diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 2119 |
1 files changed, 112 insertions, 2007 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 404e2017c0cf..af5fa239804d 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
233 | */ | 233 | */ |
234 | static DEFINE_MUTEX(sched_domains_mutex); | 234 | static DEFINE_MUTEX(sched_domains_mutex); |
235 | 235 | ||
236 | #ifdef CONFIG_GROUP_SCHED | 236 | #ifdef CONFIG_CGROUP_SCHED |
237 | 237 | ||
238 | #include <linux/cgroup.h> | 238 | #include <linux/cgroup.h> |
239 | 239 | ||
@@ -243,13 +243,7 @@ static LIST_HEAD(task_groups); | |||
243 | 243 | ||
244 | /* task group related information */ | 244 | /* task group related information */ |
245 | struct task_group { | 245 | struct task_group { |
246 | #ifdef CONFIG_CGROUP_SCHED | ||
247 | struct cgroup_subsys_state css; | 246 | struct cgroup_subsys_state css; |
248 | #endif | ||
249 | |||
250 | #ifdef CONFIG_USER_SCHED | ||
251 | uid_t uid; | ||
252 | #endif | ||
253 | 247 | ||
254 | #ifdef CONFIG_FAIR_GROUP_SCHED | 248 | #ifdef CONFIG_FAIR_GROUP_SCHED |
255 | /* schedulable entities of this group on each cpu */ | 249 | /* schedulable entities of this group on each cpu */ |
@@ -274,35 +268,7 @@ struct task_group { | |||
274 | struct list_head children; | 268 | struct list_head children; |
275 | }; | 269 | }; |
276 | 270 | ||
277 | #ifdef CONFIG_USER_SCHED | ||
278 | |||
279 | /* Helper function to pass uid information to create_sched_user() */ | ||
280 | void set_tg_uid(struct user_struct *user) | ||
281 | { | ||
282 | user->tg->uid = user->uid; | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * Root task group. | ||
287 | * Every UID task group (including init_task_group aka UID-0) will | ||
288 | * be a child to this group. | ||
289 | */ | ||
290 | struct task_group root_task_group; | ||
291 | |||
292 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
293 | /* Default task group's sched entity on each cpu */ | ||
294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | ||
295 | /* Default task group's cfs_rq on each cpu */ | ||
296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); | ||
297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
298 | |||
299 | #ifdef CONFIG_RT_GROUP_SCHED | ||
300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | ||
301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var); | ||
302 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
303 | #else /* !CONFIG_USER_SCHED */ | ||
304 | #define root_task_group init_task_group | 271 | #define root_task_group init_task_group |
305 | #endif /* CONFIG_USER_SCHED */ | ||
306 | 272 | ||
307 | /* task_group_lock serializes add/remove of task groups and also changes to | 273 | /* task_group_lock serializes add/remove of task groups and also changes to |
308 | * a task group's cpu shares. | 274 | * a task group's cpu shares. |
@@ -318,11 +284,7 @@ static int root_task_group_empty(void) | |||
318 | } | 284 | } |
319 | #endif | 285 | #endif |
320 | 286 | ||
321 | #ifdef CONFIG_USER_SCHED | ||
322 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | ||
323 | #else /* !CONFIG_USER_SCHED */ | ||
324 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD | 287 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
325 | #endif /* CONFIG_USER_SCHED */ | ||
326 | 288 | ||
327 | /* | 289 | /* |
328 | * A weight of 0 or 1 can cause arithmetics problems. | 290 | * A weight of 0 or 1 can cause arithmetics problems. |
@@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
348 | { | 310 | { |
349 | struct task_group *tg; | 311 | struct task_group *tg; |
350 | 312 | ||
351 | #ifdef CONFIG_USER_SCHED | 313 | #ifdef CONFIG_CGROUP_SCHED |
352 | rcu_read_lock(); | ||
353 | tg = __task_cred(p)->user->tg; | ||
354 | rcu_read_unlock(); | ||
355 | #elif defined(CONFIG_CGROUP_SCHED) | ||
356 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | 314 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
357 | struct task_group, css); | 315 | struct task_group, css); |
358 | #else | 316 | #else |
@@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
383 | return NULL; | 341 | return NULL; |
384 | } | 342 | } |
385 | 343 | ||
386 | #endif /* CONFIG_GROUP_SCHED */ | 344 | #endif /* CONFIG_CGROUP_SCHED */ |
387 | 345 | ||
388 | /* CFS-related fields in a runqueue */ | 346 | /* CFS-related fields in a runqueue */ |
389 | struct cfs_rq { | 347 | struct cfs_rq { |
@@ -478,7 +436,6 @@ struct rt_rq { | |||
478 | struct rq *rq; | 436 | struct rq *rq; |
479 | struct list_head leaf_rt_rq_list; | 437 | struct list_head leaf_rt_rq_list; |
480 | struct task_group *tg; | 438 | struct task_group *tg; |
481 | struct sched_rt_entity *rt_se; | ||
482 | #endif | 439 | #endif |
483 | }; | 440 | }; |
484 | 441 | ||
@@ -1409,32 +1366,6 @@ static const u32 prio_to_wmult[40] = { | |||
1409 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 1366 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
1410 | }; | 1367 | }; |
1411 | 1368 | ||
1412 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | ||
1413 | |||
1414 | /* | ||
1415 | * runqueue iterator, to support SMP load-balancing between different | ||
1416 | * scheduling classes, without having to expose their internal data | ||
1417 | * structures to the load-balancing proper: | ||
1418 | */ | ||
1419 | struct rq_iterator { | ||
1420 | void *arg; | ||
1421 | struct task_struct *(*start)(void *); | ||
1422 | struct task_struct *(*next)(void *); | ||
1423 | }; | ||
1424 | |||
1425 | #ifdef CONFIG_SMP | ||
1426 | static unsigned long | ||
1427 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1428 | unsigned long max_load_move, struct sched_domain *sd, | ||
1429 | enum cpu_idle_type idle, int *all_pinned, | ||
1430 | int *this_best_prio, struct rq_iterator *iterator); | ||
1431 | |||
1432 | static int | ||
1433 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1434 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
1435 | struct rq_iterator *iterator); | ||
1436 | #endif | ||
1437 | |||
1438 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | 1369 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1439 | enum cpuacct_stat_index { | 1370 | enum cpuacct_stat_index { |
1440 | CPUACCT_STAT_USER, /* ... user mode */ | 1371 | CPUACCT_STAT_USER, /* ... user mode */ |
@@ -1720,16 +1651,6 @@ static void update_shares(struct sched_domain *sd) | |||
1720 | } | 1651 | } |
1721 | } | 1652 | } |
1722 | 1653 | ||
1723 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1724 | { | ||
1725 | if (root_task_group_empty()) | ||
1726 | return; | ||
1727 | |||
1728 | raw_spin_unlock(&rq->lock); | ||
1729 | update_shares(sd); | ||
1730 | raw_spin_lock(&rq->lock); | ||
1731 | } | ||
1732 | |||
1733 | static void update_h_load(long cpu) | 1654 | static void update_h_load(long cpu) |
1734 | { | 1655 | { |
1735 | if (root_task_group_empty()) | 1656 | if (root_task_group_empty()) |
@@ -1744,10 +1665,6 @@ static inline void update_shares(struct sched_domain *sd) | |||
1744 | { | 1665 | { |
1745 | } | 1666 | } |
1746 | 1667 | ||
1747 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1748 | { | ||
1749 | } | ||
1750 | |||
1751 | #endif | 1668 | #endif |
1752 | 1669 | ||
1753 | #ifdef CONFIG_PREEMPT | 1670 | #ifdef CONFIG_PREEMPT |
@@ -1824,6 +1741,51 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |||
1824 | raw_spin_unlock(&busiest->lock); | 1741 | raw_spin_unlock(&busiest->lock); |
1825 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 1742 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1826 | } | 1743 | } |
1744 | |||
1745 | /* | ||
1746 | * double_rq_lock - safely lock two runqueues | ||
1747 | * | ||
1748 | * Note this does not disable interrupts like task_rq_lock, | ||
1749 | * you need to do so manually before calling. | ||
1750 | */ | ||
1751 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1752 | __acquires(rq1->lock) | ||
1753 | __acquires(rq2->lock) | ||
1754 | { | ||
1755 | BUG_ON(!irqs_disabled()); | ||
1756 | if (rq1 == rq2) { | ||
1757 | raw_spin_lock(&rq1->lock); | ||
1758 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1759 | } else { | ||
1760 | if (rq1 < rq2) { | ||
1761 | raw_spin_lock(&rq1->lock); | ||
1762 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
1763 | } else { | ||
1764 | raw_spin_lock(&rq2->lock); | ||
1765 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
1766 | } | ||
1767 | } | ||
1768 | update_rq_clock(rq1); | ||
1769 | update_rq_clock(rq2); | ||
1770 | } | ||
1771 | |||
1772 | /* | ||
1773 | * double_rq_unlock - safely unlock two runqueues | ||
1774 | * | ||
1775 | * Note this does not restore interrupts like task_rq_unlock, | ||
1776 | * you need to do so manually after calling. | ||
1777 | */ | ||
1778 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1779 | __releases(rq1->lock) | ||
1780 | __releases(rq2->lock) | ||
1781 | { | ||
1782 | raw_spin_unlock(&rq1->lock); | ||
1783 | if (rq1 != rq2) | ||
1784 | raw_spin_unlock(&rq2->lock); | ||
1785 | else | ||
1786 | __release(rq2->lock); | ||
1787 | } | ||
1788 | |||
1827 | #endif | 1789 | #endif |
1828 | 1790 | ||
1829 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1791 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1853,18 +1815,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |||
1853 | #endif | 1815 | #endif |
1854 | } | 1816 | } |
1855 | 1817 | ||
1856 | #include "sched_stats.h" | 1818 | static const struct sched_class rt_sched_class; |
1857 | #include "sched_idletask.c" | ||
1858 | #include "sched_fair.c" | ||
1859 | #include "sched_rt.c" | ||
1860 | #ifdef CONFIG_SCHED_DEBUG | ||
1861 | # include "sched_debug.c" | ||
1862 | #endif | ||
1863 | 1819 | ||
1864 | #define sched_class_highest (&rt_sched_class) | 1820 | #define sched_class_highest (&rt_sched_class) |
1865 | #define for_each_class(class) \ | 1821 | #define for_each_class(class) \ |
1866 | for (class = sched_class_highest; class; class = class->next) | 1822 | for (class = sched_class_highest; class; class = class->next) |
1867 | 1823 | ||
1824 | #include "sched_stats.h" | ||
1825 | |||
1868 | static void inc_nr_running(struct rq *rq) | 1826 | static void inc_nr_running(struct rq *rq) |
1869 | { | 1827 | { |
1870 | rq->nr_running++; | 1828 | rq->nr_running++; |
@@ -1902,13 +1860,14 @@ static void update_avg(u64 *avg, u64 sample) | |||
1902 | *avg += diff >> 3; | 1860 | *avg += diff >> 3; |
1903 | } | 1861 | } |
1904 | 1862 | ||
1905 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1863 | static void |
1864 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
1906 | { | 1865 | { |
1907 | if (wakeup) | 1866 | if (wakeup) |
1908 | p->se.start_runtime = p->se.sum_exec_runtime; | 1867 | p->se.start_runtime = p->se.sum_exec_runtime; |
1909 | 1868 | ||
1910 | sched_info_queued(p); | 1869 | sched_info_queued(p); |
1911 | p->sched_class->enqueue_task(rq, p, wakeup); | 1870 | p->sched_class->enqueue_task(rq, p, wakeup, head); |
1912 | p->se.on_rq = 1; | 1871 | p->se.on_rq = 1; |
1913 | } | 1872 | } |
1914 | 1873 | ||
@@ -1931,6 +1890,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | |||
1931 | } | 1890 | } |
1932 | 1891 | ||
1933 | /* | 1892 | /* |
1893 | * activate_task - move a task to the runqueue. | ||
1894 | */ | ||
1895 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1896 | { | ||
1897 | if (task_contributes_to_load(p)) | ||
1898 | rq->nr_uninterruptible--; | ||
1899 | |||
1900 | enqueue_task(rq, p, wakeup, false); | ||
1901 | inc_nr_running(rq); | ||
1902 | } | ||
1903 | |||
1904 | /* | ||
1905 | * deactivate_task - remove a task from the runqueue. | ||
1906 | */ | ||
1907 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1908 | { | ||
1909 | if (task_contributes_to_load(p)) | ||
1910 | rq->nr_uninterruptible++; | ||
1911 | |||
1912 | dequeue_task(rq, p, sleep); | ||
1913 | dec_nr_running(rq); | ||
1914 | } | ||
1915 | |||
1916 | #include "sched_idletask.c" | ||
1917 | #include "sched_fair.c" | ||
1918 | #include "sched_rt.c" | ||
1919 | #ifdef CONFIG_SCHED_DEBUG | ||
1920 | # include "sched_debug.c" | ||
1921 | #endif | ||
1922 | |||
1923 | /* | ||
1934 | * __normal_prio - return the priority that is based on the static prio | 1924 | * __normal_prio - return the priority that is based on the static prio |
1935 | */ | 1925 | */ |
1936 | static inline int __normal_prio(struct task_struct *p) | 1926 | static inline int __normal_prio(struct task_struct *p) |
@@ -1976,30 +1966,6 @@ static int effective_prio(struct task_struct *p) | |||
1976 | return p->prio; | 1966 | return p->prio; |
1977 | } | 1967 | } |
1978 | 1968 | ||
1979 | /* | ||
1980 | * activate_task - move a task to the runqueue. | ||
1981 | */ | ||
1982 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1983 | { | ||
1984 | if (task_contributes_to_load(p)) | ||
1985 | rq->nr_uninterruptible--; | ||
1986 | |||
1987 | enqueue_task(rq, p, wakeup); | ||
1988 | inc_nr_running(rq); | ||
1989 | } | ||
1990 | |||
1991 | /* | ||
1992 | * deactivate_task - remove a task from the runqueue. | ||
1993 | */ | ||
1994 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1995 | { | ||
1996 | if (task_contributes_to_load(p)) | ||
1997 | rq->nr_uninterruptible++; | ||
1998 | |||
1999 | dequeue_task(rq, p, sleep); | ||
2000 | dec_nr_running(rq); | ||
2001 | } | ||
2002 | |||
2003 | /** | 1969 | /** |
2004 | * task_curr - is this task currently executing on a CPU? | 1970 | * task_curr - is this task currently executing on a CPU? |
2005 | * @p: the task in question. | 1971 | * @p: the task in question. |
@@ -3137,50 +3103,6 @@ static void update_cpu_load(struct rq *this_rq) | |||
3137 | #ifdef CONFIG_SMP | 3103 | #ifdef CONFIG_SMP |
3138 | 3104 | ||
3139 | /* | 3105 | /* |
3140 | * double_rq_lock - safely lock two runqueues | ||
3141 | * | ||
3142 | * Note this does not disable interrupts like task_rq_lock, | ||
3143 | * you need to do so manually before calling. | ||
3144 | */ | ||
3145 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
3146 | __acquires(rq1->lock) | ||
3147 | __acquires(rq2->lock) | ||
3148 | { | ||
3149 | BUG_ON(!irqs_disabled()); | ||
3150 | if (rq1 == rq2) { | ||
3151 | raw_spin_lock(&rq1->lock); | ||
3152 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
3153 | } else { | ||
3154 | if (rq1 < rq2) { | ||
3155 | raw_spin_lock(&rq1->lock); | ||
3156 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
3157 | } else { | ||
3158 | raw_spin_lock(&rq2->lock); | ||
3159 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
3160 | } | ||
3161 | } | ||
3162 | update_rq_clock(rq1); | ||
3163 | update_rq_clock(rq2); | ||
3164 | } | ||
3165 | |||
3166 | /* | ||
3167 | * double_rq_unlock - safely unlock two runqueues | ||
3168 | * | ||
3169 | * Note this does not restore interrupts like task_rq_unlock, | ||
3170 | * you need to do so manually after calling. | ||
3171 | */ | ||
3172 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
3173 | __releases(rq1->lock) | ||
3174 | __releases(rq2->lock) | ||
3175 | { | ||
3176 | raw_spin_unlock(&rq1->lock); | ||
3177 | if (rq1 != rq2) | ||
3178 | raw_spin_unlock(&rq2->lock); | ||
3179 | else | ||
3180 | __release(rq2->lock); | ||
3181 | } | ||
3182 | |||
3183 | /* | ||
3184 | * sched_exec - execve() is a valuable balancing opportunity, because at | 3106 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3185 | * this point the task has the smallest effective memory and cache footprint. | 3107 | * this point the task has the smallest effective memory and cache footprint. |
3186 | */ | 3108 | */ |
@@ -3228,1782 +3150,6 @@ again: | |||
3228 | task_rq_unlock(rq, &flags); | 3150 | task_rq_unlock(rq, &flags); |
3229 | } | 3151 | } |
3230 | 3152 | ||
3231 | /* | ||
3232 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
3233 | * Both runqueues must be locked. | ||
3234 | */ | ||
3235 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
3236 | struct rq *this_rq, int this_cpu) | ||
3237 | { | ||
3238 | deactivate_task(src_rq, p, 0); | ||
3239 | set_task_cpu(p, this_cpu); | ||
3240 | activate_task(this_rq, p, 0); | ||
3241 | check_preempt_curr(this_rq, p, 0); | ||
3242 | } | ||
3243 | |||
3244 | /* | ||
3245 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
3246 | */ | ||
3247 | static | ||
3248 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
3249 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3250 | int *all_pinned) | ||
3251 | { | ||
3252 | int tsk_cache_hot = 0; | ||
3253 | /* | ||
3254 | * We do not migrate tasks that are: | ||
3255 | * 1) running (obviously), or | ||
3256 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
3257 | * 3) are cache-hot on their current CPU. | ||
3258 | */ | ||
3259 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
3260 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
3261 | return 0; | ||
3262 | } | ||
3263 | *all_pinned = 0; | ||
3264 | |||
3265 | if (task_running(rq, p)) { | ||
3266 | schedstat_inc(p, se.nr_failed_migrations_running); | ||
3267 | return 0; | ||
3268 | } | ||
3269 | |||
3270 | /* | ||
3271 | * Aggressive migration if: | ||
3272 | * 1) task is cache cold, or | ||
3273 | * 2) too many balance attempts have failed. | ||
3274 | */ | ||
3275 | |||
3276 | tsk_cache_hot = task_hot(p, rq->clock, sd); | ||
3277 | if (!tsk_cache_hot || | ||
3278 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
3279 | #ifdef CONFIG_SCHEDSTATS | ||
3280 | if (tsk_cache_hot) { | ||
3281 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
3282 | schedstat_inc(p, se.nr_forced_migrations); | ||
3283 | } | ||
3284 | #endif | ||
3285 | return 1; | ||
3286 | } | ||
3287 | |||
3288 | if (tsk_cache_hot) { | ||
3289 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
3290 | return 0; | ||
3291 | } | ||
3292 | return 1; | ||
3293 | } | ||
3294 | |||
3295 | static unsigned long | ||
3296 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3297 | unsigned long max_load_move, struct sched_domain *sd, | ||
3298 | enum cpu_idle_type idle, int *all_pinned, | ||
3299 | int *this_best_prio, struct rq_iterator *iterator) | ||
3300 | { | ||
3301 | int loops = 0, pulled = 0, pinned = 0; | ||
3302 | struct task_struct *p; | ||
3303 | long rem_load_move = max_load_move; | ||
3304 | |||
3305 | if (max_load_move == 0) | ||
3306 | goto out; | ||
3307 | |||
3308 | pinned = 1; | ||
3309 | |||
3310 | /* | ||
3311 | * Start the load-balancing iterator: | ||
3312 | */ | ||
3313 | p = iterator->start(iterator->arg); | ||
3314 | next: | ||
3315 | if (!p || loops++ > sysctl_sched_nr_migrate) | ||
3316 | goto out; | ||
3317 | |||
3318 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
3319 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3320 | p = iterator->next(iterator->arg); | ||
3321 | goto next; | ||
3322 | } | ||
3323 | |||
3324 | pull_task(busiest, p, this_rq, this_cpu); | ||
3325 | pulled++; | ||
3326 | rem_load_move -= p->se.load.weight; | ||
3327 | |||
3328 | #ifdef CONFIG_PREEMPT | ||
3329 | /* | ||
3330 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3331 | * will stop after the first task is pulled to minimize the critical | ||
3332 | * section. | ||
3333 | */ | ||
3334 | if (idle == CPU_NEWLY_IDLE) | ||
3335 | goto out; | ||
3336 | #endif | ||
3337 | |||
3338 | /* | ||
3339 | * We only want to steal up to the prescribed amount of weighted load. | ||
3340 | */ | ||
3341 | if (rem_load_move > 0) { | ||
3342 | if (p->prio < *this_best_prio) | ||
3343 | *this_best_prio = p->prio; | ||
3344 | p = iterator->next(iterator->arg); | ||
3345 | goto next; | ||
3346 | } | ||
3347 | out: | ||
3348 | /* | ||
3349 | * Right now, this is one of only two places pull_task() is called, | ||
3350 | * so we can safely collect pull_task() stats here rather than | ||
3351 | * inside pull_task(). | ||
3352 | */ | ||
3353 | schedstat_add(sd, lb_gained[idle], pulled); | ||
3354 | |||
3355 | if (all_pinned) | ||
3356 | *all_pinned = pinned; | ||
3357 | |||
3358 | return max_load_move - rem_load_move; | ||
3359 | } | ||
3360 | |||
3361 | /* | ||
3362 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
3363 | * this_rq, as part of a balancing operation within domain "sd". | ||
3364 | * Returns 1 if successful and 0 otherwise. | ||
3365 | * | ||
3366 | * Called with both runqueues locked. | ||
3367 | */ | ||
3368 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3369 | unsigned long max_load_move, | ||
3370 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3371 | int *all_pinned) | ||
3372 | { | ||
3373 | const struct sched_class *class = sched_class_highest; | ||
3374 | unsigned long total_load_moved = 0; | ||
3375 | int this_best_prio = this_rq->curr->prio; | ||
3376 | |||
3377 | do { | ||
3378 | total_load_moved += | ||
3379 | class->load_balance(this_rq, this_cpu, busiest, | ||
3380 | max_load_move - total_load_moved, | ||
3381 | sd, idle, all_pinned, &this_best_prio); | ||
3382 | class = class->next; | ||
3383 | |||
3384 | #ifdef CONFIG_PREEMPT | ||
3385 | /* | ||
3386 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3387 | * kernels will stop after the first task is pulled to minimize | ||
3388 | * the critical section. | ||
3389 | */ | ||
3390 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
3391 | break; | ||
3392 | #endif | ||
3393 | } while (class && max_load_move > total_load_moved); | ||
3394 | |||
3395 | return total_load_moved > 0; | ||
3396 | } | ||
3397 | |||
3398 | static int | ||
3399 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3400 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3401 | struct rq_iterator *iterator) | ||
3402 | { | ||
3403 | struct task_struct *p = iterator->start(iterator->arg); | ||
3404 | int pinned = 0; | ||
3405 | |||
3406 | while (p) { | ||
3407 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3408 | pull_task(busiest, p, this_rq, this_cpu); | ||
3409 | /* | ||
3410 | * Right now, this is only the second place pull_task() | ||
3411 | * is called, so we can safely collect pull_task() | ||
3412 | * stats here rather than inside pull_task(). | ||
3413 | */ | ||
3414 | schedstat_inc(sd, lb_gained[idle]); | ||
3415 | |||
3416 | return 1; | ||
3417 | } | ||
3418 | p = iterator->next(iterator->arg); | ||
3419 | } | ||
3420 | |||
3421 | return 0; | ||
3422 | } | ||
3423 | |||
3424 | /* | ||
3425 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
3426 | * part of active balancing operations within "domain". | ||
3427 | * Returns 1 if successful and 0 otherwise. | ||
3428 | * | ||
3429 | * Called with both runqueues locked. | ||
3430 | */ | ||
3431 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3432 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
3433 | { | ||
3434 | const struct sched_class *class; | ||
3435 | |||
3436 | for_each_class(class) { | ||
3437 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | ||
3438 | return 1; | ||
3439 | } | ||
3440 | |||
3441 | return 0; | ||
3442 | } | ||
3443 | /********** Helpers for find_busiest_group ************************/ | ||
3444 | /* | ||
3445 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
3446 | * during load balancing. | ||
3447 | */ | ||
3448 | struct sd_lb_stats { | ||
3449 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
3450 | struct sched_group *this; /* Local group in this sd */ | ||
3451 | unsigned long total_load; /* Total load of all groups in sd */ | ||
3452 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
3453 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
3454 | |||
3455 | /** Statistics of this group */ | ||
3456 | unsigned long this_load; | ||
3457 | unsigned long this_load_per_task; | ||
3458 | unsigned long this_nr_running; | ||
3459 | |||
3460 | /* Statistics of the busiest group */ | ||
3461 | unsigned long max_load; | ||
3462 | unsigned long busiest_load_per_task; | ||
3463 | unsigned long busiest_nr_running; | ||
3464 | |||
3465 | int group_imb; /* Is there imbalance in this sd */ | ||
3466 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3467 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
3468 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
3469 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
3470 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
3471 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3472 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3473 | #endif | ||
3474 | }; | ||
3475 | |||
3476 | /* | ||
3477 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3478 | */ | ||
3479 | struct sg_lb_stats { | ||
3480 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3481 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3482 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3483 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3484 | unsigned long group_capacity; | ||
3485 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3486 | }; | ||
3487 | |||
3488 | /** | ||
3489 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
3490 | * @group: The group whose first cpu is to be returned. | ||
3491 | */ | ||
3492 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3493 | { | ||
3494 | return cpumask_first(sched_group_cpus(group)); | ||
3495 | } | ||
3496 | |||
3497 | /** | ||
3498 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3499 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3500 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3501 | */ | ||
3502 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3503 | enum cpu_idle_type idle) | ||
3504 | { | ||
3505 | int load_idx; | ||
3506 | |||
3507 | switch (idle) { | ||
3508 | case CPU_NOT_IDLE: | ||
3509 | load_idx = sd->busy_idx; | ||
3510 | break; | ||
3511 | |||
3512 | case CPU_NEWLY_IDLE: | ||
3513 | load_idx = sd->newidle_idx; | ||
3514 | break; | ||
3515 | default: | ||
3516 | load_idx = sd->idle_idx; | ||
3517 | break; | ||
3518 | } | ||
3519 | |||
3520 | return load_idx; | ||
3521 | } | ||
3522 | |||
3523 | |||
3524 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3525 | /** | ||
3526 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3527 | * the given sched_domain, during load balancing. | ||
3528 | * | ||
3529 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3530 | * @sds: Variable containing the statistics for sd. | ||
3531 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3532 | */ | ||
3533 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3534 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3535 | { | ||
3536 | /* | ||
3537 | * Busy processors will not participate in power savings | ||
3538 | * balance. | ||
3539 | */ | ||
3540 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3541 | sds->power_savings_balance = 0; | ||
3542 | else { | ||
3543 | sds->power_savings_balance = 1; | ||
3544 | sds->min_nr_running = ULONG_MAX; | ||
3545 | sds->leader_nr_running = 0; | ||
3546 | } | ||
3547 | } | ||
3548 | |||
3549 | /** | ||
3550 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
3551 | * sched_domain while performing load balancing. | ||
3552 | * | ||
3553 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3554 | * @sds: Variable containing the statistics of the sched_domain | ||
3555 | * @local_group: Does group contain the CPU for which we're performing | ||
3556 | * load balancing ? | ||
3557 | * @sgs: Variable containing the statistics of the group. | ||
3558 | */ | ||
3559 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3560 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3561 | { | ||
3562 | |||
3563 | if (!sds->power_savings_balance) | ||
3564 | return; | ||
3565 | |||
3566 | /* | ||
3567 | * If the local group is idle or completely loaded | ||
3568 | * no need to do power savings balance at this domain | ||
3569 | */ | ||
3570 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3571 | !sds->this_nr_running)) | ||
3572 | sds->power_savings_balance = 0; | ||
3573 | |||
3574 | /* | ||
3575 | * If a group is already running at full capacity or idle, | ||
3576 | * don't include that group in power savings calculations | ||
3577 | */ | ||
3578 | if (!sds->power_savings_balance || | ||
3579 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3580 | !sgs->sum_nr_running) | ||
3581 | return; | ||
3582 | |||
3583 | /* | ||
3584 | * Calculate the group which has the least non-idle load. | ||
3585 | * This is the group from where we need to pick up the load | ||
3586 | * for saving power | ||
3587 | */ | ||
3588 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
3589 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3590 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3591 | sds->group_min = group; | ||
3592 | sds->min_nr_running = sgs->sum_nr_running; | ||
3593 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3594 | sgs->sum_nr_running; | ||
3595 | } | ||
3596 | |||
3597 | /* | ||
3598 | * Calculate the group which is almost near its | ||
3599 | * capacity but still has some space to pick up some load | ||
3600 | * from other group and save more power | ||
3601 | */ | ||
3602 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
3603 | return; | ||
3604 | |||
3605 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
3606 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
3607 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
3608 | sds->group_leader = group; | ||
3609 | sds->leader_nr_running = sgs->sum_nr_running; | ||
3610 | } | ||
3611 | } | ||
3612 | |||
3613 | /** | ||
3614 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
3615 | * @sds: Variable containing the statistics of the sched_domain | ||
3616 | * under consideration. | ||
3617 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3618 | * @imbalance: Variable to store the imbalance. | ||
3619 | * | ||
3620 | * Description: | ||
3621 | * Check if we have potential to perform some power-savings balance. | ||
3622 | * If yes, set the busiest group to be the least loaded group in the | ||
3623 | * sched_domain, so that it's CPUs can be put to idle. | ||
3624 | * | ||
3625 | * Returns 1 if there is potential to perform power-savings balance. | ||
3626 | * Else returns 0. | ||
3627 | */ | ||
3628 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3629 | int this_cpu, unsigned long *imbalance) | ||
3630 | { | ||
3631 | if (!sds->power_savings_balance) | ||
3632 | return 0; | ||
3633 | |||
3634 | if (sds->this != sds->group_leader || | ||
3635 | sds->group_leader == sds->group_min) | ||
3636 | return 0; | ||
3637 | |||
3638 | *imbalance = sds->min_load_per_task; | ||
3639 | sds->busiest = sds->group_min; | ||
3640 | |||
3641 | return 1; | ||
3642 | |||
3643 | } | ||
3644 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3645 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3646 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3647 | { | ||
3648 | return; | ||
3649 | } | ||
3650 | |||
3651 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3652 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3653 | { | ||
3654 | return; | ||
3655 | } | ||
3656 | |||
3657 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3658 | int this_cpu, unsigned long *imbalance) | ||
3659 | { | ||
3660 | return 0; | ||
3661 | } | ||
3662 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3663 | |||
3664 | |||
3665 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3666 | { | ||
3667 | return SCHED_LOAD_SCALE; | ||
3668 | } | ||
3669 | |||
3670 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3671 | { | ||
3672 | return default_scale_freq_power(sd, cpu); | ||
3673 | } | ||
3674 | |||
3675 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3676 | { | ||
3677 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3678 | unsigned long smt_gain = sd->smt_gain; | ||
3679 | |||
3680 | smt_gain /= weight; | ||
3681 | |||
3682 | return smt_gain; | ||
3683 | } | ||
3684 | |||
3685 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3686 | { | ||
3687 | return default_scale_smt_power(sd, cpu); | ||
3688 | } | ||
3689 | |||
3690 | unsigned long scale_rt_power(int cpu) | ||
3691 | { | ||
3692 | struct rq *rq = cpu_rq(cpu); | ||
3693 | u64 total, available; | ||
3694 | |||
3695 | sched_avg_update(rq); | ||
3696 | |||
3697 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
3698 | available = total - rq->rt_avg; | ||
3699 | |||
3700 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
3701 | total = SCHED_LOAD_SCALE; | ||
3702 | |||
3703 | total >>= SCHED_LOAD_SHIFT; | ||
3704 | |||
3705 | return div_u64(available, total); | ||
3706 | } | ||
3707 | |||
3708 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
3709 | { | ||
3710 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3711 | unsigned long power = SCHED_LOAD_SCALE; | ||
3712 | struct sched_group *sdg = sd->groups; | ||
3713 | |||
3714 | if (sched_feat(ARCH_POWER)) | ||
3715 | power *= arch_scale_freq_power(sd, cpu); | ||
3716 | else | ||
3717 | power *= default_scale_freq_power(sd, cpu); | ||
3718 | |||
3719 | power >>= SCHED_LOAD_SHIFT; | ||
3720 | |||
3721 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
3722 | if (sched_feat(ARCH_POWER)) | ||
3723 | power *= arch_scale_smt_power(sd, cpu); | ||
3724 | else | ||
3725 | power *= default_scale_smt_power(sd, cpu); | ||
3726 | |||
3727 | power >>= SCHED_LOAD_SHIFT; | ||
3728 | } | ||
3729 | |||
3730 | power *= scale_rt_power(cpu); | ||
3731 | power >>= SCHED_LOAD_SHIFT; | ||
3732 | |||
3733 | if (!power) | ||
3734 | power = 1; | ||
3735 | |||
3736 | sdg->cpu_power = power; | ||
3737 | } | ||
3738 | |||
3739 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
3740 | { | ||
3741 | struct sched_domain *child = sd->child; | ||
3742 | struct sched_group *group, *sdg = sd->groups; | ||
3743 | unsigned long power; | ||
3744 | |||
3745 | if (!child) { | ||
3746 | update_cpu_power(sd, cpu); | ||
3747 | return; | ||
3748 | } | ||
3749 | |||
3750 | power = 0; | ||
3751 | |||
3752 | group = child->groups; | ||
3753 | do { | ||
3754 | power += group->cpu_power; | ||
3755 | group = group->next; | ||
3756 | } while (group != child->groups); | ||
3757 | |||
3758 | sdg->cpu_power = power; | ||
3759 | } | ||
3760 | |||
3761 | /** | ||
3762 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3763 | * @sd: The sched_domain whose statistics are to be updated. | ||
3764 | * @group: sched_group whose statistics are to be updated. | ||
3765 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3766 | * @idle: Idle status of this_cpu | ||
3767 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3768 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3769 | * @local_group: Does group contain this_cpu. | ||
3770 | * @cpus: Set of cpus considered for load balancing. | ||
3771 | * @balance: Should we balance. | ||
3772 | * @sgs: variable to hold the statistics for this group. | ||
3773 | */ | ||
3774 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
3775 | struct sched_group *group, int this_cpu, | ||
3776 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
3777 | int local_group, const struct cpumask *cpus, | ||
3778 | int *balance, struct sg_lb_stats *sgs) | ||
3779 | { | ||
3780 | unsigned long load, max_cpu_load, min_cpu_load; | ||
3781 | int i; | ||
3782 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3783 | unsigned long sum_avg_load_per_task; | ||
3784 | unsigned long avg_load_per_task; | ||
3785 | |||
3786 | if (local_group) { | ||
3787 | balance_cpu = group_first_cpu(group); | ||
3788 | if (balance_cpu == this_cpu) | ||
3789 | update_group_power(sd, this_cpu); | ||
3790 | } | ||
3791 | |||
3792 | /* Tally up the load of all CPUs in the group */ | ||
3793 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3794 | max_cpu_load = 0; | ||
3795 | min_cpu_load = ~0UL; | ||
3796 | |||
3797 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3798 | struct rq *rq = cpu_rq(i); | ||
3799 | |||
3800 | if (*sd_idle && rq->nr_running) | ||
3801 | *sd_idle = 0; | ||
3802 | |||
3803 | /* Bias balancing toward cpus of our domain */ | ||
3804 | if (local_group) { | ||
3805 | if (idle_cpu(i) && !first_idle_cpu) { | ||
3806 | first_idle_cpu = 1; | ||
3807 | balance_cpu = i; | ||
3808 | } | ||
3809 | |||
3810 | load = target_load(i, load_idx); | ||
3811 | } else { | ||
3812 | load = source_load(i, load_idx); | ||
3813 | if (load > max_cpu_load) | ||
3814 | max_cpu_load = load; | ||
3815 | if (min_cpu_load > load) | ||
3816 | min_cpu_load = load; | ||
3817 | } | ||
3818 | |||
3819 | sgs->group_load += load; | ||
3820 | sgs->sum_nr_running += rq->nr_running; | ||
3821 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
3822 | |||
3823 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | ||
3824 | } | ||
3825 | |||
3826 | /* | ||
3827 | * First idle cpu or the first cpu(busiest) in this sched group | ||
3828 | * is eligible for doing load balancing at this and above | ||
3829 | * domains. In the newly idle case, we will allow all the cpu's | ||
3830 | * to do the newly idle load balance. | ||
3831 | */ | ||
3832 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
3833 | balance_cpu != this_cpu && balance) { | ||
3834 | *balance = 0; | ||
3835 | return; | ||
3836 | } | ||
3837 | |||
3838 | /* Adjust by relative CPU power of the group */ | ||
3839 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
3840 | |||
3841 | |||
3842 | /* | ||
3843 | * Consider the group unbalanced when the imbalance is larger | ||
3844 | * than the average weight of two tasks. | ||
3845 | * | ||
3846 | * APZ: with cgroup the avg task weight can vary wildly and | ||
3847 | * might not be a suitable number - should we keep a | ||
3848 | * normalized nr_running number somewhere that negates | ||
3849 | * the hierarchy? | ||
3850 | */ | ||
3851 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / | ||
3852 | group->cpu_power; | ||
3853 | |||
3854 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
3855 | sgs->group_imb = 1; | ||
3856 | |||
3857 | sgs->group_capacity = | ||
3858 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
3859 | } | ||
3860 | |||
3861 | /** | ||
3862 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
3863 | * @sd: sched_domain whose statistics are to be updated. | ||
3864 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3865 | * @idle: Idle status of this_cpu | ||
3866 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3867 | * @cpus: Set of cpus considered for load balancing. | ||
3868 | * @balance: Should we balance. | ||
3869 | * @sds: variable to hold the statistics for this sched_domain. | ||
3870 | */ | ||
3871 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3872 | enum cpu_idle_type idle, int *sd_idle, | ||
3873 | const struct cpumask *cpus, int *balance, | ||
3874 | struct sd_lb_stats *sds) | ||
3875 | { | ||
3876 | struct sched_domain *child = sd->child; | ||
3877 | struct sched_group *group = sd->groups; | ||
3878 | struct sg_lb_stats sgs; | ||
3879 | int load_idx, prefer_sibling = 0; | ||
3880 | |||
3881 | if (child && child->flags & SD_PREFER_SIBLING) | ||
3882 | prefer_sibling = 1; | ||
3883 | |||
3884 | init_sd_power_savings_stats(sd, sds, idle); | ||
3885 | load_idx = get_sd_load_idx(sd, idle); | ||
3886 | |||
3887 | do { | ||
3888 | int local_group; | ||
3889 | |||
3890 | local_group = cpumask_test_cpu(this_cpu, | ||
3891 | sched_group_cpus(group)); | ||
3892 | memset(&sgs, 0, sizeof(sgs)); | ||
3893 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
3894 | local_group, cpus, balance, &sgs); | ||
3895 | |||
3896 | if (local_group && balance && !(*balance)) | ||
3897 | return; | ||
3898 | |||
3899 | sds->total_load += sgs.group_load; | ||
3900 | sds->total_pwr += group->cpu_power; | ||
3901 | |||
3902 | /* | ||
3903 | * In case the child domain prefers tasks go to siblings | ||
3904 | * first, lower the group capacity to one so that we'll try | ||
3905 | * and move all the excess tasks away. | ||
3906 | */ | ||
3907 | if (prefer_sibling) | ||
3908 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
3909 | |||
3910 | if (local_group) { | ||
3911 | sds->this_load = sgs.avg_load; | ||
3912 | sds->this = group; | ||
3913 | sds->this_nr_running = sgs.sum_nr_running; | ||
3914 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
3915 | } else if (sgs.avg_load > sds->max_load && | ||
3916 | (sgs.sum_nr_running > sgs.group_capacity || | ||
3917 | sgs.group_imb)) { | ||
3918 | sds->max_load = sgs.avg_load; | ||
3919 | sds->busiest = group; | ||
3920 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
3921 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
3922 | sds->group_imb = sgs.group_imb; | ||
3923 | } | ||
3924 | |||
3925 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
3926 | group = group->next; | ||
3927 | } while (group != sd->groups); | ||
3928 | } | ||
3929 | |||
3930 | /** | ||
3931 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
3932 | * amongst the groups of a sched_domain, during | ||
3933 | * load balancing. | ||
3934 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
3935 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
3936 | * @imbalance: Variable to store the imbalance. | ||
3937 | */ | ||
3938 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
3939 | int this_cpu, unsigned long *imbalance) | ||
3940 | { | ||
3941 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
3942 | unsigned int imbn = 2; | ||
3943 | |||
3944 | if (sds->this_nr_running) { | ||
3945 | sds->this_load_per_task /= sds->this_nr_running; | ||
3946 | if (sds->busiest_load_per_task > | ||
3947 | sds->this_load_per_task) | ||
3948 | imbn = 1; | ||
3949 | } else | ||
3950 | sds->this_load_per_task = | ||
3951 | cpu_avg_load_per_task(this_cpu); | ||
3952 | |||
3953 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | ||
3954 | sds->busiest_load_per_task * imbn) { | ||
3955 | *imbalance = sds->busiest_load_per_task; | ||
3956 | return; | ||
3957 | } | ||
3958 | |||
3959 | /* | ||
3960 | * OK, we don't have enough imbalance to justify moving tasks, | ||
3961 | * however we may be able to increase total CPU power used by | ||
3962 | * moving them. | ||
3963 | */ | ||
3964 | |||
3965 | pwr_now += sds->busiest->cpu_power * | ||
3966 | min(sds->busiest_load_per_task, sds->max_load); | ||
3967 | pwr_now += sds->this->cpu_power * | ||
3968 | min(sds->this_load_per_task, sds->this_load); | ||
3969 | pwr_now /= SCHED_LOAD_SCALE; | ||
3970 | |||
3971 | /* Amount of load we'd subtract */ | ||
3972 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3973 | sds->busiest->cpu_power; | ||
3974 | if (sds->max_load > tmp) | ||
3975 | pwr_move += sds->busiest->cpu_power * | ||
3976 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3977 | |||
3978 | /* Amount of load we'd add */ | ||
3979 | if (sds->max_load * sds->busiest->cpu_power < | ||
3980 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3981 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
3982 | sds->this->cpu_power; | ||
3983 | else | ||
3984 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3985 | sds->this->cpu_power; | ||
3986 | pwr_move += sds->this->cpu_power * | ||
3987 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3988 | pwr_move /= SCHED_LOAD_SCALE; | ||
3989 | |||
3990 | /* Move if we gain throughput */ | ||
3991 | if (pwr_move > pwr_now) | ||
3992 | *imbalance = sds->busiest_load_per_task; | ||
3993 | } | ||
3994 | |||
3995 | /** | ||
3996 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3997 | * groups of a given sched_domain during load balance. | ||
3998 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3999 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
4000 | * @imbalance: The variable to store the imbalance. | ||
4001 | */ | ||
4002 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
4003 | unsigned long *imbalance) | ||
4004 | { | ||
4005 | unsigned long max_pull; | ||
4006 | /* | ||
4007 | * In the presence of smp nice balancing, certain scenarios can have | ||
4008 | * max load less than avg load(as we skip the groups at or below | ||
4009 | * its cpu_power, while calculating max_load..) | ||
4010 | */ | ||
4011 | if (sds->max_load < sds->avg_load) { | ||
4012 | *imbalance = 0; | ||
4013 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
4014 | } | ||
4015 | |||
4016 | /* Don't want to pull so many tasks that a group would go idle */ | ||
4017 | max_pull = min(sds->max_load - sds->avg_load, | ||
4018 | sds->max_load - sds->busiest_load_per_task); | ||
4019 | |||
4020 | /* How much load to actually move to equalise the imbalance */ | ||
4021 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
4022 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
4023 | / SCHED_LOAD_SCALE; | ||
4024 | |||
4025 | /* | ||
4026 | * if *imbalance is less than the average load per runnable task | ||
4027 | * there is no gaurantee that any tasks will be moved so we'll have | ||
4028 | * a think about bumping its value to force at least one task to be | ||
4029 | * moved | ||
4030 | */ | ||
4031 | if (*imbalance < sds->busiest_load_per_task) | ||
4032 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
4033 | |||
4034 | } | ||
4035 | /******* find_busiest_group() helpers end here *********************/ | ||
4036 | |||
4037 | /** | ||
4038 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
4039 | * if there is an imbalance. If there isn't an imbalance, and | ||
4040 | * the user has opted for power-savings, it returns a group whose | ||
4041 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
4042 | * such a group exists. | ||
4043 | * | ||
4044 | * Also calculates the amount of weighted load which should be moved | ||
4045 | * to restore balance. | ||
4046 | * | ||
4047 | * @sd: The sched_domain whose busiest group is to be returned. | ||
4048 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
4049 | * @imbalance: Variable which stores amount of weighted load which should | ||
4050 | * be moved to restore balance/put a group to idle. | ||
4051 | * @idle: The idle status of this_cpu. | ||
4052 | * @sd_idle: The idleness of sd | ||
4053 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
4054 | * @balance: Pointer to a variable indicating if this_cpu | ||
4055 | * is the appropriate cpu to perform load balancing at this_level. | ||
4056 | * | ||
4057 | * Returns: - the busiest group if imbalance exists. | ||
4058 | * - If no imbalance and user has opted for power-savings balance, | ||
4059 | * return the least loaded group whose CPUs can be | ||
4060 | * put to idle by rebalancing its tasks onto our group. | ||
4061 | */ | ||
4062 | static struct sched_group * | ||
4063 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
4064 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
4065 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
4066 | { | ||
4067 | struct sd_lb_stats sds; | ||
4068 | |||
4069 | memset(&sds, 0, sizeof(sds)); | ||
4070 | |||
4071 | /* | ||
4072 | * Compute the various statistics relavent for load balancing at | ||
4073 | * this level. | ||
4074 | */ | ||
4075 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
4076 | balance, &sds); | ||
4077 | |||
4078 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
4079 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
4080 | * at this level. | ||
4081 | * 2) There is no busy sibling group to pull from. | ||
4082 | * 3) This group is the busiest group. | ||
4083 | * 4) This group is more busy than the avg busieness at this | ||
4084 | * sched_domain. | ||
4085 | * 5) The imbalance is within the specified limit. | ||
4086 | * 6) Any rebalance would lead to ping-pong | ||
4087 | */ | ||
4088 | if (balance && !(*balance)) | ||
4089 | goto ret; | ||
4090 | |||
4091 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
4092 | goto out_balanced; | ||
4093 | |||
4094 | if (sds.this_load >= sds.max_load) | ||
4095 | goto out_balanced; | ||
4096 | |||
4097 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
4098 | |||
4099 | if (sds.this_load >= sds.avg_load) | ||
4100 | goto out_balanced; | ||
4101 | |||
4102 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
4103 | goto out_balanced; | ||
4104 | |||
4105 | sds.busiest_load_per_task /= sds.busiest_nr_running; | ||
4106 | if (sds.group_imb) | ||
4107 | sds.busiest_load_per_task = | ||
4108 | min(sds.busiest_load_per_task, sds.avg_load); | ||
4109 | |||
4110 | /* | ||
4111 | * We're trying to get all the cpus to the average_load, so we don't | ||
4112 | * want to push ourselves above the average load, nor do we wish to | ||
4113 | * reduce the max loaded cpu below the average load, as either of these | ||
4114 | * actions would just result in more rebalancing later, and ping-pong | ||
4115 | * tasks around. Thus we look for the minimum possible imbalance. | ||
4116 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
4117 | * be counted as no imbalance for these purposes -- we can't fix that | ||
4118 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
4119 | * appear as very large values with unsigned longs. | ||
4120 | */ | ||
4121 | if (sds.max_load <= sds.busiest_load_per_task) | ||
4122 | goto out_balanced; | ||
4123 | |||
4124 | /* Looks like there is an imbalance. Compute it */ | ||
4125 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
4126 | return sds.busiest; | ||
4127 | |||
4128 | out_balanced: | ||
4129 | /* | ||
4130 | * There is no obvious imbalance. But check if we can do some balancing | ||
4131 | * to save power. | ||
4132 | */ | ||
4133 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
4134 | return sds.busiest; | ||
4135 | ret: | ||
4136 | *imbalance = 0; | ||
4137 | return NULL; | ||
4138 | } | ||
4139 | |||
4140 | /* | ||
4141 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
4142 | */ | ||
4143 | static struct rq * | ||
4144 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
4145 | unsigned long imbalance, const struct cpumask *cpus) | ||
4146 | { | ||
4147 | struct rq *busiest = NULL, *rq; | ||
4148 | unsigned long max_load = 0; | ||
4149 | int i; | ||
4150 | |||
4151 | for_each_cpu(i, sched_group_cpus(group)) { | ||
4152 | unsigned long power = power_of(i); | ||
4153 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
4154 | unsigned long wl; | ||
4155 | |||
4156 | if (!cpumask_test_cpu(i, cpus)) | ||
4157 | continue; | ||
4158 | |||
4159 | rq = cpu_rq(i); | ||
4160 | wl = weighted_cpuload(i); | ||
4161 | |||
4162 | /* | ||
4163 | * When comparing with imbalance, use weighted_cpuload() | ||
4164 | * which is not scaled with the cpu power. | ||
4165 | */ | ||
4166 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
4167 | continue; | ||
4168 | |||
4169 | /* | ||
4170 | * For the load comparisons with the other cpu's, consider | ||
4171 | * the weighted_cpuload() scaled with the cpu power, so that | ||
4172 | * the load can be moved away from the cpu that is potentially | ||
4173 | * running at a lower capacity. | ||
4174 | */ | ||
4175 | wl = (wl * SCHED_LOAD_SCALE) / power; | ||
4176 | |||
4177 | if (wl > max_load) { | ||
4178 | max_load = wl; | ||
4179 | busiest = rq; | ||
4180 | } | ||
4181 | } | ||
4182 | |||
4183 | return busiest; | ||
4184 | } | ||
4185 | |||
4186 | /* | ||
4187 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
4188 | * so long as it is large enough. | ||
4189 | */ | ||
4190 | #define MAX_PINNED_INTERVAL 512 | ||
4191 | |||
4192 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
4193 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
4194 | |||
4195 | /* | ||
4196 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4197 | * tasks if there is an imbalance. | ||
4198 | */ | ||
4199 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
4200 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
4201 | int *balance) | ||
4202 | { | ||
4203 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
4204 | struct sched_group *group; | ||
4205 | unsigned long imbalance; | ||
4206 | struct rq *busiest; | ||
4207 | unsigned long flags; | ||
4208 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4209 | |||
4210 | cpumask_copy(cpus, cpu_active_mask); | ||
4211 | |||
4212 | /* | ||
4213 | * When power savings policy is enabled for the parent domain, idle | ||
4214 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4215 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
4216 | * portraying it as CPU_NOT_IDLE. | ||
4217 | */ | ||
4218 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
4219 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4220 | sd_idle = 1; | ||
4221 | |||
4222 | schedstat_inc(sd, lb_count[idle]); | ||
4223 | |||
4224 | redo: | ||
4225 | update_shares(sd); | ||
4226 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
4227 | cpus, balance); | ||
4228 | |||
4229 | if (*balance == 0) | ||
4230 | goto out_balanced; | ||
4231 | |||
4232 | if (!group) { | ||
4233 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
4234 | goto out_balanced; | ||
4235 | } | ||
4236 | |||
4237 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
4238 | if (!busiest) { | ||
4239 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
4240 | goto out_balanced; | ||
4241 | } | ||
4242 | |||
4243 | BUG_ON(busiest == this_rq); | ||
4244 | |||
4245 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
4246 | |||
4247 | ld_moved = 0; | ||
4248 | if (busiest->nr_running > 1) { | ||
4249 | /* | ||
4250 | * Attempt to move tasks. If find_busiest_group has found | ||
4251 | * an imbalance but busiest->nr_running <= 1, the group is | ||
4252 | * still unbalanced. ld_moved simply stays zero, so it is | ||
4253 | * correctly treated as an imbalance. | ||
4254 | */ | ||
4255 | local_irq_save(flags); | ||
4256 | double_rq_lock(this_rq, busiest); | ||
4257 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4258 | imbalance, sd, idle, &all_pinned); | ||
4259 | double_rq_unlock(this_rq, busiest); | ||
4260 | local_irq_restore(flags); | ||
4261 | |||
4262 | /* | ||
4263 | * some other cpu did the load balance for us. | ||
4264 | */ | ||
4265 | if (ld_moved && this_cpu != smp_processor_id()) | ||
4266 | resched_cpu(this_cpu); | ||
4267 | |||
4268 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
4269 | if (unlikely(all_pinned)) { | ||
4270 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4271 | if (!cpumask_empty(cpus)) | ||
4272 | goto redo; | ||
4273 | goto out_balanced; | ||
4274 | } | ||
4275 | } | ||
4276 | |||
4277 | if (!ld_moved) { | ||
4278 | schedstat_inc(sd, lb_failed[idle]); | ||
4279 | sd->nr_balance_failed++; | ||
4280 | |||
4281 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
4282 | |||
4283 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
4284 | |||
4285 | /* don't kick the migration_thread, if the curr | ||
4286 | * task on busiest cpu can't be moved to this_cpu | ||
4287 | */ | ||
4288 | if (!cpumask_test_cpu(this_cpu, | ||
4289 | &busiest->curr->cpus_allowed)) { | ||
4290 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
4291 | flags); | ||
4292 | all_pinned = 1; | ||
4293 | goto out_one_pinned; | ||
4294 | } | ||
4295 | |||
4296 | if (!busiest->active_balance) { | ||
4297 | busiest->active_balance = 1; | ||
4298 | busiest->push_cpu = this_cpu; | ||
4299 | active_balance = 1; | ||
4300 | } | ||
4301 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
4302 | if (active_balance) | ||
4303 | wake_up_process(busiest->migration_thread); | ||
4304 | |||
4305 | /* | ||
4306 | * We've kicked active balancing, reset the failure | ||
4307 | * counter. | ||
4308 | */ | ||
4309 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
4310 | } | ||
4311 | } else | ||
4312 | sd->nr_balance_failed = 0; | ||
4313 | |||
4314 | if (likely(!active_balance)) { | ||
4315 | /* We were unbalanced, so reset the balancing interval */ | ||
4316 | sd->balance_interval = sd->min_interval; | ||
4317 | } else { | ||
4318 | /* | ||
4319 | * If we've begun active balancing, start to back off. This | ||
4320 | * case may not be covered by the all_pinned logic if there | ||
4321 | * is only 1 task on the busy runqueue (because we don't call | ||
4322 | * move_tasks). | ||
4323 | */ | ||
4324 | if (sd->balance_interval < sd->max_interval) | ||
4325 | sd->balance_interval *= 2; | ||
4326 | } | ||
4327 | |||
4328 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4329 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4330 | ld_moved = -1; | ||
4331 | |||
4332 | goto out; | ||
4333 | |||
4334 | out_balanced: | ||
4335 | schedstat_inc(sd, lb_balanced[idle]); | ||
4336 | |||
4337 | sd->nr_balance_failed = 0; | ||
4338 | |||
4339 | out_one_pinned: | ||
4340 | /* tune up the balancing interval */ | ||
4341 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
4342 | (sd->balance_interval < sd->max_interval)) | ||
4343 | sd->balance_interval *= 2; | ||
4344 | |||
4345 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4346 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4347 | ld_moved = -1; | ||
4348 | else | ||
4349 | ld_moved = 0; | ||
4350 | out: | ||
4351 | if (ld_moved) | ||
4352 | update_shares(sd); | ||
4353 | return ld_moved; | ||
4354 | } | ||
4355 | |||
4356 | /* | ||
4357 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4358 | * tasks if there is an imbalance. | ||
4359 | * | ||
4360 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | ||
4361 | * this_rq is locked. | ||
4362 | */ | ||
4363 | static int | ||
4364 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | ||
4365 | { | ||
4366 | struct sched_group *group; | ||
4367 | struct rq *busiest = NULL; | ||
4368 | unsigned long imbalance; | ||
4369 | int ld_moved = 0; | ||
4370 | int sd_idle = 0; | ||
4371 | int all_pinned = 0; | ||
4372 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4373 | |||
4374 | cpumask_copy(cpus, cpu_active_mask); | ||
4375 | |||
4376 | /* | ||
4377 | * When power savings policy is enabled for the parent domain, idle | ||
4378 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4379 | * let the state of idle sibling percolate up as IDLE, instead of | ||
4380 | * portraying it as CPU_NOT_IDLE. | ||
4381 | */ | ||
4382 | if (sd->flags & SD_SHARE_CPUPOWER && | ||
4383 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4384 | sd_idle = 1; | ||
4385 | |||
4386 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | ||
4387 | redo: | ||
4388 | update_shares_locked(this_rq, sd); | ||
4389 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | ||
4390 | &sd_idle, cpus, NULL); | ||
4391 | if (!group) { | ||
4392 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | ||
4393 | goto out_balanced; | ||
4394 | } | ||
4395 | |||
4396 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | ||
4397 | if (!busiest) { | ||
4398 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | ||
4399 | goto out_balanced; | ||
4400 | } | ||
4401 | |||
4402 | BUG_ON(busiest == this_rq); | ||
4403 | |||
4404 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | ||
4405 | |||
4406 | ld_moved = 0; | ||
4407 | if (busiest->nr_running > 1) { | ||
4408 | /* Attempt to move tasks */ | ||
4409 | double_lock_balance(this_rq, busiest); | ||
4410 | /* this_rq->clock is already updated */ | ||
4411 | update_rq_clock(busiest); | ||
4412 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4413 | imbalance, sd, CPU_NEWLY_IDLE, | ||
4414 | &all_pinned); | ||
4415 | double_unlock_balance(this_rq, busiest); | ||
4416 | |||
4417 | if (unlikely(all_pinned)) { | ||
4418 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4419 | if (!cpumask_empty(cpus)) | ||
4420 | goto redo; | ||
4421 | } | ||
4422 | } | ||
4423 | |||
4424 | if (!ld_moved) { | ||
4425 | int active_balance = 0; | ||
4426 | |||
4427 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | ||
4428 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4429 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4430 | return -1; | ||
4431 | |||
4432 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
4433 | return -1; | ||
4434 | |||
4435 | if (sd->nr_balance_failed++ < 2) | ||
4436 | return -1; | ||
4437 | |||
4438 | /* | ||
4439 | * The only task running in a non-idle cpu can be moved to this | ||
4440 | * cpu in an attempt to completely freeup the other CPU | ||
4441 | * package. The same method used to move task in load_balance() | ||
4442 | * have been extended for load_balance_newidle() to speedup | ||
4443 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | ||
4444 | * | ||
4445 | * The package power saving logic comes from | ||
4446 | * find_busiest_group(). If there are no imbalance, then | ||
4447 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
4448 | * f_b_g() will select a group from which a running task may be | ||
4449 | * pulled to this cpu in order to make the other package idle. | ||
4450 | * If there is no opportunity to make a package idle and if | ||
4451 | * there are no imbalance, then f_b_g() will return NULL and no | ||
4452 | * action will be taken in load_balance_newidle(). | ||
4453 | * | ||
4454 | * Under normal task pull operation due to imbalance, there | ||
4455 | * will be more than one task in the source run queue and | ||
4456 | * move_tasks() will succeed. ld_moved will be true and this | ||
4457 | * active balance code will not be triggered. | ||
4458 | */ | ||
4459 | |||
4460 | /* Lock busiest in correct order while this_rq is held */ | ||
4461 | double_lock_balance(this_rq, busiest); | ||
4462 | |||
4463 | /* | ||
4464 | * don't kick the migration_thread, if the curr | ||
4465 | * task on busiest cpu can't be moved to this_cpu | ||
4466 | */ | ||
4467 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { | ||
4468 | double_unlock_balance(this_rq, busiest); | ||
4469 | all_pinned = 1; | ||
4470 | return ld_moved; | ||
4471 | } | ||
4472 | |||
4473 | if (!busiest->active_balance) { | ||
4474 | busiest->active_balance = 1; | ||
4475 | busiest->push_cpu = this_cpu; | ||
4476 | active_balance = 1; | ||
4477 | } | ||
4478 | |||
4479 | double_unlock_balance(this_rq, busiest); | ||
4480 | /* | ||
4481 | * Should not call ttwu while holding a rq->lock | ||
4482 | */ | ||
4483 | raw_spin_unlock(&this_rq->lock); | ||
4484 | if (active_balance) | ||
4485 | wake_up_process(busiest->migration_thread); | ||
4486 | raw_spin_lock(&this_rq->lock); | ||
4487 | |||
4488 | } else | ||
4489 | sd->nr_balance_failed = 0; | ||
4490 | |||
4491 | update_shares_locked(this_rq, sd); | ||
4492 | return ld_moved; | ||
4493 | |||
4494 | out_balanced: | ||
4495 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | ||
4496 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4497 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4498 | return -1; | ||
4499 | sd->nr_balance_failed = 0; | ||
4500 | |||
4501 | return 0; | ||
4502 | } | ||
4503 | |||
4504 | /* | ||
4505 | * idle_balance is called by schedule() if this_cpu is about to become | ||
4506 | * idle. Attempts to pull tasks from other CPUs. | ||
4507 | */ | ||
4508 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
4509 | { | ||
4510 | struct sched_domain *sd; | ||
4511 | int pulled_task = 0; | ||
4512 | unsigned long next_balance = jiffies + HZ; | ||
4513 | |||
4514 | this_rq->idle_stamp = this_rq->clock; | ||
4515 | |||
4516 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
4517 | return; | ||
4518 | |||
4519 | for_each_domain(this_cpu, sd) { | ||
4520 | unsigned long interval; | ||
4521 | |||
4522 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4523 | continue; | ||
4524 | |||
4525 | if (sd->flags & SD_BALANCE_NEWIDLE) | ||
4526 | /* If we've pulled tasks over stop searching: */ | ||
4527 | pulled_task = load_balance_newidle(this_cpu, this_rq, | ||
4528 | sd); | ||
4529 | |||
4530 | interval = msecs_to_jiffies(sd->balance_interval); | ||
4531 | if (time_after(next_balance, sd->last_balance + interval)) | ||
4532 | next_balance = sd->last_balance + interval; | ||
4533 | if (pulled_task) { | ||
4534 | this_rq->idle_stamp = 0; | ||
4535 | break; | ||
4536 | } | ||
4537 | } | ||
4538 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
4539 | /* | ||
4540 | * We are going idle. next_balance may be set based on | ||
4541 | * a busy processor. So reset next_balance. | ||
4542 | */ | ||
4543 | this_rq->next_balance = next_balance; | ||
4544 | } | ||
4545 | } | ||
4546 | |||
4547 | /* | ||
4548 | * active_load_balance is run by migration threads. It pushes running tasks | ||
4549 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
4550 | * running on each physical CPU where possible, and avoids physical / | ||
4551 | * logical imbalances. | ||
4552 | * | ||
4553 | * Called with busiest_rq locked. | ||
4554 | */ | ||
4555 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
4556 | { | ||
4557 | int target_cpu = busiest_rq->push_cpu; | ||
4558 | struct sched_domain *sd; | ||
4559 | struct rq *target_rq; | ||
4560 | |||
4561 | /* Is there any task to move? */ | ||
4562 | if (busiest_rq->nr_running <= 1) | ||
4563 | return; | ||
4564 | |||
4565 | target_rq = cpu_rq(target_cpu); | ||
4566 | |||
4567 | /* | ||
4568 | * This condition is "impossible", if it occurs | ||
4569 | * we need to fix it. Originally reported by | ||
4570 | * Bjorn Helgaas on a 128-cpu setup. | ||
4571 | */ | ||
4572 | BUG_ON(busiest_rq == target_rq); | ||
4573 | |||
4574 | /* move a task from busiest_rq to target_rq */ | ||
4575 | double_lock_balance(busiest_rq, target_rq); | ||
4576 | update_rq_clock(busiest_rq); | ||
4577 | update_rq_clock(target_rq); | ||
4578 | |||
4579 | /* Search for an sd spanning us and the target CPU. */ | ||
4580 | for_each_domain(target_cpu, sd) { | ||
4581 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
4582 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
4583 | break; | ||
4584 | } | ||
4585 | |||
4586 | if (likely(sd)) { | ||
4587 | schedstat_inc(sd, alb_count); | ||
4588 | |||
4589 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
4590 | sd, CPU_IDLE)) | ||
4591 | schedstat_inc(sd, alb_pushed); | ||
4592 | else | ||
4593 | schedstat_inc(sd, alb_failed); | ||
4594 | } | ||
4595 | double_unlock_balance(busiest_rq, target_rq); | ||
4596 | } | ||
4597 | |||
4598 | #ifdef CONFIG_NO_HZ | ||
4599 | static struct { | ||
4600 | atomic_t load_balancer; | ||
4601 | cpumask_var_t cpu_mask; | ||
4602 | cpumask_var_t ilb_grp_nohz_mask; | ||
4603 | } nohz ____cacheline_aligned = { | ||
4604 | .load_balancer = ATOMIC_INIT(-1), | ||
4605 | }; | ||
4606 | |||
4607 | int get_nohz_load_balancer(void) | ||
4608 | { | ||
4609 | return atomic_read(&nohz.load_balancer); | ||
4610 | } | ||
4611 | |||
4612 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
4613 | /** | ||
4614 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
4615 | * @cpu: The cpu whose lowest level of sched domain is to | ||
4616 | * be returned. | ||
4617 | * @flag: The flag to check for the lowest sched_domain | ||
4618 | * for the given cpu. | ||
4619 | * | ||
4620 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
4621 | */ | ||
4622 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
4623 | { | ||
4624 | struct sched_domain *sd; | ||
4625 | |||
4626 | for_each_domain(cpu, sd) | ||
4627 | if (sd && (sd->flags & flag)) | ||
4628 | break; | ||
4629 | |||
4630 | return sd; | ||
4631 | } | ||
4632 | |||
4633 | /** | ||
4634 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
4635 | * @cpu: The cpu whose domains we're iterating over. | ||
4636 | * @sd: variable holding the value of the power_savings_sd | ||
4637 | * for cpu. | ||
4638 | * @flag: The flag to filter the sched_domains to be iterated. | ||
4639 | * | ||
4640 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
4641 | * set, starting from the lowest sched_domain to the highest. | ||
4642 | */ | ||
4643 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
4644 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
4645 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
4646 | |||
4647 | /** | ||
4648 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
4649 | * @ilb_group: group to be checked for semi-idleness | ||
4650 | * | ||
4651 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
4652 | * | ||
4653 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
4654 | * and atleast one non-idle CPU. This helper function checks if the given | ||
4655 | * sched_group is semi-idle or not. | ||
4656 | */ | ||
4657 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
4658 | { | ||
4659 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
4660 | sched_group_cpus(ilb_group)); | ||
4661 | |||
4662 | /* | ||
4663 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
4664 | * and atleast one idle cpu. | ||
4665 | */ | ||
4666 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
4667 | return 0; | ||
4668 | |||
4669 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
4670 | return 0; | ||
4671 | |||
4672 | return 1; | ||
4673 | } | ||
4674 | /** | ||
4675 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
4676 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
4677 | * | ||
4678 | * Returns: Returns the id of the idle load balancer if it exists, | ||
4679 | * Else, returns >= nr_cpu_ids. | ||
4680 | * | ||
4681 | * This algorithm picks the idle load balancer such that it belongs to a | ||
4682 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
4683 | * completely idle packages/cores just for the purpose of idle load balancing | ||
4684 | * when there are other idle cpu's which are better suited for that job. | ||
4685 | */ | ||
4686 | static int find_new_ilb(int cpu) | ||
4687 | { | ||
4688 | struct sched_domain *sd; | ||
4689 | struct sched_group *ilb_group; | ||
4690 | |||
4691 | /* | ||
4692 | * Have idle load balancer selection from semi-idle packages only | ||
4693 | * when power-aware load balancing is enabled | ||
4694 | */ | ||
4695 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
4696 | goto out_done; | ||
4697 | |||
4698 | /* | ||
4699 | * Optimize for the case when we have no idle CPUs or only one | ||
4700 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
4701 | */ | ||
4702 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
4703 | goto out_done; | ||
4704 | |||
4705 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
4706 | ilb_group = sd->groups; | ||
4707 | |||
4708 | do { | ||
4709 | if (is_semi_idle_group(ilb_group)) | ||
4710 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
4711 | |||
4712 | ilb_group = ilb_group->next; | ||
4713 | |||
4714 | } while (ilb_group != sd->groups); | ||
4715 | } | ||
4716 | |||
4717 | out_done: | ||
4718 | return cpumask_first(nohz.cpu_mask); | ||
4719 | } | ||
4720 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
4721 | static inline int find_new_ilb(int call_cpu) | ||
4722 | { | ||
4723 | return cpumask_first(nohz.cpu_mask); | ||
4724 | } | ||
4725 | #endif | ||
4726 | |||
4727 | /* | ||
4728 | * This routine will try to nominate the ilb (idle load balancing) | ||
4729 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
4730 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
4731 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
4732 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
4733 | * arrives... | ||
4734 | * | ||
4735 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
4736 | * for idle load balancing. ilb owner will still be part of | ||
4737 | * nohz.cpu_mask.. | ||
4738 | * | ||
4739 | * While stopping the tick, this cpu will become the ilb owner if there | ||
4740 | * is no other owner. And will be the owner till that cpu becomes busy | ||
4741 | * or if all cpus in the system stop their ticks at which point | ||
4742 | * there is no need for ilb owner. | ||
4743 | * | ||
4744 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
4745 | * next busy scheduler_tick() | ||
4746 | */ | ||
4747 | int select_nohz_load_balancer(int stop_tick) | ||
4748 | { | ||
4749 | int cpu = smp_processor_id(); | ||
4750 | |||
4751 | if (stop_tick) { | ||
4752 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
4753 | |||
4754 | if (!cpu_active(cpu)) { | ||
4755 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
4756 | return 0; | ||
4757 | |||
4758 | /* | ||
4759 | * If we are going offline and still the leader, | ||
4760 | * give up! | ||
4761 | */ | ||
4762 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4763 | BUG(); | ||
4764 | |||
4765 | return 0; | ||
4766 | } | ||
4767 | |||
4768 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
4769 | |||
4770 | /* time for ilb owner also to sleep */ | ||
4771 | if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { | ||
4772 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4773 | atomic_set(&nohz.load_balancer, -1); | ||
4774 | return 0; | ||
4775 | } | ||
4776 | |||
4777 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4778 | /* make me the ilb owner */ | ||
4779 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
4780 | return 1; | ||
4781 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4782 | int new_ilb; | ||
4783 | |||
4784 | if (!(sched_smt_power_savings || | ||
4785 | sched_mc_power_savings)) | ||
4786 | return 1; | ||
4787 | /* | ||
4788 | * Check to see if there is a more power-efficient | ||
4789 | * ilb. | ||
4790 | */ | ||
4791 | new_ilb = find_new_ilb(cpu); | ||
4792 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
4793 | atomic_set(&nohz.load_balancer, -1); | ||
4794 | resched_cpu(new_ilb); | ||
4795 | return 0; | ||
4796 | } | ||
4797 | return 1; | ||
4798 | } | ||
4799 | } else { | ||
4800 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4801 | return 0; | ||
4802 | |||
4803 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4804 | |||
4805 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4806 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4807 | BUG(); | ||
4808 | } | ||
4809 | return 0; | ||
4810 | } | ||
4811 | #endif | ||
4812 | |||
4813 | static DEFINE_SPINLOCK(balancing); | ||
4814 | |||
4815 | /* | ||
4816 | * It checks each scheduling domain to see if it is due to be balanced, | ||
4817 | * and initiates a balancing operation if so. | ||
4818 | * | ||
4819 | * Balancing parameters are set up in arch_init_sched_domains. | ||
4820 | */ | ||
4821 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
4822 | { | ||
4823 | int balance = 1; | ||
4824 | struct rq *rq = cpu_rq(cpu); | ||
4825 | unsigned long interval; | ||
4826 | struct sched_domain *sd; | ||
4827 | /* Earliest time when we have to do rebalance again */ | ||
4828 | unsigned long next_balance = jiffies + 60*HZ; | ||
4829 | int update_next_balance = 0; | ||
4830 | int need_serialize; | ||
4831 | |||
4832 | for_each_domain(cpu, sd) { | ||
4833 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4834 | continue; | ||
4835 | |||
4836 | interval = sd->balance_interval; | ||
4837 | if (idle != CPU_IDLE) | ||
4838 | interval *= sd->busy_factor; | ||
4839 | |||
4840 | /* scale ms to jiffies */ | ||
4841 | interval = msecs_to_jiffies(interval); | ||
4842 | if (unlikely(!interval)) | ||
4843 | interval = 1; | ||
4844 | if (interval > HZ*NR_CPUS/10) | ||
4845 | interval = HZ*NR_CPUS/10; | ||
4846 | |||
4847 | need_serialize = sd->flags & SD_SERIALIZE; | ||
4848 | |||
4849 | if (need_serialize) { | ||
4850 | if (!spin_trylock(&balancing)) | ||
4851 | goto out; | ||
4852 | } | ||
4853 | |||
4854 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
4855 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
4856 | /* | ||
4857 | * We've pulled tasks over so either we're no | ||
4858 | * longer idle, or one of our SMT siblings is | ||
4859 | * not idle. | ||
4860 | */ | ||
4861 | idle = CPU_NOT_IDLE; | ||
4862 | } | ||
4863 | sd->last_balance = jiffies; | ||
4864 | } | ||
4865 | if (need_serialize) | ||
4866 | spin_unlock(&balancing); | ||
4867 | out: | ||
4868 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
4869 | next_balance = sd->last_balance + interval; | ||
4870 | update_next_balance = 1; | ||
4871 | } | ||
4872 | |||
4873 | /* | ||
4874 | * Stop the load balance at this level. There is another | ||
4875 | * CPU in our sched group which is doing load balancing more | ||
4876 | * actively. | ||
4877 | */ | ||
4878 | if (!balance) | ||
4879 | break; | ||
4880 | } | ||
4881 | |||
4882 | /* | ||
4883 | * next_balance will be updated only when there is a need. | ||
4884 | * When the cpu is attached to null domain for ex, it will not be | ||
4885 | * updated. | ||
4886 | */ | ||
4887 | if (likely(update_next_balance)) | ||
4888 | rq->next_balance = next_balance; | ||
4889 | } | ||
4890 | |||
4891 | /* | ||
4892 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
4893 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
4894 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
4895 | */ | ||
4896 | static void run_rebalance_domains(struct softirq_action *h) | ||
4897 | { | ||
4898 | int this_cpu = smp_processor_id(); | ||
4899 | struct rq *this_rq = cpu_rq(this_cpu); | ||
4900 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
4901 | CPU_IDLE : CPU_NOT_IDLE; | ||
4902 | |||
4903 | rebalance_domains(this_cpu, idle); | ||
4904 | |||
4905 | #ifdef CONFIG_NO_HZ | ||
4906 | /* | ||
4907 | * If this cpu is the owner for idle load balancing, then do the | ||
4908 | * balancing on behalf of the other idle cpus whose ticks are | ||
4909 | * stopped. | ||
4910 | */ | ||
4911 | if (this_rq->idle_at_tick && | ||
4912 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
4913 | struct rq *rq; | ||
4914 | int balance_cpu; | ||
4915 | |||
4916 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
4917 | if (balance_cpu == this_cpu) | ||
4918 | continue; | ||
4919 | |||
4920 | /* | ||
4921 | * If this cpu gets work to do, stop the load balancing | ||
4922 | * work being done for other cpus. Next load | ||
4923 | * balancing owner will pick it up. | ||
4924 | */ | ||
4925 | if (need_resched()) | ||
4926 | break; | ||
4927 | |||
4928 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
4929 | |||
4930 | rq = cpu_rq(balance_cpu); | ||
4931 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
4932 | this_rq->next_balance = rq->next_balance; | ||
4933 | } | ||
4934 | } | ||
4935 | #endif | ||
4936 | } | ||
4937 | |||
4938 | static inline int on_null_domain(int cpu) | ||
4939 | { | ||
4940 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4941 | } | ||
4942 | |||
4943 | /* | ||
4944 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
4945 | * | ||
4946 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
4947 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
4948 | * if the whole system is idle. | ||
4949 | */ | ||
4950 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
4951 | { | ||
4952 | #ifdef CONFIG_NO_HZ | ||
4953 | /* | ||
4954 | * If we were in the nohz mode recently and busy at the current | ||
4955 | * scheduler tick, then check if we need to nominate new idle | ||
4956 | * load balancer. | ||
4957 | */ | ||
4958 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
4959 | rq->in_nohz_recently = 0; | ||
4960 | |||
4961 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4962 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4963 | atomic_set(&nohz.load_balancer, -1); | ||
4964 | } | ||
4965 | |||
4966 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4967 | int ilb = find_new_ilb(cpu); | ||
4968 | |||
4969 | if (ilb < nr_cpu_ids) | ||
4970 | resched_cpu(ilb); | ||
4971 | } | ||
4972 | } | ||
4973 | |||
4974 | /* | ||
4975 | * If this cpu is idle and doing idle load balancing for all the | ||
4976 | * cpus with ticks stopped, is it time for that to stop? | ||
4977 | */ | ||
4978 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
4979 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
4980 | resched_cpu(cpu); | ||
4981 | return; | ||
4982 | } | ||
4983 | |||
4984 | /* | ||
4985 | * If this cpu is idle and the idle load balancing is done by | ||
4986 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
4987 | */ | ||
4988 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
4989 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4990 | return; | ||
4991 | #endif | ||
4992 | /* Don't need to rebalance while attached to NULL domain */ | ||
4993 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4994 | likely(!on_null_domain(cpu))) | ||
4995 | raise_softirq(SCHED_SOFTIRQ); | ||
4996 | } | ||
4997 | |||
4998 | #else /* CONFIG_SMP */ | ||
4999 | |||
5000 | /* | ||
5001 | * on UP we do not need to balance between CPUs: | ||
5002 | */ | ||
5003 | static inline void idle_balance(int cpu, struct rq *rq) | ||
5004 | { | ||
5005 | } | ||
5006 | |||
5007 | #endif | 3153 | #endif |
5008 | 3154 | ||
5009 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 3155 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
@@ -6128,7 +4274,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
6128 | if (running) | 4274 | if (running) |
6129 | p->sched_class->set_curr_task(rq); | 4275 | p->sched_class->set_curr_task(rq); |
6130 | if (on_rq) { | 4276 | if (on_rq) { |
6131 | enqueue_task(rq, p, 0); | 4277 | enqueue_task(rq, p, 0, oldprio < prio); |
6132 | 4278 | ||
6133 | check_class_changed(rq, p, prev_class, oldprio, running); | 4279 | check_class_changed(rq, p, prev_class, oldprio, running); |
6134 | } | 4280 | } |
@@ -6172,7 +4318,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
6172 | delta = p->prio - old_prio; | 4318 | delta = p->prio - old_prio; |
6173 | 4319 | ||
6174 | if (on_rq) { | 4320 | if (on_rq) { |
6175 | enqueue_task(rq, p, 0); | 4321 | enqueue_task(rq, p, 0, false); |
6176 | /* | 4322 | /* |
6177 | * If the task increased its priority or is running and | 4323 | * If the task increased its priority or is running and |
6178 | * lowered its priority, then reschedule its CPU: | 4324 | * lowered its priority, then reschedule its CPU: |
@@ -9482,7 +7628,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |||
9482 | tg->rt_rq[cpu] = rt_rq; | 7628 | tg->rt_rq[cpu] = rt_rq; |
9483 | init_rt_rq(rt_rq, rq); | 7629 | init_rt_rq(rt_rq, rq); |
9484 | rt_rq->tg = tg; | 7630 | rt_rq->tg = tg; |
9485 | rt_rq->rt_se = rt_se; | ||
9486 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 7631 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
9487 | if (add) | 7632 | if (add) |
9488 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 7633 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); |
@@ -9513,9 +7658,6 @@ void __init sched_init(void) | |||
9513 | #ifdef CONFIG_RT_GROUP_SCHED | 7658 | #ifdef CONFIG_RT_GROUP_SCHED |
9514 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 7659 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
9515 | #endif | 7660 | #endif |
9516 | #ifdef CONFIG_USER_SCHED | ||
9517 | alloc_size *= 2; | ||
9518 | #endif | ||
9519 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7661 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9520 | alloc_size += num_possible_cpus() * cpumask_size(); | 7662 | alloc_size += num_possible_cpus() * cpumask_size(); |
9521 | #endif | 7663 | #endif |
@@ -9529,13 +7671,6 @@ void __init sched_init(void) | |||
9529 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 7671 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; |
9530 | ptr += nr_cpu_ids * sizeof(void **); | 7672 | ptr += nr_cpu_ids * sizeof(void **); |
9531 | 7673 | ||
9532 | #ifdef CONFIG_USER_SCHED | ||
9533 | root_task_group.se = (struct sched_entity **)ptr; | ||
9534 | ptr += nr_cpu_ids * sizeof(void **); | ||
9535 | |||
9536 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | ||
9537 | ptr += nr_cpu_ids * sizeof(void **); | ||
9538 | #endif /* CONFIG_USER_SCHED */ | ||
9539 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7674 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9540 | #ifdef CONFIG_RT_GROUP_SCHED | 7675 | #ifdef CONFIG_RT_GROUP_SCHED |
9541 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 7676 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; |
@@ -9544,13 +7679,6 @@ void __init sched_init(void) | |||
9544 | init_task_group.rt_rq = (struct rt_rq **)ptr; | 7679 | init_task_group.rt_rq = (struct rt_rq **)ptr; |
9545 | ptr += nr_cpu_ids * sizeof(void **); | 7680 | ptr += nr_cpu_ids * sizeof(void **); |
9546 | 7681 | ||
9547 | #ifdef CONFIG_USER_SCHED | ||
9548 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | ||
9549 | ptr += nr_cpu_ids * sizeof(void **); | ||
9550 | |||
9551 | root_task_group.rt_rq = (struct rt_rq **)ptr; | ||
9552 | ptr += nr_cpu_ids * sizeof(void **); | ||
9553 | #endif /* CONFIG_USER_SCHED */ | ||
9554 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7682 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9555 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7683 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9556 | for_each_possible_cpu(i) { | 7684 | for_each_possible_cpu(i) { |
@@ -9570,22 +7698,13 @@ void __init sched_init(void) | |||
9570 | #ifdef CONFIG_RT_GROUP_SCHED | 7698 | #ifdef CONFIG_RT_GROUP_SCHED |
9571 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | 7699 | init_rt_bandwidth(&init_task_group.rt_bandwidth, |
9572 | global_rt_period(), global_rt_runtime()); | 7700 | global_rt_period(), global_rt_runtime()); |
9573 | #ifdef CONFIG_USER_SCHED | ||
9574 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | ||
9575 | global_rt_period(), RUNTIME_INF); | ||
9576 | #endif /* CONFIG_USER_SCHED */ | ||
9577 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7701 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9578 | 7702 | ||
9579 | #ifdef CONFIG_GROUP_SCHED | 7703 | #ifdef CONFIG_CGROUP_SCHED |
9580 | list_add(&init_task_group.list, &task_groups); | 7704 | list_add(&init_task_group.list, &task_groups); |
9581 | INIT_LIST_HEAD(&init_task_group.children); | 7705 | INIT_LIST_HEAD(&init_task_group.children); |
9582 | 7706 | ||
9583 | #ifdef CONFIG_USER_SCHED | 7707 | #endif /* CONFIG_CGROUP_SCHED */ |
9584 | INIT_LIST_HEAD(&root_task_group.children); | ||
9585 | init_task_group.parent = &root_task_group; | ||
9586 | list_add(&init_task_group.siblings, &root_task_group.children); | ||
9587 | #endif /* CONFIG_USER_SCHED */ | ||
9588 | #endif /* CONFIG_GROUP_SCHED */ | ||
9589 | 7708 | ||
9590 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | 7709 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP |
9591 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | 7710 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), |
@@ -9625,25 +7744,6 @@ void __init sched_init(void) | |||
9625 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 7744 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). |
9626 | */ | 7745 | */ |
9627 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 7746 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
9628 | #elif defined CONFIG_USER_SCHED | ||
9629 | root_task_group.shares = NICE_0_LOAD; | ||
9630 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | ||
9631 | /* | ||
9632 | * In case of task-groups formed thr' the user id of tasks, | ||
9633 | * init_task_group represents tasks belonging to root user. | ||
9634 | * Hence it forms a sibling of all subsequent groups formed. | ||
9635 | * In this case, init_task_group gets only a fraction of overall | ||
9636 | * system cpu resource, based on the weight assigned to root | ||
9637 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | ||
9638 | * by letting tasks of init_task_group sit in a separate cfs_rq | ||
9639 | * (init_tg_cfs_rq) and having one entity represent this group of | ||
9640 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | ||
9641 | */ | ||
9642 | init_tg_cfs_entry(&init_task_group, | ||
9643 | &per_cpu(init_tg_cfs_rq, i), | ||
9644 | &per_cpu(init_sched_entity, i), i, 1, | ||
9645 | root_task_group.se[i]); | ||
9646 | |||
9647 | #endif | 7747 | #endif |
9648 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7748 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9649 | 7749 | ||
@@ -9652,12 +7752,6 @@ void __init sched_init(void) | |||
9652 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 7752 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
9653 | #ifdef CONFIG_CGROUP_SCHED | 7753 | #ifdef CONFIG_CGROUP_SCHED |
9654 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 7754 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
9655 | #elif defined CONFIG_USER_SCHED | ||
9656 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); | ||
9657 | init_tg_rt_entry(&init_task_group, | ||
9658 | &per_cpu(init_rt_rq_var, i), | ||
9659 | &per_cpu(init_sched_rt_entity, i), i, 1, | ||
9660 | root_task_group.rt_se[i]); | ||
9661 | #endif | 7755 | #endif |
9662 | #endif | 7756 | #endif |
9663 | 7757 | ||
@@ -9742,7 +7836,7 @@ static inline int preempt_count_equals(int preempt_offset) | |||
9742 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | 7836 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); |
9743 | } | 7837 | } |
9744 | 7838 | ||
9745 | void __might_sleep(char *file, int line, int preempt_offset) | 7839 | void __might_sleep(const char *file, int line, int preempt_offset) |
9746 | { | 7840 | { |
9747 | #ifdef in_atomic | 7841 | #ifdef in_atomic |
9748 | static unsigned long prev_jiffy; /* ratelimiting */ | 7842 | static unsigned long prev_jiffy; /* ratelimiting */ |
@@ -10053,7 +8147,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |||
10053 | } | 8147 | } |
10054 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8148 | #endif /* CONFIG_RT_GROUP_SCHED */ |
10055 | 8149 | ||
10056 | #ifdef CONFIG_GROUP_SCHED | 8150 | #ifdef CONFIG_CGROUP_SCHED |
10057 | static void free_sched_group(struct task_group *tg) | 8151 | static void free_sched_group(struct task_group *tg) |
10058 | { | 8152 | { |
10059 | free_fair_sched_group(tg); | 8153 | free_fair_sched_group(tg); |
@@ -10158,11 +8252,11 @@ void sched_move_task(struct task_struct *tsk) | |||
10158 | if (unlikely(running)) | 8252 | if (unlikely(running)) |
10159 | tsk->sched_class->set_curr_task(rq); | 8253 | tsk->sched_class->set_curr_task(rq); |
10160 | if (on_rq) | 8254 | if (on_rq) |
10161 | enqueue_task(rq, tsk, 0); | 8255 | enqueue_task(rq, tsk, 0, false); |
10162 | 8256 | ||
10163 | task_rq_unlock(rq, &flags); | 8257 | task_rq_unlock(rq, &flags); |
10164 | } | 8258 | } |
10165 | #endif /* CONFIG_GROUP_SCHED */ | 8259 | #endif /* CONFIG_CGROUP_SCHED */ |
10166 | 8260 | ||
10167 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8261 | #ifdef CONFIG_FAIR_GROUP_SCHED |
10168 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8262 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
@@ -10304,13 +8398,6 @@ static int tg_schedulable(struct task_group *tg, void *data) | |||
10304 | runtime = d->rt_runtime; | 8398 | runtime = d->rt_runtime; |
10305 | } | 8399 | } |
10306 | 8400 | ||
10307 | #ifdef CONFIG_USER_SCHED | ||
10308 | if (tg == &root_task_group) { | ||
10309 | period = global_rt_period(); | ||
10310 | runtime = global_rt_runtime(); | ||
10311 | } | ||
10312 | #endif | ||
10313 | |||
10314 | /* | 8401 | /* |
10315 | * Cannot have more runtime than the period. | 8402 | * Cannot have more runtime than the period. |
10316 | */ | 8403 | */ |
@@ -10930,12 +9017,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
10930 | } | 9017 | } |
10931 | 9018 | ||
10932 | /* | 9019 | /* |
9020 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | ||
9021 | * in cputime_t units. As a result, cpuacct_update_stats calls | ||
9022 | * percpu_counter_add with values large enough to always overflow the | ||
9023 | * per cpu batch limit causing bad SMP scalability. | ||
9024 | * | ||
9025 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | ||
9026 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | ||
9027 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | ||
9028 | */ | ||
9029 | #ifdef CONFIG_SMP | ||
9030 | #define CPUACCT_BATCH \ | ||
9031 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | ||
9032 | #else | ||
9033 | #define CPUACCT_BATCH 0 | ||
9034 | #endif | ||
9035 | |||
9036 | /* | ||
10933 | * Charge the system/user time to the task's accounting group. | 9037 | * Charge the system/user time to the task's accounting group. |
10934 | */ | 9038 | */ |
10935 | static void cpuacct_update_stats(struct task_struct *tsk, | 9039 | static void cpuacct_update_stats(struct task_struct *tsk, |
10936 | enum cpuacct_stat_index idx, cputime_t val) | 9040 | enum cpuacct_stat_index idx, cputime_t val) |
10937 | { | 9041 | { |
10938 | struct cpuacct *ca; | 9042 | struct cpuacct *ca; |
9043 | int batch = CPUACCT_BATCH; | ||
10939 | 9044 | ||
10940 | if (unlikely(!cpuacct_subsys.active)) | 9045 | if (unlikely(!cpuacct_subsys.active)) |
10941 | return; | 9046 | return; |
@@ -10944,7 +9049,7 @@ static void cpuacct_update_stats(struct task_struct *tsk, | |||
10944 | ca = task_ca(tsk); | 9049 | ca = task_ca(tsk); |
10945 | 9050 | ||
10946 | do { | 9051 | do { |
10947 | percpu_counter_add(&ca->cpustat[idx], val); | 9052 | __percpu_counter_add(&ca->cpustat[idx], val, batch); |
10948 | ca = ca->parent; | 9053 | ca = ca->parent; |
10949 | } while (ca); | 9054 | } while (ca); |
10950 | rcu_read_unlock(); | 9055 | rcu_read_unlock(); |