diff options
Diffstat (limited to 'kernel/sched_fair.c')
| -rw-r--r-- | kernel/sched_fair.c | 1699 |
1 files changed, 1644 insertions, 55 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 8fe7ee81c552..3e1fd96c6cf9 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
| @@ -1053,7 +1053,8 @@ static inline void hrtick_update(struct rq *rq) | |||
| 1053 | * increased. Here we update the fair scheduling stats and | 1053 | * increased. Here we update the fair scheduling stats and |
| 1054 | * then put the task into the rbtree: | 1054 | * then put the task into the rbtree: |
| 1055 | */ | 1055 | */ |
| 1056 | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) | 1056 | static void |
| 1057 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
| 1057 | { | 1058 | { |
| 1058 | struct cfs_rq *cfs_rq; | 1059 | struct cfs_rq *cfs_rq; |
| 1059 | struct sched_entity *se = &p->se; | 1060 | struct sched_entity *se = &p->se; |
| @@ -1815,57 +1816,164 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | |||
| 1815 | */ | 1816 | */ |
| 1816 | 1817 | ||
| 1817 | /* | 1818 | /* |
| 1818 | * Load-balancing iterator. Note: while the runqueue stays locked | 1819 | * pull_task - move a task from a remote runqueue to the local runqueue. |
| 1819 | * during the whole iteration, the current task might be | 1820 | * Both runqueues must be locked. |
| 1820 | * dequeued so the iterator has to be dequeue-safe. Here we | ||
| 1821 | * achieve that by always pre-iterating before returning | ||
| 1822 | * the current task: | ||
| 1823 | */ | 1821 | */ |
| 1824 | static struct task_struct * | 1822 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
| 1825 | __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) | 1823 | struct rq *this_rq, int this_cpu) |
| 1826 | { | 1824 | { |
| 1827 | struct task_struct *p = NULL; | 1825 | deactivate_task(src_rq, p, 0); |
| 1828 | struct sched_entity *se; | 1826 | set_task_cpu(p, this_cpu); |
| 1827 | activate_task(this_rq, p, 0); | ||
| 1828 | check_preempt_curr(this_rq, p, 0); | ||
| 1829 | } | ||
| 1829 | 1830 | ||
| 1830 | if (next == &cfs_rq->tasks) | 1831 | /* |
| 1831 | return NULL; | 1832 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? |
| 1833 | */ | ||
| 1834 | static | ||
| 1835 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
| 1836 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 1837 | int *all_pinned) | ||
| 1838 | { | ||
| 1839 | int tsk_cache_hot = 0; | ||
| 1840 | /* | ||
| 1841 | * We do not migrate tasks that are: | ||
| 1842 | * 1) running (obviously), or | ||
| 1843 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
| 1844 | * 3) are cache-hot on their current CPU. | ||
| 1845 | */ | ||
| 1846 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
| 1847 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
| 1848 | return 0; | ||
| 1849 | } | ||
| 1850 | *all_pinned = 0; | ||
| 1832 | 1851 | ||
| 1833 | se = list_entry(next, struct sched_entity, group_node); | 1852 | if (task_running(rq, p)) { |
| 1834 | p = task_of(se); | 1853 | schedstat_inc(p, se.nr_failed_migrations_running); |
| 1835 | cfs_rq->balance_iterator = next->next; | 1854 | return 0; |
| 1855 | } | ||
| 1836 | 1856 | ||
| 1837 | return p; | 1857 | /* |
| 1838 | } | 1858 | * Aggressive migration if: |
| 1859 | * 1) task is cache cold, or | ||
| 1860 | * 2) too many balance attempts have failed. | ||
| 1861 | */ | ||
| 1839 | 1862 | ||
| 1840 | static struct task_struct *load_balance_start_fair(void *arg) | 1863 | tsk_cache_hot = task_hot(p, rq->clock, sd); |
| 1841 | { | 1864 | if (!tsk_cache_hot || |
| 1842 | struct cfs_rq *cfs_rq = arg; | 1865 | sd->nr_balance_failed > sd->cache_nice_tries) { |
| 1866 | #ifdef CONFIG_SCHEDSTATS | ||
| 1867 | if (tsk_cache_hot) { | ||
| 1868 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
| 1869 | schedstat_inc(p, se.nr_forced_migrations); | ||
| 1870 | } | ||
| 1871 | #endif | ||
| 1872 | return 1; | ||
| 1873 | } | ||
| 1843 | 1874 | ||
| 1844 | return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); | 1875 | if (tsk_cache_hot) { |
| 1876 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
| 1877 | return 0; | ||
| 1878 | } | ||
| 1879 | return 1; | ||
| 1845 | } | 1880 | } |
| 1846 | 1881 | ||
| 1847 | static struct task_struct *load_balance_next_fair(void *arg) | 1882 | /* |
| 1883 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
| 1884 | * part of active balancing operations within "domain". | ||
| 1885 | * Returns 1 if successful and 0 otherwise. | ||
| 1886 | * | ||
| 1887 | * Called with both runqueues locked. | ||
| 1888 | */ | ||
| 1889 | static int | ||
| 1890 | move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 1891 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
| 1848 | { | 1892 | { |
| 1849 | struct cfs_rq *cfs_rq = arg; | 1893 | struct task_struct *p, *n; |
| 1894 | struct cfs_rq *cfs_rq; | ||
| 1895 | int pinned = 0; | ||
| 1896 | |||
| 1897 | for_each_leaf_cfs_rq(busiest, cfs_rq) { | ||
| 1898 | list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { | ||
| 1899 | |||
| 1900 | if (!can_migrate_task(p, busiest, this_cpu, | ||
| 1901 | sd, idle, &pinned)) | ||
| 1902 | continue; | ||
| 1850 | 1903 | ||
| 1851 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); | 1904 | pull_task(busiest, p, this_rq, this_cpu); |
| 1905 | /* | ||
| 1906 | * Right now, this is only the second place pull_task() | ||
| 1907 | * is called, so we can safely collect pull_task() | ||
| 1908 | * stats here rather than inside pull_task(). | ||
| 1909 | */ | ||
| 1910 | schedstat_inc(sd, lb_gained[idle]); | ||
| 1911 | return 1; | ||
| 1912 | } | ||
| 1913 | } | ||
| 1914 | |||
| 1915 | return 0; | ||
| 1852 | } | 1916 | } |
| 1853 | 1917 | ||
| 1854 | static unsigned long | 1918 | static unsigned long |
| 1855 | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1919 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| 1856 | unsigned long max_load_move, struct sched_domain *sd, | 1920 | unsigned long max_load_move, struct sched_domain *sd, |
| 1857 | enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, | 1921 | enum cpu_idle_type idle, int *all_pinned, |
| 1858 | struct cfs_rq *cfs_rq) | 1922 | int *this_best_prio, struct cfs_rq *busiest_cfs_rq) |
| 1859 | { | 1923 | { |
| 1860 | struct rq_iterator cfs_rq_iterator; | 1924 | int loops = 0, pulled = 0, pinned = 0; |
| 1925 | long rem_load_move = max_load_move; | ||
| 1926 | struct task_struct *p, *n; | ||
| 1861 | 1927 | ||
| 1862 | cfs_rq_iterator.start = load_balance_start_fair; | 1928 | if (max_load_move == 0) |
| 1863 | cfs_rq_iterator.next = load_balance_next_fair; | 1929 | goto out; |
| 1864 | cfs_rq_iterator.arg = cfs_rq; | ||
| 1865 | 1930 | ||
| 1866 | return balance_tasks(this_rq, this_cpu, busiest, | 1931 | pinned = 1; |
| 1867 | max_load_move, sd, idle, all_pinned, | 1932 | |
| 1868 | this_best_prio, &cfs_rq_iterator); | 1933 | list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { |
| 1934 | if (loops++ > sysctl_sched_nr_migrate) | ||
| 1935 | break; | ||
| 1936 | |||
| 1937 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
| 1938 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) | ||
| 1939 | continue; | ||
| 1940 | |||
| 1941 | pull_task(busiest, p, this_rq, this_cpu); | ||
| 1942 | pulled++; | ||
| 1943 | rem_load_move -= p->se.load.weight; | ||
| 1944 | |||
| 1945 | #ifdef CONFIG_PREEMPT | ||
| 1946 | /* | ||
| 1947 | * NEWIDLE balancing is a source of latency, so preemptible | ||
| 1948 | * kernels will stop after the first task is pulled to minimize | ||
| 1949 | * the critical section. | ||
| 1950 | */ | ||
| 1951 | if (idle == CPU_NEWLY_IDLE) | ||
| 1952 | break; | ||
| 1953 | #endif | ||
| 1954 | |||
| 1955 | /* | ||
| 1956 | * We only want to steal up to the prescribed amount of | ||
| 1957 | * weighted load. | ||
| 1958 | */ | ||
| 1959 | if (rem_load_move <= 0) | ||
| 1960 | break; | ||
| 1961 | |||
| 1962 | if (p->prio < *this_best_prio) | ||
| 1963 | *this_best_prio = p->prio; | ||
| 1964 | } | ||
| 1965 | out: | ||
| 1966 | /* | ||
| 1967 | * Right now, this is one of only two places pull_task() is called, | ||
| 1968 | * so we can safely collect pull_task() stats here rather than | ||
| 1969 | * inside pull_task(). | ||
| 1970 | */ | ||
| 1971 | schedstat_add(sd, lb_gained[idle], pulled); | ||
| 1972 | |||
| 1973 | if (all_pinned) | ||
| 1974 | *all_pinned = pinned; | ||
| 1975 | |||
| 1976 | return max_load_move - rem_load_move; | ||
| 1869 | } | 1977 | } |
| 1870 | 1978 | ||
| 1871 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1979 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| @@ -1897,9 +2005,9 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 1897 | rem_load = (u64)rem_load_move * busiest_weight; | 2005 | rem_load = (u64)rem_load_move * busiest_weight; |
| 1898 | rem_load = div_u64(rem_load, busiest_h_load + 1); | 2006 | rem_load = div_u64(rem_load, busiest_h_load + 1); |
| 1899 | 2007 | ||
| 1900 | moved_load = __load_balance_fair(this_rq, this_cpu, busiest, | 2008 | moved_load = balance_tasks(this_rq, this_cpu, busiest, |
| 1901 | rem_load, sd, idle, all_pinned, this_best_prio, | 2009 | rem_load, sd, idle, all_pinned, this_best_prio, |
| 1902 | tg->cfs_rq[busiest_cpu]); | 2010 | busiest_cfs_rq); |
| 1903 | 2011 | ||
| 1904 | if (!moved_load) | 2012 | if (!moved_load) |
| 1905 | continue; | 2013 | continue; |
| @@ -1922,35 +2030,1509 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 1922 | struct sched_domain *sd, enum cpu_idle_type idle, | 2030 | struct sched_domain *sd, enum cpu_idle_type idle, |
| 1923 | int *all_pinned, int *this_best_prio) | 2031 | int *all_pinned, int *this_best_prio) |
| 1924 | { | 2032 | { |
| 1925 | return __load_balance_fair(this_rq, this_cpu, busiest, | 2033 | return balance_tasks(this_rq, this_cpu, busiest, |
| 1926 | max_load_move, sd, idle, all_pinned, | 2034 | max_load_move, sd, idle, all_pinned, |
| 1927 | this_best_prio, &busiest->cfs); | 2035 | this_best_prio, &busiest->cfs); |
| 1928 | } | 2036 | } |
| 1929 | #endif | 2037 | #endif |
| 1930 | 2038 | ||
| 1931 | static int | 2039 | /* |
| 1932 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 2040 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
| 1933 | struct sched_domain *sd, enum cpu_idle_type idle) | 2041 | * this_rq, as part of a balancing operation within domain "sd". |
| 2042 | * Returns 1 if successful and 0 otherwise. | ||
| 2043 | * | ||
| 2044 | * Called with both runqueues locked. | ||
| 2045 | */ | ||
| 2046 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 2047 | unsigned long max_load_move, | ||
| 2048 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 2049 | int *all_pinned) | ||
| 1934 | { | 2050 | { |
| 1935 | struct cfs_rq *busy_cfs_rq; | 2051 | unsigned long total_load_moved = 0, load_moved; |
| 1936 | struct rq_iterator cfs_rq_iterator; | 2052 | int this_best_prio = this_rq->curr->prio; |
| 1937 | 2053 | ||
| 1938 | cfs_rq_iterator.start = load_balance_start_fair; | 2054 | do { |
| 1939 | cfs_rq_iterator.next = load_balance_next_fair; | 2055 | load_moved = load_balance_fair(this_rq, this_cpu, busiest, |
| 2056 | max_load_move - total_load_moved, | ||
| 2057 | sd, idle, all_pinned, &this_best_prio); | ||
| 1940 | 2058 | ||
| 1941 | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { | 2059 | total_load_moved += load_moved; |
| 2060 | |||
| 2061 | #ifdef CONFIG_PREEMPT | ||
| 1942 | /* | 2062 | /* |
| 1943 | * pass busy_cfs_rq argument into | 2063 | * NEWIDLE balancing is a source of latency, so preemptible |
| 1944 | * load_balance_[start|next]_fair iterators | 2064 | * kernels will stop after the first task is pulled to minimize |
| 2065 | * the critical section. | ||
| 1945 | */ | 2066 | */ |
| 1946 | cfs_rq_iterator.arg = busy_cfs_rq; | 2067 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
| 1947 | if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, | 2068 | break; |
| 1948 | &cfs_rq_iterator)) | 2069 | |
| 1949 | return 1; | 2070 | if (raw_spin_is_contended(&this_rq->lock) || |
| 2071 | raw_spin_is_contended(&busiest->lock)) | ||
| 2072 | break; | ||
| 2073 | #endif | ||
| 2074 | } while (load_moved && max_load_move > total_load_moved); | ||
| 2075 | |||
| 2076 | return total_load_moved > 0; | ||
| 2077 | } | ||
| 2078 | |||
| 2079 | /********** Helpers for find_busiest_group ************************/ | ||
| 2080 | /* | ||
| 2081 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
| 2082 | * during load balancing. | ||
| 2083 | */ | ||
| 2084 | struct sd_lb_stats { | ||
| 2085 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
| 2086 | struct sched_group *this; /* Local group in this sd */ | ||
| 2087 | unsigned long total_load; /* Total load of all groups in sd */ | ||
| 2088 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
| 2089 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
| 2090 | |||
| 2091 | /** Statistics of this group */ | ||
| 2092 | unsigned long this_load; | ||
| 2093 | unsigned long this_load_per_task; | ||
| 2094 | unsigned long this_nr_running; | ||
| 2095 | |||
| 2096 | /* Statistics of the busiest group */ | ||
| 2097 | unsigned long max_load; | ||
| 2098 | unsigned long busiest_load_per_task; | ||
| 2099 | unsigned long busiest_nr_running; | ||
| 2100 | unsigned long busiest_group_capacity; | ||
| 2101 | |||
| 2102 | int group_imb; /* Is there imbalance in this sd */ | ||
| 2103 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 2104 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
| 2105 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
| 2106 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
| 2107 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
| 2108 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
| 2109 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
| 2110 | #endif | ||
| 2111 | }; | ||
| 2112 | |||
| 2113 | /* | ||
| 2114 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
| 2115 | */ | ||
| 2116 | struct sg_lb_stats { | ||
| 2117 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
| 2118 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
| 2119 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
| 2120 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
| 2121 | unsigned long group_capacity; | ||
| 2122 | int group_imb; /* Is there an imbalance in the group ? */ | ||
| 2123 | }; | ||
| 2124 | |||
| 2125 | /** | ||
| 2126 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
| 2127 | * @group: The group whose first cpu is to be returned. | ||
| 2128 | */ | ||
| 2129 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
| 2130 | { | ||
| 2131 | return cpumask_first(sched_group_cpus(group)); | ||
| 2132 | } | ||
| 2133 | |||
| 2134 | /** | ||
| 2135 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
| 2136 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
| 2137 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
| 2138 | */ | ||
| 2139 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
| 2140 | enum cpu_idle_type idle) | ||
| 2141 | { | ||
| 2142 | int load_idx; | ||
| 2143 | |||
| 2144 | switch (idle) { | ||
| 2145 | case CPU_NOT_IDLE: | ||
| 2146 | load_idx = sd->busy_idx; | ||
| 2147 | break; | ||
| 2148 | |||
| 2149 | case CPU_NEWLY_IDLE: | ||
| 2150 | load_idx = sd->newidle_idx; | ||
| 2151 | break; | ||
| 2152 | default: | ||
| 2153 | load_idx = sd->idle_idx; | ||
| 2154 | break; | ||
| 1950 | } | 2155 | } |
| 1951 | 2156 | ||
| 2157 | return load_idx; | ||
| 2158 | } | ||
| 2159 | |||
| 2160 | |||
| 2161 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 2162 | /** | ||
| 2163 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
| 2164 | * the given sched_domain, during load balancing. | ||
| 2165 | * | ||
| 2166 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
| 2167 | * @sds: Variable containing the statistics for sd. | ||
| 2168 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
| 2169 | */ | ||
| 2170 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 2171 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 2172 | { | ||
| 2173 | /* | ||
| 2174 | * Busy processors will not participate in power savings | ||
| 2175 | * balance. | ||
| 2176 | */ | ||
| 2177 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 2178 | sds->power_savings_balance = 0; | ||
| 2179 | else { | ||
| 2180 | sds->power_savings_balance = 1; | ||
| 2181 | sds->min_nr_running = ULONG_MAX; | ||
| 2182 | sds->leader_nr_running = 0; | ||
| 2183 | } | ||
| 2184 | } | ||
| 2185 | |||
| 2186 | /** | ||
| 2187 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
| 2188 | * sched_domain while performing load balancing. | ||
| 2189 | * | ||
| 2190 | * @group: sched_group belonging to the sched_domain under consideration. | ||
| 2191 | * @sds: Variable containing the statistics of the sched_domain | ||
| 2192 | * @local_group: Does group contain the CPU for which we're performing | ||
| 2193 | * load balancing ? | ||
| 2194 | * @sgs: Variable containing the statistics of the group. | ||
| 2195 | */ | ||
| 2196 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 2197 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 2198 | { | ||
| 2199 | |||
| 2200 | if (!sds->power_savings_balance) | ||
| 2201 | return; | ||
| 2202 | |||
| 2203 | /* | ||
| 2204 | * If the local group is idle or completely loaded | ||
| 2205 | * no need to do power savings balance at this domain | ||
| 2206 | */ | ||
| 2207 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
| 2208 | !sds->this_nr_running)) | ||
| 2209 | sds->power_savings_balance = 0; | ||
| 2210 | |||
| 2211 | /* | ||
| 2212 | * If a group is already running at full capacity or idle, | ||
| 2213 | * don't include that group in power savings calculations | ||
| 2214 | */ | ||
| 2215 | if (!sds->power_savings_balance || | ||
| 2216 | sgs->sum_nr_running >= sgs->group_capacity || | ||
| 2217 | !sgs->sum_nr_running) | ||
| 2218 | return; | ||
| 2219 | |||
| 2220 | /* | ||
| 2221 | * Calculate the group which has the least non-idle load. | ||
| 2222 | * This is the group from where we need to pick up the load | ||
| 2223 | * for saving power | ||
| 2224 | */ | ||
| 2225 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
| 2226 | (sgs->sum_nr_running == sds->min_nr_running && | ||
| 2227 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
| 2228 | sds->group_min = group; | ||
| 2229 | sds->min_nr_running = sgs->sum_nr_running; | ||
| 2230 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
| 2231 | sgs->sum_nr_running; | ||
| 2232 | } | ||
| 2233 | |||
| 2234 | /* | ||
| 2235 | * Calculate the group which is almost near its | ||
| 2236 | * capacity but still has some space to pick up some load | ||
| 2237 | * from other group and save more power | ||
| 2238 | */ | ||
| 2239 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
| 2240 | return; | ||
| 2241 | |||
| 2242 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
| 2243 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
| 2244 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
| 2245 | sds->group_leader = group; | ||
| 2246 | sds->leader_nr_running = sgs->sum_nr_running; | ||
| 2247 | } | ||
| 2248 | } | ||
| 2249 | |||
| 2250 | /** | ||
| 2251 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
| 2252 | * @sds: Variable containing the statistics of the sched_domain | ||
| 2253 | * under consideration. | ||
| 2254 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
| 2255 | * @imbalance: Variable to store the imbalance. | ||
| 2256 | * | ||
| 2257 | * Description: | ||
| 2258 | * Check if we have potential to perform some power-savings balance. | ||
| 2259 | * If yes, set the busiest group to be the least loaded group in the | ||
| 2260 | * sched_domain, so that it's CPUs can be put to idle. | ||
| 2261 | * | ||
| 2262 | * Returns 1 if there is potential to perform power-savings balance. | ||
| 2263 | * Else returns 0. | ||
| 2264 | */ | ||
| 2265 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 2266 | int this_cpu, unsigned long *imbalance) | ||
| 2267 | { | ||
| 2268 | if (!sds->power_savings_balance) | ||
| 2269 | return 0; | ||
| 2270 | |||
| 2271 | if (sds->this != sds->group_leader || | ||
| 2272 | sds->group_leader == sds->group_min) | ||
| 2273 | return 0; | ||
| 2274 | |||
| 2275 | *imbalance = sds->min_load_per_task; | ||
| 2276 | sds->busiest = sds->group_min; | ||
| 2277 | |||
| 2278 | return 1; | ||
| 2279 | |||
| 2280 | } | ||
| 2281 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 2282 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 2283 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 2284 | { | ||
| 2285 | return; | ||
| 2286 | } | ||
| 2287 | |||
| 2288 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 2289 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 2290 | { | ||
| 2291 | return; | ||
| 2292 | } | ||
| 2293 | |||
| 2294 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 2295 | int this_cpu, unsigned long *imbalance) | ||
| 2296 | { | ||
| 1952 | return 0; | 2297 | return 0; |
| 1953 | } | 2298 | } |
| 2299 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 2300 | |||
| 2301 | |||
| 2302 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 2303 | { | ||
| 2304 | return SCHED_LOAD_SCALE; | ||
| 2305 | } | ||
| 2306 | |||
| 2307 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 2308 | { | ||
| 2309 | return default_scale_freq_power(sd, cpu); | ||
| 2310 | } | ||
| 2311 | |||
| 2312 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 2313 | { | ||
| 2314 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
| 2315 | unsigned long smt_gain = sd->smt_gain; | ||
| 2316 | |||
| 2317 | smt_gain /= weight; | ||
| 2318 | |||
| 2319 | return smt_gain; | ||
| 2320 | } | ||
| 2321 | |||
| 2322 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 2323 | { | ||
| 2324 | return default_scale_smt_power(sd, cpu); | ||
| 2325 | } | ||
| 2326 | |||
| 2327 | unsigned long scale_rt_power(int cpu) | ||
| 2328 | { | ||
| 2329 | struct rq *rq = cpu_rq(cpu); | ||
| 2330 | u64 total, available; | ||
| 2331 | |||
| 2332 | sched_avg_update(rq); | ||
| 2333 | |||
| 2334 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
| 2335 | available = total - rq->rt_avg; | ||
| 2336 | |||
| 2337 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
| 2338 | total = SCHED_LOAD_SCALE; | ||
| 2339 | |||
| 2340 | total >>= SCHED_LOAD_SHIFT; | ||
| 2341 | |||
| 2342 | return div_u64(available, total); | ||
| 2343 | } | ||
| 2344 | |||
| 2345 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
| 2346 | { | ||
| 2347 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
| 2348 | unsigned long power = SCHED_LOAD_SCALE; | ||
| 2349 | struct sched_group *sdg = sd->groups; | ||
| 2350 | |||
| 2351 | if (sched_feat(ARCH_POWER)) | ||
| 2352 | power *= arch_scale_freq_power(sd, cpu); | ||
| 2353 | else | ||
| 2354 | power *= default_scale_freq_power(sd, cpu); | ||
| 2355 | |||
| 2356 | power >>= SCHED_LOAD_SHIFT; | ||
| 2357 | |||
| 2358 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
| 2359 | if (sched_feat(ARCH_POWER)) | ||
| 2360 | power *= arch_scale_smt_power(sd, cpu); | ||
| 2361 | else | ||
| 2362 | power *= default_scale_smt_power(sd, cpu); | ||
| 2363 | |||
| 2364 | power >>= SCHED_LOAD_SHIFT; | ||
| 2365 | } | ||
| 2366 | |||
| 2367 | power *= scale_rt_power(cpu); | ||
| 2368 | power >>= SCHED_LOAD_SHIFT; | ||
| 2369 | |||
| 2370 | if (!power) | ||
| 2371 | power = 1; | ||
| 2372 | |||
| 2373 | sdg->cpu_power = power; | ||
| 2374 | } | ||
| 2375 | |||
| 2376 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
| 2377 | { | ||
| 2378 | struct sched_domain *child = sd->child; | ||
| 2379 | struct sched_group *group, *sdg = sd->groups; | ||
| 2380 | unsigned long power; | ||
| 2381 | |||
| 2382 | if (!child) { | ||
| 2383 | update_cpu_power(sd, cpu); | ||
| 2384 | return; | ||
| 2385 | } | ||
| 2386 | |||
| 2387 | power = 0; | ||
| 2388 | |||
| 2389 | group = child->groups; | ||
| 2390 | do { | ||
| 2391 | power += group->cpu_power; | ||
| 2392 | group = group->next; | ||
| 2393 | } while (group != child->groups); | ||
| 2394 | |||
| 2395 | sdg->cpu_power = power; | ||
| 2396 | } | ||
| 2397 | |||
| 2398 | /** | ||
| 2399 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
| 2400 | * @sd: The sched_domain whose statistics are to be updated. | ||
| 2401 | * @group: sched_group whose statistics are to be updated. | ||
| 2402 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 2403 | * @idle: Idle status of this_cpu | ||
| 2404 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
| 2405 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 2406 | * @local_group: Does group contain this_cpu. | ||
| 2407 | * @cpus: Set of cpus considered for load balancing. | ||
| 2408 | * @balance: Should we balance. | ||
| 2409 | * @sgs: variable to hold the statistics for this group. | ||
| 2410 | */ | ||
| 2411 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
| 2412 | struct sched_group *group, int this_cpu, | ||
| 2413 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
| 2414 | int local_group, const struct cpumask *cpus, | ||
| 2415 | int *balance, struct sg_lb_stats *sgs) | ||
| 2416 | { | ||
| 2417 | unsigned long load, max_cpu_load, min_cpu_load; | ||
| 2418 | int i; | ||
| 2419 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 2420 | unsigned long avg_load_per_task = 0; | ||
| 2421 | |||
| 2422 | if (local_group) | ||
| 2423 | balance_cpu = group_first_cpu(group); | ||
| 2424 | |||
| 2425 | /* Tally up the load of all CPUs in the group */ | ||
| 2426 | max_cpu_load = 0; | ||
| 2427 | min_cpu_load = ~0UL; | ||
| 2428 | |||
| 2429 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
| 2430 | struct rq *rq = cpu_rq(i); | ||
| 2431 | |||
| 2432 | if (*sd_idle && rq->nr_running) | ||
| 2433 | *sd_idle = 0; | ||
| 2434 | |||
| 2435 | /* Bias balancing toward cpus of our domain */ | ||
| 2436 | if (local_group) { | ||
| 2437 | if (idle_cpu(i) && !first_idle_cpu) { | ||
| 2438 | first_idle_cpu = 1; | ||
| 2439 | balance_cpu = i; | ||
| 2440 | } | ||
| 2441 | |||
| 2442 | load = target_load(i, load_idx); | ||
| 2443 | } else { | ||
| 2444 | load = source_load(i, load_idx); | ||
| 2445 | if (load > max_cpu_load) | ||
| 2446 | max_cpu_load = load; | ||
| 2447 | if (min_cpu_load > load) | ||
| 2448 | min_cpu_load = load; | ||
| 2449 | } | ||
| 2450 | |||
| 2451 | sgs->group_load += load; | ||
| 2452 | sgs->sum_nr_running += rq->nr_running; | ||
| 2453 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
| 2454 | |||
| 2455 | } | ||
| 2456 | |||
| 2457 | /* | ||
| 2458 | * First idle cpu or the first cpu(busiest) in this sched group | ||
| 2459 | * is eligible for doing load balancing at this and above | ||
| 2460 | * domains. In the newly idle case, we will allow all the cpu's | ||
| 2461 | * to do the newly idle load balance. | ||
| 2462 | */ | ||
| 2463 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
| 2464 | balance_cpu != this_cpu) { | ||
| 2465 | *balance = 0; | ||
| 2466 | return; | ||
| 2467 | } | ||
| 2468 | |||
| 2469 | update_group_power(sd, this_cpu); | ||
| 2470 | |||
| 2471 | /* Adjust by relative CPU power of the group */ | ||
| 2472 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 2473 | |||
| 2474 | /* | ||
| 2475 | * Consider the group unbalanced when the imbalance is larger | ||
| 2476 | * than the average weight of two tasks. | ||
| 2477 | * | ||
| 2478 | * APZ: with cgroup the avg task weight can vary wildly and | ||
| 2479 | * might not be a suitable number - should we keep a | ||
| 2480 | * normalized nr_running number somewhere that negates | ||
| 2481 | * the hierarchy? | ||
| 2482 | */ | ||
| 2483 | if (sgs->sum_nr_running) | ||
| 2484 | avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | ||
| 2485 | |||
| 2486 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
| 2487 | sgs->group_imb = 1; | ||
| 2488 | |||
| 2489 | sgs->group_capacity = | ||
| 2490 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
| 2491 | } | ||
| 2492 | |||
| 2493 | /** | ||
| 2494 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
| 2495 | * @sd: sched_domain whose statistics are to be updated. | ||
| 2496 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 2497 | * @idle: Idle status of this_cpu | ||
| 2498 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 2499 | * @cpus: Set of cpus considered for load balancing. | ||
| 2500 | * @balance: Should we balance. | ||
| 2501 | * @sds: variable to hold the statistics for this sched_domain. | ||
| 2502 | */ | ||
| 2503 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
| 2504 | enum cpu_idle_type idle, int *sd_idle, | ||
| 2505 | const struct cpumask *cpus, int *balance, | ||
| 2506 | struct sd_lb_stats *sds) | ||
| 2507 | { | ||
| 2508 | struct sched_domain *child = sd->child; | ||
| 2509 | struct sched_group *group = sd->groups; | ||
| 2510 | struct sg_lb_stats sgs; | ||
| 2511 | int load_idx, prefer_sibling = 0; | ||
| 2512 | |||
| 2513 | if (child && child->flags & SD_PREFER_SIBLING) | ||
| 2514 | prefer_sibling = 1; | ||
| 2515 | |||
| 2516 | init_sd_power_savings_stats(sd, sds, idle); | ||
| 2517 | load_idx = get_sd_load_idx(sd, idle); | ||
| 2518 | |||
| 2519 | do { | ||
| 2520 | int local_group; | ||
| 2521 | |||
| 2522 | local_group = cpumask_test_cpu(this_cpu, | ||
| 2523 | sched_group_cpus(group)); | ||
| 2524 | memset(&sgs, 0, sizeof(sgs)); | ||
| 2525 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
| 2526 | local_group, cpus, balance, &sgs); | ||
| 2527 | |||
| 2528 | if (local_group && !(*balance)) | ||
| 2529 | return; | ||
| 2530 | |||
| 2531 | sds->total_load += sgs.group_load; | ||
| 2532 | sds->total_pwr += group->cpu_power; | ||
| 2533 | |||
| 2534 | /* | ||
| 2535 | * In case the child domain prefers tasks go to siblings | ||
| 2536 | * first, lower the group capacity to one so that we'll try | ||
| 2537 | * and move all the excess tasks away. | ||
| 2538 | */ | ||
| 2539 | if (prefer_sibling) | ||
| 2540 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
| 2541 | |||
| 2542 | if (local_group) { | ||
| 2543 | sds->this_load = sgs.avg_load; | ||
| 2544 | sds->this = group; | ||
| 2545 | sds->this_nr_running = sgs.sum_nr_running; | ||
| 2546 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
| 2547 | } else if (sgs.avg_load > sds->max_load && | ||
| 2548 | (sgs.sum_nr_running > sgs.group_capacity || | ||
| 2549 | sgs.group_imb)) { | ||
| 2550 | sds->max_load = sgs.avg_load; | ||
| 2551 | sds->busiest = group; | ||
| 2552 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
| 2553 | sds->busiest_group_capacity = sgs.group_capacity; | ||
| 2554 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
| 2555 | sds->group_imb = sgs.group_imb; | ||
| 2556 | } | ||
| 2557 | |||
| 2558 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
| 2559 | group = group->next; | ||
| 2560 | } while (group != sd->groups); | ||
| 2561 | } | ||
| 2562 | |||
| 2563 | /** | ||
| 2564 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
| 2565 | * amongst the groups of a sched_domain, during | ||
| 2566 | * load balancing. | ||
| 2567 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
| 2568 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
| 2569 | * @imbalance: Variable to store the imbalance. | ||
| 2570 | */ | ||
| 2571 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
| 2572 | int this_cpu, unsigned long *imbalance) | ||
| 2573 | { | ||
| 2574 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
| 2575 | unsigned int imbn = 2; | ||
| 2576 | unsigned long scaled_busy_load_per_task; | ||
| 2577 | |||
| 2578 | if (sds->this_nr_running) { | ||
| 2579 | sds->this_load_per_task /= sds->this_nr_running; | ||
| 2580 | if (sds->busiest_load_per_task > | ||
| 2581 | sds->this_load_per_task) | ||
| 2582 | imbn = 1; | ||
| 2583 | } else | ||
| 2584 | sds->this_load_per_task = | ||
| 2585 | cpu_avg_load_per_task(this_cpu); | ||
| 2586 | |||
| 2587 | scaled_busy_load_per_task = sds->busiest_load_per_task | ||
| 2588 | * SCHED_LOAD_SCALE; | ||
| 2589 | scaled_busy_load_per_task /= sds->busiest->cpu_power; | ||
| 2590 | |||
| 2591 | if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= | ||
| 2592 | (scaled_busy_load_per_task * imbn)) { | ||
| 2593 | *imbalance = sds->busiest_load_per_task; | ||
| 2594 | return; | ||
| 2595 | } | ||
| 2596 | |||
| 2597 | /* | ||
| 2598 | * OK, we don't have enough imbalance to justify moving tasks, | ||
| 2599 | * however we may be able to increase total CPU power used by | ||
| 2600 | * moving them. | ||
| 2601 | */ | ||
| 2602 | |||
| 2603 | pwr_now += sds->busiest->cpu_power * | ||
| 2604 | min(sds->busiest_load_per_task, sds->max_load); | ||
| 2605 | pwr_now += sds->this->cpu_power * | ||
| 2606 | min(sds->this_load_per_task, sds->this_load); | ||
| 2607 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 2608 | |||
| 2609 | /* Amount of load we'd subtract */ | ||
| 2610 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
| 2611 | sds->busiest->cpu_power; | ||
| 2612 | if (sds->max_load > tmp) | ||
| 2613 | pwr_move += sds->busiest->cpu_power * | ||
| 2614 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
| 2615 | |||
| 2616 | /* Amount of load we'd add */ | ||
| 2617 | if (sds->max_load * sds->busiest->cpu_power < | ||
| 2618 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 2619 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
| 2620 | sds->this->cpu_power; | ||
| 2621 | else | ||
| 2622 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
| 2623 | sds->this->cpu_power; | ||
| 2624 | pwr_move += sds->this->cpu_power * | ||
| 2625 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
| 2626 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 2627 | |||
| 2628 | /* Move if we gain throughput */ | ||
| 2629 | if (pwr_move > pwr_now) | ||
| 2630 | *imbalance = sds->busiest_load_per_task; | ||
| 2631 | } | ||
| 2632 | |||
| 2633 | /** | ||
| 2634 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
| 2635 | * groups of a given sched_domain during load balance. | ||
| 2636 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
| 2637 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
| 2638 | * @imbalance: The variable to store the imbalance. | ||
| 2639 | */ | ||
| 2640 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
| 2641 | unsigned long *imbalance) | ||
| 2642 | { | ||
| 2643 | unsigned long max_pull, load_above_capacity = ~0UL; | ||
| 2644 | |||
| 2645 | sds->busiest_load_per_task /= sds->busiest_nr_running; | ||
| 2646 | if (sds->group_imb) { | ||
| 2647 | sds->busiest_load_per_task = | ||
| 2648 | min(sds->busiest_load_per_task, sds->avg_load); | ||
| 2649 | } | ||
| 2650 | |||
| 2651 | /* | ||
| 2652 | * In the presence of smp nice balancing, certain scenarios can have | ||
| 2653 | * max load less than avg load(as we skip the groups at or below | ||
| 2654 | * its cpu_power, while calculating max_load..) | ||
| 2655 | */ | ||
| 2656 | if (sds->max_load < sds->avg_load) { | ||
| 2657 | *imbalance = 0; | ||
| 2658 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
| 2659 | } | ||
| 2660 | |||
| 2661 | if (!sds->group_imb) { | ||
| 2662 | /* | ||
| 2663 | * Don't want to pull so many tasks that a group would go idle. | ||
| 2664 | */ | ||
| 2665 | load_above_capacity = (sds->busiest_nr_running - | ||
| 2666 | sds->busiest_group_capacity); | ||
| 2667 | |||
| 2668 | load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE); | ||
| 2669 | |||
| 2670 | load_above_capacity /= sds->busiest->cpu_power; | ||
| 2671 | } | ||
| 2672 | |||
| 2673 | /* | ||
| 2674 | * We're trying to get all the cpus to the average_load, so we don't | ||
| 2675 | * want to push ourselves above the average load, nor do we wish to | ||
| 2676 | * reduce the max loaded cpu below the average load. At the same time, | ||
| 2677 | * we also don't want to reduce the group load below the group capacity | ||
| 2678 | * (so that we can implement power-savings policies etc). Thus we look | ||
| 2679 | * for the minimum possible imbalance. | ||
| 2680 | * Be careful of negative numbers as they'll appear as very large values | ||
| 2681 | * with unsigned longs. | ||
| 2682 | */ | ||
| 2683 | max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); | ||
| 2684 | |||
| 2685 | /* How much load to actually move to equalise the imbalance */ | ||
| 2686 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
| 2687 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
| 2688 | / SCHED_LOAD_SCALE; | ||
| 2689 | |||
| 2690 | /* | ||
| 2691 | * if *imbalance is less than the average load per runnable task | ||
| 2692 | * there is no gaurantee that any tasks will be moved so we'll have | ||
| 2693 | * a think about bumping its value to force at least one task to be | ||
| 2694 | * moved | ||
| 2695 | */ | ||
| 2696 | if (*imbalance < sds->busiest_load_per_task) | ||
| 2697 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
| 2698 | |||
| 2699 | } | ||
| 2700 | /******* find_busiest_group() helpers end here *********************/ | ||
| 2701 | |||
| 2702 | /** | ||
| 2703 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
| 2704 | * if there is an imbalance. If there isn't an imbalance, and | ||
| 2705 | * the user has opted for power-savings, it returns a group whose | ||
| 2706 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
| 2707 | * such a group exists. | ||
| 2708 | * | ||
| 2709 | * Also calculates the amount of weighted load which should be moved | ||
| 2710 | * to restore balance. | ||
| 2711 | * | ||
| 2712 | * @sd: The sched_domain whose busiest group is to be returned. | ||
| 2713 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
| 2714 | * @imbalance: Variable which stores amount of weighted load which should | ||
| 2715 | * be moved to restore balance/put a group to idle. | ||
| 2716 | * @idle: The idle status of this_cpu. | ||
| 2717 | * @sd_idle: The idleness of sd | ||
| 2718 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
| 2719 | * @balance: Pointer to a variable indicating if this_cpu | ||
| 2720 | * is the appropriate cpu to perform load balancing at this_level. | ||
| 2721 | * | ||
| 2722 | * Returns: - the busiest group if imbalance exists. | ||
| 2723 | * - If no imbalance and user has opted for power-savings balance, | ||
| 2724 | * return the least loaded group whose CPUs can be | ||
| 2725 | * put to idle by rebalancing its tasks onto our group. | ||
| 2726 | */ | ||
| 2727 | static struct sched_group * | ||
| 2728 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
| 2729 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
| 2730 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
| 2731 | { | ||
| 2732 | struct sd_lb_stats sds; | ||
| 2733 | |||
| 2734 | memset(&sds, 0, sizeof(sds)); | ||
| 2735 | |||
| 2736 | /* | ||
| 2737 | * Compute the various statistics relavent for load balancing at | ||
| 2738 | * this level. | ||
| 2739 | */ | ||
| 2740 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
| 2741 | balance, &sds); | ||
| 2742 | |||
| 2743 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
| 2744 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
| 2745 | * at this level. | ||
| 2746 | * 2) There is no busy sibling group to pull from. | ||
| 2747 | * 3) This group is the busiest group. | ||
| 2748 | * 4) This group is more busy than the avg busieness at this | ||
| 2749 | * sched_domain. | ||
| 2750 | * 5) The imbalance is within the specified limit. | ||
| 2751 | */ | ||
| 2752 | if (!(*balance)) | ||
| 2753 | goto ret; | ||
| 2754 | |||
| 2755 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
| 2756 | goto out_balanced; | ||
| 2757 | |||
| 2758 | if (sds.this_load >= sds.max_load) | ||
| 2759 | goto out_balanced; | ||
| 2760 | |||
| 2761 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
| 2762 | |||
| 2763 | if (sds.this_load >= sds.avg_load) | ||
| 2764 | goto out_balanced; | ||
| 2765 | |||
| 2766 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
| 2767 | goto out_balanced; | ||
| 2768 | |||
| 2769 | /* Looks like there is an imbalance. Compute it */ | ||
| 2770 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
| 2771 | return sds.busiest; | ||
| 2772 | |||
| 2773 | out_balanced: | ||
| 2774 | /* | ||
| 2775 | * There is no obvious imbalance. But check if we can do some balancing | ||
| 2776 | * to save power. | ||
| 2777 | */ | ||
| 2778 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
| 2779 | return sds.busiest; | ||
| 2780 | ret: | ||
| 2781 | *imbalance = 0; | ||
| 2782 | return NULL; | ||
| 2783 | } | ||
| 2784 | |||
| 2785 | /* | ||
| 2786 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
| 2787 | */ | ||
| 2788 | static struct rq * | ||
| 2789 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
| 2790 | unsigned long imbalance, const struct cpumask *cpus) | ||
| 2791 | { | ||
| 2792 | struct rq *busiest = NULL, *rq; | ||
| 2793 | unsigned long max_load = 0; | ||
| 2794 | int i; | ||
| 2795 | |||
| 2796 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 2797 | unsigned long power = power_of(i); | ||
| 2798 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
| 2799 | unsigned long wl; | ||
| 2800 | |||
| 2801 | if (!cpumask_test_cpu(i, cpus)) | ||
| 2802 | continue; | ||
| 2803 | |||
| 2804 | rq = cpu_rq(i); | ||
| 2805 | wl = weighted_cpuload(i); | ||
| 2806 | |||
| 2807 | /* | ||
| 2808 | * When comparing with imbalance, use weighted_cpuload() | ||
| 2809 | * which is not scaled with the cpu power. | ||
| 2810 | */ | ||
| 2811 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
| 2812 | continue; | ||
| 2813 | |||
| 2814 | /* | ||
| 2815 | * For the load comparisons with the other cpu's, consider | ||
| 2816 | * the weighted_cpuload() scaled with the cpu power, so that | ||
| 2817 | * the load can be moved away from the cpu that is potentially | ||
| 2818 | * running at a lower capacity. | ||
| 2819 | */ | ||
| 2820 | wl = (wl * SCHED_LOAD_SCALE) / power; | ||
| 2821 | |||
| 2822 | if (wl > max_load) { | ||
| 2823 | max_load = wl; | ||
| 2824 | busiest = rq; | ||
| 2825 | } | ||
| 2826 | } | ||
| 2827 | |||
| 2828 | return busiest; | ||
| 2829 | } | ||
| 2830 | |||
| 2831 | /* | ||
| 2832 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
| 2833 | * so long as it is large enough. | ||
| 2834 | */ | ||
| 2835 | #define MAX_PINNED_INTERVAL 512 | ||
| 2836 | |||
| 2837 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
| 2838 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
| 2839 | |||
| 2840 | static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle) | ||
| 2841 | { | ||
| 2842 | if (idle == CPU_NEWLY_IDLE) { | ||
| 2843 | /* | ||
| 2844 | * The only task running in a non-idle cpu can be moved to this | ||
| 2845 | * cpu in an attempt to completely freeup the other CPU | ||
| 2846 | * package. | ||
| 2847 | * | ||
| 2848 | * The package power saving logic comes from | ||
| 2849 | * find_busiest_group(). If there are no imbalance, then | ||
| 2850 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
| 2851 | * f_b_g() will select a group from which a running task may be | ||
| 2852 | * pulled to this cpu in order to make the other package idle. | ||
| 2853 | * If there is no opportunity to make a package idle and if | ||
| 2854 | * there are no imbalance, then f_b_g() will return NULL and no | ||
| 2855 | * action will be taken in load_balance_newidle(). | ||
| 2856 | * | ||
| 2857 | * Under normal task pull operation due to imbalance, there | ||
| 2858 | * will be more than one task in the source run queue and | ||
| 2859 | * move_tasks() will succeed. ld_moved will be true and this | ||
| 2860 | * active balance code will not be triggered. | ||
| 2861 | */ | ||
| 2862 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
| 2863 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 2864 | return 0; | ||
| 2865 | |||
| 2866 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
| 2867 | return 0; | ||
| 2868 | } | ||
| 2869 | |||
| 2870 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | ||
| 2871 | } | ||
| 2872 | |||
| 2873 | /* | ||
| 2874 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
| 2875 | * tasks if there is an imbalance. | ||
| 2876 | */ | ||
| 2877 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
| 2878 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 2879 | int *balance) | ||
| 2880 | { | ||
| 2881 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
| 2882 | struct sched_group *group; | ||
| 2883 | unsigned long imbalance; | ||
| 2884 | struct rq *busiest; | ||
| 2885 | unsigned long flags; | ||
| 2886 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
| 2887 | |||
| 2888 | cpumask_copy(cpus, cpu_active_mask); | ||
| 2889 | |||
| 2890 | /* | ||
| 2891 | * When power savings policy is enabled for the parent domain, idle | ||
| 2892 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
| 2893 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
| 2894 | * portraying it as CPU_NOT_IDLE. | ||
| 2895 | */ | ||
| 2896 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
| 2897 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 2898 | sd_idle = 1; | ||
| 2899 | |||
| 2900 | schedstat_inc(sd, lb_count[idle]); | ||
| 2901 | |||
| 2902 | redo: | ||
| 2903 | update_shares(sd); | ||
| 2904 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
| 2905 | cpus, balance); | ||
| 2906 | |||
| 2907 | if (*balance == 0) | ||
| 2908 | goto out_balanced; | ||
| 2909 | |||
| 2910 | if (!group) { | ||
| 2911 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
| 2912 | goto out_balanced; | ||
| 2913 | } | ||
| 2914 | |||
| 2915 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
| 2916 | if (!busiest) { | ||
| 2917 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
| 2918 | goto out_balanced; | ||
| 2919 | } | ||
| 2920 | |||
| 2921 | BUG_ON(busiest == this_rq); | ||
| 2922 | |||
| 2923 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
| 2924 | |||
| 2925 | ld_moved = 0; | ||
| 2926 | if (busiest->nr_running > 1) { | ||
| 2927 | /* | ||
| 2928 | * Attempt to move tasks. If find_busiest_group has found | ||
| 2929 | * an imbalance but busiest->nr_running <= 1, the group is | ||
| 2930 | * still unbalanced. ld_moved simply stays zero, so it is | ||
| 2931 | * correctly treated as an imbalance. | ||
| 2932 | */ | ||
| 2933 | local_irq_save(flags); | ||
| 2934 | double_rq_lock(this_rq, busiest); | ||
| 2935 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
| 2936 | imbalance, sd, idle, &all_pinned); | ||
| 2937 | double_rq_unlock(this_rq, busiest); | ||
| 2938 | local_irq_restore(flags); | ||
| 2939 | |||
| 2940 | /* | ||
| 2941 | * some other cpu did the load balance for us. | ||
| 2942 | */ | ||
| 2943 | if (ld_moved && this_cpu != smp_processor_id()) | ||
| 2944 | resched_cpu(this_cpu); | ||
| 2945 | |||
| 2946 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
| 2947 | if (unlikely(all_pinned)) { | ||
| 2948 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
| 2949 | if (!cpumask_empty(cpus)) | ||
| 2950 | goto redo; | ||
| 2951 | goto out_balanced; | ||
| 2952 | } | ||
| 2953 | } | ||
| 2954 | |||
| 2955 | if (!ld_moved) { | ||
| 2956 | schedstat_inc(sd, lb_failed[idle]); | ||
| 2957 | sd->nr_balance_failed++; | ||
| 2958 | |||
| 2959 | if (need_active_balance(sd, sd_idle, idle)) { | ||
| 2960 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
| 2961 | |||
| 2962 | /* don't kick the migration_thread, if the curr | ||
| 2963 | * task on busiest cpu can't be moved to this_cpu | ||
| 2964 | */ | ||
| 2965 | if (!cpumask_test_cpu(this_cpu, | ||
| 2966 | &busiest->curr->cpus_allowed)) { | ||
| 2967 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
| 2968 | flags); | ||
| 2969 | all_pinned = 1; | ||
| 2970 | goto out_one_pinned; | ||
| 2971 | } | ||
| 2972 | |||
| 2973 | if (!busiest->active_balance) { | ||
| 2974 | busiest->active_balance = 1; | ||
| 2975 | busiest->push_cpu = this_cpu; | ||
| 2976 | active_balance = 1; | ||
| 2977 | } | ||
| 2978 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
| 2979 | if (active_balance) | ||
| 2980 | wake_up_process(busiest->migration_thread); | ||
| 2981 | |||
| 2982 | /* | ||
| 2983 | * We've kicked active balancing, reset the failure | ||
| 2984 | * counter. | ||
| 2985 | */ | ||
| 2986 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
| 2987 | } | ||
| 2988 | } else | ||
| 2989 | sd->nr_balance_failed = 0; | ||
| 2990 | |||
| 2991 | if (likely(!active_balance)) { | ||
| 2992 | /* We were unbalanced, so reset the balancing interval */ | ||
| 2993 | sd->balance_interval = sd->min_interval; | ||
| 2994 | } else { | ||
| 2995 | /* | ||
| 2996 | * If we've begun active balancing, start to back off. This | ||
| 2997 | * case may not be covered by the all_pinned logic if there | ||
| 2998 | * is only 1 task on the busy runqueue (because we don't call | ||
| 2999 | * move_tasks). | ||
| 3000 | */ | ||
| 3001 | if (sd->balance_interval < sd->max_interval) | ||
| 3002 | sd->balance_interval *= 2; | ||
| 3003 | } | ||
| 3004 | |||
| 3005 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
| 3006 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 3007 | ld_moved = -1; | ||
| 3008 | |||
| 3009 | goto out; | ||
| 3010 | |||
| 3011 | out_balanced: | ||
| 3012 | schedstat_inc(sd, lb_balanced[idle]); | ||
| 3013 | |||
| 3014 | sd->nr_balance_failed = 0; | ||
| 3015 | |||
| 3016 | out_one_pinned: | ||
| 3017 | /* tune up the balancing interval */ | ||
| 3018 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
| 3019 | (sd->balance_interval < sd->max_interval)) | ||
| 3020 | sd->balance_interval *= 2; | ||
| 3021 | |||
| 3022 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
| 3023 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 3024 | ld_moved = -1; | ||
| 3025 | else | ||
| 3026 | ld_moved = 0; | ||
| 3027 | out: | ||
| 3028 | if (ld_moved) | ||
| 3029 | update_shares(sd); | ||
| 3030 | return ld_moved; | ||
| 3031 | } | ||
| 3032 | |||
| 3033 | /* | ||
| 3034 | * idle_balance is called by schedule() if this_cpu is about to become | ||
| 3035 | * idle. Attempts to pull tasks from other CPUs. | ||
| 3036 | */ | ||
| 3037 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
| 3038 | { | ||
| 3039 | struct sched_domain *sd; | ||
| 3040 | int pulled_task = 0; | ||
| 3041 | unsigned long next_balance = jiffies + HZ; | ||
| 3042 | |||
| 3043 | this_rq->idle_stamp = this_rq->clock; | ||
| 3044 | |||
| 3045 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
| 3046 | return; | ||
| 3047 | |||
| 3048 | /* | ||
| 3049 | * Drop the rq->lock, but keep IRQ/preempt disabled. | ||
| 3050 | */ | ||
| 3051 | raw_spin_unlock(&this_rq->lock); | ||
| 3052 | |||
| 3053 | for_each_domain(this_cpu, sd) { | ||
| 3054 | unsigned long interval; | ||
| 3055 | int balance = 1; | ||
| 3056 | |||
| 3057 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
| 3058 | continue; | ||
| 3059 | |||
| 3060 | if (sd->flags & SD_BALANCE_NEWIDLE) { | ||
| 3061 | /* If we've pulled tasks over stop searching: */ | ||
| 3062 | pulled_task = load_balance(this_cpu, this_rq, | ||
| 3063 | sd, CPU_NEWLY_IDLE, &balance); | ||
| 3064 | } | ||
| 3065 | |||
| 3066 | interval = msecs_to_jiffies(sd->balance_interval); | ||
| 3067 | if (time_after(next_balance, sd->last_balance + interval)) | ||
| 3068 | next_balance = sd->last_balance + interval; | ||
| 3069 | if (pulled_task) { | ||
| 3070 | this_rq->idle_stamp = 0; | ||
| 3071 | break; | ||
| 3072 | } | ||
| 3073 | } | ||
| 3074 | |||
| 3075 | raw_spin_lock(&this_rq->lock); | ||
| 3076 | |||
| 3077 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
| 3078 | /* | ||
| 3079 | * We are going idle. next_balance may be set based on | ||
| 3080 | * a busy processor. So reset next_balance. | ||
| 3081 | */ | ||
| 3082 | this_rq->next_balance = next_balance; | ||
| 3083 | } | ||
| 3084 | } | ||
| 3085 | |||
| 3086 | /* | ||
| 3087 | * active_load_balance is run by migration threads. It pushes running tasks | ||
| 3088 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
| 3089 | * running on each physical CPU where possible, and avoids physical / | ||
| 3090 | * logical imbalances. | ||
| 3091 | * | ||
| 3092 | * Called with busiest_rq locked. | ||
| 3093 | */ | ||
| 3094 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
| 3095 | { | ||
| 3096 | int target_cpu = busiest_rq->push_cpu; | ||
| 3097 | struct sched_domain *sd; | ||
| 3098 | struct rq *target_rq; | ||
| 3099 | |||
| 3100 | /* Is there any task to move? */ | ||
| 3101 | if (busiest_rq->nr_running <= 1) | ||
| 3102 | return; | ||
| 3103 | |||
| 3104 | target_rq = cpu_rq(target_cpu); | ||
| 3105 | |||
| 3106 | /* | ||
| 3107 | * This condition is "impossible", if it occurs | ||
| 3108 | * we need to fix it. Originally reported by | ||
| 3109 | * Bjorn Helgaas on a 128-cpu setup. | ||
| 3110 | */ | ||
| 3111 | BUG_ON(busiest_rq == target_rq); | ||
| 3112 | |||
| 3113 | /* move a task from busiest_rq to target_rq */ | ||
| 3114 | double_lock_balance(busiest_rq, target_rq); | ||
| 3115 | update_rq_clock(busiest_rq); | ||
| 3116 | update_rq_clock(target_rq); | ||
| 3117 | |||
| 3118 | /* Search for an sd spanning us and the target CPU. */ | ||
| 3119 | for_each_domain(target_cpu, sd) { | ||
| 3120 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
| 3121 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
| 3122 | break; | ||
| 3123 | } | ||
| 3124 | |||
| 3125 | if (likely(sd)) { | ||
| 3126 | schedstat_inc(sd, alb_count); | ||
| 3127 | |||
| 3128 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
| 3129 | sd, CPU_IDLE)) | ||
| 3130 | schedstat_inc(sd, alb_pushed); | ||
| 3131 | else | ||
| 3132 | schedstat_inc(sd, alb_failed); | ||
| 3133 | } | ||
| 3134 | double_unlock_balance(busiest_rq, target_rq); | ||
| 3135 | } | ||
| 3136 | |||
| 3137 | #ifdef CONFIG_NO_HZ | ||
| 3138 | static struct { | ||
| 3139 | atomic_t load_balancer; | ||
| 3140 | cpumask_var_t cpu_mask; | ||
| 3141 | cpumask_var_t ilb_grp_nohz_mask; | ||
| 3142 | } nohz ____cacheline_aligned = { | ||
| 3143 | .load_balancer = ATOMIC_INIT(-1), | ||
| 3144 | }; | ||
| 3145 | |||
| 3146 | int get_nohz_load_balancer(void) | ||
| 3147 | { | ||
| 3148 | return atomic_read(&nohz.load_balancer); | ||
| 3149 | } | ||
| 3150 | |||
| 3151 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 3152 | /** | ||
| 3153 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
| 3154 | * @cpu: The cpu whose lowest level of sched domain is to | ||
| 3155 | * be returned. | ||
| 3156 | * @flag: The flag to check for the lowest sched_domain | ||
| 3157 | * for the given cpu. | ||
| 3158 | * | ||
| 3159 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
| 3160 | */ | ||
| 3161 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
| 3162 | { | ||
| 3163 | struct sched_domain *sd; | ||
| 3164 | |||
| 3165 | for_each_domain(cpu, sd) | ||
| 3166 | if (sd && (sd->flags & flag)) | ||
| 3167 | break; | ||
| 3168 | |||
| 3169 | return sd; | ||
| 3170 | } | ||
| 3171 | |||
| 3172 | /** | ||
| 3173 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
| 3174 | * @cpu: The cpu whose domains we're iterating over. | ||
| 3175 | * @sd: variable holding the value of the power_savings_sd | ||
| 3176 | * for cpu. | ||
| 3177 | * @flag: The flag to filter the sched_domains to be iterated. | ||
| 3178 | * | ||
| 3179 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
| 3180 | * set, starting from the lowest sched_domain to the highest. | ||
| 3181 | */ | ||
| 3182 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
| 3183 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
| 3184 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
| 3185 | |||
| 3186 | /** | ||
| 3187 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
| 3188 | * @ilb_group: group to be checked for semi-idleness | ||
| 3189 | * | ||
| 3190 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
| 3191 | * | ||
| 3192 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
| 3193 | * and atleast one non-idle CPU. This helper function checks if the given | ||
| 3194 | * sched_group is semi-idle or not. | ||
| 3195 | */ | ||
| 3196 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
| 3197 | { | ||
| 3198 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
| 3199 | sched_group_cpus(ilb_group)); | ||
| 3200 | |||
| 3201 | /* | ||
| 3202 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
| 3203 | * and atleast one idle cpu. | ||
| 3204 | */ | ||
| 3205 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
| 3206 | return 0; | ||
| 3207 | |||
| 3208 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
| 3209 | return 0; | ||
| 3210 | |||
| 3211 | return 1; | ||
| 3212 | } | ||
| 3213 | /** | ||
| 3214 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
| 3215 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
| 3216 | * | ||
| 3217 | * Returns: Returns the id of the idle load balancer if it exists, | ||
| 3218 | * Else, returns >= nr_cpu_ids. | ||
| 3219 | * | ||
| 3220 | * This algorithm picks the idle load balancer such that it belongs to a | ||
| 3221 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
| 3222 | * completely idle packages/cores just for the purpose of idle load balancing | ||
| 3223 | * when there are other idle cpu's which are better suited for that job. | ||
| 3224 | */ | ||
| 3225 | static int find_new_ilb(int cpu) | ||
| 3226 | { | ||
| 3227 | struct sched_domain *sd; | ||
| 3228 | struct sched_group *ilb_group; | ||
| 3229 | |||
| 3230 | /* | ||
| 3231 | * Have idle load balancer selection from semi-idle packages only | ||
| 3232 | * when power-aware load balancing is enabled | ||
| 3233 | */ | ||
| 3234 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
| 3235 | goto out_done; | ||
| 3236 | |||
| 3237 | /* | ||
| 3238 | * Optimize for the case when we have no idle CPUs or only one | ||
| 3239 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
| 3240 | */ | ||
| 3241 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
| 3242 | goto out_done; | ||
| 3243 | |||
| 3244 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
| 3245 | ilb_group = sd->groups; | ||
| 3246 | |||
| 3247 | do { | ||
| 3248 | if (is_semi_idle_group(ilb_group)) | ||
| 3249 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
| 3250 | |||
| 3251 | ilb_group = ilb_group->next; | ||
| 3252 | |||
| 3253 | } while (ilb_group != sd->groups); | ||
| 3254 | } | ||
| 3255 | |||
| 3256 | out_done: | ||
| 3257 | return cpumask_first(nohz.cpu_mask); | ||
| 3258 | } | ||
| 3259 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
| 3260 | static inline int find_new_ilb(int call_cpu) | ||
| 3261 | { | ||
| 3262 | return cpumask_first(nohz.cpu_mask); | ||
| 3263 | } | ||
| 3264 | #endif | ||
| 3265 | |||
| 3266 | /* | ||
| 3267 | * This routine will try to nominate the ilb (idle load balancing) | ||
| 3268 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
| 3269 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
| 3270 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
| 3271 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
| 3272 | * arrives... | ||
| 3273 | * | ||
| 3274 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
| 3275 | * for idle load balancing. ilb owner will still be part of | ||
| 3276 | * nohz.cpu_mask.. | ||
| 3277 | * | ||
| 3278 | * While stopping the tick, this cpu will become the ilb owner if there | ||
| 3279 | * is no other owner. And will be the owner till that cpu becomes busy | ||
| 3280 | * or if all cpus in the system stop their ticks at which point | ||
| 3281 | * there is no need for ilb owner. | ||
| 3282 | * | ||
| 3283 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
| 3284 | * next busy scheduler_tick() | ||
| 3285 | */ | ||
| 3286 | int select_nohz_load_balancer(int stop_tick) | ||
| 3287 | { | ||
| 3288 | int cpu = smp_processor_id(); | ||
| 3289 | |||
| 3290 | if (stop_tick) { | ||
| 3291 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
| 3292 | |||
| 3293 | if (!cpu_active(cpu)) { | ||
| 3294 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
| 3295 | return 0; | ||
| 3296 | |||
| 3297 | /* | ||
| 3298 | * If we are going offline and still the leader, | ||
| 3299 | * give up! | ||
| 3300 | */ | ||
| 3301 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
| 3302 | BUG(); | ||
| 3303 | |||
| 3304 | return 0; | ||
| 3305 | } | ||
| 3306 | |||
| 3307 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
| 3308 | |||
| 3309 | /* time for ilb owner also to sleep */ | ||
| 3310 | if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { | ||
| 3311 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
| 3312 | atomic_set(&nohz.load_balancer, -1); | ||
| 3313 | return 0; | ||
| 3314 | } | ||
| 3315 | |||
| 3316 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
| 3317 | /* make me the ilb owner */ | ||
| 3318 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
| 3319 | return 1; | ||
| 3320 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
| 3321 | int new_ilb; | ||
| 3322 | |||
| 3323 | if (!(sched_smt_power_savings || | ||
| 3324 | sched_mc_power_savings)) | ||
| 3325 | return 1; | ||
| 3326 | /* | ||
| 3327 | * Check to see if there is a more power-efficient | ||
| 3328 | * ilb. | ||
| 3329 | */ | ||
| 3330 | new_ilb = find_new_ilb(cpu); | ||
| 3331 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
| 3332 | atomic_set(&nohz.load_balancer, -1); | ||
| 3333 | resched_cpu(new_ilb); | ||
| 3334 | return 0; | ||
| 3335 | } | ||
| 3336 | return 1; | ||
| 3337 | } | ||
| 3338 | } else { | ||
| 3339 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
| 3340 | return 0; | ||
| 3341 | |||
| 3342 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
| 3343 | |||
| 3344 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
| 3345 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
| 3346 | BUG(); | ||
| 3347 | } | ||
| 3348 | return 0; | ||
| 3349 | } | ||
| 3350 | #endif | ||
| 3351 | |||
| 3352 | static DEFINE_SPINLOCK(balancing); | ||
| 3353 | |||
| 3354 | /* | ||
| 3355 | * It checks each scheduling domain to see if it is due to be balanced, | ||
| 3356 | * and initiates a balancing operation if so. | ||
| 3357 | * | ||
| 3358 | * Balancing parameters are set up in arch_init_sched_domains. | ||
| 3359 | */ | ||
| 3360 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
| 3361 | { | ||
| 3362 | int balance = 1; | ||
| 3363 | struct rq *rq = cpu_rq(cpu); | ||
| 3364 | unsigned long interval; | ||
| 3365 | struct sched_domain *sd; | ||
| 3366 | /* Earliest time when we have to do rebalance again */ | ||
| 3367 | unsigned long next_balance = jiffies + 60*HZ; | ||
| 3368 | int update_next_balance = 0; | ||
| 3369 | int need_serialize; | ||
| 3370 | |||
| 3371 | for_each_domain(cpu, sd) { | ||
| 3372 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
| 3373 | continue; | ||
| 3374 | |||
| 3375 | interval = sd->balance_interval; | ||
| 3376 | if (idle != CPU_IDLE) | ||
| 3377 | interval *= sd->busy_factor; | ||
| 3378 | |||
| 3379 | /* scale ms to jiffies */ | ||
| 3380 | interval = msecs_to_jiffies(interval); | ||
| 3381 | if (unlikely(!interval)) | ||
| 3382 | interval = 1; | ||
| 3383 | if (interval > HZ*NR_CPUS/10) | ||
| 3384 | interval = HZ*NR_CPUS/10; | ||
| 3385 | |||
| 3386 | need_serialize = sd->flags & SD_SERIALIZE; | ||
| 3387 | |||
| 3388 | if (need_serialize) { | ||
| 3389 | if (!spin_trylock(&balancing)) | ||
| 3390 | goto out; | ||
| 3391 | } | ||
| 3392 | |||
| 3393 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
| 3394 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
| 3395 | /* | ||
| 3396 | * We've pulled tasks over so either we're no | ||
| 3397 | * longer idle, or one of our SMT siblings is | ||
| 3398 | * not idle. | ||
| 3399 | */ | ||
| 3400 | idle = CPU_NOT_IDLE; | ||
| 3401 | } | ||
| 3402 | sd->last_balance = jiffies; | ||
| 3403 | } | ||
| 3404 | if (need_serialize) | ||
| 3405 | spin_unlock(&balancing); | ||
| 3406 | out: | ||
| 3407 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
| 3408 | next_balance = sd->last_balance + interval; | ||
| 3409 | update_next_balance = 1; | ||
| 3410 | } | ||
| 3411 | |||
| 3412 | /* | ||
| 3413 | * Stop the load balance at this level. There is another | ||
| 3414 | * CPU in our sched group which is doing load balancing more | ||
| 3415 | * actively. | ||
| 3416 | */ | ||
| 3417 | if (!balance) | ||
| 3418 | break; | ||
| 3419 | } | ||
| 3420 | |||
| 3421 | /* | ||
| 3422 | * next_balance will be updated only when there is a need. | ||
| 3423 | * When the cpu is attached to null domain for ex, it will not be | ||
| 3424 | * updated. | ||
| 3425 | */ | ||
| 3426 | if (likely(update_next_balance)) | ||
| 3427 | rq->next_balance = next_balance; | ||
| 3428 | } | ||
| 3429 | |||
| 3430 | /* | ||
| 3431 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
| 3432 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
| 3433 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
| 3434 | */ | ||
| 3435 | static void run_rebalance_domains(struct softirq_action *h) | ||
| 3436 | { | ||
| 3437 | int this_cpu = smp_processor_id(); | ||
| 3438 | struct rq *this_rq = cpu_rq(this_cpu); | ||
| 3439 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
| 3440 | CPU_IDLE : CPU_NOT_IDLE; | ||
| 3441 | |||
| 3442 | rebalance_domains(this_cpu, idle); | ||
| 3443 | |||
| 3444 | #ifdef CONFIG_NO_HZ | ||
| 3445 | /* | ||
| 3446 | * If this cpu is the owner for idle load balancing, then do the | ||
| 3447 | * balancing on behalf of the other idle cpus whose ticks are | ||
| 3448 | * stopped. | ||
| 3449 | */ | ||
| 3450 | if (this_rq->idle_at_tick && | ||
| 3451 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
| 3452 | struct rq *rq; | ||
| 3453 | int balance_cpu; | ||
| 3454 | |||
| 3455 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
| 3456 | if (balance_cpu == this_cpu) | ||
| 3457 | continue; | ||
| 3458 | |||
| 3459 | /* | ||
| 3460 | * If this cpu gets work to do, stop the load balancing | ||
| 3461 | * work being done for other cpus. Next load | ||
| 3462 | * balancing owner will pick it up. | ||
| 3463 | */ | ||
| 3464 | if (need_resched()) | ||
| 3465 | break; | ||
| 3466 | |||
| 3467 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
| 3468 | |||
| 3469 | rq = cpu_rq(balance_cpu); | ||
| 3470 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
| 3471 | this_rq->next_balance = rq->next_balance; | ||
| 3472 | } | ||
| 3473 | } | ||
| 3474 | #endif | ||
| 3475 | } | ||
| 3476 | |||
| 3477 | static inline int on_null_domain(int cpu) | ||
| 3478 | { | ||
| 3479 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
| 3480 | } | ||
| 3481 | |||
| 3482 | /* | ||
| 3483 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
| 3484 | * | ||
| 3485 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
| 3486 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
| 3487 | * if the whole system is idle. | ||
| 3488 | */ | ||
| 3489 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
| 3490 | { | ||
| 3491 | #ifdef CONFIG_NO_HZ | ||
| 3492 | /* | ||
| 3493 | * If we were in the nohz mode recently and busy at the current | ||
| 3494 | * scheduler tick, then check if we need to nominate new idle | ||
| 3495 | * load balancer. | ||
| 3496 | */ | ||
| 3497 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
| 3498 | rq->in_nohz_recently = 0; | ||
| 3499 | |||
| 3500 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
| 3501 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
| 3502 | atomic_set(&nohz.load_balancer, -1); | ||
| 3503 | } | ||
| 3504 | |||
| 3505 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
| 3506 | int ilb = find_new_ilb(cpu); | ||
| 3507 | |||
| 3508 | if (ilb < nr_cpu_ids) | ||
| 3509 | resched_cpu(ilb); | ||
| 3510 | } | ||
| 3511 | } | ||
| 3512 | |||
| 3513 | /* | ||
| 3514 | * If this cpu is idle and doing idle load balancing for all the | ||
| 3515 | * cpus with ticks stopped, is it time for that to stop? | ||
| 3516 | */ | ||
| 3517 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
| 3518 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
| 3519 | resched_cpu(cpu); | ||
| 3520 | return; | ||
| 3521 | } | ||
| 3522 | |||
| 3523 | /* | ||
| 3524 | * If this cpu is idle and the idle load balancing is done by | ||
| 3525 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
| 3526 | */ | ||
| 3527 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
| 3528 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
| 3529 | return; | ||
| 3530 | #endif | ||
| 3531 | /* Don't need to rebalance while attached to NULL domain */ | ||
| 3532 | if (time_after_eq(jiffies, rq->next_balance) && | ||
| 3533 | likely(!on_null_domain(cpu))) | ||
| 3534 | raise_softirq(SCHED_SOFTIRQ); | ||
| 3535 | } | ||
| 1954 | 3536 | ||
| 1955 | static void rq_online_fair(struct rq *rq) | 3537 | static void rq_online_fair(struct rq *rq) |
| 1956 | { | 3538 | { |
| @@ -1962,6 +3544,15 @@ static void rq_offline_fair(struct rq *rq) | |||
| 1962 | update_sysctl(); | 3544 | update_sysctl(); |
| 1963 | } | 3545 | } |
| 1964 | 3546 | ||
| 3547 | #else /* CONFIG_SMP */ | ||
| 3548 | |||
| 3549 | /* | ||
| 3550 | * on UP we do not need to balance between CPUs: | ||
| 3551 | */ | ||
| 3552 | static inline void idle_balance(int cpu, struct rq *rq) | ||
| 3553 | { | ||
| 3554 | } | ||
| 3555 | |||
| 1965 | #endif /* CONFIG_SMP */ | 3556 | #endif /* CONFIG_SMP */ |
| 1966 | 3557 | ||
| 1967 | /* | 3558 | /* |
| @@ -2076,7 +3667,7 @@ static void moved_group_fair(struct task_struct *p, int on_rq) | |||
| 2076 | } | 3667 | } |
| 2077 | #endif | 3668 | #endif |
| 2078 | 3669 | ||
| 2079 | unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 3670 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
| 2080 | { | 3671 | { |
| 2081 | struct sched_entity *se = &task->se; | 3672 | struct sched_entity *se = &task->se; |
| 2082 | unsigned int rr_interval = 0; | 3673 | unsigned int rr_interval = 0; |
| @@ -2108,8 +3699,6 @@ static const struct sched_class fair_sched_class = { | |||
| 2108 | #ifdef CONFIG_SMP | 3699 | #ifdef CONFIG_SMP |
| 2109 | .select_task_rq = select_task_rq_fair, | 3700 | .select_task_rq = select_task_rq_fair, |
| 2110 | 3701 | ||
| 2111 | .load_balance = load_balance_fair, | ||
| 2112 | .move_one_task = move_one_task_fair, | ||
| 2113 | .rq_online = rq_online_fair, | 3702 | .rq_online = rq_online_fair, |
| 2114 | .rq_offline = rq_offline_fair, | 3703 | .rq_offline = rq_offline_fair, |
| 2115 | 3704 | ||
