diff options
Diffstat (limited to 'kernel/sched/proc.c')
| -rw-r--r-- | kernel/sched/proc.c | 591 |
1 files changed, 591 insertions, 0 deletions
diff --git a/kernel/sched/proc.c b/kernel/sched/proc.c new file mode 100644 index 000000000000..16f5a30f9c88 --- /dev/null +++ b/kernel/sched/proc.c | |||
| @@ -0,0 +1,591 @@ | |||
| 1 | /* | ||
| 2 | * kernel/sched/proc.c | ||
| 3 | * | ||
| 4 | * Kernel load calculations, forked from sched/core.c | ||
| 5 | */ | ||
| 6 | |||
| 7 | #include <linux/export.h> | ||
| 8 | |||
| 9 | #include "sched.h" | ||
| 10 | |||
| 11 | unsigned long this_cpu_load(void) | ||
| 12 | { | ||
| 13 | struct rq *this = this_rq(); | ||
| 14 | return this->cpu_load[0]; | ||
| 15 | } | ||
| 16 | |||
| 17 | |||
| 18 | /* | ||
| 19 | * Global load-average calculations | ||
| 20 | * | ||
| 21 | * We take a distributed and async approach to calculating the global load-avg | ||
| 22 | * in order to minimize overhead. | ||
| 23 | * | ||
| 24 | * The global load average is an exponentially decaying average of nr_running + | ||
| 25 | * nr_uninterruptible. | ||
| 26 | * | ||
| 27 | * Once every LOAD_FREQ: | ||
| 28 | * | ||
| 29 | * nr_active = 0; | ||
| 30 | * for_each_possible_cpu(cpu) | ||
| 31 | * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; | ||
| 32 | * | ||
| 33 | * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) | ||
| 34 | * | ||
| 35 | * Due to a number of reasons the above turns in the mess below: | ||
| 36 | * | ||
| 37 | * - for_each_possible_cpu() is prohibitively expensive on machines with | ||
| 38 | * serious number of cpus, therefore we need to take a distributed approach | ||
| 39 | * to calculating nr_active. | ||
| 40 | * | ||
| 41 | * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 | ||
| 42 | * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } | ||
| 43 | * | ||
| 44 | * So assuming nr_active := 0 when we start out -- true per definition, we | ||
| 45 | * can simply take per-cpu deltas and fold those into a global accumulate | ||
| 46 | * to obtain the same result. See calc_load_fold_active(). | ||
| 47 | * | ||
| 48 | * Furthermore, in order to avoid synchronizing all per-cpu delta folding | ||
| 49 | * across the machine, we assume 10 ticks is sufficient time for every | ||
| 50 | * cpu to have completed this task. | ||
| 51 | * | ||
| 52 | * This places an upper-bound on the IRQ-off latency of the machine. Then | ||
| 53 | * again, being late doesn't loose the delta, just wrecks the sample. | ||
| 54 | * | ||
| 55 | * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because | ||
| 56 | * this would add another cross-cpu cacheline miss and atomic operation | ||
| 57 | * to the wakeup path. Instead we increment on whatever cpu the task ran | ||
| 58 | * when it went into uninterruptible state and decrement on whatever cpu | ||
| 59 | * did the wakeup. This means that only the sum of nr_uninterruptible over | ||
| 60 | * all cpus yields the correct result. | ||
| 61 | * | ||
| 62 | * This covers the NO_HZ=n code, for extra head-aches, see the comment below. | ||
| 63 | */ | ||
| 64 | |||
| 65 | /* Variables and functions for calc_load */ | ||
| 66 | atomic_long_t calc_load_tasks; | ||
| 67 | unsigned long calc_load_update; | ||
| 68 | unsigned long avenrun[3]; | ||
| 69 | EXPORT_SYMBOL(avenrun); /* should be removed */ | ||
| 70 | |||
| 71 | /** | ||
| 72 | * get_avenrun - get the load average array | ||
| 73 | * @loads: pointer to dest load array | ||
| 74 | * @offset: offset to add | ||
| 75 | * @shift: shift count to shift the result left | ||
| 76 | * | ||
| 77 | * These values are estimates at best, so no need for locking. | ||
| 78 | */ | ||
| 79 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | ||
| 80 | { | ||
| 81 | loads[0] = (avenrun[0] + offset) << shift; | ||
| 82 | loads[1] = (avenrun[1] + offset) << shift; | ||
| 83 | loads[2] = (avenrun[2] + offset) << shift; | ||
| 84 | } | ||
| 85 | |||
| 86 | long calc_load_fold_active(struct rq *this_rq) | ||
| 87 | { | ||
| 88 | long nr_active, delta = 0; | ||
| 89 | |||
| 90 | nr_active = this_rq->nr_running; | ||
| 91 | nr_active += (long) this_rq->nr_uninterruptible; | ||
| 92 | |||
| 93 | if (nr_active != this_rq->calc_load_active) { | ||
| 94 | delta = nr_active - this_rq->calc_load_active; | ||
| 95 | this_rq->calc_load_active = nr_active; | ||
| 96 | } | ||
| 97 | |||
| 98 | return delta; | ||
| 99 | } | ||
| 100 | |||
| 101 | /* | ||
| 102 | * a1 = a0 * e + a * (1 - e) | ||
| 103 | */ | ||
| 104 | static unsigned long | ||
| 105 | calc_load(unsigned long load, unsigned long exp, unsigned long active) | ||
| 106 | { | ||
| 107 | load *= exp; | ||
| 108 | load += active * (FIXED_1 - exp); | ||
| 109 | load += 1UL << (FSHIFT - 1); | ||
| 110 | return load >> FSHIFT; | ||
| 111 | } | ||
| 112 | |||
| 113 | #ifdef CONFIG_NO_HZ_COMMON | ||
| 114 | /* | ||
| 115 | * Handle NO_HZ for the global load-average. | ||
| 116 | * | ||
| 117 | * Since the above described distributed algorithm to compute the global | ||
| 118 | * load-average relies on per-cpu sampling from the tick, it is affected by | ||
| 119 | * NO_HZ. | ||
| 120 | * | ||
| 121 | * The basic idea is to fold the nr_active delta into a global idle-delta upon | ||
| 122 | * entering NO_HZ state such that we can include this as an 'extra' cpu delta | ||
| 123 | * when we read the global state. | ||
| 124 | * | ||
| 125 | * Obviously reality has to ruin such a delightfully simple scheme: | ||
| 126 | * | ||
| 127 | * - When we go NO_HZ idle during the window, we can negate our sample | ||
| 128 | * contribution, causing under-accounting. | ||
| 129 | * | ||
| 130 | * We avoid this by keeping two idle-delta counters and flipping them | ||
| 131 | * when the window starts, thus separating old and new NO_HZ load. | ||
| 132 | * | ||
| 133 | * The only trick is the slight shift in index flip for read vs write. | ||
| 134 | * | ||
| 135 | * 0s 5s 10s 15s | ||
| 136 | * +10 +10 +10 +10 | ||
| 137 | * |-|-----------|-|-----------|-|-----------|-| | ||
| 138 | * r:0 0 1 1 0 0 1 1 0 | ||
| 139 | * w:0 1 1 0 0 1 1 0 0 | ||
| 140 | * | ||
| 141 | * This ensures we'll fold the old idle contribution in this window while | ||
| 142 | * accumlating the new one. | ||
| 143 | * | ||
| 144 | * - When we wake up from NO_HZ idle during the window, we push up our | ||
| 145 | * contribution, since we effectively move our sample point to a known | ||
| 146 | * busy state. | ||
| 147 | * | ||
| 148 | * This is solved by pushing the window forward, and thus skipping the | ||
| 149 | * sample, for this cpu (effectively using the idle-delta for this cpu which | ||
| 150 | * was in effect at the time the window opened). This also solves the issue | ||
| 151 | * of having to deal with a cpu having been in NOHZ idle for multiple | ||
| 152 | * LOAD_FREQ intervals. | ||
| 153 | * | ||
| 154 | * When making the ILB scale, we should try to pull this in as well. | ||
| 155 | */ | ||
| 156 | static atomic_long_t calc_load_idle[2]; | ||
| 157 | static int calc_load_idx; | ||
| 158 | |||
| 159 | static inline int calc_load_write_idx(void) | ||
| 160 | { | ||
| 161 | int idx = calc_load_idx; | ||
| 162 | |||
| 163 | /* | ||
| 164 | * See calc_global_nohz(), if we observe the new index, we also | ||
| 165 | * need to observe the new update time. | ||
| 166 | */ | ||
| 167 | smp_rmb(); | ||
| 168 | |||
| 169 | /* | ||
| 170 | * If the folding window started, make sure we start writing in the | ||
| 171 | * next idle-delta. | ||
| 172 | */ | ||
| 173 | if (!time_before(jiffies, calc_load_update)) | ||
| 174 | idx++; | ||
| 175 | |||
| 176 | return idx & 1; | ||
| 177 | } | ||
| 178 | |||
| 179 | static inline int calc_load_read_idx(void) | ||
| 180 | { | ||
| 181 | return calc_load_idx & 1; | ||
| 182 | } | ||
| 183 | |||
| 184 | void calc_load_enter_idle(void) | ||
| 185 | { | ||
| 186 | struct rq *this_rq = this_rq(); | ||
| 187 | long delta; | ||
| 188 | |||
| 189 | /* | ||
| 190 | * We're going into NOHZ mode, if there's any pending delta, fold it | ||
| 191 | * into the pending idle delta. | ||
| 192 | */ | ||
| 193 | delta = calc_load_fold_active(this_rq); | ||
| 194 | if (delta) { | ||
| 195 | int idx = calc_load_write_idx(); | ||
| 196 | atomic_long_add(delta, &calc_load_idle[idx]); | ||
| 197 | } | ||
| 198 | } | ||
| 199 | |||
| 200 | void calc_load_exit_idle(void) | ||
| 201 | { | ||
| 202 | struct rq *this_rq = this_rq(); | ||
| 203 | |||
| 204 | /* | ||
| 205 | * If we're still before the sample window, we're done. | ||
| 206 | */ | ||
| 207 | if (time_before(jiffies, this_rq->calc_load_update)) | ||
| 208 | return; | ||
| 209 | |||
| 210 | /* | ||
| 211 | * We woke inside or after the sample window, this means we're already | ||
| 212 | * accounted through the nohz accounting, so skip the entire deal and | ||
| 213 | * sync up for the next window. | ||
| 214 | */ | ||
| 215 | this_rq->calc_load_update = calc_load_update; | ||
| 216 | if (time_before(jiffies, this_rq->calc_load_update + 10)) | ||
| 217 | this_rq->calc_load_update += LOAD_FREQ; | ||
| 218 | } | ||
| 219 | |||
| 220 | static long calc_load_fold_idle(void) | ||
| 221 | { | ||
| 222 | int idx = calc_load_read_idx(); | ||
| 223 | long delta = 0; | ||
| 224 | |||
| 225 | if (atomic_long_read(&calc_load_idle[idx])) | ||
| 226 | delta = atomic_long_xchg(&calc_load_idle[idx], 0); | ||
| 227 | |||
| 228 | return delta; | ||
| 229 | } | ||
| 230 | |||
| 231 | /** | ||
| 232 | * fixed_power_int - compute: x^n, in O(log n) time | ||
| 233 | * | ||
| 234 | * @x: base of the power | ||
| 235 | * @frac_bits: fractional bits of @x | ||
| 236 | * @n: power to raise @x to. | ||
| 237 | * | ||
| 238 | * By exploiting the relation between the definition of the natural power | ||
| 239 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and | ||
| 240 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, | ||
| 241 | * (where: n_i \elem {0, 1}, the binary vector representing n), | ||
| 242 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is | ||
| 243 | * of course trivially computable in O(log_2 n), the length of our binary | ||
| 244 | * vector. | ||
| 245 | */ | ||
| 246 | static unsigned long | ||
| 247 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) | ||
| 248 | { | ||
| 249 | unsigned long result = 1UL << frac_bits; | ||
| 250 | |||
| 251 | if (n) for (;;) { | ||
| 252 | if (n & 1) { | ||
| 253 | result *= x; | ||
| 254 | result += 1UL << (frac_bits - 1); | ||
| 255 | result >>= frac_bits; | ||
| 256 | } | ||
| 257 | n >>= 1; | ||
| 258 | if (!n) | ||
| 259 | break; | ||
| 260 | x *= x; | ||
| 261 | x += 1UL << (frac_bits - 1); | ||
| 262 | x >>= frac_bits; | ||
| 263 | } | ||
| 264 | |||
| 265 | return result; | ||
| 266 | } | ||
| 267 | |||
| 268 | /* | ||
| 269 | * a1 = a0 * e + a * (1 - e) | ||
| 270 | * | ||
| 271 | * a2 = a1 * e + a * (1 - e) | ||
| 272 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) | ||
| 273 | * = a0 * e^2 + a * (1 - e) * (1 + e) | ||
| 274 | * | ||
| 275 | * a3 = a2 * e + a * (1 - e) | ||
| 276 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) | ||
| 277 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) | ||
| 278 | * | ||
| 279 | * ... | ||
| 280 | * | ||
| 281 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] | ||
| 282 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) | ||
| 283 | * = a0 * e^n + a * (1 - e^n) | ||
| 284 | * | ||
| 285 | * [1] application of the geometric series: | ||
| 286 | * | ||
| 287 | * n 1 - x^(n+1) | ||
| 288 | * S_n := \Sum x^i = ------------- | ||
| 289 | * i=0 1 - x | ||
| 290 | */ | ||
| 291 | static unsigned long | ||
| 292 | calc_load_n(unsigned long load, unsigned long exp, | ||
| 293 | unsigned long active, unsigned int n) | ||
| 294 | { | ||
| 295 | |||
| 296 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); | ||
| 297 | } | ||
| 298 | |||
| 299 | /* | ||
| 300 | * NO_HZ can leave us missing all per-cpu ticks calling | ||
| 301 | * calc_load_account_active(), but since an idle CPU folds its delta into | ||
| 302 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold | ||
| 303 | * in the pending idle delta if our idle period crossed a load cycle boundary. | ||
| 304 | * | ||
| 305 | * Once we've updated the global active value, we need to apply the exponential | ||
| 306 | * weights adjusted to the number of cycles missed. | ||
| 307 | */ | ||
| 308 | static void calc_global_nohz(void) | ||
| 309 | { | ||
| 310 | long delta, active, n; | ||
| 311 | |||
| 312 | if (!time_before(jiffies, calc_load_update + 10)) { | ||
| 313 | /* | ||
| 314 | * Catch-up, fold however many we are behind still | ||
| 315 | */ | ||
| 316 | delta = jiffies - calc_load_update - 10; | ||
| 317 | n = 1 + (delta / LOAD_FREQ); | ||
| 318 | |||
| 319 | active = atomic_long_read(&calc_load_tasks); | ||
| 320 | active = active > 0 ? active * FIXED_1 : 0; | ||
| 321 | |||
| 322 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); | ||
| 323 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); | ||
| 324 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); | ||
| 325 | |||
| 326 | calc_load_update += n * LOAD_FREQ; | ||
| 327 | } | ||
| 328 | |||
| 329 | /* | ||
| 330 | * Flip the idle index... | ||
| 331 | * | ||
| 332 | * Make sure we first write the new time then flip the index, so that | ||
| 333 | * calc_load_write_idx() will see the new time when it reads the new | ||
| 334 | * index, this avoids a double flip messing things up. | ||
| 335 | */ | ||
| 336 | smp_wmb(); | ||
| 337 | calc_load_idx++; | ||
| 338 | } | ||
| 339 | #else /* !CONFIG_NO_HZ_COMMON */ | ||
| 340 | |||
| 341 | static inline long calc_load_fold_idle(void) { return 0; } | ||
| 342 | static inline void calc_global_nohz(void) { } | ||
| 343 | |||
| 344 | #endif /* CONFIG_NO_HZ_COMMON */ | ||
| 345 | |||
| 346 | /* | ||
| 347 | * calc_load - update the avenrun load estimates 10 ticks after the | ||
| 348 | * CPUs have updated calc_load_tasks. | ||
| 349 | */ | ||
| 350 | void calc_global_load(unsigned long ticks) | ||
| 351 | { | ||
| 352 | long active, delta; | ||
| 353 | |||
| 354 | if (time_before(jiffies, calc_load_update + 10)) | ||
| 355 | return; | ||
| 356 | |||
| 357 | /* | ||
| 358 | * Fold the 'old' idle-delta to include all NO_HZ cpus. | ||
| 359 | */ | ||
| 360 | delta = calc_load_fold_idle(); | ||
| 361 | if (delta) | ||
| 362 | atomic_long_add(delta, &calc_load_tasks); | ||
| 363 | |||
| 364 | active = atomic_long_read(&calc_load_tasks); | ||
| 365 | active = active > 0 ? active * FIXED_1 : 0; | ||
| 366 | |||
| 367 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); | ||
| 368 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); | ||
| 369 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); | ||
| 370 | |||
| 371 | calc_load_update += LOAD_FREQ; | ||
| 372 | |||
| 373 | /* | ||
| 374 | * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. | ||
| 375 | */ | ||
| 376 | calc_global_nohz(); | ||
| 377 | } | ||
| 378 | |||
| 379 | /* | ||
| 380 | * Called from update_cpu_load() to periodically update this CPU's | ||
| 381 | * active count. | ||
| 382 | */ | ||
| 383 | static void calc_load_account_active(struct rq *this_rq) | ||
| 384 | { | ||
| 385 | long delta; | ||
| 386 | |||
| 387 | if (time_before(jiffies, this_rq->calc_load_update)) | ||
| 388 | return; | ||
| 389 | |||
| 390 | delta = calc_load_fold_active(this_rq); | ||
| 391 | if (delta) | ||
| 392 | atomic_long_add(delta, &calc_load_tasks); | ||
| 393 | |||
| 394 | this_rq->calc_load_update += LOAD_FREQ; | ||
| 395 | } | ||
| 396 | |||
| 397 | /* | ||
| 398 | * End of global load-average stuff | ||
| 399 | */ | ||
| 400 | |||
| 401 | /* | ||
| 402 | * The exact cpuload at various idx values, calculated at every tick would be | ||
| 403 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load | ||
| 404 | * | ||
| 405 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called | ||
| 406 | * on nth tick when cpu may be busy, then we have: | ||
| 407 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | ||
| 408 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load | ||
| 409 | * | ||
| 410 | * decay_load_missed() below does efficient calculation of | ||
| 411 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load | ||
| 412 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load | ||
| 413 | * | ||
| 414 | * The calculation is approximated on a 128 point scale. | ||
| 415 | * degrade_zero_ticks is the number of ticks after which load at any | ||
| 416 | * particular idx is approximated to be zero. | ||
| 417 | * degrade_factor is a precomputed table, a row for each load idx. | ||
| 418 | * Each column corresponds to degradation factor for a power of two ticks, | ||
| 419 | * based on 128 point scale. | ||
| 420 | * Example: | ||
| 421 | * row 2, col 3 (=12) says that the degradation at load idx 2 after | ||
| 422 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). | ||
| 423 | * | ||
| 424 | * With this power of 2 load factors, we can degrade the load n times | ||
| 425 | * by looking at 1 bits in n and doing as many mult/shift instead of | ||
| 426 | * n mult/shifts needed by the exact degradation. | ||
| 427 | */ | ||
| 428 | #define DEGRADE_SHIFT 7 | ||
| 429 | static const unsigned char | ||
| 430 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | ||
| 431 | static const unsigned char | ||
| 432 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | ||
| 433 | {0, 0, 0, 0, 0, 0, 0, 0}, | ||
| 434 | {64, 32, 8, 0, 0, 0, 0, 0}, | ||
| 435 | {96, 72, 40, 12, 1, 0, 0}, | ||
| 436 | {112, 98, 75, 43, 15, 1, 0}, | ||
| 437 | {120, 112, 98, 76, 45, 16, 2} }; | ||
| 438 | |||
| 439 | /* | ||
| 440 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog | ||
| 441 | * would be when CPU is idle and so we just decay the old load without | ||
| 442 | * adding any new load. | ||
| 443 | */ | ||
| 444 | static unsigned long | ||
| 445 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | ||
| 446 | { | ||
| 447 | int j = 0; | ||
| 448 | |||
| 449 | if (!missed_updates) | ||
| 450 | return load; | ||
| 451 | |||
| 452 | if (missed_updates >= degrade_zero_ticks[idx]) | ||
| 453 | return 0; | ||
| 454 | |||
| 455 | if (idx == 1) | ||
| 456 | return load >> missed_updates; | ||
| 457 | |||
| 458 | while (missed_updates) { | ||
| 459 | if (missed_updates % 2) | ||
| 460 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | ||
| 461 | |||
| 462 | missed_updates >>= 1; | ||
| 463 | j++; | ||
| 464 | } | ||
| 465 | return load; | ||
| 466 | } | ||
| 467 | |||
| 468 | /* | ||
| 469 | * Update rq->cpu_load[] statistics. This function is usually called every | ||
| 470 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called | ||
| 471 | * every tick. We fix it up based on jiffies. | ||
| 472 | */ | ||
| 473 | static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, | ||
| 474 | unsigned long pending_updates) | ||
| 475 | { | ||
| 476 | int i, scale; | ||
| 477 | |||
| 478 | this_rq->nr_load_updates++; | ||
| 479 | |||
| 480 | /* Update our load: */ | ||
| 481 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ | ||
| 482 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | ||
| 483 | unsigned long old_load, new_load; | ||
| 484 | |||
| 485 | /* scale is effectively 1 << i now, and >> i divides by scale */ | ||
| 486 | |||
| 487 | old_load = this_rq->cpu_load[i]; | ||
| 488 | old_load = decay_load_missed(old_load, pending_updates - 1, i); | ||
| 489 | new_load = this_load; | ||
| 490 | /* | ||
| 491 | * Round up the averaging division if load is increasing. This | ||
| 492 | * prevents us from getting stuck on 9 if the load is 10, for | ||
| 493 | * example. | ||
| 494 | */ | ||
| 495 | if (new_load > old_load) | ||
| 496 | new_load += scale - 1; | ||
| 497 | |||
| 498 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | ||
| 499 | } | ||
| 500 | |||
| 501 | sched_avg_update(this_rq); | ||
| 502 | } | ||
| 503 | |||
| 504 | #ifdef CONFIG_SMP | ||
| 505 | static inline unsigned long get_rq_runnable_load(struct rq *rq) | ||
| 506 | { | ||
| 507 | return rq->cfs.runnable_load_avg; | ||
| 508 | } | ||
| 509 | #else | ||
| 510 | static inline unsigned long get_rq_runnable_load(struct rq *rq) | ||
| 511 | { | ||
| 512 | return rq->load.weight; | ||
| 513 | } | ||
| 514 | #endif | ||
| 515 | |||
| 516 | #ifdef CONFIG_NO_HZ_COMMON | ||
| 517 | /* | ||
| 518 | * There is no sane way to deal with nohz on smp when using jiffies because the | ||
| 519 | * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading | ||
| 520 | * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. | ||
| 521 | * | ||
| 522 | * Therefore we cannot use the delta approach from the regular tick since that | ||
| 523 | * would seriously skew the load calculation. However we'll make do for those | ||
| 524 | * updates happening while idle (nohz_idle_balance) or coming out of idle | ||
| 525 | * (tick_nohz_idle_exit). | ||
| 526 | * | ||
| 527 | * This means we might still be one tick off for nohz periods. | ||
| 528 | */ | ||
| 529 | |||
| 530 | /* | ||
| 531 | * Called from nohz_idle_balance() to update the load ratings before doing the | ||
| 532 | * idle balance. | ||
| 533 | */ | ||
| 534 | void update_idle_cpu_load(struct rq *this_rq) | ||
| 535 | { | ||
| 536 | unsigned long curr_jiffies = ACCESS_ONCE(jiffies); | ||
| 537 | unsigned long load = get_rq_runnable_load(this_rq); | ||
| 538 | unsigned long pending_updates; | ||
| 539 | |||
| 540 | /* | ||
| 541 | * bail if there's load or we're actually up-to-date. | ||
| 542 | */ | ||
| 543 | if (load || curr_jiffies == this_rq->last_load_update_tick) | ||
| 544 | return; | ||
| 545 | |||
| 546 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | ||
| 547 | this_rq->last_load_update_tick = curr_jiffies; | ||
| 548 | |||
| 549 | __update_cpu_load(this_rq, load, pending_updates); | ||
| 550 | } | ||
| 551 | |||
| 552 | /* | ||
| 553 | * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. | ||
| 554 | */ | ||
| 555 | void update_cpu_load_nohz(void) | ||
| 556 | { | ||
| 557 | struct rq *this_rq = this_rq(); | ||
| 558 | unsigned long curr_jiffies = ACCESS_ONCE(jiffies); | ||
| 559 | unsigned long pending_updates; | ||
| 560 | |||
| 561 | if (curr_jiffies == this_rq->last_load_update_tick) | ||
| 562 | return; | ||
| 563 | |||
| 564 | raw_spin_lock(&this_rq->lock); | ||
| 565 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; | ||
| 566 | if (pending_updates) { | ||
| 567 | this_rq->last_load_update_tick = curr_jiffies; | ||
| 568 | /* | ||
| 569 | * We were idle, this means load 0, the current load might be | ||
| 570 | * !0 due to remote wakeups and the sort. | ||
| 571 | */ | ||
| 572 | __update_cpu_load(this_rq, 0, pending_updates); | ||
| 573 | } | ||
| 574 | raw_spin_unlock(&this_rq->lock); | ||
| 575 | } | ||
| 576 | #endif /* CONFIG_NO_HZ */ | ||
| 577 | |||
| 578 | /* | ||
| 579 | * Called from scheduler_tick() | ||
| 580 | */ | ||
| 581 | void update_cpu_load_active(struct rq *this_rq) | ||
| 582 | { | ||
| 583 | unsigned long load = get_rq_runnable_load(this_rq); | ||
| 584 | /* | ||
| 585 | * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). | ||
| 586 | */ | ||
| 587 | this_rq->last_load_update_tick = jiffies; | ||
| 588 | __update_cpu_load(this_rq, load, 1); | ||
| 589 | |||
| 590 | calc_load_account_active(this_rq); | ||
| 591 | } | ||
