diff options
Diffstat (limited to 'kernel/sched/wait.c')
| -rw-r--r-- | kernel/sched/wait.c | 504 |
1 files changed, 504 insertions, 0 deletions
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c new file mode 100644 index 000000000000..7d50f794e248 --- /dev/null +++ b/kernel/sched/wait.c | |||
| @@ -0,0 +1,504 @@ | |||
| 1 | /* | ||
| 2 | * Generic waiting primitives. | ||
| 3 | * | ||
| 4 | * (C) 2004 Nadia Yvette Chambers, Oracle | ||
| 5 | */ | ||
| 6 | #include <linux/init.h> | ||
| 7 | #include <linux/export.h> | ||
| 8 | #include <linux/sched.h> | ||
| 9 | #include <linux/mm.h> | ||
| 10 | #include <linux/wait.h> | ||
| 11 | #include <linux/hash.h> | ||
| 12 | |||
| 13 | void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) | ||
| 14 | { | ||
| 15 | spin_lock_init(&q->lock); | ||
| 16 | lockdep_set_class_and_name(&q->lock, key, name); | ||
| 17 | INIT_LIST_HEAD(&q->task_list); | ||
| 18 | } | ||
| 19 | |||
| 20 | EXPORT_SYMBOL(__init_waitqueue_head); | ||
| 21 | |||
| 22 | void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | ||
| 23 | { | ||
| 24 | unsigned long flags; | ||
| 25 | |||
| 26 | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | ||
| 27 | spin_lock_irqsave(&q->lock, flags); | ||
| 28 | __add_wait_queue(q, wait); | ||
| 29 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 30 | } | ||
| 31 | EXPORT_SYMBOL(add_wait_queue); | ||
| 32 | |||
| 33 | void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) | ||
| 34 | { | ||
| 35 | unsigned long flags; | ||
| 36 | |||
| 37 | wait->flags |= WQ_FLAG_EXCLUSIVE; | ||
| 38 | spin_lock_irqsave(&q->lock, flags); | ||
| 39 | __add_wait_queue_tail(q, wait); | ||
| 40 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 41 | } | ||
| 42 | EXPORT_SYMBOL(add_wait_queue_exclusive); | ||
| 43 | |||
| 44 | void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | ||
| 45 | { | ||
| 46 | unsigned long flags; | ||
| 47 | |||
| 48 | spin_lock_irqsave(&q->lock, flags); | ||
| 49 | __remove_wait_queue(q, wait); | ||
| 50 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 51 | } | ||
| 52 | EXPORT_SYMBOL(remove_wait_queue); | ||
| 53 | |||
| 54 | |||
| 55 | /* | ||
| 56 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | ||
| 57 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | ||
| 58 | * number) then we wake all the non-exclusive tasks and one exclusive task. | ||
| 59 | * | ||
| 60 | * There are circumstances in which we can try to wake a task which has already | ||
| 61 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | ||
| 62 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | ||
| 63 | */ | ||
| 64 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | ||
| 65 | int nr_exclusive, int wake_flags, void *key) | ||
| 66 | { | ||
| 67 | wait_queue_t *curr, *next; | ||
| 68 | |||
| 69 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | ||
| 70 | unsigned flags = curr->flags; | ||
| 71 | |||
| 72 | if (curr->func(curr, mode, wake_flags, key) && | ||
| 73 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | ||
| 74 | break; | ||
| 75 | } | ||
| 76 | } | ||
| 77 | |||
| 78 | /** | ||
| 79 | * __wake_up - wake up threads blocked on a waitqueue. | ||
| 80 | * @q: the waitqueue | ||
| 81 | * @mode: which threads | ||
| 82 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
| 83 | * @key: is directly passed to the wakeup function | ||
| 84 | * | ||
| 85 | * It may be assumed that this function implies a write memory barrier before | ||
| 86 | * changing the task state if and only if any tasks are woken up. | ||
| 87 | */ | ||
| 88 | void __wake_up(wait_queue_head_t *q, unsigned int mode, | ||
| 89 | int nr_exclusive, void *key) | ||
| 90 | { | ||
| 91 | unsigned long flags; | ||
| 92 | |||
| 93 | spin_lock_irqsave(&q->lock, flags); | ||
| 94 | __wake_up_common(q, mode, nr_exclusive, 0, key); | ||
| 95 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 96 | } | ||
| 97 | EXPORT_SYMBOL(__wake_up); | ||
| 98 | |||
| 99 | /* | ||
| 100 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | ||
| 101 | */ | ||
| 102 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) | ||
| 103 | { | ||
| 104 | __wake_up_common(q, mode, nr, 0, NULL); | ||
| 105 | } | ||
| 106 | EXPORT_SYMBOL_GPL(__wake_up_locked); | ||
| 107 | |||
| 108 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | ||
| 109 | { | ||
| 110 | __wake_up_common(q, mode, 1, 0, key); | ||
| 111 | } | ||
| 112 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); | ||
| 113 | |||
| 114 | /** | ||
| 115 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. | ||
| 116 | * @q: the waitqueue | ||
| 117 | * @mode: which threads | ||
| 118 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
| 119 | * @key: opaque value to be passed to wakeup targets | ||
| 120 | * | ||
| 121 | * The sync wakeup differs that the waker knows that it will schedule | ||
| 122 | * away soon, so while the target thread will be woken up, it will not | ||
| 123 | * be migrated to another CPU - ie. the two threads are 'synchronized' | ||
| 124 | * with each other. This can prevent needless bouncing between CPUs. | ||
| 125 | * | ||
| 126 | * On UP it can prevent extra preemption. | ||
| 127 | * | ||
| 128 | * It may be assumed that this function implies a write memory barrier before | ||
| 129 | * changing the task state if and only if any tasks are woken up. | ||
| 130 | */ | ||
| 131 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | ||
| 132 | int nr_exclusive, void *key) | ||
| 133 | { | ||
| 134 | unsigned long flags; | ||
| 135 | int wake_flags = 1; /* XXX WF_SYNC */ | ||
| 136 | |||
| 137 | if (unlikely(!q)) | ||
| 138 | return; | ||
| 139 | |||
| 140 | if (unlikely(nr_exclusive != 1)) | ||
| 141 | wake_flags = 0; | ||
| 142 | |||
| 143 | spin_lock_irqsave(&q->lock, flags); | ||
| 144 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); | ||
| 145 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 146 | } | ||
| 147 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | ||
| 148 | |||
| 149 | /* | ||
| 150 | * __wake_up_sync - see __wake_up_sync_key() | ||
| 151 | */ | ||
| 152 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | ||
| 153 | { | ||
| 154 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | ||
| 155 | } | ||
| 156 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | ||
| 157 | |||
| 158 | /* | ||
| 159 | * Note: we use "set_current_state()" _after_ the wait-queue add, | ||
| 160 | * because we need a memory barrier there on SMP, so that any | ||
| 161 | * wake-function that tests for the wait-queue being active | ||
| 162 | * will be guaranteed to see waitqueue addition _or_ subsequent | ||
| 163 | * tests in this thread will see the wakeup having taken place. | ||
| 164 | * | ||
| 165 | * The spin_unlock() itself is semi-permeable and only protects | ||
| 166 | * one way (it only protects stuff inside the critical region and | ||
| 167 | * stops them from bleeding out - it would still allow subsequent | ||
| 168 | * loads to move into the critical region). | ||
| 169 | */ | ||
| 170 | void | ||
| 171 | prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) | ||
| 172 | { | ||
| 173 | unsigned long flags; | ||
| 174 | |||
| 175 | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | ||
| 176 | spin_lock_irqsave(&q->lock, flags); | ||
| 177 | if (list_empty(&wait->task_list)) | ||
| 178 | __add_wait_queue(q, wait); | ||
| 179 | set_current_state(state); | ||
| 180 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 181 | } | ||
| 182 | EXPORT_SYMBOL(prepare_to_wait); | ||
| 183 | |||
| 184 | void | ||
| 185 | prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) | ||
| 186 | { | ||
| 187 | unsigned long flags; | ||
| 188 | |||
| 189 | wait->flags |= WQ_FLAG_EXCLUSIVE; | ||
| 190 | spin_lock_irqsave(&q->lock, flags); | ||
| 191 | if (list_empty(&wait->task_list)) | ||
| 192 | __add_wait_queue_tail(q, wait); | ||
| 193 | set_current_state(state); | ||
| 194 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 195 | } | ||
| 196 | EXPORT_SYMBOL(prepare_to_wait_exclusive); | ||
| 197 | |||
| 198 | long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) | ||
| 199 | { | ||
| 200 | unsigned long flags; | ||
| 201 | |||
| 202 | if (signal_pending_state(state, current)) | ||
| 203 | return -ERESTARTSYS; | ||
| 204 | |||
| 205 | wait->private = current; | ||
| 206 | wait->func = autoremove_wake_function; | ||
| 207 | |||
| 208 | spin_lock_irqsave(&q->lock, flags); | ||
| 209 | if (list_empty(&wait->task_list)) { | ||
| 210 | if (wait->flags & WQ_FLAG_EXCLUSIVE) | ||
| 211 | __add_wait_queue_tail(q, wait); | ||
| 212 | else | ||
| 213 | __add_wait_queue(q, wait); | ||
| 214 | } | ||
| 215 | set_current_state(state); | ||
| 216 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 217 | |||
| 218 | return 0; | ||
| 219 | } | ||
| 220 | EXPORT_SYMBOL(prepare_to_wait_event); | ||
| 221 | |||
| 222 | /** | ||
| 223 | * finish_wait - clean up after waiting in a queue | ||
| 224 | * @q: waitqueue waited on | ||
| 225 | * @wait: wait descriptor | ||
| 226 | * | ||
| 227 | * Sets current thread back to running state and removes | ||
| 228 | * the wait descriptor from the given waitqueue if still | ||
| 229 | * queued. | ||
| 230 | */ | ||
| 231 | void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) | ||
| 232 | { | ||
| 233 | unsigned long flags; | ||
| 234 | |||
| 235 | __set_current_state(TASK_RUNNING); | ||
| 236 | /* | ||
| 237 | * We can check for list emptiness outside the lock | ||
| 238 | * IFF: | ||
| 239 | * - we use the "careful" check that verifies both | ||
| 240 | * the next and prev pointers, so that there cannot | ||
| 241 | * be any half-pending updates in progress on other | ||
| 242 | * CPU's that we haven't seen yet (and that might | ||
| 243 | * still change the stack area. | ||
| 244 | * and | ||
| 245 | * - all other users take the lock (ie we can only | ||
| 246 | * have _one_ other CPU that looks at or modifies | ||
| 247 | * the list). | ||
| 248 | */ | ||
| 249 | if (!list_empty_careful(&wait->task_list)) { | ||
| 250 | spin_lock_irqsave(&q->lock, flags); | ||
| 251 | list_del_init(&wait->task_list); | ||
| 252 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 253 | } | ||
| 254 | } | ||
| 255 | EXPORT_SYMBOL(finish_wait); | ||
| 256 | |||
| 257 | /** | ||
| 258 | * abort_exclusive_wait - abort exclusive waiting in a queue | ||
| 259 | * @q: waitqueue waited on | ||
| 260 | * @wait: wait descriptor | ||
| 261 | * @mode: runstate of the waiter to be woken | ||
| 262 | * @key: key to identify a wait bit queue or %NULL | ||
| 263 | * | ||
| 264 | * Sets current thread back to running state and removes | ||
| 265 | * the wait descriptor from the given waitqueue if still | ||
| 266 | * queued. | ||
| 267 | * | ||
| 268 | * Wakes up the next waiter if the caller is concurrently | ||
| 269 | * woken up through the queue. | ||
| 270 | * | ||
| 271 | * This prevents waiter starvation where an exclusive waiter | ||
| 272 | * aborts and is woken up concurrently and no one wakes up | ||
| 273 | * the next waiter. | ||
| 274 | */ | ||
| 275 | void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, | ||
| 276 | unsigned int mode, void *key) | ||
| 277 | { | ||
| 278 | unsigned long flags; | ||
| 279 | |||
| 280 | __set_current_state(TASK_RUNNING); | ||
| 281 | spin_lock_irqsave(&q->lock, flags); | ||
| 282 | if (!list_empty(&wait->task_list)) | ||
| 283 | list_del_init(&wait->task_list); | ||
| 284 | else if (waitqueue_active(q)) | ||
| 285 | __wake_up_locked_key(q, mode, key); | ||
| 286 | spin_unlock_irqrestore(&q->lock, flags); | ||
| 287 | } | ||
| 288 | EXPORT_SYMBOL(abort_exclusive_wait); | ||
| 289 | |||
| 290 | int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) | ||
| 291 | { | ||
| 292 | int ret = default_wake_function(wait, mode, sync, key); | ||
| 293 | |||
| 294 | if (ret) | ||
| 295 | list_del_init(&wait->task_list); | ||
| 296 | return ret; | ||
| 297 | } | ||
| 298 | EXPORT_SYMBOL(autoremove_wake_function); | ||
| 299 | |||
| 300 | int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) | ||
| 301 | { | ||
| 302 | struct wait_bit_key *key = arg; | ||
| 303 | struct wait_bit_queue *wait_bit | ||
| 304 | = container_of(wait, struct wait_bit_queue, wait); | ||
| 305 | |||
| 306 | if (wait_bit->key.flags != key->flags || | ||
| 307 | wait_bit->key.bit_nr != key->bit_nr || | ||
| 308 | test_bit(key->bit_nr, key->flags)) | ||
| 309 | return 0; | ||
| 310 | else | ||
| 311 | return autoremove_wake_function(wait, mode, sync, key); | ||
| 312 | } | ||
| 313 | EXPORT_SYMBOL(wake_bit_function); | ||
| 314 | |||
| 315 | /* | ||
| 316 | * To allow interruptible waiting and asynchronous (i.e. nonblocking) | ||
| 317 | * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are | ||
| 318 | * permitted return codes. Nonzero return codes halt waiting and return. | ||
| 319 | */ | ||
| 320 | int __sched | ||
| 321 | __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, | ||
| 322 | int (*action)(void *), unsigned mode) | ||
| 323 | { | ||
| 324 | int ret = 0; | ||
| 325 | |||
| 326 | do { | ||
| 327 | prepare_to_wait(wq, &q->wait, mode); | ||
| 328 | if (test_bit(q->key.bit_nr, q->key.flags)) | ||
| 329 | ret = (*action)(q->key.flags); | ||
| 330 | } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); | ||
| 331 | finish_wait(wq, &q->wait); | ||
| 332 | return ret; | ||
| 333 | } | ||
| 334 | EXPORT_SYMBOL(__wait_on_bit); | ||
| 335 | |||
| 336 | int __sched out_of_line_wait_on_bit(void *word, int bit, | ||
| 337 | int (*action)(void *), unsigned mode) | ||
| 338 | { | ||
| 339 | wait_queue_head_t *wq = bit_waitqueue(word, bit); | ||
| 340 | DEFINE_WAIT_BIT(wait, word, bit); | ||
| 341 | |||
| 342 | return __wait_on_bit(wq, &wait, action, mode); | ||
| 343 | } | ||
| 344 | EXPORT_SYMBOL(out_of_line_wait_on_bit); | ||
| 345 | |||
| 346 | int __sched | ||
| 347 | __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, | ||
| 348 | int (*action)(void *), unsigned mode) | ||
| 349 | { | ||
| 350 | do { | ||
| 351 | int ret; | ||
| 352 | |||
| 353 | prepare_to_wait_exclusive(wq, &q->wait, mode); | ||
| 354 | if (!test_bit(q->key.bit_nr, q->key.flags)) | ||
| 355 | continue; | ||
| 356 | ret = action(q->key.flags); | ||
| 357 | if (!ret) | ||
| 358 | continue; | ||
| 359 | abort_exclusive_wait(wq, &q->wait, mode, &q->key); | ||
| 360 | return ret; | ||
| 361 | } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); | ||
| 362 | finish_wait(wq, &q->wait); | ||
| 363 | return 0; | ||
| 364 | } | ||
| 365 | EXPORT_SYMBOL(__wait_on_bit_lock); | ||
| 366 | |||
| 367 | int __sched out_of_line_wait_on_bit_lock(void *word, int bit, | ||
| 368 | int (*action)(void *), unsigned mode) | ||
| 369 | { | ||
| 370 | wait_queue_head_t *wq = bit_waitqueue(word, bit); | ||
| 371 | DEFINE_WAIT_BIT(wait, word, bit); | ||
| 372 | |||
| 373 | return __wait_on_bit_lock(wq, &wait, action, mode); | ||
| 374 | } | ||
| 375 | EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); | ||
| 376 | |||
| 377 | void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) | ||
| 378 | { | ||
| 379 | struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); | ||
| 380 | if (waitqueue_active(wq)) | ||
| 381 | __wake_up(wq, TASK_NORMAL, 1, &key); | ||
| 382 | } | ||
| 383 | EXPORT_SYMBOL(__wake_up_bit); | ||
| 384 | |||
| 385 | /** | ||
| 386 | * wake_up_bit - wake up a waiter on a bit | ||
| 387 | * @word: the word being waited on, a kernel virtual address | ||
| 388 | * @bit: the bit of the word being waited on | ||
| 389 | * | ||
| 390 | * There is a standard hashed waitqueue table for generic use. This | ||
| 391 | * is the part of the hashtable's accessor API that wakes up waiters | ||
| 392 | * on a bit. For instance, if one were to have waiters on a bitflag, | ||
| 393 | * one would call wake_up_bit() after clearing the bit. | ||
| 394 | * | ||
| 395 | * In order for this to function properly, as it uses waitqueue_active() | ||
| 396 | * internally, some kind of memory barrier must be done prior to calling | ||
| 397 | * this. Typically, this will be smp_mb__after_clear_bit(), but in some | ||
| 398 | * cases where bitflags are manipulated non-atomically under a lock, one | ||
| 399 | * may need to use a less regular barrier, such fs/inode.c's smp_mb(), | ||
| 400 | * because spin_unlock() does not guarantee a memory barrier. | ||
| 401 | */ | ||
| 402 | void wake_up_bit(void *word, int bit) | ||
| 403 | { | ||
| 404 | __wake_up_bit(bit_waitqueue(word, bit), word, bit); | ||
| 405 | } | ||
| 406 | EXPORT_SYMBOL(wake_up_bit); | ||
| 407 | |||
| 408 | wait_queue_head_t *bit_waitqueue(void *word, int bit) | ||
| 409 | { | ||
| 410 | const int shift = BITS_PER_LONG == 32 ? 5 : 6; | ||
| 411 | const struct zone *zone = page_zone(virt_to_page(word)); | ||
| 412 | unsigned long val = (unsigned long)word << shift | bit; | ||
| 413 | |||
| 414 | return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; | ||
| 415 | } | ||
| 416 | EXPORT_SYMBOL(bit_waitqueue); | ||
| 417 | |||
| 418 | /* | ||
| 419 | * Manipulate the atomic_t address to produce a better bit waitqueue table hash | ||
| 420 | * index (we're keying off bit -1, but that would produce a horrible hash | ||
| 421 | * value). | ||
| 422 | */ | ||
| 423 | static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) | ||
| 424 | { | ||
| 425 | if (BITS_PER_LONG == 64) { | ||
| 426 | unsigned long q = (unsigned long)p; | ||
| 427 | return bit_waitqueue((void *)(q & ~1), q & 1); | ||
| 428 | } | ||
| 429 | return bit_waitqueue(p, 0); | ||
| 430 | } | ||
| 431 | |||
| 432 | static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, | ||
| 433 | void *arg) | ||
| 434 | { | ||
| 435 | struct wait_bit_key *key = arg; | ||
| 436 | struct wait_bit_queue *wait_bit | ||
| 437 | = container_of(wait, struct wait_bit_queue, wait); | ||
| 438 | atomic_t *val = key->flags; | ||
| 439 | |||
| 440 | if (wait_bit->key.flags != key->flags || | ||
| 441 | wait_bit->key.bit_nr != key->bit_nr || | ||
| 442 | atomic_read(val) != 0) | ||
| 443 | return 0; | ||
| 444 | return autoremove_wake_function(wait, mode, sync, key); | ||
| 445 | } | ||
| 446 | |||
| 447 | /* | ||
| 448 | * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, | ||
| 449 | * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero | ||
| 450 | * return codes halt waiting and return. | ||
| 451 | */ | ||
| 452 | static __sched | ||
| 453 | int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, | ||
| 454 | int (*action)(atomic_t *), unsigned mode) | ||
| 455 | { | ||
| 456 | atomic_t *val; | ||
| 457 | int ret = 0; | ||
| 458 | |||
| 459 | do { | ||
| 460 | prepare_to_wait(wq, &q->wait, mode); | ||
| 461 | val = q->key.flags; | ||
| 462 | if (atomic_read(val) == 0) | ||
| 463 | break; | ||
| 464 | ret = (*action)(val); | ||
| 465 | } while (!ret && atomic_read(val) != 0); | ||
| 466 | finish_wait(wq, &q->wait); | ||
| 467 | return ret; | ||
| 468 | } | ||
| 469 | |||
| 470 | #define DEFINE_WAIT_ATOMIC_T(name, p) \ | ||
| 471 | struct wait_bit_queue name = { \ | ||
| 472 | .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ | ||
| 473 | .wait = { \ | ||
| 474 | .private = current, \ | ||
| 475 | .func = wake_atomic_t_function, \ | ||
| 476 | .task_list = \ | ||
| 477 | LIST_HEAD_INIT((name).wait.task_list), \ | ||
| 478 | }, \ | ||
| 479 | } | ||
| 480 | |||
| 481 | __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), | ||
| 482 | unsigned mode) | ||
| 483 | { | ||
| 484 | wait_queue_head_t *wq = atomic_t_waitqueue(p); | ||
| 485 | DEFINE_WAIT_ATOMIC_T(wait, p); | ||
| 486 | |||
| 487 | return __wait_on_atomic_t(wq, &wait, action, mode); | ||
| 488 | } | ||
| 489 | EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); | ||
| 490 | |||
| 491 | /** | ||
| 492 | * wake_up_atomic_t - Wake up a waiter on a atomic_t | ||
| 493 | * @p: The atomic_t being waited on, a kernel virtual address | ||
| 494 | * | ||
| 495 | * Wake up anyone waiting for the atomic_t to go to zero. | ||
| 496 | * | ||
| 497 | * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t | ||
| 498 | * check is done by the waiter's wake function, not the by the waker itself). | ||
| 499 | */ | ||
| 500 | void wake_up_atomic_t(atomic_t *p) | ||
| 501 | { | ||
| 502 | __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); | ||
| 503 | } | ||
| 504 | EXPORT_SYMBOL(wake_up_atomic_t); | ||
