aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time/tick-sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/time/tick-sched.c')
-rw-r--r--kernel/time/tick-sched.c558
1 files changed, 558 insertions, 0 deletions
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
new file mode 100644
index 000000000000..99d35e2af182
--- /dev/null
+++ b/kernel/time/tick-sched.c
@@ -0,0 +1,558 @@
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
22#include <linux/tick.h>
23
24#include "tick-internal.h"
25
26/*
27 * Per cpu nohz control structure
28 */
29static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
30
31/*
32 * The time, when the last jiffy update happened. Protected by xtime_lock.
33 */
34static ktime_t last_jiffies_update;
35
36/*
37 * Must be called with interrupts disabled !
38 */
39static void tick_do_update_jiffies64(ktime_t now)
40{
41 unsigned long ticks = 0;
42 ktime_t delta;
43
44 /* Reevalute with xtime_lock held */
45 write_seqlock(&xtime_lock);
46
47 delta = ktime_sub(now, last_jiffies_update);
48 if (delta.tv64 >= tick_period.tv64) {
49
50 delta = ktime_sub(delta, tick_period);
51 last_jiffies_update = ktime_add(last_jiffies_update,
52 tick_period);
53
54 /* Slow path for long timeouts */
55 if (unlikely(delta.tv64 >= tick_period.tv64)) {
56 s64 incr = ktime_to_ns(tick_period);
57
58 ticks = ktime_divns(delta, incr);
59
60 last_jiffies_update = ktime_add_ns(last_jiffies_update,
61 incr * ticks);
62 }
63 do_timer(++ticks);
64 }
65 write_sequnlock(&xtime_lock);
66}
67
68/*
69 * Initialize and return retrieve the jiffies update.
70 */
71static ktime_t tick_init_jiffy_update(void)
72{
73 ktime_t period;
74
75 write_seqlock(&xtime_lock);
76 /* Did we start the jiffies update yet ? */
77 if (last_jiffies_update.tv64 == 0)
78 last_jiffies_update = tick_next_period;
79 period = last_jiffies_update;
80 write_sequnlock(&xtime_lock);
81 return period;
82}
83
84/*
85 * NOHZ - aka dynamic tick functionality
86 */
87#ifdef CONFIG_NO_HZ
88/*
89 * NO HZ enabled ?
90 */
91static int tick_nohz_enabled __read_mostly = 1;
92
93/*
94 * Enable / Disable tickless mode
95 */
96static int __init setup_tick_nohz(char *str)
97{
98 if (!strcmp(str, "off"))
99 tick_nohz_enabled = 0;
100 else if (!strcmp(str, "on"))
101 tick_nohz_enabled = 1;
102 else
103 return 0;
104 return 1;
105}
106
107__setup("nohz=", setup_tick_nohz);
108
109/**
110 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
111 *
112 * Called from interrupt entry when the CPU was idle
113 *
114 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
115 * must be updated. Otherwise an interrupt handler could use a stale jiffy
116 * value. We do this unconditionally on any cpu, as we don't know whether the
117 * cpu, which has the update task assigned is in a long sleep.
118 */
119void tick_nohz_update_jiffies(void)
120{
121 int cpu = smp_processor_id();
122 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
123 unsigned long flags;
124 ktime_t now;
125
126 if (!ts->tick_stopped)
127 return;
128
129 cpu_clear(cpu, nohz_cpu_mask);
130 now = ktime_get();
131
132 local_irq_save(flags);
133 tick_do_update_jiffies64(now);
134 local_irq_restore(flags);
135}
136
137/**
138 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
139 *
140 * When the next event is more than a tick into the future, stop the idle tick
141 * Called either from the idle loop or from irq_exit() when an idle period was
142 * just interrupted by an interrupt which did not cause a reschedule.
143 */
144void tick_nohz_stop_sched_tick(void)
145{
146 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
147 struct tick_sched *ts;
148 ktime_t last_update, expires, now, delta;
149 int cpu;
150
151 local_irq_save(flags);
152
153 cpu = smp_processor_id();
154 ts = &per_cpu(tick_cpu_sched, cpu);
155
156 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
157 goto end;
158
159 if (need_resched())
160 goto end;
161
162 cpu = smp_processor_id();
163 BUG_ON(local_softirq_pending());
164
165 now = ktime_get();
166 /*
167 * When called from irq_exit we need to account the idle sleep time
168 * correctly.
169 */
170 if (ts->tick_stopped) {
171 delta = ktime_sub(now, ts->idle_entrytime);
172 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
173 }
174
175 ts->idle_entrytime = now;
176 ts->idle_calls++;
177
178 /* Read jiffies and the time when jiffies were updated last */
179 do {
180 seq = read_seqbegin(&xtime_lock);
181 last_update = last_jiffies_update;
182 last_jiffies = jiffies;
183 } while (read_seqretry(&xtime_lock, seq));
184
185 /* Get the next timer wheel timer */
186 next_jiffies = get_next_timer_interrupt(last_jiffies);
187 delta_jiffies = next_jiffies - last_jiffies;
188
189 /*
190 * Do not stop the tick, if we are only one off
191 * or if the cpu is required for rcu
192 */
193 if (!ts->tick_stopped && (delta_jiffies == 1 || rcu_needs_cpu(cpu)))
194 goto out;
195
196 /* Schedule the tick, if we are at least one jiffie off */
197 if ((long)delta_jiffies >= 1) {
198
199 if (rcu_needs_cpu(cpu))
200 delta_jiffies = 1;
201 else
202 cpu_set(cpu, nohz_cpu_mask);
203 /*
204 * nohz_stop_sched_tick can be called several times before
205 * the nohz_restart_sched_tick is called. This happens when
206 * interrupts arrive which do not cause a reschedule. In the
207 * first call we save the current tick time, so we can restart
208 * the scheduler tick in nohz_restart_sched_tick.
209 */
210 if (!ts->tick_stopped) {
211 ts->idle_tick = ts->sched_timer.expires;
212 ts->tick_stopped = 1;
213 ts->idle_jiffies = last_jiffies;
214 }
215 /*
216 * calculate the expiry time for the next timer wheel
217 * timer
218 */
219 expires = ktime_add_ns(last_update, tick_period.tv64 *
220 delta_jiffies);
221 ts->idle_expires = expires;
222 ts->idle_sleeps++;
223
224 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
225 hrtimer_start(&ts->sched_timer, expires,
226 HRTIMER_MODE_ABS);
227 /* Check, if the timer was already in the past */
228 if (hrtimer_active(&ts->sched_timer))
229 goto out;
230 } else if(!tick_program_event(expires, 0))
231 goto out;
232 /*
233 * We are past the event already. So we crossed a
234 * jiffie boundary. Update jiffies and raise the
235 * softirq.
236 */
237 tick_do_update_jiffies64(ktime_get());
238 cpu_clear(cpu, nohz_cpu_mask);
239 }
240 raise_softirq_irqoff(TIMER_SOFTIRQ);
241out:
242 ts->next_jiffies = next_jiffies;
243 ts->last_jiffies = last_jiffies;
244end:
245 local_irq_restore(flags);
246}
247
248/**
249 * nohz_restart_sched_tick - restart the idle tick from the idle task
250 *
251 * Restart the idle tick when the CPU is woken up from idle
252 */
253void tick_nohz_restart_sched_tick(void)
254{
255 int cpu = smp_processor_id();
256 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
257 unsigned long ticks;
258 ktime_t now, delta;
259
260 if (!ts->tick_stopped)
261 return;
262
263 /* Update jiffies first */
264 now = ktime_get();
265
266 local_irq_disable();
267 tick_do_update_jiffies64(now);
268 cpu_clear(cpu, nohz_cpu_mask);
269
270 /* Account the idle time */
271 delta = ktime_sub(now, ts->idle_entrytime);
272 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
273
274 /*
275 * We stopped the tick in idle. Update process times would miss the
276 * time we slept as update_process_times does only a 1 tick
277 * accounting. Enforce that this is accounted to idle !
278 */
279 ticks = jiffies - ts->idle_jiffies;
280 /*
281 * We might be one off. Do not randomly account a huge number of ticks!
282 */
283 if (ticks && ticks < LONG_MAX) {
284 add_preempt_count(HARDIRQ_OFFSET);
285 account_system_time(current, HARDIRQ_OFFSET,
286 jiffies_to_cputime(ticks));
287 sub_preempt_count(HARDIRQ_OFFSET);
288 }
289
290 /*
291 * Cancel the scheduled timer and restore the tick
292 */
293 ts->tick_stopped = 0;
294 hrtimer_cancel(&ts->sched_timer);
295 ts->sched_timer.expires = ts->idle_tick;
296
297 while (1) {
298 /* Forward the time to expire in the future */
299 hrtimer_forward(&ts->sched_timer, now, tick_period);
300
301 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
302 hrtimer_start(&ts->sched_timer,
303 ts->sched_timer.expires,
304 HRTIMER_MODE_ABS);
305 /* Check, if the timer was already in the past */
306 if (hrtimer_active(&ts->sched_timer))
307 break;
308 } else {
309 if (!tick_program_event(ts->sched_timer.expires, 0))
310 break;
311 }
312 /* Update jiffies and reread time */
313 tick_do_update_jiffies64(now);
314 now = ktime_get();
315 }
316 local_irq_enable();
317}
318
319static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
320{
321 hrtimer_forward(&ts->sched_timer, now, tick_period);
322 return tick_program_event(ts->sched_timer.expires, 0);
323}
324
325/*
326 * The nohz low res interrupt handler
327 */
328static void tick_nohz_handler(struct clock_event_device *dev)
329{
330 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
331 struct pt_regs *regs = get_irq_regs();
332 ktime_t now = ktime_get();
333
334 dev->next_event.tv64 = KTIME_MAX;
335
336 /* Check, if the jiffies need an update */
337 tick_do_update_jiffies64(now);
338
339 /*
340 * When we are idle and the tick is stopped, we have to touch
341 * the watchdog as we might not schedule for a really long
342 * time. This happens on complete idle SMP systems while
343 * waiting on the login prompt. We also increment the "start
344 * of idle" jiffy stamp so the idle accounting adjustment we
345 * do when we go busy again does not account too much ticks.
346 */
347 if (ts->tick_stopped) {
348 touch_softlockup_watchdog();
349 ts->idle_jiffies++;
350 }
351
352 update_process_times(user_mode(regs));
353 profile_tick(CPU_PROFILING);
354
355 /* Do not restart, when we are in the idle loop */
356 if (ts->tick_stopped)
357 return;
358
359 while (tick_nohz_reprogram(ts, now)) {
360 now = ktime_get();
361 tick_do_update_jiffies64(now);
362 }
363}
364
365/**
366 * tick_nohz_switch_to_nohz - switch to nohz mode
367 */
368static void tick_nohz_switch_to_nohz(void)
369{
370 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
371 ktime_t next;
372
373 if (!tick_nohz_enabled)
374 return;
375
376 local_irq_disable();
377 if (tick_switch_to_oneshot(tick_nohz_handler)) {
378 local_irq_enable();
379 return;
380 }
381
382 ts->nohz_mode = NOHZ_MODE_LOWRES;
383
384 /*
385 * Recycle the hrtimer in ts, so we can share the
386 * hrtimer_forward with the highres code.
387 */
388 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
389 /* Get the next period */
390 next = tick_init_jiffy_update();
391
392 for (;;) {
393 ts->sched_timer.expires = next;
394 if (!tick_program_event(next, 0))
395 break;
396 next = ktime_add(next, tick_period);
397 }
398 local_irq_enable();
399
400 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
401 smp_processor_id());
402}
403
404#else
405
406static inline void tick_nohz_switch_to_nohz(void) { }
407
408#endif /* NO_HZ */
409
410/*
411 * High resolution timer specific code
412 */
413#ifdef CONFIG_HIGH_RES_TIMERS
414/*
415 * We rearm the timer until we get disabled by the idle code
416 * Called with interrupts disabled and timer->base->cpu_base->lock held.
417 */
418static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
419{
420 struct tick_sched *ts =
421 container_of(timer, struct tick_sched, sched_timer);
422 struct hrtimer_cpu_base *base = timer->base->cpu_base;
423 struct pt_regs *regs = get_irq_regs();
424 ktime_t now = ktime_get();
425
426 /* Check, if the jiffies need an update */
427 tick_do_update_jiffies64(now);
428
429 /*
430 * Do not call, when we are not in irq context and have
431 * no valid regs pointer
432 */
433 if (regs) {
434 /*
435 * When we are idle and the tick is stopped, we have to touch
436 * the watchdog as we might not schedule for a really long
437 * time. This happens on complete idle SMP systems while
438 * waiting on the login prompt. We also increment the "start of
439 * idle" jiffy stamp so the idle accounting adjustment we do
440 * when we go busy again does not account too much ticks.
441 */
442 if (ts->tick_stopped) {
443 touch_softlockup_watchdog();
444 ts->idle_jiffies++;
445 }
446 /*
447 * update_process_times() might take tasklist_lock, hence
448 * drop the base lock. sched-tick hrtimers are per-CPU and
449 * never accessible by userspace APIs, so this is safe to do.
450 */
451 spin_unlock(&base->lock);
452 update_process_times(user_mode(regs));
453 profile_tick(CPU_PROFILING);
454 spin_lock(&base->lock);
455 }
456
457 /* Do not restart, when we are in the idle loop */
458 if (ts->tick_stopped)
459 return HRTIMER_NORESTART;
460
461 hrtimer_forward(timer, now, tick_period);
462
463 return HRTIMER_RESTART;
464}
465
466/**
467 * tick_setup_sched_timer - setup the tick emulation timer
468 */
469void tick_setup_sched_timer(void)
470{
471 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
472 ktime_t now = ktime_get();
473
474 /*
475 * Emulate tick processing via per-CPU hrtimers:
476 */
477 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
478 ts->sched_timer.function = tick_sched_timer;
479 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
480
481 /* Get the next period */
482 ts->sched_timer.expires = tick_init_jiffy_update();
483
484 for (;;) {
485 hrtimer_forward(&ts->sched_timer, now, tick_period);
486 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
487 HRTIMER_MODE_ABS);
488 /* Check, if the timer was already in the past */
489 if (hrtimer_active(&ts->sched_timer))
490 break;
491 now = ktime_get();
492 }
493
494#ifdef CONFIG_NO_HZ
495 if (tick_nohz_enabled)
496 ts->nohz_mode = NOHZ_MODE_HIGHRES;
497#endif
498}
499
500void tick_cancel_sched_timer(int cpu)
501{
502 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
503
504 if (ts->sched_timer.base)
505 hrtimer_cancel(&ts->sched_timer);
506 ts->tick_stopped = 0;
507 ts->nohz_mode = NOHZ_MODE_INACTIVE;
508}
509#endif /* HIGH_RES_TIMERS */
510
511/**
512 * Async notification about clocksource changes
513 */
514void tick_clock_notify(void)
515{
516 int cpu;
517
518 for_each_possible_cpu(cpu)
519 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
520}
521
522/*
523 * Async notification about clock event changes
524 */
525void tick_oneshot_notify(void)
526{
527 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
528
529 set_bit(0, &ts->check_clocks);
530}
531
532/**
533 * Check, if a change happened, which makes oneshot possible.
534 *
535 * Called cyclic from the hrtimer softirq (driven by the timer
536 * softirq) allow_nohz signals, that we can switch into low-res nohz
537 * mode, because high resolution timers are disabled (either compile
538 * or runtime).
539 */
540int tick_check_oneshot_change(int allow_nohz)
541{
542 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
543
544 if (!test_and_clear_bit(0, &ts->check_clocks))
545 return 0;
546
547 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
548 return 0;
549
550 if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
551 return 0;
552
553 if (!allow_nohz)
554 return 1;
555
556 tick_nohz_switch_to_nohz();
557 return 0;
558}