diff options
Diffstat (limited to 'kernel/sched/wait.c')
-rw-r--r-- | kernel/sched/wait.c | 504 |
1 files changed, 504 insertions, 0 deletions
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c new file mode 100644 index 000000000000..7d50f794e248 --- /dev/null +++ b/kernel/sched/wait.c | |||
@@ -0,0 +1,504 @@ | |||
1 | /* | ||
2 | * Generic waiting primitives. | ||
3 | * | ||
4 | * (C) 2004 Nadia Yvette Chambers, Oracle | ||
5 | */ | ||
6 | #include <linux/init.h> | ||
7 | #include <linux/export.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/mm.h> | ||
10 | #include <linux/wait.h> | ||
11 | #include <linux/hash.h> | ||
12 | |||
13 | void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) | ||
14 | { | ||
15 | spin_lock_init(&q->lock); | ||
16 | lockdep_set_class_and_name(&q->lock, key, name); | ||
17 | INIT_LIST_HEAD(&q->task_list); | ||
18 | } | ||
19 | |||
20 | EXPORT_SYMBOL(__init_waitqueue_head); | ||
21 | |||
22 | void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | ||
23 | { | ||
24 | unsigned long flags; | ||
25 | |||
26 | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | ||
27 | spin_lock_irqsave(&q->lock, flags); | ||
28 | __add_wait_queue(q, wait); | ||
29 | spin_unlock_irqrestore(&q->lock, flags); | ||
30 | } | ||
31 | EXPORT_SYMBOL(add_wait_queue); | ||
32 | |||
33 | void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) | ||
34 | { | ||
35 | unsigned long flags; | ||
36 | |||
37 | wait->flags |= WQ_FLAG_EXCLUSIVE; | ||
38 | spin_lock_irqsave(&q->lock, flags); | ||
39 | __add_wait_queue_tail(q, wait); | ||
40 | spin_unlock_irqrestore(&q->lock, flags); | ||
41 | } | ||
42 | EXPORT_SYMBOL(add_wait_queue_exclusive); | ||
43 | |||
44 | void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | ||
45 | { | ||
46 | unsigned long flags; | ||
47 | |||
48 | spin_lock_irqsave(&q->lock, flags); | ||
49 | __remove_wait_queue(q, wait); | ||
50 | spin_unlock_irqrestore(&q->lock, flags); | ||
51 | } | ||
52 | EXPORT_SYMBOL(remove_wait_queue); | ||
53 | |||
54 | |||
55 | /* | ||
56 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | ||
57 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | ||
58 | * number) then we wake all the non-exclusive tasks and one exclusive task. | ||
59 | * | ||
60 | * There are circumstances in which we can try to wake a task which has already | ||
61 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | ||
62 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | ||
63 | */ | ||
64 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | ||
65 | int nr_exclusive, int wake_flags, void *key) | ||
66 | { | ||
67 | wait_queue_t *curr, *next; | ||
68 | |||
69 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | ||
70 | unsigned flags = curr->flags; | ||
71 | |||
72 | if (curr->func(curr, mode, wake_flags, key) && | ||
73 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | ||
74 | break; | ||
75 | } | ||
76 | } | ||
77 | |||
78 | /** | ||
79 | * __wake_up - wake up threads blocked on a waitqueue. | ||
80 | * @q: the waitqueue | ||
81 | * @mode: which threads | ||
82 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
83 | * @key: is directly passed to the wakeup function | ||
84 | * | ||
85 | * It may be assumed that this function implies a write memory barrier before | ||
86 | * changing the task state if and only if any tasks are woken up. | ||
87 | */ | ||
88 | void __wake_up(wait_queue_head_t *q, unsigned int mode, | ||
89 | int nr_exclusive, void *key) | ||
90 | { | ||
91 | unsigned long flags; | ||
92 | |||
93 | spin_lock_irqsave(&q->lock, flags); | ||
94 | __wake_up_common(q, mode, nr_exclusive, 0, key); | ||
95 | spin_unlock_irqrestore(&q->lock, flags); | ||
96 | } | ||
97 | EXPORT_SYMBOL(__wake_up); | ||
98 | |||
99 | /* | ||
100 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | ||
101 | */ | ||
102 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) | ||
103 | { | ||
104 | __wake_up_common(q, mode, nr, 0, NULL); | ||
105 | } | ||
106 | EXPORT_SYMBOL_GPL(__wake_up_locked); | ||
107 | |||
108 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | ||
109 | { | ||
110 | __wake_up_common(q, mode, 1, 0, key); | ||
111 | } | ||
112 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); | ||
113 | |||
114 | /** | ||
115 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. | ||
116 | * @q: the waitqueue | ||
117 | * @mode: which threads | ||
118 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
119 | * @key: opaque value to be passed to wakeup targets | ||
120 | * | ||
121 | * The sync wakeup differs that the waker knows that it will schedule | ||
122 | * away soon, so while the target thread will be woken up, it will not | ||
123 | * be migrated to another CPU - ie. the two threads are 'synchronized' | ||
124 | * with each other. This can prevent needless bouncing between CPUs. | ||
125 | * | ||
126 | * On UP it can prevent extra preemption. | ||
127 | * | ||
128 | * It may be assumed that this function implies a write memory barrier before | ||
129 | * changing the task state if and only if any tasks are woken up. | ||
130 | */ | ||
131 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | ||
132 | int nr_exclusive, void *key) | ||
133 | { | ||
134 | unsigned long flags; | ||
135 | int wake_flags = 1; /* XXX WF_SYNC */ | ||
136 | |||
137 | if (unlikely(!q)) | ||
138 | return; | ||
139 | |||
140 | if (unlikely(nr_exclusive != 1)) | ||
141 | wake_flags = 0; | ||
142 | |||
143 | spin_lock_irqsave(&q->lock, flags); | ||
144 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); | ||
145 | spin_unlock_irqrestore(&q->lock, flags); | ||
146 | } | ||
147 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | ||
148 | |||
149 | /* | ||
150 | * __wake_up_sync - see __wake_up_sync_key() | ||
151 | */ | ||
152 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | ||
153 | { | ||
154 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | ||
155 | } | ||
156 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | ||
157 | |||
158 | /* | ||
159 | * Note: we use "set_current_state()" _after_ the wait-queue add, | ||
160 | * because we need a memory barrier there on SMP, so that any | ||
161 | * wake-function that tests for the wait-queue being active | ||
162 | * will be guaranteed to see waitqueue addition _or_ subsequent | ||
163 | * tests in this thread will see the wakeup having taken place. | ||
164 | * | ||
165 | * The spin_unlock() itself is semi-permeable and only protects | ||
166 | * one way (it only protects stuff inside the critical region and | ||
167 | * stops them from bleeding out - it would still allow subsequent | ||
168 | * loads to move into the critical region). | ||
169 | */ | ||
170 | void | ||
171 | prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) | ||
172 | { | ||
173 | unsigned long flags; | ||
174 | |||
175 | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | ||
176 | spin_lock_irqsave(&q->lock, flags); | ||
177 | if (list_empty(&wait->task_list)) | ||
178 | __add_wait_queue(q, wait); | ||
179 | set_current_state(state); | ||
180 | spin_unlock_irqrestore(&q->lock, flags); | ||
181 | } | ||
182 | EXPORT_SYMBOL(prepare_to_wait); | ||
183 | |||
184 | void | ||
185 | prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) | ||
186 | { | ||
187 | unsigned long flags; | ||
188 | |||
189 | wait->flags |= WQ_FLAG_EXCLUSIVE; | ||
190 | spin_lock_irqsave(&q->lock, flags); | ||
191 | if (list_empty(&wait->task_list)) | ||
192 | __add_wait_queue_tail(q, wait); | ||
193 | set_current_state(state); | ||
194 | spin_unlock_irqrestore(&q->lock, flags); | ||
195 | } | ||
196 | EXPORT_SYMBOL(prepare_to_wait_exclusive); | ||
197 | |||
198 | long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) | ||
199 | { | ||
200 | unsigned long flags; | ||
201 | |||
202 | if (signal_pending_state(state, current)) | ||
203 | return -ERESTARTSYS; | ||
204 | |||
205 | wait->private = current; | ||
206 | wait->func = autoremove_wake_function; | ||
207 | |||
208 | spin_lock_irqsave(&q->lock, flags); | ||
209 | if (list_empty(&wait->task_list)) { | ||
210 | if (wait->flags & WQ_FLAG_EXCLUSIVE) | ||
211 | __add_wait_queue_tail(q, wait); | ||
212 | else | ||
213 | __add_wait_queue(q, wait); | ||
214 | } | ||
215 | set_current_state(state); | ||
216 | spin_unlock_irqrestore(&q->lock, flags); | ||
217 | |||
218 | return 0; | ||
219 | } | ||
220 | EXPORT_SYMBOL(prepare_to_wait_event); | ||
221 | |||
222 | /** | ||
223 | * finish_wait - clean up after waiting in a queue | ||
224 | * @q: waitqueue waited on | ||
225 | * @wait: wait descriptor | ||
226 | * | ||
227 | * Sets current thread back to running state and removes | ||
228 | * the wait descriptor from the given waitqueue if still | ||
229 | * queued. | ||
230 | */ | ||
231 | void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) | ||
232 | { | ||
233 | unsigned long flags; | ||
234 | |||
235 | __set_current_state(TASK_RUNNING); | ||
236 | /* | ||
237 | * We can check for list emptiness outside the lock | ||
238 | * IFF: | ||
239 | * - we use the "careful" check that verifies both | ||
240 | * the next and prev pointers, so that there cannot | ||
241 | * be any half-pending updates in progress on other | ||
242 | * CPU's that we haven't seen yet (and that might | ||
243 | * still change the stack area. | ||
244 | * and | ||
245 | * - all other users take the lock (ie we can only | ||
246 | * have _one_ other CPU that looks at or modifies | ||
247 | * the list). | ||
248 | */ | ||
249 | if (!list_empty_careful(&wait->task_list)) { | ||
250 | spin_lock_irqsave(&q->lock, flags); | ||
251 | list_del_init(&wait->task_list); | ||
252 | spin_unlock_irqrestore(&q->lock, flags); | ||
253 | } | ||
254 | } | ||
255 | EXPORT_SYMBOL(finish_wait); | ||
256 | |||
257 | /** | ||
258 | * abort_exclusive_wait - abort exclusive waiting in a queue | ||
259 | * @q: waitqueue waited on | ||
260 | * @wait: wait descriptor | ||
261 | * @mode: runstate of the waiter to be woken | ||
262 | * @key: key to identify a wait bit queue or %NULL | ||
263 | * | ||
264 | * Sets current thread back to running state and removes | ||
265 | * the wait descriptor from the given waitqueue if still | ||
266 | * queued. | ||
267 | * | ||
268 | * Wakes up the next waiter if the caller is concurrently | ||
269 | * woken up through the queue. | ||
270 | * | ||
271 | * This prevents waiter starvation where an exclusive waiter | ||
272 | * aborts and is woken up concurrently and no one wakes up | ||
273 | * the next waiter. | ||
274 | */ | ||
275 | void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, | ||
276 | unsigned int mode, void *key) | ||
277 | { | ||
278 | unsigned long flags; | ||
279 | |||
280 | __set_current_state(TASK_RUNNING); | ||
281 | spin_lock_irqsave(&q->lock, flags); | ||
282 | if (!list_empty(&wait->task_list)) | ||
283 | list_del_init(&wait->task_list); | ||
284 | else if (waitqueue_active(q)) | ||
285 | __wake_up_locked_key(q, mode, key); | ||
286 | spin_unlock_irqrestore(&q->lock, flags); | ||
287 | } | ||
288 | EXPORT_SYMBOL(abort_exclusive_wait); | ||
289 | |||
290 | int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) | ||
291 | { | ||
292 | int ret = default_wake_function(wait, mode, sync, key); | ||
293 | |||
294 | if (ret) | ||
295 | list_del_init(&wait->task_list); | ||
296 | return ret; | ||
297 | } | ||
298 | EXPORT_SYMBOL(autoremove_wake_function); | ||
299 | |||
300 | int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) | ||
301 | { | ||
302 | struct wait_bit_key *key = arg; | ||
303 | struct wait_bit_queue *wait_bit | ||
304 | = container_of(wait, struct wait_bit_queue, wait); | ||
305 | |||
306 | if (wait_bit->key.flags != key->flags || | ||
307 | wait_bit->key.bit_nr != key->bit_nr || | ||
308 | test_bit(key->bit_nr, key->flags)) | ||
309 | return 0; | ||
310 | else | ||
311 | return autoremove_wake_function(wait, mode, sync, key); | ||
312 | } | ||
313 | EXPORT_SYMBOL(wake_bit_function); | ||
314 | |||
315 | /* | ||
316 | * To allow interruptible waiting and asynchronous (i.e. nonblocking) | ||
317 | * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are | ||
318 | * permitted return codes. Nonzero return codes halt waiting and return. | ||
319 | */ | ||
320 | int __sched | ||
321 | __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, | ||
322 | int (*action)(void *), unsigned mode) | ||
323 | { | ||
324 | int ret = 0; | ||
325 | |||
326 | do { | ||
327 | prepare_to_wait(wq, &q->wait, mode); | ||
328 | if (test_bit(q->key.bit_nr, q->key.flags)) | ||
329 | ret = (*action)(q->key.flags); | ||
330 | } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); | ||
331 | finish_wait(wq, &q->wait); | ||
332 | return ret; | ||
333 | } | ||
334 | EXPORT_SYMBOL(__wait_on_bit); | ||
335 | |||
336 | int __sched out_of_line_wait_on_bit(void *word, int bit, | ||
337 | int (*action)(void *), unsigned mode) | ||
338 | { | ||
339 | wait_queue_head_t *wq = bit_waitqueue(word, bit); | ||
340 | DEFINE_WAIT_BIT(wait, word, bit); | ||
341 | |||
342 | return __wait_on_bit(wq, &wait, action, mode); | ||
343 | } | ||
344 | EXPORT_SYMBOL(out_of_line_wait_on_bit); | ||
345 | |||
346 | int __sched | ||
347 | __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, | ||
348 | int (*action)(void *), unsigned mode) | ||
349 | { | ||
350 | do { | ||
351 | int ret; | ||
352 | |||
353 | prepare_to_wait_exclusive(wq, &q->wait, mode); | ||
354 | if (!test_bit(q->key.bit_nr, q->key.flags)) | ||
355 | continue; | ||
356 | ret = action(q->key.flags); | ||
357 | if (!ret) | ||
358 | continue; | ||
359 | abort_exclusive_wait(wq, &q->wait, mode, &q->key); | ||
360 | return ret; | ||
361 | } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); | ||
362 | finish_wait(wq, &q->wait); | ||
363 | return 0; | ||
364 | } | ||
365 | EXPORT_SYMBOL(__wait_on_bit_lock); | ||
366 | |||
367 | int __sched out_of_line_wait_on_bit_lock(void *word, int bit, | ||
368 | int (*action)(void *), unsigned mode) | ||
369 | { | ||
370 | wait_queue_head_t *wq = bit_waitqueue(word, bit); | ||
371 | DEFINE_WAIT_BIT(wait, word, bit); | ||
372 | |||
373 | return __wait_on_bit_lock(wq, &wait, action, mode); | ||
374 | } | ||
375 | EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); | ||
376 | |||
377 | void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) | ||
378 | { | ||
379 | struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); | ||
380 | if (waitqueue_active(wq)) | ||
381 | __wake_up(wq, TASK_NORMAL, 1, &key); | ||
382 | } | ||
383 | EXPORT_SYMBOL(__wake_up_bit); | ||
384 | |||
385 | /** | ||
386 | * wake_up_bit - wake up a waiter on a bit | ||
387 | * @word: the word being waited on, a kernel virtual address | ||
388 | * @bit: the bit of the word being waited on | ||
389 | * | ||
390 | * There is a standard hashed waitqueue table for generic use. This | ||
391 | * is the part of the hashtable's accessor API that wakes up waiters | ||
392 | * on a bit. For instance, if one were to have waiters on a bitflag, | ||
393 | * one would call wake_up_bit() after clearing the bit. | ||
394 | * | ||
395 | * In order for this to function properly, as it uses waitqueue_active() | ||
396 | * internally, some kind of memory barrier must be done prior to calling | ||
397 | * this. Typically, this will be smp_mb__after_clear_bit(), but in some | ||
398 | * cases where bitflags are manipulated non-atomically under a lock, one | ||
399 | * may need to use a less regular barrier, such fs/inode.c's smp_mb(), | ||
400 | * because spin_unlock() does not guarantee a memory barrier. | ||
401 | */ | ||
402 | void wake_up_bit(void *word, int bit) | ||
403 | { | ||
404 | __wake_up_bit(bit_waitqueue(word, bit), word, bit); | ||
405 | } | ||
406 | EXPORT_SYMBOL(wake_up_bit); | ||
407 | |||
408 | wait_queue_head_t *bit_waitqueue(void *word, int bit) | ||
409 | { | ||
410 | const int shift = BITS_PER_LONG == 32 ? 5 : 6; | ||
411 | const struct zone *zone = page_zone(virt_to_page(word)); | ||
412 | unsigned long val = (unsigned long)word << shift | bit; | ||
413 | |||
414 | return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; | ||
415 | } | ||
416 | EXPORT_SYMBOL(bit_waitqueue); | ||
417 | |||
418 | /* | ||
419 | * Manipulate the atomic_t address to produce a better bit waitqueue table hash | ||
420 | * index (we're keying off bit -1, but that would produce a horrible hash | ||
421 | * value). | ||
422 | */ | ||
423 | static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) | ||
424 | { | ||
425 | if (BITS_PER_LONG == 64) { | ||
426 | unsigned long q = (unsigned long)p; | ||
427 | return bit_waitqueue((void *)(q & ~1), q & 1); | ||
428 | } | ||
429 | return bit_waitqueue(p, 0); | ||
430 | } | ||
431 | |||
432 | static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, | ||
433 | void *arg) | ||
434 | { | ||
435 | struct wait_bit_key *key = arg; | ||
436 | struct wait_bit_queue *wait_bit | ||
437 | = container_of(wait, struct wait_bit_queue, wait); | ||
438 | atomic_t *val = key->flags; | ||
439 | |||
440 | if (wait_bit->key.flags != key->flags || | ||
441 | wait_bit->key.bit_nr != key->bit_nr || | ||
442 | atomic_read(val) != 0) | ||
443 | return 0; | ||
444 | return autoremove_wake_function(wait, mode, sync, key); | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, | ||
449 | * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero | ||
450 | * return codes halt waiting and return. | ||
451 | */ | ||
452 | static __sched | ||
453 | int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, | ||
454 | int (*action)(atomic_t *), unsigned mode) | ||
455 | { | ||
456 | atomic_t *val; | ||
457 | int ret = 0; | ||
458 | |||
459 | do { | ||
460 | prepare_to_wait(wq, &q->wait, mode); | ||
461 | val = q->key.flags; | ||
462 | if (atomic_read(val) == 0) | ||
463 | break; | ||
464 | ret = (*action)(val); | ||
465 | } while (!ret && atomic_read(val) != 0); | ||
466 | finish_wait(wq, &q->wait); | ||
467 | return ret; | ||
468 | } | ||
469 | |||
470 | #define DEFINE_WAIT_ATOMIC_T(name, p) \ | ||
471 | struct wait_bit_queue name = { \ | ||
472 | .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ | ||
473 | .wait = { \ | ||
474 | .private = current, \ | ||
475 | .func = wake_atomic_t_function, \ | ||
476 | .task_list = \ | ||
477 | LIST_HEAD_INIT((name).wait.task_list), \ | ||
478 | }, \ | ||
479 | } | ||
480 | |||
481 | __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), | ||
482 | unsigned mode) | ||
483 | { | ||
484 | wait_queue_head_t *wq = atomic_t_waitqueue(p); | ||
485 | DEFINE_WAIT_ATOMIC_T(wait, p); | ||
486 | |||
487 | return __wait_on_atomic_t(wq, &wait, action, mode); | ||
488 | } | ||
489 | EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); | ||
490 | |||
491 | /** | ||
492 | * wake_up_atomic_t - Wake up a waiter on a atomic_t | ||
493 | * @p: The atomic_t being waited on, a kernel virtual address | ||
494 | * | ||
495 | * Wake up anyone waiting for the atomic_t to go to zero. | ||
496 | * | ||
497 | * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t | ||
498 | * check is done by the waiter's wake function, not the by the waker itself). | ||
499 | */ | ||
500 | void wake_up_atomic_t(atomic_t *p) | ||
501 | { | ||
502 | __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); | ||
503 | } | ||
504 | EXPORT_SYMBOL(wake_up_atomic_t); | ||