diff options
Diffstat (limited to 'kernel/sched.c')
| -rw-r--r-- | kernel/sched.c | 1090 | 
1 files changed, 784 insertions, 306 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 8e2558c2ba67..2325db2be31b 100644 --- a/kernel/sched.c +++ b/kernel/sched.c  | |||
| @@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |||
| 331 | */ | 331 | */ | 
| 332 | static DEFINE_SPINLOCK(task_group_lock); | 332 | static DEFINE_SPINLOCK(task_group_lock); | 
| 333 | 333 | ||
| 334 | #ifdef CONFIG_SMP | ||
| 335 | static int root_task_group_empty(void) | ||
| 336 | { | ||
| 337 | return list_empty(&root_task_group.children); | ||
| 338 | } | ||
| 339 | #endif | ||
| 340 | |||
| 334 | #ifdef CONFIG_FAIR_GROUP_SCHED | 341 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
| 335 | #ifdef CONFIG_USER_SCHED | 342 | #ifdef CONFIG_USER_SCHED | 
| 336 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 343 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 
| @@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
| 391 | 398 | ||
| 392 | #else | 399 | #else | 
| 393 | 400 | ||
| 401 | #ifdef CONFIG_SMP | ||
| 402 | static int root_task_group_empty(void) | ||
| 403 | { | ||
| 404 | return 1; | ||
| 405 | } | ||
| 406 | #endif | ||
| 407 | |||
| 394 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 408 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 
| 395 | static inline struct task_group *task_group(struct task_struct *p) | 409 | static inline struct task_group *task_group(struct task_struct *p) | 
| 396 | { | 410 | { | 
| @@ -467,11 +481,17 @@ struct rt_rq { | |||
| 467 | struct rt_prio_array active; | 481 | struct rt_prio_array active; | 
| 468 | unsigned long rt_nr_running; | 482 | unsigned long rt_nr_running; | 
| 469 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 483 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
| 470 | int highest_prio; /* highest queued rt task prio */ | 484 | struct { | 
| 485 | int curr; /* highest queued rt task prio */ | ||
| 486 | #ifdef CONFIG_SMP | ||
| 487 | int next; /* next highest */ | ||
| 488 | #endif | ||
| 489 | } highest_prio; | ||
| 471 | #endif | 490 | #endif | 
| 472 | #ifdef CONFIG_SMP | 491 | #ifdef CONFIG_SMP | 
| 473 | unsigned long rt_nr_migratory; | 492 | unsigned long rt_nr_migratory; | 
| 474 | int overloaded; | 493 | int overloaded; | 
| 494 | struct plist_head pushable_tasks; | ||
| 475 | #endif | 495 | #endif | 
| 476 | int rt_throttled; | 496 | int rt_throttled; | 
| 477 | u64 rt_time; | 497 | u64 rt_time; | 
| @@ -549,7 +569,6 @@ struct rq { | |||
| 549 | unsigned long nr_running; | 569 | unsigned long nr_running; | 
| 550 | #define CPU_LOAD_IDX_MAX 5 | 570 | #define CPU_LOAD_IDX_MAX 5 | 
| 551 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 571 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 
| 552 | unsigned char idle_at_tick; | ||
| 553 | #ifdef CONFIG_NO_HZ | 572 | #ifdef CONFIG_NO_HZ | 
| 554 | unsigned long last_tick_seen; | 573 | unsigned long last_tick_seen; | 
| 555 | unsigned char in_nohz_recently; | 574 | unsigned char in_nohz_recently; | 
| @@ -590,6 +609,7 @@ struct rq { | |||
| 590 | struct root_domain *rd; | 609 | struct root_domain *rd; | 
| 591 | struct sched_domain *sd; | 610 | struct sched_domain *sd; | 
| 592 | 611 | ||
| 612 | unsigned char idle_at_tick; | ||
| 593 | /* For active balancing */ | 613 | /* For active balancing */ | 
| 594 | int active_balance; | 614 | int active_balance; | 
| 595 | int push_cpu; | 615 | int push_cpu; | 
| @@ -618,9 +638,6 @@ struct rq { | |||
| 618 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 638 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 
| 619 | 639 | ||
| 620 | /* sys_sched_yield() stats */ | 640 | /* sys_sched_yield() stats */ | 
| 621 | unsigned int yld_exp_empty; | ||
| 622 | unsigned int yld_act_empty; | ||
| 623 | unsigned int yld_both_empty; | ||
| 624 | unsigned int yld_count; | 641 | unsigned int yld_count; | 
| 625 | 642 | ||
| 626 | /* schedule() stats */ | 643 | /* schedule() stats */ | 
| @@ -1093,7 +1110,7 @@ static void hrtick_start(struct rq *rq, u64 delay) | |||
| 1093 | if (rq == this_rq()) { | 1110 | if (rq == this_rq()) { | 
| 1094 | hrtimer_restart(timer); | 1111 | hrtimer_restart(timer); | 
| 1095 | } else if (!rq->hrtick_csd_pending) { | 1112 | } else if (!rq->hrtick_csd_pending) { | 
| 1096 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); | 1113 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); | 
| 1097 | rq->hrtick_csd_pending = 1; | 1114 | rq->hrtick_csd_pending = 1; | 
| 1098 | } | 1115 | } | 
| 1099 | } | 1116 | } | 
| @@ -1183,10 +1200,10 @@ static void resched_task(struct task_struct *p) | |||
| 1183 | 1200 | ||
| 1184 | assert_spin_locked(&task_rq(p)->lock); | 1201 | assert_spin_locked(&task_rq(p)->lock); | 
| 1185 | 1202 | ||
| 1186 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 1203 | if (test_tsk_need_resched(p)) | 
| 1187 | return; | 1204 | return; | 
| 1188 | 1205 | ||
| 1189 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 1206 | set_tsk_need_resched(p); | 
| 1190 | 1207 | ||
| 1191 | cpu = task_cpu(p); | 1208 | cpu = task_cpu(p); | 
| 1192 | if (cpu == smp_processor_id()) | 1209 | if (cpu == smp_processor_id()) | 
| @@ -1242,7 +1259,7 @@ void wake_up_idle_cpu(int cpu) | |||
| 1242 | * lockless. The worst case is that the other CPU runs the | 1259 | * lockless. The worst case is that the other CPU runs the | 
| 1243 | * idle task through an additional NOOP schedule() | 1260 | * idle task through an additional NOOP schedule() | 
| 1244 | */ | 1261 | */ | 
| 1245 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 1262 | set_tsk_need_resched(rq->idle); | 
| 1246 | 1263 | ||
| 1247 | /* NEED_RESCHED must be visible before we test polling */ | 1264 | /* NEED_RESCHED must be visible before we test polling */ | 
| 1248 | smp_mb(); | 1265 | smp_mb(); | 
| @@ -1610,21 +1627,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
| 1610 | 1627 | ||
| 1611 | #endif | 1628 | #endif | 
| 1612 | 1629 | ||
| 1630 | #ifdef CONFIG_PREEMPT | ||
| 1631 | |||
| 1613 | /* | 1632 | /* | 
| 1614 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 1633 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | 
| 1634 | * way at the expense of forcing extra atomic operations in all | ||
| 1635 | * invocations. This assures that the double_lock is acquired using the | ||
| 1636 | * same underlying policy as the spinlock_t on this architecture, which | ||
| 1637 | * reduces latency compared to the unfair variant below. However, it | ||
| 1638 | * also adds more overhead and therefore may reduce throughput. | ||
| 1615 | */ | 1639 | */ | 
| 1616 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 1640 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
| 1641 | __releases(this_rq->lock) | ||
| 1642 | __acquires(busiest->lock) | ||
| 1643 | __acquires(this_rq->lock) | ||
| 1644 | { | ||
| 1645 | spin_unlock(&this_rq->lock); | ||
| 1646 | double_rq_lock(this_rq, busiest); | ||
| 1647 | |||
| 1648 | return 1; | ||
| 1649 | } | ||
| 1650 | |||
| 1651 | #else | ||
| 1652 | /* | ||
| 1653 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
| 1654 | * latency by eliminating extra atomic operations when the locks are | ||
| 1655 | * already in proper order on entry. This favors lower cpu-ids and will | ||
| 1656 | * grant the double lock to lower cpus over higher ids under contention, | ||
| 1657 | * regardless of entry order into the function. | ||
| 1658 | */ | ||
| 1659 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1617 | __releases(this_rq->lock) | 1660 | __releases(this_rq->lock) | 
| 1618 | __acquires(busiest->lock) | 1661 | __acquires(busiest->lock) | 
| 1619 | __acquires(this_rq->lock) | 1662 | __acquires(this_rq->lock) | 
| 1620 | { | 1663 | { | 
| 1621 | int ret = 0; | 1664 | int ret = 0; | 
| 1622 | 1665 | ||
| 1623 | if (unlikely(!irqs_disabled())) { | ||
| 1624 | /* printk() doesn't work good under rq->lock */ | ||
| 1625 | spin_unlock(&this_rq->lock); | ||
| 1626 | BUG_ON(1); | ||
| 1627 | } | ||
| 1628 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1666 | if (unlikely(!spin_trylock(&busiest->lock))) { | 
| 1629 | if (busiest < this_rq) { | 1667 | if (busiest < this_rq) { | 
| 1630 | spin_unlock(&this_rq->lock); | 1668 | spin_unlock(&this_rq->lock); | 
| @@ -1637,6 +1675,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
| 1637 | return ret; | 1675 | return ret; | 
| 1638 | } | 1676 | } | 
| 1639 | 1677 | ||
| 1678 | #endif /* CONFIG_PREEMPT */ | ||
| 1679 | |||
| 1680 | /* | ||
| 1681 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
| 1682 | */ | ||
| 1683 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
| 1684 | { | ||
| 1685 | if (unlikely(!irqs_disabled())) { | ||
| 1686 | /* printk() doesn't work good under rq->lock */ | ||
| 1687 | spin_unlock(&this_rq->lock); | ||
| 1688 | BUG_ON(1); | ||
| 1689 | } | ||
| 1690 | |||
| 1691 | return _double_lock_balance(this_rq, busiest); | ||
| 1692 | } | ||
| 1693 | |||
| 1640 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1694 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 
| 1641 | __releases(busiest->lock) | 1695 | __releases(busiest->lock) | 
| 1642 | { | 1696 | { | 
| @@ -1705,6 +1759,9 @@ static void update_avg(u64 *avg, u64 sample) | |||
| 1705 | 1759 | ||
| 1706 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1760 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 
| 1707 | { | 1761 | { | 
| 1762 | if (wakeup) | ||
| 1763 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
| 1764 | |||
| 1708 | sched_info_queued(p); | 1765 | sched_info_queued(p); | 
| 1709 | p->sched_class->enqueue_task(rq, p, wakeup); | 1766 | p->sched_class->enqueue_task(rq, p, wakeup); | 
| 1710 | p->se.on_rq = 1; | 1767 | p->se.on_rq = 1; | 
| @@ -1712,10 +1769,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
| 1712 | 1769 | ||
| 1713 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1770 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 
| 1714 | { | 1771 | { | 
| 1715 | if (sleep && p->se.last_wakeup) { | 1772 | if (sleep) { | 
| 1716 | update_avg(&p->se.avg_overlap, | 1773 | if (p->se.last_wakeup) { | 
| 1717 | p->se.sum_exec_runtime - p->se.last_wakeup); | 1774 | update_avg(&p->se.avg_overlap, | 
| 1718 | p->se.last_wakeup = 0; | 1775 | p->se.sum_exec_runtime - p->se.last_wakeup); | 
| 1776 | p->se.last_wakeup = 0; | ||
| 1777 | } else { | ||
| 1778 | update_avg(&p->se.avg_wakeup, | ||
| 1779 | sysctl_sched_wakeup_granularity); | ||
| 1780 | } | ||
| 1719 | } | 1781 | } | 
| 1720 | 1782 | ||
| 1721 | sched_info_dequeued(p); | 1783 | sched_info_dequeued(p); | 
| @@ -2017,7 +2079,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
| 2017 | * it must be off the runqueue _entirely_, and not | 2079 | * it must be off the runqueue _entirely_, and not | 
| 2018 | * preempted! | 2080 | * preempted! | 
| 2019 | * | 2081 | * | 
| 2020 | * So if it wa still runnable (but just not actively | 2082 | * So if it was still runnable (but just not actively | 
| 2021 | * running right now), it's preempted, and we should | 2083 | * running right now), it's preempted, and we should | 
| 2022 | * yield - it could be a while. | 2084 | * yield - it could be a while. | 
| 2023 | */ | 2085 | */ | 
| @@ -2267,7 +2329,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2267 | sync = 0; | 2329 | sync = 0; | 
| 2268 | 2330 | ||
| 2269 | #ifdef CONFIG_SMP | 2331 | #ifdef CONFIG_SMP | 
| 2270 | if (sched_feat(LB_WAKEUP_UPDATE)) { | 2332 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { | 
| 2271 | struct sched_domain *sd; | 2333 | struct sched_domain *sd; | 
| 2272 | 2334 | ||
| 2273 | this_cpu = raw_smp_processor_id(); | 2335 | this_cpu = raw_smp_processor_id(); | 
| @@ -2345,6 +2407,22 @@ out_activate: | |||
| 2345 | activate_task(rq, p, 1); | 2407 | activate_task(rq, p, 1); | 
| 2346 | success = 1; | 2408 | success = 1; | 
| 2347 | 2409 | ||
| 2410 | /* | ||
| 2411 | * Only attribute actual wakeups done by this task. | ||
| 2412 | */ | ||
| 2413 | if (!in_interrupt()) { | ||
| 2414 | struct sched_entity *se = ¤t->se; | ||
| 2415 | u64 sample = se->sum_exec_runtime; | ||
| 2416 | |||
| 2417 | if (se->last_wakeup) | ||
| 2418 | sample -= se->last_wakeup; | ||
| 2419 | else | ||
| 2420 | sample -= se->start_runtime; | ||
| 2421 | update_avg(&se->avg_wakeup, sample); | ||
| 2422 | |||
| 2423 | se->last_wakeup = se->sum_exec_runtime; | ||
| 2424 | } | ||
| 2425 | |||
| 2348 | out_running: | 2426 | out_running: | 
| 2349 | trace_sched_wakeup(rq, p, success); | 2427 | trace_sched_wakeup(rq, p, success); | 
| 2350 | check_preempt_curr(rq, p, sync); | 2428 | check_preempt_curr(rq, p, sync); | 
| @@ -2355,8 +2433,6 @@ out_running: | |||
| 2355 | p->sched_class->task_wake_up(rq, p); | 2433 | p->sched_class->task_wake_up(rq, p); | 
| 2356 | #endif | 2434 | #endif | 
| 2357 | out: | 2435 | out: | 
| 2358 | current->se.last_wakeup = current->se.sum_exec_runtime; | ||
| 2359 | |||
| 2360 | task_rq_unlock(rq, &flags); | 2436 | task_rq_unlock(rq, &flags); | 
| 2361 | 2437 | ||
| 2362 | return success; | 2438 | return success; | 
| @@ -2386,6 +2462,8 @@ static void __sched_fork(struct task_struct *p) | |||
| 2386 | p->se.prev_sum_exec_runtime = 0; | 2462 | p->se.prev_sum_exec_runtime = 0; | 
| 2387 | p->se.last_wakeup = 0; | 2463 | p->se.last_wakeup = 0; | 
| 2388 | p->se.avg_overlap = 0; | 2464 | p->se.avg_overlap = 0; | 
| 2465 | p->se.start_runtime = 0; | ||
| 2466 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
| 2389 | 2467 | ||
| 2390 | #ifdef CONFIG_SCHEDSTATS | 2468 | #ifdef CONFIG_SCHEDSTATS | 
| 2391 | p->se.wait_start = 0; | 2469 | p->se.wait_start = 0; | 
| @@ -2448,6 +2526,8 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2448 | /* Want to start with kernel preemption disabled. */ | 2526 | /* Want to start with kernel preemption disabled. */ | 
| 2449 | task_thread_info(p)->preempt_count = 1; | 2527 | task_thread_info(p)->preempt_count = 1; | 
| 2450 | #endif | 2528 | #endif | 
| 2529 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | ||
| 2530 | |||
| 2451 | put_cpu(); | 2531 | put_cpu(); | 
| 2452 | } | 2532 | } | 
| 2453 | 2533 | ||
| @@ -2491,7 +2571,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2491 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
| 2492 | 2572 | ||
| 2493 | /** | 2573 | /** | 
| 2494 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 2574 | * preempt_notifier_register - tell me when current is being preempted & rescheduled | 
| 2495 | * @notifier: notifier struct to register | 2575 | * @notifier: notifier struct to register | 
| 2496 | */ | 2576 | */ | 
| 2497 | void preempt_notifier_register(struct preempt_notifier *notifier) | 2577 | void preempt_notifier_register(struct preempt_notifier *notifier) | 
| @@ -2588,6 +2668,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2588 | { | 2668 | { | 
| 2589 | struct mm_struct *mm = rq->prev_mm; | 2669 | struct mm_struct *mm = rq->prev_mm; | 
| 2590 | long prev_state; | 2670 | long prev_state; | 
| 2671 | #ifdef CONFIG_SMP | ||
| 2672 | int post_schedule = 0; | ||
| 2673 | |||
| 2674 | if (current->sched_class->needs_post_schedule) | ||
| 2675 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
| 2676 | #endif | ||
| 2591 | 2677 | ||
| 2592 | rq->prev_mm = NULL; | 2678 | rq->prev_mm = NULL; | 
| 2593 | 2679 | ||
| @@ -2606,7 +2692,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2606 | finish_arch_switch(prev); | 2692 | finish_arch_switch(prev); | 
| 2607 | finish_lock_switch(rq, prev); | 2693 | finish_lock_switch(rq, prev); | 
| 2608 | #ifdef CONFIG_SMP | 2694 | #ifdef CONFIG_SMP | 
| 2609 | if (current->sched_class->post_schedule) | 2695 | if (post_schedule) | 
| 2610 | current->sched_class->post_schedule(rq); | 2696 | current->sched_class->post_schedule(rq); | 
| 2611 | #endif | 2697 | #endif | 
| 2612 | 2698 | ||
| @@ -2913,6 +2999,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2913 | struct sched_domain *sd, enum cpu_idle_type idle, | 2999 | struct sched_domain *sd, enum cpu_idle_type idle, | 
| 2914 | int *all_pinned) | 3000 | int *all_pinned) | 
| 2915 | { | 3001 | { | 
| 3002 | int tsk_cache_hot = 0; | ||
| 2916 | /* | 3003 | /* | 
| 2917 | * We do not migrate tasks that are: | 3004 | * We do not migrate tasks that are: | 
| 2918 | * 1) running (obviously), or | 3005 | * 1) running (obviously), or | 
| @@ -2936,10 +3023,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2936 | * 2) too many balance attempts have failed. | 3023 | * 2) too many balance attempts have failed. | 
| 2937 | */ | 3024 | */ | 
| 2938 | 3025 | ||
| 2939 | if (!task_hot(p, rq->clock, sd) || | 3026 | tsk_cache_hot = task_hot(p, rq->clock, sd); | 
| 2940 | sd->nr_balance_failed > sd->cache_nice_tries) { | 3027 | if (!tsk_cache_hot || | 
| 3028 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
| 2941 | #ifdef CONFIG_SCHEDSTATS | 3029 | #ifdef CONFIG_SCHEDSTATS | 
| 2942 | if (task_hot(p, rq->clock, sd)) { | 3030 | if (tsk_cache_hot) { | 
| 2943 | schedstat_inc(sd, lb_hot_gained[idle]); | 3031 | schedstat_inc(sd, lb_hot_gained[idle]); | 
| 2944 | schedstat_inc(p, se.nr_forced_migrations); | 3032 | schedstat_inc(p, se.nr_forced_migrations); | 
| 2945 | } | 3033 | } | 
| @@ -2947,7 +3035,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
| 2947 | return 1; | 3035 | return 1; | 
| 2948 | } | 3036 | } | 
| 2949 | 3037 | ||
| 2950 | if (task_hot(p, rq->clock, sd)) { | 3038 | if (tsk_cache_hot) { | 
| 2951 | schedstat_inc(p, se.nr_failed_migrations_hot); | 3039 | schedstat_inc(p, se.nr_failed_migrations_hot); | 
| 2952 | return 0; | 3040 | return 0; | 
| 2953 | } | 3041 | } | 
| @@ -2987,6 +3075,16 @@ next: | |||
| 2987 | pulled++; | 3075 | pulled++; | 
| 2988 | rem_load_move -= p->se.load.weight; | 3076 | rem_load_move -= p->se.load.weight; | 
| 2989 | 3077 | ||
| 3078 | #ifdef CONFIG_PREEMPT | ||
| 3079 | /* | ||
| 3080 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
| 3081 | * will stop after the first task is pulled to minimize the critical | ||
| 3082 | * section. | ||
| 3083 | */ | ||
| 3084 | if (idle == CPU_NEWLY_IDLE) | ||
| 3085 | goto out; | ||
| 3086 | #endif | ||
| 3087 | |||
| 2990 | /* | 3088 | /* | 
| 2991 | * We only want to steal up to the prescribed amount of weighted load. | 3089 | * We only want to steal up to the prescribed amount of weighted load. | 
| 2992 | */ | 3090 | */ | 
| @@ -3033,9 +3131,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 3033 | sd, idle, all_pinned, &this_best_prio); | 3131 | sd, idle, all_pinned, &this_best_prio); | 
| 3034 | class = class->next; | 3132 | class = class->next; | 
| 3035 | 3133 | ||
| 3134 | #ifdef CONFIG_PREEMPT | ||
| 3135 | /* | ||
| 3136 | * NEWIDLE balancing is a source of latency, so preemptible | ||
| 3137 | * kernels will stop after the first task is pulled to minimize | ||
| 3138 | * the critical section. | ||
| 3139 | */ | ||
| 3036 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3140 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 
| 3037 | break; | 3141 | break; | 
| 3038 | 3142 | #endif | |
| 3039 | } while (class && max_load_move > total_load_moved); | 3143 | } while (class && max_load_move > total_load_moved); | 
| 3040 | 3144 | ||
| 3041 | return total_load_moved > 0; | 3145 | return total_load_moved > 0; | 
| @@ -3085,246 +3189,480 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 3085 | 3189 | ||
| 3086 | return 0; | 3190 | return 0; | 
| 3087 | } | 3191 | } | 
| 3088 | 3192 | /********** Helpers for find_busiest_group ************************/ | |
| 3089 | /* | 3193 | /* | 
| 3090 | * find_busiest_group finds and returns the busiest CPU group within the | 3194 | * sd_lb_stats - Structure to store the statistics of a sched_domain | 
| 3091 | * domain. It calculates and returns the amount of weighted load which | 3195 | * during load balancing. | 
| 3092 | * should be moved to restore balance via the imbalance parameter. | ||
| 3093 | */ | 3196 | */ | 
| 3094 | static struct sched_group * | 3197 | struct sd_lb_stats { | 
| 3095 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 3198 | struct sched_group *busiest; /* Busiest group in this sd */ | 
| 3096 | unsigned long *imbalance, enum cpu_idle_type idle, | 3199 | struct sched_group *this; /* Local group in this sd */ | 
| 3097 | int *sd_idle, const struct cpumask *cpus, int *balance) | 3200 | unsigned long total_load; /* Total load of all groups in sd */ | 
| 3098 | { | 3201 | unsigned long total_pwr; /* Total power of all groups in sd */ | 
| 3099 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 3202 | unsigned long avg_load; /* Average load across all groups in sd */ | 
| 3100 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 3203 | |
| 3101 | unsigned long max_pull; | 3204 | /** Statistics of this group */ | 
| 3102 | unsigned long busiest_load_per_task, busiest_nr_running; | 3205 | unsigned long this_load; | 
| 3103 | unsigned long this_load_per_task, this_nr_running; | 3206 | unsigned long this_load_per_task; | 
| 3104 | int load_idx, group_imb = 0; | 3207 | unsigned long this_nr_running; | 
| 3208 | |||
| 3209 | /* Statistics of the busiest group */ | ||
| 3210 | unsigned long max_load; | ||
| 3211 | unsigned long busiest_load_per_task; | ||
| 3212 | unsigned long busiest_nr_running; | ||
| 3213 | |||
| 3214 | int group_imb; /* Is there imbalance in this sd */ | ||
| 3105 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3215 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
| 3106 | int power_savings_balance = 1; | 3216 | int power_savings_balance; /* Is powersave balance needed for this sd */ | 
| 3107 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | 3217 | struct sched_group *group_min; /* Least loaded group in sd */ | 
| 3108 | unsigned long min_nr_running = ULONG_MAX; | 3218 | struct sched_group *group_leader; /* Group which relieves group_min */ | 
| 3109 | struct sched_group *group_min = NULL, *group_leader = NULL; | 3219 | unsigned long min_load_per_task; /* load_per_task in group_min */ | 
| 3220 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
| 3221 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
| 3110 | #endif | 3222 | #endif | 
| 3223 | }; | ||
| 3224 | |||
| 3225 | /* | ||
| 3226 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
| 3227 | */ | ||
| 3228 | struct sg_lb_stats { | ||
| 3229 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
| 3230 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
| 3231 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
| 3232 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
| 3233 | unsigned long group_capacity; | ||
| 3234 | int group_imb; /* Is there an imbalance in the group ? */ | ||
| 3235 | }; | ||
| 3111 | 3236 | ||
| 3112 | max_load = this_load = total_load = total_pwr = 0; | 3237 | /** | 
| 3113 | busiest_load_per_task = busiest_nr_running = 0; | 3238 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | 
| 3114 | this_load_per_task = this_nr_running = 0; | 3239 | * @group: The group whose first cpu is to be returned. | 
| 3240 | */ | ||
| 3241 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
| 3242 | { | ||
| 3243 | return cpumask_first(sched_group_cpus(group)); | ||
| 3244 | } | ||
| 3115 | 3245 | ||
| 3116 | if (idle == CPU_NOT_IDLE) | 3246 | /** | 
| 3247 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
| 3248 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
| 3249 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
| 3250 | */ | ||
| 3251 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
| 3252 | enum cpu_idle_type idle) | ||
| 3253 | { | ||
| 3254 | int load_idx; | ||
| 3255 | |||
| 3256 | switch (idle) { | ||
| 3257 | case CPU_NOT_IDLE: | ||
| 3117 | load_idx = sd->busy_idx; | 3258 | load_idx = sd->busy_idx; | 
| 3118 | else if (idle == CPU_NEWLY_IDLE) | 3259 | break; | 
| 3260 | |||
| 3261 | case CPU_NEWLY_IDLE: | ||
| 3119 | load_idx = sd->newidle_idx; | 3262 | load_idx = sd->newidle_idx; | 
| 3120 | else | 3263 | break; | 
| 3264 | default: | ||
| 3121 | load_idx = sd->idle_idx; | 3265 | load_idx = sd->idle_idx; | 
| 3266 | break; | ||
| 3267 | } | ||
| 3122 | 3268 | ||
| 3123 | do { | 3269 | return load_idx; | 
| 3124 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; | 3270 | } | 
| 3125 | int local_group; | ||
| 3126 | int i; | ||
| 3127 | int __group_imb = 0; | ||
| 3128 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 3129 | unsigned long sum_nr_running, sum_weighted_load; | ||
| 3130 | unsigned long sum_avg_load_per_task; | ||
| 3131 | unsigned long avg_load_per_task; | ||
| 3132 | 3271 | ||
| 3133 | local_group = cpumask_test_cpu(this_cpu, | ||
| 3134 | sched_group_cpus(group)); | ||
| 3135 | 3272 | ||
| 3136 | if (local_group) | 3273 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
| 3137 | balance_cpu = cpumask_first(sched_group_cpus(group)); | 3274 | /** | 
| 3275 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
| 3276 | * the given sched_domain, during load balancing. | ||
| 3277 | * | ||
| 3278 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
| 3279 | * @sds: Variable containing the statistics for sd. | ||
| 3280 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
| 3281 | */ | ||
| 3282 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
| 3283 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
| 3284 | { | ||
| 3285 | /* | ||
| 3286 | * Busy processors will not participate in power savings | ||
| 3287 | * balance. | ||
| 3288 | */ | ||
| 3289 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3290 | sds->power_savings_balance = 0; | ||
| 3291 | else { | ||
| 3292 | sds->power_savings_balance = 1; | ||
| 3293 | sds->min_nr_running = ULONG_MAX; | ||
| 3294 | sds->leader_nr_running = 0; | ||
| 3295 | } | ||
| 3296 | } | ||
| 3138 | 3297 | ||
| 3139 | /* Tally up the load of all CPUs in the group */ | 3298 | /** | 
| 3140 | sum_weighted_load = sum_nr_running = avg_load = 0; | 3299 | * update_sd_power_savings_stats - Update the power saving stats for a | 
| 3141 | sum_avg_load_per_task = avg_load_per_task = 0; | 3300 | * sched_domain while performing load balancing. | 
| 3301 | * | ||
| 3302 | * @group: sched_group belonging to the sched_domain under consideration. | ||
| 3303 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3304 | * @local_group: Does group contain the CPU for which we're performing | ||
| 3305 | * load balancing ? | ||
| 3306 | * @sgs: Variable containing the statistics of the group. | ||
| 3307 | */ | ||
| 3308 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
| 3309 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
| 3310 | { | ||
| 3142 | 3311 | ||
| 3143 | max_cpu_load = 0; | 3312 | if (!sds->power_savings_balance) | 
| 3144 | min_cpu_load = ~0UL; | 3313 | return; | 
| 3145 | 3314 | ||
| 3146 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | 3315 | /* | 
| 3147 | struct rq *rq = cpu_rq(i); | 3316 | * If the local group is idle or completely loaded | 
| 3317 | * no need to do power savings balance at this domain | ||
| 3318 | */ | ||
| 3319 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
| 3320 | !sds->this_nr_running)) | ||
| 3321 | sds->power_savings_balance = 0; | ||
| 3148 | 3322 | ||
| 3149 | if (*sd_idle && rq->nr_running) | 3323 | /* | 
| 3150 | *sd_idle = 0; | 3324 | * If a group is already running at full capacity or idle, | 
| 3325 | * don't include that group in power savings calculations | ||
| 3326 | */ | ||
| 3327 | if (!sds->power_savings_balance || | ||
| 3328 | sgs->sum_nr_running >= sgs->group_capacity || | ||
| 3329 | !sgs->sum_nr_running) | ||
| 3330 | return; | ||
| 3151 | 3331 | ||
| 3152 | /* Bias balancing toward cpus of our domain */ | 3332 | /* | 
| 3153 | if (local_group) { | 3333 | * Calculate the group which has the least non-idle load. | 
| 3154 | if (idle_cpu(i) && !first_idle_cpu) { | 3334 | * This is the group from where we need to pick up the load | 
| 3155 | first_idle_cpu = 1; | 3335 | * for saving power | 
| 3156 | balance_cpu = i; | 3336 | */ | 
| 3157 | } | 3337 | if ((sgs->sum_nr_running < sds->min_nr_running) || | 
| 3338 | (sgs->sum_nr_running == sds->min_nr_running && | ||
| 3339 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
| 3340 | sds->group_min = group; | ||
| 3341 | sds->min_nr_running = sgs->sum_nr_running; | ||
| 3342 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
| 3343 | sgs->sum_nr_running; | ||
| 3344 | } | ||
| 3158 | 3345 | ||
| 3159 | load = target_load(i, load_idx); | 3346 | /* | 
| 3160 | } else { | 3347 | * Calculate the group which is almost near its | 
| 3161 | load = source_load(i, load_idx); | 3348 | * capacity but still has some space to pick up some load | 
| 3162 | if (load > max_cpu_load) | 3349 | * from other group and save more power | 
| 3163 | max_cpu_load = load; | 3350 | */ | 
| 3164 | if (min_cpu_load > load) | 3351 | if (sgs->sum_nr_running > sgs->group_capacity - 1) | 
| 3165 | min_cpu_load = load; | 3352 | return; | 
| 3166 | } | ||
| 3167 | 3353 | ||
| 3168 | avg_load += load; | 3354 | if (sgs->sum_nr_running > sds->leader_nr_running || | 
| 3169 | sum_nr_running += rq->nr_running; | 3355 | (sgs->sum_nr_running == sds->leader_nr_running && | 
| 3170 | sum_weighted_load += weighted_cpuload(i); | 3356 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | 
| 3357 | sds->group_leader = group; | ||
| 3358 | sds->leader_nr_running = sgs->sum_nr_running; | ||
| 3359 | } | ||
| 3360 | } | ||
| 3171 | 3361 | ||
| 3172 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 3362 | /** | 
| 3173 | } | 3363 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | 
| 3364 | * @sds: Variable containing the statistics of the sched_domain | ||
| 3365 | * under consideration. | ||
| 3366 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
| 3367 | * @imbalance: Variable to store the imbalance. | ||
| 3368 | * | ||
| 3369 | * Description: | ||
| 3370 | * Check if we have potential to perform some power-savings balance. | ||
| 3371 | * If yes, set the busiest group to be the least loaded group in the | ||
| 3372 | * sched_domain, so that it's CPUs can be put to idle. | ||
| 3373 | * | ||
| 3374 | * Returns 1 if there is potential to perform power-savings balance. | ||
| 3375 | * Else returns 0. | ||
| 3376 | */ | ||
| 3377 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 3378 | int this_cpu, unsigned long *imbalance) | ||
| 3379 | { | ||
| 3380 | if (!sds->power_savings_balance) | ||
| 3381 | return 0; | ||
| 3174 | 3382 | ||
| 3175 | /* | 3383 | if (sds->this != sds->group_leader || | 
| 3176 | * First idle cpu or the first cpu(busiest) in this sched group | 3384 | sds->group_leader == sds->group_min) | 
| 3177 | * is eligible for doing load balancing at this and above | 3385 | return 0; | 
| 3178 | * domains. In the newly idle case, we will allow all the cpu's | ||
| 3179 | * to do the newly idle load balance. | ||
| 3180 | */ | ||
| 3181 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
| 3182 | balance_cpu != this_cpu && balance) { | ||
| 3183 | *balance = 0; | ||
| 3184 | goto ret; | ||
| 3185 | } | ||
| 3186 | 3386 | ||
| 3187 | total_load += avg_load; | 3387 | *imbalance = sds->min_load_per_task; | 
| 3188 | total_pwr += group->__cpu_power; | 3388 | sds->busiest = sds->group_min; | 
| 3189 | 3389 | ||
| 3190 | /* Adjust by relative CPU power of the group */ | 3390 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | 
| 3191 | avg_load = sg_div_cpu_power(group, | 3391 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | 
| 3192 | avg_load * SCHED_LOAD_SCALE); | 3392 | group_first_cpu(sds->group_leader); | 
| 3393 | } | ||
| 3193 | 3394 | ||
| 3395 | return 1; | ||
| 3194 | 3396 | ||
| 3195 | /* | 3397 | } | 
| 3196 | * Consider the group unbalanced when the imbalance is larger | 3398 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 
| 3197 | * than the average weight of two tasks. | 3399 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | 
| 3198 | * | 3400 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | 
| 3199 | * APZ: with cgroup the avg task weight can vary wildly and | 3401 | { | 
| 3200 | * might not be a suitable number - should we keep a | 3402 | return; | 
| 3201 | * normalized nr_running number somewhere that negates | 3403 | } | 
| 3202 | * the hierarchy? | 3404 | |
| 3203 | */ | 3405 | static inline void update_sd_power_savings_stats(struct sched_group *group, | 
| 3204 | avg_load_per_task = sg_div_cpu_power(group, | 3406 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | 
| 3205 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | 3407 | { | 
| 3408 | return; | ||
| 3409 | } | ||
| 3410 | |||
| 3411 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
| 3412 | int this_cpu, unsigned long *imbalance) | ||
| 3413 | { | ||
| 3414 | return 0; | ||
| 3415 | } | ||
| 3416 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
| 3417 | |||
| 3418 | |||
| 3419 | /** | ||
| 3420 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3421 | * @group: sched_group whose statistics are to be updated. | ||
| 3422 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3423 | * @idle: Idle status of this_cpu | ||
| 3424 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
| 3425 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3426 | * @local_group: Does group contain this_cpu. | ||
| 3427 | * @cpus: Set of cpus considered for load balancing. | ||
| 3428 | * @balance: Should we balance. | ||
| 3429 | * @sgs: variable to hold the statistics for this group. | ||
| 3430 | */ | ||
| 3431 | static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | ||
| 3432 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
| 3433 | int local_group, const struct cpumask *cpus, | ||
| 3434 | int *balance, struct sg_lb_stats *sgs) | ||
| 3435 | { | ||
| 3436 | unsigned long load, max_cpu_load, min_cpu_load; | ||
| 3437 | int i; | ||
| 3438 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
| 3439 | unsigned long sum_avg_load_per_task; | ||
| 3440 | unsigned long avg_load_per_task; | ||
| 3206 | 3441 | ||
| 3207 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3442 | if (local_group) | 
| 3208 | __group_imb = 1; | 3443 | balance_cpu = group_first_cpu(group); | 
| 3209 | 3444 | ||
| 3210 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 3445 | /* Tally up the load of all CPUs in the group */ | 
| 3446 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
| 3447 | max_cpu_load = 0; | ||
| 3448 | min_cpu_load = ~0UL; | ||
| 3211 | 3449 | ||
| 3450 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
| 3451 | struct rq *rq = cpu_rq(i); | ||
| 3452 | |||
| 3453 | if (*sd_idle && rq->nr_running) | ||
| 3454 | *sd_idle = 0; | ||
| 3455 | |||
| 3456 | /* Bias balancing toward cpus of our domain */ | ||
| 3212 | if (local_group) { | 3457 | if (local_group) { | 
| 3213 | this_load = avg_load; | 3458 | if (idle_cpu(i) && !first_idle_cpu) { | 
| 3214 | this = group; | 3459 | first_idle_cpu = 1; | 
| 3215 | this_nr_running = sum_nr_running; | 3460 | balance_cpu = i; | 
| 3216 | this_load_per_task = sum_weighted_load; | 3461 | } | 
| 3217 | } else if (avg_load > max_load && | 3462 | |
| 3218 | (sum_nr_running > group_capacity || __group_imb)) { | 3463 | load = target_load(i, load_idx); | 
| 3219 | max_load = avg_load; | 3464 | } else { | 
| 3220 | busiest = group; | 3465 | load = source_load(i, load_idx); | 
| 3221 | busiest_nr_running = sum_nr_running; | 3466 | if (load > max_cpu_load) | 
| 3222 | busiest_load_per_task = sum_weighted_load; | 3467 | max_cpu_load = load; | 
| 3223 | group_imb = __group_imb; | 3468 | if (min_cpu_load > load) | 
| 3469 | min_cpu_load = load; | ||
| 3224 | } | 3470 | } | 
| 3225 | 3471 | ||
| 3226 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3472 | sgs->group_load += load; | 
| 3227 | /* | 3473 | sgs->sum_nr_running += rq->nr_running; | 
| 3228 | * Busy processors will not participate in power savings | 3474 | sgs->sum_weighted_load += weighted_cpuload(i); | 
| 3229 | * balance. | ||
| 3230 | */ | ||
| 3231 | if (idle == CPU_NOT_IDLE || | ||
| 3232 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3233 | goto group_next; | ||
| 3234 | 3475 | ||
| 3235 | /* | 3476 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 
| 3236 | * If the local group is idle or completely loaded | 3477 | } | 
| 3237 | * no need to do power savings balance at this domain | ||
| 3238 | */ | ||
| 3239 | if (local_group && (this_nr_running >= group_capacity || | ||
| 3240 | !this_nr_running)) | ||
| 3241 | power_savings_balance = 0; | ||
| 3242 | 3478 | ||
| 3243 | /* | 3479 | /* | 
| 3244 | * If a group is already running at full capacity or idle, | 3480 | * First idle cpu or the first cpu(busiest) in this sched group | 
| 3245 | * don't include that group in power savings calculations | 3481 | * is eligible for doing load balancing at this and above | 
| 3246 | */ | 3482 | * domains. In the newly idle case, we will allow all the cpu's | 
| 3247 | if (!power_savings_balance || sum_nr_running >= group_capacity | 3483 | * to do the newly idle load balance. | 
| 3248 | || !sum_nr_running) | 3484 | */ | 
| 3249 | goto group_next; | 3485 | if (idle != CPU_NEWLY_IDLE && local_group && | 
| 3486 | balance_cpu != this_cpu && balance) { | ||
| 3487 | *balance = 0; | ||
| 3488 | return; | ||
| 3489 | } | ||
| 3250 | 3490 | ||
| 3251 | /* | 3491 | /* Adjust by relative CPU power of the group */ | 
| 3252 | * Calculate the group which has the least non-idle load. | 3492 | sgs->avg_load = sg_div_cpu_power(group, | 
| 3253 | * This is the group from where we need to pick up the load | 3493 | sgs->group_load * SCHED_LOAD_SCALE); | 
| 3254 | * for saving power | ||
| 3255 | */ | ||
| 3256 | if ((sum_nr_running < min_nr_running) || | ||
| 3257 | (sum_nr_running == min_nr_running && | ||
| 3258 | cpumask_first(sched_group_cpus(group)) > | ||
| 3259 | cpumask_first(sched_group_cpus(group_min)))) { | ||
| 3260 | group_min = group; | ||
| 3261 | min_nr_running = sum_nr_running; | ||
| 3262 | min_load_per_task = sum_weighted_load / | ||
| 3263 | sum_nr_running; | ||
| 3264 | } | ||
| 3265 | 3494 | ||
| 3266 | /* | 3495 | |
| 3267 | * Calculate the group which is almost near its | 3496 | /* | 
| 3268 | * capacity but still has some space to pick up some load | 3497 | * Consider the group unbalanced when the imbalance is larger | 
| 3269 | * from other group and save more power | 3498 | * than the average weight of two tasks. | 
| 3270 | */ | 3499 | * | 
| 3271 | if (sum_nr_running <= group_capacity - 1) { | 3500 | * APZ: with cgroup the avg task weight can vary wildly and | 
| 3272 | if (sum_nr_running > leader_nr_running || | 3501 | * might not be a suitable number - should we keep a | 
| 3273 | (sum_nr_running == leader_nr_running && | 3502 | * normalized nr_running number somewhere that negates | 
| 3274 | cpumask_first(sched_group_cpus(group)) < | 3503 | * the hierarchy? | 
| 3275 | cpumask_first(sched_group_cpus(group_leader)))) { | 3504 | */ | 
| 3276 | group_leader = group; | 3505 | avg_load_per_task = sg_div_cpu_power(group, | 
| 3277 | leader_nr_running = sum_nr_running; | 3506 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | 
| 3278 | } | 3507 | |
| 3508 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
| 3509 | sgs->group_imb = 1; | ||
| 3510 | |||
| 3511 | sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | ||
| 3512 | |||
| 3513 | } | ||
| 3514 | |||
| 3515 | /** | ||
| 3516 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
| 3517 | * @sd: sched_domain whose statistics are to be updated. | ||
| 3518 | * @this_cpu: Cpu for which load balance is currently performed. | ||
| 3519 | * @idle: Idle status of this_cpu | ||
| 3520 | * @sd_idle: Idle status of the sched_domain containing group. | ||
| 3521 | * @cpus: Set of cpus considered for load balancing. | ||
| 3522 | * @balance: Should we balance. | ||
| 3523 | * @sds: variable to hold the statistics for this sched_domain. | ||
| 3524 | */ | ||
| 3525 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
| 3526 | enum cpu_idle_type idle, int *sd_idle, | ||
| 3527 | const struct cpumask *cpus, int *balance, | ||
| 3528 | struct sd_lb_stats *sds) | ||
| 3529 | { | ||
| 3530 | struct sched_group *group = sd->groups; | ||
| 3531 | struct sg_lb_stats sgs; | ||
| 3532 | int load_idx; | ||
| 3533 | |||
| 3534 | init_sd_power_savings_stats(sd, sds, idle); | ||
| 3535 | load_idx = get_sd_load_idx(sd, idle); | ||
| 3536 | |||
| 3537 | do { | ||
| 3538 | int local_group; | ||
| 3539 | |||
| 3540 | local_group = cpumask_test_cpu(this_cpu, | ||
| 3541 | sched_group_cpus(group)); | ||
| 3542 | memset(&sgs, 0, sizeof(sgs)); | ||
| 3543 | update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, | ||
| 3544 | local_group, cpus, balance, &sgs); | ||
| 3545 | |||
| 3546 | if (local_group && balance && !(*balance)) | ||
| 3547 | return; | ||
| 3548 | |||
| 3549 | sds->total_load += sgs.group_load; | ||
| 3550 | sds->total_pwr += group->__cpu_power; | ||
| 3551 | |||
| 3552 | if (local_group) { | ||
| 3553 | sds->this_load = sgs.avg_load; | ||
| 3554 | sds->this = group; | ||
| 3555 | sds->this_nr_running = sgs.sum_nr_running; | ||
| 3556 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
| 3557 | } else if (sgs.avg_load > sds->max_load && | ||
| 3558 | (sgs.sum_nr_running > sgs.group_capacity || | ||
| 3559 | sgs.group_imb)) { | ||
| 3560 | sds->max_load = sgs.avg_load; | ||
| 3561 | sds->busiest = group; | ||
| 3562 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
| 3563 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
| 3564 | sds->group_imb = sgs.group_imb; | ||
| 3279 | } | 3565 | } | 
| 3280 | group_next: | 3566 | |
| 3281 | #endif | 3567 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | 
| 3282 | group = group->next; | 3568 | group = group->next; | 
| 3283 | } while (group != sd->groups); | 3569 | } while (group != sd->groups); | 
| 3284 | 3570 | ||
| 3285 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 3571 | } | 
| 3286 | goto out_balanced; | ||
| 3287 | |||
| 3288 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | ||
| 3289 | 3572 | ||
| 3290 | if (this_load >= avg_load || | 3573 | /** | 
| 3291 | 100*max_load <= sd->imbalance_pct*this_load) | 3574 | * fix_small_imbalance - Calculate the minor imbalance that exists | 
| 3292 | goto out_balanced; | 3575 | * amongst the groups of a sched_domain, during | 
| 3576 | * load balancing. | ||
| 3577 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3578 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
| 3579 | * @imbalance: Variable to store the imbalance. | ||
| 3580 | */ | ||
| 3581 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
| 3582 | int this_cpu, unsigned long *imbalance) | ||
| 3583 | { | ||
| 3584 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
| 3585 | unsigned int imbn = 2; | ||
| 3586 | |||
| 3587 | if (sds->this_nr_running) { | ||
| 3588 | sds->this_load_per_task /= sds->this_nr_running; | ||
| 3589 | if (sds->busiest_load_per_task > | ||
| 3590 | sds->this_load_per_task) | ||
| 3591 | imbn = 1; | ||
| 3592 | } else | ||
| 3593 | sds->this_load_per_task = | ||
| 3594 | cpu_avg_load_per_task(this_cpu); | ||
| 3293 | 3595 | ||
| 3294 | busiest_load_per_task /= busiest_nr_running; | 3596 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | 
| 3295 | if (group_imb) | 3597 | sds->busiest_load_per_task * imbn) { | 
| 3296 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | 3598 | *imbalance = sds->busiest_load_per_task; | 
| 3599 | return; | ||
| 3600 | } | ||
| 3297 | 3601 | ||
| 3298 | /* | 3602 | /* | 
| 3299 | * We're trying to get all the cpus to the average_load, so we don't | 3603 | * OK, we don't have enough imbalance to justify moving tasks, | 
| 3300 | * want to push ourselves above the average load, nor do we wish to | 3604 | * however we may be able to increase total CPU power used by | 
| 3301 | * reduce the max loaded cpu below the average load, as either of these | 3605 | * moving them. | 
| 3302 | * actions would just result in more rebalancing later, and ping-pong | ||
| 3303 | * tasks around. Thus we look for the minimum possible imbalance. | ||
| 3304 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
| 3305 | * be counted as no imbalance for these purposes -- we can't fix that | ||
| 3306 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
| 3307 | * appear as very large values with unsigned longs. | ||
| 3308 | */ | 3606 | */ | 
| 3309 | if (max_load <= busiest_load_per_task) | ||
| 3310 | goto out_balanced; | ||
| 3311 | 3607 | ||
| 3608 | pwr_now += sds->busiest->__cpu_power * | ||
| 3609 | min(sds->busiest_load_per_task, sds->max_load); | ||
| 3610 | pwr_now += sds->this->__cpu_power * | ||
| 3611 | min(sds->this_load_per_task, sds->this_load); | ||
| 3612 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 3613 | |||
| 3614 | /* Amount of load we'd subtract */ | ||
| 3615 | tmp = sg_div_cpu_power(sds->busiest, | ||
| 3616 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3617 | if (sds->max_load > tmp) | ||
| 3618 | pwr_move += sds->busiest->__cpu_power * | ||
| 3619 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
| 3620 | |||
| 3621 | /* Amount of load we'd add */ | ||
| 3622 | if (sds->max_load * sds->busiest->__cpu_power < | ||
| 3623 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 3624 | tmp = sg_div_cpu_power(sds->this, | ||
| 3625 | sds->max_load * sds->busiest->__cpu_power); | ||
| 3626 | else | ||
| 3627 | tmp = sg_div_cpu_power(sds->this, | ||
| 3628 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3629 | pwr_move += sds->this->__cpu_power * | ||
| 3630 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
| 3631 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 3632 | |||
| 3633 | /* Move if we gain throughput */ | ||
| 3634 | if (pwr_move > pwr_now) | ||
| 3635 | *imbalance = sds->busiest_load_per_task; | ||
| 3636 | } | ||
| 3637 | |||
| 3638 | /** | ||
| 3639 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
| 3640 | * groups of a given sched_domain during load balance. | ||
| 3641 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
| 3642 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
| 3643 | * @imbalance: The variable to store the imbalance. | ||
| 3644 | */ | ||
| 3645 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
| 3646 | unsigned long *imbalance) | ||
| 3647 | { | ||
| 3648 | unsigned long max_pull; | ||
| 3312 | /* | 3649 | /* | 
| 3313 | * In the presence of smp nice balancing, certain scenarios can have | 3650 | * In the presence of smp nice balancing, certain scenarios can have | 
| 3314 | * max load less than avg load(as we skip the groups at or below | 3651 | * max load less than avg load(as we skip the groups at or below | 
| 3315 | * its cpu_power, while calculating max_load..) | 3652 | * its cpu_power, while calculating max_load..) | 
| 3316 | */ | 3653 | */ | 
| 3317 | if (max_load < avg_load) { | 3654 | if (sds->max_load < sds->avg_load) { | 
| 3318 | *imbalance = 0; | 3655 | *imbalance = 0; | 
| 3319 | goto small_imbalance; | 3656 | return fix_small_imbalance(sds, this_cpu, imbalance); | 
| 3320 | } | 3657 | } | 
| 3321 | 3658 | ||
| 3322 | /* Don't want to pull so many tasks that a group would go idle */ | 3659 | /* Don't want to pull so many tasks that a group would go idle */ | 
| 3323 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 3660 | max_pull = min(sds->max_load - sds->avg_load, | 
| 3661 | sds->max_load - sds->busiest_load_per_task); | ||
| 3324 | 3662 | ||
| 3325 | /* How much load to actually move to equalise the imbalance */ | 3663 | /* How much load to actually move to equalise the imbalance */ | 
| 3326 | *imbalance = min(max_pull * busiest->__cpu_power, | 3664 | *imbalance = min(max_pull * sds->busiest->__cpu_power, | 
| 3327 | (avg_load - this_load) * this->__cpu_power) | 3665 | (sds->avg_load - sds->this_load) * sds->this->__cpu_power) | 
| 3328 | / SCHED_LOAD_SCALE; | 3666 | / SCHED_LOAD_SCALE; | 
| 3329 | 3667 | ||
| 3330 | /* | 3668 | /* | 
| @@ -3333,78 +3671,110 @@ group_next: | |||
| 3333 | * a think about bumping its value to force at least one task to be | 3671 | * a think about bumping its value to force at least one task to be | 
| 3334 | * moved | 3672 | * moved | 
| 3335 | */ | 3673 | */ | 
| 3336 | if (*imbalance < busiest_load_per_task) { | 3674 | if (*imbalance < sds->busiest_load_per_task) | 
| 3337 | unsigned long tmp, pwr_now, pwr_move; | 3675 | return fix_small_imbalance(sds, this_cpu, imbalance); | 
| 3338 | unsigned int imbn; | ||
| 3339 | |||
| 3340 | small_imbalance: | ||
| 3341 | pwr_move = pwr_now = 0; | ||
| 3342 | imbn = 2; | ||
| 3343 | if (this_nr_running) { | ||
| 3344 | this_load_per_task /= this_nr_running; | ||
| 3345 | if (busiest_load_per_task > this_load_per_task) | ||
| 3346 | imbn = 1; | ||
| 3347 | } else | ||
| 3348 | this_load_per_task = cpu_avg_load_per_task(this_cpu); | ||
| 3349 | 3676 | ||
| 3350 | if (max_load - this_load + busiest_load_per_task >= | 3677 | } | 
| 3351 | busiest_load_per_task * imbn) { | 3678 | /******* find_busiest_group() helpers end here *********************/ | 
| 3352 | *imbalance = busiest_load_per_task; | ||
| 3353 | return busiest; | ||
| 3354 | } | ||
| 3355 | 3679 | ||
| 3356 | /* | 3680 | /** | 
| 3357 | * OK, we don't have enough imbalance to justify moving tasks, | 3681 | * find_busiest_group - Returns the busiest group within the sched_domain | 
| 3358 | * however we may be able to increase total CPU power used by | 3682 | * if there is an imbalance. If there isn't an imbalance, and | 
| 3359 | * moving them. | 3683 | * the user has opted for power-savings, it returns a group whose | 
| 3360 | */ | 3684 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | 
| 3685 | * such a group exists. | ||
| 3686 | * | ||
| 3687 | * Also calculates the amount of weighted load which should be moved | ||
| 3688 | * to restore balance. | ||
| 3689 | * | ||
| 3690 | * @sd: The sched_domain whose busiest group is to be returned. | ||
| 3691 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
| 3692 | * @imbalance: Variable which stores amount of weighted load which should | ||
| 3693 | * be moved to restore balance/put a group to idle. | ||
| 3694 | * @idle: The idle status of this_cpu. | ||
| 3695 | * @sd_idle: The idleness of sd | ||
| 3696 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
| 3697 | * @balance: Pointer to a variable indicating if this_cpu | ||
| 3698 | * is the appropriate cpu to perform load balancing at this_level. | ||
| 3699 | * | ||
| 3700 | * Returns: - the busiest group if imbalance exists. | ||
| 3701 | * - If no imbalance and user has opted for power-savings balance, | ||
| 3702 | * return the least loaded group whose CPUs can be | ||
| 3703 | * put to idle by rebalancing its tasks onto our group. | ||
| 3704 | */ | ||
| 3705 | static struct sched_group * | ||
| 3706 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
| 3707 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
| 3708 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
| 3709 | { | ||
| 3710 | struct sd_lb_stats sds; | ||
| 3361 | 3711 | ||
| 3362 | pwr_now += busiest->__cpu_power * | 3712 | memset(&sds, 0, sizeof(sds)); | 
| 3363 | min(busiest_load_per_task, max_load); | ||
| 3364 | pwr_now += this->__cpu_power * | ||
| 3365 | min(this_load_per_task, this_load); | ||
| 3366 | pwr_now /= SCHED_LOAD_SCALE; | ||
| 3367 | |||
| 3368 | /* Amount of load we'd subtract */ | ||
| 3369 | tmp = sg_div_cpu_power(busiest, | ||
| 3370 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3371 | if (max_load > tmp) | ||
| 3372 | pwr_move += busiest->__cpu_power * | ||
| 3373 | min(busiest_load_per_task, max_load - tmp); | ||
| 3374 | |||
| 3375 | /* Amount of load we'd add */ | ||
| 3376 | if (max_load * busiest->__cpu_power < | ||
| 3377 | busiest_load_per_task * SCHED_LOAD_SCALE) | ||
| 3378 | tmp = sg_div_cpu_power(this, | ||
| 3379 | max_load * busiest->__cpu_power); | ||
| 3380 | else | ||
| 3381 | tmp = sg_div_cpu_power(this, | ||
| 3382 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
| 3383 | pwr_move += this->__cpu_power * | ||
| 3384 | min(this_load_per_task, this_load + tmp); | ||
| 3385 | pwr_move /= SCHED_LOAD_SCALE; | ||
| 3386 | 3713 | ||
| 3387 | /* Move if we gain throughput */ | 3714 | /* | 
| 3388 | if (pwr_move > pwr_now) | 3715 | * Compute the various statistics relavent for load balancing at | 
| 3389 | *imbalance = busiest_load_per_task; | 3716 | * this level. | 
| 3390 | } | 3717 | */ | 
| 3718 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
| 3719 | balance, &sds); | ||
| 3720 | |||
| 3721 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
| 3722 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
| 3723 | * at this level. | ||
| 3724 | * 2) There is no busy sibling group to pull from. | ||
| 3725 | * 3) This group is the busiest group. | ||
| 3726 | * 4) This group is more busy than the avg busieness at this | ||
| 3727 | * sched_domain. | ||
| 3728 | * 5) The imbalance is within the specified limit. | ||
| 3729 | * 6) Any rebalance would lead to ping-pong | ||
| 3730 | */ | ||
| 3731 | if (balance && !(*balance)) | ||
| 3732 | goto ret; | ||
| 3391 | 3733 | ||
| 3392 | return busiest; | 3734 | if (!sds.busiest || sds.busiest_nr_running == 0) | 
| 3735 | goto out_balanced; | ||
| 3393 | 3736 | ||
| 3394 | out_balanced: | 3737 | if (sds.this_load >= sds.max_load) | 
| 3395 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3738 | goto out_balanced; | 
| 3396 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
| 3397 | goto ret; | ||
| 3398 | 3739 | ||
| 3399 | if (this == group_leader && group_leader != group_min) { | 3740 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | 
| 3400 | *imbalance = min_load_per_task; | 3741 | |
| 3401 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | 3742 | if (sds.this_load >= sds.avg_load) | 
| 3402 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | 3743 | goto out_balanced; | 
| 3403 | cpumask_first(sched_group_cpus(group_leader)); | 3744 | |
| 3404 | } | 3745 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | 
| 3405 | return group_min; | 3746 | goto out_balanced; | 
| 3406 | } | 3747 | |
| 3407 | #endif | 3748 | sds.busiest_load_per_task /= sds.busiest_nr_running; | 
| 3749 | if (sds.group_imb) | ||
| 3750 | sds.busiest_load_per_task = | ||
| 3751 | min(sds.busiest_load_per_task, sds.avg_load); | ||
| 3752 | |||
| 3753 | /* | ||
| 3754 | * We're trying to get all the cpus to the average_load, so we don't | ||
| 3755 | * want to push ourselves above the average load, nor do we wish to | ||
| 3756 | * reduce the max loaded cpu below the average load, as either of these | ||
| 3757 | * actions would just result in more rebalancing later, and ping-pong | ||
| 3758 | * tasks around. Thus we look for the minimum possible imbalance. | ||
| 3759 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
| 3760 | * be counted as no imbalance for these purposes -- we can't fix that | ||
| 3761 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
| 3762 | * appear as very large values with unsigned longs. | ||
| 3763 | */ | ||
| 3764 | if (sds.max_load <= sds.busiest_load_per_task) | ||
| 3765 | goto out_balanced; | ||
| 3766 | |||
| 3767 | /* Looks like there is an imbalance. Compute it */ | ||
| 3768 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
| 3769 | return sds.busiest; | ||
| 3770 | |||
| 3771 | out_balanced: | ||
| 3772 | /* | ||
| 3773 | * There is no obvious imbalance. But check if we can do some balancing | ||
| 3774 | * to save power. | ||
| 3775 | */ | ||
| 3776 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
| 3777 | return sds.busiest; | ||
| 3408 | ret: | 3778 | ret: | 
| 3409 | *imbalance = 0; | 3779 | *imbalance = 0; | 
| 3410 | return NULL; | 3780 | return NULL; | 
| @@ -4057,6 +4427,11 @@ static void run_rebalance_domains(struct softirq_action *h) | |||
| 4057 | #endif | 4427 | #endif | 
| 4058 | } | 4428 | } | 
| 4059 | 4429 | ||
| 4430 | static inline int on_null_domain(int cpu) | ||
| 4431 | { | ||
| 4432 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
| 4433 | } | ||
| 4434 | |||
| 4060 | /* | 4435 | /* | 
| 4061 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 4436 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
| 4062 | * | 4437 | * | 
| @@ -4114,7 +4489,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) | |||
| 4114 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | 4489 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | 
| 4115 | return; | 4490 | return; | 
| 4116 | #endif | 4491 | #endif | 
| 4117 | if (time_after_eq(jiffies, rq->next_balance)) | 4492 | /* Don't need to rebalance while attached to NULL domain */ | 
| 4493 | if (time_after_eq(jiffies, rq->next_balance) && | ||
| 4494 | likely(!on_null_domain(cpu))) | ||
| 4118 | raise_softirq(SCHED_SOFTIRQ); | 4495 | raise_softirq(SCHED_SOFTIRQ); | 
| 4119 | } | 4496 | } | 
| 4120 | 4497 | ||
| @@ -4508,11 +4885,33 @@ static inline void schedule_debug(struct task_struct *prev) | |||
| 4508 | #endif | 4885 | #endif | 
| 4509 | } | 4886 | } | 
| 4510 | 4887 | ||
| 4888 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | ||
| 4889 | { | ||
| 4890 | if (prev->state == TASK_RUNNING) { | ||
| 4891 | u64 runtime = prev->se.sum_exec_runtime; | ||
| 4892 | |||
| 4893 | runtime -= prev->se.prev_sum_exec_runtime; | ||
| 4894 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
| 4895 | |||
| 4896 | /* | ||
| 4897 | * In order to avoid avg_overlap growing stale when we are | ||
| 4898 | * indeed overlapping and hence not getting put to sleep, grow | ||
| 4899 | * the avg_overlap on preemption. | ||
| 4900 | * | ||
| 4901 | * We use the average preemption runtime because that | ||
| 4902 | * correlates to the amount of cache footprint a task can | ||
| 4903 | * build up. | ||
| 4904 | */ | ||
| 4905 | update_avg(&prev->se.avg_overlap, runtime); | ||
| 4906 | } | ||
| 4907 | prev->sched_class->put_prev_task(rq, prev); | ||
| 4908 | } | ||
| 4909 | |||
| 4511 | /* | 4910 | /* | 
| 4512 | * Pick up the highest-prio task: | 4911 | * Pick up the highest-prio task: | 
| 4513 | */ | 4912 | */ | 
| 4514 | static inline struct task_struct * | 4913 | static inline struct task_struct * | 
| 4515 | pick_next_task(struct rq *rq, struct task_struct *prev) | 4914 | pick_next_task(struct rq *rq) | 
| 4516 | { | 4915 | { | 
| 4517 | const struct sched_class *class; | 4916 | const struct sched_class *class; | 
| 4518 | struct task_struct *p; | 4917 | struct task_struct *p; | 
| @@ -4543,15 +4942,13 @@ pick_next_task(struct rq *rq, struct task_struct *prev) | |||
| 4543 | /* | 4942 | /* | 
| 4544 | * schedule() is the main scheduler function. | 4943 | * schedule() is the main scheduler function. | 
| 4545 | */ | 4944 | */ | 
| 4546 | asmlinkage void __sched schedule(void) | 4945 | asmlinkage void __sched __schedule(void) | 
| 4547 | { | 4946 | { | 
| 4548 | struct task_struct *prev, *next; | 4947 | struct task_struct *prev, *next; | 
| 4549 | unsigned long *switch_count; | 4948 | unsigned long *switch_count; | 
| 4550 | struct rq *rq; | 4949 | struct rq *rq; | 
| 4551 | int cpu; | 4950 | int cpu; | 
| 4552 | 4951 | ||
| 4553 | need_resched: | ||
| 4554 | preempt_disable(); | ||
| 4555 | cpu = smp_processor_id(); | 4952 | cpu = smp_processor_id(); | 
| 4556 | rq = cpu_rq(cpu); | 4953 | rq = cpu_rq(cpu); | 
| 4557 | rcu_qsctr_inc(cpu); | 4954 | rcu_qsctr_inc(cpu); | 
| @@ -4586,8 +4983,8 @@ need_resched_nonpreemptible: | |||
| 4586 | if (unlikely(!rq->nr_running)) | 4983 | if (unlikely(!rq->nr_running)) | 
| 4587 | idle_balance(cpu, rq); | 4984 | idle_balance(cpu, rq); | 
| 4588 | 4985 | ||
| 4589 | prev->sched_class->put_prev_task(rq, prev); | 4986 | put_prev_task(rq, prev); | 
| 4590 | next = pick_next_task(rq, prev); | 4987 | next = pick_next_task(rq); | 
| 4591 | 4988 | ||
| 4592 | if (likely(prev != next)) { | 4989 | if (likely(prev != next)) { | 
| 4593 | sched_info_switch(prev, next); | 4990 | sched_info_switch(prev, next); | 
| @@ -4608,13 +5005,80 @@ need_resched_nonpreemptible: | |||
| 4608 | 5005 | ||
| 4609 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 5006 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 
| 4610 | goto need_resched_nonpreemptible; | 5007 | goto need_resched_nonpreemptible; | 
| 5008 | } | ||
| 4611 | 5009 | ||
| 5010 | asmlinkage void __sched schedule(void) | ||
| 5011 | { | ||
| 5012 | need_resched: | ||
| 5013 | preempt_disable(); | ||
| 5014 | __schedule(); | ||
| 4612 | preempt_enable_no_resched(); | 5015 | preempt_enable_no_resched(); | 
| 4613 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 5016 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
| 4614 | goto need_resched; | 5017 | goto need_resched; | 
| 4615 | } | 5018 | } | 
| 4616 | EXPORT_SYMBOL(schedule); | 5019 | EXPORT_SYMBOL(schedule); | 
| 4617 | 5020 | ||
| 5021 | #ifdef CONFIG_SMP | ||
| 5022 | /* | ||
| 5023 | * Look out! "owner" is an entirely speculative pointer | ||
| 5024 | * access and not reliable. | ||
| 5025 | */ | ||
| 5026 | int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) | ||
| 5027 | { | ||
| 5028 | unsigned int cpu; | ||
| 5029 | struct rq *rq; | ||
| 5030 | |||
| 5031 | if (!sched_feat(OWNER_SPIN)) | ||
| 5032 | return 0; | ||
| 5033 | |||
| 5034 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
| 5035 | /* | ||
| 5036 | * Need to access the cpu field knowing that | ||
| 5037 | * DEBUG_PAGEALLOC could have unmapped it if | ||
| 5038 | * the mutex owner just released it and exited. | ||
| 5039 | */ | ||
| 5040 | if (probe_kernel_address(&owner->cpu, cpu)) | ||
| 5041 | goto out; | ||
| 5042 | #else | ||
| 5043 | cpu = owner->cpu; | ||
| 5044 | #endif | ||
| 5045 | |||
| 5046 | /* | ||
| 5047 | * Even if the access succeeded (likely case), | ||
| 5048 | * the cpu field may no longer be valid. | ||
| 5049 | */ | ||
| 5050 | if (cpu >= nr_cpumask_bits) | ||
| 5051 | goto out; | ||
| 5052 | |||
| 5053 | /* | ||
| 5054 | * We need to validate that we can do a | ||
| 5055 | * get_cpu() and that we have the percpu area. | ||
| 5056 | */ | ||
| 5057 | if (!cpu_online(cpu)) | ||
| 5058 | goto out; | ||
| 5059 | |||
| 5060 | rq = cpu_rq(cpu); | ||
| 5061 | |||
| 5062 | for (;;) { | ||
| 5063 | /* | ||
| 5064 | * Owner changed, break to re-assess state. | ||
| 5065 | */ | ||
| 5066 | if (lock->owner != owner) | ||
| 5067 | break; | ||
| 5068 | |||
| 5069 | /* | ||
| 5070 | * Is that owner really running on that cpu? | ||
| 5071 | */ | ||
| 5072 | if (task_thread_info(rq->curr) != owner || need_resched()) | ||
| 5073 | return 0; | ||
| 5074 | |||
| 5075 | cpu_relax(); | ||
| 5076 | } | ||
| 5077 | out: | ||
| 5078 | return 1; | ||
| 5079 | } | ||
| 5080 | #endif | ||
| 5081 | |||
| 4618 | #ifdef CONFIG_PREEMPT | 5082 | #ifdef CONFIG_PREEMPT | 
| 4619 | /* | 5083 | /* | 
| 4620 | * this is the entry point to schedule() from in-kernel preemption | 5084 | * this is the entry point to schedule() from in-kernel preemption | 
| @@ -4642,7 +5106,7 @@ asmlinkage void __sched preempt_schedule(void) | |||
| 4642 | * between schedule and now. | 5106 | * between schedule and now. | 
| 4643 | */ | 5107 | */ | 
| 4644 | barrier(); | 5108 | barrier(); | 
| 4645 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5109 | } while (need_resched()); | 
| 4646 | } | 5110 | } | 
| 4647 | EXPORT_SYMBOL(preempt_schedule); | 5111 | EXPORT_SYMBOL(preempt_schedule); | 
| 4648 | 5112 | ||
| @@ -4671,7 +5135,7 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
| 4671 | * between schedule and now. | 5135 | * between schedule and now. | 
| 4672 | */ | 5136 | */ | 
| 4673 | barrier(); | 5137 | barrier(); | 
| 4674 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5138 | } while (need_resched()); | 
| 4675 | } | 5139 | } | 
| 4676 | 5140 | ||
| 4677 | #endif /* CONFIG_PREEMPT */ | 5141 | #endif /* CONFIG_PREEMPT */ | 
| @@ -4732,11 +5196,17 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |||
| 4732 | __wake_up_common(q, mode, 1, 0, NULL); | 5196 | __wake_up_common(q, mode, 1, 0, NULL); | 
| 4733 | } | 5197 | } | 
| 4734 | 5198 | ||
| 5199 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | ||
| 5200 | { | ||
| 5201 | __wake_up_common(q, mode, 1, 0, key); | ||
| 5202 | } | ||
| 5203 | |||
| 4735 | /** | 5204 | /** | 
| 4736 | * __wake_up_sync - wake up threads blocked on a waitqueue. | 5205 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. | 
| 4737 | * @q: the waitqueue | 5206 | * @q: the waitqueue | 
| 4738 | * @mode: which threads | 5207 | * @mode: which threads | 
| 4739 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 5208 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
| 5209 | * @key: opaque value to be passed to wakeup targets | ||
| 4740 | * | 5210 | * | 
| 4741 | * The sync wakeup differs that the waker knows that it will schedule | 5211 | * The sync wakeup differs that the waker knows that it will schedule | 
| 4742 | * away soon, so while the target thread will be woken up, it will not | 5212 | * away soon, so while the target thread will be woken up, it will not | 
| @@ -4745,8 +5215,8 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |||
| 4745 | * | 5215 | * | 
| 4746 | * On UP it can prevent extra preemption. | 5216 | * On UP it can prevent extra preemption. | 
| 4747 | */ | 5217 | */ | 
| 4748 | void | 5218 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | 
| 4749 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 5219 | int nr_exclusive, void *key) | 
| 4750 | { | 5220 | { | 
| 4751 | unsigned long flags; | 5221 | unsigned long flags; | 
| 4752 | int sync = 1; | 5222 | int sync = 1; | 
| @@ -4758,9 +5228,18 @@ __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |||
| 4758 | sync = 0; | 5228 | sync = 0; | 
| 4759 | 5229 | ||
| 4760 | spin_lock_irqsave(&q->lock, flags); | 5230 | spin_lock_irqsave(&q->lock, flags); | 
| 4761 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 5231 | __wake_up_common(q, mode, nr_exclusive, sync, key); | 
| 4762 | spin_unlock_irqrestore(&q->lock, flags); | 5232 | spin_unlock_irqrestore(&q->lock, flags); | 
| 4763 | } | 5233 | } | 
| 5234 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | ||
| 5235 | |||
| 5236 | /* | ||
| 5237 | * __wake_up_sync - see __wake_up_sync_key() | ||
| 5238 | */ | ||
| 5239 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | ||
| 5240 | { | ||
| 5241 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | ||
| 5242 | } | ||
| 4764 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | 5243 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | 
| 4765 | 5244 | ||
| 4766 | /** | 5245 | /** | 
| @@ -5145,7 +5624,7 @@ SYSCALL_DEFINE1(nice, int, increment) | |||
| 5145 | if (increment > 40) | 5624 | if (increment > 40) | 
| 5146 | increment = 40; | 5625 | increment = 40; | 
| 5147 | 5626 | ||
| 5148 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 5627 | nice = TASK_NICE(current) + increment; | 
| 5149 | if (nice < -20) | 5628 | if (nice < -20) | 
| 5150 | nice = -20; | 5629 | nice = -20; | 
| 5151 | if (nice > 19) | 5630 | if (nice > 19) | 
| @@ -5944,12 +6423,7 @@ void sched_show_task(struct task_struct *p) | |||
| 5944 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 6423 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 
| 5945 | #endif | 6424 | #endif | 
| 5946 | #ifdef CONFIG_DEBUG_STACK_USAGE | 6425 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
| 5947 | { | 6426 | free = stack_not_used(p); | 
| 5948 | unsigned long *n = end_of_stack(p); | ||
| 5949 | while (!*n) | ||
| 5950 | n++; | ||
| 5951 | free = (unsigned long)n - (unsigned long)end_of_stack(p); | ||
| 5952 | } | ||
| 5953 | #endif | 6427 | #endif | 
| 5954 | printk(KERN_CONT "%5lu %5d %6d\n", free, | 6428 | printk(KERN_CONT "%5lu %5d %6d\n", free, | 
| 5955 | task_pid_nr(p), task_pid_nr(p->real_parent)); | 6429 | task_pid_nr(p), task_pid_nr(p->real_parent)); | 
| @@ -6423,7 +6897,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
| 6423 | if (!rq->nr_running) | 6897 | if (!rq->nr_running) | 
| 6424 | break; | 6898 | break; | 
| 6425 | update_rq_clock(rq); | 6899 | update_rq_clock(rq); | 
| 6426 | next = pick_next_task(rq, rq->curr); | 6900 | next = pick_next_task(rq); | 
| 6427 | if (!next) | 6901 | if (!next) | 
| 6428 | break; | 6902 | break; | 
| 6429 | next->sched_class->put_prev_task(rq, next); | 6903 | next->sched_class->put_prev_task(rq, next); | 
| @@ -8218,11 +8692,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
| 8218 | __set_bit(MAX_RT_PRIO, array->bitmap); | 8692 | __set_bit(MAX_RT_PRIO, array->bitmap); | 
| 8219 | 8693 | ||
| 8220 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 8694 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
| 8221 | rt_rq->highest_prio = MAX_RT_PRIO; | 8695 | rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
| 8696 | #ifdef CONFIG_SMP | ||
| 8697 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
| 8698 | #endif | ||
| 8222 | #endif | 8699 | #endif | 
| 8223 | #ifdef CONFIG_SMP | 8700 | #ifdef CONFIG_SMP | 
| 8224 | rt_rq->rt_nr_migratory = 0; | 8701 | rt_rq->rt_nr_migratory = 0; | 
| 8225 | rt_rq->overloaded = 0; | 8702 | rt_rq->overloaded = 0; | 
| 8703 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); | ||
| 8226 | #endif | 8704 | #endif | 
| 8227 | 8705 | ||
| 8228 | rt_rq->rt_time = 0; | 8706 | rt_rq->rt_time = 0; | 
| @@ -9490,7 +9968,7 @@ cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
| 9490 | 9968 | ||
| 9491 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | 9969 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | 
| 9492 | { | 9970 | { | 
| 9493 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9971 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 
| 9494 | u64 data; | 9972 | u64 data; | 
| 9495 | 9973 | ||
| 9496 | #ifndef CONFIG_64BIT | 9974 | #ifndef CONFIG_64BIT | 
| @@ -9509,7 +9987,7 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | |||
| 9509 | 9987 | ||
| 9510 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | 9988 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | 
| 9511 | { | 9989 | { | 
| 9512 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9990 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 
| 9513 | 9991 | ||
| 9514 | #ifndef CONFIG_64BIT | 9992 | #ifndef CONFIG_64BIT | 
| 9515 | /* | 9993 | /* | 
| @@ -9598,14 +10076,14 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
| 9598 | struct cpuacct *ca; | 10076 | struct cpuacct *ca; | 
| 9599 | int cpu; | 10077 | int cpu; | 
| 9600 | 10078 | ||
| 9601 | if (!cpuacct_subsys.active) | 10079 | if (unlikely(!cpuacct_subsys.active)) | 
| 9602 | return; | 10080 | return; | 
| 9603 | 10081 | ||
| 9604 | cpu = task_cpu(tsk); | 10082 | cpu = task_cpu(tsk); | 
| 9605 | ca = task_ca(tsk); | 10083 | ca = task_ca(tsk); | 
| 9606 | 10084 | ||
| 9607 | for (; ca; ca = ca->parent) { | 10085 | for (; ca; ca = ca->parent) { | 
| 9608 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 10086 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | 
| 9609 | *cpuusage += cputime; | 10087 | *cpuusage += cputime; | 
| 9610 | } | 10088 | } | 
| 9611 | } | 10089 | } | 
