aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched_fair.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched_fair.c')
-rw-r--r--kernel/sched_fair.c350
1 files changed, 148 insertions, 202 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index 5a5ea2cd924f..217e4a9393e4 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -35,8 +35,8 @@
35 * (to see the precise effective timeslice length of your workload, 35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field) 36 * run vmstat and monitor the context-switches (cs) field)
37 */ 37 */
38unsigned int sysctl_sched_latency = 5000000ULL; 38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 5000000ULL; 39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40 40
41/* 41/*
42 * The initial- and re-scaling of tunables is configurable 42 * The initial- and re-scaling of tunables is configurable
@@ -52,15 +52,15 @@ enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 52
53/* 53/*
54 * Minimal preemption granularity for CPU-bound tasks: 54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */ 56 */
57unsigned int sysctl_sched_min_granularity = 1000000ULL; 57unsigned int sysctl_sched_min_granularity = 2000000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL; 58unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
59 59
60/* 60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */ 62 */
63static unsigned int sched_nr_latency = 5; 63static unsigned int sched_nr_latency = 3;
64 64
65/* 65/*
66 * After fork, child runs first. If set to 0 (default) then 66 * After fork, child runs first. If set to 0 (default) then
@@ -505,7 +505,8 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
505{ 505{
506 unsigned long delta_exec_weighted; 506 unsigned long delta_exec_weighted;
507 507
508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); 508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
509 510
510 curr->sum_exec_runtime += delta_exec; 511 curr->sum_exec_runtime += delta_exec;
511 schedstat_add(cfs_rq, exec_clock, delta_exec); 512 schedstat_add(cfs_rq, exec_clock, delta_exec);
@@ -548,7 +549,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
548static inline void 549static inline void
549update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
550{ 551{
551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); 552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
552} 553}
553 554
554/* 555/*
@@ -567,18 +568,18 @@ static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
567static void 568static void
568update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
569{ 570{
570 schedstat_set(se->wait_max, max(se->wait_max, 571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start)); 572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
572 schedstat_set(se->wait_count, se->wait_count + 1); 573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum + 574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start); 575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
575#ifdef CONFIG_SCHEDSTATS 576#ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) { 577 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se), 578 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start); 579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
579 } 580 }
580#endif 581#endif
581 schedstat_set(se->wait_start, 0); 582 schedstat_set(se->statistics.wait_start, 0);
582} 583}
583 584
584static inline void 585static inline void
@@ -657,39 +658,39 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
657 if (entity_is_task(se)) 658 if (entity_is_task(se))
658 tsk = task_of(se); 659 tsk = task_of(se);
659 660
660 if (se->sleep_start) { 661 if (se->statistics.sleep_start) {
661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; 662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
662 663
663 if ((s64)delta < 0) 664 if ((s64)delta < 0)
664 delta = 0; 665 delta = 0;
665 666
666 if (unlikely(delta > se->sleep_max)) 667 if (unlikely(delta > se->statistics.sleep_max))
667 se->sleep_max = delta; 668 se->statistics.sleep_max = delta;
668 669
669 se->sleep_start = 0; 670 se->statistics.sleep_start = 0;
670 se->sum_sleep_runtime += delta; 671 se->statistics.sum_sleep_runtime += delta;
671 672
672 if (tsk) { 673 if (tsk) {
673 account_scheduler_latency(tsk, delta >> 10, 1); 674 account_scheduler_latency(tsk, delta >> 10, 1);
674 trace_sched_stat_sleep(tsk, delta); 675 trace_sched_stat_sleep(tsk, delta);
675 } 676 }
676 } 677 }
677 if (se->block_start) { 678 if (se->statistics.block_start) {
678 u64 delta = rq_of(cfs_rq)->clock - se->block_start; 679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
679 680
680 if ((s64)delta < 0) 681 if ((s64)delta < 0)
681 delta = 0; 682 delta = 0;
682 683
683 if (unlikely(delta > se->block_max)) 684 if (unlikely(delta > se->statistics.block_max))
684 se->block_max = delta; 685 se->statistics.block_max = delta;
685 686
686 se->block_start = 0; 687 se->statistics.block_start = 0;
687 se->sum_sleep_runtime += delta; 688 se->statistics.sum_sleep_runtime += delta;
688 689
689 if (tsk) { 690 if (tsk) {
690 if (tsk->in_iowait) { 691 if (tsk->in_iowait) {
691 se->iowait_sum += delta; 692 se->statistics.iowait_sum += delta;
692 se->iowait_count++; 693 se->statistics.iowait_count++;
693 trace_sched_stat_iowait(tsk, delta); 694 trace_sched_stat_iowait(tsk, delta);
694 } 695 }
695 696
@@ -737,20 +738,10 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
737 vruntime += sched_vslice(cfs_rq, se); 738 vruntime += sched_vslice(cfs_rq, se);
738 739
739 /* sleeps up to a single latency don't count. */ 740 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) { 741 if (!initial) {
741 unsigned long thresh = sysctl_sched_latency; 742 unsigned long thresh = sysctl_sched_latency;
742 743
743 /* 744 /*
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
748 */
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
752
753 /*
754 * Halve their sleep time's effect, to allow 745 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers: 746 * for a gentler effect of sleepers:
756 */ 747 */
@@ -766,9 +757,6 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
766 se->vruntime = vruntime; 757 se->vruntime = vruntime;
767} 758}
768 759
769#define ENQUEUE_WAKEUP 1
770#define ENQUEUE_MIGRATE 2
771
772static void 760static void
773enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 761enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
774{ 762{
@@ -776,7 +764,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
776 * Update the normalized vruntime before updating min_vruntime 764 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr(). 765 * through callig update_curr().
778 */ 766 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE)) 767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
780 se->vruntime += cfs_rq->min_vruntime; 768 se->vruntime += cfs_rq->min_vruntime;
781 769
782 /* 770 /*
@@ -812,7 +800,7 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
812} 800}
813 801
814static void 802static void
815dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) 803dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
816{ 804{
817 /* 805 /*
818 * Update run-time statistics of the 'current'. 806 * Update run-time statistics of the 'current'.
@@ -820,15 +808,15 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
820 update_curr(cfs_rq); 808 update_curr(cfs_rq);
821 809
822 update_stats_dequeue(cfs_rq, se); 810 update_stats_dequeue(cfs_rq, se);
823 if (sleep) { 811 if (flags & DEQUEUE_SLEEP) {
824#ifdef CONFIG_SCHEDSTATS 812#ifdef CONFIG_SCHEDSTATS
825 if (entity_is_task(se)) { 813 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se); 814 struct task_struct *tsk = task_of(se);
827 815
828 if (tsk->state & TASK_INTERRUPTIBLE) 816 if (tsk->state & TASK_INTERRUPTIBLE)
829 se->sleep_start = rq_of(cfs_rq)->clock; 817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
830 if (tsk->state & TASK_UNINTERRUPTIBLE) 818 if (tsk->state & TASK_UNINTERRUPTIBLE)
831 se->block_start = rq_of(cfs_rq)->clock; 819 se->statistics.block_start = rq_of(cfs_rq)->clock;
832 } 820 }
833#endif 821#endif
834 } 822 }
@@ -845,7 +833,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
845 * update can refer to the ->curr item and we need to reflect this 833 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position. 834 * movement in our normalized position.
847 */ 835 */
848 if (!sleep) 836 if (!(flags & DEQUEUE_SLEEP))
849 se->vruntime -= cfs_rq->min_vruntime; 837 se->vruntime -= cfs_rq->min_vruntime;
850} 838}
851 839
@@ -912,7 +900,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
912 * when there are only lesser-weight tasks around): 900 * when there are only lesser-weight tasks around):
913 */ 901 */
914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
915 se->slice_max = max(se->slice_max, 903 se->statistics.slice_max = max(se->statistics.slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime); 904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
917 } 905 }
918#endif 906#endif
@@ -1054,16 +1042,10 @@ static inline void hrtick_update(struct rq *rq)
1054 * then put the task into the rbtree: 1042 * then put the task into the rbtree:
1055 */ 1043 */
1056static void 1044static void
1057enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) 1045enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1058{ 1046{
1059 struct cfs_rq *cfs_rq; 1047 struct cfs_rq *cfs_rq;
1060 struct sched_entity *se = &p->se; 1048 struct sched_entity *se = &p->se;
1061 int flags = 0;
1062
1063 if (wakeup)
1064 flags |= ENQUEUE_WAKEUP;
1065 if (p->state == TASK_WAKING)
1066 flags |= ENQUEUE_MIGRATE;
1067 1049
1068 for_each_sched_entity(se) { 1050 for_each_sched_entity(se) {
1069 if (se->on_rq) 1051 if (se->on_rq)
@@ -1081,18 +1063,18 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1081 * decreased. We remove the task from the rbtree and 1063 * decreased. We remove the task from the rbtree and
1082 * update the fair scheduling stats: 1064 * update the fair scheduling stats:
1083 */ 1065 */
1084static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) 1066static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1085{ 1067{
1086 struct cfs_rq *cfs_rq; 1068 struct cfs_rq *cfs_rq;
1087 struct sched_entity *se = &p->se; 1069 struct sched_entity *se = &p->se;
1088 1070
1089 for_each_sched_entity(se) { 1071 for_each_sched_entity(se) {
1090 cfs_rq = cfs_rq_of(se); 1072 cfs_rq = cfs_rq_of(se);
1091 dequeue_entity(cfs_rq, se, sleep); 1073 dequeue_entity(cfs_rq, se, flags);
1092 /* Don't dequeue parent if it has other entities besides us */ 1074 /* Don't dequeue parent if it has other entities besides us */
1093 if (cfs_rq->load.weight) 1075 if (cfs_rq->load.weight)
1094 break; 1076 break;
1095 sleep = 1; 1077 flags |= DEQUEUE_SLEEP;
1096 } 1078 }
1097 1079
1098 hrtick_update(rq); 1080 hrtick_update(rq);
@@ -1240,7 +1222,6 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
1240 1222
1241static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 1223static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1242{ 1224{
1243 struct task_struct *curr = current;
1244 unsigned long this_load, load; 1225 unsigned long this_load, load;
1245 int idx, this_cpu, prev_cpu; 1226 int idx, this_cpu, prev_cpu;
1246 unsigned long tl_per_task; 1227 unsigned long tl_per_task;
@@ -1255,18 +1236,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1255 load = source_load(prev_cpu, idx); 1236 load = source_load(prev_cpu, idx);
1256 this_load = target_load(this_cpu, idx); 1237 this_load = target_load(this_cpu, idx);
1257 1238
1258 if (sync) {
1259 if (sched_feat(SYNC_LESS) &&
1260 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1261 p->se.avg_overlap > sysctl_sched_migration_cost))
1262 sync = 0;
1263 } else {
1264 if (sched_feat(SYNC_MORE) &&
1265 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1266 p->se.avg_overlap < sysctl_sched_migration_cost))
1267 sync = 1;
1268 }
1269
1270 /* 1239 /*
1271 * If sync wakeup then subtract the (maximum possible) 1240 * If sync wakeup then subtract the (maximum possible)
1272 * effect of the currently running task from the load 1241 * effect of the currently running task from the load
@@ -1306,7 +1275,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1306 if (sync && balanced) 1275 if (sync && balanced)
1307 return 1; 1276 return 1;
1308 1277
1309 schedstat_inc(p, se.nr_wakeups_affine_attempts); 1278 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1310 tl_per_task = cpu_avg_load_per_task(this_cpu); 1279 tl_per_task = cpu_avg_load_per_task(this_cpu);
1311 1280
1312 if (balanced || 1281 if (balanced ||
@@ -1318,7 +1287,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1318 * there is no bad imbalance. 1287 * there is no bad imbalance.
1319 */ 1288 */
1320 schedstat_inc(sd, ttwu_move_affine); 1289 schedstat_inc(sd, ttwu_move_affine);
1321 schedstat_inc(p, se.nr_wakeups_affine); 1290 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1322 1291
1323 return 1; 1292 return 1;
1324 } 1293 }
@@ -1406,29 +1375,48 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1406/* 1375/*
1407 * Try and locate an idle CPU in the sched_domain. 1376 * Try and locate an idle CPU in the sched_domain.
1408 */ 1377 */
1409static int 1378static int select_idle_sibling(struct task_struct *p, int target)
1410select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1411{ 1379{
1412 int cpu = smp_processor_id(); 1380 int cpu = smp_processor_id();
1413 int prev_cpu = task_cpu(p); 1381 int prev_cpu = task_cpu(p);
1382 struct sched_domain *sd;
1414 int i; 1383 int i;
1415 1384
1416 /* 1385 /*
1417 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE 1386 * If the task is going to be woken-up on this cpu and if it is
1418 * test in select_task_rq_fair) and the prev_cpu is idle then that's 1387 * already idle, then it is the right target.
1419 * always a better target than the current cpu.
1420 */ 1388 */
1421 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running) 1389 if (target == cpu && idle_cpu(cpu))
1390 return cpu;
1391
1392 /*
1393 * If the task is going to be woken-up on the cpu where it previously
1394 * ran and if it is currently idle, then it the right target.
1395 */
1396 if (target == prev_cpu && idle_cpu(prev_cpu))
1422 return prev_cpu; 1397 return prev_cpu;
1423 1398
1424 /* 1399 /*
1425 * Otherwise, iterate the domain and find an elegible idle cpu. 1400 * Otherwise, iterate the domains and find an elegible idle cpu.
1426 */ 1401 */
1427 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { 1402 for_each_domain(target, sd) {
1428 if (!cpu_rq(i)->cfs.nr_running) { 1403 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1429 target = i;
1430 break; 1404 break;
1405
1406 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1407 if (idle_cpu(i)) {
1408 target = i;
1409 break;
1410 }
1431 } 1411 }
1412
1413 /*
1414 * Lets stop looking for an idle sibling when we reached
1415 * the domain that spans the current cpu and prev_cpu.
1416 */
1417 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1418 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1419 break;
1432 } 1420 }
1433 1421
1434 return target; 1422 return target;
@@ -1445,7 +1433,8 @@ select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1445 * 1433 *
1446 * preempt must be disabled. 1434 * preempt must be disabled.
1447 */ 1435 */
1448static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 1436static int
1437select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1449{ 1438{
1450 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 1439 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1451 int cpu = smp_processor_id(); 1440 int cpu = smp_processor_id();
@@ -1456,8 +1445,7 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1456 int sync = wake_flags & WF_SYNC; 1445 int sync = wake_flags & WF_SYNC;
1457 1446
1458 if (sd_flag & SD_BALANCE_WAKE) { 1447 if (sd_flag & SD_BALANCE_WAKE) {
1459 if (sched_feat(AFFINE_WAKEUPS) && 1448 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1460 cpumask_test_cpu(cpu, &p->cpus_allowed))
1461 want_affine = 1; 1449 want_affine = 1;
1462 new_cpu = prev_cpu; 1450 new_cpu = prev_cpu;
1463 } 1451 }
@@ -1491,34 +1479,13 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1491 } 1479 }
1492 1480
1493 /* 1481 /*
1494 * While iterating the domains looking for a spanning 1482 * If both cpu and prev_cpu are part of this domain,
1495 * WAKE_AFFINE domain, adjust the affine target to any idle cpu 1483 * cpu is a valid SD_WAKE_AFFINE target.
1496 * in cache sharing domains along the way.
1497 */ 1484 */
1498 if (want_affine) { 1485 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1499 int target = -1; 1486 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1500 1487 affine_sd = tmp;
1501 /* 1488 want_affine = 0;
1502 * If both cpu and prev_cpu are part of this domain,
1503 * cpu is a valid SD_WAKE_AFFINE target.
1504 */
1505 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1506 target = cpu;
1507
1508 /*
1509 * If there's an idle sibling in this domain, make that
1510 * the wake_affine target instead of the current cpu.
1511 */
1512 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
1513 target = select_idle_sibling(p, tmp, target);
1514
1515 if (target >= 0) {
1516 if (tmp->flags & SD_WAKE_AFFINE) {
1517 affine_sd = tmp;
1518 want_affine = 0;
1519 }
1520 cpu = target;
1521 }
1522 } 1489 }
1523 1490
1524 if (!want_sd && !want_affine) 1491 if (!want_sd && !want_affine)
@@ -1531,22 +1498,29 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1531 sd = tmp; 1498 sd = tmp;
1532 } 1499 }
1533 1500
1501#ifdef CONFIG_FAIR_GROUP_SCHED
1534 if (sched_feat(LB_SHARES_UPDATE)) { 1502 if (sched_feat(LB_SHARES_UPDATE)) {
1535 /* 1503 /*
1536 * Pick the largest domain to update shares over 1504 * Pick the largest domain to update shares over
1537 */ 1505 */
1538 tmp = sd; 1506 tmp = sd;
1539 if (affine_sd && (!tmp || 1507 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1540 cpumask_weight(sched_domain_span(affine_sd)) >
1541 cpumask_weight(sched_domain_span(sd))))
1542 tmp = affine_sd; 1508 tmp = affine_sd;
1543 1509
1544 if (tmp) 1510 if (tmp) {
1511 raw_spin_unlock(&rq->lock);
1545 update_shares(tmp); 1512 update_shares(tmp);
1513 raw_spin_lock(&rq->lock);
1514 }
1546 } 1515 }
1516#endif
1547 1517
1548 if (affine_sd && wake_affine(affine_sd, p, sync)) 1518 if (affine_sd) {
1549 return cpu; 1519 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1520 return select_idle_sibling(p, cpu);
1521 else
1522 return select_idle_sibling(p, prev_cpu);
1523 }
1550 1524
1551 while (sd) { 1525 while (sd) {
1552 int load_idx = sd->forkexec_idx; 1526 int load_idx = sd->forkexec_idx;
@@ -1576,10 +1550,10 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1576 1550
1577 /* Now try balancing at a lower domain level of new_cpu */ 1551 /* Now try balancing at a lower domain level of new_cpu */
1578 cpu = new_cpu; 1552 cpu = new_cpu;
1579 weight = cpumask_weight(sched_domain_span(sd)); 1553 weight = sd->span_weight;
1580 sd = NULL; 1554 sd = NULL;
1581 for_each_domain(cpu, tmp) { 1555 for_each_domain(cpu, tmp) {
1582 if (weight <= cpumask_weight(sched_domain_span(tmp))) 1556 if (weight <= tmp->span_weight)
1583 break; 1557 break;
1584 if (tmp->flags & sd_flag) 1558 if (tmp->flags & sd_flag)
1585 sd = tmp; 1559 sd = tmp;
@@ -1591,63 +1565,26 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1591} 1565}
1592#endif /* CONFIG_SMP */ 1566#endif /* CONFIG_SMP */
1593 1567
1594/*
1595 * Adaptive granularity
1596 *
1597 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1598 * with the limit of wakeup_gran -- when it never does a wakeup.
1599 *
1600 * So the smaller avg_wakeup is the faster we want this task to preempt,
1601 * but we don't want to treat the preemptee unfairly and therefore allow it
1602 * to run for at least the amount of time we'd like to run.
1603 *
1604 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1605 *
1606 * NOTE: we use *nr_running to scale with load, this nicely matches the
1607 * degrading latency on load.
1608 */
1609static unsigned long
1610adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1611{
1612 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1613 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1614 u64 gran = 0;
1615
1616 if (this_run < expected_wakeup)
1617 gran = expected_wakeup - this_run;
1618
1619 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1620}
1621
1622static unsigned long 1568static unsigned long
1623wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 1569wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1624{ 1570{
1625 unsigned long gran = sysctl_sched_wakeup_granularity; 1571 unsigned long gran = sysctl_sched_wakeup_granularity;
1626 1572
1627 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1628 gran = adaptive_gran(curr, se);
1629
1630 /* 1573 /*
1631 * Since its curr running now, convert the gran from real-time 1574 * Since its curr running now, convert the gran from real-time
1632 * to virtual-time in his units. 1575 * to virtual-time in his units.
1576 *
1577 * By using 'se' instead of 'curr' we penalize light tasks, so
1578 * they get preempted easier. That is, if 'se' < 'curr' then
1579 * the resulting gran will be larger, therefore penalizing the
1580 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1581 * be smaller, again penalizing the lighter task.
1582 *
1583 * This is especially important for buddies when the leftmost
1584 * task is higher priority than the buddy.
1633 */ 1585 */
1634 if (sched_feat(ASYM_GRAN)) { 1586 if (unlikely(se->load.weight != NICE_0_LOAD))
1635 /* 1587 gran = calc_delta_fair(gran, se);
1636 * By using 'se' instead of 'curr' we penalize light tasks, so
1637 * they get preempted easier. That is, if 'se' < 'curr' then
1638 * the resulting gran will be larger, therefore penalizing the
1639 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1640 * be smaller, again penalizing the lighter task.
1641 *
1642 * This is especially important for buddies when the leftmost
1643 * task is higher priority than the buddy.
1644 */
1645 if (unlikely(se->load.weight != NICE_0_LOAD))
1646 gran = calc_delta_fair(gran, se);
1647 } else {
1648 if (unlikely(curr->load.weight != NICE_0_LOAD))
1649 gran = calc_delta_fair(gran, curr);
1650 }
1651 1588
1652 return gran; 1589 return gran;
1653} 1590}
@@ -1705,7 +1642,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
1705 struct task_struct *curr = rq->curr; 1642 struct task_struct *curr = rq->curr;
1706 struct sched_entity *se = &curr->se, *pse = &p->se; 1643 struct sched_entity *se = &curr->se, *pse = &p->se;
1707 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 1644 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1708 int sync = wake_flags & WF_SYNC;
1709 int scale = cfs_rq->nr_running >= sched_nr_latency; 1645 int scale = cfs_rq->nr_running >= sched_nr_latency;
1710 1646
1711 if (unlikely(rt_prio(p->prio))) 1647 if (unlikely(rt_prio(p->prio)))
@@ -1738,14 +1674,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
1738 if (unlikely(curr->policy == SCHED_IDLE)) 1674 if (unlikely(curr->policy == SCHED_IDLE))
1739 goto preempt; 1675 goto preempt;
1740 1676
1741 if (sched_feat(WAKEUP_SYNC) && sync)
1742 goto preempt;
1743
1744 if (sched_feat(WAKEUP_OVERLAP) &&
1745 se->avg_overlap < sysctl_sched_migration_cost &&
1746 pse->avg_overlap < sysctl_sched_migration_cost)
1747 goto preempt;
1748
1749 if (!sched_feat(WAKEUP_PREEMPT)) 1677 if (!sched_feat(WAKEUP_PREEMPT))
1750 return; 1678 return;
1751 1679
@@ -1844,13 +1772,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1844 * 3) are cache-hot on their current CPU. 1772 * 3) are cache-hot on their current CPU.
1845 */ 1773 */
1846 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { 1774 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1847 schedstat_inc(p, se.nr_failed_migrations_affine); 1775 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1848 return 0; 1776 return 0;
1849 } 1777 }
1850 *all_pinned = 0; 1778 *all_pinned = 0;
1851 1779
1852 if (task_running(rq, p)) { 1780 if (task_running(rq, p)) {
1853 schedstat_inc(p, se.nr_failed_migrations_running); 1781 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1854 return 0; 1782 return 0;
1855 } 1783 }
1856 1784
@@ -1866,14 +1794,14 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1866#ifdef CONFIG_SCHEDSTATS 1794#ifdef CONFIG_SCHEDSTATS
1867 if (tsk_cache_hot) { 1795 if (tsk_cache_hot) {
1868 schedstat_inc(sd, lb_hot_gained[idle]); 1796 schedstat_inc(sd, lb_hot_gained[idle]);
1869 schedstat_inc(p, se.nr_forced_migrations); 1797 schedstat_inc(p, se.statistics.nr_forced_migrations);
1870 } 1798 }
1871#endif 1799#endif
1872 return 1; 1800 return 1;
1873 } 1801 }
1874 1802
1875 if (tsk_cache_hot) { 1803 if (tsk_cache_hot) {
1876 schedstat_inc(p, se.nr_failed_migrations_hot); 1804 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1877 return 0; 1805 return 0;
1878 } 1806 }
1879 return 1; 1807 return 1;
@@ -2311,7 +2239,7 @@ unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2311 2239
2312unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 2240unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2313{ 2241{
2314 unsigned long weight = cpumask_weight(sched_domain_span(sd)); 2242 unsigned long weight = sd->span_weight;
2315 unsigned long smt_gain = sd->smt_gain; 2243 unsigned long smt_gain = sd->smt_gain;
2316 2244
2317 smt_gain /= weight; 2245 smt_gain /= weight;
@@ -2344,7 +2272,7 @@ unsigned long scale_rt_power(int cpu)
2344 2272
2345static void update_cpu_power(struct sched_domain *sd, int cpu) 2273static void update_cpu_power(struct sched_domain *sd, int cpu)
2346{ 2274{
2347 unsigned long weight = cpumask_weight(sched_domain_span(sd)); 2275 unsigned long weight = sd->span_weight;
2348 unsigned long power = SCHED_LOAD_SCALE; 2276 unsigned long power = SCHED_LOAD_SCALE;
2349 struct sched_group *sdg = sd->groups; 2277 struct sched_group *sdg = sd->groups;
2350 2278
@@ -2870,6 +2798,8 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2870 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 2798 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2871} 2799}
2872 2800
2801static int active_load_balance_cpu_stop(void *data);
2802
2873/* 2803/*
2874 * Check this_cpu to ensure it is balanced within domain. Attempt to move 2804 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2875 * tasks if there is an imbalance. 2805 * tasks if there is an imbalance.
@@ -2959,8 +2889,9 @@ redo:
2959 if (need_active_balance(sd, sd_idle, idle)) { 2889 if (need_active_balance(sd, sd_idle, idle)) {
2960 raw_spin_lock_irqsave(&busiest->lock, flags); 2890 raw_spin_lock_irqsave(&busiest->lock, flags);
2961 2891
2962 /* don't kick the migration_thread, if the curr 2892 /* don't kick the active_load_balance_cpu_stop,
2963 * task on busiest cpu can't be moved to this_cpu 2893 * if the curr task on busiest cpu can't be
2894 * moved to this_cpu
2964 */ 2895 */
2965 if (!cpumask_test_cpu(this_cpu, 2896 if (!cpumask_test_cpu(this_cpu,
2966 &busiest->curr->cpus_allowed)) { 2897 &busiest->curr->cpus_allowed)) {
@@ -2970,14 +2901,22 @@ redo:
2970 goto out_one_pinned; 2901 goto out_one_pinned;
2971 } 2902 }
2972 2903
2904 /*
2905 * ->active_balance synchronizes accesses to
2906 * ->active_balance_work. Once set, it's cleared
2907 * only after active load balance is finished.
2908 */
2973 if (!busiest->active_balance) { 2909 if (!busiest->active_balance) {
2974 busiest->active_balance = 1; 2910 busiest->active_balance = 1;
2975 busiest->push_cpu = this_cpu; 2911 busiest->push_cpu = this_cpu;
2976 active_balance = 1; 2912 active_balance = 1;
2977 } 2913 }
2978 raw_spin_unlock_irqrestore(&busiest->lock, flags); 2914 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2915
2979 if (active_balance) 2916 if (active_balance)
2980 wake_up_process(busiest->migration_thread); 2917 stop_one_cpu_nowait(cpu_of(busiest),
2918 active_load_balance_cpu_stop, busiest,
2919 &busiest->active_balance_work);
2981 2920
2982 /* 2921 /*
2983 * We've kicked active balancing, reset the failure 2922 * We've kicked active balancing, reset the failure
@@ -3084,24 +3023,29 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3084} 3023}
3085 3024
3086/* 3025/*
3087 * active_load_balance is run by migration threads. It pushes running tasks 3026 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3088 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be 3027 * running tasks off the busiest CPU onto idle CPUs. It requires at
3089 * running on each physical CPU where possible, and avoids physical / 3028 * least 1 task to be running on each physical CPU where possible, and
3090 * logical imbalances. 3029 * avoids physical / logical imbalances.
3091 *
3092 * Called with busiest_rq locked.
3093 */ 3030 */
3094static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) 3031static int active_load_balance_cpu_stop(void *data)
3095{ 3032{
3033 struct rq *busiest_rq = data;
3034 int busiest_cpu = cpu_of(busiest_rq);
3096 int target_cpu = busiest_rq->push_cpu; 3035 int target_cpu = busiest_rq->push_cpu;
3036 struct rq *target_rq = cpu_rq(target_cpu);
3097 struct sched_domain *sd; 3037 struct sched_domain *sd;
3098 struct rq *target_rq; 3038
3039 raw_spin_lock_irq(&busiest_rq->lock);
3040
3041 /* make sure the requested cpu hasn't gone down in the meantime */
3042 if (unlikely(busiest_cpu != smp_processor_id() ||
3043 !busiest_rq->active_balance))
3044 goto out_unlock;
3099 3045
3100 /* Is there any task to move? */ 3046 /* Is there any task to move? */
3101 if (busiest_rq->nr_running <= 1) 3047 if (busiest_rq->nr_running <= 1)
3102 return; 3048 goto out_unlock;
3103
3104 target_rq = cpu_rq(target_cpu);
3105 3049
3106 /* 3050 /*
3107 * This condition is "impossible", if it occurs 3051 * This condition is "impossible", if it occurs
@@ -3112,8 +3056,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3112 3056
3113 /* move a task from busiest_rq to target_rq */ 3057 /* move a task from busiest_rq to target_rq */
3114 double_lock_balance(busiest_rq, target_rq); 3058 double_lock_balance(busiest_rq, target_rq);
3115 update_rq_clock(busiest_rq);
3116 update_rq_clock(target_rq);
3117 3059
3118 /* Search for an sd spanning us and the target CPU. */ 3060 /* Search for an sd spanning us and the target CPU. */
3119 for_each_domain(target_cpu, sd) { 3061 for_each_domain(target_cpu, sd) {
@@ -3132,6 +3074,10 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3132 schedstat_inc(sd, alb_failed); 3074 schedstat_inc(sd, alb_failed);
3133 } 3075 }
3134 double_unlock_balance(busiest_rq, target_rq); 3076 double_unlock_balance(busiest_rq, target_rq);
3077out_unlock:
3078 busiest_rq->active_balance = 0;
3079 raw_spin_unlock_irq(&busiest_rq->lock);
3080 return 0;
3135} 3081}
3136 3082
3137#ifdef CONFIG_NO_HZ 3083#ifdef CONFIG_NO_HZ