diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 3144 |
1 files changed, 730 insertions, 2414 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index ee61f454a98b..9ab3cd7858d3 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -141,7 +141,7 @@ struct rt_prio_array { | |||
141 | 141 | ||
142 | struct rt_bandwidth { | 142 | struct rt_bandwidth { |
143 | /* nests inside the rq lock: */ | 143 | /* nests inside the rq lock: */ |
144 | spinlock_t rt_runtime_lock; | 144 | raw_spinlock_t rt_runtime_lock; |
145 | ktime_t rt_period; | 145 | ktime_t rt_period; |
146 | u64 rt_runtime; | 146 | u64 rt_runtime; |
147 | struct hrtimer rt_period_timer; | 147 | struct hrtimer rt_period_timer; |
@@ -178,7 +178,7 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |||
178 | rt_b->rt_period = ns_to_ktime(period); | 178 | rt_b->rt_period = ns_to_ktime(period); |
179 | rt_b->rt_runtime = runtime; | 179 | rt_b->rt_runtime = runtime; |
180 | 180 | ||
181 | spin_lock_init(&rt_b->rt_runtime_lock); | 181 | raw_spin_lock_init(&rt_b->rt_runtime_lock); |
182 | 182 | ||
183 | hrtimer_init(&rt_b->rt_period_timer, | 183 | hrtimer_init(&rt_b->rt_period_timer, |
184 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 184 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
@@ -200,7 +200,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
200 | if (hrtimer_active(&rt_b->rt_period_timer)) | 200 | if (hrtimer_active(&rt_b->rt_period_timer)) |
201 | return; | 201 | return; |
202 | 202 | ||
203 | spin_lock(&rt_b->rt_runtime_lock); | 203 | raw_spin_lock(&rt_b->rt_runtime_lock); |
204 | for (;;) { | 204 | for (;;) { |
205 | unsigned long delta; | 205 | unsigned long delta; |
206 | ktime_t soft, hard; | 206 | ktime_t soft, hard; |
@@ -217,7 +217,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
217 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, | 217 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, |
218 | HRTIMER_MODE_ABS_PINNED, 0); | 218 | HRTIMER_MODE_ABS_PINNED, 0); |
219 | } | 219 | } |
220 | spin_unlock(&rt_b->rt_runtime_lock); | 220 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
221 | } | 221 | } |
222 | 222 | ||
223 | #ifdef CONFIG_RT_GROUP_SCHED | 223 | #ifdef CONFIG_RT_GROUP_SCHED |
@@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
233 | */ | 233 | */ |
234 | static DEFINE_MUTEX(sched_domains_mutex); | 234 | static DEFINE_MUTEX(sched_domains_mutex); |
235 | 235 | ||
236 | #ifdef CONFIG_GROUP_SCHED | 236 | #ifdef CONFIG_CGROUP_SCHED |
237 | 237 | ||
238 | #include <linux/cgroup.h> | 238 | #include <linux/cgroup.h> |
239 | 239 | ||
@@ -243,13 +243,7 @@ static LIST_HEAD(task_groups); | |||
243 | 243 | ||
244 | /* task group related information */ | 244 | /* task group related information */ |
245 | struct task_group { | 245 | struct task_group { |
246 | #ifdef CONFIG_CGROUP_SCHED | ||
247 | struct cgroup_subsys_state css; | 246 | struct cgroup_subsys_state css; |
248 | #endif | ||
249 | |||
250 | #ifdef CONFIG_USER_SCHED | ||
251 | uid_t uid; | ||
252 | #endif | ||
253 | 247 | ||
254 | #ifdef CONFIG_FAIR_GROUP_SCHED | 248 | #ifdef CONFIG_FAIR_GROUP_SCHED |
255 | /* schedulable entities of this group on each cpu */ | 249 | /* schedulable entities of this group on each cpu */ |
@@ -274,41 +268,15 @@ struct task_group { | |||
274 | struct list_head children; | 268 | struct list_head children; |
275 | }; | 269 | }; |
276 | 270 | ||
277 | #ifdef CONFIG_USER_SCHED | ||
278 | |||
279 | /* Helper function to pass uid information to create_sched_user() */ | ||
280 | void set_tg_uid(struct user_struct *user) | ||
281 | { | ||
282 | user->tg->uid = user->uid; | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * Root task group. | ||
287 | * Every UID task group (including init_task_group aka UID-0) will | ||
288 | * be a child to this group. | ||
289 | */ | ||
290 | struct task_group root_task_group; | ||
291 | |||
292 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
293 | /* Default task group's sched entity on each cpu */ | ||
294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | ||
295 | /* Default task group's cfs_rq on each cpu */ | ||
296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); | ||
297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
298 | |||
299 | #ifdef CONFIG_RT_GROUP_SCHED | ||
300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | ||
301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); | ||
302 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
303 | #else /* !CONFIG_USER_SCHED */ | ||
304 | #define root_task_group init_task_group | 271 | #define root_task_group init_task_group |
305 | #endif /* CONFIG_USER_SCHED */ | ||
306 | 272 | ||
307 | /* task_group_lock serializes add/remove of task groups and also changes to | 273 | /* task_group_lock serializes add/remove of task groups and also changes to |
308 | * a task group's cpu shares. | 274 | * a task group's cpu shares. |
309 | */ | 275 | */ |
310 | static DEFINE_SPINLOCK(task_group_lock); | 276 | static DEFINE_SPINLOCK(task_group_lock); |
311 | 277 | ||
278 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
279 | |||
312 | #ifdef CONFIG_SMP | 280 | #ifdef CONFIG_SMP |
313 | static int root_task_group_empty(void) | 281 | static int root_task_group_empty(void) |
314 | { | 282 | { |
@@ -316,12 +284,7 @@ static int root_task_group_empty(void) | |||
316 | } | 284 | } |
317 | #endif | 285 | #endif |
318 | 286 | ||
319 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
320 | #ifdef CONFIG_USER_SCHED | ||
321 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | ||
322 | #else /* !CONFIG_USER_SCHED */ | ||
323 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD | 287 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
324 | #endif /* CONFIG_USER_SCHED */ | ||
325 | 288 | ||
326 | /* | 289 | /* |
327 | * A weight of 0 or 1 can cause arithmetics problems. | 290 | * A weight of 0 or 1 can cause arithmetics problems. |
@@ -347,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
347 | { | 310 | { |
348 | struct task_group *tg; | 311 | struct task_group *tg; |
349 | 312 | ||
350 | #ifdef CONFIG_USER_SCHED | 313 | #ifdef CONFIG_CGROUP_SCHED |
351 | rcu_read_lock(); | ||
352 | tg = __task_cred(p)->user->tg; | ||
353 | rcu_read_unlock(); | ||
354 | #elif defined(CONFIG_CGROUP_SCHED) | ||
355 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | 314 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
356 | struct task_group, css); | 315 | struct task_group, css); |
357 | #else | 316 | #else |
@@ -382,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
382 | return NULL; | 341 | return NULL; |
383 | } | 342 | } |
384 | 343 | ||
385 | #endif /* CONFIG_GROUP_SCHED */ | 344 | #endif /* CONFIG_CGROUP_SCHED */ |
386 | 345 | ||
387 | /* CFS-related fields in a runqueue */ | 346 | /* CFS-related fields in a runqueue */ |
388 | struct cfs_rq { | 347 | struct cfs_rq { |
@@ -469,7 +428,7 @@ struct rt_rq { | |||
469 | u64 rt_time; | 428 | u64 rt_time; |
470 | u64 rt_runtime; | 429 | u64 rt_runtime; |
471 | /* Nests inside the rq lock: */ | 430 | /* Nests inside the rq lock: */ |
472 | spinlock_t rt_runtime_lock; | 431 | raw_spinlock_t rt_runtime_lock; |
473 | 432 | ||
474 | #ifdef CONFIG_RT_GROUP_SCHED | 433 | #ifdef CONFIG_RT_GROUP_SCHED |
475 | unsigned long rt_nr_boosted; | 434 | unsigned long rt_nr_boosted; |
@@ -477,7 +436,6 @@ struct rt_rq { | |||
477 | struct rq *rq; | 436 | struct rq *rq; |
478 | struct list_head leaf_rt_rq_list; | 437 | struct list_head leaf_rt_rq_list; |
479 | struct task_group *tg; | 438 | struct task_group *tg; |
480 | struct sched_rt_entity *rt_se; | ||
481 | #endif | 439 | #endif |
482 | }; | 440 | }; |
483 | 441 | ||
@@ -524,7 +482,7 @@ static struct root_domain def_root_domain; | |||
524 | */ | 482 | */ |
525 | struct rq { | 483 | struct rq { |
526 | /* runqueue lock: */ | 484 | /* runqueue lock: */ |
527 | spinlock_t lock; | 485 | raw_spinlock_t lock; |
528 | 486 | ||
529 | /* | 487 | /* |
530 | * nr_running and cpu_load should be in the same cacheline because | 488 | * nr_running and cpu_load should be in the same cacheline because |
@@ -534,14 +492,12 @@ struct rq { | |||
534 | #define CPU_LOAD_IDX_MAX 5 | 492 | #define CPU_LOAD_IDX_MAX 5 |
535 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 493 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
536 | #ifdef CONFIG_NO_HZ | 494 | #ifdef CONFIG_NO_HZ |
537 | unsigned long last_tick_seen; | ||
538 | unsigned char in_nohz_recently; | 495 | unsigned char in_nohz_recently; |
539 | #endif | 496 | #endif |
540 | /* capture load from *all* tasks on this cpu: */ | 497 | /* capture load from *all* tasks on this cpu: */ |
541 | struct load_weight load; | 498 | struct load_weight load; |
542 | unsigned long nr_load_updates; | 499 | unsigned long nr_load_updates; |
543 | u64 nr_switches; | 500 | u64 nr_switches; |
544 | u64 nr_migrations_in; | ||
545 | 501 | ||
546 | struct cfs_rq cfs; | 502 | struct cfs_rq cfs; |
547 | struct rt_rq rt; | 503 | struct rt_rq rt; |
@@ -590,6 +546,8 @@ struct rq { | |||
590 | 546 | ||
591 | u64 rt_avg; | 547 | u64 rt_avg; |
592 | u64 age_stamp; | 548 | u64 age_stamp; |
549 | u64 idle_stamp; | ||
550 | u64 avg_idle; | ||
593 | #endif | 551 | #endif |
594 | 552 | ||
595 | /* calc_load related fields */ | 553 | /* calc_load related fields */ |
@@ -644,6 +602,11 @@ static inline int cpu_of(struct rq *rq) | |||
644 | #endif | 602 | #endif |
645 | } | 603 | } |
646 | 604 | ||
605 | #define rcu_dereference_check_sched_domain(p) \ | ||
606 | rcu_dereference_check((p), \ | ||
607 | rcu_read_lock_sched_held() || \ | ||
608 | lockdep_is_held(&sched_domains_mutex)) | ||
609 | |||
647 | /* | 610 | /* |
648 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 611 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
649 | * See detach_destroy_domains: synchronize_sched for details. | 612 | * See detach_destroy_domains: synchronize_sched for details. |
@@ -652,7 +615,7 @@ static inline int cpu_of(struct rq *rq) | |||
652 | * preempt-disabled sections. | 615 | * preempt-disabled sections. |
653 | */ | 616 | */ |
654 | #define for_each_domain(cpu, __sd) \ | 617 | #define for_each_domain(cpu, __sd) \ |
655 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 618 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
656 | 619 | ||
657 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | 620 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
658 | #define this_rq() (&__get_cpu_var(runqueues)) | 621 | #define this_rq() (&__get_cpu_var(runqueues)) |
@@ -676,6 +639,7 @@ inline void update_rq_clock(struct rq *rq) | |||
676 | 639 | ||
677 | /** | 640 | /** |
678 | * runqueue_is_locked | 641 | * runqueue_is_locked |
642 | * @cpu: the processor in question. | ||
679 | * | 643 | * |
680 | * Returns true if the current cpu runqueue is locked. | 644 | * Returns true if the current cpu runqueue is locked. |
681 | * This interface allows printk to be called with the runqueue lock | 645 | * This interface allows printk to be called with the runqueue lock |
@@ -683,7 +647,7 @@ inline void update_rq_clock(struct rq *rq) | |||
683 | */ | 647 | */ |
684 | int runqueue_is_locked(int cpu) | 648 | int runqueue_is_locked(int cpu) |
685 | { | 649 | { |
686 | return spin_is_locked(&cpu_rq(cpu)->lock); | 650 | return raw_spin_is_locked(&cpu_rq(cpu)->lock); |
687 | } | 651 | } |
688 | 652 | ||
689 | /* | 653 | /* |
@@ -770,7 +734,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf, | |||
770 | if (!sched_feat_names[i]) | 734 | if (!sched_feat_names[i]) |
771 | return -EINVAL; | 735 | return -EINVAL; |
772 | 736 | ||
773 | filp->f_pos += cnt; | 737 | *ppos += cnt; |
774 | 738 | ||
775 | return cnt; | 739 | return cnt; |
776 | } | 740 | } |
@@ -780,7 +744,7 @@ static int sched_feat_open(struct inode *inode, struct file *filp) | |||
780 | return single_open(filp, sched_feat_show, NULL); | 744 | return single_open(filp, sched_feat_show, NULL); |
781 | } | 745 | } |
782 | 746 | ||
783 | static struct file_operations sched_feat_fops = { | 747 | static const struct file_operations sched_feat_fops = { |
784 | .open = sched_feat_open, | 748 | .open = sched_feat_open, |
785 | .write = sched_feat_write, | 749 | .write = sched_feat_write, |
786 | .read = seq_read, | 750 | .read = seq_read, |
@@ -812,6 +776,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32; | |||
812 | * default: 0.25ms | 776 | * default: 0.25ms |
813 | */ | 777 | */ |
814 | unsigned int sysctl_sched_shares_ratelimit = 250000; | 778 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
779 | unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; | ||
815 | 780 | ||
816 | /* | 781 | /* |
817 | * Inject some fuzzyness into changing the per-cpu group shares | 782 | * Inject some fuzzyness into changing the per-cpu group shares |
@@ -890,7 +855,7 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
890 | */ | 855 | */ |
891 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 856 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
892 | 857 | ||
893 | spin_unlock_irq(&rq->lock); | 858 | raw_spin_unlock_irq(&rq->lock); |
894 | } | 859 | } |
895 | 860 | ||
896 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 861 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
@@ -914,9 +879,9 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | |||
914 | next->oncpu = 1; | 879 | next->oncpu = 1; |
915 | #endif | 880 | #endif |
916 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 881 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
917 | spin_unlock_irq(&rq->lock); | 882 | raw_spin_unlock_irq(&rq->lock); |
918 | #else | 883 | #else |
919 | spin_unlock(&rq->lock); | 884 | raw_spin_unlock(&rq->lock); |
920 | #endif | 885 | #endif |
921 | } | 886 | } |
922 | 887 | ||
@@ -938,18 +903,35 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
938 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 903 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
939 | 904 | ||
940 | /* | 905 | /* |
906 | * Check whether the task is waking, we use this to synchronize against | ||
907 | * ttwu() so that task_cpu() reports a stable number. | ||
908 | * | ||
909 | * We need to make an exception for PF_STARTING tasks because the fork | ||
910 | * path might require task_rq_lock() to work, eg. it can call | ||
911 | * set_cpus_allowed_ptr() from the cpuset clone_ns code. | ||
912 | */ | ||
913 | static inline int task_is_waking(struct task_struct *p) | ||
914 | { | ||
915 | return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); | ||
916 | } | ||
917 | |||
918 | /* | ||
941 | * __task_rq_lock - lock the runqueue a given task resides on. | 919 | * __task_rq_lock - lock the runqueue a given task resides on. |
942 | * Must be called interrupts disabled. | 920 | * Must be called interrupts disabled. |
943 | */ | 921 | */ |
944 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 922 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
945 | __acquires(rq->lock) | 923 | __acquires(rq->lock) |
946 | { | 924 | { |
925 | struct rq *rq; | ||
926 | |||
947 | for (;;) { | 927 | for (;;) { |
948 | struct rq *rq = task_rq(p); | 928 | while (task_is_waking(p)) |
949 | spin_lock(&rq->lock); | 929 | cpu_relax(); |
950 | if (likely(rq == task_rq(p))) | 930 | rq = task_rq(p); |
931 | raw_spin_lock(&rq->lock); | ||
932 | if (likely(rq == task_rq(p) && !task_is_waking(p))) | ||
951 | return rq; | 933 | return rq; |
952 | spin_unlock(&rq->lock); | 934 | raw_spin_unlock(&rq->lock); |
953 | } | 935 | } |
954 | } | 936 | } |
955 | 937 | ||
@@ -964,12 +946,14 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | |||
964 | struct rq *rq; | 946 | struct rq *rq; |
965 | 947 | ||
966 | for (;;) { | 948 | for (;;) { |
949 | while (task_is_waking(p)) | ||
950 | cpu_relax(); | ||
967 | local_irq_save(*flags); | 951 | local_irq_save(*flags); |
968 | rq = task_rq(p); | 952 | rq = task_rq(p); |
969 | spin_lock(&rq->lock); | 953 | raw_spin_lock(&rq->lock); |
970 | if (likely(rq == task_rq(p))) | 954 | if (likely(rq == task_rq(p) && !task_is_waking(p))) |
971 | return rq; | 955 | return rq; |
972 | spin_unlock_irqrestore(&rq->lock, *flags); | 956 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
973 | } | 957 | } |
974 | } | 958 | } |
975 | 959 | ||
@@ -978,19 +962,19 @@ void task_rq_unlock_wait(struct task_struct *p) | |||
978 | struct rq *rq = task_rq(p); | 962 | struct rq *rq = task_rq(p); |
979 | 963 | ||
980 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | 964 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ |
981 | spin_unlock_wait(&rq->lock); | 965 | raw_spin_unlock_wait(&rq->lock); |
982 | } | 966 | } |
983 | 967 | ||
984 | static void __task_rq_unlock(struct rq *rq) | 968 | static void __task_rq_unlock(struct rq *rq) |
985 | __releases(rq->lock) | 969 | __releases(rq->lock) |
986 | { | 970 | { |
987 | spin_unlock(&rq->lock); | 971 | raw_spin_unlock(&rq->lock); |
988 | } | 972 | } |
989 | 973 | ||
990 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | 974 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
991 | __releases(rq->lock) | 975 | __releases(rq->lock) |
992 | { | 976 | { |
993 | spin_unlock_irqrestore(&rq->lock, *flags); | 977 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
994 | } | 978 | } |
995 | 979 | ||
996 | /* | 980 | /* |
@@ -1003,7 +987,7 @@ static struct rq *this_rq_lock(void) | |||
1003 | 987 | ||
1004 | local_irq_disable(); | 988 | local_irq_disable(); |
1005 | rq = this_rq(); | 989 | rq = this_rq(); |
1006 | spin_lock(&rq->lock); | 990 | raw_spin_lock(&rq->lock); |
1007 | 991 | ||
1008 | return rq; | 992 | return rq; |
1009 | } | 993 | } |
@@ -1050,10 +1034,10 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer) | |||
1050 | 1034 | ||
1051 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 1035 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
1052 | 1036 | ||
1053 | spin_lock(&rq->lock); | 1037 | raw_spin_lock(&rq->lock); |
1054 | update_rq_clock(rq); | 1038 | update_rq_clock(rq); |
1055 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 1039 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1056 | spin_unlock(&rq->lock); | 1040 | raw_spin_unlock(&rq->lock); |
1057 | 1041 | ||
1058 | return HRTIMER_NORESTART; | 1042 | return HRTIMER_NORESTART; |
1059 | } | 1043 | } |
@@ -1066,10 +1050,10 @@ static void __hrtick_start(void *arg) | |||
1066 | { | 1050 | { |
1067 | struct rq *rq = arg; | 1051 | struct rq *rq = arg; |
1068 | 1052 | ||
1069 | spin_lock(&rq->lock); | 1053 | raw_spin_lock(&rq->lock); |
1070 | hrtimer_restart(&rq->hrtick_timer); | 1054 | hrtimer_restart(&rq->hrtick_timer); |
1071 | rq->hrtick_csd_pending = 0; | 1055 | rq->hrtick_csd_pending = 0; |
1072 | spin_unlock(&rq->lock); | 1056 | raw_spin_unlock(&rq->lock); |
1073 | } | 1057 | } |
1074 | 1058 | ||
1075 | /* | 1059 | /* |
@@ -1176,7 +1160,7 @@ static void resched_task(struct task_struct *p) | |||
1176 | { | 1160 | { |
1177 | int cpu; | 1161 | int cpu; |
1178 | 1162 | ||
1179 | assert_spin_locked(&task_rq(p)->lock); | 1163 | assert_raw_spin_locked(&task_rq(p)->lock); |
1180 | 1164 | ||
1181 | if (test_tsk_need_resched(p)) | 1165 | if (test_tsk_need_resched(p)) |
1182 | return; | 1166 | return; |
@@ -1198,10 +1182,10 @@ static void resched_cpu(int cpu) | |||
1198 | struct rq *rq = cpu_rq(cpu); | 1182 | struct rq *rq = cpu_rq(cpu); |
1199 | unsigned long flags; | 1183 | unsigned long flags; |
1200 | 1184 | ||
1201 | if (!spin_trylock_irqsave(&rq->lock, flags)) | 1185 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) |
1202 | return; | 1186 | return; |
1203 | resched_task(cpu_curr(cpu)); | 1187 | resched_task(cpu_curr(cpu)); |
1204 | spin_unlock_irqrestore(&rq->lock, flags); | 1188 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1205 | } | 1189 | } |
1206 | 1190 | ||
1207 | #ifdef CONFIG_NO_HZ | 1191 | #ifdef CONFIG_NO_HZ |
@@ -1270,7 +1254,7 @@ static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |||
1270 | #else /* !CONFIG_SMP */ | 1254 | #else /* !CONFIG_SMP */ |
1271 | static void resched_task(struct task_struct *p) | 1255 | static void resched_task(struct task_struct *p) |
1272 | { | 1256 | { |
1273 | assert_spin_locked(&task_rq(p)->lock); | 1257 | assert_raw_spin_locked(&task_rq(p)->lock); |
1274 | set_tsk_need_resched(p); | 1258 | set_tsk_need_resched(p); |
1275 | } | 1259 | } |
1276 | 1260 | ||
@@ -1387,32 +1371,6 @@ static const u32 prio_to_wmult[40] = { | |||
1387 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 1371 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
1388 | }; | 1372 | }; |
1389 | 1373 | ||
1390 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | ||
1391 | |||
1392 | /* | ||
1393 | * runqueue iterator, to support SMP load-balancing between different | ||
1394 | * scheduling classes, without having to expose their internal data | ||
1395 | * structures to the load-balancing proper: | ||
1396 | */ | ||
1397 | struct rq_iterator { | ||
1398 | void *arg; | ||
1399 | struct task_struct *(*start)(void *); | ||
1400 | struct task_struct *(*next)(void *); | ||
1401 | }; | ||
1402 | |||
1403 | #ifdef CONFIG_SMP | ||
1404 | static unsigned long | ||
1405 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1406 | unsigned long max_load_move, struct sched_domain *sd, | ||
1407 | enum cpu_idle_type idle, int *all_pinned, | ||
1408 | int *this_best_prio, struct rq_iterator *iterator); | ||
1409 | |||
1410 | static int | ||
1411 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1412 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
1413 | struct rq_iterator *iterator); | ||
1414 | #endif | ||
1415 | |||
1416 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | 1374 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1417 | enum cpuacct_stat_index { | 1375 | enum cpuacct_stat_index { |
1418 | CPUACCT_STAT_USER, /* ... user mode */ | 1376 | CPUACCT_STAT_USER, /* ... user mode */ |
@@ -1528,7 +1486,7 @@ static unsigned long target_load(int cpu, int type) | |||
1528 | 1486 | ||
1529 | static struct sched_group *group_of(int cpu) | 1487 | static struct sched_group *group_of(int cpu) |
1530 | { | 1488 | { |
1531 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | 1489 | struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd); |
1532 | 1490 | ||
1533 | if (!sd) | 1491 | if (!sd) |
1534 | return NULL; | 1492 | return NULL; |
@@ -1563,11 +1521,7 @@ static unsigned long cpu_avg_load_per_task(int cpu) | |||
1563 | 1521 | ||
1564 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1522 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1565 | 1523 | ||
1566 | struct update_shares_data { | 1524 | static __read_mostly unsigned long __percpu *update_shares_data; |
1567 | unsigned long rq_weight[NR_CPUS]; | ||
1568 | }; | ||
1569 | |||
1570 | static DEFINE_PER_CPU(struct update_shares_data, update_shares_data); | ||
1571 | 1525 | ||
1572 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1526 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1573 | 1527 | ||
@@ -1577,12 +1531,12 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares); | |||
1577 | static void update_group_shares_cpu(struct task_group *tg, int cpu, | 1531 | static void update_group_shares_cpu(struct task_group *tg, int cpu, |
1578 | unsigned long sd_shares, | 1532 | unsigned long sd_shares, |
1579 | unsigned long sd_rq_weight, | 1533 | unsigned long sd_rq_weight, |
1580 | struct update_shares_data *usd) | 1534 | unsigned long *usd_rq_weight) |
1581 | { | 1535 | { |
1582 | unsigned long shares, rq_weight; | 1536 | unsigned long shares, rq_weight; |
1583 | int boost = 0; | 1537 | int boost = 0; |
1584 | 1538 | ||
1585 | rq_weight = usd->rq_weight[cpu]; | 1539 | rq_weight = usd_rq_weight[cpu]; |
1586 | if (!rq_weight) { | 1540 | if (!rq_weight) { |
1587 | boost = 1; | 1541 | boost = 1; |
1588 | rq_weight = NICE_0_LOAD; | 1542 | rq_weight = NICE_0_LOAD; |
@@ -1601,11 +1555,11 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu, | |||
1601 | struct rq *rq = cpu_rq(cpu); | 1555 | struct rq *rq = cpu_rq(cpu); |
1602 | unsigned long flags; | 1556 | unsigned long flags; |
1603 | 1557 | ||
1604 | spin_lock_irqsave(&rq->lock, flags); | 1558 | raw_spin_lock_irqsave(&rq->lock, flags); |
1605 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; | 1559 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; |
1606 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; | 1560 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; |
1607 | __set_se_shares(tg->se[cpu], shares); | 1561 | __set_se_shares(tg->se[cpu], shares); |
1608 | spin_unlock_irqrestore(&rq->lock, flags); | 1562 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1609 | } | 1563 | } |
1610 | } | 1564 | } |
1611 | 1565 | ||
@@ -1616,8 +1570,8 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu, | |||
1616 | */ | 1570 | */ |
1617 | static int tg_shares_up(struct task_group *tg, void *data) | 1571 | static int tg_shares_up(struct task_group *tg, void *data) |
1618 | { | 1572 | { |
1619 | unsigned long weight, rq_weight = 0, shares = 0; | 1573 | unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; |
1620 | struct update_shares_data *usd; | 1574 | unsigned long *usd_rq_weight; |
1621 | struct sched_domain *sd = data; | 1575 | struct sched_domain *sd = data; |
1622 | unsigned long flags; | 1576 | unsigned long flags; |
1623 | int i; | 1577 | int i; |
@@ -1626,12 +1580,13 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1626 | return 0; | 1580 | return 0; |
1627 | 1581 | ||
1628 | local_irq_save(flags); | 1582 | local_irq_save(flags); |
1629 | usd = &__get_cpu_var(update_shares_data); | 1583 | usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); |
1630 | 1584 | ||
1631 | for_each_cpu(i, sched_domain_span(sd)) { | 1585 | for_each_cpu(i, sched_domain_span(sd)) { |
1632 | weight = tg->cfs_rq[i]->load.weight; | 1586 | weight = tg->cfs_rq[i]->load.weight; |
1633 | usd->rq_weight[i] = weight; | 1587 | usd_rq_weight[i] = weight; |
1634 | 1588 | ||
1589 | rq_weight += weight; | ||
1635 | /* | 1590 | /* |
1636 | * If there are currently no tasks on the cpu pretend there | 1591 | * If there are currently no tasks on the cpu pretend there |
1637 | * is one of average load so that when a new task gets to | 1592 | * is one of average load so that when a new task gets to |
@@ -1640,10 +1595,13 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1640 | if (!weight) | 1595 | if (!weight) |
1641 | weight = NICE_0_LOAD; | 1596 | weight = NICE_0_LOAD; |
1642 | 1597 | ||
1643 | rq_weight += weight; | 1598 | sum_weight += weight; |
1644 | shares += tg->cfs_rq[i]->shares; | 1599 | shares += tg->cfs_rq[i]->shares; |
1645 | } | 1600 | } |
1646 | 1601 | ||
1602 | if (!rq_weight) | ||
1603 | rq_weight = sum_weight; | ||
1604 | |||
1647 | if ((!shares && rq_weight) || shares > tg->shares) | 1605 | if ((!shares && rq_weight) || shares > tg->shares) |
1648 | shares = tg->shares; | 1606 | shares = tg->shares; |
1649 | 1607 | ||
@@ -1651,7 +1609,7 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1651 | shares = tg->shares; | 1609 | shares = tg->shares; |
1652 | 1610 | ||
1653 | for_each_cpu(i, sched_domain_span(sd)) | 1611 | for_each_cpu(i, sched_domain_span(sd)) |
1654 | update_group_shares_cpu(tg, i, shares, rq_weight, usd); | 1612 | update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); |
1655 | 1613 | ||
1656 | local_irq_restore(flags); | 1614 | local_irq_restore(flags); |
1657 | 1615 | ||
@@ -1698,16 +1656,6 @@ static void update_shares(struct sched_domain *sd) | |||
1698 | } | 1656 | } |
1699 | } | 1657 | } |
1700 | 1658 | ||
1701 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1702 | { | ||
1703 | if (root_task_group_empty()) | ||
1704 | return; | ||
1705 | |||
1706 | spin_unlock(&rq->lock); | ||
1707 | update_shares(sd); | ||
1708 | spin_lock(&rq->lock); | ||
1709 | } | ||
1710 | |||
1711 | static void update_h_load(long cpu) | 1659 | static void update_h_load(long cpu) |
1712 | { | 1660 | { |
1713 | if (root_task_group_empty()) | 1661 | if (root_task_group_empty()) |
@@ -1722,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd) | |||
1722 | { | 1670 | { |
1723 | } | 1671 | } |
1724 | 1672 | ||
1725 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1726 | { | ||
1727 | } | ||
1728 | |||
1729 | #endif | 1673 | #endif |
1730 | 1674 | ||
1731 | #ifdef CONFIG_PREEMPT | 1675 | #ifdef CONFIG_PREEMPT |
@@ -1745,7 +1689,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1745 | __acquires(busiest->lock) | 1689 | __acquires(busiest->lock) |
1746 | __acquires(this_rq->lock) | 1690 | __acquires(this_rq->lock) |
1747 | { | 1691 | { |
1748 | spin_unlock(&this_rq->lock); | 1692 | raw_spin_unlock(&this_rq->lock); |
1749 | double_rq_lock(this_rq, busiest); | 1693 | double_rq_lock(this_rq, busiest); |
1750 | 1694 | ||
1751 | return 1; | 1695 | return 1; |
@@ -1766,14 +1710,16 @@ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1766 | { | 1710 | { |
1767 | int ret = 0; | 1711 | int ret = 0; |
1768 | 1712 | ||
1769 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1713 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
1770 | if (busiest < this_rq) { | 1714 | if (busiest < this_rq) { |
1771 | spin_unlock(&this_rq->lock); | 1715 | raw_spin_unlock(&this_rq->lock); |
1772 | spin_lock(&busiest->lock); | 1716 | raw_spin_lock(&busiest->lock); |
1773 | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); | 1717 | raw_spin_lock_nested(&this_rq->lock, |
1718 | SINGLE_DEPTH_NESTING); | ||
1774 | ret = 1; | 1719 | ret = 1; |
1775 | } else | 1720 | } else |
1776 | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); | 1721 | raw_spin_lock_nested(&busiest->lock, |
1722 | SINGLE_DEPTH_NESTING); | ||
1777 | } | 1723 | } |
1778 | return ret; | 1724 | return ret; |
1779 | } | 1725 | } |
@@ -1787,7 +1733,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1787 | { | 1733 | { |
1788 | if (unlikely(!irqs_disabled())) { | 1734 | if (unlikely(!irqs_disabled())) { |
1789 | /* printk() doesn't work good under rq->lock */ | 1735 | /* printk() doesn't work good under rq->lock */ |
1790 | spin_unlock(&this_rq->lock); | 1736 | raw_spin_unlock(&this_rq->lock); |
1791 | BUG_ON(1); | 1737 | BUG_ON(1); |
1792 | } | 1738 | } |
1793 | 1739 | ||
@@ -1797,9 +1743,54 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1797 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1743 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1798 | __releases(busiest->lock) | 1744 | __releases(busiest->lock) |
1799 | { | 1745 | { |
1800 | spin_unlock(&busiest->lock); | 1746 | raw_spin_unlock(&busiest->lock); |
1801 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 1747 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1802 | } | 1748 | } |
1749 | |||
1750 | /* | ||
1751 | * double_rq_lock - safely lock two runqueues | ||
1752 | * | ||
1753 | * Note this does not disable interrupts like task_rq_lock, | ||
1754 | * you need to do so manually before calling. | ||
1755 | */ | ||
1756 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1757 | __acquires(rq1->lock) | ||
1758 | __acquires(rq2->lock) | ||
1759 | { | ||
1760 | BUG_ON(!irqs_disabled()); | ||
1761 | if (rq1 == rq2) { | ||
1762 | raw_spin_lock(&rq1->lock); | ||
1763 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1764 | } else { | ||
1765 | if (rq1 < rq2) { | ||
1766 | raw_spin_lock(&rq1->lock); | ||
1767 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
1768 | } else { | ||
1769 | raw_spin_lock(&rq2->lock); | ||
1770 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
1771 | } | ||
1772 | } | ||
1773 | update_rq_clock(rq1); | ||
1774 | update_rq_clock(rq2); | ||
1775 | } | ||
1776 | |||
1777 | /* | ||
1778 | * double_rq_unlock - safely unlock two runqueues | ||
1779 | * | ||
1780 | * Note this does not restore interrupts like task_rq_unlock, | ||
1781 | * you need to do so manually after calling. | ||
1782 | */ | ||
1783 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1784 | __releases(rq1->lock) | ||
1785 | __releases(rq2->lock) | ||
1786 | { | ||
1787 | raw_spin_unlock(&rq1->lock); | ||
1788 | if (rq1 != rq2) | ||
1789 | raw_spin_unlock(&rq2->lock); | ||
1790 | else | ||
1791 | __release(rq2->lock); | ||
1792 | } | ||
1793 | |||
1803 | #endif | 1794 | #endif |
1804 | 1795 | ||
1805 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1796 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1812,19 +1803,31 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |||
1812 | #endif | 1803 | #endif |
1813 | 1804 | ||
1814 | static void calc_load_account_active(struct rq *this_rq); | 1805 | static void calc_load_account_active(struct rq *this_rq); |
1806 | static void update_sysctl(void); | ||
1807 | static int get_update_sysctl_factor(void); | ||
1815 | 1808 | ||
1816 | #include "sched_stats.h" | 1809 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1817 | #include "sched_idletask.c" | 1810 | { |
1818 | #include "sched_fair.c" | 1811 | set_task_rq(p, cpu); |
1819 | #include "sched_rt.c" | 1812 | #ifdef CONFIG_SMP |
1820 | #ifdef CONFIG_SCHED_DEBUG | 1813 | /* |
1821 | # include "sched_debug.c" | 1814 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
1815 | * successfuly executed on another CPU. We must ensure that updates of | ||
1816 | * per-task data have been completed by this moment. | ||
1817 | */ | ||
1818 | smp_wmb(); | ||
1819 | task_thread_info(p)->cpu = cpu; | ||
1822 | #endif | 1820 | #endif |
1821 | } | ||
1822 | |||
1823 | static const struct sched_class rt_sched_class; | ||
1823 | 1824 | ||
1824 | #define sched_class_highest (&rt_sched_class) | 1825 | #define sched_class_highest (&rt_sched_class) |
1825 | #define for_each_class(class) \ | 1826 | #define for_each_class(class) \ |
1826 | for (class = sched_class_highest; class; class = class->next) | 1827 | for (class = sched_class_highest; class; class = class->next) |
1827 | 1828 | ||
1829 | #include "sched_stats.h" | ||
1830 | |||
1828 | static void inc_nr_running(struct rq *rq) | 1831 | static void inc_nr_running(struct rq *rq) |
1829 | { | 1832 | { |
1830 | rq->nr_running++; | 1833 | rq->nr_running++; |
@@ -1862,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample) | |||
1862 | *avg += diff >> 3; | 1865 | *avg += diff >> 3; |
1863 | } | 1866 | } |
1864 | 1867 | ||
1865 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1868 | static void |
1869 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
1866 | { | 1870 | { |
1867 | if (wakeup) | 1871 | if (wakeup) |
1868 | p->se.start_runtime = p->se.sum_exec_runtime; | 1872 | p->se.start_runtime = p->se.sum_exec_runtime; |
1869 | 1873 | ||
1870 | sched_info_queued(p); | 1874 | sched_info_queued(p); |
1871 | p->sched_class->enqueue_task(rq, p, wakeup); | 1875 | p->sched_class->enqueue_task(rq, p, wakeup, head); |
1872 | p->se.on_rq = 1; | 1876 | p->se.on_rq = 1; |
1873 | } | 1877 | } |
1874 | 1878 | ||
@@ -1891,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | |||
1891 | } | 1895 | } |
1892 | 1896 | ||
1893 | /* | 1897 | /* |
1898 | * activate_task - move a task to the runqueue. | ||
1899 | */ | ||
1900 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1901 | { | ||
1902 | if (task_contributes_to_load(p)) | ||
1903 | rq->nr_uninterruptible--; | ||
1904 | |||
1905 | enqueue_task(rq, p, wakeup, false); | ||
1906 | inc_nr_running(rq); | ||
1907 | } | ||
1908 | |||
1909 | /* | ||
1910 | * deactivate_task - remove a task from the runqueue. | ||
1911 | */ | ||
1912 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1913 | { | ||
1914 | if (task_contributes_to_load(p)) | ||
1915 | rq->nr_uninterruptible++; | ||
1916 | |||
1917 | dequeue_task(rq, p, sleep); | ||
1918 | dec_nr_running(rq); | ||
1919 | } | ||
1920 | |||
1921 | #include "sched_idletask.c" | ||
1922 | #include "sched_fair.c" | ||
1923 | #include "sched_rt.c" | ||
1924 | #ifdef CONFIG_SCHED_DEBUG | ||
1925 | # include "sched_debug.c" | ||
1926 | #endif | ||
1927 | |||
1928 | /* | ||
1894 | * __normal_prio - return the priority that is based on the static prio | 1929 | * __normal_prio - return the priority that is based on the static prio |
1895 | */ | 1930 | */ |
1896 | static inline int __normal_prio(struct task_struct *p) | 1931 | static inline int __normal_prio(struct task_struct *p) |
@@ -1936,30 +1971,6 @@ static int effective_prio(struct task_struct *p) | |||
1936 | return p->prio; | 1971 | return p->prio; |
1937 | } | 1972 | } |
1938 | 1973 | ||
1939 | /* | ||
1940 | * activate_task - move a task to the runqueue. | ||
1941 | */ | ||
1942 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1943 | { | ||
1944 | if (task_contributes_to_load(p)) | ||
1945 | rq->nr_uninterruptible--; | ||
1946 | |||
1947 | enqueue_task(rq, p, wakeup); | ||
1948 | inc_nr_running(rq); | ||
1949 | } | ||
1950 | |||
1951 | /* | ||
1952 | * deactivate_task - remove a task from the runqueue. | ||
1953 | */ | ||
1954 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1955 | { | ||
1956 | if (task_contributes_to_load(p)) | ||
1957 | rq->nr_uninterruptible++; | ||
1958 | |||
1959 | dequeue_task(rq, p, sleep); | ||
1960 | dec_nr_running(rq); | ||
1961 | } | ||
1962 | |||
1963 | /** | 1974 | /** |
1964 | * task_curr - is this task currently executing on a CPU? | 1975 | * task_curr - is this task currently executing on a CPU? |
1965 | * @p: the task in question. | 1976 | * @p: the task in question. |
@@ -1969,20 +1980,6 @@ inline int task_curr(const struct task_struct *p) | |||
1969 | return cpu_curr(task_cpu(p)) == p; | 1980 | return cpu_curr(task_cpu(p)) == p; |
1970 | } | 1981 | } |
1971 | 1982 | ||
1972 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
1973 | { | ||
1974 | set_task_rq(p, cpu); | ||
1975 | #ifdef CONFIG_SMP | ||
1976 | /* | ||
1977 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
1978 | * successfuly executed on another CPU. We must ensure that updates of | ||
1979 | * per-task data have been completed by this moment. | ||
1980 | */ | ||
1981 | smp_wmb(); | ||
1982 | task_thread_info(p)->cpu = cpu; | ||
1983 | #endif | ||
1984 | } | ||
1985 | |||
1986 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 1983 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1987 | const struct sched_class *prev_class, | 1984 | const struct sched_class *prev_class, |
1988 | int oldprio, int running) | 1985 | int oldprio, int running) |
@@ -2004,17 +2001,17 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
2004 | { | 2001 | { |
2005 | s64 delta; | 2002 | s64 delta; |
2006 | 2003 | ||
2004 | if (p->sched_class != &fair_sched_class) | ||
2005 | return 0; | ||
2006 | |||
2007 | /* | 2007 | /* |
2008 | * Buddy candidates are cache hot: | 2008 | * Buddy candidates are cache hot: |
2009 | */ | 2009 | */ |
2010 | if (sched_feat(CACHE_HOT_BUDDY) && | 2010 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && |
2011 | (&p->se == cfs_rq_of(&p->se)->next || | 2011 | (&p->se == cfs_rq_of(&p->se)->next || |
2012 | &p->se == cfs_rq_of(&p->se)->last)) | 2012 | &p->se == cfs_rq_of(&p->se)->last)) |
2013 | return 1; | 2013 | return 1; |
2014 | 2014 | ||
2015 | if (p->sched_class != &fair_sched_class) | ||
2016 | return 0; | ||
2017 | |||
2018 | if (sysctl_sched_migration_cost == -1) | 2015 | if (sysctl_sched_migration_cost == -1) |
2019 | return 1; | 2016 | return 1; |
2020 | if (sysctl_sched_migration_cost == 0) | 2017 | if (sysctl_sched_migration_cost == 0) |
@@ -2025,39 +2022,23 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
2025 | return delta < (s64)sysctl_sched_migration_cost; | 2022 | return delta < (s64)sysctl_sched_migration_cost; |
2026 | } | 2023 | } |
2027 | 2024 | ||
2028 | |||
2029 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 2025 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
2030 | { | 2026 | { |
2031 | int old_cpu = task_cpu(p); | 2027 | #ifdef CONFIG_SCHED_DEBUG |
2032 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | 2028 | /* |
2033 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), | 2029 | * We should never call set_task_cpu() on a blocked task, |
2034 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | 2030 | * ttwu() will sort out the placement. |
2035 | u64 clock_offset; | 2031 | */ |
2036 | 2032 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | |
2037 | clock_offset = old_rq->clock - new_rq->clock; | 2033 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); |
2034 | #endif | ||
2038 | 2035 | ||
2039 | trace_sched_migrate_task(p, new_cpu); | 2036 | trace_sched_migrate_task(p, new_cpu); |
2040 | 2037 | ||
2041 | #ifdef CONFIG_SCHEDSTATS | 2038 | if (task_cpu(p) != new_cpu) { |
2042 | if (p->se.wait_start) | ||
2043 | p->se.wait_start -= clock_offset; | ||
2044 | if (p->se.sleep_start) | ||
2045 | p->se.sleep_start -= clock_offset; | ||
2046 | if (p->se.block_start) | ||
2047 | p->se.block_start -= clock_offset; | ||
2048 | #endif | ||
2049 | if (old_cpu != new_cpu) { | ||
2050 | p->se.nr_migrations++; | 2039 | p->se.nr_migrations++; |
2051 | new_rq->nr_migrations_in++; | 2040 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); |
2052 | #ifdef CONFIG_SCHEDSTATS | ||
2053 | if (task_hot(p, old_rq->clock, NULL)) | ||
2054 | schedstat_inc(p, se.nr_forced2_migrations); | ||
2055 | #endif | ||
2056 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, | ||
2057 | 1, 1, NULL, 0); | ||
2058 | } | 2041 | } |
2059 | p->se.vruntime -= old_cfsrq->min_vruntime - | ||
2060 | new_cfsrq->min_vruntime; | ||
2061 | 2042 | ||
2062 | __set_task_cpu(p, new_cpu); | 2043 | __set_task_cpu(p, new_cpu); |
2063 | } | 2044 | } |
@@ -2082,12 +2063,10 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |||
2082 | 2063 | ||
2083 | /* | 2064 | /* |
2084 | * If the task is not on a runqueue (and not running), then | 2065 | * If the task is not on a runqueue (and not running), then |
2085 | * it is sufficient to simply update the task's cpu field. | 2066 | * the next wake-up will properly place the task. |
2086 | */ | 2067 | */ |
2087 | if (!p->se.on_rq && !task_running(rq, p)) { | 2068 | if (!p->se.on_rq && !task_running(rq, p)) |
2088 | set_task_cpu(p, dest_cpu); | ||
2089 | return 0; | 2069 | return 0; |
2090 | } | ||
2091 | 2070 | ||
2092 | init_completion(&req->done); | 2071 | init_completion(&req->done); |
2093 | req->task = p; | 2072 | req->task = p; |
@@ -2292,6 +2271,75 @@ void task_oncpu_function_call(struct task_struct *p, | |||
2292 | preempt_enable(); | 2271 | preempt_enable(); |
2293 | } | 2272 | } |
2294 | 2273 | ||
2274 | #ifdef CONFIG_SMP | ||
2275 | static int select_fallback_rq(int cpu, struct task_struct *p) | ||
2276 | { | ||
2277 | int dest_cpu; | ||
2278 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | ||
2279 | |||
2280 | /* Look for allowed, online CPU in same node. */ | ||
2281 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | ||
2282 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | ||
2283 | return dest_cpu; | ||
2284 | |||
2285 | /* Any allowed, online CPU? */ | ||
2286 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | ||
2287 | if (dest_cpu < nr_cpu_ids) | ||
2288 | return dest_cpu; | ||
2289 | |||
2290 | /* No more Mr. Nice Guy. */ | ||
2291 | if (dest_cpu >= nr_cpu_ids) { | ||
2292 | rcu_read_lock(); | ||
2293 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
2294 | rcu_read_unlock(); | ||
2295 | dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); | ||
2296 | |||
2297 | /* | ||
2298 | * Don't tell them about moving exiting tasks or | ||
2299 | * kernel threads (both mm NULL), since they never | ||
2300 | * leave kernel. | ||
2301 | */ | ||
2302 | if (p->mm && printk_ratelimit()) { | ||
2303 | printk(KERN_INFO "process %d (%s) no " | ||
2304 | "longer affine to cpu%d\n", | ||
2305 | task_pid_nr(p), p->comm, cpu); | ||
2306 | } | ||
2307 | } | ||
2308 | |||
2309 | return dest_cpu; | ||
2310 | } | ||
2311 | |||
2312 | /* | ||
2313 | * Gets called from 3 sites (exec, fork, wakeup), since it is called without | ||
2314 | * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done | ||
2315 | * by: | ||
2316 | * | ||
2317 | * exec: is unstable, retry loop | ||
2318 | * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING | ||
2319 | */ | ||
2320 | static inline | ||
2321 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | ||
2322 | { | ||
2323 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); | ||
2324 | |||
2325 | /* | ||
2326 | * In order not to call set_task_cpu() on a blocking task we need | ||
2327 | * to rely on ttwu() to place the task on a valid ->cpus_allowed | ||
2328 | * cpu. | ||
2329 | * | ||
2330 | * Since this is common to all placement strategies, this lives here. | ||
2331 | * | ||
2332 | * [ this allows ->select_task() to simply return task_cpu(p) and | ||
2333 | * not worry about this generic constraint ] | ||
2334 | */ | ||
2335 | if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || | ||
2336 | !cpu_online(cpu))) | ||
2337 | cpu = select_fallback_rq(task_cpu(p), p); | ||
2338 | |||
2339 | return cpu; | ||
2340 | } | ||
2341 | #endif | ||
2342 | |||
2295 | /*** | 2343 | /*** |
2296 | * try_to_wake_up - wake up a thread | 2344 | * try_to_wake_up - wake up a thread |
2297 | * @p: the to-be-woken-up thread | 2345 | * @p: the to-be-woken-up thread |
@@ -2343,15 +2391,34 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2343 | if (task_contributes_to_load(p)) | 2391 | if (task_contributes_to_load(p)) |
2344 | rq->nr_uninterruptible--; | 2392 | rq->nr_uninterruptible--; |
2345 | p->state = TASK_WAKING; | 2393 | p->state = TASK_WAKING; |
2346 | task_rq_unlock(rq, &flags); | ||
2347 | 2394 | ||
2348 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | 2395 | if (p->sched_class->task_waking) |
2349 | if (cpu != orig_cpu) | 2396 | p->sched_class->task_waking(rq, p); |
2397 | |||
2398 | __task_rq_unlock(rq); | ||
2399 | |||
2400 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
2401 | if (cpu != orig_cpu) { | ||
2402 | /* | ||
2403 | * Since we migrate the task without holding any rq->lock, | ||
2404 | * we need to be careful with task_rq_lock(), since that | ||
2405 | * might end up locking an invalid rq. | ||
2406 | */ | ||
2350 | set_task_cpu(p, cpu); | 2407 | set_task_cpu(p, cpu); |
2408 | } | ||
2351 | 2409 | ||
2352 | rq = task_rq_lock(p, &flags); | 2410 | rq = cpu_rq(cpu); |
2411 | raw_spin_lock(&rq->lock); | ||
2412 | update_rq_clock(rq); | ||
2413 | |||
2414 | /* | ||
2415 | * We migrated the task without holding either rq->lock, however | ||
2416 | * since the task is not on the task list itself, nobody else | ||
2417 | * will try and migrate the task, hence the rq should match the | ||
2418 | * cpu we just moved it to. | ||
2419 | */ | ||
2420 | WARN_ON(task_cpu(p) != cpu); | ||
2353 | WARN_ON(p->state != TASK_WAKING); | 2421 | WARN_ON(p->state != TASK_WAKING); |
2354 | cpu = task_cpu(p); | ||
2355 | 2422 | ||
2356 | #ifdef CONFIG_SCHEDSTATS | 2423 | #ifdef CONFIG_SCHEDSTATS |
2357 | schedstat_inc(rq, ttwu_count); | 2424 | schedstat_inc(rq, ttwu_count); |
@@ -2404,8 +2471,19 @@ out_running: | |||
2404 | 2471 | ||
2405 | p->state = TASK_RUNNING; | 2472 | p->state = TASK_RUNNING; |
2406 | #ifdef CONFIG_SMP | 2473 | #ifdef CONFIG_SMP |
2407 | if (p->sched_class->task_wake_up) | 2474 | if (p->sched_class->task_woken) |
2408 | p->sched_class->task_wake_up(rq, p); | 2475 | p->sched_class->task_woken(rq, p); |
2476 | |||
2477 | if (unlikely(rq->idle_stamp)) { | ||
2478 | u64 delta = rq->clock - rq->idle_stamp; | ||
2479 | u64 max = 2*sysctl_sched_migration_cost; | ||
2480 | |||
2481 | if (delta > max) | ||
2482 | rq->avg_idle = max; | ||
2483 | else | ||
2484 | update_avg(&rq->avg_idle, delta); | ||
2485 | rq->idle_stamp = 0; | ||
2486 | } | ||
2409 | #endif | 2487 | #endif |
2410 | out: | 2488 | out: |
2411 | task_rq_unlock(rq, &flags); | 2489 | task_rq_unlock(rq, &flags); |
@@ -2452,7 +2530,6 @@ static void __sched_fork(struct task_struct *p) | |||
2452 | p->se.avg_overlap = 0; | 2530 | p->se.avg_overlap = 0; |
2453 | p->se.start_runtime = 0; | 2531 | p->se.start_runtime = 0; |
2454 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2532 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
2455 | p->se.avg_running = 0; | ||
2456 | 2533 | ||
2457 | #ifdef CONFIG_SCHEDSTATS | 2534 | #ifdef CONFIG_SCHEDSTATS |
2458 | p->se.wait_start = 0; | 2535 | p->se.wait_start = 0; |
@@ -2474,7 +2551,6 @@ static void __sched_fork(struct task_struct *p) | |||
2474 | p->se.nr_failed_migrations_running = 0; | 2551 | p->se.nr_failed_migrations_running = 0; |
2475 | p->se.nr_failed_migrations_hot = 0; | 2552 | p->se.nr_failed_migrations_hot = 0; |
2476 | p->se.nr_forced_migrations = 0; | 2553 | p->se.nr_forced_migrations = 0; |
2477 | p->se.nr_forced2_migrations = 0; | ||
2478 | 2554 | ||
2479 | p->se.nr_wakeups = 0; | 2555 | p->se.nr_wakeups = 0; |
2480 | p->se.nr_wakeups_sync = 0; | 2556 | p->se.nr_wakeups_sync = 0; |
@@ -2495,14 +2571,6 @@ static void __sched_fork(struct task_struct *p) | |||
2495 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2496 | INIT_HLIST_HEAD(&p->preempt_notifiers); | 2572 | INIT_HLIST_HEAD(&p->preempt_notifiers); |
2497 | #endif | 2573 | #endif |
2498 | |||
2499 | /* | ||
2500 | * We mark the process as running here, but have not actually | ||
2501 | * inserted it onto the runqueue yet. This guarantees that | ||
2502 | * nobody will actually run it, and a signal or other external | ||
2503 | * event cannot wake it up and insert it on the runqueue either. | ||
2504 | */ | ||
2505 | p->state = TASK_RUNNING; | ||
2506 | } | 2574 | } |
2507 | 2575 | ||
2508 | /* | 2576 | /* |
@@ -2513,24 +2581,25 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2513 | int cpu = get_cpu(); | 2581 | int cpu = get_cpu(); |
2514 | 2582 | ||
2515 | __sched_fork(p); | 2583 | __sched_fork(p); |
2516 | |||
2517 | /* | 2584 | /* |
2518 | * Make sure we do not leak PI boosting priority to the child. | 2585 | * We mark the process as waking here. This guarantees that |
2586 | * nobody will actually run it, and a signal or other external | ||
2587 | * event cannot wake it up and insert it on the runqueue either. | ||
2519 | */ | 2588 | */ |
2520 | p->prio = current->normal_prio; | 2589 | p->state = TASK_WAKING; |
2521 | 2590 | ||
2522 | /* | 2591 | /* |
2523 | * Revert to default priority/policy on fork if requested. | 2592 | * Revert to default priority/policy on fork if requested. |
2524 | */ | 2593 | */ |
2525 | if (unlikely(p->sched_reset_on_fork)) { | 2594 | if (unlikely(p->sched_reset_on_fork)) { |
2526 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) | 2595 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { |
2527 | p->policy = SCHED_NORMAL; | 2596 | p->policy = SCHED_NORMAL; |
2528 | 2597 | p->normal_prio = p->static_prio; | |
2529 | if (p->normal_prio < DEFAULT_PRIO) | 2598 | } |
2530 | p->prio = DEFAULT_PRIO; | ||
2531 | 2599 | ||
2532 | if (PRIO_TO_NICE(p->static_prio) < 0) { | 2600 | if (PRIO_TO_NICE(p->static_prio) < 0) { |
2533 | p->static_prio = NICE_TO_PRIO(0); | 2601 | p->static_prio = NICE_TO_PRIO(0); |
2602 | p->normal_prio = p->static_prio; | ||
2534 | set_load_weight(p); | 2603 | set_load_weight(p); |
2535 | } | 2604 | } |
2536 | 2605 | ||
@@ -2541,12 +2610,17 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2541 | p->sched_reset_on_fork = 0; | 2610 | p->sched_reset_on_fork = 0; |
2542 | } | 2611 | } |
2543 | 2612 | ||
2613 | /* | ||
2614 | * Make sure we do not leak PI boosting priority to the child. | ||
2615 | */ | ||
2616 | p->prio = current->normal_prio; | ||
2617 | |||
2544 | if (!rt_prio(p->prio)) | 2618 | if (!rt_prio(p->prio)) |
2545 | p->sched_class = &fair_sched_class; | 2619 | p->sched_class = &fair_sched_class; |
2546 | 2620 | ||
2547 | #ifdef CONFIG_SMP | 2621 | if (p->sched_class->task_fork) |
2548 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | 2622 | p->sched_class->task_fork(p); |
2549 | #endif | 2623 | |
2550 | set_task_cpu(p, cpu); | 2624 | set_task_cpu(p, cpu); |
2551 | 2625 | ||
2552 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2626 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
@@ -2576,30 +2650,41 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2576 | { | 2650 | { |
2577 | unsigned long flags; | 2651 | unsigned long flags; |
2578 | struct rq *rq; | 2652 | struct rq *rq; |
2653 | int cpu = get_cpu(); | ||
2579 | 2654 | ||
2580 | rq = task_rq_lock(p, &flags); | 2655 | #ifdef CONFIG_SMP |
2581 | BUG_ON(p->state != TASK_RUNNING); | 2656 | /* |
2582 | update_rq_clock(rq); | 2657 | * Fork balancing, do it here and not earlier because: |
2658 | * - cpus_allowed can change in the fork path | ||
2659 | * - any previously selected cpu might disappear through hotplug | ||
2660 | * | ||
2661 | * We still have TASK_WAKING but PF_STARTING is gone now, meaning | ||
2662 | * ->cpus_allowed is stable, we have preemption disabled, meaning | ||
2663 | * cpu_online_mask is stable. | ||
2664 | */ | ||
2665 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | ||
2666 | set_task_cpu(p, cpu); | ||
2667 | #endif | ||
2583 | 2668 | ||
2584 | p->prio = effective_prio(p); | 2669 | /* |
2670 | * Since the task is not on the rq and we still have TASK_WAKING set | ||
2671 | * nobody else will migrate this task. | ||
2672 | */ | ||
2673 | rq = cpu_rq(cpu); | ||
2674 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
2585 | 2675 | ||
2586 | if (!p->sched_class->task_new || !current->se.on_rq) { | 2676 | BUG_ON(p->state != TASK_WAKING); |
2587 | activate_task(rq, p, 0); | 2677 | p->state = TASK_RUNNING; |
2588 | } else { | 2678 | update_rq_clock(rq); |
2589 | /* | 2679 | activate_task(rq, p, 0); |
2590 | * Let the scheduling class do new task startup | ||
2591 | * management (if any): | ||
2592 | */ | ||
2593 | p->sched_class->task_new(rq, p); | ||
2594 | inc_nr_running(rq); | ||
2595 | } | ||
2596 | trace_sched_wakeup_new(rq, p, 1); | 2680 | trace_sched_wakeup_new(rq, p, 1); |
2597 | check_preempt_curr(rq, p, WF_FORK); | 2681 | check_preempt_curr(rq, p, WF_FORK); |
2598 | #ifdef CONFIG_SMP | 2682 | #ifdef CONFIG_SMP |
2599 | if (p->sched_class->task_wake_up) | 2683 | if (p->sched_class->task_woken) |
2600 | p->sched_class->task_wake_up(rq, p); | 2684 | p->sched_class->task_woken(rq, p); |
2601 | #endif | 2685 | #endif |
2602 | task_rq_unlock(rq, &flags); | 2686 | task_rq_unlock(rq, &flags); |
2687 | put_cpu(); | ||
2603 | } | 2688 | } |
2604 | 2689 | ||
2605 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2690 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
@@ -2718,7 +2803,13 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2718 | */ | 2803 | */ |
2719 | prev_state = prev->state; | 2804 | prev_state = prev->state; |
2720 | finish_arch_switch(prev); | 2805 | finish_arch_switch(prev); |
2721 | perf_event_task_sched_in(current, cpu_of(rq)); | 2806 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2807 | local_irq_disable(); | ||
2808 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
2809 | perf_event_task_sched_in(current); | ||
2810 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
2811 | local_irq_enable(); | ||
2812 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
2722 | finish_lock_switch(rq, prev); | 2813 | finish_lock_switch(rq, prev); |
2723 | 2814 | ||
2724 | fire_sched_in_preempt_notifiers(current); | 2815 | fire_sched_in_preempt_notifiers(current); |
@@ -2749,10 +2840,10 @@ static inline void post_schedule(struct rq *rq) | |||
2749 | if (rq->post_schedule) { | 2840 | if (rq->post_schedule) { |
2750 | unsigned long flags; | 2841 | unsigned long flags; |
2751 | 2842 | ||
2752 | spin_lock_irqsave(&rq->lock, flags); | 2843 | raw_spin_lock_irqsave(&rq->lock, flags); |
2753 | if (rq->curr->sched_class->post_schedule) | 2844 | if (rq->curr->sched_class->post_schedule) |
2754 | rq->curr->sched_class->post_schedule(rq); | 2845 | rq->curr->sched_class->post_schedule(rq); |
2755 | spin_unlock_irqrestore(&rq->lock, flags); | 2846 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
2756 | 2847 | ||
2757 | rq->post_schedule = 0; | 2848 | rq->post_schedule = 0; |
2758 | } | 2849 | } |
@@ -2816,14 +2907,14 @@ context_switch(struct rq *rq, struct task_struct *prev, | |||
2816 | */ | 2907 | */ |
2817 | arch_start_context_switch(prev); | 2908 | arch_start_context_switch(prev); |
2818 | 2909 | ||
2819 | if (unlikely(!mm)) { | 2910 | if (likely(!mm)) { |
2820 | next->active_mm = oldmm; | 2911 | next->active_mm = oldmm; |
2821 | atomic_inc(&oldmm->mm_count); | 2912 | atomic_inc(&oldmm->mm_count); |
2822 | enter_lazy_tlb(oldmm, next); | 2913 | enter_lazy_tlb(oldmm, next); |
2823 | } else | 2914 | } else |
2824 | switch_mm(oldmm, mm, next); | 2915 | switch_mm(oldmm, mm, next); |
2825 | 2916 | ||
2826 | if (unlikely(!prev->mm)) { | 2917 | if (likely(!prev->mm)) { |
2827 | prev->active_mm = NULL; | 2918 | prev->active_mm = NULL; |
2828 | rq->prev_mm = oldmm; | 2919 | rq->prev_mm = oldmm; |
2829 | } | 2920 | } |
@@ -2986,15 +3077,6 @@ static void calc_load_account_active(struct rq *this_rq) | |||
2986 | } | 3077 | } |
2987 | 3078 | ||
2988 | /* | 3079 | /* |
2989 | * Externally visible per-cpu scheduler statistics: | ||
2990 | * cpu_nr_migrations(cpu) - number of migrations into that cpu | ||
2991 | */ | ||
2992 | u64 cpu_nr_migrations(int cpu) | ||
2993 | { | ||
2994 | return cpu_rq(cpu)->nr_migrations_in; | ||
2995 | } | ||
2996 | |||
2997 | /* | ||
2998 | * Update rq->cpu_load[] statistics. This function is usually called every | 3080 | * Update rq->cpu_load[] statistics. This function is usually called every |
2999 | * scheduler tick (TICK_NSEC). | 3081 | * scheduler tick (TICK_NSEC). |
3000 | */ | 3082 | */ |
@@ -3032,65 +3114,36 @@ static void update_cpu_load(struct rq *this_rq) | |||
3032 | #ifdef CONFIG_SMP | 3114 | #ifdef CONFIG_SMP |
3033 | 3115 | ||
3034 | /* | 3116 | /* |
3035 | * double_rq_lock - safely lock two runqueues | 3117 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3036 | * | 3118 | * this point the task has the smallest effective memory and cache footprint. |
3037 | * Note this does not disable interrupts like task_rq_lock, | ||
3038 | * you need to do so manually before calling. | ||
3039 | */ | ||
3040 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
3041 | __acquires(rq1->lock) | ||
3042 | __acquires(rq2->lock) | ||
3043 | { | ||
3044 | BUG_ON(!irqs_disabled()); | ||
3045 | if (rq1 == rq2) { | ||
3046 | spin_lock(&rq1->lock); | ||
3047 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
3048 | } else { | ||
3049 | if (rq1 < rq2) { | ||
3050 | spin_lock(&rq1->lock); | ||
3051 | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
3052 | } else { | ||
3053 | spin_lock(&rq2->lock); | ||
3054 | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
3055 | } | ||
3056 | } | ||
3057 | update_rq_clock(rq1); | ||
3058 | update_rq_clock(rq2); | ||
3059 | } | ||
3060 | |||
3061 | /* | ||
3062 | * double_rq_unlock - safely unlock two runqueues | ||
3063 | * | ||
3064 | * Note this does not restore interrupts like task_rq_unlock, | ||
3065 | * you need to do so manually after calling. | ||
3066 | */ | ||
3067 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
3068 | __releases(rq1->lock) | ||
3069 | __releases(rq2->lock) | ||
3070 | { | ||
3071 | spin_unlock(&rq1->lock); | ||
3072 | if (rq1 != rq2) | ||
3073 | spin_unlock(&rq2->lock); | ||
3074 | else | ||
3075 | __release(rq2->lock); | ||
3076 | } | ||
3077 | |||
3078 | /* | ||
3079 | * If dest_cpu is allowed for this process, migrate the task to it. | ||
3080 | * This is accomplished by forcing the cpu_allowed mask to only | ||
3081 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | ||
3082 | * the cpu_allowed mask is restored. | ||
3083 | */ | 3119 | */ |
3084 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) | 3120 | void sched_exec(void) |
3085 | { | 3121 | { |
3122 | struct task_struct *p = current; | ||
3086 | struct migration_req req; | 3123 | struct migration_req req; |
3124 | int dest_cpu, this_cpu; | ||
3087 | unsigned long flags; | 3125 | unsigned long flags; |
3088 | struct rq *rq; | 3126 | struct rq *rq; |
3089 | 3127 | ||
3128 | again: | ||
3129 | this_cpu = get_cpu(); | ||
3130 | dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); | ||
3131 | if (dest_cpu == this_cpu) { | ||
3132 | put_cpu(); | ||
3133 | return; | ||
3134 | } | ||
3135 | |||
3090 | rq = task_rq_lock(p, &flags); | 3136 | rq = task_rq_lock(p, &flags); |
3137 | put_cpu(); | ||
3138 | |||
3139 | /* | ||
3140 | * select_task_rq() can race against ->cpus_allowed | ||
3141 | */ | ||
3091 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) | 3142 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) |
3092 | || unlikely(!cpu_active(dest_cpu))) | 3143 | || unlikely(!cpu_active(dest_cpu))) { |
3093 | goto out; | 3144 | task_rq_unlock(rq, &flags); |
3145 | goto again; | ||
3146 | } | ||
3094 | 3147 | ||
3095 | /* force the process onto the specified CPU */ | 3148 | /* force the process onto the specified CPU */ |
3096 | if (migrate_task(p, dest_cpu, &req)) { | 3149 | if (migrate_task(p, dest_cpu, &req)) { |
@@ -3105,1783 +3158,9 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu) | |||
3105 | 3158 | ||
3106 | return; | 3159 | return; |
3107 | } | 3160 | } |
3108 | out: | ||
3109 | task_rq_unlock(rq, &flags); | 3161 | task_rq_unlock(rq, &flags); |
3110 | } | 3162 | } |
3111 | 3163 | ||
3112 | /* | ||
3113 | * sched_exec - execve() is a valuable balancing opportunity, because at | ||
3114 | * this point the task has the smallest effective memory and cache footprint. | ||
3115 | */ | ||
3116 | void sched_exec(void) | ||
3117 | { | ||
3118 | int new_cpu, this_cpu = get_cpu(); | ||
3119 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); | ||
3120 | put_cpu(); | ||
3121 | if (new_cpu != this_cpu) | ||
3122 | sched_migrate_task(current, new_cpu); | ||
3123 | } | ||
3124 | |||
3125 | /* | ||
3126 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
3127 | * Both runqueues must be locked. | ||
3128 | */ | ||
3129 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
3130 | struct rq *this_rq, int this_cpu) | ||
3131 | { | ||
3132 | deactivate_task(src_rq, p, 0); | ||
3133 | set_task_cpu(p, this_cpu); | ||
3134 | activate_task(this_rq, p, 0); | ||
3135 | /* | ||
3136 | * Note that idle threads have a prio of MAX_PRIO, for this test | ||
3137 | * to be always true for them. | ||
3138 | */ | ||
3139 | check_preempt_curr(this_rq, p, 0); | ||
3140 | } | ||
3141 | |||
3142 | /* | ||
3143 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
3144 | */ | ||
3145 | static | ||
3146 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
3147 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3148 | int *all_pinned) | ||
3149 | { | ||
3150 | int tsk_cache_hot = 0; | ||
3151 | /* | ||
3152 | * We do not migrate tasks that are: | ||
3153 | * 1) running (obviously), or | ||
3154 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
3155 | * 3) are cache-hot on their current CPU. | ||
3156 | */ | ||
3157 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
3158 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
3159 | return 0; | ||
3160 | } | ||
3161 | *all_pinned = 0; | ||
3162 | |||
3163 | if (task_running(rq, p)) { | ||
3164 | schedstat_inc(p, se.nr_failed_migrations_running); | ||
3165 | return 0; | ||
3166 | } | ||
3167 | |||
3168 | /* | ||
3169 | * Aggressive migration if: | ||
3170 | * 1) task is cache cold, or | ||
3171 | * 2) too many balance attempts have failed. | ||
3172 | */ | ||
3173 | |||
3174 | tsk_cache_hot = task_hot(p, rq->clock, sd); | ||
3175 | if (!tsk_cache_hot || | ||
3176 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
3177 | #ifdef CONFIG_SCHEDSTATS | ||
3178 | if (tsk_cache_hot) { | ||
3179 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
3180 | schedstat_inc(p, se.nr_forced_migrations); | ||
3181 | } | ||
3182 | #endif | ||
3183 | return 1; | ||
3184 | } | ||
3185 | |||
3186 | if (tsk_cache_hot) { | ||
3187 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
3188 | return 0; | ||
3189 | } | ||
3190 | return 1; | ||
3191 | } | ||
3192 | |||
3193 | static unsigned long | ||
3194 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3195 | unsigned long max_load_move, struct sched_domain *sd, | ||
3196 | enum cpu_idle_type idle, int *all_pinned, | ||
3197 | int *this_best_prio, struct rq_iterator *iterator) | ||
3198 | { | ||
3199 | int loops = 0, pulled = 0, pinned = 0; | ||
3200 | struct task_struct *p; | ||
3201 | long rem_load_move = max_load_move; | ||
3202 | |||
3203 | if (max_load_move == 0) | ||
3204 | goto out; | ||
3205 | |||
3206 | pinned = 1; | ||
3207 | |||
3208 | /* | ||
3209 | * Start the load-balancing iterator: | ||
3210 | */ | ||
3211 | p = iterator->start(iterator->arg); | ||
3212 | next: | ||
3213 | if (!p || loops++ > sysctl_sched_nr_migrate) | ||
3214 | goto out; | ||
3215 | |||
3216 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
3217 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3218 | p = iterator->next(iterator->arg); | ||
3219 | goto next; | ||
3220 | } | ||
3221 | |||
3222 | pull_task(busiest, p, this_rq, this_cpu); | ||
3223 | pulled++; | ||
3224 | rem_load_move -= p->se.load.weight; | ||
3225 | |||
3226 | #ifdef CONFIG_PREEMPT | ||
3227 | /* | ||
3228 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3229 | * will stop after the first task is pulled to minimize the critical | ||
3230 | * section. | ||
3231 | */ | ||
3232 | if (idle == CPU_NEWLY_IDLE) | ||
3233 | goto out; | ||
3234 | #endif | ||
3235 | |||
3236 | /* | ||
3237 | * We only want to steal up to the prescribed amount of weighted load. | ||
3238 | */ | ||
3239 | if (rem_load_move > 0) { | ||
3240 | if (p->prio < *this_best_prio) | ||
3241 | *this_best_prio = p->prio; | ||
3242 | p = iterator->next(iterator->arg); | ||
3243 | goto next; | ||
3244 | } | ||
3245 | out: | ||
3246 | /* | ||
3247 | * Right now, this is one of only two places pull_task() is called, | ||
3248 | * so we can safely collect pull_task() stats here rather than | ||
3249 | * inside pull_task(). | ||
3250 | */ | ||
3251 | schedstat_add(sd, lb_gained[idle], pulled); | ||
3252 | |||
3253 | if (all_pinned) | ||
3254 | *all_pinned = pinned; | ||
3255 | |||
3256 | return max_load_move - rem_load_move; | ||
3257 | } | ||
3258 | |||
3259 | /* | ||
3260 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
3261 | * this_rq, as part of a balancing operation within domain "sd". | ||
3262 | * Returns 1 if successful and 0 otherwise. | ||
3263 | * | ||
3264 | * Called with both runqueues locked. | ||
3265 | */ | ||
3266 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3267 | unsigned long max_load_move, | ||
3268 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3269 | int *all_pinned) | ||
3270 | { | ||
3271 | const struct sched_class *class = sched_class_highest; | ||
3272 | unsigned long total_load_moved = 0; | ||
3273 | int this_best_prio = this_rq->curr->prio; | ||
3274 | |||
3275 | do { | ||
3276 | total_load_moved += | ||
3277 | class->load_balance(this_rq, this_cpu, busiest, | ||
3278 | max_load_move - total_load_moved, | ||
3279 | sd, idle, all_pinned, &this_best_prio); | ||
3280 | class = class->next; | ||
3281 | |||
3282 | #ifdef CONFIG_PREEMPT | ||
3283 | /* | ||
3284 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3285 | * kernels will stop after the first task is pulled to minimize | ||
3286 | * the critical section. | ||
3287 | */ | ||
3288 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
3289 | break; | ||
3290 | #endif | ||
3291 | } while (class && max_load_move > total_load_moved); | ||
3292 | |||
3293 | return total_load_moved > 0; | ||
3294 | } | ||
3295 | |||
3296 | static int | ||
3297 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3298 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3299 | struct rq_iterator *iterator) | ||
3300 | { | ||
3301 | struct task_struct *p = iterator->start(iterator->arg); | ||
3302 | int pinned = 0; | ||
3303 | |||
3304 | while (p) { | ||
3305 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3306 | pull_task(busiest, p, this_rq, this_cpu); | ||
3307 | /* | ||
3308 | * Right now, this is only the second place pull_task() | ||
3309 | * is called, so we can safely collect pull_task() | ||
3310 | * stats here rather than inside pull_task(). | ||
3311 | */ | ||
3312 | schedstat_inc(sd, lb_gained[idle]); | ||
3313 | |||
3314 | return 1; | ||
3315 | } | ||
3316 | p = iterator->next(iterator->arg); | ||
3317 | } | ||
3318 | |||
3319 | return 0; | ||
3320 | } | ||
3321 | |||
3322 | /* | ||
3323 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
3324 | * part of active balancing operations within "domain". | ||
3325 | * Returns 1 if successful and 0 otherwise. | ||
3326 | * | ||
3327 | * Called with both runqueues locked. | ||
3328 | */ | ||
3329 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3330 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
3331 | { | ||
3332 | const struct sched_class *class; | ||
3333 | |||
3334 | for_each_class(class) { | ||
3335 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | ||
3336 | return 1; | ||
3337 | } | ||
3338 | |||
3339 | return 0; | ||
3340 | } | ||
3341 | /********** Helpers for find_busiest_group ************************/ | ||
3342 | /* | ||
3343 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
3344 | * during load balancing. | ||
3345 | */ | ||
3346 | struct sd_lb_stats { | ||
3347 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
3348 | struct sched_group *this; /* Local group in this sd */ | ||
3349 | unsigned long total_load; /* Total load of all groups in sd */ | ||
3350 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
3351 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
3352 | |||
3353 | /** Statistics of this group */ | ||
3354 | unsigned long this_load; | ||
3355 | unsigned long this_load_per_task; | ||
3356 | unsigned long this_nr_running; | ||
3357 | |||
3358 | /* Statistics of the busiest group */ | ||
3359 | unsigned long max_load; | ||
3360 | unsigned long busiest_load_per_task; | ||
3361 | unsigned long busiest_nr_running; | ||
3362 | |||
3363 | int group_imb; /* Is there imbalance in this sd */ | ||
3364 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3365 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
3366 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
3367 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
3368 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
3369 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3370 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3371 | #endif | ||
3372 | }; | ||
3373 | |||
3374 | /* | ||
3375 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3376 | */ | ||
3377 | struct sg_lb_stats { | ||
3378 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3379 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3380 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3381 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3382 | unsigned long group_capacity; | ||
3383 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3384 | }; | ||
3385 | |||
3386 | /** | ||
3387 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
3388 | * @group: The group whose first cpu is to be returned. | ||
3389 | */ | ||
3390 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3391 | { | ||
3392 | return cpumask_first(sched_group_cpus(group)); | ||
3393 | } | ||
3394 | |||
3395 | /** | ||
3396 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3397 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3398 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3399 | */ | ||
3400 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3401 | enum cpu_idle_type idle) | ||
3402 | { | ||
3403 | int load_idx; | ||
3404 | |||
3405 | switch (idle) { | ||
3406 | case CPU_NOT_IDLE: | ||
3407 | load_idx = sd->busy_idx; | ||
3408 | break; | ||
3409 | |||
3410 | case CPU_NEWLY_IDLE: | ||
3411 | load_idx = sd->newidle_idx; | ||
3412 | break; | ||
3413 | default: | ||
3414 | load_idx = sd->idle_idx; | ||
3415 | break; | ||
3416 | } | ||
3417 | |||
3418 | return load_idx; | ||
3419 | } | ||
3420 | |||
3421 | |||
3422 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3423 | /** | ||
3424 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3425 | * the given sched_domain, during load balancing. | ||
3426 | * | ||
3427 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3428 | * @sds: Variable containing the statistics for sd. | ||
3429 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3430 | */ | ||
3431 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3432 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3433 | { | ||
3434 | /* | ||
3435 | * Busy processors will not participate in power savings | ||
3436 | * balance. | ||
3437 | */ | ||
3438 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3439 | sds->power_savings_balance = 0; | ||
3440 | else { | ||
3441 | sds->power_savings_balance = 1; | ||
3442 | sds->min_nr_running = ULONG_MAX; | ||
3443 | sds->leader_nr_running = 0; | ||
3444 | } | ||
3445 | } | ||
3446 | |||
3447 | /** | ||
3448 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
3449 | * sched_domain while performing load balancing. | ||
3450 | * | ||
3451 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3452 | * @sds: Variable containing the statistics of the sched_domain | ||
3453 | * @local_group: Does group contain the CPU for which we're performing | ||
3454 | * load balancing ? | ||
3455 | * @sgs: Variable containing the statistics of the group. | ||
3456 | */ | ||
3457 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3458 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3459 | { | ||
3460 | |||
3461 | if (!sds->power_savings_balance) | ||
3462 | return; | ||
3463 | |||
3464 | /* | ||
3465 | * If the local group is idle or completely loaded | ||
3466 | * no need to do power savings balance at this domain | ||
3467 | */ | ||
3468 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3469 | !sds->this_nr_running)) | ||
3470 | sds->power_savings_balance = 0; | ||
3471 | |||
3472 | /* | ||
3473 | * If a group is already running at full capacity or idle, | ||
3474 | * don't include that group in power savings calculations | ||
3475 | */ | ||
3476 | if (!sds->power_savings_balance || | ||
3477 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3478 | !sgs->sum_nr_running) | ||
3479 | return; | ||
3480 | |||
3481 | /* | ||
3482 | * Calculate the group which has the least non-idle load. | ||
3483 | * This is the group from where we need to pick up the load | ||
3484 | * for saving power | ||
3485 | */ | ||
3486 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
3487 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3488 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3489 | sds->group_min = group; | ||
3490 | sds->min_nr_running = sgs->sum_nr_running; | ||
3491 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3492 | sgs->sum_nr_running; | ||
3493 | } | ||
3494 | |||
3495 | /* | ||
3496 | * Calculate the group which is almost near its | ||
3497 | * capacity but still has some space to pick up some load | ||
3498 | * from other group and save more power | ||
3499 | */ | ||
3500 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
3501 | return; | ||
3502 | |||
3503 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
3504 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
3505 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
3506 | sds->group_leader = group; | ||
3507 | sds->leader_nr_running = sgs->sum_nr_running; | ||
3508 | } | ||
3509 | } | ||
3510 | |||
3511 | /** | ||
3512 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
3513 | * @sds: Variable containing the statistics of the sched_domain | ||
3514 | * under consideration. | ||
3515 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3516 | * @imbalance: Variable to store the imbalance. | ||
3517 | * | ||
3518 | * Description: | ||
3519 | * Check if we have potential to perform some power-savings balance. | ||
3520 | * If yes, set the busiest group to be the least loaded group in the | ||
3521 | * sched_domain, so that it's CPUs can be put to idle. | ||
3522 | * | ||
3523 | * Returns 1 if there is potential to perform power-savings balance. | ||
3524 | * Else returns 0. | ||
3525 | */ | ||
3526 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3527 | int this_cpu, unsigned long *imbalance) | ||
3528 | { | ||
3529 | if (!sds->power_savings_balance) | ||
3530 | return 0; | ||
3531 | |||
3532 | if (sds->this != sds->group_leader || | ||
3533 | sds->group_leader == sds->group_min) | ||
3534 | return 0; | ||
3535 | |||
3536 | *imbalance = sds->min_load_per_task; | ||
3537 | sds->busiest = sds->group_min; | ||
3538 | |||
3539 | return 1; | ||
3540 | |||
3541 | } | ||
3542 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3543 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3544 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3545 | { | ||
3546 | return; | ||
3547 | } | ||
3548 | |||
3549 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3550 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3551 | { | ||
3552 | return; | ||
3553 | } | ||
3554 | |||
3555 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3556 | int this_cpu, unsigned long *imbalance) | ||
3557 | { | ||
3558 | return 0; | ||
3559 | } | ||
3560 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3561 | |||
3562 | |||
3563 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3564 | { | ||
3565 | return SCHED_LOAD_SCALE; | ||
3566 | } | ||
3567 | |||
3568 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3569 | { | ||
3570 | return default_scale_freq_power(sd, cpu); | ||
3571 | } | ||
3572 | |||
3573 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3574 | { | ||
3575 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3576 | unsigned long smt_gain = sd->smt_gain; | ||
3577 | |||
3578 | smt_gain /= weight; | ||
3579 | |||
3580 | return smt_gain; | ||
3581 | } | ||
3582 | |||
3583 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3584 | { | ||
3585 | return default_scale_smt_power(sd, cpu); | ||
3586 | } | ||
3587 | |||
3588 | unsigned long scale_rt_power(int cpu) | ||
3589 | { | ||
3590 | struct rq *rq = cpu_rq(cpu); | ||
3591 | u64 total, available; | ||
3592 | |||
3593 | sched_avg_update(rq); | ||
3594 | |||
3595 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
3596 | available = total - rq->rt_avg; | ||
3597 | |||
3598 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
3599 | total = SCHED_LOAD_SCALE; | ||
3600 | |||
3601 | total >>= SCHED_LOAD_SHIFT; | ||
3602 | |||
3603 | return div_u64(available, total); | ||
3604 | } | ||
3605 | |||
3606 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
3607 | { | ||
3608 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3609 | unsigned long power = SCHED_LOAD_SCALE; | ||
3610 | struct sched_group *sdg = sd->groups; | ||
3611 | |||
3612 | if (sched_feat(ARCH_POWER)) | ||
3613 | power *= arch_scale_freq_power(sd, cpu); | ||
3614 | else | ||
3615 | power *= default_scale_freq_power(sd, cpu); | ||
3616 | |||
3617 | power >>= SCHED_LOAD_SHIFT; | ||
3618 | |||
3619 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
3620 | if (sched_feat(ARCH_POWER)) | ||
3621 | power *= arch_scale_smt_power(sd, cpu); | ||
3622 | else | ||
3623 | power *= default_scale_smt_power(sd, cpu); | ||
3624 | |||
3625 | power >>= SCHED_LOAD_SHIFT; | ||
3626 | } | ||
3627 | |||
3628 | power *= scale_rt_power(cpu); | ||
3629 | power >>= SCHED_LOAD_SHIFT; | ||
3630 | |||
3631 | if (!power) | ||
3632 | power = 1; | ||
3633 | |||
3634 | sdg->cpu_power = power; | ||
3635 | } | ||
3636 | |||
3637 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
3638 | { | ||
3639 | struct sched_domain *child = sd->child; | ||
3640 | struct sched_group *group, *sdg = sd->groups; | ||
3641 | unsigned long power; | ||
3642 | |||
3643 | if (!child) { | ||
3644 | update_cpu_power(sd, cpu); | ||
3645 | return; | ||
3646 | } | ||
3647 | |||
3648 | power = 0; | ||
3649 | |||
3650 | group = child->groups; | ||
3651 | do { | ||
3652 | power += group->cpu_power; | ||
3653 | group = group->next; | ||
3654 | } while (group != child->groups); | ||
3655 | |||
3656 | sdg->cpu_power = power; | ||
3657 | } | ||
3658 | |||
3659 | /** | ||
3660 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3661 | * @group: sched_group whose statistics are to be updated. | ||
3662 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3663 | * @idle: Idle status of this_cpu | ||
3664 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3665 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3666 | * @local_group: Does group contain this_cpu. | ||
3667 | * @cpus: Set of cpus considered for load balancing. | ||
3668 | * @balance: Should we balance. | ||
3669 | * @sgs: variable to hold the statistics for this group. | ||
3670 | */ | ||
3671 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
3672 | struct sched_group *group, int this_cpu, | ||
3673 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
3674 | int local_group, const struct cpumask *cpus, | ||
3675 | int *balance, struct sg_lb_stats *sgs) | ||
3676 | { | ||
3677 | unsigned long load, max_cpu_load, min_cpu_load; | ||
3678 | int i; | ||
3679 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3680 | unsigned long sum_avg_load_per_task; | ||
3681 | unsigned long avg_load_per_task; | ||
3682 | |||
3683 | if (local_group) { | ||
3684 | balance_cpu = group_first_cpu(group); | ||
3685 | if (balance_cpu == this_cpu) | ||
3686 | update_group_power(sd, this_cpu); | ||
3687 | } | ||
3688 | |||
3689 | /* Tally up the load of all CPUs in the group */ | ||
3690 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3691 | max_cpu_load = 0; | ||
3692 | min_cpu_load = ~0UL; | ||
3693 | |||
3694 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3695 | struct rq *rq = cpu_rq(i); | ||
3696 | |||
3697 | if (*sd_idle && rq->nr_running) | ||
3698 | *sd_idle = 0; | ||
3699 | |||
3700 | /* Bias balancing toward cpus of our domain */ | ||
3701 | if (local_group) { | ||
3702 | if (idle_cpu(i) && !first_idle_cpu) { | ||
3703 | first_idle_cpu = 1; | ||
3704 | balance_cpu = i; | ||
3705 | } | ||
3706 | |||
3707 | load = target_load(i, load_idx); | ||
3708 | } else { | ||
3709 | load = source_load(i, load_idx); | ||
3710 | if (load > max_cpu_load) | ||
3711 | max_cpu_load = load; | ||
3712 | if (min_cpu_load > load) | ||
3713 | min_cpu_load = load; | ||
3714 | } | ||
3715 | |||
3716 | sgs->group_load += load; | ||
3717 | sgs->sum_nr_running += rq->nr_running; | ||
3718 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
3719 | |||
3720 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | ||
3721 | } | ||
3722 | |||
3723 | /* | ||
3724 | * First idle cpu or the first cpu(busiest) in this sched group | ||
3725 | * is eligible for doing load balancing at this and above | ||
3726 | * domains. In the newly idle case, we will allow all the cpu's | ||
3727 | * to do the newly idle load balance. | ||
3728 | */ | ||
3729 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
3730 | balance_cpu != this_cpu && balance) { | ||
3731 | *balance = 0; | ||
3732 | return; | ||
3733 | } | ||
3734 | |||
3735 | /* Adjust by relative CPU power of the group */ | ||
3736 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
3737 | |||
3738 | |||
3739 | /* | ||
3740 | * Consider the group unbalanced when the imbalance is larger | ||
3741 | * than the average weight of two tasks. | ||
3742 | * | ||
3743 | * APZ: with cgroup the avg task weight can vary wildly and | ||
3744 | * might not be a suitable number - should we keep a | ||
3745 | * normalized nr_running number somewhere that negates | ||
3746 | * the hierarchy? | ||
3747 | */ | ||
3748 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / | ||
3749 | group->cpu_power; | ||
3750 | |||
3751 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
3752 | sgs->group_imb = 1; | ||
3753 | |||
3754 | sgs->group_capacity = | ||
3755 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
3756 | } | ||
3757 | |||
3758 | /** | ||
3759 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
3760 | * @sd: sched_domain whose statistics are to be updated. | ||
3761 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3762 | * @idle: Idle status of this_cpu | ||
3763 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3764 | * @cpus: Set of cpus considered for load balancing. | ||
3765 | * @balance: Should we balance. | ||
3766 | * @sds: variable to hold the statistics for this sched_domain. | ||
3767 | */ | ||
3768 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3769 | enum cpu_idle_type idle, int *sd_idle, | ||
3770 | const struct cpumask *cpus, int *balance, | ||
3771 | struct sd_lb_stats *sds) | ||
3772 | { | ||
3773 | struct sched_domain *child = sd->child; | ||
3774 | struct sched_group *group = sd->groups; | ||
3775 | struct sg_lb_stats sgs; | ||
3776 | int load_idx, prefer_sibling = 0; | ||
3777 | |||
3778 | if (child && child->flags & SD_PREFER_SIBLING) | ||
3779 | prefer_sibling = 1; | ||
3780 | |||
3781 | init_sd_power_savings_stats(sd, sds, idle); | ||
3782 | load_idx = get_sd_load_idx(sd, idle); | ||
3783 | |||
3784 | do { | ||
3785 | int local_group; | ||
3786 | |||
3787 | local_group = cpumask_test_cpu(this_cpu, | ||
3788 | sched_group_cpus(group)); | ||
3789 | memset(&sgs, 0, sizeof(sgs)); | ||
3790 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
3791 | local_group, cpus, balance, &sgs); | ||
3792 | |||
3793 | if (local_group && balance && !(*balance)) | ||
3794 | return; | ||
3795 | |||
3796 | sds->total_load += sgs.group_load; | ||
3797 | sds->total_pwr += group->cpu_power; | ||
3798 | |||
3799 | /* | ||
3800 | * In case the child domain prefers tasks go to siblings | ||
3801 | * first, lower the group capacity to one so that we'll try | ||
3802 | * and move all the excess tasks away. | ||
3803 | */ | ||
3804 | if (prefer_sibling) | ||
3805 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
3806 | |||
3807 | if (local_group) { | ||
3808 | sds->this_load = sgs.avg_load; | ||
3809 | sds->this = group; | ||
3810 | sds->this_nr_running = sgs.sum_nr_running; | ||
3811 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
3812 | } else if (sgs.avg_load > sds->max_load && | ||
3813 | (sgs.sum_nr_running > sgs.group_capacity || | ||
3814 | sgs.group_imb)) { | ||
3815 | sds->max_load = sgs.avg_load; | ||
3816 | sds->busiest = group; | ||
3817 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
3818 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
3819 | sds->group_imb = sgs.group_imb; | ||
3820 | } | ||
3821 | |||
3822 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
3823 | group = group->next; | ||
3824 | } while (group != sd->groups); | ||
3825 | } | ||
3826 | |||
3827 | /** | ||
3828 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
3829 | * amongst the groups of a sched_domain, during | ||
3830 | * load balancing. | ||
3831 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
3832 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
3833 | * @imbalance: Variable to store the imbalance. | ||
3834 | */ | ||
3835 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
3836 | int this_cpu, unsigned long *imbalance) | ||
3837 | { | ||
3838 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
3839 | unsigned int imbn = 2; | ||
3840 | |||
3841 | if (sds->this_nr_running) { | ||
3842 | sds->this_load_per_task /= sds->this_nr_running; | ||
3843 | if (sds->busiest_load_per_task > | ||
3844 | sds->this_load_per_task) | ||
3845 | imbn = 1; | ||
3846 | } else | ||
3847 | sds->this_load_per_task = | ||
3848 | cpu_avg_load_per_task(this_cpu); | ||
3849 | |||
3850 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | ||
3851 | sds->busiest_load_per_task * imbn) { | ||
3852 | *imbalance = sds->busiest_load_per_task; | ||
3853 | return; | ||
3854 | } | ||
3855 | |||
3856 | /* | ||
3857 | * OK, we don't have enough imbalance to justify moving tasks, | ||
3858 | * however we may be able to increase total CPU power used by | ||
3859 | * moving them. | ||
3860 | */ | ||
3861 | |||
3862 | pwr_now += sds->busiest->cpu_power * | ||
3863 | min(sds->busiest_load_per_task, sds->max_load); | ||
3864 | pwr_now += sds->this->cpu_power * | ||
3865 | min(sds->this_load_per_task, sds->this_load); | ||
3866 | pwr_now /= SCHED_LOAD_SCALE; | ||
3867 | |||
3868 | /* Amount of load we'd subtract */ | ||
3869 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3870 | sds->busiest->cpu_power; | ||
3871 | if (sds->max_load > tmp) | ||
3872 | pwr_move += sds->busiest->cpu_power * | ||
3873 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3874 | |||
3875 | /* Amount of load we'd add */ | ||
3876 | if (sds->max_load * sds->busiest->cpu_power < | ||
3877 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3878 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
3879 | sds->this->cpu_power; | ||
3880 | else | ||
3881 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3882 | sds->this->cpu_power; | ||
3883 | pwr_move += sds->this->cpu_power * | ||
3884 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3885 | pwr_move /= SCHED_LOAD_SCALE; | ||
3886 | |||
3887 | /* Move if we gain throughput */ | ||
3888 | if (pwr_move > pwr_now) | ||
3889 | *imbalance = sds->busiest_load_per_task; | ||
3890 | } | ||
3891 | |||
3892 | /** | ||
3893 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3894 | * groups of a given sched_domain during load balance. | ||
3895 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3896 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
3897 | * @imbalance: The variable to store the imbalance. | ||
3898 | */ | ||
3899 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
3900 | unsigned long *imbalance) | ||
3901 | { | ||
3902 | unsigned long max_pull; | ||
3903 | /* | ||
3904 | * In the presence of smp nice balancing, certain scenarios can have | ||
3905 | * max load less than avg load(as we skip the groups at or below | ||
3906 | * its cpu_power, while calculating max_load..) | ||
3907 | */ | ||
3908 | if (sds->max_load < sds->avg_load) { | ||
3909 | *imbalance = 0; | ||
3910 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3911 | } | ||
3912 | |||
3913 | /* Don't want to pull so many tasks that a group would go idle */ | ||
3914 | max_pull = min(sds->max_load - sds->avg_load, | ||
3915 | sds->max_load - sds->busiest_load_per_task); | ||
3916 | |||
3917 | /* How much load to actually move to equalise the imbalance */ | ||
3918 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
3919 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
3920 | / SCHED_LOAD_SCALE; | ||
3921 | |||
3922 | /* | ||
3923 | * if *imbalance is less than the average load per runnable task | ||
3924 | * there is no gaurantee that any tasks will be moved so we'll have | ||
3925 | * a think about bumping its value to force at least one task to be | ||
3926 | * moved | ||
3927 | */ | ||
3928 | if (*imbalance < sds->busiest_load_per_task) | ||
3929 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3930 | |||
3931 | } | ||
3932 | /******* find_busiest_group() helpers end here *********************/ | ||
3933 | |||
3934 | /** | ||
3935 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
3936 | * if there is an imbalance. If there isn't an imbalance, and | ||
3937 | * the user has opted for power-savings, it returns a group whose | ||
3938 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
3939 | * such a group exists. | ||
3940 | * | ||
3941 | * Also calculates the amount of weighted load which should be moved | ||
3942 | * to restore balance. | ||
3943 | * | ||
3944 | * @sd: The sched_domain whose busiest group is to be returned. | ||
3945 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
3946 | * @imbalance: Variable which stores amount of weighted load which should | ||
3947 | * be moved to restore balance/put a group to idle. | ||
3948 | * @idle: The idle status of this_cpu. | ||
3949 | * @sd_idle: The idleness of sd | ||
3950 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
3951 | * @balance: Pointer to a variable indicating if this_cpu | ||
3952 | * is the appropriate cpu to perform load balancing at this_level. | ||
3953 | * | ||
3954 | * Returns: - the busiest group if imbalance exists. | ||
3955 | * - If no imbalance and user has opted for power-savings balance, | ||
3956 | * return the least loaded group whose CPUs can be | ||
3957 | * put to idle by rebalancing its tasks onto our group. | ||
3958 | */ | ||
3959 | static struct sched_group * | ||
3960 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
3961 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
3962 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
3963 | { | ||
3964 | struct sd_lb_stats sds; | ||
3965 | |||
3966 | memset(&sds, 0, sizeof(sds)); | ||
3967 | |||
3968 | /* | ||
3969 | * Compute the various statistics relavent for load balancing at | ||
3970 | * this level. | ||
3971 | */ | ||
3972 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
3973 | balance, &sds); | ||
3974 | |||
3975 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
3976 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
3977 | * at this level. | ||
3978 | * 2) There is no busy sibling group to pull from. | ||
3979 | * 3) This group is the busiest group. | ||
3980 | * 4) This group is more busy than the avg busieness at this | ||
3981 | * sched_domain. | ||
3982 | * 5) The imbalance is within the specified limit. | ||
3983 | * 6) Any rebalance would lead to ping-pong | ||
3984 | */ | ||
3985 | if (balance && !(*balance)) | ||
3986 | goto ret; | ||
3987 | |||
3988 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
3989 | goto out_balanced; | ||
3990 | |||
3991 | if (sds.this_load >= sds.max_load) | ||
3992 | goto out_balanced; | ||
3993 | |||
3994 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
3995 | |||
3996 | if (sds.this_load >= sds.avg_load) | ||
3997 | goto out_balanced; | ||
3998 | |||
3999 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
4000 | goto out_balanced; | ||
4001 | |||
4002 | sds.busiest_load_per_task /= sds.busiest_nr_running; | ||
4003 | if (sds.group_imb) | ||
4004 | sds.busiest_load_per_task = | ||
4005 | min(sds.busiest_load_per_task, sds.avg_load); | ||
4006 | |||
4007 | /* | ||
4008 | * We're trying to get all the cpus to the average_load, so we don't | ||
4009 | * want to push ourselves above the average load, nor do we wish to | ||
4010 | * reduce the max loaded cpu below the average load, as either of these | ||
4011 | * actions would just result in more rebalancing later, and ping-pong | ||
4012 | * tasks around. Thus we look for the minimum possible imbalance. | ||
4013 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
4014 | * be counted as no imbalance for these purposes -- we can't fix that | ||
4015 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
4016 | * appear as very large values with unsigned longs. | ||
4017 | */ | ||
4018 | if (sds.max_load <= sds.busiest_load_per_task) | ||
4019 | goto out_balanced; | ||
4020 | |||
4021 | /* Looks like there is an imbalance. Compute it */ | ||
4022 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
4023 | return sds.busiest; | ||
4024 | |||
4025 | out_balanced: | ||
4026 | /* | ||
4027 | * There is no obvious imbalance. But check if we can do some balancing | ||
4028 | * to save power. | ||
4029 | */ | ||
4030 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
4031 | return sds.busiest; | ||
4032 | ret: | ||
4033 | *imbalance = 0; | ||
4034 | return NULL; | ||
4035 | } | ||
4036 | |||
4037 | /* | ||
4038 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
4039 | */ | ||
4040 | static struct rq * | ||
4041 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
4042 | unsigned long imbalance, const struct cpumask *cpus) | ||
4043 | { | ||
4044 | struct rq *busiest = NULL, *rq; | ||
4045 | unsigned long max_load = 0; | ||
4046 | int i; | ||
4047 | |||
4048 | for_each_cpu(i, sched_group_cpus(group)) { | ||
4049 | unsigned long power = power_of(i); | ||
4050 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
4051 | unsigned long wl; | ||
4052 | |||
4053 | if (!cpumask_test_cpu(i, cpus)) | ||
4054 | continue; | ||
4055 | |||
4056 | rq = cpu_rq(i); | ||
4057 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; | ||
4058 | wl /= power; | ||
4059 | |||
4060 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
4061 | continue; | ||
4062 | |||
4063 | if (wl > max_load) { | ||
4064 | max_load = wl; | ||
4065 | busiest = rq; | ||
4066 | } | ||
4067 | } | ||
4068 | |||
4069 | return busiest; | ||
4070 | } | ||
4071 | |||
4072 | /* | ||
4073 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
4074 | * so long as it is large enough. | ||
4075 | */ | ||
4076 | #define MAX_PINNED_INTERVAL 512 | ||
4077 | |||
4078 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
4079 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
4080 | |||
4081 | /* | ||
4082 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4083 | * tasks if there is an imbalance. | ||
4084 | */ | ||
4085 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
4086 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
4087 | int *balance) | ||
4088 | { | ||
4089 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
4090 | struct sched_group *group; | ||
4091 | unsigned long imbalance; | ||
4092 | struct rq *busiest; | ||
4093 | unsigned long flags; | ||
4094 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4095 | |||
4096 | cpumask_setall(cpus); | ||
4097 | |||
4098 | /* | ||
4099 | * When power savings policy is enabled for the parent domain, idle | ||
4100 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4101 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
4102 | * portraying it as CPU_NOT_IDLE. | ||
4103 | */ | ||
4104 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
4105 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4106 | sd_idle = 1; | ||
4107 | |||
4108 | schedstat_inc(sd, lb_count[idle]); | ||
4109 | |||
4110 | redo: | ||
4111 | update_shares(sd); | ||
4112 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
4113 | cpus, balance); | ||
4114 | |||
4115 | if (*balance == 0) | ||
4116 | goto out_balanced; | ||
4117 | |||
4118 | if (!group) { | ||
4119 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
4120 | goto out_balanced; | ||
4121 | } | ||
4122 | |||
4123 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
4124 | if (!busiest) { | ||
4125 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
4126 | goto out_balanced; | ||
4127 | } | ||
4128 | |||
4129 | BUG_ON(busiest == this_rq); | ||
4130 | |||
4131 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
4132 | |||
4133 | ld_moved = 0; | ||
4134 | if (busiest->nr_running > 1) { | ||
4135 | /* | ||
4136 | * Attempt to move tasks. If find_busiest_group has found | ||
4137 | * an imbalance but busiest->nr_running <= 1, the group is | ||
4138 | * still unbalanced. ld_moved simply stays zero, so it is | ||
4139 | * correctly treated as an imbalance. | ||
4140 | */ | ||
4141 | local_irq_save(flags); | ||
4142 | double_rq_lock(this_rq, busiest); | ||
4143 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4144 | imbalance, sd, idle, &all_pinned); | ||
4145 | double_rq_unlock(this_rq, busiest); | ||
4146 | local_irq_restore(flags); | ||
4147 | |||
4148 | /* | ||
4149 | * some other cpu did the load balance for us. | ||
4150 | */ | ||
4151 | if (ld_moved && this_cpu != smp_processor_id()) | ||
4152 | resched_cpu(this_cpu); | ||
4153 | |||
4154 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
4155 | if (unlikely(all_pinned)) { | ||
4156 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4157 | if (!cpumask_empty(cpus)) | ||
4158 | goto redo; | ||
4159 | goto out_balanced; | ||
4160 | } | ||
4161 | } | ||
4162 | |||
4163 | if (!ld_moved) { | ||
4164 | schedstat_inc(sd, lb_failed[idle]); | ||
4165 | sd->nr_balance_failed++; | ||
4166 | |||
4167 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
4168 | |||
4169 | spin_lock_irqsave(&busiest->lock, flags); | ||
4170 | |||
4171 | /* don't kick the migration_thread, if the curr | ||
4172 | * task on busiest cpu can't be moved to this_cpu | ||
4173 | */ | ||
4174 | if (!cpumask_test_cpu(this_cpu, | ||
4175 | &busiest->curr->cpus_allowed)) { | ||
4176 | spin_unlock_irqrestore(&busiest->lock, flags); | ||
4177 | all_pinned = 1; | ||
4178 | goto out_one_pinned; | ||
4179 | } | ||
4180 | |||
4181 | if (!busiest->active_balance) { | ||
4182 | busiest->active_balance = 1; | ||
4183 | busiest->push_cpu = this_cpu; | ||
4184 | active_balance = 1; | ||
4185 | } | ||
4186 | spin_unlock_irqrestore(&busiest->lock, flags); | ||
4187 | if (active_balance) | ||
4188 | wake_up_process(busiest->migration_thread); | ||
4189 | |||
4190 | /* | ||
4191 | * We've kicked active balancing, reset the failure | ||
4192 | * counter. | ||
4193 | */ | ||
4194 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
4195 | } | ||
4196 | } else | ||
4197 | sd->nr_balance_failed = 0; | ||
4198 | |||
4199 | if (likely(!active_balance)) { | ||
4200 | /* We were unbalanced, so reset the balancing interval */ | ||
4201 | sd->balance_interval = sd->min_interval; | ||
4202 | } else { | ||
4203 | /* | ||
4204 | * If we've begun active balancing, start to back off. This | ||
4205 | * case may not be covered by the all_pinned logic if there | ||
4206 | * is only 1 task on the busy runqueue (because we don't call | ||
4207 | * move_tasks). | ||
4208 | */ | ||
4209 | if (sd->balance_interval < sd->max_interval) | ||
4210 | sd->balance_interval *= 2; | ||
4211 | } | ||
4212 | |||
4213 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4214 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4215 | ld_moved = -1; | ||
4216 | |||
4217 | goto out; | ||
4218 | |||
4219 | out_balanced: | ||
4220 | schedstat_inc(sd, lb_balanced[idle]); | ||
4221 | |||
4222 | sd->nr_balance_failed = 0; | ||
4223 | |||
4224 | out_one_pinned: | ||
4225 | /* tune up the balancing interval */ | ||
4226 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
4227 | (sd->balance_interval < sd->max_interval)) | ||
4228 | sd->balance_interval *= 2; | ||
4229 | |||
4230 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4231 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4232 | ld_moved = -1; | ||
4233 | else | ||
4234 | ld_moved = 0; | ||
4235 | out: | ||
4236 | if (ld_moved) | ||
4237 | update_shares(sd); | ||
4238 | return ld_moved; | ||
4239 | } | ||
4240 | |||
4241 | /* | ||
4242 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4243 | * tasks if there is an imbalance. | ||
4244 | * | ||
4245 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | ||
4246 | * this_rq is locked. | ||
4247 | */ | ||
4248 | static int | ||
4249 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | ||
4250 | { | ||
4251 | struct sched_group *group; | ||
4252 | struct rq *busiest = NULL; | ||
4253 | unsigned long imbalance; | ||
4254 | int ld_moved = 0; | ||
4255 | int sd_idle = 0; | ||
4256 | int all_pinned = 0; | ||
4257 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4258 | |||
4259 | cpumask_setall(cpus); | ||
4260 | |||
4261 | /* | ||
4262 | * When power savings policy is enabled for the parent domain, idle | ||
4263 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4264 | * let the state of idle sibling percolate up as IDLE, instead of | ||
4265 | * portraying it as CPU_NOT_IDLE. | ||
4266 | */ | ||
4267 | if (sd->flags & SD_SHARE_CPUPOWER && | ||
4268 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4269 | sd_idle = 1; | ||
4270 | |||
4271 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | ||
4272 | redo: | ||
4273 | update_shares_locked(this_rq, sd); | ||
4274 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | ||
4275 | &sd_idle, cpus, NULL); | ||
4276 | if (!group) { | ||
4277 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | ||
4278 | goto out_balanced; | ||
4279 | } | ||
4280 | |||
4281 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | ||
4282 | if (!busiest) { | ||
4283 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | ||
4284 | goto out_balanced; | ||
4285 | } | ||
4286 | |||
4287 | BUG_ON(busiest == this_rq); | ||
4288 | |||
4289 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | ||
4290 | |||
4291 | ld_moved = 0; | ||
4292 | if (busiest->nr_running > 1) { | ||
4293 | /* Attempt to move tasks */ | ||
4294 | double_lock_balance(this_rq, busiest); | ||
4295 | /* this_rq->clock is already updated */ | ||
4296 | update_rq_clock(busiest); | ||
4297 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4298 | imbalance, sd, CPU_NEWLY_IDLE, | ||
4299 | &all_pinned); | ||
4300 | double_unlock_balance(this_rq, busiest); | ||
4301 | |||
4302 | if (unlikely(all_pinned)) { | ||
4303 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4304 | if (!cpumask_empty(cpus)) | ||
4305 | goto redo; | ||
4306 | } | ||
4307 | } | ||
4308 | |||
4309 | if (!ld_moved) { | ||
4310 | int active_balance = 0; | ||
4311 | |||
4312 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | ||
4313 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4314 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4315 | return -1; | ||
4316 | |||
4317 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
4318 | return -1; | ||
4319 | |||
4320 | if (sd->nr_balance_failed++ < 2) | ||
4321 | return -1; | ||
4322 | |||
4323 | /* | ||
4324 | * The only task running in a non-idle cpu can be moved to this | ||
4325 | * cpu in an attempt to completely freeup the other CPU | ||
4326 | * package. The same method used to move task in load_balance() | ||
4327 | * have been extended for load_balance_newidle() to speedup | ||
4328 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | ||
4329 | * | ||
4330 | * The package power saving logic comes from | ||
4331 | * find_busiest_group(). If there are no imbalance, then | ||
4332 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
4333 | * f_b_g() will select a group from which a running task may be | ||
4334 | * pulled to this cpu in order to make the other package idle. | ||
4335 | * If there is no opportunity to make a package idle and if | ||
4336 | * there are no imbalance, then f_b_g() will return NULL and no | ||
4337 | * action will be taken in load_balance_newidle(). | ||
4338 | * | ||
4339 | * Under normal task pull operation due to imbalance, there | ||
4340 | * will be more than one task in the source run queue and | ||
4341 | * move_tasks() will succeed. ld_moved will be true and this | ||
4342 | * active balance code will not be triggered. | ||
4343 | */ | ||
4344 | |||
4345 | /* Lock busiest in correct order while this_rq is held */ | ||
4346 | double_lock_balance(this_rq, busiest); | ||
4347 | |||
4348 | /* | ||
4349 | * don't kick the migration_thread, if the curr | ||
4350 | * task on busiest cpu can't be moved to this_cpu | ||
4351 | */ | ||
4352 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { | ||
4353 | double_unlock_balance(this_rq, busiest); | ||
4354 | all_pinned = 1; | ||
4355 | return ld_moved; | ||
4356 | } | ||
4357 | |||
4358 | if (!busiest->active_balance) { | ||
4359 | busiest->active_balance = 1; | ||
4360 | busiest->push_cpu = this_cpu; | ||
4361 | active_balance = 1; | ||
4362 | } | ||
4363 | |||
4364 | double_unlock_balance(this_rq, busiest); | ||
4365 | /* | ||
4366 | * Should not call ttwu while holding a rq->lock | ||
4367 | */ | ||
4368 | spin_unlock(&this_rq->lock); | ||
4369 | if (active_balance) | ||
4370 | wake_up_process(busiest->migration_thread); | ||
4371 | spin_lock(&this_rq->lock); | ||
4372 | |||
4373 | } else | ||
4374 | sd->nr_balance_failed = 0; | ||
4375 | |||
4376 | update_shares_locked(this_rq, sd); | ||
4377 | return ld_moved; | ||
4378 | |||
4379 | out_balanced: | ||
4380 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | ||
4381 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4382 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4383 | return -1; | ||
4384 | sd->nr_balance_failed = 0; | ||
4385 | |||
4386 | return 0; | ||
4387 | } | ||
4388 | |||
4389 | /* | ||
4390 | * idle_balance is called by schedule() if this_cpu is about to become | ||
4391 | * idle. Attempts to pull tasks from other CPUs. | ||
4392 | */ | ||
4393 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
4394 | { | ||
4395 | struct sched_domain *sd; | ||
4396 | int pulled_task = 0; | ||
4397 | unsigned long next_balance = jiffies + HZ; | ||
4398 | |||
4399 | for_each_domain(this_cpu, sd) { | ||
4400 | unsigned long interval; | ||
4401 | |||
4402 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4403 | continue; | ||
4404 | |||
4405 | if (sd->flags & SD_BALANCE_NEWIDLE) | ||
4406 | /* If we've pulled tasks over stop searching: */ | ||
4407 | pulled_task = load_balance_newidle(this_cpu, this_rq, | ||
4408 | sd); | ||
4409 | |||
4410 | interval = msecs_to_jiffies(sd->balance_interval); | ||
4411 | if (time_after(next_balance, sd->last_balance + interval)) | ||
4412 | next_balance = sd->last_balance + interval; | ||
4413 | if (pulled_task) | ||
4414 | break; | ||
4415 | } | ||
4416 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
4417 | /* | ||
4418 | * We are going idle. next_balance may be set based on | ||
4419 | * a busy processor. So reset next_balance. | ||
4420 | */ | ||
4421 | this_rq->next_balance = next_balance; | ||
4422 | } | ||
4423 | } | ||
4424 | |||
4425 | /* | ||
4426 | * active_load_balance is run by migration threads. It pushes running tasks | ||
4427 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
4428 | * running on each physical CPU where possible, and avoids physical / | ||
4429 | * logical imbalances. | ||
4430 | * | ||
4431 | * Called with busiest_rq locked. | ||
4432 | */ | ||
4433 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
4434 | { | ||
4435 | int target_cpu = busiest_rq->push_cpu; | ||
4436 | struct sched_domain *sd; | ||
4437 | struct rq *target_rq; | ||
4438 | |||
4439 | /* Is there any task to move? */ | ||
4440 | if (busiest_rq->nr_running <= 1) | ||
4441 | return; | ||
4442 | |||
4443 | target_rq = cpu_rq(target_cpu); | ||
4444 | |||
4445 | /* | ||
4446 | * This condition is "impossible", if it occurs | ||
4447 | * we need to fix it. Originally reported by | ||
4448 | * Bjorn Helgaas on a 128-cpu setup. | ||
4449 | */ | ||
4450 | BUG_ON(busiest_rq == target_rq); | ||
4451 | |||
4452 | /* move a task from busiest_rq to target_rq */ | ||
4453 | double_lock_balance(busiest_rq, target_rq); | ||
4454 | update_rq_clock(busiest_rq); | ||
4455 | update_rq_clock(target_rq); | ||
4456 | |||
4457 | /* Search for an sd spanning us and the target CPU. */ | ||
4458 | for_each_domain(target_cpu, sd) { | ||
4459 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
4460 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
4461 | break; | ||
4462 | } | ||
4463 | |||
4464 | if (likely(sd)) { | ||
4465 | schedstat_inc(sd, alb_count); | ||
4466 | |||
4467 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
4468 | sd, CPU_IDLE)) | ||
4469 | schedstat_inc(sd, alb_pushed); | ||
4470 | else | ||
4471 | schedstat_inc(sd, alb_failed); | ||
4472 | } | ||
4473 | double_unlock_balance(busiest_rq, target_rq); | ||
4474 | } | ||
4475 | |||
4476 | #ifdef CONFIG_NO_HZ | ||
4477 | static struct { | ||
4478 | atomic_t load_balancer; | ||
4479 | cpumask_var_t cpu_mask; | ||
4480 | cpumask_var_t ilb_grp_nohz_mask; | ||
4481 | } nohz ____cacheline_aligned = { | ||
4482 | .load_balancer = ATOMIC_INIT(-1), | ||
4483 | }; | ||
4484 | |||
4485 | int get_nohz_load_balancer(void) | ||
4486 | { | ||
4487 | return atomic_read(&nohz.load_balancer); | ||
4488 | } | ||
4489 | |||
4490 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
4491 | /** | ||
4492 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
4493 | * @cpu: The cpu whose lowest level of sched domain is to | ||
4494 | * be returned. | ||
4495 | * @flag: The flag to check for the lowest sched_domain | ||
4496 | * for the given cpu. | ||
4497 | * | ||
4498 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
4499 | */ | ||
4500 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
4501 | { | ||
4502 | struct sched_domain *sd; | ||
4503 | |||
4504 | for_each_domain(cpu, sd) | ||
4505 | if (sd && (sd->flags & flag)) | ||
4506 | break; | ||
4507 | |||
4508 | return sd; | ||
4509 | } | ||
4510 | |||
4511 | /** | ||
4512 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
4513 | * @cpu: The cpu whose domains we're iterating over. | ||
4514 | * @sd: variable holding the value of the power_savings_sd | ||
4515 | * for cpu. | ||
4516 | * @flag: The flag to filter the sched_domains to be iterated. | ||
4517 | * | ||
4518 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
4519 | * set, starting from the lowest sched_domain to the highest. | ||
4520 | */ | ||
4521 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
4522 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
4523 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
4524 | |||
4525 | /** | ||
4526 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
4527 | * @ilb_group: group to be checked for semi-idleness | ||
4528 | * | ||
4529 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
4530 | * | ||
4531 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
4532 | * and atleast one non-idle CPU. This helper function checks if the given | ||
4533 | * sched_group is semi-idle or not. | ||
4534 | */ | ||
4535 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
4536 | { | ||
4537 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
4538 | sched_group_cpus(ilb_group)); | ||
4539 | |||
4540 | /* | ||
4541 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
4542 | * and atleast one idle cpu. | ||
4543 | */ | ||
4544 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
4545 | return 0; | ||
4546 | |||
4547 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
4548 | return 0; | ||
4549 | |||
4550 | return 1; | ||
4551 | } | ||
4552 | /** | ||
4553 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
4554 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
4555 | * | ||
4556 | * Returns: Returns the id of the idle load balancer if it exists, | ||
4557 | * Else, returns >= nr_cpu_ids. | ||
4558 | * | ||
4559 | * This algorithm picks the idle load balancer such that it belongs to a | ||
4560 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
4561 | * completely idle packages/cores just for the purpose of idle load balancing | ||
4562 | * when there are other idle cpu's which are better suited for that job. | ||
4563 | */ | ||
4564 | static int find_new_ilb(int cpu) | ||
4565 | { | ||
4566 | struct sched_domain *sd; | ||
4567 | struct sched_group *ilb_group; | ||
4568 | |||
4569 | /* | ||
4570 | * Have idle load balancer selection from semi-idle packages only | ||
4571 | * when power-aware load balancing is enabled | ||
4572 | */ | ||
4573 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
4574 | goto out_done; | ||
4575 | |||
4576 | /* | ||
4577 | * Optimize for the case when we have no idle CPUs or only one | ||
4578 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
4579 | */ | ||
4580 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
4581 | goto out_done; | ||
4582 | |||
4583 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
4584 | ilb_group = sd->groups; | ||
4585 | |||
4586 | do { | ||
4587 | if (is_semi_idle_group(ilb_group)) | ||
4588 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
4589 | |||
4590 | ilb_group = ilb_group->next; | ||
4591 | |||
4592 | } while (ilb_group != sd->groups); | ||
4593 | } | ||
4594 | |||
4595 | out_done: | ||
4596 | return cpumask_first(nohz.cpu_mask); | ||
4597 | } | ||
4598 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
4599 | static inline int find_new_ilb(int call_cpu) | ||
4600 | { | ||
4601 | return cpumask_first(nohz.cpu_mask); | ||
4602 | } | ||
4603 | #endif | ||
4604 | |||
4605 | /* | ||
4606 | * This routine will try to nominate the ilb (idle load balancing) | ||
4607 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
4608 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
4609 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
4610 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
4611 | * arrives... | ||
4612 | * | ||
4613 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
4614 | * for idle load balancing. ilb owner will still be part of | ||
4615 | * nohz.cpu_mask.. | ||
4616 | * | ||
4617 | * While stopping the tick, this cpu will become the ilb owner if there | ||
4618 | * is no other owner. And will be the owner till that cpu becomes busy | ||
4619 | * or if all cpus in the system stop their ticks at which point | ||
4620 | * there is no need for ilb owner. | ||
4621 | * | ||
4622 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
4623 | * next busy scheduler_tick() | ||
4624 | */ | ||
4625 | int select_nohz_load_balancer(int stop_tick) | ||
4626 | { | ||
4627 | int cpu = smp_processor_id(); | ||
4628 | |||
4629 | if (stop_tick) { | ||
4630 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
4631 | |||
4632 | if (!cpu_active(cpu)) { | ||
4633 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
4634 | return 0; | ||
4635 | |||
4636 | /* | ||
4637 | * If we are going offline and still the leader, | ||
4638 | * give up! | ||
4639 | */ | ||
4640 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4641 | BUG(); | ||
4642 | |||
4643 | return 0; | ||
4644 | } | ||
4645 | |||
4646 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
4647 | |||
4648 | /* time for ilb owner also to sleep */ | ||
4649 | if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
4650 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4651 | atomic_set(&nohz.load_balancer, -1); | ||
4652 | return 0; | ||
4653 | } | ||
4654 | |||
4655 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4656 | /* make me the ilb owner */ | ||
4657 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
4658 | return 1; | ||
4659 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4660 | int new_ilb; | ||
4661 | |||
4662 | if (!(sched_smt_power_savings || | ||
4663 | sched_mc_power_savings)) | ||
4664 | return 1; | ||
4665 | /* | ||
4666 | * Check to see if there is a more power-efficient | ||
4667 | * ilb. | ||
4668 | */ | ||
4669 | new_ilb = find_new_ilb(cpu); | ||
4670 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
4671 | atomic_set(&nohz.load_balancer, -1); | ||
4672 | resched_cpu(new_ilb); | ||
4673 | return 0; | ||
4674 | } | ||
4675 | return 1; | ||
4676 | } | ||
4677 | } else { | ||
4678 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4679 | return 0; | ||
4680 | |||
4681 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4682 | |||
4683 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4684 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4685 | BUG(); | ||
4686 | } | ||
4687 | return 0; | ||
4688 | } | ||
4689 | #endif | ||
4690 | |||
4691 | static DEFINE_SPINLOCK(balancing); | ||
4692 | |||
4693 | /* | ||
4694 | * It checks each scheduling domain to see if it is due to be balanced, | ||
4695 | * and initiates a balancing operation if so. | ||
4696 | * | ||
4697 | * Balancing parameters are set up in arch_init_sched_domains. | ||
4698 | */ | ||
4699 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
4700 | { | ||
4701 | int balance = 1; | ||
4702 | struct rq *rq = cpu_rq(cpu); | ||
4703 | unsigned long interval; | ||
4704 | struct sched_domain *sd; | ||
4705 | /* Earliest time when we have to do rebalance again */ | ||
4706 | unsigned long next_balance = jiffies + 60*HZ; | ||
4707 | int update_next_balance = 0; | ||
4708 | int need_serialize; | ||
4709 | |||
4710 | for_each_domain(cpu, sd) { | ||
4711 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4712 | continue; | ||
4713 | |||
4714 | interval = sd->balance_interval; | ||
4715 | if (idle != CPU_IDLE) | ||
4716 | interval *= sd->busy_factor; | ||
4717 | |||
4718 | /* scale ms to jiffies */ | ||
4719 | interval = msecs_to_jiffies(interval); | ||
4720 | if (unlikely(!interval)) | ||
4721 | interval = 1; | ||
4722 | if (interval > HZ*NR_CPUS/10) | ||
4723 | interval = HZ*NR_CPUS/10; | ||
4724 | |||
4725 | need_serialize = sd->flags & SD_SERIALIZE; | ||
4726 | |||
4727 | if (need_serialize) { | ||
4728 | if (!spin_trylock(&balancing)) | ||
4729 | goto out; | ||
4730 | } | ||
4731 | |||
4732 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
4733 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
4734 | /* | ||
4735 | * We've pulled tasks over so either we're no | ||
4736 | * longer idle, or one of our SMT siblings is | ||
4737 | * not idle. | ||
4738 | */ | ||
4739 | idle = CPU_NOT_IDLE; | ||
4740 | } | ||
4741 | sd->last_balance = jiffies; | ||
4742 | } | ||
4743 | if (need_serialize) | ||
4744 | spin_unlock(&balancing); | ||
4745 | out: | ||
4746 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
4747 | next_balance = sd->last_balance + interval; | ||
4748 | update_next_balance = 1; | ||
4749 | } | ||
4750 | |||
4751 | /* | ||
4752 | * Stop the load balance at this level. There is another | ||
4753 | * CPU in our sched group which is doing load balancing more | ||
4754 | * actively. | ||
4755 | */ | ||
4756 | if (!balance) | ||
4757 | break; | ||
4758 | } | ||
4759 | |||
4760 | /* | ||
4761 | * next_balance will be updated only when there is a need. | ||
4762 | * When the cpu is attached to null domain for ex, it will not be | ||
4763 | * updated. | ||
4764 | */ | ||
4765 | if (likely(update_next_balance)) | ||
4766 | rq->next_balance = next_balance; | ||
4767 | } | ||
4768 | |||
4769 | /* | ||
4770 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
4771 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
4772 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
4773 | */ | ||
4774 | static void run_rebalance_domains(struct softirq_action *h) | ||
4775 | { | ||
4776 | int this_cpu = smp_processor_id(); | ||
4777 | struct rq *this_rq = cpu_rq(this_cpu); | ||
4778 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
4779 | CPU_IDLE : CPU_NOT_IDLE; | ||
4780 | |||
4781 | rebalance_domains(this_cpu, idle); | ||
4782 | |||
4783 | #ifdef CONFIG_NO_HZ | ||
4784 | /* | ||
4785 | * If this cpu is the owner for idle load balancing, then do the | ||
4786 | * balancing on behalf of the other idle cpus whose ticks are | ||
4787 | * stopped. | ||
4788 | */ | ||
4789 | if (this_rq->idle_at_tick && | ||
4790 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
4791 | struct rq *rq; | ||
4792 | int balance_cpu; | ||
4793 | |||
4794 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
4795 | if (balance_cpu == this_cpu) | ||
4796 | continue; | ||
4797 | |||
4798 | /* | ||
4799 | * If this cpu gets work to do, stop the load balancing | ||
4800 | * work being done for other cpus. Next load | ||
4801 | * balancing owner will pick it up. | ||
4802 | */ | ||
4803 | if (need_resched()) | ||
4804 | break; | ||
4805 | |||
4806 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
4807 | |||
4808 | rq = cpu_rq(balance_cpu); | ||
4809 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
4810 | this_rq->next_balance = rq->next_balance; | ||
4811 | } | ||
4812 | } | ||
4813 | #endif | ||
4814 | } | ||
4815 | |||
4816 | static inline int on_null_domain(int cpu) | ||
4817 | { | ||
4818 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4819 | } | ||
4820 | |||
4821 | /* | ||
4822 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
4823 | * | ||
4824 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
4825 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
4826 | * if the whole system is idle. | ||
4827 | */ | ||
4828 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
4829 | { | ||
4830 | #ifdef CONFIG_NO_HZ | ||
4831 | /* | ||
4832 | * If we were in the nohz mode recently and busy at the current | ||
4833 | * scheduler tick, then check if we need to nominate new idle | ||
4834 | * load balancer. | ||
4835 | */ | ||
4836 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
4837 | rq->in_nohz_recently = 0; | ||
4838 | |||
4839 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4840 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4841 | atomic_set(&nohz.load_balancer, -1); | ||
4842 | } | ||
4843 | |||
4844 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4845 | int ilb = find_new_ilb(cpu); | ||
4846 | |||
4847 | if (ilb < nr_cpu_ids) | ||
4848 | resched_cpu(ilb); | ||
4849 | } | ||
4850 | } | ||
4851 | |||
4852 | /* | ||
4853 | * If this cpu is idle and doing idle load balancing for all the | ||
4854 | * cpus with ticks stopped, is it time for that to stop? | ||
4855 | */ | ||
4856 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
4857 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
4858 | resched_cpu(cpu); | ||
4859 | return; | ||
4860 | } | ||
4861 | |||
4862 | /* | ||
4863 | * If this cpu is idle and the idle load balancing is done by | ||
4864 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
4865 | */ | ||
4866 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
4867 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4868 | return; | ||
4869 | #endif | ||
4870 | /* Don't need to rebalance while attached to NULL domain */ | ||
4871 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4872 | likely(!on_null_domain(cpu))) | ||
4873 | raise_softirq(SCHED_SOFTIRQ); | ||
4874 | } | ||
4875 | |||
4876 | #else /* CONFIG_SMP */ | ||
4877 | |||
4878 | /* | ||
4879 | * on UP we do not need to balance between CPUs: | ||
4880 | */ | ||
4881 | static inline void idle_balance(int cpu, struct rq *rq) | ||
4882 | { | ||
4883 | } | ||
4884 | |||
4885 | #endif | 3164 | #endif |
4886 | 3165 | ||
4887 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 3166 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
@@ -5013,8 +3292,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime, | |||
5013 | p->gtime = cputime_add(p->gtime, cputime); | 3292 | p->gtime = cputime_add(p->gtime, cputime); |
5014 | 3293 | ||
5015 | /* Add guest time to cpustat. */ | 3294 | /* Add guest time to cpustat. */ |
5016 | cpustat->user = cputime64_add(cpustat->user, tmp); | 3295 | if (TASK_NICE(p) > 0) { |
5017 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | 3296 | cpustat->nice = cputime64_add(cpustat->nice, tmp); |
3297 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | ||
3298 | } else { | ||
3299 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
3300 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | ||
3301 | } | ||
5018 | } | 3302 | } |
5019 | 3303 | ||
5020 | /* | 3304 | /* |
@@ -5129,60 +3413,86 @@ void account_idle_ticks(unsigned long ticks) | |||
5129 | * Use precise platform statistics if available: | 3413 | * Use precise platform statistics if available: |
5130 | */ | 3414 | */ |
5131 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 3415 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
5132 | cputime_t task_utime(struct task_struct *p) | 3416 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
5133 | { | 3417 | { |
5134 | return p->utime; | 3418 | *ut = p->utime; |
3419 | *st = p->stime; | ||
5135 | } | 3420 | } |
5136 | 3421 | ||
5137 | cputime_t task_stime(struct task_struct *p) | 3422 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
5138 | { | 3423 | { |
5139 | return p->stime; | 3424 | struct task_cputime cputime; |
3425 | |||
3426 | thread_group_cputime(p, &cputime); | ||
3427 | |||
3428 | *ut = cputime.utime; | ||
3429 | *st = cputime.stime; | ||
5140 | } | 3430 | } |
5141 | #else | 3431 | #else |
5142 | cputime_t task_utime(struct task_struct *p) | 3432 | |
3433 | #ifndef nsecs_to_cputime | ||
3434 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) | ||
3435 | #endif | ||
3436 | |||
3437 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
5143 | { | 3438 | { |
5144 | clock_t utime = cputime_to_clock_t(p->utime), | 3439 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); |
5145 | total = utime + cputime_to_clock_t(p->stime); | ||
5146 | u64 temp; | ||
5147 | 3440 | ||
5148 | /* | 3441 | /* |
5149 | * Use CFS's precise accounting: | 3442 | * Use CFS's precise accounting: |
5150 | */ | 3443 | */ |
5151 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | 3444 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
5152 | 3445 | ||
5153 | if (total) { | 3446 | if (total) { |
5154 | temp *= utime; | 3447 | u64 temp; |
3448 | |||
3449 | temp = (u64)(rtime * utime); | ||
5155 | do_div(temp, total); | 3450 | do_div(temp, total); |
5156 | } | 3451 | utime = (cputime_t)temp; |
5157 | utime = (clock_t)temp; | 3452 | } else |
3453 | utime = rtime; | ||
5158 | 3454 | ||
5159 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | 3455 | /* |
5160 | return p->prev_utime; | 3456 | * Compare with previous values, to keep monotonicity: |
3457 | */ | ||
3458 | p->prev_utime = max(p->prev_utime, utime); | ||
3459 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | ||
3460 | |||
3461 | *ut = p->prev_utime; | ||
3462 | *st = p->prev_stime; | ||
5161 | } | 3463 | } |
5162 | 3464 | ||
5163 | cputime_t task_stime(struct task_struct *p) | 3465 | /* |
3466 | * Must be called with siglock held. | ||
3467 | */ | ||
3468 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
5164 | { | 3469 | { |
5165 | clock_t stime; | 3470 | struct signal_struct *sig = p->signal; |
3471 | struct task_cputime cputime; | ||
3472 | cputime_t rtime, utime, total; | ||
5166 | 3473 | ||
5167 | /* | 3474 | thread_group_cputime(p, &cputime); |
5168 | * Use CFS's precise accounting. (we subtract utime from | ||
5169 | * the total, to make sure the total observed by userspace | ||
5170 | * grows monotonically - apps rely on that): | ||
5171 | */ | ||
5172 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | ||
5173 | cputime_to_clock_t(task_utime(p)); | ||
5174 | 3475 | ||
5175 | if (stime >= 0) | 3476 | total = cputime_add(cputime.utime, cputime.stime); |
5176 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | 3477 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
5177 | 3478 | ||
5178 | return p->prev_stime; | 3479 | if (total) { |
5179 | } | 3480 | u64 temp; |
5180 | #endif | ||
5181 | 3481 | ||
5182 | inline cputime_t task_gtime(struct task_struct *p) | 3482 | temp = (u64)(rtime * cputime.utime); |
5183 | { | 3483 | do_div(temp, total); |
5184 | return p->gtime; | 3484 | utime = (cputime_t)temp; |
3485 | } else | ||
3486 | utime = rtime; | ||
3487 | |||
3488 | sig->prev_utime = max(sig->prev_utime, utime); | ||
3489 | sig->prev_stime = max(sig->prev_stime, | ||
3490 | cputime_sub(rtime, sig->prev_utime)); | ||
3491 | |||
3492 | *ut = sig->prev_utime; | ||
3493 | *st = sig->prev_stime; | ||
5185 | } | 3494 | } |
3495 | #endif | ||
5186 | 3496 | ||
5187 | /* | 3497 | /* |
5188 | * This function gets called by the timer code, with HZ frequency. | 3498 | * This function gets called by the timer code, with HZ frequency. |
@@ -5199,13 +3509,13 @@ void scheduler_tick(void) | |||
5199 | 3509 | ||
5200 | sched_clock_tick(); | 3510 | sched_clock_tick(); |
5201 | 3511 | ||
5202 | spin_lock(&rq->lock); | 3512 | raw_spin_lock(&rq->lock); |
5203 | update_rq_clock(rq); | 3513 | update_rq_clock(rq); |
5204 | update_cpu_load(rq); | 3514 | update_cpu_load(rq); |
5205 | curr->sched_class->task_tick(rq, curr, 0); | 3515 | curr->sched_class->task_tick(rq, curr, 0); |
5206 | spin_unlock(&rq->lock); | 3516 | raw_spin_unlock(&rq->lock); |
5207 | 3517 | ||
5208 | perf_event_task_tick(curr, cpu); | 3518 | perf_event_task_tick(curr); |
5209 | 3519 | ||
5210 | #ifdef CONFIG_SMP | 3520 | #ifdef CONFIG_SMP |
5211 | rq->idle_at_tick = idle_cpu(cpu); | 3521 | rq->idle_at_tick = idle_cpu(cpu); |
@@ -5317,13 +3627,14 @@ static inline void schedule_debug(struct task_struct *prev) | |||
5317 | #endif | 3627 | #endif |
5318 | } | 3628 | } |
5319 | 3629 | ||
5320 | static void put_prev_task(struct rq *rq, struct task_struct *p) | 3630 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
5321 | { | 3631 | { |
5322 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; | 3632 | if (prev->state == TASK_RUNNING) { |
3633 | u64 runtime = prev->se.sum_exec_runtime; | ||
5323 | 3634 | ||
5324 | update_avg(&p->se.avg_running, runtime); | 3635 | runtime -= prev->se.prev_sum_exec_runtime; |
3636 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
5325 | 3637 | ||
5326 | if (p->state == TASK_RUNNING) { | ||
5327 | /* | 3638 | /* |
5328 | * In order to avoid avg_overlap growing stale when we are | 3639 | * In order to avoid avg_overlap growing stale when we are |
5329 | * indeed overlapping and hence not getting put to sleep, grow | 3640 | * indeed overlapping and hence not getting put to sleep, grow |
@@ -5333,12 +3644,9 @@ static void put_prev_task(struct rq *rq, struct task_struct *p) | |||
5333 | * correlates to the amount of cache footprint a task can | 3644 | * correlates to the amount of cache footprint a task can |
5334 | * build up. | 3645 | * build up. |
5335 | */ | 3646 | */ |
5336 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | 3647 | update_avg(&prev->se.avg_overlap, runtime); |
5337 | update_avg(&p->se.avg_overlap, runtime); | ||
5338 | } else { | ||
5339 | update_avg(&p->se.avg_running, 0); | ||
5340 | } | 3648 | } |
5341 | p->sched_class->put_prev_task(rq, p); | 3649 | prev->sched_class->put_prev_task(rq, prev); |
5342 | } | 3650 | } |
5343 | 3651 | ||
5344 | /* | 3652 | /* |
@@ -5399,7 +3707,7 @@ need_resched_nonpreemptible: | |||
5399 | if (sched_feat(HRTICK)) | 3707 | if (sched_feat(HRTICK)) |
5400 | hrtick_clear(rq); | 3708 | hrtick_clear(rq); |
5401 | 3709 | ||
5402 | spin_lock_irq(&rq->lock); | 3710 | raw_spin_lock_irq(&rq->lock); |
5403 | update_rq_clock(rq); | 3711 | update_rq_clock(rq); |
5404 | clear_tsk_need_resched(prev); | 3712 | clear_tsk_need_resched(prev); |
5405 | 3713 | ||
@@ -5421,7 +3729,7 @@ need_resched_nonpreemptible: | |||
5421 | 3729 | ||
5422 | if (likely(prev != next)) { | 3730 | if (likely(prev != next)) { |
5423 | sched_info_switch(prev, next); | 3731 | sched_info_switch(prev, next); |
5424 | perf_event_task_sched_out(prev, next, cpu); | 3732 | perf_event_task_sched_out(prev, next); |
5425 | 3733 | ||
5426 | rq->nr_switches++; | 3734 | rq->nr_switches++; |
5427 | rq->curr = next; | 3735 | rq->curr = next; |
@@ -5435,12 +3743,15 @@ need_resched_nonpreemptible: | |||
5435 | cpu = smp_processor_id(); | 3743 | cpu = smp_processor_id(); |
5436 | rq = cpu_rq(cpu); | 3744 | rq = cpu_rq(cpu); |
5437 | } else | 3745 | } else |
5438 | spin_unlock_irq(&rq->lock); | 3746 | raw_spin_unlock_irq(&rq->lock); |
5439 | 3747 | ||
5440 | post_schedule(rq); | 3748 | post_schedule(rq); |
5441 | 3749 | ||
5442 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 3750 | if (unlikely(reacquire_kernel_lock(current) < 0)) { |
3751 | prev = rq->curr; | ||
3752 | switch_count = &prev->nivcsw; | ||
5443 | goto need_resched_nonpreemptible; | 3753 | goto need_resched_nonpreemptible; |
3754 | } | ||
5444 | 3755 | ||
5445 | preempt_enable_no_resched(); | 3756 | preempt_enable_no_resched(); |
5446 | if (need_resched()) | 3757 | if (need_resched()) |
@@ -5448,7 +3759,7 @@ need_resched_nonpreemptible: | |||
5448 | } | 3759 | } |
5449 | EXPORT_SYMBOL(schedule); | 3760 | EXPORT_SYMBOL(schedule); |
5450 | 3761 | ||
5451 | #ifdef CONFIG_SMP | 3762 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
5452 | /* | 3763 | /* |
5453 | * Look out! "owner" is an entirely speculative pointer | 3764 | * Look out! "owner" is an entirely speculative pointer |
5454 | * access and not reliable. | 3765 | * access and not reliable. |
@@ -5852,14 +4163,15 @@ EXPORT_SYMBOL(wait_for_completion_killable); | |||
5852 | */ | 4163 | */ |
5853 | bool try_wait_for_completion(struct completion *x) | 4164 | bool try_wait_for_completion(struct completion *x) |
5854 | { | 4165 | { |
4166 | unsigned long flags; | ||
5855 | int ret = 1; | 4167 | int ret = 1; |
5856 | 4168 | ||
5857 | spin_lock_irq(&x->wait.lock); | 4169 | spin_lock_irqsave(&x->wait.lock, flags); |
5858 | if (!x->done) | 4170 | if (!x->done) |
5859 | ret = 0; | 4171 | ret = 0; |
5860 | else | 4172 | else |
5861 | x->done--; | 4173 | x->done--; |
5862 | spin_unlock_irq(&x->wait.lock); | 4174 | spin_unlock_irqrestore(&x->wait.lock, flags); |
5863 | return ret; | 4175 | return ret; |
5864 | } | 4176 | } |
5865 | EXPORT_SYMBOL(try_wait_for_completion); | 4177 | EXPORT_SYMBOL(try_wait_for_completion); |
@@ -5874,12 +4186,13 @@ EXPORT_SYMBOL(try_wait_for_completion); | |||
5874 | */ | 4186 | */ |
5875 | bool completion_done(struct completion *x) | 4187 | bool completion_done(struct completion *x) |
5876 | { | 4188 | { |
4189 | unsigned long flags; | ||
5877 | int ret = 1; | 4190 | int ret = 1; |
5878 | 4191 | ||
5879 | spin_lock_irq(&x->wait.lock); | 4192 | spin_lock_irqsave(&x->wait.lock, flags); |
5880 | if (!x->done) | 4193 | if (!x->done) |
5881 | ret = 0; | 4194 | ret = 0; |
5882 | spin_unlock_irq(&x->wait.lock); | 4195 | spin_unlock_irqrestore(&x->wait.lock, flags); |
5883 | return ret; | 4196 | return ret; |
5884 | } | 4197 | } |
5885 | EXPORT_SYMBOL(completion_done); | 4198 | EXPORT_SYMBOL(completion_done); |
@@ -5947,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
5947 | unsigned long flags; | 4260 | unsigned long flags; |
5948 | int oldprio, on_rq, running; | 4261 | int oldprio, on_rq, running; |
5949 | struct rq *rq; | 4262 | struct rq *rq; |
5950 | const struct sched_class *prev_class = p->sched_class; | 4263 | const struct sched_class *prev_class; |
5951 | 4264 | ||
5952 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 4265 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
5953 | 4266 | ||
@@ -5955,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
5955 | update_rq_clock(rq); | 4268 | update_rq_clock(rq); |
5956 | 4269 | ||
5957 | oldprio = p->prio; | 4270 | oldprio = p->prio; |
4271 | prev_class = p->sched_class; | ||
5958 | on_rq = p->se.on_rq; | 4272 | on_rq = p->se.on_rq; |
5959 | running = task_current(rq, p); | 4273 | running = task_current(rq, p); |
5960 | if (on_rq) | 4274 | if (on_rq) |
@@ -5972,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
5972 | if (running) | 4286 | if (running) |
5973 | p->sched_class->set_curr_task(rq); | 4287 | p->sched_class->set_curr_task(rq); |
5974 | if (on_rq) { | 4288 | if (on_rq) { |
5975 | enqueue_task(rq, p, 0); | 4289 | enqueue_task(rq, p, 0, oldprio < prio); |
5976 | 4290 | ||
5977 | check_class_changed(rq, p, prev_class, oldprio, running); | 4291 | check_class_changed(rq, p, prev_class, oldprio, running); |
5978 | } | 4292 | } |
@@ -6016,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
6016 | delta = p->prio - old_prio; | 4330 | delta = p->prio - old_prio; |
6017 | 4331 | ||
6018 | if (on_rq) { | 4332 | if (on_rq) { |
6019 | enqueue_task(rq, p, 0); | 4333 | enqueue_task(rq, p, 0, false); |
6020 | /* | 4334 | /* |
6021 | * If the task increased its priority or is running and | 4335 | * If the task increased its priority or is running and |
6022 | * lowered its priority, then reschedule its CPU: | 4336 | * lowered its priority, then reschedule its CPU: |
@@ -6039,7 +4353,7 @@ int can_nice(const struct task_struct *p, const int nice) | |||
6039 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 4353 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
6040 | int nice_rlim = 20 - nice; | 4354 | int nice_rlim = 20 - nice; |
6041 | 4355 | ||
6042 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 4356 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
6043 | capable(CAP_SYS_NICE)); | 4357 | capable(CAP_SYS_NICE)); |
6044 | } | 4358 | } |
6045 | 4359 | ||
@@ -6142,22 +4456,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |||
6142 | BUG_ON(p->se.on_rq); | 4456 | BUG_ON(p->se.on_rq); |
6143 | 4457 | ||
6144 | p->policy = policy; | 4458 | p->policy = policy; |
6145 | switch (p->policy) { | ||
6146 | case SCHED_NORMAL: | ||
6147 | case SCHED_BATCH: | ||
6148 | case SCHED_IDLE: | ||
6149 | p->sched_class = &fair_sched_class; | ||
6150 | break; | ||
6151 | case SCHED_FIFO: | ||
6152 | case SCHED_RR: | ||
6153 | p->sched_class = &rt_sched_class; | ||
6154 | break; | ||
6155 | } | ||
6156 | |||
6157 | p->rt_priority = prio; | 4459 | p->rt_priority = prio; |
6158 | p->normal_prio = normal_prio(p); | 4460 | p->normal_prio = normal_prio(p); |
6159 | /* we are holding p->pi_lock already */ | 4461 | /* we are holding p->pi_lock already */ |
6160 | p->prio = rt_mutex_getprio(p); | 4462 | p->prio = rt_mutex_getprio(p); |
4463 | if (rt_prio(p->prio)) | ||
4464 | p->sched_class = &rt_sched_class; | ||
4465 | else | ||
4466 | p->sched_class = &fair_sched_class; | ||
6161 | set_load_weight(p); | 4467 | set_load_weight(p); |
6162 | } | 4468 | } |
6163 | 4469 | ||
@@ -6182,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy, | |||
6182 | { | 4488 | { |
6183 | int retval, oldprio, oldpolicy = -1, on_rq, running; | 4489 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
6184 | unsigned long flags; | 4490 | unsigned long flags; |
6185 | const struct sched_class *prev_class = p->sched_class; | 4491 | const struct sched_class *prev_class; |
6186 | struct rq *rq; | 4492 | struct rq *rq; |
6187 | int reset_on_fork; | 4493 | int reset_on_fork; |
6188 | 4494 | ||
@@ -6224,7 +4530,7 @@ recheck: | |||
6224 | 4530 | ||
6225 | if (!lock_task_sighand(p, &flags)) | 4531 | if (!lock_task_sighand(p, &flags)) |
6226 | return -ESRCH; | 4532 | return -ESRCH; |
6227 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | 4533 | rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); |
6228 | unlock_task_sighand(p, &flags); | 4534 | unlock_task_sighand(p, &flags); |
6229 | 4535 | ||
6230 | /* can't set/change the rt policy */ | 4536 | /* can't set/change the rt policy */ |
@@ -6272,7 +4578,7 @@ recheck: | |||
6272 | * make sure no PI-waiters arrive (or leave) while we are | 4578 | * make sure no PI-waiters arrive (or leave) while we are |
6273 | * changing the priority of the task: | 4579 | * changing the priority of the task: |
6274 | */ | 4580 | */ |
6275 | spin_lock_irqsave(&p->pi_lock, flags); | 4581 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
6276 | /* | 4582 | /* |
6277 | * To be able to change p->policy safely, the apropriate | 4583 | * To be able to change p->policy safely, the apropriate |
6278 | * runqueue lock must be held. | 4584 | * runqueue lock must be held. |
@@ -6282,7 +4588,7 @@ recheck: | |||
6282 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 4588 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
6283 | policy = oldpolicy = -1; | 4589 | policy = oldpolicy = -1; |
6284 | __task_rq_unlock(rq); | 4590 | __task_rq_unlock(rq); |
6285 | spin_unlock_irqrestore(&p->pi_lock, flags); | 4591 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
6286 | goto recheck; | 4592 | goto recheck; |
6287 | } | 4593 | } |
6288 | update_rq_clock(rq); | 4594 | update_rq_clock(rq); |
@@ -6296,6 +4602,7 @@ recheck: | |||
6296 | p->sched_reset_on_fork = reset_on_fork; | 4602 | p->sched_reset_on_fork = reset_on_fork; |
6297 | 4603 | ||
6298 | oldprio = p->prio; | 4604 | oldprio = p->prio; |
4605 | prev_class = p->sched_class; | ||
6299 | __setscheduler(rq, p, policy, param->sched_priority); | 4606 | __setscheduler(rq, p, policy, param->sched_priority); |
6300 | 4607 | ||
6301 | if (running) | 4608 | if (running) |
@@ -6306,7 +4613,7 @@ recheck: | |||
6306 | check_class_changed(rq, p, prev_class, oldprio, running); | 4613 | check_class_changed(rq, p, prev_class, oldprio, running); |
6307 | } | 4614 | } |
6308 | __task_rq_unlock(rq); | 4615 | __task_rq_unlock(rq); |
6309 | spin_unlock_irqrestore(&p->pi_lock, flags); | 4616 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
6310 | 4617 | ||
6311 | rt_mutex_adjust_pi(p); | 4618 | rt_mutex_adjust_pi(p); |
6312 | 4619 | ||
@@ -6406,7 +4713,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
6406 | return -EINVAL; | 4713 | return -EINVAL; |
6407 | 4714 | ||
6408 | retval = -ESRCH; | 4715 | retval = -ESRCH; |
6409 | read_lock(&tasklist_lock); | 4716 | rcu_read_lock(); |
6410 | p = find_process_by_pid(pid); | 4717 | p = find_process_by_pid(pid); |
6411 | if (p) { | 4718 | if (p) { |
6412 | retval = security_task_getscheduler(p); | 4719 | retval = security_task_getscheduler(p); |
@@ -6414,7 +4721,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
6414 | retval = p->policy | 4721 | retval = p->policy |
6415 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | 4722 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); |
6416 | } | 4723 | } |
6417 | read_unlock(&tasklist_lock); | 4724 | rcu_read_unlock(); |
6418 | return retval; | 4725 | return retval; |
6419 | } | 4726 | } |
6420 | 4727 | ||
@@ -6432,7 +4739,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
6432 | if (!param || pid < 0) | 4739 | if (!param || pid < 0) |
6433 | return -EINVAL; | 4740 | return -EINVAL; |
6434 | 4741 | ||
6435 | read_lock(&tasklist_lock); | 4742 | rcu_read_lock(); |
6436 | p = find_process_by_pid(pid); | 4743 | p = find_process_by_pid(pid); |
6437 | retval = -ESRCH; | 4744 | retval = -ESRCH; |
6438 | if (!p) | 4745 | if (!p) |
@@ -6443,7 +4750,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
6443 | goto out_unlock; | 4750 | goto out_unlock; |
6444 | 4751 | ||
6445 | lp.sched_priority = p->rt_priority; | 4752 | lp.sched_priority = p->rt_priority; |
6446 | read_unlock(&tasklist_lock); | 4753 | rcu_read_unlock(); |
6447 | 4754 | ||
6448 | /* | 4755 | /* |
6449 | * This one might sleep, we cannot do it with a spinlock held ... | 4756 | * This one might sleep, we cannot do it with a spinlock held ... |
@@ -6453,7 +4760,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
6453 | return retval; | 4760 | return retval; |
6454 | 4761 | ||
6455 | out_unlock: | 4762 | out_unlock: |
6456 | read_unlock(&tasklist_lock); | 4763 | rcu_read_unlock(); |
6457 | return retval; | 4764 | return retval; |
6458 | } | 4765 | } |
6459 | 4766 | ||
@@ -6464,22 +4771,18 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | |||
6464 | int retval; | 4771 | int retval; |
6465 | 4772 | ||
6466 | get_online_cpus(); | 4773 | get_online_cpus(); |
6467 | read_lock(&tasklist_lock); | 4774 | rcu_read_lock(); |
6468 | 4775 | ||
6469 | p = find_process_by_pid(pid); | 4776 | p = find_process_by_pid(pid); |
6470 | if (!p) { | 4777 | if (!p) { |
6471 | read_unlock(&tasklist_lock); | 4778 | rcu_read_unlock(); |
6472 | put_online_cpus(); | 4779 | put_online_cpus(); |
6473 | return -ESRCH; | 4780 | return -ESRCH; |
6474 | } | 4781 | } |
6475 | 4782 | ||
6476 | /* | 4783 | /* Prevent p going away */ |
6477 | * It is not safe to call set_cpus_allowed with the | ||
6478 | * tasklist_lock held. We will bump the task_struct's | ||
6479 | * usage count and then drop tasklist_lock. | ||
6480 | */ | ||
6481 | get_task_struct(p); | 4784 | get_task_struct(p); |
6482 | read_unlock(&tasklist_lock); | 4785 | rcu_read_unlock(); |
6483 | 4786 | ||
6484 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | 4787 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
6485 | retval = -ENOMEM; | 4788 | retval = -ENOMEM; |
@@ -6560,10 +4863,12 @@ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | |||
6560 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 4863 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
6561 | { | 4864 | { |
6562 | struct task_struct *p; | 4865 | struct task_struct *p; |
4866 | unsigned long flags; | ||
4867 | struct rq *rq; | ||
6563 | int retval; | 4868 | int retval; |
6564 | 4869 | ||
6565 | get_online_cpus(); | 4870 | get_online_cpus(); |
6566 | read_lock(&tasklist_lock); | 4871 | rcu_read_lock(); |
6567 | 4872 | ||
6568 | retval = -ESRCH; | 4873 | retval = -ESRCH; |
6569 | p = find_process_by_pid(pid); | 4874 | p = find_process_by_pid(pid); |
@@ -6574,10 +4879,12 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask) | |||
6574 | if (retval) | 4879 | if (retval) |
6575 | goto out_unlock; | 4880 | goto out_unlock; |
6576 | 4881 | ||
4882 | rq = task_rq_lock(p, &flags); | ||
6577 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); | 4883 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
4884 | task_rq_unlock(rq, &flags); | ||
6578 | 4885 | ||
6579 | out_unlock: | 4886 | out_unlock: |
6580 | read_unlock(&tasklist_lock); | 4887 | rcu_read_unlock(); |
6581 | put_online_cpus(); | 4888 | put_online_cpus(); |
6582 | 4889 | ||
6583 | return retval; | 4890 | return retval; |
@@ -6632,7 +4939,7 @@ SYSCALL_DEFINE0(sched_yield) | |||
6632 | */ | 4939 | */ |
6633 | __release(rq->lock); | 4940 | __release(rq->lock); |
6634 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 4941 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
6635 | _raw_spin_unlock(&rq->lock); | 4942 | do_raw_spin_unlock(&rq->lock); |
6636 | preempt_enable_no_resched(); | 4943 | preempt_enable_no_resched(); |
6637 | 4944 | ||
6638 | schedule(); | 4945 | schedule(); |
@@ -6720,9 +5027,6 @@ EXPORT_SYMBOL(yield); | |||
6720 | /* | 5027 | /* |
6721 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 5028 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
6722 | * that process accounting knows that this is a task in IO wait state. | 5029 | * that process accounting knows that this is a task in IO wait state. |
6723 | * | ||
6724 | * But don't do that if it is a deliberate, throttling IO wait (this task | ||
6725 | * has set its backing_dev_info: the queue against which it should throttle) | ||
6726 | */ | 5030 | */ |
6727 | void __sched io_schedule(void) | 5031 | void __sched io_schedule(void) |
6728 | { | 5032 | { |
@@ -6815,6 +5119,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6815 | { | 5119 | { |
6816 | struct task_struct *p; | 5120 | struct task_struct *p; |
6817 | unsigned int time_slice; | 5121 | unsigned int time_slice; |
5122 | unsigned long flags; | ||
5123 | struct rq *rq; | ||
6818 | int retval; | 5124 | int retval; |
6819 | struct timespec t; | 5125 | struct timespec t; |
6820 | 5126 | ||
@@ -6822,7 +5128,7 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6822 | return -EINVAL; | 5128 | return -EINVAL; |
6823 | 5129 | ||
6824 | retval = -ESRCH; | 5130 | retval = -ESRCH; |
6825 | read_lock(&tasklist_lock); | 5131 | rcu_read_lock(); |
6826 | p = find_process_by_pid(pid); | 5132 | p = find_process_by_pid(pid); |
6827 | if (!p) | 5133 | if (!p) |
6828 | goto out_unlock; | 5134 | goto out_unlock; |
@@ -6831,15 +5137,17 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6831 | if (retval) | 5137 | if (retval) |
6832 | goto out_unlock; | 5138 | goto out_unlock; |
6833 | 5139 | ||
6834 | time_slice = p->sched_class->get_rr_interval(p); | 5140 | rq = task_rq_lock(p, &flags); |
5141 | time_slice = p->sched_class->get_rr_interval(rq, p); | ||
5142 | task_rq_unlock(rq, &flags); | ||
6835 | 5143 | ||
6836 | read_unlock(&tasklist_lock); | 5144 | rcu_read_unlock(); |
6837 | jiffies_to_timespec(time_slice, &t); | 5145 | jiffies_to_timespec(time_slice, &t); |
6838 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 5146 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
6839 | return retval; | 5147 | return retval; |
6840 | 5148 | ||
6841 | out_unlock: | 5149 | out_unlock: |
6842 | read_unlock(&tasklist_lock); | 5150 | rcu_read_unlock(); |
6843 | return retval; | 5151 | return retval; |
6844 | } | 5152 | } |
6845 | 5153 | ||
@@ -6905,7 +5213,7 @@ void show_state_filter(unsigned long state_filter) | |||
6905 | /* | 5213 | /* |
6906 | * Only show locks if all tasks are dumped: | 5214 | * Only show locks if all tasks are dumped: |
6907 | */ | 5215 | */ |
6908 | if (state_filter == -1) | 5216 | if (!state_filter) |
6909 | debug_show_all_locks(); | 5217 | debug_show_all_locks(); |
6910 | } | 5218 | } |
6911 | 5219 | ||
@@ -6927,12 +5235,12 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) | |||
6927 | struct rq *rq = cpu_rq(cpu); | 5235 | struct rq *rq = cpu_rq(cpu); |
6928 | unsigned long flags; | 5236 | unsigned long flags; |
6929 | 5237 | ||
6930 | spin_lock_irqsave(&rq->lock, flags); | 5238 | raw_spin_lock_irqsave(&rq->lock, flags); |
6931 | 5239 | ||
6932 | __sched_fork(idle); | 5240 | __sched_fork(idle); |
5241 | idle->state = TASK_RUNNING; | ||
6933 | idle->se.exec_start = sched_clock(); | 5242 | idle->se.exec_start = sched_clock(); |
6934 | 5243 | ||
6935 | idle->prio = idle->normal_prio = MAX_PRIO; | ||
6936 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); | 5244 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
6937 | __set_task_cpu(idle, cpu); | 5245 | __set_task_cpu(idle, cpu); |
6938 | 5246 | ||
@@ -6940,7 +5248,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) | |||
6940 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 5248 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
6941 | idle->oncpu = 1; | 5249 | idle->oncpu = 1; |
6942 | #endif | 5250 | #endif |
6943 | spin_unlock_irqrestore(&rq->lock, flags); | 5251 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
6944 | 5252 | ||
6945 | /* Set the preempt count _outside_ the spinlocks! */ | 5253 | /* Set the preempt count _outside_ the spinlocks! */ |
6946 | #if defined(CONFIG_PREEMPT) | 5254 | #if defined(CONFIG_PREEMPT) |
@@ -6973,22 +5281,43 @@ cpumask_var_t nohz_cpu_mask; | |||
6973 | * | 5281 | * |
6974 | * This idea comes from the SD scheduler of Con Kolivas: | 5282 | * This idea comes from the SD scheduler of Con Kolivas: |
6975 | */ | 5283 | */ |
6976 | static inline void sched_init_granularity(void) | 5284 | static int get_update_sysctl_factor(void) |
6977 | { | 5285 | { |
6978 | unsigned int factor = 1 + ilog2(num_online_cpus()); | 5286 | unsigned int cpus = min_t(int, num_online_cpus(), 8); |
6979 | const unsigned long limit = 200000000; | 5287 | unsigned int factor; |
6980 | 5288 | ||
6981 | sysctl_sched_min_granularity *= factor; | 5289 | switch (sysctl_sched_tunable_scaling) { |
6982 | if (sysctl_sched_min_granularity > limit) | 5290 | case SCHED_TUNABLESCALING_NONE: |
6983 | sysctl_sched_min_granularity = limit; | 5291 | factor = 1; |
5292 | break; | ||
5293 | case SCHED_TUNABLESCALING_LINEAR: | ||
5294 | factor = cpus; | ||
5295 | break; | ||
5296 | case SCHED_TUNABLESCALING_LOG: | ||
5297 | default: | ||
5298 | factor = 1 + ilog2(cpus); | ||
5299 | break; | ||
5300 | } | ||
6984 | 5301 | ||
6985 | sysctl_sched_latency *= factor; | 5302 | return factor; |
6986 | if (sysctl_sched_latency > limit) | 5303 | } |
6987 | sysctl_sched_latency = limit; | ||
6988 | 5304 | ||
6989 | sysctl_sched_wakeup_granularity *= factor; | 5305 | static void update_sysctl(void) |
5306 | { | ||
5307 | unsigned int factor = get_update_sysctl_factor(); | ||
6990 | 5308 | ||
6991 | sysctl_sched_shares_ratelimit *= factor; | 5309 | #define SET_SYSCTL(name) \ |
5310 | (sysctl_##name = (factor) * normalized_sysctl_##name) | ||
5311 | SET_SYSCTL(sched_min_granularity); | ||
5312 | SET_SYSCTL(sched_latency); | ||
5313 | SET_SYSCTL(sched_wakeup_granularity); | ||
5314 | SET_SYSCTL(sched_shares_ratelimit); | ||
5315 | #undef SET_SYSCTL | ||
5316 | } | ||
5317 | |||
5318 | static inline void sched_init_granularity(void) | ||
5319 | { | ||
5320 | update_sysctl(); | ||
6992 | } | 5321 | } |
6993 | 5322 | ||
6994 | #ifdef CONFIG_SMP | 5323 | #ifdef CONFIG_SMP |
@@ -7025,7 +5354,8 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
7025 | int ret = 0; | 5354 | int ret = 0; |
7026 | 5355 | ||
7027 | rq = task_rq_lock(p, &flags); | 5356 | rq = task_rq_lock(p, &flags); |
7028 | if (!cpumask_intersects(new_mask, cpu_online_mask)) { | 5357 | |
5358 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | ||
7029 | ret = -EINVAL; | 5359 | ret = -EINVAL; |
7030 | goto out; | 5360 | goto out; |
7031 | } | 5361 | } |
@@ -7047,7 +5377,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
7047 | if (cpumask_test_cpu(task_cpu(p), new_mask)) | 5377 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
7048 | goto out; | 5378 | goto out; |
7049 | 5379 | ||
7050 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { | 5380 | if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { |
7051 | /* Need help from migration thread: drop lock and wait. */ | 5381 | /* Need help from migration thread: drop lock and wait. */ |
7052 | struct task_struct *mt = rq->migration_thread; | 5382 | struct task_struct *mt = rq->migration_thread; |
7053 | 5383 | ||
@@ -7080,7 +5410,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | |||
7080 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 5410 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
7081 | { | 5411 | { |
7082 | struct rq *rq_dest, *rq_src; | 5412 | struct rq *rq_dest, *rq_src; |
7083 | int ret = 0, on_rq; | 5413 | int ret = 0; |
7084 | 5414 | ||
7085 | if (unlikely(!cpu_active(dest_cpu))) | 5415 | if (unlikely(!cpu_active(dest_cpu))) |
7086 | return ret; | 5416 | return ret; |
@@ -7096,12 +5426,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | |||
7096 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | 5426 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
7097 | goto fail; | 5427 | goto fail; |
7098 | 5428 | ||
7099 | on_rq = p->se.on_rq; | 5429 | /* |
7100 | if (on_rq) | 5430 | * If we're not on a rq, the next wake-up will ensure we're |
5431 | * placed properly. | ||
5432 | */ | ||
5433 | if (p->se.on_rq) { | ||
7101 | deactivate_task(rq_src, p, 0); | 5434 | deactivate_task(rq_src, p, 0); |
7102 | 5435 | set_task_cpu(p, dest_cpu); | |
7103 | set_task_cpu(p, dest_cpu); | ||
7104 | if (on_rq) { | ||
7105 | activate_task(rq_dest, p, 0); | 5436 | activate_task(rq_dest, p, 0); |
7106 | check_preempt_curr(rq_dest, p, 0); | 5437 | check_preempt_curr(rq_dest, p, 0); |
7107 | } | 5438 | } |
@@ -7136,10 +5467,10 @@ static int migration_thread(void *data) | |||
7136 | struct migration_req *req; | 5467 | struct migration_req *req; |
7137 | struct list_head *head; | 5468 | struct list_head *head; |
7138 | 5469 | ||
7139 | spin_lock_irq(&rq->lock); | 5470 | raw_spin_lock_irq(&rq->lock); |
7140 | 5471 | ||
7141 | if (cpu_is_offline(cpu)) { | 5472 | if (cpu_is_offline(cpu)) { |
7142 | spin_unlock_irq(&rq->lock); | 5473 | raw_spin_unlock_irq(&rq->lock); |
7143 | break; | 5474 | break; |
7144 | } | 5475 | } |
7145 | 5476 | ||
@@ -7151,7 +5482,7 @@ static int migration_thread(void *data) | |||
7151 | head = &rq->migration_queue; | 5482 | head = &rq->migration_queue; |
7152 | 5483 | ||
7153 | if (list_empty(head)) { | 5484 | if (list_empty(head)) { |
7154 | spin_unlock_irq(&rq->lock); | 5485 | raw_spin_unlock_irq(&rq->lock); |
7155 | schedule(); | 5486 | schedule(); |
7156 | set_current_state(TASK_INTERRUPTIBLE); | 5487 | set_current_state(TASK_INTERRUPTIBLE); |
7157 | continue; | 5488 | continue; |
@@ -7160,14 +5491,14 @@ static int migration_thread(void *data) | |||
7160 | list_del_init(head->next); | 5491 | list_del_init(head->next); |
7161 | 5492 | ||
7162 | if (req->task != NULL) { | 5493 | if (req->task != NULL) { |
7163 | spin_unlock(&rq->lock); | 5494 | raw_spin_unlock(&rq->lock); |
7164 | __migrate_task(req->task, cpu, req->dest_cpu); | 5495 | __migrate_task(req->task, cpu, req->dest_cpu); |
7165 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { | 5496 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { |
7166 | req->dest_cpu = RCU_MIGRATION_GOT_QS; | 5497 | req->dest_cpu = RCU_MIGRATION_GOT_QS; |
7167 | spin_unlock(&rq->lock); | 5498 | raw_spin_unlock(&rq->lock); |
7168 | } else { | 5499 | } else { |
7169 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | 5500 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; |
7170 | spin_unlock(&rq->lock); | 5501 | raw_spin_unlock(&rq->lock); |
7171 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | 5502 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); |
7172 | } | 5503 | } |
7173 | local_irq_enable(); | 5504 | local_irq_enable(); |
@@ -7197,37 +5528,10 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |||
7197 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 5528 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
7198 | { | 5529 | { |
7199 | int dest_cpu; | 5530 | int dest_cpu; |
7200 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); | ||
7201 | 5531 | ||
7202 | again: | 5532 | again: |
7203 | /* Look for allowed, online CPU in same node. */ | 5533 | dest_cpu = select_fallback_rq(dead_cpu, p); |
7204 | for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) | ||
7205 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | ||
7206 | goto move; | ||
7207 | |||
7208 | /* Any allowed, online CPU? */ | ||
7209 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); | ||
7210 | if (dest_cpu < nr_cpu_ids) | ||
7211 | goto move; | ||
7212 | |||
7213 | /* No more Mr. Nice Guy. */ | ||
7214 | if (dest_cpu >= nr_cpu_ids) { | ||
7215 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
7216 | dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); | ||
7217 | |||
7218 | /* | ||
7219 | * Don't tell them about moving exiting tasks or | ||
7220 | * kernel threads (both mm NULL), since they never | ||
7221 | * leave kernel. | ||
7222 | */ | ||
7223 | if (p->mm && printk_ratelimit()) { | ||
7224 | printk(KERN_INFO "process %d (%s) no " | ||
7225 | "longer affine to cpu%d\n", | ||
7226 | task_pid_nr(p), p->comm, dead_cpu); | ||
7227 | } | ||
7228 | } | ||
7229 | 5534 | ||
7230 | move: | ||
7231 | /* It can have affinity changed while we were choosing. */ | 5535 | /* It can have affinity changed while we were choosing. */ |
7232 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | 5536 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) |
7233 | goto again; | 5537 | goto again; |
@@ -7242,7 +5546,7 @@ move: | |||
7242 | */ | 5546 | */ |
7243 | static void migrate_nr_uninterruptible(struct rq *rq_src) | 5547 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
7244 | { | 5548 | { |
7245 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); | 5549 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); |
7246 | unsigned long flags; | 5550 | unsigned long flags; |
7247 | 5551 | ||
7248 | local_irq_save(flags); | 5552 | local_irq_save(flags); |
@@ -7290,14 +5594,14 @@ void sched_idle_next(void) | |||
7290 | * Strictly not necessary since rest of the CPUs are stopped by now | 5594 | * Strictly not necessary since rest of the CPUs are stopped by now |
7291 | * and interrupts disabled on the current cpu. | 5595 | * and interrupts disabled on the current cpu. |
7292 | */ | 5596 | */ |
7293 | spin_lock_irqsave(&rq->lock, flags); | 5597 | raw_spin_lock_irqsave(&rq->lock, flags); |
7294 | 5598 | ||
7295 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 5599 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
7296 | 5600 | ||
7297 | update_rq_clock(rq); | 5601 | update_rq_clock(rq); |
7298 | activate_task(rq, p, 0); | 5602 | activate_task(rq, p, 0); |
7299 | 5603 | ||
7300 | spin_unlock_irqrestore(&rq->lock, flags); | 5604 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7301 | } | 5605 | } |
7302 | 5606 | ||
7303 | /* | 5607 | /* |
@@ -7333,9 +5637,9 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | |||
7333 | * that's OK. No task can be added to this CPU, so iteration is | 5637 | * that's OK. No task can be added to this CPU, so iteration is |
7334 | * fine. | 5638 | * fine. |
7335 | */ | 5639 | */ |
7336 | spin_unlock_irq(&rq->lock); | 5640 | raw_spin_unlock_irq(&rq->lock); |
7337 | move_task_off_dead_cpu(dead_cpu, p); | 5641 | move_task_off_dead_cpu(dead_cpu, p); |
7338 | spin_lock_irq(&rq->lock); | 5642 | raw_spin_lock_irq(&rq->lock); |
7339 | 5643 | ||
7340 | put_task_struct(p); | 5644 | put_task_struct(p); |
7341 | } | 5645 | } |
@@ -7376,17 +5680,16 @@ static struct ctl_table sd_ctl_dir[] = { | |||
7376 | .procname = "sched_domain", | 5680 | .procname = "sched_domain", |
7377 | .mode = 0555, | 5681 | .mode = 0555, |
7378 | }, | 5682 | }, |
7379 | {0, }, | 5683 | {} |
7380 | }; | 5684 | }; |
7381 | 5685 | ||
7382 | static struct ctl_table sd_ctl_root[] = { | 5686 | static struct ctl_table sd_ctl_root[] = { |
7383 | { | 5687 | { |
7384 | .ctl_name = CTL_KERN, | ||
7385 | .procname = "kernel", | 5688 | .procname = "kernel", |
7386 | .mode = 0555, | 5689 | .mode = 0555, |
7387 | .child = sd_ctl_dir, | 5690 | .child = sd_ctl_dir, |
7388 | }, | 5691 | }, |
7389 | {0, }, | 5692 | {} |
7390 | }; | 5693 | }; |
7391 | 5694 | ||
7392 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 5695 | static struct ctl_table *sd_alloc_ctl_entry(int n) |
@@ -7496,7 +5799,7 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | |||
7496 | static struct ctl_table_header *sd_sysctl_header; | 5799 | static struct ctl_table_header *sd_sysctl_header; |
7497 | static void register_sched_domain_sysctl(void) | 5800 | static void register_sched_domain_sysctl(void) |
7498 | { | 5801 | { |
7499 | int i, cpu_num = num_online_cpus(); | 5802 | int i, cpu_num = num_possible_cpus(); |
7500 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 5803 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
7501 | char buf[32]; | 5804 | char buf[32]; |
7502 | 5805 | ||
@@ -7506,7 +5809,7 @@ static void register_sched_domain_sysctl(void) | |||
7506 | if (entry == NULL) | 5809 | if (entry == NULL) |
7507 | return; | 5810 | return; |
7508 | 5811 | ||
7509 | for_each_online_cpu(i) { | 5812 | for_each_possible_cpu(i) { |
7510 | snprintf(buf, 32, "cpu%d", i); | 5813 | snprintf(buf, 32, "cpu%d", i); |
7511 | entry->procname = kstrdup(buf, GFP_KERNEL); | 5814 | entry->procname = kstrdup(buf, GFP_KERNEL); |
7512 | entry->mode = 0555; | 5815 | entry->mode = 0555; |
@@ -7602,13 +5905,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7602 | 5905 | ||
7603 | /* Update our root-domain */ | 5906 | /* Update our root-domain */ |
7604 | rq = cpu_rq(cpu); | 5907 | rq = cpu_rq(cpu); |
7605 | spin_lock_irqsave(&rq->lock, flags); | 5908 | raw_spin_lock_irqsave(&rq->lock, flags); |
7606 | if (rq->rd) { | 5909 | if (rq->rd) { |
7607 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5910 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
7608 | 5911 | ||
7609 | set_rq_online(rq); | 5912 | set_rq_online(rq); |
7610 | } | 5913 | } |
7611 | spin_unlock_irqrestore(&rq->lock, flags); | 5914 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7612 | break; | 5915 | break; |
7613 | 5916 | ||
7614 | #ifdef CONFIG_HOTPLUG_CPU | 5917 | #ifdef CONFIG_HOTPLUG_CPU |
@@ -7633,14 +5936,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7633 | put_task_struct(rq->migration_thread); | 5936 | put_task_struct(rq->migration_thread); |
7634 | rq->migration_thread = NULL; | 5937 | rq->migration_thread = NULL; |
7635 | /* Idle task back to normal (off runqueue, low prio) */ | 5938 | /* Idle task back to normal (off runqueue, low prio) */ |
7636 | spin_lock_irq(&rq->lock); | 5939 | raw_spin_lock_irq(&rq->lock); |
7637 | update_rq_clock(rq); | 5940 | update_rq_clock(rq); |
7638 | deactivate_task(rq, rq->idle, 0); | 5941 | deactivate_task(rq, rq->idle, 0); |
7639 | rq->idle->static_prio = MAX_PRIO; | ||
7640 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 5942 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
7641 | rq->idle->sched_class = &idle_sched_class; | 5943 | rq->idle->sched_class = &idle_sched_class; |
7642 | migrate_dead_tasks(cpu); | 5944 | migrate_dead_tasks(cpu); |
7643 | spin_unlock_irq(&rq->lock); | 5945 | raw_spin_unlock_irq(&rq->lock); |
7644 | cpuset_unlock(); | 5946 | cpuset_unlock(); |
7645 | migrate_nr_uninterruptible(rq); | 5947 | migrate_nr_uninterruptible(rq); |
7646 | BUG_ON(rq->nr_running != 0); | 5948 | BUG_ON(rq->nr_running != 0); |
@@ -7650,30 +5952,30 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7650 | * they didn't take sched_hotcpu_mutex. Just wake up | 5952 | * they didn't take sched_hotcpu_mutex. Just wake up |
7651 | * the requestors. | 5953 | * the requestors. |
7652 | */ | 5954 | */ |
7653 | spin_lock_irq(&rq->lock); | 5955 | raw_spin_lock_irq(&rq->lock); |
7654 | while (!list_empty(&rq->migration_queue)) { | 5956 | while (!list_empty(&rq->migration_queue)) { |
7655 | struct migration_req *req; | 5957 | struct migration_req *req; |
7656 | 5958 | ||
7657 | req = list_entry(rq->migration_queue.next, | 5959 | req = list_entry(rq->migration_queue.next, |
7658 | struct migration_req, list); | 5960 | struct migration_req, list); |
7659 | list_del_init(&req->list); | 5961 | list_del_init(&req->list); |
7660 | spin_unlock_irq(&rq->lock); | 5962 | raw_spin_unlock_irq(&rq->lock); |
7661 | complete(&req->done); | 5963 | complete(&req->done); |
7662 | spin_lock_irq(&rq->lock); | 5964 | raw_spin_lock_irq(&rq->lock); |
7663 | } | 5965 | } |
7664 | spin_unlock_irq(&rq->lock); | 5966 | raw_spin_unlock_irq(&rq->lock); |
7665 | break; | 5967 | break; |
7666 | 5968 | ||
7667 | case CPU_DYING: | 5969 | case CPU_DYING: |
7668 | case CPU_DYING_FROZEN: | 5970 | case CPU_DYING_FROZEN: |
7669 | /* Update our root-domain */ | 5971 | /* Update our root-domain */ |
7670 | rq = cpu_rq(cpu); | 5972 | rq = cpu_rq(cpu); |
7671 | spin_lock_irqsave(&rq->lock, flags); | 5973 | raw_spin_lock_irqsave(&rq->lock, flags); |
7672 | if (rq->rd) { | 5974 | if (rq->rd) { |
7673 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5975 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
7674 | set_rq_offline(rq); | 5976 | set_rq_offline(rq); |
7675 | } | 5977 | } |
7676 | spin_unlock_irqrestore(&rq->lock, flags); | 5978 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7677 | break; | 5979 | break; |
7678 | #endif | 5980 | #endif |
7679 | } | 5981 | } |
@@ -7710,6 +6012,16 @@ early_initcall(migration_init); | |||
7710 | 6012 | ||
7711 | #ifdef CONFIG_SCHED_DEBUG | 6013 | #ifdef CONFIG_SCHED_DEBUG |
7712 | 6014 | ||
6015 | static __read_mostly int sched_domain_debug_enabled; | ||
6016 | |||
6017 | static int __init sched_domain_debug_setup(char *str) | ||
6018 | { | ||
6019 | sched_domain_debug_enabled = 1; | ||
6020 | |||
6021 | return 0; | ||
6022 | } | ||
6023 | early_param("sched_debug", sched_domain_debug_setup); | ||
6024 | |||
7713 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 6025 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
7714 | struct cpumask *groupmask) | 6026 | struct cpumask *groupmask) |
7715 | { | 6027 | { |
@@ -7796,6 +6108,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) | |||
7796 | cpumask_var_t groupmask; | 6108 | cpumask_var_t groupmask; |
7797 | int level = 0; | 6109 | int level = 0; |
7798 | 6110 | ||
6111 | if (!sched_domain_debug_enabled) | ||
6112 | return; | ||
6113 | |||
7799 | if (!sd) { | 6114 | if (!sd) { |
7800 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 6115 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
7801 | return; | 6116 | return; |
@@ -7875,6 +6190,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
7875 | 6190 | ||
7876 | static void free_rootdomain(struct root_domain *rd) | 6191 | static void free_rootdomain(struct root_domain *rd) |
7877 | { | 6192 | { |
6193 | synchronize_sched(); | ||
6194 | |||
7878 | cpupri_cleanup(&rd->cpupri); | 6195 | cpupri_cleanup(&rd->cpupri); |
7879 | 6196 | ||
7880 | free_cpumask_var(rd->rto_mask); | 6197 | free_cpumask_var(rd->rto_mask); |
@@ -7888,7 +6205,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |||
7888 | struct root_domain *old_rd = NULL; | 6205 | struct root_domain *old_rd = NULL; |
7889 | unsigned long flags; | 6206 | unsigned long flags; |
7890 | 6207 | ||
7891 | spin_lock_irqsave(&rq->lock, flags); | 6208 | raw_spin_lock_irqsave(&rq->lock, flags); |
7892 | 6209 | ||
7893 | if (rq->rd) { | 6210 | if (rq->rd) { |
7894 | old_rd = rq->rd; | 6211 | old_rd = rq->rd; |
@@ -7914,7 +6231,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |||
7914 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) | 6231 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
7915 | set_rq_online(rq); | 6232 | set_rq_online(rq); |
7916 | 6233 | ||
7917 | spin_unlock_irqrestore(&rq->lock, flags); | 6234 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7918 | 6235 | ||
7919 | if (old_rd) | 6236 | if (old_rd) |
7920 | free_rootdomain(old_rd); | 6237 | free_rootdomain(old_rd); |
@@ -8015,6 +6332,7 @@ static cpumask_var_t cpu_isolated_map; | |||
8015 | /* Setup the mask of cpus configured for isolated domains */ | 6332 | /* Setup the mask of cpus configured for isolated domains */ |
8016 | static int __init isolated_cpu_setup(char *str) | 6333 | static int __init isolated_cpu_setup(char *str) |
8017 | { | 6334 | { |
6335 | alloc_bootmem_cpumask_var(&cpu_isolated_map); | ||
8018 | cpulist_parse(str, cpu_isolated_map); | 6336 | cpulist_parse(str, cpu_isolated_map); |
8019 | return 1; | 6337 | return 1; |
8020 | } | 6338 | } |
@@ -8199,14 +6517,14 @@ enum s_alloc { | |||
8199 | */ | 6517 | */ |
8200 | #ifdef CONFIG_SCHED_SMT | 6518 | #ifdef CONFIG_SCHED_SMT |
8201 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); | 6519 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); |
8202 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); | 6520 | static DEFINE_PER_CPU(struct static_sched_group, sched_groups); |
8203 | 6521 | ||
8204 | static int | 6522 | static int |
8205 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, | 6523 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, |
8206 | struct sched_group **sg, struct cpumask *unused) | 6524 | struct sched_group **sg, struct cpumask *unused) |
8207 | { | 6525 | { |
8208 | if (sg) | 6526 | if (sg) |
8209 | *sg = &per_cpu(sched_group_cpus, cpu).sg; | 6527 | *sg = &per_cpu(sched_groups, cpu).sg; |
8210 | return cpu; | 6528 | return cpu; |
8211 | } | 6529 | } |
8212 | #endif /* CONFIG_SCHED_SMT */ | 6530 | #endif /* CONFIG_SCHED_SMT */ |
@@ -8851,7 +7169,7 @@ static int build_sched_domains(const struct cpumask *cpu_map) | |||
8851 | return __build_sched_domains(cpu_map, NULL); | 7169 | return __build_sched_domains(cpu_map, NULL); |
8852 | } | 7170 | } |
8853 | 7171 | ||
8854 | static struct cpumask *doms_cur; /* current sched domains */ | 7172 | static cpumask_var_t *doms_cur; /* current sched domains */ |
8855 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 7173 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
8856 | static struct sched_domain_attr *dattr_cur; | 7174 | static struct sched_domain_attr *dattr_cur; |
8857 | /* attribues of custom domains in 'doms_cur' */ | 7175 | /* attribues of custom domains in 'doms_cur' */ |
@@ -8873,6 +7191,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void) | |||
8873 | return 0; | 7191 | return 0; |
8874 | } | 7192 | } |
8875 | 7193 | ||
7194 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | ||
7195 | { | ||
7196 | int i; | ||
7197 | cpumask_var_t *doms; | ||
7198 | |||
7199 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | ||
7200 | if (!doms) | ||
7201 | return NULL; | ||
7202 | for (i = 0; i < ndoms; i++) { | ||
7203 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | ||
7204 | free_sched_domains(doms, i); | ||
7205 | return NULL; | ||
7206 | } | ||
7207 | } | ||
7208 | return doms; | ||
7209 | } | ||
7210 | |||
7211 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | ||
7212 | { | ||
7213 | unsigned int i; | ||
7214 | for (i = 0; i < ndoms; i++) | ||
7215 | free_cpumask_var(doms[i]); | ||
7216 | kfree(doms); | ||
7217 | } | ||
7218 | |||
8876 | /* | 7219 | /* |
8877 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 7220 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
8878 | * For now this just excludes isolated cpus, but could be used to | 7221 | * For now this just excludes isolated cpus, but could be used to |
@@ -8884,12 +7227,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map) | |||
8884 | 7227 | ||
8885 | arch_update_cpu_topology(); | 7228 | arch_update_cpu_topology(); |
8886 | ndoms_cur = 1; | 7229 | ndoms_cur = 1; |
8887 | doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); | 7230 | doms_cur = alloc_sched_domains(ndoms_cur); |
8888 | if (!doms_cur) | 7231 | if (!doms_cur) |
8889 | doms_cur = fallback_doms; | 7232 | doms_cur = &fallback_doms; |
8890 | cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); | 7233 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); |
8891 | dattr_cur = NULL; | 7234 | dattr_cur = NULL; |
8892 | err = build_sched_domains(doms_cur); | 7235 | err = build_sched_domains(doms_cur[0]); |
8893 | register_sched_domain_sysctl(); | 7236 | register_sched_domain_sysctl(); |
8894 | 7237 | ||
8895 | return err; | 7238 | return err; |
@@ -8939,19 +7282,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
8939 | * doms_new[] to the current sched domain partitioning, doms_cur[]. | 7282 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
8940 | * It destroys each deleted domain and builds each new domain. | 7283 | * It destroys each deleted domain and builds each new domain. |
8941 | * | 7284 | * |
8942 | * 'doms_new' is an array of cpumask's of length 'ndoms_new'. | 7285 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
8943 | * The masks don't intersect (don't overlap.) We should setup one | 7286 | * The masks don't intersect (don't overlap.) We should setup one |
8944 | * sched domain for each mask. CPUs not in any of the cpumasks will | 7287 | * sched domain for each mask. CPUs not in any of the cpumasks will |
8945 | * not be load balanced. If the same cpumask appears both in the | 7288 | * not be load balanced. If the same cpumask appears both in the |
8946 | * current 'doms_cur' domains and in the new 'doms_new', we can leave | 7289 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
8947 | * it as it is. | 7290 | * it as it is. |
8948 | * | 7291 | * |
8949 | * The passed in 'doms_new' should be kmalloc'd. This routine takes | 7292 | * The passed in 'doms_new' should be allocated using |
8950 | * ownership of it and will kfree it when done with it. If the caller | 7293 | * alloc_sched_domains. This routine takes ownership of it and will |
8951 | * failed the kmalloc call, then it can pass in doms_new == NULL && | 7294 | * free_sched_domains it when done with it. If the caller failed the |
8952 | * ndoms_new == 1, and partition_sched_domains() will fallback to | 7295 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, |
8953 | * the single partition 'fallback_doms', it also forces the domains | 7296 | * and partition_sched_domains() will fallback to the single partition |
8954 | * to be rebuilt. | 7297 | * 'fallback_doms', it also forces the domains to be rebuilt. |
8955 | * | 7298 | * |
8956 | * If doms_new == NULL it will be replaced with cpu_online_mask. | 7299 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
8957 | * ndoms_new == 0 is a special case for destroying existing domains, | 7300 | * ndoms_new == 0 is a special case for destroying existing domains, |
@@ -8959,8 +7302,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
8959 | * | 7302 | * |
8960 | * Call with hotplug lock held | 7303 | * Call with hotplug lock held |
8961 | */ | 7304 | */ |
8962 | /* FIXME: Change to struct cpumask *doms_new[] */ | 7305 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
8963 | void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | ||
8964 | struct sched_domain_attr *dattr_new) | 7306 | struct sched_domain_attr *dattr_new) |
8965 | { | 7307 | { |
8966 | int i, j, n; | 7308 | int i, j, n; |
@@ -8979,40 +7321,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | |||
8979 | /* Destroy deleted domains */ | 7321 | /* Destroy deleted domains */ |
8980 | for (i = 0; i < ndoms_cur; i++) { | 7322 | for (i = 0; i < ndoms_cur; i++) { |
8981 | for (j = 0; j < n && !new_topology; j++) { | 7323 | for (j = 0; j < n && !new_topology; j++) { |
8982 | if (cpumask_equal(&doms_cur[i], &doms_new[j]) | 7324 | if (cpumask_equal(doms_cur[i], doms_new[j]) |
8983 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | 7325 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
8984 | goto match1; | 7326 | goto match1; |
8985 | } | 7327 | } |
8986 | /* no match - a current sched domain not in new doms_new[] */ | 7328 | /* no match - a current sched domain not in new doms_new[] */ |
8987 | detach_destroy_domains(doms_cur + i); | 7329 | detach_destroy_domains(doms_cur[i]); |
8988 | match1: | 7330 | match1: |
8989 | ; | 7331 | ; |
8990 | } | 7332 | } |
8991 | 7333 | ||
8992 | if (doms_new == NULL) { | 7334 | if (doms_new == NULL) { |
8993 | ndoms_cur = 0; | 7335 | ndoms_cur = 0; |
8994 | doms_new = fallback_doms; | 7336 | doms_new = &fallback_doms; |
8995 | cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); | 7337 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); |
8996 | WARN_ON_ONCE(dattr_new); | 7338 | WARN_ON_ONCE(dattr_new); |
8997 | } | 7339 | } |
8998 | 7340 | ||
8999 | /* Build new domains */ | 7341 | /* Build new domains */ |
9000 | for (i = 0; i < ndoms_new; i++) { | 7342 | for (i = 0; i < ndoms_new; i++) { |
9001 | for (j = 0; j < ndoms_cur && !new_topology; j++) { | 7343 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
9002 | if (cpumask_equal(&doms_new[i], &doms_cur[j]) | 7344 | if (cpumask_equal(doms_new[i], doms_cur[j]) |
9003 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | 7345 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
9004 | goto match2; | 7346 | goto match2; |
9005 | } | 7347 | } |
9006 | /* no match - add a new doms_new */ | 7348 | /* no match - add a new doms_new */ |
9007 | __build_sched_domains(doms_new + i, | 7349 | __build_sched_domains(doms_new[i], |
9008 | dattr_new ? dattr_new + i : NULL); | 7350 | dattr_new ? dattr_new + i : NULL); |
9009 | match2: | 7351 | match2: |
9010 | ; | 7352 | ; |
9011 | } | 7353 | } |
9012 | 7354 | ||
9013 | /* Remember the new sched domains */ | 7355 | /* Remember the new sched domains */ |
9014 | if (doms_cur != fallback_doms) | 7356 | if (doms_cur != &fallback_doms) |
9015 | kfree(doms_cur); | 7357 | free_sched_domains(doms_cur, ndoms_cur); |
9016 | kfree(dattr_cur); /* kfree(NULL) is safe */ | 7358 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
9017 | doms_cur = doms_new; | 7359 | doms_cur = doms_new; |
9018 | dattr_cur = dattr_new; | 7360 | dattr_cur = dattr_new; |
@@ -9064,11 +7406,13 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |||
9064 | 7406 | ||
9065 | #ifdef CONFIG_SCHED_MC | 7407 | #ifdef CONFIG_SCHED_MC |
9066 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | 7408 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
7409 | struct sysdev_class_attribute *attr, | ||
9067 | char *page) | 7410 | char *page) |
9068 | { | 7411 | { |
9069 | return sprintf(page, "%u\n", sched_mc_power_savings); | 7412 | return sprintf(page, "%u\n", sched_mc_power_savings); |
9070 | } | 7413 | } |
9071 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | 7414 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
7415 | struct sysdev_class_attribute *attr, | ||
9072 | const char *buf, size_t count) | 7416 | const char *buf, size_t count) |
9073 | { | 7417 | { |
9074 | return sched_power_savings_store(buf, count, 0); | 7418 | return sched_power_savings_store(buf, count, 0); |
@@ -9080,11 +7424,13 @@ static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | |||
9080 | 7424 | ||
9081 | #ifdef CONFIG_SCHED_SMT | 7425 | #ifdef CONFIG_SCHED_SMT |
9082 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | 7426 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
7427 | struct sysdev_class_attribute *attr, | ||
9083 | char *page) | 7428 | char *page) |
9084 | { | 7429 | { |
9085 | return sprintf(page, "%u\n", sched_smt_power_savings); | 7430 | return sprintf(page, "%u\n", sched_smt_power_savings); |
9086 | } | 7431 | } |
9087 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | 7432 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
7433 | struct sysdev_class_attribute *attr, | ||
9088 | const char *buf, size_t count) | 7434 | const char *buf, size_t count) |
9089 | { | 7435 | { |
9090 | return sched_power_savings_store(buf, count, 1); | 7436 | return sched_power_savings_store(buf, count, 1); |
@@ -9123,8 +7469,10 @@ static int update_sched_domains(struct notifier_block *nfb, | |||
9123 | switch (action) { | 7469 | switch (action) { |
9124 | case CPU_ONLINE: | 7470 | case CPU_ONLINE: |
9125 | case CPU_ONLINE_FROZEN: | 7471 | case CPU_ONLINE_FROZEN: |
9126 | case CPU_DEAD: | 7472 | case CPU_DOWN_PREPARE: |
9127 | case CPU_DEAD_FROZEN: | 7473 | case CPU_DOWN_PREPARE_FROZEN: |
7474 | case CPU_DOWN_FAILED: | ||
7475 | case CPU_DOWN_FAILED_FROZEN: | ||
9128 | partition_sched_domains(1, NULL, NULL); | 7476 | partition_sched_domains(1, NULL, NULL); |
9129 | return NOTIFY_OK; | 7477 | return NOTIFY_OK; |
9130 | 7478 | ||
@@ -9171,7 +7519,7 @@ void __init sched_init_smp(void) | |||
9171 | #endif | 7519 | #endif |
9172 | get_online_cpus(); | 7520 | get_online_cpus(); |
9173 | mutex_lock(&sched_domains_mutex); | 7521 | mutex_lock(&sched_domains_mutex); |
9174 | arch_init_sched_domains(cpu_online_mask); | 7522 | arch_init_sched_domains(cpu_active_mask); |
9175 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | 7523 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
9176 | if (cpumask_empty(non_isolated_cpus)) | 7524 | if (cpumask_empty(non_isolated_cpus)) |
9177 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | 7525 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); |
@@ -9244,13 +7592,13 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
9244 | #ifdef CONFIG_SMP | 7592 | #ifdef CONFIG_SMP |
9245 | rt_rq->rt_nr_migratory = 0; | 7593 | rt_rq->rt_nr_migratory = 0; |
9246 | rt_rq->overloaded = 0; | 7594 | rt_rq->overloaded = 0; |
9247 | plist_head_init(&rt_rq->pushable_tasks, &rq->lock); | 7595 | plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); |
9248 | #endif | 7596 | #endif |
9249 | 7597 | ||
9250 | rt_rq->rt_time = 0; | 7598 | rt_rq->rt_time = 0; |
9251 | rt_rq->rt_throttled = 0; | 7599 | rt_rq->rt_throttled = 0; |
9252 | rt_rq->rt_runtime = 0; | 7600 | rt_rq->rt_runtime = 0; |
9253 | spin_lock_init(&rt_rq->rt_runtime_lock); | 7601 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); |
9254 | 7602 | ||
9255 | #ifdef CONFIG_RT_GROUP_SCHED | 7603 | #ifdef CONFIG_RT_GROUP_SCHED |
9256 | rt_rq->rt_nr_boosted = 0; | 7604 | rt_rq->rt_nr_boosted = 0; |
@@ -9297,7 +7645,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |||
9297 | tg->rt_rq[cpu] = rt_rq; | 7645 | tg->rt_rq[cpu] = rt_rq; |
9298 | init_rt_rq(rt_rq, rq); | 7646 | init_rt_rq(rt_rq, rq); |
9299 | rt_rq->tg = tg; | 7647 | rt_rq->tg = tg; |
9300 | rt_rq->rt_se = rt_se; | ||
9301 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 7648 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
9302 | if (add) | 7649 | if (add) |
9303 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 7650 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); |
@@ -9328,16 +7675,9 @@ void __init sched_init(void) | |||
9328 | #ifdef CONFIG_RT_GROUP_SCHED | 7675 | #ifdef CONFIG_RT_GROUP_SCHED |
9329 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 7676 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
9330 | #endif | 7677 | #endif |
9331 | #ifdef CONFIG_USER_SCHED | ||
9332 | alloc_size *= 2; | ||
9333 | #endif | ||
9334 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7678 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9335 | alloc_size += num_possible_cpus() * cpumask_size(); | 7679 | alloc_size += num_possible_cpus() * cpumask_size(); |
9336 | #endif | 7680 | #endif |
9337 | /* | ||
9338 | * As sched_init() is called before page_alloc is setup, | ||
9339 | * we use alloc_bootmem(). | ||
9340 | */ | ||
9341 | if (alloc_size) { | 7681 | if (alloc_size) { |
9342 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | 7682 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
9343 | 7683 | ||
@@ -9348,13 +7688,6 @@ void __init sched_init(void) | |||
9348 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 7688 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; |
9349 | ptr += nr_cpu_ids * sizeof(void **); | 7689 | ptr += nr_cpu_ids * sizeof(void **); |
9350 | 7690 | ||
9351 | #ifdef CONFIG_USER_SCHED | ||
9352 | root_task_group.se = (struct sched_entity **)ptr; | ||
9353 | ptr += nr_cpu_ids * sizeof(void **); | ||
9354 | |||
9355 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | ||
9356 | ptr += nr_cpu_ids * sizeof(void **); | ||
9357 | #endif /* CONFIG_USER_SCHED */ | ||
9358 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7691 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9359 | #ifdef CONFIG_RT_GROUP_SCHED | 7692 | #ifdef CONFIG_RT_GROUP_SCHED |
9360 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 7693 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; |
@@ -9363,13 +7696,6 @@ void __init sched_init(void) | |||
9363 | init_task_group.rt_rq = (struct rt_rq **)ptr; | 7696 | init_task_group.rt_rq = (struct rt_rq **)ptr; |
9364 | ptr += nr_cpu_ids * sizeof(void **); | 7697 | ptr += nr_cpu_ids * sizeof(void **); |
9365 | 7698 | ||
9366 | #ifdef CONFIG_USER_SCHED | ||
9367 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | ||
9368 | ptr += nr_cpu_ids * sizeof(void **); | ||
9369 | |||
9370 | root_task_group.rt_rq = (struct rt_rq **)ptr; | ||
9371 | ptr += nr_cpu_ids * sizeof(void **); | ||
9372 | #endif /* CONFIG_USER_SCHED */ | ||
9373 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7699 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9374 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7700 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9375 | for_each_possible_cpu(i) { | 7701 | for_each_possible_cpu(i) { |
@@ -9389,28 +7715,23 @@ void __init sched_init(void) | |||
9389 | #ifdef CONFIG_RT_GROUP_SCHED | 7715 | #ifdef CONFIG_RT_GROUP_SCHED |
9390 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | 7716 | init_rt_bandwidth(&init_task_group.rt_bandwidth, |
9391 | global_rt_period(), global_rt_runtime()); | 7717 | global_rt_period(), global_rt_runtime()); |
9392 | #ifdef CONFIG_USER_SCHED | ||
9393 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | ||
9394 | global_rt_period(), RUNTIME_INF); | ||
9395 | #endif /* CONFIG_USER_SCHED */ | ||
9396 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7718 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9397 | 7719 | ||
9398 | #ifdef CONFIG_GROUP_SCHED | 7720 | #ifdef CONFIG_CGROUP_SCHED |
9399 | list_add(&init_task_group.list, &task_groups); | 7721 | list_add(&init_task_group.list, &task_groups); |
9400 | INIT_LIST_HEAD(&init_task_group.children); | 7722 | INIT_LIST_HEAD(&init_task_group.children); |
9401 | 7723 | ||
9402 | #ifdef CONFIG_USER_SCHED | 7724 | #endif /* CONFIG_CGROUP_SCHED */ |
9403 | INIT_LIST_HEAD(&root_task_group.children); | ||
9404 | init_task_group.parent = &root_task_group; | ||
9405 | list_add(&init_task_group.siblings, &root_task_group.children); | ||
9406 | #endif /* CONFIG_USER_SCHED */ | ||
9407 | #endif /* CONFIG_GROUP_SCHED */ | ||
9408 | 7725 | ||
7726 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | ||
7727 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | ||
7728 | __alignof__(unsigned long)); | ||
7729 | #endif | ||
9409 | for_each_possible_cpu(i) { | 7730 | for_each_possible_cpu(i) { |
9410 | struct rq *rq; | 7731 | struct rq *rq; |
9411 | 7732 | ||
9412 | rq = cpu_rq(i); | 7733 | rq = cpu_rq(i); |
9413 | spin_lock_init(&rq->lock); | 7734 | raw_spin_lock_init(&rq->lock); |
9414 | rq->nr_running = 0; | 7735 | rq->nr_running = 0; |
9415 | rq->calc_load_active = 0; | 7736 | rq->calc_load_active = 0; |
9416 | rq->calc_load_update = jiffies + LOAD_FREQ; | 7737 | rq->calc_load_update = jiffies + LOAD_FREQ; |
@@ -9440,25 +7761,6 @@ void __init sched_init(void) | |||
9440 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 7761 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). |
9441 | */ | 7762 | */ |
9442 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 7763 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
9443 | #elif defined CONFIG_USER_SCHED | ||
9444 | root_task_group.shares = NICE_0_LOAD; | ||
9445 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | ||
9446 | /* | ||
9447 | * In case of task-groups formed thr' the user id of tasks, | ||
9448 | * init_task_group represents tasks belonging to root user. | ||
9449 | * Hence it forms a sibling of all subsequent groups formed. | ||
9450 | * In this case, init_task_group gets only a fraction of overall | ||
9451 | * system cpu resource, based on the weight assigned to root | ||
9452 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | ||
9453 | * by letting tasks of init_task_group sit in a separate cfs_rq | ||
9454 | * (init_tg_cfs_rq) and having one entity represent this group of | ||
9455 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | ||
9456 | */ | ||
9457 | init_tg_cfs_entry(&init_task_group, | ||
9458 | &per_cpu(init_tg_cfs_rq, i), | ||
9459 | &per_cpu(init_sched_entity, i), i, 1, | ||
9460 | root_task_group.se[i]); | ||
9461 | |||
9462 | #endif | 7764 | #endif |
9463 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7765 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9464 | 7766 | ||
@@ -9467,12 +7769,6 @@ void __init sched_init(void) | |||
9467 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 7769 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
9468 | #ifdef CONFIG_CGROUP_SCHED | 7770 | #ifdef CONFIG_CGROUP_SCHED |
9469 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 7771 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
9470 | #elif defined CONFIG_USER_SCHED | ||
9471 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); | ||
9472 | init_tg_rt_entry(&init_task_group, | ||
9473 | &per_cpu(init_rt_rq, i), | ||
9474 | &per_cpu(init_sched_rt_entity, i), i, 1, | ||
9475 | root_task_group.rt_se[i]); | ||
9476 | #endif | 7772 | #endif |
9477 | #endif | 7773 | #endif |
9478 | 7774 | ||
@@ -9488,6 +7784,8 @@ void __init sched_init(void) | |||
9488 | rq->cpu = i; | 7784 | rq->cpu = i; |
9489 | rq->online = 0; | 7785 | rq->online = 0; |
9490 | rq->migration_thread = NULL; | 7786 | rq->migration_thread = NULL; |
7787 | rq->idle_stamp = 0; | ||
7788 | rq->avg_idle = 2*sysctl_sched_migration_cost; | ||
9491 | INIT_LIST_HEAD(&rq->migration_queue); | 7789 | INIT_LIST_HEAD(&rq->migration_queue); |
9492 | rq_attach_root(rq, &def_root_domain); | 7790 | rq_attach_root(rq, &def_root_domain); |
9493 | #endif | 7791 | #endif |
@@ -9506,7 +7804,7 @@ void __init sched_init(void) | |||
9506 | #endif | 7804 | #endif |
9507 | 7805 | ||
9508 | #ifdef CONFIG_RT_MUTEXES | 7806 | #ifdef CONFIG_RT_MUTEXES |
9509 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | 7807 | plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); |
9510 | #endif | 7808 | #endif |
9511 | 7809 | ||
9512 | /* | 7810 | /* |
@@ -9531,13 +7829,15 @@ void __init sched_init(void) | |||
9531 | current->sched_class = &fair_sched_class; | 7829 | current->sched_class = &fair_sched_class; |
9532 | 7830 | ||
9533 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ | 7831 | /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ |
9534 | alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); | 7832 | zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); |
9535 | #ifdef CONFIG_SMP | 7833 | #ifdef CONFIG_SMP |
9536 | #ifdef CONFIG_NO_HZ | 7834 | #ifdef CONFIG_NO_HZ |
9537 | alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); | 7835 | zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); |
9538 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); | 7836 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); |
9539 | #endif | 7837 | #endif |
9540 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 7838 | /* May be allocated at isolcpus cmdline parse time */ |
7839 | if (cpu_isolated_map == NULL) | ||
7840 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | ||
9541 | #endif /* SMP */ | 7841 | #endif /* SMP */ |
9542 | 7842 | ||
9543 | perf_event_init(); | 7843 | perf_event_init(); |
@@ -9548,12 +7848,12 @@ void __init sched_init(void) | |||
9548 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 7848 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
9549 | static inline int preempt_count_equals(int preempt_offset) | 7849 | static inline int preempt_count_equals(int preempt_offset) |
9550 | { | 7850 | { |
9551 | int nested = preempt_count() & ~PREEMPT_ACTIVE; | 7851 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); |
9552 | 7852 | ||
9553 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | 7853 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); |
9554 | } | 7854 | } |
9555 | 7855 | ||
9556 | void __might_sleep(char *file, int line, int preempt_offset) | 7856 | void __might_sleep(const char *file, int line, int preempt_offset) |
9557 | { | 7857 | { |
9558 | #ifdef in_atomic | 7858 | #ifdef in_atomic |
9559 | static unsigned long prev_jiffy; /* ratelimiting */ | 7859 | static unsigned long prev_jiffy; /* ratelimiting */ |
@@ -9629,13 +7929,13 @@ void normalize_rt_tasks(void) | |||
9629 | continue; | 7929 | continue; |
9630 | } | 7930 | } |
9631 | 7931 | ||
9632 | spin_lock(&p->pi_lock); | 7932 | raw_spin_lock(&p->pi_lock); |
9633 | rq = __task_rq_lock(p); | 7933 | rq = __task_rq_lock(p); |
9634 | 7934 | ||
9635 | normalize_task(rq, p); | 7935 | normalize_task(rq, p); |
9636 | 7936 | ||
9637 | __task_rq_unlock(rq); | 7937 | __task_rq_unlock(rq); |
9638 | spin_unlock(&p->pi_lock); | 7938 | raw_spin_unlock(&p->pi_lock); |
9639 | } while_each_thread(g, p); | 7939 | } while_each_thread(g, p); |
9640 | 7940 | ||
9641 | read_unlock_irqrestore(&tasklist_lock, flags); | 7941 | read_unlock_irqrestore(&tasklist_lock, flags); |
@@ -9731,13 +8031,15 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |||
9731 | se = kzalloc_node(sizeof(struct sched_entity), | 8031 | se = kzalloc_node(sizeof(struct sched_entity), |
9732 | GFP_KERNEL, cpu_to_node(i)); | 8032 | GFP_KERNEL, cpu_to_node(i)); |
9733 | if (!se) | 8033 | if (!se) |
9734 | goto err; | 8034 | goto err_free_rq; |
9735 | 8035 | ||
9736 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); | 8036 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
9737 | } | 8037 | } |
9738 | 8038 | ||
9739 | return 1; | 8039 | return 1; |
9740 | 8040 | ||
8041 | err_free_rq: | ||
8042 | kfree(cfs_rq); | ||
9741 | err: | 8043 | err: |
9742 | return 0; | 8044 | return 0; |
9743 | } | 8045 | } |
@@ -9819,13 +8121,15 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |||
9819 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 8121 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
9820 | GFP_KERNEL, cpu_to_node(i)); | 8122 | GFP_KERNEL, cpu_to_node(i)); |
9821 | if (!rt_se) | 8123 | if (!rt_se) |
9822 | goto err; | 8124 | goto err_free_rq; |
9823 | 8125 | ||
9824 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); | 8126 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
9825 | } | 8127 | } |
9826 | 8128 | ||
9827 | return 1; | 8129 | return 1; |
9828 | 8130 | ||
8131 | err_free_rq: | ||
8132 | kfree(rt_rq); | ||
9829 | err: | 8133 | err: |
9830 | return 0; | 8134 | return 0; |
9831 | } | 8135 | } |
@@ -9860,7 +8164,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |||
9860 | } | 8164 | } |
9861 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8165 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9862 | 8166 | ||
9863 | #ifdef CONFIG_GROUP_SCHED | 8167 | #ifdef CONFIG_CGROUP_SCHED |
9864 | static void free_sched_group(struct task_group *tg) | 8168 | static void free_sched_group(struct task_group *tg) |
9865 | { | 8169 | { |
9866 | free_fair_sched_group(tg); | 8170 | free_fair_sched_group(tg); |
@@ -9959,17 +8263,17 @@ void sched_move_task(struct task_struct *tsk) | |||
9959 | 8263 | ||
9960 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8264 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9961 | if (tsk->sched_class->moved_group) | 8265 | if (tsk->sched_class->moved_group) |
9962 | tsk->sched_class->moved_group(tsk); | 8266 | tsk->sched_class->moved_group(tsk, on_rq); |
9963 | #endif | 8267 | #endif |
9964 | 8268 | ||
9965 | if (unlikely(running)) | 8269 | if (unlikely(running)) |
9966 | tsk->sched_class->set_curr_task(rq); | 8270 | tsk->sched_class->set_curr_task(rq); |
9967 | if (on_rq) | 8271 | if (on_rq) |
9968 | enqueue_task(rq, tsk, 0); | 8272 | enqueue_task(rq, tsk, 0, false); |
9969 | 8273 | ||
9970 | task_rq_unlock(rq, &flags); | 8274 | task_rq_unlock(rq, &flags); |
9971 | } | 8275 | } |
9972 | #endif /* CONFIG_GROUP_SCHED */ | 8276 | #endif /* CONFIG_CGROUP_SCHED */ |
9973 | 8277 | ||
9974 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8278 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9975 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8279 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
@@ -9994,9 +8298,9 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares) | |||
9994 | struct rq *rq = cfs_rq->rq; | 8298 | struct rq *rq = cfs_rq->rq; |
9995 | unsigned long flags; | 8299 | unsigned long flags; |
9996 | 8300 | ||
9997 | spin_lock_irqsave(&rq->lock, flags); | 8301 | raw_spin_lock_irqsave(&rq->lock, flags); |
9998 | __set_se_shares(se, shares); | 8302 | __set_se_shares(se, shares); |
9999 | spin_unlock_irqrestore(&rq->lock, flags); | 8303 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
10000 | } | 8304 | } |
10001 | 8305 | ||
10002 | static DEFINE_MUTEX(shares_mutex); | 8306 | static DEFINE_MUTEX(shares_mutex); |
@@ -10111,13 +8415,6 @@ static int tg_schedulable(struct task_group *tg, void *data) | |||
10111 | runtime = d->rt_runtime; | 8415 | runtime = d->rt_runtime; |
10112 | } | 8416 | } |
10113 | 8417 | ||
10114 | #ifdef CONFIG_USER_SCHED | ||
10115 | if (tg == &root_task_group) { | ||
10116 | period = global_rt_period(); | ||
10117 | runtime = global_rt_runtime(); | ||
10118 | } | ||
10119 | #endif | ||
10120 | |||
10121 | /* | 8418 | /* |
10122 | * Cannot have more runtime than the period. | 8419 | * Cannot have more runtime than the period. |
10123 | */ | 8420 | */ |
@@ -10181,18 +8478,18 @@ static int tg_set_bandwidth(struct task_group *tg, | |||
10181 | if (err) | 8478 | if (err) |
10182 | goto unlock; | 8479 | goto unlock; |
10183 | 8480 | ||
10184 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 8481 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
10185 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 8482 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
10186 | tg->rt_bandwidth.rt_runtime = rt_runtime; | 8483 | tg->rt_bandwidth.rt_runtime = rt_runtime; |
10187 | 8484 | ||
10188 | for_each_possible_cpu(i) { | 8485 | for_each_possible_cpu(i) { |
10189 | struct rt_rq *rt_rq = tg->rt_rq[i]; | 8486 | struct rt_rq *rt_rq = tg->rt_rq[i]; |
10190 | 8487 | ||
10191 | spin_lock(&rt_rq->rt_runtime_lock); | 8488 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
10192 | rt_rq->rt_runtime = rt_runtime; | 8489 | rt_rq->rt_runtime = rt_runtime; |
10193 | spin_unlock(&rt_rq->rt_runtime_lock); | 8490 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
10194 | } | 8491 | } |
10195 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 8492 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
10196 | unlock: | 8493 | unlock: |
10197 | read_unlock(&tasklist_lock); | 8494 | read_unlock(&tasklist_lock); |
10198 | mutex_unlock(&rt_constraints_mutex); | 8495 | mutex_unlock(&rt_constraints_mutex); |
@@ -10297,15 +8594,15 @@ static int sched_rt_global_constraints(void) | |||
10297 | if (sysctl_sched_rt_runtime == 0) | 8594 | if (sysctl_sched_rt_runtime == 0) |
10298 | return -EBUSY; | 8595 | return -EBUSY; |
10299 | 8596 | ||
10300 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 8597 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
10301 | for_each_possible_cpu(i) { | 8598 | for_each_possible_cpu(i) { |
10302 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 8599 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; |
10303 | 8600 | ||
10304 | spin_lock(&rt_rq->rt_runtime_lock); | 8601 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
10305 | rt_rq->rt_runtime = global_rt_runtime(); | 8602 | rt_rq->rt_runtime = global_rt_runtime(); |
10306 | spin_unlock(&rt_rq->rt_runtime_lock); | 8603 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
10307 | } | 8604 | } |
10308 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 8605 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); |
10309 | 8606 | ||
10310 | return 0; | 8607 | return 0; |
10311 | } | 8608 | } |
@@ -10520,7 +8817,7 @@ struct cgroup_subsys cpu_cgroup_subsys = { | |||
10520 | struct cpuacct { | 8817 | struct cpuacct { |
10521 | struct cgroup_subsys_state css; | 8818 | struct cgroup_subsys_state css; |
10522 | /* cpuusage holds pointer to a u64-type object on every cpu */ | 8819 | /* cpuusage holds pointer to a u64-type object on every cpu */ |
10523 | u64 *cpuusage; | 8820 | u64 __percpu *cpuusage; |
10524 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | 8821 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; |
10525 | struct cpuacct *parent; | 8822 | struct cpuacct *parent; |
10526 | }; | 8823 | }; |
@@ -10596,9 +8893,9 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | |||
10596 | /* | 8893 | /* |
10597 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | 8894 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. |
10598 | */ | 8895 | */ |
10599 | spin_lock_irq(&cpu_rq(cpu)->lock); | 8896 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
10600 | data = *cpuusage; | 8897 | data = *cpuusage; |
10601 | spin_unlock_irq(&cpu_rq(cpu)->lock); | 8898 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
10602 | #else | 8899 | #else |
10603 | data = *cpuusage; | 8900 | data = *cpuusage; |
10604 | #endif | 8901 | #endif |
@@ -10614,9 +8911,9 @@ static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |||
10614 | /* | 8911 | /* |
10615 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | 8912 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. |
10616 | */ | 8913 | */ |
10617 | spin_lock_irq(&cpu_rq(cpu)->lock); | 8914 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
10618 | *cpuusage = val; | 8915 | *cpuusage = val; |
10619 | spin_unlock_irq(&cpu_rq(cpu)->lock); | 8916 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
10620 | #else | 8917 | #else |
10621 | *cpuusage = val; | 8918 | *cpuusage = val; |
10622 | #endif | 8919 | #endif |
@@ -10737,12 +9034,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
10737 | } | 9034 | } |
10738 | 9035 | ||
10739 | /* | 9036 | /* |
9037 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | ||
9038 | * in cputime_t units. As a result, cpuacct_update_stats calls | ||
9039 | * percpu_counter_add with values large enough to always overflow the | ||
9040 | * per cpu batch limit causing bad SMP scalability. | ||
9041 | * | ||
9042 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | ||
9043 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | ||
9044 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | ||
9045 | */ | ||
9046 | #ifdef CONFIG_SMP | ||
9047 | #define CPUACCT_BATCH \ | ||
9048 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | ||
9049 | #else | ||
9050 | #define CPUACCT_BATCH 0 | ||
9051 | #endif | ||
9052 | |||
9053 | /* | ||
10740 | * Charge the system/user time to the task's accounting group. | 9054 | * Charge the system/user time to the task's accounting group. |
10741 | */ | 9055 | */ |
10742 | static void cpuacct_update_stats(struct task_struct *tsk, | 9056 | static void cpuacct_update_stats(struct task_struct *tsk, |
10743 | enum cpuacct_stat_index idx, cputime_t val) | 9057 | enum cpuacct_stat_index idx, cputime_t val) |
10744 | { | 9058 | { |
10745 | struct cpuacct *ca; | 9059 | struct cpuacct *ca; |
9060 | int batch = CPUACCT_BATCH; | ||
10746 | 9061 | ||
10747 | if (unlikely(!cpuacct_subsys.active)) | 9062 | if (unlikely(!cpuacct_subsys.active)) |
10748 | return; | 9063 | return; |
@@ -10751,7 +9066,7 @@ static void cpuacct_update_stats(struct task_struct *tsk, | |||
10751 | ca = task_ca(tsk); | 9066 | ca = task_ca(tsk); |
10752 | 9067 | ||
10753 | do { | 9068 | do { |
10754 | percpu_counter_add(&ca->cpustat[idx], val); | 9069 | __percpu_counter_add(&ca->cpustat[idx], val, batch); |
10755 | ca = ca->parent; | 9070 | ca = ca->parent; |
10756 | } while (ca); | 9071 | } while (ca); |
10757 | rcu_read_unlock(); | 9072 | rcu_read_unlock(); |
@@ -10850,9 +9165,9 @@ void synchronize_sched_expedited(void) | |||
10850 | init_completion(&req->done); | 9165 | init_completion(&req->done); |
10851 | req->task = NULL; | 9166 | req->task = NULL; |
10852 | req->dest_cpu = RCU_MIGRATION_NEED_QS; | 9167 | req->dest_cpu = RCU_MIGRATION_NEED_QS; |
10853 | spin_lock_irqsave(&rq->lock, flags); | 9168 | raw_spin_lock_irqsave(&rq->lock, flags); |
10854 | list_add(&req->list, &rq->migration_queue); | 9169 | list_add(&req->list, &rq->migration_queue); |
10855 | spin_unlock_irqrestore(&rq->lock, flags); | 9170 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
10856 | wake_up_process(rq->migration_thread); | 9171 | wake_up_process(rq->migration_thread); |
10857 | } | 9172 | } |
10858 | for_each_online_cpu(cpu) { | 9173 | for_each_online_cpu(cpu) { |
@@ -10860,13 +9175,14 @@ void synchronize_sched_expedited(void) | |||
10860 | req = &per_cpu(rcu_migration_req, cpu); | 9175 | req = &per_cpu(rcu_migration_req, cpu); |
10861 | rq = cpu_rq(cpu); | 9176 | rq = cpu_rq(cpu); |
10862 | wait_for_completion(&req->done); | 9177 | wait_for_completion(&req->done); |
10863 | spin_lock_irqsave(&rq->lock, flags); | 9178 | raw_spin_lock_irqsave(&rq->lock, flags); |
10864 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | 9179 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) |
10865 | need_full_sync = 1; | 9180 | need_full_sync = 1; |
10866 | req->dest_cpu = RCU_MIGRATION_IDLE; | 9181 | req->dest_cpu = RCU_MIGRATION_IDLE; |
10867 | spin_unlock_irqrestore(&rq->lock, flags); | 9182 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
10868 | } | 9183 | } |
10869 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | 9184 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; |
9185 | synchronize_sched_expedited_count++; | ||
10870 | mutex_unlock(&rcu_sched_expedited_mutex); | 9186 | mutex_unlock(&rcu_sched_expedited_mutex); |
10871 | put_online_cpus(); | 9187 | put_online_cpus(); |
10872 | if (need_full_sync) | 9188 | if (need_full_sync) |