diff options
Diffstat (limited to 'kernel/stop_machine.c')
| -rw-r--r-- | kernel/stop_machine.c | 293 |
1 files changed, 125 insertions, 168 deletions
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index a473bd0cb71b..35882dccc943 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | /* Copyright 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation. | 1 | /* Copyright 2008, 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation. |
| 2 | * GPL v2 and any later version. | 2 | * GPL v2 and any later version. |
| 3 | */ | 3 | */ |
| 4 | #include <linux/cpu.h> | 4 | #include <linux/cpu.h> |
| @@ -13,220 +13,177 @@ | |||
| 13 | #include <asm/atomic.h> | 13 | #include <asm/atomic.h> |
| 14 | #include <asm/uaccess.h> | 14 | #include <asm/uaccess.h> |
| 15 | 15 | ||
| 16 | /* Since we effect priority and affinity (both of which are visible | 16 | /* This controls the threads on each CPU. */ |
| 17 | * to, and settable by outside processes) we do indirection via a | ||
| 18 | * kthread. */ | ||
| 19 | |||
| 20 | /* Thread to stop each CPU in user context. */ | ||
| 21 | enum stopmachine_state { | 17 | enum stopmachine_state { |
| 22 | STOPMACHINE_WAIT, | 18 | /* Dummy starting state for thread. */ |
| 19 | STOPMACHINE_NONE, | ||
| 20 | /* Awaiting everyone to be scheduled. */ | ||
| 23 | STOPMACHINE_PREPARE, | 21 | STOPMACHINE_PREPARE, |
| 22 | /* Disable interrupts. */ | ||
| 24 | STOPMACHINE_DISABLE_IRQ, | 23 | STOPMACHINE_DISABLE_IRQ, |
| 24 | /* Run the function */ | ||
| 25 | STOPMACHINE_RUN, | 25 | STOPMACHINE_RUN, |
| 26 | /* Exit */ | ||
| 26 | STOPMACHINE_EXIT, | 27 | STOPMACHINE_EXIT, |
| 27 | }; | 28 | }; |
| 29 | static enum stopmachine_state state; | ||
| 28 | 30 | ||
| 29 | struct stop_machine_data { | 31 | struct stop_machine_data { |
| 30 | int (*fn)(void *); | 32 | int (*fn)(void *); |
| 31 | void *data; | 33 | void *data; |
| 32 | struct completion done; | 34 | int fnret; |
| 33 | int run_all; | 35 | }; |
| 34 | } smdata; | ||
| 35 | 36 | ||
| 36 | static enum stopmachine_state stopmachine_state; | 37 | /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ |
| 37 | static unsigned int stopmachine_num_threads; | 38 | static unsigned int num_threads; |
| 38 | static atomic_t stopmachine_thread_ack; | 39 | static atomic_t thread_ack; |
| 40 | static struct completion finished; | ||
| 41 | static DEFINE_MUTEX(lock); | ||
| 39 | 42 | ||
| 40 | static int stopmachine(void *cpu) | 43 | static void set_state(enum stopmachine_state newstate) |
| 41 | { | 44 | { |
| 42 | int irqs_disabled = 0; | 45 | /* Reset ack counter. */ |
| 43 | int prepared = 0; | 46 | atomic_set(&thread_ack, num_threads); |
| 44 | int ran = 0; | 47 | smp_wmb(); |
| 45 | cpumask_of_cpu_ptr(cpumask, (int)(long)cpu); | 48 | state = newstate; |
| 46 | |||
| 47 | set_cpus_allowed_ptr(current, cpumask); | ||
| 48 | |||
| 49 | /* Ack: we are alive */ | ||
| 50 | smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */ | ||
| 51 | atomic_inc(&stopmachine_thread_ack); | ||
| 52 | |||
| 53 | /* Simple state machine */ | ||
| 54 | while (stopmachine_state != STOPMACHINE_EXIT) { | ||
| 55 | if (stopmachine_state == STOPMACHINE_DISABLE_IRQ | ||
| 56 | && !irqs_disabled) { | ||
| 57 | local_irq_disable(); | ||
| 58 | hard_irq_disable(); | ||
| 59 | irqs_disabled = 1; | ||
| 60 | /* Ack: irqs disabled. */ | ||
| 61 | smp_mb(); /* Must read state first. */ | ||
| 62 | atomic_inc(&stopmachine_thread_ack); | ||
| 63 | } else if (stopmachine_state == STOPMACHINE_PREPARE | ||
| 64 | && !prepared) { | ||
| 65 | /* Everyone is in place, hold CPU. */ | ||
| 66 | preempt_disable(); | ||
| 67 | prepared = 1; | ||
| 68 | smp_mb(); /* Must read state first. */ | ||
| 69 | atomic_inc(&stopmachine_thread_ack); | ||
| 70 | } else if (stopmachine_state == STOPMACHINE_RUN && !ran) { | ||
| 71 | smdata.fn(smdata.data); | ||
| 72 | ran = 1; | ||
| 73 | smp_mb(); /* Must read state first. */ | ||
| 74 | atomic_inc(&stopmachine_thread_ack); | ||
| 75 | } | ||
| 76 | /* Yield in first stage: migration threads need to | ||
| 77 | * help our sisters onto their CPUs. */ | ||
| 78 | if (!prepared && !irqs_disabled) | ||
| 79 | yield(); | ||
| 80 | cpu_relax(); | ||
| 81 | } | ||
| 82 | |||
| 83 | /* Ack: we are exiting. */ | ||
| 84 | smp_mb(); /* Must read state first. */ | ||
| 85 | atomic_inc(&stopmachine_thread_ack); | ||
| 86 | |||
| 87 | if (irqs_disabled) | ||
| 88 | local_irq_enable(); | ||
| 89 | if (prepared) | ||
| 90 | preempt_enable(); | ||
| 91 | |||
| 92 | return 0; | ||
| 93 | } | 49 | } |
| 94 | 50 | ||
| 95 | /* Change the thread state */ | 51 | /* Last one to ack a state moves to the next state. */ |
| 96 | static void stopmachine_set_state(enum stopmachine_state state) | 52 | static void ack_state(void) |
| 97 | { | 53 | { |
| 98 | atomic_set(&stopmachine_thread_ack, 0); | 54 | if (atomic_dec_and_test(&thread_ack)) { |
| 99 | smp_wmb(); | 55 | /* If we're the last one to ack the EXIT, we're finished. */ |
| 100 | stopmachine_state = state; | 56 | if (state == STOPMACHINE_EXIT) |
| 101 | while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads) | 57 | complete(&finished); |
| 102 | cpu_relax(); | 58 | else |
| 59 | set_state(state + 1); | ||
| 60 | } | ||
| 103 | } | 61 | } |
| 104 | 62 | ||
| 105 | static int stop_machine(void) | 63 | /* This is the actual thread which stops the CPU. It exits by itself rather |
| 64 | * than waiting for kthread_stop(), because it's easier for hotplug CPU. */ | ||
| 65 | static int stop_cpu(struct stop_machine_data *smdata) | ||
| 106 | { | 66 | { |
| 107 | int i, ret = 0; | 67 | enum stopmachine_state curstate = STOPMACHINE_NONE; |
| 108 | 68 | int uninitialized_var(ret); | |
| 109 | atomic_set(&stopmachine_thread_ack, 0); | ||
| 110 | stopmachine_num_threads = 0; | ||
| 111 | stopmachine_state = STOPMACHINE_WAIT; | ||
| 112 | 69 | ||
| 113 | for_each_online_cpu(i) { | 70 | /* Simple state machine */ |
| 114 | if (i == raw_smp_processor_id()) | 71 | do { |
| 115 | continue; | 72 | /* Chill out and ensure we re-read stopmachine_state. */ |
| 116 | ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL); | ||
| 117 | if (ret < 0) | ||
| 118 | break; | ||
| 119 | stopmachine_num_threads++; | ||
| 120 | } | ||
| 121 | |||
| 122 | /* Wait for them all to come to life. */ | ||
| 123 | while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads) { | ||
| 124 | yield(); | ||
| 125 | cpu_relax(); | 73 | cpu_relax(); |
| 126 | } | 74 | if (state != curstate) { |
| 127 | 75 | curstate = state; | |
| 128 | /* If some failed, kill them all. */ | 76 | switch (curstate) { |
| 129 | if (ret < 0) { | 77 | case STOPMACHINE_DISABLE_IRQ: |
| 130 | stopmachine_set_state(STOPMACHINE_EXIT); | 78 | local_irq_disable(); |
| 131 | return ret; | 79 | hard_irq_disable(); |
| 132 | } | 80 | break; |
| 133 | 81 | case STOPMACHINE_RUN: | |
| 134 | /* Now they are all started, make them hold the CPUs, ready. */ | 82 | /* |= allows error detection if functions on |
| 135 | preempt_disable(); | 83 | * multiple CPUs. */ |
| 136 | stopmachine_set_state(STOPMACHINE_PREPARE); | 84 | smdata->fnret |= smdata->fn(smdata->data); |
| 137 | 85 | break; | |
| 138 | /* Make them disable irqs. */ | 86 | default: |
| 139 | local_irq_disable(); | 87 | break; |
| 140 | hard_irq_disable(); | 88 | } |
| 141 | stopmachine_set_state(STOPMACHINE_DISABLE_IRQ); | 89 | ack_state(); |
| 142 | 90 | } | |
| 143 | return 0; | 91 | } while (curstate != STOPMACHINE_EXIT); |
| 144 | } | ||
| 145 | 92 | ||
| 146 | static void restart_machine(void) | ||
| 147 | { | ||
| 148 | stopmachine_set_state(STOPMACHINE_EXIT); | ||
| 149 | local_irq_enable(); | 93 | local_irq_enable(); |
| 150 | preempt_enable_no_resched(); | 94 | do_exit(0); |
| 151 | } | 95 | } |
| 152 | 96 | ||
| 153 | static void run_other_cpus(void) | 97 | /* Callback for CPUs which aren't supposed to do anything. */ |
| 98 | static int chill(void *unused) | ||
| 154 | { | 99 | { |
| 155 | stopmachine_set_state(STOPMACHINE_RUN); | 100 | return 0; |
| 156 | } | 101 | } |
| 157 | 102 | ||
| 158 | static int do_stop(void *_smdata) | 103 | int __stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu) |
| 159 | { | 104 | { |
| 160 | struct stop_machine_data *smdata = _smdata; | 105 | int i, err; |
| 161 | int ret; | 106 | struct stop_machine_data active, idle; |
| 107 | struct task_struct **threads; | ||
| 108 | |||
| 109 | active.fn = fn; | ||
| 110 | active.data = data; | ||
| 111 | active.fnret = 0; | ||
| 112 | idle.fn = chill; | ||
| 113 | idle.data = NULL; | ||
| 114 | |||
| 115 | /* If they don't care which cpu fn runs on, just pick one. */ | ||
| 116 | if (cpu == NR_CPUS) | ||
| 117 | cpu = any_online_cpu(cpu_online_map); | ||
| 118 | |||
| 119 | /* This could be too big for stack on large machines. */ | ||
| 120 | threads = kcalloc(NR_CPUS, sizeof(threads[0]), GFP_KERNEL); | ||
| 121 | if (!threads) | ||
| 122 | return -ENOMEM; | ||
| 123 | |||
| 124 | /* Set up initial state. */ | ||
| 125 | mutex_lock(&lock); | ||
| 126 | init_completion(&finished); | ||
| 127 | num_threads = num_online_cpus(); | ||
| 128 | set_state(STOPMACHINE_PREPARE); | ||
| 162 | 129 | ||
| 163 | ret = stop_machine(); | 130 | for_each_online_cpu(i) { |
| 164 | if (ret == 0) { | 131 | struct stop_machine_data *smdata; |
| 165 | ret = smdata->fn(smdata->data); | 132 | struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; |
| 166 | if (smdata->run_all) | ||
| 167 | run_other_cpus(); | ||
| 168 | restart_machine(); | ||
| 169 | } | ||
| 170 | 133 | ||
| 171 | /* We're done: you can kthread_stop us now */ | 134 | if (cpu == ALL_CPUS || i == cpu) |
| 172 | complete(&smdata->done); | 135 | smdata = &active; |
| 136 | else | ||
| 137 | smdata = &idle; | ||
| 138 | |||
| 139 | threads[i] = kthread_create((void *)stop_cpu, smdata, "kstop%u", | ||
| 140 | i); | ||
| 141 | if (IS_ERR(threads[i])) { | ||
| 142 | err = PTR_ERR(threads[i]); | ||
| 143 | threads[i] = NULL; | ||
| 144 | goto kill_threads; | ||
| 145 | } | ||
| 173 | 146 | ||
| 174 | /* Wait for kthread_stop */ | 147 | /* Place it onto correct cpu. */ |
| 175 | set_current_state(TASK_INTERRUPTIBLE); | 148 | kthread_bind(threads[i], i); |
| 176 | while (!kthread_should_stop()) { | ||
| 177 | schedule(); | ||
| 178 | set_current_state(TASK_INTERRUPTIBLE); | ||
| 179 | } | ||
| 180 | __set_current_state(TASK_RUNNING); | ||
| 181 | return ret; | ||
| 182 | } | ||
| 183 | 149 | ||
| 184 | struct task_struct *__stop_machine_run(int (*fn)(void *), void *data, | 150 | /* Make it highest prio. */ |
| 185 | unsigned int cpu) | 151 | if (sched_setscheduler_nocheck(threads[i], SCHED_FIFO, ¶m)) |
| 186 | { | 152 | BUG(); |
| 187 | static DEFINE_MUTEX(stopmachine_mutex); | 153 | } |
| 188 | struct stop_machine_data smdata; | ||
| 189 | struct task_struct *p; | ||
| 190 | 154 | ||
| 191 | mutex_lock(&stopmachine_mutex); | 155 | /* We've created all the threads. Wake them all: hold this CPU so one |
| 156 | * doesn't hit this CPU until we're ready. */ | ||
| 157 | cpu = get_cpu(); | ||
| 158 | for_each_online_cpu(i) | ||
| 159 | wake_up_process(threads[i]); | ||
| 192 | 160 | ||
| 193 | smdata.fn = fn; | 161 | /* This will release the thread on our CPU. */ |
| 194 | smdata.data = data; | 162 | put_cpu(); |
| 195 | smdata.run_all = (cpu == ALL_CPUS) ? 1 : 0; | 163 | wait_for_completion(&finished); |
| 196 | init_completion(&smdata.done); | 164 | mutex_unlock(&lock); |
| 197 | 165 | ||
| 198 | smp_wmb(); /* make sure other cpus see smdata updates */ | 166 | kfree(threads); |
| 199 | 167 | ||
| 200 | /* If they don't care which CPU fn runs on, bind to any online one. */ | 168 | return active.fnret; |
| 201 | if (cpu == NR_CPUS || cpu == ALL_CPUS) | ||
| 202 | cpu = raw_smp_processor_id(); | ||
| 203 | 169 | ||
| 204 | p = kthread_create(do_stop, &smdata, "kstopmachine"); | 170 | kill_threads: |
| 205 | if (!IS_ERR(p)) { | 171 | for_each_online_cpu(i) |
| 206 | struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; | 172 | if (threads[i]) |
| 173 | kthread_stop(threads[i]); | ||
| 174 | mutex_unlock(&lock); | ||
| 207 | 175 | ||
| 208 | /* One high-prio thread per cpu. We'll do this one. */ | 176 | kfree(threads); |
| 209 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | 177 | return err; |
| 210 | kthread_bind(p, cpu); | ||
| 211 | wake_up_process(p); | ||
| 212 | wait_for_completion(&smdata.done); | ||
| 213 | } | ||
| 214 | mutex_unlock(&stopmachine_mutex); | ||
| 215 | return p; | ||
| 216 | } | 178 | } |
| 217 | 179 | ||
| 218 | int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu) | 180 | int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu) |
| 219 | { | 181 | { |
| 220 | struct task_struct *p; | ||
| 221 | int ret; | 182 | int ret; |
| 222 | 183 | ||
| 223 | /* No CPUs can come up or down during this. */ | 184 | /* No CPUs can come up or down during this. */ |
| 224 | get_online_cpus(); | 185 | get_online_cpus(); |
| 225 | p = __stop_machine_run(fn, data, cpu); | 186 | ret = __stop_machine_run(fn, data, cpu); |
| 226 | if (!IS_ERR(p)) | ||
| 227 | ret = kthread_stop(p); | ||
| 228 | else | ||
| 229 | ret = PTR_ERR(p); | ||
| 230 | put_online_cpus(); | 187 | put_online_cpus(); |
| 231 | 188 | ||
| 232 | return ret; | 189 | return ret; |
