diff options
Diffstat (limited to 'kernel/sched_rt.c')
-rw-r--r-- | kernel/sched_rt.c | 324 |
1 files changed, 224 insertions, 100 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 954e1a81b796..18c7b5b3158a 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -49,6 +49,24 @@ static void update_rt_migration(struct rq *rq) | |||
49 | rq->rt.overloaded = 0; | 49 | rq->rt.overloaded = 0; |
50 | } | 50 | } |
51 | } | 51 | } |
52 | |||
53 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
54 | { | ||
55 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
56 | plist_node_init(&p->pushable_tasks, p->prio); | ||
57 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
58 | } | ||
59 | |||
60 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
61 | { | ||
62 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
63 | } | ||
64 | |||
65 | #else | ||
66 | |||
67 | #define enqueue_pushable_task(rq, p) do { } while (0) | ||
68 | #define dequeue_pushable_task(rq, p) do { } while (0) | ||
69 | |||
52 | #endif /* CONFIG_SMP */ | 70 | #endif /* CONFIG_SMP */ |
53 | 71 | ||
54 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 72 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
@@ -108,7 +126,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |||
108 | if (rt_rq->rt_nr_running) { | 126 | if (rt_rq->rt_nr_running) { |
109 | if (rt_se && !on_rt_rq(rt_se)) | 127 | if (rt_se && !on_rt_rq(rt_se)) |
110 | enqueue_rt_entity(rt_se); | 128 | enqueue_rt_entity(rt_se); |
111 | if (rt_rq->highest_prio < curr->prio) | 129 | if (rt_rq->highest_prio.curr < curr->prio) |
112 | resched_task(curr); | 130 | resched_task(curr); |
113 | } | 131 | } |
114 | } | 132 | } |
@@ -473,7 +491,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |||
473 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 491 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
474 | 492 | ||
475 | if (rt_rq) | 493 | if (rt_rq) |
476 | return rt_rq->highest_prio; | 494 | return rt_rq->highest_prio.curr; |
477 | #endif | 495 | #endif |
478 | 496 | ||
479 | return rt_task_of(rt_se)->prio; | 497 | return rt_task_of(rt_se)->prio; |
@@ -547,33 +565,64 @@ static void update_curr_rt(struct rq *rq) | |||
547 | } | 565 | } |
548 | } | 566 | } |
549 | 567 | ||
568 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
569 | |||
570 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | ||
571 | |||
572 | static inline int next_prio(struct rq *rq) | ||
573 | { | ||
574 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); | ||
575 | |||
576 | if (next && rt_prio(next->prio)) | ||
577 | return next->prio; | ||
578 | else | ||
579 | return MAX_RT_PRIO; | ||
580 | } | ||
581 | #endif | ||
582 | |||
550 | static inline | 583 | static inline |
551 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 584 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
552 | { | 585 | { |
553 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 586 | int prio = rt_se_prio(rt_se); |
554 | rt_rq->rt_nr_running++; | ||
555 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
556 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) { | ||
557 | #ifdef CONFIG_SMP | 587 | #ifdef CONFIG_SMP |
558 | struct rq *rq = rq_of_rt_rq(rt_rq); | 588 | struct rq *rq = rq_of_rt_rq(rt_rq); |
559 | #endif | 589 | #endif |
560 | 590 | ||
561 | rt_rq->highest_prio = rt_se_prio(rt_se); | 591 | WARN_ON(!rt_prio(prio)); |
592 | rt_rq->rt_nr_running++; | ||
593 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
594 | if (prio < rt_rq->highest_prio.curr) { | ||
595 | |||
596 | /* | ||
597 | * If the new task is higher in priority than anything on the | ||
598 | * run-queue, we have a new high that must be published to | ||
599 | * the world. We also know that the previous high becomes | ||
600 | * our next-highest. | ||
601 | */ | ||
602 | rt_rq->highest_prio.next = rt_rq->highest_prio.curr; | ||
603 | rt_rq->highest_prio.curr = prio; | ||
562 | #ifdef CONFIG_SMP | 604 | #ifdef CONFIG_SMP |
563 | if (rq->online) | 605 | if (rq->online) |
564 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 606 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
565 | rt_se_prio(rt_se)); | ||
566 | #endif | 607 | #endif |
567 | } | 608 | } else if (prio == rt_rq->highest_prio.curr) |
609 | /* | ||
610 | * If the next task is equal in priority to the highest on | ||
611 | * the run-queue, then we implicitly know that the next highest | ||
612 | * task cannot be any lower than current | ||
613 | */ | ||
614 | rt_rq->highest_prio.next = prio; | ||
615 | else if (prio < rt_rq->highest_prio.next) | ||
616 | /* | ||
617 | * Otherwise, we need to recompute next-highest | ||
618 | */ | ||
619 | rt_rq->highest_prio.next = next_prio(rq); | ||
568 | #endif | 620 | #endif |
569 | #ifdef CONFIG_SMP | 621 | #ifdef CONFIG_SMP |
570 | if (rt_se->nr_cpus_allowed > 1) { | 622 | if (rt_se->nr_cpus_allowed > 1) |
571 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
572 | |||
573 | rq->rt.rt_nr_migratory++; | 623 | rq->rt.rt_nr_migratory++; |
574 | } | ||
575 | 624 | ||
576 | update_rt_migration(rq_of_rt_rq(rt_rq)); | 625 | update_rt_migration(rq); |
577 | #endif | 626 | #endif |
578 | #ifdef CONFIG_RT_GROUP_SCHED | 627 | #ifdef CONFIG_RT_GROUP_SCHED |
579 | if (rt_se_boosted(rt_se)) | 628 | if (rt_se_boosted(rt_se)) |
@@ -590,7 +639,8 @@ static inline | |||
590 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 639 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
591 | { | 640 | { |
592 | #ifdef CONFIG_SMP | 641 | #ifdef CONFIG_SMP |
593 | int highest_prio = rt_rq->highest_prio; | 642 | struct rq *rq = rq_of_rt_rq(rt_rq); |
643 | int highest_prio = rt_rq->highest_prio.curr; | ||
594 | #endif | 644 | #endif |
595 | 645 | ||
596 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 646 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
@@ -598,33 +648,34 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |||
598 | rt_rq->rt_nr_running--; | 648 | rt_rq->rt_nr_running--; |
599 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 649 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
600 | if (rt_rq->rt_nr_running) { | 650 | if (rt_rq->rt_nr_running) { |
601 | struct rt_prio_array *array; | 651 | int prio = rt_se_prio(rt_se); |
602 | 652 | ||
603 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); | 653 | WARN_ON(prio < rt_rq->highest_prio.curr); |
604 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { | 654 | |
605 | /* recalculate */ | 655 | /* |
606 | array = &rt_rq->active; | 656 | * This may have been our highest or next-highest priority |
607 | rt_rq->highest_prio = | 657 | * task and therefore we may have some recomputation to do |
658 | */ | ||
659 | if (prio == rt_rq->highest_prio.curr) { | ||
660 | struct rt_prio_array *array = &rt_rq->active; | ||
661 | |||
662 | rt_rq->highest_prio.curr = | ||
608 | sched_find_first_bit(array->bitmap); | 663 | sched_find_first_bit(array->bitmap); |
609 | } /* otherwise leave rq->highest prio alone */ | 664 | } |
665 | |||
666 | if (prio <= rt_rq->highest_prio.next) | ||
667 | rt_rq->highest_prio.next = next_prio(rq); | ||
610 | } else | 668 | } else |
611 | rt_rq->highest_prio = MAX_RT_PRIO; | 669 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
612 | #endif | 670 | #endif |
613 | #ifdef CONFIG_SMP | 671 | #ifdef CONFIG_SMP |
614 | if (rt_se->nr_cpus_allowed > 1) { | 672 | if (rt_se->nr_cpus_allowed > 1) |
615 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
616 | rq->rt.rt_nr_migratory--; | 673 | rq->rt.rt_nr_migratory--; |
617 | } | ||
618 | 674 | ||
619 | if (rt_rq->highest_prio != highest_prio) { | 675 | if (rq->online && rt_rq->highest_prio.curr != highest_prio) |
620 | struct rq *rq = rq_of_rt_rq(rt_rq); | 676 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
621 | 677 | ||
622 | if (rq->online) | 678 | update_rt_migration(rq); |
623 | cpupri_set(&rq->rd->cpupri, rq->cpu, | ||
624 | rt_rq->highest_prio); | ||
625 | } | ||
626 | |||
627 | update_rt_migration(rq_of_rt_rq(rt_rq)); | ||
628 | #endif /* CONFIG_SMP */ | 679 | #endif /* CONFIG_SMP */ |
629 | #ifdef CONFIG_RT_GROUP_SCHED | 680 | #ifdef CONFIG_RT_GROUP_SCHED |
630 | if (rt_se_boosted(rt_se)) | 681 | if (rt_se_boosted(rt_se)) |
@@ -718,6 +769,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
718 | 769 | ||
719 | enqueue_rt_entity(rt_se); | 770 | enqueue_rt_entity(rt_se); |
720 | 771 | ||
772 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
773 | enqueue_pushable_task(rq, p); | ||
774 | |||
721 | inc_cpu_load(rq, p->se.load.weight); | 775 | inc_cpu_load(rq, p->se.load.weight); |
722 | } | 776 | } |
723 | 777 | ||
@@ -728,6 +782,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
728 | update_curr_rt(rq); | 782 | update_curr_rt(rq); |
729 | dequeue_rt_entity(rt_se); | 783 | dequeue_rt_entity(rt_se); |
730 | 784 | ||
785 | dequeue_pushable_task(rq, p); | ||
786 | |||
731 | dec_cpu_load(rq, p->se.load.weight); | 787 | dec_cpu_load(rq, p->se.load.weight); |
732 | } | 788 | } |
733 | 789 | ||
@@ -878,7 +934,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | |||
878 | return next; | 934 | return next; |
879 | } | 935 | } |
880 | 936 | ||
881 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 937 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
882 | { | 938 | { |
883 | struct sched_rt_entity *rt_se; | 939 | struct sched_rt_entity *rt_se; |
884 | struct task_struct *p; | 940 | struct task_struct *p; |
@@ -900,6 +956,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
900 | 956 | ||
901 | p = rt_task_of(rt_se); | 957 | p = rt_task_of(rt_se); |
902 | p->se.exec_start = rq->clock; | 958 | p->se.exec_start = rq->clock; |
959 | |||
960 | return p; | ||
961 | } | ||
962 | |||
963 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
964 | { | ||
965 | struct task_struct *p = _pick_next_task_rt(rq); | ||
966 | |||
967 | /* The running task is never eligible for pushing */ | ||
968 | if (p) | ||
969 | dequeue_pushable_task(rq, p); | ||
970 | |||
903 | return p; | 971 | return p; |
904 | } | 972 | } |
905 | 973 | ||
@@ -907,6 +975,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
907 | { | 975 | { |
908 | update_curr_rt(rq); | 976 | update_curr_rt(rq); |
909 | p->se.exec_start = 0; | 977 | p->se.exec_start = 0; |
978 | |||
979 | /* | ||
980 | * The previous task needs to be made eligible for pushing | ||
981 | * if it is still active | ||
982 | */ | ||
983 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | ||
984 | enqueue_pushable_task(rq, p); | ||
910 | } | 985 | } |
911 | 986 | ||
912 | #ifdef CONFIG_SMP | 987 | #ifdef CONFIG_SMP |
@@ -1072,7 +1147,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1072 | } | 1147 | } |
1073 | 1148 | ||
1074 | /* If this rq is still suitable use it. */ | 1149 | /* If this rq is still suitable use it. */ |
1075 | if (lowest_rq->rt.highest_prio > task->prio) | 1150 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
1076 | break; | 1151 | break; |
1077 | 1152 | ||
1078 | /* try again */ | 1153 | /* try again */ |
@@ -1083,6 +1158,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1083 | return lowest_rq; | 1158 | return lowest_rq; |
1084 | } | 1159 | } |
1085 | 1160 | ||
1161 | static inline int has_pushable_tasks(struct rq *rq) | ||
1162 | { | ||
1163 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
1164 | } | ||
1165 | |||
1166 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
1167 | { | ||
1168 | struct task_struct *p; | ||
1169 | |||
1170 | if (!has_pushable_tasks(rq)) | ||
1171 | return NULL; | ||
1172 | |||
1173 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
1174 | struct task_struct, pushable_tasks); | ||
1175 | |||
1176 | BUG_ON(rq->cpu != task_cpu(p)); | ||
1177 | BUG_ON(task_current(rq, p)); | ||
1178 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
1179 | |||
1180 | BUG_ON(!p->se.on_rq); | ||
1181 | BUG_ON(!rt_task(p)); | ||
1182 | |||
1183 | return p; | ||
1184 | } | ||
1185 | |||
1086 | /* | 1186 | /* |
1087 | * If the current CPU has more than one RT task, see if the non | 1187 | * If the current CPU has more than one RT task, see if the non |
1088 | * running task can migrate over to a CPU that is running a task | 1188 | * running task can migrate over to a CPU that is running a task |
@@ -1092,13 +1192,11 @@ static int push_rt_task(struct rq *rq) | |||
1092 | { | 1192 | { |
1093 | struct task_struct *next_task; | 1193 | struct task_struct *next_task; |
1094 | struct rq *lowest_rq; | 1194 | struct rq *lowest_rq; |
1095 | int ret = 0; | ||
1096 | int paranoid = RT_MAX_TRIES; | ||
1097 | 1195 | ||
1098 | if (!rq->rt.overloaded) | 1196 | if (!rq->rt.overloaded) |
1099 | return 0; | 1197 | return 0; |
1100 | 1198 | ||
1101 | next_task = pick_next_highest_task_rt(rq, -1); | 1199 | next_task = pick_next_pushable_task(rq); |
1102 | if (!next_task) | 1200 | if (!next_task) |
1103 | return 0; | 1201 | return 0; |
1104 | 1202 | ||
@@ -1127,16 +1225,34 @@ static int push_rt_task(struct rq *rq) | |||
1127 | struct task_struct *task; | 1225 | struct task_struct *task; |
1128 | /* | 1226 | /* |
1129 | * find lock_lowest_rq releases rq->lock | 1227 | * find lock_lowest_rq releases rq->lock |
1130 | * so it is possible that next_task has changed. | 1228 | * so it is possible that next_task has migrated. |
1131 | * If it has, then try again. | 1229 | * |
1230 | * We need to make sure that the task is still on the same | ||
1231 | * run-queue and is also still the next task eligible for | ||
1232 | * pushing. | ||
1132 | */ | 1233 | */ |
1133 | task = pick_next_highest_task_rt(rq, -1); | 1234 | task = pick_next_pushable_task(rq); |
1134 | if (unlikely(task != next_task) && task && paranoid--) { | 1235 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1135 | put_task_struct(next_task); | 1236 | /* |
1136 | next_task = task; | 1237 | * If we get here, the task hasnt moved at all, but |
1137 | goto retry; | 1238 | * it has failed to push. We will not try again, |
1239 | * since the other cpus will pull from us when they | ||
1240 | * are ready. | ||
1241 | */ | ||
1242 | dequeue_pushable_task(rq, next_task); | ||
1243 | goto out; | ||
1138 | } | 1244 | } |
1139 | goto out; | 1245 | |
1246 | if (!task) | ||
1247 | /* No more tasks, just exit */ | ||
1248 | goto out; | ||
1249 | |||
1250 | /* | ||
1251 | * Something has shifted, try again. | ||
1252 | */ | ||
1253 | put_task_struct(next_task); | ||
1254 | next_task = task; | ||
1255 | goto retry; | ||
1140 | } | 1256 | } |
1141 | 1257 | ||
1142 | deactivate_task(rq, next_task, 0); | 1258 | deactivate_task(rq, next_task, 0); |
@@ -1147,23 +1263,12 @@ static int push_rt_task(struct rq *rq) | |||
1147 | 1263 | ||
1148 | double_unlock_balance(rq, lowest_rq); | 1264 | double_unlock_balance(rq, lowest_rq); |
1149 | 1265 | ||
1150 | ret = 1; | ||
1151 | out: | 1266 | out: |
1152 | put_task_struct(next_task); | 1267 | put_task_struct(next_task); |
1153 | 1268 | ||
1154 | return ret; | 1269 | return 1; |
1155 | } | 1270 | } |
1156 | 1271 | ||
1157 | /* | ||
1158 | * TODO: Currently we just use the second highest prio task on | ||
1159 | * the queue, and stop when it can't migrate (or there's | ||
1160 | * no more RT tasks). There may be a case where a lower | ||
1161 | * priority RT task has a different affinity than the | ||
1162 | * higher RT task. In this case the lower RT task could | ||
1163 | * possibly be able to migrate where as the higher priority | ||
1164 | * RT task could not. We currently ignore this issue. | ||
1165 | * Enhancements are welcome! | ||
1166 | */ | ||
1167 | static void push_rt_tasks(struct rq *rq) | 1272 | static void push_rt_tasks(struct rq *rq) |
1168 | { | 1273 | { |
1169 | /* push_rt_task will return true if it moved an RT */ | 1274 | /* push_rt_task will return true if it moved an RT */ |
@@ -1174,33 +1279,35 @@ static void push_rt_tasks(struct rq *rq) | |||
1174 | static int pull_rt_task(struct rq *this_rq) | 1279 | static int pull_rt_task(struct rq *this_rq) |
1175 | { | 1280 | { |
1176 | int this_cpu = this_rq->cpu, ret = 0, cpu; | 1281 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
1177 | struct task_struct *p, *next; | 1282 | struct task_struct *p; |
1178 | struct rq *src_rq; | 1283 | struct rq *src_rq; |
1179 | 1284 | ||
1180 | if (likely(!rt_overloaded(this_rq))) | 1285 | if (likely(!rt_overloaded(this_rq))) |
1181 | return 0; | 1286 | return 0; |
1182 | 1287 | ||
1183 | next = pick_next_task_rt(this_rq); | ||
1184 | |||
1185 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 1288 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
1186 | if (this_cpu == cpu) | 1289 | if (this_cpu == cpu) |
1187 | continue; | 1290 | continue; |
1188 | 1291 | ||
1189 | src_rq = cpu_rq(cpu); | 1292 | src_rq = cpu_rq(cpu); |
1293 | |||
1294 | /* | ||
1295 | * Don't bother taking the src_rq->lock if the next highest | ||
1296 | * task is known to be lower-priority than our current task. | ||
1297 | * This may look racy, but if this value is about to go | ||
1298 | * logically higher, the src_rq will push this task away. | ||
1299 | * And if its going logically lower, we do not care | ||
1300 | */ | ||
1301 | if (src_rq->rt.highest_prio.next >= | ||
1302 | this_rq->rt.highest_prio.curr) | ||
1303 | continue; | ||
1304 | |||
1190 | /* | 1305 | /* |
1191 | * We can potentially drop this_rq's lock in | 1306 | * We can potentially drop this_rq's lock in |
1192 | * double_lock_balance, and another CPU could | 1307 | * double_lock_balance, and another CPU could |
1193 | * steal our next task - hence we must cause | 1308 | * alter this_rq |
1194 | * the caller to recalculate the next task | ||
1195 | * in that case: | ||
1196 | */ | 1309 | */ |
1197 | if (double_lock_balance(this_rq, src_rq)) { | 1310 | double_lock_balance(this_rq, src_rq); |
1198 | struct task_struct *old_next = next; | ||
1199 | |||
1200 | next = pick_next_task_rt(this_rq); | ||
1201 | if (next != old_next) | ||
1202 | ret = 1; | ||
1203 | } | ||
1204 | 1311 | ||
1205 | /* | 1312 | /* |
1206 | * Are there still pullable RT tasks? | 1313 | * Are there still pullable RT tasks? |
@@ -1214,7 +1321,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1214 | * Do we have an RT task that preempts | 1321 | * Do we have an RT task that preempts |
1215 | * the to-be-scheduled task? | 1322 | * the to-be-scheduled task? |
1216 | */ | 1323 | */ |
1217 | if (p && (!next || (p->prio < next->prio))) { | 1324 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
1218 | WARN_ON(p == src_rq->curr); | 1325 | WARN_ON(p == src_rq->curr); |
1219 | WARN_ON(!p->se.on_rq); | 1326 | WARN_ON(!p->se.on_rq); |
1220 | 1327 | ||
@@ -1224,12 +1331,9 @@ static int pull_rt_task(struct rq *this_rq) | |||
1224 | * This is just that p is wakeing up and hasn't | 1331 | * This is just that p is wakeing up and hasn't |
1225 | * had a chance to schedule. We only pull | 1332 | * had a chance to schedule. We only pull |
1226 | * p if it is lower in priority than the | 1333 | * p if it is lower in priority than the |
1227 | * current task on the run queue or | 1334 | * current task on the run queue |
1228 | * this_rq next task is lower in prio than | ||
1229 | * the current task on that rq. | ||
1230 | */ | 1335 | */ |
1231 | if (p->prio < src_rq->curr->prio || | 1336 | if (p->prio < src_rq->curr->prio) |
1232 | (next && next->prio < src_rq->curr->prio)) | ||
1233 | goto skip; | 1337 | goto skip; |
1234 | 1338 | ||
1235 | ret = 1; | 1339 | ret = 1; |
@@ -1242,13 +1346,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1242 | * case there's an even higher prio task | 1346 | * case there's an even higher prio task |
1243 | * in another runqueue. (low likelyhood | 1347 | * in another runqueue. (low likelyhood |
1244 | * but possible) | 1348 | * but possible) |
1245 | * | ||
1246 | * Update next so that we won't pick a task | ||
1247 | * on another cpu with a priority lower (or equal) | ||
1248 | * than the one we just picked. | ||
1249 | */ | 1349 | */ |
1250 | next = p; | ||
1251 | |||
1252 | } | 1350 | } |
1253 | skip: | 1351 | skip: |
1254 | double_unlock_balance(this_rq, src_rq); | 1352 | double_unlock_balance(this_rq, src_rq); |
@@ -1260,24 +1358,27 @@ static int pull_rt_task(struct rq *this_rq) | |||
1260 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 1358 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
1261 | { | 1359 | { |
1262 | /* Try to pull RT tasks here if we lower this rq's prio */ | 1360 | /* Try to pull RT tasks here if we lower this rq's prio */ |
1263 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) | 1361 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
1264 | pull_rt_task(rq); | 1362 | pull_rt_task(rq); |
1265 | } | 1363 | } |
1266 | 1364 | ||
1365 | /* | ||
1366 | * assumes rq->lock is held | ||
1367 | */ | ||
1368 | static int needs_post_schedule_rt(struct rq *rq) | ||
1369 | { | ||
1370 | return has_pushable_tasks(rq); | ||
1371 | } | ||
1372 | |||
1267 | static void post_schedule_rt(struct rq *rq) | 1373 | static void post_schedule_rt(struct rq *rq) |
1268 | { | 1374 | { |
1269 | /* | 1375 | /* |
1270 | * If we have more than one rt_task queued, then | 1376 | * This is only called if needs_post_schedule_rt() indicates that |
1271 | * see if we can push the other rt_tasks off to other CPUS. | 1377 | * we need to push tasks away |
1272 | * Note we may release the rq lock, and since | ||
1273 | * the lock was owned by prev, we need to release it | ||
1274 | * first via finish_lock_switch and then reaquire it here. | ||
1275 | */ | 1378 | */ |
1276 | if (unlikely(rq->rt.overloaded)) { | 1379 | spin_lock_irq(&rq->lock); |
1277 | spin_lock_irq(&rq->lock); | 1380 | push_rt_tasks(rq); |
1278 | push_rt_tasks(rq); | 1381 | spin_unlock_irq(&rq->lock); |
1279 | spin_unlock_irq(&rq->lock); | ||
1280 | } | ||
1281 | } | 1382 | } |
1282 | 1383 | ||
1283 | /* | 1384 | /* |
@@ -1288,7 +1389,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) | |||
1288 | { | 1389 | { |
1289 | if (!task_running(rq, p) && | 1390 | if (!task_running(rq, p) && |
1290 | !test_tsk_need_resched(rq->curr) && | 1391 | !test_tsk_need_resched(rq->curr) && |
1291 | rq->rt.overloaded) | 1392 | has_pushable_tasks(rq) && |
1393 | p->rt.nr_cpus_allowed > 1) | ||
1292 | push_rt_tasks(rq); | 1394 | push_rt_tasks(rq); |
1293 | } | 1395 | } |
1294 | 1396 | ||
@@ -1324,6 +1426,24 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
1324 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 1426 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
1325 | struct rq *rq = task_rq(p); | 1427 | struct rq *rq = task_rq(p); |
1326 | 1428 | ||
1429 | if (!task_current(rq, p)) { | ||
1430 | /* | ||
1431 | * Make sure we dequeue this task from the pushable list | ||
1432 | * before going further. It will either remain off of | ||
1433 | * the list because we are no longer pushable, or it | ||
1434 | * will be requeued. | ||
1435 | */ | ||
1436 | if (p->rt.nr_cpus_allowed > 1) | ||
1437 | dequeue_pushable_task(rq, p); | ||
1438 | |||
1439 | /* | ||
1440 | * Requeue if our weight is changing and still > 1 | ||
1441 | */ | ||
1442 | if (weight > 1) | ||
1443 | enqueue_pushable_task(rq, p); | ||
1444 | |||
1445 | } | ||
1446 | |||
1327 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 1447 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
1328 | rq->rt.rt_nr_migratory++; | 1448 | rq->rt.rt_nr_migratory++; |
1329 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 1449 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
@@ -1346,7 +1466,7 @@ static void rq_online_rt(struct rq *rq) | |||
1346 | 1466 | ||
1347 | __enable_runtime(rq); | 1467 | __enable_runtime(rq); |
1348 | 1468 | ||
1349 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); | 1469 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
1350 | } | 1470 | } |
1351 | 1471 | ||
1352 | /* Assumes rq->lock is held */ | 1472 | /* Assumes rq->lock is held */ |
@@ -1438,7 +1558,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |||
1438 | * can release the rq lock and p could migrate. | 1558 | * can release the rq lock and p could migrate. |
1439 | * Only reschedule if p is still on the same runqueue. | 1559 | * Only reschedule if p is still on the same runqueue. |
1440 | */ | 1560 | */ |
1441 | if (p->prio > rq->rt.highest_prio && rq->curr == p) | 1561 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
1442 | resched_task(p); | 1562 | resched_task(p); |
1443 | #else | 1563 | #else |
1444 | /* For UP simply resched on drop of prio */ | 1564 | /* For UP simply resched on drop of prio */ |
@@ -1509,6 +1629,9 @@ static void set_curr_task_rt(struct rq *rq) | |||
1509 | struct task_struct *p = rq->curr; | 1629 | struct task_struct *p = rq->curr; |
1510 | 1630 | ||
1511 | p->se.exec_start = rq->clock; | 1631 | p->se.exec_start = rq->clock; |
1632 | |||
1633 | /* The running task is never eligible for pushing */ | ||
1634 | dequeue_pushable_task(rq, p); | ||
1512 | } | 1635 | } |
1513 | 1636 | ||
1514 | static const struct sched_class rt_sched_class = { | 1637 | static const struct sched_class rt_sched_class = { |
@@ -1531,6 +1654,7 @@ static const struct sched_class rt_sched_class = { | |||
1531 | .rq_online = rq_online_rt, | 1654 | .rq_online = rq_online_rt, |
1532 | .rq_offline = rq_offline_rt, | 1655 | .rq_offline = rq_offline_rt, |
1533 | .pre_schedule = pre_schedule_rt, | 1656 | .pre_schedule = pre_schedule_rt, |
1657 | .needs_post_schedule = needs_post_schedule_rt, | ||
1534 | .post_schedule = post_schedule_rt, | 1658 | .post_schedule = post_schedule_rt, |
1535 | .task_wake_up = task_wake_up_rt, | 1659 | .task_wake_up = task_wake_up_rt, |
1536 | .switched_from = switched_from_rt, | 1660 | .switched_from = switched_from_rt, |