aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c1090
1 files changed, 623 insertions, 467 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index fff1c4a20b65..545c6fccd1dc 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -498,18 +498,26 @@ struct rt_rq {
498 */ 498 */
499struct root_domain { 499struct root_domain {
500 atomic_t refcount; 500 atomic_t refcount;
501 cpumask_t span; 501 cpumask_var_t span;
502 cpumask_t online; 502 cpumask_var_t online;
503 503
504 /* 504 /*
505 * The "RT overload" flag: it gets set if a CPU has more than 505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task. 506 * one runnable RT task.
507 */ 507 */
508 cpumask_t rto_mask; 508 cpumask_var_t rto_mask;
509 atomic_t rto_count; 509 atomic_t rto_count;
510#ifdef CONFIG_SMP 510#ifdef CONFIG_SMP
511 struct cpupri cpupri; 511 struct cpupri cpupri;
512#endif 512#endif
513#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
514 /*
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
518 */
519 unsigned int sched_mc_preferred_wakeup_cpu;
520#endif
513}; 521};
514 522
515/* 523/*
@@ -1514,7 +1522,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1514 struct sched_domain *sd = data; 1522 struct sched_domain *sd = data;
1515 int i; 1523 int i;
1516 1524
1517 for_each_cpu_mask(i, sd->span) { 1525 for_each_cpu(i, sched_domain_span(sd)) {
1518 /* 1526 /*
1519 * If there are currently no tasks on the cpu pretend there 1527 * If there are currently no tasks on the cpu pretend there
1520 * is one of average load so that when a new task gets to 1528 * is one of average load so that when a new task gets to
@@ -1535,7 +1543,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1535 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) 1543 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1536 shares = tg->shares; 1544 shares = tg->shares;
1537 1545
1538 for_each_cpu_mask(i, sd->span) 1546 for_each_cpu(i, sched_domain_span(sd))
1539 update_group_shares_cpu(tg, i, shares, rq_weight); 1547 update_group_shares_cpu(tg, i, shares, rq_weight);
1540 1548
1541 return 0; 1549 return 0;
@@ -2101,15 +2109,17 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2101 int i; 2109 int i;
2102 2110
2103 /* Skip over this group if it has no CPUs allowed */ 2111 /* Skip over this group if it has no CPUs allowed */
2104 if (!cpus_intersects(group->cpumask, p->cpus_allowed)) 2112 if (!cpumask_intersects(sched_group_cpus(group),
2113 &p->cpus_allowed))
2105 continue; 2114 continue;
2106 2115
2107 local_group = cpu_isset(this_cpu, group->cpumask); 2116 local_group = cpumask_test_cpu(this_cpu,
2117 sched_group_cpus(group));
2108 2118
2109 /* Tally up the load of all CPUs in the group */ 2119 /* Tally up the load of all CPUs in the group */
2110 avg_load = 0; 2120 avg_load = 0;
2111 2121
2112 for_each_cpu_mask_nr(i, group->cpumask) { 2122 for_each_cpu(i, sched_group_cpus(group)) {
2113 /* Bias balancing toward cpus of our domain */ 2123 /* Bias balancing toward cpus of our domain */
2114 if (local_group) 2124 if (local_group)
2115 load = source_load(i, load_idx); 2125 load = source_load(i, load_idx);
@@ -2141,17 +2151,14 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2141 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2142 */ 2152 */
2143static int 2153static int
2144find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, 2154find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2145 cpumask_t *tmp)
2146{ 2155{
2147 unsigned long load, min_load = ULONG_MAX; 2156 unsigned long load, min_load = ULONG_MAX;
2148 int idlest = -1; 2157 int idlest = -1;
2149 int i; 2158 int i;
2150 2159
2151 /* Traverse only the allowed CPUs */ 2160 /* Traverse only the allowed CPUs */
2152 cpus_and(*tmp, group->cpumask, p->cpus_allowed); 2161 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2153
2154 for_each_cpu_mask_nr(i, *tmp) {
2155 load = weighted_cpuload(i); 2162 load = weighted_cpuload(i);
2156 2163
2157 if (load < min_load || (load == min_load && i == this_cpu)) { 2164 if (load < min_load || (load == min_load && i == this_cpu)) {
@@ -2193,7 +2200,6 @@ static int sched_balance_self(int cpu, int flag)
2193 update_shares(sd); 2200 update_shares(sd);
2194 2201
2195 while (sd) { 2202 while (sd) {
2196 cpumask_t span, tmpmask;
2197 struct sched_group *group; 2203 struct sched_group *group;
2198 int new_cpu, weight; 2204 int new_cpu, weight;
2199 2205
@@ -2202,14 +2208,13 @@ static int sched_balance_self(int cpu, int flag)
2202 continue; 2208 continue;
2203 } 2209 }
2204 2210
2205 span = sd->span;
2206 group = find_idlest_group(sd, t, cpu); 2211 group = find_idlest_group(sd, t, cpu);
2207 if (!group) { 2212 if (!group) {
2208 sd = sd->child; 2213 sd = sd->child;
2209 continue; 2214 continue;
2210 } 2215 }
2211 2216
2212 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); 2217 new_cpu = find_idlest_cpu(group, t, cpu);
2213 if (new_cpu == -1 || new_cpu == cpu) { 2218 if (new_cpu == -1 || new_cpu == cpu) {
2214 /* Now try balancing at a lower domain level of cpu */ 2219 /* Now try balancing at a lower domain level of cpu */
2215 sd = sd->child; 2220 sd = sd->child;
@@ -2218,10 +2223,10 @@ static int sched_balance_self(int cpu, int flag)
2218 2223
2219 /* Now try balancing at a lower domain level of new_cpu */ 2224 /* Now try balancing at a lower domain level of new_cpu */
2220 cpu = new_cpu; 2225 cpu = new_cpu;
2226 weight = cpumask_weight(sched_domain_span(sd));
2221 sd = NULL; 2227 sd = NULL;
2222 weight = cpus_weight(span);
2223 for_each_domain(cpu, tmp) { 2228 for_each_domain(cpu, tmp) {
2224 if (weight <= cpus_weight(tmp->span)) 2229 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2225 break; 2230 break;
2226 if (tmp->flags & flag) 2231 if (tmp->flags & flag)
2227 sd = tmp; 2232 sd = tmp;
@@ -2266,7 +2271,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2266 cpu = task_cpu(p); 2271 cpu = task_cpu(p);
2267 2272
2268 for_each_domain(this_cpu, sd) { 2273 for_each_domain(this_cpu, sd) {
2269 if (cpu_isset(cpu, sd->span)) { 2274 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2270 update_shares(sd); 2275 update_shares(sd);
2271 break; 2276 break;
2272 } 2277 }
@@ -2315,7 +2320,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2315 else { 2320 else {
2316 struct sched_domain *sd; 2321 struct sched_domain *sd;
2317 for_each_domain(this_cpu, sd) { 2322 for_each_domain(this_cpu, sd) {
2318 if (cpu_isset(cpu, sd->span)) { 2323 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2319 schedstat_inc(sd, ttwu_wake_remote); 2324 schedstat_inc(sd, ttwu_wake_remote);
2320 break; 2325 break;
2321 } 2326 }
@@ -2846,7 +2851,7 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2846 struct rq *rq; 2851 struct rq *rq;
2847 2852
2848 rq = task_rq_lock(p, &flags); 2853 rq = task_rq_lock(p, &flags);
2849 if (!cpu_isset(dest_cpu, p->cpus_allowed) 2854 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2850 || unlikely(!cpu_active(dest_cpu))) 2855 || unlikely(!cpu_active(dest_cpu)))
2851 goto out; 2856 goto out;
2852 2857
@@ -2911,7 +2916,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or 2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU. 2917 * 3) are cache-hot on their current CPU.
2913 */ 2918 */
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) { 2919 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine); 2920 schedstat_inc(p, se.nr_failed_migrations_affine);
2916 return 0; 2921 return 0;
2917 } 2922 }
@@ -3086,7 +3091,7 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3086static struct sched_group * 3091static struct sched_group *
3087find_busiest_group(struct sched_domain *sd, int this_cpu, 3092find_busiest_group(struct sched_domain *sd, int this_cpu,
3088 unsigned long *imbalance, enum cpu_idle_type idle, 3093 unsigned long *imbalance, enum cpu_idle_type idle,
3089 int *sd_idle, const cpumask_t *cpus, int *balance) 3094 int *sd_idle, const struct cpumask *cpus, int *balance)
3090{ 3095{
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; 3096 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr; 3097 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
@@ -3122,10 +3127,11 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3122 unsigned long sum_avg_load_per_task; 3127 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task; 3128 unsigned long avg_load_per_task;
3124 3129
3125 local_group = cpu_isset(this_cpu, group->cpumask); 3130 local_group = cpumask_test_cpu(this_cpu,
3131 sched_group_cpus(group));
3126 3132
3127 if (local_group) 3133 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask); 3134 balance_cpu = cpumask_first(sched_group_cpus(group));
3129 3135
3130 /* Tally up the load of all CPUs in the group */ 3136 /* Tally up the load of all CPUs in the group */
3131 sum_weighted_load = sum_nr_running = avg_load = 0; 3137 sum_weighted_load = sum_nr_running = avg_load = 0;
@@ -3134,13 +3140,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3134 max_cpu_load = 0; 3140 max_cpu_load = 0;
3135 min_cpu_load = ~0UL; 3141 min_cpu_load = ~0UL;
3136 3142
3137 for_each_cpu_mask_nr(i, group->cpumask) { 3143 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3138 struct rq *rq; 3144 struct rq *rq = cpu_rq(i);
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
3144 3145
3145 if (*sd_idle && rq->nr_running) 3146 if (*sd_idle && rq->nr_running)
3146 *sd_idle = 0; 3147 *sd_idle = 0;
@@ -3251,8 +3252,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3251 */ 3252 */
3252 if ((sum_nr_running < min_nr_running) || 3253 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running && 3254 (sum_nr_running == min_nr_running &&
3254 first_cpu(group->cpumask) < 3255 cpumask_first(sched_group_cpus(group)) >
3255 first_cpu(group_min->cpumask))) { 3256 cpumask_first(sched_group_cpus(group_min)))) {
3256 group_min = group; 3257 group_min = group;
3257 min_nr_running = sum_nr_running; 3258 min_nr_running = sum_nr_running;
3258 min_load_per_task = sum_weighted_load / 3259 min_load_per_task = sum_weighted_load /
@@ -3267,8 +3268,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3267 if (sum_nr_running <= group_capacity - 1) { 3268 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running || 3269 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running && 3270 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) > 3271 cpumask_first(sched_group_cpus(group)) <
3271 first_cpu(group_leader->cpumask))) { 3272 cpumask_first(sched_group_cpus(group_leader)))) {
3272 group_leader = group; 3273 group_leader = group;
3273 leader_nr_running = sum_nr_running; 3274 leader_nr_running = sum_nr_running;
3274 } 3275 }
@@ -3394,6 +3395,10 @@ out_balanced:
3394 3395
3395 if (this == group_leader && group_leader != group_min) { 3396 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task; 3397 *imbalance = min_load_per_task;
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3400 cpumask_first(sched_group_cpus(group_leader));
3401 }
3397 return group_min; 3402 return group_min;
3398 } 3403 }
3399#endif 3404#endif
@@ -3407,16 +3412,16 @@ ret:
3407 */ 3412 */
3408static struct rq * 3413static struct rq *
3409find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, 3414find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3410 unsigned long imbalance, const cpumask_t *cpus) 3415 unsigned long imbalance, const struct cpumask *cpus)
3411{ 3416{
3412 struct rq *busiest = NULL, *rq; 3417 struct rq *busiest = NULL, *rq;
3413 unsigned long max_load = 0; 3418 unsigned long max_load = 0;
3414 int i; 3419 int i;
3415 3420
3416 for_each_cpu_mask_nr(i, group->cpumask) { 3421 for_each_cpu(i, sched_group_cpus(group)) {
3417 unsigned long wl; 3422 unsigned long wl;
3418 3423
3419 if (!cpu_isset(i, *cpus)) 3424 if (!cpumask_test_cpu(i, cpus))
3420 continue; 3425 continue;
3421 3426
3422 rq = cpu_rq(i); 3427 rq = cpu_rq(i);
@@ -3446,7 +3451,7 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3446 */ 3451 */
3447static int load_balance(int this_cpu, struct rq *this_rq, 3452static int load_balance(int this_cpu, struct rq *this_rq,
3448 struct sched_domain *sd, enum cpu_idle_type idle, 3453 struct sched_domain *sd, enum cpu_idle_type idle,
3449 int *balance, cpumask_t *cpus) 3454 int *balance, struct cpumask *cpus)
3450{ 3455{
3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; 3456 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3452 struct sched_group *group; 3457 struct sched_group *group;
@@ -3454,7 +3459,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
3454 struct rq *busiest; 3459 struct rq *busiest;
3455 unsigned long flags; 3460 unsigned long flags;
3456 3461
3457 cpus_setall(*cpus); 3462 cpumask_setall(cpus);
3458 3463
3459 /* 3464 /*
3460 * When power savings policy is enabled for the parent domain, idle 3465 * When power savings policy is enabled for the parent domain, idle
@@ -3514,8 +3519,8 @@ redo:
3514 3519
3515 /* All tasks on this runqueue were pinned by CPU affinity */ 3520 /* All tasks on this runqueue were pinned by CPU affinity */
3516 if (unlikely(all_pinned)) { 3521 if (unlikely(all_pinned)) {
3517 cpu_clear(cpu_of(busiest), *cpus); 3522 cpumask_clear_cpu(cpu_of(busiest), cpus);
3518 if (!cpus_empty(*cpus)) 3523 if (!cpumask_empty(cpus))
3519 goto redo; 3524 goto redo;
3520 goto out_balanced; 3525 goto out_balanced;
3521 } 3526 }
@@ -3532,7 +3537,8 @@ redo:
3532 /* don't kick the migration_thread, if the curr 3537 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu 3538 * task on busiest cpu can't be moved to this_cpu
3534 */ 3539 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { 3540 if (!cpumask_test_cpu(this_cpu,
3541 &busiest->curr->cpus_allowed)) {
3536 spin_unlock_irqrestore(&busiest->lock, flags); 3542 spin_unlock_irqrestore(&busiest->lock, flags);
3537 all_pinned = 1; 3543 all_pinned = 1;
3538 goto out_one_pinned; 3544 goto out_one_pinned;
@@ -3607,7 +3613,7 @@ out:
3607 */ 3613 */
3608static int 3614static int
3609load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, 3615load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus) 3616 struct cpumask *cpus)
3611{ 3617{
3612 struct sched_group *group; 3618 struct sched_group *group;
3613 struct rq *busiest = NULL; 3619 struct rq *busiest = NULL;
@@ -3616,7 +3622,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616 int sd_idle = 0; 3622 int sd_idle = 0;
3617 int all_pinned = 0; 3623 int all_pinned = 0;
3618 3624
3619 cpus_setall(*cpus); 3625 cpumask_setall(cpus);
3620 3626
3621 /* 3627 /*
3622 * When power savings policy is enabled for the parent domain, idle 3628 * When power savings policy is enabled for the parent domain, idle
@@ -3660,17 +3666,71 @@ redo:
3660 double_unlock_balance(this_rq, busiest); 3666 double_unlock_balance(this_rq, busiest);
3661 3667
3662 if (unlikely(all_pinned)) { 3668 if (unlikely(all_pinned)) {
3663 cpu_clear(cpu_of(busiest), *cpus); 3669 cpumask_clear_cpu(cpu_of(busiest), cpus);
3664 if (!cpus_empty(*cpus)) 3670 if (!cpumask_empty(cpus))
3665 goto redo; 3671 goto redo;
3666 } 3672 }
3667 } 3673 }
3668 3674
3669 if (!ld_moved) { 3675 if (!ld_moved) {
3676 int active_balance = 0;
3677
3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); 3678 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && 3679 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 3680 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3673 return -1; 3681 return -1;
3682
3683 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3684 return -1;
3685
3686 if (sd->nr_balance_failed++ < 2)
3687 return -1;
3688
3689 /*
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3695 *
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3704 *
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3709 */
3710
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq, busiest);
3713
3714 /*
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
3718 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3719 double_unlock_balance(this_rq, busiest);
3720 all_pinned = 1;
3721 return ld_moved;
3722 }
3723
3724 if (!busiest->active_balance) {
3725 busiest->active_balance = 1;
3726 busiest->push_cpu = this_cpu;
3727 active_balance = 1;
3728 }
3729
3730 double_unlock_balance(this_rq, busiest);
3731 if (active_balance)
3732 wake_up_process(busiest->migration_thread);
3733
3674 } else 3734 } else
3675 sd->nr_balance_failed = 0; 3735 sd->nr_balance_failed = 0;
3676 3736
@@ -3696,7 +3756,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3696 struct sched_domain *sd; 3756 struct sched_domain *sd;
3697 int pulled_task = 0; 3757 int pulled_task = 0;
3698 unsigned long next_balance = jiffies + HZ; 3758 unsigned long next_balance = jiffies + HZ;
3699 cpumask_t tmpmask; 3759 cpumask_var_t tmpmask;
3760
3761 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3762 return;
3700 3763
3701 for_each_domain(this_cpu, sd) { 3764 for_each_domain(this_cpu, sd) {
3702 unsigned long interval; 3765 unsigned long interval;
@@ -3707,7 +3770,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3707 if (sd->flags & SD_BALANCE_NEWIDLE) 3770 if (sd->flags & SD_BALANCE_NEWIDLE)
3708 /* If we've pulled tasks over stop searching: */ 3771 /* If we've pulled tasks over stop searching: */
3709 pulled_task = load_balance_newidle(this_cpu, this_rq, 3772 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask); 3773 sd, tmpmask);
3711 3774
3712 interval = msecs_to_jiffies(sd->balance_interval); 3775 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval)) 3776 if (time_after(next_balance, sd->last_balance + interval))
@@ -3722,6 +3785,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3722 */ 3785 */
3723 this_rq->next_balance = next_balance; 3786 this_rq->next_balance = next_balance;
3724 } 3787 }
3788 free_cpumask_var(tmpmask);
3725} 3789}
3726 3790
3727/* 3791/*
@@ -3759,7 +3823,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3759 /* Search for an sd spanning us and the target CPU. */ 3823 /* Search for an sd spanning us and the target CPU. */
3760 for_each_domain(target_cpu, sd) { 3824 for_each_domain(target_cpu, sd) {
3761 if ((sd->flags & SD_LOAD_BALANCE) && 3825 if ((sd->flags & SD_LOAD_BALANCE) &&
3762 cpu_isset(busiest_cpu, sd->span)) 3826 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3763 break; 3827 break;
3764 } 3828 }
3765 3829
@@ -3778,10 +3842,9 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3778#ifdef CONFIG_NO_HZ 3842#ifdef CONFIG_NO_HZ
3779static struct { 3843static struct {
3780 atomic_t load_balancer; 3844 atomic_t load_balancer;
3781 cpumask_t cpu_mask; 3845 cpumask_var_t cpu_mask;
3782} nohz ____cacheline_aligned = { 3846} nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1), 3847 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785}; 3848};
3786 3849
3787/* 3850/*
@@ -3809,7 +3872,7 @@ int select_nohz_load_balancer(int stop_tick)
3809 int cpu = smp_processor_id(); 3872 int cpu = smp_processor_id();
3810 3873
3811 if (stop_tick) { 3874 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask); 3875 cpumask_set_cpu(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1; 3876 cpu_rq(cpu)->in_nohz_recently = 1;
3814 3877
3815 /* 3878 /*
@@ -3823,7 +3886,7 @@ int select_nohz_load_balancer(int stop_tick)
3823 } 3886 }
3824 3887
3825 /* time for ilb owner also to sleep */ 3888 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { 3889 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu) 3890 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1); 3891 atomic_set(&nohz.load_balancer, -1);
3829 return 0; 3892 return 0;
@@ -3836,10 +3899,10 @@ int select_nohz_load_balancer(int stop_tick)
3836 } else if (atomic_read(&nohz.load_balancer) == cpu) 3899 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1; 3900 return 1;
3838 } else { 3901 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask)) 3902 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3840 return 0; 3903 return 0;
3841 3904
3842 cpu_clear(cpu, nohz.cpu_mask); 3905 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3843 3906
3844 if (atomic_read(&nohz.load_balancer) == cpu) 3907 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) 3908 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
@@ -3867,7 +3930,11 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3867 unsigned long next_balance = jiffies + 60*HZ; 3930 unsigned long next_balance = jiffies + 60*HZ;
3868 int update_next_balance = 0; 3931 int update_next_balance = 0;
3869 int need_serialize; 3932 int need_serialize;
3870 cpumask_t tmp; 3933 cpumask_var_t tmp;
3934
3935 /* Fails alloc? Rebalancing probably not a priority right now. */
3936 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3937 return;
3871 3938
3872 for_each_domain(cpu, sd) { 3939 for_each_domain(cpu, sd) {
3873 if (!(sd->flags & SD_LOAD_BALANCE)) 3940 if (!(sd->flags & SD_LOAD_BALANCE))
@@ -3892,7 +3959,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3892 } 3959 }
3893 3960
3894 if (time_after_eq(jiffies, sd->last_balance + interval)) { 3961 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { 3962 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3896 /* 3963 /*
3897 * We've pulled tasks over so either we're no 3964 * We've pulled tasks over so either we're no
3898 * longer idle, or one of our SMT siblings is 3965 * longer idle, or one of our SMT siblings is
@@ -3926,6 +3993,8 @@ out:
3926 */ 3993 */
3927 if (likely(update_next_balance)) 3994 if (likely(update_next_balance))
3928 rq->next_balance = next_balance; 3995 rq->next_balance = next_balance;
3996
3997 free_cpumask_var(tmp);
3929} 3998}
3930 3999
3931/* 4000/*
@@ -3950,12 +4019,13 @@ static void run_rebalance_domains(struct softirq_action *h)
3950 */ 4019 */
3951 if (this_rq->idle_at_tick && 4020 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) { 4021 atomic_read(&nohz.load_balancer) == this_cpu) {
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq; 4022 struct rq *rq;
3955 int balance_cpu; 4023 int balance_cpu;
3956 4024
3957 cpu_clear(this_cpu, cpus); 4025 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3958 for_each_cpu_mask_nr(balance_cpu, cpus) { 4026 if (balance_cpu == this_cpu)
4027 continue;
4028
3959 /* 4029 /*
3960 * If this cpu gets work to do, stop the load balancing 4030 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load 4031 * work being done for other cpus. Next load
@@ -3993,7 +4063,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
3993 rq->in_nohz_recently = 0; 4063 rq->in_nohz_recently = 0;
3994 4064
3995 if (atomic_read(&nohz.load_balancer) == cpu) { 4065 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask); 4066 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1); 4067 atomic_set(&nohz.load_balancer, -1);
3998 } 4068 }
3999 4069
@@ -4006,7 +4076,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4006 * TBD: Traverse the sched domains and nominate 4076 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask. 4077 * the nearest cpu in the nohz.cpu_mask.
4008 */ 4078 */
4009 int ilb = first_cpu(nohz.cpu_mask); 4079 int ilb = cpumask_first(nohz.cpu_mask);
4010 4080
4011 if (ilb < nr_cpu_ids) 4081 if (ilb < nr_cpu_ids)
4012 resched_cpu(ilb); 4082 resched_cpu(ilb);
@@ -4018,7 +4088,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4018 * cpus with ticks stopped, is it time for that to stop? 4088 * cpus with ticks stopped, is it time for that to stop?
4019 */ 4089 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && 4090 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) { 4091 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu); 4092 resched_cpu(cpu);
4023 return; 4093 return;
4024 } 4094 }
@@ -4028,7 +4098,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4028 * someone else, then no need raise the SCHED_SOFTIRQ 4098 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */ 4099 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && 4100 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask)) 4101 cpumask_test_cpu(cpu, nohz.cpu_mask))
4032 return; 4102 return;
4033#endif 4103#endif
4034 if (time_after_eq(jiffies, rq->next_balance)) 4104 if (time_after_eq(jiffies, rq->next_balance))
@@ -4080,13 +4150,17 @@ unsigned long long task_delta_exec(struct task_struct *p)
4080 * Account user cpu time to a process. 4150 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to 4151 * @p: the process that the cpu time gets accounted to
4082 * @cputime: the cpu time spent in user space since the last update 4152 * @cputime: the cpu time spent in user space since the last update
4153 * @cputime_scaled: cputime scaled by cpu frequency
4083 */ 4154 */
4084void account_user_time(struct task_struct *p, cputime_t cputime) 4155void account_user_time(struct task_struct *p, cputime_t cputime,
4156 cputime_t cputime_scaled)
4085{ 4157{
4086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4158 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4087 cputime64_t tmp; 4159 cputime64_t tmp;
4088 4160
4161 /* Add user time to process. */
4089 p->utime = cputime_add(p->utime, cputime); 4162 p->utime = cputime_add(p->utime, cputime);
4163 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4090 account_group_user_time(p, cputime); 4164 account_group_user_time(p, cputime);
4091 4165
4092 /* Add user time to cpustat. */ 4166 /* Add user time to cpustat. */
@@ -4103,51 +4177,48 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
4103 * Account guest cpu time to a process. 4177 * Account guest cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to 4178 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in virtual machine since the last update 4179 * @cputime: the cpu time spent in virtual machine since the last update
4180 * @cputime_scaled: cputime scaled by cpu frequency
4106 */ 4181 */
4107static void account_guest_time(struct task_struct *p, cputime_t cputime) 4182static void account_guest_time(struct task_struct *p, cputime_t cputime,
4183 cputime_t cputime_scaled)
4108{ 4184{
4109 cputime64_t tmp; 4185 cputime64_t tmp;
4110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4186 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4111 4187
4112 tmp = cputime_to_cputime64(cputime); 4188 tmp = cputime_to_cputime64(cputime);
4113 4189
4190 /* Add guest time to process. */
4114 p->utime = cputime_add(p->utime, cputime); 4191 p->utime = cputime_add(p->utime, cputime);
4192 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4115 account_group_user_time(p, cputime); 4193 account_group_user_time(p, cputime);
4116 p->gtime = cputime_add(p->gtime, cputime); 4194 p->gtime = cputime_add(p->gtime, cputime);
4117 4195
4196 /* Add guest time to cpustat. */
4118 cpustat->user = cputime64_add(cpustat->user, tmp); 4197 cpustat->user = cputime64_add(cpustat->user, tmp);
4119 cpustat->guest = cputime64_add(cpustat->guest, tmp); 4198 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4120} 4199}
4121 4200
4122/* 4201/*
4123 * Account scaled user cpu time to a process.
4124 * @p: the process that the cpu time gets accounted to
4125 * @cputime: the cpu time spent in user space since the last update
4126 */
4127void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4128{
4129 p->utimescaled = cputime_add(p->utimescaled, cputime);
4130}
4131
4132/*
4133 * Account system cpu time to a process. 4202 * Account system cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to 4203 * @p: the process that the cpu time gets accounted to
4135 * @hardirq_offset: the offset to subtract from hardirq_count() 4204 * @hardirq_offset: the offset to subtract from hardirq_count()
4136 * @cputime: the cpu time spent in kernel space since the last update 4205 * @cputime: the cpu time spent in kernel space since the last update
4206 * @cputime_scaled: cputime scaled by cpu frequency
4137 */ 4207 */
4138void account_system_time(struct task_struct *p, int hardirq_offset, 4208void account_system_time(struct task_struct *p, int hardirq_offset,
4139 cputime_t cputime) 4209 cputime_t cputime, cputime_t cputime_scaled)
4140{ 4210{
4141 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4142 struct rq *rq = this_rq();
4143 cputime64_t tmp; 4212 cputime64_t tmp;
4144 4213
4145 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 4214 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4146 account_guest_time(p, cputime); 4215 account_guest_time(p, cputime, cputime_scaled);
4147 return; 4216 return;
4148 } 4217 }
4149 4218
4219 /* Add system time to process. */
4150 p->stime = cputime_add(p->stime, cputime); 4220 p->stime = cputime_add(p->stime, cputime);
4221 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4151 account_group_system_time(p, cputime); 4222 account_group_system_time(p, cputime);
4152 4223
4153 /* Add system time to cpustat. */ 4224 /* Add system time to cpustat. */
@@ -4156,48 +4227,84 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
4156 cpustat->irq = cputime64_add(cpustat->irq, tmp); 4227 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4157 else if (softirq_count()) 4228 else if (softirq_count())
4158 cpustat->softirq = cputime64_add(cpustat->softirq, tmp); 4229 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4159 else if (p != rq->idle)
4160 cpustat->system = cputime64_add(cpustat->system, tmp);
4161 else if (atomic_read(&rq->nr_iowait) > 0)
4162 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4163 else 4230 else
4164 cpustat->idle = cputime64_add(cpustat->idle, tmp); 4231 cpustat->system = cputime64_add(cpustat->system, tmp);
4232
4165 /* Account for system time used */ 4233 /* Account for system time used */
4166 acct_update_integrals(p); 4234 acct_update_integrals(p);
4167} 4235}
4168 4236
4169/* 4237/*
4170 * Account scaled system cpu time to a process. 4238 * Account for involuntary wait time.
4171 * @p: the process that the cpu time gets accounted to 4239 * @steal: the cpu time spent in involuntary wait
4172 * @hardirq_offset: the offset to subtract from hardirq_count()
4173 * @cputime: the cpu time spent in kernel space since the last update
4174 */ 4240 */
4175void account_system_time_scaled(struct task_struct *p, cputime_t cputime) 4241void account_steal_time(cputime_t cputime)
4176{ 4242{
4177 p->stimescaled = cputime_add(p->stimescaled, cputime); 4243 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4244 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4245
4246 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4178} 4247}
4179 4248
4180/* 4249/*
4181 * Account for involuntary wait time. 4250 * Account for idle time.
4182 * @p: the process from which the cpu time has been stolen 4251 * @cputime: the cpu time spent in idle wait
4183 * @steal: the cpu time spent in involuntary wait
4184 */ 4252 */
4185void account_steal_time(struct task_struct *p, cputime_t steal) 4253void account_idle_time(cputime_t cputime)
4186{ 4254{
4187 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4255 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4188 cputime64_t tmp = cputime_to_cputime64(steal); 4256 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4189 struct rq *rq = this_rq(); 4257 struct rq *rq = this_rq();
4190 4258
4191 if (p == rq->idle) { 4259 if (atomic_read(&rq->nr_iowait) > 0)
4192 p->stime = cputime_add(p->stime, steal); 4260 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4193 if (atomic_read(&rq->nr_iowait) > 0) 4261 else
4194 cpustat->iowait = cputime64_add(cpustat->iowait, tmp); 4262 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4195 else
4196 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4197 } else
4198 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4199} 4263}
4200 4264
4265#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4266
4267/*
4268 * Account a single tick of cpu time.
4269 * @p: the process that the cpu time gets accounted to
4270 * @user_tick: indicates if the tick is a user or a system tick
4271 */
4272void account_process_tick(struct task_struct *p, int user_tick)
4273{
4274 cputime_t one_jiffy = jiffies_to_cputime(1);
4275 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4276 struct rq *rq = this_rq();
4277
4278 if (user_tick)
4279 account_user_time(p, one_jiffy, one_jiffy_scaled);
4280 else if (p != rq->idle)
4281 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4282 one_jiffy_scaled);
4283 else
4284 account_idle_time(one_jiffy);
4285}
4286
4287/*
4288 * Account multiple ticks of steal time.
4289 * @p: the process from which the cpu time has been stolen
4290 * @ticks: number of stolen ticks
4291 */
4292void account_steal_ticks(unsigned long ticks)
4293{
4294 account_steal_time(jiffies_to_cputime(ticks));
4295}
4296
4297/*
4298 * Account multiple ticks of idle time.
4299 * @ticks: number of stolen ticks
4300 */
4301void account_idle_ticks(unsigned long ticks)
4302{
4303 account_idle_time(jiffies_to_cputime(ticks));
4304}
4305
4306#endif
4307
4201/* 4308/*
4202 * Use precise platform statistics if available: 4309 * Use precise platform statistics if available:
4203 */ 4310 */
@@ -5401,10 +5508,9 @@ out_unlock:
5401 return retval; 5508 return retval;
5402} 5509}
5403 5510
5404long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) 5511long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5405{ 5512{
5406 cpumask_t cpus_allowed; 5513 cpumask_var_t cpus_allowed, new_mask;
5407 cpumask_t new_mask = *in_mask;
5408 struct task_struct *p; 5514 struct task_struct *p;
5409 int retval; 5515 int retval;
5410 5516
@@ -5426,6 +5532,14 @@ long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5426 get_task_struct(p); 5532 get_task_struct(p);
5427 read_unlock(&tasklist_lock); 5533 read_unlock(&tasklist_lock);
5428 5534
5535 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5536 retval = -ENOMEM;
5537 goto out_put_task;
5538 }
5539 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5540 retval = -ENOMEM;
5541 goto out_free_cpus_allowed;
5542 }
5429 retval = -EPERM; 5543 retval = -EPERM;
5430 if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) 5544 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5431 goto out_unlock; 5545 goto out_unlock;
@@ -5434,37 +5548,41 @@ long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5434 if (retval) 5548 if (retval)
5435 goto out_unlock; 5549 goto out_unlock;
5436 5550
5437 cpuset_cpus_allowed(p, &cpus_allowed); 5551 cpuset_cpus_allowed(p, cpus_allowed);
5438 cpus_and(new_mask, new_mask, cpus_allowed); 5552 cpumask_and(new_mask, in_mask, cpus_allowed);
5439 again: 5553 again:
5440 retval = set_cpus_allowed_ptr(p, &new_mask); 5554 retval = set_cpus_allowed_ptr(p, new_mask);
5441 5555
5442 if (!retval) { 5556 if (!retval) {
5443 cpuset_cpus_allowed(p, &cpus_allowed); 5557 cpuset_cpus_allowed(p, cpus_allowed);
5444 if (!cpus_subset(new_mask, cpus_allowed)) { 5558 if (!cpumask_subset(new_mask, cpus_allowed)) {
5445 /* 5559 /*
5446 * We must have raced with a concurrent cpuset 5560 * We must have raced with a concurrent cpuset
5447 * update. Just reset the cpus_allowed to the 5561 * update. Just reset the cpus_allowed to the
5448 * cpuset's cpus_allowed 5562 * cpuset's cpus_allowed
5449 */ 5563 */
5450 new_mask = cpus_allowed; 5564 cpumask_copy(new_mask, cpus_allowed);
5451 goto again; 5565 goto again;
5452 } 5566 }
5453 } 5567 }
5454out_unlock: 5568out_unlock:
5569 free_cpumask_var(new_mask);
5570out_free_cpus_allowed:
5571 free_cpumask_var(cpus_allowed);
5572out_put_task:
5455 put_task_struct(p); 5573 put_task_struct(p);
5456 put_online_cpus(); 5574 put_online_cpus();
5457 return retval; 5575 return retval;
5458} 5576}
5459 5577
5460static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5578static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5461 cpumask_t *new_mask) 5579 struct cpumask *new_mask)
5462{ 5580{
5463 if (len < sizeof(cpumask_t)) { 5581 if (len < cpumask_size())
5464 memset(new_mask, 0, sizeof(cpumask_t)); 5582 cpumask_clear(new_mask);
5465 } else if (len > sizeof(cpumask_t)) { 5583 else if (len > cpumask_size())
5466 len = sizeof(cpumask_t); 5584 len = cpumask_size();
5467 } 5585
5468 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5586 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5469} 5587}
5470 5588
@@ -5477,17 +5595,20 @@ static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5477asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, 5595asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5478 unsigned long __user *user_mask_ptr) 5596 unsigned long __user *user_mask_ptr)
5479{ 5597{
5480 cpumask_t new_mask; 5598 cpumask_var_t new_mask;
5481 int retval; 5599 int retval;
5482 5600
5483 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); 5601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5484 if (retval) 5602 return -ENOMEM;
5485 return retval;
5486 5603
5487 return sched_setaffinity(pid, &new_mask); 5604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5605 if (retval == 0)
5606 retval = sched_setaffinity(pid, new_mask);
5607 free_cpumask_var(new_mask);
5608 return retval;
5488} 5609}
5489 5610
5490long sched_getaffinity(pid_t pid, cpumask_t *mask) 5611long sched_getaffinity(pid_t pid, struct cpumask *mask)
5491{ 5612{
5492 struct task_struct *p; 5613 struct task_struct *p;
5493 int retval; 5614 int retval;
@@ -5504,7 +5625,7 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask)
5504 if (retval) 5625 if (retval)
5505 goto out_unlock; 5626 goto out_unlock;
5506 5627
5507 cpus_and(*mask, p->cpus_allowed, cpu_online_map); 5628 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5508 5629
5509out_unlock: 5630out_unlock:
5510 read_unlock(&tasklist_lock); 5631 read_unlock(&tasklist_lock);
@@ -5523,19 +5644,24 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5523 unsigned long __user *user_mask_ptr) 5644 unsigned long __user *user_mask_ptr)
5524{ 5645{
5525 int ret; 5646 int ret;
5526 cpumask_t mask; 5647 cpumask_var_t mask;
5527 5648
5528 if (len < sizeof(cpumask_t)) 5649 if (len < cpumask_size())
5529 return -EINVAL; 5650 return -EINVAL;
5530 5651
5531 ret = sched_getaffinity(pid, &mask); 5652 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5532 if (ret < 0) 5653 return -ENOMEM;
5533 return ret;
5534 5654
5535 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) 5655 ret = sched_getaffinity(pid, mask);
5536 return -EFAULT; 5656 if (ret == 0) {
5657 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5658 ret = -EFAULT;
5659 else
5660 ret = cpumask_size();
5661 }
5662 free_cpumask_var(mask);
5537 5663
5538 return sizeof(cpumask_t); 5664 return ret;
5539} 5665}
5540 5666
5541/** 5667/**
@@ -5877,7 +6003,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
5877 idle->se.exec_start = sched_clock(); 6003 idle->se.exec_start = sched_clock();
5878 6004
5879 idle->prio = idle->normal_prio = MAX_PRIO; 6005 idle->prio = idle->normal_prio = MAX_PRIO;
5880 idle->cpus_allowed = cpumask_of_cpu(cpu); 6006 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5881 __set_task_cpu(idle, cpu); 6007 __set_task_cpu(idle, cpu);
5882 6008
5883 rq->curr = rq->idle = idle; 6009 rq->curr = rq->idle = idle;
@@ -5904,9 +6030,9 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
5904 * indicates which cpus entered this state. This is used 6030 * indicates which cpus entered this state. This is used
5905 * in the rcu update to wait only for active cpus. For system 6031 * in the rcu update to wait only for active cpus. For system
5906 * which do not switch off the HZ timer nohz_cpu_mask should 6032 * which do not switch off the HZ timer nohz_cpu_mask should
5907 * always be CPU_MASK_NONE. 6033 * always be CPU_BITS_NONE.
5908 */ 6034 */
5909cpumask_t nohz_cpu_mask = CPU_MASK_NONE; 6035cpumask_var_t nohz_cpu_mask;
5910 6036
5911/* 6037/*
5912 * Increase the granularity value when there are more CPUs, 6038 * Increase the granularity value when there are more CPUs,
@@ -5961,7 +6087,7 @@ static inline void sched_init_granularity(void)
5961 * task must not exit() & deallocate itself prematurely. The 6087 * task must not exit() & deallocate itself prematurely. The
5962 * call is not atomic; no spinlocks may be held. 6088 * call is not atomic; no spinlocks may be held.
5963 */ 6089 */
5964int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) 6090int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5965{ 6091{
5966 struct migration_req req; 6092 struct migration_req req;
5967 unsigned long flags; 6093 unsigned long flags;
@@ -5969,13 +6095,13 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5969 int ret = 0; 6095 int ret = 0;
5970 6096
5971 rq = task_rq_lock(p, &flags); 6097 rq = task_rq_lock(p, &flags);
5972 if (!cpus_intersects(*new_mask, cpu_online_map)) { 6098 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
5973 ret = -EINVAL; 6099 ret = -EINVAL;
5974 goto out; 6100 goto out;
5975 } 6101 }
5976 6102
5977 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && 6103 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5978 !cpus_equal(p->cpus_allowed, *new_mask))) { 6104 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5979 ret = -EINVAL; 6105 ret = -EINVAL;
5980 goto out; 6106 goto out;
5981 } 6107 }
@@ -5983,15 +6109,15 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5983 if (p->sched_class->set_cpus_allowed) 6109 if (p->sched_class->set_cpus_allowed)
5984 p->sched_class->set_cpus_allowed(p, new_mask); 6110 p->sched_class->set_cpus_allowed(p, new_mask);
5985 else { 6111 else {
5986 p->cpus_allowed = *new_mask; 6112 cpumask_copy(&p->cpus_allowed, new_mask);
5987 p->rt.nr_cpus_allowed = cpus_weight(*new_mask); 6113 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5988 } 6114 }
5989 6115
5990 /* Can the task run on the task's current CPU? If so, we're done */ 6116 /* Can the task run on the task's current CPU? If so, we're done */
5991 if (cpu_isset(task_cpu(p), *new_mask)) 6117 if (cpumask_test_cpu(task_cpu(p), new_mask))
5992 goto out; 6118 goto out;
5993 6119
5994 if (migrate_task(p, any_online_cpu(*new_mask), &req)) { 6120 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
5995 /* Need help from migration thread: drop lock and wait. */ 6121 /* Need help from migration thread: drop lock and wait. */
5996 task_rq_unlock(rq, &flags); 6122 task_rq_unlock(rq, &flags);
5997 wake_up_process(rq->migration_thread); 6123 wake_up_process(rq->migration_thread);
@@ -6033,7 +6159,7 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6033 if (task_cpu(p) != src_cpu) 6159 if (task_cpu(p) != src_cpu)
6034 goto done; 6160 goto done;
6035 /* Affinity changed (again). */ 6161 /* Affinity changed (again). */
6036 if (!cpu_isset(dest_cpu, p->cpus_allowed)) 6162 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6037 goto fail; 6163 goto fail;
6038 6164
6039 on_rq = p->se.on_rq; 6165 on_rq = p->se.on_rq;
@@ -6130,50 +6256,41 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6130 */ 6256 */
6131static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 6257static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6132{ 6258{
6133 unsigned long flags;
6134 cpumask_t mask;
6135 struct rq *rq;
6136 int dest_cpu; 6259 int dest_cpu;
6260 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6137 6261
6138 do { 6262again:
6139 /* On same node? */ 6263 /* Look for allowed, online CPU in same node. */
6140 mask = node_to_cpumask(cpu_to_node(dead_cpu)); 6264 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6141 cpus_and(mask, mask, p->cpus_allowed); 6265 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6142 dest_cpu = any_online_cpu(mask); 6266 goto move;
6143 6267
6144 /* On any allowed CPU? */ 6268 /* Any allowed, online CPU? */
6145 if (dest_cpu >= nr_cpu_ids) 6269 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6146 dest_cpu = any_online_cpu(p->cpus_allowed); 6270 if (dest_cpu < nr_cpu_ids)
6271 goto move;
6147 6272
6148 /* No more Mr. Nice Guy. */ 6273 /* No more Mr. Nice Guy. */
6149 if (dest_cpu >= nr_cpu_ids) { 6274 if (dest_cpu >= nr_cpu_ids) {
6150 cpumask_t cpus_allowed; 6275 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6151 6276 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6152 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6153 /*
6154 * Try to stay on the same cpuset, where the
6155 * current cpuset may be a subset of all cpus.
6156 * The cpuset_cpus_allowed_locked() variant of
6157 * cpuset_cpus_allowed() will not block. It must be
6158 * called within calls to cpuset_lock/cpuset_unlock.
6159 */
6160 rq = task_rq_lock(p, &flags);
6161 p->cpus_allowed = cpus_allowed;
6162 dest_cpu = any_online_cpu(p->cpus_allowed);
6163 task_rq_unlock(rq, &flags);
6164 6277
6165 /* 6278 /*
6166 * Don't tell them about moving exiting tasks or 6279 * Don't tell them about moving exiting tasks or
6167 * kernel threads (both mm NULL), since they never 6280 * kernel threads (both mm NULL), since they never
6168 * leave kernel. 6281 * leave kernel.
6169 */ 6282 */
6170 if (p->mm && printk_ratelimit()) { 6283 if (p->mm && printk_ratelimit()) {
6171 printk(KERN_INFO "process %d (%s) no " 6284 printk(KERN_INFO "process %d (%s) no "
6172 "longer affine to cpu%d\n", 6285 "longer affine to cpu%d\n",
6173 task_pid_nr(p), p->comm, dead_cpu); 6286 task_pid_nr(p), p->comm, dead_cpu);
6174 }
6175 } 6287 }
6176 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); 6288 }
6289
6290move:
6291 /* It can have affinity changed while we were choosing. */
6292 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6293 goto again;
6177} 6294}
6178 6295
6179/* 6296/*
@@ -6185,7 +6302,7 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6185 */ 6302 */
6186static void migrate_nr_uninterruptible(struct rq *rq_src) 6303static void migrate_nr_uninterruptible(struct rq *rq_src)
6187{ 6304{
6188 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); 6305 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6189 unsigned long flags; 6306 unsigned long flags;
6190 6307
6191 local_irq_save(flags); 6308 local_irq_save(flags);
@@ -6475,7 +6592,7 @@ static void set_rq_online(struct rq *rq)
6475 if (!rq->online) { 6592 if (!rq->online) {
6476 const struct sched_class *class; 6593 const struct sched_class *class;
6477 6594
6478 cpu_set(rq->cpu, rq->rd->online); 6595 cpumask_set_cpu(rq->cpu, rq->rd->online);
6479 rq->online = 1; 6596 rq->online = 1;
6480 6597
6481 for_each_class(class) { 6598 for_each_class(class) {
@@ -6495,7 +6612,7 @@ static void set_rq_offline(struct rq *rq)
6495 class->rq_offline(rq); 6612 class->rq_offline(rq);
6496 } 6613 }
6497 6614
6498 cpu_clear(rq->cpu, rq->rd->online); 6615 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6499 rq->online = 0; 6616 rq->online = 0;
6500 } 6617 }
6501} 6618}
@@ -6536,7 +6653,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6536 rq = cpu_rq(cpu); 6653 rq = cpu_rq(cpu);
6537 spin_lock_irqsave(&rq->lock, flags); 6654 spin_lock_irqsave(&rq->lock, flags);
6538 if (rq->rd) { 6655 if (rq->rd) {
6539 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6656 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6540 6657
6541 set_rq_online(rq); 6658 set_rq_online(rq);
6542 } 6659 }
@@ -6550,7 +6667,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6550 break; 6667 break;
6551 /* Unbind it from offline cpu so it can run. Fall thru. */ 6668 /* Unbind it from offline cpu so it can run. Fall thru. */
6552 kthread_bind(cpu_rq(cpu)->migration_thread, 6669 kthread_bind(cpu_rq(cpu)->migration_thread,
6553 any_online_cpu(cpu_online_map)); 6670 cpumask_any(cpu_online_mask));
6554 kthread_stop(cpu_rq(cpu)->migration_thread); 6671 kthread_stop(cpu_rq(cpu)->migration_thread);
6555 cpu_rq(cpu)->migration_thread = NULL; 6672 cpu_rq(cpu)->migration_thread = NULL;
6556 break; 6673 break;
@@ -6600,7 +6717,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6600 rq = cpu_rq(cpu); 6717 rq = cpu_rq(cpu);
6601 spin_lock_irqsave(&rq->lock, flags); 6718 spin_lock_irqsave(&rq->lock, flags);
6602 if (rq->rd) { 6719 if (rq->rd) {
6603 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6720 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6604 set_rq_offline(rq); 6721 set_rq_offline(rq);
6605 } 6722 }
6606 spin_unlock_irqrestore(&rq->lock, flags); 6723 spin_unlock_irqrestore(&rq->lock, flags);
@@ -6639,13 +6756,13 @@ early_initcall(migration_init);
6639#ifdef CONFIG_SCHED_DEBUG 6756#ifdef CONFIG_SCHED_DEBUG
6640 6757
6641static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 6758static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6642 cpumask_t *groupmask) 6759 struct cpumask *groupmask)
6643{ 6760{
6644 struct sched_group *group = sd->groups; 6761 struct sched_group *group = sd->groups;
6645 char str[256]; 6762 char str[256];
6646 6763
6647 cpulist_scnprintf(str, sizeof(str), sd->span); 6764 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6648 cpus_clear(*groupmask); 6765 cpumask_clear(groupmask);
6649 6766
6650 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 6767 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6651 6768
@@ -6659,11 +6776,11 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6659 6776
6660 printk(KERN_CONT "span %s level %s\n", str, sd->name); 6777 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6661 6778
6662 if (!cpu_isset(cpu, sd->span)) { 6779 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6663 printk(KERN_ERR "ERROR: domain->span does not contain " 6780 printk(KERN_ERR "ERROR: domain->span does not contain "
6664 "CPU%d\n", cpu); 6781 "CPU%d\n", cpu);
6665 } 6782 }
6666 if (!cpu_isset(cpu, group->cpumask)) { 6783 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6667 printk(KERN_ERR "ERROR: domain->groups does not contain" 6784 printk(KERN_ERR "ERROR: domain->groups does not contain"
6668 " CPU%d\n", cpu); 6785 " CPU%d\n", cpu);
6669 } 6786 }
@@ -6683,31 +6800,32 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6683 break; 6800 break;
6684 } 6801 }
6685 6802
6686 if (!cpus_weight(group->cpumask)) { 6803 if (!cpumask_weight(sched_group_cpus(group))) {
6687 printk(KERN_CONT "\n"); 6804 printk(KERN_CONT "\n");
6688 printk(KERN_ERR "ERROR: empty group\n"); 6805 printk(KERN_ERR "ERROR: empty group\n");
6689 break; 6806 break;
6690 } 6807 }
6691 6808
6692 if (cpus_intersects(*groupmask, group->cpumask)) { 6809 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6693 printk(KERN_CONT "\n"); 6810 printk(KERN_CONT "\n");
6694 printk(KERN_ERR "ERROR: repeated CPUs\n"); 6811 printk(KERN_ERR "ERROR: repeated CPUs\n");
6695 break; 6812 break;
6696 } 6813 }
6697 6814
6698 cpus_or(*groupmask, *groupmask, group->cpumask); 6815 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6699 6816
6700 cpulist_scnprintf(str, sizeof(str), group->cpumask); 6817 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6701 printk(KERN_CONT " %s", str); 6818 printk(KERN_CONT " %s", str);
6702 6819
6703 group = group->next; 6820 group = group->next;
6704 } while (group != sd->groups); 6821 } while (group != sd->groups);
6705 printk(KERN_CONT "\n"); 6822 printk(KERN_CONT "\n");
6706 6823
6707 if (!cpus_equal(sd->span, *groupmask)) 6824 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6708 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 6825 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6709 6826
6710 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) 6827 if (sd->parent &&
6828 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6711 printk(KERN_ERR "ERROR: parent span is not a superset " 6829 printk(KERN_ERR "ERROR: parent span is not a superset "
6712 "of domain->span\n"); 6830 "of domain->span\n");
6713 return 0; 6831 return 0;
@@ -6715,7 +6833,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6715 6833
6716static void sched_domain_debug(struct sched_domain *sd, int cpu) 6834static void sched_domain_debug(struct sched_domain *sd, int cpu)
6717{ 6835{
6718 cpumask_t *groupmask; 6836 cpumask_var_t groupmask;
6719 int level = 0; 6837 int level = 0;
6720 6838
6721 if (!sd) { 6839 if (!sd) {
@@ -6725,8 +6843,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6725 6843
6726 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 6844 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6727 6845
6728 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 6846 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6729 if (!groupmask) {
6730 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); 6847 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6731 return; 6848 return;
6732 } 6849 }
@@ -6739,7 +6856,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6739 if (!sd) 6856 if (!sd)
6740 break; 6857 break;
6741 } 6858 }
6742 kfree(groupmask); 6859 free_cpumask_var(groupmask);
6743} 6860}
6744#else /* !CONFIG_SCHED_DEBUG */ 6861#else /* !CONFIG_SCHED_DEBUG */
6745# define sched_domain_debug(sd, cpu) do { } while (0) 6862# define sched_domain_debug(sd, cpu) do { } while (0)
@@ -6747,7 +6864,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6747 6864
6748static int sd_degenerate(struct sched_domain *sd) 6865static int sd_degenerate(struct sched_domain *sd)
6749{ 6866{
6750 if (cpus_weight(sd->span) == 1) 6867 if (cpumask_weight(sched_domain_span(sd)) == 1)
6751 return 1; 6868 return 1;
6752 6869
6753 /* Following flags need at least 2 groups */ 6870 /* Following flags need at least 2 groups */
@@ -6778,7 +6895,7 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6778 if (sd_degenerate(parent)) 6895 if (sd_degenerate(parent))
6779 return 1; 6896 return 1;
6780 6897
6781 if (!cpus_equal(sd->span, parent->span)) 6898 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6782 return 0; 6899 return 0;
6783 6900
6784 /* Does parent contain flags not in child? */ 6901 /* Does parent contain flags not in child? */
@@ -6802,6 +6919,16 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6802 return 1; 6919 return 1;
6803} 6920}
6804 6921
6922static void free_rootdomain(struct root_domain *rd)
6923{
6924 cpupri_cleanup(&rd->cpupri);
6925
6926 free_cpumask_var(rd->rto_mask);
6927 free_cpumask_var(rd->online);
6928 free_cpumask_var(rd->span);
6929 kfree(rd);
6930}
6931
6805static void rq_attach_root(struct rq *rq, struct root_domain *rd) 6932static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6806{ 6933{
6807 unsigned long flags; 6934 unsigned long flags;
@@ -6811,38 +6938,63 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6811 if (rq->rd) { 6938 if (rq->rd) {
6812 struct root_domain *old_rd = rq->rd; 6939 struct root_domain *old_rd = rq->rd;
6813 6940
6814 if (cpu_isset(rq->cpu, old_rd->online)) 6941 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6815 set_rq_offline(rq); 6942 set_rq_offline(rq);
6816 6943
6817 cpu_clear(rq->cpu, old_rd->span); 6944 cpumask_clear_cpu(rq->cpu, old_rd->span);
6818 6945
6819 if (atomic_dec_and_test(&old_rd->refcount)) 6946 if (atomic_dec_and_test(&old_rd->refcount))
6820 kfree(old_rd); 6947 free_rootdomain(old_rd);
6821 } 6948 }
6822 6949
6823 atomic_inc(&rd->refcount); 6950 atomic_inc(&rd->refcount);
6824 rq->rd = rd; 6951 rq->rd = rd;
6825 6952
6826 cpu_set(rq->cpu, rd->span); 6953 cpumask_set_cpu(rq->cpu, rd->span);
6827 if (cpu_isset(rq->cpu, cpu_online_map)) 6954 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6828 set_rq_online(rq); 6955 set_rq_online(rq);
6829 6956
6830 spin_unlock_irqrestore(&rq->lock, flags); 6957 spin_unlock_irqrestore(&rq->lock, flags);
6831} 6958}
6832 6959
6833static void init_rootdomain(struct root_domain *rd) 6960static int init_rootdomain(struct root_domain *rd, bool bootmem)
6834{ 6961{
6835 memset(rd, 0, sizeof(*rd)); 6962 memset(rd, 0, sizeof(*rd));
6836 6963
6837 cpus_clear(rd->span); 6964 if (bootmem) {
6838 cpus_clear(rd->online); 6965 alloc_bootmem_cpumask_var(&def_root_domain.span);
6966 alloc_bootmem_cpumask_var(&def_root_domain.online);
6967 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6968 cpupri_init(&rd->cpupri, true);
6969 return 0;
6970 }
6971
6972 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6973 goto free_rd;
6974 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6975 goto free_span;
6976 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6977 goto free_online;
6839 6978
6840 cpupri_init(&rd->cpupri); 6979 if (cpupri_init(&rd->cpupri, false) != 0)
6980 goto free_rto_mask;
6981 return 0;
6982
6983free_rto_mask:
6984 free_cpumask_var(rd->rto_mask);
6985free_online:
6986 free_cpumask_var(rd->online);
6987free_span:
6988 free_cpumask_var(rd->span);
6989free_rd:
6990 kfree(rd);
6991 return -ENOMEM;
6841} 6992}
6842 6993
6843static void init_defrootdomain(void) 6994static void init_defrootdomain(void)
6844{ 6995{
6845 init_rootdomain(&def_root_domain); 6996 init_rootdomain(&def_root_domain, true);
6997
6846 atomic_set(&def_root_domain.refcount, 1); 6998 atomic_set(&def_root_domain.refcount, 1);
6847} 6999}
6848 7000
@@ -6854,7 +7006,10 @@ static struct root_domain *alloc_rootdomain(void)
6854 if (!rd) 7006 if (!rd)
6855 return NULL; 7007 return NULL;
6856 7008
6857 init_rootdomain(rd); 7009 if (init_rootdomain(rd, false) != 0) {
7010 kfree(rd);
7011 return NULL;
7012 }
6858 7013
6859 return rd; 7014 return rd;
6860} 7015}
@@ -6896,19 +7051,12 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6896} 7051}
6897 7052
6898/* cpus with isolated domains */ 7053/* cpus with isolated domains */
6899static cpumask_t cpu_isolated_map = CPU_MASK_NONE; 7054static cpumask_var_t cpu_isolated_map;
6900 7055
6901/* Setup the mask of cpus configured for isolated domains */ 7056/* Setup the mask of cpus configured for isolated domains */
6902static int __init isolated_cpu_setup(char *str) 7057static int __init isolated_cpu_setup(char *str)
6903{ 7058{
6904 static int __initdata ints[NR_CPUS]; 7059 cpulist_parse(str, cpu_isolated_map);
6905 int i;
6906
6907 str = get_options(str, ARRAY_SIZE(ints), ints);
6908 cpus_clear(cpu_isolated_map);
6909 for (i = 1; i <= ints[0]; i++)
6910 if (ints[i] < NR_CPUS)
6911 cpu_set(ints[i], cpu_isolated_map);
6912 return 1; 7060 return 1;
6913} 7061}
6914 7062
@@ -6917,42 +7065,43 @@ __setup("isolcpus=", isolated_cpu_setup);
6917/* 7065/*
6918 * init_sched_build_groups takes the cpumask we wish to span, and a pointer 7066 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6919 * to a function which identifies what group(along with sched group) a CPU 7067 * to a function which identifies what group(along with sched group) a CPU
6920 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS 7068 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6921 * (due to the fact that we keep track of groups covered with a cpumask_t). 7069 * (due to the fact that we keep track of groups covered with a struct cpumask).
6922 * 7070 *
6923 * init_sched_build_groups will build a circular linked list of the groups 7071 * init_sched_build_groups will build a circular linked list of the groups
6924 * covered by the given span, and will set each group's ->cpumask correctly, 7072 * covered by the given span, and will set each group's ->cpumask correctly,
6925 * and ->cpu_power to 0. 7073 * and ->cpu_power to 0.
6926 */ 7074 */
6927static void 7075static void
6928init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, 7076init_sched_build_groups(const struct cpumask *span,
6929 int (*group_fn)(int cpu, const cpumask_t *cpu_map, 7077 const struct cpumask *cpu_map,
7078 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6930 struct sched_group **sg, 7079 struct sched_group **sg,
6931 cpumask_t *tmpmask), 7080 struct cpumask *tmpmask),
6932 cpumask_t *covered, cpumask_t *tmpmask) 7081 struct cpumask *covered, struct cpumask *tmpmask)
6933{ 7082{
6934 struct sched_group *first = NULL, *last = NULL; 7083 struct sched_group *first = NULL, *last = NULL;
6935 int i; 7084 int i;
6936 7085
6937 cpus_clear(*covered); 7086 cpumask_clear(covered);
6938 7087
6939 for_each_cpu_mask_nr(i, *span) { 7088 for_each_cpu(i, span) {
6940 struct sched_group *sg; 7089 struct sched_group *sg;
6941 int group = group_fn(i, cpu_map, &sg, tmpmask); 7090 int group = group_fn(i, cpu_map, &sg, tmpmask);
6942 int j; 7091 int j;
6943 7092
6944 if (cpu_isset(i, *covered)) 7093 if (cpumask_test_cpu(i, covered))
6945 continue; 7094 continue;
6946 7095
6947 cpus_clear(sg->cpumask); 7096 cpumask_clear(sched_group_cpus(sg));
6948 sg->__cpu_power = 0; 7097 sg->__cpu_power = 0;
6949 7098
6950 for_each_cpu_mask_nr(j, *span) { 7099 for_each_cpu(j, span) {
6951 if (group_fn(j, cpu_map, NULL, tmpmask) != group) 7100 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6952 continue; 7101 continue;
6953 7102
6954 cpu_set(j, *covered); 7103 cpumask_set_cpu(j, covered);
6955 cpu_set(j, sg->cpumask); 7104 cpumask_set_cpu(j, sched_group_cpus(sg));
6956 } 7105 }
6957 if (!first) 7106 if (!first)
6958 first = sg; 7107 first = sg;
@@ -7016,23 +7165,21 @@ static int find_next_best_node(int node, nodemask_t *used_nodes)
7016 * should be one that prevents unnecessary balancing, but also spreads tasks 7165 * should be one that prevents unnecessary balancing, but also spreads tasks
7017 * out optimally. 7166 * out optimally.
7018 */ 7167 */
7019static void sched_domain_node_span(int node, cpumask_t *span) 7168static void sched_domain_node_span(int node, struct cpumask *span)
7020{ 7169{
7021 nodemask_t used_nodes; 7170 nodemask_t used_nodes;
7022 node_to_cpumask_ptr(nodemask, node);
7023 int i; 7171 int i;
7024 7172
7025 cpus_clear(*span); 7173 cpumask_clear(span);
7026 nodes_clear(used_nodes); 7174 nodes_clear(used_nodes);
7027 7175
7028 cpus_or(*span, *span, *nodemask); 7176 cpumask_or(span, span, cpumask_of_node(node));
7029 node_set(node, used_nodes); 7177 node_set(node, used_nodes);
7030 7178
7031 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 7179 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7032 int next_node = find_next_best_node(node, &used_nodes); 7180 int next_node = find_next_best_node(node, &used_nodes);
7033 7181
7034 node_to_cpumask_ptr_next(nodemask, next_node); 7182 cpumask_or(span, span, cpumask_of_node(next_node));
7035 cpus_or(*span, *span, *nodemask);
7036 } 7183 }
7037} 7184}
7038#endif /* CONFIG_NUMA */ 7185#endif /* CONFIG_NUMA */
@@ -7040,18 +7187,33 @@ static void sched_domain_node_span(int node, cpumask_t *span)
7040int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 7187int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7041 7188
7042/* 7189/*
7190 * The cpus mask in sched_group and sched_domain hangs off the end.
7191 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7192 * for nr_cpu_ids < CONFIG_NR_CPUS.
7193 */
7194struct static_sched_group {
7195 struct sched_group sg;
7196 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7197};
7198
7199struct static_sched_domain {
7200 struct sched_domain sd;
7201 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7202};
7203
7204/*
7043 * SMT sched-domains: 7205 * SMT sched-domains:
7044 */ 7206 */
7045#ifdef CONFIG_SCHED_SMT 7207#ifdef CONFIG_SCHED_SMT
7046static DEFINE_PER_CPU(struct sched_domain, cpu_domains); 7208static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7047static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); 7209static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7048 7210
7049static int 7211static int
7050cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7212cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7051 cpumask_t *unused) 7213 struct sched_group **sg, struct cpumask *unused)
7052{ 7214{
7053 if (sg) 7215 if (sg)
7054 *sg = &per_cpu(sched_group_cpus, cpu); 7216 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7055 return cpu; 7217 return cpu;
7056} 7218}
7057#endif /* CONFIG_SCHED_SMT */ 7219#endif /* CONFIG_SCHED_SMT */
@@ -7060,56 +7222,53 @@ cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7060 * multi-core sched-domains: 7222 * multi-core sched-domains:
7061 */ 7223 */
7062#ifdef CONFIG_SCHED_MC 7224#ifdef CONFIG_SCHED_MC
7063static DEFINE_PER_CPU(struct sched_domain, core_domains); 7225static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7064static DEFINE_PER_CPU(struct sched_group, sched_group_core); 7226static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7065#endif /* CONFIG_SCHED_MC */ 7227#endif /* CONFIG_SCHED_MC */
7066 7228
7067#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) 7229#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7068static int 7230static int
7069cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7231cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7070 cpumask_t *mask) 7232 struct sched_group **sg, struct cpumask *mask)
7071{ 7233{
7072 int group; 7234 int group;
7073 7235
7074 *mask = per_cpu(cpu_sibling_map, cpu); 7236 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7075 cpus_and(*mask, *mask, *cpu_map); 7237 group = cpumask_first(mask);
7076 group = first_cpu(*mask);
7077 if (sg) 7238 if (sg)
7078 *sg = &per_cpu(sched_group_core, group); 7239 *sg = &per_cpu(sched_group_core, group).sg;
7079 return group; 7240 return group;
7080} 7241}
7081#elif defined(CONFIG_SCHED_MC) 7242#elif defined(CONFIG_SCHED_MC)
7082static int 7243static int
7083cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7244cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7084 cpumask_t *unused) 7245 struct sched_group **sg, struct cpumask *unused)
7085{ 7246{
7086 if (sg) 7247 if (sg)
7087 *sg = &per_cpu(sched_group_core, cpu); 7248 *sg = &per_cpu(sched_group_core, cpu).sg;
7088 return cpu; 7249 return cpu;
7089} 7250}
7090#endif 7251#endif
7091 7252
7092static DEFINE_PER_CPU(struct sched_domain, phys_domains); 7253static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7093static DEFINE_PER_CPU(struct sched_group, sched_group_phys); 7254static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7094 7255
7095static int 7256static int
7096cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7257cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7097 cpumask_t *mask) 7258 struct sched_group **sg, struct cpumask *mask)
7098{ 7259{
7099 int group; 7260 int group;
7100#ifdef CONFIG_SCHED_MC 7261#ifdef CONFIG_SCHED_MC
7101 *mask = cpu_coregroup_map(cpu); 7262 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7102 cpus_and(*mask, *mask, *cpu_map); 7263 group = cpumask_first(mask);
7103 group = first_cpu(*mask);
7104#elif defined(CONFIG_SCHED_SMT) 7264#elif defined(CONFIG_SCHED_SMT)
7105 *mask = per_cpu(cpu_sibling_map, cpu); 7265 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7106 cpus_and(*mask, *mask, *cpu_map); 7266 group = cpumask_first(mask);
7107 group = first_cpu(*mask);
7108#else 7267#else
7109 group = cpu; 7268 group = cpu;
7110#endif 7269#endif
7111 if (sg) 7270 if (sg)
7112 *sg = &per_cpu(sched_group_phys, group); 7271 *sg = &per_cpu(sched_group_phys, group).sg;
7113 return group; 7272 return group;
7114} 7273}
7115 7274
@@ -7123,19 +7282,19 @@ static DEFINE_PER_CPU(struct sched_domain, node_domains);
7123static struct sched_group ***sched_group_nodes_bycpu; 7282static struct sched_group ***sched_group_nodes_bycpu;
7124 7283
7125static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); 7284static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7126static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); 7285static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7127 7286
7128static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, 7287static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7129 struct sched_group **sg, cpumask_t *nodemask) 7288 struct sched_group **sg,
7289 struct cpumask *nodemask)
7130{ 7290{
7131 int group; 7291 int group;
7132 7292
7133 *nodemask = node_to_cpumask(cpu_to_node(cpu)); 7293 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7134 cpus_and(*nodemask, *nodemask, *cpu_map); 7294 group = cpumask_first(nodemask);
7135 group = first_cpu(*nodemask);
7136 7295
7137 if (sg) 7296 if (sg)
7138 *sg = &per_cpu(sched_group_allnodes, group); 7297 *sg = &per_cpu(sched_group_allnodes, group).sg;
7139 return group; 7298 return group;
7140} 7299}
7141 7300
@@ -7147,11 +7306,11 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
7147 if (!sg) 7306 if (!sg)
7148 return; 7307 return;
7149 do { 7308 do {
7150 for_each_cpu_mask_nr(j, sg->cpumask) { 7309 for_each_cpu(j, sched_group_cpus(sg)) {
7151 struct sched_domain *sd; 7310 struct sched_domain *sd;
7152 7311
7153 sd = &per_cpu(phys_domains, j); 7312 sd = &per_cpu(phys_domains, j).sd;
7154 if (j != first_cpu(sd->groups->cpumask)) { 7313 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7155 /* 7314 /*
7156 * Only add "power" once for each 7315 * Only add "power" once for each
7157 * physical package. 7316 * physical package.
@@ -7168,11 +7327,12 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
7168 7327
7169#ifdef CONFIG_NUMA 7328#ifdef CONFIG_NUMA
7170/* Free memory allocated for various sched_group structures */ 7329/* Free memory allocated for various sched_group structures */
7171static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) 7330static void free_sched_groups(const struct cpumask *cpu_map,
7331 struct cpumask *nodemask)
7172{ 7332{
7173 int cpu, i; 7333 int cpu, i;
7174 7334
7175 for_each_cpu_mask_nr(cpu, *cpu_map) { 7335 for_each_cpu(cpu, cpu_map) {
7176 struct sched_group **sched_group_nodes 7336 struct sched_group **sched_group_nodes
7177 = sched_group_nodes_bycpu[cpu]; 7337 = sched_group_nodes_bycpu[cpu];
7178 7338
@@ -7182,9 +7342,8 @@ static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7182 for (i = 0; i < nr_node_ids; i++) { 7342 for (i = 0; i < nr_node_ids; i++) {
7183 struct sched_group *oldsg, *sg = sched_group_nodes[i]; 7343 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7184 7344
7185 *nodemask = node_to_cpumask(i); 7345 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7186 cpus_and(*nodemask, *nodemask, *cpu_map); 7346 if (cpumask_empty(nodemask))
7187 if (cpus_empty(*nodemask))
7188 continue; 7347 continue;
7189 7348
7190 if (sg == NULL) 7349 if (sg == NULL)
@@ -7202,7 +7361,8 @@ next_sg:
7202 } 7361 }
7203} 7362}
7204#else /* !CONFIG_NUMA */ 7363#else /* !CONFIG_NUMA */
7205static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) 7364static void free_sched_groups(const struct cpumask *cpu_map,
7365 struct cpumask *nodemask)
7206{ 7366{
7207} 7367}
7208#endif /* CONFIG_NUMA */ 7368#endif /* CONFIG_NUMA */
@@ -7228,7 +7388,7 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7228 7388
7229 WARN_ON(!sd || !sd->groups); 7389 WARN_ON(!sd || !sd->groups);
7230 7390
7231 if (cpu != first_cpu(sd->groups->cpumask)) 7391 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7232 return; 7392 return;
7233 7393
7234 child = sd->child; 7394 child = sd->child;
@@ -7293,48 +7453,6 @@ SD_INIT_FUNC(CPU)
7293 SD_INIT_FUNC(MC) 7453 SD_INIT_FUNC(MC)
7294#endif 7454#endif
7295 7455
7296/*
7297 * To minimize stack usage kmalloc room for cpumasks and share the
7298 * space as the usage in build_sched_domains() dictates. Used only
7299 * if the amount of space is significant.
7300 */
7301struct allmasks {
7302 cpumask_t tmpmask; /* make this one first */
7303 union {
7304 cpumask_t nodemask;
7305 cpumask_t this_sibling_map;
7306 cpumask_t this_core_map;
7307 };
7308 cpumask_t send_covered;
7309
7310#ifdef CONFIG_NUMA
7311 cpumask_t domainspan;
7312 cpumask_t covered;
7313 cpumask_t notcovered;
7314#endif
7315};
7316
7317#if NR_CPUS > 128
7318#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7319static inline void sched_cpumask_alloc(struct allmasks **masks)
7320{
7321 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7322}
7323static inline void sched_cpumask_free(struct allmasks *masks)
7324{
7325 kfree(masks);
7326}
7327#else
7328#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7329static inline void sched_cpumask_alloc(struct allmasks **masks)
7330{ }
7331static inline void sched_cpumask_free(struct allmasks *masks)
7332{ }
7333#endif
7334
7335#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7336 ((unsigned long)(a) + offsetof(struct allmasks, v))
7337
7338static int default_relax_domain_level = -1; 7456static int default_relax_domain_level = -1;
7339 7457
7340static int __init setup_relax_domain_level(char *str) 7458static int __init setup_relax_domain_level(char *str)
@@ -7374,17 +7492,38 @@ static void set_domain_attribute(struct sched_domain *sd,
7374 * Build sched domains for a given set of cpus and attach the sched domains 7492 * Build sched domains for a given set of cpus and attach the sched domains
7375 * to the individual cpus 7493 * to the individual cpus
7376 */ 7494 */
7377static int __build_sched_domains(const cpumask_t *cpu_map, 7495static int __build_sched_domains(const struct cpumask *cpu_map,
7378 struct sched_domain_attr *attr) 7496 struct sched_domain_attr *attr)
7379{ 7497{
7380 int i; 7498 int i, err = -ENOMEM;
7381 struct root_domain *rd; 7499 struct root_domain *rd;
7382 SCHED_CPUMASK_DECLARE(allmasks); 7500 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7383 cpumask_t *tmpmask; 7501 tmpmask;
7384#ifdef CONFIG_NUMA 7502#ifdef CONFIG_NUMA
7503 cpumask_var_t domainspan, covered, notcovered;
7385 struct sched_group **sched_group_nodes = NULL; 7504 struct sched_group **sched_group_nodes = NULL;
7386 int sd_allnodes = 0; 7505 int sd_allnodes = 0;
7387 7506
7507 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7508 goto out;
7509 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7510 goto free_domainspan;
7511 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7512 goto free_covered;
7513#endif
7514
7515 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7516 goto free_notcovered;
7517 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7518 goto free_nodemask;
7519 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7520 goto free_this_sibling_map;
7521 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7522 goto free_this_core_map;
7523 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7524 goto free_send_covered;
7525
7526#ifdef CONFIG_NUMA
7388 /* 7527 /*
7389 * Allocate the per-node list of sched groups 7528 * Allocate the per-node list of sched groups
7390 */ 7529 */
@@ -7392,54 +7531,35 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7392 GFP_KERNEL); 7531 GFP_KERNEL);
7393 if (!sched_group_nodes) { 7532 if (!sched_group_nodes) {
7394 printk(KERN_WARNING "Can not alloc sched group node list\n"); 7533 printk(KERN_WARNING "Can not alloc sched group node list\n");
7395 return -ENOMEM; 7534 goto free_tmpmask;
7396 } 7535 }
7397#endif 7536#endif
7398 7537
7399 rd = alloc_rootdomain(); 7538 rd = alloc_rootdomain();
7400 if (!rd) { 7539 if (!rd) {
7401 printk(KERN_WARNING "Cannot alloc root domain\n"); 7540 printk(KERN_WARNING "Cannot alloc root domain\n");
7402#ifdef CONFIG_NUMA 7541 goto free_sched_groups;
7403 kfree(sched_group_nodes);
7404#endif
7405 return -ENOMEM;
7406 } 7542 }
7407 7543
7408 /* get space for all scratch cpumask variables */
7409 sched_cpumask_alloc(&allmasks);
7410 if (!allmasks) {
7411 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7412 kfree(rd);
7413#ifdef CONFIG_NUMA
7414 kfree(sched_group_nodes);
7415#endif
7416 return -ENOMEM;
7417 }
7418
7419 tmpmask = (cpumask_t *)allmasks;
7420
7421
7422#ifdef CONFIG_NUMA 7544#ifdef CONFIG_NUMA
7423 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; 7545 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7424#endif 7546#endif
7425 7547
7426 /* 7548 /*
7427 * Set up domains for cpus specified by the cpu_map. 7549 * Set up domains for cpus specified by the cpu_map.
7428 */ 7550 */
7429 for_each_cpu_mask_nr(i, *cpu_map) { 7551 for_each_cpu(i, cpu_map) {
7430 struct sched_domain *sd = NULL, *p; 7552 struct sched_domain *sd = NULL, *p;
7431 SCHED_CPUMASK_VAR(nodemask, allmasks);
7432 7553
7433 *nodemask = node_to_cpumask(cpu_to_node(i)); 7554 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7434 cpus_and(*nodemask, *nodemask, *cpu_map);
7435 7555
7436#ifdef CONFIG_NUMA 7556#ifdef CONFIG_NUMA
7437 if (cpus_weight(*cpu_map) > 7557 if (cpumask_weight(cpu_map) >
7438 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { 7558 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7439 sd = &per_cpu(allnodes_domains, i); 7559 sd = &per_cpu(allnodes_domains, i);
7440 SD_INIT(sd, ALLNODES); 7560 SD_INIT(sd, ALLNODES);
7441 set_domain_attribute(sd, attr); 7561 set_domain_attribute(sd, attr);
7442 sd->span = *cpu_map; 7562 cpumask_copy(sched_domain_span(sd), cpu_map);
7443 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); 7563 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7444 p = sd; 7564 p = sd;
7445 sd_allnodes = 1; 7565 sd_allnodes = 1;
@@ -7449,18 +7569,19 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7449 sd = &per_cpu(node_domains, i); 7569 sd = &per_cpu(node_domains, i);
7450 SD_INIT(sd, NODE); 7570 SD_INIT(sd, NODE);
7451 set_domain_attribute(sd, attr); 7571 set_domain_attribute(sd, attr);
7452 sched_domain_node_span(cpu_to_node(i), &sd->span); 7572 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7453 sd->parent = p; 7573 sd->parent = p;
7454 if (p) 7574 if (p)
7455 p->child = sd; 7575 p->child = sd;
7456 cpus_and(sd->span, sd->span, *cpu_map); 7576 cpumask_and(sched_domain_span(sd),
7577 sched_domain_span(sd), cpu_map);
7457#endif 7578#endif
7458 7579
7459 p = sd; 7580 p = sd;
7460 sd = &per_cpu(phys_domains, i); 7581 sd = &per_cpu(phys_domains, i).sd;
7461 SD_INIT(sd, CPU); 7582 SD_INIT(sd, CPU);
7462 set_domain_attribute(sd, attr); 7583 set_domain_attribute(sd, attr);
7463 sd->span = *nodemask; 7584 cpumask_copy(sched_domain_span(sd), nodemask);
7464 sd->parent = p; 7585 sd->parent = p;
7465 if (p) 7586 if (p)
7466 p->child = sd; 7587 p->child = sd;
@@ -7468,11 +7589,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7468 7589
7469#ifdef CONFIG_SCHED_MC 7590#ifdef CONFIG_SCHED_MC
7470 p = sd; 7591 p = sd;
7471 sd = &per_cpu(core_domains, i); 7592 sd = &per_cpu(core_domains, i).sd;
7472 SD_INIT(sd, MC); 7593 SD_INIT(sd, MC);
7473 set_domain_attribute(sd, attr); 7594 set_domain_attribute(sd, attr);
7474 sd->span = cpu_coregroup_map(i); 7595 cpumask_and(sched_domain_span(sd), cpu_map,
7475 cpus_and(sd->span, sd->span, *cpu_map); 7596 cpu_coregroup_mask(i));
7476 sd->parent = p; 7597 sd->parent = p;
7477 p->child = sd; 7598 p->child = sd;
7478 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); 7599 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
@@ -7480,11 +7601,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7480 7601
7481#ifdef CONFIG_SCHED_SMT 7602#ifdef CONFIG_SCHED_SMT
7482 p = sd; 7603 p = sd;
7483 sd = &per_cpu(cpu_domains, i); 7604 sd = &per_cpu(cpu_domains, i).sd;
7484 SD_INIT(sd, SIBLING); 7605 SD_INIT(sd, SIBLING);
7485 set_domain_attribute(sd, attr); 7606 set_domain_attribute(sd, attr);
7486 sd->span = per_cpu(cpu_sibling_map, i); 7607 cpumask_and(sched_domain_span(sd),
7487 cpus_and(sd->span, sd->span, *cpu_map); 7608 &per_cpu(cpu_sibling_map, i), cpu_map);
7488 sd->parent = p; 7609 sd->parent = p;
7489 p->child = sd; 7610 p->child = sd;
7490 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); 7611 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
@@ -7493,13 +7614,10 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7493 7614
7494#ifdef CONFIG_SCHED_SMT 7615#ifdef CONFIG_SCHED_SMT
7495 /* Set up CPU (sibling) groups */ 7616 /* Set up CPU (sibling) groups */
7496 for_each_cpu_mask_nr(i, *cpu_map) { 7617 for_each_cpu(i, cpu_map) {
7497 SCHED_CPUMASK_VAR(this_sibling_map, allmasks); 7618 cpumask_and(this_sibling_map,
7498 SCHED_CPUMASK_VAR(send_covered, allmasks); 7619 &per_cpu(cpu_sibling_map, i), cpu_map);
7499 7620 if (i != cpumask_first(this_sibling_map))
7500 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7501 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7502 if (i != first_cpu(*this_sibling_map))
7503 continue; 7621 continue;
7504 7622
7505 init_sched_build_groups(this_sibling_map, cpu_map, 7623 init_sched_build_groups(this_sibling_map, cpu_map,
@@ -7510,13 +7628,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7510 7628
7511#ifdef CONFIG_SCHED_MC 7629#ifdef CONFIG_SCHED_MC
7512 /* Set up multi-core groups */ 7630 /* Set up multi-core groups */
7513 for_each_cpu_mask_nr(i, *cpu_map) { 7631 for_each_cpu(i, cpu_map) {
7514 SCHED_CPUMASK_VAR(this_core_map, allmasks); 7632 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7515 SCHED_CPUMASK_VAR(send_covered, allmasks); 7633 if (i != cpumask_first(this_core_map))
7516
7517 *this_core_map = cpu_coregroup_map(i);
7518 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7519 if (i != first_cpu(*this_core_map))
7520 continue; 7634 continue;
7521 7635
7522 init_sched_build_groups(this_core_map, cpu_map, 7636 init_sched_build_groups(this_core_map, cpu_map,
@@ -7527,12 +7641,8 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7527 7641
7528 /* Set up physical groups */ 7642 /* Set up physical groups */
7529 for (i = 0; i < nr_node_ids; i++) { 7643 for (i = 0; i < nr_node_ids; i++) {
7530 SCHED_CPUMASK_VAR(nodemask, allmasks); 7644 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7531 SCHED_CPUMASK_VAR(send_covered, allmasks); 7645 if (cpumask_empty(nodemask))
7532
7533 *nodemask = node_to_cpumask(i);
7534 cpus_and(*nodemask, *nodemask, *cpu_map);
7535 if (cpus_empty(*nodemask))
7536 continue; 7646 continue;
7537 7647
7538 init_sched_build_groups(nodemask, cpu_map, 7648 init_sched_build_groups(nodemask, cpu_map,
@@ -7543,8 +7653,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7543#ifdef CONFIG_NUMA 7653#ifdef CONFIG_NUMA
7544 /* Set up node groups */ 7654 /* Set up node groups */
7545 if (sd_allnodes) { 7655 if (sd_allnodes) {
7546 SCHED_CPUMASK_VAR(send_covered, allmasks);
7547
7548 init_sched_build_groups(cpu_map, cpu_map, 7656 init_sched_build_groups(cpu_map, cpu_map,
7549 &cpu_to_allnodes_group, 7657 &cpu_to_allnodes_group,
7550 send_covered, tmpmask); 7658 send_covered, tmpmask);
@@ -7553,58 +7661,53 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7553 for (i = 0; i < nr_node_ids; i++) { 7661 for (i = 0; i < nr_node_ids; i++) {
7554 /* Set up node groups */ 7662 /* Set up node groups */
7555 struct sched_group *sg, *prev; 7663 struct sched_group *sg, *prev;
7556 SCHED_CPUMASK_VAR(nodemask, allmasks);
7557 SCHED_CPUMASK_VAR(domainspan, allmasks);
7558 SCHED_CPUMASK_VAR(covered, allmasks);
7559 int j; 7664 int j;
7560 7665
7561 *nodemask = node_to_cpumask(i); 7666 cpumask_clear(covered);
7562 cpus_clear(*covered); 7667 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7563 7668 if (cpumask_empty(nodemask)) {
7564 cpus_and(*nodemask, *nodemask, *cpu_map);
7565 if (cpus_empty(*nodemask)) {
7566 sched_group_nodes[i] = NULL; 7669 sched_group_nodes[i] = NULL;
7567 continue; 7670 continue;
7568 } 7671 }
7569 7672
7570 sched_domain_node_span(i, domainspan); 7673 sched_domain_node_span(i, domainspan);
7571 cpus_and(*domainspan, *domainspan, *cpu_map); 7674 cpumask_and(domainspan, domainspan, cpu_map);
7572 7675
7573 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); 7676 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7677 GFP_KERNEL, i);
7574 if (!sg) { 7678 if (!sg) {
7575 printk(KERN_WARNING "Can not alloc domain group for " 7679 printk(KERN_WARNING "Can not alloc domain group for "
7576 "node %d\n", i); 7680 "node %d\n", i);
7577 goto error; 7681 goto error;
7578 } 7682 }
7579 sched_group_nodes[i] = sg; 7683 sched_group_nodes[i] = sg;
7580 for_each_cpu_mask_nr(j, *nodemask) { 7684 for_each_cpu(j, nodemask) {
7581 struct sched_domain *sd; 7685 struct sched_domain *sd;
7582 7686
7583 sd = &per_cpu(node_domains, j); 7687 sd = &per_cpu(node_domains, j);
7584 sd->groups = sg; 7688 sd->groups = sg;
7585 } 7689 }
7586 sg->__cpu_power = 0; 7690 sg->__cpu_power = 0;
7587 sg->cpumask = *nodemask; 7691 cpumask_copy(sched_group_cpus(sg), nodemask);
7588 sg->next = sg; 7692 sg->next = sg;
7589 cpus_or(*covered, *covered, *nodemask); 7693 cpumask_or(covered, covered, nodemask);
7590 prev = sg; 7694 prev = sg;
7591 7695
7592 for (j = 0; j < nr_node_ids; j++) { 7696 for (j = 0; j < nr_node_ids; j++) {
7593 SCHED_CPUMASK_VAR(notcovered, allmasks);
7594 int n = (i + j) % nr_node_ids; 7697 int n = (i + j) % nr_node_ids;
7595 node_to_cpumask_ptr(pnodemask, n);
7596 7698
7597 cpus_complement(*notcovered, *covered); 7699 cpumask_complement(notcovered, covered);
7598 cpus_and(*tmpmask, *notcovered, *cpu_map); 7700 cpumask_and(tmpmask, notcovered, cpu_map);
7599 cpus_and(*tmpmask, *tmpmask, *domainspan); 7701 cpumask_and(tmpmask, tmpmask, domainspan);
7600 if (cpus_empty(*tmpmask)) 7702 if (cpumask_empty(tmpmask))
7601 break; 7703 break;
7602 7704
7603 cpus_and(*tmpmask, *tmpmask, *pnodemask); 7705 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7604 if (cpus_empty(*tmpmask)) 7706 if (cpumask_empty(tmpmask))
7605 continue; 7707 continue;
7606 7708
7607 sg = kmalloc_node(sizeof(struct sched_group), 7709 sg = kmalloc_node(sizeof(struct sched_group) +
7710 cpumask_size(),
7608 GFP_KERNEL, i); 7711 GFP_KERNEL, i);
7609 if (!sg) { 7712 if (!sg) {
7610 printk(KERN_WARNING 7713 printk(KERN_WARNING
@@ -7612,9 +7715,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7612 goto error; 7715 goto error;
7613 } 7716 }
7614 sg->__cpu_power = 0; 7717 sg->__cpu_power = 0;
7615 sg->cpumask = *tmpmask; 7718 cpumask_copy(sched_group_cpus(sg), tmpmask);
7616 sg->next = prev->next; 7719 sg->next = prev->next;
7617 cpus_or(*covered, *covered, *tmpmask); 7720 cpumask_or(covered, covered, tmpmask);
7618 prev->next = sg; 7721 prev->next = sg;
7619 prev = sg; 7722 prev = sg;
7620 } 7723 }
@@ -7623,22 +7726,22 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7623 7726
7624 /* Calculate CPU power for physical packages and nodes */ 7727 /* Calculate CPU power for physical packages and nodes */
7625#ifdef CONFIG_SCHED_SMT 7728#ifdef CONFIG_SCHED_SMT
7626 for_each_cpu_mask_nr(i, *cpu_map) { 7729 for_each_cpu(i, cpu_map) {
7627 struct sched_domain *sd = &per_cpu(cpu_domains, i); 7730 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7628 7731
7629 init_sched_groups_power(i, sd); 7732 init_sched_groups_power(i, sd);
7630 } 7733 }
7631#endif 7734#endif
7632#ifdef CONFIG_SCHED_MC 7735#ifdef CONFIG_SCHED_MC
7633 for_each_cpu_mask_nr(i, *cpu_map) { 7736 for_each_cpu(i, cpu_map) {
7634 struct sched_domain *sd = &per_cpu(core_domains, i); 7737 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7635 7738
7636 init_sched_groups_power(i, sd); 7739 init_sched_groups_power(i, sd);
7637 } 7740 }
7638#endif 7741#endif
7639 7742
7640 for_each_cpu_mask_nr(i, *cpu_map) { 7743 for_each_cpu(i, cpu_map) {
7641 struct sched_domain *sd = &per_cpu(phys_domains, i); 7744 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7642 7745
7643 init_sched_groups_power(i, sd); 7746 init_sched_groups_power(i, sd);
7644 } 7747 }
@@ -7650,53 +7753,78 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7650 if (sd_allnodes) { 7753 if (sd_allnodes) {
7651 struct sched_group *sg; 7754 struct sched_group *sg;
7652 7755
7653 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, 7756 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7654 tmpmask); 7757 tmpmask);
7655 init_numa_sched_groups_power(sg); 7758 init_numa_sched_groups_power(sg);
7656 } 7759 }
7657#endif 7760#endif
7658 7761
7659 /* Attach the domains */ 7762 /* Attach the domains */
7660 for_each_cpu_mask_nr(i, *cpu_map) { 7763 for_each_cpu(i, cpu_map) {
7661 struct sched_domain *sd; 7764 struct sched_domain *sd;
7662#ifdef CONFIG_SCHED_SMT 7765#ifdef CONFIG_SCHED_SMT
7663 sd = &per_cpu(cpu_domains, i); 7766 sd = &per_cpu(cpu_domains, i).sd;
7664#elif defined(CONFIG_SCHED_MC) 7767#elif defined(CONFIG_SCHED_MC)
7665 sd = &per_cpu(core_domains, i); 7768 sd = &per_cpu(core_domains, i).sd;
7666#else 7769#else
7667 sd = &per_cpu(phys_domains, i); 7770 sd = &per_cpu(phys_domains, i).sd;
7668#endif 7771#endif
7669 cpu_attach_domain(sd, rd, i); 7772 cpu_attach_domain(sd, rd, i);
7670 } 7773 }
7671 7774
7672 sched_cpumask_free(allmasks); 7775 err = 0;
7673 return 0; 7776
7777free_tmpmask:
7778 free_cpumask_var(tmpmask);
7779free_send_covered:
7780 free_cpumask_var(send_covered);
7781free_this_core_map:
7782 free_cpumask_var(this_core_map);
7783free_this_sibling_map:
7784 free_cpumask_var(this_sibling_map);
7785free_nodemask:
7786 free_cpumask_var(nodemask);
7787free_notcovered:
7788#ifdef CONFIG_NUMA
7789 free_cpumask_var(notcovered);
7790free_covered:
7791 free_cpumask_var(covered);
7792free_domainspan:
7793 free_cpumask_var(domainspan);
7794out:
7795#endif
7796 return err;
7797
7798free_sched_groups:
7799#ifdef CONFIG_NUMA
7800 kfree(sched_group_nodes);
7801#endif
7802 goto free_tmpmask;
7674 7803
7675#ifdef CONFIG_NUMA 7804#ifdef CONFIG_NUMA
7676error: 7805error:
7677 free_sched_groups(cpu_map, tmpmask); 7806 free_sched_groups(cpu_map, tmpmask);
7678 sched_cpumask_free(allmasks); 7807 free_rootdomain(rd);
7679 kfree(rd); 7808 goto free_tmpmask;
7680 return -ENOMEM;
7681#endif 7809#endif
7682} 7810}
7683 7811
7684static int build_sched_domains(const cpumask_t *cpu_map) 7812static int build_sched_domains(const struct cpumask *cpu_map)
7685{ 7813{
7686 return __build_sched_domains(cpu_map, NULL); 7814 return __build_sched_domains(cpu_map, NULL);
7687} 7815}
7688 7816
7689static cpumask_t *doms_cur; /* current sched domains */ 7817static struct cpumask *doms_cur; /* current sched domains */
7690static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7818static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7691static struct sched_domain_attr *dattr_cur; 7819static struct sched_domain_attr *dattr_cur;
7692 /* attribues of custom domains in 'doms_cur' */ 7820 /* attribues of custom domains in 'doms_cur' */
7693 7821
7694/* 7822/*
7695 * Special case: If a kmalloc of a doms_cur partition (array of 7823 * Special case: If a kmalloc of a doms_cur partition (array of
7696 * cpumask_t) fails, then fallback to a single sched domain, 7824 * cpumask) fails, then fallback to a single sched domain,
7697 * as determined by the single cpumask_t fallback_doms. 7825 * as determined by the single cpumask fallback_doms.
7698 */ 7826 */
7699static cpumask_t fallback_doms; 7827static cpumask_var_t fallback_doms;
7700 7828
7701/* 7829/*
7702 * arch_update_cpu_topology lets virtualized architectures update the 7830 * arch_update_cpu_topology lets virtualized architectures update the
@@ -7713,16 +7841,16 @@ int __attribute__((weak)) arch_update_cpu_topology(void)
7713 * For now this just excludes isolated cpus, but could be used to 7841 * For now this just excludes isolated cpus, but could be used to
7714 * exclude other special cases in the future. 7842 * exclude other special cases in the future.
7715 */ 7843 */
7716static int arch_init_sched_domains(const cpumask_t *cpu_map) 7844static int arch_init_sched_domains(const struct cpumask *cpu_map)
7717{ 7845{
7718 int err; 7846 int err;
7719 7847
7720 arch_update_cpu_topology(); 7848 arch_update_cpu_topology();
7721 ndoms_cur = 1; 7849 ndoms_cur = 1;
7722 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 7850 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7723 if (!doms_cur) 7851 if (!doms_cur)
7724 doms_cur = &fallback_doms; 7852 doms_cur = fallback_doms;
7725 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); 7853 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7726 dattr_cur = NULL; 7854 dattr_cur = NULL;
7727 err = build_sched_domains(doms_cur); 7855 err = build_sched_domains(doms_cur);
7728 register_sched_domain_sysctl(); 7856 register_sched_domain_sysctl();
@@ -7730,8 +7858,8 @@ static int arch_init_sched_domains(const cpumask_t *cpu_map)
7730 return err; 7858 return err;
7731} 7859}
7732 7860
7733static void arch_destroy_sched_domains(const cpumask_t *cpu_map, 7861static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7734 cpumask_t *tmpmask) 7862 struct cpumask *tmpmask)
7735{ 7863{
7736 free_sched_groups(cpu_map, tmpmask); 7864 free_sched_groups(cpu_map, tmpmask);
7737} 7865}
@@ -7740,15 +7868,16 @@ static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7740 * Detach sched domains from a group of cpus specified in cpu_map 7868 * Detach sched domains from a group of cpus specified in cpu_map
7741 * These cpus will now be attached to the NULL domain 7869 * These cpus will now be attached to the NULL domain
7742 */ 7870 */
7743static void detach_destroy_domains(const cpumask_t *cpu_map) 7871static void detach_destroy_domains(const struct cpumask *cpu_map)
7744{ 7872{
7745 cpumask_t tmpmask; 7873 /* Save because hotplug lock held. */
7874 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7746 int i; 7875 int i;
7747 7876
7748 for_each_cpu_mask_nr(i, *cpu_map) 7877 for_each_cpu(i, cpu_map)
7749 cpu_attach_domain(NULL, &def_root_domain, i); 7878 cpu_attach_domain(NULL, &def_root_domain, i);
7750 synchronize_sched(); 7879 synchronize_sched();
7751 arch_destroy_sched_domains(cpu_map, &tmpmask); 7880 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7752} 7881}
7753 7882
7754/* handle null as "default" */ 7883/* handle null as "default" */
@@ -7773,7 +7902,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7773 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7902 * doms_new[] to the current sched domain partitioning, doms_cur[].
7774 * It destroys each deleted domain and builds each new domain. 7903 * It destroys each deleted domain and builds each new domain.
7775 * 7904 *
7776 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. 7905 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7777 * The masks don't intersect (don't overlap.) We should setup one 7906 * The masks don't intersect (don't overlap.) We should setup one
7778 * sched domain for each mask. CPUs not in any of the cpumasks will 7907 * sched domain for each mask. CPUs not in any of the cpumasks will
7779 * not be load balanced. If the same cpumask appears both in the 7908 * not be load balanced. If the same cpumask appears both in the
@@ -7787,13 +7916,14 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7787 * the single partition 'fallback_doms', it also forces the domains 7916 * the single partition 'fallback_doms', it also forces the domains
7788 * to be rebuilt. 7917 * to be rebuilt.
7789 * 7918 *
7790 * If doms_new == NULL it will be replaced with cpu_online_map. 7919 * If doms_new == NULL it will be replaced with cpu_online_mask.
7791 * ndoms_new == 0 is a special case for destroying existing domains, 7920 * ndoms_new == 0 is a special case for destroying existing domains,
7792 * and it will not create the default domain. 7921 * and it will not create the default domain.
7793 * 7922 *
7794 * Call with hotplug lock held 7923 * Call with hotplug lock held
7795 */ 7924 */
7796void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 7925/* FIXME: Change to struct cpumask *doms_new[] */
7926void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7797 struct sched_domain_attr *dattr_new) 7927 struct sched_domain_attr *dattr_new)
7798{ 7928{
7799 int i, j, n; 7929 int i, j, n;
@@ -7812,7 +7942,7 @@ void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7812 /* Destroy deleted domains */ 7942 /* Destroy deleted domains */
7813 for (i = 0; i < ndoms_cur; i++) { 7943 for (i = 0; i < ndoms_cur; i++) {
7814 for (j = 0; j < n && !new_topology; j++) { 7944 for (j = 0; j < n && !new_topology; j++) {
7815 if (cpus_equal(doms_cur[i], doms_new[j]) 7945 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7816 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7946 && dattrs_equal(dattr_cur, i, dattr_new, j))
7817 goto match1; 7947 goto match1;
7818 } 7948 }
@@ -7824,15 +7954,15 @@ match1:
7824 7954
7825 if (doms_new == NULL) { 7955 if (doms_new == NULL) {
7826 ndoms_cur = 0; 7956 ndoms_cur = 0;
7827 doms_new = &fallback_doms; 7957 doms_new = fallback_doms;
7828 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); 7958 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7829 WARN_ON_ONCE(dattr_new); 7959 WARN_ON_ONCE(dattr_new);
7830 } 7960 }
7831 7961
7832 /* Build new domains */ 7962 /* Build new domains */
7833 for (i = 0; i < ndoms_new; i++) { 7963 for (i = 0; i < ndoms_new; i++) {
7834 for (j = 0; j < ndoms_cur && !new_topology; j++) { 7964 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7835 if (cpus_equal(doms_new[i], doms_cur[j]) 7965 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7836 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7966 && dattrs_equal(dattr_new, i, dattr_cur, j))
7837 goto match2; 7967 goto match2;
7838 } 7968 }
@@ -7844,7 +7974,7 @@ match2:
7844 } 7974 }
7845 7975
7846 /* Remember the new sched domains */ 7976 /* Remember the new sched domains */
7847 if (doms_cur != &fallback_doms) 7977 if (doms_cur != fallback_doms)
7848 kfree(doms_cur); 7978 kfree(doms_cur);
7849 kfree(dattr_cur); /* kfree(NULL) is safe */ 7979 kfree(dattr_cur); /* kfree(NULL) is safe */
7850 doms_cur = doms_new; 7980 doms_cur = doms_new;
@@ -7873,14 +8003,25 @@ int arch_reinit_sched_domains(void)
7873static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 8003static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7874{ 8004{
7875 int ret; 8005 int ret;
8006 unsigned int level = 0;
8007
8008 if (sscanf(buf, "%u", &level) != 1)
8009 return -EINVAL;
8010
8011 /*
8012 * level is always be positive so don't check for
8013 * level < POWERSAVINGS_BALANCE_NONE which is 0
8014 * What happens on 0 or 1 byte write,
8015 * need to check for count as well?
8016 */
7876 8017
7877 if (buf[0] != '0' && buf[0] != '1') 8018 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7878 return -EINVAL; 8019 return -EINVAL;
7879 8020
7880 if (smt) 8021 if (smt)
7881 sched_smt_power_savings = (buf[0] == '1'); 8022 sched_smt_power_savings = level;
7882 else 8023 else
7883 sched_mc_power_savings = (buf[0] == '1'); 8024 sched_mc_power_savings = level;
7884 8025
7885 ret = arch_reinit_sched_domains(); 8026 ret = arch_reinit_sched_domains();
7886 8027
@@ -7984,7 +8125,9 @@ static int update_runtime(struct notifier_block *nfb,
7984 8125
7985void __init sched_init_smp(void) 8126void __init sched_init_smp(void)
7986{ 8127{
7987 cpumask_t non_isolated_cpus; 8128 cpumask_var_t non_isolated_cpus;
8129
8130 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7988 8131
7989#if defined(CONFIG_NUMA) 8132#if defined(CONFIG_NUMA)
7990 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), 8133 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
@@ -7993,10 +8136,10 @@ void __init sched_init_smp(void)
7993#endif 8136#endif
7994 get_online_cpus(); 8137 get_online_cpus();
7995 mutex_lock(&sched_domains_mutex); 8138 mutex_lock(&sched_domains_mutex);
7996 arch_init_sched_domains(&cpu_online_map); 8139 arch_init_sched_domains(cpu_online_mask);
7997 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); 8140 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7998 if (cpus_empty(non_isolated_cpus)) 8141 if (cpumask_empty(non_isolated_cpus))
7999 cpu_set(smp_processor_id(), non_isolated_cpus); 8142 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8000 mutex_unlock(&sched_domains_mutex); 8143 mutex_unlock(&sched_domains_mutex);
8001 put_online_cpus(); 8144 put_online_cpus();
8002 8145
@@ -8011,9 +8154,13 @@ void __init sched_init_smp(void)
8011 init_hrtick(); 8154 init_hrtick();
8012 8155
8013 /* Move init over to a non-isolated CPU */ 8156 /* Move init over to a non-isolated CPU */
8014 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) 8157 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8015 BUG(); 8158 BUG();
8016 sched_init_granularity(); 8159 sched_init_granularity();
8160 free_cpumask_var(non_isolated_cpus);
8161
8162 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8163 init_sched_rt_class();
8017} 8164}
8018#else 8165#else
8019void __init sched_init_smp(void) 8166void __init sched_init_smp(void)
@@ -8328,6 +8475,15 @@ void __init sched_init(void)
8328 */ 8475 */
8329 current->sched_class = &fair_sched_class; 8476 current->sched_class = &fair_sched_class;
8330 8477
8478 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8479 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8480#ifdef CONFIG_SMP
8481#ifdef CONFIG_NO_HZ
8482 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8483#endif
8484 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8485#endif /* SMP */
8486
8331 scheduler_running = 1; 8487 scheduler_running = 1;
8332} 8488}
8333 8489