diff options
Diffstat (limited to 'kernel/time')
| -rw-r--r-- | kernel/time/Makefile | 2 | ||||
| -rw-r--r-- | kernel/time/clockevents.c | 20 | ||||
| -rw-r--r-- | kernel/time/clocksource.c | 76 | ||||
| -rw-r--r-- | kernel/time/ntp.c | 444 | ||||
| -rw-r--r-- | kernel/time/timecompare.c | 191 |
5 files changed, 553 insertions, 180 deletions
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 905b0b50792d..0b0a6366c9d4 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o |
| 2 | 2 | ||
| 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
| 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c index ea2f48af83cf..d13be216a790 100644 --- a/kernel/time/clockevents.c +++ b/kernel/time/clockevents.c | |||
| @@ -68,6 +68,17 @@ void clockevents_set_mode(struct clock_event_device *dev, | |||
| 68 | if (dev->mode != mode) { | 68 | if (dev->mode != mode) { |
| 69 | dev->set_mode(mode, dev); | 69 | dev->set_mode(mode, dev); |
| 70 | dev->mode = mode; | 70 | dev->mode = mode; |
| 71 | |||
| 72 | /* | ||
| 73 | * A nsec2cyc multiplicator of 0 is invalid and we'd crash | ||
| 74 | * on it, so fix it up and emit a warning: | ||
| 75 | */ | ||
| 76 | if (mode == CLOCK_EVT_MODE_ONESHOT) { | ||
| 77 | if (unlikely(!dev->mult)) { | ||
| 78 | dev->mult = 1; | ||
| 79 | WARN_ON(1); | ||
| 80 | } | ||
| 81 | } | ||
| 71 | } | 82 | } |
| 72 | } | 83 | } |
| 73 | 84 | ||
| @@ -168,15 +179,6 @@ void clockevents_register_device(struct clock_event_device *dev) | |||
| 168 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); | 179 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); |
| 169 | BUG_ON(!dev->cpumask); | 180 | BUG_ON(!dev->cpumask); |
| 170 | 181 | ||
| 171 | /* | ||
| 172 | * A nsec2cyc multiplicator of 0 is invalid and we'd crash | ||
| 173 | * on it, so fix it up and emit a warning: | ||
| 174 | */ | ||
| 175 | if (unlikely(!dev->mult)) { | ||
| 176 | dev->mult = 1; | ||
| 177 | WARN_ON(1); | ||
| 178 | } | ||
| 179 | |||
| 180 | spin_lock(&clockevents_lock); | 182 | spin_lock(&clockevents_lock); |
| 181 | 183 | ||
| 182 | list_add(&dev->list, &clockevent_devices); | 184 | list_add(&dev->list, &clockevent_devices); |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index ca89e1593f08..c46c931a7fe7 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
| @@ -31,6 +31,82 @@ | |||
| 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
| 32 | #include <linux/tick.h> | 32 | #include <linux/tick.h> |
| 33 | 33 | ||
| 34 | void timecounter_init(struct timecounter *tc, | ||
| 35 | const struct cyclecounter *cc, | ||
| 36 | u64 start_tstamp) | ||
| 37 | { | ||
| 38 | tc->cc = cc; | ||
| 39 | tc->cycle_last = cc->read(cc); | ||
| 40 | tc->nsec = start_tstamp; | ||
| 41 | } | ||
| 42 | EXPORT_SYMBOL(timecounter_init); | ||
| 43 | |||
| 44 | /** | ||
| 45 | * timecounter_read_delta - get nanoseconds since last call of this function | ||
| 46 | * @tc: Pointer to time counter | ||
| 47 | * | ||
| 48 | * When the underlying cycle counter runs over, this will be handled | ||
| 49 | * correctly as long as it does not run over more than once between | ||
| 50 | * calls. | ||
| 51 | * | ||
| 52 | * The first call to this function for a new time counter initializes | ||
| 53 | * the time tracking and returns an undefined result. | ||
| 54 | */ | ||
| 55 | static u64 timecounter_read_delta(struct timecounter *tc) | ||
| 56 | { | ||
| 57 | cycle_t cycle_now, cycle_delta; | ||
| 58 | u64 ns_offset; | ||
| 59 | |||
| 60 | /* read cycle counter: */ | ||
| 61 | cycle_now = tc->cc->read(tc->cc); | ||
| 62 | |||
| 63 | /* calculate the delta since the last timecounter_read_delta(): */ | ||
| 64 | cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask; | ||
| 65 | |||
| 66 | /* convert to nanoseconds: */ | ||
| 67 | ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta); | ||
| 68 | |||
| 69 | /* update time stamp of timecounter_read_delta() call: */ | ||
| 70 | tc->cycle_last = cycle_now; | ||
| 71 | |||
| 72 | return ns_offset; | ||
| 73 | } | ||
| 74 | |||
| 75 | u64 timecounter_read(struct timecounter *tc) | ||
| 76 | { | ||
| 77 | u64 nsec; | ||
| 78 | |||
| 79 | /* increment time by nanoseconds since last call */ | ||
| 80 | nsec = timecounter_read_delta(tc); | ||
| 81 | nsec += tc->nsec; | ||
| 82 | tc->nsec = nsec; | ||
| 83 | |||
| 84 | return nsec; | ||
| 85 | } | ||
| 86 | EXPORT_SYMBOL(timecounter_read); | ||
| 87 | |||
| 88 | u64 timecounter_cyc2time(struct timecounter *tc, | ||
| 89 | cycle_t cycle_tstamp) | ||
| 90 | { | ||
| 91 | u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask; | ||
| 92 | u64 nsec; | ||
| 93 | |||
| 94 | /* | ||
| 95 | * Instead of always treating cycle_tstamp as more recent | ||
| 96 | * than tc->cycle_last, detect when it is too far in the | ||
| 97 | * future and treat it as old time stamp instead. | ||
| 98 | */ | ||
| 99 | if (cycle_delta > tc->cc->mask / 2) { | ||
| 100 | cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask; | ||
| 101 | nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta); | ||
| 102 | } else { | ||
| 103 | nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec; | ||
| 104 | } | ||
| 105 | |||
| 106 | return nsec; | ||
| 107 | } | ||
| 108 | EXPORT_SYMBOL(timecounter_cyc2time); | ||
| 109 | |||
| 34 | /* XXX - Would like a better way for initializing curr_clocksource */ | 110 | /* XXX - Would like a better way for initializing curr_clocksource */ |
| 35 | extern struct clocksource clocksource_jiffies; | 111 | extern struct clocksource clocksource_jiffies; |
| 36 | 112 | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index f5f793d92415..7fc64375ff43 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
| @@ -1,71 +1,129 @@ | |||
| 1 | /* | 1 | /* |
| 2 | * linux/kernel/time/ntp.c | ||
| 3 | * | ||
| 4 | * NTP state machine interfaces and logic. | 2 | * NTP state machine interfaces and logic. |
| 5 | * | 3 | * |
| 6 | * This code was mainly moved from kernel/timer.c and kernel/time.c | 4 | * This code was mainly moved from kernel/timer.c and kernel/time.c |
| 7 | * Please see those files for relevant copyright info and historical | 5 | * Please see those files for relevant copyright info and historical |
| 8 | * changelogs. | 6 | * changelogs. |
| 9 | */ | 7 | */ |
| 10 | |||
| 11 | #include <linux/mm.h> | ||
| 12 | #include <linux/time.h> | ||
| 13 | #include <linux/timex.h> | ||
| 14 | #include <linux/jiffies.h> | ||
| 15 | #include <linux/hrtimer.h> | ||
| 16 | #include <linux/capability.h> | 8 | #include <linux/capability.h> |
| 17 | #include <linux/math64.h> | ||
| 18 | #include <linux/clocksource.h> | 9 | #include <linux/clocksource.h> |
| 19 | #include <linux/workqueue.h> | 10 | #include <linux/workqueue.h> |
| 20 | #include <asm/timex.h> | 11 | #include <linux/hrtimer.h> |
| 12 | #include <linux/jiffies.h> | ||
| 13 | #include <linux/math64.h> | ||
| 14 | #include <linux/timex.h> | ||
| 15 | #include <linux/time.h> | ||
| 16 | #include <linux/mm.h> | ||
| 21 | 17 | ||
| 22 | /* | 18 | /* |
| 23 | * Timekeeping variables | 19 | * NTP timekeeping variables: |
| 24 | */ | 20 | */ |
| 25 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | ||
| 26 | unsigned long tick_nsec; /* ACTHZ period (nsec) */ | ||
| 27 | u64 tick_length; | ||
| 28 | static u64 tick_length_base; | ||
| 29 | 21 | ||
| 30 | static struct hrtimer leap_timer; | 22 | /* USER_HZ period (usecs): */ |
| 23 | unsigned long tick_usec = TICK_USEC; | ||
| 31 | 24 | ||
| 32 | #define MAX_TICKADJ 500 /* microsecs */ | 25 | /* ACTHZ period (nsecs): */ |
| 33 | #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ | 26 | unsigned long tick_nsec; |
| 34 | NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | 27 | |
| 28 | u64 tick_length; | ||
| 29 | static u64 tick_length_base; | ||
| 30 | |||
| 31 | static struct hrtimer leap_timer; | ||
| 32 | |||
| 33 | #define MAX_TICKADJ 500LL /* usecs */ | ||
| 34 | #define MAX_TICKADJ_SCALED \ | ||
| 35 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | ||
| 35 | 36 | ||
| 36 | /* | 37 | /* |
| 37 | * phase-lock loop variables | 38 | * phase-lock loop variables |
| 38 | */ | 39 | */ |
| 39 | /* TIME_ERROR prevents overwriting the CMOS clock */ | ||
| 40 | static int time_state = TIME_OK; /* clock synchronization status */ | ||
| 41 | int time_status = STA_UNSYNC; /* clock status bits */ | ||
| 42 | static long time_tai; /* TAI offset (s) */ | ||
| 43 | static s64 time_offset; /* time adjustment (ns) */ | ||
| 44 | static long time_constant = 2; /* pll time constant */ | ||
| 45 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | ||
| 46 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | ||
| 47 | static s64 time_freq; /* frequency offset (scaled ns/s)*/ | ||
| 48 | static long time_reftime; /* time at last adjustment (s) */ | ||
| 49 | long time_adjust; | ||
| 50 | static long ntp_tick_adj; | ||
| 51 | 40 | ||
| 41 | /* | ||
| 42 | * clock synchronization status | ||
| 43 | * | ||
| 44 | * (TIME_ERROR prevents overwriting the CMOS clock) | ||
| 45 | */ | ||
| 46 | static int time_state = TIME_OK; | ||
| 47 | |||
| 48 | /* clock status bits: */ | ||
| 49 | int time_status = STA_UNSYNC; | ||
| 50 | |||
| 51 | /* TAI offset (secs): */ | ||
| 52 | static long time_tai; | ||
| 53 | |||
| 54 | /* time adjustment (nsecs): */ | ||
| 55 | static s64 time_offset; | ||
| 56 | |||
| 57 | /* pll time constant: */ | ||
| 58 | static long time_constant = 2; | ||
| 59 | |||
| 60 | /* maximum error (usecs): */ | ||
| 61 | long time_maxerror = NTP_PHASE_LIMIT; | ||
| 62 | |||
| 63 | /* estimated error (usecs): */ | ||
| 64 | long time_esterror = NTP_PHASE_LIMIT; | ||
| 65 | |||
| 66 | /* frequency offset (scaled nsecs/secs): */ | ||
| 67 | static s64 time_freq; | ||
| 68 | |||
| 69 | /* time at last adjustment (secs): */ | ||
| 70 | static long time_reftime; | ||
| 71 | |||
| 72 | long time_adjust; | ||
| 73 | |||
| 74 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ | ||
| 75 | static s64 ntp_tick_adj; | ||
| 76 | |||
| 77 | /* | ||
| 78 | * NTP methods: | ||
| 79 | */ | ||
| 80 | |||
| 81 | /* | ||
| 82 | * Update (tick_length, tick_length_base, tick_nsec), based | ||
| 83 | * on (tick_usec, ntp_tick_adj, time_freq): | ||
| 84 | */ | ||
| 52 | static void ntp_update_frequency(void) | 85 | static void ntp_update_frequency(void) |
| 53 | { | 86 | { |
| 54 | u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 87 | u64 second_length; |
| 55 | << NTP_SCALE_SHIFT; | 88 | u64 new_base; |
| 56 | second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT; | 89 | |
| 57 | second_length += time_freq; | 90 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
| 91 | << NTP_SCALE_SHIFT; | ||
| 92 | |||
| 93 | second_length += ntp_tick_adj; | ||
| 94 | second_length += time_freq; | ||
| 58 | 95 | ||
| 59 | tick_length_base = second_length; | 96 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
| 97 | new_base = div_u64(second_length, NTP_INTERVAL_FREQ); | ||
| 60 | 98 | ||
| 61 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; | 99 | /* |
| 62 | tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ); | 100 | * Don't wait for the next second_overflow, apply |
| 101 | * the change to the tick length immediately: | ||
| 102 | */ | ||
| 103 | tick_length += new_base - tick_length_base; | ||
| 104 | tick_length_base = new_base; | ||
| 105 | } | ||
| 106 | |||
| 107 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) | ||
| 108 | { | ||
| 109 | time_status &= ~STA_MODE; | ||
| 110 | |||
| 111 | if (secs < MINSEC) | ||
| 112 | return 0; | ||
| 113 | |||
| 114 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | ||
| 115 | return 0; | ||
| 116 | |||
| 117 | time_status |= STA_MODE; | ||
| 118 | |||
| 119 | return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); | ||
| 63 | } | 120 | } |
| 64 | 121 | ||
| 65 | static void ntp_update_offset(long offset) | 122 | static void ntp_update_offset(long offset) |
| 66 | { | 123 | { |
| 67 | long mtemp; | ||
| 68 | s64 freq_adj; | 124 | s64 freq_adj; |
| 125 | s64 offset64; | ||
| 126 | long secs; | ||
| 69 | 127 | ||
| 70 | if (!(time_status & STA_PLL)) | 128 | if (!(time_status & STA_PLL)) |
| 71 | return; | 129 | return; |
| @@ -84,24 +142,23 @@ static void ntp_update_offset(long offset) | |||
| 84 | * Select how the frequency is to be controlled | 142 | * Select how the frequency is to be controlled |
| 85 | * and in which mode (PLL or FLL). | 143 | * and in which mode (PLL or FLL). |
| 86 | */ | 144 | */ |
| 87 | if (time_status & STA_FREQHOLD || time_reftime == 0) | 145 | secs = xtime.tv_sec - time_reftime; |
| 88 | time_reftime = xtime.tv_sec; | 146 | if (unlikely(time_status & STA_FREQHOLD)) |
| 89 | mtemp = xtime.tv_sec - time_reftime; | 147 | secs = 0; |
| 148 | |||
| 90 | time_reftime = xtime.tv_sec; | 149 | time_reftime = xtime.tv_sec; |
| 91 | 150 | ||
| 92 | freq_adj = (s64)offset * mtemp; | 151 | offset64 = offset; |
| 93 | freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant); | 152 | freq_adj = (offset64 * secs) << |
| 94 | time_status &= ~STA_MODE; | 153 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); |
| 95 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { | ||
| 96 | freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL), | ||
| 97 | mtemp); | ||
| 98 | time_status |= STA_MODE; | ||
| 99 | } | ||
| 100 | freq_adj += time_freq; | ||
| 101 | freq_adj = min(freq_adj, MAXFREQ_SCALED); | ||
| 102 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
| 103 | 154 | ||
| 104 | time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | 155 | freq_adj += ntp_update_offset_fll(offset64, secs); |
| 156 | |||
| 157 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); | ||
| 158 | |||
| 159 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
| 160 | |||
| 161 | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | ||
| 105 | } | 162 | } |
| 106 | 163 | ||
| 107 | /** | 164 | /** |
| @@ -111,15 +168,15 @@ static void ntp_update_offset(long offset) | |||
| 111 | */ | 168 | */ |
| 112 | void ntp_clear(void) | 169 | void ntp_clear(void) |
| 113 | { | 170 | { |
| 114 | time_adjust = 0; /* stop active adjtime() */ | 171 | time_adjust = 0; /* stop active adjtime() */ |
| 115 | time_status |= STA_UNSYNC; | 172 | time_status |= STA_UNSYNC; |
| 116 | time_maxerror = NTP_PHASE_LIMIT; | 173 | time_maxerror = NTP_PHASE_LIMIT; |
| 117 | time_esterror = NTP_PHASE_LIMIT; | 174 | time_esterror = NTP_PHASE_LIMIT; |
| 118 | 175 | ||
| 119 | ntp_update_frequency(); | 176 | ntp_update_frequency(); |
| 120 | 177 | ||
| 121 | tick_length = tick_length_base; | 178 | tick_length = tick_length_base; |
| 122 | time_offset = 0; | 179 | time_offset = 0; |
| 123 | } | 180 | } |
| 124 | 181 | ||
| 125 | /* | 182 | /* |
| @@ -140,8 +197,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 140 | xtime.tv_sec--; | 197 | xtime.tv_sec--; |
| 141 | wall_to_monotonic.tv_sec++; | 198 | wall_to_monotonic.tv_sec++; |
| 142 | time_state = TIME_OOP; | 199 | time_state = TIME_OOP; |
| 143 | printk(KERN_NOTICE "Clock: " | 200 | printk(KERN_NOTICE |
| 144 | "inserting leap second 23:59:60 UTC\n"); | 201 | "Clock: inserting leap second 23:59:60 UTC\n"); |
| 145 | hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); | 202 | hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); |
| 146 | res = HRTIMER_RESTART; | 203 | res = HRTIMER_RESTART; |
| 147 | break; | 204 | break; |
| @@ -150,8 +207,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 150 | time_tai--; | 207 | time_tai--; |
| 151 | wall_to_monotonic.tv_sec--; | 208 | wall_to_monotonic.tv_sec--; |
| 152 | time_state = TIME_WAIT; | 209 | time_state = TIME_WAIT; |
| 153 | printk(KERN_NOTICE "Clock: " | 210 | printk(KERN_NOTICE |
| 154 | "deleting leap second 23:59:59 UTC\n"); | 211 | "Clock: deleting leap second 23:59:59 UTC\n"); |
| 155 | break; | 212 | break; |
| 156 | case TIME_OOP: | 213 | case TIME_OOP: |
| 157 | time_tai++; | 214 | time_tai++; |
| @@ -179,7 +236,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 179 | */ | 236 | */ |
| 180 | void second_overflow(void) | 237 | void second_overflow(void) |
| 181 | { | 238 | { |
| 182 | s64 time_adj; | 239 | s64 delta; |
| 183 | 240 | ||
| 184 | /* Bump the maxerror field */ | 241 | /* Bump the maxerror field */ |
| 185 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | 242 | time_maxerror += MAXFREQ / NSEC_PER_USEC; |
| @@ -192,24 +249,30 @@ void second_overflow(void) | |||
| 192 | * Compute the phase adjustment for the next second. The offset is | 249 | * Compute the phase adjustment for the next second. The offset is |
| 193 | * reduced by a fixed factor times the time constant. | 250 | * reduced by a fixed factor times the time constant. |
| 194 | */ | 251 | */ |
| 195 | tick_length = tick_length_base; | 252 | tick_length = tick_length_base; |
| 196 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); | 253 | |
| 197 | time_offset -= time_adj; | 254 | delta = shift_right(time_offset, SHIFT_PLL + time_constant); |
| 198 | tick_length += time_adj; | 255 | time_offset -= delta; |
| 199 | 256 | tick_length += delta; | |
| 200 | if (unlikely(time_adjust)) { | 257 | |
| 201 | if (time_adjust > MAX_TICKADJ) { | 258 | if (!time_adjust) |
| 202 | time_adjust -= MAX_TICKADJ; | 259 | return; |
| 203 | tick_length += MAX_TICKADJ_SCALED; | 260 | |
| 204 | } else if (time_adjust < -MAX_TICKADJ) { | 261 | if (time_adjust > MAX_TICKADJ) { |
| 205 | time_adjust += MAX_TICKADJ; | 262 | time_adjust -= MAX_TICKADJ; |
| 206 | tick_length -= MAX_TICKADJ_SCALED; | 263 | tick_length += MAX_TICKADJ_SCALED; |
| 207 | } else { | 264 | return; |
| 208 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / | ||
| 209 | NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT; | ||
| 210 | time_adjust = 0; | ||
| 211 | } | ||
| 212 | } | 265 | } |
| 266 | |||
| 267 | if (time_adjust < -MAX_TICKADJ) { | ||
| 268 | time_adjust += MAX_TICKADJ; | ||
| 269 | tick_length -= MAX_TICKADJ_SCALED; | ||
| 270 | return; | ||
| 271 | } | ||
| 272 | |||
| 273 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | ||
| 274 | << NTP_SCALE_SHIFT; | ||
| 275 | time_adjust = 0; | ||
| 213 | } | 276 | } |
| 214 | 277 | ||
| 215 | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 278 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
| @@ -233,12 +296,13 @@ static void sync_cmos_clock(struct work_struct *work) | |||
| 233 | * This code is run on a timer. If the clock is set, that timer | 296 | * This code is run on a timer. If the clock is set, that timer |
| 234 | * may not expire at the correct time. Thus, we adjust... | 297 | * may not expire at the correct time. Thus, we adjust... |
| 235 | */ | 298 | */ |
| 236 | if (!ntp_synced()) | 299 | if (!ntp_synced()) { |
| 237 | /* | 300 | /* |
| 238 | * Not synced, exit, do not restart a timer (if one is | 301 | * Not synced, exit, do not restart a timer (if one is |
| 239 | * running, let it run out). | 302 | * running, let it run out). |
| 240 | */ | 303 | */ |
| 241 | return; | 304 | return; |
| 305 | } | ||
| 242 | 306 | ||
| 243 | getnstimeofday(&now); | 307 | getnstimeofday(&now); |
| 244 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) | 308 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) |
| @@ -270,7 +334,116 @@ static void notify_cmos_timer(void) | |||
| 270 | static inline void notify_cmos_timer(void) { } | 334 | static inline void notify_cmos_timer(void) { } |
| 271 | #endif | 335 | #endif |
| 272 | 336 | ||
| 273 | /* adjtimex mainly allows reading (and writing, if superuser) of | 337 | /* |
| 338 | * Start the leap seconds timer: | ||
| 339 | */ | ||
| 340 | static inline void ntp_start_leap_timer(struct timespec *ts) | ||
| 341 | { | ||
| 342 | long now = ts->tv_sec; | ||
| 343 | |||
| 344 | if (time_status & STA_INS) { | ||
| 345 | time_state = TIME_INS; | ||
| 346 | now += 86400 - now % 86400; | ||
| 347 | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | ||
| 348 | |||
| 349 | return; | ||
| 350 | } | ||
| 351 | |||
| 352 | if (time_status & STA_DEL) { | ||
| 353 | time_state = TIME_DEL; | ||
| 354 | now += 86400 - (now + 1) % 86400; | ||
| 355 | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | ||
| 356 | } | ||
| 357 | } | ||
| 358 | |||
| 359 | /* | ||
| 360 | * Propagate a new txc->status value into the NTP state: | ||
| 361 | */ | ||
| 362 | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | ||
| 363 | { | ||
| 364 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { | ||
| 365 | time_state = TIME_OK; | ||
| 366 | time_status = STA_UNSYNC; | ||
| 367 | } | ||
| 368 | |||
| 369 | /* | ||
| 370 | * If we turn on PLL adjustments then reset the | ||
| 371 | * reference time to current time. | ||
| 372 | */ | ||
| 373 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | ||
| 374 | time_reftime = xtime.tv_sec; | ||
| 375 | |||
| 376 | /* only set allowed bits */ | ||
| 377 | time_status &= STA_RONLY; | ||
| 378 | time_status |= txc->status & ~STA_RONLY; | ||
| 379 | |||
| 380 | switch (time_state) { | ||
| 381 | case TIME_OK: | ||
| 382 | ntp_start_leap_timer(ts); | ||
| 383 | break; | ||
| 384 | case TIME_INS: | ||
| 385 | case TIME_DEL: | ||
| 386 | time_state = TIME_OK; | ||
| 387 | ntp_start_leap_timer(ts); | ||
| 388 | case TIME_WAIT: | ||
| 389 | if (!(time_status & (STA_INS | STA_DEL))) | ||
| 390 | time_state = TIME_OK; | ||
| 391 | break; | ||
| 392 | case TIME_OOP: | ||
| 393 | hrtimer_restart(&leap_timer); | ||
| 394 | break; | ||
| 395 | } | ||
| 396 | } | ||
| 397 | /* | ||
| 398 | * Called with the xtime lock held, so we can access and modify | ||
| 399 | * all the global NTP state: | ||
| 400 | */ | ||
| 401 | static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) | ||
| 402 | { | ||
| 403 | if (txc->modes & ADJ_STATUS) | ||
| 404 | process_adj_status(txc, ts); | ||
| 405 | |||
| 406 | if (txc->modes & ADJ_NANO) | ||
| 407 | time_status |= STA_NANO; | ||
| 408 | |||
| 409 | if (txc->modes & ADJ_MICRO) | ||
| 410 | time_status &= ~STA_NANO; | ||
| 411 | |||
| 412 | if (txc->modes & ADJ_FREQUENCY) { | ||
| 413 | time_freq = txc->freq * PPM_SCALE; | ||
| 414 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
| 415 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
| 416 | } | ||
| 417 | |||
| 418 | if (txc->modes & ADJ_MAXERROR) | ||
| 419 | time_maxerror = txc->maxerror; | ||
| 420 | |||
| 421 | if (txc->modes & ADJ_ESTERROR) | ||
| 422 | time_esterror = txc->esterror; | ||
| 423 | |||
| 424 | if (txc->modes & ADJ_TIMECONST) { | ||
| 425 | time_constant = txc->constant; | ||
| 426 | if (!(time_status & STA_NANO)) | ||
| 427 | time_constant += 4; | ||
| 428 | time_constant = min(time_constant, (long)MAXTC); | ||
| 429 | time_constant = max(time_constant, 0l); | ||
| 430 | } | ||
| 431 | |||
| 432 | if (txc->modes & ADJ_TAI && txc->constant > 0) | ||
| 433 | time_tai = txc->constant; | ||
| 434 | |||
| 435 | if (txc->modes & ADJ_OFFSET) | ||
| 436 | ntp_update_offset(txc->offset); | ||
| 437 | |||
| 438 | if (txc->modes & ADJ_TICK) | ||
| 439 | tick_usec = txc->tick; | ||
| 440 | |||
| 441 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | ||
| 442 | ntp_update_frequency(); | ||
| 443 | } | ||
| 444 | |||
| 445 | /* | ||
| 446 | * adjtimex mainly allows reading (and writing, if superuser) of | ||
| 274 | * kernel time-keeping variables. used by xntpd. | 447 | * kernel time-keeping variables. used by xntpd. |
| 275 | */ | 448 | */ |
| 276 | int do_adjtimex(struct timex *txc) | 449 | int do_adjtimex(struct timex *txc) |
| @@ -291,11 +464,14 @@ int do_adjtimex(struct timex *txc) | |||
| 291 | if (txc->modes && !capable(CAP_SYS_TIME)) | 464 | if (txc->modes && !capable(CAP_SYS_TIME)) |
| 292 | return -EPERM; | 465 | return -EPERM; |
| 293 | 466 | ||
| 294 | /* if the quartz is off by more than 10% something is VERY wrong! */ | 467 | /* |
| 468 | * if the quartz is off by more than 10% then | ||
| 469 | * something is VERY wrong! | ||
| 470 | */ | ||
| 295 | if (txc->modes & ADJ_TICK && | 471 | if (txc->modes & ADJ_TICK && |
| 296 | (txc->tick < 900000/USER_HZ || | 472 | (txc->tick < 900000/USER_HZ || |
| 297 | txc->tick > 1100000/USER_HZ)) | 473 | txc->tick > 1100000/USER_HZ)) |
| 298 | return -EINVAL; | 474 | return -EINVAL; |
| 299 | 475 | ||
| 300 | if (txc->modes & ADJ_STATUS && time_state != TIME_OK) | 476 | if (txc->modes & ADJ_STATUS && time_state != TIME_OK) |
| 301 | hrtimer_cancel(&leap_timer); | 477 | hrtimer_cancel(&leap_timer); |
| @@ -305,7 +481,6 @@ int do_adjtimex(struct timex *txc) | |||
| 305 | 481 | ||
| 306 | write_seqlock_irq(&xtime_lock); | 482 | write_seqlock_irq(&xtime_lock); |
| 307 | 483 | ||
| 308 | /* If there are input parameters, then process them */ | ||
| 309 | if (txc->modes & ADJ_ADJTIME) { | 484 | if (txc->modes & ADJ_ADJTIME) { |
| 310 | long save_adjust = time_adjust; | 485 | long save_adjust = time_adjust; |
| 311 | 486 | ||
| @@ -315,98 +490,24 @@ int do_adjtimex(struct timex *txc) | |||
| 315 | ntp_update_frequency(); | 490 | ntp_update_frequency(); |
| 316 | } | 491 | } |
| 317 | txc->offset = save_adjust; | 492 | txc->offset = save_adjust; |
| 318 | goto adj_done; | 493 | } else { |
| 319 | } | ||
| 320 | if (txc->modes) { | ||
| 321 | long sec; | ||
| 322 | |||
| 323 | if (txc->modes & ADJ_STATUS) { | ||
| 324 | if ((time_status & STA_PLL) && | ||
| 325 | !(txc->status & STA_PLL)) { | ||
| 326 | time_state = TIME_OK; | ||
| 327 | time_status = STA_UNSYNC; | ||
| 328 | } | ||
| 329 | /* only set allowed bits */ | ||
| 330 | time_status &= STA_RONLY; | ||
| 331 | time_status |= txc->status & ~STA_RONLY; | ||
| 332 | |||
| 333 | switch (time_state) { | ||
| 334 | case TIME_OK: | ||
| 335 | start_timer: | ||
| 336 | sec = ts.tv_sec; | ||
| 337 | if (time_status & STA_INS) { | ||
| 338 | time_state = TIME_INS; | ||
| 339 | sec += 86400 - sec % 86400; | ||
| 340 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
| 341 | } else if (time_status & STA_DEL) { | ||
| 342 | time_state = TIME_DEL; | ||
| 343 | sec += 86400 - (sec + 1) % 86400; | ||
| 344 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
| 345 | } | ||
| 346 | break; | ||
| 347 | case TIME_INS: | ||
| 348 | case TIME_DEL: | ||
| 349 | time_state = TIME_OK; | ||
| 350 | goto start_timer; | ||
| 351 | break; | ||
| 352 | case TIME_WAIT: | ||
| 353 | if (!(time_status & (STA_INS | STA_DEL))) | ||
| 354 | time_state = TIME_OK; | ||
| 355 | break; | ||
| 356 | case TIME_OOP: | ||
| 357 | hrtimer_restart(&leap_timer); | ||
| 358 | break; | ||
| 359 | } | ||
| 360 | } | ||
| 361 | |||
| 362 | if (txc->modes & ADJ_NANO) | ||
| 363 | time_status |= STA_NANO; | ||
| 364 | if (txc->modes & ADJ_MICRO) | ||
| 365 | time_status &= ~STA_NANO; | ||
| 366 | |||
| 367 | if (txc->modes & ADJ_FREQUENCY) { | ||
| 368 | time_freq = (s64)txc->freq * PPM_SCALE; | ||
| 369 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
| 370 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
| 371 | } | ||
| 372 | |||
| 373 | if (txc->modes & ADJ_MAXERROR) | ||
| 374 | time_maxerror = txc->maxerror; | ||
| 375 | if (txc->modes & ADJ_ESTERROR) | ||
| 376 | time_esterror = txc->esterror; | ||
| 377 | |||
| 378 | if (txc->modes & ADJ_TIMECONST) { | ||
| 379 | time_constant = txc->constant; | ||
| 380 | if (!(time_status & STA_NANO)) | ||
| 381 | time_constant += 4; | ||
| 382 | time_constant = min(time_constant, (long)MAXTC); | ||
| 383 | time_constant = max(time_constant, 0l); | ||
| 384 | } | ||
| 385 | |||
| 386 | if (txc->modes & ADJ_TAI && txc->constant > 0) | ||
| 387 | time_tai = txc->constant; | ||
| 388 | |||
| 389 | if (txc->modes & ADJ_OFFSET) | ||
| 390 | ntp_update_offset(txc->offset); | ||
| 391 | if (txc->modes & ADJ_TICK) | ||
| 392 | tick_usec = txc->tick; | ||
| 393 | 494 | ||
| 394 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | 495 | /* If there are input parameters, then process them: */ |
| 395 | ntp_update_frequency(); | 496 | if (txc->modes) |
| 396 | } | 497 | process_adjtimex_modes(txc, &ts); |
| 397 | 498 | ||
| 398 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, | 499 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
| 399 | NTP_SCALE_SHIFT); | 500 | NTP_SCALE_SHIFT); |
| 400 | if (!(time_status & STA_NANO)) | 501 | if (!(time_status & STA_NANO)) |
| 401 | txc->offset /= NSEC_PER_USEC; | 502 | txc->offset /= NSEC_PER_USEC; |
| 503 | } | ||
| 402 | 504 | ||
| 403 | adj_done: | ||
| 404 | result = time_state; /* mostly `TIME_OK' */ | 505 | result = time_state; /* mostly `TIME_OK' */ |
| 405 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) | 506 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) |
| 406 | result = TIME_ERROR; | 507 | result = TIME_ERROR; |
| 407 | 508 | ||
| 408 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * | 509 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
| 409 | (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT); | 510 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
| 410 | txc->maxerror = time_maxerror; | 511 | txc->maxerror = time_maxerror; |
| 411 | txc->esterror = time_esterror; | 512 | txc->esterror = time_esterror; |
| 412 | txc->status = time_status; | 513 | txc->status = time_status; |
| @@ -425,6 +526,7 @@ adj_done: | |||
| 425 | txc->calcnt = 0; | 526 | txc->calcnt = 0; |
| 426 | txc->errcnt = 0; | 527 | txc->errcnt = 0; |
| 427 | txc->stbcnt = 0; | 528 | txc->stbcnt = 0; |
| 529 | |||
| 428 | write_sequnlock_irq(&xtime_lock); | 530 | write_sequnlock_irq(&xtime_lock); |
| 429 | 531 | ||
| 430 | txc->time.tv_sec = ts.tv_sec; | 532 | txc->time.tv_sec = ts.tv_sec; |
| @@ -440,6 +542,8 @@ adj_done: | |||
| 440 | static int __init ntp_tick_adj_setup(char *str) | 542 | static int __init ntp_tick_adj_setup(char *str) |
| 441 | { | 543 | { |
| 442 | ntp_tick_adj = simple_strtol(str, NULL, 0); | 544 | ntp_tick_adj = simple_strtol(str, NULL, 0); |
| 545 | ntp_tick_adj <<= NTP_SCALE_SHIFT; | ||
| 546 | |||
| 443 | return 1; | 547 | return 1; |
| 444 | } | 548 | } |
| 445 | 549 | ||
diff --git a/kernel/time/timecompare.c b/kernel/time/timecompare.c new file mode 100644 index 000000000000..71e7f1a19156 --- /dev/null +++ b/kernel/time/timecompare.c | |||
| @@ -0,0 +1,191 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2009 Intel Corporation. | ||
| 3 | * Author: Patrick Ohly <patrick.ohly@intel.com> | ||
| 4 | * | ||
| 5 | * This program is free software; you can redistribute it and/or modify | ||
| 6 | * it under the terms of the GNU General Public License as published by | ||
| 7 | * the Free Software Foundation; either version 2 of the License, or | ||
| 8 | * (at your option) any later version. | ||
| 9 | * | ||
| 10 | * This program is distributed in the hope that it will be useful, | ||
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 13 | * GNU General Public License for more details. | ||
| 14 | * | ||
| 15 | * You should have received a copy of the GNU General Public License | ||
| 16 | * along with this program; if not, write to the Free Software | ||
| 17 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
| 18 | */ | ||
| 19 | |||
| 20 | #include <linux/timecompare.h> | ||
| 21 | #include <linux/module.h> | ||
| 22 | #include <linux/math64.h> | ||
| 23 | |||
| 24 | /* | ||
| 25 | * fixed point arithmetic scale factor for skew | ||
| 26 | * | ||
| 27 | * Usually one would measure skew in ppb (parts per billion, 1e9), but | ||
| 28 | * using a factor of 2 simplifies the math. | ||
| 29 | */ | ||
| 30 | #define TIMECOMPARE_SKEW_RESOLUTION (((s64)1)<<30) | ||
| 31 | |||
| 32 | ktime_t timecompare_transform(struct timecompare *sync, | ||
| 33 | u64 source_tstamp) | ||
| 34 | { | ||
| 35 | u64 nsec; | ||
| 36 | |||
| 37 | nsec = source_tstamp + sync->offset; | ||
| 38 | nsec += (s64)(source_tstamp - sync->last_update) * sync->skew / | ||
| 39 | TIMECOMPARE_SKEW_RESOLUTION; | ||
| 40 | |||
| 41 | return ns_to_ktime(nsec); | ||
| 42 | } | ||
| 43 | EXPORT_SYMBOL(timecompare_transform); | ||
| 44 | |||
| 45 | int timecompare_offset(struct timecompare *sync, | ||
| 46 | s64 *offset, | ||
| 47 | u64 *source_tstamp) | ||
| 48 | { | ||
| 49 | u64 start_source = 0, end_source = 0; | ||
| 50 | struct { | ||
| 51 | s64 offset; | ||
| 52 | s64 duration_target; | ||
| 53 | } buffer[10], sample, *samples; | ||
| 54 | int counter = 0, i; | ||
| 55 | int used; | ||
| 56 | int index; | ||
| 57 | int num_samples = sync->num_samples; | ||
| 58 | |||
| 59 | if (num_samples > sizeof(buffer)/sizeof(buffer[0])) { | ||
| 60 | samples = kmalloc(sizeof(*samples) * num_samples, GFP_ATOMIC); | ||
| 61 | if (!samples) { | ||
| 62 | samples = buffer; | ||
| 63 | num_samples = sizeof(buffer)/sizeof(buffer[0]); | ||
| 64 | } | ||
| 65 | } else { | ||
| 66 | samples = buffer; | ||
| 67 | } | ||
| 68 | |||
| 69 | /* run until we have enough valid samples, but do not try forever */ | ||
| 70 | i = 0; | ||
| 71 | counter = 0; | ||
| 72 | while (1) { | ||
| 73 | u64 ts; | ||
| 74 | ktime_t start, end; | ||
| 75 | |||
| 76 | start = sync->target(); | ||
| 77 | ts = timecounter_read(sync->source); | ||
| 78 | end = sync->target(); | ||
| 79 | |||
| 80 | if (!i) | ||
| 81 | start_source = ts; | ||
| 82 | |||
| 83 | /* ignore negative durations */ | ||
| 84 | sample.duration_target = ktime_to_ns(ktime_sub(end, start)); | ||
| 85 | if (sample.duration_target >= 0) { | ||
| 86 | /* | ||
| 87 | * assume symetric delay to and from source: | ||
| 88 | * average target time corresponds to measured | ||
| 89 | * source time | ||
| 90 | */ | ||
| 91 | sample.offset = | ||
| 92 | ktime_to_ns(ktime_add(end, start)) / 2 - | ||
| 93 | ts; | ||
| 94 | |||
| 95 | /* simple insertion sort based on duration */ | ||
| 96 | index = counter - 1; | ||
| 97 | while (index >= 0) { | ||
| 98 | if (samples[index].duration_target < | ||
| 99 | sample.duration_target) | ||
| 100 | break; | ||
| 101 | samples[index + 1] = samples[index]; | ||
| 102 | index--; | ||
| 103 | } | ||
| 104 | samples[index + 1] = sample; | ||
| 105 | counter++; | ||
| 106 | } | ||
| 107 | |||
| 108 | i++; | ||
| 109 | if (counter >= num_samples || i >= 100000) { | ||
| 110 | end_source = ts; | ||
| 111 | break; | ||
| 112 | } | ||
| 113 | } | ||
| 114 | |||
| 115 | *source_tstamp = (end_source + start_source) / 2; | ||
| 116 | |||
| 117 | /* remove outliers by only using 75% of the samples */ | ||
| 118 | used = counter * 3 / 4; | ||
| 119 | if (!used) | ||
| 120 | used = counter; | ||
| 121 | if (used) { | ||
| 122 | /* calculate average */ | ||
| 123 | s64 off = 0; | ||
| 124 | for (index = 0; index < used; index++) | ||
| 125 | off += samples[index].offset; | ||
| 126 | *offset = div_s64(off, used); | ||
| 127 | } | ||
| 128 | |||
| 129 | if (samples && samples != buffer) | ||
| 130 | kfree(samples); | ||
| 131 | |||
| 132 | return used; | ||
| 133 | } | ||
| 134 | EXPORT_SYMBOL(timecompare_offset); | ||
| 135 | |||
| 136 | void __timecompare_update(struct timecompare *sync, | ||
| 137 | u64 source_tstamp) | ||
| 138 | { | ||
| 139 | s64 offset; | ||
| 140 | u64 average_time; | ||
| 141 | |||
| 142 | if (!timecompare_offset(sync, &offset, &average_time)) | ||
| 143 | return; | ||
| 144 | |||
| 145 | if (!sync->last_update) { | ||
| 146 | sync->last_update = average_time; | ||
| 147 | sync->offset = offset; | ||
| 148 | sync->skew = 0; | ||
| 149 | } else { | ||
| 150 | s64 delta_nsec = average_time - sync->last_update; | ||
| 151 | |||
| 152 | /* avoid division by negative or small deltas */ | ||
| 153 | if (delta_nsec >= 10000) { | ||
| 154 | s64 delta_offset_nsec = offset - sync->offset; | ||
| 155 | s64 skew; /* delta_offset_nsec * | ||
| 156 | TIMECOMPARE_SKEW_RESOLUTION / | ||
| 157 | delta_nsec */ | ||
| 158 | u64 divisor; | ||
| 159 | |||
| 160 | /* div_s64() is limited to 32 bit divisor */ | ||
| 161 | skew = delta_offset_nsec * TIMECOMPARE_SKEW_RESOLUTION; | ||
| 162 | divisor = delta_nsec; | ||
| 163 | while (unlikely(divisor >= ((s64)1) << 32)) { | ||
| 164 | /* divide both by 2; beware, right shift | ||
| 165 | of negative value has undefined | ||
| 166 | behavior and can only be used for | ||
| 167 | the positive divisor */ | ||
| 168 | skew = div_s64(skew, 2); | ||
| 169 | divisor >>= 1; | ||
| 170 | } | ||
| 171 | skew = div_s64(skew, divisor); | ||
| 172 | |||
| 173 | /* | ||
| 174 | * Calculate new overall skew as 4/16 the | ||
| 175 | * old value and 12/16 the new one. This is | ||
| 176 | * a rather arbitrary tradeoff between | ||
| 177 | * only using the latest measurement (0/16 and | ||
| 178 | * 16/16) and even more weight on past measurements. | ||
| 179 | */ | ||
| 180 | #define TIMECOMPARE_NEW_SKEW_PER_16 12 | ||
| 181 | sync->skew = | ||
| 182 | div_s64((16 - TIMECOMPARE_NEW_SKEW_PER_16) * | ||
| 183 | sync->skew + | ||
| 184 | TIMECOMPARE_NEW_SKEW_PER_16 * skew, | ||
| 185 | 16); | ||
| 186 | sync->last_update = average_time; | ||
| 187 | sync->offset = offset; | ||
| 188 | } | ||
| 189 | } | ||
| 190 | } | ||
| 191 | EXPORT_SYMBOL(__timecompare_update); | ||
