aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c734
1 files changed, 429 insertions, 305 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index a455dca884a6..18cceeecce35 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -141,7 +141,7 @@ struct rt_prio_array {
141 141
142struct rt_bandwidth { 142struct rt_bandwidth {
143 /* nests inside the rq lock: */ 143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock; 144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period; 145 ktime_t rt_period;
146 u64 rt_runtime; 146 u64 rt_runtime;
147 struct hrtimer rt_period_timer; 147 struct hrtimer rt_period_timer;
@@ -178,7 +178,7 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period); 178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime; 179 rt_b->rt_runtime = runtime;
180 180
181 spin_lock_init(&rt_b->rt_runtime_lock); 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182 182
183 hrtimer_init(&rt_b->rt_period_timer, 183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
@@ -200,7 +200,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200 if (hrtimer_active(&rt_b->rt_period_timer)) 200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return; 201 return;
202 202
203 spin_lock(&rt_b->rt_runtime_lock); 203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) { 204 for (;;) {
205 unsigned long delta; 205 unsigned long delta;
206 ktime_t soft, hard; 206 ktime_t soft, hard;
@@ -217,7 +217,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, 217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0); 218 HRTIMER_MODE_ABS_PINNED, 0);
219 } 219 }
220 spin_unlock(&rt_b->rt_runtime_lock); 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221} 221}
222 222
223#ifdef CONFIG_RT_GROUP_SCHED 223#ifdef CONFIG_RT_GROUP_SCHED
@@ -298,7 +298,7 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
298 298
299#ifdef CONFIG_RT_GROUP_SCHED 299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302#endif /* CONFIG_RT_GROUP_SCHED */ 302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_USER_SCHED */ 303#else /* !CONFIG_USER_SCHED */
304#define root_task_group init_task_group 304#define root_task_group init_task_group
@@ -309,6 +309,8 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
309 */ 309 */
310static DEFINE_SPINLOCK(task_group_lock); 310static DEFINE_SPINLOCK(task_group_lock);
311 311
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
312#ifdef CONFIG_SMP 314#ifdef CONFIG_SMP
313static int root_task_group_empty(void) 315static int root_task_group_empty(void)
314{ 316{
@@ -316,7 +318,6 @@ static int root_task_group_empty(void)
316} 318}
317#endif 319#endif
318 320
319#ifdef CONFIG_FAIR_GROUP_SCHED
320#ifdef CONFIG_USER_SCHED 321#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) 322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322#else /* !CONFIG_USER_SCHED */ 323#else /* !CONFIG_USER_SCHED */
@@ -469,7 +470,7 @@ struct rt_rq {
469 u64 rt_time; 470 u64 rt_time;
470 u64 rt_runtime; 471 u64 rt_runtime;
471 /* Nests inside the rq lock: */ 472 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock; 473 raw_spinlock_t rt_runtime_lock;
473 474
474#ifdef CONFIG_RT_GROUP_SCHED 475#ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted; 476 unsigned long rt_nr_boosted;
@@ -524,7 +525,7 @@ static struct root_domain def_root_domain;
524 */ 525 */
525struct rq { 526struct rq {
526 /* runqueue lock: */ 527 /* runqueue lock: */
527 spinlock_t lock; 528 raw_spinlock_t lock;
528 529
529 /* 530 /*
530 * nr_running and cpu_load should be in the same cacheline because 531 * nr_running and cpu_load should be in the same cacheline because
@@ -534,14 +535,12 @@ struct rq {
534 #define CPU_LOAD_IDX_MAX 5 535 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536#ifdef CONFIG_NO_HZ 537#ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently; 538 unsigned char in_nohz_recently;
539#endif 539#endif
540 /* capture load from *all* tasks on this cpu: */ 540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load; 541 struct load_weight load;
542 unsigned long nr_load_updates; 542 unsigned long nr_load_updates;
543 u64 nr_switches; 543 u64 nr_switches;
544 u64 nr_migrations_in;
545 544
546 struct cfs_rq cfs; 545 struct cfs_rq cfs;
547 struct rt_rq rt; 546 struct rt_rq rt;
@@ -590,6 +589,8 @@ struct rq {
590 589
591 u64 rt_avg; 590 u64 rt_avg;
592 u64 age_stamp; 591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
593#endif 594#endif
594 595
595 /* calc_load related fields */ 596 /* calc_load related fields */
@@ -684,7 +685,7 @@ inline void update_rq_clock(struct rq *rq)
684 */ 685 */
685int runqueue_is_locked(int cpu) 686int runqueue_is_locked(int cpu)
686{ 687{
687 return spin_is_locked(&cpu_rq(cpu)->lock); 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
688} 689}
689 690
690/* 691/*
@@ -771,7 +772,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf,
771 if (!sched_feat_names[i]) 772 if (!sched_feat_names[i])
772 return -EINVAL; 773 return -EINVAL;
773 774
774 filp->f_pos += cnt; 775 *ppos += cnt;
775 776
776 return cnt; 777 return cnt;
777} 778}
@@ -813,6 +814,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32;
813 * default: 0.25ms 814 * default: 0.25ms
814 */ 815 */
815unsigned int sysctl_sched_shares_ratelimit = 250000; 816unsigned int sysctl_sched_shares_ratelimit = 250000;
817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
816 818
817/* 819/*
818 * Inject some fuzzyness into changing the per-cpu group shares 820 * Inject some fuzzyness into changing the per-cpu group shares
@@ -891,7 +893,7 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
891 */ 893 */
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893 895
894 spin_unlock_irq(&rq->lock); 896 raw_spin_unlock_irq(&rq->lock);
895} 897}
896 898
897#else /* __ARCH_WANT_UNLOCKED_CTXSW */ 899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
@@ -915,9 +917,9 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
915 next->oncpu = 1; 917 next->oncpu = 1;
916#endif 918#endif
917#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock); 920 raw_spin_unlock_irq(&rq->lock);
919#else 921#else
920 spin_unlock(&rq->lock); 922 raw_spin_unlock(&rq->lock);
921#endif 923#endif
922} 924}
923 925
@@ -947,10 +949,10 @@ static inline struct rq *__task_rq_lock(struct task_struct *p)
947{ 949{
948 for (;;) { 950 for (;;) {
949 struct rq *rq = task_rq(p); 951 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock); 952 raw_spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p))) 953 if (likely(rq == task_rq(p)))
952 return rq; 954 return rq;
953 spin_unlock(&rq->lock); 955 raw_spin_unlock(&rq->lock);
954 } 956 }
955} 957}
956 958
@@ -967,10 +969,10 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 for (;;) { 969 for (;;) {
968 local_irq_save(*flags); 970 local_irq_save(*flags);
969 rq = task_rq(p); 971 rq = task_rq(p);
970 spin_lock(&rq->lock); 972 raw_spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p))) 973 if (likely(rq == task_rq(p)))
972 return rq; 974 return rq;
973 spin_unlock_irqrestore(&rq->lock, *flags); 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
974 } 976 }
975} 977}
976 978
@@ -979,19 +981,19 @@ void task_rq_unlock_wait(struct task_struct *p)
979 struct rq *rq = task_rq(p); 981 struct rq *rq = task_rq(p);
980 982
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */ 983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock); 984 raw_spin_unlock_wait(&rq->lock);
983} 985}
984 986
985static void __task_rq_unlock(struct rq *rq) 987static void __task_rq_unlock(struct rq *rq)
986 __releases(rq->lock) 988 __releases(rq->lock)
987{ 989{
988 spin_unlock(&rq->lock); 990 raw_spin_unlock(&rq->lock);
989} 991}
990 992
991static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
992 __releases(rq->lock) 994 __releases(rq->lock)
993{ 995{
994 spin_unlock_irqrestore(&rq->lock, *flags); 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
995} 997}
996 998
997/* 999/*
@@ -1004,7 +1006,7 @@ static struct rq *this_rq_lock(void)
1004 1006
1005 local_irq_disable(); 1007 local_irq_disable();
1006 rq = this_rq(); 1008 rq = this_rq();
1007 spin_lock(&rq->lock); 1009 raw_spin_lock(&rq->lock);
1008 1010
1009 return rq; 1011 return rq;
1010} 1012}
@@ -1051,10 +1053,10 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 1053
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053 1055
1054 spin_lock(&rq->lock); 1056 raw_spin_lock(&rq->lock);
1055 update_rq_clock(rq); 1057 update_rq_clock(rq);
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock); 1059 raw_spin_unlock(&rq->lock);
1058 1060
1059 return HRTIMER_NORESTART; 1061 return HRTIMER_NORESTART;
1060} 1062}
@@ -1067,10 +1069,10 @@ static void __hrtick_start(void *arg)
1067{ 1069{
1068 struct rq *rq = arg; 1070 struct rq *rq = arg;
1069 1071
1070 spin_lock(&rq->lock); 1072 raw_spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer); 1073 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0; 1074 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock); 1075 raw_spin_unlock(&rq->lock);
1074} 1076}
1075 1077
1076/* 1078/*
@@ -1177,7 +1179,7 @@ static void resched_task(struct task_struct *p)
1177{ 1179{
1178 int cpu; 1180 int cpu;
1179 1181
1180 assert_spin_locked(&task_rq(p)->lock); 1182 assert_raw_spin_locked(&task_rq(p)->lock);
1181 1183
1182 if (test_tsk_need_resched(p)) 1184 if (test_tsk_need_resched(p))
1183 return; 1185 return;
@@ -1199,10 +1201,10 @@ static void resched_cpu(int cpu)
1199 struct rq *rq = cpu_rq(cpu); 1201 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags; 1202 unsigned long flags;
1201 1203
1202 if (!spin_trylock_irqsave(&rq->lock, flags)) 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1203 return; 1205 return;
1204 resched_task(cpu_curr(cpu)); 1206 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags); 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1206} 1208}
1207 1209
1208#ifdef CONFIG_NO_HZ 1210#ifdef CONFIG_NO_HZ
@@ -1271,7 +1273,7 @@ static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271#else /* !CONFIG_SMP */ 1273#else /* !CONFIG_SMP */
1272static void resched_task(struct task_struct *p) 1274static void resched_task(struct task_struct *p)
1273{ 1275{
1274 assert_spin_locked(&task_rq(p)->lock); 1276 assert_raw_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p); 1277 set_tsk_need_resched(p);
1276} 1278}
1277 1279
@@ -1598,11 +1600,11 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
1598 struct rq *rq = cpu_rq(cpu); 1600 struct rq *rq = cpu_rq(cpu);
1599 unsigned long flags; 1601 unsigned long flags;
1600 1602
1601 spin_lock_irqsave(&rq->lock, flags); 1603 raw_spin_lock_irqsave(&rq->lock, flags);
1602 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1603 tg->cfs_rq[cpu]->shares = boost ? 0 : shares; 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1604 __set_se_shares(tg->se[cpu], shares); 1606 __set_se_shares(tg->se[cpu], shares);
1605 spin_unlock_irqrestore(&rq->lock, flags); 1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1606 } 1608 }
1607} 1609}
1608 1610
@@ -1613,7 +1615,7 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu,
1613 */ 1615 */
1614static int tg_shares_up(struct task_group *tg, void *data) 1616static int tg_shares_up(struct task_group *tg, void *data)
1615{ 1617{
1616 unsigned long weight, rq_weight = 0, shares = 0; 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1617 unsigned long *usd_rq_weight; 1619 unsigned long *usd_rq_weight;
1618 struct sched_domain *sd = data; 1620 struct sched_domain *sd = data;
1619 unsigned long flags; 1621 unsigned long flags;
@@ -1629,6 +1631,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1629 weight = tg->cfs_rq[i]->load.weight; 1631 weight = tg->cfs_rq[i]->load.weight;
1630 usd_rq_weight[i] = weight; 1632 usd_rq_weight[i] = weight;
1631 1633
1634 rq_weight += weight;
1632 /* 1635 /*
1633 * If there are currently no tasks on the cpu pretend there 1636 * If there are currently no tasks on the cpu pretend there
1634 * is one of average load so that when a new task gets to 1637 * is one of average load so that when a new task gets to
@@ -1637,10 +1640,13 @@ static int tg_shares_up(struct task_group *tg, void *data)
1637 if (!weight) 1640 if (!weight)
1638 weight = NICE_0_LOAD; 1641 weight = NICE_0_LOAD;
1639 1642
1640 rq_weight += weight; 1643 sum_weight += weight;
1641 shares += tg->cfs_rq[i]->shares; 1644 shares += tg->cfs_rq[i]->shares;
1642 } 1645 }
1643 1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1644 if ((!shares && rq_weight) || shares > tg->shares) 1650 if ((!shares && rq_weight) || shares > tg->shares)
1645 shares = tg->shares; 1651 shares = tg->shares;
1646 1652
@@ -1700,9 +1706,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700 if (root_task_group_empty()) 1706 if (root_task_group_empty())
1701 return; 1707 return;
1702 1708
1703 spin_unlock(&rq->lock); 1709 raw_spin_unlock(&rq->lock);
1704 update_shares(sd); 1710 update_shares(sd);
1705 spin_lock(&rq->lock); 1711 raw_spin_lock(&rq->lock);
1706} 1712}
1707 1713
1708static void update_h_load(long cpu) 1714static void update_h_load(long cpu)
@@ -1742,7 +1748,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __acquires(busiest->lock) 1748 __acquires(busiest->lock)
1743 __acquires(this_rq->lock) 1749 __acquires(this_rq->lock)
1744{ 1750{
1745 spin_unlock(&this_rq->lock); 1751 raw_spin_unlock(&this_rq->lock);
1746 double_rq_lock(this_rq, busiest); 1752 double_rq_lock(this_rq, busiest);
1747 1753
1748 return 1; 1754 return 1;
@@ -1763,14 +1769,16 @@ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763{ 1769{
1764 int ret = 0; 1770 int ret = 0;
1765 1771
1766 if (unlikely(!spin_trylock(&busiest->lock))) { 1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1767 if (busiest < this_rq) { 1773 if (busiest < this_rq) {
1768 spin_unlock(&this_rq->lock); 1774 raw_spin_unlock(&this_rq->lock);
1769 spin_lock(&busiest->lock); 1775 raw_spin_lock(&busiest->lock);
1770 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); 1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1771 ret = 1; 1778 ret = 1;
1772 } else 1779 } else
1773 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); 1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1774 } 1782 }
1775 return ret; 1783 return ret;
1776} 1784}
@@ -1784,7 +1792,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1784{ 1792{
1785 if (unlikely(!irqs_disabled())) { 1793 if (unlikely(!irqs_disabled())) {
1786 /* printk() doesn't work good under rq->lock */ 1794 /* printk() doesn't work good under rq->lock */
1787 spin_unlock(&this_rq->lock); 1795 raw_spin_unlock(&this_rq->lock);
1788 BUG_ON(1); 1796 BUG_ON(1);
1789 } 1797 }
1790 1798
@@ -1794,7 +1802,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1795 __releases(busiest->lock) 1803 __releases(busiest->lock)
1796{ 1804{
1797 spin_unlock(&busiest->lock); 1805 raw_spin_unlock(&busiest->lock);
1798 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1799} 1807}
1800#endif 1808#endif
@@ -1809,6 +1817,22 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809#endif 1817#endif
1810 1818
1811static void calc_load_account_active(struct rq *this_rq); 1819static void calc_load_account_active(struct rq *this_rq);
1820static void update_sysctl(void);
1821static int get_update_sysctl_factor(void);
1822
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
1812 1836
1813#include "sched_stats.h" 1837#include "sched_stats.h"
1814#include "sched_idletask.c" 1838#include "sched_idletask.c"
@@ -1966,20 +1990,6 @@ inline int task_curr(const struct task_struct *p)
1966 return cpu_curr(task_cpu(p)) == p; 1990 return cpu_curr(task_cpu(p)) == p;
1967} 1991}
1968 1992
1969static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1970{
1971 set_task_rq(p, cpu);
1972#ifdef CONFIG_SMP
1973 /*
1974 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1975 * successfuly executed on another CPU. We must ensure that updates of
1976 * per-task data have been completed by this moment.
1977 */
1978 smp_wmb();
1979 task_thread_info(p)->cpu = cpu;
1980#endif
1981}
1982
1983static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class, 1994 const struct sched_class *prev_class,
1985 int oldprio, int running) 1995 int oldprio, int running)
@@ -1992,6 +2002,39 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 p->sched_class->prio_changed(rq, p, oldprio, running); 2002 p->sched_class->prio_changed(rq, p, oldprio, running);
1993} 2003}
1994 2004
2005/**
2006 * kthread_bind - bind a just-created kthread to a cpu.
2007 * @p: thread created by kthread_create().
2008 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2009 *
2010 * Description: This function is equivalent to set_cpus_allowed(),
2011 * except that @cpu doesn't need to be online, and the thread must be
2012 * stopped (i.e., just returned from kthread_create()).
2013 *
2014 * Function lives here instead of kthread.c because it messes with
2015 * scheduler internals which require locking.
2016 */
2017void kthread_bind(struct task_struct *p, unsigned int cpu)
2018{
2019 struct rq *rq = cpu_rq(cpu);
2020 unsigned long flags;
2021
2022 /* Must have done schedule() in kthread() before we set_task_cpu */
2023 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2024 WARN_ON(1);
2025 return;
2026 }
2027
2028 raw_spin_lock_irqsave(&rq->lock, flags);
2029 update_rq_clock(rq);
2030 set_task_cpu(p, cpu);
2031 p->cpus_allowed = cpumask_of_cpu(cpu);
2032 p->rt.nr_cpus_allowed = 1;
2033 p->flags |= PF_THREAD_BOUND;
2034 raw_spin_unlock_irqrestore(&rq->lock, flags);
2035}
2036EXPORT_SYMBOL(kthread_bind);
2037
1995#ifdef CONFIG_SMP 2038#ifdef CONFIG_SMP
1996/* 2039/*
1997 * Is this task likely cache-hot: 2040 * Is this task likely cache-hot:
@@ -2004,7 +2047,7 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004 /* 2047 /*
2005 * Buddy candidates are cache hot: 2048 * Buddy candidates are cache hot:
2006 */ 2049 */
2007 if (sched_feat(CACHE_HOT_BUDDY) && 2050 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2008 (&p->se == cfs_rq_of(&p->se)->next || 2051 (&p->se == cfs_rq_of(&p->se)->next ||
2009 &p->se == cfs_rq_of(&p->se)->last)) 2052 &p->se == cfs_rq_of(&p->se)->last))
2010 return 1; 2053 return 1;
@@ -2026,30 +2069,13 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2026void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2069void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2027{ 2070{
2028 int old_cpu = task_cpu(p); 2071 int old_cpu = task_cpu(p);
2029 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2030 struct cfs_rq *old_cfsrq = task_cfs_rq(p), 2072 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2031 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); 2073 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2032 u64 clock_offset;
2033
2034 clock_offset = old_rq->clock - new_rq->clock;
2035 2074
2036 trace_sched_migrate_task(p, new_cpu); 2075 trace_sched_migrate_task(p, new_cpu);
2037 2076
2038#ifdef CONFIG_SCHEDSTATS
2039 if (p->se.wait_start)
2040 p->se.wait_start -= clock_offset;
2041 if (p->se.sleep_start)
2042 p->se.sleep_start -= clock_offset;
2043 if (p->se.block_start)
2044 p->se.block_start -= clock_offset;
2045#endif
2046 if (old_cpu != new_cpu) { 2077 if (old_cpu != new_cpu) {
2047 p->se.nr_migrations++; 2078 p->se.nr_migrations++;
2048 new_rq->nr_migrations_in++;
2049#ifdef CONFIG_SCHEDSTATS
2050 if (task_hot(p, old_rq->clock, NULL))
2051 schedstat_inc(p, se.nr_forced2_migrations);
2052#endif
2053 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 2079 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2054 1, 1, NULL, 0); 2080 1, 1, NULL, 0);
2055 } 2081 }
@@ -2082,6 +2108,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2082 * it is sufficient to simply update the task's cpu field. 2108 * it is sufficient to simply update the task's cpu field.
2083 */ 2109 */
2084 if (!p->se.on_rq && !task_running(rq, p)) { 2110 if (!p->se.on_rq && !task_running(rq, p)) {
2111 update_rq_clock(rq);
2085 set_task_cpu(p, dest_cpu); 2112 set_task_cpu(p, dest_cpu);
2086 return 0; 2113 return 0;
2087 } 2114 }
@@ -2289,6 +2316,14 @@ void task_oncpu_function_call(struct task_struct *p,
2289 preempt_enable(); 2316 preempt_enable();
2290} 2317}
2291 2318
2319#ifdef CONFIG_SMP
2320static inline
2321int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322{
2323 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324}
2325#endif
2326
2292/*** 2327/***
2293 * try_to_wake_up - wake up a thread 2328 * try_to_wake_up - wake up a thread
2294 * @p: the to-be-woken-up thread 2329 * @p: the to-be-woken-up thread
@@ -2340,16 +2375,14 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2340 if (task_contributes_to_load(p)) 2375 if (task_contributes_to_load(p))
2341 rq->nr_uninterruptible--; 2376 rq->nr_uninterruptible--;
2342 p->state = TASK_WAKING; 2377 p->state = TASK_WAKING;
2343 task_rq_unlock(rq, &flags); 2378 __task_rq_unlock(rq);
2344 2379
2345 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 2380 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2346 if (cpu != orig_cpu) 2381 if (cpu != orig_cpu)
2347 set_task_cpu(p, cpu); 2382 set_task_cpu(p, cpu);
2348 2383
2349 rq = task_rq_lock(p, &flags); 2384 rq = __task_rq_lock(p);
2350 2385 update_rq_clock(rq);
2351 if (rq != orig_rq)
2352 update_rq_clock(rq);
2353 2386
2354 WARN_ON(p->state != TASK_WAKING); 2387 WARN_ON(p->state != TASK_WAKING);
2355 cpu = task_cpu(p); 2388 cpu = task_cpu(p);
@@ -2407,6 +2440,17 @@ out_running:
2407#ifdef CONFIG_SMP 2440#ifdef CONFIG_SMP
2408 if (p->sched_class->task_wake_up) 2441 if (p->sched_class->task_wake_up)
2409 p->sched_class->task_wake_up(rq, p); 2442 p->sched_class->task_wake_up(rq, p);
2443
2444 if (unlikely(rq->idle_stamp)) {
2445 u64 delta = rq->clock - rq->idle_stamp;
2446 u64 max = 2*sysctl_sched_migration_cost;
2447
2448 if (delta > max)
2449 rq->avg_idle = max;
2450 else
2451 update_avg(&rq->avg_idle, delta);
2452 rq->idle_stamp = 0;
2453 }
2410#endif 2454#endif
2411out: 2455out:
2412 task_rq_unlock(rq, &flags); 2456 task_rq_unlock(rq, &flags);
@@ -2453,7 +2497,6 @@ static void __sched_fork(struct task_struct *p)
2453 p->se.avg_overlap = 0; 2497 p->se.avg_overlap = 0;
2454 p->se.start_runtime = 0; 2498 p->se.start_runtime = 0;
2455 p->se.avg_wakeup = sysctl_sched_wakeup_granularity; 2499 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2456 p->se.avg_running = 0;
2457 2500
2458#ifdef CONFIG_SCHEDSTATS 2501#ifdef CONFIG_SCHEDSTATS
2459 p->se.wait_start = 0; 2502 p->se.wait_start = 0;
@@ -2475,7 +2518,6 @@ static void __sched_fork(struct task_struct *p)
2475 p->se.nr_failed_migrations_running = 0; 2518 p->se.nr_failed_migrations_running = 0;
2476 p->se.nr_failed_migrations_hot = 0; 2519 p->se.nr_failed_migrations_hot = 0;
2477 p->se.nr_forced_migrations = 0; 2520 p->se.nr_forced_migrations = 0;
2478 p->se.nr_forced2_migrations = 0;
2479 2521
2480 p->se.nr_wakeups = 0; 2522 p->se.nr_wakeups = 0;
2481 p->se.nr_wakeups_sync = 0; 2523 p->se.nr_wakeups_sync = 0;
@@ -2545,8 +2587,11 @@ void sched_fork(struct task_struct *p, int clone_flags)
2545 if (!rt_prio(p->prio)) 2587 if (!rt_prio(p->prio))
2546 p->sched_class = &fair_sched_class; 2588 p->sched_class = &fair_sched_class;
2547 2589
2590 if (p->sched_class->task_fork)
2591 p->sched_class->task_fork(p);
2592
2548#ifdef CONFIG_SMP 2593#ifdef CONFIG_SMP
2549 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); 2594 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2550#endif 2595#endif
2551 set_task_cpu(p, cpu); 2596 set_task_cpu(p, cpu);
2552 2597
@@ -2581,17 +2626,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2581 rq = task_rq_lock(p, &flags); 2626 rq = task_rq_lock(p, &flags);
2582 BUG_ON(p->state != TASK_RUNNING); 2627 BUG_ON(p->state != TASK_RUNNING);
2583 update_rq_clock(rq); 2628 update_rq_clock(rq);
2584 2629 activate_task(rq, p, 0);
2585 if (!p->sched_class->task_new || !current->se.on_rq) {
2586 activate_task(rq, p, 0);
2587 } else {
2588 /*
2589 * Let the scheduling class do new task startup
2590 * management (if any):
2591 */
2592 p->sched_class->task_new(rq, p);
2593 inc_nr_running(rq);
2594 }
2595 trace_sched_wakeup_new(rq, p, 1); 2630 trace_sched_wakeup_new(rq, p, 1);
2596 check_preempt_curr(rq, p, WF_FORK); 2631 check_preempt_curr(rq, p, WF_FORK);
2597#ifdef CONFIG_SMP 2632#ifdef CONFIG_SMP
@@ -2748,10 +2783,10 @@ static inline void post_schedule(struct rq *rq)
2748 if (rq->post_schedule) { 2783 if (rq->post_schedule) {
2749 unsigned long flags; 2784 unsigned long flags;
2750 2785
2751 spin_lock_irqsave(&rq->lock, flags); 2786 raw_spin_lock_irqsave(&rq->lock, flags);
2752 if (rq->curr->sched_class->post_schedule) 2787 if (rq->curr->sched_class->post_schedule)
2753 rq->curr->sched_class->post_schedule(rq); 2788 rq->curr->sched_class->post_schedule(rq);
2754 spin_unlock_irqrestore(&rq->lock, flags); 2789 raw_spin_unlock_irqrestore(&rq->lock, flags);
2755 2790
2756 rq->post_schedule = 0; 2791 rq->post_schedule = 0;
2757 } 2792 }
@@ -2815,14 +2850,14 @@ context_switch(struct rq *rq, struct task_struct *prev,
2815 */ 2850 */
2816 arch_start_context_switch(prev); 2851 arch_start_context_switch(prev);
2817 2852
2818 if (unlikely(!mm)) { 2853 if (likely(!mm)) {
2819 next->active_mm = oldmm; 2854 next->active_mm = oldmm;
2820 atomic_inc(&oldmm->mm_count); 2855 atomic_inc(&oldmm->mm_count);
2821 enter_lazy_tlb(oldmm, next); 2856 enter_lazy_tlb(oldmm, next);
2822 } else 2857 } else
2823 switch_mm(oldmm, mm, next); 2858 switch_mm(oldmm, mm, next);
2824 2859
2825 if (unlikely(!prev->mm)) { 2860 if (likely(!prev->mm)) {
2826 prev->active_mm = NULL; 2861 prev->active_mm = NULL;
2827 rq->prev_mm = oldmm; 2862 rq->prev_mm = oldmm;
2828 } 2863 }
@@ -2985,15 +3020,6 @@ static void calc_load_account_active(struct rq *this_rq)
2985} 3020}
2986 3021
2987/* 3022/*
2988 * Externally visible per-cpu scheduler statistics:
2989 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2990 */
2991u64 cpu_nr_migrations(int cpu)
2992{
2993 return cpu_rq(cpu)->nr_migrations_in;
2994}
2995
2996/*
2997 * Update rq->cpu_load[] statistics. This function is usually called every 3023 * Update rq->cpu_load[] statistics. This function is usually called every
2998 * scheduler tick (TICK_NSEC). 3024 * scheduler tick (TICK_NSEC).
2999 */ 3025 */
@@ -3042,15 +3068,15 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3042{ 3068{
3043 BUG_ON(!irqs_disabled()); 3069 BUG_ON(!irqs_disabled());
3044 if (rq1 == rq2) { 3070 if (rq1 == rq2) {
3045 spin_lock(&rq1->lock); 3071 raw_spin_lock(&rq1->lock);
3046 __acquire(rq2->lock); /* Fake it out ;) */ 3072 __acquire(rq2->lock); /* Fake it out ;) */
3047 } else { 3073 } else {
3048 if (rq1 < rq2) { 3074 if (rq1 < rq2) {
3049 spin_lock(&rq1->lock); 3075 raw_spin_lock(&rq1->lock);
3050 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 3076 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3051 } else { 3077 } else {
3052 spin_lock(&rq2->lock); 3078 raw_spin_lock(&rq2->lock);
3053 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 3079 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3054 } 3080 }
3055 } 3081 }
3056 update_rq_clock(rq1); 3082 update_rq_clock(rq1);
@@ -3067,9 +3093,9 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3067 __releases(rq1->lock) 3093 __releases(rq1->lock)
3068 __releases(rq2->lock) 3094 __releases(rq2->lock)
3069{ 3095{
3070 spin_unlock(&rq1->lock); 3096 raw_spin_unlock(&rq1->lock);
3071 if (rq1 != rq2) 3097 if (rq1 != rq2)
3072 spin_unlock(&rq2->lock); 3098 raw_spin_unlock(&rq2->lock);
3073 else 3099 else
3074 __release(rq2->lock); 3100 __release(rq2->lock);
3075} 3101}
@@ -3115,7 +3141,7 @@ out:
3115void sched_exec(void) 3141void sched_exec(void)
3116{ 3142{
3117 int new_cpu, this_cpu = get_cpu(); 3143 int new_cpu, this_cpu = get_cpu();
3118 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); 3144 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3119 put_cpu(); 3145 put_cpu();
3120 if (new_cpu != this_cpu) 3146 if (new_cpu != this_cpu)
3121 sched_migrate_task(current, new_cpu); 3147 sched_migrate_task(current, new_cpu);
@@ -3131,10 +3157,6 @@ static void pull_task(struct rq *src_rq, struct task_struct *p,
3131 deactivate_task(src_rq, p, 0); 3157 deactivate_task(src_rq, p, 0);
3132 set_task_cpu(p, this_cpu); 3158 set_task_cpu(p, this_cpu);
3133 activate_task(this_rq, p, 0); 3159 activate_task(this_rq, p, 0);
3134 /*
3135 * Note that idle threads have a prio of MAX_PRIO, for this test
3136 * to be always true for them.
3137 */
3138 check_preempt_curr(this_rq, p, 0); 3160 check_preempt_curr(this_rq, p, 0);
3139} 3161}
3140 3162
@@ -4093,7 +4115,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
4093 unsigned long flags; 4115 unsigned long flags;
4094 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4116 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4095 4117
4096 cpumask_setall(cpus); 4118 cpumask_copy(cpus, cpu_active_mask);
4097 4119
4098 /* 4120 /*
4099 * When power savings policy is enabled for the parent domain, idle 4121 * When power savings policy is enabled for the parent domain, idle
@@ -4166,14 +4188,15 @@ redo:
4166 4188
4167 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { 4189 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4168 4190
4169 spin_lock_irqsave(&busiest->lock, flags); 4191 raw_spin_lock_irqsave(&busiest->lock, flags);
4170 4192
4171 /* don't kick the migration_thread, if the curr 4193 /* don't kick the migration_thread, if the curr
4172 * task on busiest cpu can't be moved to this_cpu 4194 * task on busiest cpu can't be moved to this_cpu
4173 */ 4195 */
4174 if (!cpumask_test_cpu(this_cpu, 4196 if (!cpumask_test_cpu(this_cpu,
4175 &busiest->curr->cpus_allowed)) { 4197 &busiest->curr->cpus_allowed)) {
4176 spin_unlock_irqrestore(&busiest->lock, flags); 4198 raw_spin_unlock_irqrestore(&busiest->lock,
4199 flags);
4177 all_pinned = 1; 4200 all_pinned = 1;
4178 goto out_one_pinned; 4201 goto out_one_pinned;
4179 } 4202 }
@@ -4183,7 +4206,7 @@ redo:
4183 busiest->push_cpu = this_cpu; 4206 busiest->push_cpu = this_cpu;
4184 active_balance = 1; 4207 active_balance = 1;
4185 } 4208 }
4186 spin_unlock_irqrestore(&busiest->lock, flags); 4209 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4187 if (active_balance) 4210 if (active_balance)
4188 wake_up_process(busiest->migration_thread); 4211 wake_up_process(busiest->migration_thread);
4189 4212
@@ -4256,7 +4279,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4256 int all_pinned = 0; 4279 int all_pinned = 0;
4257 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4280 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4258 4281
4259 cpumask_setall(cpus); 4282 cpumask_copy(cpus, cpu_active_mask);
4260 4283
4261 /* 4284 /*
4262 * When power savings policy is enabled for the parent domain, idle 4285 * When power savings policy is enabled for the parent domain, idle
@@ -4365,10 +4388,10 @@ redo:
4365 /* 4388 /*
4366 * Should not call ttwu while holding a rq->lock 4389 * Should not call ttwu while holding a rq->lock
4367 */ 4390 */
4368 spin_unlock(&this_rq->lock); 4391 raw_spin_unlock(&this_rq->lock);
4369 if (active_balance) 4392 if (active_balance)
4370 wake_up_process(busiest->migration_thread); 4393 wake_up_process(busiest->migration_thread);
4371 spin_lock(&this_rq->lock); 4394 raw_spin_lock(&this_rq->lock);
4372 4395
4373 } else 4396 } else
4374 sd->nr_balance_failed = 0; 4397 sd->nr_balance_failed = 0;
@@ -4396,6 +4419,11 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4396 int pulled_task = 0; 4419 int pulled_task = 0;
4397 unsigned long next_balance = jiffies + HZ; 4420 unsigned long next_balance = jiffies + HZ;
4398 4421
4422 this_rq->idle_stamp = this_rq->clock;
4423
4424 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4425 return;
4426
4399 for_each_domain(this_cpu, sd) { 4427 for_each_domain(this_cpu, sd) {
4400 unsigned long interval; 4428 unsigned long interval;
4401 4429
@@ -4410,8 +4438,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
4410 interval = msecs_to_jiffies(sd->balance_interval); 4438 interval = msecs_to_jiffies(sd->balance_interval);
4411 if (time_after(next_balance, sd->last_balance + interval)) 4439 if (time_after(next_balance, sd->last_balance + interval))
4412 next_balance = sd->last_balance + interval; 4440 next_balance = sd->last_balance + interval;
4413 if (pulled_task) 4441 if (pulled_task) {
4442 this_rq->idle_stamp = 0;
4414 break; 4443 break;
4444 }
4415 } 4445 }
4416 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4446 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4417 /* 4447 /*
@@ -4646,7 +4676,7 @@ int select_nohz_load_balancer(int stop_tick)
4646 cpumask_set_cpu(cpu, nohz.cpu_mask); 4676 cpumask_set_cpu(cpu, nohz.cpu_mask);
4647 4677
4648 /* time for ilb owner also to sleep */ 4678 /* time for ilb owner also to sleep */
4649 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { 4679 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4650 if (atomic_read(&nohz.load_balancer) == cpu) 4680 if (atomic_read(&nohz.load_balancer) == cpu)
4651 atomic_set(&nohz.load_balancer, -1); 4681 atomic_set(&nohz.load_balancer, -1);
4652 return 0; 4682 return 0;
@@ -5013,8 +5043,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
5013 p->gtime = cputime_add(p->gtime, cputime); 5043 p->gtime = cputime_add(p->gtime, cputime);
5014 5044
5015 /* Add guest time to cpustat. */ 5045 /* Add guest time to cpustat. */
5016 cpustat->user = cputime64_add(cpustat->user, tmp); 5046 if (TASK_NICE(p) > 0) {
5017 cpustat->guest = cputime64_add(cpustat->guest, tmp); 5047 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5048 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5049 } else {
5050 cpustat->user = cputime64_add(cpustat->user, tmp);
5051 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5052 }
5018} 5053}
5019 5054
5020/* 5055/*
@@ -5129,60 +5164,86 @@ void account_idle_ticks(unsigned long ticks)
5129 * Use precise platform statistics if available: 5164 * Use precise platform statistics if available:
5130 */ 5165 */
5131#ifdef CONFIG_VIRT_CPU_ACCOUNTING 5166#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5132cputime_t task_utime(struct task_struct *p) 5167void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5133{ 5168{
5134 return p->utime; 5169 *ut = p->utime;
5170 *st = p->stime;
5135} 5171}
5136 5172
5137cputime_t task_stime(struct task_struct *p) 5173void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5138{ 5174{
5139 return p->stime; 5175 struct task_cputime cputime;
5176
5177 thread_group_cputime(p, &cputime);
5178
5179 *ut = cputime.utime;
5180 *st = cputime.stime;
5140} 5181}
5141#else 5182#else
5142cputime_t task_utime(struct task_struct *p) 5183
5184#ifndef nsecs_to_cputime
5185# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5186#endif
5187
5188void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5143{ 5189{
5144 clock_t utime = cputime_to_clock_t(p->utime), 5190 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5145 total = utime + cputime_to_clock_t(p->stime);
5146 u64 temp;
5147 5191
5148 /* 5192 /*
5149 * Use CFS's precise accounting: 5193 * Use CFS's precise accounting:
5150 */ 5194 */
5151 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); 5195 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5152 5196
5153 if (total) { 5197 if (total) {
5154 temp *= utime; 5198 u64 temp;
5199
5200 temp = (u64)(rtime * utime);
5155 do_div(temp, total); 5201 do_div(temp, total);
5156 } 5202 utime = (cputime_t)temp;
5157 utime = (clock_t)temp; 5203 } else
5204 utime = rtime;
5205
5206 /*
5207 * Compare with previous values, to keep monotonicity:
5208 */
5209 p->prev_utime = max(p->prev_utime, utime);
5210 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5158 5211
5159 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); 5212 *ut = p->prev_utime;
5160 return p->prev_utime; 5213 *st = p->prev_stime;
5161} 5214}
5162 5215
5163cputime_t task_stime(struct task_struct *p) 5216/*
5217 * Must be called with siglock held.
5218 */
5219void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5164{ 5220{
5165 clock_t stime; 5221 struct signal_struct *sig = p->signal;
5222 struct task_cputime cputime;
5223 cputime_t rtime, utime, total;
5166 5224
5167 /* 5225 thread_group_cputime(p, &cputime);
5168 * Use CFS's precise accounting. (we subtract utime from
5169 * the total, to make sure the total observed by userspace
5170 * grows monotonically - apps rely on that):
5171 */
5172 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5173 cputime_to_clock_t(task_utime(p));
5174 5226
5175 if (stime >= 0) 5227 total = cputime_add(cputime.utime, cputime.stime);
5176 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); 5228 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5177 5229
5178 return p->prev_stime; 5230 if (total) {
5179} 5231 u64 temp;
5180#endif
5181 5232
5182inline cputime_t task_gtime(struct task_struct *p) 5233 temp = (u64)(rtime * cputime.utime);
5183{ 5234 do_div(temp, total);
5184 return p->gtime; 5235 utime = (cputime_t)temp;
5236 } else
5237 utime = rtime;
5238
5239 sig->prev_utime = max(sig->prev_utime, utime);
5240 sig->prev_stime = max(sig->prev_stime,
5241 cputime_sub(rtime, sig->prev_utime));
5242
5243 *ut = sig->prev_utime;
5244 *st = sig->prev_stime;
5185} 5245}
5246#endif
5186 5247
5187/* 5248/*
5188 * This function gets called by the timer code, with HZ frequency. 5249 * This function gets called by the timer code, with HZ frequency.
@@ -5199,11 +5260,11 @@ void scheduler_tick(void)
5199 5260
5200 sched_clock_tick(); 5261 sched_clock_tick();
5201 5262
5202 spin_lock(&rq->lock); 5263 raw_spin_lock(&rq->lock);
5203 update_rq_clock(rq); 5264 update_rq_clock(rq);
5204 update_cpu_load(rq); 5265 update_cpu_load(rq);
5205 curr->sched_class->task_tick(rq, curr, 0); 5266 curr->sched_class->task_tick(rq, curr, 0);
5206 spin_unlock(&rq->lock); 5267 raw_spin_unlock(&rq->lock);
5207 5268
5208 perf_event_task_tick(curr, cpu); 5269 perf_event_task_tick(curr, cpu);
5209 5270
@@ -5317,13 +5378,14 @@ static inline void schedule_debug(struct task_struct *prev)
5317#endif 5378#endif
5318} 5379}
5319 5380
5320static void put_prev_task(struct rq *rq, struct task_struct *p) 5381static void put_prev_task(struct rq *rq, struct task_struct *prev)
5321{ 5382{
5322 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; 5383 if (prev->state == TASK_RUNNING) {
5384 u64 runtime = prev->se.sum_exec_runtime;
5323 5385
5324 update_avg(&p->se.avg_running, runtime); 5386 runtime -= prev->se.prev_sum_exec_runtime;
5387 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5325 5388
5326 if (p->state == TASK_RUNNING) {
5327 /* 5389 /*
5328 * In order to avoid avg_overlap growing stale when we are 5390 * In order to avoid avg_overlap growing stale when we are
5329 * indeed overlapping and hence not getting put to sleep, grow 5391 * indeed overlapping and hence not getting put to sleep, grow
@@ -5333,12 +5395,9 @@ static void put_prev_task(struct rq *rq, struct task_struct *p)
5333 * correlates to the amount of cache footprint a task can 5395 * correlates to the amount of cache footprint a task can
5334 * build up. 5396 * build up.
5335 */ 5397 */
5336 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); 5398 update_avg(&prev->se.avg_overlap, runtime);
5337 update_avg(&p->se.avg_overlap, runtime);
5338 } else {
5339 update_avg(&p->se.avg_running, 0);
5340 } 5399 }
5341 p->sched_class->put_prev_task(rq, p); 5400 prev->sched_class->put_prev_task(rq, prev);
5342} 5401}
5343 5402
5344/* 5403/*
@@ -5399,7 +5458,7 @@ need_resched_nonpreemptible:
5399 if (sched_feat(HRTICK)) 5458 if (sched_feat(HRTICK))
5400 hrtick_clear(rq); 5459 hrtick_clear(rq);
5401 5460
5402 spin_lock_irq(&rq->lock); 5461 raw_spin_lock_irq(&rq->lock);
5403 update_rq_clock(rq); 5462 update_rq_clock(rq);
5404 clear_tsk_need_resched(prev); 5463 clear_tsk_need_resched(prev);
5405 5464
@@ -5435,7 +5494,7 @@ need_resched_nonpreemptible:
5435 cpu = smp_processor_id(); 5494 cpu = smp_processor_id();
5436 rq = cpu_rq(cpu); 5495 rq = cpu_rq(cpu);
5437 } else 5496 } else
5438 spin_unlock_irq(&rq->lock); 5497 raw_spin_unlock_irq(&rq->lock);
5439 5498
5440 post_schedule(rq); 5499 post_schedule(rq);
5441 5500
@@ -5448,7 +5507,7 @@ need_resched_nonpreemptible:
5448} 5507}
5449EXPORT_SYMBOL(schedule); 5508EXPORT_SYMBOL(schedule);
5450 5509
5451#ifdef CONFIG_SMP 5510#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5452/* 5511/*
5453 * Look out! "owner" is an entirely speculative pointer 5512 * Look out! "owner" is an entirely speculative pointer
5454 * access and not reliable. 5513 * access and not reliable.
@@ -6142,22 +6201,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6142 BUG_ON(p->se.on_rq); 6201 BUG_ON(p->se.on_rq);
6143 6202
6144 p->policy = policy; 6203 p->policy = policy;
6145 switch (p->policy) {
6146 case SCHED_NORMAL:
6147 case SCHED_BATCH:
6148 case SCHED_IDLE:
6149 p->sched_class = &fair_sched_class;
6150 break;
6151 case SCHED_FIFO:
6152 case SCHED_RR:
6153 p->sched_class = &rt_sched_class;
6154 break;
6155 }
6156
6157 p->rt_priority = prio; 6204 p->rt_priority = prio;
6158 p->normal_prio = normal_prio(p); 6205 p->normal_prio = normal_prio(p);
6159 /* we are holding p->pi_lock already */ 6206 /* we are holding p->pi_lock already */
6160 p->prio = rt_mutex_getprio(p); 6207 p->prio = rt_mutex_getprio(p);
6208 if (rt_prio(p->prio))
6209 p->sched_class = &rt_sched_class;
6210 else
6211 p->sched_class = &fair_sched_class;
6161 set_load_weight(p); 6212 set_load_weight(p);
6162} 6213}
6163 6214
@@ -6272,7 +6323,7 @@ recheck:
6272 * make sure no PI-waiters arrive (or leave) while we are 6323 * make sure no PI-waiters arrive (or leave) while we are
6273 * changing the priority of the task: 6324 * changing the priority of the task:
6274 */ 6325 */
6275 spin_lock_irqsave(&p->pi_lock, flags); 6326 raw_spin_lock_irqsave(&p->pi_lock, flags);
6276 /* 6327 /*
6277 * To be able to change p->policy safely, the apropriate 6328 * To be able to change p->policy safely, the apropriate
6278 * runqueue lock must be held. 6329 * runqueue lock must be held.
@@ -6282,7 +6333,7 @@ recheck:
6282 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6283 policy = oldpolicy = -1; 6334 policy = oldpolicy = -1;
6284 __task_rq_unlock(rq); 6335 __task_rq_unlock(rq);
6285 spin_unlock_irqrestore(&p->pi_lock, flags); 6336 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6286 goto recheck; 6337 goto recheck;
6287 } 6338 }
6288 update_rq_clock(rq); 6339 update_rq_clock(rq);
@@ -6306,7 +6357,7 @@ recheck:
6306 check_class_changed(rq, p, prev_class, oldprio, running); 6357 check_class_changed(rq, p, prev_class, oldprio, running);
6307 } 6358 }
6308 __task_rq_unlock(rq); 6359 __task_rq_unlock(rq);
6309 spin_unlock_irqrestore(&p->pi_lock, flags); 6360 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6310 6361
6311 rt_mutex_adjust_pi(p); 6362 rt_mutex_adjust_pi(p);
6312 6363
@@ -6560,6 +6611,8 @@ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6560long sched_getaffinity(pid_t pid, struct cpumask *mask) 6611long sched_getaffinity(pid_t pid, struct cpumask *mask)
6561{ 6612{
6562 struct task_struct *p; 6613 struct task_struct *p;
6614 unsigned long flags;
6615 struct rq *rq;
6563 int retval; 6616 int retval;
6564 6617
6565 get_online_cpus(); 6618 get_online_cpus();
@@ -6574,7 +6627,9 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask)
6574 if (retval) 6627 if (retval)
6575 goto out_unlock; 6628 goto out_unlock;
6576 6629
6630 rq = task_rq_lock(p, &flags);
6577 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 6631 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6632 task_rq_unlock(rq, &flags);
6578 6633
6579out_unlock: 6634out_unlock:
6580 read_unlock(&tasklist_lock); 6635 read_unlock(&tasklist_lock);
@@ -6632,7 +6687,7 @@ SYSCALL_DEFINE0(sched_yield)
6632 */ 6687 */
6633 __release(rq->lock); 6688 __release(rq->lock);
6634 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 6689 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6635 _raw_spin_unlock(&rq->lock); 6690 do_raw_spin_unlock(&rq->lock);
6636 preempt_enable_no_resched(); 6691 preempt_enable_no_resched();
6637 6692
6638 schedule(); 6693 schedule();
@@ -6812,6 +6867,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6812{ 6867{
6813 struct task_struct *p; 6868 struct task_struct *p;
6814 unsigned int time_slice; 6869 unsigned int time_slice;
6870 unsigned long flags;
6871 struct rq *rq;
6815 int retval; 6872 int retval;
6816 struct timespec t; 6873 struct timespec t;
6817 6874
@@ -6828,7 +6885,9 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6828 if (retval) 6885 if (retval)
6829 goto out_unlock; 6886 goto out_unlock;
6830 6887
6831 time_slice = p->sched_class->get_rr_interval(p); 6888 rq = task_rq_lock(p, &flags);
6889 time_slice = p->sched_class->get_rr_interval(rq, p);
6890 task_rq_unlock(rq, &flags);
6832 6891
6833 read_unlock(&tasklist_lock); 6892 read_unlock(&tasklist_lock);
6834 jiffies_to_timespec(time_slice, &t); 6893 jiffies_to_timespec(time_slice, &t);
@@ -6902,7 +6961,7 @@ void show_state_filter(unsigned long state_filter)
6902 /* 6961 /*
6903 * Only show locks if all tasks are dumped: 6962 * Only show locks if all tasks are dumped:
6904 */ 6963 */
6905 if (state_filter == -1) 6964 if (!state_filter)
6906 debug_show_all_locks(); 6965 debug_show_all_locks();
6907} 6966}
6908 6967
@@ -6924,12 +6983,11 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
6924 struct rq *rq = cpu_rq(cpu); 6983 struct rq *rq = cpu_rq(cpu);
6925 unsigned long flags; 6984 unsigned long flags;
6926 6985
6927 spin_lock_irqsave(&rq->lock, flags); 6986 raw_spin_lock_irqsave(&rq->lock, flags);
6928 6987
6929 __sched_fork(idle); 6988 __sched_fork(idle);
6930 idle->se.exec_start = sched_clock(); 6989 idle->se.exec_start = sched_clock();
6931 6990
6932 idle->prio = idle->normal_prio = MAX_PRIO;
6933 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); 6991 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6934 __set_task_cpu(idle, cpu); 6992 __set_task_cpu(idle, cpu);
6935 6993
@@ -6937,7 +6995,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
6937#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 6995#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6938 idle->oncpu = 1; 6996 idle->oncpu = 1;
6939#endif 6997#endif
6940 spin_unlock_irqrestore(&rq->lock, flags); 6998 raw_spin_unlock_irqrestore(&rq->lock, flags);
6941 6999
6942 /* Set the preempt count _outside_ the spinlocks! */ 7000 /* Set the preempt count _outside_ the spinlocks! */
6943#if defined(CONFIG_PREEMPT) 7001#if defined(CONFIG_PREEMPT)
@@ -6970,22 +7028,43 @@ cpumask_var_t nohz_cpu_mask;
6970 * 7028 *
6971 * This idea comes from the SD scheduler of Con Kolivas: 7029 * This idea comes from the SD scheduler of Con Kolivas:
6972 */ 7030 */
6973static inline void sched_init_granularity(void) 7031static int get_update_sysctl_factor(void)
6974{ 7032{
6975 unsigned int factor = 1 + ilog2(num_online_cpus()); 7033 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6976 const unsigned long limit = 200000000; 7034 unsigned int factor;
7035
7036 switch (sysctl_sched_tunable_scaling) {
7037 case SCHED_TUNABLESCALING_NONE:
7038 factor = 1;
7039 break;
7040 case SCHED_TUNABLESCALING_LINEAR:
7041 factor = cpus;
7042 break;
7043 case SCHED_TUNABLESCALING_LOG:
7044 default:
7045 factor = 1 + ilog2(cpus);
7046 break;
7047 }
6977 7048
6978 sysctl_sched_min_granularity *= factor; 7049 return factor;
6979 if (sysctl_sched_min_granularity > limit) 7050}
6980 sysctl_sched_min_granularity = limit;
6981 7051
6982 sysctl_sched_latency *= factor; 7052static void update_sysctl(void)
6983 if (sysctl_sched_latency > limit) 7053{
6984 sysctl_sched_latency = limit; 7054 unsigned int factor = get_update_sysctl_factor();
6985 7055
6986 sysctl_sched_wakeup_granularity *= factor; 7056#define SET_SYSCTL(name) \
7057 (sysctl_##name = (factor) * normalized_sysctl_##name)
7058 SET_SYSCTL(sched_min_granularity);
7059 SET_SYSCTL(sched_latency);
7060 SET_SYSCTL(sched_wakeup_granularity);
7061 SET_SYSCTL(sched_shares_ratelimit);
7062#undef SET_SYSCTL
7063}
6987 7064
6988 sysctl_sched_shares_ratelimit *= factor; 7065static inline void sched_init_granularity(void)
7066{
7067 update_sysctl();
6989} 7068}
6990 7069
6991#ifdef CONFIG_SMP 7070#ifdef CONFIG_SMP
@@ -7022,7 +7101,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7022 int ret = 0; 7101 int ret = 0;
7023 7102
7024 rq = task_rq_lock(p, &flags); 7103 rq = task_rq_lock(p, &flags);
7025 if (!cpumask_intersects(new_mask, cpu_online_mask)) { 7104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7026 ret = -EINVAL; 7105 ret = -EINVAL;
7027 goto out; 7106 goto out;
7028 } 7107 }
@@ -7044,7 +7123,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7044 if (cpumask_test_cpu(task_cpu(p), new_mask)) 7123 if (cpumask_test_cpu(task_cpu(p), new_mask))
7045 goto out; 7124 goto out;
7046 7125
7047 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { 7126 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7048 /* Need help from migration thread: drop lock and wait. */ 7127 /* Need help from migration thread: drop lock and wait. */
7049 struct task_struct *mt = rq->migration_thread; 7128 struct task_struct *mt = rq->migration_thread;
7050 7129
@@ -7133,10 +7212,10 @@ static int migration_thread(void *data)
7133 struct migration_req *req; 7212 struct migration_req *req;
7134 struct list_head *head; 7213 struct list_head *head;
7135 7214
7136 spin_lock_irq(&rq->lock); 7215 raw_spin_lock_irq(&rq->lock);
7137 7216
7138 if (cpu_is_offline(cpu)) { 7217 if (cpu_is_offline(cpu)) {
7139 spin_unlock_irq(&rq->lock); 7218 raw_spin_unlock_irq(&rq->lock);
7140 break; 7219 break;
7141 } 7220 }
7142 7221
@@ -7148,7 +7227,7 @@ static int migration_thread(void *data)
7148 head = &rq->migration_queue; 7227 head = &rq->migration_queue;
7149 7228
7150 if (list_empty(head)) { 7229 if (list_empty(head)) {
7151 spin_unlock_irq(&rq->lock); 7230 raw_spin_unlock_irq(&rq->lock);
7152 schedule(); 7231 schedule();
7153 set_current_state(TASK_INTERRUPTIBLE); 7232 set_current_state(TASK_INTERRUPTIBLE);
7154 continue; 7233 continue;
@@ -7157,14 +7236,14 @@ static int migration_thread(void *data)
7157 list_del_init(head->next); 7236 list_del_init(head->next);
7158 7237
7159 if (req->task != NULL) { 7238 if (req->task != NULL) {
7160 spin_unlock(&rq->lock); 7239 raw_spin_unlock(&rq->lock);
7161 __migrate_task(req->task, cpu, req->dest_cpu); 7240 __migrate_task(req->task, cpu, req->dest_cpu);
7162 } else if (likely(cpu == (badcpu = smp_processor_id()))) { 7241 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7163 req->dest_cpu = RCU_MIGRATION_GOT_QS; 7242 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7164 spin_unlock(&rq->lock); 7243 raw_spin_unlock(&rq->lock);
7165 } else { 7244 } else {
7166 req->dest_cpu = RCU_MIGRATION_MUST_SYNC; 7245 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7167 spin_unlock(&rq->lock); 7246 raw_spin_unlock(&rq->lock);
7168 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); 7247 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7169 } 7248 }
7170 local_irq_enable(); 7249 local_irq_enable();
@@ -7198,19 +7277,19 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7198 7277
7199again: 7278again:
7200 /* Look for allowed, online CPU in same node. */ 7279 /* Look for allowed, online CPU in same node. */
7201 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) 7280 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7202 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 7281 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7203 goto move; 7282 goto move;
7204 7283
7205 /* Any allowed, online CPU? */ 7284 /* Any allowed, online CPU? */
7206 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); 7285 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7207 if (dest_cpu < nr_cpu_ids) 7286 if (dest_cpu < nr_cpu_ids)
7208 goto move; 7287 goto move;
7209 7288
7210 /* No more Mr. Nice Guy. */ 7289 /* No more Mr. Nice Guy. */
7211 if (dest_cpu >= nr_cpu_ids) { 7290 if (dest_cpu >= nr_cpu_ids) {
7212 cpuset_cpus_allowed_locked(p, &p->cpus_allowed); 7291 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7213 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); 7292 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7214 7293
7215 /* 7294 /*
7216 * Don't tell them about moving exiting tasks or 7295 * Don't tell them about moving exiting tasks or
@@ -7239,7 +7318,7 @@ move:
7239 */ 7318 */
7240static void migrate_nr_uninterruptible(struct rq *rq_src) 7319static void migrate_nr_uninterruptible(struct rq *rq_src)
7241{ 7320{
7242 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); 7321 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7243 unsigned long flags; 7322 unsigned long flags;
7244 7323
7245 local_irq_save(flags); 7324 local_irq_save(flags);
@@ -7287,14 +7366,14 @@ void sched_idle_next(void)
7287 * Strictly not necessary since rest of the CPUs are stopped by now 7366 * Strictly not necessary since rest of the CPUs are stopped by now
7288 * and interrupts disabled on the current cpu. 7367 * and interrupts disabled on the current cpu.
7289 */ 7368 */
7290 spin_lock_irqsave(&rq->lock, flags); 7369 raw_spin_lock_irqsave(&rq->lock, flags);
7291 7370
7292 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 7371 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7293 7372
7294 update_rq_clock(rq); 7373 update_rq_clock(rq);
7295 activate_task(rq, p, 0); 7374 activate_task(rq, p, 0);
7296 7375
7297 spin_unlock_irqrestore(&rq->lock, flags); 7376 raw_spin_unlock_irqrestore(&rq->lock, flags);
7298} 7377}
7299 7378
7300/* 7379/*
@@ -7330,9 +7409,9 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7330 * that's OK. No task can be added to this CPU, so iteration is 7409 * that's OK. No task can be added to this CPU, so iteration is
7331 * fine. 7410 * fine.
7332 */ 7411 */
7333 spin_unlock_irq(&rq->lock); 7412 raw_spin_unlock_irq(&rq->lock);
7334 move_task_off_dead_cpu(dead_cpu, p); 7413 move_task_off_dead_cpu(dead_cpu, p);
7335 spin_lock_irq(&rq->lock); 7414 raw_spin_lock_irq(&rq->lock);
7336 7415
7337 put_task_struct(p); 7416 put_task_struct(p);
7338} 7417}
@@ -7373,17 +7452,16 @@ static struct ctl_table sd_ctl_dir[] = {
7373 .procname = "sched_domain", 7452 .procname = "sched_domain",
7374 .mode = 0555, 7453 .mode = 0555,
7375 }, 7454 },
7376 {0, }, 7455 {}
7377}; 7456};
7378 7457
7379static struct ctl_table sd_ctl_root[] = { 7458static struct ctl_table sd_ctl_root[] = {
7380 { 7459 {
7381 .ctl_name = CTL_KERN,
7382 .procname = "kernel", 7460 .procname = "kernel",
7383 .mode = 0555, 7461 .mode = 0555,
7384 .child = sd_ctl_dir, 7462 .child = sd_ctl_dir,
7385 }, 7463 },
7386 {0, }, 7464 {}
7387}; 7465};
7388 7466
7389static struct ctl_table *sd_alloc_ctl_entry(int n) 7467static struct ctl_table *sd_alloc_ctl_entry(int n)
@@ -7493,7 +7571,7 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7493static struct ctl_table_header *sd_sysctl_header; 7571static struct ctl_table_header *sd_sysctl_header;
7494static void register_sched_domain_sysctl(void) 7572static void register_sched_domain_sysctl(void)
7495{ 7573{
7496 int i, cpu_num = num_online_cpus(); 7574 int i, cpu_num = num_possible_cpus();
7497 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 7575 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7498 char buf[32]; 7576 char buf[32];
7499 7577
@@ -7503,7 +7581,7 @@ static void register_sched_domain_sysctl(void)
7503 if (entry == NULL) 7581 if (entry == NULL)
7504 return; 7582 return;
7505 7583
7506 for_each_online_cpu(i) { 7584 for_each_possible_cpu(i) {
7507 snprintf(buf, 32, "cpu%d", i); 7585 snprintf(buf, 32, "cpu%d", i);
7508 entry->procname = kstrdup(buf, GFP_KERNEL); 7586 entry->procname = kstrdup(buf, GFP_KERNEL);
7509 entry->mode = 0555; 7587 entry->mode = 0555;
@@ -7599,13 +7677,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7599 7677
7600 /* Update our root-domain */ 7678 /* Update our root-domain */
7601 rq = cpu_rq(cpu); 7679 rq = cpu_rq(cpu);
7602 spin_lock_irqsave(&rq->lock, flags); 7680 raw_spin_lock_irqsave(&rq->lock, flags);
7603 if (rq->rd) { 7681 if (rq->rd) {
7604 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7682 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7605 7683
7606 set_rq_online(rq); 7684 set_rq_online(rq);
7607 } 7685 }
7608 spin_unlock_irqrestore(&rq->lock, flags); 7686 raw_spin_unlock_irqrestore(&rq->lock, flags);
7609 break; 7687 break;
7610 7688
7611#ifdef CONFIG_HOTPLUG_CPU 7689#ifdef CONFIG_HOTPLUG_CPU
@@ -7630,14 +7708,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7630 put_task_struct(rq->migration_thread); 7708 put_task_struct(rq->migration_thread);
7631 rq->migration_thread = NULL; 7709 rq->migration_thread = NULL;
7632 /* Idle task back to normal (off runqueue, low prio) */ 7710 /* Idle task back to normal (off runqueue, low prio) */
7633 spin_lock_irq(&rq->lock); 7711 raw_spin_lock_irq(&rq->lock);
7634 update_rq_clock(rq); 7712 update_rq_clock(rq);
7635 deactivate_task(rq, rq->idle, 0); 7713 deactivate_task(rq, rq->idle, 0);
7636 rq->idle->static_prio = MAX_PRIO;
7637 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); 7714 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7638 rq->idle->sched_class = &idle_sched_class; 7715 rq->idle->sched_class = &idle_sched_class;
7639 migrate_dead_tasks(cpu); 7716 migrate_dead_tasks(cpu);
7640 spin_unlock_irq(&rq->lock); 7717 raw_spin_unlock_irq(&rq->lock);
7641 cpuset_unlock(); 7718 cpuset_unlock();
7642 migrate_nr_uninterruptible(rq); 7719 migrate_nr_uninterruptible(rq);
7643 BUG_ON(rq->nr_running != 0); 7720 BUG_ON(rq->nr_running != 0);
@@ -7647,30 +7724,30 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7647 * they didn't take sched_hotcpu_mutex. Just wake up 7724 * they didn't take sched_hotcpu_mutex. Just wake up
7648 * the requestors. 7725 * the requestors.
7649 */ 7726 */
7650 spin_lock_irq(&rq->lock); 7727 raw_spin_lock_irq(&rq->lock);
7651 while (!list_empty(&rq->migration_queue)) { 7728 while (!list_empty(&rq->migration_queue)) {
7652 struct migration_req *req; 7729 struct migration_req *req;
7653 7730
7654 req = list_entry(rq->migration_queue.next, 7731 req = list_entry(rq->migration_queue.next,
7655 struct migration_req, list); 7732 struct migration_req, list);
7656 list_del_init(&req->list); 7733 list_del_init(&req->list);
7657 spin_unlock_irq(&rq->lock); 7734 raw_spin_unlock_irq(&rq->lock);
7658 complete(&req->done); 7735 complete(&req->done);
7659 spin_lock_irq(&rq->lock); 7736 raw_spin_lock_irq(&rq->lock);
7660 } 7737 }
7661 spin_unlock_irq(&rq->lock); 7738 raw_spin_unlock_irq(&rq->lock);
7662 break; 7739 break;
7663 7740
7664 case CPU_DYING: 7741 case CPU_DYING:
7665 case CPU_DYING_FROZEN: 7742 case CPU_DYING_FROZEN:
7666 /* Update our root-domain */ 7743 /* Update our root-domain */
7667 rq = cpu_rq(cpu); 7744 rq = cpu_rq(cpu);
7668 spin_lock_irqsave(&rq->lock, flags); 7745 raw_spin_lock_irqsave(&rq->lock, flags);
7669 if (rq->rd) { 7746 if (rq->rd) {
7670 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7747 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7671 set_rq_offline(rq); 7748 set_rq_offline(rq);
7672 } 7749 }
7673 spin_unlock_irqrestore(&rq->lock, flags); 7750 raw_spin_unlock_irqrestore(&rq->lock, flags);
7674 break; 7751 break;
7675#endif 7752#endif
7676 } 7753 }
@@ -7707,6 +7784,16 @@ early_initcall(migration_init);
7707 7784
7708#ifdef CONFIG_SCHED_DEBUG 7785#ifdef CONFIG_SCHED_DEBUG
7709 7786
7787static __read_mostly int sched_domain_debug_enabled;
7788
7789static int __init sched_domain_debug_setup(char *str)
7790{
7791 sched_domain_debug_enabled = 1;
7792
7793 return 0;
7794}
7795early_param("sched_debug", sched_domain_debug_setup);
7796
7710static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 7797static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7711 struct cpumask *groupmask) 7798 struct cpumask *groupmask)
7712{ 7799{
@@ -7793,6 +7880,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
7793 cpumask_var_t groupmask; 7880 cpumask_var_t groupmask;
7794 int level = 0; 7881 int level = 0;
7795 7882
7883 if (!sched_domain_debug_enabled)
7884 return;
7885
7796 if (!sd) { 7886 if (!sd) {
7797 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 7887 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7798 return; 7888 return;
@@ -7872,6 +7962,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7872 7962
7873static void free_rootdomain(struct root_domain *rd) 7963static void free_rootdomain(struct root_domain *rd)
7874{ 7964{
7965 synchronize_sched();
7966
7875 cpupri_cleanup(&rd->cpupri); 7967 cpupri_cleanup(&rd->cpupri);
7876 7968
7877 free_cpumask_var(rd->rto_mask); 7969 free_cpumask_var(rd->rto_mask);
@@ -7885,7 +7977,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7885 struct root_domain *old_rd = NULL; 7977 struct root_domain *old_rd = NULL;
7886 unsigned long flags; 7978 unsigned long flags;
7887 7979
7888 spin_lock_irqsave(&rq->lock, flags); 7980 raw_spin_lock_irqsave(&rq->lock, flags);
7889 7981
7890 if (rq->rd) { 7982 if (rq->rd) {
7891 old_rd = rq->rd; 7983 old_rd = rq->rd;
@@ -7911,7 +8003,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7911 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 8003 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7912 set_rq_online(rq); 8004 set_rq_online(rq);
7913 8005
7914 spin_unlock_irqrestore(&rq->lock, flags); 8006 raw_spin_unlock_irqrestore(&rq->lock, flags);
7915 8007
7916 if (old_rd) 8008 if (old_rd)
7917 free_rootdomain(old_rd); 8009 free_rootdomain(old_rd);
@@ -8012,6 +8104,7 @@ static cpumask_var_t cpu_isolated_map;
8012/* Setup the mask of cpus configured for isolated domains */ 8104/* Setup the mask of cpus configured for isolated domains */
8013static int __init isolated_cpu_setup(char *str) 8105static int __init isolated_cpu_setup(char *str)
8014{ 8106{
8107 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8015 cpulist_parse(str, cpu_isolated_map); 8108 cpulist_parse(str, cpu_isolated_map);
8016 return 1; 8109 return 1;
8017} 8110}
@@ -8196,14 +8289,14 @@ enum s_alloc {
8196 */ 8289 */
8197#ifdef CONFIG_SCHED_SMT 8290#ifdef CONFIG_SCHED_SMT
8198static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); 8291static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8199static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); 8292static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8200 8293
8201static int 8294static int
8202cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, 8295cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8203 struct sched_group **sg, struct cpumask *unused) 8296 struct sched_group **sg, struct cpumask *unused)
8204{ 8297{
8205 if (sg) 8298 if (sg)
8206 *sg = &per_cpu(sched_group_cpus, cpu).sg; 8299 *sg = &per_cpu(sched_groups, cpu).sg;
8207 return cpu; 8300 return cpu;
8208} 8301}
8209#endif /* CONFIG_SCHED_SMT */ 8302#endif /* CONFIG_SCHED_SMT */
@@ -8848,7 +8941,7 @@ static int build_sched_domains(const struct cpumask *cpu_map)
8848 return __build_sched_domains(cpu_map, NULL); 8941 return __build_sched_domains(cpu_map, NULL);
8849} 8942}
8850 8943
8851static struct cpumask *doms_cur; /* current sched domains */ 8944static cpumask_var_t *doms_cur; /* current sched domains */
8852static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 8945static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8853static struct sched_domain_attr *dattr_cur; 8946static struct sched_domain_attr *dattr_cur;
8854 /* attribues of custom domains in 'doms_cur' */ 8947 /* attribues of custom domains in 'doms_cur' */
@@ -8870,6 +8963,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void)
8870 return 0; 8963 return 0;
8871} 8964}
8872 8965
8966cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8967{
8968 int i;
8969 cpumask_var_t *doms;
8970
8971 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8972 if (!doms)
8973 return NULL;
8974 for (i = 0; i < ndoms; i++) {
8975 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8976 free_sched_domains(doms, i);
8977 return NULL;
8978 }
8979 }
8980 return doms;
8981}
8982
8983void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8984{
8985 unsigned int i;
8986 for (i = 0; i < ndoms; i++)
8987 free_cpumask_var(doms[i]);
8988 kfree(doms);
8989}
8990
8873/* 8991/*
8874 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 8992 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8875 * For now this just excludes isolated cpus, but could be used to 8993 * For now this just excludes isolated cpus, but could be used to
@@ -8881,12 +8999,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map)
8881 8999
8882 arch_update_cpu_topology(); 9000 arch_update_cpu_topology();
8883 ndoms_cur = 1; 9001 ndoms_cur = 1;
8884 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); 9002 doms_cur = alloc_sched_domains(ndoms_cur);
8885 if (!doms_cur) 9003 if (!doms_cur)
8886 doms_cur = fallback_doms; 9004 doms_cur = &fallback_doms;
8887 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); 9005 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8888 dattr_cur = NULL; 9006 dattr_cur = NULL;
8889 err = build_sched_domains(doms_cur); 9007 err = build_sched_domains(doms_cur[0]);
8890 register_sched_domain_sysctl(); 9008 register_sched_domain_sysctl();
8891 9009
8892 return err; 9010 return err;
@@ -8936,19 +9054,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8936 * doms_new[] to the current sched domain partitioning, doms_cur[]. 9054 * doms_new[] to the current sched domain partitioning, doms_cur[].
8937 * It destroys each deleted domain and builds each new domain. 9055 * It destroys each deleted domain and builds each new domain.
8938 * 9056 *
8939 * 'doms_new' is an array of cpumask's of length 'ndoms_new'. 9057 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8940 * The masks don't intersect (don't overlap.) We should setup one 9058 * The masks don't intersect (don't overlap.) We should setup one
8941 * sched domain for each mask. CPUs not in any of the cpumasks will 9059 * sched domain for each mask. CPUs not in any of the cpumasks will
8942 * not be load balanced. If the same cpumask appears both in the 9060 * not be load balanced. If the same cpumask appears both in the
8943 * current 'doms_cur' domains and in the new 'doms_new', we can leave 9061 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8944 * it as it is. 9062 * it as it is.
8945 * 9063 *
8946 * The passed in 'doms_new' should be kmalloc'd. This routine takes 9064 * The passed in 'doms_new' should be allocated using
8947 * ownership of it and will kfree it when done with it. If the caller 9065 * alloc_sched_domains. This routine takes ownership of it and will
8948 * failed the kmalloc call, then it can pass in doms_new == NULL && 9066 * free_sched_domains it when done with it. If the caller failed the
8949 * ndoms_new == 1, and partition_sched_domains() will fallback to 9067 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8950 * the single partition 'fallback_doms', it also forces the domains 9068 * and partition_sched_domains() will fallback to the single partition
8951 * to be rebuilt. 9069 * 'fallback_doms', it also forces the domains to be rebuilt.
8952 * 9070 *
8953 * If doms_new == NULL it will be replaced with cpu_online_mask. 9071 * If doms_new == NULL it will be replaced with cpu_online_mask.
8954 * ndoms_new == 0 is a special case for destroying existing domains, 9072 * ndoms_new == 0 is a special case for destroying existing domains,
@@ -8956,8 +9074,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8956 * 9074 *
8957 * Call with hotplug lock held 9075 * Call with hotplug lock held
8958 */ 9076 */
8959/* FIXME: Change to struct cpumask *doms_new[] */ 9077void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
8960void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8961 struct sched_domain_attr *dattr_new) 9078 struct sched_domain_attr *dattr_new)
8962{ 9079{
8963 int i, j, n; 9080 int i, j, n;
@@ -8976,40 +9093,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8976 /* Destroy deleted domains */ 9093 /* Destroy deleted domains */
8977 for (i = 0; i < ndoms_cur; i++) { 9094 for (i = 0; i < ndoms_cur; i++) {
8978 for (j = 0; j < n && !new_topology; j++) { 9095 for (j = 0; j < n && !new_topology; j++) {
8979 if (cpumask_equal(&doms_cur[i], &doms_new[j]) 9096 if (cpumask_equal(doms_cur[i], doms_new[j])
8980 && dattrs_equal(dattr_cur, i, dattr_new, j)) 9097 && dattrs_equal(dattr_cur, i, dattr_new, j))
8981 goto match1; 9098 goto match1;
8982 } 9099 }
8983 /* no match - a current sched domain not in new doms_new[] */ 9100 /* no match - a current sched domain not in new doms_new[] */
8984 detach_destroy_domains(doms_cur + i); 9101 detach_destroy_domains(doms_cur[i]);
8985match1: 9102match1:
8986 ; 9103 ;
8987 } 9104 }
8988 9105
8989 if (doms_new == NULL) { 9106 if (doms_new == NULL) {
8990 ndoms_cur = 0; 9107 ndoms_cur = 0;
8991 doms_new = fallback_doms; 9108 doms_new = &fallback_doms;
8992 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); 9109 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
8993 WARN_ON_ONCE(dattr_new); 9110 WARN_ON_ONCE(dattr_new);
8994 } 9111 }
8995 9112
8996 /* Build new domains */ 9113 /* Build new domains */
8997 for (i = 0; i < ndoms_new; i++) { 9114 for (i = 0; i < ndoms_new; i++) {
8998 for (j = 0; j < ndoms_cur && !new_topology; j++) { 9115 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8999 if (cpumask_equal(&doms_new[i], &doms_cur[j]) 9116 if (cpumask_equal(doms_new[i], doms_cur[j])
9000 && dattrs_equal(dattr_new, i, dattr_cur, j)) 9117 && dattrs_equal(dattr_new, i, dattr_cur, j))
9001 goto match2; 9118 goto match2;
9002 } 9119 }
9003 /* no match - add a new doms_new */ 9120 /* no match - add a new doms_new */
9004 __build_sched_domains(doms_new + i, 9121 __build_sched_domains(doms_new[i],
9005 dattr_new ? dattr_new + i : NULL); 9122 dattr_new ? dattr_new + i : NULL);
9006match2: 9123match2:
9007 ; 9124 ;
9008 } 9125 }
9009 9126
9010 /* Remember the new sched domains */ 9127 /* Remember the new sched domains */
9011 if (doms_cur != fallback_doms) 9128 if (doms_cur != &fallback_doms)
9012 kfree(doms_cur); 9129 free_sched_domains(doms_cur, ndoms_cur);
9013 kfree(dattr_cur); /* kfree(NULL) is safe */ 9130 kfree(dattr_cur); /* kfree(NULL) is safe */
9014 doms_cur = doms_new; 9131 doms_cur = doms_new;
9015 dattr_cur = dattr_new; 9132 dattr_cur = dattr_new;
@@ -9120,8 +9237,10 @@ static int update_sched_domains(struct notifier_block *nfb,
9120 switch (action) { 9237 switch (action) {
9121 case CPU_ONLINE: 9238 case CPU_ONLINE:
9122 case CPU_ONLINE_FROZEN: 9239 case CPU_ONLINE_FROZEN:
9123 case CPU_DEAD: 9240 case CPU_DOWN_PREPARE:
9124 case CPU_DEAD_FROZEN: 9241 case CPU_DOWN_PREPARE_FROZEN:
9242 case CPU_DOWN_FAILED:
9243 case CPU_DOWN_FAILED_FROZEN:
9125 partition_sched_domains(1, NULL, NULL); 9244 partition_sched_domains(1, NULL, NULL);
9126 return NOTIFY_OK; 9245 return NOTIFY_OK;
9127 9246
@@ -9168,7 +9287,7 @@ void __init sched_init_smp(void)
9168#endif 9287#endif
9169 get_online_cpus(); 9288 get_online_cpus();
9170 mutex_lock(&sched_domains_mutex); 9289 mutex_lock(&sched_domains_mutex);
9171 arch_init_sched_domains(cpu_online_mask); 9290 arch_init_sched_domains(cpu_active_mask);
9172 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 9291 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9173 if (cpumask_empty(non_isolated_cpus)) 9292 if (cpumask_empty(non_isolated_cpus))
9174 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 9293 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
@@ -9241,13 +9360,13 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9241#ifdef CONFIG_SMP 9360#ifdef CONFIG_SMP
9242 rt_rq->rt_nr_migratory = 0; 9361 rt_rq->rt_nr_migratory = 0;
9243 rt_rq->overloaded = 0; 9362 rt_rq->overloaded = 0;
9244 plist_head_init(&rt_rq->pushable_tasks, &rq->lock); 9363 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9245#endif 9364#endif
9246 9365
9247 rt_rq->rt_time = 0; 9366 rt_rq->rt_time = 0;
9248 rt_rq->rt_throttled = 0; 9367 rt_rq->rt_throttled = 0;
9249 rt_rq->rt_runtime = 0; 9368 rt_rq->rt_runtime = 0;
9250 spin_lock_init(&rt_rq->rt_runtime_lock); 9369 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9251 9370
9252#ifdef CONFIG_RT_GROUP_SCHED 9371#ifdef CONFIG_RT_GROUP_SCHED
9253 rt_rq->rt_nr_boosted = 0; 9372 rt_rq->rt_nr_boosted = 0;
@@ -9331,10 +9450,6 @@ void __init sched_init(void)
9331#ifdef CONFIG_CPUMASK_OFFSTACK 9450#ifdef CONFIG_CPUMASK_OFFSTACK
9332 alloc_size += num_possible_cpus() * cpumask_size(); 9451 alloc_size += num_possible_cpus() * cpumask_size();
9333#endif 9452#endif
9334 /*
9335 * As sched_init() is called before page_alloc is setup,
9336 * we use alloc_bootmem().
9337 */
9338 if (alloc_size) { 9453 if (alloc_size) {
9339 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 9454 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9340 9455
@@ -9411,7 +9526,7 @@ void __init sched_init(void)
9411 struct rq *rq; 9526 struct rq *rq;
9412 9527
9413 rq = cpu_rq(i); 9528 rq = cpu_rq(i);
9414 spin_lock_init(&rq->lock); 9529 raw_spin_lock_init(&rq->lock);
9415 rq->nr_running = 0; 9530 rq->nr_running = 0;
9416 rq->calc_load_active = 0; 9531 rq->calc_load_active = 0;
9417 rq->calc_load_update = jiffies + LOAD_FREQ; 9532 rq->calc_load_update = jiffies + LOAD_FREQ;
@@ -9471,7 +9586,7 @@ void __init sched_init(void)
9471#elif defined CONFIG_USER_SCHED 9586#elif defined CONFIG_USER_SCHED
9472 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); 9587 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9473 init_tg_rt_entry(&init_task_group, 9588 init_tg_rt_entry(&init_task_group,
9474 &per_cpu(init_rt_rq, i), 9589 &per_cpu(init_rt_rq_var, i),
9475 &per_cpu(init_sched_rt_entity, i), i, 1, 9590 &per_cpu(init_sched_rt_entity, i), i, 1,
9476 root_task_group.rt_se[i]); 9591 root_task_group.rt_se[i]);
9477#endif 9592#endif
@@ -9489,6 +9604,8 @@ void __init sched_init(void)
9489 rq->cpu = i; 9604 rq->cpu = i;
9490 rq->online = 0; 9605 rq->online = 0;
9491 rq->migration_thread = NULL; 9606 rq->migration_thread = NULL;
9607 rq->idle_stamp = 0;
9608 rq->avg_idle = 2*sysctl_sched_migration_cost;
9492 INIT_LIST_HEAD(&rq->migration_queue); 9609 INIT_LIST_HEAD(&rq->migration_queue);
9493 rq_attach_root(rq, &def_root_domain); 9610 rq_attach_root(rq, &def_root_domain);
9494#endif 9611#endif
@@ -9507,7 +9624,7 @@ void __init sched_init(void)
9507#endif 9624#endif
9508 9625
9509#ifdef CONFIG_RT_MUTEXES 9626#ifdef CONFIG_RT_MUTEXES
9510 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); 9627 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9511#endif 9628#endif
9512 9629
9513 /* 9630 /*
@@ -9532,13 +9649,15 @@ void __init sched_init(void)
9532 current->sched_class = &fair_sched_class; 9649 current->sched_class = &fair_sched_class;
9533 9650
9534 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ 9651 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9535 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); 9652 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9536#ifdef CONFIG_SMP 9653#ifdef CONFIG_SMP
9537#ifdef CONFIG_NO_HZ 9654#ifdef CONFIG_NO_HZ
9538 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); 9655 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9539 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); 9656 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9540#endif 9657#endif
9541 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 9658 /* May be allocated at isolcpus cmdline parse time */
9659 if (cpu_isolated_map == NULL)
9660 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9542#endif /* SMP */ 9661#endif /* SMP */
9543 9662
9544 perf_event_init(); 9663 perf_event_init();
@@ -9630,13 +9749,13 @@ void normalize_rt_tasks(void)
9630 continue; 9749 continue;
9631 } 9750 }
9632 9751
9633 spin_lock(&p->pi_lock); 9752 raw_spin_lock(&p->pi_lock);
9634 rq = __task_rq_lock(p); 9753 rq = __task_rq_lock(p);
9635 9754
9636 normalize_task(rq, p); 9755 normalize_task(rq, p);
9637 9756
9638 __task_rq_unlock(rq); 9757 __task_rq_unlock(rq);
9639 spin_unlock(&p->pi_lock); 9758 raw_spin_unlock(&p->pi_lock);
9640 } while_each_thread(g, p); 9759 } while_each_thread(g, p);
9641 9760
9642 read_unlock_irqrestore(&tasklist_lock, flags); 9761 read_unlock_irqrestore(&tasklist_lock, flags);
@@ -9732,13 +9851,15 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9732 se = kzalloc_node(sizeof(struct sched_entity), 9851 se = kzalloc_node(sizeof(struct sched_entity),
9733 GFP_KERNEL, cpu_to_node(i)); 9852 GFP_KERNEL, cpu_to_node(i));
9734 if (!se) 9853 if (!se)
9735 goto err; 9854 goto err_free_rq;
9736 9855
9737 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); 9856 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9738 } 9857 }
9739 9858
9740 return 1; 9859 return 1;
9741 9860
9861 err_free_rq:
9862 kfree(cfs_rq);
9742 err: 9863 err:
9743 return 0; 9864 return 0;
9744} 9865}
@@ -9820,13 +9941,15 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9820 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 9941 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9821 GFP_KERNEL, cpu_to_node(i)); 9942 GFP_KERNEL, cpu_to_node(i));
9822 if (!rt_se) 9943 if (!rt_se)
9823 goto err; 9944 goto err_free_rq;
9824 9945
9825 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); 9946 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9826 } 9947 }
9827 9948
9828 return 1; 9949 return 1;
9829 9950
9951 err_free_rq:
9952 kfree(rt_rq);
9830 err: 9953 err:
9831 return 0; 9954 return 0;
9832} 9955}
@@ -9995,9 +10118,9 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares)
9995 struct rq *rq = cfs_rq->rq; 10118 struct rq *rq = cfs_rq->rq;
9996 unsigned long flags; 10119 unsigned long flags;
9997 10120
9998 spin_lock_irqsave(&rq->lock, flags); 10121 raw_spin_lock_irqsave(&rq->lock, flags);
9999 __set_se_shares(se, shares); 10122 __set_se_shares(se, shares);
10000 spin_unlock_irqrestore(&rq->lock, flags); 10123 raw_spin_unlock_irqrestore(&rq->lock, flags);
10001} 10124}
10002 10125
10003static DEFINE_MUTEX(shares_mutex); 10126static DEFINE_MUTEX(shares_mutex);
@@ -10182,18 +10305,18 @@ static int tg_set_bandwidth(struct task_group *tg,
10182 if (err) 10305 if (err)
10183 goto unlock; 10306 goto unlock;
10184 10307
10185 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10308 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10186 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 10309 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10187 tg->rt_bandwidth.rt_runtime = rt_runtime; 10310 tg->rt_bandwidth.rt_runtime = rt_runtime;
10188 10311
10189 for_each_possible_cpu(i) { 10312 for_each_possible_cpu(i) {
10190 struct rt_rq *rt_rq = tg->rt_rq[i]; 10313 struct rt_rq *rt_rq = tg->rt_rq[i];
10191 10314
10192 spin_lock(&rt_rq->rt_runtime_lock); 10315 raw_spin_lock(&rt_rq->rt_runtime_lock);
10193 rt_rq->rt_runtime = rt_runtime; 10316 rt_rq->rt_runtime = rt_runtime;
10194 spin_unlock(&rt_rq->rt_runtime_lock); 10317 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10195 } 10318 }
10196 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10319 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10197 unlock: 10320 unlock:
10198 read_unlock(&tasklist_lock); 10321 read_unlock(&tasklist_lock);
10199 mutex_unlock(&rt_constraints_mutex); 10322 mutex_unlock(&rt_constraints_mutex);
@@ -10298,15 +10421,15 @@ static int sched_rt_global_constraints(void)
10298 if (sysctl_sched_rt_runtime == 0) 10421 if (sysctl_sched_rt_runtime == 0)
10299 return -EBUSY; 10422 return -EBUSY;
10300 10423
10301 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 10424 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10302 for_each_possible_cpu(i) { 10425 for_each_possible_cpu(i) {
10303 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 10426 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10304 10427
10305 spin_lock(&rt_rq->rt_runtime_lock); 10428 raw_spin_lock(&rt_rq->rt_runtime_lock);
10306 rt_rq->rt_runtime = global_rt_runtime(); 10429 rt_rq->rt_runtime = global_rt_runtime();
10307 spin_unlock(&rt_rq->rt_runtime_lock); 10430 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10308 } 10431 }
10309 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 10432 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10310 10433
10311 return 0; 10434 return 0;
10312} 10435}
@@ -10597,9 +10720,9 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10597 /* 10720 /*
10598 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 10721 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10599 */ 10722 */
10600 spin_lock_irq(&cpu_rq(cpu)->lock); 10723 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10601 data = *cpuusage; 10724 data = *cpuusage;
10602 spin_unlock_irq(&cpu_rq(cpu)->lock); 10725 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10603#else 10726#else
10604 data = *cpuusage; 10727 data = *cpuusage;
10605#endif 10728#endif
@@ -10615,9 +10738,9 @@ static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10615 /* 10738 /*
10616 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 10739 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10617 */ 10740 */
10618 spin_lock_irq(&cpu_rq(cpu)->lock); 10741 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10619 *cpuusage = val; 10742 *cpuusage = val;
10620 spin_unlock_irq(&cpu_rq(cpu)->lock); 10743 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10621#else 10744#else
10622 *cpuusage = val; 10745 *cpuusage = val;
10623#endif 10746#endif
@@ -10851,9 +10974,9 @@ void synchronize_sched_expedited(void)
10851 init_completion(&req->done); 10974 init_completion(&req->done);
10852 req->task = NULL; 10975 req->task = NULL;
10853 req->dest_cpu = RCU_MIGRATION_NEED_QS; 10976 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10854 spin_lock_irqsave(&rq->lock, flags); 10977 raw_spin_lock_irqsave(&rq->lock, flags);
10855 list_add(&req->list, &rq->migration_queue); 10978 list_add(&req->list, &rq->migration_queue);
10856 spin_unlock_irqrestore(&rq->lock, flags); 10979 raw_spin_unlock_irqrestore(&rq->lock, flags);
10857 wake_up_process(rq->migration_thread); 10980 wake_up_process(rq->migration_thread);
10858 } 10981 }
10859 for_each_online_cpu(cpu) { 10982 for_each_online_cpu(cpu) {
@@ -10861,13 +10984,14 @@ void synchronize_sched_expedited(void)
10861 req = &per_cpu(rcu_migration_req, cpu); 10984 req = &per_cpu(rcu_migration_req, cpu);
10862 rq = cpu_rq(cpu); 10985 rq = cpu_rq(cpu);
10863 wait_for_completion(&req->done); 10986 wait_for_completion(&req->done);
10864 spin_lock_irqsave(&rq->lock, flags); 10987 raw_spin_lock_irqsave(&rq->lock, flags);
10865 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) 10988 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10866 need_full_sync = 1; 10989 need_full_sync = 1;
10867 req->dest_cpu = RCU_MIGRATION_IDLE; 10990 req->dest_cpu = RCU_MIGRATION_IDLE;
10868 spin_unlock_irqrestore(&rq->lock, flags); 10991 raw_spin_unlock_irqrestore(&rq->lock, flags);
10869 } 10992 }
10870 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; 10993 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10994 synchronize_sched_expedited_count++;
10871 mutex_unlock(&rcu_sched_expedited_mutex); 10995 mutex_unlock(&rcu_sched_expedited_mutex);
10872 put_online_cpus(); 10996 put_online_cpus();
10873 if (need_full_sync) 10997 if (need_full_sync)