitmask of WORK_BUSY_* bits. | ||
2977 | */ | ||
2978 | unsigned int work_busy(struct work_struct *work) | ||
2979 | { | ||
2980 | struct global_cwq *gcwq = get_work_gcwq(work); | ||
2981 | unsigned long flags; | ||
2982 | unsigned int ret = 0; | ||
2983 | |||
2984 | if (!gcwq) | ||
2985 | return false; | ||
2986 | |||
2987 | spin_lock_irqsave(&gcwq->lock, flags); | ||
2988 | |||
2989 | if (work_pending(work)) | ||
2990 | ret |= WORK_BUSY_PENDING; | ||
2991 | if (find_worker_executing_work(gcwq, work)) | ||
2992 | ret |= WORK_BUSY_RUNNING; | ||
2993 | |||
2994 | spin_unlock_irqrestore(&gcwq->lock, flags); | ||
2995 | |||
2996 | return ret; | ||
2997 | } | ||
2998 | EXPORT_SYMBOL_GPL(work_busy); | ||
2999 | |||
3000 | /* | ||
3001 | * CPU hotplug. | ||
3002 | * | ||
3003 | * There are two challenges in supporting CPU hotplug. Firstly, there | ||
3004 | * are a lot of assumptions on strong associations among work, cwq and | ||
3005 | * gcwq which make migrating pending and scheduled works very | ||
3006 | * difficult to implement without impacting hot paths. Secondly, | ||
3007 | * gcwqs serve mix of short, long and very long running works making | ||
3008 | * blocked draining impractical. | ||
3009 | * | ||
3010 | * This is solved by allowing a gcwq to be detached from CPU, running | ||
3011 | * it with unbound (rogue) workers and allowing it to be reattached | ||
3012 | * later if the cpu comes back online. A separate thread is created | ||
3013 | * to govern a gcwq in such state and is called the trustee of the | ||
3014 | * gcwq. | ||
3015 | * | ||
3016 | * Trustee states and their descriptions. | ||
3017 | * | ||
3018 | * START Command state used on startup. On CPU_DOWN_PREPARE, a | ||
3019 | * new trustee is started with this state. | ||
3020 | * | ||
3021 | * IN_CHARGE Once started, trustee will enter this state after | ||
3022 | * assuming the manager role and making all existing | ||
3023 | * workers rogue. DOWN_PREPARE waits for trustee to | ||
3024 | * enter this state. After reaching IN_CHARGE, trustee | ||
3025 | * tries to execute the pending worklist until it's empty | ||
3026 | * and the state is set to BUTCHER, or the state is set | ||
3027 | * to RELEASE. | ||
3028 | * | ||
3029 | * BUTCHER Command state which is set by the cpu callback after | ||
3030 | * the cpu has went down. Once this state is set trustee | ||
3031 | * knows that there will be no new works on the worklist | ||
3032 | * and once the worklist is empty it can proceed to | ||
3033 | * killing idle workers. | ||
3034 | * | ||
3035 | * RELEASE Command state which is set by the cpu callback if the | ||
3036 | * cpu down has been canceled or it has come online | ||
3037 | * again. After recognizing this state, trustee stops | ||
3038 | * trying to drain or butcher and clears ROGUE, rebinds | ||
3039 | * all remaining workers back to the cpu and releases | ||
3040 | * manager role. | ||
3041 | * | ||
3042 | * DONE Trustee will enter this state after BUTCHER or RELEASE | ||
3043 | * is complete. | ||
3044 | * | ||
3045 | * trustee CPU draining | ||
3046 | * took over down complete | ||
3047 | * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE | ||
3048 | * | | ^ | ||
3049 | * | CPU is back online v return workers | | ||
3050 | * ----------------> RELEASE -------------- | ||
3051 | */ | ||
3052 | |||
3053 | /** | ||
3054 | * trustee_wait_event_timeout - timed event wait for trustee | ||
3055 | * @cond: condition to wait for | ||
3056 | * @timeout: timeout in jiffies | ||
3057 | * | ||
3058 | * wait_event_timeout() for trustee to use. Handles locking and | ||
3059 | * checks for RELEASE request. | ||
3060 | * | ||
3061 | * CONTEXT: | ||
3062 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3063 | * multiple times. To be used by trustee. | ||
3064 | * | ||
3065 | * RETURNS: | ||
3066 | * Positive indicating left time if @cond is satisfied, 0 if timed | ||
3067 | * out, -1 if canceled. | ||
3068 | */ | ||
3069 | #define trustee_wait_event_timeout(cond, timeout) ({ \ | ||
3070 | long __ret = (timeout); \ | ||
3071 | while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ | ||
3072 | __ret) { \ | ||
3073 | spin_unlock_irq(&gcwq->lock); \ | ||
3074 | __wait_event_timeout(gcwq->trustee_wait, (cond) || \ | ||
3075 | (gcwq->trustee_state == TRUSTEE_RELEASE), \ | ||
3076 | __ret); \ | ||
3077 | spin_lock_irq(&gcwq->lock); \ | ||
3078 | } \ | ||
3079 | gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ | ||
3080 | }) | ||
3081 | |||
3082 | /** | ||
3083 | * trustee_wait_event - event wait for trustee | ||
3084 | * @cond: condition to wait for | ||
3085 | * | ||
3086 | * wait_event() for trustee to use. Automatically handles locking and | ||
3087 | * checks for CANCEL request. | ||
3088 | * | ||
3089 | * CONTEXT: | ||
3090 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3091 | * multiple times. To be used by trustee. | ||
3092 | * | ||
3093 | * RETURNS: | ||
3094 | * 0 if @cond is satisfied, -1 if canceled. | ||
3095 | */ | ||
3096 | #define trustee_wait_event(cond) ({ \ | ||
3097 | long __ret1; \ | ||
3098 | __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ | ||
3099 | __ret1 < 0 ? -1 : 0; \ | ||
3100 | }) | ||
3101 | |||
3102 | static int __cpuinit trustee_thread(void *__gcwq) | ||
3103 | { | ||
3104 | struct global_cwq *gcwq = __gcwq; | ||
3105 | struct worker *worker; | ||
3106 | struct work_struct *work; | ||
3107 | struct hlist_node *pos; | ||
3108 | long rc; | ||
3109 | int i; | ||
3110 | |||
3111 | BUG_ON(gcwq->cpu != smp_processor_id()); | ||
3112 | |||
3113 | spin_lock_irq(&gcwq->lock); | ||
3114 | /* | ||
3115 | * Claim the manager position and make all workers rogue. | ||
3116 | * Trustee must be bound to the target cpu and can't be | ||
3117 | * cancelled. | ||
3118 | */ | ||
3119 | BUG_ON(gcwq->cpu != smp_processor_id()); | ||
3120 | rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); | ||
3121 | BUG_ON(rc < 0); | ||
3122 | |||
3123 | gcwq->flags |= GCWQ_MANAGING_WORKERS; | ||
3124 | |||
3125 | list_for_each_entry(worker, &gcwq->idle_list, entry) | ||
3126 | worker->flags |= WORKER_ROGUE; | ||
3127 | |||
3128 | for_each_busy_worker(worker, i, pos, gcwq) | ||
3129 | worker->flags |= WORKER_ROGUE; | ||
3130 | |||
3131 | /* | ||
3132 | * Call schedule() so that we cross rq->lock and thus can | ||
3133 | * guarantee sched callbacks see the rogue flag. This is | ||
3134 | * necessary as scheduler callbacks may be invoked from other | ||
3135 | * cpus. | ||
3136 | */ | ||
3137 | spin_unlock_irq(&gcwq->lock); | ||
3138 | schedule(); | ||
3139 | spin_lock_irq(&gcwq->lock); | ||
3140 | |||
3141 | /* | ||
3142 | * Sched callbacks are disabled now. Zap nr_running. After | ||
3143 | * this, nr_running stays zero and need_more_worker() and | ||
3144 | * keep_working() are always true as long as the worklist is | ||
3145 | * not empty. | ||
3146 | */ | ||
3147 | atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); | ||
3148 | |||
3149 | spin_unlock_irq(&gcwq->lock); | ||
3150 | del_timer_sync(&gcwq->idle_timer); | ||
3151 | spin_lock_irq(&gcwq->lock); | ||
3152 | |||
3153 | /* | ||
3154 | * We're now in charge. Notify and proceed to drain. We need | ||
3155 | * to keep the gcwq running during the whole CPU down | ||
3156 | * procedure as other cpu hotunplug callbacks may need to | ||
3157 | * flush currently running tasks. | ||
3158 | */ | ||
3159 | gcwq->trustee_state = TRUSTEE_IN_CHARGE; | ||
3160 | wake_up_all(&gcwq->trustee_wait); | ||
3161 | |||
3162 | /* | ||
3163 | * The original cpu is in the process of dying and may go away | ||
3164 | * anytime now. When that happens, we and all workers would | ||
3165 | * be migrated to other cpus. Try draining any left work. We | ||
3166 | * want to get it over with ASAP - spam rescuers, wake up as | ||
3167 | * many idlers as necessary and create new ones till the | ||
3168 | * worklist is empty. Note that if the gcwq is frozen, there | ||
3169 | * may be frozen works in freezeable cwqs. Don't declare | ||
3170 | * completion while frozen. | ||
3171 | */ | ||
3172 | while (gcwq->nr_workers != gcwq->nr_idle || | ||
3173 | gcwq->flags & GCWQ_FREEZING || | ||
3174 | gcwq->trustee_state == TRUSTEE_IN_CHARGE) { | ||
3175 | int nr_works = 0; | ||
3176 | |||
3177 | list_for_each_entry(work, &gcwq->worklist, entry) { | ||
3178 | send_mayday(work); | ||
3179 | nr_works++; | ||
3180 | } | ||
3181 | |||
3182 | list_for_each_entry(worker, &gcwq->idle_list, entry) { | ||
3183 | if (!nr_works--) | ||
3184 | break; | ||
3185 | wake_up_process(worker->task); | ||
3186 | } | ||
3187 | |||
3188 | if (need_to_create_worker(gcwq)) { | ||
3189 | spin_unlock_irq(&gcwq->lock); | ||
3190 | worker = create_worker(gcwq, false); | ||
3191 | spin_lock_irq(&gcwq->lock); | ||
3192 | if (worker) { | ||
3193 | worker->flags |= WORKER_ROGUE; | ||
3194 | start_worker(worker); | ||
3195 | } | ||
3196 | } | ||
3197 | |||
3198 | /* give a breather */ | ||
3199 | if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) | ||
3200 | break; | ||
3201 | } | ||
3202 | |||
3203 | /* | ||
3204 | * Either all works have been scheduled and cpu is down, or | ||
3205 | * cpu down has already been canceled. Wait for and butcher | ||
3206 | * all workers till we're canceled. | ||
3207 | */ | ||
3208 | do { | ||
3209 | rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); | ||
3210 | while (!list_empty(&gcwq->idle_list)) | ||
3211 | destroy_worker(list_first_entry(&gcwq->idle_list, | ||
3212 | struct worker, entry)); | ||
3213 | } while (gcwq->nr_workers && rc >= 0); | ||
3214 | |||
3215 | /* | ||
3216 | * At this point, either draining has completed and no worker | ||
3217 | * is left, or cpu down has been canceled or the cpu is being | ||
3218 | * brought back up. There shouldn't be any idle one left. | ||
3219 | * Tell the remaining busy ones to rebind once it finishes the | ||
3220 | * currently scheduled works by scheduling the rebind_work. | ||
3221 | */ | ||
3222 | WARN_ON(!list_empty(&gcwq->idle_list)); | ||
3223 | |||
3224 | for_each_busy_worker(worker, i, pos, gcwq) { | ||
3225 | struct work_struct *rebind_work = &worker->rebind_work; | ||
3226 | |||
3227 | /* | ||
3228 | * Rebind_work may race with future cpu hotplug | ||
3229 | * operations. Use a separate flag to mark that | ||
3230 | * rebinding is scheduled. | ||
3231 | */ | ||
3232 | worker->flags |= WORKER_REBIND; | ||
3233 | worker->flags &= ~WORKER_ROGUE; | ||
3234 | |||
3235 | /* queue rebind_work, wq doesn't matter, use the default one */ | ||
3236 | if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, | ||
3237 | work_data_bits(rebind_work))) | ||
3238 | continue; | ||
3239 | |||
3240 | debug_work_activate(rebind_work); | ||
3241 | insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, | ||
3242 | worker->scheduled.next, | ||
3243 | work_color_to_flags(WORK_NO_COLOR)); | ||
3244 | } | ||
3245 | |||
3246 | /* relinquish manager role */ | ||
3247 | gcwq->flags &= ~GCWQ_MANAGING_WORKERS; | ||
3248 | |||
3249 | /* notify completion */ | ||
3250 | gcwq->trustee = NULL; | ||
3251 | gcwq->trustee_state = TRUSTEE_DONE; | ||
3252 | wake_up_all(&gcwq->trustee_wait); | ||
3253 | spin_unlock_irq(&gcwq->lock); | ||
3254 | return 0; | ||
3255 | } | ||
3256 | |||
3257 | /** | ||
3258 | * wait_trustee_state - wait for trustee to enter the specified state | ||
3259 | * @gcwq: gcwq the trustee of interest belongs to | ||
3260 | * @state: target state to wait for | ||
3261 | * | ||
3262 | * Wait for the trustee to reach @state. DONE is already matched. | ||
3263 | * | ||
3264 | * CONTEXT: | ||
3265 | * spin_lock_irq(gcwq->lock) which may be released and regrabbed | ||
3266 | * multiple times. To be used by cpu_callback. | ||
3267 | */ | ||
3268 | static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) | ||
3269 | __releases(&gcwq->lock) | ||
3270 | __acquires(&gcwq->lock) | ||
3271 | { | ||
3272 | if (!(gcwq->trustee_state == state || | ||
3273 | gcwq->trustee_state == TRUSTEE_DONE)) { | ||
3274 | spin_unlock_irq(&gcwq->lock); | ||
3275 | __wait_event(gcwq->trustee_wait, | ||
3276 | gcwq->trustee_state == state || | ||
3277 | gcwq->trustee_state == TRUSTEE_DONE); | ||
3278 | spin_lock_irq(&gcwq->lock); | ||
3279 | } | ||
3280 | } | ||
3281 | |||
1072 | static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, | 3282 | static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, |
1073 | unsigned long action, | 3283 | unsigned long action, |
1074 | void *hcpu) | 3284 | void *hcpu) |
1075 | { | 3285 | { |
1076 | unsigned int cpu = (unsigned long)hcpu; | 3286 | unsigned int cpu = (unsigned long)hcpu; |
1077 | struct cpu_workqueue_struct *cwq; | 3287 | struct global_cwq *gcwq = get_gcwq(cpu); |
1078 | struct workqueue_struct *wq; | 3288 | struct task_struct *new_trustee = NULL; |
1079 | int ret = NOTIFY_OK; | 3289 | struct worker *uninitialized_var(new_worker); |
3290 | unsigned long flags; | ||
1080 | 3291 | ||
1081 | action &= ~CPU_TASKS_FROZEN; | 3292 | action &= ~CPU_TASKS_FROZEN; |
1082 | 3293 | ||
1083 | switch (action) { | 3294 | switch (action) { |
3295 | case CPU_DOWN_PREPARE: | ||
3296 | new_trustee = kthread_create(trustee_thread, gcwq, | ||
3297 | "workqueue_trustee/%d\n", cpu); | ||
3298 | if (IS_ERR(new_trustee)) | ||
3299 | return notifier_from_errno(PTR_ERR(new_trustee)); | ||
3300 | kthread_bind(new_trustee, cpu); | ||
3301 | /* fall through */ | ||
1084 | case CPU_UP_PREPARE: | 3302 | case CPU_UP_PREPARE: |
1085 | cpumask_set_cpu(cpu, cpu_populated_map); | 3303 | BUG_ON(gcwq->first_idle); |
1086 | } | 3304 | new_worker = create_worker(gcwq, false); |
1087 | undo: | 3305 | if (!new_worker) { |
1088 | list_for_each_entry(wq, &workqueues, list) { | 3306 | if (new_trustee) |
1089 | cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 3307 | kthread_stop(new_trustee); |
1090 | 3308 | return NOTIFY_BAD; | |
1091 | switch (action) { | ||
1092 | case CPU_UP_PREPARE: | ||
1093 | if (!create_workqueue_thread(cwq, cpu)) | ||
1094 | break; | ||
1095 | printk(KERN_ERR "workqueue [%s] for %i failed\n", | ||
1096 | wq->name, cpu); | ||
1097 | action = CPU_UP_CANCELED; | ||
1098 | ret = NOTIFY_BAD; | ||
1099 | goto undo; | ||
1100 | |||
1101 | case CPU_ONLINE: | ||
1102 | start_workqueue_thread(cwq, cpu); | ||
1103 | break; | ||
1104 | |||
1105 | case CPU_UP_CANCELED: | ||
1106 | start_workqueue_thread(cwq, -1); | ||
1107 | case CPU_POST_DEAD: | ||
1108 | cleanup_workqueue_thread(cwq); | ||
1109 | break; | ||
1110 | } | 3309 | } |
1111 | } | 3310 | } |
1112 | 3311 | ||
3312 | /* some are called w/ irq disabled, don't disturb irq status */ | ||
3313 | spin_lock_irqsave(&gcwq->lock, flags); | ||
3314 | |||
1113 | switch (action) { | 3315 | switch (action) { |
1114 | case CPU_UP_CANCELED: | 3316 | case CPU_DOWN_PREPARE: |
3317 | /* initialize trustee and tell it to acquire the gcwq */ | ||
3318 | BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); | ||
3319 | gcwq->trustee = new_trustee; | ||
3320 | gcwq->trustee_state = TRUSTEE_START; | ||
3321 | wake_up_process(gcwq->trustee); | ||
3322 | wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); | ||
3323 | /* fall through */ | ||
3324 | case CPU_UP_PREPARE: | ||
3325 | BUG_ON(gcwq->first_idle); | ||
3326 | gcwq->first_idle = new_worker; | ||
3327 | break; | ||
3328 | |||
3329 | case CPU_DYING: | ||
3330 | /* | ||
3331 | * Before this, the trustee and all workers except for | ||
3332 | * the ones which are still executing works from | ||
3333 | * before the last CPU down must be on the cpu. After | ||
3334 | * this, they'll all be diasporas. | ||
3335 | */ | ||
3336 | gcwq->flags |= GCWQ_DISASSOCIATED; | ||
3337 | break; | ||
3338 | |||
1115 | case CPU_POST_DEAD: | 3339 | case CPU_POST_DEAD: |
1116 | cpumask_clear_cpu(cpu, cpu_populated_map); | 3340 | gcwq->trustee_state = TRUSTEE_BUTCHER; |
3341 | /* fall through */ | ||
3342 | case CPU_UP_CANCELED: | ||
3343 | destroy_worker(gcwq->first_idle); | ||
3344 | gcwq->first_idle = NULL; | ||
3345 | break; | ||
3346 | |||
3347 | case CPU_DOWN_FAILED: | ||
3348 | case CPU_ONLINE: | ||
3349 | gcwq->flags &= ~GCWQ_DISASSOCIATED; | ||
3350 | if (gcwq->trustee_state != TRUSTEE_DONE) { | ||
3351 | gcwq->trustee_state = TRUSTEE_RELEASE; | ||
3352 | wake_up_process(gcwq->trustee); | ||
3353 | wait_trustee_state(gcwq, TRUSTEE_DONE); | ||
3354 | } | ||
3355 | |||
3356 | /* | ||
3357 | * Trustee is done and there might be no worker left. | ||
3358 | * Put the first_idle in and request a real manager to | ||
3359 | * take a look. | ||
3360 | */ | ||
3361 | spin_unlock_irq(&gcwq->lock); | ||
3362 | kthread_bind(gcwq->first_idle->task, cpu); | ||
3363 | spin_lock_irq(&gcwq->lock); | ||
3364 | gcwq->flags |= GCWQ_MANAGE_WORKERS; | ||
3365 | start_worker(gcwq->first_idle); | ||
3366 | gcwq->first_idle = NULL; | ||
3367 | break; | ||
1117 | } | 3368 | } |
1118 | 3369 | ||
1119 | return ret; | 3370 | spin_unlock_irqrestore(&gcwq->lock, flags); |
3371 | |||
3372 | return notifier_from_errno(0); | ||
1120 | } | 3373 | } |
1121 | 3374 | ||
1122 | #ifdef CONFIG_SMP | 3375 | #ifdef CONFIG_SMP |
@@ -1166,14 +3419,200 @@ long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) | |||
1166 | EXPORT_SYMBOL_GPL(work_on_cpu); | 3419 | EXPORT_SYMBOL_GPL(work_on_cpu); |
1167 | #endif /* CONFIG_SMP */ | 3420 | #endif /* CONFIG_SMP */ |
1168 | 3421 | ||
1169 | void __init init_workqueues(void) | 3422 | #ifdef CONFIG_FREEZER |
3423 | |||
3424 | /** | ||
3425 | * freeze_workqueues_begin - begin freezing workqueues | ||
3426 | * | ||
3427 | * Start freezing workqueues. After this function returns, all | ||
3428 | * freezeable workqueues will queue new works to their frozen_works | ||
3429 | * list instead of gcwq->worklist. | ||
3430 | * | ||
3431 | * CONTEXT: | ||
3432 | * Grabs and releases workqueue_lock and gcwq->lock's. | ||
3433 | */ | ||
3434 | void freeze_workqueues_begin(void) | ||
3435 | { | ||
3436 | unsigned int cpu; | ||
3437 | |||
3438 | spin_lock(&workqueue_lock); | ||
3439 | |||
3440 | BUG_ON(workqueue_freezing); | ||
3441 | workqueue_freezing = true; | ||
3442 | |||
3443 | for_each_gcwq_cpu(cpu) { | ||
3444 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3445 | struct workqueue_struct *wq; | ||
3446 | |||
3447 | spin_lock_irq(&gcwq->lock); | ||
3448 | |||
3449 | BUG_ON(gcwq->flags & GCWQ_FREEZING); | ||
3450 | gcwq->flags |= GCWQ_FREEZING; | ||
3451 | |||
3452 | list_for_each_entry(wq, &workqueues, list) { | ||
3453 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3454 | |||
3455 | if (cwq && wq->flags & WQ_FREEZEABLE) | ||
3456 | cwq->max_active = 0; | ||
3457 | } | ||
3458 | |||
3459 | spin_unlock_irq(&gcwq->lock); | ||
3460 | } | ||
3461 | |||
3462 | spin_unlock(&workqueue_lock); | ||
3463 | } | ||
3464 | |||
3465 | /** | ||
3466 | * freeze_workqueues_busy - are freezeable workqueues still busy? | ||
3467 | * | ||
3468 | * Check whether freezing is complete. This function must be called | ||
3469 | * between freeze_workqueues_begin() and thaw_workqueues(). | ||
3470 | * | ||
3471 | * CONTEXT: | ||
3472 | * Grabs and releases workqueue_lock. | ||
3473 | * | ||
3474 | * RETURNS: | ||
3475 | * %true if some freezeable workqueues are still busy. %false if | ||
3476 | * freezing is complete. | ||
3477 | */ | ||
3478 | bool freeze_workqueues_busy(void) | ||
3479 | { | ||
3480 | unsigned int cpu; | ||
3481 | bool busy = false; | ||
3482 | |||
3483 | spin_lock(&workqueue_lock); | ||
3484 | |||
3485 | BUG_ON(!workqueue_freezing); | ||
3486 | |||
3487 | for_each_gcwq_cpu(cpu) { | ||
3488 | struct workqueue_struct *wq; | ||
3489 | /* | ||
3490 | * nr_active is monotonically decreasing. It's safe | ||
3491 | * to peek without lock. | ||
3492 | */ | ||
3493 | list_for_each_entry(wq, &workqueues, list) { | ||
3494 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3495 | |||
3496 | if (!cwq || !(wq->flags & WQ_FREEZEABLE)) | ||
3497 | continue; | ||
3498 | |||
3499 | BUG_ON(cwq->nr_active < 0); | ||
3500 | if (cwq->nr_active) { | ||
3501 | busy = true; | ||
3502 | goto out_unlock; | ||
3503 | } | ||
3504 | } | ||
3505 | } | ||
3506 | out_unlock: | ||
3507 | spin_unlock(&workqueue_lock); | ||
3508 | return busy; | ||
3509 | } | ||
3510 | |||
3511 | /** | ||
3512 | * thaw_workqueues - thaw workqueues | ||
3513 | * | ||
3514 | * Thaw workqueues. Normal queueing is restored and all collected | ||
3515 | * frozen works are transferred to their respective gcwq worklists. | ||
3516 | * | ||
3517 | * CONTEXT: | ||
3518 | * Grabs and releases workqueue_lock and gcwq->lock's. | ||
3519 | */ | ||
3520 | void thaw_workqueues(void) | ||
3521 | { | ||
3522 | unsigned int cpu; | ||
3523 | |||
3524 | spin_lock(&workqueue_lock); | ||
3525 | |||
3526 | if (!workqueue_freezing) | ||
3527 | goto out_unlock; | ||
3528 | |||
3529 | for_each_gcwq_cpu(cpu) { | ||
3530 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3531 | struct workqueue_struct *wq; | ||
3532 | |||
3533 | spin_lock_irq(&gcwq->lock); | ||
3534 | |||
3535 | BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); | ||
3536 | gcwq->flags &= ~GCWQ_FREEZING; | ||
3537 | |||
3538 | list_for_each_entry(wq, &workqueues, list) { | ||
3539 | struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); | ||
3540 | |||
3541 | if (!cwq || !(wq->flags & WQ_FREEZEABLE)) | ||
3542 | continue; | ||
3543 | |||
3544 | /* restore max_active and repopulate worklist */ | ||
3545 | cwq->max_active = wq->saved_max_active; | ||
3546 | |||
3547 | while (!list_empty(&cwq->delayed_works) && | ||
3548 | cwq->nr_active < cwq->max_active) | ||
3549 | cwq_activate_first_delayed(cwq); | ||
3550 | } | ||
3551 | |||
3552 | wake_up_worker(gcwq); | ||
3553 | |||
3554 | spin_unlock_irq(&gcwq->lock); | ||
3555 | } | ||
3556 | |||
3557 | workqueue_freezing = false; | ||
3558 | out_unlock: | ||
3559 | spin_unlock(&workqueue_lock); | ||
3560 | } | ||
3561 | #endif /* CONFIG_FREEZER */ | ||
3562 | |||
3563 | static int __init init_workqueues(void) | ||
1170 | { | 3564 | { |
1171 | alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL); | 3565 | unsigned int cpu; |
3566 | int i; | ||
3567 | |||
3568 | cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); | ||
3569 | |||
3570 | /* initialize gcwqs */ | ||
3571 | for_each_gcwq_cpu(cpu) { | ||
3572 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3573 | |||
3574 | spin_lock_init(&gcwq->lock); | ||
3575 | INIT_LIST_HEAD(&gcwq->worklist); | ||
3576 | gcwq->cpu = cpu; | ||
3577 | gcwq->flags |= GCWQ_DISASSOCIATED; | ||
3578 | |||
3579 | INIT_LIST_HEAD(&gcwq->idle_list); | ||
3580 | for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) | ||
3581 | INIT_HLIST_HEAD(&gcwq->busy_hash[i]); | ||
3582 | |||
3583 | init_timer_deferrable(&gcwq->idle_timer); | ||
3584 | gcwq->idle_timer.function = idle_worker_timeout; | ||
3585 | gcwq->idle_timer.data = (unsigned long)gcwq; | ||
1172 | 3586 | ||
1173 | cpumask_copy(cpu_populated_map, cpu_online_mask); | 3587 | setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, |
1174 | singlethread_cpu = cpumask_first(cpu_possible_mask); | 3588 | (unsigned long)gcwq); |
1175 | cpu_singlethread_map = cpumask_of(singlethread_cpu); | 3589 | |
1176 | hotcpu_notifier(workqueue_cpu_callback, 0); | 3590 | ida_init(&gcwq->worker_ida); |
1177 | keventd_wq = create_workqueue("events"); | 3591 | |
1178 | BUG_ON(!keventd_wq); | 3592 | gcwq->trustee_state = TRUSTEE_DONE; |
3593 | init_waitqueue_head(&gcwq->trustee_wait); | ||
3594 | } | ||
3595 | |||
3596 | /* create the initial worker */ | ||
3597 | for_each_online_gcwq_cpu(cpu) { | ||
3598 | struct global_cwq *gcwq = get_gcwq(cpu); | ||
3599 | struct worker *worker; | ||
3600 | |||
3601 | if (cpu != WORK_CPU_UNBOUND) | ||
3602 | gcwq->flags &= ~GCWQ_DISASSOCIATED; | ||
3603 | worker = create_worker(gcwq, true); | ||
3604 | BUG_ON(!worker); | ||
3605 | spin_lock_irq(&gcwq->lock); | ||
3606 | start_worker(worker); | ||
3607 | spin_unlock_irq(&gcwq->lock); | ||
3608 | } | ||
3609 | |||
3610 | system_wq = alloc_workqueue("events", 0, 0); | ||
3611 | system_long_wq = alloc_workqueue("events_long", 0, 0); | ||
3612 | system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); | ||
3613 | system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, | ||
3614 | WQ_UNBOUND_MAX_ACTIVE); | ||
3615 | BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq); | ||
3616 | return 0; | ||
1179 | } | 3617 | } |
3618 | early_initcall(init_workqueues); | ||