diff options
Diffstat (limited to 'kernel/sched.c')
| -rw-r--r-- | kernel/sched.c | 2509 |
1 files changed, 348 insertions, 2161 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 18cceeecce35..b47ceeec1a91 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
| 233 | */ | 233 | */ |
| 234 | static DEFINE_MUTEX(sched_domains_mutex); | 234 | static DEFINE_MUTEX(sched_domains_mutex); |
| 235 | 235 | ||
| 236 | #ifdef CONFIG_GROUP_SCHED | 236 | #ifdef CONFIG_CGROUP_SCHED |
| 237 | 237 | ||
| 238 | #include <linux/cgroup.h> | 238 | #include <linux/cgroup.h> |
| 239 | 239 | ||
| @@ -243,13 +243,7 @@ static LIST_HEAD(task_groups); | |||
| 243 | 243 | ||
| 244 | /* task group related information */ | 244 | /* task group related information */ |
| 245 | struct task_group { | 245 | struct task_group { |
| 246 | #ifdef CONFIG_CGROUP_SCHED | ||
| 247 | struct cgroup_subsys_state css; | 246 | struct cgroup_subsys_state css; |
| 248 | #endif | ||
| 249 | |||
| 250 | #ifdef CONFIG_USER_SCHED | ||
| 251 | uid_t uid; | ||
| 252 | #endif | ||
| 253 | 247 | ||
| 254 | #ifdef CONFIG_FAIR_GROUP_SCHED | 248 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 255 | /* schedulable entities of this group on each cpu */ | 249 | /* schedulable entities of this group on each cpu */ |
| @@ -274,35 +268,7 @@ struct task_group { | |||
| 274 | struct list_head children; | 268 | struct list_head children; |
| 275 | }; | 269 | }; |
| 276 | 270 | ||
| 277 | #ifdef CONFIG_USER_SCHED | ||
| 278 | |||
| 279 | /* Helper function to pass uid information to create_sched_user() */ | ||
| 280 | void set_tg_uid(struct user_struct *user) | ||
| 281 | { | ||
| 282 | user->tg->uid = user->uid; | ||
| 283 | } | ||
| 284 | |||
| 285 | /* | ||
| 286 | * Root task group. | ||
| 287 | * Every UID task group (including init_task_group aka UID-0) will | ||
| 288 | * be a child to this group. | ||
| 289 | */ | ||
| 290 | struct task_group root_task_group; | ||
| 291 | |||
| 292 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
| 293 | /* Default task group's sched entity on each cpu */ | ||
| 294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | ||
| 295 | /* Default task group's cfs_rq on each cpu */ | ||
| 296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); | ||
| 297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
| 298 | |||
| 299 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | ||
| 301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var); | ||
| 302 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
| 303 | #else /* !CONFIG_USER_SCHED */ | ||
| 304 | #define root_task_group init_task_group | 271 | #define root_task_group init_task_group |
| 305 | #endif /* CONFIG_USER_SCHED */ | ||
| 306 | 272 | ||
| 307 | /* task_group_lock serializes add/remove of task groups and also changes to | 273 | /* task_group_lock serializes add/remove of task groups and also changes to |
| 308 | * a task group's cpu shares. | 274 | * a task group's cpu shares. |
| @@ -318,11 +284,7 @@ static int root_task_group_empty(void) | |||
| 318 | } | 284 | } |
| 319 | #endif | 285 | #endif |
| 320 | 286 | ||
| 321 | #ifdef CONFIG_USER_SCHED | ||
| 322 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | ||
| 323 | #else /* !CONFIG_USER_SCHED */ | ||
| 324 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD | 287 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
| 325 | #endif /* CONFIG_USER_SCHED */ | ||
| 326 | 288 | ||
| 327 | /* | 289 | /* |
| 328 | * A weight of 0 or 1 can cause arithmetics problems. | 290 | * A weight of 0 or 1 can cause arithmetics problems. |
| @@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
| 348 | { | 310 | { |
| 349 | struct task_group *tg; | 311 | struct task_group *tg; |
| 350 | 312 | ||
| 351 | #ifdef CONFIG_USER_SCHED | 313 | #ifdef CONFIG_CGROUP_SCHED |
| 352 | rcu_read_lock(); | ||
| 353 | tg = __task_cred(p)->user->tg; | ||
| 354 | rcu_read_unlock(); | ||
| 355 | #elif defined(CONFIG_CGROUP_SCHED) | ||
| 356 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | 314 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
| 357 | struct task_group, css); | 315 | struct task_group, css); |
| 358 | #else | 316 | #else |
| @@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
| 383 | return NULL; | 341 | return NULL; |
| 384 | } | 342 | } |
| 385 | 343 | ||
| 386 | #endif /* CONFIG_GROUP_SCHED */ | 344 | #endif /* CONFIG_CGROUP_SCHED */ |
| 387 | 345 | ||
| 388 | /* CFS-related fields in a runqueue */ | 346 | /* CFS-related fields in a runqueue */ |
| 389 | struct cfs_rq { | 347 | struct cfs_rq { |
| @@ -478,7 +436,6 @@ struct rt_rq { | |||
| 478 | struct rq *rq; | 436 | struct rq *rq; |
| 479 | struct list_head leaf_rt_rq_list; | 437 | struct list_head leaf_rt_rq_list; |
| 480 | struct task_group *tg; | 438 | struct task_group *tg; |
| 481 | struct sched_rt_entity *rt_se; | ||
| 482 | #endif | 439 | #endif |
| 483 | }; | 440 | }; |
| 484 | 441 | ||
| @@ -645,6 +602,11 @@ static inline int cpu_of(struct rq *rq) | |||
| 645 | #endif | 602 | #endif |
| 646 | } | 603 | } |
| 647 | 604 | ||
| 605 | #define rcu_dereference_check_sched_domain(p) \ | ||
| 606 | rcu_dereference_check((p), \ | ||
| 607 | rcu_read_lock_sched_held() || \ | ||
| 608 | lockdep_is_held(&sched_domains_mutex)) | ||
| 609 | |||
| 648 | /* | 610 | /* |
| 649 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 611 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| 650 | * See detach_destroy_domains: synchronize_sched for details. | 612 | * See detach_destroy_domains: synchronize_sched for details. |
| @@ -653,7 +615,7 @@ static inline int cpu_of(struct rq *rq) | |||
| 653 | * preempt-disabled sections. | 615 | * preempt-disabled sections. |
| 654 | */ | 616 | */ |
| 655 | #define for_each_domain(cpu, __sd) \ | 617 | #define for_each_domain(cpu, __sd) \ |
| 656 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 618 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
| 657 | 619 | ||
| 658 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | 620 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| 659 | #define this_rq() (&__get_cpu_var(runqueues)) | 621 | #define this_rq() (&__get_cpu_var(runqueues)) |
| @@ -941,16 +903,33 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
| 941 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 903 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
| 942 | 904 | ||
| 943 | /* | 905 | /* |
| 906 | * Check whether the task is waking, we use this to synchronize against | ||
| 907 | * ttwu() so that task_cpu() reports a stable number. | ||
| 908 | * | ||
| 909 | * We need to make an exception for PF_STARTING tasks because the fork | ||
| 910 | * path might require task_rq_lock() to work, eg. it can call | ||
| 911 | * set_cpus_allowed_ptr() from the cpuset clone_ns code. | ||
| 912 | */ | ||
| 913 | static inline int task_is_waking(struct task_struct *p) | ||
| 914 | { | ||
| 915 | return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); | ||
| 916 | } | ||
| 917 | |||
| 918 | /* | ||
| 944 | * __task_rq_lock - lock the runqueue a given task resides on. | 919 | * __task_rq_lock - lock the runqueue a given task resides on. |
| 945 | * Must be called interrupts disabled. | 920 | * Must be called interrupts disabled. |
| 946 | */ | 921 | */ |
| 947 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 922 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
| 948 | __acquires(rq->lock) | 923 | __acquires(rq->lock) |
| 949 | { | 924 | { |
| 925 | struct rq *rq; | ||
| 926 | |||
| 950 | for (;;) { | 927 | for (;;) { |
| 951 | struct rq *rq = task_rq(p); | 928 | while (task_is_waking(p)) |
| 929 | cpu_relax(); | ||
| 930 | rq = task_rq(p); | ||
| 952 | raw_spin_lock(&rq->lock); | 931 | raw_spin_lock(&rq->lock); |
| 953 | if (likely(rq == task_rq(p))) | 932 | if (likely(rq == task_rq(p) && !task_is_waking(p))) |
| 954 | return rq; | 933 | return rq; |
| 955 | raw_spin_unlock(&rq->lock); | 934 | raw_spin_unlock(&rq->lock); |
| 956 | } | 935 | } |
| @@ -967,10 +946,12 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | |||
| 967 | struct rq *rq; | 946 | struct rq *rq; |
| 968 | 947 | ||
| 969 | for (;;) { | 948 | for (;;) { |
| 949 | while (task_is_waking(p)) | ||
| 950 | cpu_relax(); | ||
| 970 | local_irq_save(*flags); | 951 | local_irq_save(*flags); |
| 971 | rq = task_rq(p); | 952 | rq = task_rq(p); |
| 972 | raw_spin_lock(&rq->lock); | 953 | raw_spin_lock(&rq->lock); |
| 973 | if (likely(rq == task_rq(p))) | 954 | if (likely(rq == task_rq(p) && !task_is_waking(p))) |
| 974 | return rq; | 955 | return rq; |
| 975 | raw_spin_unlock_irqrestore(&rq->lock, *flags); | 956 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
| 976 | } | 957 | } |
| @@ -1390,32 +1371,6 @@ static const u32 prio_to_wmult[40] = { | |||
| 1390 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 1371 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
| 1391 | }; | 1372 | }; |
| 1392 | 1373 | ||
| 1393 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | ||
| 1394 | |||
| 1395 | /* | ||
| 1396 | * runqueue iterator, to support SMP load-balancing between different | ||
| 1397 | * scheduling classes, without having to expose their internal data | ||
| 1398 | * structures to the load-balancing proper: | ||
| 1399 | */ | ||
| 1400 | struct rq_iterator { | ||
| 1401 | void *arg; | ||
| 1402 | struct task_struct *(*start)(void *); | ||
| 1403 | struct task_struct *(*next)(void *); | ||
| 1404 | }; | ||
| 1405 | |||
| 1406 | #ifdef CONFIG_SMP | ||
| 1407 | static unsigned long | ||
| 1408 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 1409 | unsigned long max_load_move, struct sched_domain *sd, | ||
| 1410 | enum cpu_idle_type idle, int *all_pinned, | ||
| 1411 | int *this_best_prio, struct rq_iterator *iterator); | ||
| 1412 | |||
| 1413 | static int | ||
| 1414 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 1415 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 1416 | struct rq_iterator *iterator); | ||
| 1417 | #endif | ||
| 1418 | |||
| 1419 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | 1374 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
| 1420 | enum cpuacct_stat_index { | 1375 | enum cpuacct_stat_index { |
| 1421 | CPUACCT_STAT_USER, /* ... user mode */ | 1376 | CPUACCT_STAT_USER, /* ... user mode */ |
| @@ -1531,7 +1486,7 @@ static unsigned long target_load(int cpu, int type) | |||
| 1531 | 1486 | ||
| 1532 | static struct sched_group *group_of(int cpu) | 1487 | static struct sched_group *group_of(int cpu) |
| 1533 | { | 1488 | { |
| 1534 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | 1489 | struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd); |
| 1535 | 1490 | ||
| 1536 | if (!sd) | 1491 | if (!sd) |
| 1537 | return NULL; | 1492 | return NULL; |
| @@ -1566,7 +1521,7 @@ static unsigned long cpu_avg_load_per_task(int cpu) | |||
| 1566 | 1521 | ||
| 1567 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1522 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1568 | 1523 | ||
| 1569 | static __read_mostly unsigned long *update_shares_data; | 1524 | static __read_mostly unsigned long __percpu *update_shares_data; |
| 1570 | 1525 | ||
| 1571 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1526 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
| 1572 | 1527 | ||
| @@ -1701,16 +1656,6 @@ static void update_shares(struct sched_domain *sd) | |||
| 1701 | } | 1656 | } |
| 1702 | } | 1657 | } |
| 1703 | 1658 | ||
| 1704 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
| 1705 | { | ||
| 1706 | if (root_task_group_empty()) | ||
| 1707 | return; | ||
| 1708 | |||
| 1709 | raw_spin_unlock(&rq->lock); | ||
| 1710 | update_shares(sd); | ||
| 1711 | raw_spin_lock(&rq->lock); | ||
| 1712 | } | ||
| 1713 | |||
| 1714 | static void update_h_load(long cpu) | 1659 | static void update_h_load(long cpu) |
| 1715 | { | 1660 | { |
| 1716 | if (root_task_group_empty()) | 1661 | if (root_task_group_empty()) |
| @@ -1725,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd) | |||
| 1725 | { | 1670 | { |
| 1726 | } | 1671 | } |
| 1727 | 1672 | ||
| 1728 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
| 1729 | { | ||
| 1730 | } | ||
| 1731 | |||
| 1732 | #endif | 1673 | #endif |
| 1733 | 1674 | ||
| 1734 | #ifdef CONFIG_PREEMPT | 1675 | #ifdef CONFIG_PREEMPT |
| @@ -1805,6 +1746,51 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |||
| 1805 | raw_spin_unlock(&busiest->lock); | 1746 | raw_spin_unlock(&busiest->lock); |
| 1806 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 1747 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
| 1807 | } | 1748 | } |
| 1749 | |||
| 1750 | /* | ||
| 1751 | * double_rq_lock - safely lock two runqueues | ||
| 1752 | * | ||
| 1753 | * Note this does not disable interrupts like task_rq_lock, | ||
| 1754 | * you need to do so manually before calling. | ||
| 1755 | */ | ||
| 1756 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
| 1757 | __acquires(rq1->lock) | ||
| 1758 | __acquires(rq2->lock) | ||
| 1759 | { | ||
| 1760 | BUG_ON(!irqs_disabled()); | ||
| 1761 | if (rq1 == rq2) { | ||
| 1762 | raw_spin_lock(&rq1->lock); | ||
| 1763 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
| 1764 | } else { | ||
| 1765 | if (rq1 < rq2) { | ||
| 1766 | raw_spin_lock(&rq1->lock); | ||
| 1767 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
| 1768 | } else { | ||
| 1769 | raw_spin_lock(&rq2->lock); | ||
| 1770 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
| 1771 | } | ||
| 1772 | } | ||
| 1773 | update_rq_clock(rq1); | ||
| 1774 | update_rq_clock(rq2); | ||
| 1775 | } | ||
| 1776 | |||
| 1777 | /* | ||
| 1778 | * double_rq_unlock - safely unlock two runqueues | ||
| 1779 | * | ||
| 1780 | * Note this does not restore interrupts like task_rq_unlock, | ||
| 1781 | * you need to do so manually after calling. | ||
| 1782 | */ | ||
| 1783 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
| 1784 | __releases(rq1->lock) | ||
| 1785 | __releases(rq2->lock) | ||
| 1786 | { | ||
| 1787 | raw_spin_unlock(&rq1->lock); | ||
| 1788 | if (rq1 != rq2) | ||
| 1789 | raw_spin_unlock(&rq2->lock); | ||
| 1790 | else | ||
| 1791 | __release(rq2->lock); | ||
| 1792 | } | ||
| 1793 | |||
| 1808 | #endif | 1794 | #endif |
| 1809 | 1795 | ||
| 1810 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1796 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| @@ -1834,18 +1820,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |||
| 1834 | #endif | 1820 | #endif |
| 1835 | } | 1821 | } |
| 1836 | 1822 | ||
| 1837 | #include "sched_stats.h" | 1823 | static const struct sched_class rt_sched_class; |
| 1838 | #include "sched_idletask.c" | ||
| 1839 | #include "sched_fair.c" | ||
| 1840 | #include "sched_rt.c" | ||
| 1841 | #ifdef CONFIG_SCHED_DEBUG | ||
| 1842 | # include "sched_debug.c" | ||
| 1843 | #endif | ||
| 1844 | 1824 | ||
| 1845 | #define sched_class_highest (&rt_sched_class) | 1825 | #define sched_class_highest (&rt_sched_class) |
| 1846 | #define for_each_class(class) \ | 1826 | #define for_each_class(class) \ |
| 1847 | for (class = sched_class_highest; class; class = class->next) | 1827 | for (class = sched_class_highest; class; class = class->next) |
| 1848 | 1828 | ||
| 1829 | #include "sched_stats.h" | ||
| 1830 | |||
| 1849 | static void inc_nr_running(struct rq *rq) | 1831 | static void inc_nr_running(struct rq *rq) |
| 1850 | { | 1832 | { |
| 1851 | rq->nr_running++; | 1833 | rq->nr_running++; |
| @@ -1883,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample) | |||
| 1883 | *avg += diff >> 3; | 1865 | *avg += diff >> 3; |
| 1884 | } | 1866 | } |
| 1885 | 1867 | ||
| 1886 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1868 | static void |
| 1869 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
| 1887 | { | 1870 | { |
| 1888 | if (wakeup) | 1871 | if (wakeup) |
| 1889 | p->se.start_runtime = p->se.sum_exec_runtime; | 1872 | p->se.start_runtime = p->se.sum_exec_runtime; |
| 1890 | 1873 | ||
| 1891 | sched_info_queued(p); | 1874 | sched_info_queued(p); |
| 1892 | p->sched_class->enqueue_task(rq, p, wakeup); | 1875 | p->sched_class->enqueue_task(rq, p, wakeup, head); |
| 1893 | p->se.on_rq = 1; | 1876 | p->se.on_rq = 1; |
| 1894 | } | 1877 | } |
| 1895 | 1878 | ||
| @@ -1912,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | |||
| 1912 | } | 1895 | } |
| 1913 | 1896 | ||
| 1914 | /* | 1897 | /* |
| 1898 | * activate_task - move a task to the runqueue. | ||
| 1899 | */ | ||
| 1900 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
| 1901 | { | ||
| 1902 | if (task_contributes_to_load(p)) | ||
| 1903 | rq->nr_uninterruptible--; | ||
| 1904 | |||
| 1905 | enqueue_task(rq, p, wakeup, false); | ||
| 1906 | inc_nr_running(rq); | ||
| 1907 | } | ||
| 1908 | |||
| 1909 | /* | ||
| 1910 | * deactivate_task - remove a task from the runqueue. | ||
| 1911 | */ | ||
| 1912 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
| 1913 | { | ||
| 1914 | if (task_contributes_to_load(p)) | ||
| 1915 | rq->nr_uninterruptible++; | ||
| 1916 | |||
| 1917 | dequeue_task(rq, p, sleep); | ||
| 1918 | dec_nr_running(rq); | ||
| 1919 | } | ||
| 1920 | |||
| 1921 | #include "sched_idletask.c" | ||
| 1922 | #include "sched_fair.c" | ||
| 1923 | #include "sched_rt.c" | ||
| 1924 | #ifdef CONFIG_SCHED_DEBUG | ||
| 1925 | # include "sched_debug.c" | ||
| 1926 | #endif | ||
| 1927 | |||
| 1928 | /* | ||
| 1915 | * __normal_prio - return the priority that is based on the static prio | 1929 | * __normal_prio - return the priority that is based on the static prio |
| 1916 | */ | 1930 | */ |
| 1917 | static inline int __normal_prio(struct task_struct *p) | 1931 | static inline int __normal_prio(struct task_struct *p) |
| @@ -1957,30 +1971,6 @@ static int effective_prio(struct task_struct *p) | |||
| 1957 | return p->prio; | 1971 | return p->prio; |
| 1958 | } | 1972 | } |
| 1959 | 1973 | ||
| 1960 | /* | ||
| 1961 | * activate_task - move a task to the runqueue. | ||
| 1962 | */ | ||
| 1963 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
| 1964 | { | ||
| 1965 | if (task_contributes_to_load(p)) | ||
| 1966 | rq->nr_uninterruptible--; | ||
| 1967 | |||
| 1968 | enqueue_task(rq, p, wakeup); | ||
| 1969 | inc_nr_running(rq); | ||
| 1970 | } | ||
| 1971 | |||
| 1972 | /* | ||
| 1973 | * deactivate_task - remove a task from the runqueue. | ||
| 1974 | */ | ||
| 1975 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
| 1976 | { | ||
| 1977 | if (task_contributes_to_load(p)) | ||
| 1978 | rq->nr_uninterruptible++; | ||
| 1979 | |||
| 1980 | dequeue_task(rq, p, sleep); | ||
| 1981 | dec_nr_running(rq); | ||
| 1982 | } | ||
| 1983 | |||
| 1984 | /** | 1974 | /** |
| 1985 | * task_curr - is this task currently executing on a CPU? | 1975 | * task_curr - is this task currently executing on a CPU? |
| 1986 | * @p: the task in question. | 1976 | * @p: the task in question. |
| @@ -2002,39 +1992,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
| 2002 | p->sched_class->prio_changed(rq, p, oldprio, running); | 1992 | p->sched_class->prio_changed(rq, p, oldprio, running); |
| 2003 | } | 1993 | } |
| 2004 | 1994 | ||
| 2005 | /** | ||
| 2006 | * kthread_bind - bind a just-created kthread to a cpu. | ||
| 2007 | * @p: thread created by kthread_create(). | ||
| 2008 | * @cpu: cpu (might not be online, must be possible) for @k to run on. | ||
| 2009 | * | ||
| 2010 | * Description: This function is equivalent to set_cpus_allowed(), | ||
| 2011 | * except that @cpu doesn't need to be online, and the thread must be | ||
| 2012 | * stopped (i.e., just returned from kthread_create()). | ||
| 2013 | * | ||
| 2014 | * Function lives here instead of kthread.c because it messes with | ||
| 2015 | * scheduler internals which require locking. | ||
| 2016 | */ | ||
| 2017 | void kthread_bind(struct task_struct *p, unsigned int cpu) | ||
| 2018 | { | ||
| 2019 | struct rq *rq = cpu_rq(cpu); | ||
| 2020 | unsigned long flags; | ||
| 2021 | |||
| 2022 | /* Must have done schedule() in kthread() before we set_task_cpu */ | ||
| 2023 | if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) { | ||
| 2024 | WARN_ON(1); | ||
| 2025 | return; | ||
| 2026 | } | ||
| 2027 | |||
| 2028 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
| 2029 | update_rq_clock(rq); | ||
| 2030 | set_task_cpu(p, cpu); | ||
| 2031 | p->cpus_allowed = cpumask_of_cpu(cpu); | ||
| 2032 | p->rt.nr_cpus_allowed = 1; | ||
| 2033 | p->flags |= PF_THREAD_BOUND; | ||
| 2034 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
| 2035 | } | ||
| 2036 | EXPORT_SYMBOL(kthread_bind); | ||
| 2037 | |||
| 2038 | #ifdef CONFIG_SMP | 1995 | #ifdef CONFIG_SMP |
| 2039 | /* | 1996 | /* |
| 2040 | * Is this task likely cache-hot: | 1997 | * Is this task likely cache-hot: |
| @@ -2044,6 +2001,9 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
| 2044 | { | 2001 | { |
| 2045 | s64 delta; | 2002 | s64 delta; |
| 2046 | 2003 | ||
| 2004 | if (p->sched_class != &fair_sched_class) | ||
| 2005 | return 0; | ||
| 2006 | |||
| 2047 | /* | 2007 | /* |
| 2048 | * Buddy candidates are cache hot: | 2008 | * Buddy candidates are cache hot: |
| 2049 | */ | 2009 | */ |
| @@ -2052,9 +2012,6 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
| 2052 | &p->se == cfs_rq_of(&p->se)->last)) | 2012 | &p->se == cfs_rq_of(&p->se)->last)) |
| 2053 | return 1; | 2013 | return 1; |
| 2054 | 2014 | ||
| 2055 | if (p->sched_class != &fair_sched_class) | ||
| 2056 | return 0; | ||
| 2057 | |||
| 2058 | if (sysctl_sched_migration_cost == -1) | 2015 | if (sysctl_sched_migration_cost == -1) |
| 2059 | return 1; | 2016 | return 1; |
| 2060 | if (sysctl_sched_migration_cost == 0) | 2017 | if (sysctl_sched_migration_cost == 0) |
| @@ -2065,22 +2022,23 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
| 2065 | return delta < (s64)sysctl_sched_migration_cost; | 2022 | return delta < (s64)sysctl_sched_migration_cost; |
| 2066 | } | 2023 | } |
| 2067 | 2024 | ||
| 2068 | |||
| 2069 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 2025 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
| 2070 | { | 2026 | { |
| 2071 | int old_cpu = task_cpu(p); | 2027 | #ifdef CONFIG_SCHED_DEBUG |
| 2072 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), | 2028 | /* |
| 2073 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | 2029 | * We should never call set_task_cpu() on a blocked task, |
| 2030 | * ttwu() will sort out the placement. | ||
| 2031 | */ | ||
| 2032 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | ||
| 2033 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); | ||
| 2034 | #endif | ||
| 2074 | 2035 | ||
| 2075 | trace_sched_migrate_task(p, new_cpu); | 2036 | trace_sched_migrate_task(p, new_cpu); |
| 2076 | 2037 | ||
| 2077 | if (old_cpu != new_cpu) { | 2038 | if (task_cpu(p) != new_cpu) { |
| 2078 | p->se.nr_migrations++; | 2039 | p->se.nr_migrations++; |
| 2079 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2040 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); |
| 2080 | 1, 1, NULL, 0); | ||
| 2081 | } | 2041 | } |
| 2082 | p->se.vruntime -= old_cfsrq->min_vruntime - | ||
| 2083 | new_cfsrq->min_vruntime; | ||
| 2084 | 2042 | ||
| 2085 | __set_task_cpu(p, new_cpu); | 2043 | __set_task_cpu(p, new_cpu); |
| 2086 | } | 2044 | } |
| @@ -2105,13 +2063,10 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |||
| 2105 | 2063 | ||
| 2106 | /* | 2064 | /* |
| 2107 | * If the task is not on a runqueue (and not running), then | 2065 | * If the task is not on a runqueue (and not running), then |
| 2108 | * it is sufficient to simply update the task's cpu field. | 2066 | * the next wake-up will properly place the task. |
| 2109 | */ | 2067 | */ |
| 2110 | if (!p->se.on_rq && !task_running(rq, p)) { | 2068 | if (!p->se.on_rq && !task_running(rq, p)) |
| 2111 | update_rq_clock(rq); | ||
| 2112 | set_task_cpu(p, dest_cpu); | ||
| 2113 | return 0; | 2069 | return 0; |
| 2114 | } | ||
| 2115 | 2070 | ||
| 2116 | init_completion(&req->done); | 2071 | init_completion(&req->done); |
| 2117 | req->task = p; | 2072 | req->task = p; |
| @@ -2317,10 +2272,71 @@ void task_oncpu_function_call(struct task_struct *p, | |||
| 2317 | } | 2272 | } |
| 2318 | 2273 | ||
| 2319 | #ifdef CONFIG_SMP | 2274 | #ifdef CONFIG_SMP |
| 2275 | static int select_fallback_rq(int cpu, struct task_struct *p) | ||
| 2276 | { | ||
| 2277 | int dest_cpu; | ||
| 2278 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | ||
| 2279 | |||
| 2280 | /* Look for allowed, online CPU in same node. */ | ||
| 2281 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | ||
| 2282 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | ||
| 2283 | return dest_cpu; | ||
| 2284 | |||
| 2285 | /* Any allowed, online CPU? */ | ||
| 2286 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | ||
| 2287 | if (dest_cpu < nr_cpu_ids) | ||
| 2288 | return dest_cpu; | ||
| 2289 | |||
| 2290 | /* No more Mr. Nice Guy. */ | ||
| 2291 | if (dest_cpu >= nr_cpu_ids) { | ||
| 2292 | rcu_read_lock(); | ||
| 2293 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
| 2294 | rcu_read_unlock(); | ||
| 2295 | dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); | ||
| 2296 | |||
| 2297 | /* | ||
| 2298 | * Don't tell them about moving exiting tasks or | ||
| 2299 | * kernel threads (both mm NULL), since they never | ||
| 2300 | * leave kernel. | ||
| 2301 | */ | ||
| 2302 | if (p->mm && printk_ratelimit()) { | ||
| 2303 | printk(KERN_INFO "process %d (%s) no " | ||
| 2304 | "longer affine to cpu%d\n", | ||
| 2305 | task_pid_nr(p), p->comm, cpu); | ||
| 2306 | } | ||
| 2307 | } | ||
| 2308 | |||
| 2309 | return dest_cpu; | ||
| 2310 | } | ||
| 2311 | |||
| 2312 | /* | ||
| 2313 | * Gets called from 3 sites (exec, fork, wakeup), since it is called without | ||
| 2314 | * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done | ||
| 2315 | * by: | ||
| 2316 | * | ||
| 2317 | * exec: is unstable, retry loop | ||
| 2318 | * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING | ||
| 2319 | */ | ||
| 2320 | static inline | 2320 | static inline |
| 2321 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | 2321 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) |
| 2322 | { | 2322 | { |
| 2323 | return p->sched_class->select_task_rq(p, sd_flags, wake_flags); | 2323 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); |
| 2324 | |||
| 2325 | /* | ||
| 2326 | * In order not to call set_task_cpu() on a blocking task we need | ||
| 2327 | * to rely on ttwu() to place the task on a valid ->cpus_allowed | ||
| 2328 | * cpu. | ||
| 2329 | * | ||
| 2330 | * Since this is common to all placement strategies, this lives here. | ||
| 2331 | * | ||
| 2332 | * [ this allows ->select_task() to simply return task_cpu(p) and | ||
| 2333 | * not worry about this generic constraint ] | ||
| 2334 | */ | ||
| 2335 | if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || | ||
| 2336 | !cpu_online(cpu))) | ||
| 2337 | cpu = select_fallback_rq(task_cpu(p), p); | ||
| 2338 | |||
| 2339 | return cpu; | ||
| 2324 | } | 2340 | } |
| 2325 | #endif | 2341 | #endif |
| 2326 | 2342 | ||
| @@ -2375,17 +2391,34 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
| 2375 | if (task_contributes_to_load(p)) | 2391 | if (task_contributes_to_load(p)) |
| 2376 | rq->nr_uninterruptible--; | 2392 | rq->nr_uninterruptible--; |
| 2377 | p->state = TASK_WAKING; | 2393 | p->state = TASK_WAKING; |
| 2394 | |||
| 2395 | if (p->sched_class->task_waking) | ||
| 2396 | p->sched_class->task_waking(rq, p); | ||
| 2397 | |||
| 2378 | __task_rq_unlock(rq); | 2398 | __task_rq_unlock(rq); |
| 2379 | 2399 | ||
| 2380 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | 2400 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); |
| 2381 | if (cpu != orig_cpu) | 2401 | if (cpu != orig_cpu) { |
| 2402 | /* | ||
| 2403 | * Since we migrate the task without holding any rq->lock, | ||
| 2404 | * we need to be careful with task_rq_lock(), since that | ||
| 2405 | * might end up locking an invalid rq. | ||
| 2406 | */ | ||
| 2382 | set_task_cpu(p, cpu); | 2407 | set_task_cpu(p, cpu); |
| 2408 | } | ||
| 2383 | 2409 | ||
| 2384 | rq = __task_rq_lock(p); | 2410 | rq = cpu_rq(cpu); |
| 2411 | raw_spin_lock(&rq->lock); | ||
| 2385 | update_rq_clock(rq); | 2412 | update_rq_clock(rq); |
| 2386 | 2413 | ||
| 2414 | /* | ||
| 2415 | * We migrated the task without holding either rq->lock, however | ||
| 2416 | * since the task is not on the task list itself, nobody else | ||
| 2417 | * will try and migrate the task, hence the rq should match the | ||
| 2418 | * cpu we just moved it to. | ||
| 2419 | */ | ||
| 2420 | WARN_ON(task_cpu(p) != cpu); | ||
| 2387 | WARN_ON(p->state != TASK_WAKING); | 2421 | WARN_ON(p->state != TASK_WAKING); |
| 2388 | cpu = task_cpu(p); | ||
| 2389 | 2422 | ||
| 2390 | #ifdef CONFIG_SCHEDSTATS | 2423 | #ifdef CONFIG_SCHEDSTATS |
| 2391 | schedstat_inc(rq, ttwu_count); | 2424 | schedstat_inc(rq, ttwu_count); |
| @@ -2438,8 +2471,8 @@ out_running: | |||
| 2438 | 2471 | ||
| 2439 | p->state = TASK_RUNNING; | 2472 | p->state = TASK_RUNNING; |
| 2440 | #ifdef CONFIG_SMP | 2473 | #ifdef CONFIG_SMP |
| 2441 | if (p->sched_class->task_wake_up) | 2474 | if (p->sched_class->task_woken) |
| 2442 | p->sched_class->task_wake_up(rq, p); | 2475 | p->sched_class->task_woken(rq, p); |
| 2443 | 2476 | ||
| 2444 | if (unlikely(rq->idle_stamp)) { | 2477 | if (unlikely(rq->idle_stamp)) { |
| 2445 | u64 delta = rq->clock - rq->idle_stamp; | 2478 | u64 delta = rq->clock - rq->idle_stamp; |
| @@ -2538,14 +2571,6 @@ static void __sched_fork(struct task_struct *p) | |||
| 2538 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 2539 | INIT_HLIST_HEAD(&p->preempt_notifiers); | 2572 | INIT_HLIST_HEAD(&p->preempt_notifiers); |
| 2540 | #endif | 2573 | #endif |
| 2541 | |||
| 2542 | /* | ||
| 2543 | * We mark the process as running here, but have not actually | ||
| 2544 | * inserted it onto the runqueue yet. This guarantees that | ||
| 2545 | * nobody will actually run it, and a signal or other external | ||
| 2546 | * event cannot wake it up and insert it on the runqueue either. | ||
| 2547 | */ | ||
| 2548 | p->state = TASK_RUNNING; | ||
| 2549 | } | 2574 | } |
| 2550 | 2575 | ||
| 2551 | /* | 2576 | /* |
| @@ -2556,6 +2581,12 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2556 | int cpu = get_cpu(); | 2581 | int cpu = get_cpu(); |
| 2557 | 2582 | ||
| 2558 | __sched_fork(p); | 2583 | __sched_fork(p); |
| 2584 | /* | ||
| 2585 | * We mark the process as waking here. This guarantees that | ||
| 2586 | * nobody will actually run it, and a signal or other external | ||
| 2587 | * event cannot wake it up and insert it on the runqueue either. | ||
| 2588 | */ | ||
| 2589 | p->state = TASK_WAKING; | ||
| 2559 | 2590 | ||
| 2560 | /* | 2591 | /* |
| 2561 | * Revert to default priority/policy on fork if requested. | 2592 | * Revert to default priority/policy on fork if requested. |
| @@ -2590,9 +2621,6 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2590 | if (p->sched_class->task_fork) | 2621 | if (p->sched_class->task_fork) |
| 2591 | p->sched_class->task_fork(p); | 2622 | p->sched_class->task_fork(p); |
| 2592 | 2623 | ||
| 2593 | #ifdef CONFIG_SMP | ||
| 2594 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | ||
| 2595 | #endif | ||
| 2596 | set_task_cpu(p, cpu); | 2624 | set_task_cpu(p, cpu); |
| 2597 | 2625 | ||
| 2598 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2626 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| @@ -2622,18 +2650,41 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2622 | { | 2650 | { |
| 2623 | unsigned long flags; | 2651 | unsigned long flags; |
| 2624 | struct rq *rq; | 2652 | struct rq *rq; |
| 2653 | int cpu = get_cpu(); | ||
| 2625 | 2654 | ||
| 2626 | rq = task_rq_lock(p, &flags); | 2655 | #ifdef CONFIG_SMP |
| 2627 | BUG_ON(p->state != TASK_RUNNING); | 2656 | /* |
| 2657 | * Fork balancing, do it here and not earlier because: | ||
| 2658 | * - cpus_allowed can change in the fork path | ||
| 2659 | * - any previously selected cpu might disappear through hotplug | ||
| 2660 | * | ||
| 2661 | * We still have TASK_WAKING but PF_STARTING is gone now, meaning | ||
| 2662 | * ->cpus_allowed is stable, we have preemption disabled, meaning | ||
| 2663 | * cpu_online_mask is stable. | ||
| 2664 | */ | ||
| 2665 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | ||
| 2666 | set_task_cpu(p, cpu); | ||
| 2667 | #endif | ||
| 2668 | |||
| 2669 | /* | ||
| 2670 | * Since the task is not on the rq and we still have TASK_WAKING set | ||
| 2671 | * nobody else will migrate this task. | ||
| 2672 | */ | ||
| 2673 | rq = cpu_rq(cpu); | ||
| 2674 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
| 2675 | |||
| 2676 | BUG_ON(p->state != TASK_WAKING); | ||
| 2677 | p->state = TASK_RUNNING; | ||
| 2628 | update_rq_clock(rq); | 2678 | update_rq_clock(rq); |
| 2629 | activate_task(rq, p, 0); | 2679 | activate_task(rq, p, 0); |
| 2630 | trace_sched_wakeup_new(rq, p, 1); | 2680 | trace_sched_wakeup_new(rq, p, 1); |
| 2631 | check_preempt_curr(rq, p, WF_FORK); | 2681 | check_preempt_curr(rq, p, WF_FORK); |
| 2632 | #ifdef CONFIG_SMP | 2682 | #ifdef CONFIG_SMP |
| 2633 | if (p->sched_class->task_wake_up) | 2683 | if (p->sched_class->task_woken) |
| 2634 | p->sched_class->task_wake_up(rq, p); | 2684 | p->sched_class->task_woken(rq, p); |
| 2635 | #endif | 2685 | #endif |
| 2636 | task_rq_unlock(rq, &flags); | 2686 | task_rq_unlock(rq, &flags); |
| 2687 | put_cpu(); | ||
| 2637 | } | 2688 | } |
| 2638 | 2689 | ||
| 2639 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2690 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| @@ -2752,7 +2803,13 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2752 | */ | 2803 | */ |
| 2753 | prev_state = prev->state; | 2804 | prev_state = prev->state; |
| 2754 | finish_arch_switch(prev); | 2805 | finish_arch_switch(prev); |
| 2755 | perf_event_task_sched_in(current, cpu_of(rq)); | 2806 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
| 2807 | local_irq_disable(); | ||
| 2808 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
| 2809 | perf_event_task_sched_in(current); | ||
| 2810 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
| 2811 | local_irq_enable(); | ||
| 2812 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
| 2756 | finish_lock_switch(rq, prev); | 2813 | finish_lock_switch(rq, prev); |
| 2757 | 2814 | ||
| 2758 | fire_sched_in_preempt_notifiers(current); | 2815 | fire_sched_in_preempt_notifiers(current); |
| @@ -3057,65 +3114,36 @@ static void update_cpu_load(struct rq *this_rq) | |||
| 3057 | #ifdef CONFIG_SMP | 3114 | #ifdef CONFIG_SMP |
| 3058 | 3115 | ||
| 3059 | /* | 3116 | /* |
| 3060 | * double_rq_lock - safely lock two runqueues | 3117 | * sched_exec - execve() is a valuable balancing opportunity, because at |
| 3061 | * | 3118 | * this point the task has the smallest effective memory and cache footprint. |
| 3062 | * Note this does not disable interrupts like task_rq_lock, | ||
| 3063 | * you need to do so manually before calling. | ||
| 3064 | */ | ||
| 3065 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
| 3066 | __acquires(rq1->lock) | ||
| 3067 | __acquires(rq2->lock) | ||
| 3068 | { | ||
| 3069 | BUG_ON(!irqs_disabled()); | ||
| 3070 | if (rq1 == rq2) { | ||
| 3071 | raw_spin_lock(&rq1->lock); | ||
| 3072 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
| 3073 | } else { | ||
| 3074 | if (rq1 < rq2) { | ||
| 3075 | raw_spin_lock(&rq1->lock); | ||
| 3076 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
| 3077 | } else { | ||
| 3078 | raw_spin_lock(&rq2->lock); | ||
| 3079 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
| 3080 | } | ||
| 3081 | } | ||
| 3082 | update_rq_clock(rq1); | ||
| 3083 | update_rq_clock(rq2); | ||
| 3084 | } | ||
| 3085 | |||
| 3086 | /* | ||
| 3087 | * double_rq_unlock - safely unlock two runqueues | ||
| 3088 | * | ||
| 3089 | * Note this does not restore interrupts like task_rq_unlock, | ||
| 3090 | * you need to do so manually after calling. | ||
| 3091 | */ | ||
| 3092 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
| 3093 | __releases(rq1->lock) | ||
| 3094 | __releases(rq2->lock) | ||
| 3095 | { | ||
| 3096 | raw_spin_unlock(&rq1->lock); | ||
| 3097 | if (rq1 != rq2) | ||
| 3098 | raw_spin_unlock(&rq2->lock); | ||
| 3099 | else | ||
| 3100 | __release(rq2->lock); | ||
| 3101 | } | ||
| 3102 | |||
| 3103 | /* | ||
| 3104 | * If dest_cpu is allowed for this process, migrate the task to it. | ||
| 3105 | * This is accomplished by forcing the cpu_allowed mask to only | ||
| 3106 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | ||
| 3107 | * the cpu_allowed mask is restored. | ||
| 3108 | */ | 3119 | */ |
| 3109 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) | 3120 | void sched_exec(void) |
| 3110 | { | 3121 | { |
| 3122 | struct task_struct *p = current; | ||
| 3111 | struct migration_req req; | 3123 | struct migration_req req; |
| 3124 | int dest_cpu, this_cpu; | ||
| 3112 | unsigned long flags; | 3125 | unsigned long flags; |
| 3113 | struct rq *rq; | 3126 | struct rq *rq; |
| 3114 | 3127 | ||
| 3128 | again: | ||
| 3129 | this_cpu = get_cpu(); | ||
| 3130 | dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); | ||
| 3131 | if (dest_cpu == this_cpu) { | ||
| 3132 | put_cpu(); | ||
| 3133 | return; | ||
| 3134 | } | ||
| 3135 | |||
| 3115 | rq = task_rq_lock(p, &flags); | 3136 | rq = task_rq_lock(p, &flags); |
| 3137 | put_cpu(); | ||
| 3138 | |||
| 3139 | /* | ||
| 3140 | * select_task_rq() can race against ->cpus_allowed | ||
| 3141 | */ | ||
| 3116 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) | 3142 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) |
| 3117 | || unlikely(!cpu_active(dest_cpu))) | 3143 | || unlikely(!cpu_active(dest_cpu))) { |
| 3118 | goto out; | 3144 | task_rq_unlock(rq, &flags); |
| 3145 | goto again; | ||
| 3146 | } | ||
| 3119 | 3147 | ||
| 3120 | /* force the process onto the specified CPU */ | 3148 | /* force the process onto the specified CPU */ |
| 3121 | if (migrate_task(p, dest_cpu, &req)) { | 3149 | if (migrate_task(p, dest_cpu, &req)) { |
| @@ -3130,1788 +3158,9 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu) | |||
| 3130 | 3158 | ||
| 3131 | return; | 3159 | return; |
| 3132 | } | 3160 | } |
| 3133 | out: | ||
| 3134 | task_rq_unlock(rq, &flags); | 3161 | task_rq_unlock(rq, &flags); |
| 3135 | } | 3162 | } |
| 3136 | 3163 | ||
| 3137 | /* | ||
| 3138 | * sched_exec - execve() is a valuable balancing opportunity, because at | ||
| 3139 | * this point the task has the smallest effective memory and cache footprint. | ||
| 3140 | */ | ||
| 3141 | void sched_exec(void) | ||
| 3142 | { | ||
| 3143 | int new_cpu, this_cpu = get_cpu(); | ||
| 3144 | new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0); | ||
| 3145 | put_cpu(); | ||
| 3146 | if (new_cpu != this_cpu) | ||
| 3147 | sched_migrate_task(current, new_cpu); | ||
| 3148 | } | ||
| 3149 | |||
| 3150 | /* | ||
| 3151 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
| 3152 | * Both runqueues must be locked. | ||
| 3153 | */ | ||
| 3154 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
| 3155 | struct rq *this_rq, int this_cpu) | ||
| 3156 | { | ||
| 3157 | deactivate_task(src_rq, p, 0); | ||
| 3158 | set_task_cpu(p, this_cpu); | ||
| 3159 | activate_task(this_rq, p, 0); | ||
| 3160 | check_preempt_curr(this_rq, p, 0); | ||
| 3161 | } | ||
| 3162 | |||
| 3163 | /* | ||
| 3164 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
| 3165 | */ | ||
| 3166 | static | ||
| 3167 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
| 3168 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 3169 | int *all_pinned) | ||
| 3170 | { | ||
| 3171 | int tsk_cache_hot = 0; | ||
| 3172 | /* | ||
| 3173 | * We do not migrate tasks that are: | ||
| 3174 | * 1) running (obviously), or | ||
| 3175 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
| 3176 | * 3) are cache-hot on their current CPU. | ||
| 3177 | */ | ||
| 3178 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
| 3179 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
| 3180 | return 0; | ||
| 3181 | } | ||
| 3182 | *all_pinned = 0; | ||
| 3183 | |||
| 3184 | if (task_running(rq, p)) { | ||
| 3185 | schedstat_inc(p, se.nr_failed_migrations_running); | ||
| 3186 | return 0; | ||
| 3187 | } | ||
| 3188 | |||
| 3189 | /* | ||
| 3190 | * Aggressive migration if: | ||
| 3191 | * 1) task is cache cold, or | ||
| 3192 | * 2) too many balance attempts have failed. | ||
| 3193 | */ | ||
| 3194 | |||
| 3195 | tsk_cache_hot = task_hot(p, rq->clock, sd); | ||
| 3196 | if (!tsk_cache_hot || | ||
| 3197 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
| 3198 | #ifdef CONFIG_SCHEDSTATS | ||
| 3199 | if (tsk_cache_hot) { | ||
| 3200 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
| 3201 | schedstat_inc(p, se.nr_forced_migrations); | ||
| 3202 | } | ||
| 3203 | #endif | ||
| 3204 | return 1; | ||
| 3205 | } | ||
| 3206 | |||
| 3207 | if (tsk_cache_hot) { | ||
| 3208 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
| 3209 | return 0; | ||
| 3210 | } | ||
| 3211 | return 1; | ||
| 3212 | } | ||
| 3213 | |||
| 3214 | static unsigned long | ||
| 3215 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 3216 | unsigned long max_load_move, struct sched_domain *sd, | ||
| 3217 | enum cpu_idle_type idle, int *all_pinned, | ||
| 3218 | int *this_best_prio, struct rq_iterator *iterator) | ||
| 3219 | { | ||
| 3220 | int loops = 0, pulled = 0, pinned = 0; | ||
| 3221 | struct task_struct *p; | ||
| 3222 | long rem_load_move = max_load_move; | ||
| 3223 | |||
| 3224 | if (max_load_move == 0) | ||
| 3225 | goto out; | ||
| 3226 | |||
| 3227 | pinned = 1; | ||
| 3228 | |||
| 3229 | /* | ||
| 3230 | * Start the load-balancing iterator: | ||
| 3231 | */ | ||
| 3232 | p = iterator->start(iterator->arg); | ||
| 3233 | next: | ||
| 3234 | if (!p || loops++ > sysctl_sched_nr_migrate) | ||
| 3235 | goto out; | ||
| 3236 | |||
| 3237 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
| 3238 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
| 3239 | p = iterator->next(iterator->arg); | ||
| 3240 | goto next; | ||
| 3241 | } | ||
| 3242 | |||
| 3243 | pull_task(busiest, p, this_rq, this_cpu); | ||
| 3244 | pulled++; | ||
| 3245 | rem_load_move -= p->se.load.weight; | ||
| 3246 | |||
| 3247 | #ifdef CONFIG_PREEMPT | ||
| 3248 | /* | ||
| 3249 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
| 3250 | * will stop after the first task is pulled to minimize the critical | ||
| 3251 | * section. | ||
| 3252 | */ | ||
| 3253 | if (idle == CPU_NEWLY_IDLE) | ||
| 3254 | goto out; | ||
| 3255 | #endif | ||
| 3256 | |||
| 3257 | /* | ||
| 3258 | * We only want to steal up to the prescribed amount of weighted load. | ||
| 3259 | */ | ||
| 3260 | if (rem_load_move > 0) { | ||
| 3261 | if (p->prio < *this_best_prio) | ||
| 3262 | *this_best_prio = p->prio; | ||
| 3263 | p = iterator->next(iterator->arg); | ||
| 3264 | goto next; | ||
| 3265 | } | ||
| 3266 | out: | ||
| 3267 | /* | ||
| 3268 | * Right now, this is one of only two places pull_task() is called, | ||
| 3269 | * so we can safely collect pull_task() stats here rather than | ||
| 3270 | * inside pull_task(). | ||
| 3271 | */ | ||
| 3272 | schedstat_add(sd, lb_gained[idle], pulled); | ||
| 3273 | |||
| 3274 | if (all_pinned) | ||
| 3275 | *all_pinned = pinned; | ||
| 3276 | |||
| 3277 | return max_load_move - rem_load_move; | ||
| 3278 | } | ||
| 3279 | |||
| 3280 | /* | ||
| 3281 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
| 3282 | * this_rq, as part of a balancing operation within domain "sd". | ||
| 3283 | * Returns 1 if successful and 0 otherwise. | ||
| 3284 | * | ||
| 3285 | * Called with both runqueues locked. | ||
| 3286 | */ | ||
| 3287 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 3288 | unsigned long max_load_move, | ||
| 3289 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 3290 | int *all_pinned) | ||
| 3291 | { | ||
| 3292 | const struct sched_class *class = sched_class_highest; | ||
| 3293 | unsigned long total_load_moved = 0; | ||
| 3294 | int this_best_prio = this_rq->curr->prio; | ||
| 3295 | |||
| 3296 | do { | ||
| 3297 | total_load_moved += | ||
| 3298 | class->load_balance(this_rq, this_cpu, busiest, | ||
| 3299 | max_load_move - total_load_moved, | ||
| 3300 | sd, idle, all_pinned, &this_best_prio); | ||
| 3301 | class = class->next; | ||
| 3302 | |||
| 3303 | #ifdef CONFIG_PREEMPT | ||
| 3304 | /* | ||
| 3305 | * NEWIDLE balancing is a source of latency, so preemptible | ||
| 3306 | * kernels will stop after the first task is pulled to minimize | ||
| 3307 | * the critical section. | ||
| 3308 | */ | ||
| 3309 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
| 3310 | break; | ||
| 3311 | #endif | ||
| 3312 | } while (class && max_load_move > total_load_moved); | ||
| 3313 | |||
| 3314 | return total_load_moved > 0; | ||
| 3315 | } | ||
| 3316 | |||
| 3317 | static int | ||
| 3318 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 3319 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 3320 | struct rq_iterator *iterator) | ||
| 3321 | { | ||
| 3322 | struct task_struct *p = iterator->start(iterator->arg); | ||
| 3323 | int pinned = 0; | ||
| 3324 | |||
| 3325 | while (p) { | ||
| 3326 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
| 3327 | pull_task(busiest, p, this_rq, this_cpu); | ||
| 3328 | /* | ||
| 3329 | * Right now, this is only the second place pull_task() | ||
| 3330 | * is called, so we can safely collect pull_task() | ||
| 3331 | * stats here rather than inside pull_task(). | ||
| 3332 | */ | ||
| 3333 | schedstat_inc(sd, lb_gained[idle]); | ||
| 3334 | |||
| 3335 | return 1; | ||
| 3336 | } | ||
| 3337 | p = iterator->next(iterator->arg); | ||
| 3338 | } | ||
| 3339 | |||
| 3340 | return 0; | ||
| 3341 | } | ||
| 3342 | |||
| 3343 | /* | ||
| 3344 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
| 3345 | * part of active balancing operations within "domain". | ||
| 3346 | * Returns 1 if successful and 0 otherwise. | ||
| 3347 | * | ||
| 3348 | * Called with both runqueues locked. | ||
| 3349 | */ | ||
| 3350 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
| 3351 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
| 3352 | { | ||
| 3353 | const struct sched_class *class; | ||
| 3354 | |||
| 3355 | for_each_class(class) { | ||
| 3356 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | ||
| 3357 | return 1; | ||
| 3358 | } | ||
| 3359 | |||
| 3360 | return 0; | ||
| 3361 | } | ||
| 3362 | /********** Helpers for find_busiest_group ************************/ | ||
| 3363 | /* | ||
| 3364 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
| 3365 | * during load balancing. | ||
| 3366 | */ | ||
| 3367 | struct sd_lb_stats { | ||
| 3368 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
| 3369 | struct sched_group *this; /* Local group in this sd */ | ||
| 3370 | unsigned long total_load; /* Total load of all groups in sd */ | ||
| 3371 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
| 3372 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
| 3373 | |||
| 3374 | /** Statistics of this group */ | ||
| 3375 | unsigned long this_load; | ||
| 3376 | unsigned long this_load_per_task; | ||
| 3377 | unsigned long this_nr_running; | ||
| 3378 | |||
| 3379 | /* Statistics of the busiest group */ | ||
| 3380 | unsigned long max_load; | ||
| 3381 | unsigned long busiest_load_per_task; | ||
| 3382 | unsigned long busiest_nr_running; | ||
| 3383 | |||
| 3384 | int group_imb; /* Is there imbalance in this sd */ | ||
| 3385 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 3386 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
| 3387 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
| 3388 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
| 3389 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
| 3390 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
| 3391 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
| 3392 | #endif | ||
| 3393 | }; | ||
| 3394 | |||
| 3395 | /* | ||
| 3396 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
| 3397 | */ | ||
| 3398 | struct sg_lb_stats { | ||
| 3399 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
| 3400 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
| 3401 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
| 3402 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
| 3403 | unsigned long group_capacity; | ||
| 3404 | int group_imb; /* Is there an imbalance in the group ? */ | ||
| 3405 | }; | ||
| 3406 | |||
| 3407 | /** | ||
| 3408 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
| 3409 | * @group: The group whose first cpu is to be returned. | ||
| 3410 | */ | ||
| 3411 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
| 3412 | { | ||
| 3413 | return cpumask_first(sched_group_cpus(group)); | ||
| 3414 | } | ||
| 3415 | |||
| 3416 | /** | ||
| 3417 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
| 3418 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
| 3419 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
| 3420 | */ | ||
| 3421 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
| 3422 | enum cpu_idle_type idle) | ||
| 3423 | { | ||
| 3424 | int load_idx; | ||
| 3425 | |||
| 3426 | switch (idle) { | ||
| 3427 | case CPU_NOT_IDLE: | ||
| 3428 | load_idx = sd->busy_idx; | ||
| 3429 | break; | ||
| 3430 | |||
| 3431 | case CPU_NEWLY_IDLE: | ||
| 3432 | load_idx = sd->newidle_idx; | ||
| 3433 | break; | ||
| 3434 | default: | ||
| 3435 | load_idx = sd->idle_idx; | ||
| 3436 | break; | ||
| 3437 | } | ||
| 3438 | |||
| 3439 | return load_idx; | ||
| 3440 | } | ||
| 3441 | |||
| 3442 | |||
| 3443 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 3444 | /** | ||
| 3445 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
| 3446 | * the given sched_domain, during load balancing. | ||
| 3447 | * | ||
| 3448 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
| 3449 | * @sds: Variable containing the statistics for sd. | ||
| 3450 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
| 3451 | */ | ||
| 3452 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 3453 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 3454 | { | ||
| 3455 | /* | ||
| 3456 | * Busy processors will not participate in power savings | ||
| 3457 | * balance. | ||
| 3458 | */ | ||
| 3459 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3460 | sds->power_savings_balance = 0; | ||
| 3461 | else { | ||
| 3462 | sds->power_savings_balance = 1; | ||
| 3463 | sds->min_nr_running = ULONG_MAX; | ||
| 3464 | sds->leader_nr_running = 0; | ||
| 3465 | } | ||
| 3466 | } | ||
| 3467 | |||
| 3468 | /** | ||
| 3469 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
| 3470 | * sched_domain while performing load balancing. | ||
| 3471 | * | ||
| 3472 | * @group: sched_group belonging to the sched_domain under consideration. | ||
| 3473 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3474 | * @local_group: Does group contain the CPU for which we're performing | ||
| 3475 | * load balancing ? | ||
| 3476 | * @sgs: Variable containing the statistics of the group. | ||
| 3477 | */ | ||
| 3478 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 3479 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 3480 | { | ||
| 3481 | |||
| 3482 | if (!sds->power_savings_balance) | ||
| 3483 | return; | ||
| 3484 | |||
| 3485 | /* | ||
| 3486 | * If the local group is idle or completely loaded | ||
| 3487 | * no need to do power savings balance at this domain | ||
| 3488 | */ | ||
| 3489 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
| 3490 | !sds->this_nr_running)) | ||
| 3491 | sds->power_savings_balance = 0; | ||
| 3492 | |||
| 3493 | /* | ||
| 3494 | * If a group is already running at full capacity or idle, | ||
| 3495 | * don't include that group in power savings calculations | ||
| 3496 | */ | ||
| 3497 | if (!sds->power_savings_balance || | ||
| 3498 | sgs->sum_nr_running >= sgs->group_capacity || | ||
| 3499 | !sgs->sum_nr_running) | ||
| 3500 | return; | ||
| 3501 | |||
| 3502 | /* | ||
| 3503 | * Calculate the group which has the least non-idle load. | ||
| 3504 | * This is the group from where we need to pick up the load | ||
| 3505 | * for saving power | ||
| 3506 | */ | ||
| 3507 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
| 3508 | (sgs->sum_nr_running == sds->min_nr_running && | ||
| 3509 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
| 3510 | sds->group_min = group; | ||
| 3511 | sds->min_nr_running = sgs->sum_nr_running; | ||
| 3512 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
| 3513 | sgs->sum_nr_running; | ||
| 3514 | } | ||
| 3515 | |||
| 3516 | /* | ||
| 3517 | * Calculate the group which is almost near its | ||
| 3518 | * capacity but still has some space to pick up some load | ||
| 3519 | * from other group and save more power | ||
| 3520 | */ | ||
| 3521 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
| 3522 | return; | ||
| 3523 | |||
| 3524 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
| 3525 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
| 3526 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
| 3527 | sds->group_leader = group; | ||
| 3528 | sds->leader_nr_running = sgs->sum_nr_running; | ||
| 3529 | } | ||
| 3530 | } | ||
| 3531 | |||
| 3532 | /** | ||
| 3533 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
| 3534 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3535 | * under consideration. | ||
| 3536 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
| 3537 | * @imbalance: Variable to store the imbalance. | ||
| 3538 | * | ||
| 3539 | * Description: | ||
| 3540 | * Check if we have potential to perform some power-savings balance. | ||
| 3541 | * If yes, set the busiest group to be the least loaded group in the | ||
| 3542 | * sched_domain, so that it's CPUs can be put to idle. | ||
| 3543 | * | ||
| 3544 | * Returns 1 if there is potential to perform power-savings balance. | ||
| 3545 | * Else returns 0. | ||
| 3546 | */ | ||
| 3547 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 3548 | int this_cpu, unsigned long *imbalance) | ||
| 3549 | { | ||
| 3550 | if (!sds->power_savings_balance) | ||
| 3551 | return 0; | ||
| 3552 | |||
| 3553 | if (sds->this != sds->group_leader || | ||
| 3554 | sds->group_leader == sds->group_min) | ||
| 3555 | return 0; | ||
| 3556 | |||
| 3557 | *imbalance = sds->min_load_per_task; | ||
| 3558 | sds->busiest = sds->group_min; | ||
| 3559 | |||
| 3560 | return 1; | ||
| 3561 | |||
| 3562 | } | ||
| 3563 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 3564 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 3565 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 3566 | { | ||
| 3567 | return; | ||
| 3568 | } | ||
| 3569 | |||
| 3570 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 3571 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 3572 | { | ||
| 3573 | return; | ||
| 3574 | } | ||
| 3575 | |||
| 3576 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 3577 | int this_cpu, unsigned long *imbalance) | ||
| 3578 | { | ||
| 3579 | return 0; | ||
| 3580 | } | ||
| 3581 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 3582 | |||
| 3583 | |||
| 3584 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3585 | { | ||
| 3586 | return SCHED_LOAD_SCALE; | ||
| 3587 | } | ||
| 3588 | |||
| 3589 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3590 | { | ||
| 3591 | return default_scale_freq_power(sd, cpu); | ||
| 3592 | } | ||
| 3593 | |||
| 3594 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3595 | { | ||
| 3596 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
| 3597 | unsigned long smt_gain = sd->smt_gain; | ||
| 3598 | |||
| 3599 | smt_gain /= weight; | ||
| 3600 | |||
| 3601 | return smt_gain; | ||
| 3602 | } | ||
| 3603 | |||
| 3604 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3605 | { | ||
| 3606 | return default_scale_smt_power(sd, cpu); | ||
| 3607 | } | ||
| 3608 | |||
| 3609 | unsigned long scale_rt_power(int cpu) | ||
| 3610 | { | ||
| 3611 | struct rq *rq = cpu_rq(cpu); | ||
| 3612 | u64 total, available; | ||
| 3613 | |||
| 3614 | sched_avg_update(rq); | ||
| 3615 | |||
| 3616 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
| 3617 | available = total - rq->rt_avg; | ||
| 3618 | |||
| 3619 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
| 3620 | total = SCHED_LOAD_SCALE; | ||
| 3621 | |||
| 3622 | total >>= SCHED_LOAD_SHIFT; | ||
| 3623 | |||
| 3624 | return div_u64(available, total); | ||
| 3625 | } | ||
| 3626 | |||
| 3627 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
| 3628 | { | ||
| 3629 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
| 3630 | unsigned long power = SCHED_LOAD_SCALE; | ||
| 3631 | struct sched_group *sdg = sd->groups; | ||
| 3632 | |||
| 3633 | if (sched_feat(ARCH_POWER)) | ||
| 3634 | power *= arch_scale_freq_power(sd, cpu); | ||
| 3635 | else | ||
| 3636 | power *= default_scale_freq_power(sd, cpu); | ||
| 3637 | |||
| 3638 | power >>= SCHED_LOAD_SHIFT; | ||
| 3639 | |||
| 3640 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
| 3641 | if (sched_feat(ARCH_POWER)) | ||
| 3642 | power *= arch_scale_smt_power(sd, cpu); | ||
| 3643 | else | ||
| 3644 | power *= default_scale_smt_power(sd, cpu); | ||
| 3645 | |||
| 3646 | power >>= SCHED_LOAD_SHIFT; | ||
| 3647 | } | ||
| 3648 | |||
| 3649 | power *= scale_rt_power(cpu); | ||
| 3650 | power >>= SCHED_LOAD_SHIFT; | ||
| 3651 | |||
| 3652 | if (!power) | ||
| 3653 | power = 1; | ||
| 3654 | |||
| 3655 | sdg->cpu_power = power; | ||
| 3656 | } | ||
| 3657 | |||
| 3658 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
| 3659 | { | ||
| 3660 | struct sched_domain *child = sd->child; | ||
| 3661 | struct sched_group *group, *sdg = sd->groups; | ||
| 3662 | unsigned long power; | ||
| 3663 | |||
| 3664 | if (!child) { | ||
| 3665 | update_cpu_power(sd, cpu); | ||
| 3666 | return; | ||
| 3667 | } | ||
| 3668 | |||
| 3669 | power = 0; | ||
| 3670 | |||
| 3671 | group = child->groups; | ||
| 3672 | do { | ||
| 3673 | power += group->cpu_power; | ||
| 3674 | group = group->next; | ||
| 3675 | } while (group != child->groups); | ||
| 3676 | |||
| 3677 | sdg->cpu_power = power; | ||
| 3678 | } | ||
| 3679 | |||
| 3680 | /** | ||
| 3681 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3682 | * @sd: The sched_domain whose statistics are to be updated. | ||
| 3683 | * @group: sched_group whose statistics are to be updated. | ||
| 3684 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3685 | * @idle: Idle status of this_cpu | ||
| 3686 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
| 3687 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3688 | * @local_group: Does group contain this_cpu. | ||
| 3689 | * @cpus: Set of cpus considered for load balancing. | ||
| 3690 | * @balance: Should we balance. | ||
| 3691 | * @sgs: variable to hold the statistics for this group. | ||
| 3692 | */ | ||
| 3693 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
| 3694 | struct sched_group *group, int this_cpu, | ||
| 3695 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
| 3696 | int local_group, const struct cpumask *cpus, | ||
| 3697 | int *balance, struct sg_lb_stats *sgs) | ||
| 3698 | { | ||
| 3699 | unsigned long load, max_cpu_load, min_cpu_load; | ||
| 3700 | int i; | ||
| 3701 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 3702 | unsigned long sum_avg_load_per_task; | ||
| 3703 | unsigned long avg_load_per_task; | ||
| 3704 | |||
| 3705 | if (local_group) { | ||
| 3706 | balance_cpu = group_first_cpu(group); | ||
| 3707 | if (balance_cpu == this_cpu) | ||
| 3708 | update_group_power(sd, this_cpu); | ||
| 3709 | } | ||
| 3710 | |||
| 3711 | /* Tally up the load of all CPUs in the group */ | ||
| 3712 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
| 3713 | max_cpu_load = 0; | ||
| 3714 | min_cpu_load = ~0UL; | ||
| 3715 | |||
| 3716 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
| 3717 | struct rq *rq = cpu_rq(i); | ||
| 3718 | |||
| 3719 | if (*sd_idle && rq->nr_running) | ||
| 3720 | *sd_idle = 0; | ||
| 3721 | |||
| 3722 | /* Bias balancing toward cpus of our domain */ | ||
| 3723 | if (local_group) { | ||
| 3724 | if (idle_cpu(i) && !first_idle_cpu) { | ||
| 3725 | first_idle_cpu = 1; | ||
| 3726 | balance_cpu = i; | ||
| 3727 | } | ||
| 3728 | |||
| 3729 | load = target_load(i, load_idx); | ||
| 3730 | } else { | ||
| 3731 | load = source_load(i, load_idx); | ||
| 3732 | if (load > max_cpu_load) | ||
| 3733 | max_cpu_load = load; | ||
| 3734 | if (min_cpu_load > load) | ||
| 3735 | min_cpu_load = load; | ||
| 3736 | } | ||
| 3737 | |||
| 3738 | sgs->group_load += load; | ||
| 3739 | sgs->sum_nr_running += rq->nr_running; | ||
| 3740 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
| 3741 | |||
| 3742 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | ||
| 3743 | } | ||
| 3744 | |||
| 3745 | /* | ||
| 3746 | * First idle cpu or the first cpu(busiest) in this sched group | ||
| 3747 | * is eligible for doing load balancing at this and above | ||
| 3748 | * domains. In the newly idle case, we will allow all the cpu's | ||
| 3749 | * to do the newly idle load balance. | ||
| 3750 | */ | ||
| 3751 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
| 3752 | balance_cpu != this_cpu && balance) { | ||
| 3753 | *balance = 0; | ||
| 3754 | return; | ||
| 3755 | } | ||
| 3756 | |||
| 3757 | /* Adjust by relative CPU power of the group */ | ||
| 3758 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 3759 | |||
| 3760 | |||
| 3761 | /* | ||
| 3762 | * Consider the group unbalanced when the imbalance is larger | ||
| 3763 | * than the average weight of two tasks. | ||
| 3764 | * | ||
| 3765 | * APZ: with cgroup the avg task weight can vary wildly and | ||
| 3766 | * might not be a suitable number - should we keep a | ||
| 3767 | * normalized nr_running number somewhere that negates | ||
| 3768 | * the hierarchy? | ||
| 3769 | */ | ||
| 3770 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / | ||
| 3771 | group->cpu_power; | ||
| 3772 | |||
| 3773 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
| 3774 | sgs->group_imb = 1; | ||
| 3775 | |||
| 3776 | sgs->group_capacity = | ||
| 3777 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
| 3778 | } | ||
| 3779 | |||
| 3780 | /** | ||
| 3781 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3782 | * @sd: sched_domain whose statistics are to be updated. | ||
| 3783 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3784 | * @idle: Idle status of this_cpu | ||
| 3785 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3786 | * @cpus: Set of cpus considered for load balancing. | ||
| 3787 | * @balance: Should we balance. | ||
| 3788 | * @sds: variable to hold the statistics for this sched_domain. | ||
| 3789 | */ | ||
| 3790 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
| 3791 | enum cpu_idle_type idle, int *sd_idle, | ||
| 3792 | const struct cpumask *cpus, int *balance, | ||
| 3793 | struct sd_lb_stats *sds) | ||
| 3794 | { | ||
| 3795 | struct sched_domain *child = sd->child; | ||
| 3796 | struct sched_group *group = sd->groups; | ||
| 3797 | struct sg_lb_stats sgs; | ||
| 3798 | int load_idx, prefer_sibling = 0; | ||
| 3799 | |||
| 3800 | if (child && child->flags & SD_PREFER_SIBLING) | ||
| 3801 | prefer_sibling = 1; | ||
| 3802 | |||
| 3803 | init_sd_power_savings_stats(sd, sds, idle); | ||
| 3804 | load_idx = get_sd_load_idx(sd, idle); | ||
| 3805 | |||
| 3806 | do { | ||
| 3807 | int local_group; | ||
| 3808 | |||
| 3809 | local_group = cpumask_test_cpu(this_cpu, | ||
| 3810 | sched_group_cpus(group)); | ||
| 3811 | memset(&sgs, 0, sizeof(sgs)); | ||
| 3812 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
| 3813 | local_group, cpus, balance, &sgs); | ||
| 3814 | |||
| 3815 | if (local_group && balance && !(*balance)) | ||
| 3816 | return; | ||
| 3817 | |||
| 3818 | sds->total_load += sgs.group_load; | ||
| 3819 | sds->total_pwr += group->cpu_power; | ||
| 3820 | |||
| 3821 | /* | ||
| 3822 | * In case the child domain prefers tasks go to siblings | ||
| 3823 | * first, lower the group capacity to one so that we'll try | ||
| 3824 | * and move all the excess tasks away. | ||
| 3825 | */ | ||
| 3826 | if (prefer_sibling) | ||
| 3827 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
| 3828 | |||
| 3829 | if (local_group) { | ||
| 3830 | sds->this_load = sgs.avg_load; | ||
| 3831 | sds->this = group; | ||
| 3832 | sds->this_nr_running = sgs.sum_nr_running; | ||
| 3833 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
| 3834 | } else if (sgs.avg_load > sds->max_load && | ||
| 3835 | (sgs.sum_nr_running > sgs.group_capacity || | ||
| 3836 | sgs.group_imb)) { | ||
| 3837 | sds->max_load = sgs.avg_load; | ||
| 3838 | sds->busiest = group; | ||
| 3839 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
| 3840 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
| 3841 | sds->group_imb = sgs.group_imb; | ||
| 3842 | } | ||
| 3843 | |||
| 3844 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
| 3845 | group = group->next; | ||
| 3846 | } while (group != sd->groups); | ||
| 3847 | } | ||
| 3848 | |||
| 3849 | /** | ||
| 3850 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
| 3851 | * amongst the groups of a sched_domain, during | ||
| 3852 | * load balancing. | ||
| 3853 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3854 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
| 3855 | * @imbalance: Variable to store the imbalance. | ||
| 3856 | */ | ||
| 3857 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
| 3858 | int this_cpu, unsigned long *imbalance) | ||
| 3859 | { | ||
| 3860 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
| 3861 | unsigned int imbn = 2; | ||
| 3862 | |||
| 3863 | if (sds->this_nr_running) { | ||
| 3864 | sds->this_load_per_task /= sds->this_nr_running; | ||
| 3865 | if (sds->busiest_load_per_task > | ||
| 3866 | sds->this_load_per_task) | ||
| 3867 | imbn = 1; | ||
| 3868 | } else | ||
| 3869 | sds->this_load_per_task = | ||
| 3870 | cpu_avg_load_per_task(this_cpu); | ||
| 3871 | |||
| 3872 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | ||
| 3873 | sds->busiest_load_per_task * imbn) { | ||
| 3874 | *imbalance = sds->busiest_load_per_task; | ||
| 3875 | return; | ||
| 3876 | } | ||
| 3877 | |||
| 3878 | /* | ||
| 3879 | * OK, we don't have enough imbalance to justify moving tasks, | ||
| 3880 | * however we may be able to increase total CPU power used by | ||
| 3881 | * moving them. | ||
| 3882 | */ | ||
| 3883 | |||
| 3884 | pwr_now += sds->busiest->cpu_power * | ||
| 3885 | min(sds->busiest_load_per_task, sds->max_load); | ||
| 3886 | pwr_now += sds->this->cpu_power * | ||
| 3887 | min(sds->this_load_per_task, sds->this_load); | ||
| 3888 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 3889 | |||
| 3890 | /* Amount of load we'd subtract */ | ||
| 3891 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
| 3892 | sds->busiest->cpu_power; | ||
| 3893 | if (sds->max_load > tmp) | ||
| 3894 | pwr_move += sds->busiest->cpu_power * | ||
| 3895 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
| 3896 | |||
| 3897 | /* Amount of load we'd add */ | ||
| 3898 | if (sds->max_load * sds->busiest->cpu_power < | ||
| 3899 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 3900 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
| 3901 | sds->this->cpu_power; | ||
| 3902 | else | ||
| 3903 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
| 3904 | sds->this->cpu_power; | ||
| 3905 | pwr_move += sds->this->cpu_power * | ||
| 3906 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
| 3907 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 3908 | |||
| 3909 | /* Move if we gain throughput */ | ||
| 3910 | if (pwr_move > pwr_now) | ||
| 3911 | *imbalance = sds->busiest_load_per_task; | ||
| 3912 | } | ||
| 3913 | |||
| 3914 | /** | ||
| 3915 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
| 3916 | * groups of a given sched_domain during load balance. | ||
| 3917 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3918 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
| 3919 | * @imbalance: The variable to store the imbalance. | ||
| 3920 | */ | ||
| 3921 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
| 3922 | unsigned long *imbalance) | ||
| 3923 | { | ||
| 3924 | unsigned long max_pull; | ||
| 3925 | /* | ||
| 3926 | * In the presence of smp nice balancing, certain scenarios can have | ||
| 3927 | * max load less than avg load(as we skip the groups at or below | ||
| 3928 | * its cpu_power, while calculating max_load..) | ||
| 3929 | */ | ||
| 3930 | if (sds->max_load < sds->avg_load) { | ||
| 3931 | *imbalance = 0; | ||
| 3932 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
| 3933 | } | ||
| 3934 | |||
| 3935 | /* Don't want to pull so many tasks that a group would go idle */ | ||
| 3936 | max_pull = min(sds->max_load - sds->avg_load, | ||
| 3937 | sds->max_load - sds->busiest_load_per_task); | ||
| 3938 | |||
| 3939 | /* How much load to actually move to equalise the imbalance */ | ||
| 3940 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
| 3941 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
| 3942 | / SCHED_LOAD_SCALE; | ||
| 3943 | |||
| 3944 | /* | ||
| 3945 | * if *imbalance is less than the average load per runnable task | ||
| 3946 | * there is no gaurantee that any tasks will be moved so we'll have | ||
| 3947 | * a think about bumping its value to force at least one task to be | ||
| 3948 | * moved | ||
| 3949 | */ | ||
| 3950 | if (*imbalance < sds->busiest_load_per_task) | ||
| 3951 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
| 3952 | |||
| 3953 | } | ||
| 3954 | /******* find_busiest_group() helpers end here *********************/ | ||
| 3955 | |||
| 3956 | /** | ||
| 3957 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
| 3958 | * if there is an imbalance. If there isn't an imbalance, and | ||
| 3959 | * the user has opted for power-savings, it returns a group whose | ||
| 3960 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
| 3961 | * such a group exists. | ||
| 3962 | * | ||
| 3963 | * Also calculates the amount of weighted load which should be moved | ||
| 3964 | * to restore balance. | ||
| 3965 | * | ||
| 3966 | * @sd: The sched_domain whose busiest group is to be returned. | ||
| 3967 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
| 3968 | * @imbalance: Variable which stores amount of weighted load which should | ||
| 3969 | * be moved to restore balance/put a group to idle. | ||
| 3970 | * @idle: The idle status of this_cpu. | ||
| 3971 | * @sd_idle: The idleness of sd | ||
| 3972 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
| 3973 | * @balance: Pointer to a variable indicating if this_cpu | ||
| 3974 | * is the appropriate cpu to perform load balancing at this_level. | ||
| 3975 | * | ||
| 3976 | * Returns: - the busiest group if imbalance exists. | ||
| 3977 | * - If no imbalance and user has opted for power-savings balance, | ||
| 3978 | * return the least loaded group whose CPUs can be | ||
| 3979 | * put to idle by rebalancing its tasks onto our group. | ||
| 3980 | */ | ||
| 3981 | static struct sched_group * | ||
| 3982 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
| 3983 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
| 3984 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
| 3985 | { | ||
| 3986 | struct sd_lb_stats sds; | ||
| 3987 | |||
| 3988 | memset(&sds, 0, sizeof(sds)); | ||
| 3989 | |||
| 3990 | /* | ||
| 3991 | * Compute the various statistics relavent for load balancing at | ||
| 3992 | * this level. | ||
| 3993 | */ | ||
| 3994 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
| 3995 | balance, &sds); | ||
| 3996 | |||
| 3997 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
| 3998 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
| 3999 | * at this level. | ||
| 4000 | * 2) There is no busy sibling group to pull from. | ||
| 4001 | * 3) This group is the busiest group. | ||
| 4002 | * 4) This group is more busy than the avg busieness at this | ||
| 4003 | * sched_domain. | ||
| 4004 | * 5) The imbalance is within the specified limit. | ||
| 4005 | * 6) Any rebalance would lead to ping-pong | ||
| 4006 | */ | ||
| 4007 | if (balance && !(*balance)) | ||
| 4008 | goto ret; | ||
| 4009 | |||
| 4010 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
| 4011 | goto out_balanced; | ||
| 4012 | |||
| 4013 | if (sds.this_load >= sds.max_load) | ||
| 4014 | goto out_balanced; | ||
| 4015 | |||
| 4016 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
| 4017 | |||
| 4018 | if (sds.this_load >= sds.avg_load) | ||
| 4019 | goto out_balanced; | ||
| 4020 | |||
| 4021 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
| 4022 | goto out_balanced; | ||
| 4023 | |||
| 4024 | sds.busiest_load_per_task /= sds.busiest_nr_running; | ||
| 4025 | if (sds.group_imb) | ||
| 4026 | sds.busiest_load_per_task = | ||
| 4027 | min(sds.busiest_load_per_task, sds.avg_load); | ||
| 4028 | |||
| 4029 | /* | ||
| 4030 | * We're trying to get all the cpus to the average_load, so we don't | ||
| 4031 | * want to push ourselves above the average load, nor do we wish to | ||
| 4032 | * reduce the max loaded cpu below the average load, as either of these | ||
| 4033 | * actions would just result in more rebalancing later, and ping-pong | ||
| 4034 | * tasks around. Thus we look for the minimum possible imbalance. | ||
| 4035 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
| 4036 | * be counted as no imbalance for these purposes -- we can't fix that | ||
| 4037 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
| 4038 | * appear as very large values with unsigned longs. | ||
| 4039 | */ | ||
| 4040 | if (sds.max_load <= sds.busiest_load_per_task) | ||
| 4041 | goto out_balanced; | ||
| 4042 | |||
| 4043 | /* Looks like there is an imbalance. Compute it */ | ||
| 4044 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
| 4045 | return sds.busiest; | ||
| 4046 | |||
| 4047 | out_balanced: | ||
| 4048 | /* | ||
| 4049 | * There is no obvious imbalance. But check if we can do some balancing | ||
| 4050 | * to save power. | ||
| 4051 | */ | ||
| 4052 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
| 4053 | return sds.busiest; | ||
| 4054 | ret: | ||
| 4055 | *imbalance = 0; | ||
| 4056 | return NULL; | ||
| 4057 | } | ||
| 4058 | |||
| 4059 | /* | ||
| 4060 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
| 4061 | */ | ||
| 4062 | static struct rq * | ||
| 4063 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
| 4064 | unsigned long imbalance, const struct cpumask *cpus) | ||
| 4065 | { | ||
| 4066 | struct rq *busiest = NULL, *rq; | ||
| 4067 | unsigned long max_load = 0; | ||
| 4068 | int i; | ||
| 4069 | |||
| 4070 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 4071 | unsigned long power = power_of(i); | ||
| 4072 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
| 4073 | unsigned long wl; | ||
| 4074 | |||
| 4075 | if (!cpumask_test_cpu(i, cpus)) | ||
| 4076 | continue; | ||
| 4077 | |||
| 4078 | rq = cpu_rq(i); | ||
| 4079 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; | ||
| 4080 | wl /= power; | ||
| 4081 | |||
| 4082 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
| 4083 | continue; | ||
| 4084 | |||
| 4085 | if (wl > max_load) { | ||
| 4086 | max_load = wl; | ||
| 4087 | busiest = rq; | ||
| 4088 | } | ||
| 4089 | } | ||
| 4090 | |||
| 4091 | return busiest; | ||
| 4092 | } | ||
| 4093 | |||
| 4094 | /* | ||
| 4095 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
| 4096 | * so long as it is large enough. | ||
| 4097 | */ | ||
| 4098 | #define MAX_PINNED_INTERVAL 512 | ||
| 4099 | |||
| 4100 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
| 4101 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
| 4102 | |||
| 4103 | /* | ||
| 4104 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
| 4105 | * tasks if there is an imbalance. | ||
| 4106 | */ | ||
| 4107 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
| 4108 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
| 4109 | int *balance) | ||
| 4110 | { | ||
| 4111 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
| 4112 | struct sched_group *group; | ||
| 4113 | unsigned long imbalance; | ||
| 4114 | struct rq *busiest; | ||
| 4115 | unsigned long flags; | ||
| 4116 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
| 4117 | |||
| 4118 | cpumask_copy(cpus, cpu_active_mask); | ||
| 4119 | |||
| 4120 | /* | ||
| 4121 | * When power savings policy is enabled for the parent domain, idle | ||
| 4122 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
| 4123 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
| 4124 | * portraying it as CPU_NOT_IDLE. | ||
| 4125 | */ | ||
| 4126 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
| 4127 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 4128 | sd_idle = 1; | ||
| 4129 | |||
| 4130 | schedstat_inc(sd, lb_count[idle]); | ||
| 4131 | |||
| 4132 | redo: | ||
| 4133 | update_shares(sd); | ||
| 4134 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
| 4135 | cpus, balance); | ||
| 4136 | |||
| 4137 | if (*balance == 0) | ||
| 4138 | goto out_balanced; | ||
| 4139 | |||
| 4140 | if (!group) { | ||
| 4141 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
| 4142 | goto out_balanced; | ||
| 4143 | } | ||
| 4144 | |||
| 4145 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
| 4146 | if (!busiest) { | ||
| 4147 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
| 4148 | goto out_balanced; | ||
| 4149 | } | ||
| 4150 | |||
| 4151 | BUG_ON(busiest == this_rq); | ||
| 4152 | |||
| 4153 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
| 4154 | |||
| 4155 | ld_moved = 0; | ||
| 4156 | if (busiest->nr_running > 1) { | ||
| 4157 | /* | ||
| 4158 | * Attempt to move tasks. If find_busiest_group has found | ||
| 4159 | * an imbalance but busiest->nr_running <= 1, the group is | ||
| 4160 | * still unbalanced. ld_moved simply stays zero, so it is | ||
| 4161 | * correctly treated as an imbalance. | ||
| 4162 | */ | ||
| 4163 | local_irq_save(flags); | ||
| 4164 | double_rq_lock(this_rq, busiest); | ||
| 4165 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
| 4166 | imbalance, sd, idle, &all_pinned); | ||
| 4167 | double_rq_unlock(this_rq, busiest); | ||
| 4168 | local_irq_restore(flags); | ||
| 4169 | |||
| 4170 | /* | ||
| 4171 | * some other cpu did the load balance for us. | ||
| 4172 | */ | ||
| 4173 | if (ld_moved && this_cpu != smp_processor_id()) | ||
| 4174 | resched_cpu(this_cpu); | ||
| 4175 | |||
| 4176 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
| 4177 | if (unlikely(all_pinned)) { | ||
| 4178 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
| 4179 | if (!cpumask_empty(cpus)) | ||
| 4180 | goto redo; | ||
| 4181 | goto out_balanced; | ||
| 4182 | } | ||
| 4183 | } | ||
| 4184 | |||
| 4185 | if (!ld_moved) { | ||
| 4186 | schedstat_inc(sd, lb_failed[idle]); | ||
| 4187 | sd->nr_balance_failed++; | ||
| 4188 | |||
| 4189 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
| 4190 | |||
| 4191 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
| 4192 | |||
| 4193 | /* don't kick the migration_thread, if the curr | ||
| 4194 | * task on busiest cpu can't be moved to this_cpu | ||
| 4195 | */ | ||
| 4196 | if (!cpumask_test_cpu(this_cpu, | ||
| 4197 | &busiest->curr->cpus_allowed)) { | ||
| 4198 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
| 4199 | flags); | ||
| 4200 | all_pinned = 1; | ||
| 4201 | goto out_one_pinned; | ||
| 4202 | } | ||
| 4203 | |||
| 4204 | if (!busiest->active_balance) { | ||
| 4205 | busiest->active_balance = 1; | ||
| 4206 | busiest->push_cpu = this_cpu; | ||
| 4207 | active_balance = 1; | ||
| 4208 | } | ||
| 4209 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
| 4210 | if (active_balance) | ||
| 4211 | wake_up_process(busiest->migration_thread); | ||
| 4212 | |||
| 4213 | /* | ||
| 4214 | * We've kicked active balancing, reset the failure | ||
| 4215 | * counter. | ||
| 4216 | */ | ||
| 4217 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
| 4218 | } | ||
| 4219 | } else | ||
| 4220 | sd->nr_balance_failed = 0; | ||
| 4221 | |||
| 4222 | if (likely(!active_balance)) { | ||
| 4223 | /* We were unbalanced, so reset the balancing interval */ | ||
| 4224 | sd->balance_interval = sd->min_interval; | ||
| 4225 | } else { | ||
| 4226 | /* | ||
| 4227 | * If we've begun active balancing, start to back off. This | ||
| 4228 | * case may not be covered by the all_pinned logic if there | ||
| 4229 | * is only 1 task on the busy runqueue (because we don't call | ||
| 4230 | * move_tasks). | ||
| 4231 | */ | ||
| 4232 | if (sd->balance_interval < sd->max_interval) | ||
| 4233 | sd->balance_interval *= 2; | ||
| 4234 | } | ||
| 4235 | |||
| 4236 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
| 4237 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 4238 | ld_moved = -1; | ||
| 4239 | |||
| 4240 | goto out; | ||
| 4241 | |||
| 4242 | out_balanced: | ||
| 4243 | schedstat_inc(sd, lb_balanced[idle]); | ||
| 4244 | |||
| 4245 | sd->nr_balance_failed = 0; | ||
| 4246 | |||
| 4247 | out_one_pinned: | ||
| 4248 | /* tune up the balancing interval */ | ||
| 4249 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
| 4250 | (sd->balance_interval < sd->max_interval)) | ||
| 4251 | sd->balance_interval *= 2; | ||
| 4252 | |||
| 4253 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
| 4254 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 4255 | ld_moved = -1; | ||
| 4256 | else | ||
| 4257 | ld_moved = 0; | ||
| 4258 | out: | ||
| 4259 | if (ld_moved) | ||
| 4260 | update_shares(sd); | ||
| 4261 | return ld_moved; | ||
| 4262 | } | ||
| 4263 | |||
| 4264 | /* | ||
| 4265 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
| 4266 | * tasks if there is an imbalance. | ||
| 4267 | * | ||
| 4268 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | ||
| 4269 | * this_rq is locked. | ||
| 4270 | */ | ||
| 4271 | static int | ||
| 4272 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | ||
| 4273 | { | ||
| 4274 | struct sched_group *group; | ||
| 4275 | struct rq *busiest = NULL; | ||
| 4276 | unsigned long imbalance; | ||
| 4277 | int ld_moved = 0; | ||
| 4278 | int sd_idle = 0; | ||
| 4279 | int all_pinned = 0; | ||
| 4280 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
| 4281 | |||
| 4282 | cpumask_copy(cpus, cpu_active_mask); | ||
| 4283 | |||
| 4284 | /* | ||
| 4285 | * When power savings policy is enabled for the parent domain, idle | ||
| 4286 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
| 4287 | * let the state of idle sibling percolate up as IDLE, instead of | ||
| 4288 | * portraying it as CPU_NOT_IDLE. | ||
| 4289 | */ | ||
| 4290 | if (sd->flags & SD_SHARE_CPUPOWER && | ||
| 4291 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 4292 | sd_idle = 1; | ||
| 4293 | |||
| 4294 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | ||
| 4295 | redo: | ||
| 4296 | update_shares_locked(this_rq, sd); | ||
| 4297 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | ||
| 4298 | &sd_idle, cpus, NULL); | ||
| 4299 | if (!group) { | ||
| 4300 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | ||
| 4301 | goto out_balanced; | ||
| 4302 | } | ||
| 4303 | |||
| 4304 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | ||
| 4305 | if (!busiest) { | ||
| 4306 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | ||
| 4307 | goto out_balanced; | ||
| 4308 | } | ||
| 4309 | |||
| 4310 | BUG_ON(busiest == this_rq); | ||
| 4311 | |||
| 4312 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | ||
| 4313 | |||
| 4314 | ld_moved = 0; | ||
| 4315 | if (busiest->nr_running > 1) { | ||
| 4316 | /* Attempt to move tasks */ | ||
| 4317 | double_lock_balance(this_rq, busiest); | ||
| 4318 | /* this_rq->clock is already updated */ | ||
| 4319 | update_rq_clock(busiest); | ||
| 4320 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
| 4321 | imbalance, sd, CPU_NEWLY_IDLE, | ||
| 4322 | &all_pinned); | ||
| 4323 | double_unlock_balance(this_rq, busiest); | ||
| 4324 | |||
| 4325 | if (unlikely(all_pinned)) { | ||
| 4326 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
| 4327 | if (!cpumask_empty(cpus)) | ||
| 4328 | goto redo; | ||
| 4329 | } | ||
| 4330 | } | ||
| 4331 | |||
| 4332 | if (!ld_moved) { | ||
| 4333 | int active_balance = 0; | ||
| 4334 | |||
| 4335 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | ||
| 4336 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
| 4337 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 4338 | return -1; | ||
| 4339 | |||
| 4340 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
| 4341 | return -1; | ||
| 4342 | |||
| 4343 | if (sd->nr_balance_failed++ < 2) | ||
| 4344 | return -1; | ||
| 4345 | |||
| 4346 | /* | ||
| 4347 | * The only task running in a non-idle cpu can be moved to this | ||
| 4348 | * cpu in an attempt to completely freeup the other CPU | ||
| 4349 | * package. The same method used to move task in load_balance() | ||
| 4350 | * have been extended for load_balance_newidle() to speedup | ||
| 4351 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | ||
| 4352 | * | ||
| 4353 | * The package power saving logic comes from | ||
| 4354 | * find_busiest_group(). If there are no imbalance, then | ||
| 4355 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
| 4356 | * f_b_g() will select a group from which a running task may be | ||
| 4357 | * pulled to this cpu in order to make the other package idle. | ||
| 4358 | * If there is no opportunity to make a package idle and if | ||
| 4359 | * there are no imbalance, then f_b_g() will return NULL and no | ||
| 4360 | * action will be taken in load_balance_newidle(). | ||
| 4361 | * | ||
| 4362 | * Under normal task pull operation due to imbalance, there | ||
| 4363 | * will be more than one task in the source run queue and | ||
| 4364 | * move_tasks() will succeed. ld_moved will be true and this | ||
| 4365 | * active balance code will not be triggered. | ||
| 4366 | */ | ||
| 4367 | |||
| 4368 | /* Lock busiest in correct order while this_rq is held */ | ||
| 4369 | double_lock_balance(this_rq, busiest); | ||
| 4370 | |||
| 4371 | /* | ||
| 4372 | * don't kick the migration_thread, if the curr | ||
| 4373 | * task on busiest cpu can't be moved to this_cpu | ||
| 4374 | */ | ||
| 4375 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { | ||
| 4376 | double_unlock_balance(this_rq, busiest); | ||
| 4377 | all_pinned = 1; | ||
| 4378 | return ld_moved; | ||
| 4379 | } | ||
| 4380 | |||
| 4381 | if (!busiest->active_balance) { | ||
| 4382 | busiest->active_balance = 1; | ||
| 4383 | busiest->push_cpu = this_cpu; | ||
| 4384 | active_balance = 1; | ||
| 4385 | } | ||
| 4386 | |||
| 4387 | double_unlock_balance(this_rq, busiest); | ||
| 4388 | /* | ||
| 4389 | * Should not call ttwu while holding a rq->lock | ||
| 4390 | */ | ||
| 4391 | raw_spin_unlock(&this_rq->lock); | ||
| 4392 | if (active_balance) | ||
| 4393 | wake_up_process(busiest->migration_thread); | ||
| 4394 | raw_spin_lock(&this_rq->lock); | ||
| 4395 | |||
| 4396 | } else | ||
| 4397 | sd->nr_balance_failed = 0; | ||
| 4398 | |||
| 4399 | update_shares_locked(this_rq, sd); | ||
| 4400 | return ld_moved; | ||
| 4401 | |||
| 4402 | out_balanced: | ||
| 4403 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | ||
| 4404 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
| 4405 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
| 4406 | return -1; | ||
| 4407 | sd->nr_balance_failed = 0; | ||
| 4408 | |||
| 4409 | return 0; | ||
| 4410 | } | ||
| 4411 | |||
| 4412 | /* | ||
| 4413 | * idle_balance is called by schedule() if this_cpu is about to become | ||
| 4414 | * idle. Attempts to pull tasks from other CPUs. | ||
| 4415 | */ | ||
| 4416 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
| 4417 | { | ||
| 4418 | struct sched_domain *sd; | ||
| 4419 | int pulled_task = 0; | ||
| 4420 | unsigned long next_balance = jiffies + HZ; | ||
| 4421 | |||
| 4422 | this_rq->idle_stamp = this_rq->clock; | ||
| 4423 | |||
| 4424 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
| 4425 | return; | ||
| 4426 | |||
| 4427 | for_each_domain(this_cpu, sd) { | ||
| 4428 | unsigned long interval; | ||
| 4429 | |||
| 4430 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
| 4431 | continue; | ||
| 4432 | |||
| 4433 | if (sd->flags & SD_BALANCE_NEWIDLE) | ||
| 4434 | /* If we've pulled tasks over stop searching: */ | ||
| 4435 | pulled_task = load_balance_newidle(this_cpu, this_rq, | ||
| 4436 | sd); | ||
| 4437 | |||
| 4438 | interval = msecs_to_jiffies(sd->balance_interval); | ||
| 4439 | if (time_after(next_balance, sd->last_balance + interval)) | ||
| 4440 | next_balance = sd->last_balance + interval; | ||
| 4441 | if (pulled_task) { | ||
| 4442 | this_rq->idle_stamp = 0; | ||
| 4443 | break; | ||
| 4444 | } | ||
| 4445 | } | ||
| 4446 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
| 4447 | /* | ||
| 4448 | * We are going idle. next_balance may be set based on | ||
| 4449 | * a busy processor. So reset next_balance. | ||
| 4450 | */ | ||
| 4451 | this_rq->next_balance = next_balance; | ||
| 4452 | } | ||
| 4453 | } | ||
| 4454 | |||
| 4455 | /* | ||
| 4456 | * active_load_balance is run by migration threads. It pushes running tasks | ||
| 4457 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
| 4458 | * running on each physical CPU where possible, and avoids physical / | ||
| 4459 | * logical imbalances. | ||
| 4460 | * | ||
| 4461 | * Called with busiest_rq locked. | ||
| 4462 | */ | ||
| 4463 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
| 4464 | { | ||
| 4465 | int target_cpu = busiest_rq->push_cpu; | ||
| 4466 | struct sched_domain *sd; | ||
| 4467 | struct rq *target_rq; | ||
| 4468 | |||
| 4469 | /* Is there any task to move? */ | ||
| 4470 | if (busiest_rq->nr_running <= 1) | ||
| 4471 | return; | ||
| 4472 | |||
| 4473 | target_rq = cpu_rq(target_cpu); | ||
| 4474 | |||
| 4475 | /* | ||
| 4476 | * This condition is "impossible", if it occurs | ||
| 4477 | * we need to fix it. Originally reported by | ||
| 4478 | * Bjorn Helgaas on a 128-cpu setup. | ||
| 4479 | */ | ||
| 4480 | BUG_ON(busiest_rq == target_rq); | ||
| 4481 | |||
| 4482 | /* move a task from busiest_rq to target_rq */ | ||
| 4483 | double_lock_balance(busiest_rq, target_rq); | ||
| 4484 | update_rq_clock(busiest_rq); | ||
| 4485 | update_rq_clock(target_rq); | ||
| 4486 | |||
| 4487 | /* Search for an sd spanning us and the target CPU. */ | ||
| 4488 | for_each_domain(target_cpu, sd) { | ||
| 4489 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
| 4490 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
| 4491 | break; | ||
| 4492 | } | ||
| 4493 | |||
| 4494 | if (likely(sd)) { | ||
| 4495 | schedstat_inc(sd, alb_count); | ||
| 4496 | |||
| 4497 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
| 4498 | sd, CPU_IDLE)) | ||
| 4499 | schedstat_inc(sd, alb_pushed); | ||
| 4500 | else | ||
| 4501 | schedstat_inc(sd, alb_failed); | ||
| 4502 | } | ||
| 4503 | double_unlock_balance(busiest_rq, target_rq); | ||
| 4504 | } | ||
| 4505 | |||
| 4506 | #ifdef CONFIG_NO_HZ | ||
| 4507 | static struct { | ||
| 4508 | atomic_t load_balancer; | ||
| 4509 | cpumask_var_t cpu_mask; | ||
| 4510 | cpumask_var_t ilb_grp_nohz_mask; | ||
| 4511 | } nohz ____cacheline_aligned = { | ||
| 4512 | .load_balancer = ATOMIC_INIT(-1), | ||
| 4513 | }; | ||
| 4514 | |||
| 4515 | int get_nohz_load_balancer(void) | ||
| 4516 | { | ||
| 4517 | return atomic_read(&nohz.load_balancer); | ||
| 4518 | } | ||
| 4519 | |||
| 4520 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 4521 | /** | ||
| 4522 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
| 4523 | * @cpu: The cpu whose lowest level of sched domain is to | ||
| 4524 | * be returned. | ||
| 4525 | * @flag: The flag to check for the lowest sched_domain | ||
| 4526 | * for the given cpu. | ||
| 4527 | * | ||
| 4528 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
| 4529 | */ | ||
| 4530 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
| 4531 | { | ||
| 4532 | struct sched_domain *sd; | ||
| 4533 | |||
| 4534 | for_each_domain(cpu, sd) | ||
| 4535 | if (sd && (sd->flags & flag)) | ||
| 4536 | break; | ||
| 4537 | |||
| 4538 | return sd; | ||
| 4539 | } | ||
| 4540 | |||
| 4541 | /** | ||
| 4542 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
| 4543 | * @cpu: The cpu whose domains we're iterating over. | ||
| 4544 | * @sd: variable holding the value of the power_savings_sd | ||
| 4545 | * for cpu. | ||
| 4546 | * @flag: The flag to filter the sched_domains to be iterated. | ||
| 4547 | * | ||
| 4548 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
| 4549 | * set, starting from the lowest sched_domain to the highest. | ||
| 4550 | */ | ||
| 4551 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
| 4552 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
| 4553 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
| 4554 | |||
| 4555 | /** | ||
| 4556 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
| 4557 | * @ilb_group: group to be checked for semi-idleness | ||
| 4558 | * | ||
| 4559 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
| 4560 | * | ||
| 4561 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
| 4562 | * and atleast one non-idle CPU. This helper function checks if the given | ||
| 4563 | * sched_group is semi-idle or not. | ||
| 4564 | */ | ||
| 4565 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
| 4566 | { | ||
| 4567 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
| 4568 | sched_group_cpus(ilb_group)); | ||
| 4569 | |||
| 4570 | /* | ||
| 4571 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
| 4572 | * and atleast one idle cpu. | ||
| 4573 | */ | ||
| 4574 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
| 4575 | return 0; | ||
| 4576 | |||
| 4577 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
| 4578 | return 0; | ||
| 4579 | |||
| 4580 | return 1; | ||
| 4581 | } | ||
| 4582 | /** | ||
| 4583 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
| 4584 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
| 4585 | * | ||
| 4586 | * Returns: Returns the id of the idle load balancer if it exists, | ||
| 4587 | * Else, returns >= nr_cpu_ids. | ||
| 4588 | * | ||
| 4589 | * This algorithm picks the idle load balancer such that it belongs to a | ||
| 4590 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
| 4591 | * completely idle packages/cores just for the purpose of idle load balancing | ||
| 4592 | * when there are other idle cpu's which are better suited for that job. | ||
| 4593 | */ | ||
| 4594 | static int find_new_ilb(int cpu) | ||
| 4595 | { | ||
| 4596 | struct sched_domain *sd; | ||
| 4597 | struct sched_group *ilb_group; | ||
| 4598 | |||
| 4599 | /* | ||
| 4600 | * Have idle load balancer selection from semi-idle packages only | ||
| 4601 | * when power-aware load balancing is enabled | ||
| 4602 | */ | ||
| 4603 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
| 4604 | goto out_done; | ||
| 4605 | |||
| 4606 | /* | ||
| 4607 | * Optimize for the case when we have no idle CPUs or only one | ||
| 4608 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
| 4609 | */ | ||
| 4610 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
| 4611 | goto out_done; | ||
| 4612 | |||
| 4613 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
| 4614 | ilb_group = sd->groups; | ||
| 4615 | |||
| 4616 | do { | ||
| 4617 | if (is_semi_idle_group(ilb_group)) | ||
| 4618 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
| 4619 | |||
| 4620 | ilb_group = ilb_group->next; | ||
| 4621 | |||
| 4622 | } while (ilb_group != sd->groups); | ||
| 4623 | } | ||
| 4624 | |||
| 4625 | out_done: | ||
| 4626 | return cpumask_first(nohz.cpu_mask); | ||
| 4627 | } | ||
| 4628 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
| 4629 | static inline int find_new_ilb(int call_cpu) | ||
| 4630 | { | ||
| 4631 | return cpumask_first(nohz.cpu_mask); | ||
| 4632 | } | ||
| 4633 | #endif | ||
| 4634 | |||
| 4635 | /* | ||
| 4636 | * This routine will try to nominate the ilb (idle load balancing) | ||
| 4637 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
| 4638 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
| 4639 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
| 4640 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
| 4641 | * arrives... | ||
| 4642 | * | ||
| 4643 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
| 4644 | * for idle load balancing. ilb owner will still be part of | ||
| 4645 | * nohz.cpu_mask.. | ||
| 4646 | * | ||
| 4647 | * While stopping the tick, this cpu will become the ilb owner if there | ||
| 4648 | * is no other owner. And will be the owner till that cpu becomes busy | ||
| 4649 | * or if all cpus in the system stop their ticks at which point | ||
| 4650 | * there is no need for ilb owner. | ||
| 4651 | * | ||
| 4652 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
| 4653 | * next busy scheduler_tick() | ||
| 4654 | */ | ||
| 4655 | int select_nohz_load_balancer(int stop_tick) | ||
| 4656 | { | ||
| 4657 | int cpu = smp_processor_id(); | ||
| 4658 | |||
| 4659 | if (stop_tick) { | ||
| 4660 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
| 4661 | |||
| 4662 | if (!cpu_active(cpu)) { | ||
| 4663 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
| 4664 | return 0; | ||
| 4665 | |||
| 4666 | /* | ||
| 4667 | * If we are going offline and still the leader, | ||
| 4668 | * give up! | ||
| 4669 | */ | ||
| 4670 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
| 4671 | BUG(); | ||
| 4672 | |||
| 4673 | return 0; | ||
| 4674 | } | ||
| 4675 | |||
| 4676 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
| 4677 | |||
| 4678 | /* time for ilb owner also to sleep */ | ||
| 4679 | if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { | ||
| 4680 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
| 4681 | atomic_set(&nohz.load_balancer, -1); | ||
| 4682 | return 0; | ||
| 4683 | } | ||
| 4684 | |||
| 4685 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
| 4686 | /* make me the ilb owner */ | ||
| 4687 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
| 4688 | return 1; | ||
| 4689 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
| 4690 | int new_ilb; | ||
| 4691 | |||
| 4692 | if (!(sched_smt_power_savings || | ||
| 4693 | sched_mc_power_savings)) | ||
| 4694 | return 1; | ||
| 4695 | /* | ||
| 4696 | * Check to see if there is a more power-efficient | ||
| 4697 | * ilb. | ||
| 4698 | */ | ||
| 4699 | new_ilb = find_new_ilb(cpu); | ||
| 4700 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
| 4701 | atomic_set(&nohz.load_balancer, -1); | ||
| 4702 | resched_cpu(new_ilb); | ||
| 4703 | return 0; | ||
| 4704 | } | ||
| 4705 | return 1; | ||
| 4706 | } | ||
| 4707 | } else { | ||
| 4708 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
| 4709 | return 0; | ||
| 4710 | |||
| 4711 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
| 4712 | |||
| 4713 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
| 4714 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
| 4715 | BUG(); | ||
| 4716 | } | ||
| 4717 | return 0; | ||
| 4718 | } | ||
| 4719 | #endif | ||
| 4720 | |||
| 4721 | static DEFINE_SPINLOCK(balancing); | ||
| 4722 | |||
| 4723 | /* | ||
| 4724 | * It checks each scheduling domain to see if it is due to be balanced, | ||
| 4725 | * and initiates a balancing operation if so. | ||
| 4726 | * | ||
| 4727 | * Balancing parameters are set up in arch_init_sched_domains. | ||
| 4728 | */ | ||
| 4729 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
| 4730 | { | ||
| 4731 | int balance = 1; | ||
| 4732 | struct rq *rq = cpu_rq(cpu); | ||
| 4733 | unsigned long interval; | ||
| 4734 | struct sched_domain *sd; | ||
| 4735 | /* Earliest time when we have to do rebalance again */ | ||
| 4736 | unsigned long next_balance = jiffies + 60*HZ; | ||
| 4737 | int update_next_balance = 0; | ||
| 4738 | int need_serialize; | ||
| 4739 | |||
| 4740 | for_each_domain(cpu, sd) { | ||
| 4741 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
| 4742 | continue; | ||
| 4743 | |||
| 4744 | interval = sd->balance_interval; | ||
| 4745 | if (idle != CPU_IDLE) | ||
| 4746 | interval *= sd->busy_factor; | ||
| 4747 | |||
| 4748 | /* scale ms to jiffies */ | ||
| 4749 | interval = msecs_to_jiffies(interval); | ||
| 4750 | if (unlikely(!interval)) | ||
| 4751 | interval = 1; | ||
| 4752 | if (interval > HZ*NR_CPUS/10) | ||
| 4753 | interval = HZ*NR_CPUS/10; | ||
| 4754 | |||
| 4755 | need_serialize = sd->flags & SD_SERIALIZE; | ||
| 4756 | |||
| 4757 | if (need_serialize) { | ||
| 4758 | if (!spin_trylock(&balancing)) | ||
| 4759 | goto out; | ||
| 4760 | } | ||
| 4761 | |||
| 4762 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
| 4763 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
| 4764 | /* | ||
| 4765 | * We've pulled tasks over so either we're no | ||
| 4766 | * longer idle, or one of our SMT siblings is | ||
| 4767 | * not idle. | ||
| 4768 | */ | ||
| 4769 | idle = CPU_NOT_IDLE; | ||
| 4770 | } | ||
| 4771 | sd->last_balance = jiffies; | ||
| 4772 | } | ||
| 4773 | if (need_serialize) | ||
| 4774 | spin_unlock(&balancing); | ||
| 4775 | out: | ||
| 4776 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
| 4777 | next_balance = sd->last_balance + interval; | ||
| 4778 | update_next_balance = 1; | ||
| 4779 | } | ||
| 4780 | |||
| 4781 | /* | ||
| 4782 | * Stop the load balance at this level. There is another | ||
| 4783 | * CPU in our sched group which is doing load balancing more | ||
| 4784 | * actively. | ||
| 4785 | */ | ||
| 4786 | if (!balance) | ||
| 4787 | break; | ||
| 4788 | } | ||
| 4789 | |||
| 4790 | /* | ||
| 4791 | * next_balance will be updated only when there is a need. | ||
| 4792 | * When the cpu is attached to null domain for ex, it will not be | ||
| 4793 | * updated. | ||
| 4794 | */ | ||
| 4795 | if (likely(update_next_balance)) | ||
| 4796 | rq->next_balance = next_balance; | ||
| 4797 | } | ||
| 4798 | |||
| 4799 | /* | ||
| 4800 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
| 4801 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
| 4802 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
| 4803 | */ | ||
| 4804 | static void run_rebalance_domains(struct softirq_action *h) | ||
| 4805 | { | ||
| 4806 | int this_cpu = smp_processor_id(); | ||
| 4807 | struct rq *this_rq = cpu_rq(this_cpu); | ||
| 4808 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
| 4809 | CPU_IDLE : CPU_NOT_IDLE; | ||
| 4810 | |||
| 4811 | rebalance_domains(this_cpu, idle); | ||
| 4812 | |||
| 4813 | #ifdef CONFIG_NO_HZ | ||
| 4814 | /* | ||
| 4815 | * If this cpu is the owner for idle load balancing, then do the | ||
| 4816 | * balancing on behalf of the other idle cpus whose ticks are | ||
| 4817 | * stopped. | ||
| 4818 | */ | ||
| 4819 | if (this_rq->idle_at_tick && | ||
| 4820 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
| 4821 | struct rq *rq; | ||
| 4822 | int balance_cpu; | ||
| 4823 | |||
| 4824 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
| 4825 | if (balance_cpu == this_cpu) | ||
| 4826 | continue; | ||
| 4827 | |||
| 4828 | /* | ||
| 4829 | * If this cpu gets work to do, stop the load balancing | ||
| 4830 | * work being done for other cpus. Next load | ||
| 4831 | * balancing owner will pick it up. | ||
| 4832 | */ | ||
| 4833 | if (need_resched()) | ||
| 4834 | break; | ||
| 4835 | |||
| 4836 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
| 4837 | |||
| 4838 | rq = cpu_rq(balance_cpu); | ||
| 4839 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
| 4840 | this_rq->next_balance = rq->next_balance; | ||
| 4841 | } | ||
| 4842 | } | ||
| 4843 | #endif | ||
| 4844 | } | ||
| 4845 | |||
| 4846 | static inline int on_null_domain(int cpu) | ||
| 4847 | { | ||
| 4848 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
| 4849 | } | ||
| 4850 | |||
| 4851 | /* | ||
| 4852 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
| 4853 | * | ||
| 4854 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
| 4855 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
| 4856 | * if the whole system is idle. | ||
| 4857 | */ | ||
| 4858 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
| 4859 | { | ||
| 4860 | #ifdef CONFIG_NO_HZ | ||
| 4861 | /* | ||
| 4862 | * If we were in the nohz mode recently and busy at the current | ||
| 4863 | * scheduler tick, then check if we need to nominate new idle | ||
| 4864 | * load balancer. | ||
| 4865 | */ | ||
| 4866 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
| 4867 | rq->in_nohz_recently = 0; | ||
| 4868 | |||
| 4869 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
| 4870 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
| 4871 | atomic_set(&nohz.load_balancer, -1); | ||
| 4872 | } | ||
| 4873 | |||
| 4874 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
| 4875 | int ilb = find_new_ilb(cpu); | ||
| 4876 | |||
| 4877 | if (ilb < nr_cpu_ids) | ||
| 4878 | resched_cpu(ilb); | ||
| 4879 | } | ||
| 4880 | } | ||
| 4881 | |||
| 4882 | /* | ||
| 4883 | * If this cpu is idle and doing idle load balancing for all the | ||
| 4884 | * cpus with ticks stopped, is it time for that to stop? | ||
| 4885 | */ | ||
| 4886 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
| 4887 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
| 4888 | resched_cpu(cpu); | ||
| 4889 | return; | ||
| 4890 | } | ||
| 4891 | |||
| 4892 | /* | ||
| 4893 | * If this cpu is idle and the idle load balancing is done by | ||
| 4894 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
| 4895 | */ | ||
| 4896 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
| 4897 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
| 4898 | return; | ||
| 4899 | #endif | ||
| 4900 | /* Don't need to rebalance while attached to NULL domain */ | ||
| 4901 | if (time_after_eq(jiffies, rq->next_balance) && | ||
| 4902 | likely(!on_null_domain(cpu))) | ||
| 4903 | raise_softirq(SCHED_SOFTIRQ); | ||
| 4904 | } | ||
| 4905 | |||
| 4906 | #else /* CONFIG_SMP */ | ||
| 4907 | |||
| 4908 | /* | ||
| 4909 | * on UP we do not need to balance between CPUs: | ||
| 4910 | */ | ||
| 4911 | static inline void idle_balance(int cpu, struct rq *rq) | ||
| 4912 | { | ||
| 4913 | } | ||
| 4914 | |||
| 4915 | #endif | 3164 | #endif |
| 4916 | 3165 | ||
| 4917 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 3166 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
| @@ -5266,7 +3515,7 @@ void scheduler_tick(void) | |||
| 5266 | curr->sched_class->task_tick(rq, curr, 0); | 3515 | curr->sched_class->task_tick(rq, curr, 0); |
| 5267 | raw_spin_unlock(&rq->lock); | 3516 | raw_spin_unlock(&rq->lock); |
| 5268 | 3517 | ||
| 5269 | perf_event_task_tick(curr, cpu); | 3518 | perf_event_task_tick(curr); |
| 5270 | 3519 | ||
| 5271 | #ifdef CONFIG_SMP | 3520 | #ifdef CONFIG_SMP |
| 5272 | rq->idle_at_tick = idle_cpu(cpu); | 3521 | rq->idle_at_tick = idle_cpu(cpu); |
| @@ -5480,7 +3729,7 @@ need_resched_nonpreemptible: | |||
| 5480 | 3729 | ||
| 5481 | if (likely(prev != next)) { | 3730 | if (likely(prev != next)) { |
| 5482 | sched_info_switch(prev, next); | 3731 | sched_info_switch(prev, next); |
| 5483 | perf_event_task_sched_out(prev, next, cpu); | 3732 | perf_event_task_sched_out(prev, next); |
| 5484 | 3733 | ||
| 5485 | rq->nr_switches++; | 3734 | rq->nr_switches++; |
| 5486 | rq->curr = next; | 3735 | rq->curr = next; |
| @@ -5498,8 +3747,11 @@ need_resched_nonpreemptible: | |||
| 5498 | 3747 | ||
| 5499 | post_schedule(rq); | 3748 | post_schedule(rq); |
| 5500 | 3749 | ||
| 5501 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 3750 | if (unlikely(reacquire_kernel_lock(current) < 0)) { |
| 3751 | prev = rq->curr; | ||
| 3752 | switch_count = &prev->nivcsw; | ||
| 5502 | goto need_resched_nonpreemptible; | 3753 | goto need_resched_nonpreemptible; |
| 3754 | } | ||
| 5503 | 3755 | ||
| 5504 | preempt_enable_no_resched(); | 3756 | preempt_enable_no_resched(); |
| 5505 | if (need_resched()) | 3757 | if (need_resched()) |
| @@ -5911,14 +4163,15 @@ EXPORT_SYMBOL(wait_for_completion_killable); | |||
| 5911 | */ | 4163 | */ |
| 5912 | bool try_wait_for_completion(struct completion *x) | 4164 | bool try_wait_for_completion(struct completion *x) |
| 5913 | { | 4165 | { |
| 4166 | unsigned long flags; | ||
| 5914 | int ret = 1; | 4167 | int ret = 1; |
| 5915 | 4168 | ||
| 5916 | spin_lock_irq(&x->wait.lock); | 4169 | spin_lock_irqsave(&x->wait.lock, flags); |
| 5917 | if (!x->done) | 4170 | if (!x->done) |
| 5918 | ret = 0; | 4171 | ret = 0; |
| 5919 | else | 4172 | else |
| 5920 | x->done--; | 4173 | x->done--; |
| 5921 | spin_unlock_irq(&x->wait.lock); | 4174 | spin_unlock_irqrestore(&x->wait.lock, flags); |
| 5922 | return ret; | 4175 | return ret; |
| 5923 | } | 4176 | } |
| 5924 | EXPORT_SYMBOL(try_wait_for_completion); | 4177 | EXPORT_SYMBOL(try_wait_for_completion); |
| @@ -5933,12 +4186,13 @@ EXPORT_SYMBOL(try_wait_for_completion); | |||
| 5933 | */ | 4186 | */ |
| 5934 | bool completion_done(struct completion *x) | 4187 | bool completion_done(struct completion *x) |
| 5935 | { | 4188 | { |
| 4189 | unsigned long flags; | ||
| 5936 | int ret = 1; | 4190 | int ret = 1; |
| 5937 | 4191 | ||
| 5938 | spin_lock_irq(&x->wait.lock); | 4192 | spin_lock_irqsave(&x->wait.lock, flags); |
| 5939 | if (!x->done) | 4193 | if (!x->done) |
| 5940 | ret = 0; | 4194 | ret = 0; |
| 5941 | spin_unlock_irq(&x->wait.lock); | 4195 | spin_unlock_irqrestore(&x->wait.lock, flags); |
| 5942 | return ret; | 4196 | return ret; |
| 5943 | } | 4197 | } |
| 5944 | EXPORT_SYMBOL(completion_done); | 4198 | EXPORT_SYMBOL(completion_done); |
| @@ -6006,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
| 6006 | unsigned long flags; | 4260 | unsigned long flags; |
| 6007 | int oldprio, on_rq, running; | 4261 | int oldprio, on_rq, running; |
| 6008 | struct rq *rq; | 4262 | struct rq *rq; |
| 6009 | const struct sched_class *prev_class = p->sched_class; | 4263 | const struct sched_class *prev_class; |
| 6010 | 4264 | ||
| 6011 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 4265 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
| 6012 | 4266 | ||
| @@ -6014,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
| 6014 | update_rq_clock(rq); | 4268 | update_rq_clock(rq); |
| 6015 | 4269 | ||
| 6016 | oldprio = p->prio; | 4270 | oldprio = p->prio; |
| 4271 | prev_class = p->sched_class; | ||
| 6017 | on_rq = p->se.on_rq; | 4272 | on_rq = p->se.on_rq; |
| 6018 | running = task_current(rq, p); | 4273 | running = task_current(rq, p); |
| 6019 | if (on_rq) | 4274 | if (on_rq) |
| @@ -6031,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
| 6031 | if (running) | 4286 | if (running) |
| 6032 | p->sched_class->set_curr_task(rq); | 4287 | p->sched_class->set_curr_task(rq); |
| 6033 | if (on_rq) { | 4288 | if (on_rq) { |
| 6034 | enqueue_task(rq, p, 0); | 4289 | enqueue_task(rq, p, 0, oldprio < prio); |
| 6035 | 4290 | ||
| 6036 | check_class_changed(rq, p, prev_class, oldprio, running); | 4291 | check_class_changed(rq, p, prev_class, oldprio, running); |
| 6037 | } | 4292 | } |
| @@ -6075,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
| 6075 | delta = p->prio - old_prio; | 4330 | delta = p->prio - old_prio; |
| 6076 | 4331 | ||
| 6077 | if (on_rq) { | 4332 | if (on_rq) { |
| 6078 | enqueue_task(rq, p, 0); | 4333 | enqueue_task(rq, p, 0, false); |
| 6079 | /* | 4334 | /* |
| 6080 | * If the task increased its priority or is running and | 4335 | * If the task increased its priority or is running and |
| 6081 | * lowered its priority, then reschedule its CPU: | 4336 | * lowered its priority, then reschedule its CPU: |
| @@ -6098,7 +4353,7 @@ int can_nice(const struct task_struct *p, const int nice) | |||
| 6098 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 4353 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
| 6099 | int nice_rlim = 20 - nice; | 4354 | int nice_rlim = 20 - nice; |
| 6100 | 4355 | ||
| 6101 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 4356 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
| 6102 | capable(CAP_SYS_NICE)); | 4357 | capable(CAP_SYS_NICE)); |
| 6103 | } | 4358 | } |
| 6104 | 4359 | ||
| @@ -6233,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy, | |||
| 6233 | { | 4488 | { |
| 6234 | int retval, oldprio, oldpolicy = -1, on_rq, running; | 4489 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
| 6235 | unsigned long flags; | 4490 | unsigned long flags; |
| 6236 | const struct sched_class *prev_class = p->sched_class; | 4491 | const struct sched_class *prev_class; |
| 6237 | struct rq *rq; | 4492 | struct rq *rq; |
| 6238 | int reset_on_fork; | 4493 | int reset_on_fork; |
| 6239 | 4494 | ||
| @@ -6275,7 +4530,7 @@ recheck: | |||
| 6275 | 4530 | ||
| 6276 | if (!lock_task_sighand(p, &flags)) | 4531 | if (!lock_task_sighand(p, &flags)) |
| 6277 | return -ESRCH; | 4532 | return -ESRCH; |
| 6278 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | 4533 | rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); |
| 6279 | unlock_task_sighand(p, &flags); | 4534 | unlock_task_sighand(p, &flags); |
| 6280 | 4535 | ||
| 6281 | /* can't set/change the rt policy */ | 4536 | /* can't set/change the rt policy */ |
| @@ -6347,6 +4602,7 @@ recheck: | |||
| 6347 | p->sched_reset_on_fork = reset_on_fork; | 4602 | p->sched_reset_on_fork = reset_on_fork; |
| 6348 | 4603 | ||
| 6349 | oldprio = p->prio; | 4604 | oldprio = p->prio; |
| 4605 | prev_class = p->sched_class; | ||
| 6350 | __setscheduler(rq, p, policy, param->sched_priority); | 4606 | __setscheduler(rq, p, policy, param->sched_priority); |
| 6351 | 4607 | ||
| 6352 | if (running) | 4608 | if (running) |
| @@ -6457,7 +4713,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
| 6457 | return -EINVAL; | 4713 | return -EINVAL; |
| 6458 | 4714 | ||
| 6459 | retval = -ESRCH; | 4715 | retval = -ESRCH; |
| 6460 | read_lock(&tasklist_lock); | 4716 | rcu_read_lock(); |
| 6461 | p = find_process_by_pid(pid); | 4717 | p = find_process_by_pid(pid); |
| 6462 | if (p) { | 4718 | if (p) { |
| 6463 | retval = security_task_getscheduler(p); | 4719 | retval = security_task_getscheduler(p); |
| @@ -6465,7 +4721,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
| 6465 | retval = p->policy | 4721 | retval = p->policy |
| 6466 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | 4722 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); |
| 6467 | } | 4723 | } |
| 6468 | read_unlock(&tasklist_lock); | 4724 | rcu_read_unlock(); |
| 6469 | return retval; | 4725 | return retval; |
| 6470 | } | 4726 | } |
| 6471 | 4727 | ||
| @@ -6483,7 +4739,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
| 6483 | if (!param || pid < 0) | 4739 | if (!param || pid < 0) |
| 6484 | return -EINVAL; | 4740 | return -EINVAL; |
| 6485 | 4741 | ||
| 6486 | read_lock(&tasklist_lock); | 4742 | rcu_read_lock(); |
| 6487 | p = find_process_by_pid(pid); | 4743 | p = find_process_by_pid(pid); |
| 6488 | retval = -ESRCH; | 4744 | retval = -ESRCH; |
| 6489 | if (!p) | 4745 | if (!p) |
| @@ -6494,7 +4750,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
| 6494 | goto out_unlock; | 4750 | goto out_unlock; |
| 6495 | 4751 | ||
| 6496 | lp.sched_priority = p->rt_priority; | 4752 | lp.sched_priority = p->rt_priority; |
| 6497 | read_unlock(&tasklist_lock); | 4753 | rcu_read_unlock(); |
| 6498 | 4754 | ||
| 6499 | /* | 4755 | /* |
| 6500 | * This one might sleep, we cannot do it with a spinlock held ... | 4756 | * This one might sleep, we cannot do it with a spinlock held ... |
| @@ -6504,7 +4760,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
| 6504 | return retval; | 4760 | return retval; |
| 6505 | 4761 | ||
| 6506 | out_unlock: | 4762 | out_unlock: |
| 6507 | read_unlock(&tasklist_lock); | 4763 | rcu_read_unlock(); |
| 6508 | return retval; | 4764 | return retval; |
| 6509 | } | 4765 | } |
| 6510 | 4766 | ||
| @@ -6515,22 +4771,18 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | |||
| 6515 | int retval; | 4771 | int retval; |
| 6516 | 4772 | ||
| 6517 | get_online_cpus(); | 4773 | get_online_cpus(); |
| 6518 | read_lock(&tasklist_lock); | 4774 | rcu_read_lock(); |
| 6519 | 4775 | ||
| 6520 | p = find_process_by_pid(pid); | 4776 | p = find_process_by_pid(pid); |
| 6521 | if (!p) { | 4777 | if (!p) { |
| 6522 | read_unlock(&tasklist_lock); | 4778 | rcu_read_unlock(); |
| 6523 | put_online_cpus(); | 4779 | put_online_cpus(); |
| 6524 | return -ESRCH; | 4780 | return -ESRCH; |
| 6525 | } | 4781 | } |
| 6526 | 4782 | ||
| 6527 | /* | 4783 | /* Prevent p going away */ |
| 6528 | * It is not safe to call set_cpus_allowed with the | ||
| 6529 | * tasklist_lock held. We will bump the task_struct's | ||
| 6530 | * usage count and then drop tasklist_lock. | ||
| 6531 | */ | ||
| 6532 | get_task_struct(p); | 4784 | get_task_struct(p); |
| 6533 | read_unlock(&tasklist_lock); | 4785 | rcu_read_unlock(); |
| 6534 | 4786 | ||
| 6535 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | 4787 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
| 6536 | retval = -ENOMEM; | 4788 | retval = -ENOMEM; |
| @@ -6616,7 +4868,7 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask) | |||
| 6616 | int retval; | 4868 | int retval; |
| 6617 | 4869 | ||
| 6618 | get_online_cpus(); | 4870 | get_online_cpus(); |
| 6619 | read_lock(&tasklist_lock); | 4871 | rcu_read_lock(); |
| 6620 | 4872 | ||
| 6621 | retval = -ESRCH; | 4873 | retval = -ESRCH; |
| 6622 | p = find_process_by_pid(pid); | 4874 | p = find_process_by_pid(pid); |
| @@ -6632,7 +4884,7 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask) | |||
| 6632 | task_rq_unlock(rq, &flags); | 4884 | task_rq_unlock(rq, &flags); |
| 6633 | 4885 | ||
| 6634 | out_unlock: | 4886 | out_unlock: |
| 6635 | read_unlock(&tasklist_lock); | 4887 | rcu_read_unlock(); |
| 6636 | put_online_cpus(); | 4888 | put_online_cpus(); |
| 6637 | 4889 | ||
| 6638 | return retval; | 4890 | return retval; |
| @@ -6876,7 +5128,7 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
| 6876 | return -EINVAL; | 5128 | return -EINVAL; |
| 6877 | 5129 | ||
| 6878 | retval = -ESRCH; | 5130 | retval = -ESRCH; |
| 6879 | read_lock(&tasklist_lock); | 5131 | rcu_read_lock(); |
| 6880 | p = find_process_by_pid(pid); | 5132 | p = find_process_by_pid(pid); |
| 6881 | if (!p) | 5133 | if (!p) |
| 6882 | goto out_unlock; | 5134 | goto out_unlock; |
| @@ -6889,13 +5141,13 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
| 6889 | time_slice = p->sched_class->get_rr_interval(rq, p); | 5141 | time_slice = p->sched_class->get_rr_interval(rq, p); |
| 6890 | task_rq_unlock(rq, &flags); | 5142 | task_rq_unlock(rq, &flags); |
| 6891 | 5143 | ||
| 6892 | read_unlock(&tasklist_lock); | 5144 | rcu_read_unlock(); |
| 6893 | jiffies_to_timespec(time_slice, &t); | 5145 | jiffies_to_timespec(time_slice, &t); |
| 6894 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 5146 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
| 6895 | return retval; | 5147 | return retval; |
| 6896 | 5148 | ||
| 6897 | out_unlock: | 5149 | out_unlock: |
| 6898 | read_unlock(&tasklist_lock); | 5150 | rcu_read_unlock(); |
| 6899 | return retval; | 5151 | return retval; |
| 6900 | } | 5152 | } |
| 6901 | 5153 | ||
| @@ -6986,6 +5238,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) | |||
| 6986 | raw_spin_lock_irqsave(&rq->lock, flags); | 5238 | raw_spin_lock_irqsave(&rq->lock, flags); |
| 6987 | 5239 | ||
| 6988 | __sched_fork(idle); | 5240 | __sched_fork(idle); |
| 5241 | idle->state = TASK_RUNNING; | ||
| 6989 | idle->se.exec_start = sched_clock(); | 5242 | idle->se.exec_start = sched_clock(); |
| 6990 | 5243 | ||
| 6991 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); | 5244 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
| @@ -7101,6 +5354,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
| 7101 | int ret = 0; | 5354 | int ret = 0; |
| 7102 | 5355 | ||
| 7103 | rq = task_rq_lock(p, &flags); | 5356 | rq = task_rq_lock(p, &flags); |
| 5357 | |||
| 7104 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | 5358 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
| 7105 | ret = -EINVAL; | 5359 | ret = -EINVAL; |
| 7106 | goto out; | 5360 | goto out; |
| @@ -7156,7 +5410,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | |||
| 7156 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 5410 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
| 7157 | { | 5411 | { |
| 7158 | struct rq *rq_dest, *rq_src; | 5412 | struct rq *rq_dest, *rq_src; |
| 7159 | int ret = 0, on_rq; | 5413 | int ret = 0; |
| 7160 | 5414 | ||
| 7161 | if (unlikely(!cpu_active(dest_cpu))) | 5415 | if (unlikely(!cpu_active(dest_cpu))) |
| 7162 | return ret; | 5416 | return ret; |
| @@ -7172,12 +5426,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | |||
| 7172 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | 5426 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
| 7173 | goto fail; | 5427 | goto fail; |
| 7174 | 5428 | ||
| 7175 | on_rq = p->se.on_rq; | 5429 | /* |
| 7176 | if (on_rq) | 5430 | * If we're not on a rq, the next wake-up will ensure we're |
| 5431 | * placed properly. | ||
| 5432 | */ | ||
| 5433 | if (p->se.on_rq) { | ||
| 7177 | deactivate_task(rq_src, p, 0); | 5434 | deactivate_task(rq_src, p, 0); |
| 7178 | 5435 | set_task_cpu(p, dest_cpu); | |
| 7179 | set_task_cpu(p, dest_cpu); | ||
| 7180 | if (on_rq) { | ||
| 7181 | activate_task(rq_dest, p, 0); | 5436 | activate_task(rq_dest, p, 0); |
| 7182 | check_preempt_curr(rq_dest, p, 0); | 5437 | check_preempt_curr(rq_dest, p, 0); |
| 7183 | } | 5438 | } |
| @@ -7273,37 +5528,10 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |||
| 7273 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 5528 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
| 7274 | { | 5529 | { |
| 7275 | int dest_cpu; | 5530 | int dest_cpu; |
| 7276 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); | ||
| 7277 | 5531 | ||
| 7278 | again: | 5532 | again: |
| 7279 | /* Look for allowed, online CPU in same node. */ | 5533 | dest_cpu = select_fallback_rq(dead_cpu, p); |
| 7280 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | ||
| 7281 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | ||
| 7282 | goto move; | ||
| 7283 | 5534 | ||
| 7284 | /* Any allowed, online CPU? */ | ||
| 7285 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | ||
| 7286 | if (dest_cpu < nr_cpu_ids) | ||
| 7287 | goto move; | ||
| 7288 | |||
| 7289 | /* No more Mr. Nice Guy. */ | ||
| 7290 | if (dest_cpu >= nr_cpu_ids) { | ||
| 7291 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
| 7292 | dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); | ||
| 7293 | |||
| 7294 | /* | ||
| 7295 | * Don't tell them about moving exiting tasks or | ||
| 7296 | * kernel threads (both mm NULL), since they never | ||
| 7297 | * leave kernel. | ||
| 7298 | */ | ||
| 7299 | if (p->mm && printk_ratelimit()) { | ||
| 7300 | printk(KERN_INFO "process %d (%s) no " | ||
| 7301 | "longer affine to cpu%d\n", | ||
| 7302 | task_pid_nr(p), p->comm, dead_cpu); | ||
| 7303 | } | ||
| 7304 | } | ||
| 7305 | |||
| 7306 | move: | ||
| 7307 | /* It can have affinity changed while we were choosing. */ | 5535 | /* It can have affinity changed while we were choosing. */ |
| 7308 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | 5536 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) |
| 7309 | goto again; | 5537 | goto again; |
| @@ -9413,7 +7641,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |||
| 9413 | tg->rt_rq[cpu] = rt_rq; | 7641 | tg->rt_rq[cpu] = rt_rq; |
| 9414 | init_rt_rq(rt_rq, rq); | 7642 | init_rt_rq(rt_rq, rq); |
| 9415 | rt_rq->tg = tg; | 7643 | rt_rq->tg = tg; |
| 9416 | rt_rq->rt_se = rt_se; | ||
| 9417 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 7644 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
| 9418 | if (add) | 7645 | if (add) |
| 9419 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 7646 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); |
| @@ -9444,9 +7671,6 @@ void __init sched_init(void) | |||
| 9444 | #ifdef CONFIG_RT_GROUP_SCHED | 7671 | #ifdef CONFIG_RT_GROUP_SCHED |
| 9445 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 7672 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
| 9446 | #endif | 7673 | #endif |
| 9447 | #ifdef CONFIG_USER_SCHED | ||
| 9448 | alloc_size *= 2; | ||
| 9449 | #endif | ||
| 9450 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7674 | #ifdef CONFIG_CPUMASK_OFFSTACK |
| 9451 | alloc_size += num_possible_cpus() * cpumask_size(); | 7675 | alloc_size += num_possible_cpus() * cpumask_size(); |
| 9452 | #endif | 7676 | #endif |
| @@ -9460,13 +7684,6 @@ void __init sched_init(void) | |||
| 9460 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 7684 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; |
| 9461 | ptr += nr_cpu_ids * sizeof(void **); | 7685 | ptr += nr_cpu_ids * sizeof(void **); |
| 9462 | 7686 | ||
| 9463 | #ifdef CONFIG_USER_SCHED | ||
| 9464 | root_task_group.se = (struct sched_entity **)ptr; | ||
| 9465 | ptr += nr_cpu_ids * sizeof(void **); | ||
| 9466 | |||
| 9467 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | ||
| 9468 | ptr += nr_cpu_ids * sizeof(void **); | ||
| 9469 | #endif /* CONFIG_USER_SCHED */ | ||
| 9470 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7687 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 9471 | #ifdef CONFIG_RT_GROUP_SCHED | 7688 | #ifdef CONFIG_RT_GROUP_SCHED |
| 9472 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 7689 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; |
| @@ -9475,13 +7692,6 @@ void __init sched_init(void) | |||
| 9475 | init_task_group.rt_rq = (struct rt_rq **)ptr; | 7692 | init_task_group.rt_rq = (struct rt_rq **)ptr; |
| 9476 | ptr += nr_cpu_ids * sizeof(void **); | 7693 | ptr += nr_cpu_ids * sizeof(void **); |
| 9477 | 7694 | ||
| 9478 | #ifdef CONFIG_USER_SCHED | ||
| 9479 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | ||
| 9480 | ptr += nr_cpu_ids * sizeof(void **); | ||
| 9481 | |||
| 9482 | root_task_group.rt_rq = (struct rt_rq **)ptr; | ||
| 9483 | ptr += nr_cpu_ids * sizeof(void **); | ||
| 9484 | #endif /* CONFIG_USER_SCHED */ | ||
| 9485 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7695 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 9486 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7696 | #ifdef CONFIG_CPUMASK_OFFSTACK |
| 9487 | for_each_possible_cpu(i) { | 7697 | for_each_possible_cpu(i) { |
| @@ -9501,22 +7711,13 @@ void __init sched_init(void) | |||
| 9501 | #ifdef CONFIG_RT_GROUP_SCHED | 7711 | #ifdef CONFIG_RT_GROUP_SCHED |
| 9502 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | 7712 | init_rt_bandwidth(&init_task_group.rt_bandwidth, |
| 9503 | global_rt_period(), global_rt_runtime()); | 7713 | global_rt_period(), global_rt_runtime()); |
| 9504 | #ifdef CONFIG_USER_SCHED | ||
| 9505 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | ||
| 9506 | global_rt_period(), RUNTIME_INF); | ||
| 9507 | #endif /* CONFIG_USER_SCHED */ | ||
| 9508 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7714 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 9509 | 7715 | ||
| 9510 | #ifdef CONFIG_GROUP_SCHED | 7716 | #ifdef CONFIG_CGROUP_SCHED |
| 9511 | list_add(&init_task_group.list, &task_groups); | 7717 | list_add(&init_task_group.list, &task_groups); |
| 9512 | INIT_LIST_HEAD(&init_task_group.children); | 7718 | INIT_LIST_HEAD(&init_task_group.children); |
| 9513 | 7719 | ||
| 9514 | #ifdef CONFIG_USER_SCHED | 7720 | #endif /* CONFIG_CGROUP_SCHED */ |
| 9515 | INIT_LIST_HEAD(&root_task_group.children); | ||
| 9516 | init_task_group.parent = &root_task_group; | ||
| 9517 | list_add(&init_task_group.siblings, &root_task_group.children); | ||
| 9518 | #endif /* CONFIG_USER_SCHED */ | ||
| 9519 | #endif /* CONFIG_GROUP_SCHED */ | ||
| 9520 | 7721 | ||
| 9521 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | 7722 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP |
| 9522 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | 7723 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), |
| @@ -9556,25 +7757,6 @@ void __init sched_init(void) | |||
| 9556 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 7757 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). |
| 9557 | */ | 7758 | */ |
| 9558 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 7759 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
| 9559 | #elif defined CONFIG_USER_SCHED | ||
| 9560 | root_task_group.shares = NICE_0_LOAD; | ||
| 9561 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | ||
| 9562 | /* | ||
| 9563 | * In case of task-groups formed thr' the user id of tasks, | ||
| 9564 | * init_task_group represents tasks belonging to root user. | ||
| 9565 | * Hence it forms a sibling of all subsequent groups formed. | ||
| 9566 | * In this case, init_task_group gets only a fraction of overall | ||
| 9567 | * system cpu resource, based on the weight assigned to root | ||
| 9568 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | ||
| 9569 | * by letting tasks of init_task_group sit in a separate cfs_rq | ||
| 9570 | * (init_tg_cfs_rq) and having one entity represent this group of | ||
| 9571 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | ||
| 9572 | */ | ||
| 9573 | init_tg_cfs_entry(&init_task_group, | ||
| 9574 | &per_cpu(init_tg_cfs_rq, i), | ||
| 9575 | &per_cpu(init_sched_entity, i), i, 1, | ||
| 9576 | root_task_group.se[i]); | ||
| 9577 | |||
| 9578 | #endif | 7760 | #endif |
| 9579 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7761 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 9580 | 7762 | ||
| @@ -9583,12 +7765,6 @@ void __init sched_init(void) | |||
| 9583 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 7765 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
| 9584 | #ifdef CONFIG_CGROUP_SCHED | 7766 | #ifdef CONFIG_CGROUP_SCHED |
| 9585 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 7767 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
| 9586 | #elif defined CONFIG_USER_SCHED | ||
| 9587 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); | ||
| 9588 | init_tg_rt_entry(&init_task_group, | ||
| 9589 | &per_cpu(init_rt_rq_var, i), | ||
| 9590 | &per_cpu(init_sched_rt_entity, i), i, 1, | ||
| 9591 | root_task_group.rt_se[i]); | ||
| 9592 | #endif | 7768 | #endif |
| 9593 | #endif | 7769 | #endif |
| 9594 | 7770 | ||
| @@ -9668,12 +7844,12 @@ void __init sched_init(void) | |||
| 9668 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 7844 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
| 9669 | static inline int preempt_count_equals(int preempt_offset) | 7845 | static inline int preempt_count_equals(int preempt_offset) |
| 9670 | { | 7846 | { |
| 9671 | int nested = preempt_count() & ~PREEMPT_ACTIVE; | 7847 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); |
| 9672 | 7848 | ||
| 9673 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | 7849 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); |
| 9674 | } | 7850 | } |
| 9675 | 7851 | ||
| 9676 | void __might_sleep(char *file, int line, int preempt_offset) | 7852 | void __might_sleep(const char *file, int line, int preempt_offset) |
| 9677 | { | 7853 | { |
| 9678 | #ifdef in_atomic | 7854 | #ifdef in_atomic |
| 9679 | static unsigned long prev_jiffy; /* ratelimiting */ | 7855 | static unsigned long prev_jiffy; /* ratelimiting */ |
| @@ -9984,7 +8160,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |||
| 9984 | } | 8160 | } |
| 9985 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8161 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 9986 | 8162 | ||
| 9987 | #ifdef CONFIG_GROUP_SCHED | 8163 | #ifdef CONFIG_CGROUP_SCHED |
| 9988 | static void free_sched_group(struct task_group *tg) | 8164 | static void free_sched_group(struct task_group *tg) |
| 9989 | { | 8165 | { |
| 9990 | free_fair_sched_group(tg); | 8166 | free_fair_sched_group(tg); |
| @@ -10083,17 +8259,17 @@ void sched_move_task(struct task_struct *tsk) | |||
| 10083 | 8259 | ||
| 10084 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8260 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 10085 | if (tsk->sched_class->moved_group) | 8261 | if (tsk->sched_class->moved_group) |
| 10086 | tsk->sched_class->moved_group(tsk); | 8262 | tsk->sched_class->moved_group(tsk, on_rq); |
| 10087 | #endif | 8263 | #endif |
| 10088 | 8264 | ||
| 10089 | if (unlikely(running)) | 8265 | if (unlikely(running)) |
| 10090 | tsk->sched_class->set_curr_task(rq); | 8266 | tsk->sched_class->set_curr_task(rq); |
| 10091 | if (on_rq) | 8267 | if (on_rq) |
| 10092 | enqueue_task(rq, tsk, 0); | 8268 | enqueue_task(rq, tsk, 0, false); |
| 10093 | 8269 | ||
| 10094 | task_rq_unlock(rq, &flags); | 8270 | task_rq_unlock(rq, &flags); |
| 10095 | } | 8271 | } |
| 10096 | #endif /* CONFIG_GROUP_SCHED */ | 8272 | #endif /* CONFIG_CGROUP_SCHED */ |
| 10097 | 8273 | ||
| 10098 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8274 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 10099 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8275 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
| @@ -10235,13 +8411,6 @@ static int tg_schedulable(struct task_group *tg, void *data) | |||
| 10235 | runtime = d->rt_runtime; | 8411 | runtime = d->rt_runtime; |
| 10236 | } | 8412 | } |
| 10237 | 8413 | ||
| 10238 | #ifdef CONFIG_USER_SCHED | ||
| 10239 | if (tg == &root_task_group) { | ||
| 10240 | period = global_rt_period(); | ||
| 10241 | runtime = global_rt_runtime(); | ||
| 10242 | } | ||
| 10243 | #endif | ||
| 10244 | |||
| 10245 | /* | 8414 | /* |
| 10246 | * Cannot have more runtime than the period. | 8415 | * Cannot have more runtime than the period. |
| 10247 | */ | 8416 | */ |
| @@ -10644,7 +8813,7 @@ struct cgroup_subsys cpu_cgroup_subsys = { | |||
| 10644 | struct cpuacct { | 8813 | struct cpuacct { |
| 10645 | struct cgroup_subsys_state css; | 8814 | struct cgroup_subsys_state css; |
| 10646 | /* cpuusage holds pointer to a u64-type object on every cpu */ | 8815 | /* cpuusage holds pointer to a u64-type object on every cpu */ |
| 10647 | u64 *cpuusage; | 8816 | u64 __percpu *cpuusage; |
| 10648 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | 8817 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; |
| 10649 | struct cpuacct *parent; | 8818 | struct cpuacct *parent; |
| 10650 | }; | 8819 | }; |
| @@ -10861,12 +9030,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
| 10861 | } | 9030 | } |
| 10862 | 9031 | ||
| 10863 | /* | 9032 | /* |
| 9033 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | ||
| 9034 | * in cputime_t units. As a result, cpuacct_update_stats calls | ||
| 9035 | * percpu_counter_add with values large enough to always overflow the | ||
| 9036 | * per cpu batch limit causing bad SMP scalability. | ||
| 9037 | * | ||
| 9038 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | ||
| 9039 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | ||
| 9040 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | ||
| 9041 | */ | ||
| 9042 | #ifdef CONFIG_SMP | ||
| 9043 | #define CPUACCT_BATCH \ | ||
| 9044 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | ||
| 9045 | #else | ||
| 9046 | #define CPUACCT_BATCH 0 | ||
| 9047 | #endif | ||
| 9048 | |||
| 9049 | /* | ||
| 10864 | * Charge the system/user time to the task's accounting group. | 9050 | * Charge the system/user time to the task's accounting group. |
| 10865 | */ | 9051 | */ |
| 10866 | static void cpuacct_update_stats(struct task_struct *tsk, | 9052 | static void cpuacct_update_stats(struct task_struct *tsk, |
| 10867 | enum cpuacct_stat_index idx, cputime_t val) | 9053 | enum cpuacct_stat_index idx, cputime_t val) |
| 10868 | { | 9054 | { |
| 10869 | struct cpuacct *ca; | 9055 | struct cpuacct *ca; |
| 9056 | int batch = CPUACCT_BATCH; | ||
| 10870 | 9057 | ||
| 10871 | if (unlikely(!cpuacct_subsys.active)) | 9058 | if (unlikely(!cpuacct_subsys.active)) |
| 10872 | return; | 9059 | return; |
| @@ -10875,7 +9062,7 @@ static void cpuacct_update_stats(struct task_struct *tsk, | |||
| 10875 | ca = task_ca(tsk); | 9062 | ca = task_ca(tsk); |
| 10876 | 9063 | ||
| 10877 | do { | 9064 | do { |
| 10878 | percpu_counter_add(&ca->cpustat[idx], val); | 9065 | __percpu_counter_add(&ca->cpustat[idx], val, batch); |
| 10879 | ca = ca->parent; | 9066 | ca = ca->parent; |
| 10880 | } while (ca); | 9067 | } while (ca); |
| 10881 | rcu_read_unlock(); | 9068 | rcu_read_unlock(); |
