diff options
Diffstat (limited to 'kernel/time/ntp.c')
-rw-r--r-- | kernel/time/ntp.c | 398 |
1 files changed, 218 insertions, 180 deletions
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 5fd9b9469770..5125ddd8196b 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -15,7 +15,8 @@ | |||
15 | #include <linux/jiffies.h> | 15 | #include <linux/jiffies.h> |
16 | #include <linux/hrtimer.h> | 16 | #include <linux/hrtimer.h> |
17 | #include <linux/capability.h> | 17 | #include <linux/capability.h> |
18 | #include <asm/div64.h> | 18 | #include <linux/math64.h> |
19 | #include <linux/clocksource.h> | ||
19 | #include <asm/timex.h> | 20 | #include <asm/timex.h> |
20 | 21 | ||
21 | /* | 22 | /* |
@@ -23,11 +24,14 @@ | |||
23 | */ | 24 | */ |
24 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | 25 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ |
25 | unsigned long tick_nsec; /* ACTHZ period (nsec) */ | 26 | unsigned long tick_nsec; /* ACTHZ period (nsec) */ |
26 | static u64 tick_length, tick_length_base; | 27 | u64 tick_length; |
28 | static u64 tick_length_base; | ||
29 | |||
30 | static struct hrtimer leap_timer; | ||
27 | 31 | ||
28 | #define MAX_TICKADJ 500 /* microsecs */ | 32 | #define MAX_TICKADJ 500 /* microsecs */ |
29 | #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ | 33 | #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ |
30 | TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ) | 34 | NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
31 | 35 | ||
32 | /* | 36 | /* |
33 | * phase-lock loop variables | 37 | * phase-lock loop variables |
@@ -35,11 +39,12 @@ static u64 tick_length, tick_length_base; | |||
35 | /* TIME_ERROR prevents overwriting the CMOS clock */ | 39 | /* TIME_ERROR prevents overwriting the CMOS clock */ |
36 | static int time_state = TIME_OK; /* clock synchronization status */ | 40 | static int time_state = TIME_OK; /* clock synchronization status */ |
37 | int time_status = STA_UNSYNC; /* clock status bits */ | 41 | int time_status = STA_UNSYNC; /* clock status bits */ |
38 | static s64 time_offset; /* time adjustment (ns) */ | 42 | static long time_tai; /* TAI offset (s) */ |
43 | static s64 time_offset; /* time adjustment (ns) */ | ||
39 | static long time_constant = 2; /* pll time constant */ | 44 | static long time_constant = 2; /* pll time constant */ |
40 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | 45 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ |
41 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | 46 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ |
42 | long time_freq; /* frequency offset (scaled ppm)*/ | 47 | static s64 time_freq; /* frequency offset (scaled ns/s)*/ |
43 | static long time_reftime; /* time at last adjustment (s) */ | 48 | static long time_reftime; /* time at last adjustment (s) */ |
44 | long time_adjust; | 49 | long time_adjust; |
45 | static long ntp_tick_adj; | 50 | static long ntp_tick_adj; |
@@ -47,16 +52,56 @@ static long ntp_tick_adj; | |||
47 | static void ntp_update_frequency(void) | 52 | static void ntp_update_frequency(void) |
48 | { | 53 | { |
49 | u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 54 | u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
50 | << TICK_LENGTH_SHIFT; | 55 | << NTP_SCALE_SHIFT; |
51 | second_length += (s64)ntp_tick_adj << TICK_LENGTH_SHIFT; | 56 | second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT; |
52 | second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC); | 57 | second_length += time_freq; |
53 | 58 | ||
54 | tick_length_base = second_length; | 59 | tick_length_base = second_length; |
55 | 60 | ||
56 | do_div(second_length, HZ); | 61 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
57 | tick_nsec = second_length >> TICK_LENGTH_SHIFT; | 62 | tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ); |
63 | } | ||
64 | |||
65 | static void ntp_update_offset(long offset) | ||
66 | { | ||
67 | long mtemp; | ||
68 | s64 freq_adj; | ||
69 | |||
70 | if (!(time_status & STA_PLL)) | ||
71 | return; | ||
58 | 72 | ||
59 | do_div(tick_length_base, NTP_INTERVAL_FREQ); | 73 | if (!(time_status & STA_NANO)) |
74 | offset *= NSEC_PER_USEC; | ||
75 | |||
76 | /* | ||
77 | * Scale the phase adjustment and | ||
78 | * clamp to the operating range. | ||
79 | */ | ||
80 | offset = min(offset, MAXPHASE); | ||
81 | offset = max(offset, -MAXPHASE); | ||
82 | |||
83 | /* | ||
84 | * Select how the frequency is to be controlled | ||
85 | * and in which mode (PLL or FLL). | ||
86 | */ | ||
87 | if (time_status & STA_FREQHOLD || time_reftime == 0) | ||
88 | time_reftime = xtime.tv_sec; | ||
89 | mtemp = xtime.tv_sec - time_reftime; | ||
90 | time_reftime = xtime.tv_sec; | ||
91 | |||
92 | freq_adj = (s64)offset * mtemp; | ||
93 | freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant); | ||
94 | time_status &= ~STA_MODE; | ||
95 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { | ||
96 | freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL), | ||
97 | mtemp); | ||
98 | time_status |= STA_MODE; | ||
99 | } | ||
100 | freq_adj += time_freq; | ||
101 | freq_adj = min(freq_adj, MAXFREQ_SCALED); | ||
102 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | ||
103 | |||
104 | time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | ||
60 | } | 105 | } |
61 | 106 | ||
62 | /** | 107 | /** |
@@ -78,62 +123,70 @@ void ntp_clear(void) | |||
78 | } | 123 | } |
79 | 124 | ||
80 | /* | 125 | /* |
81 | * this routine handles the overflow of the microsecond field | 126 | * Leap second processing. If in leap-insert state at the end of the |
82 | * | 127 | * day, the system clock is set back one second; if in leap-delete |
83 | * The tricky bits of code to handle the accurate clock support | 128 | * state, the system clock is set ahead one second. |
84 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | ||
85 | * They were originally developed for SUN and DEC kernels. | ||
86 | * All the kudos should go to Dave for this stuff. | ||
87 | */ | 129 | */ |
88 | void second_overflow(void) | 130 | static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) |
89 | { | 131 | { |
90 | long time_adj; | 132 | enum hrtimer_restart res = HRTIMER_NORESTART; |
91 | 133 | ||
92 | /* Bump the maxerror field */ | 134 | write_seqlock_irq(&xtime_lock); |
93 | time_maxerror += MAXFREQ >> SHIFT_USEC; | ||
94 | if (time_maxerror > NTP_PHASE_LIMIT) { | ||
95 | time_maxerror = NTP_PHASE_LIMIT; | ||
96 | time_status |= STA_UNSYNC; | ||
97 | } | ||
98 | 135 | ||
99 | /* | ||
100 | * Leap second processing. If in leap-insert state at the end of the | ||
101 | * day, the system clock is set back one second; if in leap-delete | ||
102 | * state, the system clock is set ahead one second. The microtime() | ||
103 | * routine or external clock driver will insure that reported time is | ||
104 | * always monotonic. The ugly divides should be replaced. | ||
105 | */ | ||
106 | switch (time_state) { | 136 | switch (time_state) { |
107 | case TIME_OK: | 137 | case TIME_OK: |
108 | if (time_status & STA_INS) | ||
109 | time_state = TIME_INS; | ||
110 | else if (time_status & STA_DEL) | ||
111 | time_state = TIME_DEL; | ||
112 | break; | 138 | break; |
113 | case TIME_INS: | 139 | case TIME_INS: |
114 | if (xtime.tv_sec % 86400 == 0) { | 140 | xtime.tv_sec--; |
115 | xtime.tv_sec--; | 141 | wall_to_monotonic.tv_sec++; |
116 | wall_to_monotonic.tv_sec++; | 142 | time_state = TIME_OOP; |
117 | time_state = TIME_OOP; | 143 | printk(KERN_NOTICE "Clock: " |
118 | printk(KERN_NOTICE "Clock: inserting leap second " | 144 | "inserting leap second 23:59:60 UTC\n"); |
119 | "23:59:60 UTC\n"); | 145 | leap_timer.expires = ktime_add_ns(leap_timer.expires, |
120 | } | 146 | NSEC_PER_SEC); |
147 | res = HRTIMER_RESTART; | ||
121 | break; | 148 | break; |
122 | case TIME_DEL: | 149 | case TIME_DEL: |
123 | if ((xtime.tv_sec + 1) % 86400 == 0) { | 150 | xtime.tv_sec++; |
124 | xtime.tv_sec++; | 151 | time_tai--; |
125 | wall_to_monotonic.tv_sec--; | 152 | wall_to_monotonic.tv_sec--; |
126 | time_state = TIME_WAIT; | 153 | time_state = TIME_WAIT; |
127 | printk(KERN_NOTICE "Clock: deleting leap second " | 154 | printk(KERN_NOTICE "Clock: " |
128 | "23:59:59 UTC\n"); | 155 | "deleting leap second 23:59:59 UTC\n"); |
129 | } | ||
130 | break; | 156 | break; |
131 | case TIME_OOP: | 157 | case TIME_OOP: |
158 | time_tai++; | ||
132 | time_state = TIME_WAIT; | 159 | time_state = TIME_WAIT; |
133 | break; | 160 | /* fall through */ |
134 | case TIME_WAIT: | 161 | case TIME_WAIT: |
135 | if (!(time_status & (STA_INS | STA_DEL))) | 162 | if (!(time_status & (STA_INS | STA_DEL))) |
136 | time_state = TIME_OK; | 163 | time_state = TIME_OK; |
164 | break; | ||
165 | } | ||
166 | update_vsyscall(&xtime, clock); | ||
167 | |||
168 | write_sequnlock_irq(&xtime_lock); | ||
169 | |||
170 | return res; | ||
171 | } | ||
172 | |||
173 | /* | ||
174 | * this routine handles the overflow of the microsecond field | ||
175 | * | ||
176 | * The tricky bits of code to handle the accurate clock support | ||
177 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | ||
178 | * They were originally developed for SUN and DEC kernels. | ||
179 | * All the kudos should go to Dave for this stuff. | ||
180 | */ | ||
181 | void second_overflow(void) | ||
182 | { | ||
183 | s64 time_adj; | ||
184 | |||
185 | /* Bump the maxerror field */ | ||
186 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | ||
187 | if (time_maxerror > NTP_PHASE_LIMIT) { | ||
188 | time_maxerror = NTP_PHASE_LIMIT; | ||
189 | time_status |= STA_UNSYNC; | ||
137 | } | 190 | } |
138 | 191 | ||
139 | /* | 192 | /* |
@@ -143,7 +196,7 @@ void second_overflow(void) | |||
143 | tick_length = tick_length_base; | 196 | tick_length = tick_length_base; |
144 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); | 197 | time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); |
145 | time_offset -= time_adj; | 198 | time_offset -= time_adj; |
146 | tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE); | 199 | tick_length += time_adj; |
147 | 200 | ||
148 | if (unlikely(time_adjust)) { | 201 | if (unlikely(time_adjust)) { |
149 | if (time_adjust > MAX_TICKADJ) { | 202 | if (time_adjust > MAX_TICKADJ) { |
@@ -154,25 +207,12 @@ void second_overflow(void) | |||
154 | tick_length -= MAX_TICKADJ_SCALED; | 207 | tick_length -= MAX_TICKADJ_SCALED; |
155 | } else { | 208 | } else { |
156 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / | 209 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / |
157 | NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT; | 210 | NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT; |
158 | time_adjust = 0; | 211 | time_adjust = 0; |
159 | } | 212 | } |
160 | } | 213 | } |
161 | } | 214 | } |
162 | 215 | ||
163 | /* | ||
164 | * Return how long ticks are at the moment, that is, how much time | ||
165 | * update_wall_time_one_tick will add to xtime next time we call it | ||
166 | * (assuming no calls to do_adjtimex in the meantime). | ||
167 | * The return value is in fixed-point nanoseconds shifted by the | ||
168 | * specified number of bits to the right of the binary point. | ||
169 | * This function has no side-effects. | ||
170 | */ | ||
171 | u64 current_tick_length(void) | ||
172 | { | ||
173 | return tick_length; | ||
174 | } | ||
175 | |||
176 | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 216 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
177 | 217 | ||
178 | /* Disable the cmos update - used by virtualization and embedded */ | 218 | /* Disable the cmos update - used by virtualization and embedded */ |
@@ -236,8 +276,8 @@ static inline void notify_cmos_timer(void) { } | |||
236 | */ | 276 | */ |
237 | int do_adjtimex(struct timex *txc) | 277 | int do_adjtimex(struct timex *txc) |
238 | { | 278 | { |
239 | long mtemp, save_adjust, rem; | 279 | struct timespec ts; |
240 | s64 freq_adj, temp64; | 280 | long save_adjust, sec; |
241 | int result; | 281 | int result; |
242 | 282 | ||
243 | /* In order to modify anything, you gotta be super-user! */ | 283 | /* In order to modify anything, you gotta be super-user! */ |
@@ -247,147 +287,132 @@ int do_adjtimex(struct timex *txc) | |||
247 | /* Now we validate the data before disabling interrupts */ | 287 | /* Now we validate the data before disabling interrupts */ |
248 | 288 | ||
249 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) { | 289 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) { |
250 | /* singleshot must not be used with any other mode bits */ | 290 | /* singleshot must not be used with any other mode bits */ |
251 | if (txc->modes != ADJ_OFFSET_SINGLESHOT && | 291 | if (txc->modes & ~ADJ_OFFSET_SS_READ) |
252 | txc->modes != ADJ_OFFSET_SS_READ) | ||
253 | return -EINVAL; | 292 | return -EINVAL; |
254 | } | 293 | } |
255 | 294 | ||
256 | if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) | ||
257 | /* adjustment Offset limited to +- .512 seconds */ | ||
258 | if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) | ||
259 | return -EINVAL; | ||
260 | |||
261 | /* if the quartz is off by more than 10% something is VERY wrong ! */ | 295 | /* if the quartz is off by more than 10% something is VERY wrong ! */ |
262 | if (txc->modes & ADJ_TICK) | 296 | if (txc->modes & ADJ_TICK) |
263 | if (txc->tick < 900000/USER_HZ || | 297 | if (txc->tick < 900000/USER_HZ || |
264 | txc->tick > 1100000/USER_HZ) | 298 | txc->tick > 1100000/USER_HZ) |
265 | return -EINVAL; | 299 | return -EINVAL; |
266 | 300 | ||
301 | if (time_state != TIME_OK && txc->modes & ADJ_STATUS) | ||
302 | hrtimer_cancel(&leap_timer); | ||
303 | getnstimeofday(&ts); | ||
304 | |||
267 | write_seqlock_irq(&xtime_lock); | 305 | write_seqlock_irq(&xtime_lock); |
268 | result = time_state; /* mostly `TIME_OK' */ | ||
269 | 306 | ||
270 | /* Save for later - semantics of adjtime is to return old value */ | 307 | /* Save for later - semantics of adjtime is to return old value */ |
271 | save_adjust = time_adjust; | 308 | save_adjust = time_adjust; |
272 | 309 | ||
273 | #if 0 /* STA_CLOCKERR is never set yet */ | ||
274 | time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ | ||
275 | #endif | ||
276 | /* If there are input parameters, then process them */ | 310 | /* If there are input parameters, then process them */ |
277 | if (txc->modes) | 311 | if (txc->modes) { |
278 | { | 312 | if (txc->modes & ADJ_STATUS) { |
279 | if (txc->modes & ADJ_STATUS) /* only set allowed bits */ | 313 | if ((time_status & STA_PLL) && |
280 | time_status = (txc->status & ~STA_RONLY) | | 314 | !(txc->status & STA_PLL)) { |
281 | (time_status & STA_RONLY); | 315 | time_state = TIME_OK; |
282 | 316 | time_status = STA_UNSYNC; | |
283 | if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ | 317 | } |
284 | if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { | 318 | /* only set allowed bits */ |
285 | result = -EINVAL; | 319 | time_status &= STA_RONLY; |
286 | goto leave; | 320 | time_status |= txc->status & ~STA_RONLY; |
287 | } | 321 | |
288 | time_freq = ((s64)txc->freq * NSEC_PER_USEC) | 322 | switch (time_state) { |
289 | >> (SHIFT_USEC - SHIFT_NSEC); | 323 | case TIME_OK: |
290 | } | 324 | start_timer: |
291 | 325 | sec = ts.tv_sec; | |
292 | if (txc->modes & ADJ_MAXERROR) { | 326 | if (time_status & STA_INS) { |
293 | if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { | 327 | time_state = TIME_INS; |
294 | result = -EINVAL; | 328 | sec += 86400 - sec % 86400; |
295 | goto leave; | 329 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); |
330 | } else if (time_status & STA_DEL) { | ||
331 | time_state = TIME_DEL; | ||
332 | sec += 86400 - (sec + 1) % 86400; | ||
333 | hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS); | ||
334 | } | ||
335 | break; | ||
336 | case TIME_INS: | ||
337 | case TIME_DEL: | ||
338 | time_state = TIME_OK; | ||
339 | goto start_timer; | ||
340 | break; | ||
341 | case TIME_WAIT: | ||
342 | if (!(time_status & (STA_INS | STA_DEL))) | ||
343 | time_state = TIME_OK; | ||
344 | break; | ||
345 | case TIME_OOP: | ||
346 | hrtimer_restart(&leap_timer); | ||
347 | break; | ||
348 | } | ||
296 | } | 349 | } |
297 | time_maxerror = txc->maxerror; | ||
298 | } | ||
299 | 350 | ||
300 | if (txc->modes & ADJ_ESTERROR) { | 351 | if (txc->modes & ADJ_NANO) |
301 | if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { | 352 | time_status |= STA_NANO; |
302 | result = -EINVAL; | 353 | if (txc->modes & ADJ_MICRO) |
303 | goto leave; | 354 | time_status &= ~STA_NANO; |
355 | |||
356 | if (txc->modes & ADJ_FREQUENCY) { | ||
357 | time_freq = (s64)txc->freq * PPM_SCALE; | ||
358 | time_freq = min(time_freq, MAXFREQ_SCALED); | ||
359 | time_freq = max(time_freq, -MAXFREQ_SCALED); | ||
304 | } | 360 | } |
305 | time_esterror = txc->esterror; | ||
306 | } | ||
307 | 361 | ||
308 | if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ | 362 | if (txc->modes & ADJ_MAXERROR) |
309 | if (txc->constant < 0) { /* NTP v4 uses values > 6 */ | 363 | time_maxerror = txc->maxerror; |
310 | result = -EINVAL; | 364 | if (txc->modes & ADJ_ESTERROR) |
311 | goto leave; | 365 | time_esterror = txc->esterror; |
366 | |||
367 | if (txc->modes & ADJ_TIMECONST) { | ||
368 | time_constant = txc->constant; | ||
369 | if (!(time_status & STA_NANO)) | ||
370 | time_constant += 4; | ||
371 | time_constant = min(time_constant, (long)MAXTC); | ||
372 | time_constant = max(time_constant, 0l); | ||
312 | } | 373 | } |
313 | time_constant = min(txc->constant + 4, (long)MAXTC); | ||
314 | } | ||
315 | 374 | ||
316 | if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ | 375 | if (txc->modes & ADJ_TAI && txc->constant > 0) |
317 | if (txc->modes == ADJ_OFFSET_SINGLESHOT) { | 376 | time_tai = txc->constant; |
318 | /* adjtime() is independent from ntp_adjtime() */ | 377 | |
319 | time_adjust = txc->offset; | 378 | if (txc->modes & ADJ_OFFSET) { |
379 | if (txc->modes == ADJ_OFFSET_SINGLESHOT) | ||
380 | /* adjtime() is independent from ntp_adjtime() */ | ||
381 | time_adjust = txc->offset; | ||
382 | else | ||
383 | ntp_update_offset(txc->offset); | ||
320 | } | 384 | } |
321 | else if (time_status & STA_PLL) { | 385 | if (txc->modes & ADJ_TICK) |
322 | time_offset = txc->offset * NSEC_PER_USEC; | 386 | tick_usec = txc->tick; |
323 | 387 | ||
324 | /* | 388 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) |
325 | * Scale the phase adjustment and | 389 | ntp_update_frequency(); |
326 | * clamp to the operating range. | 390 | } |
327 | */ | 391 | |
328 | time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC); | 392 | result = time_state; /* mostly `TIME_OK' */ |
329 | time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC); | 393 | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) |
330 | |||
331 | /* | ||
332 | * Select whether the frequency is to be controlled | ||
333 | * and in which mode (PLL or FLL). Clamp to the operating | ||
334 | * range. Ugly multiply/divide should be replaced someday. | ||
335 | */ | ||
336 | |||
337 | if (time_status & STA_FREQHOLD || time_reftime == 0) | ||
338 | time_reftime = xtime.tv_sec; | ||
339 | mtemp = xtime.tv_sec - time_reftime; | ||
340 | time_reftime = xtime.tv_sec; | ||
341 | |||
342 | freq_adj = time_offset * mtemp; | ||
343 | freq_adj = shift_right(freq_adj, time_constant * 2 + | ||
344 | (SHIFT_PLL + 2) * 2 - SHIFT_NSEC); | ||
345 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { | ||
346 | u64 utemp64; | ||
347 | temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL); | ||
348 | if (time_offset < 0) { | ||
349 | utemp64 = -temp64; | ||
350 | do_div(utemp64, mtemp); | ||
351 | freq_adj -= utemp64; | ||
352 | } else { | ||
353 | utemp64 = temp64; | ||
354 | do_div(utemp64, mtemp); | ||
355 | freq_adj += utemp64; | ||
356 | } | ||
357 | } | ||
358 | freq_adj += time_freq; | ||
359 | freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC); | ||
360 | time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC); | ||
361 | time_offset = div_long_long_rem_signed(time_offset, | ||
362 | NTP_INTERVAL_FREQ, | ||
363 | &rem); | ||
364 | time_offset <<= SHIFT_UPDATE; | ||
365 | } /* STA_PLL */ | ||
366 | } /* txc->modes & ADJ_OFFSET */ | ||
367 | if (txc->modes & ADJ_TICK) | ||
368 | tick_usec = txc->tick; | ||
369 | |||
370 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | ||
371 | ntp_update_frequency(); | ||
372 | } /* txc->modes */ | ||
373 | leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) | ||
374 | result = TIME_ERROR; | 394 | result = TIME_ERROR; |
375 | 395 | ||
376 | if ((txc->modes == ADJ_OFFSET_SINGLESHOT) || | 396 | if ((txc->modes == ADJ_OFFSET_SINGLESHOT) || |
377 | (txc->modes == ADJ_OFFSET_SS_READ)) | 397 | (txc->modes == ADJ_OFFSET_SS_READ)) |
378 | txc->offset = save_adjust; | 398 | txc->offset = save_adjust; |
379 | else | 399 | else { |
380 | txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) * | 400 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
381 | NTP_INTERVAL_FREQ / 1000; | 401 | NTP_SCALE_SHIFT); |
382 | txc->freq = (time_freq / NSEC_PER_USEC) << | 402 | if (!(time_status & STA_NANO)) |
383 | (SHIFT_USEC - SHIFT_NSEC); | 403 | txc->offset /= NSEC_PER_USEC; |
404 | } | ||
405 | txc->freq = shift_right((s32)(time_freq >> PPM_SCALE_INV_SHIFT) * | ||
406 | (s64)PPM_SCALE_INV, | ||
407 | NTP_SCALE_SHIFT); | ||
384 | txc->maxerror = time_maxerror; | 408 | txc->maxerror = time_maxerror; |
385 | txc->esterror = time_esterror; | 409 | txc->esterror = time_esterror; |
386 | txc->status = time_status; | 410 | txc->status = time_status; |
387 | txc->constant = time_constant; | 411 | txc->constant = time_constant; |
388 | txc->precision = 1; | 412 | txc->precision = 1; |
389 | txc->tolerance = MAXFREQ; | 413 | txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
390 | txc->tick = tick_usec; | 414 | txc->tick = tick_usec; |
415 | txc->tai = time_tai; | ||
391 | 416 | ||
392 | /* PPS is not implemented, so these are zero */ | 417 | /* PPS is not implemented, so these are zero */ |
393 | txc->ppsfreq = 0; | 418 | txc->ppsfreq = 0; |
@@ -399,9 +424,15 @@ leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) | |||
399 | txc->errcnt = 0; | 424 | txc->errcnt = 0; |
400 | txc->stbcnt = 0; | 425 | txc->stbcnt = 0; |
401 | write_sequnlock_irq(&xtime_lock); | 426 | write_sequnlock_irq(&xtime_lock); |
402 | do_gettimeofday(&txc->time); | 427 | |
428 | txc->time.tv_sec = ts.tv_sec; | ||
429 | txc->time.tv_usec = ts.tv_nsec; | ||
430 | if (!(time_status & STA_NANO)) | ||
431 | txc->time.tv_usec /= NSEC_PER_USEC; | ||
432 | |||
403 | notify_cmos_timer(); | 433 | notify_cmos_timer(); |
404 | return(result); | 434 | |
435 | return result; | ||
405 | } | 436 | } |
406 | 437 | ||
407 | static int __init ntp_tick_adj_setup(char *str) | 438 | static int __init ntp_tick_adj_setup(char *str) |
@@ -411,3 +442,10 @@ static int __init ntp_tick_adj_setup(char *str) | |||
411 | } | 442 | } |
412 | 443 | ||
413 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | 444 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); |
445 | |||
446 | void __init ntp_init(void) | ||
447 | { | ||
448 | ntp_clear(); | ||
449 | hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); | ||
450 | leap_timer.function = ntp_leap_second; | ||
451 | } | ||