aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c1582
1 files changed, 898 insertions, 684 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 50a21f964679..61245b8d0f16 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -118,7 +118,16 @@
118 */ 118 */
119#define RUNTIME_INF ((u64)~0ULL) 119#define RUNTIME_INF ((u64)~0ULL)
120 120
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
121#ifdef CONFIG_SMP 127#ifdef CONFIG_SMP
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
122/* 131/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) 132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide. 133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
@@ -203,7 +212,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 hrtimer_init(&rt_b->rt_period_timer, 212 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer; 214 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207} 215}
208 216
209static inline int rt_bandwidth_enabled(void) 217static inline int rt_bandwidth_enabled(void)
@@ -261,6 +269,10 @@ struct task_group {
261 struct cgroup_subsys_state css; 269 struct cgroup_subsys_state css;
262#endif 270#endif
263 271
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
264#ifdef CONFIG_FAIR_GROUP_SCHED 276#ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */ 277 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se; 278 struct sched_entity **se;
@@ -286,6 +298,12 @@ struct task_group {
286 298
287#ifdef CONFIG_USER_SCHED 299#ifdef CONFIG_USER_SCHED
288 300
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
289/* 307/*
290 * Root task group. 308 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will 309 * Every UID task group (including init_task_group aka UID-0) will
@@ -345,7 +363,9 @@ static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg; 363 struct task_group *tg;
346 364
347#ifdef CONFIG_USER_SCHED 365#ifdef CONFIG_USER_SCHED
348 tg = p->user->tg; 366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
349#elif defined(CONFIG_CGROUP_SCHED) 369#elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), 370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css); 371 struct task_group, css);
@@ -481,18 +501,26 @@ struct rt_rq {
481 */ 501 */
482struct root_domain { 502struct root_domain {
483 atomic_t refcount; 503 atomic_t refcount;
484 cpumask_t span; 504 cpumask_var_t span;
485 cpumask_t online; 505 cpumask_var_t online;
486 506
487 /* 507 /*
488 * The "RT overload" flag: it gets set if a CPU has more than 508 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task. 509 * one runnable RT task.
490 */ 510 */
491 cpumask_t rto_mask; 511 cpumask_var_t rto_mask;
492 atomic_t rto_count; 512 atomic_t rto_count;
493#ifdef CONFIG_SMP 513#ifdef CONFIG_SMP
494 struct cpupri cpupri; 514 struct cpupri cpupri;
495#endif 515#endif
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
496}; 524};
497 525
498/* 526/*
@@ -586,6 +614,8 @@ struct rq {
586#ifdef CONFIG_SCHEDSTATS 614#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */ 615 /* latency stats */
588 struct sched_info rq_sched_info; 616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
589 619
590 /* sys_sched_yield() stats */ 620 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty; 621 unsigned int yld_exp_empty;
@@ -703,45 +733,18 @@ static __read_mostly char *sched_feat_names[] = {
703 733
704#undef SCHED_FEAT 734#undef SCHED_FEAT
705 735
706static int sched_feat_open(struct inode *inode, struct file *filp) 736static int sched_feat_show(struct seq_file *m, void *v)
707{
708 filp->private_data = inode->i_private;
709 return 0;
710}
711
712static ssize_t
713sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{ 737{
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i; 738 int i;
720 739
721 for (i = 0; sched_feat_names[i]; i++) { 740 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]); 741 if (!(sysctl_sched_features & (1UL << i)))
723 len += 4; 742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
724 } 744 }
745 seq_puts(m, "\n");
725 746
726 buf = kmalloc(len + 2, GFP_KERNEL); 747 return 0;
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745} 748}
746 749
747static ssize_t 750static ssize_t
@@ -786,10 +789,17 @@ sched_feat_write(struct file *filp, const char __user *ubuf,
786 return cnt; 789 return cnt;
787} 790}
788 791
792static int sched_feat_open(struct inode *inode, struct file *filp)
793{
794 return single_open(filp, sched_feat_show, NULL);
795}
796
789static struct file_operations sched_feat_fops = { 797static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open, 798 .open = sched_feat_open,
791 .read = sched_feat_read, 799 .write = sched_feat_write,
792 .write = sched_feat_write, 800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
793}; 803};
794 804
795static __init int sched_init_debug(void) 805static __init int sched_init_debug(void)
@@ -1139,7 +1149,6 @@ static void init_rq_hrtick(struct rq *rq)
1139 1149
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick; 1151 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1143} 1152}
1144#else /* CONFIG_SCHED_HRTICK */ 1153#else /* CONFIG_SCHED_HRTICK */
1145static inline void hrtick_clear(struct rq *rq) 1154static inline void hrtick_clear(struct rq *rq)
@@ -1314,8 +1323,8 @@ static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1314 * slice expiry etc. 1323 * slice expiry etc.
1315 */ 1324 */
1316 1325
1317#define WEIGHT_IDLEPRIO 2 1326#define WEIGHT_IDLEPRIO 3
1318#define WMULT_IDLEPRIO (1 << 31) 1327#define WMULT_IDLEPRIO 1431655765
1319 1328
1320/* 1329/*
1321 * Nice levels are multiplicative, with a gentle 10% change for every 1330 * Nice levels are multiplicative, with a gentle 10% change for every
@@ -1453,9 +1462,12 @@ static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1453static unsigned long cpu_avg_load_per_task(int cpu) 1462static unsigned long cpu_avg_load_per_task(int cpu)
1454{ 1463{
1455 struct rq *rq = cpu_rq(cpu); 1464 struct rq *rq = cpu_rq(cpu);
1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1456 1466
1457 if (rq->nr_running) 1467 if (nr_running)
1458 rq->avg_load_per_task = rq->load.weight / rq->nr_running; 1468 rq->avg_load_per_task = rq->load.weight / nr_running;
1469 else
1470 rq->avg_load_per_task = 0;
1459 1471
1460 return rq->avg_load_per_task; 1472 return rq->avg_load_per_task;
1461} 1473}
@@ -1471,27 +1483,13 @@ static void
1471update_group_shares_cpu(struct task_group *tg, int cpu, 1483update_group_shares_cpu(struct task_group *tg, int cpu,
1472 unsigned long sd_shares, unsigned long sd_rq_weight) 1484 unsigned long sd_shares, unsigned long sd_rq_weight)
1473{ 1485{
1474 int boost = 0;
1475 unsigned long shares; 1486 unsigned long shares;
1476 unsigned long rq_weight; 1487 unsigned long rq_weight;
1477 1488
1478 if (!tg->se[cpu]) 1489 if (!tg->se[cpu])
1479 return; 1490 return;
1480 1491
1481 rq_weight = tg->cfs_rq[cpu]->load.weight; 1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1482
1483 /*
1484 * If there are currently no tasks on the cpu pretend there is one of
1485 * average load so that when a new task gets to run here it will not
1486 * get delayed by group starvation.
1487 */
1488 if (!rq_weight) {
1489 boost = 1;
1490 rq_weight = NICE_0_LOAD;
1491 }
1492
1493 if (unlikely(rq_weight > sd_rq_weight))
1494 rq_weight = sd_rq_weight;
1495 1493
1496 /* 1494 /*
1497 * \Sum shares * rq_weight 1495 * \Sum shares * rq_weight
@@ -1499,7 +1497,7 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1499 * \Sum rq_weight 1497 * \Sum rq_weight
1500 * 1498 *
1501 */ 1499 */
1502 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1); 1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
1503 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); 1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1504 1502
1505 if (abs(shares - tg->se[cpu]->load.weight) > 1503 if (abs(shares - tg->se[cpu]->load.weight) >
@@ -1508,11 +1506,7 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1508 unsigned long flags; 1506 unsigned long flags;
1509 1507
1510 spin_lock_irqsave(&rq->lock, flags); 1508 spin_lock_irqsave(&rq->lock, flags);
1511 /* 1509 tg->cfs_rq[cpu]->shares = shares;
1512 * record the actual number of shares, not the boosted amount.
1513 */
1514 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1515 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1516 1510
1517 __set_se_shares(tg->se[cpu], shares); 1511 __set_se_shares(tg->se[cpu], shares);
1518 spin_unlock_irqrestore(&rq->lock, flags); 1512 spin_unlock_irqrestore(&rq->lock, flags);
@@ -1526,13 +1520,23 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1526 */ 1520 */
1527static int tg_shares_up(struct task_group *tg, void *data) 1521static int tg_shares_up(struct task_group *tg, void *data)
1528{ 1522{
1529 unsigned long rq_weight = 0; 1523 unsigned long weight, rq_weight = 0;
1530 unsigned long shares = 0; 1524 unsigned long shares = 0;
1531 struct sched_domain *sd = data; 1525 struct sched_domain *sd = data;
1532 int i; 1526 int i;
1533 1527
1534 for_each_cpu_mask(i, sd->span) { 1528 for_each_cpu(i, sched_domain_span(sd)) {
1535 rq_weight += tg->cfs_rq[i]->load.weight; 1529 /*
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1533 */
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1537
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
1536 shares += tg->cfs_rq[i]->shares; 1540 shares += tg->cfs_rq[i]->shares;
1537 } 1541 }
1538 1542
@@ -1542,10 +1546,7 @@ static int tg_shares_up(struct task_group *tg, void *data)
1542 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) 1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1543 shares = tg->shares; 1547 shares = tg->shares;
1544 1548
1545 if (!rq_weight) 1549 for_each_cpu(i, sched_domain_span(sd))
1546 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1547
1548 for_each_cpu_mask(i, sd->span)
1549 update_group_shares_cpu(tg, i, shares, rq_weight); 1550 update_group_shares_cpu(tg, i, shares, rq_weight);
1550 1551
1551 return 0; 1552 return 0;
@@ -1609,6 +1610,39 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1609 1610
1610#endif 1611#endif
1611 1612
1613/*
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1615 */
1616static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1620{
1621 int ret = 0;
1622
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1627 }
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1636 }
1637 return ret;
1638}
1639
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1612#endif 1646#endif
1613 1647
1614#ifdef CONFIG_FAIR_GROUP_SCHED 1648#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1842,6 +1876,8 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1842 1876
1843 clock_offset = old_rq->clock - new_rq->clock; 1877 clock_offset = old_rq->clock - new_rq->clock;
1844 1878
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1880
1845#ifdef CONFIG_SCHEDSTATS 1881#ifdef CONFIG_SCHEDSTATS
1846 if (p->se.wait_start) 1882 if (p->se.wait_start)
1847 p->se.wait_start -= clock_offset; 1883 p->se.wait_start -= clock_offset;
@@ -2076,15 +2112,17 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2076 int i; 2112 int i;
2077 2113
2078 /* Skip over this group if it has no CPUs allowed */ 2114 /* Skip over this group if it has no CPUs allowed */
2079 if (!cpus_intersects(group->cpumask, p->cpus_allowed)) 2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
2080 continue; 2117 continue;
2081 2118
2082 local_group = cpu_isset(this_cpu, group->cpumask); 2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
2083 2121
2084 /* Tally up the load of all CPUs in the group */ 2122 /* Tally up the load of all CPUs in the group */
2085 avg_load = 0; 2123 avg_load = 0;
2086 2124
2087 for_each_cpu_mask_nr(i, group->cpumask) { 2125 for_each_cpu(i, sched_group_cpus(group)) {
2088 /* Bias balancing toward cpus of our domain */ 2126 /* Bias balancing toward cpus of our domain */
2089 if (local_group) 2127 if (local_group)
2090 load = source_load(i, load_idx); 2128 load = source_load(i, load_idx);
@@ -2116,17 +2154,14 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2116 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2117 */ 2155 */
2118static int 2156static int
2119find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, 2157find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2120 cpumask_t *tmp)
2121{ 2158{
2122 unsigned long load, min_load = ULONG_MAX; 2159 unsigned long load, min_load = ULONG_MAX;
2123 int idlest = -1; 2160 int idlest = -1;
2124 int i; 2161 int i;
2125 2162
2126 /* Traverse only the allowed CPUs */ 2163 /* Traverse only the allowed CPUs */
2127 cpus_and(*tmp, group->cpumask, p->cpus_allowed); 2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2128
2129 for_each_cpu_mask_nr(i, *tmp) {
2130 load = weighted_cpuload(i); 2165 load = weighted_cpuload(i);
2131 2166
2132 if (load < min_load || (load == min_load && i == this_cpu)) { 2167 if (load < min_load || (load == min_load && i == this_cpu)) {
@@ -2168,7 +2203,6 @@ static int sched_balance_self(int cpu, int flag)
2168 update_shares(sd); 2203 update_shares(sd);
2169 2204
2170 while (sd) { 2205 while (sd) {
2171 cpumask_t span, tmpmask;
2172 struct sched_group *group; 2206 struct sched_group *group;
2173 int new_cpu, weight; 2207 int new_cpu, weight;
2174 2208
@@ -2177,14 +2211,13 @@ static int sched_balance_self(int cpu, int flag)
2177 continue; 2211 continue;
2178 } 2212 }
2179 2213
2180 span = sd->span;
2181 group = find_idlest_group(sd, t, cpu); 2214 group = find_idlest_group(sd, t, cpu);
2182 if (!group) { 2215 if (!group) {
2183 sd = sd->child; 2216 sd = sd->child;
2184 continue; 2217 continue;
2185 } 2218 }
2186 2219
2187 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); 2220 new_cpu = find_idlest_cpu(group, t, cpu);
2188 if (new_cpu == -1 || new_cpu == cpu) { 2221 if (new_cpu == -1 || new_cpu == cpu) {
2189 /* Now try balancing at a lower domain level of cpu */ 2222 /* Now try balancing at a lower domain level of cpu */
2190 sd = sd->child; 2223 sd = sd->child;
@@ -2193,10 +2226,10 @@ static int sched_balance_self(int cpu, int flag)
2193 2226
2194 /* Now try balancing at a lower domain level of new_cpu */ 2227 /* Now try balancing at a lower domain level of new_cpu */
2195 cpu = new_cpu; 2228 cpu = new_cpu;
2229 weight = cpumask_weight(sched_domain_span(sd));
2196 sd = NULL; 2230 sd = NULL;
2197 weight = cpus_weight(span);
2198 for_each_domain(cpu, tmp) { 2231 for_each_domain(cpu, tmp) {
2199 if (weight <= cpus_weight(tmp->span)) 2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2200 break; 2233 break;
2201 if (tmp->flags & flag) 2234 if (tmp->flags & flag)
2202 sd = tmp; 2235 sd = tmp;
@@ -2241,7 +2274,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2241 cpu = task_cpu(p); 2274 cpu = task_cpu(p);
2242 2275
2243 for_each_domain(this_cpu, sd) { 2276 for_each_domain(this_cpu, sd) {
2244 if (cpu_isset(cpu, sd->span)) { 2277 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2245 update_shares(sd); 2278 update_shares(sd);
2246 break; 2279 break;
2247 } 2280 }
@@ -2251,6 +2284,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2251 2284
2252 smp_wmb(); 2285 smp_wmb();
2253 rq = task_rq_lock(p, &flags); 2286 rq = task_rq_lock(p, &flags);
2287 update_rq_clock(rq);
2254 old_state = p->state; 2288 old_state = p->state;
2255 if (!(old_state & state)) 2289 if (!(old_state & state))
2256 goto out; 2290 goto out;
@@ -2289,7 +2323,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2289 else { 2323 else {
2290 struct sched_domain *sd; 2324 struct sched_domain *sd;
2291 for_each_domain(this_cpu, sd) { 2325 for_each_domain(this_cpu, sd) {
2292 if (cpu_isset(cpu, sd->span)) { 2326 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2293 schedstat_inc(sd, ttwu_wake_remote); 2327 schedstat_inc(sd, ttwu_wake_remote);
2294 break; 2328 break;
2295 } 2329 }
@@ -2308,12 +2342,11 @@ out_activate:
2308 schedstat_inc(p, se.nr_wakeups_local); 2342 schedstat_inc(p, se.nr_wakeups_local);
2309 else 2343 else
2310 schedstat_inc(p, se.nr_wakeups_remote); 2344 schedstat_inc(p, se.nr_wakeups_remote);
2311 update_rq_clock(rq);
2312 activate_task(rq, p, 1); 2345 activate_task(rq, p, 1);
2313 success = 1; 2346 success = 1;
2314 2347
2315out_running: 2348out_running:
2316 trace_sched_wakeup(rq, p); 2349 trace_sched_wakeup(rq, p, success);
2317 check_preempt_curr(rq, p, sync); 2350 check_preempt_curr(rq, p, sync);
2318 2351
2319 p->state = TASK_RUNNING; 2352 p->state = TASK_RUNNING;
@@ -2446,7 +2479,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2446 p->sched_class->task_new(rq, p); 2479 p->sched_class->task_new(rq, p);
2447 inc_nr_running(rq); 2480 inc_nr_running(rq);
2448 } 2481 }
2449 trace_sched_wakeup_new(rq, p); 2482 trace_sched_wakeup_new(rq, p, 1);
2450 check_preempt_curr(rq, p, 0); 2483 check_preempt_curr(rq, p, 0);
2451#ifdef CONFIG_SMP 2484#ifdef CONFIG_SMP
2452 if (p->sched_class->task_wake_up) 2485 if (p->sched_class->task_wake_up)
@@ -2809,40 +2842,6 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2809} 2842}
2810 2843
2811/* 2844/*
2812 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2813 */
2814static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2815 __releases(this_rq->lock)
2816 __acquires(busiest->lock)
2817 __acquires(this_rq->lock)
2818{
2819 int ret = 0;
2820
2821 if (unlikely(!irqs_disabled())) {
2822 /* printk() doesn't work good under rq->lock */
2823 spin_unlock(&this_rq->lock);
2824 BUG_ON(1);
2825 }
2826 if (unlikely(!spin_trylock(&busiest->lock))) {
2827 if (busiest < this_rq) {
2828 spin_unlock(&this_rq->lock);
2829 spin_lock(&busiest->lock);
2830 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2831 ret = 1;
2832 } else
2833 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2834 }
2835 return ret;
2836}
2837
2838static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2839 __releases(busiest->lock)
2840{
2841 spin_unlock(&busiest->lock);
2842 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2843}
2844
2845/*
2846 * If dest_cpu is allowed for this process, migrate the task to it. 2845 * If dest_cpu is allowed for this process, migrate the task to it.
2847 * This is accomplished by forcing the cpu_allowed mask to only 2846 * This is accomplished by forcing the cpu_allowed mask to only
2848 * allow dest_cpu, which will force the cpu onto dest_cpu. Then 2847 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
@@ -2855,11 +2854,10 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2855 struct rq *rq; 2854 struct rq *rq;
2856 2855
2857 rq = task_rq_lock(p, &flags); 2856 rq = task_rq_lock(p, &flags);
2858 if (!cpu_isset(dest_cpu, p->cpus_allowed) 2857 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2859 || unlikely(!cpu_active(dest_cpu))) 2858 || unlikely(!cpu_active(dest_cpu)))
2860 goto out; 2859 goto out;
2861 2860
2862 trace_sched_migrate_task(rq, p, dest_cpu);
2863 /* force the process onto the specified CPU */ 2861 /* force the process onto the specified CPU */
2864 if (migrate_task(p, dest_cpu, &req)) { 2862 if (migrate_task(p, dest_cpu, &req)) {
2865 /* Need to wait for migration thread (might exit: take ref). */ 2863 /* Need to wait for migration thread (might exit: take ref). */
@@ -2921,7 +2919,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2921 * 2) cannot be migrated to this CPU due to cpus_allowed, or 2919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2922 * 3) are cache-hot on their current CPU. 2920 * 3) are cache-hot on their current CPU.
2923 */ 2921 */
2924 if (!cpu_isset(this_cpu, p->cpus_allowed)) { 2922 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2925 schedstat_inc(p, se.nr_failed_migrations_affine); 2923 schedstat_inc(p, se.nr_failed_migrations_affine);
2926 return 0; 2924 return 0;
2927 } 2925 }
@@ -3096,7 +3094,7 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3096static struct sched_group * 3094static struct sched_group *
3097find_busiest_group(struct sched_domain *sd, int this_cpu, 3095find_busiest_group(struct sched_domain *sd, int this_cpu,
3098 unsigned long *imbalance, enum cpu_idle_type idle, 3096 unsigned long *imbalance, enum cpu_idle_type idle,
3099 int *sd_idle, const cpumask_t *cpus, int *balance) 3097 int *sd_idle, const struct cpumask *cpus, int *balance)
3100{ 3098{
3101 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; 3099 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3102 unsigned long max_load, avg_load, total_load, this_load, total_pwr; 3100 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
@@ -3132,10 +3130,11 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3132 unsigned long sum_avg_load_per_task; 3130 unsigned long sum_avg_load_per_task;
3133 unsigned long avg_load_per_task; 3131 unsigned long avg_load_per_task;
3134 3132
3135 local_group = cpu_isset(this_cpu, group->cpumask); 3133 local_group = cpumask_test_cpu(this_cpu,
3134 sched_group_cpus(group));
3136 3135
3137 if (local_group) 3136 if (local_group)
3138 balance_cpu = first_cpu(group->cpumask); 3137 balance_cpu = cpumask_first(sched_group_cpus(group));
3139 3138
3140 /* Tally up the load of all CPUs in the group */ 3139 /* Tally up the load of all CPUs in the group */
3141 sum_weighted_load = sum_nr_running = avg_load = 0; 3140 sum_weighted_load = sum_nr_running = avg_load = 0;
@@ -3144,13 +3143,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3144 max_cpu_load = 0; 3143 max_cpu_load = 0;
3145 min_cpu_load = ~0UL; 3144 min_cpu_load = ~0UL;
3146 3145
3147 for_each_cpu_mask_nr(i, group->cpumask) { 3146 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3148 struct rq *rq; 3147 struct rq *rq = cpu_rq(i);
3149
3150 if (!cpu_isset(i, *cpus))
3151 continue;
3152
3153 rq = cpu_rq(i);
3154 3148
3155 if (*sd_idle && rq->nr_running) 3149 if (*sd_idle && rq->nr_running)
3156 *sd_idle = 0; 3150 *sd_idle = 0;
@@ -3261,8 +3255,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3261 */ 3255 */
3262 if ((sum_nr_running < min_nr_running) || 3256 if ((sum_nr_running < min_nr_running) ||
3263 (sum_nr_running == min_nr_running && 3257 (sum_nr_running == min_nr_running &&
3264 first_cpu(group->cpumask) < 3258 cpumask_first(sched_group_cpus(group)) >
3265 first_cpu(group_min->cpumask))) { 3259 cpumask_first(sched_group_cpus(group_min)))) {
3266 group_min = group; 3260 group_min = group;
3267 min_nr_running = sum_nr_running; 3261 min_nr_running = sum_nr_running;
3268 min_load_per_task = sum_weighted_load / 3262 min_load_per_task = sum_weighted_load /
@@ -3277,8 +3271,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
3277 if (sum_nr_running <= group_capacity - 1) { 3271 if (sum_nr_running <= group_capacity - 1) {
3278 if (sum_nr_running > leader_nr_running || 3272 if (sum_nr_running > leader_nr_running ||
3279 (sum_nr_running == leader_nr_running && 3273 (sum_nr_running == leader_nr_running &&
3280 first_cpu(group->cpumask) > 3274 cpumask_first(sched_group_cpus(group)) <
3281 first_cpu(group_leader->cpumask))) { 3275 cpumask_first(sched_group_cpus(group_leader)))) {
3282 group_leader = group; 3276 group_leader = group;
3283 leader_nr_running = sum_nr_running; 3277 leader_nr_running = sum_nr_running;
3284 } 3278 }
@@ -3404,6 +3398,10 @@ out_balanced:
3404 3398
3405 if (this == group_leader && group_leader != group_min) { 3399 if (this == group_leader && group_leader != group_min) {
3406 *imbalance = min_load_per_task; 3400 *imbalance = min_load_per_task;
3401 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3402 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3403 cpumask_first(sched_group_cpus(group_leader));
3404 }
3407 return group_min; 3405 return group_min;
3408 } 3406 }
3409#endif 3407#endif
@@ -3417,16 +3415,16 @@ ret:
3417 */ 3415 */
3418static struct rq * 3416static struct rq *
3419find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, 3417find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3420 unsigned long imbalance, const cpumask_t *cpus) 3418 unsigned long imbalance, const struct cpumask *cpus)
3421{ 3419{
3422 struct rq *busiest = NULL, *rq; 3420 struct rq *busiest = NULL, *rq;
3423 unsigned long max_load = 0; 3421 unsigned long max_load = 0;
3424 int i; 3422 int i;
3425 3423
3426 for_each_cpu_mask_nr(i, group->cpumask) { 3424 for_each_cpu(i, sched_group_cpus(group)) {
3427 unsigned long wl; 3425 unsigned long wl;
3428 3426
3429 if (!cpu_isset(i, *cpus)) 3427 if (!cpumask_test_cpu(i, cpus))
3430 continue; 3428 continue;
3431 3429
3432 rq = cpu_rq(i); 3430 rq = cpu_rq(i);
@@ -3456,7 +3454,7 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3456 */ 3454 */
3457static int load_balance(int this_cpu, struct rq *this_rq, 3455static int load_balance(int this_cpu, struct rq *this_rq,
3458 struct sched_domain *sd, enum cpu_idle_type idle, 3456 struct sched_domain *sd, enum cpu_idle_type idle,
3459 int *balance, cpumask_t *cpus) 3457 int *balance, struct cpumask *cpus)
3460{ 3458{
3461 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; 3459 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3462 struct sched_group *group; 3460 struct sched_group *group;
@@ -3464,7 +3462,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
3464 struct rq *busiest; 3462 struct rq *busiest;
3465 unsigned long flags; 3463 unsigned long flags;
3466 3464
3467 cpus_setall(*cpus); 3465 cpumask_setall(cpus);
3468 3466
3469 /* 3467 /*
3470 * When power savings policy is enabled for the parent domain, idle 3468 * When power savings policy is enabled for the parent domain, idle
@@ -3524,8 +3522,8 @@ redo:
3524 3522
3525 /* All tasks on this runqueue were pinned by CPU affinity */ 3523 /* All tasks on this runqueue were pinned by CPU affinity */
3526 if (unlikely(all_pinned)) { 3524 if (unlikely(all_pinned)) {
3527 cpu_clear(cpu_of(busiest), *cpus); 3525 cpumask_clear_cpu(cpu_of(busiest), cpus);
3528 if (!cpus_empty(*cpus)) 3526 if (!cpumask_empty(cpus))
3529 goto redo; 3527 goto redo;
3530 goto out_balanced; 3528 goto out_balanced;
3531 } 3529 }
@@ -3542,7 +3540,8 @@ redo:
3542 /* don't kick the migration_thread, if the curr 3540 /* don't kick the migration_thread, if the curr
3543 * task on busiest cpu can't be moved to this_cpu 3541 * task on busiest cpu can't be moved to this_cpu
3544 */ 3542 */
3545 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { 3543 if (!cpumask_test_cpu(this_cpu,
3544 &busiest->curr->cpus_allowed)) {
3546 spin_unlock_irqrestore(&busiest->lock, flags); 3545 spin_unlock_irqrestore(&busiest->lock, flags);
3547 all_pinned = 1; 3546 all_pinned = 1;
3548 goto out_one_pinned; 3547 goto out_one_pinned;
@@ -3617,7 +3616,7 @@ out:
3617 */ 3616 */
3618static int 3617static int
3619load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, 3618load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3620 cpumask_t *cpus) 3619 struct cpumask *cpus)
3621{ 3620{
3622 struct sched_group *group; 3621 struct sched_group *group;
3623 struct rq *busiest = NULL; 3622 struct rq *busiest = NULL;
@@ -3626,7 +3625,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3626 int sd_idle = 0; 3625 int sd_idle = 0;
3627 int all_pinned = 0; 3626 int all_pinned = 0;
3628 3627
3629 cpus_setall(*cpus); 3628 cpumask_setall(cpus);
3630 3629
3631 /* 3630 /*
3632 * When power savings policy is enabled for the parent domain, idle 3631 * When power savings policy is enabled for the parent domain, idle
@@ -3670,17 +3669,76 @@ redo:
3670 double_unlock_balance(this_rq, busiest); 3669 double_unlock_balance(this_rq, busiest);
3671 3670
3672 if (unlikely(all_pinned)) { 3671 if (unlikely(all_pinned)) {
3673 cpu_clear(cpu_of(busiest), *cpus); 3672 cpumask_clear_cpu(cpu_of(busiest), cpus);
3674 if (!cpus_empty(*cpus)) 3673 if (!cpumask_empty(cpus))
3675 goto redo; 3674 goto redo;
3676 } 3675 }
3677 } 3676 }
3678 3677
3679 if (!ld_moved) { 3678 if (!ld_moved) {
3679 int active_balance = 0;
3680
3680 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); 3681 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3681 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && 3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3682 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3683 return -1; 3684 return -1;
3685
3686 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3687 return -1;
3688
3689 if (sd->nr_balance_failed++ < 2)
3690 return -1;
3691
3692 /*
3693 * The only task running in a non-idle cpu can be moved to this
3694 * cpu in an attempt to completely freeup the other CPU
3695 * package. The same method used to move task in load_balance()
3696 * have been extended for load_balance_newidle() to speedup
3697 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3698 *
3699 * The package power saving logic comes from
3700 * find_busiest_group(). If there are no imbalance, then
3701 * f_b_g() will return NULL. However when sched_mc={1,2} then
3702 * f_b_g() will select a group from which a running task may be
3703 * pulled to this cpu in order to make the other package idle.
3704 * If there is no opportunity to make a package idle and if
3705 * there are no imbalance, then f_b_g() will return NULL and no
3706 * action will be taken in load_balance_newidle().
3707 *
3708 * Under normal task pull operation due to imbalance, there
3709 * will be more than one task in the source run queue and
3710 * move_tasks() will succeed. ld_moved will be true and this
3711 * active balance code will not be triggered.
3712 */
3713
3714 /* Lock busiest in correct order while this_rq is held */
3715 double_lock_balance(this_rq, busiest);
3716
3717 /*
3718 * don't kick the migration_thread, if the curr
3719 * task on busiest cpu can't be moved to this_cpu
3720 */
3721 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3722 double_unlock_balance(this_rq, busiest);
3723 all_pinned = 1;
3724 return ld_moved;
3725 }
3726
3727 if (!busiest->active_balance) {
3728 busiest->active_balance = 1;
3729 busiest->push_cpu = this_cpu;
3730 active_balance = 1;
3731 }
3732
3733 double_unlock_balance(this_rq, busiest);
3734 /*
3735 * Should not call ttwu while holding a rq->lock
3736 */
3737 spin_unlock(&this_rq->lock);
3738 if (active_balance)
3739 wake_up_process(busiest->migration_thread);
3740 spin_lock(&this_rq->lock);
3741
3684 } else 3742 } else
3685 sd->nr_balance_failed = 0; 3743 sd->nr_balance_failed = 0;
3686 3744
@@ -3704,9 +3762,12 @@ out_balanced:
3704static void idle_balance(int this_cpu, struct rq *this_rq) 3762static void idle_balance(int this_cpu, struct rq *this_rq)
3705{ 3763{
3706 struct sched_domain *sd; 3764 struct sched_domain *sd;
3707 int pulled_task = -1; 3765 int pulled_task = 0;
3708 unsigned long next_balance = jiffies + HZ; 3766 unsigned long next_balance = jiffies + HZ;
3709 cpumask_t tmpmask; 3767 cpumask_var_t tmpmask;
3768
3769 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3770 return;
3710 3771
3711 for_each_domain(this_cpu, sd) { 3772 for_each_domain(this_cpu, sd) {
3712 unsigned long interval; 3773 unsigned long interval;
@@ -3717,7 +3778,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3717 if (sd->flags & SD_BALANCE_NEWIDLE) 3778 if (sd->flags & SD_BALANCE_NEWIDLE)
3718 /* If we've pulled tasks over stop searching: */ 3779 /* If we've pulled tasks over stop searching: */
3719 pulled_task = load_balance_newidle(this_cpu, this_rq, 3780 pulled_task = load_balance_newidle(this_cpu, this_rq,
3720 sd, &tmpmask); 3781 sd, tmpmask);
3721 3782
3722 interval = msecs_to_jiffies(sd->balance_interval); 3783 interval = msecs_to_jiffies(sd->balance_interval);
3723 if (time_after(next_balance, sd->last_balance + interval)) 3784 if (time_after(next_balance, sd->last_balance + interval))
@@ -3732,6 +3793,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
3732 */ 3793 */
3733 this_rq->next_balance = next_balance; 3794 this_rq->next_balance = next_balance;
3734 } 3795 }
3796 free_cpumask_var(tmpmask);
3735} 3797}
3736 3798
3737/* 3799/*
@@ -3769,7 +3831,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3769 /* Search for an sd spanning us and the target CPU. */ 3831 /* Search for an sd spanning us and the target CPU. */
3770 for_each_domain(target_cpu, sd) { 3832 for_each_domain(target_cpu, sd) {
3771 if ((sd->flags & SD_LOAD_BALANCE) && 3833 if ((sd->flags & SD_LOAD_BALANCE) &&
3772 cpu_isset(busiest_cpu, sd->span)) 3834 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3773 break; 3835 break;
3774 } 3836 }
3775 3837
@@ -3788,10 +3850,9 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3788#ifdef CONFIG_NO_HZ 3850#ifdef CONFIG_NO_HZ
3789static struct { 3851static struct {
3790 atomic_t load_balancer; 3852 atomic_t load_balancer;
3791 cpumask_t cpu_mask; 3853 cpumask_var_t cpu_mask;
3792} nohz ____cacheline_aligned = { 3854} nohz ____cacheline_aligned = {
3793 .load_balancer = ATOMIC_INIT(-1), 3855 .load_balancer = ATOMIC_INIT(-1),
3794 .cpu_mask = CPU_MASK_NONE,
3795}; 3856};
3796 3857
3797/* 3858/*
@@ -3819,21 +3880,26 @@ int select_nohz_load_balancer(int stop_tick)
3819 int cpu = smp_processor_id(); 3880 int cpu = smp_processor_id();
3820 3881
3821 if (stop_tick) { 3882 if (stop_tick) {
3822 cpu_set(cpu, nohz.cpu_mask);
3823 cpu_rq(cpu)->in_nohz_recently = 1; 3883 cpu_rq(cpu)->in_nohz_recently = 1;
3824 3884
3825 /* 3885 if (!cpu_active(cpu)) {
3826 * If we are going offline and still the leader, give up! 3886 if (atomic_read(&nohz.load_balancer) != cpu)
3827 */ 3887 return 0;
3828 if (!cpu_active(cpu) && 3888
3829 atomic_read(&nohz.load_balancer) == cpu) { 3889 /*
3890 * If we are going offline and still the leader,
3891 * give up!
3892 */
3830 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) 3893 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3831 BUG(); 3894 BUG();
3895
3832 return 0; 3896 return 0;
3833 } 3897 }
3834 3898
3899 cpumask_set_cpu(cpu, nohz.cpu_mask);
3900
3835 /* time for ilb owner also to sleep */ 3901 /* time for ilb owner also to sleep */
3836 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { 3902 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3837 if (atomic_read(&nohz.load_balancer) == cpu) 3903 if (atomic_read(&nohz.load_balancer) == cpu)
3838 atomic_set(&nohz.load_balancer, -1); 3904 atomic_set(&nohz.load_balancer, -1);
3839 return 0; 3905 return 0;
@@ -3846,10 +3912,10 @@ int select_nohz_load_balancer(int stop_tick)
3846 } else if (atomic_read(&nohz.load_balancer) == cpu) 3912 } else if (atomic_read(&nohz.load_balancer) == cpu)
3847 return 1; 3913 return 1;
3848 } else { 3914 } else {
3849 if (!cpu_isset(cpu, nohz.cpu_mask)) 3915 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3850 return 0; 3916 return 0;
3851 3917
3852 cpu_clear(cpu, nohz.cpu_mask); 3918 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3853 3919
3854 if (atomic_read(&nohz.load_balancer) == cpu) 3920 if (atomic_read(&nohz.load_balancer) == cpu)
3855 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) 3921 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
@@ -3877,7 +3943,11 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3877 unsigned long next_balance = jiffies + 60*HZ; 3943 unsigned long next_balance = jiffies + 60*HZ;
3878 int update_next_balance = 0; 3944 int update_next_balance = 0;
3879 int need_serialize; 3945 int need_serialize;
3880 cpumask_t tmp; 3946 cpumask_var_t tmp;
3947
3948 /* Fails alloc? Rebalancing probably not a priority right now. */
3949 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3950 return;
3881 3951
3882 for_each_domain(cpu, sd) { 3952 for_each_domain(cpu, sd) {
3883 if (!(sd->flags & SD_LOAD_BALANCE)) 3953 if (!(sd->flags & SD_LOAD_BALANCE))
@@ -3902,7 +3972,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3902 } 3972 }
3903 3973
3904 if (time_after_eq(jiffies, sd->last_balance + interval)) { 3974 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3905 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { 3975 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3906 /* 3976 /*
3907 * We've pulled tasks over so either we're no 3977 * We've pulled tasks over so either we're no
3908 * longer idle, or one of our SMT siblings is 3978 * longer idle, or one of our SMT siblings is
@@ -3936,6 +4006,8 @@ out:
3936 */ 4006 */
3937 if (likely(update_next_balance)) 4007 if (likely(update_next_balance))
3938 rq->next_balance = next_balance; 4008 rq->next_balance = next_balance;
4009
4010 free_cpumask_var(tmp);
3939} 4011}
3940 4012
3941/* 4013/*
@@ -3960,12 +4032,13 @@ static void run_rebalance_domains(struct softirq_action *h)
3960 */ 4032 */
3961 if (this_rq->idle_at_tick && 4033 if (this_rq->idle_at_tick &&
3962 atomic_read(&nohz.load_balancer) == this_cpu) { 4034 atomic_read(&nohz.load_balancer) == this_cpu) {
3963 cpumask_t cpus = nohz.cpu_mask;
3964 struct rq *rq; 4035 struct rq *rq;
3965 int balance_cpu; 4036 int balance_cpu;
3966 4037
3967 cpu_clear(this_cpu, cpus); 4038 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3968 for_each_cpu_mask_nr(balance_cpu, cpus) { 4039 if (balance_cpu == this_cpu)
4040 continue;
4041
3969 /* 4042 /*
3970 * If this cpu gets work to do, stop the load balancing 4043 * If this cpu gets work to do, stop the load balancing
3971 * work being done for other cpus. Next load 4044 * work being done for other cpus. Next load
@@ -4003,7 +4076,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4003 rq->in_nohz_recently = 0; 4076 rq->in_nohz_recently = 0;
4004 4077
4005 if (atomic_read(&nohz.load_balancer) == cpu) { 4078 if (atomic_read(&nohz.load_balancer) == cpu) {
4006 cpu_clear(cpu, nohz.cpu_mask); 4079 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4007 atomic_set(&nohz.load_balancer, -1); 4080 atomic_set(&nohz.load_balancer, -1);
4008 } 4081 }
4009 4082
@@ -4016,7 +4089,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4016 * TBD: Traverse the sched domains and nominate 4089 * TBD: Traverse the sched domains and nominate
4017 * the nearest cpu in the nohz.cpu_mask. 4090 * the nearest cpu in the nohz.cpu_mask.
4018 */ 4091 */
4019 int ilb = first_cpu(nohz.cpu_mask); 4092 int ilb = cpumask_first(nohz.cpu_mask);
4020 4093
4021 if (ilb < nr_cpu_ids) 4094 if (ilb < nr_cpu_ids)
4022 resched_cpu(ilb); 4095 resched_cpu(ilb);
@@ -4028,7 +4101,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4028 * cpus with ticks stopped, is it time for that to stop? 4101 * cpus with ticks stopped, is it time for that to stop?
4029 */ 4102 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && 4103 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4031 cpus_weight(nohz.cpu_mask) == num_online_cpus()) { 4104 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4032 resched_cpu(cpu); 4105 resched_cpu(cpu);
4033 return; 4106 return;
4034 } 4107 }
@@ -4038,7 +4111,7 @@ static inline void trigger_load_balance(struct rq *rq, int cpu)
4038 * someone else, then no need raise the SCHED_SOFTIRQ 4111 * someone else, then no need raise the SCHED_SOFTIRQ
4039 */ 4112 */
4040 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && 4113 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4041 cpu_isset(cpu, nohz.cpu_mask)) 4114 cpumask_test_cpu(cpu, nohz.cpu_mask))
4042 return; 4115 return;
4043#endif 4116#endif
4044 if (time_after_eq(jiffies, rq->next_balance)) 4117 if (time_after_eq(jiffies, rq->next_balance))
@@ -4090,13 +4163,17 @@ unsigned long long task_delta_exec(struct task_struct *p)
4090 * Account user cpu time to a process. 4163 * Account user cpu time to a process.
4091 * @p: the process that the cpu time gets accounted to 4164 * @p: the process that the cpu time gets accounted to
4092 * @cputime: the cpu time spent in user space since the last update 4165 * @cputime: the cpu time spent in user space since the last update
4166 * @cputime_scaled: cputime scaled by cpu frequency
4093 */ 4167 */
4094void account_user_time(struct task_struct *p, cputime_t cputime) 4168void account_user_time(struct task_struct *p, cputime_t cputime,
4169 cputime_t cputime_scaled)
4095{ 4170{
4096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4171 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4097 cputime64_t tmp; 4172 cputime64_t tmp;
4098 4173
4174 /* Add user time to process. */
4099 p->utime = cputime_add(p->utime, cputime); 4175 p->utime = cputime_add(p->utime, cputime);
4176 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4100 account_group_user_time(p, cputime); 4177 account_group_user_time(p, cputime);
4101 4178
4102 /* Add user time to cpustat. */ 4179 /* Add user time to cpustat. */
@@ -4113,51 +4190,48 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
4113 * Account guest cpu time to a process. 4190 * Account guest cpu time to a process.
4114 * @p: the process that the cpu time gets accounted to 4191 * @p: the process that the cpu time gets accounted to
4115 * @cputime: the cpu time spent in virtual machine since the last update 4192 * @cputime: the cpu time spent in virtual machine since the last update
4193 * @cputime_scaled: cputime scaled by cpu frequency
4116 */ 4194 */
4117static void account_guest_time(struct task_struct *p, cputime_t cputime) 4195static void account_guest_time(struct task_struct *p, cputime_t cputime,
4196 cputime_t cputime_scaled)
4118{ 4197{
4119 cputime64_t tmp; 4198 cputime64_t tmp;
4120 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4121 4200
4122 tmp = cputime_to_cputime64(cputime); 4201 tmp = cputime_to_cputime64(cputime);
4123 4202
4203 /* Add guest time to process. */
4124 p->utime = cputime_add(p->utime, cputime); 4204 p->utime = cputime_add(p->utime, cputime);
4205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4125 account_group_user_time(p, cputime); 4206 account_group_user_time(p, cputime);
4126 p->gtime = cputime_add(p->gtime, cputime); 4207 p->gtime = cputime_add(p->gtime, cputime);
4127 4208
4209 /* Add guest time to cpustat. */
4128 cpustat->user = cputime64_add(cpustat->user, tmp); 4210 cpustat->user = cputime64_add(cpustat->user, tmp);
4129 cpustat->guest = cputime64_add(cpustat->guest, tmp); 4211 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4130} 4212}
4131 4213
4132/* 4214/*
4133 * Account scaled user cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to
4135 * @cputime: the cpu time spent in user space since the last update
4136 */
4137void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4138{
4139 p->utimescaled = cputime_add(p->utimescaled, cputime);
4140}
4141
4142/*
4143 * Account system cpu time to a process. 4215 * Account system cpu time to a process.
4144 * @p: the process that the cpu time gets accounted to 4216 * @p: the process that the cpu time gets accounted to
4145 * @hardirq_offset: the offset to subtract from hardirq_count() 4217 * @hardirq_offset: the offset to subtract from hardirq_count()
4146 * @cputime: the cpu time spent in kernel space since the last update 4218 * @cputime: the cpu time spent in kernel space since the last update
4219 * @cputime_scaled: cputime scaled by cpu frequency
4147 */ 4220 */
4148void account_system_time(struct task_struct *p, int hardirq_offset, 4221void account_system_time(struct task_struct *p, int hardirq_offset,
4149 cputime_t cputime) 4222 cputime_t cputime, cputime_t cputime_scaled)
4150{ 4223{
4151 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4152 struct rq *rq = this_rq();
4153 cputime64_t tmp; 4225 cputime64_t tmp;
4154 4226
4155 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 4227 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4156 account_guest_time(p, cputime); 4228 account_guest_time(p, cputime, cputime_scaled);
4157 return; 4229 return;
4158 } 4230 }
4159 4231
4232 /* Add system time to process. */
4160 p->stime = cputime_add(p->stime, cputime); 4233 p->stime = cputime_add(p->stime, cputime);
4234 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4161 account_group_system_time(p, cputime); 4235 account_group_system_time(p, cputime);
4162 4236
4163 /* Add system time to cpustat. */ 4237 /* Add system time to cpustat. */
@@ -4166,49 +4240,84 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
4166 cpustat->irq = cputime64_add(cpustat->irq, tmp); 4240 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4167 else if (softirq_count()) 4241 else if (softirq_count())
4168 cpustat->softirq = cputime64_add(cpustat->softirq, tmp); 4242 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4169 else if (p != rq->idle)
4170 cpustat->system = cputime64_add(cpustat->system, tmp);
4171 else if (atomic_read(&rq->nr_iowait) > 0)
4172 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4173 else 4243 else
4174 cpustat->idle = cputime64_add(cpustat->idle, tmp); 4244 cpustat->system = cputime64_add(cpustat->system, tmp);
4245
4175 /* Account for system time used */ 4246 /* Account for system time used */
4176 acct_update_integrals(p); 4247 acct_update_integrals(p);
4177} 4248}
4178 4249
4179/* 4250/*
4180 * Account scaled system cpu time to a process. 4251 * Account for involuntary wait time.
4181 * @p: the process that the cpu time gets accounted to 4252 * @steal: the cpu time spent in involuntary wait
4182 * @hardirq_offset: the offset to subtract from hardirq_count()
4183 * @cputime: the cpu time spent in kernel space since the last update
4184 */ 4253 */
4185void account_system_time_scaled(struct task_struct *p, cputime_t cputime) 4254void account_steal_time(cputime_t cputime)
4186{ 4255{
4187 p->stimescaled = cputime_add(p->stimescaled, cputime); 4256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4257 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4258
4259 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4188} 4260}
4189 4261
4190/* 4262/*
4191 * Account for involuntary wait time. 4263 * Account for idle time.
4192 * @p: the process from which the cpu time has been stolen 4264 * @cputime: the cpu time spent in idle wait
4193 * @steal: the cpu time spent in involuntary wait
4194 */ 4265 */
4195void account_steal_time(struct task_struct *p, cputime_t steal) 4266void account_idle_time(cputime_t cputime)
4196{ 4267{
4197 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4268 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4198 cputime64_t tmp = cputime_to_cputime64(steal); 4269 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4199 struct rq *rq = this_rq(); 4270 struct rq *rq = this_rq();
4200 4271
4201 if (p == rq->idle) { 4272 if (atomic_read(&rq->nr_iowait) > 0)
4202 p->stime = cputime_add(p->stime, steal); 4273 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4203 account_group_system_time(p, steal); 4274 else
4204 if (atomic_read(&rq->nr_iowait) > 0) 4275 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4205 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4206 else
4207 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4208 } else
4209 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4210} 4276}
4211 4277
4278#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4279
4280/*
4281 * Account a single tick of cpu time.
4282 * @p: the process that the cpu time gets accounted to
4283 * @user_tick: indicates if the tick is a user or a system tick
4284 */
4285void account_process_tick(struct task_struct *p, int user_tick)
4286{
4287 cputime_t one_jiffy = jiffies_to_cputime(1);
4288 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4289 struct rq *rq = this_rq();
4290
4291 if (user_tick)
4292 account_user_time(p, one_jiffy, one_jiffy_scaled);
4293 else if (p != rq->idle)
4294 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4295 one_jiffy_scaled);
4296 else
4297 account_idle_time(one_jiffy);
4298}
4299
4300/*
4301 * Account multiple ticks of steal time.
4302 * @p: the process from which the cpu time has been stolen
4303 * @ticks: number of stolen ticks
4304 */
4305void account_steal_ticks(unsigned long ticks)
4306{
4307 account_steal_time(jiffies_to_cputime(ticks));
4308}
4309
4310/*
4311 * Account multiple ticks of idle time.
4312 * @ticks: number of stolen ticks
4313 */
4314void account_idle_ticks(unsigned long ticks)
4315{
4316 account_idle_time(jiffies_to_cputime(ticks));
4317}
4318
4319#endif
4320
4212/* 4321/*
4213 * Use precise platform statistics if available: 4322 * Use precise platform statistics if available:
4214 */ 4323 */
@@ -4583,8 +4692,8 @@ EXPORT_SYMBOL(default_wake_function);
4583 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 4692 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4584 * zero in this (rare) case, and we handle it by continuing to scan the queue. 4693 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4585 */ 4694 */
4586static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 4695void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4587 int nr_exclusive, int sync, void *key) 4696 int nr_exclusive, int sync, void *key)
4588{ 4697{
4589 wait_queue_t *curr, *next; 4698 wait_queue_t *curr, *next;
4590 4699
@@ -5022,7 +5131,7 @@ int can_nice(const struct task_struct *p, const int nice)
5022 * sys_setpriority is a more generic, but much slower function that 5131 * sys_setpriority is a more generic, but much slower function that
5023 * does similar things. 5132 * does similar things.
5024 */ 5133 */
5025asmlinkage long sys_nice(int increment) 5134SYSCALL_DEFINE1(nice, int, increment)
5026{ 5135{
5027 long nice, retval; 5136 long nice, retval;
5028 5137
@@ -5131,6 +5240,22 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5131 set_load_weight(p); 5240 set_load_weight(p);
5132} 5241}
5133 5242
5243/*
5244 * check the target process has a UID that matches the current process's
5245 */
5246static bool check_same_owner(struct task_struct *p)
5247{
5248 const struct cred *cred = current_cred(), *pcred;
5249 bool match;
5250
5251 rcu_read_lock();
5252 pcred = __task_cred(p);
5253 match = (cred->euid == pcred->euid ||
5254 cred->euid == pcred->uid);
5255 rcu_read_unlock();
5256 return match;
5257}
5258
5134static int __sched_setscheduler(struct task_struct *p, int policy, 5259static int __sched_setscheduler(struct task_struct *p, int policy,
5135 struct sched_param *param, bool user) 5260 struct sched_param *param, bool user)
5136{ 5261{
@@ -5190,8 +5315,7 @@ recheck:
5190 return -EPERM; 5315 return -EPERM;
5191 5316
5192 /* can't change other user's priorities */ 5317 /* can't change other user's priorities */
5193 if ((current->euid != p->euid) && 5318 if (!check_same_owner(p))
5194 (current->euid != p->uid))
5195 return -EPERM; 5319 return -EPERM;
5196 } 5320 }
5197 5321
@@ -5314,8 +5438,8 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5314 * @policy: new policy. 5438 * @policy: new policy.
5315 * @param: structure containing the new RT priority. 5439 * @param: structure containing the new RT priority.
5316 */ 5440 */
5317asmlinkage long 5441SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5318sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5442 struct sched_param __user *, param)
5319{ 5443{
5320 /* negative values for policy are not valid */ 5444 /* negative values for policy are not valid */
5321 if (policy < 0) 5445 if (policy < 0)
@@ -5329,7 +5453,7 @@ sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5329 * @pid: the pid in question. 5453 * @pid: the pid in question.
5330 * @param: structure containing the new RT priority. 5454 * @param: structure containing the new RT priority.
5331 */ 5455 */
5332asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) 5456SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5333{ 5457{
5334 return do_sched_setscheduler(pid, -1, param); 5458 return do_sched_setscheduler(pid, -1, param);
5335} 5459}
@@ -5338,7 +5462,7 @@ asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5338 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5462 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5339 * @pid: the pid in question. 5463 * @pid: the pid in question.
5340 */ 5464 */
5341asmlinkage long sys_sched_getscheduler(pid_t pid) 5465SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5342{ 5466{
5343 struct task_struct *p; 5467 struct task_struct *p;
5344 int retval; 5468 int retval;
@@ -5363,7 +5487,7 @@ asmlinkage long sys_sched_getscheduler(pid_t pid)
5363 * @pid: the pid in question. 5487 * @pid: the pid in question.
5364 * @param: structure containing the RT priority. 5488 * @param: structure containing the RT priority.
5365 */ 5489 */
5366asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) 5490SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5367{ 5491{
5368 struct sched_param lp; 5492 struct sched_param lp;
5369 struct task_struct *p; 5493 struct task_struct *p;
@@ -5397,10 +5521,9 @@ out_unlock:
5397 return retval; 5521 return retval;
5398} 5522}
5399 5523
5400long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) 5524long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5401{ 5525{
5402 cpumask_t cpus_allowed; 5526 cpumask_var_t cpus_allowed, new_mask;
5403 cpumask_t new_mask = *in_mask;
5404 struct task_struct *p; 5527 struct task_struct *p;
5405 int retval; 5528 int retval;
5406 5529
@@ -5422,46 +5545,57 @@ long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5422 get_task_struct(p); 5545 get_task_struct(p);
5423 read_unlock(&tasklist_lock); 5546 read_unlock(&tasklist_lock);
5424 5547
5548 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5549 retval = -ENOMEM;
5550 goto out_put_task;
5551 }
5552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5553 retval = -ENOMEM;
5554 goto out_free_cpus_allowed;
5555 }
5425 retval = -EPERM; 5556 retval = -EPERM;
5426 if ((current->euid != p->euid) && (current->euid != p->uid) && 5557 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5427 !capable(CAP_SYS_NICE))
5428 goto out_unlock; 5558 goto out_unlock;
5429 5559
5430 retval = security_task_setscheduler(p, 0, NULL); 5560 retval = security_task_setscheduler(p, 0, NULL);
5431 if (retval) 5561 if (retval)
5432 goto out_unlock; 5562 goto out_unlock;
5433 5563
5434 cpuset_cpus_allowed(p, &cpus_allowed); 5564 cpuset_cpus_allowed(p, cpus_allowed);
5435 cpus_and(new_mask, new_mask, cpus_allowed); 5565 cpumask_and(new_mask, in_mask, cpus_allowed);
5436 again: 5566 again:
5437 retval = set_cpus_allowed_ptr(p, &new_mask); 5567 retval = set_cpus_allowed_ptr(p, new_mask);
5438 5568
5439 if (!retval) { 5569 if (!retval) {
5440 cpuset_cpus_allowed(p, &cpus_allowed); 5570 cpuset_cpus_allowed(p, cpus_allowed);
5441 if (!cpus_subset(new_mask, cpus_allowed)) { 5571 if (!cpumask_subset(new_mask, cpus_allowed)) {
5442 /* 5572 /*
5443 * We must have raced with a concurrent cpuset 5573 * We must have raced with a concurrent cpuset
5444 * update. Just reset the cpus_allowed to the 5574 * update. Just reset the cpus_allowed to the
5445 * cpuset's cpus_allowed 5575 * cpuset's cpus_allowed
5446 */ 5576 */
5447 new_mask = cpus_allowed; 5577 cpumask_copy(new_mask, cpus_allowed);
5448 goto again; 5578 goto again;
5449 } 5579 }
5450 } 5580 }
5451out_unlock: 5581out_unlock:
5582 free_cpumask_var(new_mask);
5583out_free_cpus_allowed:
5584 free_cpumask_var(cpus_allowed);
5585out_put_task:
5452 put_task_struct(p); 5586 put_task_struct(p);
5453 put_online_cpus(); 5587 put_online_cpus();
5454 return retval; 5588 return retval;
5455} 5589}
5456 5590
5457static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5591static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5458 cpumask_t *new_mask) 5592 struct cpumask *new_mask)
5459{ 5593{
5460 if (len < sizeof(cpumask_t)) { 5594 if (len < cpumask_size())
5461 memset(new_mask, 0, sizeof(cpumask_t)); 5595 cpumask_clear(new_mask);
5462 } else if (len > sizeof(cpumask_t)) { 5596 else if (len > cpumask_size())
5463 len = sizeof(cpumask_t); 5597 len = cpumask_size();
5464 } 5598
5465 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5599 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5466} 5600}
5467 5601
@@ -5471,20 +5605,23 @@ static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5471 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5472 * @user_mask_ptr: user-space pointer to the new cpu mask 5606 * @user_mask_ptr: user-space pointer to the new cpu mask
5473 */ 5607 */
5474asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, 5608SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5475 unsigned long __user *user_mask_ptr) 5609 unsigned long __user *, user_mask_ptr)
5476{ 5610{
5477 cpumask_t new_mask; 5611 cpumask_var_t new_mask;
5478 int retval; 5612 int retval;
5479 5613
5480 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); 5614 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5481 if (retval) 5615 return -ENOMEM;
5482 return retval;
5483 5616
5484 return sched_setaffinity(pid, &new_mask); 5617 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5618 if (retval == 0)
5619 retval = sched_setaffinity(pid, new_mask);
5620 free_cpumask_var(new_mask);
5621 return retval;
5485} 5622}
5486 5623
5487long sched_getaffinity(pid_t pid, cpumask_t *mask) 5624long sched_getaffinity(pid_t pid, struct cpumask *mask)
5488{ 5625{
5489 struct task_struct *p; 5626 struct task_struct *p;
5490 int retval; 5627 int retval;
@@ -5501,7 +5638,7 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask)
5501 if (retval) 5638 if (retval)
5502 goto out_unlock; 5639 goto out_unlock;
5503 5640
5504 cpus_and(*mask, p->cpus_allowed, cpu_online_map); 5641 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5505 5642
5506out_unlock: 5643out_unlock:
5507 read_unlock(&tasklist_lock); 5644 read_unlock(&tasklist_lock);
@@ -5516,23 +5653,28 @@ out_unlock:
5516 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5653 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5517 * @user_mask_ptr: user-space pointer to hold the current cpu mask 5654 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5518 */ 5655 */
5519asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, 5656SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5520 unsigned long __user *user_mask_ptr) 5657 unsigned long __user *, user_mask_ptr)
5521{ 5658{
5522 int ret; 5659 int ret;
5523 cpumask_t mask; 5660 cpumask_var_t mask;
5524 5661
5525 if (len < sizeof(cpumask_t)) 5662 if (len < cpumask_size())
5526 return -EINVAL; 5663 return -EINVAL;
5527 5664
5528 ret = sched_getaffinity(pid, &mask); 5665 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5529 if (ret < 0) 5666 return -ENOMEM;
5530 return ret;
5531 5667
5532 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) 5668 ret = sched_getaffinity(pid, mask);
5533 return -EFAULT; 5669 if (ret == 0) {
5670 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5671 ret = -EFAULT;
5672 else
5673 ret = cpumask_size();
5674 }
5675 free_cpumask_var(mask);
5534 5676
5535 return sizeof(cpumask_t); 5677 return ret;
5536} 5678}
5537 5679
5538/** 5680/**
@@ -5541,7 +5683,7 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5541 * This function yields the current CPU to other tasks. If there are no 5683 * This function yields the current CPU to other tasks. If there are no
5542 * other threads running on this CPU then this function will return. 5684 * other threads running on this CPU then this function will return.
5543 */ 5685 */
5544asmlinkage long sys_sched_yield(void) 5686SYSCALL_DEFINE0(sched_yield)
5545{ 5687{
5546 struct rq *rq = this_rq_lock(); 5688 struct rq *rq = this_rq_lock();
5547 5689
@@ -5682,7 +5824,7 @@ long __sched io_schedule_timeout(long timeout)
5682 * this syscall returns the maximum rt_priority that can be used 5824 * this syscall returns the maximum rt_priority that can be used
5683 * by a given scheduling class. 5825 * by a given scheduling class.
5684 */ 5826 */
5685asmlinkage long sys_sched_get_priority_max(int policy) 5827SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5686{ 5828{
5687 int ret = -EINVAL; 5829 int ret = -EINVAL;
5688 5830
@@ -5707,7 +5849,7 @@ asmlinkage long sys_sched_get_priority_max(int policy)
5707 * this syscall returns the minimum rt_priority that can be used 5849 * this syscall returns the minimum rt_priority that can be used
5708 * by a given scheduling class. 5850 * by a given scheduling class.
5709 */ 5851 */
5710asmlinkage long sys_sched_get_priority_min(int policy) 5852SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5711{ 5853{
5712 int ret = -EINVAL; 5854 int ret = -EINVAL;
5713 5855
@@ -5732,8 +5874,8 @@ asmlinkage long sys_sched_get_priority_min(int policy)
5732 * this syscall writes the default timeslice value of a given process 5874 * this syscall writes the default timeslice value of a given process
5733 * into the user-space timespec buffer. A value of '0' means infinity. 5875 * into the user-space timespec buffer. A value of '0' means infinity.
5734 */ 5876 */
5735asmlinkage 5877SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5736long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) 5878 struct timespec __user *, interval)
5737{ 5879{
5738 struct task_struct *p; 5880 struct task_struct *p;
5739 unsigned int time_slice; 5881 unsigned int time_slice;
@@ -5802,12 +5944,7 @@ void sched_show_task(struct task_struct *p)
5802 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 5944 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5803#endif 5945#endif
5804#ifdef CONFIG_DEBUG_STACK_USAGE 5946#ifdef CONFIG_DEBUG_STACK_USAGE
5805 { 5947 free = stack_not_used(p);
5806 unsigned long *n = end_of_stack(p);
5807 while (!*n)
5808 n++;
5809 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5810 }
5811#endif 5948#endif
5812 printk(KERN_CONT "%5lu %5d %6d\n", free, 5949 printk(KERN_CONT "%5lu %5d %6d\n", free,
5813 task_pid_nr(p), task_pid_nr(p->real_parent)); 5950 task_pid_nr(p), task_pid_nr(p->real_parent));
@@ -5868,14 +6005,15 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
5868 struct rq *rq = cpu_rq(cpu); 6005 struct rq *rq = cpu_rq(cpu);
5869 unsigned long flags; 6006 unsigned long flags;
5870 6007
6008 spin_lock_irqsave(&rq->lock, flags);
6009
5871 __sched_fork(idle); 6010 __sched_fork(idle);
5872 idle->se.exec_start = sched_clock(); 6011 idle->se.exec_start = sched_clock();
5873 6012
5874 idle->prio = idle->normal_prio = MAX_PRIO; 6013 idle->prio = idle->normal_prio = MAX_PRIO;
5875 idle->cpus_allowed = cpumask_of_cpu(cpu); 6014 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5876 __set_task_cpu(idle, cpu); 6015 __set_task_cpu(idle, cpu);
5877 6016
5878 spin_lock_irqsave(&rq->lock, flags);
5879 rq->curr = rq->idle = idle; 6017 rq->curr = rq->idle = idle;
5880#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 6018#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5881 idle->oncpu = 1; 6019 idle->oncpu = 1;
@@ -5892,6 +6030,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
5892 * The idle tasks have their own, simple scheduling class: 6030 * The idle tasks have their own, simple scheduling class:
5893 */ 6031 */
5894 idle->sched_class = &idle_sched_class; 6032 idle->sched_class = &idle_sched_class;
6033 ftrace_graph_init_task(idle);
5895} 6034}
5896 6035
5897/* 6036/*
@@ -5899,9 +6038,9 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
5899 * indicates which cpus entered this state. This is used 6038 * indicates which cpus entered this state. This is used
5900 * in the rcu update to wait only for active cpus. For system 6039 * in the rcu update to wait only for active cpus. For system
5901 * which do not switch off the HZ timer nohz_cpu_mask should 6040 * which do not switch off the HZ timer nohz_cpu_mask should
5902 * always be CPU_MASK_NONE. 6041 * always be CPU_BITS_NONE.
5903 */ 6042 */
5904cpumask_t nohz_cpu_mask = CPU_MASK_NONE; 6043cpumask_var_t nohz_cpu_mask;
5905 6044
5906/* 6045/*
5907 * Increase the granularity value when there are more CPUs, 6046 * Increase the granularity value when there are more CPUs,
@@ -5956,7 +6095,7 @@ static inline void sched_init_granularity(void)
5956 * task must not exit() & deallocate itself prematurely. The 6095 * task must not exit() & deallocate itself prematurely. The
5957 * call is not atomic; no spinlocks may be held. 6096 * call is not atomic; no spinlocks may be held.
5958 */ 6097 */
5959int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) 6098int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5960{ 6099{
5961 struct migration_req req; 6100 struct migration_req req;
5962 unsigned long flags; 6101 unsigned long flags;
@@ -5964,13 +6103,13 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5964 int ret = 0; 6103 int ret = 0;
5965 6104
5966 rq = task_rq_lock(p, &flags); 6105 rq = task_rq_lock(p, &flags);
5967 if (!cpus_intersects(*new_mask, cpu_online_map)) { 6106 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
5968 ret = -EINVAL; 6107 ret = -EINVAL;
5969 goto out; 6108 goto out;
5970 } 6109 }
5971 6110
5972 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && 6111 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5973 !cpus_equal(p->cpus_allowed, *new_mask))) { 6112 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5974 ret = -EINVAL; 6113 ret = -EINVAL;
5975 goto out; 6114 goto out;
5976 } 6115 }
@@ -5978,15 +6117,15 @@ int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5978 if (p->sched_class->set_cpus_allowed) 6117 if (p->sched_class->set_cpus_allowed)
5979 p->sched_class->set_cpus_allowed(p, new_mask); 6118 p->sched_class->set_cpus_allowed(p, new_mask);
5980 else { 6119 else {
5981 p->cpus_allowed = *new_mask; 6120 cpumask_copy(&p->cpus_allowed, new_mask);
5982 p->rt.nr_cpus_allowed = cpus_weight(*new_mask); 6121 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5983 } 6122 }
5984 6123
5985 /* Can the task run on the task's current CPU? If so, we're done */ 6124 /* Can the task run on the task's current CPU? If so, we're done */
5986 if (cpu_isset(task_cpu(p), *new_mask)) 6125 if (cpumask_test_cpu(task_cpu(p), new_mask))
5987 goto out; 6126 goto out;
5988 6127
5989 if (migrate_task(p, any_online_cpu(*new_mask), &req)) { 6128 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
5990 /* Need help from migration thread: drop lock and wait. */ 6129 /* Need help from migration thread: drop lock and wait. */
5991 task_rq_unlock(rq, &flags); 6130 task_rq_unlock(rq, &flags);
5992 wake_up_process(rq->migration_thread); 6131 wake_up_process(rq->migration_thread);
@@ -6028,7 +6167,7 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6028 if (task_cpu(p) != src_cpu) 6167 if (task_cpu(p) != src_cpu)
6029 goto done; 6168 goto done;
6030 /* Affinity changed (again). */ 6169 /* Affinity changed (again). */
6031 if (!cpu_isset(dest_cpu, p->cpus_allowed)) 6170 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6032 goto fail; 6171 goto fail;
6033 6172
6034 on_rq = p->se.on_rq; 6173 on_rq = p->se.on_rq;
@@ -6122,54 +6261,44 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6122 6261
6123/* 6262/*
6124 * Figure out where task on dead CPU should go, use force if necessary. 6263 * Figure out where task on dead CPU should go, use force if necessary.
6125 * NOTE: interrupts should be disabled by the caller
6126 */ 6264 */
6127static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 6265static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6128{ 6266{
6129 unsigned long flags;
6130 cpumask_t mask;
6131 struct rq *rq;
6132 int dest_cpu; 6267 int dest_cpu;
6268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6133 6269
6134 do { 6270again:
6135 /* On same node? */ 6271 /* Look for allowed, online CPU in same node. */
6136 mask = node_to_cpumask(cpu_to_node(dead_cpu)); 6272 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6137 cpus_and(mask, mask, p->cpus_allowed); 6273 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6138 dest_cpu = any_online_cpu(mask); 6274 goto move;
6139
6140 /* On any allowed CPU? */
6141 if (dest_cpu >= nr_cpu_ids)
6142 dest_cpu = any_online_cpu(p->cpus_allowed);
6143 6275
6144 /* No more Mr. Nice Guy. */ 6276 /* Any allowed, online CPU? */
6145 if (dest_cpu >= nr_cpu_ids) { 6277 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6146 cpumask_t cpus_allowed; 6278 if (dest_cpu < nr_cpu_ids)
6279 goto move;
6147 6280
6148 cpuset_cpus_allowed_locked(p, &cpus_allowed); 6281 /* No more Mr. Nice Guy. */
6149 /* 6282 if (dest_cpu >= nr_cpu_ids) {
6150 * Try to stay on the same cpuset, where the 6283 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6151 * current cpuset may be a subset of all cpus. 6284 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6152 * The cpuset_cpus_allowed_locked() variant of
6153 * cpuset_cpus_allowed() will not block. It must be
6154 * called within calls to cpuset_lock/cpuset_unlock.
6155 */
6156 rq = task_rq_lock(p, &flags);
6157 p->cpus_allowed = cpus_allowed;
6158 dest_cpu = any_online_cpu(p->cpus_allowed);
6159 task_rq_unlock(rq, &flags);
6160 6285
6161 /* 6286 /*
6162 * Don't tell them about moving exiting tasks or 6287 * Don't tell them about moving exiting tasks or
6163 * kernel threads (both mm NULL), since they never 6288 * kernel threads (both mm NULL), since they never
6164 * leave kernel. 6289 * leave kernel.
6165 */ 6290 */
6166 if (p->mm && printk_ratelimit()) { 6291 if (p->mm && printk_ratelimit()) {
6167 printk(KERN_INFO "process %d (%s) no " 6292 printk(KERN_INFO "process %d (%s) no "
6168 "longer affine to cpu%d\n", 6293 "longer affine to cpu%d\n",
6169 task_pid_nr(p), p->comm, dead_cpu); 6294 task_pid_nr(p), p->comm, dead_cpu);
6170 }
6171 } 6295 }
6172 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); 6296 }
6297
6298move:
6299 /* It can have affinity changed while we were choosing. */
6300 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6301 goto again;
6173} 6302}
6174 6303
6175/* 6304/*
@@ -6181,7 +6310,7 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6181 */ 6310 */
6182static void migrate_nr_uninterruptible(struct rq *rq_src) 6311static void migrate_nr_uninterruptible(struct rq *rq_src)
6183{ 6312{
6184 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); 6313 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6185 unsigned long flags; 6314 unsigned long flags;
6186 6315
6187 local_irq_save(flags); 6316 local_irq_save(flags);
@@ -6471,7 +6600,7 @@ static void set_rq_online(struct rq *rq)
6471 if (!rq->online) { 6600 if (!rq->online) {
6472 const struct sched_class *class; 6601 const struct sched_class *class;
6473 6602
6474 cpu_set(rq->cpu, rq->rd->online); 6603 cpumask_set_cpu(rq->cpu, rq->rd->online);
6475 rq->online = 1; 6604 rq->online = 1;
6476 6605
6477 for_each_class(class) { 6606 for_each_class(class) {
@@ -6491,7 +6620,7 @@ static void set_rq_offline(struct rq *rq)
6491 class->rq_offline(rq); 6620 class->rq_offline(rq);
6492 } 6621 }
6493 6622
6494 cpu_clear(rq->cpu, rq->rd->online); 6623 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6495 rq->online = 0; 6624 rq->online = 0;
6496 } 6625 }
6497} 6626}
@@ -6532,7 +6661,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6532 rq = cpu_rq(cpu); 6661 rq = cpu_rq(cpu);
6533 spin_lock_irqsave(&rq->lock, flags); 6662 spin_lock_irqsave(&rq->lock, flags);
6534 if (rq->rd) { 6663 if (rq->rd) {
6535 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6664 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6536 6665
6537 set_rq_online(rq); 6666 set_rq_online(rq);
6538 } 6667 }
@@ -6546,7 +6675,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6546 break; 6675 break;
6547 /* Unbind it from offline cpu so it can run. Fall thru. */ 6676 /* Unbind it from offline cpu so it can run. Fall thru. */
6548 kthread_bind(cpu_rq(cpu)->migration_thread, 6677 kthread_bind(cpu_rq(cpu)->migration_thread,
6549 any_online_cpu(cpu_online_map)); 6678 cpumask_any(cpu_online_mask));
6550 kthread_stop(cpu_rq(cpu)->migration_thread); 6679 kthread_stop(cpu_rq(cpu)->migration_thread);
6551 cpu_rq(cpu)->migration_thread = NULL; 6680 cpu_rq(cpu)->migration_thread = NULL;
6552 break; 6681 break;
@@ -6583,7 +6712,9 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6583 req = list_entry(rq->migration_queue.next, 6712 req = list_entry(rq->migration_queue.next,
6584 struct migration_req, list); 6713 struct migration_req, list);
6585 list_del_init(&req->list); 6714 list_del_init(&req->list);
6715 spin_unlock_irq(&rq->lock);
6586 complete(&req->done); 6716 complete(&req->done);
6717 spin_lock_irq(&rq->lock);
6587 } 6718 }
6588 spin_unlock_irq(&rq->lock); 6719 spin_unlock_irq(&rq->lock);
6589 break; 6720 break;
@@ -6594,7 +6725,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6594 rq = cpu_rq(cpu); 6725 rq = cpu_rq(cpu);
6595 spin_lock_irqsave(&rq->lock, flags); 6726 spin_lock_irqsave(&rq->lock, flags);
6596 if (rq->rd) { 6727 if (rq->rd) {
6597 BUG_ON(!cpu_isset(cpu, rq->rd->span)); 6728 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6598 set_rq_offline(rq); 6729 set_rq_offline(rq);
6599 } 6730 }
6600 spin_unlock_irqrestore(&rq->lock, flags); 6731 spin_unlock_irqrestore(&rq->lock, flags);
@@ -6632,36 +6763,14 @@ early_initcall(migration_init);
6632 6763
6633#ifdef CONFIG_SCHED_DEBUG 6764#ifdef CONFIG_SCHED_DEBUG
6634 6765
6635static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6636{
6637 switch (lvl) {
6638 case SD_LV_NONE:
6639 return "NONE";
6640 case SD_LV_SIBLING:
6641 return "SIBLING";
6642 case SD_LV_MC:
6643 return "MC";
6644 case SD_LV_CPU:
6645 return "CPU";
6646 case SD_LV_NODE:
6647 return "NODE";
6648 case SD_LV_ALLNODES:
6649 return "ALLNODES";
6650 case SD_LV_MAX:
6651 return "MAX";
6652
6653 }
6654 return "MAX";
6655}
6656
6657static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 6766static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6658 cpumask_t *groupmask) 6767 struct cpumask *groupmask)
6659{ 6768{
6660 struct sched_group *group = sd->groups; 6769 struct sched_group *group = sd->groups;
6661 char str[256]; 6770 char str[256];
6662 6771
6663 cpulist_scnprintf(str, sizeof(str), sd->span); 6772 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6664 cpus_clear(*groupmask); 6773 cpumask_clear(groupmask);
6665 6774
6666 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 6775 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6667 6776
@@ -6673,14 +6782,13 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6673 return -1; 6782 return -1;
6674 } 6783 }
6675 6784
6676 printk(KERN_CONT "span %s level %s\n", 6785 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6677 str, sd_level_to_string(sd->level));
6678 6786
6679 if (!cpu_isset(cpu, sd->span)) { 6787 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6680 printk(KERN_ERR "ERROR: domain->span does not contain " 6788 printk(KERN_ERR "ERROR: domain->span does not contain "
6681 "CPU%d\n", cpu); 6789 "CPU%d\n", cpu);
6682 } 6790 }
6683 if (!cpu_isset(cpu, group->cpumask)) { 6791 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6684 printk(KERN_ERR "ERROR: domain->groups does not contain" 6792 printk(KERN_ERR "ERROR: domain->groups does not contain"
6685 " CPU%d\n", cpu); 6793 " CPU%d\n", cpu);
6686 } 6794 }
@@ -6700,31 +6808,32 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6700 break; 6808 break;
6701 } 6809 }
6702 6810
6703 if (!cpus_weight(group->cpumask)) { 6811 if (!cpumask_weight(sched_group_cpus(group))) {
6704 printk(KERN_CONT "\n"); 6812 printk(KERN_CONT "\n");
6705 printk(KERN_ERR "ERROR: empty group\n"); 6813 printk(KERN_ERR "ERROR: empty group\n");
6706 break; 6814 break;
6707 } 6815 }
6708 6816
6709 if (cpus_intersects(*groupmask, group->cpumask)) { 6817 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6710 printk(KERN_CONT "\n"); 6818 printk(KERN_CONT "\n");
6711 printk(KERN_ERR "ERROR: repeated CPUs\n"); 6819 printk(KERN_ERR "ERROR: repeated CPUs\n");
6712 break; 6820 break;
6713 } 6821 }
6714 6822
6715 cpus_or(*groupmask, *groupmask, group->cpumask); 6823 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6716 6824
6717 cpulist_scnprintf(str, sizeof(str), group->cpumask); 6825 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6718 printk(KERN_CONT " %s", str); 6826 printk(KERN_CONT " %s", str);
6719 6827
6720 group = group->next; 6828 group = group->next;
6721 } while (group != sd->groups); 6829 } while (group != sd->groups);
6722 printk(KERN_CONT "\n"); 6830 printk(KERN_CONT "\n");
6723 6831
6724 if (!cpus_equal(sd->span, *groupmask)) 6832 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6725 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 6833 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6726 6834
6727 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) 6835 if (sd->parent &&
6836 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6728 printk(KERN_ERR "ERROR: parent span is not a superset " 6837 printk(KERN_ERR "ERROR: parent span is not a superset "
6729 "of domain->span\n"); 6838 "of domain->span\n");
6730 return 0; 6839 return 0;
@@ -6732,7 +6841,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6732 6841
6733static void sched_domain_debug(struct sched_domain *sd, int cpu) 6842static void sched_domain_debug(struct sched_domain *sd, int cpu)
6734{ 6843{
6735 cpumask_t *groupmask; 6844 cpumask_var_t groupmask;
6736 int level = 0; 6845 int level = 0;
6737 6846
6738 if (!sd) { 6847 if (!sd) {
@@ -6742,8 +6851,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6742 6851
6743 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 6852 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6744 6853
6745 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 6854 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6746 if (!groupmask) {
6747 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); 6855 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6748 return; 6856 return;
6749 } 6857 }
@@ -6756,7 +6864,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6756 if (!sd) 6864 if (!sd)
6757 break; 6865 break;
6758 } 6866 }
6759 kfree(groupmask); 6867 free_cpumask_var(groupmask);
6760} 6868}
6761#else /* !CONFIG_SCHED_DEBUG */ 6869#else /* !CONFIG_SCHED_DEBUG */
6762# define sched_domain_debug(sd, cpu) do { } while (0) 6870# define sched_domain_debug(sd, cpu) do { } while (0)
@@ -6764,7 +6872,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
6764 6872
6765static int sd_degenerate(struct sched_domain *sd) 6873static int sd_degenerate(struct sched_domain *sd)
6766{ 6874{
6767 if (cpus_weight(sd->span) == 1) 6875 if (cpumask_weight(sched_domain_span(sd)) == 1)
6768 return 1; 6876 return 1;
6769 6877
6770 /* Following flags need at least 2 groups */ 6878 /* Following flags need at least 2 groups */
@@ -6795,7 +6903,7 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6795 if (sd_degenerate(parent)) 6903 if (sd_degenerate(parent))
6796 return 1; 6904 return 1;
6797 6905
6798 if (!cpus_equal(sd->span, parent->span)) 6906 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6799 return 0; 6907 return 0;
6800 6908
6801 /* Does parent contain flags not in child? */ 6909 /* Does parent contain flags not in child? */
@@ -6810,6 +6918,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6810 SD_BALANCE_EXEC | 6918 SD_BALANCE_EXEC |
6811 SD_SHARE_CPUPOWER | 6919 SD_SHARE_CPUPOWER |
6812 SD_SHARE_PKG_RESOURCES); 6920 SD_SHARE_PKG_RESOURCES);
6921 if (nr_node_ids == 1)
6922 pflags &= ~SD_SERIALIZE;
6813 } 6923 }
6814 if (~cflags & pflags) 6924 if (~cflags & pflags)
6815 return 0; 6925 return 0;
@@ -6817,6 +6927,16 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6817 return 1; 6927 return 1;
6818} 6928}
6819 6929
6930static void free_rootdomain(struct root_domain *rd)
6931{
6932 cpupri_cleanup(&rd->cpupri);
6933
6934 free_cpumask_var(rd->rto_mask);
6935 free_cpumask_var(rd->online);
6936 free_cpumask_var(rd->span);
6937 kfree(rd);
6938}
6939
6820static void rq_attach_root(struct rq *rq, struct root_domain *rd) 6940static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6821{ 6941{
6822 unsigned long flags; 6942 unsigned long flags;
@@ -6826,38 +6946,62 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6826 if (rq->rd) { 6946 if (rq->rd) {
6827 struct root_domain *old_rd = rq->rd; 6947 struct root_domain *old_rd = rq->rd;
6828 6948
6829 if (cpu_isset(rq->cpu, old_rd->online)) 6949 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6830 set_rq_offline(rq); 6950 set_rq_offline(rq);
6831 6951
6832 cpu_clear(rq->cpu, old_rd->span); 6952 cpumask_clear_cpu(rq->cpu, old_rd->span);
6833 6953
6834 if (atomic_dec_and_test(&old_rd->refcount)) 6954 if (atomic_dec_and_test(&old_rd->refcount))
6835 kfree(old_rd); 6955 free_rootdomain(old_rd);
6836 } 6956 }
6837 6957
6838 atomic_inc(&rd->refcount); 6958 atomic_inc(&rd->refcount);
6839 rq->rd = rd; 6959 rq->rd = rd;
6840 6960
6841 cpu_set(rq->cpu, rd->span); 6961 cpumask_set_cpu(rq->cpu, rd->span);
6842 if (cpu_isset(rq->cpu, cpu_online_map)) 6962 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6843 set_rq_online(rq); 6963 set_rq_online(rq);
6844 6964
6845 spin_unlock_irqrestore(&rq->lock, flags); 6965 spin_unlock_irqrestore(&rq->lock, flags);
6846} 6966}
6847 6967
6848static void init_rootdomain(struct root_domain *rd) 6968static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
6849{ 6969{
6850 memset(rd, 0, sizeof(*rd)); 6970 memset(rd, 0, sizeof(*rd));
6851 6971
6852 cpus_clear(rd->span); 6972 if (bootmem) {
6853 cpus_clear(rd->online); 6973 alloc_bootmem_cpumask_var(&def_root_domain.span);
6974 alloc_bootmem_cpumask_var(&def_root_domain.online);
6975 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6976 cpupri_init(&rd->cpupri, true);
6977 return 0;
6978 }
6979
6980 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6981 goto out;
6982 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6983 goto free_span;
6984 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6985 goto free_online;
6986
6987 if (cpupri_init(&rd->cpupri, false) != 0)
6988 goto free_rto_mask;
6989 return 0;
6854 6990
6855 cpupri_init(&rd->cpupri); 6991free_rto_mask:
6992 free_cpumask_var(rd->rto_mask);
6993free_online:
6994 free_cpumask_var(rd->online);
6995free_span:
6996 free_cpumask_var(rd->span);
6997out:
6998 return -ENOMEM;
6856} 6999}
6857 7000
6858static void init_defrootdomain(void) 7001static void init_defrootdomain(void)
6859{ 7002{
6860 init_rootdomain(&def_root_domain); 7003 init_rootdomain(&def_root_domain, true);
7004
6861 atomic_set(&def_root_domain.refcount, 1); 7005 atomic_set(&def_root_domain.refcount, 1);
6862} 7006}
6863 7007
@@ -6869,7 +7013,10 @@ static struct root_domain *alloc_rootdomain(void)
6869 if (!rd) 7013 if (!rd)
6870 return NULL; 7014 return NULL;
6871 7015
6872 init_rootdomain(rd); 7016 if (init_rootdomain(rd, false) != 0) {
7017 kfree(rd);
7018 return NULL;
7019 }
6873 7020
6874 return rd; 7021 return rd;
6875} 7022}
@@ -6911,19 +7058,12 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6911} 7058}
6912 7059
6913/* cpus with isolated domains */ 7060/* cpus with isolated domains */
6914static cpumask_t cpu_isolated_map = CPU_MASK_NONE; 7061static cpumask_var_t cpu_isolated_map;
6915 7062
6916/* Setup the mask of cpus configured for isolated domains */ 7063/* Setup the mask of cpus configured for isolated domains */
6917static int __init isolated_cpu_setup(char *str) 7064static int __init isolated_cpu_setup(char *str)
6918{ 7065{
6919 static int __initdata ints[NR_CPUS]; 7066 cpulist_parse(str, cpu_isolated_map);
6920 int i;
6921
6922 str = get_options(str, ARRAY_SIZE(ints), ints);
6923 cpus_clear(cpu_isolated_map);
6924 for (i = 1; i <= ints[0]; i++)
6925 if (ints[i] < NR_CPUS)
6926 cpu_set(ints[i], cpu_isolated_map);
6927 return 1; 7067 return 1;
6928} 7068}
6929 7069
@@ -6932,42 +7072,43 @@ __setup("isolcpus=", isolated_cpu_setup);
6932/* 7072/*
6933 * init_sched_build_groups takes the cpumask we wish to span, and a pointer 7073 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6934 * to a function which identifies what group(along with sched group) a CPU 7074 * to a function which identifies what group(along with sched group) a CPU
6935 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS 7075 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6936 * (due to the fact that we keep track of groups covered with a cpumask_t). 7076 * (due to the fact that we keep track of groups covered with a struct cpumask).
6937 * 7077 *
6938 * init_sched_build_groups will build a circular linked list of the groups 7078 * init_sched_build_groups will build a circular linked list of the groups
6939 * covered by the given span, and will set each group's ->cpumask correctly, 7079 * covered by the given span, and will set each group's ->cpumask correctly,
6940 * and ->cpu_power to 0. 7080 * and ->cpu_power to 0.
6941 */ 7081 */
6942static void 7082static void
6943init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, 7083init_sched_build_groups(const struct cpumask *span,
6944 int (*group_fn)(int cpu, const cpumask_t *cpu_map, 7084 const struct cpumask *cpu_map,
7085 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6945 struct sched_group **sg, 7086 struct sched_group **sg,
6946 cpumask_t *tmpmask), 7087 struct cpumask *tmpmask),
6947 cpumask_t *covered, cpumask_t *tmpmask) 7088 struct cpumask *covered, struct cpumask *tmpmask)
6948{ 7089{
6949 struct sched_group *first = NULL, *last = NULL; 7090 struct sched_group *first = NULL, *last = NULL;
6950 int i; 7091 int i;
6951 7092
6952 cpus_clear(*covered); 7093 cpumask_clear(covered);
6953 7094
6954 for_each_cpu_mask_nr(i, *span) { 7095 for_each_cpu(i, span) {
6955 struct sched_group *sg; 7096 struct sched_group *sg;
6956 int group = group_fn(i, cpu_map, &sg, tmpmask); 7097 int group = group_fn(i, cpu_map, &sg, tmpmask);
6957 int j; 7098 int j;
6958 7099
6959 if (cpu_isset(i, *covered)) 7100 if (cpumask_test_cpu(i, covered))
6960 continue; 7101 continue;
6961 7102
6962 cpus_clear(sg->cpumask); 7103 cpumask_clear(sched_group_cpus(sg));
6963 sg->__cpu_power = 0; 7104 sg->__cpu_power = 0;
6964 7105
6965 for_each_cpu_mask_nr(j, *span) { 7106 for_each_cpu(j, span) {
6966 if (group_fn(j, cpu_map, NULL, tmpmask) != group) 7107 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6967 continue; 7108 continue;
6968 7109
6969 cpu_set(j, *covered); 7110 cpumask_set_cpu(j, covered);
6970 cpu_set(j, sg->cpumask); 7111 cpumask_set_cpu(j, sched_group_cpus(sg));
6971 } 7112 }
6972 if (!first) 7113 if (!first)
6973 first = sg; 7114 first = sg;
@@ -7031,23 +7172,21 @@ static int find_next_best_node(int node, nodemask_t *used_nodes)
7031 * should be one that prevents unnecessary balancing, but also spreads tasks 7172 * should be one that prevents unnecessary balancing, but also spreads tasks
7032 * out optimally. 7173 * out optimally.
7033 */ 7174 */
7034static void sched_domain_node_span(int node, cpumask_t *span) 7175static void sched_domain_node_span(int node, struct cpumask *span)
7035{ 7176{
7036 nodemask_t used_nodes; 7177 nodemask_t used_nodes;
7037 node_to_cpumask_ptr(nodemask, node);
7038 int i; 7178 int i;
7039 7179
7040 cpus_clear(*span); 7180 cpumask_clear(span);
7041 nodes_clear(used_nodes); 7181 nodes_clear(used_nodes);
7042 7182
7043 cpus_or(*span, *span, *nodemask); 7183 cpumask_or(span, span, cpumask_of_node(node));
7044 node_set(node, used_nodes); 7184 node_set(node, used_nodes);
7045 7185
7046 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 7186 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7047 int next_node = find_next_best_node(node, &used_nodes); 7187 int next_node = find_next_best_node(node, &used_nodes);
7048 7188
7049 node_to_cpumask_ptr_next(nodemask, next_node); 7189 cpumask_or(span, span, cpumask_of_node(next_node));
7050 cpus_or(*span, *span, *nodemask);
7051 } 7190 }
7052} 7191}
7053#endif /* CONFIG_NUMA */ 7192#endif /* CONFIG_NUMA */
@@ -7055,18 +7194,33 @@ static void sched_domain_node_span(int node, cpumask_t *span)
7055int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 7194int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7056 7195
7057/* 7196/*
7197 * The cpus mask in sched_group and sched_domain hangs off the end.
7198 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7199 * for nr_cpu_ids < CONFIG_NR_CPUS.
7200 */
7201struct static_sched_group {
7202 struct sched_group sg;
7203 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7204};
7205
7206struct static_sched_domain {
7207 struct sched_domain sd;
7208 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7209};
7210
7211/*
7058 * SMT sched-domains: 7212 * SMT sched-domains:
7059 */ 7213 */
7060#ifdef CONFIG_SCHED_SMT 7214#ifdef CONFIG_SCHED_SMT
7061static DEFINE_PER_CPU(struct sched_domain, cpu_domains); 7215static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7062static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); 7216static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7063 7217
7064static int 7218static int
7065cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7219cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7066 cpumask_t *unused) 7220 struct sched_group **sg, struct cpumask *unused)
7067{ 7221{
7068 if (sg) 7222 if (sg)
7069 *sg = &per_cpu(sched_group_cpus, cpu); 7223 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7070 return cpu; 7224 return cpu;
7071} 7225}
7072#endif /* CONFIG_SCHED_SMT */ 7226#endif /* CONFIG_SCHED_SMT */
@@ -7075,56 +7229,53 @@ cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7075 * multi-core sched-domains: 7229 * multi-core sched-domains:
7076 */ 7230 */
7077#ifdef CONFIG_SCHED_MC 7231#ifdef CONFIG_SCHED_MC
7078static DEFINE_PER_CPU(struct sched_domain, core_domains); 7232static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7079static DEFINE_PER_CPU(struct sched_group, sched_group_core); 7233static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7080#endif /* CONFIG_SCHED_MC */ 7234#endif /* CONFIG_SCHED_MC */
7081 7235
7082#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) 7236#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7083static int 7237static int
7084cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7238cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7085 cpumask_t *mask) 7239 struct sched_group **sg, struct cpumask *mask)
7086{ 7240{
7087 int group; 7241 int group;
7088 7242
7089 *mask = per_cpu(cpu_sibling_map, cpu); 7243 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7090 cpus_and(*mask, *mask, *cpu_map); 7244 group = cpumask_first(mask);
7091 group = first_cpu(*mask);
7092 if (sg) 7245 if (sg)
7093 *sg = &per_cpu(sched_group_core, group); 7246 *sg = &per_cpu(sched_group_core, group).sg;
7094 return group; 7247 return group;
7095} 7248}
7096#elif defined(CONFIG_SCHED_MC) 7249#elif defined(CONFIG_SCHED_MC)
7097static int 7250static int
7098cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7251cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7099 cpumask_t *unused) 7252 struct sched_group **sg, struct cpumask *unused)
7100{ 7253{
7101 if (sg) 7254 if (sg)
7102 *sg = &per_cpu(sched_group_core, cpu); 7255 *sg = &per_cpu(sched_group_core, cpu).sg;
7103 return cpu; 7256 return cpu;
7104} 7257}
7105#endif 7258#endif
7106 7259
7107static DEFINE_PER_CPU(struct sched_domain, phys_domains); 7260static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7108static DEFINE_PER_CPU(struct sched_group, sched_group_phys); 7261static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7109 7262
7110static int 7263static int
7111cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, 7264cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7112 cpumask_t *mask) 7265 struct sched_group **sg, struct cpumask *mask)
7113{ 7266{
7114 int group; 7267 int group;
7115#ifdef CONFIG_SCHED_MC 7268#ifdef CONFIG_SCHED_MC
7116 *mask = cpu_coregroup_map(cpu); 7269 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7117 cpus_and(*mask, *mask, *cpu_map); 7270 group = cpumask_first(mask);
7118 group = first_cpu(*mask);
7119#elif defined(CONFIG_SCHED_SMT) 7271#elif defined(CONFIG_SCHED_SMT)
7120 *mask = per_cpu(cpu_sibling_map, cpu); 7272 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7121 cpus_and(*mask, *mask, *cpu_map); 7273 group = cpumask_first(mask);
7122 group = first_cpu(*mask);
7123#else 7274#else
7124 group = cpu; 7275 group = cpu;
7125#endif 7276#endif
7126 if (sg) 7277 if (sg)
7127 *sg = &per_cpu(sched_group_phys, group); 7278 *sg = &per_cpu(sched_group_phys, group).sg;
7128 return group; 7279 return group;
7129} 7280}
7130 7281
@@ -7134,23 +7285,23 @@ cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7134 * groups, so roll our own. Now each node has its own list of groups which 7285 * groups, so roll our own. Now each node has its own list of groups which
7135 * gets dynamically allocated. 7286 * gets dynamically allocated.
7136 */ 7287 */
7137static DEFINE_PER_CPU(struct sched_domain, node_domains); 7288static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7138static struct sched_group ***sched_group_nodes_bycpu; 7289static struct sched_group ***sched_group_nodes_bycpu;
7139 7290
7140static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); 7291static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7141static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); 7292static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7142 7293
7143static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, 7294static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7144 struct sched_group **sg, cpumask_t *nodemask) 7295 struct sched_group **sg,
7296 struct cpumask *nodemask)
7145{ 7297{
7146 int group; 7298 int group;
7147 7299
7148 *nodemask = node_to_cpumask(cpu_to_node(cpu)); 7300 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7149 cpus_and(*nodemask, *nodemask, *cpu_map); 7301 group = cpumask_first(nodemask);
7150 group = first_cpu(*nodemask);
7151 7302
7152 if (sg) 7303 if (sg)
7153 *sg = &per_cpu(sched_group_allnodes, group); 7304 *sg = &per_cpu(sched_group_allnodes, group).sg;
7154 return group; 7305 return group;
7155} 7306}
7156 7307
@@ -7162,11 +7313,11 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
7162 if (!sg) 7313 if (!sg)
7163 return; 7314 return;
7164 do { 7315 do {
7165 for_each_cpu_mask_nr(j, sg->cpumask) { 7316 for_each_cpu(j, sched_group_cpus(sg)) {
7166 struct sched_domain *sd; 7317 struct sched_domain *sd;
7167 7318
7168 sd = &per_cpu(phys_domains, j); 7319 sd = &per_cpu(phys_domains, j).sd;
7169 if (j != first_cpu(sd->groups->cpumask)) { 7320 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7170 /* 7321 /*
7171 * Only add "power" once for each 7322 * Only add "power" once for each
7172 * physical package. 7323 * physical package.
@@ -7183,11 +7334,12 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
7183 7334
7184#ifdef CONFIG_NUMA 7335#ifdef CONFIG_NUMA
7185/* Free memory allocated for various sched_group structures */ 7336/* Free memory allocated for various sched_group structures */
7186static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) 7337static void free_sched_groups(const struct cpumask *cpu_map,
7338 struct cpumask *nodemask)
7187{ 7339{
7188 int cpu, i; 7340 int cpu, i;
7189 7341
7190 for_each_cpu_mask_nr(cpu, *cpu_map) { 7342 for_each_cpu(cpu, cpu_map) {
7191 struct sched_group **sched_group_nodes 7343 struct sched_group **sched_group_nodes
7192 = sched_group_nodes_bycpu[cpu]; 7344 = sched_group_nodes_bycpu[cpu];
7193 7345
@@ -7197,9 +7349,8 @@ static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7197 for (i = 0; i < nr_node_ids; i++) { 7349 for (i = 0; i < nr_node_ids; i++) {
7198 struct sched_group *oldsg, *sg = sched_group_nodes[i]; 7350 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7199 7351
7200 *nodemask = node_to_cpumask(i); 7352 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7201 cpus_and(*nodemask, *nodemask, *cpu_map); 7353 if (cpumask_empty(nodemask))
7202 if (cpus_empty(*nodemask))
7203 continue; 7354 continue;
7204 7355
7205 if (sg == NULL) 7356 if (sg == NULL)
@@ -7217,7 +7368,8 @@ next_sg:
7217 } 7368 }
7218} 7369}
7219#else /* !CONFIG_NUMA */ 7370#else /* !CONFIG_NUMA */
7220static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) 7371static void free_sched_groups(const struct cpumask *cpu_map,
7372 struct cpumask *nodemask)
7221{ 7373{
7222} 7374}
7223#endif /* CONFIG_NUMA */ 7375#endif /* CONFIG_NUMA */
@@ -7243,7 +7395,7 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7243 7395
7244 WARN_ON(!sd || !sd->groups); 7396 WARN_ON(!sd || !sd->groups);
7245 7397
7246 if (cpu != first_cpu(sd->groups->cpumask)) 7398 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7247 return; 7399 return;
7248 7400
7249 child = sd->child; 7401 child = sd->child;
@@ -7308,40 +7460,6 @@ SD_INIT_FUNC(CPU)
7308 SD_INIT_FUNC(MC) 7460 SD_INIT_FUNC(MC)
7309#endif 7461#endif
7310 7462
7311/*
7312 * To minimize stack usage kmalloc room for cpumasks and share the
7313 * space as the usage in build_sched_domains() dictates. Used only
7314 * if the amount of space is significant.
7315 */
7316struct allmasks {
7317 cpumask_t tmpmask; /* make this one first */
7318 union {
7319 cpumask_t nodemask;
7320 cpumask_t this_sibling_map;
7321 cpumask_t this_core_map;
7322 };
7323 cpumask_t send_covered;
7324
7325#ifdef CONFIG_NUMA
7326 cpumask_t domainspan;
7327 cpumask_t covered;
7328 cpumask_t notcovered;
7329#endif
7330};
7331
7332#if NR_CPUS > 128
7333#define SCHED_CPUMASK_ALLOC 1
7334#define SCHED_CPUMASK_FREE(v) kfree(v)
7335#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7336#else
7337#define SCHED_CPUMASK_ALLOC 0
7338#define SCHED_CPUMASK_FREE(v)
7339#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7340#endif
7341
7342#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7343 ((unsigned long)(a) + offsetof(struct allmasks, v))
7344
7345static int default_relax_domain_level = -1; 7463static int default_relax_domain_level = -1;
7346 7464
7347static int __init setup_relax_domain_level(char *str) 7465static int __init setup_relax_domain_level(char *str)
@@ -7381,17 +7499,38 @@ static void set_domain_attribute(struct sched_domain *sd,
7381 * Build sched domains for a given set of cpus and attach the sched domains 7499 * Build sched domains for a given set of cpus and attach the sched domains
7382 * to the individual cpus 7500 * to the individual cpus
7383 */ 7501 */
7384static int __build_sched_domains(const cpumask_t *cpu_map, 7502static int __build_sched_domains(const struct cpumask *cpu_map,
7385 struct sched_domain_attr *attr) 7503 struct sched_domain_attr *attr)
7386{ 7504{
7387 int i; 7505 int i, err = -ENOMEM;
7388 struct root_domain *rd; 7506 struct root_domain *rd;
7389 SCHED_CPUMASK_DECLARE(allmasks); 7507 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7390 cpumask_t *tmpmask; 7508 tmpmask;
7391#ifdef CONFIG_NUMA 7509#ifdef CONFIG_NUMA
7510 cpumask_var_t domainspan, covered, notcovered;
7392 struct sched_group **sched_group_nodes = NULL; 7511 struct sched_group **sched_group_nodes = NULL;
7393 int sd_allnodes = 0; 7512 int sd_allnodes = 0;
7394 7513
7514 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7515 goto out;
7516 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7517 goto free_domainspan;
7518 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7519 goto free_covered;
7520#endif
7521
7522 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7523 goto free_notcovered;
7524 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7525 goto free_nodemask;
7526 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7527 goto free_this_sibling_map;
7528 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7529 goto free_this_core_map;
7530 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7531 goto free_send_covered;
7532
7533#ifdef CONFIG_NUMA
7395 /* 7534 /*
7396 * Allocate the per-node list of sched groups 7535 * Allocate the per-node list of sched groups
7397 */ 7536 */
@@ -7399,76 +7538,57 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7399 GFP_KERNEL); 7538 GFP_KERNEL);
7400 if (!sched_group_nodes) { 7539 if (!sched_group_nodes) {
7401 printk(KERN_WARNING "Can not alloc sched group node list\n"); 7540 printk(KERN_WARNING "Can not alloc sched group node list\n");
7402 return -ENOMEM; 7541 goto free_tmpmask;
7403 } 7542 }
7404#endif 7543#endif
7405 7544
7406 rd = alloc_rootdomain(); 7545 rd = alloc_rootdomain();
7407 if (!rd) { 7546 if (!rd) {
7408 printk(KERN_WARNING "Cannot alloc root domain\n"); 7547 printk(KERN_WARNING "Cannot alloc root domain\n");
7409#ifdef CONFIG_NUMA 7548 goto free_sched_groups;
7410 kfree(sched_group_nodes);
7411#endif
7412 return -ENOMEM;
7413 }
7414
7415#if SCHED_CPUMASK_ALLOC
7416 /* get space for all scratch cpumask variables */
7417 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7418 if (!allmasks) {
7419 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7420 kfree(rd);
7421#ifdef CONFIG_NUMA
7422 kfree(sched_group_nodes);
7423#endif
7424 return -ENOMEM;
7425 } 7549 }
7426#endif
7427 tmpmask = (cpumask_t *)allmasks;
7428
7429 7550
7430#ifdef CONFIG_NUMA 7551#ifdef CONFIG_NUMA
7431 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; 7552 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7432#endif 7553#endif
7433 7554
7434 /* 7555 /*
7435 * Set up domains for cpus specified by the cpu_map. 7556 * Set up domains for cpus specified by the cpu_map.
7436 */ 7557 */
7437 for_each_cpu_mask_nr(i, *cpu_map) { 7558 for_each_cpu(i, cpu_map) {
7438 struct sched_domain *sd = NULL, *p; 7559 struct sched_domain *sd = NULL, *p;
7439 SCHED_CPUMASK_VAR(nodemask, allmasks);
7440 7560
7441 *nodemask = node_to_cpumask(cpu_to_node(i)); 7561 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7442 cpus_and(*nodemask, *nodemask, *cpu_map);
7443 7562
7444#ifdef CONFIG_NUMA 7563#ifdef CONFIG_NUMA
7445 if (cpus_weight(*cpu_map) > 7564 if (cpumask_weight(cpu_map) >
7446 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { 7565 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7447 sd = &per_cpu(allnodes_domains, i); 7566 sd = &per_cpu(allnodes_domains, i).sd;
7448 SD_INIT(sd, ALLNODES); 7567 SD_INIT(sd, ALLNODES);
7449 set_domain_attribute(sd, attr); 7568 set_domain_attribute(sd, attr);
7450 sd->span = *cpu_map; 7569 cpumask_copy(sched_domain_span(sd), cpu_map);
7451 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); 7570 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7452 p = sd; 7571 p = sd;
7453 sd_allnodes = 1; 7572 sd_allnodes = 1;
7454 } else 7573 } else
7455 p = NULL; 7574 p = NULL;
7456 7575
7457 sd = &per_cpu(node_domains, i); 7576 sd = &per_cpu(node_domains, i).sd;
7458 SD_INIT(sd, NODE); 7577 SD_INIT(sd, NODE);
7459 set_domain_attribute(sd, attr); 7578 set_domain_attribute(sd, attr);
7460 sched_domain_node_span(cpu_to_node(i), &sd->span); 7579 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7461 sd->parent = p; 7580 sd->parent = p;
7462 if (p) 7581 if (p)
7463 p->child = sd; 7582 p->child = sd;
7464 cpus_and(sd->span, sd->span, *cpu_map); 7583 cpumask_and(sched_domain_span(sd),
7584 sched_domain_span(sd), cpu_map);
7465#endif 7585#endif
7466 7586
7467 p = sd; 7587 p = sd;
7468 sd = &per_cpu(phys_domains, i); 7588 sd = &per_cpu(phys_domains, i).sd;
7469 SD_INIT(sd, CPU); 7589 SD_INIT(sd, CPU);
7470 set_domain_attribute(sd, attr); 7590 set_domain_attribute(sd, attr);
7471 sd->span = *nodemask; 7591 cpumask_copy(sched_domain_span(sd), nodemask);
7472 sd->parent = p; 7592 sd->parent = p;
7473 if (p) 7593 if (p)
7474 p->child = sd; 7594 p->child = sd;
@@ -7476,11 +7596,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7476 7596
7477#ifdef CONFIG_SCHED_MC 7597#ifdef CONFIG_SCHED_MC
7478 p = sd; 7598 p = sd;
7479 sd = &per_cpu(core_domains, i); 7599 sd = &per_cpu(core_domains, i).sd;
7480 SD_INIT(sd, MC); 7600 SD_INIT(sd, MC);
7481 set_domain_attribute(sd, attr); 7601 set_domain_attribute(sd, attr);
7482 sd->span = cpu_coregroup_map(i); 7602 cpumask_and(sched_domain_span(sd), cpu_map,
7483 cpus_and(sd->span, sd->span, *cpu_map); 7603 cpu_coregroup_mask(i));
7484 sd->parent = p; 7604 sd->parent = p;
7485 p->child = sd; 7605 p->child = sd;
7486 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); 7606 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
@@ -7488,11 +7608,11 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7488 7608
7489#ifdef CONFIG_SCHED_SMT 7609#ifdef CONFIG_SCHED_SMT
7490 p = sd; 7610 p = sd;
7491 sd = &per_cpu(cpu_domains, i); 7611 sd = &per_cpu(cpu_domains, i).sd;
7492 SD_INIT(sd, SIBLING); 7612 SD_INIT(sd, SIBLING);
7493 set_domain_attribute(sd, attr); 7613 set_domain_attribute(sd, attr);
7494 sd->span = per_cpu(cpu_sibling_map, i); 7614 cpumask_and(sched_domain_span(sd),
7495 cpus_and(sd->span, sd->span, *cpu_map); 7615 &per_cpu(cpu_sibling_map, i), cpu_map);
7496 sd->parent = p; 7616 sd->parent = p;
7497 p->child = sd; 7617 p->child = sd;
7498 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); 7618 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
@@ -7501,13 +7621,10 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7501 7621
7502#ifdef CONFIG_SCHED_SMT 7622#ifdef CONFIG_SCHED_SMT
7503 /* Set up CPU (sibling) groups */ 7623 /* Set up CPU (sibling) groups */
7504 for_each_cpu_mask_nr(i, *cpu_map) { 7624 for_each_cpu(i, cpu_map) {
7505 SCHED_CPUMASK_VAR(this_sibling_map, allmasks); 7625 cpumask_and(this_sibling_map,
7506 SCHED_CPUMASK_VAR(send_covered, allmasks); 7626 &per_cpu(cpu_sibling_map, i), cpu_map);
7507 7627 if (i != cpumask_first(this_sibling_map))
7508 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7509 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7510 if (i != first_cpu(*this_sibling_map))
7511 continue; 7628 continue;
7512 7629
7513 init_sched_build_groups(this_sibling_map, cpu_map, 7630 init_sched_build_groups(this_sibling_map, cpu_map,
@@ -7518,13 +7635,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7518 7635
7519#ifdef CONFIG_SCHED_MC 7636#ifdef CONFIG_SCHED_MC
7520 /* Set up multi-core groups */ 7637 /* Set up multi-core groups */
7521 for_each_cpu_mask_nr(i, *cpu_map) { 7638 for_each_cpu(i, cpu_map) {
7522 SCHED_CPUMASK_VAR(this_core_map, allmasks); 7639 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7523 SCHED_CPUMASK_VAR(send_covered, allmasks); 7640 if (i != cpumask_first(this_core_map))
7524
7525 *this_core_map = cpu_coregroup_map(i);
7526 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7527 if (i != first_cpu(*this_core_map))
7528 continue; 7641 continue;
7529 7642
7530 init_sched_build_groups(this_core_map, cpu_map, 7643 init_sched_build_groups(this_core_map, cpu_map,
@@ -7535,12 +7648,8 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7535 7648
7536 /* Set up physical groups */ 7649 /* Set up physical groups */
7537 for (i = 0; i < nr_node_ids; i++) { 7650 for (i = 0; i < nr_node_ids; i++) {
7538 SCHED_CPUMASK_VAR(nodemask, allmasks); 7651 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7539 SCHED_CPUMASK_VAR(send_covered, allmasks); 7652 if (cpumask_empty(nodemask))
7540
7541 *nodemask = node_to_cpumask(i);
7542 cpus_and(*nodemask, *nodemask, *cpu_map);
7543 if (cpus_empty(*nodemask))
7544 continue; 7653 continue;
7545 7654
7546 init_sched_build_groups(nodemask, cpu_map, 7655 init_sched_build_groups(nodemask, cpu_map,
@@ -7551,8 +7660,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7551#ifdef CONFIG_NUMA 7660#ifdef CONFIG_NUMA
7552 /* Set up node groups */ 7661 /* Set up node groups */
7553 if (sd_allnodes) { 7662 if (sd_allnodes) {
7554 SCHED_CPUMASK_VAR(send_covered, allmasks);
7555
7556 init_sched_build_groups(cpu_map, cpu_map, 7663 init_sched_build_groups(cpu_map, cpu_map,
7557 &cpu_to_allnodes_group, 7664 &cpu_to_allnodes_group,
7558 send_covered, tmpmask); 7665 send_covered, tmpmask);
@@ -7561,58 +7668,53 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7561 for (i = 0; i < nr_node_ids; i++) { 7668 for (i = 0; i < nr_node_ids; i++) {
7562 /* Set up node groups */ 7669 /* Set up node groups */
7563 struct sched_group *sg, *prev; 7670 struct sched_group *sg, *prev;
7564 SCHED_CPUMASK_VAR(nodemask, allmasks);
7565 SCHED_CPUMASK_VAR(domainspan, allmasks);
7566 SCHED_CPUMASK_VAR(covered, allmasks);
7567 int j; 7671 int j;
7568 7672
7569 *nodemask = node_to_cpumask(i); 7673 cpumask_clear(covered);
7570 cpus_clear(*covered); 7674 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7571 7675 if (cpumask_empty(nodemask)) {
7572 cpus_and(*nodemask, *nodemask, *cpu_map);
7573 if (cpus_empty(*nodemask)) {
7574 sched_group_nodes[i] = NULL; 7676 sched_group_nodes[i] = NULL;
7575 continue; 7677 continue;
7576 } 7678 }
7577 7679
7578 sched_domain_node_span(i, domainspan); 7680 sched_domain_node_span(i, domainspan);
7579 cpus_and(*domainspan, *domainspan, *cpu_map); 7681 cpumask_and(domainspan, domainspan, cpu_map);
7580 7682
7581 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); 7683 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7684 GFP_KERNEL, i);
7582 if (!sg) { 7685 if (!sg) {
7583 printk(KERN_WARNING "Can not alloc domain group for " 7686 printk(KERN_WARNING "Can not alloc domain group for "
7584 "node %d\n", i); 7687 "node %d\n", i);
7585 goto error; 7688 goto error;
7586 } 7689 }
7587 sched_group_nodes[i] = sg; 7690 sched_group_nodes[i] = sg;
7588 for_each_cpu_mask_nr(j, *nodemask) { 7691 for_each_cpu(j, nodemask) {
7589 struct sched_domain *sd; 7692 struct sched_domain *sd;
7590 7693
7591 sd = &per_cpu(node_domains, j); 7694 sd = &per_cpu(node_domains, j).sd;
7592 sd->groups = sg; 7695 sd->groups = sg;
7593 } 7696 }
7594 sg->__cpu_power = 0; 7697 sg->__cpu_power = 0;
7595 sg->cpumask = *nodemask; 7698 cpumask_copy(sched_group_cpus(sg), nodemask);
7596 sg->next = sg; 7699 sg->next = sg;
7597 cpus_or(*covered, *covered, *nodemask); 7700 cpumask_or(covered, covered, nodemask);
7598 prev = sg; 7701 prev = sg;
7599 7702
7600 for (j = 0; j < nr_node_ids; j++) { 7703 for (j = 0; j < nr_node_ids; j++) {
7601 SCHED_CPUMASK_VAR(notcovered, allmasks);
7602 int n = (i + j) % nr_node_ids; 7704 int n = (i + j) % nr_node_ids;
7603 node_to_cpumask_ptr(pnodemask, n);
7604 7705
7605 cpus_complement(*notcovered, *covered); 7706 cpumask_complement(notcovered, covered);
7606 cpus_and(*tmpmask, *notcovered, *cpu_map); 7707 cpumask_and(tmpmask, notcovered, cpu_map);
7607 cpus_and(*tmpmask, *tmpmask, *domainspan); 7708 cpumask_and(tmpmask, tmpmask, domainspan);
7608 if (cpus_empty(*tmpmask)) 7709 if (cpumask_empty(tmpmask))
7609 break; 7710 break;
7610 7711
7611 cpus_and(*tmpmask, *tmpmask, *pnodemask); 7712 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7612 if (cpus_empty(*tmpmask)) 7713 if (cpumask_empty(tmpmask))
7613 continue; 7714 continue;
7614 7715
7615 sg = kmalloc_node(sizeof(struct sched_group), 7716 sg = kmalloc_node(sizeof(struct sched_group) +
7717 cpumask_size(),
7616 GFP_KERNEL, i); 7718 GFP_KERNEL, i);
7617 if (!sg) { 7719 if (!sg) {
7618 printk(KERN_WARNING 7720 printk(KERN_WARNING
@@ -7620,9 +7722,9 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7620 goto error; 7722 goto error;
7621 } 7723 }
7622 sg->__cpu_power = 0; 7724 sg->__cpu_power = 0;
7623 sg->cpumask = *tmpmask; 7725 cpumask_copy(sched_group_cpus(sg), tmpmask);
7624 sg->next = prev->next; 7726 sg->next = prev->next;
7625 cpus_or(*covered, *covered, *tmpmask); 7727 cpumask_or(covered, covered, tmpmask);
7626 prev->next = sg; 7728 prev->next = sg;
7627 prev = sg; 7729 prev = sg;
7628 } 7730 }
@@ -7631,22 +7733,22 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7631 7733
7632 /* Calculate CPU power for physical packages and nodes */ 7734 /* Calculate CPU power for physical packages and nodes */
7633#ifdef CONFIG_SCHED_SMT 7735#ifdef CONFIG_SCHED_SMT
7634 for_each_cpu_mask_nr(i, *cpu_map) { 7736 for_each_cpu(i, cpu_map) {
7635 struct sched_domain *sd = &per_cpu(cpu_domains, i); 7737 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7636 7738
7637 init_sched_groups_power(i, sd); 7739 init_sched_groups_power(i, sd);
7638 } 7740 }
7639#endif 7741#endif
7640#ifdef CONFIG_SCHED_MC 7742#ifdef CONFIG_SCHED_MC
7641 for_each_cpu_mask_nr(i, *cpu_map) { 7743 for_each_cpu(i, cpu_map) {
7642 struct sched_domain *sd = &per_cpu(core_domains, i); 7744 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7643 7745
7644 init_sched_groups_power(i, sd); 7746 init_sched_groups_power(i, sd);
7645 } 7747 }
7646#endif 7748#endif
7647 7749
7648 for_each_cpu_mask_nr(i, *cpu_map) { 7750 for_each_cpu(i, cpu_map) {
7649 struct sched_domain *sd = &per_cpu(phys_domains, i); 7751 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7650 7752
7651 init_sched_groups_power(i, sd); 7753 init_sched_groups_power(i, sd);
7652 } 7754 }
@@ -7658,56 +7760,87 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7658 if (sd_allnodes) { 7760 if (sd_allnodes) {
7659 struct sched_group *sg; 7761 struct sched_group *sg;
7660 7762
7661 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, 7763 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7662 tmpmask); 7764 tmpmask);
7663 init_numa_sched_groups_power(sg); 7765 init_numa_sched_groups_power(sg);
7664 } 7766 }
7665#endif 7767#endif
7666 7768
7667 /* Attach the domains */ 7769 /* Attach the domains */
7668 for_each_cpu_mask_nr(i, *cpu_map) { 7770 for_each_cpu(i, cpu_map) {
7669 struct sched_domain *sd; 7771 struct sched_domain *sd;
7670#ifdef CONFIG_SCHED_SMT 7772#ifdef CONFIG_SCHED_SMT
7671 sd = &per_cpu(cpu_domains, i); 7773 sd = &per_cpu(cpu_domains, i).sd;
7672#elif defined(CONFIG_SCHED_MC) 7774#elif defined(CONFIG_SCHED_MC)
7673 sd = &per_cpu(core_domains, i); 7775 sd = &per_cpu(core_domains, i).sd;
7674#else 7776#else
7675 sd = &per_cpu(phys_domains, i); 7777 sd = &per_cpu(phys_domains, i).sd;
7676#endif 7778#endif
7677 cpu_attach_domain(sd, rd, i); 7779 cpu_attach_domain(sd, rd, i);
7678 } 7780 }
7679 7781
7680 SCHED_CPUMASK_FREE((void *)allmasks); 7782 err = 0;
7681 return 0; 7783
7784free_tmpmask:
7785 free_cpumask_var(tmpmask);
7786free_send_covered:
7787 free_cpumask_var(send_covered);
7788free_this_core_map:
7789 free_cpumask_var(this_core_map);
7790free_this_sibling_map:
7791 free_cpumask_var(this_sibling_map);
7792free_nodemask:
7793 free_cpumask_var(nodemask);
7794free_notcovered:
7795#ifdef CONFIG_NUMA
7796 free_cpumask_var(notcovered);
7797free_covered:
7798 free_cpumask_var(covered);
7799free_domainspan:
7800 free_cpumask_var(domainspan);
7801out:
7802#endif
7803 return err;
7804
7805free_sched_groups:
7806#ifdef CONFIG_NUMA
7807 kfree(sched_group_nodes);
7808#endif
7809 goto free_tmpmask;
7682 7810
7683#ifdef CONFIG_NUMA 7811#ifdef CONFIG_NUMA
7684error: 7812error:
7685 free_sched_groups(cpu_map, tmpmask); 7813 free_sched_groups(cpu_map, tmpmask);
7686 SCHED_CPUMASK_FREE((void *)allmasks); 7814 free_rootdomain(rd);
7687 kfree(rd); 7815 goto free_tmpmask;
7688 return -ENOMEM;
7689#endif 7816#endif
7690} 7817}
7691 7818
7692static int build_sched_domains(const cpumask_t *cpu_map) 7819static int build_sched_domains(const struct cpumask *cpu_map)
7693{ 7820{
7694 return __build_sched_domains(cpu_map, NULL); 7821 return __build_sched_domains(cpu_map, NULL);
7695} 7822}
7696 7823
7697static cpumask_t *doms_cur; /* current sched domains */ 7824static struct cpumask *doms_cur; /* current sched domains */
7698static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 7825static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7699static struct sched_domain_attr *dattr_cur; 7826static struct sched_domain_attr *dattr_cur;
7700 /* attribues of custom domains in 'doms_cur' */ 7827 /* attribues of custom domains in 'doms_cur' */
7701 7828
7702/* 7829/*
7703 * Special case: If a kmalloc of a doms_cur partition (array of 7830 * Special case: If a kmalloc of a doms_cur partition (array of
7704 * cpumask_t) fails, then fallback to a single sched domain, 7831 * cpumask) fails, then fallback to a single sched domain,
7705 * as determined by the single cpumask_t fallback_doms. 7832 * as determined by the single cpumask fallback_doms.
7706 */ 7833 */
7707static cpumask_t fallback_doms; 7834static cpumask_var_t fallback_doms;
7708 7835
7709void __attribute__((weak)) arch_update_cpu_topology(void) 7836/*
7837 * arch_update_cpu_topology lets virtualized architectures update the
7838 * cpu core maps. It is supposed to return 1 if the topology changed
7839 * or 0 if it stayed the same.
7840 */
7841int __attribute__((weak)) arch_update_cpu_topology(void)
7710{ 7842{
7843 return 0;
7711} 7844}
7712 7845
7713/* 7846/*
@@ -7715,16 +7848,16 @@ void __attribute__((weak)) arch_update_cpu_topology(void)
7715 * For now this just excludes isolated cpus, but could be used to 7848 * For now this just excludes isolated cpus, but could be used to
7716 * exclude other special cases in the future. 7849 * exclude other special cases in the future.
7717 */ 7850 */
7718static int arch_init_sched_domains(const cpumask_t *cpu_map) 7851static int arch_init_sched_domains(const struct cpumask *cpu_map)
7719{ 7852{
7720 int err; 7853 int err;
7721 7854
7722 arch_update_cpu_topology(); 7855 arch_update_cpu_topology();
7723 ndoms_cur = 1; 7856 ndoms_cur = 1;
7724 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); 7857 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7725 if (!doms_cur) 7858 if (!doms_cur)
7726 doms_cur = &fallback_doms; 7859 doms_cur = fallback_doms;
7727 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); 7860 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7728 dattr_cur = NULL; 7861 dattr_cur = NULL;
7729 err = build_sched_domains(doms_cur); 7862 err = build_sched_domains(doms_cur);
7730 register_sched_domain_sysctl(); 7863 register_sched_domain_sysctl();
@@ -7732,8 +7865,8 @@ static int arch_init_sched_domains(const cpumask_t *cpu_map)
7732 return err; 7865 return err;
7733} 7866}
7734 7867
7735static void arch_destroy_sched_domains(const cpumask_t *cpu_map, 7868static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7736 cpumask_t *tmpmask) 7869 struct cpumask *tmpmask)
7737{ 7870{
7738 free_sched_groups(cpu_map, tmpmask); 7871 free_sched_groups(cpu_map, tmpmask);
7739} 7872}
@@ -7742,17 +7875,16 @@ static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7742 * Detach sched domains from a group of cpus specified in cpu_map 7875 * Detach sched domains from a group of cpus specified in cpu_map
7743 * These cpus will now be attached to the NULL domain 7876 * These cpus will now be attached to the NULL domain
7744 */ 7877 */
7745static void detach_destroy_domains(const cpumask_t *cpu_map) 7878static void detach_destroy_domains(const struct cpumask *cpu_map)
7746{ 7879{
7747 cpumask_t tmpmask; 7880 /* Save because hotplug lock held. */
7881 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7748 int i; 7882 int i;
7749 7883
7750 unregister_sched_domain_sysctl(); 7884 for_each_cpu(i, cpu_map)
7751
7752 for_each_cpu_mask_nr(i, *cpu_map)
7753 cpu_attach_domain(NULL, &def_root_domain, i); 7885 cpu_attach_domain(NULL, &def_root_domain, i);
7754 synchronize_sched(); 7886 synchronize_sched();
7755 arch_destroy_sched_domains(cpu_map, &tmpmask); 7887 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7756} 7888}
7757 7889
7758/* handle null as "default" */ 7890/* handle null as "default" */
@@ -7777,7 +7909,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7777 * doms_new[] to the current sched domain partitioning, doms_cur[]. 7909 * doms_new[] to the current sched domain partitioning, doms_cur[].
7778 * It destroys each deleted domain and builds each new domain. 7910 * It destroys each deleted domain and builds each new domain.
7779 * 7911 *
7780 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. 7912 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7781 * The masks don't intersect (don't overlap.) We should setup one 7913 * The masks don't intersect (don't overlap.) We should setup one
7782 * sched domain for each mask. CPUs not in any of the cpumasks will 7914 * sched domain for each mask. CPUs not in any of the cpumasks will
7783 * not be load balanced. If the same cpumask appears both in the 7915 * not be load balanced. If the same cpumask appears both in the
@@ -7786,32 +7918,38 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7786 * 7918 *
7787 * The passed in 'doms_new' should be kmalloc'd. This routine takes 7919 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7788 * ownership of it and will kfree it when done with it. If the caller 7920 * ownership of it and will kfree it when done with it. If the caller
7789 * failed the kmalloc call, then it can pass in doms_new == NULL, 7921 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7790 * and partition_sched_domains() will fallback to the single partition 7922 * ndoms_new == 1, and partition_sched_domains() will fallback to
7791 * 'fallback_doms', it also forces the domains to be rebuilt. 7923 * the single partition 'fallback_doms', it also forces the domains
7924 * to be rebuilt.
7792 * 7925 *
7793 * If doms_new==NULL it will be replaced with cpu_online_map. 7926 * If doms_new == NULL it will be replaced with cpu_online_mask.
7794 * ndoms_new==0 is a special case for destroying existing domains. 7927 * ndoms_new == 0 is a special case for destroying existing domains,
7795 * It will not create the default domain. 7928 * and it will not create the default domain.
7796 * 7929 *
7797 * Call with hotplug lock held 7930 * Call with hotplug lock held
7798 */ 7931 */
7799void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 7932/* FIXME: Change to struct cpumask *doms_new[] */
7933void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7800 struct sched_domain_attr *dattr_new) 7934 struct sched_domain_attr *dattr_new)
7801{ 7935{
7802 int i, j, n; 7936 int i, j, n;
7937 int new_topology;
7803 7938
7804 mutex_lock(&sched_domains_mutex); 7939 mutex_lock(&sched_domains_mutex);
7805 7940
7806 /* always unregister in case we don't destroy any domains */ 7941 /* always unregister in case we don't destroy any domains */
7807 unregister_sched_domain_sysctl(); 7942 unregister_sched_domain_sysctl();
7808 7943
7944 /* Let architecture update cpu core mappings. */
7945 new_topology = arch_update_cpu_topology();
7946
7809 n = doms_new ? ndoms_new : 0; 7947 n = doms_new ? ndoms_new : 0;
7810 7948
7811 /* Destroy deleted domains */ 7949 /* Destroy deleted domains */
7812 for (i = 0; i < ndoms_cur; i++) { 7950 for (i = 0; i < ndoms_cur; i++) {
7813 for (j = 0; j < n; j++) { 7951 for (j = 0; j < n && !new_topology; j++) {
7814 if (cpus_equal(doms_cur[i], doms_new[j]) 7952 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7815 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7953 && dattrs_equal(dattr_cur, i, dattr_new, j))
7816 goto match1; 7954 goto match1;
7817 } 7955 }
@@ -7823,15 +7961,15 @@ match1:
7823 7961
7824 if (doms_new == NULL) { 7962 if (doms_new == NULL) {
7825 ndoms_cur = 0; 7963 ndoms_cur = 0;
7826 doms_new = &fallback_doms; 7964 doms_new = fallback_doms;
7827 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); 7965 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7828 dattr_new = NULL; 7966 WARN_ON_ONCE(dattr_new);
7829 } 7967 }
7830 7968
7831 /* Build new domains */ 7969 /* Build new domains */
7832 for (i = 0; i < ndoms_new; i++) { 7970 for (i = 0; i < ndoms_new; i++) {
7833 for (j = 0; j < ndoms_cur; j++) { 7971 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7834 if (cpus_equal(doms_new[i], doms_cur[j]) 7972 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7835 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7973 && dattrs_equal(dattr_new, i, dattr_cur, j))
7836 goto match2; 7974 goto match2;
7837 } 7975 }
@@ -7843,7 +7981,7 @@ match2:
7843 } 7981 }
7844 7982
7845 /* Remember the new sched domains */ 7983 /* Remember the new sched domains */
7846 if (doms_cur != &fallback_doms) 7984 if (doms_cur != fallback_doms)
7847 kfree(doms_cur); 7985 kfree(doms_cur);
7848 kfree(dattr_cur); /* kfree(NULL) is safe */ 7986 kfree(dattr_cur); /* kfree(NULL) is safe */
7849 doms_cur = doms_new; 7987 doms_cur = doms_new;
@@ -7856,7 +7994,7 @@ match2:
7856} 7994}
7857 7995
7858#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 7996#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7859int arch_reinit_sched_domains(void) 7997static void arch_reinit_sched_domains(void)
7860{ 7998{
7861 get_online_cpus(); 7999 get_online_cpus();
7862 8000
@@ -7865,25 +8003,33 @@ int arch_reinit_sched_domains(void)
7865 8003
7866 rebuild_sched_domains(); 8004 rebuild_sched_domains();
7867 put_online_cpus(); 8005 put_online_cpus();
7868
7869 return 0;
7870} 8006}
7871 8007
7872static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 8008static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7873{ 8009{
7874 int ret; 8010 unsigned int level = 0;
8011
8012 if (sscanf(buf, "%u", &level) != 1)
8013 return -EINVAL;
8014
8015 /*
8016 * level is always be positive so don't check for
8017 * level < POWERSAVINGS_BALANCE_NONE which is 0
8018 * What happens on 0 or 1 byte write,
8019 * need to check for count as well?
8020 */
7875 8021
7876 if (buf[0] != '0' && buf[0] != '1') 8022 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7877 return -EINVAL; 8023 return -EINVAL;
7878 8024
7879 if (smt) 8025 if (smt)
7880 sched_smt_power_savings = (buf[0] == '1'); 8026 sched_smt_power_savings = level;
7881 else 8027 else
7882 sched_mc_power_savings = (buf[0] == '1'); 8028 sched_mc_power_savings = level;
7883 8029
7884 ret = arch_reinit_sched_domains(); 8030 arch_reinit_sched_domains();
7885 8031
7886 return ret ? ret : count; 8032 return count;
7887} 8033}
7888 8034
7889#ifdef CONFIG_SCHED_MC 8035#ifdef CONFIG_SCHED_MC
@@ -7918,7 +8064,7 @@ static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7918 sched_smt_power_savings_store); 8064 sched_smt_power_savings_store);
7919#endif 8065#endif
7920 8066
7921int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) 8067int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7922{ 8068{
7923 int err = 0; 8069 int err = 0;
7924 8070
@@ -7983,7 +8129,9 @@ static int update_runtime(struct notifier_block *nfb,
7983 8129
7984void __init sched_init_smp(void) 8130void __init sched_init_smp(void)
7985{ 8131{
7986 cpumask_t non_isolated_cpus; 8132 cpumask_var_t non_isolated_cpus;
8133
8134 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7987 8135
7988#if defined(CONFIG_NUMA) 8136#if defined(CONFIG_NUMA)
7989 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), 8137 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
@@ -7992,10 +8140,10 @@ void __init sched_init_smp(void)
7992#endif 8140#endif
7993 get_online_cpus(); 8141 get_online_cpus();
7994 mutex_lock(&sched_domains_mutex); 8142 mutex_lock(&sched_domains_mutex);
7995 arch_init_sched_domains(&cpu_online_map); 8143 arch_init_sched_domains(cpu_online_mask);
7996 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); 8144 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7997 if (cpus_empty(non_isolated_cpus)) 8145 if (cpumask_empty(non_isolated_cpus))
7998 cpu_set(smp_processor_id(), non_isolated_cpus); 8146 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7999 mutex_unlock(&sched_domains_mutex); 8147 mutex_unlock(&sched_domains_mutex);
8000 put_online_cpus(); 8148 put_online_cpus();
8001 8149
@@ -8010,9 +8158,13 @@ void __init sched_init_smp(void)
8010 init_hrtick(); 8158 init_hrtick();
8011 8159
8012 /* Move init over to a non-isolated CPU */ 8160 /* Move init over to a non-isolated CPU */
8013 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) 8161 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8014 BUG(); 8162 BUG();
8015 sched_init_granularity(); 8163 sched_init_granularity();
8164 free_cpumask_var(non_isolated_cpus);
8165
8166 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8167 init_sched_rt_class();
8016} 8168}
8017#else 8169#else
8018void __init sched_init_smp(void) 8170void __init sched_init_smp(void)
@@ -8327,6 +8479,15 @@ void __init sched_init(void)
8327 */ 8479 */
8328 current->sched_class = &fair_sched_class; 8480 current->sched_class = &fair_sched_class;
8329 8481
8482 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8483 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8484#ifdef CONFIG_SMP
8485#ifdef CONFIG_NO_HZ
8486 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8487#endif
8488 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8489#endif /* SMP */
8490
8330 scheduler_running = 1; 8491 scheduler_running = 1;
8331} 8492}
8332 8493
@@ -8485,7 +8646,7 @@ static
8485int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8646int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8486{ 8647{
8487 struct cfs_rq *cfs_rq; 8648 struct cfs_rq *cfs_rq;
8488 struct sched_entity *se, *parent_se; 8649 struct sched_entity *se;
8489 struct rq *rq; 8650 struct rq *rq;
8490 int i; 8651 int i;
8491 8652
@@ -8501,18 +8662,17 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8501 for_each_possible_cpu(i) { 8662 for_each_possible_cpu(i) {
8502 rq = cpu_rq(i); 8663 rq = cpu_rq(i);
8503 8664
8504 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), 8665 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8505 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8666 GFP_KERNEL, cpu_to_node(i));
8506 if (!cfs_rq) 8667 if (!cfs_rq)
8507 goto err; 8668 goto err;
8508 8669
8509 se = kmalloc_node(sizeof(struct sched_entity), 8670 se = kzalloc_node(sizeof(struct sched_entity),
8510 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8671 GFP_KERNEL, cpu_to_node(i));
8511 if (!se) 8672 if (!se)
8512 goto err; 8673 goto err;
8513 8674
8514 parent_se = parent ? parent->se[i] : NULL; 8675 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8515 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8516 } 8676 }
8517 8677
8518 return 1; 8678 return 1;
@@ -8573,7 +8733,7 @@ static
8573int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 8733int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8574{ 8734{
8575 struct rt_rq *rt_rq; 8735 struct rt_rq *rt_rq;
8576 struct sched_rt_entity *rt_se, *parent_se; 8736 struct sched_rt_entity *rt_se;
8577 struct rq *rq; 8737 struct rq *rq;
8578 int i; 8738 int i;
8579 8739
@@ -8590,18 +8750,17 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8590 for_each_possible_cpu(i) { 8750 for_each_possible_cpu(i) {
8591 rq = cpu_rq(i); 8751 rq = cpu_rq(i);
8592 8752
8593 rt_rq = kmalloc_node(sizeof(struct rt_rq), 8753 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8594 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8754 GFP_KERNEL, cpu_to_node(i));
8595 if (!rt_rq) 8755 if (!rt_rq)
8596 goto err; 8756 goto err;
8597 8757
8598 rt_se = kmalloc_node(sizeof(struct sched_rt_entity), 8758 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8599 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8759 GFP_KERNEL, cpu_to_node(i));
8600 if (!rt_se) 8760 if (!rt_se)
8601 goto err; 8761 goto err;
8602 8762
8603 parent_se = parent ? parent->rt_se[i] : NULL; 8763 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8604 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8605 } 8764 }
8606 8765
8607 return 1; 8766 return 1;
@@ -8891,6 +9050,13 @@ static int tg_schedulable(struct task_group *tg, void *data)
8891 runtime = d->rt_runtime; 9050 runtime = d->rt_runtime;
8892 } 9051 }
8893 9052
9053#ifdef CONFIG_USER_SCHED
9054 if (tg == &root_task_group) {
9055 period = global_rt_period();
9056 runtime = global_rt_runtime();
9057 }
9058#endif
9059
8894 /* 9060 /*
8895 * Cannot have more runtime than the period. 9061 * Cannot have more runtime than the period.
8896 */ 9062 */
@@ -9244,11 +9410,12 @@ struct cgroup_subsys cpu_cgroup_subsys = {
9244 * (balbir@in.ibm.com). 9410 * (balbir@in.ibm.com).
9245 */ 9411 */
9246 9412
9247/* track cpu usage of a group of tasks */ 9413/* track cpu usage of a group of tasks and its child groups */
9248struct cpuacct { 9414struct cpuacct {
9249 struct cgroup_subsys_state css; 9415 struct cgroup_subsys_state css;
9250 /* cpuusage holds pointer to a u64-type object on every cpu */ 9416 /* cpuusage holds pointer to a u64-type object on every cpu */
9251 u64 *cpuusage; 9417 u64 *cpuusage;
9418 struct cpuacct *parent;
9252}; 9419};
9253 9420
9254struct cgroup_subsys cpuacct_subsys; 9421struct cgroup_subsys cpuacct_subsys;
@@ -9282,6 +9449,9 @@ static struct cgroup_subsys_state *cpuacct_create(
9282 return ERR_PTR(-ENOMEM); 9449 return ERR_PTR(-ENOMEM);
9283 } 9450 }
9284 9451
9452 if (cgrp->parent)
9453 ca->parent = cgroup_ca(cgrp->parent);
9454
9285 return &ca->css; 9455 return &ca->css;
9286} 9456}
9287 9457
@@ -9295,6 +9465,41 @@ cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9295 kfree(ca); 9465 kfree(ca);
9296} 9466}
9297 9467
9468static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9469{
9470 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9471 u64 data;
9472
9473#ifndef CONFIG_64BIT
9474 /*
9475 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9476 */
9477 spin_lock_irq(&cpu_rq(cpu)->lock);
9478 data = *cpuusage;
9479 spin_unlock_irq(&cpu_rq(cpu)->lock);
9480#else
9481 data = *cpuusage;
9482#endif
9483
9484 return data;
9485}
9486
9487static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9488{
9489 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9490
9491#ifndef CONFIG_64BIT
9492 /*
9493 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9494 */
9495 spin_lock_irq(&cpu_rq(cpu)->lock);
9496 *cpuusage = val;
9497 spin_unlock_irq(&cpu_rq(cpu)->lock);
9498#else
9499 *cpuusage = val;
9500#endif
9501}
9502
9298/* return total cpu usage (in nanoseconds) of a group */ 9503/* return total cpu usage (in nanoseconds) of a group */
9299static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 9504static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9300{ 9505{
@@ -9302,17 +9507,8 @@ static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9302 u64 totalcpuusage = 0; 9507 u64 totalcpuusage = 0;
9303 int i; 9508 int i;
9304 9509
9305 for_each_possible_cpu(i) { 9510 for_each_present_cpu(i)
9306 u64 *cpuusage = percpu_ptr(ca->cpuusage, i); 9511 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9307
9308 /*
9309 * Take rq->lock to make 64-bit addition safe on 32-bit
9310 * platforms.
9311 */
9312 spin_lock_irq(&cpu_rq(i)->lock);
9313 totalcpuusage += *cpuusage;
9314 spin_unlock_irq(&cpu_rq(i)->lock);
9315 }
9316 9512
9317 return totalcpuusage; 9513 return totalcpuusage;
9318} 9514}
@@ -9329,23 +9525,39 @@ static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9329 goto out; 9525 goto out;
9330 } 9526 }
9331 9527
9332 for_each_possible_cpu(i) { 9528 for_each_present_cpu(i)
9333 u64 *cpuusage = percpu_ptr(ca->cpuusage, i); 9529 cpuacct_cpuusage_write(ca, i, 0);
9334 9530
9335 spin_lock_irq(&cpu_rq(i)->lock);
9336 *cpuusage = 0;
9337 spin_unlock_irq(&cpu_rq(i)->lock);
9338 }
9339out: 9531out:
9340 return err; 9532 return err;
9341} 9533}
9342 9534
9535static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9536 struct seq_file *m)
9537{
9538 struct cpuacct *ca = cgroup_ca(cgroup);
9539 u64 percpu;
9540 int i;
9541
9542 for_each_present_cpu(i) {
9543 percpu = cpuacct_cpuusage_read(ca, i);
9544 seq_printf(m, "%llu ", (unsigned long long) percpu);
9545 }
9546 seq_printf(m, "\n");
9547 return 0;
9548}
9549
9343static struct cftype files[] = { 9550static struct cftype files[] = {
9344 { 9551 {
9345 .name = "usage", 9552 .name = "usage",
9346 .read_u64 = cpuusage_read, 9553 .read_u64 = cpuusage_read,
9347 .write_u64 = cpuusage_write, 9554 .write_u64 = cpuusage_write,
9348 }, 9555 },
9556 {
9557 .name = "usage_percpu",
9558 .read_seq_string = cpuacct_percpu_seq_read,
9559 },
9560
9349}; 9561};
9350 9562
9351static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 9563static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
@@ -9361,14 +9573,16 @@ static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9361static void cpuacct_charge(struct task_struct *tsk, u64 cputime) 9573static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9362{ 9574{
9363 struct cpuacct *ca; 9575 struct cpuacct *ca;
9576 int cpu;
9364 9577
9365 if (!cpuacct_subsys.active) 9578 if (!cpuacct_subsys.active)
9366 return; 9579 return;
9367 9580
9581 cpu = task_cpu(tsk);
9368 ca = task_ca(tsk); 9582 ca = task_ca(tsk);
9369 if (ca) {
9370 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9371 9583
9584 for (; ca; ca = ca->parent) {
9585 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9372 *cpuusage += cputime; 9586 *cpuusage += cputime;
9373 } 9587 }
9374} 9588}