diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 466 |
1 files changed, 277 insertions, 189 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 3c11ae0a948d..ff39cadf621e 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -535,14 +535,12 @@ struct rq { | |||
535 | #define CPU_LOAD_IDX_MAX 5 | 535 | #define CPU_LOAD_IDX_MAX 5 |
536 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 536 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
537 | #ifdef CONFIG_NO_HZ | 537 | #ifdef CONFIG_NO_HZ |
538 | unsigned long last_tick_seen; | ||
539 | unsigned char in_nohz_recently; | 538 | unsigned char in_nohz_recently; |
540 | #endif | 539 | #endif |
541 | /* capture load from *all* tasks on this cpu: */ | 540 | /* capture load from *all* tasks on this cpu: */ |
542 | struct load_weight load; | 541 | struct load_weight load; |
543 | unsigned long nr_load_updates; | 542 | unsigned long nr_load_updates; |
544 | u64 nr_switches; | 543 | u64 nr_switches; |
545 | u64 nr_migrations_in; | ||
546 | 544 | ||
547 | struct cfs_rq cfs; | 545 | struct cfs_rq cfs; |
548 | struct rt_rq rt; | 546 | struct rt_rq rt; |
@@ -591,6 +589,8 @@ struct rq { | |||
591 | 589 | ||
592 | u64 rt_avg; | 590 | u64 rt_avg; |
593 | u64 age_stamp; | 591 | u64 age_stamp; |
592 | u64 idle_stamp; | ||
593 | u64 avg_idle; | ||
594 | #endif | 594 | #endif |
595 | 595 | ||
596 | /* calc_load related fields */ | 596 | /* calc_load related fields */ |
@@ -772,7 +772,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf, | |||
772 | if (!sched_feat_names[i]) | 772 | if (!sched_feat_names[i]) |
773 | return -EINVAL; | 773 | return -EINVAL; |
774 | 774 | ||
775 | filp->f_pos += cnt; | 775 | *ppos += cnt; |
776 | 776 | ||
777 | return cnt; | 777 | return cnt; |
778 | } | 778 | } |
@@ -814,6 +814,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32; | |||
814 | * default: 0.25ms | 814 | * default: 0.25ms |
815 | */ | 815 | */ |
816 | unsigned int sysctl_sched_shares_ratelimit = 250000; | 816 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
817 | unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; | ||
817 | 818 | ||
818 | /* | 819 | /* |
819 | * Inject some fuzzyness into changing the per-cpu group shares | 820 | * Inject some fuzzyness into changing the per-cpu group shares |
@@ -1614,7 +1615,7 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu, | |||
1614 | */ | 1615 | */ |
1615 | static int tg_shares_up(struct task_group *tg, void *data) | 1616 | static int tg_shares_up(struct task_group *tg, void *data) |
1616 | { | 1617 | { |
1617 | unsigned long weight, rq_weight = 0, shares = 0; | 1618 | unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; |
1618 | unsigned long *usd_rq_weight; | 1619 | unsigned long *usd_rq_weight; |
1619 | struct sched_domain *sd = data; | 1620 | struct sched_domain *sd = data; |
1620 | unsigned long flags; | 1621 | unsigned long flags; |
@@ -1630,6 +1631,7 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1630 | weight = tg->cfs_rq[i]->load.weight; | 1631 | weight = tg->cfs_rq[i]->load.weight; |
1631 | usd_rq_weight[i] = weight; | 1632 | usd_rq_weight[i] = weight; |
1632 | 1633 | ||
1634 | rq_weight += weight; | ||
1633 | /* | 1635 | /* |
1634 | * If there are currently no tasks on the cpu pretend there | 1636 | * If there are currently no tasks on the cpu pretend there |
1635 | * is one of average load so that when a new task gets to | 1637 | * is one of average load so that when a new task gets to |
@@ -1638,10 +1640,13 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1638 | if (!weight) | 1640 | if (!weight) |
1639 | weight = NICE_0_LOAD; | 1641 | weight = NICE_0_LOAD; |
1640 | 1642 | ||
1641 | rq_weight += weight; | 1643 | sum_weight += weight; |
1642 | shares += tg->cfs_rq[i]->shares; | 1644 | shares += tg->cfs_rq[i]->shares; |
1643 | } | 1645 | } |
1644 | 1646 | ||
1647 | if (!rq_weight) | ||
1648 | rq_weight = sum_weight; | ||
1649 | |||
1645 | if ((!shares && rq_weight) || shares > tg->shares) | 1650 | if ((!shares && rq_weight) || shares > tg->shares) |
1646 | shares = tg->shares; | 1651 | shares = tg->shares; |
1647 | 1652 | ||
@@ -1810,6 +1815,22 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |||
1810 | #endif | 1815 | #endif |
1811 | 1816 | ||
1812 | static void calc_load_account_active(struct rq *this_rq); | 1817 | static void calc_load_account_active(struct rq *this_rq); |
1818 | static void update_sysctl(void); | ||
1819 | static int get_update_sysctl_factor(void); | ||
1820 | |||
1821 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
1822 | { | ||
1823 | set_task_rq(p, cpu); | ||
1824 | #ifdef CONFIG_SMP | ||
1825 | /* | ||
1826 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
1827 | * successfuly executed on another CPU. We must ensure that updates of | ||
1828 | * per-task data have been completed by this moment. | ||
1829 | */ | ||
1830 | smp_wmb(); | ||
1831 | task_thread_info(p)->cpu = cpu; | ||
1832 | #endif | ||
1833 | } | ||
1813 | 1834 | ||
1814 | #include "sched_stats.h" | 1835 | #include "sched_stats.h" |
1815 | #include "sched_idletask.c" | 1836 | #include "sched_idletask.c" |
@@ -1967,20 +1988,6 @@ inline int task_curr(const struct task_struct *p) | |||
1967 | return cpu_curr(task_cpu(p)) == p; | 1988 | return cpu_curr(task_cpu(p)) == p; |
1968 | } | 1989 | } |
1969 | 1990 | ||
1970 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
1971 | { | ||
1972 | set_task_rq(p, cpu); | ||
1973 | #ifdef CONFIG_SMP | ||
1974 | /* | ||
1975 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
1976 | * successfuly executed on another CPU. We must ensure that updates of | ||
1977 | * per-task data have been completed by this moment. | ||
1978 | */ | ||
1979 | smp_wmb(); | ||
1980 | task_thread_info(p)->cpu = cpu; | ||
1981 | #endif | ||
1982 | } | ||
1983 | |||
1984 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 1991 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1985 | const struct sched_class *prev_class, | 1992 | const struct sched_class *prev_class, |
1986 | int oldprio, int running) | 1993 | int oldprio, int running) |
@@ -2017,6 +2024,7 @@ void kthread_bind(struct task_struct *p, unsigned int cpu) | |||
2017 | } | 2024 | } |
2018 | 2025 | ||
2019 | spin_lock_irqsave(&rq->lock, flags); | 2026 | spin_lock_irqsave(&rq->lock, flags); |
2027 | update_rq_clock(rq); | ||
2020 | set_task_cpu(p, cpu); | 2028 | set_task_cpu(p, cpu); |
2021 | p->cpus_allowed = cpumask_of_cpu(cpu); | 2029 | p->cpus_allowed = cpumask_of_cpu(cpu); |
2022 | p->rt.nr_cpus_allowed = 1; | 2030 | p->rt.nr_cpus_allowed = 1; |
@@ -2059,30 +2067,13 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
2059 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 2067 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
2060 | { | 2068 | { |
2061 | int old_cpu = task_cpu(p); | 2069 | int old_cpu = task_cpu(p); |
2062 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | ||
2063 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), | 2070 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), |
2064 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | 2071 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); |
2065 | u64 clock_offset; | ||
2066 | |||
2067 | clock_offset = old_rq->clock - new_rq->clock; | ||
2068 | 2072 | ||
2069 | trace_sched_migrate_task(p, new_cpu); | 2073 | trace_sched_migrate_task(p, new_cpu); |
2070 | 2074 | ||
2071 | #ifdef CONFIG_SCHEDSTATS | ||
2072 | if (p->se.wait_start) | ||
2073 | p->se.wait_start -= clock_offset; | ||
2074 | if (p->se.sleep_start) | ||
2075 | p->se.sleep_start -= clock_offset; | ||
2076 | if (p->se.block_start) | ||
2077 | p->se.block_start -= clock_offset; | ||
2078 | #endif | ||
2079 | if (old_cpu != new_cpu) { | 2075 | if (old_cpu != new_cpu) { |
2080 | p->se.nr_migrations++; | 2076 | p->se.nr_migrations++; |
2081 | new_rq->nr_migrations_in++; | ||
2082 | #ifdef CONFIG_SCHEDSTATS | ||
2083 | if (task_hot(p, old_rq->clock, NULL)) | ||
2084 | schedstat_inc(p, se.nr_forced2_migrations); | ||
2085 | #endif | ||
2086 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2077 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
2087 | 1, 1, NULL, 0); | 2078 | 1, 1, NULL, 0); |
2088 | } | 2079 | } |
@@ -2115,6 +2106,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |||
2115 | * it is sufficient to simply update the task's cpu field. | 2106 | * it is sufficient to simply update the task's cpu field. |
2116 | */ | 2107 | */ |
2117 | if (!p->se.on_rq && !task_running(rq, p)) { | 2108 | if (!p->se.on_rq && !task_running(rq, p)) { |
2109 | update_rq_clock(rq); | ||
2118 | set_task_cpu(p, dest_cpu); | 2110 | set_task_cpu(p, dest_cpu); |
2119 | return 0; | 2111 | return 0; |
2120 | } | 2112 | } |
@@ -2322,6 +2314,14 @@ void task_oncpu_function_call(struct task_struct *p, | |||
2322 | preempt_enable(); | 2314 | preempt_enable(); |
2323 | } | 2315 | } |
2324 | 2316 | ||
2317 | #ifdef CONFIG_SMP | ||
2318 | static inline | ||
2319 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | ||
2320 | { | ||
2321 | return p->sched_class->select_task_rq(p, sd_flags, wake_flags); | ||
2322 | } | ||
2323 | #endif | ||
2324 | |||
2325 | /*** | 2325 | /*** |
2326 | * try_to_wake_up - wake up a thread | 2326 | * try_to_wake_up - wake up a thread |
2327 | * @p: the to-be-woken-up thread | 2327 | * @p: the to-be-woken-up thread |
@@ -2373,16 +2373,14 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2373 | if (task_contributes_to_load(p)) | 2373 | if (task_contributes_to_load(p)) |
2374 | rq->nr_uninterruptible--; | 2374 | rq->nr_uninterruptible--; |
2375 | p->state = TASK_WAKING; | 2375 | p->state = TASK_WAKING; |
2376 | task_rq_unlock(rq, &flags); | 2376 | __task_rq_unlock(rq); |
2377 | 2377 | ||
2378 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | 2378 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); |
2379 | if (cpu != orig_cpu) | 2379 | if (cpu != orig_cpu) |
2380 | set_task_cpu(p, cpu); | 2380 | set_task_cpu(p, cpu); |
2381 | 2381 | ||
2382 | rq = task_rq_lock(p, &flags); | 2382 | rq = __task_rq_lock(p); |
2383 | 2383 | update_rq_clock(rq); | |
2384 | if (rq != orig_rq) | ||
2385 | update_rq_clock(rq); | ||
2386 | 2384 | ||
2387 | WARN_ON(p->state != TASK_WAKING); | 2385 | WARN_ON(p->state != TASK_WAKING); |
2388 | cpu = task_cpu(p); | 2386 | cpu = task_cpu(p); |
@@ -2440,6 +2438,17 @@ out_running: | |||
2440 | #ifdef CONFIG_SMP | 2438 | #ifdef CONFIG_SMP |
2441 | if (p->sched_class->task_wake_up) | 2439 | if (p->sched_class->task_wake_up) |
2442 | p->sched_class->task_wake_up(rq, p); | 2440 | p->sched_class->task_wake_up(rq, p); |
2441 | |||
2442 | if (unlikely(rq->idle_stamp)) { | ||
2443 | u64 delta = rq->clock - rq->idle_stamp; | ||
2444 | u64 max = 2*sysctl_sched_migration_cost; | ||
2445 | |||
2446 | if (delta > max) | ||
2447 | rq->avg_idle = max; | ||
2448 | else | ||
2449 | update_avg(&rq->avg_idle, delta); | ||
2450 | rq->idle_stamp = 0; | ||
2451 | } | ||
2443 | #endif | 2452 | #endif |
2444 | out: | 2453 | out: |
2445 | task_rq_unlock(rq, &flags); | 2454 | task_rq_unlock(rq, &flags); |
@@ -2486,7 +2495,6 @@ static void __sched_fork(struct task_struct *p) | |||
2486 | p->se.avg_overlap = 0; | 2495 | p->se.avg_overlap = 0; |
2487 | p->se.start_runtime = 0; | 2496 | p->se.start_runtime = 0; |
2488 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2497 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
2489 | p->se.avg_running = 0; | ||
2490 | 2498 | ||
2491 | #ifdef CONFIG_SCHEDSTATS | 2499 | #ifdef CONFIG_SCHEDSTATS |
2492 | p->se.wait_start = 0; | 2500 | p->se.wait_start = 0; |
@@ -2508,7 +2516,6 @@ static void __sched_fork(struct task_struct *p) | |||
2508 | p->se.nr_failed_migrations_running = 0; | 2516 | p->se.nr_failed_migrations_running = 0; |
2509 | p->se.nr_failed_migrations_hot = 0; | 2517 | p->se.nr_failed_migrations_hot = 0; |
2510 | p->se.nr_forced_migrations = 0; | 2518 | p->se.nr_forced_migrations = 0; |
2511 | p->se.nr_forced2_migrations = 0; | ||
2512 | 2519 | ||
2513 | p->se.nr_wakeups = 0; | 2520 | p->se.nr_wakeups = 0; |
2514 | p->se.nr_wakeups_sync = 0; | 2521 | p->se.nr_wakeups_sync = 0; |
@@ -2578,8 +2585,11 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2578 | if (!rt_prio(p->prio)) | 2585 | if (!rt_prio(p->prio)) |
2579 | p->sched_class = &fair_sched_class; | 2586 | p->sched_class = &fair_sched_class; |
2580 | 2587 | ||
2588 | if (p->sched_class->task_fork) | ||
2589 | p->sched_class->task_fork(p); | ||
2590 | |||
2581 | #ifdef CONFIG_SMP | 2591 | #ifdef CONFIG_SMP |
2582 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | 2592 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); |
2583 | #endif | 2593 | #endif |
2584 | set_task_cpu(p, cpu); | 2594 | set_task_cpu(p, cpu); |
2585 | 2595 | ||
@@ -2614,17 +2624,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2614 | rq = task_rq_lock(p, &flags); | 2624 | rq = task_rq_lock(p, &flags); |
2615 | BUG_ON(p->state != TASK_RUNNING); | 2625 | BUG_ON(p->state != TASK_RUNNING); |
2616 | update_rq_clock(rq); | 2626 | update_rq_clock(rq); |
2617 | 2627 | activate_task(rq, p, 0); | |
2618 | if (!p->sched_class->task_new || !current->se.on_rq) { | ||
2619 | activate_task(rq, p, 0); | ||
2620 | } else { | ||
2621 | /* | ||
2622 | * Let the scheduling class do new task startup | ||
2623 | * management (if any): | ||
2624 | */ | ||
2625 | p->sched_class->task_new(rq, p); | ||
2626 | inc_nr_running(rq); | ||
2627 | } | ||
2628 | trace_sched_wakeup_new(rq, p, 1); | 2628 | trace_sched_wakeup_new(rq, p, 1); |
2629 | check_preempt_curr(rq, p, WF_FORK); | 2629 | check_preempt_curr(rq, p, WF_FORK); |
2630 | #ifdef CONFIG_SMP | 2630 | #ifdef CONFIG_SMP |
@@ -2848,14 +2848,14 @@ context_switch(struct rq *rq, struct task_struct *prev, | |||
2848 | */ | 2848 | */ |
2849 | arch_start_context_switch(prev); | 2849 | arch_start_context_switch(prev); |
2850 | 2850 | ||
2851 | if (unlikely(!mm)) { | 2851 | if (likely(!mm)) { |
2852 | next->active_mm = oldmm; | 2852 | next->active_mm = oldmm; |
2853 | atomic_inc(&oldmm->mm_count); | 2853 | atomic_inc(&oldmm->mm_count); |
2854 | enter_lazy_tlb(oldmm, next); | 2854 | enter_lazy_tlb(oldmm, next); |
2855 | } else | 2855 | } else |
2856 | switch_mm(oldmm, mm, next); | 2856 | switch_mm(oldmm, mm, next); |
2857 | 2857 | ||
2858 | if (unlikely(!prev->mm)) { | 2858 | if (likely(!prev->mm)) { |
2859 | prev->active_mm = NULL; | 2859 | prev->active_mm = NULL; |
2860 | rq->prev_mm = oldmm; | 2860 | rq->prev_mm = oldmm; |
2861 | } | 2861 | } |
@@ -3018,15 +3018,6 @@ static void calc_load_account_active(struct rq *this_rq) | |||
3018 | } | 3018 | } |
3019 | 3019 | ||
3020 | /* | 3020 | /* |
3021 | * Externally visible per-cpu scheduler statistics: | ||
3022 | * cpu_nr_migrations(cpu) - number of migrations into that cpu | ||
3023 | */ | ||
3024 | u64 cpu_nr_migrations(int cpu) | ||
3025 | { | ||
3026 | return cpu_rq(cpu)->nr_migrations_in; | ||
3027 | } | ||
3028 | |||
3029 | /* | ||
3030 | * Update rq->cpu_load[] statistics. This function is usually called every | 3021 | * Update rq->cpu_load[] statistics. This function is usually called every |
3031 | * scheduler tick (TICK_NSEC). | 3022 | * scheduler tick (TICK_NSEC). |
3032 | */ | 3023 | */ |
@@ -3148,7 +3139,7 @@ out: | |||
3148 | void sched_exec(void) | 3139 | void sched_exec(void) |
3149 | { | 3140 | { |
3150 | int new_cpu, this_cpu = get_cpu(); | 3141 | int new_cpu, this_cpu = get_cpu(); |
3151 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); | 3142 | new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0); |
3152 | put_cpu(); | 3143 | put_cpu(); |
3153 | if (new_cpu != this_cpu) | 3144 | if (new_cpu != this_cpu) |
3154 | sched_migrate_task(current, new_cpu); | 3145 | sched_migrate_task(current, new_cpu); |
@@ -3164,10 +3155,6 @@ static void pull_task(struct rq *src_rq, struct task_struct *p, | |||
3164 | deactivate_task(src_rq, p, 0); | 3155 | deactivate_task(src_rq, p, 0); |
3165 | set_task_cpu(p, this_cpu); | 3156 | set_task_cpu(p, this_cpu); |
3166 | activate_task(this_rq, p, 0); | 3157 | activate_task(this_rq, p, 0); |
3167 | /* | ||
3168 | * Note that idle threads have a prio of MAX_PRIO, for this test | ||
3169 | * to be always true for them. | ||
3170 | */ | ||
3171 | check_preempt_curr(this_rq, p, 0); | 3158 | check_preempt_curr(this_rq, p, 0); |
3172 | } | 3159 | } |
3173 | 3160 | ||
@@ -4126,7 +4113,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, | |||
4126 | unsigned long flags; | 4113 | unsigned long flags; |
4127 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | 4114 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); |
4128 | 4115 | ||
4129 | cpumask_setall(cpus); | 4116 | cpumask_copy(cpus, cpu_active_mask); |
4130 | 4117 | ||
4131 | /* | 4118 | /* |
4132 | * When power savings policy is enabled for the parent domain, idle | 4119 | * When power savings policy is enabled for the parent domain, idle |
@@ -4289,7 +4276,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | |||
4289 | int all_pinned = 0; | 4276 | int all_pinned = 0; |
4290 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | 4277 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); |
4291 | 4278 | ||
4292 | cpumask_setall(cpus); | 4279 | cpumask_copy(cpus, cpu_active_mask); |
4293 | 4280 | ||
4294 | /* | 4281 | /* |
4295 | * When power savings policy is enabled for the parent domain, idle | 4282 | * When power savings policy is enabled for the parent domain, idle |
@@ -4429,6 +4416,11 @@ static void idle_balance(int this_cpu, struct rq *this_rq) | |||
4429 | int pulled_task = 0; | 4416 | int pulled_task = 0; |
4430 | unsigned long next_balance = jiffies + HZ; | 4417 | unsigned long next_balance = jiffies + HZ; |
4431 | 4418 | ||
4419 | this_rq->idle_stamp = this_rq->clock; | ||
4420 | |||
4421 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
4422 | return; | ||
4423 | |||
4432 | for_each_domain(this_cpu, sd) { | 4424 | for_each_domain(this_cpu, sd) { |
4433 | unsigned long interval; | 4425 | unsigned long interval; |
4434 | 4426 | ||
@@ -4443,8 +4435,10 @@ static void idle_balance(int this_cpu, struct rq *this_rq) | |||
4443 | interval = msecs_to_jiffies(sd->balance_interval); | 4435 | interval = msecs_to_jiffies(sd->balance_interval); |
4444 | if (time_after(next_balance, sd->last_balance + interval)) | 4436 | if (time_after(next_balance, sd->last_balance + interval)) |
4445 | next_balance = sd->last_balance + interval; | 4437 | next_balance = sd->last_balance + interval; |
4446 | if (pulled_task) | 4438 | if (pulled_task) { |
4439 | this_rq->idle_stamp = 0; | ||
4447 | break; | 4440 | break; |
4441 | } | ||
4448 | } | 4442 | } |
4449 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | 4443 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
4450 | /* | 4444 | /* |
@@ -4679,7 +4673,7 @@ int select_nohz_load_balancer(int stop_tick) | |||
4679 | cpumask_set_cpu(cpu, nohz.cpu_mask); | 4673 | cpumask_set_cpu(cpu, nohz.cpu_mask); |
4680 | 4674 | ||
4681 | /* time for ilb owner also to sleep */ | 4675 | /* time for ilb owner also to sleep */ |
4682 | if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | 4676 | if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { |
4683 | if (atomic_read(&nohz.load_balancer) == cpu) | 4677 | if (atomic_read(&nohz.load_balancer) == cpu) |
4684 | atomic_set(&nohz.load_balancer, -1); | 4678 | atomic_set(&nohz.load_balancer, -1); |
4685 | return 0; | 4679 | return 0; |
@@ -5046,8 +5040,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime, | |||
5046 | p->gtime = cputime_add(p->gtime, cputime); | 5040 | p->gtime = cputime_add(p->gtime, cputime); |
5047 | 5041 | ||
5048 | /* Add guest time to cpustat. */ | 5042 | /* Add guest time to cpustat. */ |
5049 | cpustat->user = cputime64_add(cpustat->user, tmp); | 5043 | if (TASK_NICE(p) > 0) { |
5050 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | 5044 | cpustat->nice = cputime64_add(cpustat->nice, tmp); |
5045 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | ||
5046 | } else { | ||
5047 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
5048 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | ||
5049 | } | ||
5051 | } | 5050 | } |
5052 | 5051 | ||
5053 | /* | 5052 | /* |
@@ -5162,60 +5161,86 @@ void account_idle_ticks(unsigned long ticks) | |||
5162 | * Use precise platform statistics if available: | 5161 | * Use precise platform statistics if available: |
5163 | */ | 5162 | */ |
5164 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 5163 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
5165 | cputime_t task_utime(struct task_struct *p) | 5164 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
5166 | { | 5165 | { |
5167 | return p->utime; | 5166 | *ut = p->utime; |
5167 | *st = p->stime; | ||
5168 | } | 5168 | } |
5169 | 5169 | ||
5170 | cputime_t task_stime(struct task_struct *p) | 5170 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
5171 | { | 5171 | { |
5172 | return p->stime; | 5172 | struct task_cputime cputime; |
5173 | |||
5174 | thread_group_cputime(p, &cputime); | ||
5175 | |||
5176 | *ut = cputime.utime; | ||
5177 | *st = cputime.stime; | ||
5173 | } | 5178 | } |
5174 | #else | 5179 | #else |
5175 | cputime_t task_utime(struct task_struct *p) | 5180 | |
5181 | #ifndef nsecs_to_cputime | ||
5182 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) | ||
5183 | #endif | ||
5184 | |||
5185 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
5176 | { | 5186 | { |
5177 | clock_t utime = cputime_to_clock_t(p->utime), | 5187 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); |
5178 | total = utime + cputime_to_clock_t(p->stime); | ||
5179 | u64 temp; | ||
5180 | 5188 | ||
5181 | /* | 5189 | /* |
5182 | * Use CFS's precise accounting: | 5190 | * Use CFS's precise accounting: |
5183 | */ | 5191 | */ |
5184 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | 5192 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
5185 | 5193 | ||
5186 | if (total) { | 5194 | if (total) { |
5187 | temp *= utime; | 5195 | u64 temp; |
5196 | |||
5197 | temp = (u64)(rtime * utime); | ||
5188 | do_div(temp, total); | 5198 | do_div(temp, total); |
5189 | } | 5199 | utime = (cputime_t)temp; |
5190 | utime = (clock_t)temp; | 5200 | } else |
5201 | utime = rtime; | ||
5191 | 5202 | ||
5192 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | 5203 | /* |
5193 | return p->prev_utime; | 5204 | * Compare with previous values, to keep monotonicity: |
5205 | */ | ||
5206 | p->prev_utime = max(p->prev_utime, utime); | ||
5207 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | ||
5208 | |||
5209 | *ut = p->prev_utime; | ||
5210 | *st = p->prev_stime; | ||
5194 | } | 5211 | } |
5195 | 5212 | ||
5196 | cputime_t task_stime(struct task_struct *p) | 5213 | /* |
5214 | * Must be called with siglock held. | ||
5215 | */ | ||
5216 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
5197 | { | 5217 | { |
5198 | clock_t stime; | 5218 | struct signal_struct *sig = p->signal; |
5219 | struct task_cputime cputime; | ||
5220 | cputime_t rtime, utime, total; | ||
5199 | 5221 | ||
5200 | /* | 5222 | thread_group_cputime(p, &cputime); |
5201 | * Use CFS's precise accounting. (we subtract utime from | ||
5202 | * the total, to make sure the total observed by userspace | ||
5203 | * grows monotonically - apps rely on that): | ||
5204 | */ | ||
5205 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | ||
5206 | cputime_to_clock_t(task_utime(p)); | ||
5207 | 5223 | ||
5208 | if (stime >= 0) | 5224 | total = cputime_add(cputime.utime, cputime.stime); |
5209 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | 5225 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
5210 | 5226 | ||
5211 | return p->prev_stime; | 5227 | if (total) { |
5212 | } | 5228 | u64 temp; |
5213 | #endif | ||
5214 | 5229 | ||
5215 | inline cputime_t task_gtime(struct task_struct *p) | 5230 | temp = (u64)(rtime * cputime.utime); |
5216 | { | 5231 | do_div(temp, total); |
5217 | return p->gtime; | 5232 | utime = (cputime_t)temp; |
5233 | } else | ||
5234 | utime = rtime; | ||
5235 | |||
5236 | sig->prev_utime = max(sig->prev_utime, utime); | ||
5237 | sig->prev_stime = max(sig->prev_stime, | ||
5238 | cputime_sub(rtime, sig->prev_utime)); | ||
5239 | |||
5240 | *ut = sig->prev_utime; | ||
5241 | *st = sig->prev_stime; | ||
5218 | } | 5242 | } |
5243 | #endif | ||
5219 | 5244 | ||
5220 | /* | 5245 | /* |
5221 | * This function gets called by the timer code, with HZ frequency. | 5246 | * This function gets called by the timer code, with HZ frequency. |
@@ -5350,13 +5375,14 @@ static inline void schedule_debug(struct task_struct *prev) | |||
5350 | #endif | 5375 | #endif |
5351 | } | 5376 | } |
5352 | 5377 | ||
5353 | static void put_prev_task(struct rq *rq, struct task_struct *p) | 5378 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
5354 | { | 5379 | { |
5355 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; | 5380 | if (prev->state == TASK_RUNNING) { |
5381 | u64 runtime = prev->se.sum_exec_runtime; | ||
5356 | 5382 | ||
5357 | update_avg(&p->se.avg_running, runtime); | 5383 | runtime -= prev->se.prev_sum_exec_runtime; |
5384 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
5358 | 5385 | ||
5359 | if (p->state == TASK_RUNNING) { | ||
5360 | /* | 5386 | /* |
5361 | * In order to avoid avg_overlap growing stale when we are | 5387 | * In order to avoid avg_overlap growing stale when we are |
5362 | * indeed overlapping and hence not getting put to sleep, grow | 5388 | * indeed overlapping and hence not getting put to sleep, grow |
@@ -5366,12 +5392,9 @@ static void put_prev_task(struct rq *rq, struct task_struct *p) | |||
5366 | * correlates to the amount of cache footprint a task can | 5392 | * correlates to the amount of cache footprint a task can |
5367 | * build up. | 5393 | * build up. |
5368 | */ | 5394 | */ |
5369 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | 5395 | update_avg(&prev->se.avg_overlap, runtime); |
5370 | update_avg(&p->se.avg_overlap, runtime); | ||
5371 | } else { | ||
5372 | update_avg(&p->se.avg_running, 0); | ||
5373 | } | 5396 | } |
5374 | p->sched_class->put_prev_task(rq, p); | 5397 | prev->sched_class->put_prev_task(rq, prev); |
5375 | } | 5398 | } |
5376 | 5399 | ||
5377 | /* | 5400 | /* |
@@ -5481,7 +5504,7 @@ need_resched_nonpreemptible: | |||
5481 | } | 5504 | } |
5482 | EXPORT_SYMBOL(schedule); | 5505 | EXPORT_SYMBOL(schedule); |
5483 | 5506 | ||
5484 | #ifdef CONFIG_SMP | 5507 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
5485 | /* | 5508 | /* |
5486 | * Look out! "owner" is an entirely speculative pointer | 5509 | * Look out! "owner" is an entirely speculative pointer |
5487 | * access and not reliable. | 5510 | * access and not reliable. |
@@ -6175,22 +6198,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |||
6175 | BUG_ON(p->se.on_rq); | 6198 | BUG_ON(p->se.on_rq); |
6176 | 6199 | ||
6177 | p->policy = policy; | 6200 | p->policy = policy; |
6178 | switch (p->policy) { | ||
6179 | case SCHED_NORMAL: | ||
6180 | case SCHED_BATCH: | ||
6181 | case SCHED_IDLE: | ||
6182 | p->sched_class = &fair_sched_class; | ||
6183 | break; | ||
6184 | case SCHED_FIFO: | ||
6185 | case SCHED_RR: | ||
6186 | p->sched_class = &rt_sched_class; | ||
6187 | break; | ||
6188 | } | ||
6189 | |||
6190 | p->rt_priority = prio; | 6201 | p->rt_priority = prio; |
6191 | p->normal_prio = normal_prio(p); | 6202 | p->normal_prio = normal_prio(p); |
6192 | /* we are holding p->pi_lock already */ | 6203 | /* we are holding p->pi_lock already */ |
6193 | p->prio = rt_mutex_getprio(p); | 6204 | p->prio = rt_mutex_getprio(p); |
6205 | if (rt_prio(p->prio)) | ||
6206 | p->sched_class = &rt_sched_class; | ||
6207 | else | ||
6208 | p->sched_class = &fair_sched_class; | ||
6194 | set_load_weight(p); | 6209 | set_load_weight(p); |
6195 | } | 6210 | } |
6196 | 6211 | ||
@@ -6593,6 +6608,8 @@ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | |||
6593 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 6608 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
6594 | { | 6609 | { |
6595 | struct task_struct *p; | 6610 | struct task_struct *p; |
6611 | unsigned long flags; | ||
6612 | struct rq *rq; | ||
6596 | int retval; | 6613 | int retval; |
6597 | 6614 | ||
6598 | get_online_cpus(); | 6615 | get_online_cpus(); |
@@ -6607,7 +6624,9 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask) | |||
6607 | if (retval) | 6624 | if (retval) |
6608 | goto out_unlock; | 6625 | goto out_unlock; |
6609 | 6626 | ||
6627 | rq = task_rq_lock(p, &flags); | ||
6610 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); | 6628 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
6629 | task_rq_unlock(rq, &flags); | ||
6611 | 6630 | ||
6612 | out_unlock: | 6631 | out_unlock: |
6613 | read_unlock(&tasklist_lock); | 6632 | read_unlock(&tasklist_lock); |
@@ -6845,6 +6864,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6845 | { | 6864 | { |
6846 | struct task_struct *p; | 6865 | struct task_struct *p; |
6847 | unsigned int time_slice; | 6866 | unsigned int time_slice; |
6867 | unsigned long flags; | ||
6868 | struct rq *rq; | ||
6848 | int retval; | 6869 | int retval; |
6849 | struct timespec t; | 6870 | struct timespec t; |
6850 | 6871 | ||
@@ -6861,7 +6882,9 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6861 | if (retval) | 6882 | if (retval) |
6862 | goto out_unlock; | 6883 | goto out_unlock; |
6863 | 6884 | ||
6864 | time_slice = p->sched_class->get_rr_interval(p); | 6885 | rq = task_rq_lock(p, &flags); |
6886 | time_slice = p->sched_class->get_rr_interval(rq, p); | ||
6887 | task_rq_unlock(rq, &flags); | ||
6865 | 6888 | ||
6866 | read_unlock(&tasklist_lock); | 6889 | read_unlock(&tasklist_lock); |
6867 | jiffies_to_timespec(time_slice, &t); | 6890 | jiffies_to_timespec(time_slice, &t); |
@@ -6935,7 +6958,7 @@ void show_state_filter(unsigned long state_filter) | |||
6935 | /* | 6958 | /* |
6936 | * Only show locks if all tasks are dumped: | 6959 | * Only show locks if all tasks are dumped: |
6937 | */ | 6960 | */ |
6938 | if (state_filter == -1) | 6961 | if (!state_filter) |
6939 | debug_show_all_locks(); | 6962 | debug_show_all_locks(); |
6940 | } | 6963 | } |
6941 | 6964 | ||
@@ -6962,7 +6985,6 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) | |||
6962 | __sched_fork(idle); | 6985 | __sched_fork(idle); |
6963 | idle->se.exec_start = sched_clock(); | 6986 | idle->se.exec_start = sched_clock(); |
6964 | 6987 | ||
6965 | idle->prio = idle->normal_prio = MAX_PRIO; | ||
6966 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); | 6988 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
6967 | __set_task_cpu(idle, cpu); | 6989 | __set_task_cpu(idle, cpu); |
6968 | 6990 | ||
@@ -7003,22 +7025,43 @@ cpumask_var_t nohz_cpu_mask; | |||
7003 | * | 7025 | * |
7004 | * This idea comes from the SD scheduler of Con Kolivas: | 7026 | * This idea comes from the SD scheduler of Con Kolivas: |
7005 | */ | 7027 | */ |
7006 | static inline void sched_init_granularity(void) | 7028 | static int get_update_sysctl_factor(void) |
7007 | { | 7029 | { |
7008 | unsigned int factor = 1 + ilog2(num_online_cpus()); | 7030 | unsigned int cpus = min_t(int, num_online_cpus(), 8); |
7009 | const unsigned long limit = 200000000; | 7031 | unsigned int factor; |
7010 | 7032 | ||
7011 | sysctl_sched_min_granularity *= factor; | 7033 | switch (sysctl_sched_tunable_scaling) { |
7012 | if (sysctl_sched_min_granularity > limit) | 7034 | case SCHED_TUNABLESCALING_NONE: |
7013 | sysctl_sched_min_granularity = limit; | 7035 | factor = 1; |
7036 | break; | ||
7037 | case SCHED_TUNABLESCALING_LINEAR: | ||
7038 | factor = cpus; | ||
7039 | break; | ||
7040 | case SCHED_TUNABLESCALING_LOG: | ||
7041 | default: | ||
7042 | factor = 1 + ilog2(cpus); | ||
7043 | break; | ||
7044 | } | ||
7014 | 7045 | ||
7015 | sysctl_sched_latency *= factor; | 7046 | return factor; |
7016 | if (sysctl_sched_latency > limit) | 7047 | } |
7017 | sysctl_sched_latency = limit; | ||
7018 | 7048 | ||
7019 | sysctl_sched_wakeup_granularity *= factor; | 7049 | static void update_sysctl(void) |
7050 | { | ||
7051 | unsigned int factor = get_update_sysctl_factor(); | ||
7052 | |||
7053 | #define SET_SYSCTL(name) \ | ||
7054 | (sysctl_##name = (factor) * normalized_sysctl_##name) | ||
7055 | SET_SYSCTL(sched_min_granularity); | ||
7056 | SET_SYSCTL(sched_latency); | ||
7057 | SET_SYSCTL(sched_wakeup_granularity); | ||
7058 | SET_SYSCTL(sched_shares_ratelimit); | ||
7059 | #undef SET_SYSCTL | ||
7060 | } | ||
7020 | 7061 | ||
7021 | sysctl_sched_shares_ratelimit *= factor; | 7062 | static inline void sched_init_granularity(void) |
7063 | { | ||
7064 | update_sysctl(); | ||
7022 | } | 7065 | } |
7023 | 7066 | ||
7024 | #ifdef CONFIG_SMP | 7067 | #ifdef CONFIG_SMP |
@@ -7055,7 +7098,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
7055 | int ret = 0; | 7098 | int ret = 0; |
7056 | 7099 | ||
7057 | rq = task_rq_lock(p, &flags); | 7100 | rq = task_rq_lock(p, &flags); |
7058 | if (!cpumask_intersects(new_mask, cpu_online_mask)) { | 7101 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
7059 | ret = -EINVAL; | 7102 | ret = -EINVAL; |
7060 | goto out; | 7103 | goto out; |
7061 | } | 7104 | } |
@@ -7077,7 +7120,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
7077 | if (cpumask_test_cpu(task_cpu(p), new_mask)) | 7120 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
7078 | goto out; | 7121 | goto out; |
7079 | 7122 | ||
7080 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { | 7123 | if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { |
7081 | /* Need help from migration thread: drop lock and wait. */ | 7124 | /* Need help from migration thread: drop lock and wait. */ |
7082 | struct task_struct *mt = rq->migration_thread; | 7125 | struct task_struct *mt = rq->migration_thread; |
7083 | 7126 | ||
@@ -7231,19 +7274,19 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | |||
7231 | 7274 | ||
7232 | again: | 7275 | again: |
7233 | /* Look for allowed, online CPU in same node. */ | 7276 | /* Look for allowed, online CPU in same node. */ |
7234 | for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) | 7277 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) |
7235 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | 7278 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
7236 | goto move; | 7279 | goto move; |
7237 | 7280 | ||
7238 | /* Any allowed, online CPU? */ | 7281 | /* Any allowed, online CPU? */ |
7239 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); | 7282 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); |
7240 | if (dest_cpu < nr_cpu_ids) | 7283 | if (dest_cpu < nr_cpu_ids) |
7241 | goto move; | 7284 | goto move; |
7242 | 7285 | ||
7243 | /* No more Mr. Nice Guy. */ | 7286 | /* No more Mr. Nice Guy. */ |
7244 | if (dest_cpu >= nr_cpu_ids) { | 7287 | if (dest_cpu >= nr_cpu_ids) { |
7245 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | 7288 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); |
7246 | dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); | 7289 | dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); |
7247 | 7290 | ||
7248 | /* | 7291 | /* |
7249 | * Don't tell them about moving exiting tasks or | 7292 | * Don't tell them about moving exiting tasks or |
@@ -7272,7 +7315,7 @@ move: | |||
7272 | */ | 7315 | */ |
7273 | static void migrate_nr_uninterruptible(struct rq *rq_src) | 7316 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
7274 | { | 7317 | { |
7275 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); | 7318 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); |
7276 | unsigned long flags; | 7319 | unsigned long flags; |
7277 | 7320 | ||
7278 | local_irq_save(flags); | 7321 | local_irq_save(flags); |
@@ -7406,17 +7449,16 @@ static struct ctl_table sd_ctl_dir[] = { | |||
7406 | .procname = "sched_domain", | 7449 | .procname = "sched_domain", |
7407 | .mode = 0555, | 7450 | .mode = 0555, |
7408 | }, | 7451 | }, |
7409 | {0, }, | 7452 | {} |
7410 | }; | 7453 | }; |
7411 | 7454 | ||
7412 | static struct ctl_table sd_ctl_root[] = { | 7455 | static struct ctl_table sd_ctl_root[] = { |
7413 | { | 7456 | { |
7414 | .ctl_name = CTL_KERN, | ||
7415 | .procname = "kernel", | 7457 | .procname = "kernel", |
7416 | .mode = 0555, | 7458 | .mode = 0555, |
7417 | .child = sd_ctl_dir, | 7459 | .child = sd_ctl_dir, |
7418 | }, | 7460 | }, |
7419 | {0, }, | 7461 | {} |
7420 | }; | 7462 | }; |
7421 | 7463 | ||
7422 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 7464 | static struct ctl_table *sd_alloc_ctl_entry(int n) |
@@ -7526,7 +7568,7 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | |||
7526 | static struct ctl_table_header *sd_sysctl_header; | 7568 | static struct ctl_table_header *sd_sysctl_header; |
7527 | static void register_sched_domain_sysctl(void) | 7569 | static void register_sched_domain_sysctl(void) |
7528 | { | 7570 | { |
7529 | int i, cpu_num = num_online_cpus(); | 7571 | int i, cpu_num = num_possible_cpus(); |
7530 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 7572 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
7531 | char buf[32]; | 7573 | char buf[32]; |
7532 | 7574 | ||
@@ -7536,7 +7578,7 @@ static void register_sched_domain_sysctl(void) | |||
7536 | if (entry == NULL) | 7578 | if (entry == NULL) |
7537 | return; | 7579 | return; |
7538 | 7580 | ||
7539 | for_each_online_cpu(i) { | 7581 | for_each_possible_cpu(i) { |
7540 | snprintf(buf, 32, "cpu%d", i); | 7582 | snprintf(buf, 32, "cpu%d", i); |
7541 | entry->procname = kstrdup(buf, GFP_KERNEL); | 7583 | entry->procname = kstrdup(buf, GFP_KERNEL); |
7542 | entry->mode = 0555; | 7584 | entry->mode = 0555; |
@@ -7666,7 +7708,6 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7666 | spin_lock_irq(&rq->lock); | 7708 | spin_lock_irq(&rq->lock); |
7667 | update_rq_clock(rq); | 7709 | update_rq_clock(rq); |
7668 | deactivate_task(rq, rq->idle, 0); | 7710 | deactivate_task(rq, rq->idle, 0); |
7669 | rq->idle->static_prio = MAX_PRIO; | ||
7670 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 7711 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
7671 | rq->idle->sched_class = &idle_sched_class; | 7712 | rq->idle->sched_class = &idle_sched_class; |
7672 | migrate_dead_tasks(cpu); | 7713 | migrate_dead_tasks(cpu); |
@@ -7740,6 +7781,16 @@ early_initcall(migration_init); | |||
7740 | 7781 | ||
7741 | #ifdef CONFIG_SCHED_DEBUG | 7782 | #ifdef CONFIG_SCHED_DEBUG |
7742 | 7783 | ||
7784 | static __read_mostly int sched_domain_debug_enabled; | ||
7785 | |||
7786 | static int __init sched_domain_debug_setup(char *str) | ||
7787 | { | ||
7788 | sched_domain_debug_enabled = 1; | ||
7789 | |||
7790 | return 0; | ||
7791 | } | ||
7792 | early_param("sched_debug", sched_domain_debug_setup); | ||
7793 | |||
7743 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 7794 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
7744 | struct cpumask *groupmask) | 7795 | struct cpumask *groupmask) |
7745 | { | 7796 | { |
@@ -7826,6 +7877,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) | |||
7826 | cpumask_var_t groupmask; | 7877 | cpumask_var_t groupmask; |
7827 | int level = 0; | 7878 | int level = 0; |
7828 | 7879 | ||
7880 | if (!sched_domain_debug_enabled) | ||
7881 | return; | ||
7882 | |||
7829 | if (!sd) { | 7883 | if (!sd) { |
7830 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 7884 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
7831 | return; | 7885 | return; |
@@ -7905,6 +7959,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
7905 | 7959 | ||
7906 | static void free_rootdomain(struct root_domain *rd) | 7960 | static void free_rootdomain(struct root_domain *rd) |
7907 | { | 7961 | { |
7962 | synchronize_sched(); | ||
7963 | |||
7908 | cpupri_cleanup(&rd->cpupri); | 7964 | cpupri_cleanup(&rd->cpupri); |
7909 | 7965 | ||
7910 | free_cpumask_var(rd->rto_mask); | 7966 | free_cpumask_var(rd->rto_mask); |
@@ -8045,6 +8101,7 @@ static cpumask_var_t cpu_isolated_map; | |||
8045 | /* Setup the mask of cpus configured for isolated domains */ | 8101 | /* Setup the mask of cpus configured for isolated domains */ |
8046 | static int __init isolated_cpu_setup(char *str) | 8102 | static int __init isolated_cpu_setup(char *str) |
8047 | { | 8103 | { |
8104 | alloc_bootmem_cpumask_var(&cpu_isolated_map); | ||
8048 | cpulist_parse(str, cpu_isolated_map); | 8105 | cpulist_parse(str, cpu_isolated_map); |
8049 | return 1; | 8106 | return 1; |
8050 | } | 8107 | } |
@@ -8881,7 +8938,7 @@ static int build_sched_domains(const struct cpumask *cpu_map) | |||
8881 | return __build_sched_domains(cpu_map, NULL); | 8938 | return __build_sched_domains(cpu_map, NULL); |
8882 | } | 8939 | } |
8883 | 8940 | ||
8884 | static struct cpumask *doms_cur; /* current sched domains */ | 8941 | static cpumask_var_t *doms_cur; /* current sched domains */ |
8885 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 8942 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
8886 | static struct sched_domain_attr *dattr_cur; | 8943 | static struct sched_domain_attr *dattr_cur; |
8887 | /* attribues of custom domains in 'doms_cur' */ | 8944 | /* attribues of custom domains in 'doms_cur' */ |
@@ -8903,6 +8960,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void) | |||
8903 | return 0; | 8960 | return 0; |
8904 | } | 8961 | } |
8905 | 8962 | ||
8963 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | ||
8964 | { | ||
8965 | int i; | ||
8966 | cpumask_var_t *doms; | ||
8967 | |||
8968 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | ||
8969 | if (!doms) | ||
8970 | return NULL; | ||
8971 | for (i = 0; i < ndoms; i++) { | ||
8972 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | ||
8973 | free_sched_domains(doms, i); | ||
8974 | return NULL; | ||
8975 | } | ||
8976 | } | ||
8977 | return doms; | ||
8978 | } | ||
8979 | |||
8980 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | ||
8981 | { | ||
8982 | unsigned int i; | ||
8983 | for (i = 0; i < ndoms; i++) | ||
8984 | free_cpumask_var(doms[i]); | ||
8985 | kfree(doms); | ||
8986 | } | ||
8987 | |||
8906 | /* | 8988 | /* |
8907 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 8989 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
8908 | * For now this just excludes isolated cpus, but could be used to | 8990 | * For now this just excludes isolated cpus, but could be used to |
@@ -8914,12 +8996,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map) | |||
8914 | 8996 | ||
8915 | arch_update_cpu_topology(); | 8997 | arch_update_cpu_topology(); |
8916 | ndoms_cur = 1; | 8998 | ndoms_cur = 1; |
8917 | doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); | 8999 | doms_cur = alloc_sched_domains(ndoms_cur); |
8918 | if (!doms_cur) | 9000 | if (!doms_cur) |
8919 | doms_cur = fallback_doms; | 9001 | doms_cur = &fallback_doms; |
8920 | cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); | 9002 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); |
8921 | dattr_cur = NULL; | 9003 | dattr_cur = NULL; |
8922 | err = build_sched_domains(doms_cur); | 9004 | err = build_sched_domains(doms_cur[0]); |
8923 | register_sched_domain_sysctl(); | 9005 | register_sched_domain_sysctl(); |
8924 | 9006 | ||
8925 | return err; | 9007 | return err; |
@@ -8969,19 +9051,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
8969 | * doms_new[] to the current sched domain partitioning, doms_cur[]. | 9051 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
8970 | * It destroys each deleted domain and builds each new domain. | 9052 | * It destroys each deleted domain and builds each new domain. |
8971 | * | 9053 | * |
8972 | * 'doms_new' is an array of cpumask's of length 'ndoms_new'. | 9054 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
8973 | * The masks don't intersect (don't overlap.) We should setup one | 9055 | * The masks don't intersect (don't overlap.) We should setup one |
8974 | * sched domain for each mask. CPUs not in any of the cpumasks will | 9056 | * sched domain for each mask. CPUs not in any of the cpumasks will |
8975 | * not be load balanced. If the same cpumask appears both in the | 9057 | * not be load balanced. If the same cpumask appears both in the |
8976 | * current 'doms_cur' domains and in the new 'doms_new', we can leave | 9058 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
8977 | * it as it is. | 9059 | * it as it is. |
8978 | * | 9060 | * |
8979 | * The passed in 'doms_new' should be kmalloc'd. This routine takes | 9061 | * The passed in 'doms_new' should be allocated using |
8980 | * ownership of it and will kfree it when done with it. If the caller | 9062 | * alloc_sched_domains. This routine takes ownership of it and will |
8981 | * failed the kmalloc call, then it can pass in doms_new == NULL && | 9063 | * free_sched_domains it when done with it. If the caller failed the |
8982 | * ndoms_new == 1, and partition_sched_domains() will fallback to | 9064 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, |
8983 | * the single partition 'fallback_doms', it also forces the domains | 9065 | * and partition_sched_domains() will fallback to the single partition |
8984 | * to be rebuilt. | 9066 | * 'fallback_doms', it also forces the domains to be rebuilt. |
8985 | * | 9067 | * |
8986 | * If doms_new == NULL it will be replaced with cpu_online_mask. | 9068 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
8987 | * ndoms_new == 0 is a special case for destroying existing domains, | 9069 | * ndoms_new == 0 is a special case for destroying existing domains, |
@@ -8989,8 +9071,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
8989 | * | 9071 | * |
8990 | * Call with hotplug lock held | 9072 | * Call with hotplug lock held |
8991 | */ | 9073 | */ |
8992 | /* FIXME: Change to struct cpumask *doms_new[] */ | 9074 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
8993 | void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | ||
8994 | struct sched_domain_attr *dattr_new) | 9075 | struct sched_domain_attr *dattr_new) |
8995 | { | 9076 | { |
8996 | int i, j, n; | 9077 | int i, j, n; |
@@ -9009,40 +9090,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | |||
9009 | /* Destroy deleted domains */ | 9090 | /* Destroy deleted domains */ |
9010 | for (i = 0; i < ndoms_cur; i++) { | 9091 | for (i = 0; i < ndoms_cur; i++) { |
9011 | for (j = 0; j < n && !new_topology; j++) { | 9092 | for (j = 0; j < n && !new_topology; j++) { |
9012 | if (cpumask_equal(&doms_cur[i], &doms_new[j]) | 9093 | if (cpumask_equal(doms_cur[i], doms_new[j]) |
9013 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | 9094 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
9014 | goto match1; | 9095 | goto match1; |
9015 | } | 9096 | } |
9016 | /* no match - a current sched domain not in new doms_new[] */ | 9097 | /* no match - a current sched domain not in new doms_new[] */ |
9017 | detach_destroy_domains(doms_cur + i); | 9098 | detach_destroy_domains(doms_cur[i]); |
9018 | match1: | 9099 | match1: |
9019 | ; | 9100 | ; |
9020 | } | 9101 | } |
9021 | 9102 | ||
9022 | if (doms_new == NULL) { | 9103 | if (doms_new == NULL) { |
9023 | ndoms_cur = 0; | 9104 | ndoms_cur = 0; |
9024 | doms_new = fallback_doms; | 9105 | doms_new = &fallback_doms; |
9025 | cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); | 9106 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); |
9026 | WARN_ON_ONCE(dattr_new); | 9107 | WARN_ON_ONCE(dattr_new); |
9027 | } | 9108 | } |
9028 | 9109 | ||
9029 | /* Build new domains */ | 9110 | /* Build new domains */ |
9030 | for (i = 0; i < ndoms_new; i++) { | 9111 | for (i = 0; i < ndoms_new; i++) { |
9031 | for (j = 0; j < ndoms_cur && !new_topology; j++) { | 9112 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
9032 | if (cpumask_equal(&doms_new[i], &doms_cur[j]) | 9113 | if (cpumask_equal(doms_new[i], doms_cur[j]) |
9033 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | 9114 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
9034 | goto match2; | 9115 | goto match2; |
9035 | } | 9116 | } |
9036 | /* no match - add a new doms_new */ | 9117 | /* no match - add a new doms_new */ |
9037 | __build_sched_domains(doms_new + i, | 9118 | __build_sched_domains(doms_new[i], |
9038 | dattr_new ? dattr_new + i : NULL); | 9119 | dattr_new ? dattr_new + i : NULL); |
9039 | match2: | 9120 | match2: |
9040 | ; | 9121 | ; |
9041 | } | 9122 | } |
9042 | 9123 | ||
9043 | /* Remember the new sched domains */ | 9124 | /* Remember the new sched domains */ |
9044 | if (doms_cur != fallback_doms) | 9125 | if (doms_cur != &fallback_doms) |
9045 | kfree(doms_cur); | 9126 | free_sched_domains(doms_cur, ndoms_cur); |
9046 | kfree(dattr_cur); /* kfree(NULL) is safe */ | 9127 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
9047 | doms_cur = doms_new; | 9128 | doms_cur = doms_new; |
9048 | dattr_cur = dattr_new; | 9129 | dattr_cur = dattr_new; |
@@ -9153,8 +9234,10 @@ static int update_sched_domains(struct notifier_block *nfb, | |||
9153 | switch (action) { | 9234 | switch (action) { |
9154 | case CPU_ONLINE: | 9235 | case CPU_ONLINE: |
9155 | case CPU_ONLINE_FROZEN: | 9236 | case CPU_ONLINE_FROZEN: |
9156 | case CPU_DEAD: | 9237 | case CPU_DOWN_PREPARE: |
9157 | case CPU_DEAD_FROZEN: | 9238 | case CPU_DOWN_PREPARE_FROZEN: |
9239 | case CPU_DOWN_FAILED: | ||
9240 | case CPU_DOWN_FAILED_FROZEN: | ||
9158 | partition_sched_domains(1, NULL, NULL); | 9241 | partition_sched_domains(1, NULL, NULL); |
9159 | return NOTIFY_OK; | 9242 | return NOTIFY_OK; |
9160 | 9243 | ||
@@ -9201,7 +9284,7 @@ void __init sched_init_smp(void) | |||
9201 | #endif | 9284 | #endif |
9202 | get_online_cpus(); | 9285 | get_online_cpus(); |
9203 | mutex_lock(&sched_domains_mutex); | 9286 | mutex_lock(&sched_domains_mutex); |
9204 | arch_init_sched_domains(cpu_online_mask); | 9287 | arch_init_sched_domains(cpu_active_mask); |
9205 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | 9288 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
9206 | if (cpumask_empty(non_isolated_cpus)) | 9289 | if (cpumask_empty(non_isolated_cpus)) |
9207 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | 9290 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); |
@@ -9364,10 +9447,6 @@ void __init sched_init(void) | |||
9364 | #ifdef CONFIG_CPUMASK_OFFSTACK | 9447 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9365 | alloc_size += num_possible_cpus() * cpumask_size(); | 9448 | alloc_size += num_possible_cpus() * cpumask_size(); |
9366 | #endif | 9449 | #endif |
9367 | /* | ||
9368 | * As sched_init() is called before page_alloc is setup, | ||
9369 | * we use alloc_bootmem(). | ||
9370 | */ | ||
9371 | if (alloc_size) { | 9450 | if (alloc_size) { |
9372 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | 9451 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
9373 | 9452 | ||
@@ -9522,6 +9601,8 @@ void __init sched_init(void) | |||
9522 | rq->cpu = i; | 9601 | rq->cpu = i; |
9523 | rq->online = 0; | 9602 | rq->online = 0; |
9524 | rq->migration_thread = NULL; | 9603 | rq->migration_thread = NULL; |
9604 | rq->idle_stamp = 0; | ||
9605 | rq->avg_idle = 2*sysctl_sched_migration_cost; | ||
9525 | INIT_LIST_HEAD(&rq->migration_queue); | 9606 | INIT_LIST_HEAD(&rq->migration_queue); |
9526 | rq_attach_root(rq, &def_root_domain); | 9607 | rq_attach_root(rq, &def_root_domain); |
9527 | #endif | 9608 | #endif |
@@ -9571,7 +9652,9 @@ void __init sched_init(void) | |||
9571 | zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); | 9652 | zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); |
9572 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); | 9653 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); |
9573 | #endif | 9654 | #endif |
9574 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9655 | /* May be allocated at isolcpus cmdline parse time */ |
9656 | if (cpu_isolated_map == NULL) | ||
9657 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | ||
9575 | #endif /* SMP */ | 9658 | #endif /* SMP */ |
9576 | 9659 | ||
9577 | perf_event_init(); | 9660 | perf_event_init(); |
@@ -9765,13 +9848,15 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |||
9765 | se = kzalloc_node(sizeof(struct sched_entity), | 9848 | se = kzalloc_node(sizeof(struct sched_entity), |
9766 | GFP_KERNEL, cpu_to_node(i)); | 9849 | GFP_KERNEL, cpu_to_node(i)); |
9767 | if (!se) | 9850 | if (!se) |
9768 | goto err; | 9851 | goto err_free_rq; |
9769 | 9852 | ||
9770 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); | 9853 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
9771 | } | 9854 | } |
9772 | 9855 | ||
9773 | return 1; | 9856 | return 1; |
9774 | 9857 | ||
9858 | err_free_rq: | ||
9859 | kfree(cfs_rq); | ||
9775 | err: | 9860 | err: |
9776 | return 0; | 9861 | return 0; |
9777 | } | 9862 | } |
@@ -9853,13 +9938,15 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |||
9853 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 9938 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
9854 | GFP_KERNEL, cpu_to_node(i)); | 9939 | GFP_KERNEL, cpu_to_node(i)); |
9855 | if (!rt_se) | 9940 | if (!rt_se) |
9856 | goto err; | 9941 | goto err_free_rq; |
9857 | 9942 | ||
9858 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); | 9943 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
9859 | } | 9944 | } |
9860 | 9945 | ||
9861 | return 1; | 9946 | return 1; |
9862 | 9947 | ||
9948 | err_free_rq: | ||
9949 | kfree(rt_rq); | ||
9863 | err: | 9950 | err: |
9864 | return 0; | 9951 | return 0; |
9865 | } | 9952 | } |
@@ -10901,6 +10988,7 @@ void synchronize_sched_expedited(void) | |||
10901 | spin_unlock_irqrestore(&rq->lock, flags); | 10988 | spin_unlock_irqrestore(&rq->lock, flags); |
10902 | } | 10989 | } |
10903 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | 10990 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; |
10991 | synchronize_sched_expedited_count++; | ||
10904 | mutex_unlock(&rcu_sched_expedited_mutex); | 10992 | mutex_unlock(&rcu_sched_expedited_mutex); |
10905 | put_online_cpus(); | 10993 | put_online_cpus(); |
10906 | if (need_full_sync) | 10994 | if (need_full_sync) |