diff options
Diffstat (limited to 'kernel/timer.c')
-rw-r--r-- | kernel/timer.c | 1611 |
1 files changed, 1611 insertions, 0 deletions
diff --git a/kernel/timer.c b/kernel/timer.c new file mode 100644 index 000000000000..ecb3d67c0e14 --- /dev/null +++ b/kernel/timer.c | |||
@@ -0,0 +1,1611 @@ | |||
1 | /* | ||
2 | * linux/kernel/timer.c | ||
3 | * | ||
4 | * Kernel internal timers, kernel timekeeping, basic process system calls | ||
5 | * | ||
6 | * Copyright (C) 1991, 1992 Linus Torvalds | ||
7 | * | ||
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | ||
9 | * | ||
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | ||
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | ||
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | ||
13 | * serialize accesses to xtime/lost_ticks). | ||
14 | * Copyright (C) 1998 Andrea Arcangeli | ||
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | ||
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | ||
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | ||
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | ||
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | ||
20 | */ | ||
21 | |||
22 | #include <linux/kernel_stat.h> | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/interrupt.h> | ||
25 | #include <linux/percpu.h> | ||
26 | #include <linux/init.h> | ||
27 | #include <linux/mm.h> | ||
28 | #include <linux/swap.h> | ||
29 | #include <linux/notifier.h> | ||
30 | #include <linux/thread_info.h> | ||
31 | #include <linux/time.h> | ||
32 | #include <linux/jiffies.h> | ||
33 | #include <linux/posix-timers.h> | ||
34 | #include <linux/cpu.h> | ||
35 | #include <linux/syscalls.h> | ||
36 | |||
37 | #include <asm/uaccess.h> | ||
38 | #include <asm/unistd.h> | ||
39 | #include <asm/div64.h> | ||
40 | #include <asm/timex.h> | ||
41 | #include <asm/io.h> | ||
42 | |||
43 | #ifdef CONFIG_TIME_INTERPOLATION | ||
44 | static void time_interpolator_update(long delta_nsec); | ||
45 | #else | ||
46 | #define time_interpolator_update(x) | ||
47 | #endif | ||
48 | |||
49 | /* | ||
50 | * per-CPU timer vector definitions: | ||
51 | */ | ||
52 | |||
53 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | ||
54 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | ||
55 | #define TVN_SIZE (1 << TVN_BITS) | ||
56 | #define TVR_SIZE (1 << TVR_BITS) | ||
57 | #define TVN_MASK (TVN_SIZE - 1) | ||
58 | #define TVR_MASK (TVR_SIZE - 1) | ||
59 | |||
60 | typedef struct tvec_s { | ||
61 | struct list_head vec[TVN_SIZE]; | ||
62 | } tvec_t; | ||
63 | |||
64 | typedef struct tvec_root_s { | ||
65 | struct list_head vec[TVR_SIZE]; | ||
66 | } tvec_root_t; | ||
67 | |||
68 | struct tvec_t_base_s { | ||
69 | spinlock_t lock; | ||
70 | unsigned long timer_jiffies; | ||
71 | struct timer_list *running_timer; | ||
72 | tvec_root_t tv1; | ||
73 | tvec_t tv2; | ||
74 | tvec_t tv3; | ||
75 | tvec_t tv4; | ||
76 | tvec_t tv5; | ||
77 | } ____cacheline_aligned_in_smp; | ||
78 | |||
79 | typedef struct tvec_t_base_s tvec_base_t; | ||
80 | |||
81 | static inline void set_running_timer(tvec_base_t *base, | ||
82 | struct timer_list *timer) | ||
83 | { | ||
84 | #ifdef CONFIG_SMP | ||
85 | base->running_timer = timer; | ||
86 | #endif | ||
87 | } | ||
88 | |||
89 | /* Fake initialization */ | ||
90 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases) = { SPIN_LOCK_UNLOCKED }; | ||
91 | |||
92 | static void check_timer_failed(struct timer_list *timer) | ||
93 | { | ||
94 | static int whine_count; | ||
95 | if (whine_count < 16) { | ||
96 | whine_count++; | ||
97 | printk("Uninitialised timer!\n"); | ||
98 | printk("This is just a warning. Your computer is OK\n"); | ||
99 | printk("function=0x%p, data=0x%lx\n", | ||
100 | timer->function, timer->data); | ||
101 | dump_stack(); | ||
102 | } | ||
103 | /* | ||
104 | * Now fix it up | ||
105 | */ | ||
106 | spin_lock_init(&timer->lock); | ||
107 | timer->magic = TIMER_MAGIC; | ||
108 | } | ||
109 | |||
110 | static inline void check_timer(struct timer_list *timer) | ||
111 | { | ||
112 | if (timer->magic != TIMER_MAGIC) | ||
113 | check_timer_failed(timer); | ||
114 | } | ||
115 | |||
116 | |||
117 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | ||
118 | { | ||
119 | unsigned long expires = timer->expires; | ||
120 | unsigned long idx = expires - base->timer_jiffies; | ||
121 | struct list_head *vec; | ||
122 | |||
123 | if (idx < TVR_SIZE) { | ||
124 | int i = expires & TVR_MASK; | ||
125 | vec = base->tv1.vec + i; | ||
126 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | ||
127 | int i = (expires >> TVR_BITS) & TVN_MASK; | ||
128 | vec = base->tv2.vec + i; | ||
129 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | ||
130 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | ||
131 | vec = base->tv3.vec + i; | ||
132 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | ||
133 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | ||
134 | vec = base->tv4.vec + i; | ||
135 | } else if ((signed long) idx < 0) { | ||
136 | /* | ||
137 | * Can happen if you add a timer with expires == jiffies, | ||
138 | * or you set a timer to go off in the past | ||
139 | */ | ||
140 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | ||
141 | } else { | ||
142 | int i; | ||
143 | /* If the timeout is larger than 0xffffffff on 64-bit | ||
144 | * architectures then we use the maximum timeout: | ||
145 | */ | ||
146 | if (idx > 0xffffffffUL) { | ||
147 | idx = 0xffffffffUL; | ||
148 | expires = idx + base->timer_jiffies; | ||
149 | } | ||
150 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | ||
151 | vec = base->tv5.vec + i; | ||
152 | } | ||
153 | /* | ||
154 | * Timers are FIFO: | ||
155 | */ | ||
156 | list_add_tail(&timer->entry, vec); | ||
157 | } | ||
158 | |||
159 | int __mod_timer(struct timer_list *timer, unsigned long expires) | ||
160 | { | ||
161 | tvec_base_t *old_base, *new_base; | ||
162 | unsigned long flags; | ||
163 | int ret = 0; | ||
164 | |||
165 | BUG_ON(!timer->function); | ||
166 | |||
167 | check_timer(timer); | ||
168 | |||
169 | spin_lock_irqsave(&timer->lock, flags); | ||
170 | new_base = &__get_cpu_var(tvec_bases); | ||
171 | repeat: | ||
172 | old_base = timer->base; | ||
173 | |||
174 | /* | ||
175 | * Prevent deadlocks via ordering by old_base < new_base. | ||
176 | */ | ||
177 | if (old_base && (new_base != old_base)) { | ||
178 | if (old_base < new_base) { | ||
179 | spin_lock(&new_base->lock); | ||
180 | spin_lock(&old_base->lock); | ||
181 | } else { | ||
182 | spin_lock(&old_base->lock); | ||
183 | spin_lock(&new_base->lock); | ||
184 | } | ||
185 | /* | ||
186 | * The timer base might have been cancelled while we were | ||
187 | * trying to take the lock(s): | ||
188 | */ | ||
189 | if (timer->base != old_base) { | ||
190 | spin_unlock(&new_base->lock); | ||
191 | spin_unlock(&old_base->lock); | ||
192 | goto repeat; | ||
193 | } | ||
194 | } else { | ||
195 | spin_lock(&new_base->lock); | ||
196 | if (timer->base != old_base) { | ||
197 | spin_unlock(&new_base->lock); | ||
198 | goto repeat; | ||
199 | } | ||
200 | } | ||
201 | |||
202 | /* | ||
203 | * Delete the previous timeout (if there was any), and install | ||
204 | * the new one: | ||
205 | */ | ||
206 | if (old_base) { | ||
207 | list_del(&timer->entry); | ||
208 | ret = 1; | ||
209 | } | ||
210 | timer->expires = expires; | ||
211 | internal_add_timer(new_base, timer); | ||
212 | timer->base = new_base; | ||
213 | |||
214 | if (old_base && (new_base != old_base)) | ||
215 | spin_unlock(&old_base->lock); | ||
216 | spin_unlock(&new_base->lock); | ||
217 | spin_unlock_irqrestore(&timer->lock, flags); | ||
218 | |||
219 | return ret; | ||
220 | } | ||
221 | |||
222 | EXPORT_SYMBOL(__mod_timer); | ||
223 | |||
224 | /*** | ||
225 | * add_timer_on - start a timer on a particular CPU | ||
226 | * @timer: the timer to be added | ||
227 | * @cpu: the CPU to start it on | ||
228 | * | ||
229 | * This is not very scalable on SMP. Double adds are not possible. | ||
230 | */ | ||
231 | void add_timer_on(struct timer_list *timer, int cpu) | ||
232 | { | ||
233 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); | ||
234 | unsigned long flags; | ||
235 | |||
236 | BUG_ON(timer_pending(timer) || !timer->function); | ||
237 | |||
238 | check_timer(timer); | ||
239 | |||
240 | spin_lock_irqsave(&base->lock, flags); | ||
241 | internal_add_timer(base, timer); | ||
242 | timer->base = base; | ||
243 | spin_unlock_irqrestore(&base->lock, flags); | ||
244 | } | ||
245 | |||
246 | |||
247 | /*** | ||
248 | * mod_timer - modify a timer's timeout | ||
249 | * @timer: the timer to be modified | ||
250 | * | ||
251 | * mod_timer is a more efficient way to update the expire field of an | ||
252 | * active timer (if the timer is inactive it will be activated) | ||
253 | * | ||
254 | * mod_timer(timer, expires) is equivalent to: | ||
255 | * | ||
256 | * del_timer(timer); timer->expires = expires; add_timer(timer); | ||
257 | * | ||
258 | * Note that if there are multiple unserialized concurrent users of the | ||
259 | * same timer, then mod_timer() is the only safe way to modify the timeout, | ||
260 | * since add_timer() cannot modify an already running timer. | ||
261 | * | ||
262 | * The function returns whether it has modified a pending timer or not. | ||
263 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | ||
264 | * active timer returns 1.) | ||
265 | */ | ||
266 | int mod_timer(struct timer_list *timer, unsigned long expires) | ||
267 | { | ||
268 | BUG_ON(!timer->function); | ||
269 | |||
270 | check_timer(timer); | ||
271 | |||
272 | /* | ||
273 | * This is a common optimization triggered by the | ||
274 | * networking code - if the timer is re-modified | ||
275 | * to be the same thing then just return: | ||
276 | */ | ||
277 | if (timer->expires == expires && timer_pending(timer)) | ||
278 | return 1; | ||
279 | |||
280 | return __mod_timer(timer, expires); | ||
281 | } | ||
282 | |||
283 | EXPORT_SYMBOL(mod_timer); | ||
284 | |||
285 | /*** | ||
286 | * del_timer - deactive a timer. | ||
287 | * @timer: the timer to be deactivated | ||
288 | * | ||
289 | * del_timer() deactivates a timer - this works on both active and inactive | ||
290 | * timers. | ||
291 | * | ||
292 | * The function returns whether it has deactivated a pending timer or not. | ||
293 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | ||
294 | * active timer returns 1.) | ||
295 | */ | ||
296 | int del_timer(struct timer_list *timer) | ||
297 | { | ||
298 | unsigned long flags; | ||
299 | tvec_base_t *base; | ||
300 | |||
301 | check_timer(timer); | ||
302 | |||
303 | repeat: | ||
304 | base = timer->base; | ||
305 | if (!base) | ||
306 | return 0; | ||
307 | spin_lock_irqsave(&base->lock, flags); | ||
308 | if (base != timer->base) { | ||
309 | spin_unlock_irqrestore(&base->lock, flags); | ||
310 | goto repeat; | ||
311 | } | ||
312 | list_del(&timer->entry); | ||
313 | /* Need to make sure that anybody who sees a NULL base also sees the list ops */ | ||
314 | smp_wmb(); | ||
315 | timer->base = NULL; | ||
316 | spin_unlock_irqrestore(&base->lock, flags); | ||
317 | |||
318 | return 1; | ||
319 | } | ||
320 | |||
321 | EXPORT_SYMBOL(del_timer); | ||
322 | |||
323 | #ifdef CONFIG_SMP | ||
324 | /*** | ||
325 | * del_timer_sync - deactivate a timer and wait for the handler to finish. | ||
326 | * @timer: the timer to be deactivated | ||
327 | * | ||
328 | * This function only differs from del_timer() on SMP: besides deactivating | ||
329 | * the timer it also makes sure the handler has finished executing on other | ||
330 | * CPUs. | ||
331 | * | ||
332 | * Synchronization rules: callers must prevent restarting of the timer, | ||
333 | * otherwise this function is meaningless. It must not be called from | ||
334 | * interrupt contexts. The caller must not hold locks which would prevent | ||
335 | * completion of the timer's handler. Upon exit the timer is not queued and | ||
336 | * the handler is not running on any CPU. | ||
337 | * | ||
338 | * The function returns whether it has deactivated a pending timer or not. | ||
339 | * | ||
340 | * del_timer_sync() is slow and complicated because it copes with timer | ||
341 | * handlers which re-arm the timer (periodic timers). If the timer handler | ||
342 | * is known to not do this (a single shot timer) then use | ||
343 | * del_singleshot_timer_sync() instead. | ||
344 | */ | ||
345 | int del_timer_sync(struct timer_list *timer) | ||
346 | { | ||
347 | tvec_base_t *base; | ||
348 | int i, ret = 0; | ||
349 | |||
350 | check_timer(timer); | ||
351 | |||
352 | del_again: | ||
353 | ret += del_timer(timer); | ||
354 | |||
355 | for_each_online_cpu(i) { | ||
356 | base = &per_cpu(tvec_bases, i); | ||
357 | if (base->running_timer == timer) { | ||
358 | while (base->running_timer == timer) { | ||
359 | cpu_relax(); | ||
360 | preempt_check_resched(); | ||
361 | } | ||
362 | break; | ||
363 | } | ||
364 | } | ||
365 | smp_rmb(); | ||
366 | if (timer_pending(timer)) | ||
367 | goto del_again; | ||
368 | |||
369 | return ret; | ||
370 | } | ||
371 | EXPORT_SYMBOL(del_timer_sync); | ||
372 | |||
373 | /*** | ||
374 | * del_singleshot_timer_sync - deactivate a non-recursive timer | ||
375 | * @timer: the timer to be deactivated | ||
376 | * | ||
377 | * This function is an optimization of del_timer_sync for the case where the | ||
378 | * caller can guarantee the timer does not reschedule itself in its timer | ||
379 | * function. | ||
380 | * | ||
381 | * Synchronization rules: callers must prevent restarting of the timer, | ||
382 | * otherwise this function is meaningless. It must not be called from | ||
383 | * interrupt contexts. The caller must not hold locks which wold prevent | ||
384 | * completion of the timer's handler. Upon exit the timer is not queued and | ||
385 | * the handler is not running on any CPU. | ||
386 | * | ||
387 | * The function returns whether it has deactivated a pending timer or not. | ||
388 | */ | ||
389 | int del_singleshot_timer_sync(struct timer_list *timer) | ||
390 | { | ||
391 | int ret = del_timer(timer); | ||
392 | |||
393 | if (!ret) { | ||
394 | ret = del_timer_sync(timer); | ||
395 | BUG_ON(ret); | ||
396 | } | ||
397 | |||
398 | return ret; | ||
399 | } | ||
400 | EXPORT_SYMBOL(del_singleshot_timer_sync); | ||
401 | #endif | ||
402 | |||
403 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | ||
404 | { | ||
405 | /* cascade all the timers from tv up one level */ | ||
406 | struct list_head *head, *curr; | ||
407 | |||
408 | head = tv->vec + index; | ||
409 | curr = head->next; | ||
410 | /* | ||
411 | * We are removing _all_ timers from the list, so we don't have to | ||
412 | * detach them individually, just clear the list afterwards. | ||
413 | */ | ||
414 | while (curr != head) { | ||
415 | struct timer_list *tmp; | ||
416 | |||
417 | tmp = list_entry(curr, struct timer_list, entry); | ||
418 | BUG_ON(tmp->base != base); | ||
419 | curr = curr->next; | ||
420 | internal_add_timer(base, tmp); | ||
421 | } | ||
422 | INIT_LIST_HEAD(head); | ||
423 | |||
424 | return index; | ||
425 | } | ||
426 | |||
427 | /*** | ||
428 | * __run_timers - run all expired timers (if any) on this CPU. | ||
429 | * @base: the timer vector to be processed. | ||
430 | * | ||
431 | * This function cascades all vectors and executes all expired timer | ||
432 | * vectors. | ||
433 | */ | ||
434 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | ||
435 | |||
436 | static inline void __run_timers(tvec_base_t *base) | ||
437 | { | ||
438 | struct timer_list *timer; | ||
439 | |||
440 | spin_lock_irq(&base->lock); | ||
441 | while (time_after_eq(jiffies, base->timer_jiffies)) { | ||
442 | struct list_head work_list = LIST_HEAD_INIT(work_list); | ||
443 | struct list_head *head = &work_list; | ||
444 | int index = base->timer_jiffies & TVR_MASK; | ||
445 | |||
446 | /* | ||
447 | * Cascade timers: | ||
448 | */ | ||
449 | if (!index && | ||
450 | (!cascade(base, &base->tv2, INDEX(0))) && | ||
451 | (!cascade(base, &base->tv3, INDEX(1))) && | ||
452 | !cascade(base, &base->tv4, INDEX(2))) | ||
453 | cascade(base, &base->tv5, INDEX(3)); | ||
454 | ++base->timer_jiffies; | ||
455 | list_splice_init(base->tv1.vec + index, &work_list); | ||
456 | repeat: | ||
457 | if (!list_empty(head)) { | ||
458 | void (*fn)(unsigned long); | ||
459 | unsigned long data; | ||
460 | |||
461 | timer = list_entry(head->next,struct timer_list,entry); | ||
462 | fn = timer->function; | ||
463 | data = timer->data; | ||
464 | |||
465 | list_del(&timer->entry); | ||
466 | set_running_timer(base, timer); | ||
467 | smp_wmb(); | ||
468 | timer->base = NULL; | ||
469 | spin_unlock_irq(&base->lock); | ||
470 | { | ||
471 | u32 preempt_count = preempt_count(); | ||
472 | fn(data); | ||
473 | if (preempt_count != preempt_count()) { | ||
474 | printk("huh, entered %p with %08x, exited with %08x?\n", fn, preempt_count, preempt_count()); | ||
475 | BUG(); | ||
476 | } | ||
477 | } | ||
478 | spin_lock_irq(&base->lock); | ||
479 | goto repeat; | ||
480 | } | ||
481 | } | ||
482 | set_running_timer(base, NULL); | ||
483 | spin_unlock_irq(&base->lock); | ||
484 | } | ||
485 | |||
486 | #ifdef CONFIG_NO_IDLE_HZ | ||
487 | /* | ||
488 | * Find out when the next timer event is due to happen. This | ||
489 | * is used on S/390 to stop all activity when a cpus is idle. | ||
490 | * This functions needs to be called disabled. | ||
491 | */ | ||
492 | unsigned long next_timer_interrupt(void) | ||
493 | { | ||
494 | tvec_base_t *base; | ||
495 | struct list_head *list; | ||
496 | struct timer_list *nte; | ||
497 | unsigned long expires; | ||
498 | tvec_t *varray[4]; | ||
499 | int i, j; | ||
500 | |||
501 | base = &__get_cpu_var(tvec_bases); | ||
502 | spin_lock(&base->lock); | ||
503 | expires = base->timer_jiffies + (LONG_MAX >> 1); | ||
504 | list = 0; | ||
505 | |||
506 | /* Look for timer events in tv1. */ | ||
507 | j = base->timer_jiffies & TVR_MASK; | ||
508 | do { | ||
509 | list_for_each_entry(nte, base->tv1.vec + j, entry) { | ||
510 | expires = nte->expires; | ||
511 | if (j < (base->timer_jiffies & TVR_MASK)) | ||
512 | list = base->tv2.vec + (INDEX(0)); | ||
513 | goto found; | ||
514 | } | ||
515 | j = (j + 1) & TVR_MASK; | ||
516 | } while (j != (base->timer_jiffies & TVR_MASK)); | ||
517 | |||
518 | /* Check tv2-tv5. */ | ||
519 | varray[0] = &base->tv2; | ||
520 | varray[1] = &base->tv3; | ||
521 | varray[2] = &base->tv4; | ||
522 | varray[3] = &base->tv5; | ||
523 | for (i = 0; i < 4; i++) { | ||
524 | j = INDEX(i); | ||
525 | do { | ||
526 | if (list_empty(varray[i]->vec + j)) { | ||
527 | j = (j + 1) & TVN_MASK; | ||
528 | continue; | ||
529 | } | ||
530 | list_for_each_entry(nte, varray[i]->vec + j, entry) | ||
531 | if (time_before(nte->expires, expires)) | ||
532 | expires = nte->expires; | ||
533 | if (j < (INDEX(i)) && i < 3) | ||
534 | list = varray[i + 1]->vec + (INDEX(i + 1)); | ||
535 | goto found; | ||
536 | } while (j != (INDEX(i))); | ||
537 | } | ||
538 | found: | ||
539 | if (list) { | ||
540 | /* | ||
541 | * The search wrapped. We need to look at the next list | ||
542 | * from next tv element that would cascade into tv element | ||
543 | * where we found the timer element. | ||
544 | */ | ||
545 | list_for_each_entry(nte, list, entry) { | ||
546 | if (time_before(nte->expires, expires)) | ||
547 | expires = nte->expires; | ||
548 | } | ||
549 | } | ||
550 | spin_unlock(&base->lock); | ||
551 | return expires; | ||
552 | } | ||
553 | #endif | ||
554 | |||
555 | /******************************************************************/ | ||
556 | |||
557 | /* | ||
558 | * Timekeeping variables | ||
559 | */ | ||
560 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | ||
561 | unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ | ||
562 | |||
563 | /* | ||
564 | * The current time | ||
565 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | ||
566 | * for sub jiffie times) to get to monotonic time. Monotonic is pegged | ||
567 | * at zero at system boot time, so wall_to_monotonic will be negative, | ||
568 | * however, we will ALWAYS keep the tv_nsec part positive so we can use | ||
569 | * the usual normalization. | ||
570 | */ | ||
571 | struct timespec xtime __attribute__ ((aligned (16))); | ||
572 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | ||
573 | |||
574 | EXPORT_SYMBOL(xtime); | ||
575 | |||
576 | /* Don't completely fail for HZ > 500. */ | ||
577 | int tickadj = 500/HZ ? : 1; /* microsecs */ | ||
578 | |||
579 | |||
580 | /* | ||
581 | * phase-lock loop variables | ||
582 | */ | ||
583 | /* TIME_ERROR prevents overwriting the CMOS clock */ | ||
584 | int time_state = TIME_OK; /* clock synchronization status */ | ||
585 | int time_status = STA_UNSYNC; /* clock status bits */ | ||
586 | long time_offset; /* time adjustment (us) */ | ||
587 | long time_constant = 2; /* pll time constant */ | ||
588 | long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ | ||
589 | long time_precision = 1; /* clock precision (us) */ | ||
590 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | ||
591 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | ||
592 | static long time_phase; /* phase offset (scaled us) */ | ||
593 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | ||
594 | /* frequency offset (scaled ppm)*/ | ||
595 | static long time_adj; /* tick adjust (scaled 1 / HZ) */ | ||
596 | long time_reftime; /* time at last adjustment (s) */ | ||
597 | long time_adjust; | ||
598 | long time_next_adjust; | ||
599 | |||
600 | /* | ||
601 | * this routine handles the overflow of the microsecond field | ||
602 | * | ||
603 | * The tricky bits of code to handle the accurate clock support | ||
604 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | ||
605 | * They were originally developed for SUN and DEC kernels. | ||
606 | * All the kudos should go to Dave for this stuff. | ||
607 | * | ||
608 | */ | ||
609 | static void second_overflow(void) | ||
610 | { | ||
611 | long ltemp; | ||
612 | |||
613 | /* Bump the maxerror field */ | ||
614 | time_maxerror += time_tolerance >> SHIFT_USEC; | ||
615 | if ( time_maxerror > NTP_PHASE_LIMIT ) { | ||
616 | time_maxerror = NTP_PHASE_LIMIT; | ||
617 | time_status |= STA_UNSYNC; | ||
618 | } | ||
619 | |||
620 | /* | ||
621 | * Leap second processing. If in leap-insert state at | ||
622 | * the end of the day, the system clock is set back one | ||
623 | * second; if in leap-delete state, the system clock is | ||
624 | * set ahead one second. The microtime() routine or | ||
625 | * external clock driver will insure that reported time | ||
626 | * is always monotonic. The ugly divides should be | ||
627 | * replaced. | ||
628 | */ | ||
629 | switch (time_state) { | ||
630 | |||
631 | case TIME_OK: | ||
632 | if (time_status & STA_INS) | ||
633 | time_state = TIME_INS; | ||
634 | else if (time_status & STA_DEL) | ||
635 | time_state = TIME_DEL; | ||
636 | break; | ||
637 | |||
638 | case TIME_INS: | ||
639 | if (xtime.tv_sec % 86400 == 0) { | ||
640 | xtime.tv_sec--; | ||
641 | wall_to_monotonic.tv_sec++; | ||
642 | /* The timer interpolator will make time change gradually instead | ||
643 | * of an immediate jump by one second. | ||
644 | */ | ||
645 | time_interpolator_update(-NSEC_PER_SEC); | ||
646 | time_state = TIME_OOP; | ||
647 | clock_was_set(); | ||
648 | printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n"); | ||
649 | } | ||
650 | break; | ||
651 | |||
652 | case TIME_DEL: | ||
653 | if ((xtime.tv_sec + 1) % 86400 == 0) { | ||
654 | xtime.tv_sec++; | ||
655 | wall_to_monotonic.tv_sec--; | ||
656 | /* Use of time interpolator for a gradual change of time */ | ||
657 | time_interpolator_update(NSEC_PER_SEC); | ||
658 | time_state = TIME_WAIT; | ||
659 | clock_was_set(); | ||
660 | printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n"); | ||
661 | } | ||
662 | break; | ||
663 | |||
664 | case TIME_OOP: | ||
665 | time_state = TIME_WAIT; | ||
666 | break; | ||
667 | |||
668 | case TIME_WAIT: | ||
669 | if (!(time_status & (STA_INS | STA_DEL))) | ||
670 | time_state = TIME_OK; | ||
671 | } | ||
672 | |||
673 | /* | ||
674 | * Compute the phase adjustment for the next second. In | ||
675 | * PLL mode, the offset is reduced by a fixed factor | ||
676 | * times the time constant. In FLL mode the offset is | ||
677 | * used directly. In either mode, the maximum phase | ||
678 | * adjustment for each second is clamped so as to spread | ||
679 | * the adjustment over not more than the number of | ||
680 | * seconds between updates. | ||
681 | */ | ||
682 | if (time_offset < 0) { | ||
683 | ltemp = -time_offset; | ||
684 | if (!(time_status & STA_FLL)) | ||
685 | ltemp >>= SHIFT_KG + time_constant; | ||
686 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) | ||
687 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; | ||
688 | time_offset += ltemp; | ||
689 | time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | ||
690 | } else { | ||
691 | ltemp = time_offset; | ||
692 | if (!(time_status & STA_FLL)) | ||
693 | ltemp >>= SHIFT_KG + time_constant; | ||
694 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) | ||
695 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; | ||
696 | time_offset -= ltemp; | ||
697 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | ||
698 | } | ||
699 | |||
700 | /* | ||
701 | * Compute the frequency estimate and additional phase | ||
702 | * adjustment due to frequency error for the next | ||
703 | * second. When the PPS signal is engaged, gnaw on the | ||
704 | * watchdog counter and update the frequency computed by | ||
705 | * the pll and the PPS signal. | ||
706 | */ | ||
707 | pps_valid++; | ||
708 | if (pps_valid == PPS_VALID) { /* PPS signal lost */ | ||
709 | pps_jitter = MAXTIME; | ||
710 | pps_stabil = MAXFREQ; | ||
711 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | ||
712 | STA_PPSWANDER | STA_PPSERROR); | ||
713 | } | ||
714 | ltemp = time_freq + pps_freq; | ||
715 | if (ltemp < 0) | ||
716 | time_adj -= -ltemp >> | ||
717 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); | ||
718 | else | ||
719 | time_adj += ltemp >> | ||
720 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); | ||
721 | |||
722 | #if HZ == 100 | ||
723 | /* Compensate for (HZ==100) != (1 << SHIFT_HZ). | ||
724 | * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14) | ||
725 | */ | ||
726 | if (time_adj < 0) | ||
727 | time_adj -= (-time_adj >> 2) + (-time_adj >> 5); | ||
728 | else | ||
729 | time_adj += (time_adj >> 2) + (time_adj >> 5); | ||
730 | #endif | ||
731 | #if HZ == 1000 | ||
732 | /* Compensate for (HZ==1000) != (1 << SHIFT_HZ). | ||
733 | * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | ||
734 | */ | ||
735 | if (time_adj < 0) | ||
736 | time_adj -= (-time_adj >> 6) + (-time_adj >> 7); | ||
737 | else | ||
738 | time_adj += (time_adj >> 6) + (time_adj >> 7); | ||
739 | #endif | ||
740 | } | ||
741 | |||
742 | /* in the NTP reference this is called "hardclock()" */ | ||
743 | static void update_wall_time_one_tick(void) | ||
744 | { | ||
745 | long time_adjust_step, delta_nsec; | ||
746 | |||
747 | if ( (time_adjust_step = time_adjust) != 0 ) { | ||
748 | /* We are doing an adjtime thing. | ||
749 | * | ||
750 | * Prepare time_adjust_step to be within bounds. | ||
751 | * Note that a positive time_adjust means we want the clock | ||
752 | * to run faster. | ||
753 | * | ||
754 | * Limit the amount of the step to be in the range | ||
755 | * -tickadj .. +tickadj | ||
756 | */ | ||
757 | if (time_adjust > tickadj) | ||
758 | time_adjust_step = tickadj; | ||
759 | else if (time_adjust < -tickadj) | ||
760 | time_adjust_step = -tickadj; | ||
761 | |||
762 | /* Reduce by this step the amount of time left */ | ||
763 | time_adjust -= time_adjust_step; | ||
764 | } | ||
765 | delta_nsec = tick_nsec + time_adjust_step * 1000; | ||
766 | /* | ||
767 | * Advance the phase, once it gets to one microsecond, then | ||
768 | * advance the tick more. | ||
769 | */ | ||
770 | time_phase += time_adj; | ||
771 | if (time_phase <= -FINENSEC) { | ||
772 | long ltemp = -time_phase >> (SHIFT_SCALE - 10); | ||
773 | time_phase += ltemp << (SHIFT_SCALE - 10); | ||
774 | delta_nsec -= ltemp; | ||
775 | } | ||
776 | else if (time_phase >= FINENSEC) { | ||
777 | long ltemp = time_phase >> (SHIFT_SCALE - 10); | ||
778 | time_phase -= ltemp << (SHIFT_SCALE - 10); | ||
779 | delta_nsec += ltemp; | ||
780 | } | ||
781 | xtime.tv_nsec += delta_nsec; | ||
782 | time_interpolator_update(delta_nsec); | ||
783 | |||
784 | /* Changes by adjtime() do not take effect till next tick. */ | ||
785 | if (time_next_adjust != 0) { | ||
786 | time_adjust = time_next_adjust; | ||
787 | time_next_adjust = 0; | ||
788 | } | ||
789 | } | ||
790 | |||
791 | /* | ||
792 | * Using a loop looks inefficient, but "ticks" is | ||
793 | * usually just one (we shouldn't be losing ticks, | ||
794 | * we're doing this this way mainly for interrupt | ||
795 | * latency reasons, not because we think we'll | ||
796 | * have lots of lost timer ticks | ||
797 | */ | ||
798 | static void update_wall_time(unsigned long ticks) | ||
799 | { | ||
800 | do { | ||
801 | ticks--; | ||
802 | update_wall_time_one_tick(); | ||
803 | if (xtime.tv_nsec >= 1000000000) { | ||
804 | xtime.tv_nsec -= 1000000000; | ||
805 | xtime.tv_sec++; | ||
806 | second_overflow(); | ||
807 | } | ||
808 | } while (ticks); | ||
809 | } | ||
810 | |||
811 | /* | ||
812 | * Called from the timer interrupt handler to charge one tick to the current | ||
813 | * process. user_tick is 1 if the tick is user time, 0 for system. | ||
814 | */ | ||
815 | void update_process_times(int user_tick) | ||
816 | { | ||
817 | struct task_struct *p = current; | ||
818 | int cpu = smp_processor_id(); | ||
819 | |||
820 | /* Note: this timer irq context must be accounted for as well. */ | ||
821 | if (user_tick) | ||
822 | account_user_time(p, jiffies_to_cputime(1)); | ||
823 | else | ||
824 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | ||
825 | run_local_timers(); | ||
826 | if (rcu_pending(cpu)) | ||
827 | rcu_check_callbacks(cpu, user_tick); | ||
828 | scheduler_tick(); | ||
829 | run_posix_cpu_timers(p); | ||
830 | } | ||
831 | |||
832 | /* | ||
833 | * Nr of active tasks - counted in fixed-point numbers | ||
834 | */ | ||
835 | static unsigned long count_active_tasks(void) | ||
836 | { | ||
837 | return (nr_running() + nr_uninterruptible()) * FIXED_1; | ||
838 | } | ||
839 | |||
840 | /* | ||
841 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | ||
842 | * imply that avenrun[] is the standard name for this kind of thing. | ||
843 | * Nothing else seems to be standardized: the fractional size etc | ||
844 | * all seem to differ on different machines. | ||
845 | * | ||
846 | * Requires xtime_lock to access. | ||
847 | */ | ||
848 | unsigned long avenrun[3]; | ||
849 | |||
850 | EXPORT_SYMBOL(avenrun); | ||
851 | |||
852 | /* | ||
853 | * calc_load - given tick count, update the avenrun load estimates. | ||
854 | * This is called while holding a write_lock on xtime_lock. | ||
855 | */ | ||
856 | static inline void calc_load(unsigned long ticks) | ||
857 | { | ||
858 | unsigned long active_tasks; /* fixed-point */ | ||
859 | static int count = LOAD_FREQ; | ||
860 | |||
861 | count -= ticks; | ||
862 | if (count < 0) { | ||
863 | count += LOAD_FREQ; | ||
864 | active_tasks = count_active_tasks(); | ||
865 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | ||
866 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | ||
867 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | ||
868 | } | ||
869 | } | ||
870 | |||
871 | /* jiffies at the most recent update of wall time */ | ||
872 | unsigned long wall_jiffies = INITIAL_JIFFIES; | ||
873 | |||
874 | /* | ||
875 | * This read-write spinlock protects us from races in SMP while | ||
876 | * playing with xtime and avenrun. | ||
877 | */ | ||
878 | #ifndef ARCH_HAVE_XTIME_LOCK | ||
879 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | ||
880 | |||
881 | EXPORT_SYMBOL(xtime_lock); | ||
882 | #endif | ||
883 | |||
884 | /* | ||
885 | * This function runs timers and the timer-tq in bottom half context. | ||
886 | */ | ||
887 | static void run_timer_softirq(struct softirq_action *h) | ||
888 | { | ||
889 | tvec_base_t *base = &__get_cpu_var(tvec_bases); | ||
890 | |||
891 | if (time_after_eq(jiffies, base->timer_jiffies)) | ||
892 | __run_timers(base); | ||
893 | } | ||
894 | |||
895 | /* | ||
896 | * Called by the local, per-CPU timer interrupt on SMP. | ||
897 | */ | ||
898 | void run_local_timers(void) | ||
899 | { | ||
900 | raise_softirq(TIMER_SOFTIRQ); | ||
901 | } | ||
902 | |||
903 | /* | ||
904 | * Called by the timer interrupt. xtime_lock must already be taken | ||
905 | * by the timer IRQ! | ||
906 | */ | ||
907 | static inline void update_times(void) | ||
908 | { | ||
909 | unsigned long ticks; | ||
910 | |||
911 | ticks = jiffies - wall_jiffies; | ||
912 | if (ticks) { | ||
913 | wall_jiffies += ticks; | ||
914 | update_wall_time(ticks); | ||
915 | } | ||
916 | calc_load(ticks); | ||
917 | } | ||
918 | |||
919 | /* | ||
920 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | ||
921 | * without sampling the sequence number in xtime_lock. | ||
922 | * jiffies is defined in the linker script... | ||
923 | */ | ||
924 | |||
925 | void do_timer(struct pt_regs *regs) | ||
926 | { | ||
927 | jiffies_64++; | ||
928 | update_times(); | ||
929 | } | ||
930 | |||
931 | #ifdef __ARCH_WANT_SYS_ALARM | ||
932 | |||
933 | /* | ||
934 | * For backwards compatibility? This can be done in libc so Alpha | ||
935 | * and all newer ports shouldn't need it. | ||
936 | */ | ||
937 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | ||
938 | { | ||
939 | struct itimerval it_new, it_old; | ||
940 | unsigned int oldalarm; | ||
941 | |||
942 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | ||
943 | it_new.it_value.tv_sec = seconds; | ||
944 | it_new.it_value.tv_usec = 0; | ||
945 | do_setitimer(ITIMER_REAL, &it_new, &it_old); | ||
946 | oldalarm = it_old.it_value.tv_sec; | ||
947 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ | ||
948 | /* And we'd better return too much than too little anyway */ | ||
949 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | ||
950 | oldalarm++; | ||
951 | return oldalarm; | ||
952 | } | ||
953 | |||
954 | #endif | ||
955 | |||
956 | #ifndef __alpha__ | ||
957 | |||
958 | /* | ||
959 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | ||
960 | * should be moved into arch/i386 instead? | ||
961 | */ | ||
962 | |||
963 | /** | ||
964 | * sys_getpid - return the thread group id of the current process | ||
965 | * | ||
966 | * Note, despite the name, this returns the tgid not the pid. The tgid and | ||
967 | * the pid are identical unless CLONE_THREAD was specified on clone() in | ||
968 | * which case the tgid is the same in all threads of the same group. | ||
969 | * | ||
970 | * This is SMP safe as current->tgid does not change. | ||
971 | */ | ||
972 | asmlinkage long sys_getpid(void) | ||
973 | { | ||
974 | return current->tgid; | ||
975 | } | ||
976 | |||
977 | /* | ||
978 | * Accessing ->group_leader->real_parent is not SMP-safe, it could | ||
979 | * change from under us. However, rather than getting any lock | ||
980 | * we can use an optimistic algorithm: get the parent | ||
981 | * pid, and go back and check that the parent is still | ||
982 | * the same. If it has changed (which is extremely unlikely | ||
983 | * indeed), we just try again.. | ||
984 | * | ||
985 | * NOTE! This depends on the fact that even if we _do_ | ||
986 | * get an old value of "parent", we can happily dereference | ||
987 | * the pointer (it was and remains a dereferencable kernel pointer | ||
988 | * no matter what): we just can't necessarily trust the result | ||
989 | * until we know that the parent pointer is valid. | ||
990 | * | ||
991 | * NOTE2: ->group_leader never changes from under us. | ||
992 | */ | ||
993 | asmlinkage long sys_getppid(void) | ||
994 | { | ||
995 | int pid; | ||
996 | struct task_struct *me = current; | ||
997 | struct task_struct *parent; | ||
998 | |||
999 | parent = me->group_leader->real_parent; | ||
1000 | for (;;) { | ||
1001 | pid = parent->tgid; | ||
1002 | #ifdef CONFIG_SMP | ||
1003 | { | ||
1004 | struct task_struct *old = parent; | ||
1005 | |||
1006 | /* | ||
1007 | * Make sure we read the pid before re-reading the | ||
1008 | * parent pointer: | ||
1009 | */ | ||
1010 | rmb(); | ||
1011 | parent = me->group_leader->real_parent; | ||
1012 | if (old != parent) | ||
1013 | continue; | ||
1014 | } | ||
1015 | #endif | ||
1016 | break; | ||
1017 | } | ||
1018 | return pid; | ||
1019 | } | ||
1020 | |||
1021 | asmlinkage long sys_getuid(void) | ||
1022 | { | ||
1023 | /* Only we change this so SMP safe */ | ||
1024 | return current->uid; | ||
1025 | } | ||
1026 | |||
1027 | asmlinkage long sys_geteuid(void) | ||
1028 | { | ||
1029 | /* Only we change this so SMP safe */ | ||
1030 | return current->euid; | ||
1031 | } | ||
1032 | |||
1033 | asmlinkage long sys_getgid(void) | ||
1034 | { | ||
1035 | /* Only we change this so SMP safe */ | ||
1036 | return current->gid; | ||
1037 | } | ||
1038 | |||
1039 | asmlinkage long sys_getegid(void) | ||
1040 | { | ||
1041 | /* Only we change this so SMP safe */ | ||
1042 | return current->egid; | ||
1043 | } | ||
1044 | |||
1045 | #endif | ||
1046 | |||
1047 | static void process_timeout(unsigned long __data) | ||
1048 | { | ||
1049 | wake_up_process((task_t *)__data); | ||
1050 | } | ||
1051 | |||
1052 | /** | ||
1053 | * schedule_timeout - sleep until timeout | ||
1054 | * @timeout: timeout value in jiffies | ||
1055 | * | ||
1056 | * Make the current task sleep until @timeout jiffies have | ||
1057 | * elapsed. The routine will return immediately unless | ||
1058 | * the current task state has been set (see set_current_state()). | ||
1059 | * | ||
1060 | * You can set the task state as follows - | ||
1061 | * | ||
1062 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | ||
1063 | * pass before the routine returns. The routine will return 0 | ||
1064 | * | ||
1065 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
1066 | * delivered to the current task. In this case the remaining time | ||
1067 | * in jiffies will be returned, or 0 if the timer expired in time | ||
1068 | * | ||
1069 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
1070 | * routine returns. | ||
1071 | * | ||
1072 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | ||
1073 | * the CPU away without a bound on the timeout. In this case the return | ||
1074 | * value will be %MAX_SCHEDULE_TIMEOUT. | ||
1075 | * | ||
1076 | * In all cases the return value is guaranteed to be non-negative. | ||
1077 | */ | ||
1078 | fastcall signed long __sched schedule_timeout(signed long timeout) | ||
1079 | { | ||
1080 | struct timer_list timer; | ||
1081 | unsigned long expire; | ||
1082 | |||
1083 | switch (timeout) | ||
1084 | { | ||
1085 | case MAX_SCHEDULE_TIMEOUT: | ||
1086 | /* | ||
1087 | * These two special cases are useful to be comfortable | ||
1088 | * in the caller. Nothing more. We could take | ||
1089 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | ||
1090 | * but I' d like to return a valid offset (>=0) to allow | ||
1091 | * the caller to do everything it want with the retval. | ||
1092 | */ | ||
1093 | schedule(); | ||
1094 | goto out; | ||
1095 | default: | ||
1096 | /* | ||
1097 | * Another bit of PARANOID. Note that the retval will be | ||
1098 | * 0 since no piece of kernel is supposed to do a check | ||
1099 | * for a negative retval of schedule_timeout() (since it | ||
1100 | * should never happens anyway). You just have the printk() | ||
1101 | * that will tell you if something is gone wrong and where. | ||
1102 | */ | ||
1103 | if (timeout < 0) | ||
1104 | { | ||
1105 | printk(KERN_ERR "schedule_timeout: wrong timeout " | ||
1106 | "value %lx from %p\n", timeout, | ||
1107 | __builtin_return_address(0)); | ||
1108 | current->state = TASK_RUNNING; | ||
1109 | goto out; | ||
1110 | } | ||
1111 | } | ||
1112 | |||
1113 | expire = timeout + jiffies; | ||
1114 | |||
1115 | init_timer(&timer); | ||
1116 | timer.expires = expire; | ||
1117 | timer.data = (unsigned long) current; | ||
1118 | timer.function = process_timeout; | ||
1119 | |||
1120 | add_timer(&timer); | ||
1121 | schedule(); | ||
1122 | del_singleshot_timer_sync(&timer); | ||
1123 | |||
1124 | timeout = expire - jiffies; | ||
1125 | |||
1126 | out: | ||
1127 | return timeout < 0 ? 0 : timeout; | ||
1128 | } | ||
1129 | |||
1130 | EXPORT_SYMBOL(schedule_timeout); | ||
1131 | |||
1132 | /* Thread ID - the internal kernel "pid" */ | ||
1133 | asmlinkage long sys_gettid(void) | ||
1134 | { | ||
1135 | return current->pid; | ||
1136 | } | ||
1137 | |||
1138 | static long __sched nanosleep_restart(struct restart_block *restart) | ||
1139 | { | ||
1140 | unsigned long expire = restart->arg0, now = jiffies; | ||
1141 | struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; | ||
1142 | long ret; | ||
1143 | |||
1144 | /* Did it expire while we handled signals? */ | ||
1145 | if (!time_after(expire, now)) | ||
1146 | return 0; | ||
1147 | |||
1148 | current->state = TASK_INTERRUPTIBLE; | ||
1149 | expire = schedule_timeout(expire - now); | ||
1150 | |||
1151 | ret = 0; | ||
1152 | if (expire) { | ||
1153 | struct timespec t; | ||
1154 | jiffies_to_timespec(expire, &t); | ||
1155 | |||
1156 | ret = -ERESTART_RESTARTBLOCK; | ||
1157 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | ||
1158 | ret = -EFAULT; | ||
1159 | /* The 'restart' block is already filled in */ | ||
1160 | } | ||
1161 | return ret; | ||
1162 | } | ||
1163 | |||
1164 | asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | ||
1165 | { | ||
1166 | struct timespec t; | ||
1167 | unsigned long expire; | ||
1168 | long ret; | ||
1169 | |||
1170 | if (copy_from_user(&t, rqtp, sizeof(t))) | ||
1171 | return -EFAULT; | ||
1172 | |||
1173 | if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) | ||
1174 | return -EINVAL; | ||
1175 | |||
1176 | expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); | ||
1177 | current->state = TASK_INTERRUPTIBLE; | ||
1178 | expire = schedule_timeout(expire); | ||
1179 | |||
1180 | ret = 0; | ||
1181 | if (expire) { | ||
1182 | struct restart_block *restart; | ||
1183 | jiffies_to_timespec(expire, &t); | ||
1184 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | ||
1185 | return -EFAULT; | ||
1186 | |||
1187 | restart = ¤t_thread_info()->restart_block; | ||
1188 | restart->fn = nanosleep_restart; | ||
1189 | restart->arg0 = jiffies + expire; | ||
1190 | restart->arg1 = (unsigned long) rmtp; | ||
1191 | ret = -ERESTART_RESTARTBLOCK; | ||
1192 | } | ||
1193 | return ret; | ||
1194 | } | ||
1195 | |||
1196 | /* | ||
1197 | * sys_sysinfo - fill in sysinfo struct | ||
1198 | */ | ||
1199 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | ||
1200 | { | ||
1201 | struct sysinfo val; | ||
1202 | unsigned long mem_total, sav_total; | ||
1203 | unsigned int mem_unit, bitcount; | ||
1204 | unsigned long seq; | ||
1205 | |||
1206 | memset((char *)&val, 0, sizeof(struct sysinfo)); | ||
1207 | |||
1208 | do { | ||
1209 | struct timespec tp; | ||
1210 | seq = read_seqbegin(&xtime_lock); | ||
1211 | |||
1212 | /* | ||
1213 | * This is annoying. The below is the same thing | ||
1214 | * posix_get_clock_monotonic() does, but it wants to | ||
1215 | * take the lock which we want to cover the loads stuff | ||
1216 | * too. | ||
1217 | */ | ||
1218 | |||
1219 | getnstimeofday(&tp); | ||
1220 | tp.tv_sec += wall_to_monotonic.tv_sec; | ||
1221 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | ||
1222 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | ||
1223 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | ||
1224 | tp.tv_sec++; | ||
1225 | } | ||
1226 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | ||
1227 | |||
1228 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | ||
1229 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | ||
1230 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | ||
1231 | |||
1232 | val.procs = nr_threads; | ||
1233 | } while (read_seqretry(&xtime_lock, seq)); | ||
1234 | |||
1235 | si_meminfo(&val); | ||
1236 | si_swapinfo(&val); | ||
1237 | |||
1238 | /* | ||
1239 | * If the sum of all the available memory (i.e. ram + swap) | ||
1240 | * is less than can be stored in a 32 bit unsigned long then | ||
1241 | * we can be binary compatible with 2.2.x kernels. If not, | ||
1242 | * well, in that case 2.2.x was broken anyways... | ||
1243 | * | ||
1244 | * -Erik Andersen <andersee@debian.org> | ||
1245 | */ | ||
1246 | |||
1247 | mem_total = val.totalram + val.totalswap; | ||
1248 | if (mem_total < val.totalram || mem_total < val.totalswap) | ||
1249 | goto out; | ||
1250 | bitcount = 0; | ||
1251 | mem_unit = val.mem_unit; | ||
1252 | while (mem_unit > 1) { | ||
1253 | bitcount++; | ||
1254 | mem_unit >>= 1; | ||
1255 | sav_total = mem_total; | ||
1256 | mem_total <<= 1; | ||
1257 | if (mem_total < sav_total) | ||
1258 | goto out; | ||
1259 | } | ||
1260 | |||
1261 | /* | ||
1262 | * If mem_total did not overflow, multiply all memory values by | ||
1263 | * val.mem_unit and set it to 1. This leaves things compatible | ||
1264 | * with 2.2.x, and also retains compatibility with earlier 2.4.x | ||
1265 | * kernels... | ||
1266 | */ | ||
1267 | |||
1268 | val.mem_unit = 1; | ||
1269 | val.totalram <<= bitcount; | ||
1270 | val.freeram <<= bitcount; | ||
1271 | val.sharedram <<= bitcount; | ||
1272 | val.bufferram <<= bitcount; | ||
1273 | val.totalswap <<= bitcount; | ||
1274 | val.freeswap <<= bitcount; | ||
1275 | val.totalhigh <<= bitcount; | ||
1276 | val.freehigh <<= bitcount; | ||
1277 | |||
1278 | out: | ||
1279 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) | ||
1280 | return -EFAULT; | ||
1281 | |||
1282 | return 0; | ||
1283 | } | ||
1284 | |||
1285 | static void __devinit init_timers_cpu(int cpu) | ||
1286 | { | ||
1287 | int j; | ||
1288 | tvec_base_t *base; | ||
1289 | |||
1290 | base = &per_cpu(tvec_bases, cpu); | ||
1291 | spin_lock_init(&base->lock); | ||
1292 | for (j = 0; j < TVN_SIZE; j++) { | ||
1293 | INIT_LIST_HEAD(base->tv5.vec + j); | ||
1294 | INIT_LIST_HEAD(base->tv4.vec + j); | ||
1295 | INIT_LIST_HEAD(base->tv3.vec + j); | ||
1296 | INIT_LIST_HEAD(base->tv2.vec + j); | ||
1297 | } | ||
1298 | for (j = 0; j < TVR_SIZE; j++) | ||
1299 | INIT_LIST_HEAD(base->tv1.vec + j); | ||
1300 | |||
1301 | base->timer_jiffies = jiffies; | ||
1302 | } | ||
1303 | |||
1304 | #ifdef CONFIG_HOTPLUG_CPU | ||
1305 | static int migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | ||
1306 | { | ||
1307 | struct timer_list *timer; | ||
1308 | |||
1309 | while (!list_empty(head)) { | ||
1310 | timer = list_entry(head->next, struct timer_list, entry); | ||
1311 | /* We're locking backwards from __mod_timer order here, | ||
1312 | beware deadlock. */ | ||
1313 | if (!spin_trylock(&timer->lock)) | ||
1314 | return 0; | ||
1315 | list_del(&timer->entry); | ||
1316 | internal_add_timer(new_base, timer); | ||
1317 | timer->base = new_base; | ||
1318 | spin_unlock(&timer->lock); | ||
1319 | } | ||
1320 | return 1; | ||
1321 | } | ||
1322 | |||
1323 | static void __devinit migrate_timers(int cpu) | ||
1324 | { | ||
1325 | tvec_base_t *old_base; | ||
1326 | tvec_base_t *new_base; | ||
1327 | int i; | ||
1328 | |||
1329 | BUG_ON(cpu_online(cpu)); | ||
1330 | old_base = &per_cpu(tvec_bases, cpu); | ||
1331 | new_base = &get_cpu_var(tvec_bases); | ||
1332 | |||
1333 | local_irq_disable(); | ||
1334 | again: | ||
1335 | /* Prevent deadlocks via ordering by old_base < new_base. */ | ||
1336 | if (old_base < new_base) { | ||
1337 | spin_lock(&new_base->lock); | ||
1338 | spin_lock(&old_base->lock); | ||
1339 | } else { | ||
1340 | spin_lock(&old_base->lock); | ||
1341 | spin_lock(&new_base->lock); | ||
1342 | } | ||
1343 | |||
1344 | if (old_base->running_timer) | ||
1345 | BUG(); | ||
1346 | for (i = 0; i < TVR_SIZE; i++) | ||
1347 | if (!migrate_timer_list(new_base, old_base->tv1.vec + i)) | ||
1348 | goto unlock_again; | ||
1349 | for (i = 0; i < TVN_SIZE; i++) | ||
1350 | if (!migrate_timer_list(new_base, old_base->tv2.vec + i) | ||
1351 | || !migrate_timer_list(new_base, old_base->tv3.vec + i) | ||
1352 | || !migrate_timer_list(new_base, old_base->tv4.vec + i) | ||
1353 | || !migrate_timer_list(new_base, old_base->tv5.vec + i)) | ||
1354 | goto unlock_again; | ||
1355 | spin_unlock(&old_base->lock); | ||
1356 | spin_unlock(&new_base->lock); | ||
1357 | local_irq_enable(); | ||
1358 | put_cpu_var(tvec_bases); | ||
1359 | return; | ||
1360 | |||
1361 | unlock_again: | ||
1362 | /* Avoid deadlock with __mod_timer, by backing off. */ | ||
1363 | spin_unlock(&old_base->lock); | ||
1364 | spin_unlock(&new_base->lock); | ||
1365 | cpu_relax(); | ||
1366 | goto again; | ||
1367 | } | ||
1368 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
1369 | |||
1370 | static int __devinit timer_cpu_notify(struct notifier_block *self, | ||
1371 | unsigned long action, void *hcpu) | ||
1372 | { | ||
1373 | long cpu = (long)hcpu; | ||
1374 | switch(action) { | ||
1375 | case CPU_UP_PREPARE: | ||
1376 | init_timers_cpu(cpu); | ||
1377 | break; | ||
1378 | #ifdef CONFIG_HOTPLUG_CPU | ||
1379 | case CPU_DEAD: | ||
1380 | migrate_timers(cpu); | ||
1381 | break; | ||
1382 | #endif | ||
1383 | default: | ||
1384 | break; | ||
1385 | } | ||
1386 | return NOTIFY_OK; | ||
1387 | } | ||
1388 | |||
1389 | static struct notifier_block __devinitdata timers_nb = { | ||
1390 | .notifier_call = timer_cpu_notify, | ||
1391 | }; | ||
1392 | |||
1393 | |||
1394 | void __init init_timers(void) | ||
1395 | { | ||
1396 | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | ||
1397 | (void *)(long)smp_processor_id()); | ||
1398 | register_cpu_notifier(&timers_nb); | ||
1399 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | ||
1400 | } | ||
1401 | |||
1402 | #ifdef CONFIG_TIME_INTERPOLATION | ||
1403 | |||
1404 | struct time_interpolator *time_interpolator; | ||
1405 | static struct time_interpolator *time_interpolator_list; | ||
1406 | static DEFINE_SPINLOCK(time_interpolator_lock); | ||
1407 | |||
1408 | static inline u64 time_interpolator_get_cycles(unsigned int src) | ||
1409 | { | ||
1410 | unsigned long (*x)(void); | ||
1411 | |||
1412 | switch (src) | ||
1413 | { | ||
1414 | case TIME_SOURCE_FUNCTION: | ||
1415 | x = time_interpolator->addr; | ||
1416 | return x(); | ||
1417 | |||
1418 | case TIME_SOURCE_MMIO64 : | ||
1419 | return readq((void __iomem *) time_interpolator->addr); | ||
1420 | |||
1421 | case TIME_SOURCE_MMIO32 : | ||
1422 | return readl((void __iomem *) time_interpolator->addr); | ||
1423 | |||
1424 | default: return get_cycles(); | ||
1425 | } | ||
1426 | } | ||
1427 | |||
1428 | static inline u64 time_interpolator_get_counter(void) | ||
1429 | { | ||
1430 | unsigned int src = time_interpolator->source; | ||
1431 | |||
1432 | if (time_interpolator->jitter) | ||
1433 | { | ||
1434 | u64 lcycle; | ||
1435 | u64 now; | ||
1436 | |||
1437 | do { | ||
1438 | lcycle = time_interpolator->last_cycle; | ||
1439 | now = time_interpolator_get_cycles(src); | ||
1440 | if (lcycle && time_after(lcycle, now)) | ||
1441 | return lcycle; | ||
1442 | /* Keep track of the last timer value returned. The use of cmpxchg here | ||
1443 | * will cause contention in an SMP environment. | ||
1444 | */ | ||
1445 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | ||
1446 | return now; | ||
1447 | } | ||
1448 | else | ||
1449 | return time_interpolator_get_cycles(src); | ||
1450 | } | ||
1451 | |||
1452 | void time_interpolator_reset(void) | ||
1453 | { | ||
1454 | time_interpolator->offset = 0; | ||
1455 | time_interpolator->last_counter = time_interpolator_get_counter(); | ||
1456 | } | ||
1457 | |||
1458 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | ||
1459 | |||
1460 | unsigned long time_interpolator_get_offset(void) | ||
1461 | { | ||
1462 | /* If we do not have a time interpolator set up then just return zero */ | ||
1463 | if (!time_interpolator) | ||
1464 | return 0; | ||
1465 | |||
1466 | return time_interpolator->offset + | ||
1467 | GET_TI_NSECS(time_interpolator_get_counter(), time_interpolator); | ||
1468 | } | ||
1469 | |||
1470 | #define INTERPOLATOR_ADJUST 65536 | ||
1471 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | ||
1472 | |||
1473 | static void time_interpolator_update(long delta_nsec) | ||
1474 | { | ||
1475 | u64 counter; | ||
1476 | unsigned long offset; | ||
1477 | |||
1478 | /* If there is no time interpolator set up then do nothing */ | ||
1479 | if (!time_interpolator) | ||
1480 | return; | ||
1481 | |||
1482 | /* The interpolator compensates for late ticks by accumulating | ||
1483 | * the late time in time_interpolator->offset. A tick earlier than | ||
1484 | * expected will lead to a reset of the offset and a corresponding | ||
1485 | * jump of the clock forward. Again this only works if the | ||
1486 | * interpolator clock is running slightly slower than the regular clock | ||
1487 | * and the tuning logic insures that. | ||
1488 | */ | ||
1489 | |||
1490 | counter = time_interpolator_get_counter(); | ||
1491 | offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator); | ||
1492 | |||
1493 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | ||
1494 | time_interpolator->offset = offset - delta_nsec; | ||
1495 | else { | ||
1496 | time_interpolator->skips++; | ||
1497 | time_interpolator->ns_skipped += delta_nsec - offset; | ||
1498 | time_interpolator->offset = 0; | ||
1499 | } | ||
1500 | time_interpolator->last_counter = counter; | ||
1501 | |||
1502 | /* Tuning logic for time interpolator invoked every minute or so. | ||
1503 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. | ||
1504 | * Increase interpolator clock speed if we skip too much time. | ||
1505 | */ | ||
1506 | if (jiffies % INTERPOLATOR_ADJUST == 0) | ||
1507 | { | ||
1508 | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) | ||
1509 | time_interpolator->nsec_per_cyc--; | ||
1510 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | ||
1511 | time_interpolator->nsec_per_cyc++; | ||
1512 | time_interpolator->skips = 0; | ||
1513 | time_interpolator->ns_skipped = 0; | ||
1514 | } | ||
1515 | } | ||
1516 | |||
1517 | static inline int | ||
1518 | is_better_time_interpolator(struct time_interpolator *new) | ||
1519 | { | ||
1520 | if (!time_interpolator) | ||
1521 | return 1; | ||
1522 | return new->frequency > 2*time_interpolator->frequency || | ||
1523 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | ||
1524 | } | ||
1525 | |||
1526 | void | ||
1527 | register_time_interpolator(struct time_interpolator *ti) | ||
1528 | { | ||
1529 | unsigned long flags; | ||
1530 | |||
1531 | /* Sanity check */ | ||
1532 | if (ti->frequency == 0 || ti->mask == 0) | ||
1533 | BUG(); | ||
1534 | |||
1535 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | ||
1536 | spin_lock(&time_interpolator_lock); | ||
1537 | write_seqlock_irqsave(&xtime_lock, flags); | ||
1538 | if (is_better_time_interpolator(ti)) { | ||
1539 | time_interpolator = ti; | ||
1540 | time_interpolator_reset(); | ||
1541 | } | ||
1542 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
1543 | |||
1544 | ti->next = time_interpolator_list; | ||
1545 | time_interpolator_list = ti; | ||
1546 | spin_unlock(&time_interpolator_lock); | ||
1547 | } | ||
1548 | |||
1549 | void | ||
1550 | unregister_time_interpolator(struct time_interpolator *ti) | ||
1551 | { | ||
1552 | struct time_interpolator *curr, **prev; | ||
1553 | unsigned long flags; | ||
1554 | |||
1555 | spin_lock(&time_interpolator_lock); | ||
1556 | prev = &time_interpolator_list; | ||
1557 | for (curr = *prev; curr; curr = curr->next) { | ||
1558 | if (curr == ti) { | ||
1559 | *prev = curr->next; | ||
1560 | break; | ||
1561 | } | ||
1562 | prev = &curr->next; | ||
1563 | } | ||
1564 | |||
1565 | write_seqlock_irqsave(&xtime_lock, flags); | ||
1566 | if (ti == time_interpolator) { | ||
1567 | /* we lost the best time-interpolator: */ | ||
1568 | time_interpolator = NULL; | ||
1569 | /* find the next-best interpolator */ | ||
1570 | for (curr = time_interpolator_list; curr; curr = curr->next) | ||
1571 | if (is_better_time_interpolator(curr)) | ||
1572 | time_interpolator = curr; | ||
1573 | time_interpolator_reset(); | ||
1574 | } | ||
1575 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
1576 | spin_unlock(&time_interpolator_lock); | ||
1577 | } | ||
1578 | #endif /* CONFIG_TIME_INTERPOLATION */ | ||
1579 | |||
1580 | /** | ||
1581 | * msleep - sleep safely even with waitqueue interruptions | ||
1582 | * @msecs: Time in milliseconds to sleep for | ||
1583 | */ | ||
1584 | void msleep(unsigned int msecs) | ||
1585 | { | ||
1586 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | ||
1587 | |||
1588 | while (timeout) { | ||
1589 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1590 | timeout = schedule_timeout(timeout); | ||
1591 | } | ||
1592 | } | ||
1593 | |||
1594 | EXPORT_SYMBOL(msleep); | ||
1595 | |||
1596 | /** | ||
1597 | * msleep_interruptible - sleep waiting for waitqueue interruptions | ||
1598 | * @msecs: Time in milliseconds to sleep for | ||
1599 | */ | ||
1600 | unsigned long msleep_interruptible(unsigned int msecs) | ||
1601 | { | ||
1602 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | ||
1603 | |||
1604 | while (timeout && !signal_pending(current)) { | ||
1605 | set_current_state(TASK_INTERRUPTIBLE); | ||
1606 | timeout = schedule_timeout(timeout); | ||
1607 | } | ||
1608 | return jiffies_to_msecs(timeout); | ||
1609 | } | ||
1610 | |||
1611 | EXPORT_SYMBOL(msleep_interruptible); | ||