aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c986
1 files changed, 549 insertions, 437 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 3c11ae0a948d..c535cc4f6428 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -141,7 +141,7 @@ struct rt_prio_array {
141 141
142struct rt_bandwidth { 142struct rt_bandwidth {
143 /* nests inside the rq lock: */ 143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock; 144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period; 145 ktime_t rt_period;
146 u64 rt_runtime; 146 u64 rt_runtime;
147 struct hrtimer rt_period_timer; 147 struct hrtimer rt_period_timer;
@@ -178,7 +178,7 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period); 178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime; 179 rt_b->rt_runtime = runtime;
180 180
181 spin_lock_init(&rt_b->rt_runtime_lock); 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182 182
183 hrtimer_init(&rt_b->rt_period_timer, 183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
@@ -200,7 +200,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200 if (hrtimer_active(&rt_b->rt_period_timer)) 200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return; 201 return;
202 202
203 spin_lock(&rt_b->rt_runtime_lock); 203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) { 204 for (;;) {
205 unsigned long delta; 205 unsigned long delta;
206 ktime_t soft, hard; 206 ktime_t soft, hard;
@@ -217,7 +217,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, 217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0); 218 HRTIMER_MODE_ABS_PINNED, 0);
219 } 219 }
220 spin_unlock(&rt_b->rt_runtime_lock); 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221} 221}
222 222
223#ifdef CONFIG_RT_GROUP_SCHED 223#ifdef CONFIG_RT_GROUP_SCHED
@@ -298,7 +298,7 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
298 298
299#ifdef CONFIG_RT_GROUP_SCHED 299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302#endif /* CONFIG_RT_GROUP_SCHED */ 302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_USER_SCHED */ 303#else /* !CONFIG_USER_SCHED */
304#define root_task_group init_task_group 304#define root_task_group init_task_group
@@ -470,7 +470,7 @@ struct rt_rq {
470 u64 rt_time; 470 u64 rt_time;
471 u64 rt_runtime; 471 u64 rt_runtime;
472 /* Nests inside the rq lock: */ 472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock; 473 raw_spinlock_t rt_runtime_lock;
474 474
475#ifdef CONFIG_RT_GROUP_SCHED 475#ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted; 476 unsigned long rt_nr_boosted;
@@ -525,7 +525,7 @@ static struct root_domain def_root_domain;
525 */ 525 */
526struct rq { 526struct rq {
527 /* runqueue lock: */ 527 /* runqueue lock: */
528 spinlock_t lock; 528 raw_spinlock_t lock;
529 529
530 /* 530 /*
531 * nr_running and cpu_load should be in the same cacheline because 531 * nr_running and cpu_load should be in the same cacheline because
@@ -535,14 +535,12 @@ struct rq {
535 #define CPU_LOAD_IDX_MAX 5 535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537#ifdef CONFIG_NO_HZ 537#ifdef CONFIG_NO_HZ
538 unsigned long last_tick_seen;
539 unsigned char in_nohz_recently; 538 unsigned char in_nohz_recently;
540#endif 539#endif
541 /* capture load from *all* tasks on this cpu: */ 540 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load; 541 struct load_weight load;
543 unsigned long nr_load_updates; 542 unsigned long nr_load_updates;
544 u64 nr_switches; 543 u64 nr_switches;
545 u64 nr_migrations_in;
546 544
547 struct cfs_rq cfs; 545 struct cfs_rq cfs;
548 struct rt_rq rt; 546 struct rt_rq rt;
@@ -591,6 +589,8 @@ struct rq {
591 589
592 u64 rt_avg; 590 u64 rt_avg;
593 u64 age_stamp; 591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594#endif 594#endif
595 595
596 /* calc_load related fields */ 596 /* calc_load related fields */
@@ -685,7 +685,7 @@ inline void update_rq_clock(struct rq *rq)
685 */ 685 */
686int runqueue_is_locked(int cpu) 686int runqueue_is_locked(int cpu)
687{ 687{
688 return spin_is_locked(&cpu_rq(cpu)->lock); 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
689} 689}
690 690
691/* 691/*
@@ -772,7 +772,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf,
772 if (!sched_feat_names[i]) 772 if (!sched_feat_names[i])
773 return -EINVAL; 773 return -EINVAL;
774 774
775 filp->f_pos += cnt; 775 *ppos += cnt;
776 776
777 return cnt; 777 return cnt;
778} 778}
@@ -814,6 +814,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32;
814 * default: 0.25ms 814 * default: 0.25ms
815 */ 815 */
816unsigned int sysctl_sched_shares_ratelimit = 250000; 816unsigned int sysctl_sched_shares_ratelimit = 250000;
817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
817 818
818/* 819/*
819 * Inject some fuzzyness into changing the per-cpu group shares 820 * Inject some fuzzyness into changing the per-cpu group shares
@@ -892,7 +893,7 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
892 */ 893 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894 895
895 spin_unlock_irq(&rq->lock); 896 raw_spin_unlock_irq(&rq->lock);
896} 897}
897 898
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */ 899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
@@ -916,9 +917,9 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
916 next->oncpu = 1; 917 next->oncpu = 1;
917#endif 918#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock); 920 raw_spin_unlock_irq(&rq->lock);
920#else 921#else
921 spin_unlock(&rq->lock); 922 raw_spin_unlock(&rq->lock);
922#endif 923#endif
923} 924}
924 925
@@ -948,10 +949,10 @@ static inline struct rq *__task_rq_lock(struct task_struct *p)
948{ 949{
949 for (;;) { 950 for (;;) {
950 struct rq *rq = task_rq(p); 951 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock); 952 raw_spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p))) 953 if (likely(rq == task_rq(p)))
953 return rq; 954 return rq;
954 spin_unlock(&rq->lock); 955 raw_spin_unlock(&rq->lock);
955 } 956 }
956} 957}
957 958
@@ -968,10 +969,10 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 for (;;) { 969 for (;;) {
969 local_irq_save(*flags); 970 local_irq_save(*flags);
970 rq = task_rq(p); 971 rq = task_rq(p);
971 spin_lock(&rq->lock); 972 raw_spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p))) 973 if (likely(rq == task_rq(p)))
973 return rq; 974 return rq;
974 spin_unlock_irqrestore(&rq->lock, *flags); 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
975 } 976 }
976} 977}
977 978
@@ -980,19 +981,19 @@ void task_rq_unlock_wait(struct task_struct *p)
980 struct rq *rq = task_rq(p); 981 struct rq *rq = task_rq(p);
981 982
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */ 983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock); 984 raw_spin_unlock_wait(&rq->lock);
984} 985}
985 986
986static void __task_rq_unlock(struct rq *rq) 987static void __task_rq_unlock(struct rq *rq)
987 __releases(rq->lock) 988 __releases(rq->lock)
988{ 989{
989 spin_unlock(&rq->lock); 990 raw_spin_unlock(&rq->lock);
990} 991}
991 992
992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
993 __releases(rq->lock) 994 __releases(rq->lock)
994{ 995{
995 spin_unlock_irqrestore(&rq->lock, *flags); 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
996} 997}
997 998
998/* 999/*
@@ -1005,7 +1006,7 @@ static struct rq *this_rq_lock(void)
1005 1006
1006 local_irq_disable(); 1007 local_irq_disable();
1007 rq = this_rq(); 1008 rq = this_rq();
1008 spin_lock(&rq->lock); 1009 raw_spin_lock(&rq->lock);
1009 1010
1010 return rq; 1011 return rq;
1011} 1012}
@@ -1052,10 +1053,10 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
1052 1053
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054 1055
1055 spin_lock(&rq->lock); 1056 raw_spin_lock(&rq->lock);
1056 update_rq_clock(rq); 1057 update_rq_clock(rq);
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock); 1059 raw_spin_unlock(&rq->lock);
1059 1060
1060 return HRTIMER_NORESTART; 1061 return HRTIMER_NORESTART;
1061} 1062}
@@ -1068,10 +1069,10 @@ static void __hrtick_start(void *arg)
1068{ 1069{
1069 struct rq *rq = arg; 1070 struct rq *rq = arg;
1070 1071
1071 spin_lock(&rq->lock); 1072 raw_spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer); 1073 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0; 1074 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock); 1075 raw_spin_unlock(&rq->lock);
1075} 1076}
1076 1077
1077/* 1078/*
@@ -1178,7 +1179,7 @@ static void resched_task(struct task_struct *p)
1178{ 1179{
1179 int cpu; 1180 int cpu;
1180 1181
1181 assert_spin_locked(&task_rq(p)->lock); 1182 assert_raw_spin_locked(&task_rq(p)->lock);
1182 1183
1183 if (test_tsk_need_resched(p)) 1184 if (test_tsk_need_resched(p))
1184 return; 1185 return;
@@ -1200,10 +1201,10 @@ static void resched_cpu(int cpu)
1200 struct rq *rq = cpu_rq(cpu); 1201 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags; 1202 unsigned long flags;
1202 1203
1203 if (!spin_trylock_irqsave(&rq->lock, flags)) 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1204 return; 1205 return;
1205 resched_task(cpu_curr(cpu)); 1206 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags); 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1207} 1208}
1208 1209
1209#ifdef CONFIG_NO_HZ 1210#ifdef CONFIG_NO_HZ
@@ -1272,7 +1273,7 @@ static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272#else /* !CONFIG_SMP */ 1273#else /* !CONFIG_SMP */
1273static void resched_task(struct task_struct *p) 1274static void resched_task(struct task_struct *p)
1274{ 1275{
1275 assert_spin_locked(&task_rq(p)->lock); 1276 assert_raw_spin_locked(&task_rq(p)->lock);
1276 set_tsk_need_resched(p); 1277 set_tsk_need_resched(p);
1277} 1278}
1278 1279
@@ -1599,11 +1600,11 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
1599 struct rq *rq = cpu_rq(cpu); 1600 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags; 1601 unsigned long flags;
1601 1602
1602 spin_lock_irqsave(&rq->lock, flags); 1603 raw_spin_lock_irqsave(&rq->lock, flags);
1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares; 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1605 __set_se_shares(tg->se[cpu], shares); 1606 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags); 1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1607 } 1608 }
1608} 1609}
1609 1610
@@ -1614,7 +1615,7 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
1614 */ 1615 */
1615static int tg_shares_up(struct task_group *tg, void *data) 1616static int tg_shares_up(struct task_group *tg, void *data)
1616{ 1617{
1617 unsigned long weight, rq_weight = 0, shares = 0; 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1618 unsigned long *usd_rq_weight; 1619 unsigned long *usd_rq_weight;
1619 struct sched_domain *sd = data; 1620 struct sched_domain *sd = data;
1620 unsigned long flags; 1621 unsigned long flags;
@@ -1630,6 +1631,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1630 weight = tg->cfs_rq[i]->load.weight; 1631 weight = tg->cfs_rq[i]->load.weight;
1631 usd_rq_weight[i] = weight; 1632 usd_rq_weight[i] = weight;
1632 1633
1634 rq_weight += weight;
1633 /* 1635 /*
1634 * If there are currently no tasks on the cpu pretend there 1636 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to 1637 * is one of average load so that when a new task gets to
@@ -1638,10 +1640,13 @@ static int tg_shares_up(struct task_group *tg, void *data)
1638 if (!weight) 1640 if (!weight)
1639 weight = NICE_0_LOAD; 1641 weight = NICE_0_LOAD;
1640 1642
1641 rq_weight += weight; 1643 sum_weight += weight;
1642 shares += tg->cfs_rq[i]->shares; 1644 shares += tg->cfs_rq[i]->shares;
1643 } 1645 }
1644 1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1645 if ((!shares && rq_weight) || shares > tg->shares) 1650 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares; 1651 shares = tg->shares;
1647 1652
@@ -1701,9 +1706,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1701 if (root_task_group_empty()) 1706 if (root_task_group_empty())
1702 return; 1707 return;
1703 1708
1704 spin_unlock(&rq->lock); 1709 raw_spin_unlock(&rq->lock);
1705 update_shares(sd); 1710 update_shares(sd);
1706 spin_lock(&rq->lock); 1711 raw_spin_lock(&rq->lock);
1707} 1712}
1708 1713
1709static void update_h_load(long cpu) 1714static void update_h_load(long cpu)
@@ -1743,7 +1748,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1743 __acquires(busiest->lock) 1748 __acquires(busiest->lock)
1744 __acquires(this_rq->lock) 1749 __acquires(this_rq->lock)
1745{ 1750{
1746 spin_unlock(&this_rq->lock); 1751 raw_spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest); 1752 double_rq_lock(this_rq, busiest);
1748 1753
1749 return 1; 1754 return 1;
@@ -1764,14 +1769,16 @@ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764{ 1769{
1765 int ret = 0; 1770 int ret = 0;
1766 1771
1767 if (unlikely(!spin_trylock(&busiest->lock))) { 1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) { 1773 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock); 1774 raw_spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock); 1775 raw_spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); 1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1772 ret = 1; 1778 ret = 1;
1773 } else 1779 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); 1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1775 } 1782 }
1776 return ret; 1783 return ret;
1777} 1784}
@@ -1785,7 +1792,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{ 1792{
1786 if (unlikely(!irqs_disabled())) { 1793 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */ 1794 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock); 1795 raw_spin_unlock(&this_rq->lock);
1789 BUG_ON(1); 1796 BUG_ON(1);
1790 } 1797 }
1791 1798
@@ -1795,7 +1802,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock) 1803 __releases(busiest->lock)
1797{ 1804{
1798 spin_unlock(&busiest->lock); 1805 raw_spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800} 1807}
1801#endif 1808#endif
@@ -1810,6 +1817,22 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810#endif 1817#endif
1811 1818
1812static void calc_load_account_active(struct rq *this_rq); 1819static void calc_load_account_active(struct rq *this_rq);
1820static void update_sysctl(void);
1821static int get_update_sysctl_factor(void);
1822
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
1813 1836
1814#include "sched_stats.h" 1837#include "sched_stats.h"
1815#include "sched_idletask.c" 1838#include "sched_idletask.c"
@@ -1967,20 +1990,6 @@ inline int task_curr(const struct task_struct *p)
1967 return cpu_curr(task_cpu(p)) == p; 1990 return cpu_curr(task_cpu(p)) == p;
1968} 1991}
1969 1992
1970static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971{
1972 set_task_rq(p, cpu);
1973#ifdef CONFIG_SMP
1974 /*
1975 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1976 * successfuly executed on another CPU. We must ensure that updates of
1977 * per-task data have been completed by this moment.
1978 */
1979 smp_wmb();
1980 task_thread_info(p)->cpu = cpu;
1981#endif
1982}
1983
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class, 1994 const struct sched_class *prev_class,
1986 int oldprio, int running) 1995 int oldprio, int running)
@@ -1993,38 +2002,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1993 p->sched_class->prio_changed(rq, p, oldprio, running); 2002 p->sched_class->prio_changed(rq, p, oldprio, running);
1994} 2003}
1995 2004
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
1998 * @p: thread created by kthread_create().
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
2020 set_task_cpu(p, cpu);
2021 p->cpus_allowed = cpumask_of_cpu(cpu);
2022 p->rt.nr_cpus_allowed = 1;
2023 p->flags |= PF_THREAD_BOUND;
2024 spin_unlock_irqrestore(&rq->lock, flags);
2025}
2026EXPORT_SYMBOL(kthread_bind);
2027
2028#ifdef CONFIG_SMP 2005#ifdef CONFIG_SMP
2029/* 2006/*
2030 * Is this task likely cache-hot: 2007 * Is this task likely cache-hot:
@@ -2034,6 +2011,9 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2034{ 2011{
2035 s64 delta; 2012 s64 delta;
2036 2013
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
2037 /* 2017 /*
2038 * Buddy candidates are cache hot: 2018 * Buddy candidates are cache hot:
2039 */ 2019 */
@@ -2042,9 +2022,6 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2042 &p->se == cfs_rq_of(&p->se)->last)) 2022 &p->se == cfs_rq_of(&p->se)->last))
2043 return 1; 2023 return 1;
2044 2024
2045 if (p->sched_class != &fair_sched_class)
2046 return 0;
2047
2048 if (sysctl_sched_migration_cost == -1) 2025 if (sysctl_sched_migration_cost == -1)
2049 return 1; 2026 return 1;
2050 if (sysctl_sched_migration_cost == 0) 2027 if (sysctl_sched_migration_cost == 0)
@@ -2055,39 +2032,23 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2055 return delta < (s64)sysctl_sched_migration_cost; 2032 return delta < (s64)sysctl_sched_migration_cost;
2056} 2033}
2057 2034
2058
2059void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2035void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2060{ 2036{
2061 int old_cpu = task_cpu(p); 2037#ifdef CONFIG_SCHED_DEBUG
2062 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); 2038 /*
2063 struct cfs_rq *old_cfsrq = task_cfs_rq(p), 2039 * We should never call set_task_cpu() on a blocked task,
2064 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); 2040 * ttwu() will sort out the placement.
2065 u64 clock_offset; 2041 */
2066 2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2067 clock_offset = old_rq->clock - new_rq->clock; 2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2044#endif
2068 2045
2069 trace_sched_migrate_task(p, new_cpu); 2046 trace_sched_migrate_task(p, new_cpu);
2070 2047
2071#ifdef CONFIG_SCHEDSTATS 2048 if (task_cpu(p) != new_cpu) {
2072 if (p->se.wait_start)
2073 p->se.wait_start -= clock_offset;
2074 if (p->se.sleep_start)
2075 p->se.sleep_start -= clock_offset;
2076 if (p->se.block_start)
2077 p->se.block_start -= clock_offset;
2078#endif
2079 if (old_cpu != new_cpu) {
2080 p->se.nr_migrations++; 2049 p->se.nr_migrations++;
2081 new_rq->nr_migrations_in++; 2050 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2082#ifdef CONFIG_SCHEDSTATS
2083 if (task_hot(p, old_rq->clock, NULL))
2084 schedstat_inc(p, se.nr_forced2_migrations);
2085#endif
2086 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2087 1, 1, NULL, 0);
2088 } 2051 }
2089 p->se.vruntime -= old_cfsrq->min_vruntime -
2090 new_cfsrq->min_vruntime;
2091 2052
2092 __set_task_cpu(p, new_cpu); 2053 __set_task_cpu(p, new_cpu);
2093} 2054}
@@ -2112,12 +2073,10 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2112 2073
2113 /* 2074 /*
2114 * If the task is not on a runqueue (and not running), then 2075 * If the task is not on a runqueue (and not running), then
2115 * it is sufficient to simply update the task's cpu field. 2076 * the next wake-up will properly place the task.
2116 */ 2077 */
2117 if (!p->se.on_rq && !task_running(rq, p)) { 2078 if (!p->se.on_rq && !task_running(rq, p))
2118 set_task_cpu(p, dest_cpu);
2119 return 0; 2079 return 0;
2120 }
2121 2080
2122 init_completion(&req->done); 2081 init_completion(&req->done);
2123 req->task = p; 2082 req->task = p;
@@ -2322,6 +2281,77 @@ void task_oncpu_function_call(struct task_struct *p,
2322 preempt_enable(); 2281 preempt_enable();
2323} 2282}
2324 2283
2284#ifdef CONFIG_SMP
2285static int select_fallback_rq(int cpu, struct task_struct *p)
2286{
2287 int dest_cpu;
2288 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2289
2290 /* Look for allowed, online CPU in same node. */
2291 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2292 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2293 return dest_cpu;
2294
2295 /* Any allowed, online CPU? */
2296 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2297 if (dest_cpu < nr_cpu_ids)
2298 return dest_cpu;
2299
2300 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) {
2302 rcu_read_lock();
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2306
2307 /*
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2311 */
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no "
2314 "longer affine to cpu%d\n",
2315 task_pid_nr(p), p->comm, cpu);
2316 }
2317 }
2318
2319 return dest_cpu;
2320}
2321
2322/*
2323 * Called from:
2324 *
2325 * - fork, @p is stable because it isn't on the tasklist yet
2326 *
2327 * - exec, @p is unstable, retry loop
2328 *
2329 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2330 * we should be good.
2331 */
2332static inline
2333int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2334{
2335 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2336
2337 /*
2338 * In order not to call set_task_cpu() on a blocking task we need
2339 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2340 * cpu.
2341 *
2342 * Since this is common to all placement strategies, this lives here.
2343 *
2344 * [ this allows ->select_task() to simply return task_cpu(p) and
2345 * not worry about this generic constraint ]
2346 */
2347 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2348 !cpu_online(cpu)))
2349 cpu = select_fallback_rq(task_cpu(p), p);
2350
2351 return cpu;
2352}
2353#endif
2354
2325/*** 2355/***
2326 * try_to_wake_up - wake up a thread 2356 * try_to_wake_up - wake up a thread
2327 * @p: the to-be-woken-up thread 2357 * @p: the to-be-woken-up thread
@@ -2373,16 +2403,18 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2373 if (task_contributes_to_load(p)) 2403 if (task_contributes_to_load(p))
2374 rq->nr_uninterruptible--; 2404 rq->nr_uninterruptible--;
2375 p->state = TASK_WAKING; 2405 p->state = TASK_WAKING;
2376 task_rq_unlock(rq, &flags);
2377 2406
2378 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 2407 if (p->sched_class->task_waking)
2408 p->sched_class->task_waking(rq, p);
2409
2410 __task_rq_unlock(rq);
2411
2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2379 if (cpu != orig_cpu) 2413 if (cpu != orig_cpu)
2380 set_task_cpu(p, cpu); 2414 set_task_cpu(p, cpu);
2381 2415
2382 rq = task_rq_lock(p, &flags); 2416 rq = __task_rq_lock(p);
2383 2417 update_rq_clock(rq);
2384 if (rq != orig_rq)
2385 update_rq_clock(rq);
2386 2418
2387 WARN_ON(p->state != TASK_WAKING); 2419 WARN_ON(p->state != TASK_WAKING);
2388 cpu = task_cpu(p); 2420 cpu = task_cpu(p);
@@ -2438,8 +2470,19 @@ out_running:
2438 2470
2439 p->state = TASK_RUNNING; 2471 p->state = TASK_RUNNING;
2440#ifdef CONFIG_SMP 2472#ifdef CONFIG_SMP
2441 if (p->sched_class->task_wake_up) 2473 if (p->sched_class->task_woken)
2442 p->sched_class->task_wake_up(rq, p); 2474 p->sched_class->task_woken(rq, p);
2475
2476 if (unlikely(rq->idle_stamp)) {
2477 u64 delta = rq->clock - rq->idle_stamp;
2478 u64 max = 2*sysctl_sched_migration_cost;
2479
2480 if (delta > max)
2481 rq->avg_idle = max;
2482 else
2483 update_avg(&rq->avg_idle, delta);
2484 rq->idle_stamp = 0;
2485 }
2443#endif 2486#endif
2444out: 2487out:
2445 task_rq_unlock(rq, &flags); 2488 task_rq_unlock(rq, &flags);
@@ -2486,7 +2529,6 @@ static void __sched_fork(struct task_struct *p)
2486 p->se.avg_overlap = 0; 2529 p->se.avg_overlap = 0;
2487 p->se.start_runtime = 0; 2530 p->se.start_runtime = 0;
2488 p->se.avg_wakeup = sysctl_sched_wakeup_granularity; 2531 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2489 p->se.avg_running = 0;
2490 2532
2491#ifdef CONFIG_SCHEDSTATS 2533#ifdef CONFIG_SCHEDSTATS
2492 p->se.wait_start = 0; 2534 p->se.wait_start = 0;
@@ -2508,7 +2550,6 @@ static void __sched_fork(struct task_struct *p)
2508 p->se.nr_failed_migrations_running = 0; 2550 p->se.nr_failed_migrations_running = 0;
2509 p->se.nr_failed_migrations_hot = 0; 2551 p->se.nr_failed_migrations_hot = 0;
2510 p->se.nr_forced_migrations = 0; 2552 p->se.nr_forced_migrations = 0;
2511 p->se.nr_forced2_migrations = 0;
2512 2553
2513 p->se.nr_wakeups = 0; 2554 p->se.nr_wakeups = 0;
2514 p->se.nr_wakeups_sync = 0; 2555 p->se.nr_wakeups_sync = 0;
@@ -2529,14 +2570,6 @@ static void __sched_fork(struct task_struct *p)
2529#ifdef CONFIG_PREEMPT_NOTIFIERS 2570#ifdef CONFIG_PREEMPT_NOTIFIERS
2530 INIT_HLIST_HEAD(&p->preempt_notifiers); 2571 INIT_HLIST_HEAD(&p->preempt_notifiers);
2531#endif 2572#endif
2532
2533 /*
2534 * We mark the process as running here, but have not actually
2535 * inserted it onto the runqueue yet. This guarantees that
2536 * nobody will actually run it, and a signal or other external
2537 * event cannot wake it up and insert it on the runqueue either.
2538 */
2539 p->state = TASK_RUNNING;
2540} 2573}
2541 2574
2542/* 2575/*
@@ -2547,6 +2580,12 @@ void sched_fork(struct task_struct *p, int clone_flags)
2547 int cpu = get_cpu(); 2580 int cpu = get_cpu();
2548 2581
2549 __sched_fork(p); 2582 __sched_fork(p);
2583 /*
2584 * We mark the process as waking here. This guarantees that
2585 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either.
2587 */
2588 p->state = TASK_WAKING;
2550 2589
2551 /* 2590 /*
2552 * Revert to default priority/policy on fork if requested. 2591 * Revert to default priority/policy on fork if requested.
@@ -2578,8 +2617,11 @@ void sched_fork(struct task_struct *p, int clone_flags)
2578 if (!rt_prio(p->prio)) 2617 if (!rt_prio(p->prio))
2579 p->sched_class = &fair_sched_class; 2618 p->sched_class = &fair_sched_class;
2580 2619
2620 if (p->sched_class->task_fork)
2621 p->sched_class->task_fork(p);
2622
2581#ifdef CONFIG_SMP 2623#ifdef CONFIG_SMP
2582 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); 2624 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2583#endif 2625#endif
2584 set_task_cpu(p, cpu); 2626 set_task_cpu(p, cpu);
2585 2627
@@ -2612,24 +2654,15 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2612 struct rq *rq; 2654 struct rq *rq;
2613 2655
2614 rq = task_rq_lock(p, &flags); 2656 rq = task_rq_lock(p, &flags);
2615 BUG_ON(p->state != TASK_RUNNING); 2657 BUG_ON(p->state != TASK_WAKING);
2658 p->state = TASK_RUNNING;
2616 update_rq_clock(rq); 2659 update_rq_clock(rq);
2617 2660 activate_task(rq, p, 0);
2618 if (!p->sched_class->task_new || !current->se.on_rq) {
2619 activate_task(rq, p, 0);
2620 } else {
2621 /*
2622 * Let the scheduling class do new task startup
2623 * management (if any):
2624 */
2625 p->sched_class->task_new(rq, p);
2626 inc_nr_running(rq);
2627 }
2628 trace_sched_wakeup_new(rq, p, 1); 2661 trace_sched_wakeup_new(rq, p, 1);
2629 check_preempt_curr(rq, p, WF_FORK); 2662 check_preempt_curr(rq, p, WF_FORK);
2630#ifdef CONFIG_SMP 2663#ifdef CONFIG_SMP
2631 if (p->sched_class->task_wake_up) 2664 if (p->sched_class->task_woken)
2632 p->sched_class->task_wake_up(rq, p); 2665 p->sched_class->task_woken(rq, p);
2633#endif 2666#endif
2634 task_rq_unlock(rq, &flags); 2667 task_rq_unlock(rq, &flags);
2635} 2668}
@@ -2781,10 +2814,10 @@ static inline void post_schedule(struct rq *rq)
2781 if (rq->post_schedule) { 2814 if (rq->post_schedule) {
2782 unsigned long flags; 2815 unsigned long flags;
2783 2816
2784 spin_lock_irqsave(&rq->lock, flags); 2817 raw_spin_lock_irqsave(&rq->lock, flags);
2785 if (rq->curr->sched_class->post_schedule) 2818 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq); 2819 rq->curr->sched_class->post_schedule(rq);
2787 spin_unlock_irqrestore(&rq->lock, flags); 2820 raw_spin_unlock_irqrestore(&rq->lock, flags);
2788 2821
2789 rq->post_schedule = 0; 2822 rq->post_schedule = 0;
2790 } 2823 }
@@ -2848,14 +2881,14 @@ context_switch(struct rq *rq, struct task_struct *prev,
2848 */ 2881 */
2849 arch_start_context_switch(prev); 2882 arch_start_context_switch(prev);
2850 2883
2851 if (unlikely(!mm)) { 2884 if (likely(!mm)) {
2852 next->active_mm = oldmm; 2885 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count); 2886 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next); 2887 enter_lazy_tlb(oldmm, next);
2855 } else 2888 } else
2856 switch_mm(oldmm, mm, next); 2889 switch_mm(oldmm, mm, next);
2857 2890
2858 if (unlikely(!prev->mm)) { 2891 if (likely(!prev->mm)) {
2859 prev->active_mm = NULL; 2892 prev->active_mm = NULL;
2860 rq->prev_mm = oldmm; 2893 rq->prev_mm = oldmm;
2861 } 2894 }
@@ -3018,15 +3051,6 @@ static void calc_load_account_active(struct rq *this_rq)
3018} 3051}
3019 3052
3020/* 3053/*
3021 * Externally visible per-cpu scheduler statistics:
3022 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3023 */
3024u64 cpu_nr_migrations(int cpu)
3025{
3026 return cpu_rq(cpu)->nr_migrations_in;
3027}
3028
3029/*
3030 * Update rq->cpu_load[] statistics. This function is usually called every 3054 * Update rq->cpu_load[] statistics. This function is usually called every
3031 * scheduler tick (TICK_NSEC). 3055 * scheduler tick (TICK_NSEC).
3032 */ 3056 */
@@ -3075,15 +3099,15 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3075{ 3099{
3076 BUG_ON(!irqs_disabled()); 3100 BUG_ON(!irqs_disabled());
3077 if (rq1 == rq2) { 3101 if (rq1 == rq2) {
3078 spin_lock(&rq1->lock); 3102 raw_spin_lock(&rq1->lock);
3079 __acquire(rq2->lock); /* Fake it out ;) */ 3103 __acquire(rq2->lock); /* Fake it out ;) */
3080 } else { 3104 } else {
3081 if (rq1 < rq2) { 3105 if (rq1 < rq2) {
3082 spin_lock(&rq1->lock); 3106 raw_spin_lock(&rq1->lock);
3083 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 3107 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3084 } else { 3108 } else {
3085 spin_lock(&rq2->lock); 3109 raw_spin_lock(&rq2->lock);
3086 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 3110 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3087 } 3111 }
3088 } 3112 }
3089 update_rq_clock(rq1); 3113 update_rq_clock(rq1);
@@ -3100,29 +3124,44 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3100 __releases(rq1->lock) 3124 __releases(rq1->lock)
3101 __releases(rq2->lock) 3125 __releases(rq2->lock)
3102{ 3126{
3103 spin_unlock(&rq1->lock); 3127 raw_spin_unlock(&rq1->lock);
3104 if (rq1 != rq2) 3128 if (rq1 != rq2)
3105 spin_unlock(&rq2->lock); 3129 raw_spin_unlock(&rq2->lock);
3106 else 3130 else
3107 __release(rq2->lock); 3131 __release(rq2->lock);
3108} 3132}
3109 3133
3110/* 3134/*
3111 * If dest_cpu is allowed for this process, migrate the task to it. 3135 * sched_exec - execve() is a valuable balancing opportunity, because at
3112 * This is accomplished by forcing the cpu_allowed mask to only 3136 * this point the task has the smallest effective memory and cache footprint.
3113 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3114 * the cpu_allowed mask is restored.
3115 */ 3137 */
3116static void sched_migrate_task(struct task_struct *p, int dest_cpu) 3138void sched_exec(void)
3117{ 3139{
3140 struct task_struct *p = current;
3118 struct migration_req req; 3141 struct migration_req req;
3142 int dest_cpu, this_cpu;
3119 unsigned long flags; 3143 unsigned long flags;
3120 struct rq *rq; 3144 struct rq *rq;
3121 3145
3146again:
3147 this_cpu = get_cpu();
3148 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3149 if (dest_cpu == this_cpu) {
3150 put_cpu();
3151 return;
3152 }
3153
3122 rq = task_rq_lock(p, &flags); 3154 rq = task_rq_lock(p, &flags);
3155 put_cpu();
3156
3157 /*
3158 * select_task_rq() can race against ->cpus_allowed
3159 */
3123 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) 3160 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3124 || unlikely(!cpu_active(dest_cpu))) 3161 || unlikely(!cpu_active(dest_cpu))) {
3125 goto out; 3162 task_rq_unlock(rq, &flags);
3163 goto again;
3164 }
3126 3165
3127 /* force the process onto the specified CPU */ 3166 /* force the process onto the specified CPU */
3128 if (migrate_task(p, dest_cpu, &req)) { 3167 if (migrate_task(p, dest_cpu, &req)) {
@@ -3137,24 +3176,10 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3137 3176
3138 return; 3177 return;
3139 } 3178 }
3140out:
3141 task_rq_unlock(rq, &flags); 3179 task_rq_unlock(rq, &flags);
3142} 3180}
3143 3181
3144/* 3182/*
3145 * sched_exec - execve() is a valuable balancing opportunity, because at
3146 * this point the task has the smallest effective memory and cache footprint.
3147 */
3148void sched_exec(void)
3149{
3150 int new_cpu, this_cpu = get_cpu();
3151 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3152 put_cpu();
3153 if (new_cpu != this_cpu)
3154 sched_migrate_task(current, new_cpu);
3155}
3156
3157/*
3158 * pull_task - move a task from a remote runqueue to the local runqueue. 3183 * pull_task - move a task from a remote runqueue to the local runqueue.
3159 * Both runqueues must be locked. 3184 * Both runqueues must be locked.
3160 */ 3185 */
@@ -3164,10 +3189,6 @@ static void pull_task(struct rq *src_rq, struct task_struct *p,
3164 deactivate_task(src_rq, p, 0); 3189 deactivate_task(src_rq, p, 0);
3165 set_task_cpu(p, this_cpu); 3190 set_task_cpu(p, this_cpu);
3166 activate_task(this_rq, p, 0); 3191 activate_task(this_rq, p, 0);
3167 /*
3168 * Note that idle threads have a prio of MAX_PRIO, for this test
3169 * to be always true for them.
3170 */
3171 check_preempt_curr(this_rq, p, 0); 3192 check_preempt_curr(this_rq, p, 0);
3172} 3193}
3173 3194
@@ -4126,7 +4147,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
4126 unsigned long flags; 4147 unsigned long flags;
4127 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4148 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4128 4149
4129 cpumask_setall(cpus); 4150 cpumask_copy(cpus, cpu_active_mask);
4130 4151
4131 /* 4152 /*
4132 * When power savings policy is enabled for the parent domain, idle 4153 * When power savings policy is enabled for the parent domain, idle
@@ -4199,14 +4220,15 @@ redo:
4199 4220
4200 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { 4221 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4201 4222
4202 spin_lock_irqsave(&busiest->lock, flags); 4223 raw_spin_lock_irqsave(&busiest->lock, flags);
4203 4224
4204 /* don't kick the migration_thread, if the curr 4225 /* don't kick the migration_thread, if the curr
4205 * task on busiest cpu can't be moved to this_cpu 4226 * task on busiest cpu can't be moved to this_cpu
4206 */ 4227 */
4207 if (!cpumask_test_cpu(this_cpu, 4228 if (!cpumask_test_cpu(this_cpu,
4208 &busiest->curr->cpus_allowed)) { 4229 &busiest->curr->cpus_allowed)) {
4209 spin_unlock_irqrestore(&busiest->lock, flags); 4230 raw_spin_unlock_irqrestore(&busiest->lock,
4231 flags);
4210 all_pinned = 1; 4232 all_pinned = 1;
4211 goto out_one_pinned; 4233 goto out_one_pinned;
4212 } 4234 }
@@ -4216,7 +4238,7 @@ redo:
4216 busiest->push_cpu = this_cpu; 4238 busiest->push_cpu = this_cpu;
4217 active_balance = 1; 4239 active_balance = 1;
4218 } 4240 }
4219 spin_unlock_irqrestore(&busiest->lock, flags); 4241 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4220 if (active_balance) 4242 if (active_balance)
4221 wake_up_process(busiest->migration_thread); 4243 wake_up_process(busiest->migration_thread);
4222 4244
@@ -4289,7 +4311,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4289 int all_pinned = 0; 4311 int all_pinned = 0;
4290 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4312 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4291 4313
4292 cpumask_setall(cpus); 4314 cpumask_copy(cpus, cpu_active_mask);
4293 4315
4294 /* 4316 /*
4295 * When power savings policy is enabled for the parent domain, idle 4317 * When power savings policy is enabled for the parent domain, idle
@@ -4398,10 +4420,10 @@ redo:
4398 /* 4420 /*
4399 * Should not call ttwu while holding a rq->lock 4421 * Should not call ttwu while holding a rq->lock
4400 */ 4422 */
4401 spin_unlock(&this_rq->lock); 4423 raw_spin_unlock(&this_rq->lock);
4402 if (active_balance) 4424 if (active_balance)
4403 wake_up_process(busiest->migration_thread); 4425 wake_up_process(busiest->migration_thread);
4404 spin_lock(&this_rq->lock); 4426 raw_spin_lock(&this_rq->lock);
4405 4427
4406 } else 4428 } else
4407 sd->nr_balance_failed = 0; 4429 sd->nr_balance_failed = 0;
@@ -4429,6 +4451,11 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4429 int pulled_task = 0; 4451 int pulled_task = 0;
4430 unsigned long next_balance = jiffies + HZ; 4452 unsigned long next_balance = jiffies + HZ;
4431 4453
4454 this_rq->idle_stamp = this_rq->clock;
4455
4456 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4457 return;
4458
4432 for_each_domain(this_cpu, sd) { 4459 for_each_domain(this_cpu, sd) {
4433 unsigned long interval; 4460 unsigned long interval;
4434 4461
@@ -4443,8 +4470,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4443 interval = msecs_to_jiffies(sd->balance_interval); 4470 interval = msecs_to_jiffies(sd->balance_interval);
4444 if (time_after(next_balance, sd->last_balance + interval)) 4471 if (time_after(next_balance, sd->last_balance + interval))
4445 next_balance = sd->last_balance + interval; 4472 next_balance = sd->last_balance + interval;
4446 if (pulled_task) 4473 if (pulled_task) {
4474 this_rq->idle_stamp = 0;
4447 break; 4475 break;
4476 }
4448 } 4477 }
4449 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4478 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4450 /* 4479 /*
@@ -4679,7 +4708,7 @@ int select_nohz_load_balancer(int stop_tick)
4679 cpumask_set_cpu(cpu, nohz.cpu_mask); 4708 cpumask_set_cpu(cpu, nohz.cpu_mask);
4680 4709
4681 /* time for ilb owner also to sleep */ 4710 /* time for ilb owner also to sleep */
4682 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { 4711 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4683 if (atomic_read(&nohz.load_balancer) == cpu) 4712 if (atomic_read(&nohz.load_balancer) == cpu)
4684 atomic_set(&nohz.load_balancer, -1); 4713 atomic_set(&nohz.load_balancer, -1);
4685 return 0; 4714 return 0;
@@ -5046,8 +5075,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
5046 p->gtime = cputime_add(p->gtime, cputime); 5075 p->gtime = cputime_add(p->gtime, cputime);
5047 5076
5048 /* Add guest time to cpustat. */ 5077 /* Add guest time to cpustat. */
5049 cpustat->user = cputime64_add(cpustat->user, tmp); 5078 if (TASK_NICE(p) > 0) {
5050 cpustat->guest = cputime64_add(cpustat->guest, tmp); 5079 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5080 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5081 } else {
5082 cpustat->user = cputime64_add(cpustat->user, tmp);
5083 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5084 }
5051} 5085}
5052 5086
5053/* 5087/*
@@ -5162,60 +5196,86 @@ void account_idle_ticks(unsigned long ticks)
5162 * Use precise platform statistics if available: 5196 * Use precise platform statistics if available:
5163 */ 5197 */
5164#ifdef CONFIG_VIRT_CPU_ACCOUNTING 5198#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5165cputime_t task_utime(struct task_struct *p) 5199void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5166{ 5200{
5167 return p->utime; 5201 *ut = p->utime;
5202 *st = p->stime;
5168} 5203}
5169 5204
5170cputime_t task_stime(struct task_struct *p) 5205void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5171{ 5206{
5172 return p->stime; 5207 struct task_cputime cputime;
5208
5209 thread_group_cputime(p, &cputime);
5210
5211 *ut = cputime.utime;
5212 *st = cputime.stime;
5173} 5213}
5174#else 5214#else
5175cputime_t task_utime(struct task_struct *p) 5215
5216#ifndef nsecs_to_cputime
5217# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5218#endif
5219
5220void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5176{ 5221{
5177 clock_t utime = cputime_to_clock_t(p->utime), 5222 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5178 total = utime + cputime_to_clock_t(p->stime);
5179 u64 temp;
5180 5223
5181 /* 5224 /*
5182 * Use CFS's precise accounting: 5225 * Use CFS's precise accounting:
5183 */ 5226 */
5184 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); 5227 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5185 5228
5186 if (total) { 5229 if (total) {
5187 temp *= utime; 5230 u64 temp;
5231
5232 temp = (u64)(rtime * utime);
5188 do_div(temp, total); 5233 do_div(temp, total);
5189 } 5234 utime = (cputime_t)temp;
5190 utime = (clock_t)temp; 5235 } else
5236 utime = rtime;
5237
5238 /*
5239 * Compare with previous values, to keep monotonicity:
5240 */
5241 p->prev_utime = max(p->prev_utime, utime);
5242 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5191 5243
5192 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); 5244 *ut = p->prev_utime;
5193 return p->prev_utime; 5245 *st = p->prev_stime;
5194} 5246}
5195 5247
5196cputime_t task_stime(struct task_struct *p) 5248/*
5249 * Must be called with siglock held.
5250 */
5251void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5197{ 5252{
5198 clock_t stime; 5253 struct signal_struct *sig = p->signal;
5254 struct task_cputime cputime;
5255 cputime_t rtime, utime, total;
5199 5256
5200 /* 5257 thread_group_cputime(p, &cputime);
5201 * Use CFS's precise accounting. (we subtract utime from
5202 * the total, to make sure the total observed by userspace
5203 * grows monotonically - apps rely on that):
5204 */
5205 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5206 cputime_to_clock_t(task_utime(p));
5207 5258
5208 if (stime >= 0) 5259 total = cputime_add(cputime.utime, cputime.stime);
5209 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); 5260 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5210 5261
5211 return p->prev_stime; 5262 if (total) {
5212} 5263 u64 temp;
5213#endif
5214 5264
5215inline cputime_t task_gtime(struct task_struct *p) 5265 temp = (u64)(rtime * cputime.utime);
5216{ 5266 do_div(temp, total);
5217 return p->gtime; 5267 utime = (cputime_t)temp;
5268 } else
5269 utime = rtime;
5270
5271 sig->prev_utime = max(sig->prev_utime, utime);
5272 sig->prev_stime = max(sig->prev_stime,
5273 cputime_sub(rtime, sig->prev_utime));
5274
5275 *ut = sig->prev_utime;
5276 *st = sig->prev_stime;
5218} 5277}
5278#endif
5219 5279
5220/* 5280/*
5221 * This function gets called by the timer code, with HZ frequency. 5281 * This function gets called by the timer code, with HZ frequency.
@@ -5232,11 +5292,11 @@ void scheduler_tick(void)
5232 5292
5233 sched_clock_tick(); 5293 sched_clock_tick();
5234 5294
5235 spin_lock(&rq->lock); 5295 raw_spin_lock(&rq->lock);
5236 update_rq_clock(rq); 5296 update_rq_clock(rq);
5237 update_cpu_load(rq); 5297 update_cpu_load(rq);
5238 curr->sched_class->task_tick(rq, curr, 0); 5298 curr->sched_class->task_tick(rq, curr, 0);
5239 spin_unlock(&rq->lock); 5299 raw_spin_unlock(&rq->lock);
5240 5300
5241 perf_event_task_tick(curr, cpu); 5301 perf_event_task_tick(curr, cpu);
5242 5302
@@ -5350,13 +5410,14 @@ static inline void schedule_debug(struct task_struct *prev)
5350#endif 5410#endif
5351} 5411}
5352 5412
5353static void put_prev_task(struct rq *rq, struct task_struct *p) 5413static void put_prev_task(struct rq *rq, struct task_struct *prev)
5354{ 5414{
5355 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; 5415 if (prev->state == TASK_RUNNING) {
5416 u64 runtime = prev->se.sum_exec_runtime;
5356 5417
5357 update_avg(&p->se.avg_running, runtime); 5418 runtime -= prev->se.prev_sum_exec_runtime;
5419 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5358 5420
5359 if (p->state == TASK_RUNNING) {
5360 /* 5421 /*
5361 * In order to avoid avg_overlap growing stale when we are 5422 * In order to avoid avg_overlap growing stale when we are
5362 * indeed overlapping and hence not getting put to sleep, grow 5423 * indeed overlapping and hence not getting put to sleep, grow
@@ -5366,12 +5427,9 @@ static void put_prev_task(struct rq *rq, struct task_struct *p)
5366 * correlates to the amount of cache footprint a task can 5427 * correlates to the amount of cache footprint a task can
5367 * build up. 5428 * build up.
5368 */ 5429 */
5369 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); 5430 update_avg(&prev->se.avg_overlap, runtime);
5370 update_avg(&p->se.avg_overlap, runtime);
5371 } else {
5372 update_avg(&p->se.avg_running, 0);
5373 } 5431 }
5374 p->sched_class->put_prev_task(rq, p); 5432 prev->sched_class->put_prev_task(rq, prev);
5375} 5433}
5376 5434
5377/* 5435/*
@@ -5432,7 +5490,7 @@ need_resched_nonpreemptible:
5432 if (sched_feat(HRTICK)) 5490 if (sched_feat(HRTICK))
5433 hrtick_clear(rq); 5491 hrtick_clear(rq);
5434 5492
5435 spin_lock_irq(&rq->lock); 5493 raw_spin_lock_irq(&rq->lock);
5436 update_rq_clock(rq); 5494 update_rq_clock(rq);
5437 clear_tsk_need_resched(prev); 5495 clear_tsk_need_resched(prev);
5438 5496
@@ -5468,7 +5526,7 @@ need_resched_nonpreemptible:
5468 cpu = smp_processor_id(); 5526 cpu = smp_processor_id();
5469 rq = cpu_rq(cpu); 5527 rq = cpu_rq(cpu);
5470 } else 5528 } else
5471 spin_unlock_irq(&rq->lock); 5529 raw_spin_unlock_irq(&rq->lock);
5472 5530
5473 post_schedule(rq); 5531 post_schedule(rq);
5474 5532
@@ -5481,7 +5539,7 @@ need_resched_nonpreemptible:
5481} 5539}
5482EXPORT_SYMBOL(schedule); 5540EXPORT_SYMBOL(schedule);
5483 5541
5484#ifdef CONFIG_SMP 5542#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5485/* 5543/*
5486 * Look out! "owner" is an entirely speculative pointer 5544 * Look out! "owner" is an entirely speculative pointer
5487 * access and not reliable. 5545 * access and not reliable.
@@ -5885,14 +5943,15 @@ EXPORT_SYMBOL(wait_for_completion_killable);
5885 */ 5943 */
5886bool try_wait_for_completion(struct completion *x) 5944bool try_wait_for_completion(struct completion *x)
5887{ 5945{
5946 unsigned long flags;
5888 int ret = 1; 5947 int ret = 1;
5889 5948
5890 spin_lock_irq(&x->wait.lock); 5949 spin_lock_irqsave(&x->wait.lock, flags);
5891 if (!x->done) 5950 if (!x->done)
5892 ret = 0; 5951 ret = 0;
5893 else 5952 else
5894 x->done--; 5953 x->done--;
5895 spin_unlock_irq(&x->wait.lock); 5954 spin_unlock_irqrestore(&x->wait.lock, flags);
5896 return ret; 5955 return ret;
5897} 5956}
5898EXPORT_SYMBOL(try_wait_for_completion); 5957EXPORT_SYMBOL(try_wait_for_completion);
@@ -5907,12 +5966,13 @@ EXPORT_SYMBOL(try_wait_for_completion);
5907 */ 5966 */
5908bool completion_done(struct completion *x) 5967bool completion_done(struct completion *x)
5909{ 5968{
5969 unsigned long flags;
5910 int ret = 1; 5970 int ret = 1;
5911 5971
5912 spin_lock_irq(&x->wait.lock); 5972 spin_lock_irqsave(&x->wait.lock, flags);
5913 if (!x->done) 5973 if (!x->done)
5914 ret = 0; 5974 ret = 0;
5915 spin_unlock_irq(&x->wait.lock); 5975 spin_unlock_irqrestore(&x->wait.lock, flags);
5916 return ret; 5976 return ret;
5917} 5977}
5918EXPORT_SYMBOL(completion_done); 5978EXPORT_SYMBOL(completion_done);
@@ -6175,22 +6235,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6175 BUG_ON(p->se.on_rq); 6235 BUG_ON(p->se.on_rq);
6176 6236
6177 p->policy = policy; 6237 p->policy = policy;
6178 switch (p->policy) {
6179 case SCHED_NORMAL:
6180 case SCHED_BATCH:
6181 case SCHED_IDLE:
6182 p->sched_class = &fair_sched_class;
6183 break;
6184 case SCHED_FIFO:
6185 case SCHED_RR:
6186 p->sched_class = &rt_sched_class;
6187 break;
6188 }
6189
6190 p->rt_priority = prio; 6238 p->rt_priority = prio;
6191 p->normal_prio = normal_prio(p); 6239 p->normal_prio = normal_prio(p);
6192 /* we are holding p->pi_lock already */ 6240 /* we are holding p->pi_lock already */
6193 p->prio = rt_mutex_getprio(p); 6241 p->prio = rt_mutex_getprio(p);
6242 if (rt_prio(p->prio))
6243 p->sched_class = &rt_sched_class;
6244 else
6245 p->sched_class = &fair_sched_class;
6194 set_load_weight(p); 6246 set_load_weight(p);
6195} 6247}
6196 6248
@@ -6305,7 +6357,7 @@ recheck:
6305 * make sure no PI-waiters arrive (or leave) while we are 6357 * make sure no PI-waiters arrive (or leave) while we are
6306 * changing the priority of the task: 6358 * changing the priority of the task:
6307 */ 6359 */
6308 spin_lock_irqsave(&p->pi_lock, flags); 6360 raw_spin_lock_irqsave(&p->pi_lock, flags);
6309 /* 6361 /*
6310 * To be able to change p->policy safely, the apropriate 6362 * To be able to change p->policy safely, the apropriate
6311 * runqueue lock must be held. 6363 * runqueue lock must be held.
@@ -6315,7 +6367,7 @@ recheck:
6315 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6367 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6316 policy = oldpolicy = -1; 6368 policy = oldpolicy = -1;
6317 __task_rq_unlock(rq); 6369 __task_rq_unlock(rq);
6318 spin_unlock_irqrestore(&p->pi_lock, flags); 6370 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6319 goto recheck; 6371 goto recheck;
6320 } 6372 }
6321 update_rq_clock(rq); 6373 update_rq_clock(rq);
@@ -6339,7 +6391,7 @@ recheck:
6339 check_class_changed(rq, p, prev_class, oldprio, running); 6391 check_class_changed(rq, p, prev_class, oldprio, running);
6340 } 6392 }
6341 __task_rq_unlock(rq); 6393 __task_rq_unlock(rq);
6342 spin_unlock_irqrestore(&p->pi_lock, flags); 6394 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6343 6395
6344 rt_mutex_adjust_pi(p); 6396 rt_mutex_adjust_pi(p);
6345 6397
@@ -6439,7 +6491,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6439 return -EINVAL; 6491 return -EINVAL;
6440 6492
6441 retval = -ESRCH; 6493 retval = -ESRCH;
6442 read_lock(&tasklist_lock); 6494 rcu_read_lock();
6443 p = find_process_by_pid(pid); 6495 p = find_process_by_pid(pid);
6444 if (p) { 6496 if (p) {
6445 retval = security_task_getscheduler(p); 6497 retval = security_task_getscheduler(p);
@@ -6447,7 +6499,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6447 retval = p->policy 6499 retval = p->policy
6448 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 6500 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6449 } 6501 }
6450 read_unlock(&tasklist_lock); 6502 rcu_read_unlock();
6451 return retval; 6503 return retval;
6452} 6504}
6453 6505
@@ -6465,7 +6517,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6465 if (!param || pid < 0) 6517 if (!param || pid < 0)
6466 return -EINVAL; 6518 return -EINVAL;
6467 6519
6468 read_lock(&tasklist_lock); 6520 rcu_read_lock();
6469 p = find_process_by_pid(pid); 6521 p = find_process_by_pid(pid);
6470 retval = -ESRCH; 6522 retval = -ESRCH;
6471 if (!p) 6523 if (!p)
@@ -6476,7 +6528,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6476 goto out_unlock; 6528 goto out_unlock;
6477 6529
6478 lp.sched_priority = p->rt_priority; 6530 lp.sched_priority = p->rt_priority;
6479 read_unlock(&tasklist_lock); 6531 rcu_read_unlock();
6480 6532
6481 /* 6533 /*
6482 * This one might sleep, we cannot do it with a spinlock held ... 6534 * This one might sleep, we cannot do it with a spinlock held ...
@@ -6486,7 +6538,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6486 return retval; 6538 return retval;
6487 6539
6488out_unlock: 6540out_unlock:
6489 read_unlock(&tasklist_lock); 6541 rcu_read_unlock();
6490 return retval; 6542 return retval;
6491} 6543}
6492 6544
@@ -6497,22 +6549,18 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6497 int retval; 6549 int retval;
6498 6550
6499 get_online_cpus(); 6551 get_online_cpus();
6500 read_lock(&tasklist_lock); 6552 rcu_read_lock();
6501 6553
6502 p = find_process_by_pid(pid); 6554 p = find_process_by_pid(pid);
6503 if (!p) { 6555 if (!p) {
6504 read_unlock(&tasklist_lock); 6556 rcu_read_unlock();
6505 put_online_cpus(); 6557 put_online_cpus();
6506 return -ESRCH; 6558 return -ESRCH;
6507 } 6559 }
6508 6560
6509 /* 6561 /* Prevent p going away */
6510 * It is not safe to call set_cpus_allowed with the
6511 * tasklist_lock held. We will bump the task_struct's
6512 * usage count and then drop tasklist_lock.
6513 */
6514 get_task_struct(p); 6562 get_task_struct(p);
6515 read_unlock(&tasklist_lock); 6563 rcu_read_unlock();
6516 6564
6517 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6565 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6518 retval = -ENOMEM; 6566 retval = -ENOMEM;
@@ -6593,10 +6641,12 @@ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6593long sched_getaffinity(pid_t pid, struct cpumask *mask) 6641long sched_getaffinity(pid_t pid, struct cpumask *mask)
6594{ 6642{
6595 struct task_struct *p; 6643 struct task_struct *p;
6644 unsigned long flags;
6645 struct rq *rq;
6596 int retval; 6646 int retval;
6597 6647
6598 get_online_cpus(); 6648 get_online_cpus();
6599 read_lock(&tasklist_lock); 6649 rcu_read_lock();
6600 6650
6601 retval = -ESRCH; 6651 retval = -ESRCH;
6602 p = find_process_by_pid(pid); 6652 p = find_process_by_pid(pid);
@@ -6607,10 +6657,12 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask)
6607 if (retval) 6657 if (retval)
6608 goto out_unlock; 6658 goto out_unlock;
6609 6659
6660 rq = task_rq_lock(p, &flags);
6610 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 6661 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6662 task_rq_unlock(rq, &flags);
6611 6663
6612out_unlock: 6664out_unlock:
6613 read_unlock(&tasklist_lock); 6665 rcu_read_unlock();
6614 put_online_cpus(); 6666 put_online_cpus();
6615 6667
6616 return retval; 6668 return retval;
@@ -6665,7 +6717,7 @@ SYSCALL_DEFINE0(sched_yield)
6665 */ 6717 */
6666 __release(rq->lock); 6718 __release(rq->lock);
6667 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 6719 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6668 _raw_spin_unlock(&rq->lock); 6720 do_raw_spin_unlock(&rq->lock);
6669 preempt_enable_no_resched(); 6721 preempt_enable_no_resched();
6670 6722
6671 schedule(); 6723 schedule();
@@ -6845,6 +6897,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6845{ 6897{
6846 struct task_struct *p; 6898 struct task_struct *p;
6847 unsigned int time_slice; 6899 unsigned int time_slice;
6900 unsigned long flags;
6901 struct rq *rq;
6848 int retval; 6902 int retval;
6849 struct timespec t; 6903 struct timespec t;
6850 6904
@@ -6852,7 +6906,7 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6852 return -EINVAL; 6906 return -EINVAL;
6853 6907
6854 retval = -ESRCH; 6908 retval = -ESRCH;
6855 read_lock(&tasklist_lock); 6909 rcu_read_lock();
6856 p = find_process_by_pid(pid); 6910 p = find_process_by_pid(pid);
6857 if (!p) 6911 if (!p)
6858 goto out_unlock; 6912 goto out_unlock;
@@ -6861,15 +6915,17 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6861 if (retval) 6915 if (retval)
6862 goto out_unlock; 6916 goto out_unlock;
6863 6917
6864 time_slice = p->sched_class->get_rr_interval(p); 6918 rq = task_rq_lock(p, &flags);
6919 time_slice = p->sched_class->get_rr_interval(rq, p);
6920 task_rq_unlock(rq, &flags);
6865 6921
6866 read_unlock(&tasklist_lock); 6922 rcu_read_unlock();
6867 jiffies_to_timespec(time_slice, &t); 6923 jiffies_to_timespec(time_slice, &t);
6868 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 6924 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6869 return retval; 6925 return retval;
6870 6926
6871out_unlock: 6927out_unlock:
6872 read_unlock(&tasklist_lock); 6928 rcu_read_unlock();
6873 return retval; 6929 return retval;
6874} 6930}
6875 6931
@@ -6935,7 +6991,7 @@ void show_state_filter(unsigned long state_filter)
6935 /* 6991 /*
6936 * Only show locks if all tasks are dumped: 6992 * Only show locks if all tasks are dumped:
6937 */ 6993 */
6938 if (state_filter == -1) 6994 if (!state_filter)
6939 debug_show_all_locks(); 6995 debug_show_all_locks();
6940} 6996}
6941 6997
@@ -6957,12 +7013,12 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
6957 struct rq *rq = cpu_rq(cpu); 7013 struct rq *rq = cpu_rq(cpu);
6958 unsigned long flags; 7014 unsigned long flags;
6959 7015
6960 spin_lock_irqsave(&rq->lock, flags); 7016 raw_spin_lock_irqsave(&rq->lock, flags);
6961 7017
6962 __sched_fork(idle); 7018 __sched_fork(idle);
7019 idle->state = TASK_RUNNING;
6963 idle->se.exec_start = sched_clock(); 7020 idle->se.exec_start = sched_clock();
6964 7021
6965 idle->prio = idle->normal_prio = MAX_PRIO;
6966 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); 7022 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6967 __set_task_cpu(idle, cpu); 7023 __set_task_cpu(idle, cpu);
6968 7024
@@ -6970,7 +7026,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
6970#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 7026#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6971 idle->oncpu = 1; 7027 idle->oncpu = 1;
6972#endif 7028#endif
6973 spin_unlock_irqrestore(&rq->lock, flags); 7029 raw_spin_unlock_irqrestore(&rq->lock, flags);
6974 7030
6975 /* Set the preempt count _outside_ the spinlocks! */ 7031 /* Set the preempt count _outside_ the spinlocks! */
6976#if defined(CONFIG_PREEMPT) 7032#if defined(CONFIG_PREEMPT)
@@ -7003,22 +7059,43 @@ cpumask_var_t nohz_cpu_mask;
7003 * 7059 *
7004 * This idea comes from the SD scheduler of Con Kolivas: 7060 * This idea comes from the SD scheduler of Con Kolivas:
7005 */ 7061 */
7006static inline void sched_init_granularity(void) 7062static int get_update_sysctl_factor(void)
7007{ 7063{
7008 unsigned int factor = 1 + ilog2(num_online_cpus()); 7064 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7009 const unsigned long limit = 200000000; 7065 unsigned int factor;
7066
7067 switch (sysctl_sched_tunable_scaling) {
7068 case SCHED_TUNABLESCALING_NONE:
7069 factor = 1;
7070 break;
7071 case SCHED_TUNABLESCALING_LINEAR:
7072 factor = cpus;
7073 break;
7074 case SCHED_TUNABLESCALING_LOG:
7075 default:
7076 factor = 1 + ilog2(cpus);
7077 break;
7078 }
7010 7079
7011 sysctl_sched_min_granularity *= factor; 7080 return factor;
7012 if (sysctl_sched_min_granularity > limit) 7081}
7013 sysctl_sched_min_granularity = limit;
7014 7082
7015 sysctl_sched_latency *= factor; 7083static void update_sysctl(void)
7016 if (sysctl_sched_latency > limit) 7084{
7017 sysctl_sched_latency = limit; 7085 unsigned int factor = get_update_sysctl_factor();
7018 7086
7019 sysctl_sched_wakeup_granularity *= factor; 7087#define SET_SYSCTL(name) \
7088 (sysctl_##name = (factor) * normalized_sysctl_##name)
7089 SET_SYSCTL(sched_min_granularity);
7090 SET_SYSCTL(sched_latency);
7091 SET_SYSCTL(sched_wakeup_granularity);
7092 SET_SYSCTL(sched_shares_ratelimit);
7093#undef SET_SYSCTL
7094}
7020 7095
7021 sysctl_sched_shares_ratelimit *= factor; 7096static inline void sched_init_granularity(void)
7097{
7098 update_sysctl();
7022} 7099}
7023 7100
7024#ifdef CONFIG_SMP 7101#ifdef CONFIG_SMP
@@ -7054,8 +7131,24 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7054 struct rq *rq; 7131 struct rq *rq;
7055 int ret = 0; 7132 int ret = 0;
7056 7133
7134 /*
7135 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7136 * the ->cpus_allowed mask from under waking tasks, which would be
7137 * possible when we change rq->lock in ttwu(), so synchronize against
7138 * TASK_WAKING to avoid that.
7139 */
7140again:
7141 while (p->state == TASK_WAKING)
7142 cpu_relax();
7143
7057 rq = task_rq_lock(p, &flags); 7144 rq = task_rq_lock(p, &flags);
7058 if (!cpumask_intersects(new_mask, cpu_online_mask)) { 7145
7146 if (p->state == TASK_WAKING) {
7147 task_rq_unlock(rq, &flags);
7148 goto again;
7149 }
7150
7151 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7059 ret = -EINVAL; 7152 ret = -EINVAL;
7060 goto out; 7153 goto out;
7061 } 7154 }
@@ -7077,7 +7170,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7077 if (cpumask_test_cpu(task_cpu(p), new_mask)) 7170 if (cpumask_test_cpu(task_cpu(p), new_mask))
7078 goto out; 7171 goto out;
7079 7172
7080 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { 7173 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7081 /* Need help from migration thread: drop lock and wait. */ 7174 /* Need help from migration thread: drop lock and wait. */
7082 struct task_struct *mt = rq->migration_thread; 7175 struct task_struct *mt = rq->migration_thread;
7083 7176
@@ -7110,7 +7203,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7110static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 7203static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7111{ 7204{
7112 struct rq *rq_dest, *rq_src; 7205 struct rq *rq_dest, *rq_src;
7113 int ret = 0, on_rq; 7206 int ret = 0;
7114 7207
7115 if (unlikely(!cpu_active(dest_cpu))) 7208 if (unlikely(!cpu_active(dest_cpu)))
7116 return ret; 7209 return ret;
@@ -7126,12 +7219,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7126 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 7219 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7127 goto fail; 7220 goto fail;
7128 7221
7129 on_rq = p->se.on_rq; 7222 /*
7130 if (on_rq) 7223 * If we're not on a rq, the next wake-up will ensure we're
7224 * placed properly.
7225 */
7226 if (p->se.on_rq) {
7131 deactivate_task(rq_src, p, 0); 7227 deactivate_task(rq_src, p, 0);
7132 7228 set_task_cpu(p, dest_cpu);
7133 set_task_cpu(p, dest_cpu);
7134 if (on_rq) {
7135 activate_task(rq_dest, p, 0); 7229 activate_task(rq_dest, p, 0);
7136 check_preempt_curr(rq_dest, p, 0); 7230 check_preempt_curr(rq_dest, p, 0);
7137 } 7231 }
@@ -7166,10 +7260,10 @@ static int migration_thread(void *data)
7166 struct migration_req *req; 7260 struct migration_req *req;
7167 struct list_head *head; 7261 struct list_head *head;
7168 7262
7169 spin_lock_irq(&rq->lock); 7263 raw_spin_lock_irq(&rq->lock);
7170 7264
7171 if (cpu_is_offline(cpu)) { 7265 if (cpu_is_offline(cpu)) {
7172 spin_unlock_irq(&rq->lock); 7266 raw_spin_unlock_irq(&rq->lock);
7173 break; 7267 break;
7174 } 7268 }
7175 7269
@@ -7181,7 +7275,7 @@ static int migration_thread(void *data)
7181 head = &rq->migration_queue; 7275 head = &rq->migration_queue;
7182 7276
7183 if (list_empty(head)) { 7277 if (list_empty(head)) {
7184 spin_unlock_irq(&rq->lock); 7278 raw_spin_unlock_irq(&rq->lock);
7185 schedule(); 7279 schedule();
7186 set_current_state(TASK_INTERRUPTIBLE); 7280 set_current_state(TASK_INTERRUPTIBLE);
7187 continue; 7281 continue;
@@ -7190,14 +7284,14 @@ static int migration_thread(void *data)
7190 list_del_init(head->next); 7284 list_del_init(head->next);
7191 7285
7192 if (req->task != NULL) { 7286 if (req->task != NULL) {
7193 spin_unlock(&rq->lock); 7287 raw_spin_unlock(&rq->lock);
7194 __migrate_task(req->task, cpu, req->dest_cpu); 7288 __migrate_task(req->task, cpu, req->dest_cpu);
7195 } else if (likely(cpu == (badcpu = smp_processor_id()))) { 7289 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7196 req->dest_cpu = RCU_MIGRATION_GOT_QS; 7290 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7197 spin_unlock(&rq->lock); 7291 raw_spin_unlock(&rq->lock);
7198 } else { 7292 } else {
7199 req->dest_cpu = RCU_MIGRATION_MUST_SYNC; 7293 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7200 spin_unlock(&rq->lock); 7294 raw_spin_unlock(&rq->lock);
7201 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); 7295 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7202 } 7296 }
7203 local_irq_enable(); 7297 local_irq_enable();
@@ -7227,37 +7321,10 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7227static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 7321static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7228{ 7322{
7229 int dest_cpu; 7323 int dest_cpu;
7230 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7231 7324
7232again: 7325again:
7233 /* Look for allowed, online CPU in same node. */ 7326 dest_cpu = select_fallback_rq(dead_cpu, p);
7234 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7235 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7236 goto move;
7237
7238 /* Any allowed, online CPU? */
7239 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7240 if (dest_cpu < nr_cpu_ids)
7241 goto move;
7242
7243 /* No more Mr. Nice Guy. */
7244 if (dest_cpu >= nr_cpu_ids) {
7245 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7246 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7247 7327
7248 /*
7249 * Don't tell them about moving exiting tasks or
7250 * kernel threads (both mm NULL), since they never
7251 * leave kernel.
7252 */
7253 if (p->mm && printk_ratelimit()) {
7254 printk(KERN_INFO "process %d (%s) no "
7255 "longer affine to cpu%d\n",
7256 task_pid_nr(p), p->comm, dead_cpu);
7257 }
7258 }
7259
7260move:
7261 /* It can have affinity changed while we were choosing. */ 7328 /* It can have affinity changed while we were choosing. */
7262 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) 7329 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7263 goto again; 7330 goto again;
@@ -7272,7 +7339,7 @@ move:
7272 */ 7339 */
7273static void migrate_nr_uninterruptible(struct rq *rq_src) 7340static void migrate_nr_uninterruptible(struct rq *rq_src)
7274{ 7341{
7275 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); 7342 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7276 unsigned long flags; 7343 unsigned long flags;
7277 7344
7278 local_irq_save(flags); 7345 local_irq_save(flags);
@@ -7320,14 +7387,14 @@ void sched_idle_next(void)
7320 * Strictly not necessary since rest of the CPUs are stopped by now 7387 * Strictly not necessary since rest of the CPUs are stopped by now
7321 * and interrupts disabled on the current cpu. 7388 * and interrupts disabled on the current cpu.
7322 */ 7389 */
7323 spin_lock_irqsave(&rq->lock, flags); 7390 raw_spin_lock_irqsave(&rq->lock, flags);
7324 7391
7325 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 7392 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7326 7393
7327 update_rq_clock(rq); 7394 update_rq_clock(rq);
7328 activate_task(rq, p, 0); 7395 activate_task(rq, p, 0);
7329 7396
7330 spin_unlock_irqrestore(&rq->lock, flags); 7397 raw_spin_unlock_irqrestore(&rq->lock, flags);
7331} 7398}
7332 7399
7333/* 7400/*
@@ -7363,9 +7430,9 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7363 * that's OK. No task can be added to this CPU, so iteration is 7430 * that's OK. No task can be added to this CPU, so iteration is
7364 * fine. 7431 * fine.
7365 */ 7432 */
7366 spin_unlock_irq(&rq->lock); 7433 raw_spin_unlock_irq(&rq->lock);
7367 move_task_off_dead_cpu(dead_cpu, p); 7434 move_task_off_dead_cpu(dead_cpu, p);
7368 spin_lock_irq(&rq->lock); 7435 raw_spin_lock_irq(&rq->lock);
7369 7436
7370 put_task_struct(p); 7437 put_task_struct(p);
7371} 7438}
@@ -7406,17 +7473,16 @@ static struct ctl_table sd_ctl_dir[] = {
7406 .procname = "sched_domain", 7473 .procname = "sched_domain",
7407 .mode = 0555, 7474 .mode = 0555,
7408 }, 7475 },
7409 {0, }, 7476 {}
7410}; 7477};
7411 7478
7412static struct ctl_table sd_ctl_root[] = { 7479static struct ctl_table sd_ctl_root[] = {
7413 { 7480 {
7414 .ctl_name = CTL_KERN,
7415 .procname = "kernel", 7481 .procname = "kernel",
7416 .mode = 0555, 7482 .mode = 0555,
7417 .child = sd_ctl_dir, 7483 .child = sd_ctl_dir,
7418 }, 7484 },
7419 {0, }, 7485 {}
7420}; 7486};
7421 7487
7422static struct ctl_table *sd_alloc_ctl_entry(int n) 7488static struct ctl_table *sd_alloc_ctl_entry(int n)
@@ -7526,7 +7592,7 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7526static struct ctl_table_header *sd_sysctl_header; 7592static struct ctl_table_header *sd_sysctl_header;
7527static void register_sched_domain_sysctl(void) 7593static void register_sched_domain_sysctl(void)
7528{ 7594{
7529 int i, cpu_num = num_online_cpus(); 7595 int i, cpu_num = num_possible_cpus();
7530 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 7596 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7531 char buf[32]; 7597 char buf[32];
7532 7598
@@ -7536,7 +7602,7 @@ static void register_sched_domain_sysctl(void)
7536 if (entry == NULL) 7602 if (entry == NULL)
7537 return; 7603 return;
7538 7604
7539 for_each_online_cpu(i) { 7605 for_each_possible_cpu(i) {
7540 snprintf(buf, 32, "cpu%d", i); 7606 snprintf(buf, 32, "cpu%d", i);
7541 entry->procname = kstrdup(buf, GFP_KERNEL); 7607 entry->procname = kstrdup(buf, GFP_KERNEL);
7542 entry->mode = 0555; 7608 entry->mode = 0555;
@@ -7632,13 +7698,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7632 7698
7633 /* Update our root-domain */ 7699 /* Update our root-domain */
7634 rq = cpu_rq(cpu); 7700 rq = cpu_rq(cpu);
7635 spin_lock_irqsave(&rq->lock, flags); 7701 raw_spin_lock_irqsave(&rq->lock, flags);
7636 if (rq->rd) { 7702 if (rq->rd) {
7637 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7703 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7638 7704
7639 set_rq_online(rq); 7705 set_rq_online(rq);
7640 } 7706 }
7641 spin_unlock_irqrestore(&rq->lock, flags); 7707 raw_spin_unlock_irqrestore(&rq->lock, flags);
7642 break; 7708 break;
7643 7709
7644#ifdef CONFIG_HOTPLUG_CPU 7710#ifdef CONFIG_HOTPLUG_CPU
@@ -7663,14 +7729,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7663 put_task_struct(rq->migration_thread); 7729 put_task_struct(rq->migration_thread);
7664 rq->migration_thread = NULL; 7730 rq->migration_thread = NULL;
7665 /* Idle task back to normal (off runqueue, low prio) */ 7731 /* Idle task back to normal (off runqueue, low prio) */
7666 spin_lock_irq(&rq->lock); 7732 raw_spin_lock_irq(&rq->lock);
7667 update_rq_clock(rq); 7733 update_rq_clock(rq);
7668 deactivate_task(rq, rq->idle, 0); 7734 deactivate_task(rq, rq->idle, 0);
7669 rq->idle->static_prio = MAX_PRIO;
7670 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); 7735 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7671 rq->idle->sched_class = &idle_sched_class; 7736 rq->idle->sched_class = &idle_sched_class;
7672 migrate_dead_tasks(cpu); 7737 migrate_dead_tasks(cpu);
7673 spin_unlock_irq(&rq->lock); 7738 raw_spin_unlock_irq(&rq->lock);
7674 cpuset_unlock(); 7739 cpuset_unlock();
7675 migrate_nr_uninterruptible(rq); 7740 migrate_nr_uninterruptible(rq);
7676 BUG_ON(rq->nr_running != 0); 7741 BUG_ON(rq->nr_running != 0);
@@ -7680,30 +7745,30 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7680 * they didn't take sched_hotcpu_mutex. Just wake up 7745 * they didn't take sched_hotcpu_mutex. Just wake up
7681 * the requestors. 7746 * the requestors.
7682 */ 7747 */
7683 spin_lock_irq(&rq->lock); 7748 raw_spin_lock_irq(&rq->lock);
7684 while (!list_empty(&rq->migration_queue)) { 7749 while (!list_empty(&rq->migration_queue)) {
7685 struct migration_req *req; 7750 struct migration_req *req;
7686 7751
7687 req = list_entry(rq->migration_queue.next, 7752 req = list_entry(rq->migration_queue.next,
7688 struct migration_req, list); 7753 struct migration_req, list);
7689 list_del_init(&req->list); 7754 list_del_init(&req->list);
7690 spin_unlock_irq(&rq->lock); 7755 raw_spin_unlock_irq(&rq->lock);
7691 complete(&req->done); 7756 complete(&req->done);
7692 spin_lock_irq(&rq->lock); 7757 raw_spin_lock_irq(&rq->lock);
7693 } 7758 }
7694 spin_unlock_irq(&rq->lock); 7759 raw_spin_unlock_irq(&rq->lock);
7695 break; 7760 break;
7696 7761
7697 case CPU_DYING: 7762 case CPU_DYING:
7698 case CPU_DYING_FROZEN: 7763 case CPU_DYING_FROZEN:
7699 /* Update our root-domain */ 7764 /* Update our root-domain */
7700 rq = cpu_rq(cpu); 7765 rq = cpu_rq(cpu);
7701 spin_lock_irqsave(&rq->lock, flags); 7766 raw_spin_lock_irqsave(&rq->lock, flags);
7702 if (rq->rd) { 7767 if (rq->rd) {
7703 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7768 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7704 set_rq_offline(rq); 7769 set_rq_offline(rq);
7705 } 7770 }
7706 spin_unlock_irqrestore(&rq->lock, flags); 7771 raw_spin_unlock_irqrestore(&rq->lock, flags);
7707 break; 7772 break;
7708#endif 7773#endif
7709 } 7774 }
@@ -7740,6 +7805,16 @@ early_initcall(migration_init);
7740 7805
7741#ifdef CONFIG_SCHED_DEBUG 7806#ifdef CONFIG_SCHED_DEBUG
7742 7807
7808static __read_mostly int sched_domain_debug_enabled;
7809
7810static int __init sched_domain_debug_setup(char *str)
7811{
7812 sched_domain_debug_enabled = 1;
7813
7814 return 0;
7815}
7816early_param("sched_debug", sched_domain_debug_setup);
7817
7743static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 7818static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7744 struct cpumask *groupmask) 7819 struct cpumask *groupmask)
7745{ 7820{
@@ -7826,6 +7901,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
7826 cpumask_var_t groupmask; 7901 cpumask_var_t groupmask;
7827 int level = 0; 7902 int level = 0;
7828 7903
7904 if (!sched_domain_debug_enabled)
7905 return;
7906
7829 if (!sd) { 7907 if (!sd) {
7830 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 7908 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7831 return; 7909 return;
@@ -7905,6 +7983,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7905 7983
7906static void free_rootdomain(struct root_domain *rd) 7984static void free_rootdomain(struct root_domain *rd)
7907{ 7985{
7986 synchronize_sched();
7987
7908 cpupri_cleanup(&rd->cpupri); 7988 cpupri_cleanup(&rd->cpupri);
7909 7989
7910 free_cpumask_var(rd->rto_mask); 7990 free_cpumask_var(rd->rto_mask);
@@ -7918,7 +7998,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7918 struct root_domain *old_rd = NULL; 7998 struct root_domain *old_rd = NULL;
7919 unsigned long flags; 7999 unsigned long flags;
7920 8000
7921 spin_lock_irqsave(&rq->lock, flags); 8001 raw_spin_lock_irqsave(&rq->lock, flags);
7922 8002
7923 if (rq->rd) { 8003 if (rq->rd) {
7924 old_rd = rq->rd; 8004 old_rd = rq->rd;
@@ -7944,7 +8024,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7944 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 8024 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7945 set_rq_online(rq); 8025 set_rq_online(rq);
7946 8026
7947 spin_unlock_irqrestore(&rq->lock, flags); 8027 raw_spin_unlock_irqrestore(&rq->lock, flags);
7948 8028
7949 if (old_rd) 8029 if (old_rd)
7950 free_rootdomain(old_rd); 8030 free_rootdomain(old_rd);
@@ -8045,6 +8125,7 @@ static cpumask_var_t cpu_isolated_map;
8045/* Setup the mask of cpus configured for isolated domains */ 8125/* Setup the mask of cpus configured for isolated domains */
8046static int __init isolated_cpu_setup(char *str) 8126static int __init isolated_cpu_setup(char *str)
8047{ 8127{
8128 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8048 cpulist_parse(str, cpu_isolated_map); 8129 cpulist_parse(str, cpu_isolated_map);
8049 return 1; 8130 return 1;
8050} 8131}
@@ -8229,14 +8310,14 @@ enum s_alloc {
8229 */ 8310 */
8230#ifdef CONFIG_SCHED_SMT 8311#ifdef CONFIG_SCHED_SMT
8231static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); 8312static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8232static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); 8313static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8233 8314
8234static int 8315static int
8235cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, 8316cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8236 struct sched_group **sg, struct cpumask *unused) 8317 struct sched_group **sg, struct cpumask *unused)
8237{ 8318{
8238 if (sg) 8319 if (sg)
8239 *sg = &per_cpu(sched_group_cpus, cpu).sg; 8320 *sg = &per_cpu(sched_groups, cpu).sg;
8240 return cpu; 8321 return cpu;
8241} 8322}
8242#endif /* CONFIG_SCHED_SMT */ 8323#endif /* CONFIG_SCHED_SMT */
@@ -8881,7 +8962,7 @@ static int build_sched_domains(const struct cpumask *cpu_map)
8881 return __build_sched_domains(cpu_map, NULL); 8962 return __build_sched_domains(cpu_map, NULL);
8882} 8963}
8883 8964
8884static struct cpumask *doms_cur; /* current sched domains */ 8965static cpumask_var_t *doms_cur; /* current sched domains */
8885static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 8966static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8886static struct sched_domain_attr *dattr_cur; 8967static struct sched_domain_attr *dattr_cur;
8887 /* attribues of custom domains in 'doms_cur' */ 8968 /* attribues of custom domains in 'doms_cur' */
@@ -8903,6 +8984,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void)
8903 return 0; 8984 return 0;
8904} 8985}
8905 8986
8987cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8988{
8989 int i;
8990 cpumask_var_t *doms;
8991
8992 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8993 if (!doms)
8994 return NULL;
8995 for (i = 0; i < ndoms; i++) {
8996 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8997 free_sched_domains(doms, i);
8998 return NULL;
8999 }
9000 }
9001 return doms;
9002}
9003
9004void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9005{
9006 unsigned int i;
9007 for (i = 0; i < ndoms; i++)
9008 free_cpumask_var(doms[i]);
9009 kfree(doms);
9010}
9011
8906/* 9012/*
8907 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 9013 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8908 * For now this just excludes isolated cpus, but could be used to 9014 * For now this just excludes isolated cpus, but could be used to
@@ -8914,12 +9020,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map)
8914 9020
8915 arch_update_cpu_topology(); 9021 arch_update_cpu_topology();
8916 ndoms_cur = 1; 9022 ndoms_cur = 1;
8917 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); 9023 doms_cur = alloc_sched_domains(ndoms_cur);
8918 if (!doms_cur) 9024 if (!doms_cur)
8919 doms_cur = fallback_doms; 9025 doms_cur = &fallback_doms;
8920 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); 9026 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8921 dattr_cur = NULL; 9027 dattr_cur = NULL;
8922 err = build_sched_domains(doms_cur); 9028 err = build_sched_domains(doms_cur[0]);
8923 register_sched_domain_sysctl(); 9029 register_sched_domain_sysctl();
8924 9030
8925 return err; 9031 return err;
@@ -8969,19 +9075,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8969 * doms_new[] to the current sched domain partitioning, doms_cur[]. 9075 * doms_new[] to the current sched domain partitioning, doms_cur[].
8970 * It destroys each deleted domain and builds each new domain. 9076 * It destroys each deleted domain and builds each new domain.
8971 * 9077 *
8972 * 'doms_new' is an array of cpumask's of length 'ndoms_new'. 9078 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8973 * The masks don't intersect (don't overlap.) We should setup one 9079 * The masks don't intersect (don't overlap.) We should setup one
8974 * sched domain for each mask. CPUs not in any of the cpumasks will 9080 * sched domain for each mask. CPUs not in any of the cpumasks will
8975 * not be load balanced. If the same cpumask appears both in the 9081 * not be load balanced. If the same cpumask appears both in the
8976 * current 'doms_cur' domains and in the new 'doms_new', we can leave 9082 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8977 * it as it is. 9083 * it as it is.
8978 * 9084 *
8979 * The passed in 'doms_new' should be kmalloc'd. This routine takes 9085 * The passed in 'doms_new' should be allocated using
8980 * ownership of it and will kfree it when done with it. If the caller 9086 * alloc_sched_domains. This routine takes ownership of it and will
8981 * failed the kmalloc call, then it can pass in doms_new == NULL && 9087 * free_sched_domains it when done with it. If the caller failed the
8982 * ndoms_new == 1, and partition_sched_domains() will fallback to 9088 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8983 * the single partition 'fallback_doms', it also forces the domains 9089 * and partition_sched_domains() will fallback to the single partition
8984 * to be rebuilt. 9090 * 'fallback_doms', it also forces the domains to be rebuilt.
8985 * 9091 *
8986 * If doms_new == NULL it will be replaced with cpu_online_mask. 9092 * If doms_new == NULL it will be replaced with cpu_online_mask.
8987 * ndoms_new == 0 is a special case for destroying existing domains, 9093 * ndoms_new == 0 is a special case for destroying existing domains,
@@ -8989,8 +9095,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8989 * 9095 *
8990 * Call with hotplug lock held 9096 * Call with hotplug lock held
8991 */ 9097 */
8992/* FIXME: Change to struct cpumask *doms_new[] */ 9098void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
8993void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8994 struct sched_domain_attr *dattr_new) 9099 struct sched_domain_attr *dattr_new)
8995{ 9100{
8996 int i, j, n; 9101 int i, j, n;
@@ -9009,40 +9114,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9009 /* Destroy deleted domains */ 9114 /* Destroy deleted domains */
9010 for (i = 0; i < ndoms_cur; i++) { 9115 for (i = 0; i < ndoms_cur; i++) {
9011 for (j = 0; j < n && !new_topology; j++) { 9116 for (j = 0; j < n && !new_topology; j++) {
9012 if (cpumask_equal(&doms_cur[i], &doms_new[j]) 9117 if (cpumask_equal(doms_cur[i], doms_new[j])
9013 && dattrs_equal(dattr_cur, i, dattr_new, j)) 9118 && dattrs_equal(dattr_cur, i, dattr_new, j))
9014 goto match1; 9119 goto match1;
9015 } 9120 }
9016 /* no match - a current sched domain not in new doms_new[] */ 9121 /* no match - a current sched domain not in new doms_new[] */
9017 detach_destroy_domains(doms_cur + i); 9122 detach_destroy_domains(doms_cur[i]);
9018match1: 9123match1:
9019 ; 9124 ;
9020 } 9125 }
9021 9126
9022 if (doms_new == NULL) { 9127 if (doms_new == NULL) {
9023 ndoms_cur = 0; 9128 ndoms_cur = 0;
9024 doms_new = fallback_doms; 9129 doms_new = &fallback_doms;
9025 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); 9130 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9026 WARN_ON_ONCE(dattr_new); 9131 WARN_ON_ONCE(dattr_new);
9027 } 9132 }
9028 9133
9029 /* Build new domains */ 9134 /* Build new domains */
9030 for (i = 0; i < ndoms_new; i++) { 9135 for (i = 0; i < ndoms_new; i++) {
9031 for (j = 0; j < ndoms_cur && !new_topology; j++) { 9136 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9032 if (cpumask_equal(&doms_new[i], &doms_cur[j]) 9137 if (cpumask_equal(doms_new[i], doms_cur[j])
9033 && dattrs_equal(dattr_new, i, dattr_cur, j)) 9138 && dattrs_equal(dattr_new, i, dattr_cur, j))
9034 goto match2; 9139 goto match2;
9035 } 9140 }
9036 /* no match - add a new doms_new */ 9141 /* no match - add a new doms_new */
9037 __build_sched_domains(doms_new + i, 9142 __build_sched_domains(doms_new[i],
9038 dattr_new ? dattr_new + i : NULL); 9143 dattr_new ? dattr_new + i : NULL);
9039match2: 9144match2:
9040 ; 9145 ;
9041 } 9146 }
9042 9147
9043 /* Remember the new sched domains */ 9148 /* Remember the new sched domains */
9044 if (doms_cur != fallback_doms) 9149 if (doms_cur != &fallback_doms)
9045 kfree(doms_cur); 9150 free_sched_domains(doms_cur, ndoms_cur);
9046 kfree(dattr_cur); /* kfree(NULL) is safe */ 9151 kfree(dattr_cur); /* kfree(NULL) is safe */
9047 doms_cur = doms_new; 9152 doms_cur = doms_new;
9048 dattr_cur = dattr_new; 9153 dattr_cur = dattr_new;
@@ -9153,8 +9258,10 @@ static int update_sched_domains(struct notifier_block *nfb,
9153 switch (action) { 9258 switch (action) {
9154 case CPU_ONLINE: 9259 case CPU_ONLINE:
9155 case CPU_ONLINE_FROZEN: 9260 case CPU_ONLINE_FROZEN:
9156 case CPU_DEAD: 9261 case CPU_DOWN_PREPARE:
9157 case CPU_DEAD_FROZEN: 9262 case CPU_DOWN_PREPARE_FROZEN:
9263 case CPU_DOWN_FAILED:
9264 case CPU_DOWN_FAILED_FROZEN:
9158 partition_sched_domains(1, NULL, NULL); 9265 partition_sched_domains(1, NULL, NULL);
9159 return NOTIFY_OK; 9266 return NOTIFY_OK;
9160 9267
@@ -9201,7 +9308,7 @@ void __init sched_init_smp(void)
9201#endif 9308#endif
9202 get_online_cpus(); 9309 get_online_cpus();
9203 mutex_lock(&sched_domains_mutex); 9310 mutex_lock(&sched_domains_mutex);
9204 arch_init_sched_domains(cpu_online_mask); 9311 arch_init_sched_domains(cpu_active_mask);
9205 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 9312 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9206 if (cpumask_empty(non_isolated_cpus)) 9313 if (cpumask_empty(non_isolated_cpus))
9207 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 9314 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
@@ -9274,13 +9381,13 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9274#ifdef CONFIG_SMP 9381#ifdef CONFIG_SMP
9275 rt_rq->rt_nr_migratory = 0; 9382 rt_rq->rt_nr_migratory = 0;
9276 rt_rq->overloaded = 0; 9383 rt_rq->overloaded = 0;
9277 plist_head_init(&rt_rq->pushable_tasks, &rq->lock); 9384 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9278#endif 9385#endif
9279 9386
9280 rt_rq->rt_time = 0; 9387 rt_rq->rt_time = 0;
9281 rt_rq->rt_throttled = 0; 9388 rt_rq->rt_throttled = 0;
9282 rt_rq->rt_runtime = 0; 9389 rt_rq->rt_runtime = 0;
9283 spin_lock_init(&rt_rq->rt_runtime_lock); 9390 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9284 9391
9285#ifdef CONFIG_RT_GROUP_SCHED 9392#ifdef CONFIG_RT_GROUP_SCHED
9286 rt_rq->rt_nr_boosted = 0; 9393 rt_rq->rt_nr_boosted = 0;
@@ -9364,10 +9471,6 @@ void __init sched_init(void)
9364#ifdef CONFIG_CPUMASK_OFFSTACK 9471#ifdef CONFIG_CPUMASK_OFFSTACK
9365 alloc_size += num_possible_cpus() * cpumask_size(); 9472 alloc_size += num_possible_cpus() * cpumask_size();
9366#endif 9473#endif
9367 /*
9368 * As sched_init() is called before page_alloc is setup,
9369 * we use alloc_bootmem().
9370 */
9371 if (alloc_size) { 9474 if (alloc_size) {
9372 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 9475 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9373 9476
@@ -9444,7 +9547,7 @@ void __init sched_init(void)
9444 struct rq *rq; 9547 struct rq *rq;
9445 9548
9446 rq = cpu_rq(i); 9549 rq = cpu_rq(i);
9447 spin_lock_init(&rq->lock); 9550 raw_spin_lock_init(&rq->lock);
9448 rq->nr_running = 0; 9551 rq->nr_running = 0;
9449 rq->calc_load_active = 0; 9552 rq->calc_load_active = 0;
9450 rq->calc_load_update = jiffies + LOAD_FREQ; 9553 rq->calc_load_update = jiffies + LOAD_FREQ;
@@ -9504,7 +9607,7 @@ void __init sched_init(void)
9504#elif defined CONFIG_USER_SCHED 9607#elif defined CONFIG_USER_SCHED
9505 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); 9608 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9506 init_tg_rt_entry(&init_task_group, 9609 init_tg_rt_entry(&init_task_group,
9507 &per_cpu(init_rt_rq, i), 9610 &per_cpu(init_rt_rq_var, i),
9508 &per_cpu(init_sched_rt_entity, i), i, 1, 9611 &per_cpu(init_sched_rt_entity, i), i, 1,
9509 root_task_group.rt_se[i]); 9612 root_task_group.rt_se[i]);
9510#endif 9613#endif
@@ -9522,6 +9625,8 @@ void __init sched_init(void)
9522 rq->cpu = i; 9625 rq->cpu = i;
9523 rq->online = 0; 9626 rq->online = 0;
9524 rq->migration_thread = NULL; 9627 rq->migration_thread = NULL;
9628 rq->idle_stamp = 0;
9629 rq->avg_idle = 2*sysctl_sched_migration_cost;
9525 INIT_LIST_HEAD(&rq->migration_queue); 9630 INIT_LIST_HEAD(&rq->migration_queue);
9526 rq_attach_root(rq, &def_root_domain); 9631 rq_attach_root(rq, &def_root_domain);
9527#endif 9632#endif
@@ -9540,7 +9645,7 @@ void __init sched_init(void)
9540#endif 9645#endif
9541 9646
9542#ifdef CONFIG_RT_MUTEXES 9647#ifdef CONFIG_RT_MUTEXES
9543 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); 9648 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9544#endif 9649#endif
9545 9650
9546 /* 9651 /*
@@ -9571,7 +9676,9 @@ void __init sched_init(void)
9571 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); 9676 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9572 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); 9677 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9573#endif 9678#endif
9574 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 9679 /* May be allocated at isolcpus cmdline parse time */
9680 if (cpu_isolated_map == NULL)
9681 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9575#endif /* SMP */ 9682#endif /* SMP */
9576 9683
9577 perf_event_init(); 9684 perf_event_init();
@@ -9582,7 +9689,7 @@ void __init sched_init(void)
9582#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 9689#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9583static inline int preempt_count_equals(int preempt_offset) 9690static inline int preempt_count_equals(int preempt_offset)
9584{ 9691{
9585 int nested = preempt_count() & ~PREEMPT_ACTIVE; 9692 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9586 9693
9587 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); 9694 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9588} 9695}
@@ -9663,13 +9770,13 @@ void normalize_rt_tasks(void)
9663 continue; 9770 continue;
9664 } 9771 }
9665 9772
9666 spin_lock(&p->pi_lock); 9773 raw_spin_lock(&p->pi_lock);
9667 rq = __task_rq_lock(p); 9774 rq = __task_rq_lock(p);
9668 9775
9669 normalize_task(rq, p); 9776 normalize_task(rq, p);
9670 9777
9671 __task_rq_unlock(rq); 9778 __task_rq_unlock(rq);
9672 spin_unlock(&p->pi_lock); 9779 raw_spin_unlock(&p->pi_lock);
9673 } while_each_thread(g, p); 9780 } while_each_thread(g, p);
9674 9781
9675 read_unlock_irqrestore(&tasklist_lock, flags); 9782 read_unlock_irqrestore(&tasklist_lock, flags);
@@ -9765,13 +9872,15 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9765 se = kzalloc_node(sizeof(struct sched_entity), 9872 se = kzalloc_node(sizeof(struct sched_entity),
9766 GFP_KERNEL, cpu_to_node(i)); 9873 GFP_KERNEL, cpu_to_node(i));
9767 if (!se) 9874 if (!se)
9768 goto err; 9875 goto err_free_rq;
9769 9876
9770 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); 9877 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9771 } 9878 }
9772 9879
9773 return 1; 9880 return 1;
9774 9881
9882 err_free_rq:
9883 kfree(cfs_rq);
9775 err: 9884 err:
9776 return 0; 9885 return 0;
9777} 9886}
@@ -9853,13 +9962,15 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9853 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 9962 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9854 GFP_KERNEL, cpu_to_node(i)); 9963 GFP_KERNEL, cpu_to_node(i));
9855 if (!rt_se) 9964 if (!rt_se)
9856 goto err; 9965 goto err_free_rq;
9857 9966
9858 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); 9967 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9859 } 9968 }
9860 9969
9861 return 1; 9970 return 1;
9862 9971
9972 err_free_rq:
9973 kfree(rt_rq);
9863 err: 9974 err:
9864 return 0; 9975 return 0;
9865} 9976}
@@ -9993,7 +10104,7 @@ void sched_move_task(struct task_struct *tsk)
9993 10104
9994#ifdef CONFIG_FAIR_GROUP_SCHED 10105#ifdef CONFIG_FAIR_GROUP_SCHED
9995 if (tsk->sched_class->moved_group) 10106 if (tsk->sched_class->moved_group)
9996 tsk->sched_class->moved_group(tsk); 10107 tsk->sched_class->moved_group(tsk, on_rq);
9997#endif 10108#endif
9998 10109
9999 if (unlikely(running)) 10110 if (unlikely(running))
@@ -10028,9 +10139,9 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares)
10028 struct rq *rq = cfs_rq->rq; 10139 struct rq *rq = cfs_rq->rq;
10029 unsigned long flags; 10140 unsigned long flags;
10030 10141
10031 spin_lock_irqsave(&rq->lock, flags); 10142 raw_spin_lock_irqsave(&rq->lock, flags);
10032 __set_se_shares(se, shares); 10143 __set_se_shares(se, shares);
10033 spin_unlock_irqrestore(&rq->lock, flags); 10144 raw_spin_unlock_irqrestore(&rq->lock, flags);
10034} 10145}
10035 10146
10036static DEFINE_MUTEX(shares_mutex); 10147static DEFINE_MUTEX(shares_mutex);
@@ -10215,18 +10326,18 @@ static int tg_set_bandwidth(struct task_group *tg,
10215 if (err) 10326 if (err)
10216 goto unlock; 10327 goto unlock;
10217 10328
10218 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10329 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10219 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 10330 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10220 tg->rt_bandwidth.rt_runtime = rt_runtime; 10331 tg->rt_bandwidth.rt_runtime = rt_runtime;
10221 10332
10222 for_each_possible_cpu(i) { 10333 for_each_possible_cpu(i) {
10223 struct rt_rq *rt_rq = tg->rt_rq[i]; 10334 struct rt_rq *rt_rq = tg->rt_rq[i];
10224 10335
10225 spin_lock(&rt_rq->rt_runtime_lock); 10336 raw_spin_lock(&rt_rq->rt_runtime_lock);
10226 rt_rq->rt_runtime = rt_runtime; 10337 rt_rq->rt_runtime = rt_runtime;
10227 spin_unlock(&rt_rq->rt_runtime_lock); 10338 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10228 } 10339 }
10229 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10340 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10230 unlock: 10341 unlock:
10231 read_unlock(&tasklist_lock); 10342 read_unlock(&tasklist_lock);
10232 mutex_unlock(&rt_constraints_mutex); 10343 mutex_unlock(&rt_constraints_mutex);
@@ -10331,15 +10442,15 @@ static int sched_rt_global_constraints(void)
10331 if (sysctl_sched_rt_runtime == 0) 10442 if (sysctl_sched_rt_runtime == 0)
10332 return -EBUSY; 10443 return -EBUSY;
10333 10444
10334 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 10445 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10335 for_each_possible_cpu(i) { 10446 for_each_possible_cpu(i) {
10336 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 10447 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10337 10448
10338 spin_lock(&rt_rq->rt_runtime_lock); 10449 raw_spin_lock(&rt_rq->rt_runtime_lock);
10339 rt_rq->rt_runtime = global_rt_runtime(); 10450 rt_rq->rt_runtime = global_rt_runtime();
10340 spin_unlock(&rt_rq->rt_runtime_lock); 10451 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10341 } 10452 }
10342 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 10453 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10343 10454
10344 return 0; 10455 return 0;
10345} 10456}
@@ -10630,9 +10741,9 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10630 /* 10741 /*
10631 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 10742 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10632 */ 10743 */
10633 spin_lock_irq(&cpu_rq(cpu)->lock); 10744 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10634 data = *cpuusage; 10745 data = *cpuusage;
10635 spin_unlock_irq(&cpu_rq(cpu)->lock); 10746 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10636#else 10747#else
10637 data = *cpuusage; 10748 data = *cpuusage;
10638#endif 10749#endif
@@ -10648,9 +10759,9 @@ static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10648 /* 10759 /*
10649 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 10760 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10650 */ 10761 */
10651 spin_lock_irq(&cpu_rq(cpu)->lock); 10762 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10652 *cpuusage = val; 10763 *cpuusage = val;
10653 spin_unlock_irq(&cpu_rq(cpu)->lock); 10764 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10654#else 10765#else
10655 *cpuusage = val; 10766 *cpuusage = val;
10656#endif 10767#endif
@@ -10884,9 +10995,9 @@ void synchronize_sched_expedited(void)
10884 init_completion(&req->done); 10995 init_completion(&req->done);
10885 req->task = NULL; 10996 req->task = NULL;
10886 req->dest_cpu = RCU_MIGRATION_NEED_QS; 10997 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10887 spin_lock_irqsave(&rq->lock, flags); 10998 raw_spin_lock_irqsave(&rq->lock, flags);
10888 list_add(&req->list, &rq->migration_queue); 10999 list_add(&req->list, &rq->migration_queue);
10889 spin_unlock_irqrestore(&rq->lock, flags); 11000 raw_spin_unlock_irqrestore(&rq->lock, flags);
10890 wake_up_process(rq->migration_thread); 11001 wake_up_process(rq->migration_thread);
10891 } 11002 }
10892 for_each_online_cpu(cpu) { 11003 for_each_online_cpu(cpu) {
@@ -10894,13 +11005,14 @@ void synchronize_sched_expedited(void)
10894 req = &per_cpu(rcu_migration_req, cpu); 11005 req = &per_cpu(rcu_migration_req, cpu);
10895 rq = cpu_rq(cpu); 11006 rq = cpu_rq(cpu);
10896 wait_for_completion(&req->done); 11007 wait_for_completion(&req->done);
10897 spin_lock_irqsave(&rq->lock, flags); 11008 raw_spin_lock_irqsave(&rq->lock, flags);
10898 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) 11009 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10899 need_full_sync = 1; 11010 need_full_sync = 1;
10900 req->dest_cpu = RCU_MIGRATION_IDLE; 11011 req->dest_cpu = RCU_MIGRATION_IDLE;
10901 spin_unlock_irqrestore(&rq->lock, flags); 11012 raw_spin_unlock_irqrestore(&rq->lock, flags);
10902 } 11013 }
10903 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; 11014 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11015 synchronize_sched_expedited_count++;
10904 mutex_unlock(&rcu_sched_expedited_mutex); 11016 mutex_unlock(&rcu_sched_expedited_mutex);
10905 put_online_cpus(); 11017 put_online_cpus();
10906 if (need_full_sync) 11018 if (need_full_sync)