aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c824
1 files changed, 489 insertions, 335 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 2f76e06bea58..18cceeecce35 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -141,7 +141,7 @@ struct rt_prio_array {
141 141
142struct rt_bandwidth { 142struct rt_bandwidth {
143 /* nests inside the rq lock: */ 143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock; 144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period; 145 ktime_t rt_period;
146 u64 rt_runtime; 146 u64 rt_runtime;
147 struct hrtimer rt_period_timer; 147 struct hrtimer rt_period_timer;
@@ -178,7 +178,7 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period); 178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime; 179 rt_b->rt_runtime = runtime;
180 180
181 spin_lock_init(&rt_b->rt_runtime_lock); 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182 182
183 hrtimer_init(&rt_b->rt_period_timer, 183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
@@ -200,7 +200,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200 if (hrtimer_active(&rt_b->rt_period_timer)) 200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return; 201 return;
202 202
203 spin_lock(&rt_b->rt_runtime_lock); 203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) { 204 for (;;) {
205 unsigned long delta; 205 unsigned long delta;
206 ktime_t soft, hard; 206 ktime_t soft, hard;
@@ -217,7 +217,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, 217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0); 218 HRTIMER_MODE_ABS_PINNED, 0);
219 } 219 }
220 spin_unlock(&rt_b->rt_runtime_lock); 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221} 221}
222 222
223#ifdef CONFIG_RT_GROUP_SCHED 223#ifdef CONFIG_RT_GROUP_SCHED
@@ -298,7 +298,7 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
298 298
299#ifdef CONFIG_RT_GROUP_SCHED 299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302#endif /* CONFIG_RT_GROUP_SCHED */ 302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_USER_SCHED */ 303#else /* !CONFIG_USER_SCHED */
304#define root_task_group init_task_group 304#define root_task_group init_task_group
@@ -309,6 +309,8 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
309 */ 309 */
310static DEFINE_SPINLOCK(task_group_lock); 310static DEFINE_SPINLOCK(task_group_lock);
311 311
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
312#ifdef CONFIG_SMP 314#ifdef CONFIG_SMP
313static int root_task_group_empty(void) 315static int root_task_group_empty(void)
314{ 316{
@@ -316,7 +318,6 @@ static int root_task_group_empty(void)
316} 318}
317#endif 319#endif
318 320
319#ifdef CONFIG_FAIR_GROUP_SCHED
320#ifdef CONFIG_USER_SCHED 321#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) 322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322#else /* !CONFIG_USER_SCHED */ 323#else /* !CONFIG_USER_SCHED */
@@ -469,7 +470,7 @@ struct rt_rq {
469 u64 rt_time; 470 u64 rt_time;
470 u64 rt_runtime; 471 u64 rt_runtime;
471 /* Nests inside the rq lock: */ 472 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock; 473 raw_spinlock_t rt_runtime_lock;
473 474
474#ifdef CONFIG_RT_GROUP_SCHED 475#ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted; 476 unsigned long rt_nr_boosted;
@@ -524,7 +525,7 @@ static struct root_domain def_root_domain;
524 */ 525 */
525struct rq { 526struct rq {
526 /* runqueue lock: */ 527 /* runqueue lock: */
527 spinlock_t lock; 528 raw_spinlock_t lock;
528 529
529 /* 530 /*
530 * nr_running and cpu_load should be in the same cacheline because 531 * nr_running and cpu_load should be in the same cacheline because
@@ -534,14 +535,12 @@ struct rq {
534 #define CPU_LOAD_IDX_MAX 5 535 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536#ifdef CONFIG_NO_HZ 537#ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently; 538 unsigned char in_nohz_recently;
539#endif 539#endif
540 /* capture load from *all* tasks on this cpu: */ 540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load; 541 struct load_weight load;
542 unsigned long nr_load_updates; 542 unsigned long nr_load_updates;
543 u64 nr_switches; 543 u64 nr_switches;
544 u64 nr_migrations_in;
545 544
546 struct cfs_rq cfs; 545 struct cfs_rq cfs;
547 struct rt_rq rt; 546 struct rt_rq rt;
@@ -590,6 +589,8 @@ struct rq {
590 589
591 u64 rt_avg; 590 u64 rt_avg;
592 u64 age_stamp; 591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
593#endif 594#endif
594 595
595 /* calc_load related fields */ 596 /* calc_load related fields */
@@ -676,6 +677,7 @@ inline void update_rq_clock(struct rq *rq)
676 677
677/** 678/**
678 * runqueue_is_locked 679 * runqueue_is_locked
680 * @cpu: the processor in question.
679 * 681 *
680 * Returns true if the current cpu runqueue is locked. 682 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock 683 * This interface allows printk to be called with the runqueue lock
@@ -683,7 +685,7 @@ inline void update_rq_clock(struct rq *rq)
683 */ 685 */
684int runqueue_is_locked(int cpu) 686int runqueue_is_locked(int cpu)
685{ 687{
686 return spin_is_locked(&cpu_rq(cpu)->lock); 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
687} 689}
688 690
689/* 691/*
@@ -770,7 +772,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf,
770 if (!sched_feat_names[i]) 772 if (!sched_feat_names[i])
771 return -EINVAL; 773 return -EINVAL;
772 774
773 filp->f_pos += cnt; 775 *ppos += cnt;
774 776
775 return cnt; 777 return cnt;
776} 778}
@@ -780,7 +782,7 @@ static int sched_feat_open(struct inode *inode, struct file *filp)
780 return single_open(filp, sched_feat_show, NULL); 782 return single_open(filp, sched_feat_show, NULL);
781} 783}
782 784
783static struct file_operations sched_feat_fops = { 785static const struct file_operations sched_feat_fops = {
784 .open = sched_feat_open, 786 .open = sched_feat_open,
785 .write = sched_feat_write, 787 .write = sched_feat_write,
786 .read = seq_read, 788 .read = seq_read,
@@ -812,6 +814,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32;
812 * default: 0.25ms 814 * default: 0.25ms
813 */ 815 */
814unsigned int sysctl_sched_shares_ratelimit = 250000; 816unsigned int sysctl_sched_shares_ratelimit = 250000;
817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
815 818
816/* 819/*
817 * Inject some fuzzyness into changing the per-cpu group shares 820 * Inject some fuzzyness into changing the per-cpu group shares
@@ -890,7 +893,7 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
890 */ 893 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892 895
893 spin_unlock_irq(&rq->lock); 896 raw_spin_unlock_irq(&rq->lock);
894} 897}
895 898
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */ 899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
@@ -914,9 +917,9 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 next->oncpu = 1; 917 next->oncpu = 1;
915#endif 918#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock); 920 raw_spin_unlock_irq(&rq->lock);
918#else 921#else
919 spin_unlock(&rq->lock); 922 raw_spin_unlock(&rq->lock);
920#endif 923#endif
921} 924}
922 925
@@ -946,10 +949,10 @@ static inline struct rq *__task_rq_lock(struct task_struct *p)
946{ 949{
947 for (;;) { 950 for (;;) {
948 struct rq *rq = task_rq(p); 951 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock); 952 raw_spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p))) 953 if (likely(rq == task_rq(p)))
951 return rq; 954 return rq;
952 spin_unlock(&rq->lock); 955 raw_spin_unlock(&rq->lock);
953 } 956 }
954} 957}
955 958
@@ -966,10 +969,10 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
966 for (;;) { 969 for (;;) {
967 local_irq_save(*flags); 970 local_irq_save(*flags);
968 rq = task_rq(p); 971 rq = task_rq(p);
969 spin_lock(&rq->lock); 972 raw_spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p))) 973 if (likely(rq == task_rq(p)))
971 return rq; 974 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags); 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
973 } 976 }
974} 977}
975 978
@@ -978,19 +981,19 @@ void task_rq_unlock_wait(struct task_struct *p)
978 struct rq *rq = task_rq(p); 981 struct rq *rq = task_rq(p);
979 982
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */ 983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock); 984 raw_spin_unlock_wait(&rq->lock);
982} 985}
983 986
984static void __task_rq_unlock(struct rq *rq) 987static void __task_rq_unlock(struct rq *rq)
985 __releases(rq->lock) 988 __releases(rq->lock)
986{ 989{
987 spin_unlock(&rq->lock); 990 raw_spin_unlock(&rq->lock);
988} 991}
989 992
990static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
991 __releases(rq->lock) 994 __releases(rq->lock)
992{ 995{
993 spin_unlock_irqrestore(&rq->lock, *flags); 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
994} 997}
995 998
996/* 999/*
@@ -1003,7 +1006,7 @@ static struct rq *this_rq_lock(void)
1003 1006
1004 local_irq_disable(); 1007 local_irq_disable();
1005 rq = this_rq(); 1008 rq = this_rq();
1006 spin_lock(&rq->lock); 1009 raw_spin_lock(&rq->lock);
1007 1010
1008 return rq; 1011 return rq;
1009} 1012}
@@ -1050,10 +1053,10 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050 1053
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052 1055
1053 spin_lock(&rq->lock); 1056 raw_spin_lock(&rq->lock);
1054 update_rq_clock(rq); 1057 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock); 1059 raw_spin_unlock(&rq->lock);
1057 1060
1058 return HRTIMER_NORESTART; 1061 return HRTIMER_NORESTART;
1059} 1062}
@@ -1066,10 +1069,10 @@ static void __hrtick_start(void *arg)
1066{ 1069{
1067 struct rq *rq = arg; 1070 struct rq *rq = arg;
1068 1071
1069 spin_lock(&rq->lock); 1072 raw_spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer); 1073 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0; 1074 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock); 1075 raw_spin_unlock(&rq->lock);
1073} 1076}
1074 1077
1075/* 1078/*
@@ -1176,7 +1179,7 @@ static void resched_task(struct task_struct *p)
1176{ 1179{
1177 int cpu; 1180 int cpu;
1178 1181
1179 assert_spin_locked(&task_rq(p)->lock); 1182 assert_raw_spin_locked(&task_rq(p)->lock);
1180 1183
1181 if (test_tsk_need_resched(p)) 1184 if (test_tsk_need_resched(p))
1182 return; 1185 return;
@@ -1198,10 +1201,10 @@ static void resched_cpu(int cpu)
1198 struct rq *rq = cpu_rq(cpu); 1201 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags; 1202 unsigned long flags;
1200 1203
1201 if (!spin_trylock_irqsave(&rq->lock, flags)) 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1202 return; 1205 return;
1203 resched_task(cpu_curr(cpu)); 1206 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags); 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1205} 1208}
1206 1209
1207#ifdef CONFIG_NO_HZ 1210#ifdef CONFIG_NO_HZ
@@ -1270,7 +1273,7 @@ static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270#else /* !CONFIG_SMP */ 1273#else /* !CONFIG_SMP */
1271static void resched_task(struct task_struct *p) 1274static void resched_task(struct task_struct *p)
1272{ 1275{
1273 assert_spin_locked(&task_rq(p)->lock); 1276 assert_raw_spin_locked(&task_rq(p)->lock);
1274 set_tsk_need_resched(p); 1277 set_tsk_need_resched(p);
1275} 1278}
1276 1279
@@ -1563,11 +1566,7 @@ static unsigned long cpu_avg_load_per_task(int cpu)
1563 1566
1564#ifdef CONFIG_FAIR_GROUP_SCHED 1567#ifdef CONFIG_FAIR_GROUP_SCHED
1565 1568
1566struct update_shares_data { 1569static __read_mostly unsigned long *update_shares_data;
1567 unsigned long rq_weight[NR_CPUS];
1568};
1569
1570static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571 1570
1572static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573 1572
@@ -1577,12 +1576,12 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1577static void update_group_shares_cpu(struct task_group *tg, int cpu, 1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares, 1577 unsigned long sd_shares,
1579 unsigned long sd_rq_weight, 1578 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd) 1579 unsigned long *usd_rq_weight)
1581{ 1580{
1582 unsigned long shares, rq_weight; 1581 unsigned long shares, rq_weight;
1583 int boost = 0; 1582 int boost = 0;
1584 1583
1585 rq_weight = usd->rq_weight[cpu]; 1584 rq_weight = usd_rq_weight[cpu];
1586 if (!rq_weight) { 1585 if (!rq_weight) {
1587 boost = 1; 1586 boost = 1;
1588 rq_weight = NICE_0_LOAD; 1587 rq_weight = NICE_0_LOAD;
@@ -1601,11 +1600,11 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
1601 struct rq *rq = cpu_rq(cpu); 1600 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags; 1601 unsigned long flags;
1603 1602
1604 spin_lock_irqsave(&rq->lock, flags); 1603 raw_spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares; 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares); 1606 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags); 1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1609 } 1608 }
1610} 1609}
1611 1610
@@ -1616,8 +1615,8 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
1616 */ 1615 */
1617static int tg_shares_up(struct task_group *tg, void *data) 1616static int tg_shares_up(struct task_group *tg, void *data)
1618{ 1617{
1619 unsigned long weight, rq_weight = 0, shares = 0; 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1620 struct update_shares_data *usd; 1619 unsigned long *usd_rq_weight;
1621 struct sched_domain *sd = data; 1620 struct sched_domain *sd = data;
1622 unsigned long flags; 1621 unsigned long flags;
1623 int i; 1622 int i;
@@ -1626,12 +1625,13 @@ static int tg_shares_up(struct task_group *tg, void *data)
1626 return 0; 1625 return 0;
1627 1626
1628 local_irq_save(flags); 1627 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data); 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1630 1629
1631 for_each_cpu(i, sched_domain_span(sd)) { 1630 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight; 1631 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight; 1632 usd_rq_weight[i] = weight;
1634 1633
1634 rq_weight += weight;
1635 /* 1635 /*
1636 * If there are currently no tasks on the cpu pretend there 1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to 1637 * is one of average load so that when a new task gets to
@@ -1640,10 +1640,13 @@ static int tg_shares_up(struct task_group *tg, void *data)
1640 if (!weight) 1640 if (!weight)
1641 weight = NICE_0_LOAD; 1641 weight = NICE_0_LOAD;
1642 1642
1643 rq_weight += weight; 1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares; 1644 shares += tg->cfs_rq[i]->shares;
1645 } 1645 }
1646 1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1647 if ((!shares && rq_weight) || shares > tg->shares) 1650 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares; 1651 shares = tg->shares;
1649 1652
@@ -1651,7 +1654,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1651 shares = tg->shares; 1654 shares = tg->shares;
1652 1655
1653 for_each_cpu(i, sched_domain_span(sd)) 1656 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd); 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1655 1658
1656 local_irq_restore(flags); 1659 local_irq_restore(flags);
1657 1660
@@ -1703,9 +1706,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703 if (root_task_group_empty()) 1706 if (root_task_group_empty())
1704 return; 1707 return;
1705 1708
1706 spin_unlock(&rq->lock); 1709 raw_spin_unlock(&rq->lock);
1707 update_shares(sd); 1710 update_shares(sd);
1708 spin_lock(&rq->lock); 1711 raw_spin_lock(&rq->lock);
1709} 1712}
1710 1713
1711static void update_h_load(long cpu) 1714static void update_h_load(long cpu)
@@ -1745,7 +1748,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __acquires(busiest->lock) 1748 __acquires(busiest->lock)
1746 __acquires(this_rq->lock) 1749 __acquires(this_rq->lock)
1747{ 1750{
1748 spin_unlock(&this_rq->lock); 1751 raw_spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest); 1752 double_rq_lock(this_rq, busiest);
1750 1753
1751 return 1; 1754 return 1;
@@ -1766,14 +1769,16 @@ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766{ 1769{
1767 int ret = 0; 1770 int ret = 0;
1768 1771
1769 if (unlikely(!spin_trylock(&busiest->lock))) { 1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) { 1773 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock); 1774 raw_spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock); 1775 raw_spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); 1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1774 ret = 1; 1778 ret = 1;
1775 } else 1779 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); 1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1777 } 1782 }
1778 return ret; 1783 return ret;
1779} 1784}
@@ -1787,7 +1792,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787{ 1792{
1788 if (unlikely(!irqs_disabled())) { 1793 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */ 1794 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock); 1795 raw_spin_unlock(&this_rq->lock);
1791 BUG_ON(1); 1796 BUG_ON(1);
1792 } 1797 }
1793 1798
@@ -1797,7 +1802,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1797static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock) 1803 __releases(busiest->lock)
1799{ 1804{
1800 spin_unlock(&busiest->lock); 1805 raw_spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802} 1807}
1803#endif 1808#endif
@@ -1812,6 +1817,22 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812#endif 1817#endif
1813 1818
1814static void calc_load_account_active(struct rq *this_rq); 1819static void calc_load_account_active(struct rq *this_rq);
1820static void update_sysctl(void);
1821static int get_update_sysctl_factor(void);
1822
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
1815 1836
1816#include "sched_stats.h" 1837#include "sched_stats.h"
1817#include "sched_idletask.c" 1838#include "sched_idletask.c"
@@ -1969,20 +1990,6 @@ inline int task_curr(const struct task_struct *p)
1969 return cpu_curr(task_cpu(p)) == p; 1990 return cpu_curr(task_cpu(p)) == p;
1970} 1991}
1971 1992
1972static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973{
1974 set_task_rq(p, cpu);
1975#ifdef CONFIG_SMP
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983#endif
1984}
1985
1986static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class, 1994 const struct sched_class *prev_class,
1988 int oldprio, int running) 1995 int oldprio, int running)
@@ -1995,6 +2002,39 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1995 p->sched_class->prio_changed(rq, p, oldprio, running); 2002 p->sched_class->prio_changed(rq, p, oldprio, running);
1996} 2003}
1997 2004
2005/**
2006 * kthread_bind - bind a just-created kthread to a cpu.
2007 * @p: thread created by kthread_create().
2008 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2009 *
2010 * Description: This function is equivalent to set_cpus_allowed(),
2011 * except that @cpu doesn't need to be online, and the thread must be
2012 * stopped (i.e., just returned from kthread_create()).
2013 *
2014 * Function lives here instead of kthread.c because it messes with
2015 * scheduler internals which require locking.
2016 */
2017void kthread_bind(struct task_struct *p, unsigned int cpu)
2018{
2019 struct rq *rq = cpu_rq(cpu);
2020 unsigned long flags;
2021
2022 /* Must have done schedule() in kthread() before we set_task_cpu */
2023 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2024 WARN_ON(1);
2025 return;
2026 }
2027
2028 raw_spin_lock_irqsave(&rq->lock, flags);
2029 update_rq_clock(rq);
2030 set_task_cpu(p, cpu);
2031 p->cpus_allowed = cpumask_of_cpu(cpu);
2032 p->rt.nr_cpus_allowed = 1;
2033 p->flags |= PF_THREAD_BOUND;
2034 raw_spin_unlock_irqrestore(&rq->lock, flags);
2035}
2036EXPORT_SYMBOL(kthread_bind);
2037
1998#ifdef CONFIG_SMP 2038#ifdef CONFIG_SMP
1999/* 2039/*
2000 * Is this task likely cache-hot: 2040 * Is this task likely cache-hot:
@@ -2007,7 +2047,7 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2007 /* 2047 /*
2008 * Buddy candidates are cache hot: 2048 * Buddy candidates are cache hot:
2009 */ 2049 */
2010 if (sched_feat(CACHE_HOT_BUDDY) && 2050 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2011 (&p->se == cfs_rq_of(&p->se)->next || 2051 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last)) 2052 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1; 2053 return 1;
@@ -2029,30 +2069,13 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2029void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2069void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2030{ 2070{
2031 int old_cpu = task_cpu(p); 2071 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p), 2072 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); 2073 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035 u64 clock_offset;
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
2038 2074
2039 trace_sched_migrate_task(p, new_cpu); 2075 trace_sched_migrate_task(p, new_cpu);
2040 2076
2041#ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
2048#endif
2049 if (old_cpu != new_cpu) { 2077 if (old_cpu != new_cpu) {
2050 p->se.nr_migrations++; 2078 p->se.nr_migrations++;
2051 new_rq->nr_migrations_in++;
2052#ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055#endif
2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 2079 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0); 2080 1, 1, NULL, 0);
2058 } 2081 }
@@ -2085,6 +2108,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2085 * it is sufficient to simply update the task's cpu field. 2108 * it is sufficient to simply update the task's cpu field.
2086 */ 2109 */
2087 if (!p->se.on_rq && !task_running(rq, p)) { 2110 if (!p->se.on_rq && !task_running(rq, p)) {
2111 update_rq_clock(rq);
2088 set_task_cpu(p, dest_cpu); 2112 set_task_cpu(p, dest_cpu);
2089 return 0; 2113 return 0;
2090 } 2114 }
@@ -2292,6 +2316,14 @@ void task_oncpu_function_call(struct task_struct *p,
2292 preempt_enable(); 2316 preempt_enable();
2293} 2317}
2294 2318
2319#ifdef CONFIG_SMP
2320static inline
2321int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322{
2323 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324}
2325#endif
2326
2295/*** 2327/***
2296 * try_to_wake_up - wake up a thread 2328 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread 2329 * @p: the to-be-woken-up thread
@@ -2311,7 +2343,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2311{ 2343{
2312 int cpu, orig_cpu, this_cpu, success = 0; 2344 int cpu, orig_cpu, this_cpu, success = 0;
2313 unsigned long flags; 2345 unsigned long flags;
2314 struct rq *rq; 2346 struct rq *rq, *orig_rq;
2315 2347
2316 if (!sched_feat(SYNC_WAKEUPS)) 2348 if (!sched_feat(SYNC_WAKEUPS))
2317 wake_flags &= ~WF_SYNC; 2349 wake_flags &= ~WF_SYNC;
@@ -2319,7 +2351,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2319 this_cpu = get_cpu(); 2351 this_cpu = get_cpu();
2320 2352
2321 smp_wmb(); 2353 smp_wmb();
2322 rq = task_rq_lock(p, &flags); 2354 rq = orig_rq = task_rq_lock(p, &flags);
2323 update_rq_clock(rq); 2355 update_rq_clock(rq);
2324 if (!(p->state & state)) 2356 if (!(p->state & state))
2325 goto out; 2357 goto out;
@@ -2343,13 +2375,15 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2343 if (task_contributes_to_load(p)) 2375 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--; 2376 rq->nr_uninterruptible--;
2345 p->state = TASK_WAKING; 2377 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags); 2378 __task_rq_unlock(rq);
2347 2379
2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 2380 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2349 if (cpu != orig_cpu) 2381 if (cpu != orig_cpu)
2350 set_task_cpu(p, cpu); 2382 set_task_cpu(p, cpu);
2351 2383
2352 rq = task_rq_lock(p, &flags); 2384 rq = __task_rq_lock(p);
2385 update_rq_clock(rq);
2386
2353 WARN_ON(p->state != TASK_WAKING); 2387 WARN_ON(p->state != TASK_WAKING);
2354 cpu = task_cpu(p); 2388 cpu = task_cpu(p);
2355 2389
@@ -2406,6 +2440,17 @@ out_running:
2406#ifdef CONFIG_SMP 2440#ifdef CONFIG_SMP
2407 if (p->sched_class->task_wake_up) 2441 if (p->sched_class->task_wake_up)
2408 p->sched_class->task_wake_up(rq, p); 2442 p->sched_class->task_wake_up(rq, p);
2443
2444 if (unlikely(rq->idle_stamp)) {
2445 u64 delta = rq->clock - rq->idle_stamp;
2446 u64 max = 2*sysctl_sched_migration_cost;
2447
2448 if (delta > max)
2449 rq->avg_idle = max;
2450 else
2451 update_avg(&rq->avg_idle, delta);
2452 rq->idle_stamp = 0;
2453 }
2409#endif 2454#endif
2410out: 2455out:
2411 task_rq_unlock(rq, &flags); 2456 task_rq_unlock(rq, &flags);
@@ -2452,7 +2497,6 @@ static void __sched_fork(struct task_struct *p)
2452 p->se.avg_overlap = 0; 2497 p->se.avg_overlap = 0;
2453 p->se.start_runtime = 0; 2498 p->se.start_runtime = 0;
2454 p->se.avg_wakeup = sysctl_sched_wakeup_granularity; 2499 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2455 p->se.avg_running = 0;
2456 2500
2457#ifdef CONFIG_SCHEDSTATS 2501#ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0; 2502 p->se.wait_start = 0;
@@ -2474,7 +2518,6 @@ static void __sched_fork(struct task_struct *p)
2474 p->se.nr_failed_migrations_running = 0; 2518 p->se.nr_failed_migrations_running = 0;
2475 p->se.nr_failed_migrations_hot = 0; 2519 p->se.nr_failed_migrations_hot = 0;
2476 p->se.nr_forced_migrations = 0; 2520 p->se.nr_forced_migrations = 0;
2477 p->se.nr_forced2_migrations = 0;
2478 2521
2479 p->se.nr_wakeups = 0; 2522 p->se.nr_wakeups = 0;
2480 p->se.nr_wakeups_sync = 0; 2523 p->se.nr_wakeups_sync = 0;
@@ -2515,22 +2558,17 @@ void sched_fork(struct task_struct *p, int clone_flags)
2515 __sched_fork(p); 2558 __sched_fork(p);
2516 2559
2517 /* 2560 /*
2518 * Make sure we do not leak PI boosting priority to the child.
2519 */
2520 p->prio = current->normal_prio;
2521
2522 /*
2523 * Revert to default priority/policy on fork if requested. 2561 * Revert to default priority/policy on fork if requested.
2524 */ 2562 */
2525 if (unlikely(p->sched_reset_on_fork)) { 2563 if (unlikely(p->sched_reset_on_fork)) {
2526 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) 2564 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2527 p->policy = SCHED_NORMAL; 2565 p->policy = SCHED_NORMAL;
2528 2566 p->normal_prio = p->static_prio;
2529 if (p->normal_prio < DEFAULT_PRIO) 2567 }
2530 p->prio = DEFAULT_PRIO;
2531 2568
2532 if (PRIO_TO_NICE(p->static_prio) < 0) { 2569 if (PRIO_TO_NICE(p->static_prio) < 0) {
2533 p->static_prio = NICE_TO_PRIO(0); 2570 p->static_prio = NICE_TO_PRIO(0);
2571 p->normal_prio = p->static_prio;
2534 set_load_weight(p); 2572 set_load_weight(p);
2535 } 2573 }
2536 2574
@@ -2541,11 +2579,19 @@ void sched_fork(struct task_struct *p, int clone_flags)
2541 p->sched_reset_on_fork = 0; 2579 p->sched_reset_on_fork = 0;
2542 } 2580 }
2543 2581
2582 /*
2583 * Make sure we do not leak PI boosting priority to the child.
2584 */
2585 p->prio = current->normal_prio;
2586
2544 if (!rt_prio(p->prio)) 2587 if (!rt_prio(p->prio))
2545 p->sched_class = &fair_sched_class; 2588 p->sched_class = &fair_sched_class;
2546 2589
2590 if (p->sched_class->task_fork)
2591 p->sched_class->task_fork(p);
2592
2547#ifdef CONFIG_SMP 2593#ifdef CONFIG_SMP
2548 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); 2594 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2549#endif 2595#endif
2550 set_task_cpu(p, cpu); 2596 set_task_cpu(p, cpu);
2551 2597
@@ -2580,19 +2626,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2580 rq = task_rq_lock(p, &flags); 2626 rq = task_rq_lock(p, &flags);
2581 BUG_ON(p->state != TASK_RUNNING); 2627 BUG_ON(p->state != TASK_RUNNING);
2582 update_rq_clock(rq); 2628 update_rq_clock(rq);
2583 2629 activate_task(rq, p, 0);
2584 p->prio = effective_prio(p);
2585
2586 if (!p->sched_class->task_new || !current->se.on_rq) {
2587 activate_task(rq, p, 0);
2588 } else {
2589 /*
2590 * Let the scheduling class do new task startup
2591 * management (if any):
2592 */
2593 p->sched_class->task_new(rq, p);
2594 inc_nr_running(rq);
2595 }
2596 trace_sched_wakeup_new(rq, p, 1); 2630 trace_sched_wakeup_new(rq, p, 1);
2597 check_preempt_curr(rq, p, WF_FORK); 2631 check_preempt_curr(rq, p, WF_FORK);
2598#ifdef CONFIG_SMP 2632#ifdef CONFIG_SMP
@@ -2749,10 +2783,10 @@ static inline void post_schedule(struct rq *rq)
2749 if (rq->post_schedule) { 2783 if (rq->post_schedule) {
2750 unsigned long flags; 2784 unsigned long flags;
2751 2785
2752 spin_lock_irqsave(&rq->lock, flags); 2786 raw_spin_lock_irqsave(&rq->lock, flags);
2753 if (rq->curr->sched_class->post_schedule) 2787 if (rq->curr->sched_class->post_schedule)
2754 rq->curr->sched_class->post_schedule(rq); 2788 rq->curr->sched_class->post_schedule(rq);
2755 spin_unlock_irqrestore(&rq->lock, flags); 2789 raw_spin_unlock_irqrestore(&rq->lock, flags);
2756 2790
2757 rq->post_schedule = 0; 2791 rq->post_schedule = 0;
2758 } 2792 }
@@ -2816,14 +2850,14 @@ context_switch(struct rq *rq, struct task_struct *prev,
2816 */ 2850 */
2817 arch_start_context_switch(prev); 2851 arch_start_context_switch(prev);
2818 2852
2819 if (unlikely(!mm)) { 2853 if (likely(!mm)) {
2820 next->active_mm = oldmm; 2854 next->active_mm = oldmm;
2821 atomic_inc(&oldmm->mm_count); 2855 atomic_inc(&oldmm->mm_count);
2822 enter_lazy_tlb(oldmm, next); 2856 enter_lazy_tlb(oldmm, next);
2823 } else 2857 } else
2824 switch_mm(oldmm, mm, next); 2858 switch_mm(oldmm, mm, next);
2825 2859
2826 if (unlikely(!prev->mm)) { 2860 if (likely(!prev->mm)) {
2827 prev->active_mm = NULL; 2861 prev->active_mm = NULL;
2828 rq->prev_mm = oldmm; 2862 rq->prev_mm = oldmm;
2829 } 2863 }
@@ -2986,15 +3020,6 @@ static void calc_load_account_active(struct rq *this_rq)
2986} 3020}
2987 3021
2988/* 3022/*
2989 * Externally visible per-cpu scheduler statistics:
2990 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2991 */
2992u64 cpu_nr_migrations(int cpu)
2993{
2994 return cpu_rq(cpu)->nr_migrations_in;
2995}
2996
2997/*
2998 * Update rq->cpu_load[] statistics. This function is usually called every 3023 * Update rq->cpu_load[] statistics. This function is usually called every
2999 * scheduler tick (TICK_NSEC). 3024 * scheduler tick (TICK_NSEC).
3000 */ 3025 */
@@ -3043,15 +3068,15 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3043{ 3068{
3044 BUG_ON(!irqs_disabled()); 3069 BUG_ON(!irqs_disabled());
3045 if (rq1 == rq2) { 3070 if (rq1 == rq2) {
3046 spin_lock(&rq1->lock); 3071 raw_spin_lock(&rq1->lock);
3047 __acquire(rq2->lock); /* Fake it out ;) */ 3072 __acquire(rq2->lock); /* Fake it out ;) */
3048 } else { 3073 } else {
3049 if (rq1 < rq2) { 3074 if (rq1 < rq2) {
3050 spin_lock(&rq1->lock); 3075 raw_spin_lock(&rq1->lock);
3051 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 3076 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3052 } else { 3077 } else {
3053 spin_lock(&rq2->lock); 3078 raw_spin_lock(&rq2->lock);
3054 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 3079 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3055 } 3080 }
3056 } 3081 }
3057 update_rq_clock(rq1); 3082 update_rq_clock(rq1);
@@ -3068,9 +3093,9 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3068 __releases(rq1->lock) 3093 __releases(rq1->lock)
3069 __releases(rq2->lock) 3094 __releases(rq2->lock)
3070{ 3095{
3071 spin_unlock(&rq1->lock); 3096 raw_spin_unlock(&rq1->lock);
3072 if (rq1 != rq2) 3097 if (rq1 != rq2)
3073 spin_unlock(&rq2->lock); 3098 raw_spin_unlock(&rq2->lock);
3074 else 3099 else
3075 __release(rq2->lock); 3100 __release(rq2->lock);
3076} 3101}
@@ -3116,7 +3141,7 @@ out:
3116void sched_exec(void) 3141void sched_exec(void)
3117{ 3142{
3118 int new_cpu, this_cpu = get_cpu(); 3143 int new_cpu, this_cpu = get_cpu();
3119 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); 3144 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3120 put_cpu(); 3145 put_cpu();
3121 if (new_cpu != this_cpu) 3146 if (new_cpu != this_cpu)
3122 sched_migrate_task(current, new_cpu); 3147 sched_migrate_task(current, new_cpu);
@@ -3132,10 +3157,6 @@ static void pull_task(struct rq *src_rq, struct task_struct *p,
3132 deactivate_task(src_rq, p, 0); 3157 deactivate_task(src_rq, p, 0);
3133 set_task_cpu(p, this_cpu); 3158 set_task_cpu(p, this_cpu);
3134 activate_task(this_rq, p, 0); 3159 activate_task(this_rq, p, 0);
3135 /*
3136 * Note that idle threads have a prio of MAX_PRIO, for this test
3137 * to be always true for them.
3138 */
3139 check_preempt_curr(this_rq, p, 0); 3160 check_preempt_curr(this_rq, p, 0);
3140} 3161}
3141 3162
@@ -3658,6 +3679,7 @@ static void update_group_power(struct sched_domain *sd, int cpu)
3658 3679
3659/** 3680/**
3660 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3681 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3682 * @sd: The sched_domain whose statistics are to be updated.
3661 * @group: sched_group whose statistics are to be updated. 3683 * @group: sched_group whose statistics are to be updated.
3662 * @this_cpu: Cpu for which load balance is currently performed. 3684 * @this_cpu: Cpu for which load balance is currently performed.
3663 * @idle: Idle status of this_cpu 3685 * @idle: Idle status of this_cpu
@@ -4093,7 +4115,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
4093 unsigned long flags; 4115 unsigned long flags;
4094 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4116 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4095 4117
4096 cpumask_setall(cpus); 4118 cpumask_copy(cpus, cpu_active_mask);
4097 4119
4098 /* 4120 /*
4099 * When power savings policy is enabled for the parent domain, idle 4121 * When power savings policy is enabled for the parent domain, idle
@@ -4166,14 +4188,15 @@ redo:
4166 4188
4167 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { 4189 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4168 4190
4169 spin_lock_irqsave(&busiest->lock, flags); 4191 raw_spin_lock_irqsave(&busiest->lock, flags);
4170 4192
4171 /* don't kick the migration_thread, if the curr 4193 /* don't kick the migration_thread, if the curr
4172 * task on busiest cpu can't be moved to this_cpu 4194 * task on busiest cpu can't be moved to this_cpu
4173 */ 4195 */
4174 if (!cpumask_test_cpu(this_cpu, 4196 if (!cpumask_test_cpu(this_cpu,
4175 &busiest->curr->cpus_allowed)) { 4197 &busiest->curr->cpus_allowed)) {
4176 spin_unlock_irqrestore(&busiest->lock, flags); 4198 raw_spin_unlock_irqrestore(&busiest->lock,
4199 flags);
4177 all_pinned = 1; 4200 all_pinned = 1;
4178 goto out_one_pinned; 4201 goto out_one_pinned;
4179 } 4202 }
@@ -4183,7 +4206,7 @@ redo:
4183 busiest->push_cpu = this_cpu; 4206 busiest->push_cpu = this_cpu;
4184 active_balance = 1; 4207 active_balance = 1;
4185 } 4208 }
4186 spin_unlock_irqrestore(&busiest->lock, flags); 4209 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4187 if (active_balance) 4210 if (active_balance)
4188 wake_up_process(busiest->migration_thread); 4211 wake_up_process(busiest->migration_thread);
4189 4212
@@ -4256,7 +4279,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4256 int all_pinned = 0; 4279 int all_pinned = 0;
4257 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4280 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4258 4281
4259 cpumask_setall(cpus); 4282 cpumask_copy(cpus, cpu_active_mask);
4260 4283
4261 /* 4284 /*
4262 * When power savings policy is enabled for the parent domain, idle 4285 * When power savings policy is enabled for the parent domain, idle
@@ -4365,10 +4388,10 @@ redo:
4365 /* 4388 /*
4366 * Should not call ttwu while holding a rq->lock 4389 * Should not call ttwu while holding a rq->lock
4367 */ 4390 */
4368 spin_unlock(&this_rq->lock); 4391 raw_spin_unlock(&this_rq->lock);
4369 if (active_balance) 4392 if (active_balance)
4370 wake_up_process(busiest->migration_thread); 4393 wake_up_process(busiest->migration_thread);
4371 spin_lock(&this_rq->lock); 4394 raw_spin_lock(&this_rq->lock);
4372 4395
4373 } else 4396 } else
4374 sd->nr_balance_failed = 0; 4397 sd->nr_balance_failed = 0;
@@ -4396,6 +4419,11 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4396 int pulled_task = 0; 4419 int pulled_task = 0;
4397 unsigned long next_balance = jiffies + HZ; 4420 unsigned long next_balance = jiffies + HZ;
4398 4421
4422 this_rq->idle_stamp = this_rq->clock;
4423
4424 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4425 return;
4426
4399 for_each_domain(this_cpu, sd) { 4427 for_each_domain(this_cpu, sd) {
4400 unsigned long interval; 4428 unsigned long interval;
4401 4429
@@ -4410,8 +4438,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4410 interval = msecs_to_jiffies(sd->balance_interval); 4438 interval = msecs_to_jiffies(sd->balance_interval);
4411 if (time_after(next_balance, sd->last_balance + interval)) 4439 if (time_after(next_balance, sd->last_balance + interval))
4412 next_balance = sd->last_balance + interval; 4440 next_balance = sd->last_balance + interval;
4413 if (pulled_task) 4441 if (pulled_task) {
4442 this_rq->idle_stamp = 0;
4414 break; 4443 break;
4444 }
4415 } 4445 }
4416 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4446 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4417 /* 4447 /*
@@ -4646,7 +4676,7 @@ int select_nohz_load_balancer(int stop_tick)
4646 cpumask_set_cpu(cpu, nohz.cpu_mask); 4676 cpumask_set_cpu(cpu, nohz.cpu_mask);
4647 4677
4648 /* time for ilb owner also to sleep */ 4678 /* time for ilb owner also to sleep */
4649 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { 4679 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4650 if (atomic_read(&nohz.load_balancer) == cpu) 4680 if (atomic_read(&nohz.load_balancer) == cpu)
4651 atomic_set(&nohz.load_balancer, -1); 4681 atomic_set(&nohz.load_balancer, -1);
4652 return 0; 4682 return 0;
@@ -5013,8 +5043,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
5013 p->gtime = cputime_add(p->gtime, cputime); 5043 p->gtime = cputime_add(p->gtime, cputime);
5014 5044
5015 /* Add guest time to cpustat. */ 5045 /* Add guest time to cpustat. */
5016 cpustat->user = cputime64_add(cpustat->user, tmp); 5046 if (TASK_NICE(p) > 0) {
5017 cpustat->guest = cputime64_add(cpustat->guest, tmp); 5047 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5048 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5049 } else {
5050 cpustat->user = cputime64_add(cpustat->user, tmp);
5051 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5052 }
5018} 5053}
5019 5054
5020/* 5055/*
@@ -5129,60 +5164,86 @@ void account_idle_ticks(unsigned long ticks)
5129 * Use precise platform statistics if available: 5164 * Use precise platform statistics if available:
5130 */ 5165 */
5131#ifdef CONFIG_VIRT_CPU_ACCOUNTING 5166#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5132cputime_t task_utime(struct task_struct *p) 5167void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5133{ 5168{
5134 return p->utime; 5169 *ut = p->utime;
5170 *st = p->stime;
5135} 5171}
5136 5172
5137cputime_t task_stime(struct task_struct *p) 5173void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5138{ 5174{
5139 return p->stime; 5175 struct task_cputime cputime;
5176
5177 thread_group_cputime(p, &cputime);
5178
5179 *ut = cputime.utime;
5180 *st = cputime.stime;
5140} 5181}
5141#else 5182#else
5142cputime_t task_utime(struct task_struct *p) 5183
5184#ifndef nsecs_to_cputime
5185# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5186#endif
5187
5188void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5143{ 5189{
5144 clock_t utime = cputime_to_clock_t(p->utime), 5190 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5145 total = utime + cputime_to_clock_t(p->stime);
5146 u64 temp;
5147 5191
5148 /* 5192 /*
5149 * Use CFS's precise accounting: 5193 * Use CFS's precise accounting:
5150 */ 5194 */
5151 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); 5195 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5152 5196
5153 if (total) { 5197 if (total) {
5154 temp *= utime; 5198 u64 temp;
5199
5200 temp = (u64)(rtime * utime);
5155 do_div(temp, total); 5201 do_div(temp, total);
5156 } 5202 utime = (cputime_t)temp;
5157 utime = (clock_t)temp; 5203 } else
5204 utime = rtime;
5158 5205
5159 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); 5206 /*
5160 return p->prev_utime; 5207 * Compare with previous values, to keep monotonicity:
5208 */
5209 p->prev_utime = max(p->prev_utime, utime);
5210 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5211
5212 *ut = p->prev_utime;
5213 *st = p->prev_stime;
5161} 5214}
5162 5215
5163cputime_t task_stime(struct task_struct *p) 5216/*
5217 * Must be called with siglock held.
5218 */
5219void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5164{ 5220{
5165 clock_t stime; 5221 struct signal_struct *sig = p->signal;
5222 struct task_cputime cputime;
5223 cputime_t rtime, utime, total;
5166 5224
5167 /* 5225 thread_group_cputime(p, &cputime);
5168 * Use CFS's precise accounting. (we subtract utime from
5169 * the total, to make sure the total observed by userspace
5170 * grows monotonically - apps rely on that):
5171 */
5172 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5173 cputime_to_clock_t(task_utime(p));
5174 5226
5175 if (stime >= 0) 5227 total = cputime_add(cputime.utime, cputime.stime);
5176 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); 5228 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5177 5229
5178 return p->prev_stime; 5230 if (total) {
5179} 5231 u64 temp;
5180#endif
5181 5232
5182inline cputime_t task_gtime(struct task_struct *p) 5233 temp = (u64)(rtime * cputime.utime);
5183{ 5234 do_div(temp, total);
5184 return p->gtime; 5235 utime = (cputime_t)temp;
5236 } else
5237 utime = rtime;
5238
5239 sig->prev_utime = max(sig->prev_utime, utime);
5240 sig->prev_stime = max(sig->prev_stime,
5241 cputime_sub(rtime, sig->prev_utime));
5242
5243 *ut = sig->prev_utime;
5244 *st = sig->prev_stime;
5185} 5245}
5246#endif
5186 5247
5187/* 5248/*
5188 * This function gets called by the timer code, with HZ frequency. 5249 * This function gets called by the timer code, with HZ frequency.
@@ -5199,11 +5260,11 @@ void scheduler_tick(void)
5199 5260
5200 sched_clock_tick(); 5261 sched_clock_tick();
5201 5262
5202 spin_lock(&rq->lock); 5263 raw_spin_lock(&rq->lock);
5203 update_rq_clock(rq); 5264 update_rq_clock(rq);
5204 update_cpu_load(rq); 5265 update_cpu_load(rq);
5205 curr->sched_class->task_tick(rq, curr, 0); 5266 curr->sched_class->task_tick(rq, curr, 0);
5206 spin_unlock(&rq->lock); 5267 raw_spin_unlock(&rq->lock);
5207 5268
5208 perf_event_task_tick(curr, cpu); 5269 perf_event_task_tick(curr, cpu);
5209 5270
@@ -5317,13 +5378,14 @@ static inline void schedule_debug(struct task_struct *prev)
5317#endif 5378#endif
5318} 5379}
5319 5380
5320static void put_prev_task(struct rq *rq, struct task_struct *p) 5381static void put_prev_task(struct rq *rq, struct task_struct *prev)
5321{ 5382{
5322 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; 5383 if (prev->state == TASK_RUNNING) {
5384 u64 runtime = prev->se.sum_exec_runtime;
5323 5385
5324 update_avg(&p->se.avg_running, runtime); 5386 runtime -= prev->se.prev_sum_exec_runtime;
5387 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5325 5388
5326 if (p->state == TASK_RUNNING) {
5327 /* 5389 /*
5328 * In order to avoid avg_overlap growing stale when we are 5390 * In order to avoid avg_overlap growing stale when we are
5329 * indeed overlapping and hence not getting put to sleep, grow 5391 * indeed overlapping and hence not getting put to sleep, grow
@@ -5333,12 +5395,9 @@ static void put_prev_task(struct rq *rq, struct task_struct *p)
5333 * correlates to the amount of cache footprint a task can 5395 * correlates to the amount of cache footprint a task can
5334 * build up. 5396 * build up.
5335 */ 5397 */
5336 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); 5398 update_avg(&prev->se.avg_overlap, runtime);
5337 update_avg(&p->se.avg_overlap, runtime);
5338 } else {
5339 update_avg(&p->se.avg_running, 0);
5340 } 5399 }
5341 p->sched_class->put_prev_task(rq, p); 5400 prev->sched_class->put_prev_task(rq, prev);
5342} 5401}
5343 5402
5344/* 5403/*
@@ -5399,7 +5458,7 @@ need_resched_nonpreemptible:
5399 if (sched_feat(HRTICK)) 5458 if (sched_feat(HRTICK))
5400 hrtick_clear(rq); 5459 hrtick_clear(rq);
5401 5460
5402 spin_lock_irq(&rq->lock); 5461 raw_spin_lock_irq(&rq->lock);
5403 update_rq_clock(rq); 5462 update_rq_clock(rq);
5404 clear_tsk_need_resched(prev); 5463 clear_tsk_need_resched(prev);
5405 5464
@@ -5435,7 +5494,7 @@ need_resched_nonpreemptible:
5435 cpu = smp_processor_id(); 5494 cpu = smp_processor_id();
5436 rq = cpu_rq(cpu); 5495 rq = cpu_rq(cpu);
5437 } else 5496 } else
5438 spin_unlock_irq(&rq->lock); 5497 raw_spin_unlock_irq(&rq->lock);
5439 5498
5440 post_schedule(rq); 5499 post_schedule(rq);
5441 5500
@@ -5448,7 +5507,7 @@ need_resched_nonpreemptible:
5448} 5507}
5449EXPORT_SYMBOL(schedule); 5508EXPORT_SYMBOL(schedule);
5450 5509
5451#ifdef CONFIG_SMP 5510#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5452/* 5511/*
5453 * Look out! "owner" is an entirely speculative pointer 5512 * Look out! "owner" is an entirely speculative pointer
5454 * access and not reliable. 5513 * access and not reliable.
@@ -6142,22 +6201,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6142 BUG_ON(p->se.on_rq); 6201 BUG_ON(p->se.on_rq);
6143 6202
6144 p->policy = policy; 6203 p->policy = policy;
6145 switch (p->policy) {
6146 case SCHED_NORMAL:
6147 case SCHED_BATCH:
6148 case SCHED_IDLE:
6149 p->sched_class = &fair_sched_class;
6150 break;
6151 case SCHED_FIFO:
6152 case SCHED_RR:
6153 p->sched_class = &rt_sched_class;
6154 break;
6155 }
6156
6157 p->rt_priority = prio; 6204 p->rt_priority = prio;
6158 p->normal_prio = normal_prio(p); 6205 p->normal_prio = normal_prio(p);
6159 /* we are holding p->pi_lock already */ 6206 /* we are holding p->pi_lock already */
6160 p->prio = rt_mutex_getprio(p); 6207 p->prio = rt_mutex_getprio(p);
6208 if (rt_prio(p->prio))
6209 p->sched_class = &rt_sched_class;
6210 else
6211 p->sched_class = &fair_sched_class;
6161 set_load_weight(p); 6212 set_load_weight(p);
6162} 6213}
6163 6214
@@ -6272,7 +6323,7 @@ recheck:
6272 * make sure no PI-waiters arrive (or leave) while we are 6323 * make sure no PI-waiters arrive (or leave) while we are
6273 * changing the priority of the task: 6324 * changing the priority of the task:
6274 */ 6325 */
6275 spin_lock_irqsave(&p->pi_lock, flags); 6326 raw_spin_lock_irqsave(&p->pi_lock, flags);
6276 /* 6327 /*
6277 * To be able to change p->policy safely, the apropriate 6328 * To be able to change p->policy safely, the apropriate
6278 * runqueue lock must be held. 6329 * runqueue lock must be held.
@@ -6282,7 +6333,7 @@ recheck:
6282 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6283 policy = oldpolicy = -1; 6334 policy = oldpolicy = -1;
6284 __task_rq_unlock(rq); 6335 __task_rq_unlock(rq);
6285 spin_unlock_irqrestore(&p->pi_lock, flags); 6336 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6286 goto recheck; 6337 goto recheck;
6287 } 6338 }
6288 update_rq_clock(rq); 6339 update_rq_clock(rq);
@@ -6306,7 +6357,7 @@ recheck:
6306 check_class_changed(rq, p, prev_class, oldprio, running); 6357 check_class_changed(rq, p, prev_class, oldprio, running);
6307 } 6358 }
6308 __task_rq_unlock(rq); 6359 __task_rq_unlock(rq);
6309 spin_unlock_irqrestore(&p->pi_lock, flags); 6360 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6310 6361
6311 rt_mutex_adjust_pi(p); 6362 rt_mutex_adjust_pi(p);
6312 6363
@@ -6560,6 +6611,8 @@ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6560long sched_getaffinity(pid_t pid, struct cpumask *mask) 6611long sched_getaffinity(pid_t pid, struct cpumask *mask)
6561{ 6612{
6562 struct task_struct *p; 6613 struct task_struct *p;
6614 unsigned long flags;
6615 struct rq *rq;
6563 int retval; 6616 int retval;
6564 6617
6565 get_online_cpus(); 6618 get_online_cpus();
@@ -6574,7 +6627,9 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask)
6574 if (retval) 6627 if (retval)
6575 goto out_unlock; 6628 goto out_unlock;
6576 6629
6630 rq = task_rq_lock(p, &flags);
6577 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 6631 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6632 task_rq_unlock(rq, &flags);
6578 6633
6579out_unlock: 6634out_unlock:
6580 read_unlock(&tasklist_lock); 6635 read_unlock(&tasklist_lock);
@@ -6632,7 +6687,7 @@ SYSCALL_DEFINE0(sched_yield)
6632 */ 6687 */
6633 __release(rq->lock); 6688 __release(rq->lock);
6634 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 6689 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6635 _raw_spin_unlock(&rq->lock); 6690 do_raw_spin_unlock(&rq->lock);
6636 preempt_enable_no_resched(); 6691 preempt_enable_no_resched();
6637 6692
6638 schedule(); 6693 schedule();
@@ -6720,9 +6775,6 @@ EXPORT_SYMBOL(yield);
6720/* 6775/*
6721 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 6776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6722 * that process accounting knows that this is a task in IO wait state. 6777 * that process accounting knows that this is a task in IO wait state.
6723 *
6724 * But don't do that if it is a deliberate, throttling IO wait (this task
6725 * has set its backing_dev_info: the queue against which it should throttle)
6726 */ 6778 */
6727void __sched io_schedule(void) 6779void __sched io_schedule(void)
6728{ 6780{
@@ -6815,6 +6867,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6815{ 6867{
6816 struct task_struct *p; 6868 struct task_struct *p;
6817 unsigned int time_slice; 6869 unsigned int time_slice;
6870 unsigned long flags;
6871 struct rq *rq;
6818 int retval; 6872 int retval;
6819 struct timespec t; 6873 struct timespec t;
6820 6874
@@ -6831,7 +6885,9 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6831 if (retval) 6885 if (retval)
6832 goto out_unlock; 6886 goto out_unlock;
6833 6887
6834 time_slice = p->sched_class->get_rr_interval(p); 6888 rq = task_rq_lock(p, &flags);
6889 time_slice = p->sched_class->get_rr_interval(rq, p);
6890 task_rq_unlock(rq, &flags);
6835 6891
6836 read_unlock(&tasklist_lock); 6892 read_unlock(&tasklist_lock);
6837 jiffies_to_timespec(time_slice, &t); 6893 jiffies_to_timespec(time_slice, &t);
@@ -6905,7 +6961,7 @@ void show_state_filter(unsigned long state_filter)
6905 /* 6961 /*
6906 * Only show locks if all tasks are dumped: 6962 * Only show locks if all tasks are dumped:
6907 */ 6963 */
6908 if (state_filter == -1) 6964 if (!state_filter)
6909 debug_show_all_locks(); 6965 debug_show_all_locks();
6910} 6966}
6911 6967
@@ -6927,12 +6983,11 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
6927 struct rq *rq = cpu_rq(cpu); 6983 struct rq *rq = cpu_rq(cpu);
6928 unsigned long flags; 6984 unsigned long flags;
6929 6985
6930 spin_lock_irqsave(&rq->lock, flags); 6986 raw_spin_lock_irqsave(&rq->lock, flags);
6931 6987
6932 __sched_fork(idle); 6988 __sched_fork(idle);
6933 idle->se.exec_start = sched_clock(); 6989 idle->se.exec_start = sched_clock();
6934 6990
6935 idle->prio = idle->normal_prio = MAX_PRIO;
6936 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); 6991 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6937 __set_task_cpu(idle, cpu); 6992 __set_task_cpu(idle, cpu);
6938 6993
@@ -6940,7 +6995,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
6940#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 6995#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6941 idle->oncpu = 1; 6996 idle->oncpu = 1;
6942#endif 6997#endif
6943 spin_unlock_irqrestore(&rq->lock, flags); 6998 raw_spin_unlock_irqrestore(&rq->lock, flags);
6944 6999
6945 /* Set the preempt count _outside_ the spinlocks! */ 7000 /* Set the preempt count _outside_ the spinlocks! */
6946#if defined(CONFIG_PREEMPT) 7001#if defined(CONFIG_PREEMPT)
@@ -6973,22 +7028,43 @@ cpumask_var_t nohz_cpu_mask;
6973 * 7028 *
6974 * This idea comes from the SD scheduler of Con Kolivas: 7029 * This idea comes from the SD scheduler of Con Kolivas:
6975 */ 7030 */
6976static inline void sched_init_granularity(void) 7031static int get_update_sysctl_factor(void)
6977{ 7032{
6978 unsigned int factor = 1 + ilog2(num_online_cpus()); 7033 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6979 const unsigned long limit = 200000000; 7034 unsigned int factor;
6980 7035
6981 sysctl_sched_min_granularity *= factor; 7036 switch (sysctl_sched_tunable_scaling) {
6982 if (sysctl_sched_min_granularity > limit) 7037 case SCHED_TUNABLESCALING_NONE:
6983 sysctl_sched_min_granularity = limit; 7038 factor = 1;
7039 break;
7040 case SCHED_TUNABLESCALING_LINEAR:
7041 factor = cpus;
7042 break;
7043 case SCHED_TUNABLESCALING_LOG:
7044 default:
7045 factor = 1 + ilog2(cpus);
7046 break;
7047 }
6984 7048
6985 sysctl_sched_latency *= factor; 7049 return factor;
6986 if (sysctl_sched_latency > limit) 7050}
6987 sysctl_sched_latency = limit;
6988 7051
6989 sysctl_sched_wakeup_granularity *= factor; 7052static void update_sysctl(void)
7053{
7054 unsigned int factor = get_update_sysctl_factor();
7055
7056#define SET_SYSCTL(name) \
7057 (sysctl_##name = (factor) * normalized_sysctl_##name)
7058 SET_SYSCTL(sched_min_granularity);
7059 SET_SYSCTL(sched_latency);
7060 SET_SYSCTL(sched_wakeup_granularity);
7061 SET_SYSCTL(sched_shares_ratelimit);
7062#undef SET_SYSCTL
7063}
6990 7064
6991 sysctl_sched_shares_ratelimit *= factor; 7065static inline void sched_init_granularity(void)
7066{
7067 update_sysctl();
6992} 7068}
6993 7069
6994#ifdef CONFIG_SMP 7070#ifdef CONFIG_SMP
@@ -7025,7 +7101,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7025 int ret = 0; 7101 int ret = 0;
7026 7102
7027 rq = task_rq_lock(p, &flags); 7103 rq = task_rq_lock(p, &flags);
7028 if (!cpumask_intersects(new_mask, cpu_online_mask)) { 7104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7029 ret = -EINVAL; 7105 ret = -EINVAL;
7030 goto out; 7106 goto out;
7031 } 7107 }
@@ -7047,7 +7123,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7047 if (cpumask_test_cpu(task_cpu(p), new_mask)) 7123 if (cpumask_test_cpu(task_cpu(p), new_mask))
7048 goto out; 7124 goto out;
7049 7125
7050 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { 7126 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7051 /* Need help from migration thread: drop lock and wait. */ 7127 /* Need help from migration thread: drop lock and wait. */
7052 struct task_struct *mt = rq->migration_thread; 7128 struct task_struct *mt = rq->migration_thread;
7053 7129
@@ -7136,10 +7212,10 @@ static int migration_thread(void *data)
7136 struct migration_req *req; 7212 struct migration_req *req;
7137 struct list_head *head; 7213 struct list_head *head;
7138 7214
7139 spin_lock_irq(&rq->lock); 7215 raw_spin_lock_irq(&rq->lock);
7140 7216
7141 if (cpu_is_offline(cpu)) { 7217 if (cpu_is_offline(cpu)) {
7142 spin_unlock_irq(&rq->lock); 7218 raw_spin_unlock_irq(&rq->lock);
7143 break; 7219 break;
7144 } 7220 }
7145 7221
@@ -7151,7 +7227,7 @@ static int migration_thread(void *data)
7151 head = &rq->migration_queue; 7227 head = &rq->migration_queue;
7152 7228
7153 if (list_empty(head)) { 7229 if (list_empty(head)) {
7154 spin_unlock_irq(&rq->lock); 7230 raw_spin_unlock_irq(&rq->lock);
7155 schedule(); 7231 schedule();
7156 set_current_state(TASK_INTERRUPTIBLE); 7232 set_current_state(TASK_INTERRUPTIBLE);
7157 continue; 7233 continue;
@@ -7160,14 +7236,14 @@ static int migration_thread(void *data)
7160 list_del_init(head->next); 7236 list_del_init(head->next);
7161 7237
7162 if (req->task != NULL) { 7238 if (req->task != NULL) {
7163 spin_unlock(&rq->lock); 7239 raw_spin_unlock(&rq->lock);
7164 __migrate_task(req->task, cpu, req->dest_cpu); 7240 __migrate_task(req->task, cpu, req->dest_cpu);
7165 } else if (likely(cpu == (badcpu = smp_processor_id()))) { 7241 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7166 req->dest_cpu = RCU_MIGRATION_GOT_QS; 7242 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7167 spin_unlock(&rq->lock); 7243 raw_spin_unlock(&rq->lock);
7168 } else { 7244 } else {
7169 req->dest_cpu = RCU_MIGRATION_MUST_SYNC; 7245 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7170 spin_unlock(&rq->lock); 7246 raw_spin_unlock(&rq->lock);
7171 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); 7247 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7172 } 7248 }
7173 local_irq_enable(); 7249 local_irq_enable();
@@ -7201,19 +7277,19 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7201 7277
7202again: 7278again:
7203 /* Look for allowed, online CPU in same node. */ 7279 /* Look for allowed, online CPU in same node. */
7204 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) 7280 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7205 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 7281 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7206 goto move; 7282 goto move;
7207 7283
7208 /* Any allowed, online CPU? */ 7284 /* Any allowed, online CPU? */
7209 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); 7285 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7210 if (dest_cpu < nr_cpu_ids) 7286 if (dest_cpu < nr_cpu_ids)
7211 goto move; 7287 goto move;
7212 7288
7213 /* No more Mr. Nice Guy. */ 7289 /* No more Mr. Nice Guy. */
7214 if (dest_cpu >= nr_cpu_ids) { 7290 if (dest_cpu >= nr_cpu_ids) {
7215 cpuset_cpus_allowed_locked(p, &p->cpus_allowed); 7291 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7216 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); 7292 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7217 7293
7218 /* 7294 /*
7219 * Don't tell them about moving exiting tasks or 7295 * Don't tell them about moving exiting tasks or
@@ -7242,7 +7318,7 @@ move:
7242 */ 7318 */
7243static void migrate_nr_uninterruptible(struct rq *rq_src) 7319static void migrate_nr_uninterruptible(struct rq *rq_src)
7244{ 7320{
7245 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); 7321 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7246 unsigned long flags; 7322 unsigned long flags;
7247 7323
7248 local_irq_save(flags); 7324 local_irq_save(flags);
@@ -7290,14 +7366,14 @@ void sched_idle_next(void)
7290 * Strictly not necessary since rest of the CPUs are stopped by now 7366 * Strictly not necessary since rest of the CPUs are stopped by now
7291 * and interrupts disabled on the current cpu. 7367 * and interrupts disabled on the current cpu.
7292 */ 7368 */
7293 spin_lock_irqsave(&rq->lock, flags); 7369 raw_spin_lock_irqsave(&rq->lock, flags);
7294 7370
7295 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 7371 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7296 7372
7297 update_rq_clock(rq); 7373 update_rq_clock(rq);
7298 activate_task(rq, p, 0); 7374 activate_task(rq, p, 0);
7299 7375
7300 spin_unlock_irqrestore(&rq->lock, flags); 7376 raw_spin_unlock_irqrestore(&rq->lock, flags);
7301} 7377}
7302 7378
7303/* 7379/*
@@ -7333,9 +7409,9 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7333 * that's OK. No task can be added to this CPU, so iteration is 7409 * that's OK. No task can be added to this CPU, so iteration is
7334 * fine. 7410 * fine.
7335 */ 7411 */
7336 spin_unlock_irq(&rq->lock); 7412 raw_spin_unlock_irq(&rq->lock);
7337 move_task_off_dead_cpu(dead_cpu, p); 7413 move_task_off_dead_cpu(dead_cpu, p);
7338 spin_lock_irq(&rq->lock); 7414 raw_spin_lock_irq(&rq->lock);
7339 7415
7340 put_task_struct(p); 7416 put_task_struct(p);
7341} 7417}
@@ -7376,17 +7452,16 @@ static struct ctl_table sd_ctl_dir[] = {
7376 .procname = "sched_domain", 7452 .procname = "sched_domain",
7377 .mode = 0555, 7453 .mode = 0555,
7378 }, 7454 },
7379 {0, }, 7455 {}
7380}; 7456};
7381 7457
7382static struct ctl_table sd_ctl_root[] = { 7458static struct ctl_table sd_ctl_root[] = {
7383 { 7459 {
7384 .ctl_name = CTL_KERN,
7385 .procname = "kernel", 7460 .procname = "kernel",
7386 .mode = 0555, 7461 .mode = 0555,
7387 .child = sd_ctl_dir, 7462 .child = sd_ctl_dir,
7388 }, 7463 },
7389 {0, }, 7464 {}
7390}; 7465};
7391 7466
7392static struct ctl_table *sd_alloc_ctl_entry(int n) 7467static struct ctl_table *sd_alloc_ctl_entry(int n)
@@ -7496,7 +7571,7 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7496static struct ctl_table_header *sd_sysctl_header; 7571static struct ctl_table_header *sd_sysctl_header;
7497static void register_sched_domain_sysctl(void) 7572static void register_sched_domain_sysctl(void)
7498{ 7573{
7499 int i, cpu_num = num_online_cpus(); 7574 int i, cpu_num = num_possible_cpus();
7500 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 7575 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7501 char buf[32]; 7576 char buf[32];
7502 7577
@@ -7506,7 +7581,7 @@ static void register_sched_domain_sysctl(void)
7506 if (entry == NULL) 7581 if (entry == NULL)
7507 return; 7582 return;
7508 7583
7509 for_each_online_cpu(i) { 7584 for_each_possible_cpu(i) {
7510 snprintf(buf, 32, "cpu%d", i); 7585 snprintf(buf, 32, "cpu%d", i);
7511 entry->procname = kstrdup(buf, GFP_KERNEL); 7586 entry->procname = kstrdup(buf, GFP_KERNEL);
7512 entry->mode = 0555; 7587 entry->mode = 0555;
@@ -7602,13 +7677,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7602 7677
7603 /* Update our root-domain */ 7678 /* Update our root-domain */
7604 rq = cpu_rq(cpu); 7679 rq = cpu_rq(cpu);
7605 spin_lock_irqsave(&rq->lock, flags); 7680 raw_spin_lock_irqsave(&rq->lock, flags);
7606 if (rq->rd) { 7681 if (rq->rd) {
7607 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7682 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7608 7683
7609 set_rq_online(rq); 7684 set_rq_online(rq);
7610 } 7685 }
7611 spin_unlock_irqrestore(&rq->lock, flags); 7686 raw_spin_unlock_irqrestore(&rq->lock, flags);
7612 break; 7687 break;
7613 7688
7614#ifdef CONFIG_HOTPLUG_CPU 7689#ifdef CONFIG_HOTPLUG_CPU
@@ -7633,14 +7708,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7633 put_task_struct(rq->migration_thread); 7708 put_task_struct(rq->migration_thread);
7634 rq->migration_thread = NULL; 7709 rq->migration_thread = NULL;
7635 /* Idle task back to normal (off runqueue, low prio) */ 7710 /* Idle task back to normal (off runqueue, low prio) */
7636 spin_lock_irq(&rq->lock); 7711 raw_spin_lock_irq(&rq->lock);
7637 update_rq_clock(rq); 7712 update_rq_clock(rq);
7638 deactivate_task(rq, rq->idle, 0); 7713 deactivate_task(rq, rq->idle, 0);
7639 rq->idle->static_prio = MAX_PRIO;
7640 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); 7714 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7641 rq->idle->sched_class = &idle_sched_class; 7715 rq->idle->sched_class = &idle_sched_class;
7642 migrate_dead_tasks(cpu); 7716 migrate_dead_tasks(cpu);
7643 spin_unlock_irq(&rq->lock); 7717 raw_spin_unlock_irq(&rq->lock);
7644 cpuset_unlock(); 7718 cpuset_unlock();
7645 migrate_nr_uninterruptible(rq); 7719 migrate_nr_uninterruptible(rq);
7646 BUG_ON(rq->nr_running != 0); 7720 BUG_ON(rq->nr_running != 0);
@@ -7650,30 +7724,30 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7650 * they didn't take sched_hotcpu_mutex. Just wake up 7724 * they didn't take sched_hotcpu_mutex. Just wake up
7651 * the requestors. 7725 * the requestors.
7652 */ 7726 */
7653 spin_lock_irq(&rq->lock); 7727 raw_spin_lock_irq(&rq->lock);
7654 while (!list_empty(&rq->migration_queue)) { 7728 while (!list_empty(&rq->migration_queue)) {
7655 struct migration_req *req; 7729 struct migration_req *req;
7656 7730
7657 req = list_entry(rq->migration_queue.next, 7731 req = list_entry(rq->migration_queue.next,
7658 struct migration_req, list); 7732 struct migration_req, list);
7659 list_del_init(&req->list); 7733 list_del_init(&req->list);
7660 spin_unlock_irq(&rq->lock); 7734 raw_spin_unlock_irq(&rq->lock);
7661 complete(&req->done); 7735 complete(&req->done);
7662 spin_lock_irq(&rq->lock); 7736 raw_spin_lock_irq(&rq->lock);
7663 } 7737 }
7664 spin_unlock_irq(&rq->lock); 7738 raw_spin_unlock_irq(&rq->lock);
7665 break; 7739 break;
7666 7740
7667 case CPU_DYING: 7741 case CPU_DYING:
7668 case CPU_DYING_FROZEN: 7742 case CPU_DYING_FROZEN:
7669 /* Update our root-domain */ 7743 /* Update our root-domain */
7670 rq = cpu_rq(cpu); 7744 rq = cpu_rq(cpu);
7671 spin_lock_irqsave(&rq->lock, flags); 7745 raw_spin_lock_irqsave(&rq->lock, flags);
7672 if (rq->rd) { 7746 if (rq->rd) {
7673 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7747 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7674 set_rq_offline(rq); 7748 set_rq_offline(rq);
7675 } 7749 }
7676 spin_unlock_irqrestore(&rq->lock, flags); 7750 raw_spin_unlock_irqrestore(&rq->lock, flags);
7677 break; 7751 break;
7678#endif 7752#endif
7679 } 7753 }
@@ -7710,6 +7784,16 @@ early_initcall(migration_init);
7710 7784
7711#ifdef CONFIG_SCHED_DEBUG 7785#ifdef CONFIG_SCHED_DEBUG
7712 7786
7787static __read_mostly int sched_domain_debug_enabled;
7788
7789static int __init sched_domain_debug_setup(char *str)
7790{
7791 sched_domain_debug_enabled = 1;
7792
7793 return 0;
7794}
7795early_param("sched_debug", sched_domain_debug_setup);
7796
7713static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 7797static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7714 struct cpumask *groupmask) 7798 struct cpumask *groupmask)
7715{ 7799{
@@ -7796,6 +7880,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
7796 cpumask_var_t groupmask; 7880 cpumask_var_t groupmask;
7797 int level = 0; 7881 int level = 0;
7798 7882
7883 if (!sched_domain_debug_enabled)
7884 return;
7885
7799 if (!sd) { 7886 if (!sd) {
7800 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 7887 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7801 return; 7888 return;
@@ -7875,6 +7962,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7875 7962
7876static void free_rootdomain(struct root_domain *rd) 7963static void free_rootdomain(struct root_domain *rd)
7877{ 7964{
7965 synchronize_sched();
7966
7878 cpupri_cleanup(&rd->cpupri); 7967 cpupri_cleanup(&rd->cpupri);
7879 7968
7880 free_cpumask_var(rd->rto_mask); 7969 free_cpumask_var(rd->rto_mask);
@@ -7888,7 +7977,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7888 struct root_domain *old_rd = NULL; 7977 struct root_domain *old_rd = NULL;
7889 unsigned long flags; 7978 unsigned long flags;
7890 7979
7891 spin_lock_irqsave(&rq->lock, flags); 7980 raw_spin_lock_irqsave(&rq->lock, flags);
7892 7981
7893 if (rq->rd) { 7982 if (rq->rd) {
7894 old_rd = rq->rd; 7983 old_rd = rq->rd;
@@ -7914,7 +8003,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7914 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 8003 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7915 set_rq_online(rq); 8004 set_rq_online(rq);
7916 8005
7917 spin_unlock_irqrestore(&rq->lock, flags); 8006 raw_spin_unlock_irqrestore(&rq->lock, flags);
7918 8007
7919 if (old_rd) 8008 if (old_rd)
7920 free_rootdomain(old_rd); 8009 free_rootdomain(old_rd);
@@ -8015,6 +8104,7 @@ static cpumask_var_t cpu_isolated_map;
8015/* Setup the mask of cpus configured for isolated domains */ 8104/* Setup the mask of cpus configured for isolated domains */
8016static int __init isolated_cpu_setup(char *str) 8105static int __init isolated_cpu_setup(char *str)
8017{ 8106{
8107 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8018 cpulist_parse(str, cpu_isolated_map); 8108 cpulist_parse(str, cpu_isolated_map);
8019 return 1; 8109 return 1;
8020} 8110}
@@ -8199,14 +8289,14 @@ enum s_alloc {
8199 */ 8289 */
8200#ifdef CONFIG_SCHED_SMT 8290#ifdef CONFIG_SCHED_SMT
8201static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); 8291static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8202static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); 8292static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8203 8293
8204static int 8294static int
8205cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, 8295cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8206 struct sched_group **sg, struct cpumask *unused) 8296 struct sched_group **sg, struct cpumask *unused)
8207{ 8297{
8208 if (sg) 8298 if (sg)
8209 *sg = &per_cpu(sched_group_cpus, cpu).sg; 8299 *sg = &per_cpu(sched_groups, cpu).sg;
8210 return cpu; 8300 return cpu;
8211} 8301}
8212#endif /* CONFIG_SCHED_SMT */ 8302#endif /* CONFIG_SCHED_SMT */
@@ -8851,7 +8941,7 @@ static int build_sched_domains(const struct cpumask *cpu_map)
8851 return __build_sched_domains(cpu_map, NULL); 8941 return __build_sched_domains(cpu_map, NULL);
8852} 8942}
8853 8943
8854static struct cpumask *doms_cur; /* current sched domains */ 8944static cpumask_var_t *doms_cur; /* current sched domains */
8855static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 8945static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8856static struct sched_domain_attr *dattr_cur; 8946static struct sched_domain_attr *dattr_cur;
8857 /* attribues of custom domains in 'doms_cur' */ 8947 /* attribues of custom domains in 'doms_cur' */
@@ -8873,6 +8963,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void)
8873 return 0; 8963 return 0;
8874} 8964}
8875 8965
8966cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8967{
8968 int i;
8969 cpumask_var_t *doms;
8970
8971 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8972 if (!doms)
8973 return NULL;
8974 for (i = 0; i < ndoms; i++) {
8975 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8976 free_sched_domains(doms, i);
8977 return NULL;
8978 }
8979 }
8980 return doms;
8981}
8982
8983void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8984{
8985 unsigned int i;
8986 for (i = 0; i < ndoms; i++)
8987 free_cpumask_var(doms[i]);
8988 kfree(doms);
8989}
8990
8876/* 8991/*
8877 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 8992 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8878 * For now this just excludes isolated cpus, but could be used to 8993 * For now this just excludes isolated cpus, but could be used to
@@ -8884,12 +8999,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map)
8884 8999
8885 arch_update_cpu_topology(); 9000 arch_update_cpu_topology();
8886 ndoms_cur = 1; 9001 ndoms_cur = 1;
8887 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); 9002 doms_cur = alloc_sched_domains(ndoms_cur);
8888 if (!doms_cur) 9003 if (!doms_cur)
8889 doms_cur = fallback_doms; 9004 doms_cur = &fallback_doms;
8890 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); 9005 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8891 dattr_cur = NULL; 9006 dattr_cur = NULL;
8892 err = build_sched_domains(doms_cur); 9007 err = build_sched_domains(doms_cur[0]);
8893 register_sched_domain_sysctl(); 9008 register_sched_domain_sysctl();
8894 9009
8895 return err; 9010 return err;
@@ -8939,19 +9054,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8939 * doms_new[] to the current sched domain partitioning, doms_cur[]. 9054 * doms_new[] to the current sched domain partitioning, doms_cur[].
8940 * It destroys each deleted domain and builds each new domain. 9055 * It destroys each deleted domain and builds each new domain.
8941 * 9056 *
8942 * 'doms_new' is an array of cpumask's of length 'ndoms_new'. 9057 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8943 * The masks don't intersect (don't overlap.) We should setup one 9058 * The masks don't intersect (don't overlap.) We should setup one
8944 * sched domain for each mask. CPUs not in any of the cpumasks will 9059 * sched domain for each mask. CPUs not in any of the cpumasks will
8945 * not be load balanced. If the same cpumask appears both in the 9060 * not be load balanced. If the same cpumask appears both in the
8946 * current 'doms_cur' domains and in the new 'doms_new', we can leave 9061 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8947 * it as it is. 9062 * it as it is.
8948 * 9063 *
8949 * The passed in 'doms_new' should be kmalloc'd. This routine takes 9064 * The passed in 'doms_new' should be allocated using
8950 * ownership of it and will kfree it when done with it. If the caller 9065 * alloc_sched_domains. This routine takes ownership of it and will
8951 * failed the kmalloc call, then it can pass in doms_new == NULL && 9066 * free_sched_domains it when done with it. If the caller failed the
8952 * ndoms_new == 1, and partition_sched_domains() will fallback to 9067 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8953 * the single partition 'fallback_doms', it also forces the domains 9068 * and partition_sched_domains() will fallback to the single partition
8954 * to be rebuilt. 9069 * 'fallback_doms', it also forces the domains to be rebuilt.
8955 * 9070 *
8956 * If doms_new == NULL it will be replaced with cpu_online_mask. 9071 * If doms_new == NULL it will be replaced with cpu_online_mask.
8957 * ndoms_new == 0 is a special case for destroying existing domains, 9072 * ndoms_new == 0 is a special case for destroying existing domains,
@@ -8959,8 +9074,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8959 * 9074 *
8960 * Call with hotplug lock held 9075 * Call with hotplug lock held
8961 */ 9076 */
8962/* FIXME: Change to struct cpumask *doms_new[] */ 9077void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
8963void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8964 struct sched_domain_attr *dattr_new) 9078 struct sched_domain_attr *dattr_new)
8965{ 9079{
8966 int i, j, n; 9080 int i, j, n;
@@ -8979,40 +9093,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8979 /* Destroy deleted domains */ 9093 /* Destroy deleted domains */
8980 for (i = 0; i < ndoms_cur; i++) { 9094 for (i = 0; i < ndoms_cur; i++) {
8981 for (j = 0; j < n && !new_topology; j++) { 9095 for (j = 0; j < n && !new_topology; j++) {
8982 if (cpumask_equal(&doms_cur[i], &doms_new[j]) 9096 if (cpumask_equal(doms_cur[i], doms_new[j])
8983 && dattrs_equal(dattr_cur, i, dattr_new, j)) 9097 && dattrs_equal(dattr_cur, i, dattr_new, j))
8984 goto match1; 9098 goto match1;
8985 } 9099 }
8986 /* no match - a current sched domain not in new doms_new[] */ 9100 /* no match - a current sched domain not in new doms_new[] */
8987 detach_destroy_domains(doms_cur + i); 9101 detach_destroy_domains(doms_cur[i]);
8988match1: 9102match1:
8989 ; 9103 ;
8990 } 9104 }
8991 9105
8992 if (doms_new == NULL) { 9106 if (doms_new == NULL) {
8993 ndoms_cur = 0; 9107 ndoms_cur = 0;
8994 doms_new = fallback_doms; 9108 doms_new = &fallback_doms;
8995 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); 9109 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
8996 WARN_ON_ONCE(dattr_new); 9110 WARN_ON_ONCE(dattr_new);
8997 } 9111 }
8998 9112
8999 /* Build new domains */ 9113 /* Build new domains */
9000 for (i = 0; i < ndoms_new; i++) { 9114 for (i = 0; i < ndoms_new; i++) {
9001 for (j = 0; j < ndoms_cur && !new_topology; j++) { 9115 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9002 if (cpumask_equal(&doms_new[i], &doms_cur[j]) 9116 if (cpumask_equal(doms_new[i], doms_cur[j])
9003 && dattrs_equal(dattr_new, i, dattr_cur, j)) 9117 && dattrs_equal(dattr_new, i, dattr_cur, j))
9004 goto match2; 9118 goto match2;
9005 } 9119 }
9006 /* no match - add a new doms_new */ 9120 /* no match - add a new doms_new */
9007 __build_sched_domains(doms_new + i, 9121 __build_sched_domains(doms_new[i],
9008 dattr_new ? dattr_new + i : NULL); 9122 dattr_new ? dattr_new + i : NULL);
9009match2: 9123match2:
9010 ; 9124 ;
9011 } 9125 }
9012 9126
9013 /* Remember the new sched domains */ 9127 /* Remember the new sched domains */
9014 if (doms_cur != fallback_doms) 9128 if (doms_cur != &fallback_doms)
9015 kfree(doms_cur); 9129 free_sched_domains(doms_cur, ndoms_cur);
9016 kfree(dattr_cur); /* kfree(NULL) is safe */ 9130 kfree(dattr_cur); /* kfree(NULL) is safe */
9017 doms_cur = doms_new; 9131 doms_cur = doms_new;
9018 dattr_cur = dattr_new; 9132 dattr_cur = dattr_new;
@@ -9123,8 +9237,10 @@ static int update_sched_domains(struct notifier_block *nfb,
9123 switch (action) { 9237 switch (action) {
9124 case CPU_ONLINE: 9238 case CPU_ONLINE:
9125 case CPU_ONLINE_FROZEN: 9239 case CPU_ONLINE_FROZEN:
9126 case CPU_DEAD: 9240 case CPU_DOWN_PREPARE:
9127 case CPU_DEAD_FROZEN: 9241 case CPU_DOWN_PREPARE_FROZEN:
9242 case CPU_DOWN_FAILED:
9243 case CPU_DOWN_FAILED_FROZEN:
9128 partition_sched_domains(1, NULL, NULL); 9244 partition_sched_domains(1, NULL, NULL);
9129 return NOTIFY_OK; 9245 return NOTIFY_OK;
9130 9246
@@ -9171,7 +9287,7 @@ void __init sched_init_smp(void)
9171#endif 9287#endif
9172 get_online_cpus(); 9288 get_online_cpus();
9173 mutex_lock(&sched_domains_mutex); 9289 mutex_lock(&sched_domains_mutex);
9174 arch_init_sched_domains(cpu_online_mask); 9290 arch_init_sched_domains(cpu_active_mask);
9175 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 9291 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9176 if (cpumask_empty(non_isolated_cpus)) 9292 if (cpumask_empty(non_isolated_cpus))
9177 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 9293 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
@@ -9244,13 +9360,13 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9244#ifdef CONFIG_SMP 9360#ifdef CONFIG_SMP
9245 rt_rq->rt_nr_migratory = 0; 9361 rt_rq->rt_nr_migratory = 0;
9246 rt_rq->overloaded = 0; 9362 rt_rq->overloaded = 0;
9247 plist_head_init(&rt_rq->pushable_tasks, &rq->lock); 9363 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9248#endif 9364#endif
9249 9365
9250 rt_rq->rt_time = 0; 9366 rt_rq->rt_time = 0;
9251 rt_rq->rt_throttled = 0; 9367 rt_rq->rt_throttled = 0;
9252 rt_rq->rt_runtime = 0; 9368 rt_rq->rt_runtime = 0;
9253 spin_lock_init(&rt_rq->rt_runtime_lock); 9369 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9254 9370
9255#ifdef CONFIG_RT_GROUP_SCHED 9371#ifdef CONFIG_RT_GROUP_SCHED
9256 rt_rq->rt_nr_boosted = 0; 9372 rt_rq->rt_nr_boosted = 0;
@@ -9334,10 +9450,6 @@ void __init sched_init(void)
9334#ifdef CONFIG_CPUMASK_OFFSTACK 9450#ifdef CONFIG_CPUMASK_OFFSTACK
9335 alloc_size += num_possible_cpus() * cpumask_size(); 9451 alloc_size += num_possible_cpus() * cpumask_size();
9336#endif 9452#endif
9337 /*
9338 * As sched_init() is called before page_alloc is setup,
9339 * we use alloc_bootmem().
9340 */
9341 if (alloc_size) { 9453 if (alloc_size) {
9342 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 9454 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9343 9455
@@ -9406,11 +9518,15 @@ void __init sched_init(void)
9406#endif /* CONFIG_USER_SCHED */ 9518#endif /* CONFIG_USER_SCHED */
9407#endif /* CONFIG_GROUP_SCHED */ 9519#endif /* CONFIG_GROUP_SCHED */
9408 9520
9521#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9522 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9523 __alignof__(unsigned long));
9524#endif
9409 for_each_possible_cpu(i) { 9525 for_each_possible_cpu(i) {
9410 struct rq *rq; 9526 struct rq *rq;
9411 9527
9412 rq = cpu_rq(i); 9528 rq = cpu_rq(i);
9413 spin_lock_init(&rq->lock); 9529 raw_spin_lock_init(&rq->lock);
9414 rq->nr_running = 0; 9530 rq->nr_running = 0;
9415 rq->calc_load_active = 0; 9531 rq->calc_load_active = 0;
9416 rq->calc_load_update = jiffies + LOAD_FREQ; 9532 rq->calc_load_update = jiffies + LOAD_FREQ;
@@ -9470,7 +9586,7 @@ void __init sched_init(void)
9470#elif defined CONFIG_USER_SCHED 9586#elif defined CONFIG_USER_SCHED
9471 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); 9587 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9472 init_tg_rt_entry(&init_task_group, 9588 init_tg_rt_entry(&init_task_group,
9473 &per_cpu(init_rt_rq, i), 9589 &per_cpu(init_rt_rq_var, i),
9474 &per_cpu(init_sched_rt_entity, i), i, 1, 9590 &per_cpu(init_sched_rt_entity, i), i, 1,
9475 root_task_group.rt_se[i]); 9591 root_task_group.rt_se[i]);
9476#endif 9592#endif
@@ -9488,6 +9604,8 @@ void __init sched_init(void)
9488 rq->cpu = i; 9604 rq->cpu = i;
9489 rq->online = 0; 9605 rq->online = 0;
9490 rq->migration_thread = NULL; 9606 rq->migration_thread = NULL;
9607 rq->idle_stamp = 0;
9608 rq->avg_idle = 2*sysctl_sched_migration_cost;
9491 INIT_LIST_HEAD(&rq->migration_queue); 9609 INIT_LIST_HEAD(&rq->migration_queue);
9492 rq_attach_root(rq, &def_root_domain); 9610 rq_attach_root(rq, &def_root_domain);
9493#endif 9611#endif
@@ -9506,7 +9624,7 @@ void __init sched_init(void)
9506#endif 9624#endif
9507 9625
9508#ifdef CONFIG_RT_MUTEXES 9626#ifdef CONFIG_RT_MUTEXES
9509 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); 9627 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9510#endif 9628#endif
9511 9629
9512 /* 9630 /*
@@ -9531,13 +9649,15 @@ void __init sched_init(void)
9531 current->sched_class = &fair_sched_class; 9649 current->sched_class = &fair_sched_class;
9532 9650
9533 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ 9651 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9534 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); 9652 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9535#ifdef CONFIG_SMP 9653#ifdef CONFIG_SMP
9536#ifdef CONFIG_NO_HZ 9654#ifdef CONFIG_NO_HZ
9537 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); 9655 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9538 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); 9656 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9539#endif 9657#endif
9540 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 9658 /* May be allocated at isolcpus cmdline parse time */
9659 if (cpu_isolated_map == NULL)
9660 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9541#endif /* SMP */ 9661#endif /* SMP */
9542 9662
9543 perf_event_init(); 9663 perf_event_init();
@@ -9629,13 +9749,13 @@ void normalize_rt_tasks(void)
9629 continue; 9749 continue;
9630 } 9750 }
9631 9751
9632 spin_lock(&p->pi_lock); 9752 raw_spin_lock(&p->pi_lock);
9633 rq = __task_rq_lock(p); 9753 rq = __task_rq_lock(p);
9634 9754
9635 normalize_task(rq, p); 9755 normalize_task(rq, p);
9636 9756
9637 __task_rq_unlock(rq); 9757 __task_rq_unlock(rq);
9638 spin_unlock(&p->pi_lock); 9758 raw_spin_unlock(&p->pi_lock);
9639 } while_each_thread(g, p); 9759 } while_each_thread(g, p);
9640 9760
9641 read_unlock_irqrestore(&tasklist_lock, flags); 9761 read_unlock_irqrestore(&tasklist_lock, flags);
@@ -9731,13 +9851,15 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9731 se = kzalloc_node(sizeof(struct sched_entity), 9851 se = kzalloc_node(sizeof(struct sched_entity),
9732 GFP_KERNEL, cpu_to_node(i)); 9852 GFP_KERNEL, cpu_to_node(i));
9733 if (!se) 9853 if (!se)
9734 goto err; 9854 goto err_free_rq;
9735 9855
9736 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); 9856 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9737 } 9857 }
9738 9858
9739 return 1; 9859 return 1;
9740 9860
9861 err_free_rq:
9862 kfree(cfs_rq);
9741 err: 9863 err:
9742 return 0; 9864 return 0;
9743} 9865}
@@ -9819,13 +9941,15 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9819 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 9941 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9820 GFP_KERNEL, cpu_to_node(i)); 9942 GFP_KERNEL, cpu_to_node(i));
9821 if (!rt_se) 9943 if (!rt_se)
9822 goto err; 9944 goto err_free_rq;
9823 9945
9824 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); 9946 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9825 } 9947 }
9826 9948
9827 return 1; 9949 return 1;
9828 9950
9951 err_free_rq:
9952 kfree(rt_rq);
9829 err: 9953 err:
9830 return 0; 9954 return 0;
9831} 9955}
@@ -9994,9 +10118,9 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares)
9994 struct rq *rq = cfs_rq->rq; 10118 struct rq *rq = cfs_rq->rq;
9995 unsigned long flags; 10119 unsigned long flags;
9996 10120
9997 spin_lock_irqsave(&rq->lock, flags); 10121 raw_spin_lock_irqsave(&rq->lock, flags);
9998 __set_se_shares(se, shares); 10122 __set_se_shares(se, shares);
9999 spin_unlock_irqrestore(&rq->lock, flags); 10123 raw_spin_unlock_irqrestore(&rq->lock, flags);
10000} 10124}
10001 10125
10002static DEFINE_MUTEX(shares_mutex); 10126static DEFINE_MUTEX(shares_mutex);
@@ -10181,18 +10305,18 @@ static int tg_set_bandwidth(struct task_group *tg,
10181 if (err) 10305 if (err)
10182 goto unlock; 10306 goto unlock;
10183 10307
10184 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10308 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10185 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 10309 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10186 tg->rt_bandwidth.rt_runtime = rt_runtime; 10310 tg->rt_bandwidth.rt_runtime = rt_runtime;
10187 10311
10188 for_each_possible_cpu(i) { 10312 for_each_possible_cpu(i) {
10189 struct rt_rq *rt_rq = tg->rt_rq[i]; 10313 struct rt_rq *rt_rq = tg->rt_rq[i];
10190 10314
10191 spin_lock(&rt_rq->rt_runtime_lock); 10315 raw_spin_lock(&rt_rq->rt_runtime_lock);
10192 rt_rq->rt_runtime = rt_runtime; 10316 rt_rq->rt_runtime = rt_runtime;
10193 spin_unlock(&rt_rq->rt_runtime_lock); 10317 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10194 } 10318 }
10195 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10319 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10196 unlock: 10320 unlock:
10197 read_unlock(&tasklist_lock); 10321 read_unlock(&tasklist_lock);
10198 mutex_unlock(&rt_constraints_mutex); 10322 mutex_unlock(&rt_constraints_mutex);
@@ -10297,22 +10421,22 @@ static int sched_rt_global_constraints(void)
10297 if (sysctl_sched_rt_runtime == 0) 10421 if (sysctl_sched_rt_runtime == 0)
10298 return -EBUSY; 10422 return -EBUSY;
10299 10423
10300 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 10424 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10301 for_each_possible_cpu(i) { 10425 for_each_possible_cpu(i) {
10302 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 10426 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10303 10427
10304 spin_lock(&rt_rq->rt_runtime_lock); 10428 raw_spin_lock(&rt_rq->rt_runtime_lock);
10305 rt_rq->rt_runtime = global_rt_runtime(); 10429 rt_rq->rt_runtime = global_rt_runtime();
10306 spin_unlock(&rt_rq->rt_runtime_lock); 10430 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10307 } 10431 }
10308 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 10432 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10309 10433
10310 return 0; 10434 return 0;
10311} 10435}
10312#endif /* CONFIG_RT_GROUP_SCHED */ 10436#endif /* CONFIG_RT_GROUP_SCHED */
10313 10437
10314int sched_rt_handler(struct ctl_table *table, int write, 10438int sched_rt_handler(struct ctl_table *table, int write,
10315 struct file *filp, void __user *buffer, size_t *lenp, 10439 void __user *buffer, size_t *lenp,
10316 loff_t *ppos) 10440 loff_t *ppos)
10317{ 10441{
10318 int ret; 10442 int ret;
@@ -10323,7 +10447,7 @@ int sched_rt_handler(struct ctl_table *table, int write,
10323 old_period = sysctl_sched_rt_period; 10447 old_period = sysctl_sched_rt_period;
10324 old_runtime = sysctl_sched_rt_runtime; 10448 old_runtime = sysctl_sched_rt_runtime;
10325 10449
10326 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); 10450 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10327 10451
10328 if (!ret && write) { 10452 if (!ret && write) {
10329 ret = sched_rt_global_constraints(); 10453 ret = sched_rt_global_constraints();
@@ -10377,8 +10501,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10377} 10501}
10378 10502
10379static int 10503static int
10380cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 10504cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10381 struct task_struct *tsk)
10382{ 10505{
10383#ifdef CONFIG_RT_GROUP_SCHED 10506#ifdef CONFIG_RT_GROUP_SCHED
10384 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) 10507 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
@@ -10388,15 +10511,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10388 if (tsk->sched_class != &fair_sched_class) 10511 if (tsk->sched_class != &fair_sched_class)
10389 return -EINVAL; 10512 return -EINVAL;
10390#endif 10513#endif
10514 return 0;
10515}
10391 10516
10517static int
10518cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10519 struct task_struct *tsk, bool threadgroup)
10520{
10521 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10522 if (retval)
10523 return retval;
10524 if (threadgroup) {
10525 struct task_struct *c;
10526 rcu_read_lock();
10527 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10528 retval = cpu_cgroup_can_attach_task(cgrp, c);
10529 if (retval) {
10530 rcu_read_unlock();
10531 return retval;
10532 }
10533 }
10534 rcu_read_unlock();
10535 }
10392 return 0; 10536 return 0;
10393} 10537}
10394 10538
10395static void 10539static void
10396cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 10540cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10397 struct cgroup *old_cont, struct task_struct *tsk) 10541 struct cgroup *old_cont, struct task_struct *tsk,
10542 bool threadgroup)
10398{ 10543{
10399 sched_move_task(tsk); 10544 sched_move_task(tsk);
10545 if (threadgroup) {
10546 struct task_struct *c;
10547 rcu_read_lock();
10548 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10549 sched_move_task(c);
10550 }
10551 rcu_read_unlock();
10552 }
10400} 10553}
10401 10554
10402#ifdef CONFIG_FAIR_GROUP_SCHED 10555#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -10567,9 +10720,9 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10567 /* 10720 /*
10568 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 10721 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10569 */ 10722 */
10570 spin_lock_irq(&cpu_rq(cpu)->lock); 10723 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10571 data = *cpuusage; 10724 data = *cpuusage;
10572 spin_unlock_irq(&cpu_rq(cpu)->lock); 10725 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10573#else 10726#else
10574 data = *cpuusage; 10727 data = *cpuusage;
10575#endif 10728#endif
@@ -10585,9 +10738,9 @@ static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10585 /* 10738 /*
10586 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 10739 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10587 */ 10740 */
10588 spin_lock_irq(&cpu_rq(cpu)->lock); 10741 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10589 *cpuusage = val; 10742 *cpuusage = val;
10590 spin_unlock_irq(&cpu_rq(cpu)->lock); 10743 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10591#else 10744#else
10592 *cpuusage = val; 10745 *cpuusage = val;
10593#endif 10746#endif
@@ -10821,9 +10974,9 @@ void synchronize_sched_expedited(void)
10821 init_completion(&req->done); 10974 init_completion(&req->done);
10822 req->task = NULL; 10975 req->task = NULL;
10823 req->dest_cpu = RCU_MIGRATION_NEED_QS; 10976 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10824 spin_lock_irqsave(&rq->lock, flags); 10977 raw_spin_lock_irqsave(&rq->lock, flags);
10825 list_add(&req->list, &rq->migration_queue); 10978 list_add(&req->list, &rq->migration_queue);
10826 spin_unlock_irqrestore(&rq->lock, flags); 10979 raw_spin_unlock_irqrestore(&rq->lock, flags);
10827 wake_up_process(rq->migration_thread); 10980 wake_up_process(rq->migration_thread);
10828 } 10981 }
10829 for_each_online_cpu(cpu) { 10982 for_each_online_cpu(cpu) {
@@ -10831,13 +10984,14 @@ void synchronize_sched_expedited(void)
10831 req = &per_cpu(rcu_migration_req, cpu); 10984 req = &per_cpu(rcu_migration_req, cpu);
10832 rq = cpu_rq(cpu); 10985 rq = cpu_rq(cpu);
10833 wait_for_completion(&req->done); 10986 wait_for_completion(&req->done);
10834 spin_lock_irqsave(&rq->lock, flags); 10987 raw_spin_lock_irqsave(&rq->lock, flags);
10835 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) 10988 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10836 need_full_sync = 1; 10989 need_full_sync = 1;
10837 req->dest_cpu = RCU_MIGRATION_IDLE; 10990 req->dest_cpu = RCU_MIGRATION_IDLE;
10838 spin_unlock_irqrestore(&rq->lock, flags); 10991 raw_spin_unlock_irqrestore(&rq->lock, flags);
10839 } 10992 }
10840 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; 10993 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10994 synchronize_sched_expedited_count++;
10841 mutex_unlock(&rcu_sched_expedited_mutex); 10995 mutex_unlock(&rcu_sched_expedited_mutex);
10842 put_online_cpus(); 10996 put_online_cpus();
10843 if (need_full_sync) 10997 if (need_full_sync)