diff options
Diffstat (limited to 'kernel/sched/cpupri.c')
-rw-r--r-- | kernel/sched/cpupri.c | 241 |
1 files changed, 241 insertions, 0 deletions
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c new file mode 100644 index 000000000000..b0d798eaf130 --- /dev/null +++ b/kernel/sched/cpupri.c | |||
@@ -0,0 +1,241 @@ | |||
1 | /* | ||
2 | * kernel/sched/cpupri.c | ||
3 | * | ||
4 | * CPU priority management | ||
5 | * | ||
6 | * Copyright (C) 2007-2008 Novell | ||
7 | * | ||
8 | * Author: Gregory Haskins <ghaskins@novell.com> | ||
9 | * | ||
10 | * This code tracks the priority of each CPU so that global migration | ||
11 | * decisions are easy to calculate. Each CPU can be in a state as follows: | ||
12 | * | ||
13 | * (INVALID), IDLE, NORMAL, RT1, ... RT99 | ||
14 | * | ||
15 | * going from the lowest priority to the highest. CPUs in the INVALID state | ||
16 | * are not eligible for routing. The system maintains this state with | ||
17 | * a 2 dimensional bitmap (the first for priority class, the second for cpus | ||
18 | * in that class). Therefore a typical application without affinity | ||
19 | * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit | ||
20 | * searches). For tasks with affinity restrictions, the algorithm has a | ||
21 | * worst case complexity of O(min(102, nr_domcpus)), though the scenario that | ||
22 | * yields the worst case search is fairly contrived. | ||
23 | * | ||
24 | * This program is free software; you can redistribute it and/or | ||
25 | * modify it under the terms of the GNU General Public License | ||
26 | * as published by the Free Software Foundation; version 2 | ||
27 | * of the License. | ||
28 | */ | ||
29 | |||
30 | #include <linux/gfp.h> | ||
31 | #include "cpupri.h" | ||
32 | |||
33 | /* Convert between a 140 based task->prio, and our 102 based cpupri */ | ||
34 | static int convert_prio(int prio) | ||
35 | { | ||
36 | int cpupri; | ||
37 | |||
38 | if (prio == CPUPRI_INVALID) | ||
39 | cpupri = CPUPRI_INVALID; | ||
40 | else if (prio == MAX_PRIO) | ||
41 | cpupri = CPUPRI_IDLE; | ||
42 | else if (prio >= MAX_RT_PRIO) | ||
43 | cpupri = CPUPRI_NORMAL; | ||
44 | else | ||
45 | cpupri = MAX_RT_PRIO - prio + 1; | ||
46 | |||
47 | return cpupri; | ||
48 | } | ||
49 | |||
50 | /** | ||
51 | * cpupri_find - find the best (lowest-pri) CPU in the system | ||
52 | * @cp: The cpupri context | ||
53 | * @p: The task | ||
54 | * @lowest_mask: A mask to fill in with selected CPUs (or NULL) | ||
55 | * | ||
56 | * Note: This function returns the recommended CPUs as calculated during the | ||
57 | * current invocation. By the time the call returns, the CPUs may have in | ||
58 | * fact changed priorities any number of times. While not ideal, it is not | ||
59 | * an issue of correctness since the normal rebalancer logic will correct | ||
60 | * any discrepancies created by racing against the uncertainty of the current | ||
61 | * priority configuration. | ||
62 | * | ||
63 | * Returns: (int)bool - CPUs were found | ||
64 | */ | ||
65 | int cpupri_find(struct cpupri *cp, struct task_struct *p, | ||
66 | struct cpumask *lowest_mask) | ||
67 | { | ||
68 | int idx = 0; | ||
69 | int task_pri = convert_prio(p->prio); | ||
70 | |||
71 | if (task_pri >= MAX_RT_PRIO) | ||
72 | return 0; | ||
73 | |||
74 | for (idx = 0; idx < task_pri; idx++) { | ||
75 | struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; | ||
76 | int skip = 0; | ||
77 | |||
78 | if (!atomic_read(&(vec)->count)) | ||
79 | skip = 1; | ||
80 | /* | ||
81 | * When looking at the vector, we need to read the counter, | ||
82 | * do a memory barrier, then read the mask. | ||
83 | * | ||
84 | * Note: This is still all racey, but we can deal with it. | ||
85 | * Ideally, we only want to look at masks that are set. | ||
86 | * | ||
87 | * If a mask is not set, then the only thing wrong is that we | ||
88 | * did a little more work than necessary. | ||
89 | * | ||
90 | * If we read a zero count but the mask is set, because of the | ||
91 | * memory barriers, that can only happen when the highest prio | ||
92 | * task for a run queue has left the run queue, in which case, | ||
93 | * it will be followed by a pull. If the task we are processing | ||
94 | * fails to find a proper place to go, that pull request will | ||
95 | * pull this task if the run queue is running at a lower | ||
96 | * priority. | ||
97 | */ | ||
98 | smp_rmb(); | ||
99 | |||
100 | /* Need to do the rmb for every iteration */ | ||
101 | if (skip) | ||
102 | continue; | ||
103 | |||
104 | if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) | ||
105 | continue; | ||
106 | |||
107 | if (lowest_mask) { | ||
108 | cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); | ||
109 | |||
110 | /* | ||
111 | * We have to ensure that we have at least one bit | ||
112 | * still set in the array, since the map could have | ||
113 | * been concurrently emptied between the first and | ||
114 | * second reads of vec->mask. If we hit this | ||
115 | * condition, simply act as though we never hit this | ||
116 | * priority level and continue on. | ||
117 | */ | ||
118 | if (cpumask_any(lowest_mask) >= nr_cpu_ids) | ||
119 | continue; | ||
120 | } | ||
121 | |||
122 | return 1; | ||
123 | } | ||
124 | |||
125 | return 0; | ||
126 | } | ||
127 | |||
128 | /** | ||
129 | * cpupri_set - update the cpu priority setting | ||
130 | * @cp: The cpupri context | ||
131 | * @cpu: The target cpu | ||
132 | * @pri: The priority (INVALID-RT99) to assign to this CPU | ||
133 | * | ||
134 | * Note: Assumes cpu_rq(cpu)->lock is locked | ||
135 | * | ||
136 | * Returns: (void) | ||
137 | */ | ||
138 | void cpupri_set(struct cpupri *cp, int cpu, int newpri) | ||
139 | { | ||
140 | int *currpri = &cp->cpu_to_pri[cpu]; | ||
141 | int oldpri = *currpri; | ||
142 | int do_mb = 0; | ||
143 | |||
144 | newpri = convert_prio(newpri); | ||
145 | |||
146 | BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); | ||
147 | |||
148 | if (newpri == oldpri) | ||
149 | return; | ||
150 | |||
151 | /* | ||
152 | * If the cpu was currently mapped to a different value, we | ||
153 | * need to map it to the new value then remove the old value. | ||
154 | * Note, we must add the new value first, otherwise we risk the | ||
155 | * cpu being missed by the priority loop in cpupri_find. | ||
156 | */ | ||
157 | if (likely(newpri != CPUPRI_INVALID)) { | ||
158 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; | ||
159 | |||
160 | cpumask_set_cpu(cpu, vec->mask); | ||
161 | /* | ||
162 | * When adding a new vector, we update the mask first, | ||
163 | * do a write memory barrier, and then update the count, to | ||
164 | * make sure the vector is visible when count is set. | ||
165 | */ | ||
166 | smp_mb__before_atomic_inc(); | ||
167 | atomic_inc(&(vec)->count); | ||
168 | do_mb = 1; | ||
169 | } | ||
170 | if (likely(oldpri != CPUPRI_INVALID)) { | ||
171 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | ||
172 | |||
173 | /* | ||
174 | * Because the order of modification of the vec->count | ||
175 | * is important, we must make sure that the update | ||
176 | * of the new prio is seen before we decrement the | ||
177 | * old prio. This makes sure that the loop sees | ||
178 | * one or the other when we raise the priority of | ||
179 | * the run queue. We don't care about when we lower the | ||
180 | * priority, as that will trigger an rt pull anyway. | ||
181 | * | ||
182 | * We only need to do a memory barrier if we updated | ||
183 | * the new priority vec. | ||
184 | */ | ||
185 | if (do_mb) | ||
186 | smp_mb__after_atomic_inc(); | ||
187 | |||
188 | /* | ||
189 | * When removing from the vector, we decrement the counter first | ||
190 | * do a memory barrier and then clear the mask. | ||
191 | */ | ||
192 | atomic_dec(&(vec)->count); | ||
193 | smp_mb__after_atomic_inc(); | ||
194 | cpumask_clear_cpu(cpu, vec->mask); | ||
195 | } | ||
196 | |||
197 | *currpri = newpri; | ||
198 | } | ||
199 | |||
200 | /** | ||
201 | * cpupri_init - initialize the cpupri structure | ||
202 | * @cp: The cpupri context | ||
203 | * @bootmem: true if allocations need to use bootmem | ||
204 | * | ||
205 | * Returns: -ENOMEM if memory fails. | ||
206 | */ | ||
207 | int cpupri_init(struct cpupri *cp) | ||
208 | { | ||
209 | int i; | ||
210 | |||
211 | memset(cp, 0, sizeof(*cp)); | ||
212 | |||
213 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { | ||
214 | struct cpupri_vec *vec = &cp->pri_to_cpu[i]; | ||
215 | |||
216 | atomic_set(&vec->count, 0); | ||
217 | if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL)) | ||
218 | goto cleanup; | ||
219 | } | ||
220 | |||
221 | for_each_possible_cpu(i) | ||
222 | cp->cpu_to_pri[i] = CPUPRI_INVALID; | ||
223 | return 0; | ||
224 | |||
225 | cleanup: | ||
226 | for (i--; i >= 0; i--) | ||
227 | free_cpumask_var(cp->pri_to_cpu[i].mask); | ||
228 | return -ENOMEM; | ||
229 | } | ||
230 | |||
231 | /** | ||
232 | * cpupri_cleanup - clean up the cpupri structure | ||
233 | * @cp: The cpupri context | ||
234 | */ | ||
235 | void cpupri_cleanup(struct cpupri *cp) | ||
236 | { | ||
237 | int i; | ||
238 | |||
239 | for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) | ||
240 | free_cpumask_var(cp->pri_to_cpu[i].mask); | ||
241 | } | ||