aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time/clocksource.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/time/clocksource.c')
-rw-r--r--kernel/time/clocksource.c97
1 files changed, 97 insertions, 0 deletions
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 4a310906b3e8..d422c7b2236b 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -107,6 +107,59 @@ u64 timecounter_cyc2time(struct timecounter *tc,
107} 107}
108EXPORT_SYMBOL_GPL(timecounter_cyc2time); 108EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109 109
110/**
111 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112 * @mult: pointer to mult variable
113 * @shift: pointer to shift variable
114 * @from: frequency to convert from
115 * @to: frequency to convert to
116 * @minsec: guaranteed runtime conversion range in seconds
117 *
118 * The function evaluates the shift/mult pair for the scaled math
119 * operations of clocksources and clockevents.
120 *
121 * @to and @from are frequency values in HZ. For clock sources @to is
122 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123 * event @to is the counter frequency and @from is NSEC_PER_SEC.
124 *
125 * The @minsec conversion range argument controls the time frame in
126 * seconds which must be covered by the runtime conversion with the
127 * calculated mult and shift factors. This guarantees that no 64bit
128 * overflow happens when the input value of the conversion is
129 * multiplied with the calculated mult factor. Larger ranges may
130 * reduce the conversion accuracy by chosing smaller mult and shift
131 * factors.
132 */
133void
134clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec)
135{
136 u64 tmp;
137 u32 sft, sftacc= 32;
138
139 /*
140 * Calculate the shift factor which is limiting the conversion
141 * range:
142 */
143 tmp = ((u64)minsec * from) >> 32;
144 while (tmp) {
145 tmp >>=1;
146 sftacc--;
147 }
148
149 /*
150 * Find the conversion shift/mult pair which has the best
151 * accuracy and fits the maxsec conversion range:
152 */
153 for (sft = 32; sft > 0; sft--) {
154 tmp = (u64) to << sft;
155 do_div(tmp, from);
156 if ((tmp >> sftacc) == 0)
157 break;
158 }
159 *mult = tmp;
160 *shift = sft;
161}
162
110/*[Clocksource internal variables]--------- 163/*[Clocksource internal variables]---------
111 * curr_clocksource: 164 * curr_clocksource:
112 * currently selected clocksource. 165 * currently selected clocksource.
@@ -413,6 +466,47 @@ void clocksource_touch_watchdog(void)
413 clocksource_resume_watchdog(); 466 clocksource_resume_watchdog();
414} 467}
415 468
469/**
470 * clocksource_max_deferment - Returns max time the clocksource can be deferred
471 * @cs: Pointer to clocksource
472 *
473 */
474static u64 clocksource_max_deferment(struct clocksource *cs)
475{
476 u64 max_nsecs, max_cycles;
477
478 /*
479 * Calculate the maximum number of cycles that we can pass to the
480 * cyc2ns function without overflowing a 64-bit signed result. The
481 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
482 * is equivalent to the below.
483 * max_cycles < (2^63)/cs->mult
484 * max_cycles < 2^(log2((2^63)/cs->mult))
485 * max_cycles < 2^(log2(2^63) - log2(cs->mult))
486 * max_cycles < 2^(63 - log2(cs->mult))
487 * max_cycles < 1 << (63 - log2(cs->mult))
488 * Please note that we add 1 to the result of the log2 to account for
489 * any rounding errors, ensure the above inequality is satisfied and
490 * no overflow will occur.
491 */
492 max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
493
494 /*
495 * The actual maximum number of cycles we can defer the clocksource is
496 * determined by the minimum of max_cycles and cs->mask.
497 */
498 max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
499 max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
500
501 /*
502 * To ensure that the clocksource does not wrap whilst we are idle,
503 * limit the time the clocksource can be deferred by 12.5%. Please
504 * note a margin of 12.5% is used because this can be computed with
505 * a shift, versus say 10% which would require division.
506 */
507 return max_nsecs - (max_nsecs >> 5);
508}
509
416#ifdef CONFIG_GENERIC_TIME 510#ifdef CONFIG_GENERIC_TIME
417 511
418/** 512/**
@@ -511,6 +605,9 @@ static void clocksource_enqueue(struct clocksource *cs)
511 */ 605 */
512int clocksource_register(struct clocksource *cs) 606int clocksource_register(struct clocksource *cs)
513{ 607{
608 /* calculate max idle time permitted for this clocksource */
609 cs->max_idle_ns = clocksource_max_deferment(cs);
610
514 mutex_lock(&clocksource_mutex); 611 mutex_lock(&clocksource_mutex);
515 clocksource_enqueue(cs); 612 clocksource_enqueue(cs);
516 clocksource_select(); 613 clocksource_select();