aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched_fair.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched_fair.c')
-rw-r--r--kernel/sched_fair.c1970
1 files changed, 1838 insertions, 132 deletions
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
index ef43ff95999d..b1af6d42c024 100644
--- a/kernel/sched_fair.c
+++ b/kernel/sched_fair.c
@@ -21,6 +21,7 @@
21 */ 21 */
22 22
23#include <linux/latencytop.h> 23#include <linux/latencytop.h>
24#include <linux/sched.h>
24 25
25/* 26/*
26 * Targeted preemption latency for CPU-bound tasks: 27 * Targeted preemption latency for CPU-bound tasks:
@@ -35,12 +36,26 @@
35 * run vmstat and monitor the context-switches (cs) field) 36 * run vmstat and monitor the context-switches (cs) field)
36 */ 37 */
37unsigned int sysctl_sched_latency = 5000000ULL; 38unsigned int sysctl_sched_latency = 5000000ULL;
39unsigned int normalized_sysctl_sched_latency = 5000000ULL;
40
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
38 52
39/* 53/*
40 * Minimal preemption granularity for CPU-bound tasks: 54 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */ 56 */
43unsigned int sysctl_sched_min_granularity = 1000000ULL; 57unsigned int sysctl_sched_min_granularity = 1000000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
44 59
45/* 60/*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
@@ -70,6 +85,7 @@ unsigned int __read_mostly sysctl_sched_compat_yield;
70 * have immediate wakeup/sleep latencies. 85 * have immediate wakeup/sleep latencies.
71 */ 86 */
72unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
73 89
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75 91
@@ -383,11 +399,12 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
383 */ 399 */
384 400
385#ifdef CONFIG_SCHED_DEBUG 401#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write, 402int sched_proc_update_handler(struct ctl_table *table, int write,
387 void __user *buffer, size_t *lenp, 403 void __user *buffer, size_t *lenp,
388 loff_t *ppos) 404 loff_t *ppos)
389{ 405{
390 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
391 408
392 if (ret || !write) 409 if (ret || !write)
393 return ret; 410 return ret;
@@ -395,6 +412,14 @@ int sched_nr_latency_handler(struct ctl_table *table, int write,
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity); 413 sysctl_sched_min_granularity);
397 414
415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
398 return 0; 423 return 0;
399} 424}
400#endif 425#endif
@@ -485,6 +510,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
485 curr->sum_exec_runtime += delta_exec; 510 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec); 511 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
513
488 curr->vruntime += delta_exec_weighted; 514 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq); 515 update_min_vruntime(cfs_rq);
490} 516}
@@ -740,16 +766,26 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
740 se->vruntime = vruntime; 766 se->vruntime = vruntime;
741} 767}
742 768
769#define ENQUEUE_WAKEUP 1
770#define ENQUEUE_MIGRATE 2
771
743static void 772static void
744enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) 773enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
745{ 774{
746 /* 775 /*
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
778 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
781
782 /*
747 * Update run-time statistics of the 'current'. 783 * Update run-time statistics of the 'current'.
748 */ 784 */
749 update_curr(cfs_rq); 785 update_curr(cfs_rq);
750 account_entity_enqueue(cfs_rq, se); 786 account_entity_enqueue(cfs_rq, se);
751 787
752 if (wakeup) { 788 if (flags & ENQUEUE_WAKEUP) {
753 place_entity(cfs_rq, se, 0); 789 place_entity(cfs_rq, se, 0);
754 enqueue_sleeper(cfs_rq, se); 790 enqueue_sleeper(cfs_rq, se);
755 } 791 }
@@ -803,6 +839,14 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
803 __dequeue_entity(cfs_rq, se); 839 __dequeue_entity(cfs_rq, se);
804 account_entity_dequeue(cfs_rq, se); 840 account_entity_dequeue(cfs_rq, se);
805 update_min_vruntime(cfs_rq); 841 update_min_vruntime(cfs_rq);
842
843 /*
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
847 */
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
806} 850}
807 851
808/* 852/*
@@ -1009,17 +1053,24 @@ static inline void hrtick_update(struct rq *rq)
1009 * increased. Here we update the fair scheduling stats and 1053 * increased. Here we update the fair scheduling stats and
1010 * then put the task into the rbtree: 1054 * then put the task into the rbtree:
1011 */ 1055 */
1012static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) 1056static void
1057enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1013{ 1058{
1014 struct cfs_rq *cfs_rq; 1059 struct cfs_rq *cfs_rq;
1015 struct sched_entity *se = &p->se; 1060 struct sched_entity *se = &p->se;
1061 int flags = 0;
1062
1063 if (wakeup)
1064 flags |= ENQUEUE_WAKEUP;
1065 if (p->state == TASK_WAKING)
1066 flags |= ENQUEUE_MIGRATE;
1016 1067
1017 for_each_sched_entity(se) { 1068 for_each_sched_entity(se) {
1018 if (se->on_rq) 1069 if (se->on_rq)
1019 break; 1070 break;
1020 cfs_rq = cfs_rq_of(se); 1071 cfs_rq = cfs_rq_of(se);
1021 enqueue_entity(cfs_rq, se, wakeup); 1072 enqueue_entity(cfs_rq, se, flags);
1022 wakeup = 1; 1073 flags = ENQUEUE_WAKEUP;
1023 } 1074 }
1024 1075
1025 hrtick_update(rq); 1076 hrtick_update(rq);
@@ -1095,6 +1146,14 @@ static void yield_task_fair(struct rq *rq)
1095 1146
1096#ifdef CONFIG_SMP 1147#ifdef CONFIG_SMP
1097 1148
1149static void task_waking_fair(struct rq *rq, struct task_struct *p)
1150{
1151 struct sched_entity *se = &p->se;
1152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1153
1154 se->vruntime -= cfs_rq->min_vruntime;
1155}
1156
1098#ifdef CONFIG_FAIR_GROUP_SCHED 1157#ifdef CONFIG_FAIR_GROUP_SCHED
1099/* 1158/*
1100 * effective_load() calculates the load change as seen from the root_task_group 1159 * effective_load() calculates the load change as seen from the root_task_group
@@ -1345,6 +1404,37 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1345} 1404}
1346 1405
1347/* 1406/*
1407 * Try and locate an idle CPU in the sched_domain.
1408 */
1409static int
1410select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1411{
1412 int cpu = smp_processor_id();
1413 int prev_cpu = task_cpu(p);
1414 int i;
1415
1416 /*
1417 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1418 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1419 * always a better target than the current cpu.
1420 */
1421 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1422 return prev_cpu;
1423
1424 /*
1425 * Otherwise, iterate the domain and find an elegible idle cpu.
1426 */
1427 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1428 if (!cpu_rq(i)->cfs.nr_running) {
1429 target = i;
1430 break;
1431 }
1432 }
1433
1434 return target;
1435}
1436
1437/*
1348 * sched_balance_self: balance the current task (running on cpu) in domains 1438 * sched_balance_self: balance the current task (running on cpu) in domains
1349 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 1439 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1350 * SD_BALANCE_EXEC. 1440 * SD_BALANCE_EXEC.
@@ -1372,8 +1462,10 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1372 new_cpu = prev_cpu; 1462 new_cpu = prev_cpu;
1373 } 1463 }
1374 1464
1375 rcu_read_lock();
1376 for_each_domain(cpu, tmp) { 1465 for_each_domain(cpu, tmp) {
1466 if (!(tmp->flags & SD_LOAD_BALANCE))
1467 continue;
1468
1377 /* 1469 /*
1378 * If power savings logic is enabled for a domain, see if we 1470 * If power savings logic is enabled for a domain, see if we
1379 * are not overloaded, if so, don't balance wider. 1471 * are not overloaded, if so, don't balance wider.
@@ -1398,11 +1490,35 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1398 want_sd = 0; 1490 want_sd = 0;
1399 } 1491 }
1400 1492
1401 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 1493 /*
1402 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 1494 * While iterating the domains looking for a spanning
1495 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1496 * in cache sharing domains along the way.
1497 */
1498 if (want_affine) {
1499 int target = -1;
1500
1501 /*
1502 * If both cpu and prev_cpu are part of this domain,
1503 * cpu is a valid SD_WAKE_AFFINE target.
1504 */
1505 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1506 target = cpu;
1403 1507
1404 affine_sd = tmp; 1508 /*
1405 want_affine = 0; 1509 * If there's an idle sibling in this domain, make that
1510 * the wake_affine target instead of the current cpu.
1511 */
1512 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
1513 target = select_idle_sibling(p, tmp, target);
1514
1515 if (target >= 0) {
1516 if (tmp->flags & SD_WAKE_AFFINE) {
1517 affine_sd = tmp;
1518 want_affine = 0;
1519 }
1520 cpu = target;
1521 }
1406 } 1522 }
1407 1523
1408 if (!want_sd && !want_affine) 1524 if (!want_sd && !want_affine)
@@ -1429,10 +1545,8 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1429 update_shares(tmp); 1545 update_shares(tmp);
1430 } 1546 }
1431 1547
1432 if (affine_sd && wake_affine(affine_sd, p, sync)) { 1548 if (affine_sd && wake_affine(affine_sd, p, sync))
1433 new_cpu = cpu; 1549 return cpu;
1434 goto out;
1435 }
1436 1550
1437 while (sd) { 1551 while (sd) {
1438 int load_idx = sd->forkexec_idx; 1552 int load_idx = sd->forkexec_idx;
@@ -1473,8 +1587,6 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag
1473 /* while loop will break here if sd == NULL */ 1587 /* while loop will break here if sd == NULL */
1474 } 1588 }
1475 1589
1476out:
1477 rcu_read_unlock();
1478 return new_cpu; 1590 return new_cpu;
1479} 1591}
1480#endif /* CONFIG_SMP */ 1592#endif /* CONFIG_SMP */
@@ -1596,12 +1708,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
1596 int sync = wake_flags & WF_SYNC; 1708 int sync = wake_flags & WF_SYNC;
1597 int scale = cfs_rq->nr_running >= sched_nr_latency; 1709 int scale = cfs_rq->nr_running >= sched_nr_latency;
1598 1710
1599 update_curr(cfs_rq); 1711 if (unlikely(rt_prio(p->prio)) || p->policy == SCHED_LITMUS)
1600 1712 goto preempt;
1601 if (unlikely(rt_prio(p->prio)) || p->policy == SCHED_LITMUS) {
1602 resched_task(curr);
1603 return;
1604 }
1605 1713
1606 if (unlikely(p->sched_class != &fair_sched_class)) 1714 if (unlikely(p->sched_class != &fair_sched_class))
1607 return; 1715 return;
@@ -1627,50 +1735,44 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
1627 return; 1735 return;
1628 1736
1629 /* Idle tasks are by definition preempted by everybody. */ 1737 /* Idle tasks are by definition preempted by everybody. */
1630 if (unlikely(curr->policy == SCHED_IDLE)) { 1738 if (unlikely(curr->policy == SCHED_IDLE))
1631 resched_task(curr); 1739 goto preempt;
1632 return;
1633 }
1634 1740
1635 if ((sched_feat(WAKEUP_SYNC) && sync) || 1741 if (sched_feat(WAKEUP_SYNC) && sync)
1636 (sched_feat(WAKEUP_OVERLAP) && 1742 goto preempt;
1637 (se->avg_overlap < sysctl_sched_migration_cost &&
1638 pse->avg_overlap < sysctl_sched_migration_cost))) {
1639 resched_task(curr);
1640 return;
1641 }
1642 1743
1643 if (sched_feat(WAKEUP_RUNNING)) { 1744 if (sched_feat(WAKEUP_OVERLAP) &&
1644 if (pse->avg_running < se->avg_running) { 1745 se->avg_overlap < sysctl_sched_migration_cost &&
1645 set_next_buddy(pse); 1746 pse->avg_overlap < sysctl_sched_migration_cost)
1646 resched_task(curr); 1747 goto preempt;
1647 return;
1648 }
1649 }
1650 1748
1651 if (!sched_feat(WAKEUP_PREEMPT)) 1749 if (!sched_feat(WAKEUP_PREEMPT))
1652 return; 1750 return;
1653 1751
1752 update_curr(cfs_rq);
1654 find_matching_se(&se, &pse); 1753 find_matching_se(&se, &pse);
1655
1656 BUG_ON(!pse); 1754 BUG_ON(!pse);
1755 if (wakeup_preempt_entity(se, pse) == 1)
1756 goto preempt;
1657 1757
1658 if (wakeup_preempt_entity(se, pse) == 1) { 1758 return;
1659 resched_task(curr); 1759
1660 /* 1760preempt:
1661 * Only set the backward buddy when the current task is still 1761 resched_task(curr);
1662 * on the rq. This can happen when a wakeup gets interleaved 1762 /*
1663 * with schedule on the ->pre_schedule() or idle_balance() 1763 * Only set the backward buddy when the current task is still
1664 * point, either of which can * drop the rq lock. 1764 * on the rq. This can happen when a wakeup gets interleaved
1665 * 1765 * with schedule on the ->pre_schedule() or idle_balance()
1666 * Also, during early boot the idle thread is in the fair class, 1766 * point, either of which can * drop the rq lock.
1667 * for obvious reasons its a bad idea to schedule back to it. 1767 *
1668 */ 1768 * Also, during early boot the idle thread is in the fair class,
1669 if (unlikely(!se->on_rq || curr == rq->idle)) 1769 * for obvious reasons its a bad idea to schedule back to it.
1670 return; 1770 */
1671 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 1771 if (unlikely(!se->on_rq || curr == rq->idle))
1672 set_last_buddy(se); 1772 return;
1673 } 1773
1774 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1775 set_last_buddy(se);
1674} 1776}
1675 1777
1676static struct task_struct *pick_next_task_fair(struct rq *rq) 1778static struct task_struct *pick_next_task_fair(struct rq *rq)
@@ -1679,7 +1781,7 @@ static struct task_struct *pick_next_task_fair(struct rq *rq)
1679 struct cfs_rq *cfs_rq = &rq->cfs; 1781 struct cfs_rq *cfs_rq = &rq->cfs;
1680 struct sched_entity *se; 1782 struct sched_entity *se;
1681 1783
1682 if (unlikely(!cfs_rq->nr_running)) 1784 if (!cfs_rq->nr_running)
1683 return NULL; 1785 return NULL;
1684 1786
1685 do { 1787 do {
@@ -1714,57 +1816,164 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1714 */ 1816 */
1715 1817
1716/* 1818/*
1717 * Load-balancing iterator. Note: while the runqueue stays locked 1819 * pull_task - move a task from a remote runqueue to the local runqueue.
1718 * during the whole iteration, the current task might be 1820 * Both runqueues must be locked.
1719 * dequeued so the iterator has to be dequeue-safe. Here we
1720 * achieve that by always pre-iterating before returning
1721 * the current task:
1722 */ 1821 */
1723static struct task_struct * 1822static void pull_task(struct rq *src_rq, struct task_struct *p,
1724__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) 1823 struct rq *this_rq, int this_cpu)
1725{ 1824{
1726 struct task_struct *p = NULL; 1825 deactivate_task(src_rq, p, 0);
1727 struct sched_entity *se; 1826 set_task_cpu(p, this_cpu);
1827 activate_task(this_rq, p, 0);
1828 check_preempt_curr(this_rq, p, 0);
1829}
1728 1830
1729 if (next == &cfs_rq->tasks) 1831/*
1730 return NULL; 1832 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1833 */
1834static
1835int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1836 struct sched_domain *sd, enum cpu_idle_type idle,
1837 int *all_pinned)
1838{
1839 int tsk_cache_hot = 0;
1840 /*
1841 * We do not migrate tasks that are:
1842 * 1) running (obviously), or
1843 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1844 * 3) are cache-hot on their current CPU.
1845 */
1846 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1847 schedstat_inc(p, se.nr_failed_migrations_affine);
1848 return 0;
1849 }
1850 *all_pinned = 0;
1731 1851
1732 se = list_entry(next, struct sched_entity, group_node); 1852 if (task_running(rq, p)) {
1733 p = task_of(se); 1853 schedstat_inc(p, se.nr_failed_migrations_running);
1734 cfs_rq->balance_iterator = next->next; 1854 return 0;
1855 }
1735 1856
1736 return p; 1857 /*
1737} 1858 * Aggressive migration if:
1859 * 1) task is cache cold, or
1860 * 2) too many balance attempts have failed.
1861 */
1738 1862
1739static struct task_struct *load_balance_start_fair(void *arg) 1863 tsk_cache_hot = task_hot(p, rq->clock, sd);
1740{ 1864 if (!tsk_cache_hot ||
1741 struct cfs_rq *cfs_rq = arg; 1865 sd->nr_balance_failed > sd->cache_nice_tries) {
1866#ifdef CONFIG_SCHEDSTATS
1867 if (tsk_cache_hot) {
1868 schedstat_inc(sd, lb_hot_gained[idle]);
1869 schedstat_inc(p, se.nr_forced_migrations);
1870 }
1871#endif
1872 return 1;
1873 }
1742 1874
1743 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); 1875 if (tsk_cache_hot) {
1876 schedstat_inc(p, se.nr_failed_migrations_hot);
1877 return 0;
1878 }
1879 return 1;
1744} 1880}
1745 1881
1746static struct task_struct *load_balance_next_fair(void *arg) 1882/*
1883 * move_one_task tries to move exactly one task from busiest to this_rq, as
1884 * part of active balancing operations within "domain".
1885 * Returns 1 if successful and 0 otherwise.
1886 *
1887 * Called with both runqueues locked.
1888 */
1889static int
1890move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1891 struct sched_domain *sd, enum cpu_idle_type idle)
1747{ 1892{
1748 struct cfs_rq *cfs_rq = arg; 1893 struct task_struct *p, *n;
1894 struct cfs_rq *cfs_rq;
1895 int pinned = 0;
1749 1896
1750 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); 1897 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1898 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1899
1900 if (!can_migrate_task(p, busiest, this_cpu,
1901 sd, idle, &pinned))
1902 continue;
1903
1904 pull_task(busiest, p, this_rq, this_cpu);
1905 /*
1906 * Right now, this is only the second place pull_task()
1907 * is called, so we can safely collect pull_task()
1908 * stats here rather than inside pull_task().
1909 */
1910 schedstat_inc(sd, lb_gained[idle]);
1911 return 1;
1912 }
1913 }
1914
1915 return 0;
1751} 1916}
1752 1917
1753static unsigned long 1918static unsigned long
1754__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 1919balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1755 unsigned long max_load_move, struct sched_domain *sd, 1920 unsigned long max_load_move, struct sched_domain *sd,
1756 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, 1921 enum cpu_idle_type idle, int *all_pinned,
1757 struct cfs_rq *cfs_rq) 1922 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1758{ 1923{
1759 struct rq_iterator cfs_rq_iterator; 1924 int loops = 0, pulled = 0, pinned = 0;
1925 long rem_load_move = max_load_move;
1926 struct task_struct *p, *n;
1760 1927
1761 cfs_rq_iterator.start = load_balance_start_fair; 1928 if (max_load_move == 0)
1762 cfs_rq_iterator.next = load_balance_next_fair; 1929 goto out;
1763 cfs_rq_iterator.arg = cfs_rq;
1764 1930
1765 return balance_tasks(this_rq, this_cpu, busiest, 1931 pinned = 1;
1766 max_load_move, sd, idle, all_pinned, 1932
1767 this_best_prio, &cfs_rq_iterator); 1933 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1934 if (loops++ > sysctl_sched_nr_migrate)
1935 break;
1936
1937 if ((p->se.load.weight >> 1) > rem_load_move ||
1938 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1939 continue;
1940
1941 pull_task(busiest, p, this_rq, this_cpu);
1942 pulled++;
1943 rem_load_move -= p->se.load.weight;
1944
1945#ifdef CONFIG_PREEMPT
1946 /*
1947 * NEWIDLE balancing is a source of latency, so preemptible
1948 * kernels will stop after the first task is pulled to minimize
1949 * the critical section.
1950 */
1951 if (idle == CPU_NEWLY_IDLE)
1952 break;
1953#endif
1954
1955 /*
1956 * We only want to steal up to the prescribed amount of
1957 * weighted load.
1958 */
1959 if (rem_load_move <= 0)
1960 break;
1961
1962 if (p->prio < *this_best_prio)
1963 *this_best_prio = p->prio;
1964 }
1965out:
1966 /*
1967 * Right now, this is one of only two places pull_task() is called,
1968 * so we can safely collect pull_task() stats here rather than
1969 * inside pull_task().
1970 */
1971 schedstat_add(sd, lb_gained[idle], pulled);
1972
1973 if (all_pinned)
1974 *all_pinned = pinned;
1975
1976 return max_load_move - rem_load_move;
1768} 1977}
1769 1978
1770#ifdef CONFIG_FAIR_GROUP_SCHED 1979#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1796,9 +2005,9 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1796 rem_load = (u64)rem_load_move * busiest_weight; 2005 rem_load = (u64)rem_load_move * busiest_weight;
1797 rem_load = div_u64(rem_load, busiest_h_load + 1); 2006 rem_load = div_u64(rem_load, busiest_h_load + 1);
1798 2007
1799 moved_load = __load_balance_fair(this_rq, this_cpu, busiest, 2008 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1800 rem_load, sd, idle, all_pinned, this_best_prio, 2009 rem_load, sd, idle, all_pinned, this_best_prio,
1801 tg->cfs_rq[busiest_cpu]); 2010 busiest_cfs_rq);
1802 2011
1803 if (!moved_load) 2012 if (!moved_load)
1804 continue; 2013 continue;
@@ -1821,35 +2030,1529 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1821 struct sched_domain *sd, enum cpu_idle_type idle, 2030 struct sched_domain *sd, enum cpu_idle_type idle,
1822 int *all_pinned, int *this_best_prio) 2031 int *all_pinned, int *this_best_prio)
1823{ 2032{
1824 return __load_balance_fair(this_rq, this_cpu, busiest, 2033 return balance_tasks(this_rq, this_cpu, busiest,
1825 max_load_move, sd, idle, all_pinned, 2034 max_load_move, sd, idle, all_pinned,
1826 this_best_prio, &busiest->cfs); 2035 this_best_prio, &busiest->cfs);
1827} 2036}
1828#endif 2037#endif
1829 2038
1830static int 2039/*
1831move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 2040 * move_tasks tries to move up to max_load_move weighted load from busiest to
1832 struct sched_domain *sd, enum cpu_idle_type idle) 2041 * this_rq, as part of a balancing operation within domain "sd".
2042 * Returns 1 if successful and 0 otherwise.
2043 *
2044 * Called with both runqueues locked.
2045 */
2046static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2047 unsigned long max_load_move,
2048 struct sched_domain *sd, enum cpu_idle_type idle,
2049 int *all_pinned)
1833{ 2050{
1834 struct cfs_rq *busy_cfs_rq; 2051 unsigned long total_load_moved = 0, load_moved;
1835 struct rq_iterator cfs_rq_iterator; 2052 int this_best_prio = this_rq->curr->prio;
1836 2053
1837 cfs_rq_iterator.start = load_balance_start_fair; 2054 do {
1838 cfs_rq_iterator.next = load_balance_next_fair; 2055 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2056 max_load_move - total_load_moved,
2057 sd, idle, all_pinned, &this_best_prio);
1839 2058
1840 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { 2059 total_load_moved += load_moved;
2060
2061#ifdef CONFIG_PREEMPT
1841 /* 2062 /*
1842 * pass busy_cfs_rq argument into 2063 * NEWIDLE balancing is a source of latency, so preemptible
1843 * load_balance_[start|next]_fair iterators 2064 * kernels will stop after the first task is pulled to minimize
2065 * the critical section.
1844 */ 2066 */
1845 cfs_rq_iterator.arg = busy_cfs_rq; 2067 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
1846 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, 2068 break;
1847 &cfs_rq_iterator)) 2069
1848 return 1; 2070 if (raw_spin_is_contended(&this_rq->lock) ||
2071 raw_spin_is_contended(&busiest->lock))
2072 break;
2073#endif
2074 } while (load_moved && max_load_move > total_load_moved);
2075
2076 return total_load_moved > 0;
2077}
2078
2079/********** Helpers for find_busiest_group ************************/
2080/*
2081 * sd_lb_stats - Structure to store the statistics of a sched_domain
2082 * during load balancing.
2083 */
2084struct sd_lb_stats {
2085 struct sched_group *busiest; /* Busiest group in this sd */
2086 struct sched_group *this; /* Local group in this sd */
2087 unsigned long total_load; /* Total load of all groups in sd */
2088 unsigned long total_pwr; /* Total power of all groups in sd */
2089 unsigned long avg_load; /* Average load across all groups in sd */
2090
2091 /** Statistics of this group */
2092 unsigned long this_load;
2093 unsigned long this_load_per_task;
2094 unsigned long this_nr_running;
2095
2096 /* Statistics of the busiest group */
2097 unsigned long max_load;
2098 unsigned long busiest_load_per_task;
2099 unsigned long busiest_nr_running;
2100 unsigned long busiest_group_capacity;
2101
2102 int group_imb; /* Is there imbalance in this sd */
2103#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2104 int power_savings_balance; /* Is powersave balance needed for this sd */
2105 struct sched_group *group_min; /* Least loaded group in sd */
2106 struct sched_group *group_leader; /* Group which relieves group_min */
2107 unsigned long min_load_per_task; /* load_per_task in group_min */
2108 unsigned long leader_nr_running; /* Nr running of group_leader */
2109 unsigned long min_nr_running; /* Nr running of group_min */
2110#endif
2111};
2112
2113/*
2114 * sg_lb_stats - stats of a sched_group required for load_balancing
2115 */
2116struct sg_lb_stats {
2117 unsigned long avg_load; /*Avg load across the CPUs of the group */
2118 unsigned long group_load; /* Total load over the CPUs of the group */
2119 unsigned long sum_nr_running; /* Nr tasks running in the group */
2120 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2121 unsigned long group_capacity;
2122 int group_imb; /* Is there an imbalance in the group ? */
2123};
2124
2125/**
2126 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2127 * @group: The group whose first cpu is to be returned.
2128 */
2129static inline unsigned int group_first_cpu(struct sched_group *group)
2130{
2131 return cpumask_first(sched_group_cpus(group));
2132}
2133
2134/**
2135 * get_sd_load_idx - Obtain the load index for a given sched domain.
2136 * @sd: The sched_domain whose load_idx is to be obtained.
2137 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2138 */
2139static inline int get_sd_load_idx(struct sched_domain *sd,
2140 enum cpu_idle_type idle)
2141{
2142 int load_idx;
2143
2144 switch (idle) {
2145 case CPU_NOT_IDLE:
2146 load_idx = sd->busy_idx;
2147 break;
2148
2149 case CPU_NEWLY_IDLE:
2150 load_idx = sd->newidle_idx;
2151 break;
2152 default:
2153 load_idx = sd->idle_idx;
2154 break;
1849 } 2155 }
1850 2156
2157 return load_idx;
2158}
2159
2160
2161#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2162/**
2163 * init_sd_power_savings_stats - Initialize power savings statistics for
2164 * the given sched_domain, during load balancing.
2165 *
2166 * @sd: Sched domain whose power-savings statistics are to be initialized.
2167 * @sds: Variable containing the statistics for sd.
2168 * @idle: Idle status of the CPU at which we're performing load-balancing.
2169 */
2170static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2171 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2172{
2173 /*
2174 * Busy processors will not participate in power savings
2175 * balance.
2176 */
2177 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2178 sds->power_savings_balance = 0;
2179 else {
2180 sds->power_savings_balance = 1;
2181 sds->min_nr_running = ULONG_MAX;
2182 sds->leader_nr_running = 0;
2183 }
2184}
2185
2186/**
2187 * update_sd_power_savings_stats - Update the power saving stats for a
2188 * sched_domain while performing load balancing.
2189 *
2190 * @group: sched_group belonging to the sched_domain under consideration.
2191 * @sds: Variable containing the statistics of the sched_domain
2192 * @local_group: Does group contain the CPU for which we're performing
2193 * load balancing ?
2194 * @sgs: Variable containing the statistics of the group.
2195 */
2196static inline void update_sd_power_savings_stats(struct sched_group *group,
2197 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2198{
2199
2200 if (!sds->power_savings_balance)
2201 return;
2202
2203 /*
2204 * If the local group is idle or completely loaded
2205 * no need to do power savings balance at this domain
2206 */
2207 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2208 !sds->this_nr_running))
2209 sds->power_savings_balance = 0;
2210
2211 /*
2212 * If a group is already running at full capacity or idle,
2213 * don't include that group in power savings calculations
2214 */
2215 if (!sds->power_savings_balance ||
2216 sgs->sum_nr_running >= sgs->group_capacity ||
2217 !sgs->sum_nr_running)
2218 return;
2219
2220 /*
2221 * Calculate the group which has the least non-idle load.
2222 * This is the group from where we need to pick up the load
2223 * for saving power
2224 */
2225 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2226 (sgs->sum_nr_running == sds->min_nr_running &&
2227 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2228 sds->group_min = group;
2229 sds->min_nr_running = sgs->sum_nr_running;
2230 sds->min_load_per_task = sgs->sum_weighted_load /
2231 sgs->sum_nr_running;
2232 }
2233
2234 /*
2235 * Calculate the group which is almost near its
2236 * capacity but still has some space to pick up some load
2237 * from other group and save more power
2238 */
2239 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2240 return;
2241
2242 if (sgs->sum_nr_running > sds->leader_nr_running ||
2243 (sgs->sum_nr_running == sds->leader_nr_running &&
2244 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2245 sds->group_leader = group;
2246 sds->leader_nr_running = sgs->sum_nr_running;
2247 }
2248}
2249
2250/**
2251 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2252 * @sds: Variable containing the statistics of the sched_domain
2253 * under consideration.
2254 * @this_cpu: Cpu at which we're currently performing load-balancing.
2255 * @imbalance: Variable to store the imbalance.
2256 *
2257 * Description:
2258 * Check if we have potential to perform some power-savings balance.
2259 * If yes, set the busiest group to be the least loaded group in the
2260 * sched_domain, so that it's CPUs can be put to idle.
2261 *
2262 * Returns 1 if there is potential to perform power-savings balance.
2263 * Else returns 0.
2264 */
2265static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2266 int this_cpu, unsigned long *imbalance)
2267{
2268 if (!sds->power_savings_balance)
2269 return 0;
2270
2271 if (sds->this != sds->group_leader ||
2272 sds->group_leader == sds->group_min)
2273 return 0;
2274
2275 *imbalance = sds->min_load_per_task;
2276 sds->busiest = sds->group_min;
2277
2278 return 1;
2279
2280}
2281#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2282static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2284{
2285 return;
2286}
2287
2288static inline void update_sd_power_savings_stats(struct sched_group *group,
2289 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2290{
2291 return;
2292}
2293
2294static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2295 int this_cpu, unsigned long *imbalance)
2296{
1851 return 0; 2297 return 0;
1852} 2298}
2299#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2300
2301
2302unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2303{
2304 return SCHED_LOAD_SCALE;
2305}
2306
2307unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2308{
2309 return default_scale_freq_power(sd, cpu);
2310}
2311
2312unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2313{
2314 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2315 unsigned long smt_gain = sd->smt_gain;
2316
2317 smt_gain /= weight;
2318
2319 return smt_gain;
2320}
2321
2322unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2323{
2324 return default_scale_smt_power(sd, cpu);
2325}
2326
2327unsigned long scale_rt_power(int cpu)
2328{
2329 struct rq *rq = cpu_rq(cpu);
2330 u64 total, available;
2331
2332 sched_avg_update(rq);
2333
2334 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2335 available = total - rq->rt_avg;
2336
2337 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2338 total = SCHED_LOAD_SCALE;
2339
2340 total >>= SCHED_LOAD_SHIFT;
2341
2342 return div_u64(available, total);
2343}
2344
2345static void update_cpu_power(struct sched_domain *sd, int cpu)
2346{
2347 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2348 unsigned long power = SCHED_LOAD_SCALE;
2349 struct sched_group *sdg = sd->groups;
2350
2351 if (sched_feat(ARCH_POWER))
2352 power *= arch_scale_freq_power(sd, cpu);
2353 else
2354 power *= default_scale_freq_power(sd, cpu);
2355
2356 power >>= SCHED_LOAD_SHIFT;
2357
2358 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2359 if (sched_feat(ARCH_POWER))
2360 power *= arch_scale_smt_power(sd, cpu);
2361 else
2362 power *= default_scale_smt_power(sd, cpu);
2363
2364 power >>= SCHED_LOAD_SHIFT;
2365 }
2366
2367 power *= scale_rt_power(cpu);
2368 power >>= SCHED_LOAD_SHIFT;
2369
2370 if (!power)
2371 power = 1;
2372
2373 sdg->cpu_power = power;
2374}
2375
2376static void update_group_power(struct sched_domain *sd, int cpu)
2377{
2378 struct sched_domain *child = sd->child;
2379 struct sched_group *group, *sdg = sd->groups;
2380 unsigned long power;
2381
2382 if (!child) {
2383 update_cpu_power(sd, cpu);
2384 return;
2385 }
2386
2387 power = 0;
2388
2389 group = child->groups;
2390 do {
2391 power += group->cpu_power;
2392 group = group->next;
2393 } while (group != child->groups);
2394
2395 sdg->cpu_power = power;
2396}
2397
2398/**
2399 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2400 * @sd: The sched_domain whose statistics are to be updated.
2401 * @group: sched_group whose statistics are to be updated.
2402 * @this_cpu: Cpu for which load balance is currently performed.
2403 * @idle: Idle status of this_cpu
2404 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2405 * @sd_idle: Idle status of the sched_domain containing group.
2406 * @local_group: Does group contain this_cpu.
2407 * @cpus: Set of cpus considered for load balancing.
2408 * @balance: Should we balance.
2409 * @sgs: variable to hold the statistics for this group.
2410 */
2411static inline void update_sg_lb_stats(struct sched_domain *sd,
2412 struct sched_group *group, int this_cpu,
2413 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2414 int local_group, const struct cpumask *cpus,
2415 int *balance, struct sg_lb_stats *sgs)
2416{
2417 unsigned long load, max_cpu_load, min_cpu_load;
2418 int i;
2419 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2420 unsigned long avg_load_per_task = 0;
2421
2422 if (local_group)
2423 balance_cpu = group_first_cpu(group);
2424
2425 /* Tally up the load of all CPUs in the group */
2426 max_cpu_load = 0;
2427 min_cpu_load = ~0UL;
2428
2429 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2430 struct rq *rq = cpu_rq(i);
2431
2432 if (*sd_idle && rq->nr_running)
2433 *sd_idle = 0;
2434
2435 /* Bias balancing toward cpus of our domain */
2436 if (local_group) {
2437 if (idle_cpu(i) && !first_idle_cpu) {
2438 first_idle_cpu = 1;
2439 balance_cpu = i;
2440 }
2441
2442 load = target_load(i, load_idx);
2443 } else {
2444 load = source_load(i, load_idx);
2445 if (load > max_cpu_load)
2446 max_cpu_load = load;
2447 if (min_cpu_load > load)
2448 min_cpu_load = load;
2449 }
2450
2451 sgs->group_load += load;
2452 sgs->sum_nr_running += rq->nr_running;
2453 sgs->sum_weighted_load += weighted_cpuload(i);
2454
2455 }
2456
2457 /*
2458 * First idle cpu or the first cpu(busiest) in this sched group
2459 * is eligible for doing load balancing at this and above
2460 * domains. In the newly idle case, we will allow all the cpu's
2461 * to do the newly idle load balance.
2462 */
2463 if (idle != CPU_NEWLY_IDLE && local_group &&
2464 balance_cpu != this_cpu) {
2465 *balance = 0;
2466 return;
2467 }
2468
2469 update_group_power(sd, this_cpu);
2470
2471 /* Adjust by relative CPU power of the group */
2472 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2473
2474 /*
2475 * Consider the group unbalanced when the imbalance is larger
2476 * than the average weight of two tasks.
2477 *
2478 * APZ: with cgroup the avg task weight can vary wildly and
2479 * might not be a suitable number - should we keep a
2480 * normalized nr_running number somewhere that negates
2481 * the hierarchy?
2482 */
2483 if (sgs->sum_nr_running)
2484 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2485
2486 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2487 sgs->group_imb = 1;
2488
2489 sgs->group_capacity =
2490 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2491}
2492
2493/**
2494 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2495 * @sd: sched_domain whose statistics are to be updated.
2496 * @this_cpu: Cpu for which load balance is currently performed.
2497 * @idle: Idle status of this_cpu
2498 * @sd_idle: Idle status of the sched_domain containing group.
2499 * @cpus: Set of cpus considered for load balancing.
2500 * @balance: Should we balance.
2501 * @sds: variable to hold the statistics for this sched_domain.
2502 */
2503static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2504 enum cpu_idle_type idle, int *sd_idle,
2505 const struct cpumask *cpus, int *balance,
2506 struct sd_lb_stats *sds)
2507{
2508 struct sched_domain *child = sd->child;
2509 struct sched_group *group = sd->groups;
2510 struct sg_lb_stats sgs;
2511 int load_idx, prefer_sibling = 0;
2512
2513 if (child && child->flags & SD_PREFER_SIBLING)
2514 prefer_sibling = 1;
2515
2516 init_sd_power_savings_stats(sd, sds, idle);
2517 load_idx = get_sd_load_idx(sd, idle);
2518
2519 do {
2520 int local_group;
2521
2522 local_group = cpumask_test_cpu(this_cpu,
2523 sched_group_cpus(group));
2524 memset(&sgs, 0, sizeof(sgs));
2525 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2526 local_group, cpus, balance, &sgs);
2527
2528 if (local_group && !(*balance))
2529 return;
2530
2531 sds->total_load += sgs.group_load;
2532 sds->total_pwr += group->cpu_power;
2533
2534 /*
2535 * In case the child domain prefers tasks go to siblings
2536 * first, lower the group capacity to one so that we'll try
2537 * and move all the excess tasks away.
2538 */
2539 if (prefer_sibling)
2540 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2541
2542 if (local_group) {
2543 sds->this_load = sgs.avg_load;
2544 sds->this = group;
2545 sds->this_nr_running = sgs.sum_nr_running;
2546 sds->this_load_per_task = sgs.sum_weighted_load;
2547 } else if (sgs.avg_load > sds->max_load &&
2548 (sgs.sum_nr_running > sgs.group_capacity ||
2549 sgs.group_imb)) {
2550 sds->max_load = sgs.avg_load;
2551 sds->busiest = group;
2552 sds->busiest_nr_running = sgs.sum_nr_running;
2553 sds->busiest_group_capacity = sgs.group_capacity;
2554 sds->busiest_load_per_task = sgs.sum_weighted_load;
2555 sds->group_imb = sgs.group_imb;
2556 }
2557
2558 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2559 group = group->next;
2560 } while (group != sd->groups);
2561}
2562
2563/**
2564 * fix_small_imbalance - Calculate the minor imbalance that exists
2565 * amongst the groups of a sched_domain, during
2566 * load balancing.
2567 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2568 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2569 * @imbalance: Variable to store the imbalance.
2570 */
2571static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2572 int this_cpu, unsigned long *imbalance)
2573{
2574 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2575 unsigned int imbn = 2;
2576 unsigned long scaled_busy_load_per_task;
2577
2578 if (sds->this_nr_running) {
2579 sds->this_load_per_task /= sds->this_nr_running;
2580 if (sds->busiest_load_per_task >
2581 sds->this_load_per_task)
2582 imbn = 1;
2583 } else
2584 sds->this_load_per_task =
2585 cpu_avg_load_per_task(this_cpu);
2586
2587 scaled_busy_load_per_task = sds->busiest_load_per_task
2588 * SCHED_LOAD_SCALE;
2589 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2590
2591 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2592 (scaled_busy_load_per_task * imbn)) {
2593 *imbalance = sds->busiest_load_per_task;
2594 return;
2595 }
2596
2597 /*
2598 * OK, we don't have enough imbalance to justify moving tasks,
2599 * however we may be able to increase total CPU power used by
2600 * moving them.
2601 */
2602
2603 pwr_now += sds->busiest->cpu_power *
2604 min(sds->busiest_load_per_task, sds->max_load);
2605 pwr_now += sds->this->cpu_power *
2606 min(sds->this_load_per_task, sds->this_load);
2607 pwr_now /= SCHED_LOAD_SCALE;
2608
2609 /* Amount of load we'd subtract */
2610 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2611 sds->busiest->cpu_power;
2612 if (sds->max_load > tmp)
2613 pwr_move += sds->busiest->cpu_power *
2614 min(sds->busiest_load_per_task, sds->max_load - tmp);
2615
2616 /* Amount of load we'd add */
2617 if (sds->max_load * sds->busiest->cpu_power <
2618 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2619 tmp = (sds->max_load * sds->busiest->cpu_power) /
2620 sds->this->cpu_power;
2621 else
2622 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2623 sds->this->cpu_power;
2624 pwr_move += sds->this->cpu_power *
2625 min(sds->this_load_per_task, sds->this_load + tmp);
2626 pwr_move /= SCHED_LOAD_SCALE;
2627
2628 /* Move if we gain throughput */
2629 if (pwr_move > pwr_now)
2630 *imbalance = sds->busiest_load_per_task;
2631}
2632
2633/**
2634 * calculate_imbalance - Calculate the amount of imbalance present within the
2635 * groups of a given sched_domain during load balance.
2636 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2637 * @this_cpu: Cpu for which currently load balance is being performed.
2638 * @imbalance: The variable to store the imbalance.
2639 */
2640static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2641 unsigned long *imbalance)
2642{
2643 unsigned long max_pull, load_above_capacity = ~0UL;
2644
2645 sds->busiest_load_per_task /= sds->busiest_nr_running;
2646 if (sds->group_imb) {
2647 sds->busiest_load_per_task =
2648 min(sds->busiest_load_per_task, sds->avg_load);
2649 }
2650
2651 /*
2652 * In the presence of smp nice balancing, certain scenarios can have
2653 * max load less than avg load(as we skip the groups at or below
2654 * its cpu_power, while calculating max_load..)
2655 */
2656 if (sds->max_load < sds->avg_load) {
2657 *imbalance = 0;
2658 return fix_small_imbalance(sds, this_cpu, imbalance);
2659 }
2660
2661 if (!sds->group_imb) {
2662 /*
2663 * Don't want to pull so many tasks that a group would go idle.
2664 */
2665 load_above_capacity = (sds->busiest_nr_running -
2666 sds->busiest_group_capacity);
2667
2668 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2669
2670 load_above_capacity /= sds->busiest->cpu_power;
2671 }
2672
2673 /*
2674 * We're trying to get all the cpus to the average_load, so we don't
2675 * want to push ourselves above the average load, nor do we wish to
2676 * reduce the max loaded cpu below the average load. At the same time,
2677 * we also don't want to reduce the group load below the group capacity
2678 * (so that we can implement power-savings policies etc). Thus we look
2679 * for the minimum possible imbalance.
2680 * Be careful of negative numbers as they'll appear as very large values
2681 * with unsigned longs.
2682 */
2683 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2684
2685 /* How much load to actually move to equalise the imbalance */
2686 *imbalance = min(max_pull * sds->busiest->cpu_power,
2687 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2688 / SCHED_LOAD_SCALE;
2689
2690 /*
2691 * if *imbalance is less than the average load per runnable task
2692 * there is no gaurantee that any tasks will be moved so we'll have
2693 * a think about bumping its value to force at least one task to be
2694 * moved
2695 */
2696 if (*imbalance < sds->busiest_load_per_task)
2697 return fix_small_imbalance(sds, this_cpu, imbalance);
2698
2699}
2700/******* find_busiest_group() helpers end here *********************/
2701
2702/**
2703 * find_busiest_group - Returns the busiest group within the sched_domain
2704 * if there is an imbalance. If there isn't an imbalance, and
2705 * the user has opted for power-savings, it returns a group whose
2706 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2707 * such a group exists.
2708 *
2709 * Also calculates the amount of weighted load which should be moved
2710 * to restore balance.
2711 *
2712 * @sd: The sched_domain whose busiest group is to be returned.
2713 * @this_cpu: The cpu for which load balancing is currently being performed.
2714 * @imbalance: Variable which stores amount of weighted load which should
2715 * be moved to restore balance/put a group to idle.
2716 * @idle: The idle status of this_cpu.
2717 * @sd_idle: The idleness of sd
2718 * @cpus: The set of CPUs under consideration for load-balancing.
2719 * @balance: Pointer to a variable indicating if this_cpu
2720 * is the appropriate cpu to perform load balancing at this_level.
2721 *
2722 * Returns: - the busiest group if imbalance exists.
2723 * - If no imbalance and user has opted for power-savings balance,
2724 * return the least loaded group whose CPUs can be
2725 * put to idle by rebalancing its tasks onto our group.
2726 */
2727static struct sched_group *
2728find_busiest_group(struct sched_domain *sd, int this_cpu,
2729 unsigned long *imbalance, enum cpu_idle_type idle,
2730 int *sd_idle, const struct cpumask *cpus, int *balance)
2731{
2732 struct sd_lb_stats sds;
2733
2734 memset(&sds, 0, sizeof(sds));
2735
2736 /*
2737 * Compute the various statistics relavent for load balancing at
2738 * this level.
2739 */
2740 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2741 balance, &sds);
2742
2743 /* Cases where imbalance does not exist from POV of this_cpu */
2744 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2745 * at this level.
2746 * 2) There is no busy sibling group to pull from.
2747 * 3) This group is the busiest group.
2748 * 4) This group is more busy than the avg busieness at this
2749 * sched_domain.
2750 * 5) The imbalance is within the specified limit.
2751 */
2752 if (!(*balance))
2753 goto ret;
2754
2755 if (!sds.busiest || sds.busiest_nr_running == 0)
2756 goto out_balanced;
2757
2758 if (sds.this_load >= sds.max_load)
2759 goto out_balanced;
2760
2761 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2762
2763 if (sds.this_load >= sds.avg_load)
2764 goto out_balanced;
2765
2766 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2767 goto out_balanced;
2768
2769 /* Looks like there is an imbalance. Compute it */
2770 calculate_imbalance(&sds, this_cpu, imbalance);
2771 return sds.busiest;
2772
2773out_balanced:
2774 /*
2775 * There is no obvious imbalance. But check if we can do some balancing
2776 * to save power.
2777 */
2778 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2779 return sds.busiest;
2780ret:
2781 *imbalance = 0;
2782 return NULL;
2783}
2784
2785/*
2786 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2787 */
2788static struct rq *
2789find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2790 unsigned long imbalance, const struct cpumask *cpus)
2791{
2792 struct rq *busiest = NULL, *rq;
2793 unsigned long max_load = 0;
2794 int i;
2795
2796 for_each_cpu(i, sched_group_cpus(group)) {
2797 unsigned long power = power_of(i);
2798 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2799 unsigned long wl;
2800
2801 if (!cpumask_test_cpu(i, cpus))
2802 continue;
2803
2804 rq = cpu_rq(i);
2805 wl = weighted_cpuload(i);
2806
2807 /*
2808 * When comparing with imbalance, use weighted_cpuload()
2809 * which is not scaled with the cpu power.
2810 */
2811 if (capacity && rq->nr_running == 1 && wl > imbalance)
2812 continue;
2813
2814 /*
2815 * For the load comparisons with the other cpu's, consider
2816 * the weighted_cpuload() scaled with the cpu power, so that
2817 * the load can be moved away from the cpu that is potentially
2818 * running at a lower capacity.
2819 */
2820 wl = (wl * SCHED_LOAD_SCALE) / power;
2821
2822 if (wl > max_load) {
2823 max_load = wl;
2824 busiest = rq;
2825 }
2826 }
2827
2828 return busiest;
2829}
2830
2831/*
2832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2833 * so long as it is large enough.
2834 */
2835#define MAX_PINNED_INTERVAL 512
2836
2837/* Working cpumask for load_balance and load_balance_newidle. */
2838static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2839
2840static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2841{
2842 if (idle == CPU_NEWLY_IDLE) {
2843 /*
2844 * The only task running in a non-idle cpu can be moved to this
2845 * cpu in an attempt to completely freeup the other CPU
2846 * package.
2847 *
2848 * The package power saving logic comes from
2849 * find_busiest_group(). If there are no imbalance, then
2850 * f_b_g() will return NULL. However when sched_mc={1,2} then
2851 * f_b_g() will select a group from which a running task may be
2852 * pulled to this cpu in order to make the other package idle.
2853 * If there is no opportunity to make a package idle and if
2854 * there are no imbalance, then f_b_g() will return NULL and no
2855 * action will be taken in load_balance_newidle().
2856 *
2857 * Under normal task pull operation due to imbalance, there
2858 * will be more than one task in the source run queue and
2859 * move_tasks() will succeed. ld_moved will be true and this
2860 * active balance code will not be triggered.
2861 */
2862 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2863 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2864 return 0;
2865
2866 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2867 return 0;
2868 }
2869
2870 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2871}
2872
2873/*
2874 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2875 * tasks if there is an imbalance.
2876 */
2877static int load_balance(int this_cpu, struct rq *this_rq,
2878 struct sched_domain *sd, enum cpu_idle_type idle,
2879 int *balance)
2880{
2881 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2882 struct sched_group *group;
2883 unsigned long imbalance;
2884 struct rq *busiest;
2885 unsigned long flags;
2886 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2887
2888 cpumask_copy(cpus, cpu_active_mask);
2889
2890 /*
2891 * When power savings policy is enabled for the parent domain, idle
2892 * sibling can pick up load irrespective of busy siblings. In this case,
2893 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2894 * portraying it as CPU_NOT_IDLE.
2895 */
2896 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2897 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2898 sd_idle = 1;
2899
2900 schedstat_inc(sd, lb_count[idle]);
2901
2902redo:
2903 update_shares(sd);
2904 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2905 cpus, balance);
2906
2907 if (*balance == 0)
2908 goto out_balanced;
2909
2910 if (!group) {
2911 schedstat_inc(sd, lb_nobusyg[idle]);
2912 goto out_balanced;
2913 }
2914
2915 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2916 if (!busiest) {
2917 schedstat_inc(sd, lb_nobusyq[idle]);
2918 goto out_balanced;
2919 }
2920
2921 BUG_ON(busiest == this_rq);
2922
2923 schedstat_add(sd, lb_imbalance[idle], imbalance);
2924
2925 ld_moved = 0;
2926 if (busiest->nr_running > 1) {
2927 /*
2928 * Attempt to move tasks. If find_busiest_group has found
2929 * an imbalance but busiest->nr_running <= 1, the group is
2930 * still unbalanced. ld_moved simply stays zero, so it is
2931 * correctly treated as an imbalance.
2932 */
2933 local_irq_save(flags);
2934 double_rq_lock(this_rq, busiest);
2935 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2936 imbalance, sd, idle, &all_pinned);
2937 double_rq_unlock(this_rq, busiest);
2938 local_irq_restore(flags);
2939
2940 /*
2941 * some other cpu did the load balance for us.
2942 */
2943 if (ld_moved && this_cpu != smp_processor_id())
2944 resched_cpu(this_cpu);
2945
2946 /* All tasks on this runqueue were pinned by CPU affinity */
2947 if (unlikely(all_pinned)) {
2948 cpumask_clear_cpu(cpu_of(busiest), cpus);
2949 if (!cpumask_empty(cpus))
2950 goto redo;
2951 goto out_balanced;
2952 }
2953 }
2954
2955 if (!ld_moved) {
2956 schedstat_inc(sd, lb_failed[idle]);
2957 sd->nr_balance_failed++;
2958
2959 if (need_active_balance(sd, sd_idle, idle)) {
2960 raw_spin_lock_irqsave(&busiest->lock, flags);
2961
2962 /* don't kick the migration_thread, if the curr
2963 * task on busiest cpu can't be moved to this_cpu
2964 */
2965 if (!cpumask_test_cpu(this_cpu,
2966 &busiest->curr->cpus_allowed)) {
2967 raw_spin_unlock_irqrestore(&busiest->lock,
2968 flags);
2969 all_pinned = 1;
2970 goto out_one_pinned;
2971 }
2972
2973 if (!busiest->active_balance) {
2974 busiest->active_balance = 1;
2975 busiest->push_cpu = this_cpu;
2976 active_balance = 1;
2977 }
2978 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2979 if (active_balance)
2980 wake_up_process(busiest->migration_thread);
2981
2982 /*
2983 * We've kicked active balancing, reset the failure
2984 * counter.
2985 */
2986 sd->nr_balance_failed = sd->cache_nice_tries+1;
2987 }
2988 } else
2989 sd->nr_balance_failed = 0;
2990
2991 if (likely(!active_balance)) {
2992 /* We were unbalanced, so reset the balancing interval */
2993 sd->balance_interval = sd->min_interval;
2994 } else {
2995 /*
2996 * If we've begun active balancing, start to back off. This
2997 * case may not be covered by the all_pinned logic if there
2998 * is only 1 task on the busy runqueue (because we don't call
2999 * move_tasks).
3000 */
3001 if (sd->balance_interval < sd->max_interval)
3002 sd->balance_interval *= 2;
3003 }
3004
3005 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3006 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3007 ld_moved = -1;
3008
3009 goto out;
3010
3011out_balanced:
3012 schedstat_inc(sd, lb_balanced[idle]);
3013
3014 sd->nr_balance_failed = 0;
3015
3016out_one_pinned:
3017 /* tune up the balancing interval */
3018 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3019 (sd->balance_interval < sd->max_interval))
3020 sd->balance_interval *= 2;
3021
3022 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3024 ld_moved = -1;
3025 else
3026 ld_moved = 0;
3027out:
3028 if (ld_moved)
3029 update_shares(sd);
3030 return ld_moved;
3031}
3032
3033/*
3034 * idle_balance is called by schedule() if this_cpu is about to become
3035 * idle. Attempts to pull tasks from other CPUs.
3036 */
3037static void idle_balance(int this_cpu, struct rq *this_rq)
3038{
3039 struct sched_domain *sd;
3040 int pulled_task = 0;
3041 unsigned long next_balance = jiffies + HZ;
3042
3043 this_rq->idle_stamp = this_rq->clock;
3044
3045 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3046 return;
3047
3048 /*
3049 * Drop the rq->lock, but keep IRQ/preempt disabled.
3050 */
3051 raw_spin_unlock(&this_rq->lock);
3052
3053 for_each_domain(this_cpu, sd) {
3054 unsigned long interval;
3055 int balance = 1;
3056
3057 if (!(sd->flags & SD_LOAD_BALANCE))
3058 continue;
3059
3060 if (sd->flags & SD_BALANCE_NEWIDLE) {
3061 /* If we've pulled tasks over stop searching: */
3062 pulled_task = load_balance(this_cpu, this_rq,
3063 sd, CPU_NEWLY_IDLE, &balance);
3064 }
3065
3066 interval = msecs_to_jiffies(sd->balance_interval);
3067 if (time_after(next_balance, sd->last_balance + interval))
3068 next_balance = sd->last_balance + interval;
3069 if (pulled_task) {
3070 this_rq->idle_stamp = 0;
3071 break;
3072 }
3073 }
3074
3075 raw_spin_lock(&this_rq->lock);
3076
3077 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3078 /*
3079 * We are going idle. next_balance may be set based on
3080 * a busy processor. So reset next_balance.
3081 */
3082 this_rq->next_balance = next_balance;
3083 }
3084}
3085
3086/*
3087 * active_load_balance is run by migration threads. It pushes running tasks
3088 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3089 * running on each physical CPU where possible, and avoids physical /
3090 * logical imbalances.
3091 *
3092 * Called with busiest_rq locked.
3093 */
3094static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3095{
3096 int target_cpu = busiest_rq->push_cpu;
3097 struct sched_domain *sd;
3098 struct rq *target_rq;
3099
3100 /* Is there any task to move? */
3101 if (busiest_rq->nr_running <= 1)
3102 return;
3103
3104 target_rq = cpu_rq(target_cpu);
3105
3106 /*
3107 * This condition is "impossible", if it occurs
3108 * we need to fix it. Originally reported by
3109 * Bjorn Helgaas on a 128-cpu setup.
3110 */
3111 BUG_ON(busiest_rq == target_rq);
3112
3113 /* move a task from busiest_rq to target_rq */
3114 double_lock_balance(busiest_rq, target_rq);
3115 update_rq_clock(busiest_rq);
3116 update_rq_clock(target_rq);
3117
3118 /* Search for an sd spanning us and the target CPU. */
3119 for_each_domain(target_cpu, sd) {
3120 if ((sd->flags & SD_LOAD_BALANCE) &&
3121 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3122 break;
3123 }
3124
3125 if (likely(sd)) {
3126 schedstat_inc(sd, alb_count);
3127
3128 if (move_one_task(target_rq, target_cpu, busiest_rq,
3129 sd, CPU_IDLE))
3130 schedstat_inc(sd, alb_pushed);
3131 else
3132 schedstat_inc(sd, alb_failed);
3133 }
3134 double_unlock_balance(busiest_rq, target_rq);
3135}
3136
3137#ifdef CONFIG_NO_HZ
3138static struct {
3139 atomic_t load_balancer;
3140 cpumask_var_t cpu_mask;
3141 cpumask_var_t ilb_grp_nohz_mask;
3142} nohz ____cacheline_aligned = {
3143 .load_balancer = ATOMIC_INIT(-1),
3144};
3145
3146int get_nohz_load_balancer(void)
3147{
3148 return atomic_read(&nohz.load_balancer);
3149}
3150
3151#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3152/**
3153 * lowest_flag_domain - Return lowest sched_domain containing flag.
3154 * @cpu: The cpu whose lowest level of sched domain is to
3155 * be returned.
3156 * @flag: The flag to check for the lowest sched_domain
3157 * for the given cpu.
3158 *
3159 * Returns the lowest sched_domain of a cpu which contains the given flag.
3160 */
3161static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3162{
3163 struct sched_domain *sd;
3164
3165 for_each_domain(cpu, sd)
3166 if (sd && (sd->flags & flag))
3167 break;
3168
3169 return sd;
3170}
3171
3172/**
3173 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3174 * @cpu: The cpu whose domains we're iterating over.
3175 * @sd: variable holding the value of the power_savings_sd
3176 * for cpu.
3177 * @flag: The flag to filter the sched_domains to be iterated.
3178 *
3179 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3180 * set, starting from the lowest sched_domain to the highest.
3181 */
3182#define for_each_flag_domain(cpu, sd, flag) \
3183 for (sd = lowest_flag_domain(cpu, flag); \
3184 (sd && (sd->flags & flag)); sd = sd->parent)
3185
3186/**
3187 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3188 * @ilb_group: group to be checked for semi-idleness
3189 *
3190 * Returns: 1 if the group is semi-idle. 0 otherwise.
3191 *
3192 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3193 * and atleast one non-idle CPU. This helper function checks if the given
3194 * sched_group is semi-idle or not.
3195 */
3196static inline int is_semi_idle_group(struct sched_group *ilb_group)
3197{
3198 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3199 sched_group_cpus(ilb_group));
3200
3201 /*
3202 * A sched_group is semi-idle when it has atleast one busy cpu
3203 * and atleast one idle cpu.
3204 */
3205 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3206 return 0;
3207
3208 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3209 return 0;
3210
3211 return 1;
3212}
3213/**
3214 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3215 * @cpu: The cpu which is nominating a new idle_load_balancer.
3216 *
3217 * Returns: Returns the id of the idle load balancer if it exists,
3218 * Else, returns >= nr_cpu_ids.
3219 *
3220 * This algorithm picks the idle load balancer such that it belongs to a
3221 * semi-idle powersavings sched_domain. The idea is to try and avoid
3222 * completely idle packages/cores just for the purpose of idle load balancing
3223 * when there are other idle cpu's which are better suited for that job.
3224 */
3225static int find_new_ilb(int cpu)
3226{
3227 struct sched_domain *sd;
3228 struct sched_group *ilb_group;
3229
3230 /*
3231 * Have idle load balancer selection from semi-idle packages only
3232 * when power-aware load balancing is enabled
3233 */
3234 if (!(sched_smt_power_savings || sched_mc_power_savings))
3235 goto out_done;
3236
3237 /*
3238 * Optimize for the case when we have no idle CPUs or only one
3239 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3240 */
3241 if (cpumask_weight(nohz.cpu_mask) < 2)
3242 goto out_done;
3243
3244 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3245 ilb_group = sd->groups;
3246
3247 do {
3248 if (is_semi_idle_group(ilb_group))
3249 return cpumask_first(nohz.ilb_grp_nohz_mask);
3250
3251 ilb_group = ilb_group->next;
3252
3253 } while (ilb_group != sd->groups);
3254 }
3255
3256out_done:
3257 return cpumask_first(nohz.cpu_mask);
3258}
3259#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3260static inline int find_new_ilb(int call_cpu)
3261{
3262 return cpumask_first(nohz.cpu_mask);
3263}
3264#endif
3265
3266/*
3267 * This routine will try to nominate the ilb (idle load balancing)
3268 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3269 * load balancing on behalf of all those cpus. If all the cpus in the system
3270 * go into this tickless mode, then there will be no ilb owner (as there is
3271 * no need for one) and all the cpus will sleep till the next wakeup event
3272 * arrives...
3273 *
3274 * For the ilb owner, tick is not stopped. And this tick will be used
3275 * for idle load balancing. ilb owner will still be part of
3276 * nohz.cpu_mask..
3277 *
3278 * While stopping the tick, this cpu will become the ilb owner if there
3279 * is no other owner. And will be the owner till that cpu becomes busy
3280 * or if all cpus in the system stop their ticks at which point
3281 * there is no need for ilb owner.
3282 *
3283 * When the ilb owner becomes busy, it nominates another owner, during the
3284 * next busy scheduler_tick()
3285 */
3286int select_nohz_load_balancer(int stop_tick)
3287{
3288 int cpu = smp_processor_id();
3289
3290 if (stop_tick) {
3291 cpu_rq(cpu)->in_nohz_recently = 1;
3292
3293 if (!cpu_active(cpu)) {
3294 if (atomic_read(&nohz.load_balancer) != cpu)
3295 return 0;
3296
3297 /*
3298 * If we are going offline and still the leader,
3299 * give up!
3300 */
3301 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3302 BUG();
3303
3304 return 0;
3305 }
3306
3307 cpumask_set_cpu(cpu, nohz.cpu_mask);
3308
3309 /* time for ilb owner also to sleep */
3310 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3311 if (atomic_read(&nohz.load_balancer) == cpu)
3312 atomic_set(&nohz.load_balancer, -1);
3313 return 0;
3314 }
3315
3316 if (atomic_read(&nohz.load_balancer) == -1) {
3317 /* make me the ilb owner */
3318 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3319 return 1;
3320 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3321 int new_ilb;
3322
3323 if (!(sched_smt_power_savings ||
3324 sched_mc_power_savings))
3325 return 1;
3326 /*
3327 * Check to see if there is a more power-efficient
3328 * ilb.
3329 */
3330 new_ilb = find_new_ilb(cpu);
3331 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3332 atomic_set(&nohz.load_balancer, -1);
3333 resched_cpu(new_ilb);
3334 return 0;
3335 }
3336 return 1;
3337 }
3338 } else {
3339 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3340 return 0;
3341
3342 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3343
3344 if (atomic_read(&nohz.load_balancer) == cpu)
3345 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3346 BUG();
3347 }
3348 return 0;
3349}
3350#endif
3351
3352static DEFINE_SPINLOCK(balancing);
3353
3354/*
3355 * It checks each scheduling domain to see if it is due to be balanced,
3356 * and initiates a balancing operation if so.
3357 *
3358 * Balancing parameters are set up in arch_init_sched_domains.
3359 */
3360static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3361{
3362 int balance = 1;
3363 struct rq *rq = cpu_rq(cpu);
3364 unsigned long interval;
3365 struct sched_domain *sd;
3366 /* Earliest time when we have to do rebalance again */
3367 unsigned long next_balance = jiffies + 60*HZ;
3368 int update_next_balance = 0;
3369 int need_serialize;
3370
3371 for_each_domain(cpu, sd) {
3372 if (!(sd->flags & SD_LOAD_BALANCE))
3373 continue;
3374
3375 interval = sd->balance_interval;
3376 if (idle != CPU_IDLE)
3377 interval *= sd->busy_factor;
3378
3379 /* scale ms to jiffies */
3380 interval = msecs_to_jiffies(interval);
3381 if (unlikely(!interval))
3382 interval = 1;
3383 if (interval > HZ*NR_CPUS/10)
3384 interval = HZ*NR_CPUS/10;
3385
3386 need_serialize = sd->flags & SD_SERIALIZE;
3387
3388 if (need_serialize) {
3389 if (!spin_trylock(&balancing))
3390 goto out;
3391 }
3392
3393 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3394 if (load_balance(cpu, rq, sd, idle, &balance)) {
3395 /*
3396 * We've pulled tasks over so either we're no
3397 * longer idle, or one of our SMT siblings is
3398 * not idle.
3399 */
3400 idle = CPU_NOT_IDLE;
3401 }
3402 sd->last_balance = jiffies;
3403 }
3404 if (need_serialize)
3405 spin_unlock(&balancing);
3406out:
3407 if (time_after(next_balance, sd->last_balance + interval)) {
3408 next_balance = sd->last_balance + interval;
3409 update_next_balance = 1;
3410 }
3411
3412 /*
3413 * Stop the load balance at this level. There is another
3414 * CPU in our sched group which is doing load balancing more
3415 * actively.
3416 */
3417 if (!balance)
3418 break;
3419 }
3420
3421 /*
3422 * next_balance will be updated only when there is a need.
3423 * When the cpu is attached to null domain for ex, it will not be
3424 * updated.
3425 */
3426 if (likely(update_next_balance))
3427 rq->next_balance = next_balance;
3428}
3429
3430/*
3431 * run_rebalance_domains is triggered when needed from the scheduler tick.
3432 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3433 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3434 */
3435static void run_rebalance_domains(struct softirq_action *h)
3436{
3437 int this_cpu = smp_processor_id();
3438 struct rq *this_rq = cpu_rq(this_cpu);
3439 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3440 CPU_IDLE : CPU_NOT_IDLE;
3441
3442 rebalance_domains(this_cpu, idle);
3443
3444#ifdef CONFIG_NO_HZ
3445 /*
3446 * If this cpu is the owner for idle load balancing, then do the
3447 * balancing on behalf of the other idle cpus whose ticks are
3448 * stopped.
3449 */
3450 if (this_rq->idle_at_tick &&
3451 atomic_read(&nohz.load_balancer) == this_cpu) {
3452 struct rq *rq;
3453 int balance_cpu;
3454
3455 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3456 if (balance_cpu == this_cpu)
3457 continue;
3458
3459 /*
3460 * If this cpu gets work to do, stop the load balancing
3461 * work being done for other cpus. Next load
3462 * balancing owner will pick it up.
3463 */
3464 if (need_resched())
3465 break;
3466
3467 rebalance_domains(balance_cpu, CPU_IDLE);
3468
3469 rq = cpu_rq(balance_cpu);
3470 if (time_after(this_rq->next_balance, rq->next_balance))
3471 this_rq->next_balance = rq->next_balance;
3472 }
3473 }
3474#endif
3475}
3476
3477static inline int on_null_domain(int cpu)
3478{
3479 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3480}
3481
3482/*
3483 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3484 *
3485 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3486 * idle load balancing owner or decide to stop the periodic load balancing,
3487 * if the whole system is idle.
3488 */
3489static inline void trigger_load_balance(struct rq *rq, int cpu)
3490{
3491#ifdef CONFIG_NO_HZ
3492 /*
3493 * If we were in the nohz mode recently and busy at the current
3494 * scheduler tick, then check if we need to nominate new idle
3495 * load balancer.
3496 */
3497 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3498 rq->in_nohz_recently = 0;
3499
3500 if (atomic_read(&nohz.load_balancer) == cpu) {
3501 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3502 atomic_set(&nohz.load_balancer, -1);
3503 }
3504
3505 if (atomic_read(&nohz.load_balancer) == -1) {
3506 int ilb = find_new_ilb(cpu);
3507
3508 if (ilb < nr_cpu_ids)
3509 resched_cpu(ilb);
3510 }
3511 }
3512
3513 /*
3514 * If this cpu is idle and doing idle load balancing for all the
3515 * cpus with ticks stopped, is it time for that to stop?
3516 */
3517 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3518 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3519 resched_cpu(cpu);
3520 return;
3521 }
3522
3523 /*
3524 * If this cpu is idle and the idle load balancing is done by
3525 * someone else, then no need raise the SCHED_SOFTIRQ
3526 */
3527 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3528 cpumask_test_cpu(cpu, nohz.cpu_mask))
3529 return;
3530#endif
3531 /* Don't need to rebalance while attached to NULL domain */
3532 if (time_after_eq(jiffies, rq->next_balance) &&
3533 likely(!on_null_domain(cpu)))
3534 raise_softirq(SCHED_SOFTIRQ);
3535}
3536
3537static void rq_online_fair(struct rq *rq)
3538{
3539 update_sysctl();
3540}
3541
3542static void rq_offline_fair(struct rq *rq)
3543{
3544 update_sysctl();
3545}
3546
3547#else /* CONFIG_SMP */
3548
3549/*
3550 * on UP we do not need to balance between CPUs:
3551 */
3552static inline void idle_balance(int cpu, struct rq *rq)
3553{
3554}
3555
1853#endif /* CONFIG_SMP */ 3556#endif /* CONFIG_SMP */
1854 3557
1855/* 3558/*
@@ -1867,28 +3570,30 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1867} 3570}
1868 3571
1869/* 3572/*
1870 * Share the fairness runtime between parent and child, thus the 3573 * called on fork with the child task as argument from the parent's context
1871 * total amount of pressure for CPU stays equal - new tasks 3574 * - child not yet on the tasklist
1872 * get a chance to run but frequent forkers are not allowed to 3575 * - preemption disabled
1873 * monopolize the CPU. Note: the parent runqueue is locked,
1874 * the child is not running yet.
1875 */ 3576 */
1876static void task_new_fair(struct rq *rq, struct task_struct *p) 3577static void task_fork_fair(struct task_struct *p)
1877{ 3578{
1878 struct cfs_rq *cfs_rq = task_cfs_rq(p); 3579 struct cfs_rq *cfs_rq = task_cfs_rq(current);
1879 struct sched_entity *se = &p->se, *curr = cfs_rq->curr; 3580 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1880 int this_cpu = smp_processor_id(); 3581 int this_cpu = smp_processor_id();
3582 struct rq *rq = this_rq();
3583 unsigned long flags;
1881 3584
1882 sched_info_queued(p); 3585 raw_spin_lock_irqsave(&rq->lock, flags);
3586
3587 if (unlikely(task_cpu(p) != this_cpu))
3588 __set_task_cpu(p, this_cpu);
1883 3589
1884 update_curr(cfs_rq); 3590 update_curr(cfs_rq);
3591
1885 if (curr) 3592 if (curr)
1886 se->vruntime = curr->vruntime; 3593 se->vruntime = curr->vruntime;
1887 place_entity(cfs_rq, se, 1); 3594 place_entity(cfs_rq, se, 1);
1888 3595
1889 /* 'curr' will be NULL if the child belongs to a different group */ 3596 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
1890 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1891 curr && entity_before(curr, se)) {
1892 /* 3597 /*
1893 * Upon rescheduling, sched_class::put_prev_task() will place 3598 * Upon rescheduling, sched_class::put_prev_task() will place
1894 * 'current' within the tree based on its new key value. 3599 * 'current' within the tree based on its new key value.
@@ -1897,7 +3602,9 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
1897 resched_task(rq->curr); 3602 resched_task(rq->curr);
1898 } 3603 }
1899 3604
1900 enqueue_task_fair(rq, p, 0); 3605 se->vruntime -= cfs_rq->min_vruntime;
3606
3607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1901} 3608}
1902 3609
1903/* 3610/*
@@ -1950,30 +3657,27 @@ static void set_curr_task_fair(struct rq *rq)
1950} 3657}
1951 3658
1952#ifdef CONFIG_FAIR_GROUP_SCHED 3659#ifdef CONFIG_FAIR_GROUP_SCHED
1953static void moved_group_fair(struct task_struct *p) 3660static void moved_group_fair(struct task_struct *p, int on_rq)
1954{ 3661{
1955 struct cfs_rq *cfs_rq = task_cfs_rq(p); 3662 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1956 3663
1957 update_curr(cfs_rq); 3664 update_curr(cfs_rq);
1958 place_entity(cfs_rq, &p->se, 1); 3665 if (!on_rq)
3666 place_entity(cfs_rq, &p->se, 1);
1959} 3667}
1960#endif 3668#endif
1961 3669
1962unsigned int get_rr_interval_fair(struct task_struct *task) 3670static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
1963{ 3671{
1964 struct sched_entity *se = &task->se; 3672 struct sched_entity *se = &task->se;
1965 unsigned long flags;
1966 struct rq *rq;
1967 unsigned int rr_interval = 0; 3673 unsigned int rr_interval = 0;
1968 3674
1969 /* 3675 /*
1970 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 3676 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
1971 * idle runqueue: 3677 * idle runqueue:
1972 */ 3678 */
1973 rq = task_rq_lock(task, &flags);
1974 if (rq->cfs.load.weight) 3679 if (rq->cfs.load.weight)
1975 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 3680 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
1976 task_rq_unlock(rq, &flags);
1977 3681
1978 return rr_interval; 3682 return rr_interval;
1979} 3683}
@@ -1995,13 +3699,15 @@ static const struct sched_class fair_sched_class = {
1995#ifdef CONFIG_SMP 3699#ifdef CONFIG_SMP
1996 .select_task_rq = select_task_rq_fair, 3700 .select_task_rq = select_task_rq_fair,
1997 3701
1998 .load_balance = load_balance_fair, 3702 .rq_online = rq_online_fair,
1999 .move_one_task = move_one_task_fair, 3703 .rq_offline = rq_offline_fair,
3704
3705 .task_waking = task_waking_fair,
2000#endif 3706#endif
2001 3707
2002 .set_curr_task = set_curr_task_fair, 3708 .set_curr_task = set_curr_task_fair,
2003 .task_tick = task_tick_fair, 3709 .task_tick = task_tick_fair,
2004 .task_new = task_new_fair, 3710 .task_fork = task_fork_fair,
2005 3711
2006 .prio_changed = prio_changed_fair, 3712 .prio_changed = prio_changed_fair,
2007 .switched_to = switched_to_fair, 3713 .switched_to = switched_to_fair,