diff options
Diffstat (limited to 'kernel/time.c')
-rw-r--r-- | kernel/time.c | 254 |
1 files changed, 254 insertions, 0 deletions
diff --git a/kernel/time.c b/kernel/time.c index 0e017bff4c19..c6c80ea5d0ea 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
@@ -470,6 +470,260 @@ struct timeval ns_to_timeval(const s64 nsec) | |||
470 | return tv; | 470 | return tv; |
471 | } | 471 | } |
472 | 472 | ||
473 | /* | ||
474 | * Convert jiffies to milliseconds and back. | ||
475 | * | ||
476 | * Avoid unnecessary multiplications/divisions in the | ||
477 | * two most common HZ cases: | ||
478 | */ | ||
479 | unsigned int jiffies_to_msecs(const unsigned long j) | ||
480 | { | ||
481 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | ||
482 | return (MSEC_PER_SEC / HZ) * j; | ||
483 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | ||
484 | return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); | ||
485 | #else | ||
486 | return (j * MSEC_PER_SEC) / HZ; | ||
487 | #endif | ||
488 | } | ||
489 | EXPORT_SYMBOL(jiffies_to_msecs); | ||
490 | |||
491 | unsigned int jiffies_to_usecs(const unsigned long j) | ||
492 | { | ||
493 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | ||
494 | return (USEC_PER_SEC / HZ) * j; | ||
495 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | ||
496 | return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); | ||
497 | #else | ||
498 | return (j * USEC_PER_SEC) / HZ; | ||
499 | #endif | ||
500 | } | ||
501 | EXPORT_SYMBOL(jiffies_to_usecs); | ||
502 | |||
503 | /* | ||
504 | * When we convert to jiffies then we interpret incoming values | ||
505 | * the following way: | ||
506 | * | ||
507 | * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) | ||
508 | * | ||
509 | * - 'too large' values [that would result in larger than | ||
510 | * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. | ||
511 | * | ||
512 | * - all other values are converted to jiffies by either multiplying | ||
513 | * the input value by a factor or dividing it with a factor | ||
514 | * | ||
515 | * We must also be careful about 32-bit overflows. | ||
516 | */ | ||
517 | unsigned long msecs_to_jiffies(const unsigned int m) | ||
518 | { | ||
519 | /* | ||
520 | * Negative value, means infinite timeout: | ||
521 | */ | ||
522 | if ((int)m < 0) | ||
523 | return MAX_JIFFY_OFFSET; | ||
524 | |||
525 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | ||
526 | /* | ||
527 | * HZ is equal to or smaller than 1000, and 1000 is a nice | ||
528 | * round multiple of HZ, divide with the factor between them, | ||
529 | * but round upwards: | ||
530 | */ | ||
531 | return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); | ||
532 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | ||
533 | /* | ||
534 | * HZ is larger than 1000, and HZ is a nice round multiple of | ||
535 | * 1000 - simply multiply with the factor between them. | ||
536 | * | ||
537 | * But first make sure the multiplication result cannot | ||
538 | * overflow: | ||
539 | */ | ||
540 | if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | ||
541 | return MAX_JIFFY_OFFSET; | ||
542 | |||
543 | return m * (HZ / MSEC_PER_SEC); | ||
544 | #else | ||
545 | /* | ||
546 | * Generic case - multiply, round and divide. But first | ||
547 | * check that if we are doing a net multiplication, that | ||
548 | * we wouldnt overflow: | ||
549 | */ | ||
550 | if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | ||
551 | return MAX_JIFFY_OFFSET; | ||
552 | |||
553 | return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; | ||
554 | #endif | ||
555 | } | ||
556 | EXPORT_SYMBOL(msecs_to_jiffies); | ||
557 | |||
558 | unsigned long usecs_to_jiffies(const unsigned int u) | ||
559 | { | ||
560 | if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | ||
561 | return MAX_JIFFY_OFFSET; | ||
562 | #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | ||
563 | return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); | ||
564 | #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | ||
565 | return u * (HZ / USEC_PER_SEC); | ||
566 | #else | ||
567 | return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC; | ||
568 | #endif | ||
569 | } | ||
570 | EXPORT_SYMBOL(usecs_to_jiffies); | ||
571 | |||
572 | /* | ||
573 | * The TICK_NSEC - 1 rounds up the value to the next resolution. Note | ||
574 | * that a remainder subtract here would not do the right thing as the | ||
575 | * resolution values don't fall on second boundries. I.e. the line: | ||
576 | * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | ||
577 | * | ||
578 | * Rather, we just shift the bits off the right. | ||
579 | * | ||
580 | * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | ||
581 | * value to a scaled second value. | ||
582 | */ | ||
583 | unsigned long | ||
584 | timespec_to_jiffies(const struct timespec *value) | ||
585 | { | ||
586 | unsigned long sec = value->tv_sec; | ||
587 | long nsec = value->tv_nsec + TICK_NSEC - 1; | ||
588 | |||
589 | if (sec >= MAX_SEC_IN_JIFFIES){ | ||
590 | sec = MAX_SEC_IN_JIFFIES; | ||
591 | nsec = 0; | ||
592 | } | ||
593 | return (((u64)sec * SEC_CONVERSION) + | ||
594 | (((u64)nsec * NSEC_CONVERSION) >> | ||
595 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||
596 | |||
597 | } | ||
598 | EXPORT_SYMBOL(timespec_to_jiffies); | ||
599 | |||
600 | void | ||
601 | jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | ||
602 | { | ||
603 | /* | ||
604 | * Convert jiffies to nanoseconds and separate with | ||
605 | * one divide. | ||
606 | */ | ||
607 | u64 nsec = (u64)jiffies * TICK_NSEC; | ||
608 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); | ||
609 | } | ||
610 | EXPORT_SYMBOL(jiffies_to_timespec); | ||
611 | |||
612 | /* Same for "timeval" | ||
613 | * | ||
614 | * Well, almost. The problem here is that the real system resolution is | ||
615 | * in nanoseconds and the value being converted is in micro seconds. | ||
616 | * Also for some machines (those that use HZ = 1024, in-particular), | ||
617 | * there is a LARGE error in the tick size in microseconds. | ||
618 | |||
619 | * The solution we use is to do the rounding AFTER we convert the | ||
620 | * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. | ||
621 | * Instruction wise, this should cost only an additional add with carry | ||
622 | * instruction above the way it was done above. | ||
623 | */ | ||
624 | unsigned long | ||
625 | timeval_to_jiffies(const struct timeval *value) | ||
626 | { | ||
627 | unsigned long sec = value->tv_sec; | ||
628 | long usec = value->tv_usec; | ||
629 | |||
630 | if (sec >= MAX_SEC_IN_JIFFIES){ | ||
631 | sec = MAX_SEC_IN_JIFFIES; | ||
632 | usec = 0; | ||
633 | } | ||
634 | return (((u64)sec * SEC_CONVERSION) + | ||
635 | (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> | ||
636 | (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||
637 | } | ||
638 | |||
639 | void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | ||
640 | { | ||
641 | /* | ||
642 | * Convert jiffies to nanoseconds and separate with | ||
643 | * one divide. | ||
644 | */ | ||
645 | u64 nsec = (u64)jiffies * TICK_NSEC; | ||
646 | long tv_usec; | ||
647 | |||
648 | value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec); | ||
649 | tv_usec /= NSEC_PER_USEC; | ||
650 | value->tv_usec = tv_usec; | ||
651 | } | ||
652 | |||
653 | /* | ||
654 | * Convert jiffies/jiffies_64 to clock_t and back. | ||
655 | */ | ||
656 | clock_t jiffies_to_clock_t(long x) | ||
657 | { | ||
658 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | ||
659 | return x / (HZ / USER_HZ); | ||
660 | #else | ||
661 | u64 tmp = (u64)x * TICK_NSEC; | ||
662 | do_div(tmp, (NSEC_PER_SEC / USER_HZ)); | ||
663 | return (long)tmp; | ||
664 | #endif | ||
665 | } | ||
666 | EXPORT_SYMBOL(jiffies_to_clock_t); | ||
667 | |||
668 | unsigned long clock_t_to_jiffies(unsigned long x) | ||
669 | { | ||
670 | #if (HZ % USER_HZ)==0 | ||
671 | if (x >= ~0UL / (HZ / USER_HZ)) | ||
672 | return ~0UL; | ||
673 | return x * (HZ / USER_HZ); | ||
674 | #else | ||
675 | u64 jif; | ||
676 | |||
677 | /* Don't worry about loss of precision here .. */ | ||
678 | if (x >= ~0UL / HZ * USER_HZ) | ||
679 | return ~0UL; | ||
680 | |||
681 | /* .. but do try to contain it here */ | ||
682 | jif = x * (u64) HZ; | ||
683 | do_div(jif, USER_HZ); | ||
684 | return jif; | ||
685 | #endif | ||
686 | } | ||
687 | EXPORT_SYMBOL(clock_t_to_jiffies); | ||
688 | |||
689 | u64 jiffies_64_to_clock_t(u64 x) | ||
690 | { | ||
691 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | ||
692 | do_div(x, HZ / USER_HZ); | ||
693 | #else | ||
694 | /* | ||
695 | * There are better ways that don't overflow early, | ||
696 | * but even this doesn't overflow in hundreds of years | ||
697 | * in 64 bits, so.. | ||
698 | */ | ||
699 | x *= TICK_NSEC; | ||
700 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | ||
701 | #endif | ||
702 | return x; | ||
703 | } | ||
704 | |||
705 | EXPORT_SYMBOL(jiffies_64_to_clock_t); | ||
706 | |||
707 | u64 nsec_to_clock_t(u64 x) | ||
708 | { | ||
709 | #if (NSEC_PER_SEC % USER_HZ) == 0 | ||
710 | do_div(x, (NSEC_PER_SEC / USER_HZ)); | ||
711 | #elif (USER_HZ % 512) == 0 | ||
712 | x *= USER_HZ/512; | ||
713 | do_div(x, (NSEC_PER_SEC / 512)); | ||
714 | #else | ||
715 | /* | ||
716 | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | ||
717 | * overflow after 64.99 years. | ||
718 | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | ||
719 | */ | ||
720 | x *= 9; | ||
721 | do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) / | ||
722 | USER_HZ)); | ||
723 | #endif | ||
724 | return x; | ||
725 | } | ||
726 | |||
473 | #if (BITS_PER_LONG < 64) | 727 | #if (BITS_PER_LONG < 64) |
474 | u64 get_jiffies_64(void) | 728 | u64 get_jiffies_64(void) |
475 | { | 729 | { |