diff options
Diffstat (limited to 'kernel/time/tick-sched.c')
-rw-r--r-- | kernel/time/tick-sched.c | 558 |
1 files changed, 558 insertions, 0 deletions
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c new file mode 100644 index 000000000000..99d35e2af182 --- /dev/null +++ b/kernel/time/tick-sched.c | |||
@@ -0,0 +1,558 @@ | |||
1 | /* | ||
2 | * linux/kernel/time/tick-sched.c | ||
3 | * | ||
4 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner | ||
7 | * | ||
8 | * No idle tick implementation for low and high resolution timers | ||
9 | * | ||
10 | * Started by: Thomas Gleixner and Ingo Molnar | ||
11 | * | ||
12 | * For licencing details see kernel-base/COPYING | ||
13 | */ | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/err.h> | ||
16 | #include <linux/hrtimer.h> | ||
17 | #include <linux/interrupt.h> | ||
18 | #include <linux/kernel_stat.h> | ||
19 | #include <linux/percpu.h> | ||
20 | #include <linux/profile.h> | ||
21 | #include <linux/sched.h> | ||
22 | #include <linux/tick.h> | ||
23 | |||
24 | #include "tick-internal.h" | ||
25 | |||
26 | /* | ||
27 | * Per cpu nohz control structure | ||
28 | */ | ||
29 | static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); | ||
30 | |||
31 | /* | ||
32 | * The time, when the last jiffy update happened. Protected by xtime_lock. | ||
33 | */ | ||
34 | static ktime_t last_jiffies_update; | ||
35 | |||
36 | /* | ||
37 | * Must be called with interrupts disabled ! | ||
38 | */ | ||
39 | static void tick_do_update_jiffies64(ktime_t now) | ||
40 | { | ||
41 | unsigned long ticks = 0; | ||
42 | ktime_t delta; | ||
43 | |||
44 | /* Reevalute with xtime_lock held */ | ||
45 | write_seqlock(&xtime_lock); | ||
46 | |||
47 | delta = ktime_sub(now, last_jiffies_update); | ||
48 | if (delta.tv64 >= tick_period.tv64) { | ||
49 | |||
50 | delta = ktime_sub(delta, tick_period); | ||
51 | last_jiffies_update = ktime_add(last_jiffies_update, | ||
52 | tick_period); | ||
53 | |||
54 | /* Slow path for long timeouts */ | ||
55 | if (unlikely(delta.tv64 >= tick_period.tv64)) { | ||
56 | s64 incr = ktime_to_ns(tick_period); | ||
57 | |||
58 | ticks = ktime_divns(delta, incr); | ||
59 | |||
60 | last_jiffies_update = ktime_add_ns(last_jiffies_update, | ||
61 | incr * ticks); | ||
62 | } | ||
63 | do_timer(++ticks); | ||
64 | } | ||
65 | write_sequnlock(&xtime_lock); | ||
66 | } | ||
67 | |||
68 | /* | ||
69 | * Initialize and return retrieve the jiffies update. | ||
70 | */ | ||
71 | static ktime_t tick_init_jiffy_update(void) | ||
72 | { | ||
73 | ktime_t period; | ||
74 | |||
75 | write_seqlock(&xtime_lock); | ||
76 | /* Did we start the jiffies update yet ? */ | ||
77 | if (last_jiffies_update.tv64 == 0) | ||
78 | last_jiffies_update = tick_next_period; | ||
79 | period = last_jiffies_update; | ||
80 | write_sequnlock(&xtime_lock); | ||
81 | return period; | ||
82 | } | ||
83 | |||
84 | /* | ||
85 | * NOHZ - aka dynamic tick functionality | ||
86 | */ | ||
87 | #ifdef CONFIG_NO_HZ | ||
88 | /* | ||
89 | * NO HZ enabled ? | ||
90 | */ | ||
91 | static int tick_nohz_enabled __read_mostly = 1; | ||
92 | |||
93 | /* | ||
94 | * Enable / Disable tickless mode | ||
95 | */ | ||
96 | static int __init setup_tick_nohz(char *str) | ||
97 | { | ||
98 | if (!strcmp(str, "off")) | ||
99 | tick_nohz_enabled = 0; | ||
100 | else if (!strcmp(str, "on")) | ||
101 | tick_nohz_enabled = 1; | ||
102 | else | ||
103 | return 0; | ||
104 | return 1; | ||
105 | } | ||
106 | |||
107 | __setup("nohz=", setup_tick_nohz); | ||
108 | |||
109 | /** | ||
110 | * tick_nohz_update_jiffies - update jiffies when idle was interrupted | ||
111 | * | ||
112 | * Called from interrupt entry when the CPU was idle | ||
113 | * | ||
114 | * In case the sched_tick was stopped on this CPU, we have to check if jiffies | ||
115 | * must be updated. Otherwise an interrupt handler could use a stale jiffy | ||
116 | * value. We do this unconditionally on any cpu, as we don't know whether the | ||
117 | * cpu, which has the update task assigned is in a long sleep. | ||
118 | */ | ||
119 | void tick_nohz_update_jiffies(void) | ||
120 | { | ||
121 | int cpu = smp_processor_id(); | ||
122 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | ||
123 | unsigned long flags; | ||
124 | ktime_t now; | ||
125 | |||
126 | if (!ts->tick_stopped) | ||
127 | return; | ||
128 | |||
129 | cpu_clear(cpu, nohz_cpu_mask); | ||
130 | now = ktime_get(); | ||
131 | |||
132 | local_irq_save(flags); | ||
133 | tick_do_update_jiffies64(now); | ||
134 | local_irq_restore(flags); | ||
135 | } | ||
136 | |||
137 | /** | ||
138 | * tick_nohz_stop_sched_tick - stop the idle tick from the idle task | ||
139 | * | ||
140 | * When the next event is more than a tick into the future, stop the idle tick | ||
141 | * Called either from the idle loop or from irq_exit() when an idle period was | ||
142 | * just interrupted by an interrupt which did not cause a reschedule. | ||
143 | */ | ||
144 | void tick_nohz_stop_sched_tick(void) | ||
145 | { | ||
146 | unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; | ||
147 | struct tick_sched *ts; | ||
148 | ktime_t last_update, expires, now, delta; | ||
149 | int cpu; | ||
150 | |||
151 | local_irq_save(flags); | ||
152 | |||
153 | cpu = smp_processor_id(); | ||
154 | ts = &per_cpu(tick_cpu_sched, cpu); | ||
155 | |||
156 | if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) | ||
157 | goto end; | ||
158 | |||
159 | if (need_resched()) | ||
160 | goto end; | ||
161 | |||
162 | cpu = smp_processor_id(); | ||
163 | BUG_ON(local_softirq_pending()); | ||
164 | |||
165 | now = ktime_get(); | ||
166 | /* | ||
167 | * When called from irq_exit we need to account the idle sleep time | ||
168 | * correctly. | ||
169 | */ | ||
170 | if (ts->tick_stopped) { | ||
171 | delta = ktime_sub(now, ts->idle_entrytime); | ||
172 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
173 | } | ||
174 | |||
175 | ts->idle_entrytime = now; | ||
176 | ts->idle_calls++; | ||
177 | |||
178 | /* Read jiffies and the time when jiffies were updated last */ | ||
179 | do { | ||
180 | seq = read_seqbegin(&xtime_lock); | ||
181 | last_update = last_jiffies_update; | ||
182 | last_jiffies = jiffies; | ||
183 | } while (read_seqretry(&xtime_lock, seq)); | ||
184 | |||
185 | /* Get the next timer wheel timer */ | ||
186 | next_jiffies = get_next_timer_interrupt(last_jiffies); | ||
187 | delta_jiffies = next_jiffies - last_jiffies; | ||
188 | |||
189 | /* | ||
190 | * Do not stop the tick, if we are only one off | ||
191 | * or if the cpu is required for rcu | ||
192 | */ | ||
193 | if (!ts->tick_stopped && (delta_jiffies == 1 || rcu_needs_cpu(cpu))) | ||
194 | goto out; | ||
195 | |||
196 | /* Schedule the tick, if we are at least one jiffie off */ | ||
197 | if ((long)delta_jiffies >= 1) { | ||
198 | |||
199 | if (rcu_needs_cpu(cpu)) | ||
200 | delta_jiffies = 1; | ||
201 | else | ||
202 | cpu_set(cpu, nohz_cpu_mask); | ||
203 | /* | ||
204 | * nohz_stop_sched_tick can be called several times before | ||
205 | * the nohz_restart_sched_tick is called. This happens when | ||
206 | * interrupts arrive which do not cause a reschedule. In the | ||
207 | * first call we save the current tick time, so we can restart | ||
208 | * the scheduler tick in nohz_restart_sched_tick. | ||
209 | */ | ||
210 | if (!ts->tick_stopped) { | ||
211 | ts->idle_tick = ts->sched_timer.expires; | ||
212 | ts->tick_stopped = 1; | ||
213 | ts->idle_jiffies = last_jiffies; | ||
214 | } | ||
215 | /* | ||
216 | * calculate the expiry time for the next timer wheel | ||
217 | * timer | ||
218 | */ | ||
219 | expires = ktime_add_ns(last_update, tick_period.tv64 * | ||
220 | delta_jiffies); | ||
221 | ts->idle_expires = expires; | ||
222 | ts->idle_sleeps++; | ||
223 | |||
224 | if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | ||
225 | hrtimer_start(&ts->sched_timer, expires, | ||
226 | HRTIMER_MODE_ABS); | ||
227 | /* Check, if the timer was already in the past */ | ||
228 | if (hrtimer_active(&ts->sched_timer)) | ||
229 | goto out; | ||
230 | } else if(!tick_program_event(expires, 0)) | ||
231 | goto out; | ||
232 | /* | ||
233 | * We are past the event already. So we crossed a | ||
234 | * jiffie boundary. Update jiffies and raise the | ||
235 | * softirq. | ||
236 | */ | ||
237 | tick_do_update_jiffies64(ktime_get()); | ||
238 | cpu_clear(cpu, nohz_cpu_mask); | ||
239 | } | ||
240 | raise_softirq_irqoff(TIMER_SOFTIRQ); | ||
241 | out: | ||
242 | ts->next_jiffies = next_jiffies; | ||
243 | ts->last_jiffies = last_jiffies; | ||
244 | end: | ||
245 | local_irq_restore(flags); | ||
246 | } | ||
247 | |||
248 | /** | ||
249 | * nohz_restart_sched_tick - restart the idle tick from the idle task | ||
250 | * | ||
251 | * Restart the idle tick when the CPU is woken up from idle | ||
252 | */ | ||
253 | void tick_nohz_restart_sched_tick(void) | ||
254 | { | ||
255 | int cpu = smp_processor_id(); | ||
256 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | ||
257 | unsigned long ticks; | ||
258 | ktime_t now, delta; | ||
259 | |||
260 | if (!ts->tick_stopped) | ||
261 | return; | ||
262 | |||
263 | /* Update jiffies first */ | ||
264 | now = ktime_get(); | ||
265 | |||
266 | local_irq_disable(); | ||
267 | tick_do_update_jiffies64(now); | ||
268 | cpu_clear(cpu, nohz_cpu_mask); | ||
269 | |||
270 | /* Account the idle time */ | ||
271 | delta = ktime_sub(now, ts->idle_entrytime); | ||
272 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
273 | |||
274 | /* | ||
275 | * We stopped the tick in idle. Update process times would miss the | ||
276 | * time we slept as update_process_times does only a 1 tick | ||
277 | * accounting. Enforce that this is accounted to idle ! | ||
278 | */ | ||
279 | ticks = jiffies - ts->idle_jiffies; | ||
280 | /* | ||
281 | * We might be one off. Do not randomly account a huge number of ticks! | ||
282 | */ | ||
283 | if (ticks && ticks < LONG_MAX) { | ||
284 | add_preempt_count(HARDIRQ_OFFSET); | ||
285 | account_system_time(current, HARDIRQ_OFFSET, | ||
286 | jiffies_to_cputime(ticks)); | ||
287 | sub_preempt_count(HARDIRQ_OFFSET); | ||
288 | } | ||
289 | |||
290 | /* | ||
291 | * Cancel the scheduled timer and restore the tick | ||
292 | */ | ||
293 | ts->tick_stopped = 0; | ||
294 | hrtimer_cancel(&ts->sched_timer); | ||
295 | ts->sched_timer.expires = ts->idle_tick; | ||
296 | |||
297 | while (1) { | ||
298 | /* Forward the time to expire in the future */ | ||
299 | hrtimer_forward(&ts->sched_timer, now, tick_period); | ||
300 | |||
301 | if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | ||
302 | hrtimer_start(&ts->sched_timer, | ||
303 | ts->sched_timer.expires, | ||
304 | HRTIMER_MODE_ABS); | ||
305 | /* Check, if the timer was already in the past */ | ||
306 | if (hrtimer_active(&ts->sched_timer)) | ||
307 | break; | ||
308 | } else { | ||
309 | if (!tick_program_event(ts->sched_timer.expires, 0)) | ||
310 | break; | ||
311 | } | ||
312 | /* Update jiffies and reread time */ | ||
313 | tick_do_update_jiffies64(now); | ||
314 | now = ktime_get(); | ||
315 | } | ||
316 | local_irq_enable(); | ||
317 | } | ||
318 | |||
319 | static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) | ||
320 | { | ||
321 | hrtimer_forward(&ts->sched_timer, now, tick_period); | ||
322 | return tick_program_event(ts->sched_timer.expires, 0); | ||
323 | } | ||
324 | |||
325 | /* | ||
326 | * The nohz low res interrupt handler | ||
327 | */ | ||
328 | static void tick_nohz_handler(struct clock_event_device *dev) | ||
329 | { | ||
330 | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | ||
331 | struct pt_regs *regs = get_irq_regs(); | ||
332 | ktime_t now = ktime_get(); | ||
333 | |||
334 | dev->next_event.tv64 = KTIME_MAX; | ||
335 | |||
336 | /* Check, if the jiffies need an update */ | ||
337 | tick_do_update_jiffies64(now); | ||
338 | |||
339 | /* | ||
340 | * When we are idle and the tick is stopped, we have to touch | ||
341 | * the watchdog as we might not schedule for a really long | ||
342 | * time. This happens on complete idle SMP systems while | ||
343 | * waiting on the login prompt. We also increment the "start | ||
344 | * of idle" jiffy stamp so the idle accounting adjustment we | ||
345 | * do when we go busy again does not account too much ticks. | ||
346 | */ | ||
347 | if (ts->tick_stopped) { | ||
348 | touch_softlockup_watchdog(); | ||
349 | ts->idle_jiffies++; | ||
350 | } | ||
351 | |||
352 | update_process_times(user_mode(regs)); | ||
353 | profile_tick(CPU_PROFILING); | ||
354 | |||
355 | /* Do not restart, when we are in the idle loop */ | ||
356 | if (ts->tick_stopped) | ||
357 | return; | ||
358 | |||
359 | while (tick_nohz_reprogram(ts, now)) { | ||
360 | now = ktime_get(); | ||
361 | tick_do_update_jiffies64(now); | ||
362 | } | ||
363 | } | ||
364 | |||
365 | /** | ||
366 | * tick_nohz_switch_to_nohz - switch to nohz mode | ||
367 | */ | ||
368 | static void tick_nohz_switch_to_nohz(void) | ||
369 | { | ||
370 | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | ||
371 | ktime_t next; | ||
372 | |||
373 | if (!tick_nohz_enabled) | ||
374 | return; | ||
375 | |||
376 | local_irq_disable(); | ||
377 | if (tick_switch_to_oneshot(tick_nohz_handler)) { | ||
378 | local_irq_enable(); | ||
379 | return; | ||
380 | } | ||
381 | |||
382 | ts->nohz_mode = NOHZ_MODE_LOWRES; | ||
383 | |||
384 | /* | ||
385 | * Recycle the hrtimer in ts, so we can share the | ||
386 | * hrtimer_forward with the highres code. | ||
387 | */ | ||
388 | hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | ||
389 | /* Get the next period */ | ||
390 | next = tick_init_jiffy_update(); | ||
391 | |||
392 | for (;;) { | ||
393 | ts->sched_timer.expires = next; | ||
394 | if (!tick_program_event(next, 0)) | ||
395 | break; | ||
396 | next = ktime_add(next, tick_period); | ||
397 | } | ||
398 | local_irq_enable(); | ||
399 | |||
400 | printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", | ||
401 | smp_processor_id()); | ||
402 | } | ||
403 | |||
404 | #else | ||
405 | |||
406 | static inline void tick_nohz_switch_to_nohz(void) { } | ||
407 | |||
408 | #endif /* NO_HZ */ | ||
409 | |||
410 | /* | ||
411 | * High resolution timer specific code | ||
412 | */ | ||
413 | #ifdef CONFIG_HIGH_RES_TIMERS | ||
414 | /* | ||
415 | * We rearm the timer until we get disabled by the idle code | ||
416 | * Called with interrupts disabled and timer->base->cpu_base->lock held. | ||
417 | */ | ||
418 | static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) | ||
419 | { | ||
420 | struct tick_sched *ts = | ||
421 | container_of(timer, struct tick_sched, sched_timer); | ||
422 | struct hrtimer_cpu_base *base = timer->base->cpu_base; | ||
423 | struct pt_regs *regs = get_irq_regs(); | ||
424 | ktime_t now = ktime_get(); | ||
425 | |||
426 | /* Check, if the jiffies need an update */ | ||
427 | tick_do_update_jiffies64(now); | ||
428 | |||
429 | /* | ||
430 | * Do not call, when we are not in irq context and have | ||
431 | * no valid regs pointer | ||
432 | */ | ||
433 | if (regs) { | ||
434 | /* | ||
435 | * When we are idle and the tick is stopped, we have to touch | ||
436 | * the watchdog as we might not schedule for a really long | ||
437 | * time. This happens on complete idle SMP systems while | ||
438 | * waiting on the login prompt. We also increment the "start of | ||
439 | * idle" jiffy stamp so the idle accounting adjustment we do | ||
440 | * when we go busy again does not account too much ticks. | ||
441 | */ | ||
442 | if (ts->tick_stopped) { | ||
443 | touch_softlockup_watchdog(); | ||
444 | ts->idle_jiffies++; | ||
445 | } | ||
446 | /* | ||
447 | * update_process_times() might take tasklist_lock, hence | ||
448 | * drop the base lock. sched-tick hrtimers are per-CPU and | ||
449 | * never accessible by userspace APIs, so this is safe to do. | ||
450 | */ | ||
451 | spin_unlock(&base->lock); | ||
452 | update_process_times(user_mode(regs)); | ||
453 | profile_tick(CPU_PROFILING); | ||
454 | spin_lock(&base->lock); | ||
455 | } | ||
456 | |||
457 | /* Do not restart, when we are in the idle loop */ | ||
458 | if (ts->tick_stopped) | ||
459 | return HRTIMER_NORESTART; | ||
460 | |||
461 | hrtimer_forward(timer, now, tick_period); | ||
462 | |||
463 | return HRTIMER_RESTART; | ||
464 | } | ||
465 | |||
466 | /** | ||
467 | * tick_setup_sched_timer - setup the tick emulation timer | ||
468 | */ | ||
469 | void tick_setup_sched_timer(void) | ||
470 | { | ||
471 | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | ||
472 | ktime_t now = ktime_get(); | ||
473 | |||
474 | /* | ||
475 | * Emulate tick processing via per-CPU hrtimers: | ||
476 | */ | ||
477 | hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | ||
478 | ts->sched_timer.function = tick_sched_timer; | ||
479 | ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; | ||
480 | |||
481 | /* Get the next period */ | ||
482 | ts->sched_timer.expires = tick_init_jiffy_update(); | ||
483 | |||
484 | for (;;) { | ||
485 | hrtimer_forward(&ts->sched_timer, now, tick_period); | ||
486 | hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, | ||
487 | HRTIMER_MODE_ABS); | ||
488 | /* Check, if the timer was already in the past */ | ||
489 | if (hrtimer_active(&ts->sched_timer)) | ||
490 | break; | ||
491 | now = ktime_get(); | ||
492 | } | ||
493 | |||
494 | #ifdef CONFIG_NO_HZ | ||
495 | if (tick_nohz_enabled) | ||
496 | ts->nohz_mode = NOHZ_MODE_HIGHRES; | ||
497 | #endif | ||
498 | } | ||
499 | |||
500 | void tick_cancel_sched_timer(int cpu) | ||
501 | { | ||
502 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | ||
503 | |||
504 | if (ts->sched_timer.base) | ||
505 | hrtimer_cancel(&ts->sched_timer); | ||
506 | ts->tick_stopped = 0; | ||
507 | ts->nohz_mode = NOHZ_MODE_INACTIVE; | ||
508 | } | ||
509 | #endif /* HIGH_RES_TIMERS */ | ||
510 | |||
511 | /** | ||
512 | * Async notification about clocksource changes | ||
513 | */ | ||
514 | void tick_clock_notify(void) | ||
515 | { | ||
516 | int cpu; | ||
517 | |||
518 | for_each_possible_cpu(cpu) | ||
519 | set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); | ||
520 | } | ||
521 | |||
522 | /* | ||
523 | * Async notification about clock event changes | ||
524 | */ | ||
525 | void tick_oneshot_notify(void) | ||
526 | { | ||
527 | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | ||
528 | |||
529 | set_bit(0, &ts->check_clocks); | ||
530 | } | ||
531 | |||
532 | /** | ||
533 | * Check, if a change happened, which makes oneshot possible. | ||
534 | * | ||
535 | * Called cyclic from the hrtimer softirq (driven by the timer | ||
536 | * softirq) allow_nohz signals, that we can switch into low-res nohz | ||
537 | * mode, because high resolution timers are disabled (either compile | ||
538 | * or runtime). | ||
539 | */ | ||
540 | int tick_check_oneshot_change(int allow_nohz) | ||
541 | { | ||
542 | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | ||
543 | |||
544 | if (!test_and_clear_bit(0, &ts->check_clocks)) | ||
545 | return 0; | ||
546 | |||
547 | if (ts->nohz_mode != NOHZ_MODE_INACTIVE) | ||
548 | return 0; | ||
549 | |||
550 | if (!timekeeping_is_continuous() || !tick_is_oneshot_available()) | ||
551 | return 0; | ||
552 | |||
553 | if (!allow_nohz) | ||
554 | return 1; | ||
555 | |||
556 | tick_nohz_switch_to_nohz(); | ||
557 | return 0; | ||
558 | } | ||