diff options
Diffstat (limited to 'kernel/sched/sched.h')
| -rw-r--r-- | kernel/sched/sched.h | 1166 |
1 files changed, 1166 insertions, 0 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h new file mode 100644 index 000000000000..98c0c2623db8 --- /dev/null +++ b/kernel/sched/sched.h | |||
| @@ -0,0 +1,1166 @@ | |||
| 1 | |||
| 2 | #include <linux/sched.h> | ||
| 3 | #include <linux/mutex.h> | ||
| 4 | #include <linux/spinlock.h> | ||
| 5 | #include <linux/stop_machine.h> | ||
| 6 | |||
| 7 | #include "cpupri.h" | ||
| 8 | |||
| 9 | extern __read_mostly int scheduler_running; | ||
| 10 | |||
| 11 | /* | ||
| 12 | * Convert user-nice values [ -20 ... 0 ... 19 ] | ||
| 13 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | ||
| 14 | * and back. | ||
| 15 | */ | ||
| 16 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | ||
| 17 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | ||
| 18 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | ||
| 19 | |||
| 20 | /* | ||
| 21 | * 'User priority' is the nice value converted to something we | ||
| 22 | * can work with better when scaling various scheduler parameters, | ||
| 23 | * it's a [ 0 ... 39 ] range. | ||
| 24 | */ | ||
| 25 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | ||
| 26 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | ||
| 27 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | ||
| 28 | |||
| 29 | /* | ||
| 30 | * Helpers for converting nanosecond timing to jiffy resolution | ||
| 31 | */ | ||
| 32 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | ||
| 33 | |||
| 34 | #define NICE_0_LOAD SCHED_LOAD_SCALE | ||
| 35 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | ||
| 36 | |||
| 37 | /* | ||
| 38 | * These are the 'tuning knobs' of the scheduler: | ||
| 39 | * | ||
| 40 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). | ||
| 41 | * Timeslices get refilled after they expire. | ||
| 42 | */ | ||
| 43 | #define DEF_TIMESLICE (100 * HZ / 1000) | ||
| 44 | |||
| 45 | /* | ||
| 46 | * single value that denotes runtime == period, ie unlimited time. | ||
| 47 | */ | ||
| 48 | #define RUNTIME_INF ((u64)~0ULL) | ||
| 49 | |||
| 50 | static inline int rt_policy(int policy) | ||
| 51 | { | ||
| 52 | if (policy == SCHED_FIFO || policy == SCHED_RR) | ||
| 53 | return 1; | ||
| 54 | return 0; | ||
| 55 | } | ||
| 56 | |||
| 57 | static inline int task_has_rt_policy(struct task_struct *p) | ||
| 58 | { | ||
| 59 | return rt_policy(p->policy); | ||
| 60 | } | ||
| 61 | |||
| 62 | /* | ||
| 63 | * This is the priority-queue data structure of the RT scheduling class: | ||
| 64 | */ | ||
| 65 | struct rt_prio_array { | ||
| 66 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | ||
| 67 | struct list_head queue[MAX_RT_PRIO]; | ||
| 68 | }; | ||
| 69 | |||
| 70 | struct rt_bandwidth { | ||
| 71 | /* nests inside the rq lock: */ | ||
| 72 | raw_spinlock_t rt_runtime_lock; | ||
| 73 | ktime_t rt_period; | ||
| 74 | u64 rt_runtime; | ||
| 75 | struct hrtimer rt_period_timer; | ||
| 76 | }; | ||
| 77 | |||
| 78 | extern struct mutex sched_domains_mutex; | ||
| 79 | |||
| 80 | #ifdef CONFIG_CGROUP_SCHED | ||
| 81 | |||
| 82 | #include <linux/cgroup.h> | ||
| 83 | |||
| 84 | struct cfs_rq; | ||
| 85 | struct rt_rq; | ||
| 86 | |||
| 87 | static LIST_HEAD(task_groups); | ||
| 88 | |||
| 89 | struct cfs_bandwidth { | ||
| 90 | #ifdef CONFIG_CFS_BANDWIDTH | ||
| 91 | raw_spinlock_t lock; | ||
| 92 | ktime_t period; | ||
| 93 | u64 quota, runtime; | ||
| 94 | s64 hierarchal_quota; | ||
| 95 | u64 runtime_expires; | ||
| 96 | |||
| 97 | int idle, timer_active; | ||
| 98 | struct hrtimer period_timer, slack_timer; | ||
| 99 | struct list_head throttled_cfs_rq; | ||
| 100 | |||
| 101 | /* statistics */ | ||
| 102 | int nr_periods, nr_throttled; | ||
| 103 | u64 throttled_time; | ||
| 104 | #endif | ||
| 105 | }; | ||
| 106 | |||
| 107 | /* task group related information */ | ||
| 108 | struct task_group { | ||
| 109 | struct cgroup_subsys_state css; | ||
| 110 | |||
| 111 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 112 | /* schedulable entities of this group on each cpu */ | ||
| 113 | struct sched_entity **se; | ||
| 114 | /* runqueue "owned" by this group on each cpu */ | ||
| 115 | struct cfs_rq **cfs_rq; | ||
| 116 | unsigned long shares; | ||
| 117 | |||
| 118 | atomic_t load_weight; | ||
| 119 | #endif | ||
| 120 | |||
| 121 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 122 | struct sched_rt_entity **rt_se; | ||
| 123 | struct rt_rq **rt_rq; | ||
| 124 | |||
| 125 | struct rt_bandwidth rt_bandwidth; | ||
| 126 | #endif | ||
| 127 | |||
| 128 | struct rcu_head rcu; | ||
| 129 | struct list_head list; | ||
| 130 | |||
| 131 | struct task_group *parent; | ||
| 132 | struct list_head siblings; | ||
| 133 | struct list_head children; | ||
| 134 | |||
| 135 | #ifdef CONFIG_SCHED_AUTOGROUP | ||
| 136 | struct autogroup *autogroup; | ||
| 137 | #endif | ||
| 138 | |||
| 139 | struct cfs_bandwidth cfs_bandwidth; | ||
| 140 | }; | ||
| 141 | |||
| 142 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 143 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD | ||
| 144 | |||
| 145 | /* | ||
| 146 | * A weight of 0 or 1 can cause arithmetics problems. | ||
| 147 | * A weight of a cfs_rq is the sum of weights of which entities | ||
| 148 | * are queued on this cfs_rq, so a weight of a entity should not be | ||
| 149 | * too large, so as the shares value of a task group. | ||
| 150 | * (The default weight is 1024 - so there's no practical | ||
| 151 | * limitation from this.) | ||
| 152 | */ | ||
| 153 | #define MIN_SHARES (1UL << 1) | ||
| 154 | #define MAX_SHARES (1UL << 18) | ||
| 155 | #endif | ||
| 156 | |||
| 157 | /* Default task group. | ||
| 158 | * Every task in system belong to this group at bootup. | ||
| 159 | */ | ||
| 160 | extern struct task_group root_task_group; | ||
| 161 | |||
| 162 | typedef int (*tg_visitor)(struct task_group *, void *); | ||
| 163 | |||
| 164 | extern int walk_tg_tree_from(struct task_group *from, | ||
| 165 | tg_visitor down, tg_visitor up, void *data); | ||
| 166 | |||
| 167 | /* | ||
| 168 | * Iterate the full tree, calling @down when first entering a node and @up when | ||
| 169 | * leaving it for the final time. | ||
| 170 | * | ||
| 171 | * Caller must hold rcu_lock or sufficient equivalent. | ||
| 172 | */ | ||
| 173 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | ||
| 174 | { | ||
| 175 | return walk_tg_tree_from(&root_task_group, down, up, data); | ||
| 176 | } | ||
| 177 | |||
| 178 | extern int tg_nop(struct task_group *tg, void *data); | ||
| 179 | |||
| 180 | extern void free_fair_sched_group(struct task_group *tg); | ||
| 181 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | ||
| 182 | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); | ||
| 183 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | ||
| 184 | struct sched_entity *se, int cpu, | ||
| 185 | struct sched_entity *parent); | ||
| 186 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
| 187 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | ||
| 188 | |||
| 189 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | ||
| 190 | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
| 191 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | ||
| 192 | |||
| 193 | extern void free_rt_sched_group(struct task_group *tg); | ||
| 194 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | ||
| 195 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | ||
| 196 | struct sched_rt_entity *rt_se, int cpu, | ||
| 197 | struct sched_rt_entity *parent); | ||
| 198 | |||
| 199 | #else /* CONFIG_CGROUP_SCHED */ | ||
| 200 | |||
| 201 | struct cfs_bandwidth { }; | ||
| 202 | |||
| 203 | #endif /* CONFIG_CGROUP_SCHED */ | ||
| 204 | |||
| 205 | /* CFS-related fields in a runqueue */ | ||
| 206 | struct cfs_rq { | ||
| 207 | struct load_weight load; | ||
| 208 | unsigned long nr_running, h_nr_running; | ||
| 209 | |||
| 210 | u64 exec_clock; | ||
| 211 | u64 min_vruntime; | ||
| 212 | #ifndef CONFIG_64BIT | ||
| 213 | u64 min_vruntime_copy; | ||
| 214 | #endif | ||
| 215 | |||
| 216 | struct rb_root tasks_timeline; | ||
| 217 | struct rb_node *rb_leftmost; | ||
| 218 | |||
| 219 | struct list_head tasks; | ||
| 220 | struct list_head *balance_iterator; | ||
| 221 | |||
| 222 | /* | ||
| 223 | * 'curr' points to currently running entity on this cfs_rq. | ||
| 224 | * It is set to NULL otherwise (i.e when none are currently running). | ||
| 225 | */ | ||
| 226 | struct sched_entity *curr, *next, *last, *skip; | ||
| 227 | |||
| 228 | #ifdef CONFIG_SCHED_DEBUG | ||
| 229 | unsigned int nr_spread_over; | ||
| 230 | #endif | ||
| 231 | |||
| 232 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 233 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | ||
| 234 | |||
| 235 | /* | ||
| 236 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | ||
| 237 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | ||
| 238 | * (like users, containers etc.) | ||
| 239 | * | ||
| 240 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | ||
| 241 | * list is used during load balance. | ||
| 242 | */ | ||
| 243 | int on_list; | ||
| 244 | struct list_head leaf_cfs_rq_list; | ||
| 245 | struct task_group *tg; /* group that "owns" this runqueue */ | ||
| 246 | |||
| 247 | #ifdef CONFIG_SMP | ||
| 248 | /* | ||
| 249 | * the part of load.weight contributed by tasks | ||
| 250 | */ | ||
| 251 | unsigned long task_weight; | ||
| 252 | |||
| 253 | /* | ||
| 254 | * h_load = weight * f(tg) | ||
| 255 | * | ||
| 256 | * Where f(tg) is the recursive weight fraction assigned to | ||
| 257 | * this group. | ||
| 258 | */ | ||
| 259 | unsigned long h_load; | ||
| 260 | |||
| 261 | /* | ||
| 262 | * Maintaining per-cpu shares distribution for group scheduling | ||
| 263 | * | ||
| 264 | * load_stamp is the last time we updated the load average | ||
| 265 | * load_last is the last time we updated the load average and saw load | ||
| 266 | * load_unacc_exec_time is currently unaccounted execution time | ||
| 267 | */ | ||
| 268 | u64 load_avg; | ||
| 269 | u64 load_period; | ||
| 270 | u64 load_stamp, load_last, load_unacc_exec_time; | ||
| 271 | |||
| 272 | unsigned long load_contribution; | ||
| 273 | #endif /* CONFIG_SMP */ | ||
| 274 | #ifdef CONFIG_CFS_BANDWIDTH | ||
| 275 | int runtime_enabled; | ||
| 276 | u64 runtime_expires; | ||
| 277 | s64 runtime_remaining; | ||
| 278 | |||
| 279 | u64 throttled_timestamp; | ||
| 280 | int throttled, throttle_count; | ||
| 281 | struct list_head throttled_list; | ||
| 282 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
| 283 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
| 284 | }; | ||
| 285 | |||
| 286 | static inline int rt_bandwidth_enabled(void) | ||
| 287 | { | ||
| 288 | return sysctl_sched_rt_runtime >= 0; | ||
| 289 | } | ||
| 290 | |||
| 291 | /* Real-Time classes' related field in a runqueue: */ | ||
| 292 | struct rt_rq { | ||
| 293 | struct rt_prio_array active; | ||
| 294 | unsigned long rt_nr_running; | ||
| 295 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
| 296 | struct { | ||
| 297 | int curr; /* highest queued rt task prio */ | ||
| 298 | #ifdef CONFIG_SMP | ||
| 299 | int next; /* next highest */ | ||
| 300 | #endif | ||
| 301 | } highest_prio; | ||
| 302 | #endif | ||
| 303 | #ifdef CONFIG_SMP | ||
| 304 | unsigned long rt_nr_migratory; | ||
| 305 | unsigned long rt_nr_total; | ||
| 306 | int overloaded; | ||
| 307 | struct plist_head pushable_tasks; | ||
| 308 | #endif | ||
| 309 | int rt_throttled; | ||
| 310 | u64 rt_time; | ||
| 311 | u64 rt_runtime; | ||
| 312 | /* Nests inside the rq lock: */ | ||
| 313 | raw_spinlock_t rt_runtime_lock; | ||
| 314 | |||
| 315 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 316 | unsigned long rt_nr_boosted; | ||
| 317 | |||
| 318 | struct rq *rq; | ||
| 319 | struct list_head leaf_rt_rq_list; | ||
| 320 | struct task_group *tg; | ||
| 321 | #endif | ||
| 322 | }; | ||
| 323 | |||
| 324 | #ifdef CONFIG_SMP | ||
| 325 | |||
| 326 | /* | ||
| 327 | * We add the notion of a root-domain which will be used to define per-domain | ||
| 328 | * variables. Each exclusive cpuset essentially defines an island domain by | ||
| 329 | * fully partitioning the member cpus from any other cpuset. Whenever a new | ||
| 330 | * exclusive cpuset is created, we also create and attach a new root-domain | ||
| 331 | * object. | ||
| 332 | * | ||
| 333 | */ | ||
| 334 | struct root_domain { | ||
| 335 | atomic_t refcount; | ||
| 336 | atomic_t rto_count; | ||
| 337 | struct rcu_head rcu; | ||
| 338 | cpumask_var_t span; | ||
| 339 | cpumask_var_t online; | ||
| 340 | |||
| 341 | /* | ||
| 342 | * The "RT overload" flag: it gets set if a CPU has more than | ||
| 343 | * one runnable RT task. | ||
| 344 | */ | ||
| 345 | cpumask_var_t rto_mask; | ||
| 346 | struct cpupri cpupri; | ||
| 347 | }; | ||
| 348 | |||
| 349 | extern struct root_domain def_root_domain; | ||
| 350 | |||
| 351 | #endif /* CONFIG_SMP */ | ||
| 352 | |||
| 353 | /* | ||
| 354 | * This is the main, per-CPU runqueue data structure. | ||
| 355 | * | ||
| 356 | * Locking rule: those places that want to lock multiple runqueues | ||
| 357 | * (such as the load balancing or the thread migration code), lock | ||
| 358 | * acquire operations must be ordered by ascending &runqueue. | ||
| 359 | */ | ||
| 360 | struct rq { | ||
| 361 | /* runqueue lock: */ | ||
| 362 | raw_spinlock_t lock; | ||
| 363 | |||
| 364 | /* | ||
| 365 | * nr_running and cpu_load should be in the same cacheline because | ||
| 366 | * remote CPUs use both these fields when doing load calculation. | ||
| 367 | */ | ||
| 368 | unsigned long nr_running; | ||
| 369 | #define CPU_LOAD_IDX_MAX 5 | ||
| 370 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | ||
| 371 | unsigned long last_load_update_tick; | ||
| 372 | #ifdef CONFIG_NO_HZ | ||
| 373 | u64 nohz_stamp; | ||
| 374 | unsigned long nohz_flags; | ||
| 375 | #endif | ||
| 376 | int skip_clock_update; | ||
| 377 | |||
| 378 | /* capture load from *all* tasks on this cpu: */ | ||
| 379 | struct load_weight load; | ||
| 380 | unsigned long nr_load_updates; | ||
| 381 | u64 nr_switches; | ||
| 382 | |||
| 383 | struct cfs_rq cfs; | ||
| 384 | struct rt_rq rt; | ||
| 385 | |||
| 386 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 387 | /* list of leaf cfs_rq on this cpu: */ | ||
| 388 | struct list_head leaf_cfs_rq_list; | ||
| 389 | #endif | ||
| 390 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 391 | struct list_head leaf_rt_rq_list; | ||
| 392 | #endif | ||
| 393 | |||
| 394 | /* | ||
| 395 | * This is part of a global counter where only the total sum | ||
| 396 | * over all CPUs matters. A task can increase this counter on | ||
| 397 | * one CPU and if it got migrated afterwards it may decrease | ||
| 398 | * it on another CPU. Always updated under the runqueue lock: | ||
| 399 | */ | ||
| 400 | unsigned long nr_uninterruptible; | ||
| 401 | |||
| 402 | struct task_struct *curr, *idle, *stop; | ||
| 403 | unsigned long next_balance; | ||
| 404 | struct mm_struct *prev_mm; | ||
| 405 | |||
| 406 | u64 clock; | ||
| 407 | u64 clock_task; | ||
| 408 | |||
| 409 | atomic_t nr_iowait; | ||
| 410 | |||
| 411 | #ifdef CONFIG_SMP | ||
| 412 | struct root_domain *rd; | ||
| 413 | struct sched_domain *sd; | ||
| 414 | |||
| 415 | unsigned long cpu_power; | ||
| 416 | |||
| 417 | unsigned char idle_balance; | ||
| 418 | /* For active balancing */ | ||
| 419 | int post_schedule; | ||
| 420 | int active_balance; | ||
| 421 | int push_cpu; | ||
| 422 | struct cpu_stop_work active_balance_work; | ||
| 423 | /* cpu of this runqueue: */ | ||
| 424 | int cpu; | ||
| 425 | int online; | ||
| 426 | |||
| 427 | u64 rt_avg; | ||
| 428 | u64 age_stamp; | ||
| 429 | u64 idle_stamp; | ||
| 430 | u64 avg_idle; | ||
| 431 | #endif | ||
| 432 | |||
| 433 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
| 434 | u64 prev_irq_time; | ||
| 435 | #endif | ||
| 436 | #ifdef CONFIG_PARAVIRT | ||
| 437 | u64 prev_steal_time; | ||
| 438 | #endif | ||
| 439 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | ||
| 440 | u64 prev_steal_time_rq; | ||
| 441 | #endif | ||
| 442 | |||
| 443 | /* calc_load related fields */ | ||
| 444 | unsigned long calc_load_update; | ||
| 445 | long calc_load_active; | ||
| 446 | |||
| 447 | #ifdef CONFIG_SCHED_HRTICK | ||
| 448 | #ifdef CONFIG_SMP | ||
| 449 | int hrtick_csd_pending; | ||
| 450 | struct call_single_data hrtick_csd; | ||
| 451 | #endif | ||
| 452 | struct hrtimer hrtick_timer; | ||
| 453 | #endif | ||
| 454 | |||
| 455 | #ifdef CONFIG_SCHEDSTATS | ||
| 456 | /* latency stats */ | ||
| 457 | struct sched_info rq_sched_info; | ||
| 458 | unsigned long long rq_cpu_time; | ||
| 459 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | ||
| 460 | |||
| 461 | /* sys_sched_yield() stats */ | ||
| 462 | unsigned int yld_count; | ||
| 463 | |||
| 464 | /* schedule() stats */ | ||
| 465 | unsigned int sched_switch; | ||
| 466 | unsigned int sched_count; | ||
| 467 | unsigned int sched_goidle; | ||
| 468 | |||
| 469 | /* try_to_wake_up() stats */ | ||
| 470 | unsigned int ttwu_count; | ||
| 471 | unsigned int ttwu_local; | ||
| 472 | #endif | ||
| 473 | |||
| 474 | #ifdef CONFIG_SMP | ||
| 475 | struct llist_head wake_list; | ||
| 476 | #endif | ||
| 477 | }; | ||
| 478 | |||
| 479 | static inline int cpu_of(struct rq *rq) | ||
| 480 | { | ||
| 481 | #ifdef CONFIG_SMP | ||
| 482 | return rq->cpu; | ||
| 483 | #else | ||
| 484 | return 0; | ||
| 485 | #endif | ||
| 486 | } | ||
| 487 | |||
| 488 | DECLARE_PER_CPU(struct rq, runqueues); | ||
| 489 | |||
| 490 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | ||
| 491 | #define this_rq() (&__get_cpu_var(runqueues)) | ||
| 492 | #define task_rq(p) cpu_rq(task_cpu(p)) | ||
| 493 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | ||
| 494 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | ||
| 495 | |||
| 496 | #ifdef CONFIG_SMP | ||
| 497 | |||
| 498 | #define rcu_dereference_check_sched_domain(p) \ | ||
| 499 | rcu_dereference_check((p), \ | ||
| 500 | lockdep_is_held(&sched_domains_mutex)) | ||
| 501 | |||
| 502 | /* | ||
| 503 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | ||
| 504 | * See detach_destroy_domains: synchronize_sched for details. | ||
| 505 | * | ||
| 506 | * The domain tree of any CPU may only be accessed from within | ||
| 507 | * preempt-disabled sections. | ||
| 508 | */ | ||
| 509 | #define for_each_domain(cpu, __sd) \ | ||
| 510 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ | ||
| 511 | __sd; __sd = __sd->parent) | ||
| 512 | |||
| 513 | #define for_each_lower_domain(sd) for (; sd; sd = sd->child) | ||
| 514 | |||
| 515 | /** | ||
| 516 | * highest_flag_domain - Return highest sched_domain containing flag. | ||
| 517 | * @cpu: The cpu whose highest level of sched domain is to | ||
| 518 | * be returned. | ||
| 519 | * @flag: The flag to check for the highest sched_domain | ||
| 520 | * for the given cpu. | ||
| 521 | * | ||
| 522 | * Returns the highest sched_domain of a cpu which contains the given flag. | ||
| 523 | */ | ||
| 524 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) | ||
| 525 | { | ||
| 526 | struct sched_domain *sd, *hsd = NULL; | ||
| 527 | |||
| 528 | for_each_domain(cpu, sd) { | ||
| 529 | if (!(sd->flags & flag)) | ||
| 530 | break; | ||
| 531 | hsd = sd; | ||
| 532 | } | ||
| 533 | |||
| 534 | return hsd; | ||
| 535 | } | ||
| 536 | |||
| 537 | DECLARE_PER_CPU(struct sched_domain *, sd_llc); | ||
| 538 | DECLARE_PER_CPU(int, sd_llc_id); | ||
| 539 | |||
| 540 | #endif /* CONFIG_SMP */ | ||
| 541 | |||
| 542 | #include "stats.h" | ||
| 543 | #include "auto_group.h" | ||
| 544 | |||
| 545 | #ifdef CONFIG_CGROUP_SCHED | ||
| 546 | |||
| 547 | /* | ||
| 548 | * Return the group to which this tasks belongs. | ||
| 549 | * | ||
| 550 | * We use task_subsys_state_check() and extend the RCU verification with | ||
| 551 | * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each | ||
| 552 | * task it moves into the cgroup. Therefore by holding either of those locks, | ||
| 553 | * we pin the task to the current cgroup. | ||
| 554 | */ | ||
| 555 | static inline struct task_group *task_group(struct task_struct *p) | ||
| 556 | { | ||
| 557 | struct task_group *tg; | ||
| 558 | struct cgroup_subsys_state *css; | ||
| 559 | |||
| 560 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | ||
| 561 | lockdep_is_held(&p->pi_lock) || | ||
| 562 | lockdep_is_held(&task_rq(p)->lock)); | ||
| 563 | tg = container_of(css, struct task_group, css); | ||
| 564 | |||
| 565 | return autogroup_task_group(p, tg); | ||
| 566 | } | ||
| 567 | |||
| 568 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | ||
| 569 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | ||
| 570 | { | ||
| 571 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | ||
| 572 | struct task_group *tg = task_group(p); | ||
| 573 | #endif | ||
| 574 | |||
| 575 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 576 | p->se.cfs_rq = tg->cfs_rq[cpu]; | ||
| 577 | p->se.parent = tg->se[cpu]; | ||
| 578 | #endif | ||
| 579 | |||
| 580 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 581 | p->rt.rt_rq = tg->rt_rq[cpu]; | ||
| 582 | p->rt.parent = tg->rt_se[cpu]; | ||
| 583 | #endif | ||
| 584 | } | ||
| 585 | |||
| 586 | #else /* CONFIG_CGROUP_SCHED */ | ||
| 587 | |||
| 588 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | ||
| 589 | static inline struct task_group *task_group(struct task_struct *p) | ||
| 590 | { | ||
| 591 | return NULL; | ||
| 592 | } | ||
| 593 | |||
| 594 | #endif /* CONFIG_CGROUP_SCHED */ | ||
| 595 | |||
| 596 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
| 597 | { | ||
| 598 | set_task_rq(p, cpu); | ||
| 599 | #ifdef CONFIG_SMP | ||
| 600 | /* | ||
| 601 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
| 602 | * successfuly executed on another CPU. We must ensure that updates of | ||
| 603 | * per-task data have been completed by this moment. | ||
| 604 | */ | ||
| 605 | smp_wmb(); | ||
| 606 | task_thread_info(p)->cpu = cpu; | ||
| 607 | #endif | ||
| 608 | } | ||
| 609 | |||
| 610 | /* | ||
| 611 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | ||
| 612 | */ | ||
| 613 | #ifdef CONFIG_SCHED_DEBUG | ||
| 614 | # include <linux/jump_label.h> | ||
| 615 | # define const_debug __read_mostly | ||
| 616 | #else | ||
| 617 | # define const_debug const | ||
| 618 | #endif | ||
| 619 | |||
| 620 | extern const_debug unsigned int sysctl_sched_features; | ||
| 621 | |||
| 622 | #define SCHED_FEAT(name, enabled) \ | ||
| 623 | __SCHED_FEAT_##name , | ||
| 624 | |||
| 625 | enum { | ||
| 626 | #include "features.h" | ||
| 627 | __SCHED_FEAT_NR, | ||
| 628 | }; | ||
| 629 | |||
| 630 | #undef SCHED_FEAT | ||
| 631 | |||
| 632 | #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) | ||
| 633 | static __always_inline bool static_branch__true(struct jump_label_key *key) | ||
| 634 | { | ||
| 635 | return likely(static_branch(key)); /* Not out of line branch. */ | ||
| 636 | } | ||
| 637 | |||
| 638 | static __always_inline bool static_branch__false(struct jump_label_key *key) | ||
| 639 | { | ||
| 640 | return unlikely(static_branch(key)); /* Out of line branch. */ | ||
| 641 | } | ||
| 642 | |||
| 643 | #define SCHED_FEAT(name, enabled) \ | ||
| 644 | static __always_inline bool static_branch_##name(struct jump_label_key *key) \ | ||
| 645 | { \ | ||
| 646 | return static_branch__##enabled(key); \ | ||
| 647 | } | ||
| 648 | |||
| 649 | #include "features.h" | ||
| 650 | |||
| 651 | #undef SCHED_FEAT | ||
| 652 | |||
| 653 | extern struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR]; | ||
| 654 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) | ||
| 655 | #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ | ||
| 656 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | ||
| 657 | #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ | ||
| 658 | |||
| 659 | static inline u64 global_rt_period(void) | ||
| 660 | { | ||
| 661 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | ||
| 662 | } | ||
| 663 | |||
| 664 | static inline u64 global_rt_runtime(void) | ||
| 665 | { | ||
| 666 | if (sysctl_sched_rt_runtime < 0) | ||
| 667 | return RUNTIME_INF; | ||
| 668 | |||
| 669 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | ||
| 670 | } | ||
| 671 | |||
| 672 | |||
| 673 | |||
| 674 | static inline int task_current(struct rq *rq, struct task_struct *p) | ||
| 675 | { | ||
| 676 | return rq->curr == p; | ||
| 677 | } | ||
| 678 | |||
| 679 | static inline int task_running(struct rq *rq, struct task_struct *p) | ||
| 680 | { | ||
| 681 | #ifdef CONFIG_SMP | ||
| 682 | return p->on_cpu; | ||
| 683 | #else | ||
| 684 | return task_current(rq, p); | ||
| 685 | #endif | ||
| 686 | } | ||
| 687 | |||
| 688 | |||
| 689 | #ifndef prepare_arch_switch | ||
| 690 | # define prepare_arch_switch(next) do { } while (0) | ||
| 691 | #endif | ||
| 692 | #ifndef finish_arch_switch | ||
| 693 | # define finish_arch_switch(prev) do { } while (0) | ||
| 694 | #endif | ||
| 695 | |||
| 696 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | ||
| 697 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
| 698 | { | ||
| 699 | #ifdef CONFIG_SMP | ||
| 700 | /* | ||
| 701 | * We can optimise this out completely for !SMP, because the | ||
| 702 | * SMP rebalancing from interrupt is the only thing that cares | ||
| 703 | * here. | ||
| 704 | */ | ||
| 705 | next->on_cpu = 1; | ||
| 706 | #endif | ||
| 707 | } | ||
| 708 | |||
| 709 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
| 710 | { | ||
| 711 | #ifdef CONFIG_SMP | ||
| 712 | /* | ||
| 713 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
| 714 | * We must ensure this doesn't happen until the switch is completely | ||
| 715 | * finished. | ||
| 716 | */ | ||
| 717 | smp_wmb(); | ||
| 718 | prev->on_cpu = 0; | ||
| 719 | #endif | ||
| 720 | #ifdef CONFIG_DEBUG_SPINLOCK | ||
| 721 | /* this is a valid case when another task releases the spinlock */ | ||
| 722 | rq->lock.owner = current; | ||
| 723 | #endif | ||
| 724 | /* | ||
| 725 | * If we are tracking spinlock dependencies then we have to | ||
| 726 | * fix up the runqueue lock - which gets 'carried over' from | ||
| 727 | * prev into current: | ||
| 728 | */ | ||
| 729 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | ||
| 730 | |||
| 731 | raw_spin_unlock_irq(&rq->lock); | ||
| 732 | } | ||
| 733 | |||
| 734 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
| 735 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
| 736 | { | ||
| 737 | #ifdef CONFIG_SMP | ||
| 738 | /* | ||
| 739 | * We can optimise this out completely for !SMP, because the | ||
| 740 | * SMP rebalancing from interrupt is the only thing that cares | ||
| 741 | * here. | ||
| 742 | */ | ||
| 743 | next->on_cpu = 1; | ||
| 744 | #endif | ||
| 745 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
| 746 | raw_spin_unlock_irq(&rq->lock); | ||
| 747 | #else | ||
| 748 | raw_spin_unlock(&rq->lock); | ||
| 749 | #endif | ||
| 750 | } | ||
| 751 | |||
| 752 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
| 753 | { | ||
| 754 | #ifdef CONFIG_SMP | ||
| 755 | /* | ||
| 756 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
| 757 | * We must ensure this doesn't happen until the switch is completely | ||
| 758 | * finished. | ||
| 759 | */ | ||
| 760 | smp_wmb(); | ||
| 761 | prev->on_cpu = 0; | ||
| 762 | #endif | ||
| 763 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
| 764 | local_irq_enable(); | ||
| 765 | #endif | ||
| 766 | } | ||
| 767 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
| 768 | |||
| 769 | |||
| 770 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | ||
| 771 | { | ||
| 772 | lw->weight += inc; | ||
| 773 | lw->inv_weight = 0; | ||
| 774 | } | ||
| 775 | |||
| 776 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | ||
| 777 | { | ||
| 778 | lw->weight -= dec; | ||
| 779 | lw->inv_weight = 0; | ||
| 780 | } | ||
| 781 | |||
| 782 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | ||
| 783 | { | ||
| 784 | lw->weight = w; | ||
| 785 | lw->inv_weight = 0; | ||
| 786 | } | ||
| 787 | |||
| 788 | /* | ||
| 789 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | ||
| 790 | * of tasks with abnormal "nice" values across CPUs the contribution that | ||
| 791 | * each task makes to its run queue's load is weighted according to its | ||
| 792 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | ||
| 793 | * scaled version of the new time slice allocation that they receive on time | ||
| 794 | * slice expiry etc. | ||
| 795 | */ | ||
| 796 | |||
| 797 | #define WEIGHT_IDLEPRIO 3 | ||
| 798 | #define WMULT_IDLEPRIO 1431655765 | ||
| 799 | |||
| 800 | /* | ||
| 801 | * Nice levels are multiplicative, with a gentle 10% change for every | ||
| 802 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | ||
| 803 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | ||
| 804 | * that remained on nice 0. | ||
| 805 | * | ||
| 806 | * The "10% effect" is relative and cumulative: from _any_ nice level, | ||
| 807 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | ||
| 808 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | ||
| 809 | * If a task goes up by ~10% and another task goes down by ~10% then | ||
| 810 | * the relative distance between them is ~25%.) | ||
| 811 | */ | ||
| 812 | static const int prio_to_weight[40] = { | ||
| 813 | /* -20 */ 88761, 71755, 56483, 46273, 36291, | ||
| 814 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | ||
| 815 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | ||
| 816 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | ||
| 817 | /* 0 */ 1024, 820, 655, 526, 423, | ||
| 818 | /* 5 */ 335, 272, 215, 172, 137, | ||
| 819 | /* 10 */ 110, 87, 70, 56, 45, | ||
| 820 | /* 15 */ 36, 29, 23, 18, 15, | ||
| 821 | }; | ||
| 822 | |||
| 823 | /* | ||
| 824 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | ||
| 825 | * | ||
| 826 | * In cases where the weight does not change often, we can use the | ||
| 827 | * precalculated inverse to speed up arithmetics by turning divisions | ||
| 828 | * into multiplications: | ||
| 829 | */ | ||
| 830 | static const u32 prio_to_wmult[40] = { | ||
| 831 | /* -20 */ 48388, 59856, 76040, 92818, 118348, | ||
| 832 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | ||
| 833 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | ||
| 834 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | ||
| 835 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | ||
| 836 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | ||
| 837 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | ||
| 838 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | ||
| 839 | }; | ||
| 840 | |||
| 841 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | ||
| 842 | enum cpuacct_stat_index { | ||
| 843 | CPUACCT_STAT_USER, /* ... user mode */ | ||
| 844 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | ||
| 845 | |||
| 846 | CPUACCT_STAT_NSTATS, | ||
| 847 | }; | ||
| 848 | |||
| 849 | |||
| 850 | #define sched_class_highest (&stop_sched_class) | ||
| 851 | #define for_each_class(class) \ | ||
| 852 | for (class = sched_class_highest; class; class = class->next) | ||
| 853 | |||
| 854 | extern const struct sched_class stop_sched_class; | ||
| 855 | extern const struct sched_class rt_sched_class; | ||
| 856 | extern const struct sched_class fair_sched_class; | ||
| 857 | extern const struct sched_class idle_sched_class; | ||
| 858 | |||
| 859 | |||
| 860 | #ifdef CONFIG_SMP | ||
| 861 | |||
| 862 | extern void trigger_load_balance(struct rq *rq, int cpu); | ||
| 863 | extern void idle_balance(int this_cpu, struct rq *this_rq); | ||
| 864 | |||
| 865 | #else /* CONFIG_SMP */ | ||
| 866 | |||
| 867 | static inline void idle_balance(int cpu, struct rq *rq) | ||
| 868 | { | ||
| 869 | } | ||
| 870 | |||
| 871 | #endif | ||
| 872 | |||
| 873 | extern void sysrq_sched_debug_show(void); | ||
| 874 | extern void sched_init_granularity(void); | ||
| 875 | extern void update_max_interval(void); | ||
| 876 | extern void update_group_power(struct sched_domain *sd, int cpu); | ||
| 877 | extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); | ||
| 878 | extern void init_sched_rt_class(void); | ||
| 879 | extern void init_sched_fair_class(void); | ||
| 880 | |||
| 881 | extern void resched_task(struct task_struct *p); | ||
| 882 | extern void resched_cpu(int cpu); | ||
| 883 | |||
| 884 | extern struct rt_bandwidth def_rt_bandwidth; | ||
| 885 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | ||
| 886 | |||
| 887 | extern void update_cpu_load(struct rq *this_rq); | ||
| 888 | |||
| 889 | #ifdef CONFIG_CGROUP_CPUACCT | ||
| 890 | #include <linux/cgroup.h> | ||
| 891 | /* track cpu usage of a group of tasks and its child groups */ | ||
| 892 | struct cpuacct { | ||
| 893 | struct cgroup_subsys_state css; | ||
| 894 | /* cpuusage holds pointer to a u64-type object on every cpu */ | ||
| 895 | u64 __percpu *cpuusage; | ||
| 896 | struct kernel_cpustat __percpu *cpustat; | ||
| 897 | }; | ||
| 898 | |||
| 899 | /* return cpu accounting group corresponding to this container */ | ||
| 900 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | ||
| 901 | { | ||
| 902 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | ||
| 903 | struct cpuacct, css); | ||
| 904 | } | ||
| 905 | |||
| 906 | /* return cpu accounting group to which this task belongs */ | ||
| 907 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | ||
| 908 | { | ||
| 909 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | ||
| 910 | struct cpuacct, css); | ||
| 911 | } | ||
| 912 | |||
| 913 | static inline struct cpuacct *parent_ca(struct cpuacct *ca) | ||
| 914 | { | ||
| 915 | if (!ca || !ca->css.cgroup->parent) | ||
| 916 | return NULL; | ||
| 917 | return cgroup_ca(ca->css.cgroup->parent); | ||
| 918 | } | ||
| 919 | |||
| 920 | extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); | ||
| 921 | #else | ||
| 922 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | ||
| 923 | #endif | ||
| 924 | |||
| 925 | static inline void inc_nr_running(struct rq *rq) | ||
| 926 | { | ||
| 927 | rq->nr_running++; | ||
| 928 | } | ||
| 929 | |||
| 930 | static inline void dec_nr_running(struct rq *rq) | ||
| 931 | { | ||
| 932 | rq->nr_running--; | ||
| 933 | } | ||
| 934 | |||
| 935 | extern void update_rq_clock(struct rq *rq); | ||
| 936 | |||
| 937 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | ||
| 938 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | ||
| 939 | |||
| 940 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | ||
| 941 | |||
| 942 | extern const_debug unsigned int sysctl_sched_time_avg; | ||
| 943 | extern const_debug unsigned int sysctl_sched_nr_migrate; | ||
| 944 | extern const_debug unsigned int sysctl_sched_migration_cost; | ||
| 945 | |||
| 946 | static inline u64 sched_avg_period(void) | ||
| 947 | { | ||
| 948 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||
| 949 | } | ||
| 950 | |||
| 951 | void calc_load_account_idle(struct rq *this_rq); | ||
| 952 | |||
| 953 | #ifdef CONFIG_SCHED_HRTICK | ||
| 954 | |||
| 955 | /* | ||
| 956 | * Use hrtick when: | ||
| 957 | * - enabled by features | ||
| 958 | * - hrtimer is actually high res | ||
| 959 | */ | ||
| 960 | static inline int hrtick_enabled(struct rq *rq) | ||
| 961 | { | ||
| 962 | if (!sched_feat(HRTICK)) | ||
| 963 | return 0; | ||
| 964 | if (!cpu_active(cpu_of(rq))) | ||
| 965 | return 0; | ||
| 966 | return hrtimer_is_hres_active(&rq->hrtick_timer); | ||
| 967 | } | ||
| 968 | |||
| 969 | void hrtick_start(struct rq *rq, u64 delay); | ||
| 970 | |||
| 971 | #else | ||
| 972 | |||
| 973 | static inline int hrtick_enabled(struct rq *rq) | ||
| 974 | { | ||
| 975 | return 0; | ||
| 976 | } | ||
| 977 | |||
| 978 | #endif /* CONFIG_SCHED_HRTICK */ | ||
| 979 | |||
| 980 | #ifdef CONFIG_SMP | ||
| 981 | extern void sched_avg_update(struct rq *rq); | ||
| 982 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
| 983 | { | ||
| 984 | rq->rt_avg += rt_delta; | ||
| 985 | sched_avg_update(rq); | ||
| 986 | } | ||
| 987 | #else | ||
| 988 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } | ||
| 989 | static inline void sched_avg_update(struct rq *rq) { } | ||
| 990 | #endif | ||
| 991 | |||
| 992 | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); | ||
| 993 | |||
| 994 | #ifdef CONFIG_SMP | ||
| 995 | #ifdef CONFIG_PREEMPT | ||
| 996 | |||
| 997 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
| 998 | |||
| 999 | /* | ||
| 1000 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | ||
| 1001 | * way at the expense of forcing extra atomic operations in all | ||
| 1002 | * invocations. This assures that the double_lock is acquired using the | ||
| 1003 | * same underlying policy as the spinlock_t on this architecture, which | ||
| 1004 | * reduces latency compared to the unfair variant below. However, it | ||
| 1005 | * also adds more overhead and therefore may reduce throughput. | ||
| 1006 | */ | ||
| 1007 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1008 | __releases(this_rq->lock) | ||
| 1009 | __acquires(busiest->lock) | ||
| 1010 | __acquires(this_rq->lock) | ||
| 1011 | { | ||
| 1012 | raw_spin_unlock(&this_rq->lock); | ||
| 1013 | double_rq_lock(this_rq, busiest); | ||
| 1014 | |||
| 1015 | return 1; | ||
| 1016 | } | ||
| 1017 | |||
| 1018 | #else | ||
| 1019 | /* | ||
| 1020 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
| 1021 | * latency by eliminating extra atomic operations when the locks are | ||
| 1022 | * already in proper order on entry. This favors lower cpu-ids and will | ||
| 1023 | * grant the double lock to lower cpus over higher ids under contention, | ||
| 1024 | * regardless of entry order into the function. | ||
| 1025 | */ | ||
| 1026 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1027 | __releases(this_rq->lock) | ||
| 1028 | __acquires(busiest->lock) | ||
| 1029 | __acquires(this_rq->lock) | ||
| 1030 | { | ||
| 1031 | int ret = 0; | ||
| 1032 | |||
| 1033 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { | ||
| 1034 | if (busiest < this_rq) { | ||
| 1035 | raw_spin_unlock(&this_rq->lock); | ||
| 1036 | raw_spin_lock(&busiest->lock); | ||
| 1037 | raw_spin_lock_nested(&this_rq->lock, | ||
| 1038 | SINGLE_DEPTH_NESTING); | ||
| 1039 | ret = 1; | ||
| 1040 | } else | ||
| 1041 | raw_spin_lock_nested(&busiest->lock, | ||
| 1042 | SINGLE_DEPTH_NESTING); | ||
| 1043 | } | ||
| 1044 | return ret; | ||
| 1045 | } | ||
| 1046 | |||
| 1047 | #endif /* CONFIG_PREEMPT */ | ||
| 1048 | |||
| 1049 | /* | ||
| 1050 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
| 1051 | */ | ||
| 1052 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1053 | { | ||
| 1054 | if (unlikely(!irqs_disabled())) { | ||
| 1055 | /* printk() doesn't work good under rq->lock */ | ||
| 1056 | raw_spin_unlock(&this_rq->lock); | ||
| 1057 | BUG_ON(1); | ||
| 1058 | } | ||
| 1059 | |||
| 1060 | return _double_lock_balance(this_rq, busiest); | ||
| 1061 | } | ||
| 1062 | |||
| 1063 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1064 | __releases(busiest->lock) | ||
| 1065 | { | ||
| 1066 | raw_spin_unlock(&busiest->lock); | ||
| 1067 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | ||
| 1068 | } | ||
| 1069 | |||
| 1070 | /* | ||
| 1071 | * double_rq_lock - safely lock two runqueues | ||
| 1072 | * | ||
| 1073 | * Note this does not disable interrupts like task_rq_lock, | ||
| 1074 | * you need to do so manually before calling. | ||
| 1075 | */ | ||
| 1076 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
| 1077 | __acquires(rq1->lock) | ||
| 1078 | __acquires(rq2->lock) | ||
| 1079 | { | ||
| 1080 | BUG_ON(!irqs_disabled()); | ||
| 1081 | if (rq1 == rq2) { | ||
| 1082 | raw_spin_lock(&rq1->lock); | ||
| 1083 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
| 1084 | } else { | ||
| 1085 | if (rq1 < rq2) { | ||
| 1086 | raw_spin_lock(&rq1->lock); | ||
| 1087 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
| 1088 | } else { | ||
| 1089 | raw_spin_lock(&rq2->lock); | ||
| 1090 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
| 1091 | } | ||
| 1092 | } | ||
| 1093 | } | ||
| 1094 | |||
| 1095 | /* | ||
| 1096 | * double_rq_unlock - safely unlock two runqueues | ||
| 1097 | * | ||
| 1098 | * Note this does not restore interrupts like task_rq_unlock, | ||
| 1099 | * you need to do so manually after calling. | ||
| 1100 | */ | ||
| 1101 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
| 1102 | __releases(rq1->lock) | ||
| 1103 | __releases(rq2->lock) | ||
| 1104 | { | ||
| 1105 | raw_spin_unlock(&rq1->lock); | ||
| 1106 | if (rq1 != rq2) | ||
| 1107 | raw_spin_unlock(&rq2->lock); | ||
| 1108 | else | ||
| 1109 | __release(rq2->lock); | ||
| 1110 | } | ||
| 1111 | |||
| 1112 | #else /* CONFIG_SMP */ | ||
| 1113 | |||
| 1114 | /* | ||
| 1115 | * double_rq_lock - safely lock two runqueues | ||
| 1116 | * | ||
| 1117 | * Note this does not disable interrupts like task_rq_lock, | ||
| 1118 | * you need to do so manually before calling. | ||
| 1119 | */ | ||
| 1120 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
| 1121 | __acquires(rq1->lock) | ||
| 1122 | __acquires(rq2->lock) | ||
| 1123 | { | ||
| 1124 | BUG_ON(!irqs_disabled()); | ||
| 1125 | BUG_ON(rq1 != rq2); | ||
| 1126 | raw_spin_lock(&rq1->lock); | ||
| 1127 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
| 1128 | } | ||
| 1129 | |||
| 1130 | /* | ||
| 1131 | * double_rq_unlock - safely unlock two runqueues | ||
| 1132 | * | ||
| 1133 | * Note this does not restore interrupts like task_rq_unlock, | ||
| 1134 | * you need to do so manually after calling. | ||
| 1135 | */ | ||
| 1136 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
| 1137 | __releases(rq1->lock) | ||
| 1138 | __releases(rq2->lock) | ||
| 1139 | { | ||
| 1140 | BUG_ON(rq1 != rq2); | ||
| 1141 | raw_spin_unlock(&rq1->lock); | ||
| 1142 | __release(rq2->lock); | ||
| 1143 | } | ||
| 1144 | |||
| 1145 | #endif | ||
| 1146 | |||
| 1147 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | ||
| 1148 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | ||
| 1149 | extern void print_cfs_stats(struct seq_file *m, int cpu); | ||
| 1150 | extern void print_rt_stats(struct seq_file *m, int cpu); | ||
| 1151 | |||
| 1152 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | ||
| 1153 | extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); | ||
| 1154 | extern void unthrottle_offline_cfs_rqs(struct rq *rq); | ||
| 1155 | |||
| 1156 | extern void account_cfs_bandwidth_used(int enabled, int was_enabled); | ||
| 1157 | |||
| 1158 | #ifdef CONFIG_NO_HZ | ||
| 1159 | enum rq_nohz_flag_bits { | ||
| 1160 | NOHZ_TICK_STOPPED, | ||
| 1161 | NOHZ_BALANCE_KICK, | ||
| 1162 | NOHZ_IDLE, | ||
| 1163 | }; | ||
| 1164 | |||
| 1165 | #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) | ||
| 1166 | #endif | ||
