diff options
Diffstat (limited to 'kernel/time/posix-cpu-timers.c')
-rw-r--r-- | kernel/time/posix-cpu-timers.c | 1490 |
1 files changed, 1490 insertions, 0 deletions
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c new file mode 100644 index 000000000000..3b8946416a5f --- /dev/null +++ b/kernel/time/posix-cpu-timers.c | |||
@@ -0,0 +1,1490 @@ | |||
1 | /* | ||
2 | * Implement CPU time clocks for the POSIX clock interface. | ||
3 | */ | ||
4 | |||
5 | #include <linux/sched.h> | ||
6 | #include <linux/posix-timers.h> | ||
7 | #include <linux/errno.h> | ||
8 | #include <linux/math64.h> | ||
9 | #include <asm/uaccess.h> | ||
10 | #include <linux/kernel_stat.h> | ||
11 | #include <trace/events/timer.h> | ||
12 | #include <linux/random.h> | ||
13 | #include <linux/tick.h> | ||
14 | #include <linux/workqueue.h> | ||
15 | |||
16 | /* | ||
17 | * Called after updating RLIMIT_CPU to run cpu timer and update | ||
18 | * tsk->signal->cputime_expires expiration cache if necessary. Needs | ||
19 | * siglock protection since other code may update expiration cache as | ||
20 | * well. | ||
21 | */ | ||
22 | void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) | ||
23 | { | ||
24 | cputime_t cputime = secs_to_cputime(rlim_new); | ||
25 | |||
26 | spin_lock_irq(&task->sighand->siglock); | ||
27 | set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); | ||
28 | spin_unlock_irq(&task->sighand->siglock); | ||
29 | } | ||
30 | |||
31 | static int check_clock(const clockid_t which_clock) | ||
32 | { | ||
33 | int error = 0; | ||
34 | struct task_struct *p; | ||
35 | const pid_t pid = CPUCLOCK_PID(which_clock); | ||
36 | |||
37 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | ||
38 | return -EINVAL; | ||
39 | |||
40 | if (pid == 0) | ||
41 | return 0; | ||
42 | |||
43 | rcu_read_lock(); | ||
44 | p = find_task_by_vpid(pid); | ||
45 | if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? | ||
46 | same_thread_group(p, current) : has_group_leader_pid(p))) { | ||
47 | error = -EINVAL; | ||
48 | } | ||
49 | rcu_read_unlock(); | ||
50 | |||
51 | return error; | ||
52 | } | ||
53 | |||
54 | static inline unsigned long long | ||
55 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) | ||
56 | { | ||
57 | unsigned long long ret; | ||
58 | |||
59 | ret = 0; /* high half always zero when .cpu used */ | ||
60 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
61 | ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; | ||
62 | } else { | ||
63 | ret = cputime_to_expires(timespec_to_cputime(tp)); | ||
64 | } | ||
65 | return ret; | ||
66 | } | ||
67 | |||
68 | static void sample_to_timespec(const clockid_t which_clock, | ||
69 | unsigned long long expires, | ||
70 | struct timespec *tp) | ||
71 | { | ||
72 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) | ||
73 | *tp = ns_to_timespec(expires); | ||
74 | else | ||
75 | cputime_to_timespec((__force cputime_t)expires, tp); | ||
76 | } | ||
77 | |||
78 | /* | ||
79 | * Update expiry time from increment, and increase overrun count, | ||
80 | * given the current clock sample. | ||
81 | */ | ||
82 | static void bump_cpu_timer(struct k_itimer *timer, | ||
83 | unsigned long long now) | ||
84 | { | ||
85 | int i; | ||
86 | unsigned long long delta, incr; | ||
87 | |||
88 | if (timer->it.cpu.incr == 0) | ||
89 | return; | ||
90 | |||
91 | if (now < timer->it.cpu.expires) | ||
92 | return; | ||
93 | |||
94 | incr = timer->it.cpu.incr; | ||
95 | delta = now + incr - timer->it.cpu.expires; | ||
96 | |||
97 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | ||
98 | for (i = 0; incr < delta - incr; i++) | ||
99 | incr = incr << 1; | ||
100 | |||
101 | for (; i >= 0; incr >>= 1, i--) { | ||
102 | if (delta < incr) | ||
103 | continue; | ||
104 | |||
105 | timer->it.cpu.expires += incr; | ||
106 | timer->it_overrun += 1 << i; | ||
107 | delta -= incr; | ||
108 | } | ||
109 | } | ||
110 | |||
111 | /** | ||
112 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | ||
113 | * | ||
114 | * @cputime: The struct to compare. | ||
115 | * | ||
116 | * Checks @cputime to see if all fields are zero. Returns true if all fields | ||
117 | * are zero, false if any field is nonzero. | ||
118 | */ | ||
119 | static inline int task_cputime_zero(const struct task_cputime *cputime) | ||
120 | { | ||
121 | if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) | ||
122 | return 1; | ||
123 | return 0; | ||
124 | } | ||
125 | |||
126 | static inline unsigned long long prof_ticks(struct task_struct *p) | ||
127 | { | ||
128 | cputime_t utime, stime; | ||
129 | |||
130 | task_cputime(p, &utime, &stime); | ||
131 | |||
132 | return cputime_to_expires(utime + stime); | ||
133 | } | ||
134 | static inline unsigned long long virt_ticks(struct task_struct *p) | ||
135 | { | ||
136 | cputime_t utime; | ||
137 | |||
138 | task_cputime(p, &utime, NULL); | ||
139 | |||
140 | return cputime_to_expires(utime); | ||
141 | } | ||
142 | |||
143 | static int | ||
144 | posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) | ||
145 | { | ||
146 | int error = check_clock(which_clock); | ||
147 | if (!error) { | ||
148 | tp->tv_sec = 0; | ||
149 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | ||
150 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | ||
151 | /* | ||
152 | * If sched_clock is using a cycle counter, we | ||
153 | * don't have any idea of its true resolution | ||
154 | * exported, but it is much more than 1s/HZ. | ||
155 | */ | ||
156 | tp->tv_nsec = 1; | ||
157 | } | ||
158 | } | ||
159 | return error; | ||
160 | } | ||
161 | |||
162 | static int | ||
163 | posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) | ||
164 | { | ||
165 | /* | ||
166 | * You can never reset a CPU clock, but we check for other errors | ||
167 | * in the call before failing with EPERM. | ||
168 | */ | ||
169 | int error = check_clock(which_clock); | ||
170 | if (error == 0) { | ||
171 | error = -EPERM; | ||
172 | } | ||
173 | return error; | ||
174 | } | ||
175 | |||
176 | |||
177 | /* | ||
178 | * Sample a per-thread clock for the given task. | ||
179 | */ | ||
180 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, | ||
181 | unsigned long long *sample) | ||
182 | { | ||
183 | switch (CPUCLOCK_WHICH(which_clock)) { | ||
184 | default: | ||
185 | return -EINVAL; | ||
186 | case CPUCLOCK_PROF: | ||
187 | *sample = prof_ticks(p); | ||
188 | break; | ||
189 | case CPUCLOCK_VIRT: | ||
190 | *sample = virt_ticks(p); | ||
191 | break; | ||
192 | case CPUCLOCK_SCHED: | ||
193 | *sample = task_sched_runtime(p); | ||
194 | break; | ||
195 | } | ||
196 | return 0; | ||
197 | } | ||
198 | |||
199 | static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) | ||
200 | { | ||
201 | if (b->utime > a->utime) | ||
202 | a->utime = b->utime; | ||
203 | |||
204 | if (b->stime > a->stime) | ||
205 | a->stime = b->stime; | ||
206 | |||
207 | if (b->sum_exec_runtime > a->sum_exec_runtime) | ||
208 | a->sum_exec_runtime = b->sum_exec_runtime; | ||
209 | } | ||
210 | |||
211 | void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) | ||
212 | { | ||
213 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | ||
214 | struct task_cputime sum; | ||
215 | unsigned long flags; | ||
216 | |||
217 | if (!cputimer->running) { | ||
218 | /* | ||
219 | * The POSIX timer interface allows for absolute time expiry | ||
220 | * values through the TIMER_ABSTIME flag, therefore we have | ||
221 | * to synchronize the timer to the clock every time we start | ||
222 | * it. | ||
223 | */ | ||
224 | thread_group_cputime(tsk, &sum); | ||
225 | raw_spin_lock_irqsave(&cputimer->lock, flags); | ||
226 | cputimer->running = 1; | ||
227 | update_gt_cputime(&cputimer->cputime, &sum); | ||
228 | } else | ||
229 | raw_spin_lock_irqsave(&cputimer->lock, flags); | ||
230 | *times = cputimer->cputime; | ||
231 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | * Sample a process (thread group) clock for the given group_leader task. | ||
236 | * Must be called with task sighand lock held for safe while_each_thread() | ||
237 | * traversal. | ||
238 | */ | ||
239 | static int cpu_clock_sample_group(const clockid_t which_clock, | ||
240 | struct task_struct *p, | ||
241 | unsigned long long *sample) | ||
242 | { | ||
243 | struct task_cputime cputime; | ||
244 | |||
245 | switch (CPUCLOCK_WHICH(which_clock)) { | ||
246 | default: | ||
247 | return -EINVAL; | ||
248 | case CPUCLOCK_PROF: | ||
249 | thread_group_cputime(p, &cputime); | ||
250 | *sample = cputime_to_expires(cputime.utime + cputime.stime); | ||
251 | break; | ||
252 | case CPUCLOCK_VIRT: | ||
253 | thread_group_cputime(p, &cputime); | ||
254 | *sample = cputime_to_expires(cputime.utime); | ||
255 | break; | ||
256 | case CPUCLOCK_SCHED: | ||
257 | thread_group_cputime(p, &cputime); | ||
258 | *sample = cputime.sum_exec_runtime; | ||
259 | break; | ||
260 | } | ||
261 | return 0; | ||
262 | } | ||
263 | |||
264 | static int posix_cpu_clock_get_task(struct task_struct *tsk, | ||
265 | const clockid_t which_clock, | ||
266 | struct timespec *tp) | ||
267 | { | ||
268 | int err = -EINVAL; | ||
269 | unsigned long long rtn; | ||
270 | |||
271 | if (CPUCLOCK_PERTHREAD(which_clock)) { | ||
272 | if (same_thread_group(tsk, current)) | ||
273 | err = cpu_clock_sample(which_clock, tsk, &rtn); | ||
274 | } else { | ||
275 | unsigned long flags; | ||
276 | struct sighand_struct *sighand; | ||
277 | |||
278 | /* | ||
279 | * while_each_thread() is not yet entirely RCU safe, | ||
280 | * keep locking the group while sampling process | ||
281 | * clock for now. | ||
282 | */ | ||
283 | sighand = lock_task_sighand(tsk, &flags); | ||
284 | if (!sighand) | ||
285 | return err; | ||
286 | |||
287 | if (tsk == current || thread_group_leader(tsk)) | ||
288 | err = cpu_clock_sample_group(which_clock, tsk, &rtn); | ||
289 | |||
290 | unlock_task_sighand(tsk, &flags); | ||
291 | } | ||
292 | |||
293 | if (!err) | ||
294 | sample_to_timespec(which_clock, rtn, tp); | ||
295 | |||
296 | return err; | ||
297 | } | ||
298 | |||
299 | |||
300 | static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) | ||
301 | { | ||
302 | const pid_t pid = CPUCLOCK_PID(which_clock); | ||
303 | int err = -EINVAL; | ||
304 | |||
305 | if (pid == 0) { | ||
306 | /* | ||
307 | * Special case constant value for our own clocks. | ||
308 | * We don't have to do any lookup to find ourselves. | ||
309 | */ | ||
310 | err = posix_cpu_clock_get_task(current, which_clock, tp); | ||
311 | } else { | ||
312 | /* | ||
313 | * Find the given PID, and validate that the caller | ||
314 | * should be able to see it. | ||
315 | */ | ||
316 | struct task_struct *p; | ||
317 | rcu_read_lock(); | ||
318 | p = find_task_by_vpid(pid); | ||
319 | if (p) | ||
320 | err = posix_cpu_clock_get_task(p, which_clock, tp); | ||
321 | rcu_read_unlock(); | ||
322 | } | ||
323 | |||
324 | return err; | ||
325 | } | ||
326 | |||
327 | |||
328 | /* | ||
329 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | ||
330 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the | ||
331 | * new timer already all-zeros initialized. | ||
332 | */ | ||
333 | static int posix_cpu_timer_create(struct k_itimer *new_timer) | ||
334 | { | ||
335 | int ret = 0; | ||
336 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | ||
337 | struct task_struct *p; | ||
338 | |||
339 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | ||
340 | return -EINVAL; | ||
341 | |||
342 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | ||
343 | |||
344 | rcu_read_lock(); | ||
345 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { | ||
346 | if (pid == 0) { | ||
347 | p = current; | ||
348 | } else { | ||
349 | p = find_task_by_vpid(pid); | ||
350 | if (p && !same_thread_group(p, current)) | ||
351 | p = NULL; | ||
352 | } | ||
353 | } else { | ||
354 | if (pid == 0) { | ||
355 | p = current->group_leader; | ||
356 | } else { | ||
357 | p = find_task_by_vpid(pid); | ||
358 | if (p && !has_group_leader_pid(p)) | ||
359 | p = NULL; | ||
360 | } | ||
361 | } | ||
362 | new_timer->it.cpu.task = p; | ||
363 | if (p) { | ||
364 | get_task_struct(p); | ||
365 | } else { | ||
366 | ret = -EINVAL; | ||
367 | } | ||
368 | rcu_read_unlock(); | ||
369 | |||
370 | return ret; | ||
371 | } | ||
372 | |||
373 | /* | ||
374 | * Clean up a CPU-clock timer that is about to be destroyed. | ||
375 | * This is called from timer deletion with the timer already locked. | ||
376 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | ||
377 | * and try again. (This happens when the timer is in the middle of firing.) | ||
378 | */ | ||
379 | static int posix_cpu_timer_del(struct k_itimer *timer) | ||
380 | { | ||
381 | int ret = 0; | ||
382 | unsigned long flags; | ||
383 | struct sighand_struct *sighand; | ||
384 | struct task_struct *p = timer->it.cpu.task; | ||
385 | |||
386 | WARN_ON_ONCE(p == NULL); | ||
387 | |||
388 | /* | ||
389 | * Protect against sighand release/switch in exit/exec and process/ | ||
390 | * thread timer list entry concurrent read/writes. | ||
391 | */ | ||
392 | sighand = lock_task_sighand(p, &flags); | ||
393 | if (unlikely(sighand == NULL)) { | ||
394 | /* | ||
395 | * We raced with the reaping of the task. | ||
396 | * The deletion should have cleared us off the list. | ||
397 | */ | ||
398 | WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); | ||
399 | } else { | ||
400 | if (timer->it.cpu.firing) | ||
401 | ret = TIMER_RETRY; | ||
402 | else | ||
403 | list_del(&timer->it.cpu.entry); | ||
404 | |||
405 | unlock_task_sighand(p, &flags); | ||
406 | } | ||
407 | |||
408 | if (!ret) | ||
409 | put_task_struct(p); | ||
410 | |||
411 | return ret; | ||
412 | } | ||
413 | |||
414 | static void cleanup_timers_list(struct list_head *head) | ||
415 | { | ||
416 | struct cpu_timer_list *timer, *next; | ||
417 | |||
418 | list_for_each_entry_safe(timer, next, head, entry) | ||
419 | list_del_init(&timer->entry); | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * Clean out CPU timers still ticking when a thread exited. The task | ||
424 | * pointer is cleared, and the expiry time is replaced with the residual | ||
425 | * time for later timer_gettime calls to return. | ||
426 | * This must be called with the siglock held. | ||
427 | */ | ||
428 | static void cleanup_timers(struct list_head *head) | ||
429 | { | ||
430 | cleanup_timers_list(head); | ||
431 | cleanup_timers_list(++head); | ||
432 | cleanup_timers_list(++head); | ||
433 | } | ||
434 | |||
435 | /* | ||
436 | * These are both called with the siglock held, when the current thread | ||
437 | * is being reaped. When the final (leader) thread in the group is reaped, | ||
438 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | ||
439 | */ | ||
440 | void posix_cpu_timers_exit(struct task_struct *tsk) | ||
441 | { | ||
442 | add_device_randomness((const void*) &tsk->se.sum_exec_runtime, | ||
443 | sizeof(unsigned long long)); | ||
444 | cleanup_timers(tsk->cpu_timers); | ||
445 | |||
446 | } | ||
447 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | ||
448 | { | ||
449 | cleanup_timers(tsk->signal->cpu_timers); | ||
450 | } | ||
451 | |||
452 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | ||
453 | { | ||
454 | return expires == 0 || expires > new_exp; | ||
455 | } | ||
456 | |||
457 | /* | ||
458 | * Insert the timer on the appropriate list before any timers that | ||
459 | * expire later. This must be called with the sighand lock held. | ||
460 | */ | ||
461 | static void arm_timer(struct k_itimer *timer) | ||
462 | { | ||
463 | struct task_struct *p = timer->it.cpu.task; | ||
464 | struct list_head *head, *listpos; | ||
465 | struct task_cputime *cputime_expires; | ||
466 | struct cpu_timer_list *const nt = &timer->it.cpu; | ||
467 | struct cpu_timer_list *next; | ||
468 | |||
469 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
470 | head = p->cpu_timers; | ||
471 | cputime_expires = &p->cputime_expires; | ||
472 | } else { | ||
473 | head = p->signal->cpu_timers; | ||
474 | cputime_expires = &p->signal->cputime_expires; | ||
475 | } | ||
476 | head += CPUCLOCK_WHICH(timer->it_clock); | ||
477 | |||
478 | listpos = head; | ||
479 | list_for_each_entry(next, head, entry) { | ||
480 | if (nt->expires < next->expires) | ||
481 | break; | ||
482 | listpos = &next->entry; | ||
483 | } | ||
484 | list_add(&nt->entry, listpos); | ||
485 | |||
486 | if (listpos == head) { | ||
487 | unsigned long long exp = nt->expires; | ||
488 | |||
489 | /* | ||
490 | * We are the new earliest-expiring POSIX 1.b timer, hence | ||
491 | * need to update expiration cache. Take into account that | ||
492 | * for process timers we share expiration cache with itimers | ||
493 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | ||
494 | */ | ||
495 | |||
496 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | ||
497 | case CPUCLOCK_PROF: | ||
498 | if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) | ||
499 | cputime_expires->prof_exp = expires_to_cputime(exp); | ||
500 | break; | ||
501 | case CPUCLOCK_VIRT: | ||
502 | if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) | ||
503 | cputime_expires->virt_exp = expires_to_cputime(exp); | ||
504 | break; | ||
505 | case CPUCLOCK_SCHED: | ||
506 | if (cputime_expires->sched_exp == 0 || | ||
507 | cputime_expires->sched_exp > exp) | ||
508 | cputime_expires->sched_exp = exp; | ||
509 | break; | ||
510 | } | ||
511 | } | ||
512 | } | ||
513 | |||
514 | /* | ||
515 | * The timer is locked, fire it and arrange for its reload. | ||
516 | */ | ||
517 | static void cpu_timer_fire(struct k_itimer *timer) | ||
518 | { | ||
519 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | ||
520 | /* | ||
521 | * User don't want any signal. | ||
522 | */ | ||
523 | timer->it.cpu.expires = 0; | ||
524 | } else if (unlikely(timer->sigq == NULL)) { | ||
525 | /* | ||
526 | * This a special case for clock_nanosleep, | ||
527 | * not a normal timer from sys_timer_create. | ||
528 | */ | ||
529 | wake_up_process(timer->it_process); | ||
530 | timer->it.cpu.expires = 0; | ||
531 | } else if (timer->it.cpu.incr == 0) { | ||
532 | /* | ||
533 | * One-shot timer. Clear it as soon as it's fired. | ||
534 | */ | ||
535 | posix_timer_event(timer, 0); | ||
536 | timer->it.cpu.expires = 0; | ||
537 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | ||
538 | /* | ||
539 | * The signal did not get queued because the signal | ||
540 | * was ignored, so we won't get any callback to | ||
541 | * reload the timer. But we need to keep it | ||
542 | * ticking in case the signal is deliverable next time. | ||
543 | */ | ||
544 | posix_cpu_timer_schedule(timer); | ||
545 | } | ||
546 | } | ||
547 | |||
548 | /* | ||
549 | * Sample a process (thread group) timer for the given group_leader task. | ||
550 | * Must be called with task sighand lock held for safe while_each_thread() | ||
551 | * traversal. | ||
552 | */ | ||
553 | static int cpu_timer_sample_group(const clockid_t which_clock, | ||
554 | struct task_struct *p, | ||
555 | unsigned long long *sample) | ||
556 | { | ||
557 | struct task_cputime cputime; | ||
558 | |||
559 | thread_group_cputimer(p, &cputime); | ||
560 | switch (CPUCLOCK_WHICH(which_clock)) { | ||
561 | default: | ||
562 | return -EINVAL; | ||
563 | case CPUCLOCK_PROF: | ||
564 | *sample = cputime_to_expires(cputime.utime + cputime.stime); | ||
565 | break; | ||
566 | case CPUCLOCK_VIRT: | ||
567 | *sample = cputime_to_expires(cputime.utime); | ||
568 | break; | ||
569 | case CPUCLOCK_SCHED: | ||
570 | *sample = cputime.sum_exec_runtime + task_delta_exec(p); | ||
571 | break; | ||
572 | } | ||
573 | return 0; | ||
574 | } | ||
575 | |||
576 | #ifdef CONFIG_NO_HZ_FULL | ||
577 | static void nohz_kick_work_fn(struct work_struct *work) | ||
578 | { | ||
579 | tick_nohz_full_kick_all(); | ||
580 | } | ||
581 | |||
582 | static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn); | ||
583 | |||
584 | /* | ||
585 | * We need the IPIs to be sent from sane process context. | ||
586 | * The posix cpu timers are always set with irqs disabled. | ||
587 | */ | ||
588 | static void posix_cpu_timer_kick_nohz(void) | ||
589 | { | ||
590 | if (context_tracking_is_enabled()) | ||
591 | schedule_work(&nohz_kick_work); | ||
592 | } | ||
593 | |||
594 | bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk) | ||
595 | { | ||
596 | if (!task_cputime_zero(&tsk->cputime_expires)) | ||
597 | return false; | ||
598 | |||
599 | if (tsk->signal->cputimer.running) | ||
600 | return false; | ||
601 | |||
602 | return true; | ||
603 | } | ||
604 | #else | ||
605 | static inline void posix_cpu_timer_kick_nohz(void) { } | ||
606 | #endif | ||
607 | |||
608 | /* | ||
609 | * Guts of sys_timer_settime for CPU timers. | ||
610 | * This is called with the timer locked and interrupts disabled. | ||
611 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | ||
612 | * and try again. (This happens when the timer is in the middle of firing.) | ||
613 | */ | ||
614 | static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, | ||
615 | struct itimerspec *new, struct itimerspec *old) | ||
616 | { | ||
617 | unsigned long flags; | ||
618 | struct sighand_struct *sighand; | ||
619 | struct task_struct *p = timer->it.cpu.task; | ||
620 | unsigned long long old_expires, new_expires, old_incr, val; | ||
621 | int ret; | ||
622 | |||
623 | WARN_ON_ONCE(p == NULL); | ||
624 | |||
625 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | ||
626 | |||
627 | /* | ||
628 | * Protect against sighand release/switch in exit/exec and p->cpu_timers | ||
629 | * and p->signal->cpu_timers read/write in arm_timer() | ||
630 | */ | ||
631 | sighand = lock_task_sighand(p, &flags); | ||
632 | /* | ||
633 | * If p has just been reaped, we can no | ||
634 | * longer get any information about it at all. | ||
635 | */ | ||
636 | if (unlikely(sighand == NULL)) { | ||
637 | return -ESRCH; | ||
638 | } | ||
639 | |||
640 | /* | ||
641 | * Disarm any old timer after extracting its expiry time. | ||
642 | */ | ||
643 | WARN_ON_ONCE(!irqs_disabled()); | ||
644 | |||
645 | ret = 0; | ||
646 | old_incr = timer->it.cpu.incr; | ||
647 | old_expires = timer->it.cpu.expires; | ||
648 | if (unlikely(timer->it.cpu.firing)) { | ||
649 | timer->it.cpu.firing = -1; | ||
650 | ret = TIMER_RETRY; | ||
651 | } else | ||
652 | list_del_init(&timer->it.cpu.entry); | ||
653 | |||
654 | /* | ||
655 | * We need to sample the current value to convert the new | ||
656 | * value from to relative and absolute, and to convert the | ||
657 | * old value from absolute to relative. To set a process | ||
658 | * timer, we need a sample to balance the thread expiry | ||
659 | * times (in arm_timer). With an absolute time, we must | ||
660 | * check if it's already passed. In short, we need a sample. | ||
661 | */ | ||
662 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
663 | cpu_clock_sample(timer->it_clock, p, &val); | ||
664 | } else { | ||
665 | cpu_timer_sample_group(timer->it_clock, p, &val); | ||
666 | } | ||
667 | |||
668 | if (old) { | ||
669 | if (old_expires == 0) { | ||
670 | old->it_value.tv_sec = 0; | ||
671 | old->it_value.tv_nsec = 0; | ||
672 | } else { | ||
673 | /* | ||
674 | * Update the timer in case it has | ||
675 | * overrun already. If it has, | ||
676 | * we'll report it as having overrun | ||
677 | * and with the next reloaded timer | ||
678 | * already ticking, though we are | ||
679 | * swallowing that pending | ||
680 | * notification here to install the | ||
681 | * new setting. | ||
682 | */ | ||
683 | bump_cpu_timer(timer, val); | ||
684 | if (val < timer->it.cpu.expires) { | ||
685 | old_expires = timer->it.cpu.expires - val; | ||
686 | sample_to_timespec(timer->it_clock, | ||
687 | old_expires, | ||
688 | &old->it_value); | ||
689 | } else { | ||
690 | old->it_value.tv_nsec = 1; | ||
691 | old->it_value.tv_sec = 0; | ||
692 | } | ||
693 | } | ||
694 | } | ||
695 | |||
696 | if (unlikely(ret)) { | ||
697 | /* | ||
698 | * We are colliding with the timer actually firing. | ||
699 | * Punt after filling in the timer's old value, and | ||
700 | * disable this firing since we are already reporting | ||
701 | * it as an overrun (thanks to bump_cpu_timer above). | ||
702 | */ | ||
703 | unlock_task_sighand(p, &flags); | ||
704 | goto out; | ||
705 | } | ||
706 | |||
707 | if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { | ||
708 | new_expires += val; | ||
709 | } | ||
710 | |||
711 | /* | ||
712 | * Install the new expiry time (or zero). | ||
713 | * For a timer with no notification action, we don't actually | ||
714 | * arm the timer (we'll just fake it for timer_gettime). | ||
715 | */ | ||
716 | timer->it.cpu.expires = new_expires; | ||
717 | if (new_expires != 0 && val < new_expires) { | ||
718 | arm_timer(timer); | ||
719 | } | ||
720 | |||
721 | unlock_task_sighand(p, &flags); | ||
722 | /* | ||
723 | * Install the new reload setting, and | ||
724 | * set up the signal and overrun bookkeeping. | ||
725 | */ | ||
726 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | ||
727 | &new->it_interval); | ||
728 | |||
729 | /* | ||
730 | * This acts as a modification timestamp for the timer, | ||
731 | * so any automatic reload attempt will punt on seeing | ||
732 | * that we have reset the timer manually. | ||
733 | */ | ||
734 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | ||
735 | ~REQUEUE_PENDING; | ||
736 | timer->it_overrun_last = 0; | ||
737 | timer->it_overrun = -1; | ||
738 | |||
739 | if (new_expires != 0 && !(val < new_expires)) { | ||
740 | /* | ||
741 | * The designated time already passed, so we notify | ||
742 | * immediately, even if the thread never runs to | ||
743 | * accumulate more time on this clock. | ||
744 | */ | ||
745 | cpu_timer_fire(timer); | ||
746 | } | ||
747 | |||
748 | ret = 0; | ||
749 | out: | ||
750 | if (old) { | ||
751 | sample_to_timespec(timer->it_clock, | ||
752 | old_incr, &old->it_interval); | ||
753 | } | ||
754 | if (!ret) | ||
755 | posix_cpu_timer_kick_nohz(); | ||
756 | return ret; | ||
757 | } | ||
758 | |||
759 | static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | ||
760 | { | ||
761 | unsigned long long now; | ||
762 | struct task_struct *p = timer->it.cpu.task; | ||
763 | |||
764 | WARN_ON_ONCE(p == NULL); | ||
765 | |||
766 | /* | ||
767 | * Easy part: convert the reload time. | ||
768 | */ | ||
769 | sample_to_timespec(timer->it_clock, | ||
770 | timer->it.cpu.incr, &itp->it_interval); | ||
771 | |||
772 | if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ | ||
773 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | ||
774 | return; | ||
775 | } | ||
776 | |||
777 | /* | ||
778 | * Sample the clock to take the difference with the expiry time. | ||
779 | */ | ||
780 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
781 | cpu_clock_sample(timer->it_clock, p, &now); | ||
782 | } else { | ||
783 | struct sighand_struct *sighand; | ||
784 | unsigned long flags; | ||
785 | |||
786 | /* | ||
787 | * Protect against sighand release/switch in exit/exec and | ||
788 | * also make timer sampling safe if it ends up calling | ||
789 | * thread_group_cputime(). | ||
790 | */ | ||
791 | sighand = lock_task_sighand(p, &flags); | ||
792 | if (unlikely(sighand == NULL)) { | ||
793 | /* | ||
794 | * The process has been reaped. | ||
795 | * We can't even collect a sample any more. | ||
796 | * Call the timer disarmed, nothing else to do. | ||
797 | */ | ||
798 | timer->it.cpu.expires = 0; | ||
799 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | ||
800 | &itp->it_value); | ||
801 | } else { | ||
802 | cpu_timer_sample_group(timer->it_clock, p, &now); | ||
803 | unlock_task_sighand(p, &flags); | ||
804 | } | ||
805 | } | ||
806 | |||
807 | if (now < timer->it.cpu.expires) { | ||
808 | sample_to_timespec(timer->it_clock, | ||
809 | timer->it.cpu.expires - now, | ||
810 | &itp->it_value); | ||
811 | } else { | ||
812 | /* | ||
813 | * The timer should have expired already, but the firing | ||
814 | * hasn't taken place yet. Say it's just about to expire. | ||
815 | */ | ||
816 | itp->it_value.tv_nsec = 1; | ||
817 | itp->it_value.tv_sec = 0; | ||
818 | } | ||
819 | } | ||
820 | |||
821 | static unsigned long long | ||
822 | check_timers_list(struct list_head *timers, | ||
823 | struct list_head *firing, | ||
824 | unsigned long long curr) | ||
825 | { | ||
826 | int maxfire = 20; | ||
827 | |||
828 | while (!list_empty(timers)) { | ||
829 | struct cpu_timer_list *t; | ||
830 | |||
831 | t = list_first_entry(timers, struct cpu_timer_list, entry); | ||
832 | |||
833 | if (!--maxfire || curr < t->expires) | ||
834 | return t->expires; | ||
835 | |||
836 | t->firing = 1; | ||
837 | list_move_tail(&t->entry, firing); | ||
838 | } | ||
839 | |||
840 | return 0; | ||
841 | } | ||
842 | |||
843 | /* | ||
844 | * Check for any per-thread CPU timers that have fired and move them off | ||
845 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the | ||
846 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | ||
847 | */ | ||
848 | static void check_thread_timers(struct task_struct *tsk, | ||
849 | struct list_head *firing) | ||
850 | { | ||
851 | struct list_head *timers = tsk->cpu_timers; | ||
852 | struct signal_struct *const sig = tsk->signal; | ||
853 | struct task_cputime *tsk_expires = &tsk->cputime_expires; | ||
854 | unsigned long long expires; | ||
855 | unsigned long soft; | ||
856 | |||
857 | expires = check_timers_list(timers, firing, prof_ticks(tsk)); | ||
858 | tsk_expires->prof_exp = expires_to_cputime(expires); | ||
859 | |||
860 | expires = check_timers_list(++timers, firing, virt_ticks(tsk)); | ||
861 | tsk_expires->virt_exp = expires_to_cputime(expires); | ||
862 | |||
863 | tsk_expires->sched_exp = check_timers_list(++timers, firing, | ||
864 | tsk->se.sum_exec_runtime); | ||
865 | |||
866 | /* | ||
867 | * Check for the special case thread timers. | ||
868 | */ | ||
869 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); | ||
870 | if (soft != RLIM_INFINITY) { | ||
871 | unsigned long hard = | ||
872 | ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); | ||
873 | |||
874 | if (hard != RLIM_INFINITY && | ||
875 | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { | ||
876 | /* | ||
877 | * At the hard limit, we just die. | ||
878 | * No need to calculate anything else now. | ||
879 | */ | ||
880 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | ||
881 | return; | ||
882 | } | ||
883 | if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { | ||
884 | /* | ||
885 | * At the soft limit, send a SIGXCPU every second. | ||
886 | */ | ||
887 | if (soft < hard) { | ||
888 | soft += USEC_PER_SEC; | ||
889 | sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; | ||
890 | } | ||
891 | printk(KERN_INFO | ||
892 | "RT Watchdog Timeout: %s[%d]\n", | ||
893 | tsk->comm, task_pid_nr(tsk)); | ||
894 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | ||
895 | } | ||
896 | } | ||
897 | } | ||
898 | |||
899 | static void stop_process_timers(struct signal_struct *sig) | ||
900 | { | ||
901 | struct thread_group_cputimer *cputimer = &sig->cputimer; | ||
902 | unsigned long flags; | ||
903 | |||
904 | raw_spin_lock_irqsave(&cputimer->lock, flags); | ||
905 | cputimer->running = 0; | ||
906 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); | ||
907 | } | ||
908 | |||
909 | static u32 onecputick; | ||
910 | |||
911 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | ||
912 | unsigned long long *expires, | ||
913 | unsigned long long cur_time, int signo) | ||
914 | { | ||
915 | if (!it->expires) | ||
916 | return; | ||
917 | |||
918 | if (cur_time >= it->expires) { | ||
919 | if (it->incr) { | ||
920 | it->expires += it->incr; | ||
921 | it->error += it->incr_error; | ||
922 | if (it->error >= onecputick) { | ||
923 | it->expires -= cputime_one_jiffy; | ||
924 | it->error -= onecputick; | ||
925 | } | ||
926 | } else { | ||
927 | it->expires = 0; | ||
928 | } | ||
929 | |||
930 | trace_itimer_expire(signo == SIGPROF ? | ||
931 | ITIMER_PROF : ITIMER_VIRTUAL, | ||
932 | tsk->signal->leader_pid, cur_time); | ||
933 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | ||
934 | } | ||
935 | |||
936 | if (it->expires && (!*expires || it->expires < *expires)) { | ||
937 | *expires = it->expires; | ||
938 | } | ||
939 | } | ||
940 | |||
941 | /* | ||
942 | * Check for any per-thread CPU timers that have fired and move them | ||
943 | * off the tsk->*_timers list onto the firing list. Per-thread timers | ||
944 | * have already been taken off. | ||
945 | */ | ||
946 | static void check_process_timers(struct task_struct *tsk, | ||
947 | struct list_head *firing) | ||
948 | { | ||
949 | struct signal_struct *const sig = tsk->signal; | ||
950 | unsigned long long utime, ptime, virt_expires, prof_expires; | ||
951 | unsigned long long sum_sched_runtime, sched_expires; | ||
952 | struct list_head *timers = sig->cpu_timers; | ||
953 | struct task_cputime cputime; | ||
954 | unsigned long soft; | ||
955 | |||
956 | /* | ||
957 | * Collect the current process totals. | ||
958 | */ | ||
959 | thread_group_cputimer(tsk, &cputime); | ||
960 | utime = cputime_to_expires(cputime.utime); | ||
961 | ptime = utime + cputime_to_expires(cputime.stime); | ||
962 | sum_sched_runtime = cputime.sum_exec_runtime; | ||
963 | |||
964 | prof_expires = check_timers_list(timers, firing, ptime); | ||
965 | virt_expires = check_timers_list(++timers, firing, utime); | ||
966 | sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); | ||
967 | |||
968 | /* | ||
969 | * Check for the special case process timers. | ||
970 | */ | ||
971 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, | ||
972 | SIGPROF); | ||
973 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, | ||
974 | SIGVTALRM); | ||
975 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); | ||
976 | if (soft != RLIM_INFINITY) { | ||
977 | unsigned long psecs = cputime_to_secs(ptime); | ||
978 | unsigned long hard = | ||
979 | ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); | ||
980 | cputime_t x; | ||
981 | if (psecs >= hard) { | ||
982 | /* | ||
983 | * At the hard limit, we just die. | ||
984 | * No need to calculate anything else now. | ||
985 | */ | ||
986 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | ||
987 | return; | ||
988 | } | ||
989 | if (psecs >= soft) { | ||
990 | /* | ||
991 | * At the soft limit, send a SIGXCPU every second. | ||
992 | */ | ||
993 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | ||
994 | if (soft < hard) { | ||
995 | soft++; | ||
996 | sig->rlim[RLIMIT_CPU].rlim_cur = soft; | ||
997 | } | ||
998 | } | ||
999 | x = secs_to_cputime(soft); | ||
1000 | if (!prof_expires || x < prof_expires) { | ||
1001 | prof_expires = x; | ||
1002 | } | ||
1003 | } | ||
1004 | |||
1005 | sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); | ||
1006 | sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); | ||
1007 | sig->cputime_expires.sched_exp = sched_expires; | ||
1008 | if (task_cputime_zero(&sig->cputime_expires)) | ||
1009 | stop_process_timers(sig); | ||
1010 | } | ||
1011 | |||
1012 | /* | ||
1013 | * This is called from the signal code (via do_schedule_next_timer) | ||
1014 | * when the last timer signal was delivered and we have to reload the timer. | ||
1015 | */ | ||
1016 | void posix_cpu_timer_schedule(struct k_itimer *timer) | ||
1017 | { | ||
1018 | struct sighand_struct *sighand; | ||
1019 | unsigned long flags; | ||
1020 | struct task_struct *p = timer->it.cpu.task; | ||
1021 | unsigned long long now; | ||
1022 | |||
1023 | WARN_ON_ONCE(p == NULL); | ||
1024 | |||
1025 | /* | ||
1026 | * Fetch the current sample and update the timer's expiry time. | ||
1027 | */ | ||
1028 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | ||
1029 | cpu_clock_sample(timer->it_clock, p, &now); | ||
1030 | bump_cpu_timer(timer, now); | ||
1031 | if (unlikely(p->exit_state)) | ||
1032 | goto out; | ||
1033 | |||
1034 | /* Protect timer list r/w in arm_timer() */ | ||
1035 | sighand = lock_task_sighand(p, &flags); | ||
1036 | if (!sighand) | ||
1037 | goto out; | ||
1038 | } else { | ||
1039 | /* | ||
1040 | * Protect arm_timer() and timer sampling in case of call to | ||
1041 | * thread_group_cputime(). | ||
1042 | */ | ||
1043 | sighand = lock_task_sighand(p, &flags); | ||
1044 | if (unlikely(sighand == NULL)) { | ||
1045 | /* | ||
1046 | * The process has been reaped. | ||
1047 | * We can't even collect a sample any more. | ||
1048 | */ | ||
1049 | timer->it.cpu.expires = 0; | ||
1050 | goto out; | ||
1051 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { | ||
1052 | unlock_task_sighand(p, &flags); | ||
1053 | /* Optimizations: if the process is dying, no need to rearm */ | ||
1054 | goto out; | ||
1055 | } | ||
1056 | cpu_timer_sample_group(timer->it_clock, p, &now); | ||
1057 | bump_cpu_timer(timer, now); | ||
1058 | /* Leave the sighand locked for the call below. */ | ||
1059 | } | ||
1060 | |||
1061 | /* | ||
1062 | * Now re-arm for the new expiry time. | ||
1063 | */ | ||
1064 | WARN_ON_ONCE(!irqs_disabled()); | ||
1065 | arm_timer(timer); | ||
1066 | unlock_task_sighand(p, &flags); | ||
1067 | |||
1068 | /* Kick full dynticks CPUs in case they need to tick on the new timer */ | ||
1069 | posix_cpu_timer_kick_nohz(); | ||
1070 | out: | ||
1071 | timer->it_overrun_last = timer->it_overrun; | ||
1072 | timer->it_overrun = -1; | ||
1073 | ++timer->it_requeue_pending; | ||
1074 | } | ||
1075 | |||
1076 | /** | ||
1077 | * task_cputime_expired - Compare two task_cputime entities. | ||
1078 | * | ||
1079 | * @sample: The task_cputime structure to be checked for expiration. | ||
1080 | * @expires: Expiration times, against which @sample will be checked. | ||
1081 | * | ||
1082 | * Checks @sample against @expires to see if any field of @sample has expired. | ||
1083 | * Returns true if any field of the former is greater than the corresponding | ||
1084 | * field of the latter if the latter field is set. Otherwise returns false. | ||
1085 | */ | ||
1086 | static inline int task_cputime_expired(const struct task_cputime *sample, | ||
1087 | const struct task_cputime *expires) | ||
1088 | { | ||
1089 | if (expires->utime && sample->utime >= expires->utime) | ||
1090 | return 1; | ||
1091 | if (expires->stime && sample->utime + sample->stime >= expires->stime) | ||
1092 | return 1; | ||
1093 | if (expires->sum_exec_runtime != 0 && | ||
1094 | sample->sum_exec_runtime >= expires->sum_exec_runtime) | ||
1095 | return 1; | ||
1096 | return 0; | ||
1097 | } | ||
1098 | |||
1099 | /** | ||
1100 | * fastpath_timer_check - POSIX CPU timers fast path. | ||
1101 | * | ||
1102 | * @tsk: The task (thread) being checked. | ||
1103 | * | ||
1104 | * Check the task and thread group timers. If both are zero (there are no | ||
1105 | * timers set) return false. Otherwise snapshot the task and thread group | ||
1106 | * timers and compare them with the corresponding expiration times. Return | ||
1107 | * true if a timer has expired, else return false. | ||
1108 | */ | ||
1109 | static inline int fastpath_timer_check(struct task_struct *tsk) | ||
1110 | { | ||
1111 | struct signal_struct *sig; | ||
1112 | cputime_t utime, stime; | ||
1113 | |||
1114 | task_cputime(tsk, &utime, &stime); | ||
1115 | |||
1116 | if (!task_cputime_zero(&tsk->cputime_expires)) { | ||
1117 | struct task_cputime task_sample = { | ||
1118 | .utime = utime, | ||
1119 | .stime = stime, | ||
1120 | .sum_exec_runtime = tsk->se.sum_exec_runtime | ||
1121 | }; | ||
1122 | |||
1123 | if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) | ||
1124 | return 1; | ||
1125 | } | ||
1126 | |||
1127 | sig = tsk->signal; | ||
1128 | if (sig->cputimer.running) { | ||
1129 | struct task_cputime group_sample; | ||
1130 | |||
1131 | raw_spin_lock(&sig->cputimer.lock); | ||
1132 | group_sample = sig->cputimer.cputime; | ||
1133 | raw_spin_unlock(&sig->cputimer.lock); | ||
1134 | |||
1135 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) | ||
1136 | return 1; | ||
1137 | } | ||
1138 | |||
1139 | return 0; | ||
1140 | } | ||
1141 | |||
1142 | /* | ||
1143 | * This is called from the timer interrupt handler. The irq handler has | ||
1144 | * already updated our counts. We need to check if any timers fire now. | ||
1145 | * Interrupts are disabled. | ||
1146 | */ | ||
1147 | void run_posix_cpu_timers(struct task_struct *tsk) | ||
1148 | { | ||
1149 | LIST_HEAD(firing); | ||
1150 | struct k_itimer *timer, *next; | ||
1151 | unsigned long flags; | ||
1152 | |||
1153 | WARN_ON_ONCE(!irqs_disabled()); | ||
1154 | |||
1155 | /* | ||
1156 | * The fast path checks that there are no expired thread or thread | ||
1157 | * group timers. If that's so, just return. | ||
1158 | */ | ||
1159 | if (!fastpath_timer_check(tsk)) | ||
1160 | return; | ||
1161 | |||
1162 | if (!lock_task_sighand(tsk, &flags)) | ||
1163 | return; | ||
1164 | /* | ||
1165 | * Here we take off tsk->signal->cpu_timers[N] and | ||
1166 | * tsk->cpu_timers[N] all the timers that are firing, and | ||
1167 | * put them on the firing list. | ||
1168 | */ | ||
1169 | check_thread_timers(tsk, &firing); | ||
1170 | /* | ||
1171 | * If there are any active process wide timers (POSIX 1.b, itimers, | ||
1172 | * RLIMIT_CPU) cputimer must be running. | ||
1173 | */ | ||
1174 | if (tsk->signal->cputimer.running) | ||
1175 | check_process_timers(tsk, &firing); | ||
1176 | |||
1177 | /* | ||
1178 | * We must release these locks before taking any timer's lock. | ||
1179 | * There is a potential race with timer deletion here, as the | ||
1180 | * siglock now protects our private firing list. We have set | ||
1181 | * the firing flag in each timer, so that a deletion attempt | ||
1182 | * that gets the timer lock before we do will give it up and | ||
1183 | * spin until we've taken care of that timer below. | ||
1184 | */ | ||
1185 | unlock_task_sighand(tsk, &flags); | ||
1186 | |||
1187 | /* | ||
1188 | * Now that all the timers on our list have the firing flag, | ||
1189 | * no one will touch their list entries but us. We'll take | ||
1190 | * each timer's lock before clearing its firing flag, so no | ||
1191 | * timer call will interfere. | ||
1192 | */ | ||
1193 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | ||
1194 | int cpu_firing; | ||
1195 | |||
1196 | spin_lock(&timer->it_lock); | ||
1197 | list_del_init(&timer->it.cpu.entry); | ||
1198 | cpu_firing = timer->it.cpu.firing; | ||
1199 | timer->it.cpu.firing = 0; | ||
1200 | /* | ||
1201 | * The firing flag is -1 if we collided with a reset | ||
1202 | * of the timer, which already reported this | ||
1203 | * almost-firing as an overrun. So don't generate an event. | ||
1204 | */ | ||
1205 | if (likely(cpu_firing >= 0)) | ||
1206 | cpu_timer_fire(timer); | ||
1207 | spin_unlock(&timer->it_lock); | ||
1208 | } | ||
1209 | } | ||
1210 | |||
1211 | /* | ||
1212 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. | ||
1213 | * The tsk->sighand->siglock must be held by the caller. | ||
1214 | */ | ||
1215 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | ||
1216 | cputime_t *newval, cputime_t *oldval) | ||
1217 | { | ||
1218 | unsigned long long now; | ||
1219 | |||
1220 | WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); | ||
1221 | cpu_timer_sample_group(clock_idx, tsk, &now); | ||
1222 | |||
1223 | if (oldval) { | ||
1224 | /* | ||
1225 | * We are setting itimer. The *oldval is absolute and we update | ||
1226 | * it to be relative, *newval argument is relative and we update | ||
1227 | * it to be absolute. | ||
1228 | */ | ||
1229 | if (*oldval) { | ||
1230 | if (*oldval <= now) { | ||
1231 | /* Just about to fire. */ | ||
1232 | *oldval = cputime_one_jiffy; | ||
1233 | } else { | ||
1234 | *oldval -= now; | ||
1235 | } | ||
1236 | } | ||
1237 | |||
1238 | if (!*newval) | ||
1239 | goto out; | ||
1240 | *newval += now; | ||
1241 | } | ||
1242 | |||
1243 | /* | ||
1244 | * Update expiration cache if we are the earliest timer, or eventually | ||
1245 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. | ||
1246 | */ | ||
1247 | switch (clock_idx) { | ||
1248 | case CPUCLOCK_PROF: | ||
1249 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) | ||
1250 | tsk->signal->cputime_expires.prof_exp = *newval; | ||
1251 | break; | ||
1252 | case CPUCLOCK_VIRT: | ||
1253 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) | ||
1254 | tsk->signal->cputime_expires.virt_exp = *newval; | ||
1255 | break; | ||
1256 | } | ||
1257 | out: | ||
1258 | posix_cpu_timer_kick_nohz(); | ||
1259 | } | ||
1260 | |||
1261 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, | ||
1262 | struct timespec *rqtp, struct itimerspec *it) | ||
1263 | { | ||
1264 | struct k_itimer timer; | ||
1265 | int error; | ||
1266 | |||
1267 | /* | ||
1268 | * Set up a temporary timer and then wait for it to go off. | ||
1269 | */ | ||
1270 | memset(&timer, 0, sizeof timer); | ||
1271 | spin_lock_init(&timer.it_lock); | ||
1272 | timer.it_clock = which_clock; | ||
1273 | timer.it_overrun = -1; | ||
1274 | error = posix_cpu_timer_create(&timer); | ||
1275 | timer.it_process = current; | ||
1276 | if (!error) { | ||
1277 | static struct itimerspec zero_it; | ||
1278 | |||
1279 | memset(it, 0, sizeof *it); | ||
1280 | it->it_value = *rqtp; | ||
1281 | |||
1282 | spin_lock_irq(&timer.it_lock); | ||
1283 | error = posix_cpu_timer_set(&timer, flags, it, NULL); | ||
1284 | if (error) { | ||
1285 | spin_unlock_irq(&timer.it_lock); | ||
1286 | return error; | ||
1287 | } | ||
1288 | |||
1289 | while (!signal_pending(current)) { | ||
1290 | if (timer.it.cpu.expires == 0) { | ||
1291 | /* | ||
1292 | * Our timer fired and was reset, below | ||
1293 | * deletion can not fail. | ||
1294 | */ | ||
1295 | posix_cpu_timer_del(&timer); | ||
1296 | spin_unlock_irq(&timer.it_lock); | ||
1297 | return 0; | ||
1298 | } | ||
1299 | |||
1300 | /* | ||
1301 | * Block until cpu_timer_fire (or a signal) wakes us. | ||
1302 | */ | ||
1303 | __set_current_state(TASK_INTERRUPTIBLE); | ||
1304 | spin_unlock_irq(&timer.it_lock); | ||
1305 | schedule(); | ||
1306 | spin_lock_irq(&timer.it_lock); | ||
1307 | } | ||
1308 | |||
1309 | /* | ||
1310 | * We were interrupted by a signal. | ||
1311 | */ | ||
1312 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | ||
1313 | error = posix_cpu_timer_set(&timer, 0, &zero_it, it); | ||
1314 | if (!error) { | ||
1315 | /* | ||
1316 | * Timer is now unarmed, deletion can not fail. | ||
1317 | */ | ||
1318 | posix_cpu_timer_del(&timer); | ||
1319 | } | ||
1320 | spin_unlock_irq(&timer.it_lock); | ||
1321 | |||
1322 | while (error == TIMER_RETRY) { | ||
1323 | /* | ||
1324 | * We need to handle case when timer was or is in the | ||
1325 | * middle of firing. In other cases we already freed | ||
1326 | * resources. | ||
1327 | */ | ||
1328 | spin_lock_irq(&timer.it_lock); | ||
1329 | error = posix_cpu_timer_del(&timer); | ||
1330 | spin_unlock_irq(&timer.it_lock); | ||
1331 | } | ||
1332 | |||
1333 | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { | ||
1334 | /* | ||
1335 | * It actually did fire already. | ||
1336 | */ | ||
1337 | return 0; | ||
1338 | } | ||
1339 | |||
1340 | error = -ERESTART_RESTARTBLOCK; | ||
1341 | } | ||
1342 | |||
1343 | return error; | ||
1344 | } | ||
1345 | |||
1346 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block); | ||
1347 | |||
1348 | static int posix_cpu_nsleep(const clockid_t which_clock, int flags, | ||
1349 | struct timespec *rqtp, struct timespec __user *rmtp) | ||
1350 | { | ||
1351 | struct restart_block *restart_block = | ||
1352 | ¤t_thread_info()->restart_block; | ||
1353 | struct itimerspec it; | ||
1354 | int error; | ||
1355 | |||
1356 | /* | ||
1357 | * Diagnose required errors first. | ||
1358 | */ | ||
1359 | if (CPUCLOCK_PERTHREAD(which_clock) && | ||
1360 | (CPUCLOCK_PID(which_clock) == 0 || | ||
1361 | CPUCLOCK_PID(which_clock) == current->pid)) | ||
1362 | return -EINVAL; | ||
1363 | |||
1364 | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); | ||
1365 | |||
1366 | if (error == -ERESTART_RESTARTBLOCK) { | ||
1367 | |||
1368 | if (flags & TIMER_ABSTIME) | ||
1369 | return -ERESTARTNOHAND; | ||
1370 | /* | ||
1371 | * Report back to the user the time still remaining. | ||
1372 | */ | ||
1373 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | ||
1374 | return -EFAULT; | ||
1375 | |||
1376 | restart_block->fn = posix_cpu_nsleep_restart; | ||
1377 | restart_block->nanosleep.clockid = which_clock; | ||
1378 | restart_block->nanosleep.rmtp = rmtp; | ||
1379 | restart_block->nanosleep.expires = timespec_to_ns(rqtp); | ||
1380 | } | ||
1381 | return error; | ||
1382 | } | ||
1383 | |||
1384 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block) | ||
1385 | { | ||
1386 | clockid_t which_clock = restart_block->nanosleep.clockid; | ||
1387 | struct timespec t; | ||
1388 | struct itimerspec it; | ||
1389 | int error; | ||
1390 | |||
1391 | t = ns_to_timespec(restart_block->nanosleep.expires); | ||
1392 | |||
1393 | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); | ||
1394 | |||
1395 | if (error == -ERESTART_RESTARTBLOCK) { | ||
1396 | struct timespec __user *rmtp = restart_block->nanosleep.rmtp; | ||
1397 | /* | ||
1398 | * Report back to the user the time still remaining. | ||
1399 | */ | ||
1400 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | ||
1401 | return -EFAULT; | ||
1402 | |||
1403 | restart_block->nanosleep.expires = timespec_to_ns(&t); | ||
1404 | } | ||
1405 | return error; | ||
1406 | |||
1407 | } | ||
1408 | |||
1409 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) | ||
1410 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | ||
1411 | |||
1412 | static int process_cpu_clock_getres(const clockid_t which_clock, | ||
1413 | struct timespec *tp) | ||
1414 | { | ||
1415 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | ||
1416 | } | ||
1417 | static int process_cpu_clock_get(const clockid_t which_clock, | ||
1418 | struct timespec *tp) | ||
1419 | { | ||
1420 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | ||
1421 | } | ||
1422 | static int process_cpu_timer_create(struct k_itimer *timer) | ||
1423 | { | ||
1424 | timer->it_clock = PROCESS_CLOCK; | ||
1425 | return posix_cpu_timer_create(timer); | ||
1426 | } | ||
1427 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, | ||
1428 | struct timespec *rqtp, | ||
1429 | struct timespec __user *rmtp) | ||
1430 | { | ||
1431 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); | ||
1432 | } | ||
1433 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) | ||
1434 | { | ||
1435 | return -EINVAL; | ||
1436 | } | ||
1437 | static int thread_cpu_clock_getres(const clockid_t which_clock, | ||
1438 | struct timespec *tp) | ||
1439 | { | ||
1440 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | ||
1441 | } | ||
1442 | static int thread_cpu_clock_get(const clockid_t which_clock, | ||
1443 | struct timespec *tp) | ||
1444 | { | ||
1445 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | ||
1446 | } | ||
1447 | static int thread_cpu_timer_create(struct k_itimer *timer) | ||
1448 | { | ||
1449 | timer->it_clock = THREAD_CLOCK; | ||
1450 | return posix_cpu_timer_create(timer); | ||
1451 | } | ||
1452 | |||
1453 | struct k_clock clock_posix_cpu = { | ||
1454 | .clock_getres = posix_cpu_clock_getres, | ||
1455 | .clock_set = posix_cpu_clock_set, | ||
1456 | .clock_get = posix_cpu_clock_get, | ||
1457 | .timer_create = posix_cpu_timer_create, | ||
1458 | .nsleep = posix_cpu_nsleep, | ||
1459 | .nsleep_restart = posix_cpu_nsleep_restart, | ||
1460 | .timer_set = posix_cpu_timer_set, | ||
1461 | .timer_del = posix_cpu_timer_del, | ||
1462 | .timer_get = posix_cpu_timer_get, | ||
1463 | }; | ||
1464 | |||
1465 | static __init int init_posix_cpu_timers(void) | ||
1466 | { | ||
1467 | struct k_clock process = { | ||
1468 | .clock_getres = process_cpu_clock_getres, | ||
1469 | .clock_get = process_cpu_clock_get, | ||
1470 | .timer_create = process_cpu_timer_create, | ||
1471 | .nsleep = process_cpu_nsleep, | ||
1472 | .nsleep_restart = process_cpu_nsleep_restart, | ||
1473 | }; | ||
1474 | struct k_clock thread = { | ||
1475 | .clock_getres = thread_cpu_clock_getres, | ||
1476 | .clock_get = thread_cpu_clock_get, | ||
1477 | .timer_create = thread_cpu_timer_create, | ||
1478 | }; | ||
1479 | struct timespec ts; | ||
1480 | |||
1481 | posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | ||
1482 | posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | ||
1483 | |||
1484 | cputime_to_timespec(cputime_one_jiffy, &ts); | ||
1485 | onecputick = ts.tv_nsec; | ||
1486 | WARN_ON(ts.tv_sec != 0); | ||
1487 | |||
1488 | return 0; | ||
1489 | } | ||
1490 | __initcall(init_posix_cpu_timers); | ||