diff options
Diffstat (limited to 'kernel/sched_rt.c')
-rw-r--r-- | kernel/sched_rt.c | 569 |
1 files changed, 394 insertions, 175 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index fbec5a58ff10..f2c66f8f9712 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -3,6 +3,40 @@ | |||
3 | * policies) | 3 | * policies) |
4 | */ | 4 | */ |
5 | 5 | ||
6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
7 | { | ||
8 | return container_of(rt_se, struct task_struct, rt); | ||
9 | } | ||
10 | |||
11 | #ifdef CONFIG_RT_GROUP_SCHED | ||
12 | |||
13 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
14 | { | ||
15 | return rt_rq->rq; | ||
16 | } | ||
17 | |||
18 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
19 | { | ||
20 | return rt_se->rt_rq; | ||
21 | } | ||
22 | |||
23 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
24 | |||
25 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
26 | { | ||
27 | return container_of(rt_rq, struct rq, rt); | ||
28 | } | ||
29 | |||
30 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
31 | { | ||
32 | struct task_struct *p = rt_task_of(rt_se); | ||
33 | struct rq *rq = task_rq(p); | ||
34 | |||
35 | return &rq->rt; | ||
36 | } | ||
37 | |||
38 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
39 | |||
6 | #ifdef CONFIG_SMP | 40 | #ifdef CONFIG_SMP |
7 | 41 | ||
8 | static inline int rt_overloaded(struct rq *rq) | 42 | static inline int rt_overloaded(struct rq *rq) |
@@ -37,25 +71,69 @@ static inline void rt_clear_overload(struct rq *rq) | |||
37 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 71 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
38 | } | 72 | } |
39 | 73 | ||
40 | static void update_rt_migration(struct rq *rq) | 74 | static void update_rt_migration(struct rt_rq *rt_rq) |
41 | { | 75 | { |
42 | if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { | 76 | if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) { |
43 | if (!rq->rt.overloaded) { | 77 | if (!rt_rq->overloaded) { |
44 | rt_set_overload(rq); | 78 | rt_set_overload(rq_of_rt_rq(rt_rq)); |
45 | rq->rt.overloaded = 1; | 79 | rt_rq->overloaded = 1; |
46 | } | 80 | } |
47 | } else if (rq->rt.overloaded) { | 81 | } else if (rt_rq->overloaded) { |
48 | rt_clear_overload(rq); | 82 | rt_clear_overload(rq_of_rt_rq(rt_rq)); |
49 | rq->rt.overloaded = 0; | 83 | rt_rq->overloaded = 0; |
50 | } | 84 | } |
51 | } | 85 | } |
52 | #endif /* CONFIG_SMP */ | ||
53 | 86 | ||
54 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 87 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
88 | { | ||
89 | if (rt_se->nr_cpus_allowed > 1) | ||
90 | rt_rq->rt_nr_migratory++; | ||
91 | |||
92 | update_rt_migration(rt_rq); | ||
93 | } | ||
94 | |||
95 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
96 | { | ||
97 | if (rt_se->nr_cpus_allowed > 1) | ||
98 | rt_rq->rt_nr_migratory--; | ||
99 | |||
100 | update_rt_migration(rt_rq); | ||
101 | } | ||
102 | |||
103 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
104 | { | ||
105 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
106 | plist_node_init(&p->pushable_tasks, p->prio); | ||
107 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
108 | } | ||
109 | |||
110 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
111 | { | ||
112 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | ||
113 | } | ||
114 | |||
115 | #else | ||
116 | |||
117 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | ||
55 | { | 118 | { |
56 | return container_of(rt_se, struct task_struct, rt); | ||
57 | } | 119 | } |
58 | 120 | ||
121 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | ||
122 | { | ||
123 | } | ||
124 | |||
125 | static inline | ||
126 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
127 | { | ||
128 | } | ||
129 | |||
130 | static inline | ||
131 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
132 | { | ||
133 | } | ||
134 | |||
135 | #endif /* CONFIG_SMP */ | ||
136 | |||
59 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 137 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
60 | { | 138 | { |
61 | return !list_empty(&rt_se->run_list); | 139 | return !list_empty(&rt_se->run_list); |
@@ -79,16 +157,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
79 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 157 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
80 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 158 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
81 | 159 | ||
82 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
83 | { | ||
84 | return rt_rq->rq; | ||
85 | } | ||
86 | |||
87 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
88 | { | ||
89 | return rt_se->rt_rq; | ||
90 | } | ||
91 | |||
92 | #define for_each_sched_rt_entity(rt_se) \ | 160 | #define for_each_sched_rt_entity(rt_se) \ |
93 | for (; rt_se; rt_se = rt_se->parent) | 161 | for (; rt_se; rt_se = rt_se->parent) |
94 | 162 | ||
@@ -108,7 +176,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |||
108 | if (rt_rq->rt_nr_running) { | 176 | if (rt_rq->rt_nr_running) { |
109 | if (rt_se && !on_rt_rq(rt_se)) | 177 | if (rt_se && !on_rt_rq(rt_se)) |
110 | enqueue_rt_entity(rt_se); | 178 | enqueue_rt_entity(rt_se); |
111 | if (rt_rq->highest_prio < curr->prio) | 179 | if (rt_rq->highest_prio.curr < curr->prio) |
112 | resched_task(curr); | 180 | resched_task(curr); |
113 | } | 181 | } |
114 | } | 182 | } |
@@ -176,19 +244,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |||
176 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 244 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
177 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 245 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
178 | 246 | ||
179 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | ||
180 | { | ||
181 | return container_of(rt_rq, struct rq, rt); | ||
182 | } | ||
183 | |||
184 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | ||
185 | { | ||
186 | struct task_struct *p = rt_task_of(rt_se); | ||
187 | struct rq *rq = task_rq(p); | ||
188 | |||
189 | return &rq->rt; | ||
190 | } | ||
191 | |||
192 | #define for_each_sched_rt_entity(rt_se) \ | 247 | #define for_each_sched_rt_entity(rt_se) \ |
193 | for (; rt_se; rt_se = NULL) | 248 | for (; rt_se; rt_se = NULL) |
194 | 249 | ||
@@ -473,7 +528,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |||
473 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 528 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
474 | 529 | ||
475 | if (rt_rq) | 530 | if (rt_rq) |
476 | return rt_rq->highest_prio; | 531 | return rt_rq->highest_prio.curr; |
477 | #endif | 532 | #endif |
478 | 533 | ||
479 | return rt_task_of(rt_se)->prio; | 534 | return rt_task_of(rt_se)->prio; |
@@ -547,91 +602,174 @@ static void update_curr_rt(struct rq *rq) | |||
547 | } | 602 | } |
548 | } | 603 | } |
549 | 604 | ||
550 | static inline | 605 | #if defined CONFIG_SMP |
551 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 606 | |
607 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | ||
608 | |||
609 | static inline int next_prio(struct rq *rq) | ||
552 | { | 610 | { |
553 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 611 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
554 | rt_rq->rt_nr_running++; | 612 | |
555 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 613 | if (next && rt_prio(next->prio)) |
556 | if (rt_se_prio(rt_se) < rt_rq->highest_prio) { | 614 | return next->prio; |
557 | #ifdef CONFIG_SMP | 615 | else |
558 | struct rq *rq = rq_of_rt_rq(rt_rq); | 616 | return MAX_RT_PRIO; |
559 | #endif | 617 | } |
618 | |||
619 | static void | ||
620 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | ||
621 | { | ||
622 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
623 | |||
624 | if (prio < prev_prio) { | ||
625 | |||
626 | /* | ||
627 | * If the new task is higher in priority than anything on the | ||
628 | * run-queue, we know that the previous high becomes our | ||
629 | * next-highest. | ||
630 | */ | ||
631 | rt_rq->highest_prio.next = prev_prio; | ||
560 | 632 | ||
561 | rt_rq->highest_prio = rt_se_prio(rt_se); | ||
562 | #ifdef CONFIG_SMP | ||
563 | if (rq->online) | 633 | if (rq->online) |
564 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 634 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
565 | rt_se_prio(rt_se)); | ||
566 | #endif | ||
567 | } | ||
568 | #endif | ||
569 | #ifdef CONFIG_SMP | ||
570 | if (rt_se->nr_cpus_allowed > 1) { | ||
571 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
572 | 635 | ||
573 | rq->rt.rt_nr_migratory++; | 636 | } else if (prio == rt_rq->highest_prio.curr) |
574 | } | 637 | /* |
638 | * If the next task is equal in priority to the highest on | ||
639 | * the run-queue, then we implicitly know that the next highest | ||
640 | * task cannot be any lower than current | ||
641 | */ | ||
642 | rt_rq->highest_prio.next = prio; | ||
643 | else if (prio < rt_rq->highest_prio.next) | ||
644 | /* | ||
645 | * Otherwise, we need to recompute next-highest | ||
646 | */ | ||
647 | rt_rq->highest_prio.next = next_prio(rq); | ||
648 | } | ||
575 | 649 | ||
576 | update_rt_migration(rq_of_rt_rq(rt_rq)); | 650 | static void |
577 | #endif | 651 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
578 | #ifdef CONFIG_RT_GROUP_SCHED | 652 | { |
579 | if (rt_se_boosted(rt_se)) | 653 | struct rq *rq = rq_of_rt_rq(rt_rq); |
580 | rt_rq->rt_nr_boosted++; | ||
581 | 654 | ||
582 | if (rt_rq->tg) | 655 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
583 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 656 | rt_rq->highest_prio.next = next_prio(rq); |
584 | #else | 657 | |
585 | start_rt_bandwidth(&def_rt_bandwidth); | 658 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
586 | #endif | 659 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
587 | } | 660 | } |
588 | 661 | ||
662 | #else /* CONFIG_SMP */ | ||
663 | |||
589 | static inline | 664 | static inline |
590 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 665 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
591 | { | 666 | static inline |
592 | #ifdef CONFIG_SMP | 667 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
593 | int highest_prio = rt_rq->highest_prio; | 668 | |
594 | #endif | 669 | #endif /* CONFIG_SMP */ |
595 | 670 | ||
596 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
597 | WARN_ON(!rt_rq->rt_nr_running); | ||
598 | rt_rq->rt_nr_running--; | ||
599 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 671 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
672 | static void | ||
673 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | ||
674 | { | ||
675 | int prev_prio = rt_rq->highest_prio.curr; | ||
676 | |||
677 | if (prio < prev_prio) | ||
678 | rt_rq->highest_prio.curr = prio; | ||
679 | |||
680 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | ||
681 | } | ||
682 | |||
683 | static void | ||
684 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | ||
685 | { | ||
686 | int prev_prio = rt_rq->highest_prio.curr; | ||
687 | |||
600 | if (rt_rq->rt_nr_running) { | 688 | if (rt_rq->rt_nr_running) { |
601 | struct rt_prio_array *array; | ||
602 | 689 | ||
603 | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); | 690 | WARN_ON(prio < prev_prio); |
604 | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { | 691 | |
605 | /* recalculate */ | 692 | /* |
606 | array = &rt_rq->active; | 693 | * This may have been our highest task, and therefore |
607 | rt_rq->highest_prio = | 694 | * we may have some recomputation to do |
695 | */ | ||
696 | if (prio == prev_prio) { | ||
697 | struct rt_prio_array *array = &rt_rq->active; | ||
698 | |||
699 | rt_rq->highest_prio.curr = | ||
608 | sched_find_first_bit(array->bitmap); | 700 | sched_find_first_bit(array->bitmap); |
609 | } /* otherwise leave rq->highest prio alone */ | 701 | } |
702 | |||
610 | } else | 703 | } else |
611 | rt_rq->highest_prio = MAX_RT_PRIO; | 704 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
612 | #endif | ||
613 | #ifdef CONFIG_SMP | ||
614 | if (rt_se->nr_cpus_allowed > 1) { | ||
615 | struct rq *rq = rq_of_rt_rq(rt_rq); | ||
616 | rq->rt.rt_nr_migratory--; | ||
617 | } | ||
618 | 705 | ||
619 | if (rt_rq->highest_prio != highest_prio) { | 706 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
620 | struct rq *rq = rq_of_rt_rq(rt_rq); | 707 | } |
621 | 708 | ||
622 | if (rq->online) | 709 | #else |
623 | cpupri_set(&rq->rd->cpupri, rq->cpu, | 710 | |
624 | rt_rq->highest_prio); | 711 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} |
625 | } | 712 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} |
713 | |||
714 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | ||
626 | 715 | ||
627 | update_rt_migration(rq_of_rt_rq(rt_rq)); | ||
628 | #endif /* CONFIG_SMP */ | ||
629 | #ifdef CONFIG_RT_GROUP_SCHED | 716 | #ifdef CONFIG_RT_GROUP_SCHED |
717 | |||
718 | static void | ||
719 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
720 | { | ||
721 | if (rt_se_boosted(rt_se)) | ||
722 | rt_rq->rt_nr_boosted++; | ||
723 | |||
724 | if (rt_rq->tg) | ||
725 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | ||
726 | } | ||
727 | |||
728 | static void | ||
729 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
730 | { | ||
630 | if (rt_se_boosted(rt_se)) | 731 | if (rt_se_boosted(rt_se)) |
631 | rt_rq->rt_nr_boosted--; | 732 | rt_rq->rt_nr_boosted--; |
632 | 733 | ||
633 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 734 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); |
634 | #endif | 735 | } |
736 | |||
737 | #else /* CONFIG_RT_GROUP_SCHED */ | ||
738 | |||
739 | static void | ||
740 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
741 | { | ||
742 | start_rt_bandwidth(&def_rt_bandwidth); | ||
743 | } | ||
744 | |||
745 | static inline | ||
746 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | ||
747 | |||
748 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
749 | |||
750 | static inline | ||
751 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
752 | { | ||
753 | int prio = rt_se_prio(rt_se); | ||
754 | |||
755 | WARN_ON(!rt_prio(prio)); | ||
756 | rt_rq->rt_nr_running++; | ||
757 | |||
758 | inc_rt_prio(rt_rq, prio); | ||
759 | inc_rt_migration(rt_se, rt_rq); | ||
760 | inc_rt_group(rt_se, rt_rq); | ||
761 | } | ||
762 | |||
763 | static inline | ||
764 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | ||
765 | { | ||
766 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | ||
767 | WARN_ON(!rt_rq->rt_nr_running); | ||
768 | rt_rq->rt_nr_running--; | ||
769 | |||
770 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | ||
771 | dec_rt_migration(rt_se, rt_rq); | ||
772 | dec_rt_group(rt_se, rt_rq); | ||
635 | } | 773 | } |
636 | 774 | ||
637 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) | 775 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) |
@@ -718,6 +856,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
718 | 856 | ||
719 | enqueue_rt_entity(rt_se); | 857 | enqueue_rt_entity(rt_se); |
720 | 858 | ||
859 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | ||
860 | enqueue_pushable_task(rq, p); | ||
861 | |||
721 | inc_cpu_load(rq, p->se.load.weight); | 862 | inc_cpu_load(rq, p->se.load.weight); |
722 | } | 863 | } |
723 | 864 | ||
@@ -728,6 +869,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
728 | update_curr_rt(rq); | 869 | update_curr_rt(rq); |
729 | dequeue_rt_entity(rt_se); | 870 | dequeue_rt_entity(rt_se); |
730 | 871 | ||
872 | dequeue_pushable_task(rq, p); | ||
873 | |||
731 | dec_cpu_load(rq, p->se.load.weight); | 874 | dec_cpu_load(rq, p->se.load.weight); |
732 | } | 875 | } |
733 | 876 | ||
@@ -871,7 +1014,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | |||
871 | return next; | 1014 | return next; |
872 | } | 1015 | } |
873 | 1016 | ||
874 | static struct task_struct *pick_next_task_rt(struct rq *rq) | 1017 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
875 | { | 1018 | { |
876 | struct sched_rt_entity *rt_se; | 1019 | struct sched_rt_entity *rt_se; |
877 | struct task_struct *p; | 1020 | struct task_struct *p; |
@@ -893,6 +1036,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
893 | 1036 | ||
894 | p = rt_task_of(rt_se); | 1037 | p = rt_task_of(rt_se); |
895 | p->se.exec_start = rq->clock; | 1038 | p->se.exec_start = rq->clock; |
1039 | |||
1040 | return p; | ||
1041 | } | ||
1042 | |||
1043 | static struct task_struct *pick_next_task_rt(struct rq *rq) | ||
1044 | { | ||
1045 | struct task_struct *p = _pick_next_task_rt(rq); | ||
1046 | |||
1047 | /* The running task is never eligible for pushing */ | ||
1048 | if (p) | ||
1049 | dequeue_pushable_task(rq, p); | ||
1050 | |||
896 | return p; | 1051 | return p; |
897 | } | 1052 | } |
898 | 1053 | ||
@@ -900,6 +1055,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | |||
900 | { | 1055 | { |
901 | update_curr_rt(rq); | 1056 | update_curr_rt(rq); |
902 | p->se.exec_start = 0; | 1057 | p->se.exec_start = 0; |
1058 | |||
1059 | /* | ||
1060 | * The previous task needs to be made eligible for pushing | ||
1061 | * if it is still active | ||
1062 | */ | ||
1063 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | ||
1064 | enqueue_pushable_task(rq, p); | ||
903 | } | 1065 | } |
904 | 1066 | ||
905 | #ifdef CONFIG_SMP | 1067 | #ifdef CONFIG_SMP |
@@ -953,12 +1115,13 @@ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | |||
953 | 1115 | ||
954 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 1116 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
955 | 1117 | ||
956 | static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) | 1118 | static inline int pick_optimal_cpu(int this_cpu, |
1119 | const struct cpumask *mask) | ||
957 | { | 1120 | { |
958 | int first; | 1121 | int first; |
959 | 1122 | ||
960 | /* "this_cpu" is cheaper to preempt than a remote processor */ | 1123 | /* "this_cpu" is cheaper to preempt than a remote processor */ |
961 | if ((this_cpu != -1) && cpu_isset(this_cpu, *mask)) | 1124 | if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask)) |
962 | return this_cpu; | 1125 | return this_cpu; |
963 | 1126 | ||
964 | first = cpumask_first(mask); | 1127 | first = cpumask_first(mask); |
@@ -974,6 +1137,7 @@ static int find_lowest_rq(struct task_struct *task) | |||
974 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); | 1137 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
975 | int this_cpu = smp_processor_id(); | 1138 | int this_cpu = smp_processor_id(); |
976 | int cpu = task_cpu(task); | 1139 | int cpu = task_cpu(task); |
1140 | cpumask_var_t domain_mask; | ||
977 | 1141 | ||
978 | if (task->rt.nr_cpus_allowed == 1) | 1142 | if (task->rt.nr_cpus_allowed == 1) |
979 | return -1; /* No other targets possible */ | 1143 | return -1; /* No other targets possible */ |
@@ -1006,19 +1170,25 @@ static int find_lowest_rq(struct task_struct *task) | |||
1006 | if (this_cpu == cpu) | 1170 | if (this_cpu == cpu) |
1007 | this_cpu = -1; /* Skip this_cpu opt if the same */ | 1171 | this_cpu = -1; /* Skip this_cpu opt if the same */ |
1008 | 1172 | ||
1009 | for_each_domain(cpu, sd) { | 1173 | if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) { |
1010 | if (sd->flags & SD_WAKE_AFFINE) { | 1174 | for_each_domain(cpu, sd) { |
1011 | cpumask_t domain_mask; | 1175 | if (sd->flags & SD_WAKE_AFFINE) { |
1012 | int best_cpu; | 1176 | int best_cpu; |
1177 | |||
1178 | cpumask_and(domain_mask, | ||
1179 | sched_domain_span(sd), | ||
1180 | lowest_mask); | ||
1013 | 1181 | ||
1014 | cpumask_and(&domain_mask, sched_domain_span(sd), | 1182 | best_cpu = pick_optimal_cpu(this_cpu, |
1015 | lowest_mask); | 1183 | domain_mask); |
1016 | 1184 | ||
1017 | best_cpu = pick_optimal_cpu(this_cpu, | 1185 | if (best_cpu != -1) { |
1018 | &domain_mask); | 1186 | free_cpumask_var(domain_mask); |
1019 | if (best_cpu != -1) | 1187 | return best_cpu; |
1020 | return best_cpu; | 1188 | } |
1189 | } | ||
1021 | } | 1190 | } |
1191 | free_cpumask_var(domain_mask); | ||
1022 | } | 1192 | } |
1023 | 1193 | ||
1024 | /* | 1194 | /* |
@@ -1065,7 +1235,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1065 | } | 1235 | } |
1066 | 1236 | ||
1067 | /* If this rq is still suitable use it. */ | 1237 | /* If this rq is still suitable use it. */ |
1068 | if (lowest_rq->rt.highest_prio > task->prio) | 1238 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
1069 | break; | 1239 | break; |
1070 | 1240 | ||
1071 | /* try again */ | 1241 | /* try again */ |
@@ -1076,6 +1246,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
1076 | return lowest_rq; | 1246 | return lowest_rq; |
1077 | } | 1247 | } |
1078 | 1248 | ||
1249 | static inline int has_pushable_tasks(struct rq *rq) | ||
1250 | { | ||
1251 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
1252 | } | ||
1253 | |||
1254 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | ||
1255 | { | ||
1256 | struct task_struct *p; | ||
1257 | |||
1258 | if (!has_pushable_tasks(rq)) | ||
1259 | return NULL; | ||
1260 | |||
1261 | p = plist_first_entry(&rq->rt.pushable_tasks, | ||
1262 | struct task_struct, pushable_tasks); | ||
1263 | |||
1264 | BUG_ON(rq->cpu != task_cpu(p)); | ||
1265 | BUG_ON(task_current(rq, p)); | ||
1266 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | ||
1267 | |||
1268 | BUG_ON(!p->se.on_rq); | ||
1269 | BUG_ON(!rt_task(p)); | ||
1270 | |||
1271 | return p; | ||
1272 | } | ||
1273 | |||
1079 | /* | 1274 | /* |
1080 | * If the current CPU has more than one RT task, see if the non | 1275 | * If the current CPU has more than one RT task, see if the non |
1081 | * running task can migrate over to a CPU that is running a task | 1276 | * running task can migrate over to a CPU that is running a task |
@@ -1085,13 +1280,11 @@ static int push_rt_task(struct rq *rq) | |||
1085 | { | 1280 | { |
1086 | struct task_struct *next_task; | 1281 | struct task_struct *next_task; |
1087 | struct rq *lowest_rq; | 1282 | struct rq *lowest_rq; |
1088 | int ret = 0; | ||
1089 | int paranoid = RT_MAX_TRIES; | ||
1090 | 1283 | ||
1091 | if (!rq->rt.overloaded) | 1284 | if (!rq->rt.overloaded) |
1092 | return 0; | 1285 | return 0; |
1093 | 1286 | ||
1094 | next_task = pick_next_highest_task_rt(rq, -1); | 1287 | next_task = pick_next_pushable_task(rq); |
1095 | if (!next_task) | 1288 | if (!next_task) |
1096 | return 0; | 1289 | return 0; |
1097 | 1290 | ||
@@ -1120,16 +1313,34 @@ static int push_rt_task(struct rq *rq) | |||
1120 | struct task_struct *task; | 1313 | struct task_struct *task; |
1121 | /* | 1314 | /* |
1122 | * find lock_lowest_rq releases rq->lock | 1315 | * find lock_lowest_rq releases rq->lock |
1123 | * so it is possible that next_task has changed. | 1316 | * so it is possible that next_task has migrated. |
1124 | * If it has, then try again. | 1317 | * |
1318 | * We need to make sure that the task is still on the same | ||
1319 | * run-queue and is also still the next task eligible for | ||
1320 | * pushing. | ||
1125 | */ | 1321 | */ |
1126 | task = pick_next_highest_task_rt(rq, -1); | 1322 | task = pick_next_pushable_task(rq); |
1127 | if (unlikely(task != next_task) && task && paranoid--) { | 1323 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1128 | put_task_struct(next_task); | 1324 | /* |
1129 | next_task = task; | 1325 | * If we get here, the task hasnt moved at all, but |
1130 | goto retry; | 1326 | * it has failed to push. We will not try again, |
1327 | * since the other cpus will pull from us when they | ||
1328 | * are ready. | ||
1329 | */ | ||
1330 | dequeue_pushable_task(rq, next_task); | ||
1331 | goto out; | ||
1131 | } | 1332 | } |
1132 | goto out; | 1333 | |
1334 | if (!task) | ||
1335 | /* No more tasks, just exit */ | ||
1336 | goto out; | ||
1337 | |||
1338 | /* | ||
1339 | * Something has shifted, try again. | ||
1340 | */ | ||
1341 | put_task_struct(next_task); | ||
1342 | next_task = task; | ||
1343 | goto retry; | ||
1133 | } | 1344 | } |
1134 | 1345 | ||
1135 | deactivate_task(rq, next_task, 0); | 1346 | deactivate_task(rq, next_task, 0); |
@@ -1140,23 +1351,12 @@ static int push_rt_task(struct rq *rq) | |||
1140 | 1351 | ||
1141 | double_unlock_balance(rq, lowest_rq); | 1352 | double_unlock_balance(rq, lowest_rq); |
1142 | 1353 | ||
1143 | ret = 1; | ||
1144 | out: | 1354 | out: |
1145 | put_task_struct(next_task); | 1355 | put_task_struct(next_task); |
1146 | 1356 | ||
1147 | return ret; | 1357 | return 1; |
1148 | } | 1358 | } |
1149 | 1359 | ||
1150 | /* | ||
1151 | * TODO: Currently we just use the second highest prio task on | ||
1152 | * the queue, and stop when it can't migrate (or there's | ||
1153 | * no more RT tasks). There may be a case where a lower | ||
1154 | * priority RT task has a different affinity than the | ||
1155 | * higher RT task. In this case the lower RT task could | ||
1156 | * possibly be able to migrate where as the higher priority | ||
1157 | * RT task could not. We currently ignore this issue. | ||
1158 | * Enhancements are welcome! | ||
1159 | */ | ||
1160 | static void push_rt_tasks(struct rq *rq) | 1360 | static void push_rt_tasks(struct rq *rq) |
1161 | { | 1361 | { |
1162 | /* push_rt_task will return true if it moved an RT */ | 1362 | /* push_rt_task will return true if it moved an RT */ |
@@ -1167,33 +1367,35 @@ static void push_rt_tasks(struct rq *rq) | |||
1167 | static int pull_rt_task(struct rq *this_rq) | 1367 | static int pull_rt_task(struct rq *this_rq) |
1168 | { | 1368 | { |
1169 | int this_cpu = this_rq->cpu, ret = 0, cpu; | 1369 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
1170 | struct task_struct *p, *next; | 1370 | struct task_struct *p; |
1171 | struct rq *src_rq; | 1371 | struct rq *src_rq; |
1172 | 1372 | ||
1173 | if (likely(!rt_overloaded(this_rq))) | 1373 | if (likely(!rt_overloaded(this_rq))) |
1174 | return 0; | 1374 | return 0; |
1175 | 1375 | ||
1176 | next = pick_next_task_rt(this_rq); | ||
1177 | |||
1178 | for_each_cpu(cpu, this_rq->rd->rto_mask) { | 1376 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
1179 | if (this_cpu == cpu) | 1377 | if (this_cpu == cpu) |
1180 | continue; | 1378 | continue; |
1181 | 1379 | ||
1182 | src_rq = cpu_rq(cpu); | 1380 | src_rq = cpu_rq(cpu); |
1381 | |||
1382 | /* | ||
1383 | * Don't bother taking the src_rq->lock if the next highest | ||
1384 | * task is known to be lower-priority than our current task. | ||
1385 | * This may look racy, but if this value is about to go | ||
1386 | * logically higher, the src_rq will push this task away. | ||
1387 | * And if its going logically lower, we do not care | ||
1388 | */ | ||
1389 | if (src_rq->rt.highest_prio.next >= | ||
1390 | this_rq->rt.highest_prio.curr) | ||
1391 | continue; | ||
1392 | |||
1183 | /* | 1393 | /* |
1184 | * We can potentially drop this_rq's lock in | 1394 | * We can potentially drop this_rq's lock in |
1185 | * double_lock_balance, and another CPU could | 1395 | * double_lock_balance, and another CPU could |
1186 | * steal our next task - hence we must cause | 1396 | * alter this_rq |
1187 | * the caller to recalculate the next task | ||
1188 | * in that case: | ||
1189 | */ | 1397 | */ |
1190 | if (double_lock_balance(this_rq, src_rq)) { | 1398 | double_lock_balance(this_rq, src_rq); |
1191 | struct task_struct *old_next = next; | ||
1192 | |||
1193 | next = pick_next_task_rt(this_rq); | ||
1194 | if (next != old_next) | ||
1195 | ret = 1; | ||
1196 | } | ||
1197 | 1399 | ||
1198 | /* | 1400 | /* |
1199 | * Are there still pullable RT tasks? | 1401 | * Are there still pullable RT tasks? |
@@ -1207,7 +1409,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1207 | * Do we have an RT task that preempts | 1409 | * Do we have an RT task that preempts |
1208 | * the to-be-scheduled task? | 1410 | * the to-be-scheduled task? |
1209 | */ | 1411 | */ |
1210 | if (p && (!next || (p->prio < next->prio))) { | 1412 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
1211 | WARN_ON(p == src_rq->curr); | 1413 | WARN_ON(p == src_rq->curr); |
1212 | WARN_ON(!p->se.on_rq); | 1414 | WARN_ON(!p->se.on_rq); |
1213 | 1415 | ||
@@ -1217,12 +1419,9 @@ static int pull_rt_task(struct rq *this_rq) | |||
1217 | * This is just that p is wakeing up and hasn't | 1419 | * This is just that p is wakeing up and hasn't |
1218 | * had a chance to schedule. We only pull | 1420 | * had a chance to schedule. We only pull |
1219 | * p if it is lower in priority than the | 1421 | * p if it is lower in priority than the |
1220 | * current task on the run queue or | 1422 | * current task on the run queue |
1221 | * this_rq next task is lower in prio than | ||
1222 | * the current task on that rq. | ||
1223 | */ | 1423 | */ |
1224 | if (p->prio < src_rq->curr->prio || | 1424 | if (p->prio < src_rq->curr->prio) |
1225 | (next && next->prio < src_rq->curr->prio)) | ||
1226 | goto skip; | 1425 | goto skip; |
1227 | 1426 | ||
1228 | ret = 1; | 1427 | ret = 1; |
@@ -1235,13 +1434,7 @@ static int pull_rt_task(struct rq *this_rq) | |||
1235 | * case there's an even higher prio task | 1434 | * case there's an even higher prio task |
1236 | * in another runqueue. (low likelyhood | 1435 | * in another runqueue. (low likelyhood |
1237 | * but possible) | 1436 | * but possible) |
1238 | * | ||
1239 | * Update next so that we won't pick a task | ||
1240 | * on another cpu with a priority lower (or equal) | ||
1241 | * than the one we just picked. | ||
1242 | */ | 1437 | */ |
1243 | next = p; | ||
1244 | |||
1245 | } | 1438 | } |
1246 | skip: | 1439 | skip: |
1247 | double_unlock_balance(this_rq, src_rq); | 1440 | double_unlock_balance(this_rq, src_rq); |
@@ -1253,24 +1446,27 @@ static int pull_rt_task(struct rq *this_rq) | |||
1253 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 1446 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
1254 | { | 1447 | { |
1255 | /* Try to pull RT tasks here if we lower this rq's prio */ | 1448 | /* Try to pull RT tasks here if we lower this rq's prio */ |
1256 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) | 1449 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
1257 | pull_rt_task(rq); | 1450 | pull_rt_task(rq); |
1258 | } | 1451 | } |
1259 | 1452 | ||
1453 | /* | ||
1454 | * assumes rq->lock is held | ||
1455 | */ | ||
1456 | static int needs_post_schedule_rt(struct rq *rq) | ||
1457 | { | ||
1458 | return has_pushable_tasks(rq); | ||
1459 | } | ||
1460 | |||
1260 | static void post_schedule_rt(struct rq *rq) | 1461 | static void post_schedule_rt(struct rq *rq) |
1261 | { | 1462 | { |
1262 | /* | 1463 | /* |
1263 | * If we have more than one rt_task queued, then | 1464 | * This is only called if needs_post_schedule_rt() indicates that |
1264 | * see if we can push the other rt_tasks off to other CPUS. | 1465 | * we need to push tasks away |
1265 | * Note we may release the rq lock, and since | ||
1266 | * the lock was owned by prev, we need to release it | ||
1267 | * first via finish_lock_switch and then reaquire it here. | ||
1268 | */ | 1466 | */ |
1269 | if (unlikely(rq->rt.overloaded)) { | 1467 | spin_lock_irq(&rq->lock); |
1270 | spin_lock_irq(&rq->lock); | 1468 | push_rt_tasks(rq); |
1271 | push_rt_tasks(rq); | 1469 | spin_unlock_irq(&rq->lock); |
1272 | spin_unlock_irq(&rq->lock); | ||
1273 | } | ||
1274 | } | 1470 | } |
1275 | 1471 | ||
1276 | /* | 1472 | /* |
@@ -1281,7 +1477,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) | |||
1281 | { | 1477 | { |
1282 | if (!task_running(rq, p) && | 1478 | if (!task_running(rq, p) && |
1283 | !test_tsk_need_resched(rq->curr) && | 1479 | !test_tsk_need_resched(rq->curr) && |
1284 | rq->rt.overloaded) | 1480 | has_pushable_tasks(rq) && |
1481 | p->rt.nr_cpus_allowed > 1) | ||
1285 | push_rt_tasks(rq); | 1482 | push_rt_tasks(rq); |
1286 | } | 1483 | } |
1287 | 1484 | ||
@@ -1317,6 +1514,24 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
1317 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 1514 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
1318 | struct rq *rq = task_rq(p); | 1515 | struct rq *rq = task_rq(p); |
1319 | 1516 | ||
1517 | if (!task_current(rq, p)) { | ||
1518 | /* | ||
1519 | * Make sure we dequeue this task from the pushable list | ||
1520 | * before going further. It will either remain off of | ||
1521 | * the list because we are no longer pushable, or it | ||
1522 | * will be requeued. | ||
1523 | */ | ||
1524 | if (p->rt.nr_cpus_allowed > 1) | ||
1525 | dequeue_pushable_task(rq, p); | ||
1526 | |||
1527 | /* | ||
1528 | * Requeue if our weight is changing and still > 1 | ||
1529 | */ | ||
1530 | if (weight > 1) | ||
1531 | enqueue_pushable_task(rq, p); | ||
1532 | |||
1533 | } | ||
1534 | |||
1320 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 1535 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
1321 | rq->rt.rt_nr_migratory++; | 1536 | rq->rt.rt_nr_migratory++; |
1322 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 1537 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
@@ -1324,7 +1539,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, | |||
1324 | rq->rt.rt_nr_migratory--; | 1539 | rq->rt.rt_nr_migratory--; |
1325 | } | 1540 | } |
1326 | 1541 | ||
1327 | update_rt_migration(rq); | 1542 | update_rt_migration(&rq->rt); |
1328 | } | 1543 | } |
1329 | 1544 | ||
1330 | cpumask_copy(&p->cpus_allowed, new_mask); | 1545 | cpumask_copy(&p->cpus_allowed, new_mask); |
@@ -1339,7 +1554,7 @@ static void rq_online_rt(struct rq *rq) | |||
1339 | 1554 | ||
1340 | __enable_runtime(rq); | 1555 | __enable_runtime(rq); |
1341 | 1556 | ||
1342 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); | 1557 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
1343 | } | 1558 | } |
1344 | 1559 | ||
1345 | /* Assumes rq->lock is held */ | 1560 | /* Assumes rq->lock is held */ |
@@ -1431,7 +1646,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |||
1431 | * can release the rq lock and p could migrate. | 1646 | * can release the rq lock and p could migrate. |
1432 | * Only reschedule if p is still on the same runqueue. | 1647 | * Only reschedule if p is still on the same runqueue. |
1433 | */ | 1648 | */ |
1434 | if (p->prio > rq->rt.highest_prio && rq->curr == p) | 1649 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
1435 | resched_task(p); | 1650 | resched_task(p); |
1436 | #else | 1651 | #else |
1437 | /* For UP simply resched on drop of prio */ | 1652 | /* For UP simply resched on drop of prio */ |
@@ -1502,6 +1717,9 @@ static void set_curr_task_rt(struct rq *rq) | |||
1502 | struct task_struct *p = rq->curr; | 1717 | struct task_struct *p = rq->curr; |
1503 | 1718 | ||
1504 | p->se.exec_start = rq->clock; | 1719 | p->se.exec_start = rq->clock; |
1720 | |||
1721 | /* The running task is never eligible for pushing */ | ||
1722 | dequeue_pushable_task(rq, p); | ||
1505 | } | 1723 | } |
1506 | 1724 | ||
1507 | static const struct sched_class rt_sched_class = { | 1725 | static const struct sched_class rt_sched_class = { |
@@ -1524,6 +1742,7 @@ static const struct sched_class rt_sched_class = { | |||
1524 | .rq_online = rq_online_rt, | 1742 | .rq_online = rq_online_rt, |
1525 | .rq_offline = rq_offline_rt, | 1743 | .rq_offline = rq_offline_rt, |
1526 | .pre_schedule = pre_schedule_rt, | 1744 | .pre_schedule = pre_schedule_rt, |
1745 | .needs_post_schedule = needs_post_schedule_rt, | ||
1527 | .post_schedule = post_schedule_rt, | 1746 | .post_schedule = post_schedule_rt, |
1528 | .task_wake_up = task_wake_up_rt, | 1747 | .task_wake_up = task_wake_up_rt, |
1529 | .switched_from = switched_from_rt, | 1748 | .switched_from = switched_from_rt, |