diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 3130 |
1 files changed, 706 insertions, 2424 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 3c11ae0a948d..150b6988de49 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -141,7 +141,7 @@ struct rt_prio_array { | |||
141 | 141 | ||
142 | struct rt_bandwidth { | 142 | struct rt_bandwidth { |
143 | /* nests inside the rq lock: */ | 143 | /* nests inside the rq lock: */ |
144 | spinlock_t rt_runtime_lock; | 144 | raw_spinlock_t rt_runtime_lock; |
145 | ktime_t rt_period; | 145 | ktime_t rt_period; |
146 | u64 rt_runtime; | 146 | u64 rt_runtime; |
147 | struct hrtimer rt_period_timer; | 147 | struct hrtimer rt_period_timer; |
@@ -178,7 +178,7 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |||
178 | rt_b->rt_period = ns_to_ktime(period); | 178 | rt_b->rt_period = ns_to_ktime(period); |
179 | rt_b->rt_runtime = runtime; | 179 | rt_b->rt_runtime = runtime; |
180 | 180 | ||
181 | spin_lock_init(&rt_b->rt_runtime_lock); | 181 | raw_spin_lock_init(&rt_b->rt_runtime_lock); |
182 | 182 | ||
183 | hrtimer_init(&rt_b->rt_period_timer, | 183 | hrtimer_init(&rt_b->rt_period_timer, |
184 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 184 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
@@ -200,7 +200,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
200 | if (hrtimer_active(&rt_b->rt_period_timer)) | 200 | if (hrtimer_active(&rt_b->rt_period_timer)) |
201 | return; | 201 | return; |
202 | 202 | ||
203 | spin_lock(&rt_b->rt_runtime_lock); | 203 | raw_spin_lock(&rt_b->rt_runtime_lock); |
204 | for (;;) { | 204 | for (;;) { |
205 | unsigned long delta; | 205 | unsigned long delta; |
206 | ktime_t soft, hard; | 206 | ktime_t soft, hard; |
@@ -217,7 +217,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
217 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, | 217 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, |
218 | HRTIMER_MODE_ABS_PINNED, 0); | 218 | HRTIMER_MODE_ABS_PINNED, 0); |
219 | } | 219 | } |
220 | spin_unlock(&rt_b->rt_runtime_lock); | 220 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
221 | } | 221 | } |
222 | 222 | ||
223 | #ifdef CONFIG_RT_GROUP_SCHED | 223 | #ifdef CONFIG_RT_GROUP_SCHED |
@@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
233 | */ | 233 | */ |
234 | static DEFINE_MUTEX(sched_domains_mutex); | 234 | static DEFINE_MUTEX(sched_domains_mutex); |
235 | 235 | ||
236 | #ifdef CONFIG_GROUP_SCHED | 236 | #ifdef CONFIG_CGROUP_SCHED |
237 | 237 | ||
238 | #include <linux/cgroup.h> | 238 | #include <linux/cgroup.h> |
239 | 239 | ||
@@ -243,13 +243,7 @@ static LIST_HEAD(task_groups); | |||
243 | 243 | ||
244 | /* task group related information */ | 244 | /* task group related information */ |
245 | struct task_group { | 245 | struct task_group { |
246 | #ifdef CONFIG_CGROUP_SCHED | ||
247 | struct cgroup_subsys_state css; | 246 | struct cgroup_subsys_state css; |
248 | #endif | ||
249 | |||
250 | #ifdef CONFIG_USER_SCHED | ||
251 | uid_t uid; | ||
252 | #endif | ||
253 | 247 | ||
254 | #ifdef CONFIG_FAIR_GROUP_SCHED | 248 | #ifdef CONFIG_FAIR_GROUP_SCHED |
255 | /* schedulable entities of this group on each cpu */ | 249 | /* schedulable entities of this group on each cpu */ |
@@ -274,35 +268,7 @@ struct task_group { | |||
274 | struct list_head children; | 268 | struct list_head children; |
275 | }; | 269 | }; |
276 | 270 | ||
277 | #ifdef CONFIG_USER_SCHED | ||
278 | |||
279 | /* Helper function to pass uid information to create_sched_user() */ | ||
280 | void set_tg_uid(struct user_struct *user) | ||
281 | { | ||
282 | user->tg->uid = user->uid; | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * Root task group. | ||
287 | * Every UID task group (including init_task_group aka UID-0) will | ||
288 | * be a child to this group. | ||
289 | */ | ||
290 | struct task_group root_task_group; | ||
291 | |||
292 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
293 | /* Default task group's sched entity on each cpu */ | ||
294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | ||
295 | /* Default task group's cfs_rq on each cpu */ | ||
296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); | ||
297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
298 | |||
299 | #ifdef CONFIG_RT_GROUP_SCHED | ||
300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | ||
301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); | ||
302 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
303 | #else /* !CONFIG_USER_SCHED */ | ||
304 | #define root_task_group init_task_group | 271 | #define root_task_group init_task_group |
305 | #endif /* CONFIG_USER_SCHED */ | ||
306 | 272 | ||
307 | /* task_group_lock serializes add/remove of task groups and also changes to | 273 | /* task_group_lock serializes add/remove of task groups and also changes to |
308 | * a task group's cpu shares. | 274 | * a task group's cpu shares. |
@@ -318,11 +284,7 @@ static int root_task_group_empty(void) | |||
318 | } | 284 | } |
319 | #endif | 285 | #endif |
320 | 286 | ||
321 | #ifdef CONFIG_USER_SCHED | ||
322 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | ||
323 | #else /* !CONFIG_USER_SCHED */ | ||
324 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD | 287 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
325 | #endif /* CONFIG_USER_SCHED */ | ||
326 | 288 | ||
327 | /* | 289 | /* |
328 | * A weight of 0 or 1 can cause arithmetics problems. | 290 | * A weight of 0 or 1 can cause arithmetics problems. |
@@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
348 | { | 310 | { |
349 | struct task_group *tg; | 311 | struct task_group *tg; |
350 | 312 | ||
351 | #ifdef CONFIG_USER_SCHED | 313 | #ifdef CONFIG_CGROUP_SCHED |
352 | rcu_read_lock(); | ||
353 | tg = __task_cred(p)->user->tg; | ||
354 | rcu_read_unlock(); | ||
355 | #elif defined(CONFIG_CGROUP_SCHED) | ||
356 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | 314 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
357 | struct task_group, css); | 315 | struct task_group, css); |
358 | #else | 316 | #else |
@@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
383 | return NULL; | 341 | return NULL; |
384 | } | 342 | } |
385 | 343 | ||
386 | #endif /* CONFIG_GROUP_SCHED */ | 344 | #endif /* CONFIG_CGROUP_SCHED */ |
387 | 345 | ||
388 | /* CFS-related fields in a runqueue */ | 346 | /* CFS-related fields in a runqueue */ |
389 | struct cfs_rq { | 347 | struct cfs_rq { |
@@ -470,7 +428,7 @@ struct rt_rq { | |||
470 | u64 rt_time; | 428 | u64 rt_time; |
471 | u64 rt_runtime; | 429 | u64 rt_runtime; |
472 | /* Nests inside the rq lock: */ | 430 | /* Nests inside the rq lock: */ |
473 | spinlock_t rt_runtime_lock; | 431 | raw_spinlock_t rt_runtime_lock; |
474 | 432 | ||
475 | #ifdef CONFIG_RT_GROUP_SCHED | 433 | #ifdef CONFIG_RT_GROUP_SCHED |
476 | unsigned long rt_nr_boosted; | 434 | unsigned long rt_nr_boosted; |
@@ -478,7 +436,6 @@ struct rt_rq { | |||
478 | struct rq *rq; | 436 | struct rq *rq; |
479 | struct list_head leaf_rt_rq_list; | 437 | struct list_head leaf_rt_rq_list; |
480 | struct task_group *tg; | 438 | struct task_group *tg; |
481 | struct sched_rt_entity *rt_se; | ||
482 | #endif | 439 | #endif |
483 | }; | 440 | }; |
484 | 441 | ||
@@ -525,7 +482,7 @@ static struct root_domain def_root_domain; | |||
525 | */ | 482 | */ |
526 | struct rq { | 483 | struct rq { |
527 | /* runqueue lock: */ | 484 | /* runqueue lock: */ |
528 | spinlock_t lock; | 485 | raw_spinlock_t lock; |
529 | 486 | ||
530 | /* | 487 | /* |
531 | * nr_running and cpu_load should be in the same cacheline because | 488 | * nr_running and cpu_load should be in the same cacheline because |
@@ -535,14 +492,12 @@ struct rq { | |||
535 | #define CPU_LOAD_IDX_MAX 5 | 492 | #define CPU_LOAD_IDX_MAX 5 |
536 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 493 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
537 | #ifdef CONFIG_NO_HZ | 494 | #ifdef CONFIG_NO_HZ |
538 | unsigned long last_tick_seen; | ||
539 | unsigned char in_nohz_recently; | 495 | unsigned char in_nohz_recently; |
540 | #endif | 496 | #endif |
541 | /* capture load from *all* tasks on this cpu: */ | 497 | /* capture load from *all* tasks on this cpu: */ |
542 | struct load_weight load; | 498 | struct load_weight load; |
543 | unsigned long nr_load_updates; | 499 | unsigned long nr_load_updates; |
544 | u64 nr_switches; | 500 | u64 nr_switches; |
545 | u64 nr_migrations_in; | ||
546 | 501 | ||
547 | struct cfs_rq cfs; | 502 | struct cfs_rq cfs; |
548 | struct rt_rq rt; | 503 | struct rt_rq rt; |
@@ -591,6 +546,8 @@ struct rq { | |||
591 | 546 | ||
592 | u64 rt_avg; | 547 | u64 rt_avg; |
593 | u64 age_stamp; | 548 | u64 age_stamp; |
549 | u64 idle_stamp; | ||
550 | u64 avg_idle; | ||
594 | #endif | 551 | #endif |
595 | 552 | ||
596 | /* calc_load related fields */ | 553 | /* calc_load related fields */ |
@@ -645,6 +602,11 @@ static inline int cpu_of(struct rq *rq) | |||
645 | #endif | 602 | #endif |
646 | } | 603 | } |
647 | 604 | ||
605 | #define rcu_dereference_check_sched_domain(p) \ | ||
606 | rcu_dereference_check((p), \ | ||
607 | rcu_read_lock_sched_held() || \ | ||
608 | lockdep_is_held(&sched_domains_mutex)) | ||
609 | |||
648 | /* | 610 | /* |
649 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 611 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
650 | * See detach_destroy_domains: synchronize_sched for details. | 612 | * See detach_destroy_domains: synchronize_sched for details. |
@@ -653,7 +615,7 @@ static inline int cpu_of(struct rq *rq) | |||
653 | * preempt-disabled sections. | 615 | * preempt-disabled sections. |
654 | */ | 616 | */ |
655 | #define for_each_domain(cpu, __sd) \ | 617 | #define for_each_domain(cpu, __sd) \ |
656 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 618 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
657 | 619 | ||
658 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | 620 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
659 | #define this_rq() (&__get_cpu_var(runqueues)) | 621 | #define this_rq() (&__get_cpu_var(runqueues)) |
@@ -685,7 +647,7 @@ inline void update_rq_clock(struct rq *rq) | |||
685 | */ | 647 | */ |
686 | int runqueue_is_locked(int cpu) | 648 | int runqueue_is_locked(int cpu) |
687 | { | 649 | { |
688 | return spin_is_locked(&cpu_rq(cpu)->lock); | 650 | return raw_spin_is_locked(&cpu_rq(cpu)->lock); |
689 | } | 651 | } |
690 | 652 | ||
691 | /* | 653 | /* |
@@ -772,7 +734,7 @@ sched_feat_write(struct file *filp, const char __user *ubuf, | |||
772 | if (!sched_feat_names[i]) | 734 | if (!sched_feat_names[i]) |
773 | return -EINVAL; | 735 | return -EINVAL; |
774 | 736 | ||
775 | filp->f_pos += cnt; | 737 | *ppos += cnt; |
776 | 738 | ||
777 | return cnt; | 739 | return cnt; |
778 | } | 740 | } |
@@ -814,6 +776,7 @@ const_debug unsigned int sysctl_sched_nr_migrate = 32; | |||
814 | * default: 0.25ms | 776 | * default: 0.25ms |
815 | */ | 777 | */ |
816 | unsigned int sysctl_sched_shares_ratelimit = 250000; | 778 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
779 | unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; | ||
817 | 780 | ||
818 | /* | 781 | /* |
819 | * Inject some fuzzyness into changing the per-cpu group shares | 782 | * Inject some fuzzyness into changing the per-cpu group shares |
@@ -892,7 +855,7 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
892 | */ | 855 | */ |
893 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 856 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
894 | 857 | ||
895 | spin_unlock_irq(&rq->lock); | 858 | raw_spin_unlock_irq(&rq->lock); |
896 | } | 859 | } |
897 | 860 | ||
898 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 861 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
@@ -916,9 +879,9 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | |||
916 | next->oncpu = 1; | 879 | next->oncpu = 1; |
917 | #endif | 880 | #endif |
918 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 881 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
919 | spin_unlock_irq(&rq->lock); | 882 | raw_spin_unlock_irq(&rq->lock); |
920 | #else | 883 | #else |
921 | spin_unlock(&rq->lock); | 884 | raw_spin_unlock(&rq->lock); |
922 | #endif | 885 | #endif |
923 | } | 886 | } |
924 | 887 | ||
@@ -940,18 +903,35 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
940 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 903 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
941 | 904 | ||
942 | /* | 905 | /* |
906 | * Check whether the task is waking, we use this to synchronize against | ||
907 | * ttwu() so that task_cpu() reports a stable number. | ||
908 | * | ||
909 | * We need to make an exception for PF_STARTING tasks because the fork | ||
910 | * path might require task_rq_lock() to work, eg. it can call | ||
911 | * set_cpus_allowed_ptr() from the cpuset clone_ns code. | ||
912 | */ | ||
913 | static inline int task_is_waking(struct task_struct *p) | ||
914 | { | ||
915 | return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); | ||
916 | } | ||
917 | |||
918 | /* | ||
943 | * __task_rq_lock - lock the runqueue a given task resides on. | 919 | * __task_rq_lock - lock the runqueue a given task resides on. |
944 | * Must be called interrupts disabled. | 920 | * Must be called interrupts disabled. |
945 | */ | 921 | */ |
946 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 922 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
947 | __acquires(rq->lock) | 923 | __acquires(rq->lock) |
948 | { | 924 | { |
925 | struct rq *rq; | ||
926 | |||
949 | for (;;) { | 927 | for (;;) { |
950 | struct rq *rq = task_rq(p); | 928 | while (task_is_waking(p)) |
951 | spin_lock(&rq->lock); | 929 | cpu_relax(); |
952 | if (likely(rq == task_rq(p))) | 930 | rq = task_rq(p); |
931 | raw_spin_lock(&rq->lock); | ||
932 | if (likely(rq == task_rq(p) && !task_is_waking(p))) | ||
953 | return rq; | 933 | return rq; |
954 | spin_unlock(&rq->lock); | 934 | raw_spin_unlock(&rq->lock); |
955 | } | 935 | } |
956 | } | 936 | } |
957 | 937 | ||
@@ -966,12 +946,14 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | |||
966 | struct rq *rq; | 946 | struct rq *rq; |
967 | 947 | ||
968 | for (;;) { | 948 | for (;;) { |
949 | while (task_is_waking(p)) | ||
950 | cpu_relax(); | ||
969 | local_irq_save(*flags); | 951 | local_irq_save(*flags); |
970 | rq = task_rq(p); | 952 | rq = task_rq(p); |
971 | spin_lock(&rq->lock); | 953 | raw_spin_lock(&rq->lock); |
972 | if (likely(rq == task_rq(p))) | 954 | if (likely(rq == task_rq(p) && !task_is_waking(p))) |
973 | return rq; | 955 | return rq; |
974 | spin_unlock_irqrestore(&rq->lock, *flags); | 956 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
975 | } | 957 | } |
976 | } | 958 | } |
977 | 959 | ||
@@ -980,19 +962,19 @@ void task_rq_unlock_wait(struct task_struct *p) | |||
980 | struct rq *rq = task_rq(p); | 962 | struct rq *rq = task_rq(p); |
981 | 963 | ||
982 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | 964 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ |
983 | spin_unlock_wait(&rq->lock); | 965 | raw_spin_unlock_wait(&rq->lock); |
984 | } | 966 | } |
985 | 967 | ||
986 | static void __task_rq_unlock(struct rq *rq) | 968 | static void __task_rq_unlock(struct rq *rq) |
987 | __releases(rq->lock) | 969 | __releases(rq->lock) |
988 | { | 970 | { |
989 | spin_unlock(&rq->lock); | 971 | raw_spin_unlock(&rq->lock); |
990 | } | 972 | } |
991 | 973 | ||
992 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | 974 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
993 | __releases(rq->lock) | 975 | __releases(rq->lock) |
994 | { | 976 | { |
995 | spin_unlock_irqrestore(&rq->lock, *flags); | 977 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
996 | } | 978 | } |
997 | 979 | ||
998 | /* | 980 | /* |
@@ -1005,7 +987,7 @@ static struct rq *this_rq_lock(void) | |||
1005 | 987 | ||
1006 | local_irq_disable(); | 988 | local_irq_disable(); |
1007 | rq = this_rq(); | 989 | rq = this_rq(); |
1008 | spin_lock(&rq->lock); | 990 | raw_spin_lock(&rq->lock); |
1009 | 991 | ||
1010 | return rq; | 992 | return rq; |
1011 | } | 993 | } |
@@ -1052,10 +1034,10 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer) | |||
1052 | 1034 | ||
1053 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 1035 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
1054 | 1036 | ||
1055 | spin_lock(&rq->lock); | 1037 | raw_spin_lock(&rq->lock); |
1056 | update_rq_clock(rq); | 1038 | update_rq_clock(rq); |
1057 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 1039 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1058 | spin_unlock(&rq->lock); | 1040 | raw_spin_unlock(&rq->lock); |
1059 | 1041 | ||
1060 | return HRTIMER_NORESTART; | 1042 | return HRTIMER_NORESTART; |
1061 | } | 1043 | } |
@@ -1068,10 +1050,10 @@ static void __hrtick_start(void *arg) | |||
1068 | { | 1050 | { |
1069 | struct rq *rq = arg; | 1051 | struct rq *rq = arg; |
1070 | 1052 | ||
1071 | spin_lock(&rq->lock); | 1053 | raw_spin_lock(&rq->lock); |
1072 | hrtimer_restart(&rq->hrtick_timer); | 1054 | hrtimer_restart(&rq->hrtick_timer); |
1073 | rq->hrtick_csd_pending = 0; | 1055 | rq->hrtick_csd_pending = 0; |
1074 | spin_unlock(&rq->lock); | 1056 | raw_spin_unlock(&rq->lock); |
1075 | } | 1057 | } |
1076 | 1058 | ||
1077 | /* | 1059 | /* |
@@ -1178,7 +1160,7 @@ static void resched_task(struct task_struct *p) | |||
1178 | { | 1160 | { |
1179 | int cpu; | 1161 | int cpu; |
1180 | 1162 | ||
1181 | assert_spin_locked(&task_rq(p)->lock); | 1163 | assert_raw_spin_locked(&task_rq(p)->lock); |
1182 | 1164 | ||
1183 | if (test_tsk_need_resched(p)) | 1165 | if (test_tsk_need_resched(p)) |
1184 | return; | 1166 | return; |
@@ -1200,10 +1182,10 @@ static void resched_cpu(int cpu) | |||
1200 | struct rq *rq = cpu_rq(cpu); | 1182 | struct rq *rq = cpu_rq(cpu); |
1201 | unsigned long flags; | 1183 | unsigned long flags; |
1202 | 1184 | ||
1203 | if (!spin_trylock_irqsave(&rq->lock, flags)) | 1185 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) |
1204 | return; | 1186 | return; |
1205 | resched_task(cpu_curr(cpu)); | 1187 | resched_task(cpu_curr(cpu)); |
1206 | spin_unlock_irqrestore(&rq->lock, flags); | 1188 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1207 | } | 1189 | } |
1208 | 1190 | ||
1209 | #ifdef CONFIG_NO_HZ | 1191 | #ifdef CONFIG_NO_HZ |
@@ -1272,7 +1254,7 @@ static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |||
1272 | #else /* !CONFIG_SMP */ | 1254 | #else /* !CONFIG_SMP */ |
1273 | static void resched_task(struct task_struct *p) | 1255 | static void resched_task(struct task_struct *p) |
1274 | { | 1256 | { |
1275 | assert_spin_locked(&task_rq(p)->lock); | 1257 | assert_raw_spin_locked(&task_rq(p)->lock); |
1276 | set_tsk_need_resched(p); | 1258 | set_tsk_need_resched(p); |
1277 | } | 1259 | } |
1278 | 1260 | ||
@@ -1389,32 +1371,6 @@ static const u32 prio_to_wmult[40] = { | |||
1389 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 1371 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
1390 | }; | 1372 | }; |
1391 | 1373 | ||
1392 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | ||
1393 | |||
1394 | /* | ||
1395 | * runqueue iterator, to support SMP load-balancing between different | ||
1396 | * scheduling classes, without having to expose their internal data | ||
1397 | * structures to the load-balancing proper: | ||
1398 | */ | ||
1399 | struct rq_iterator { | ||
1400 | void *arg; | ||
1401 | struct task_struct *(*start)(void *); | ||
1402 | struct task_struct *(*next)(void *); | ||
1403 | }; | ||
1404 | |||
1405 | #ifdef CONFIG_SMP | ||
1406 | static unsigned long | ||
1407 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1408 | unsigned long max_load_move, struct sched_domain *sd, | ||
1409 | enum cpu_idle_type idle, int *all_pinned, | ||
1410 | int *this_best_prio, struct rq_iterator *iterator); | ||
1411 | |||
1412 | static int | ||
1413 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1414 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
1415 | struct rq_iterator *iterator); | ||
1416 | #endif | ||
1417 | |||
1418 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | 1374 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1419 | enum cpuacct_stat_index { | 1375 | enum cpuacct_stat_index { |
1420 | CPUACCT_STAT_USER, /* ... user mode */ | 1376 | CPUACCT_STAT_USER, /* ... user mode */ |
@@ -1530,7 +1486,7 @@ static unsigned long target_load(int cpu, int type) | |||
1530 | 1486 | ||
1531 | static struct sched_group *group_of(int cpu) | 1487 | static struct sched_group *group_of(int cpu) |
1532 | { | 1488 | { |
1533 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | 1489 | struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd); |
1534 | 1490 | ||
1535 | if (!sd) | 1491 | if (!sd) |
1536 | return NULL; | 1492 | return NULL; |
@@ -1565,7 +1521,7 @@ static unsigned long cpu_avg_load_per_task(int cpu) | |||
1565 | 1521 | ||
1566 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1522 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1567 | 1523 | ||
1568 | static __read_mostly unsigned long *update_shares_data; | 1524 | static __read_mostly unsigned long __percpu *update_shares_data; |
1569 | 1525 | ||
1570 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1526 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1571 | 1527 | ||
@@ -1599,11 +1555,11 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu, | |||
1599 | struct rq *rq = cpu_rq(cpu); | 1555 | struct rq *rq = cpu_rq(cpu); |
1600 | unsigned long flags; | 1556 | unsigned long flags; |
1601 | 1557 | ||
1602 | spin_lock_irqsave(&rq->lock, flags); | 1558 | raw_spin_lock_irqsave(&rq->lock, flags); |
1603 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; | 1559 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; |
1604 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; | 1560 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; |
1605 | __set_se_shares(tg->se[cpu], shares); | 1561 | __set_se_shares(tg->se[cpu], shares); |
1606 | spin_unlock_irqrestore(&rq->lock, flags); | 1562 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1607 | } | 1563 | } |
1608 | } | 1564 | } |
1609 | 1565 | ||
@@ -1614,7 +1570,7 @@ static void update_group_shares_cpu(struct task_group *tg, int cpu, | |||
1614 | */ | 1570 | */ |
1615 | static int tg_shares_up(struct task_group *tg, void *data) | 1571 | static int tg_shares_up(struct task_group *tg, void *data) |
1616 | { | 1572 | { |
1617 | unsigned long weight, rq_weight = 0, shares = 0; | 1573 | unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; |
1618 | unsigned long *usd_rq_weight; | 1574 | unsigned long *usd_rq_weight; |
1619 | struct sched_domain *sd = data; | 1575 | struct sched_domain *sd = data; |
1620 | unsigned long flags; | 1576 | unsigned long flags; |
@@ -1630,6 +1586,7 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1630 | weight = tg->cfs_rq[i]->load.weight; | 1586 | weight = tg->cfs_rq[i]->load.weight; |
1631 | usd_rq_weight[i] = weight; | 1587 | usd_rq_weight[i] = weight; |
1632 | 1588 | ||
1589 | rq_weight += weight; | ||
1633 | /* | 1590 | /* |
1634 | * If there are currently no tasks on the cpu pretend there | 1591 | * If there are currently no tasks on the cpu pretend there |
1635 | * is one of average load so that when a new task gets to | 1592 | * is one of average load so that when a new task gets to |
@@ -1638,10 +1595,13 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
1638 | if (!weight) | 1595 | if (!weight) |
1639 | weight = NICE_0_LOAD; | 1596 | weight = NICE_0_LOAD; |
1640 | 1597 | ||
1641 | rq_weight += weight; | 1598 | sum_weight += weight; |
1642 | shares += tg->cfs_rq[i]->shares; | 1599 | shares += tg->cfs_rq[i]->shares; |
1643 | } | 1600 | } |
1644 | 1601 | ||
1602 | if (!rq_weight) | ||
1603 | rq_weight = sum_weight; | ||
1604 | |||
1645 | if ((!shares && rq_weight) || shares > tg->shares) | 1605 | if ((!shares && rq_weight) || shares > tg->shares) |
1646 | shares = tg->shares; | 1606 | shares = tg->shares; |
1647 | 1607 | ||
@@ -1696,16 +1656,6 @@ static void update_shares(struct sched_domain *sd) | |||
1696 | } | 1656 | } |
1697 | } | 1657 | } |
1698 | 1658 | ||
1699 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1700 | { | ||
1701 | if (root_task_group_empty()) | ||
1702 | return; | ||
1703 | |||
1704 | spin_unlock(&rq->lock); | ||
1705 | update_shares(sd); | ||
1706 | spin_lock(&rq->lock); | ||
1707 | } | ||
1708 | |||
1709 | static void update_h_load(long cpu) | 1659 | static void update_h_load(long cpu) |
1710 | { | 1660 | { |
1711 | if (root_task_group_empty()) | 1661 | if (root_task_group_empty()) |
@@ -1720,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd) | |||
1720 | { | 1670 | { |
1721 | } | 1671 | } |
1722 | 1672 | ||
1723 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1724 | { | ||
1725 | } | ||
1726 | |||
1727 | #endif | 1673 | #endif |
1728 | 1674 | ||
1729 | #ifdef CONFIG_PREEMPT | 1675 | #ifdef CONFIG_PREEMPT |
@@ -1743,7 +1689,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1743 | __acquires(busiest->lock) | 1689 | __acquires(busiest->lock) |
1744 | __acquires(this_rq->lock) | 1690 | __acquires(this_rq->lock) |
1745 | { | 1691 | { |
1746 | spin_unlock(&this_rq->lock); | 1692 | raw_spin_unlock(&this_rq->lock); |
1747 | double_rq_lock(this_rq, busiest); | 1693 | double_rq_lock(this_rq, busiest); |
1748 | 1694 | ||
1749 | return 1; | 1695 | return 1; |
@@ -1764,14 +1710,16 @@ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1764 | { | 1710 | { |
1765 | int ret = 0; | 1711 | int ret = 0; |
1766 | 1712 | ||
1767 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1713 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
1768 | if (busiest < this_rq) { | 1714 | if (busiest < this_rq) { |
1769 | spin_unlock(&this_rq->lock); | 1715 | raw_spin_unlock(&this_rq->lock); |
1770 | spin_lock(&busiest->lock); | 1716 | raw_spin_lock(&busiest->lock); |
1771 | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); | 1717 | raw_spin_lock_nested(&this_rq->lock, |
1718 | SINGLE_DEPTH_NESTING); | ||
1772 | ret = 1; | 1719 | ret = 1; |
1773 | } else | 1720 | } else |
1774 | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); | 1721 | raw_spin_lock_nested(&busiest->lock, |
1722 | SINGLE_DEPTH_NESTING); | ||
1775 | } | 1723 | } |
1776 | return ret; | 1724 | return ret; |
1777 | } | 1725 | } |
@@ -1785,7 +1733,7 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1785 | { | 1733 | { |
1786 | if (unlikely(!irqs_disabled())) { | 1734 | if (unlikely(!irqs_disabled())) { |
1787 | /* printk() doesn't work good under rq->lock */ | 1735 | /* printk() doesn't work good under rq->lock */ |
1788 | spin_unlock(&this_rq->lock); | 1736 | raw_spin_unlock(&this_rq->lock); |
1789 | BUG_ON(1); | 1737 | BUG_ON(1); |
1790 | } | 1738 | } |
1791 | 1739 | ||
@@ -1795,9 +1743,54 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1795 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1743 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1796 | __releases(busiest->lock) | 1744 | __releases(busiest->lock) |
1797 | { | 1745 | { |
1798 | spin_unlock(&busiest->lock); | 1746 | raw_spin_unlock(&busiest->lock); |
1799 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 1747 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1800 | } | 1748 | } |
1749 | |||
1750 | /* | ||
1751 | * double_rq_lock - safely lock two runqueues | ||
1752 | * | ||
1753 | * Note this does not disable interrupts like task_rq_lock, | ||
1754 | * you need to do so manually before calling. | ||
1755 | */ | ||
1756 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1757 | __acquires(rq1->lock) | ||
1758 | __acquires(rq2->lock) | ||
1759 | { | ||
1760 | BUG_ON(!irqs_disabled()); | ||
1761 | if (rq1 == rq2) { | ||
1762 | raw_spin_lock(&rq1->lock); | ||
1763 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1764 | } else { | ||
1765 | if (rq1 < rq2) { | ||
1766 | raw_spin_lock(&rq1->lock); | ||
1767 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
1768 | } else { | ||
1769 | raw_spin_lock(&rq2->lock); | ||
1770 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
1771 | } | ||
1772 | } | ||
1773 | update_rq_clock(rq1); | ||
1774 | update_rq_clock(rq2); | ||
1775 | } | ||
1776 | |||
1777 | /* | ||
1778 | * double_rq_unlock - safely unlock two runqueues | ||
1779 | * | ||
1780 | * Note this does not restore interrupts like task_rq_unlock, | ||
1781 | * you need to do so manually after calling. | ||
1782 | */ | ||
1783 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1784 | __releases(rq1->lock) | ||
1785 | __releases(rq2->lock) | ||
1786 | { | ||
1787 | raw_spin_unlock(&rq1->lock); | ||
1788 | if (rq1 != rq2) | ||
1789 | raw_spin_unlock(&rq2->lock); | ||
1790 | else | ||
1791 | __release(rq2->lock); | ||
1792 | } | ||
1793 | |||
1801 | #endif | 1794 | #endif |
1802 | 1795 | ||
1803 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1796 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1810,19 +1803,31 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |||
1810 | #endif | 1803 | #endif |
1811 | 1804 | ||
1812 | static void calc_load_account_active(struct rq *this_rq); | 1805 | static void calc_load_account_active(struct rq *this_rq); |
1806 | static void update_sysctl(void); | ||
1807 | static int get_update_sysctl_factor(void); | ||
1813 | 1808 | ||
1814 | #include "sched_stats.h" | 1809 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1815 | #include "sched_idletask.c" | 1810 | { |
1816 | #include "sched_fair.c" | 1811 | set_task_rq(p, cpu); |
1817 | #include "sched_rt.c" | 1812 | #ifdef CONFIG_SMP |
1818 | #ifdef CONFIG_SCHED_DEBUG | 1813 | /* |
1819 | # include "sched_debug.c" | 1814 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
1815 | * successfuly executed on another CPU. We must ensure that updates of | ||
1816 | * per-task data have been completed by this moment. | ||
1817 | */ | ||
1818 | smp_wmb(); | ||
1819 | task_thread_info(p)->cpu = cpu; | ||
1820 | #endif | 1820 | #endif |
1821 | } | ||
1822 | |||
1823 | static const struct sched_class rt_sched_class; | ||
1821 | 1824 | ||
1822 | #define sched_class_highest (&rt_sched_class) | 1825 | #define sched_class_highest (&rt_sched_class) |
1823 | #define for_each_class(class) \ | 1826 | #define for_each_class(class) \ |
1824 | for (class = sched_class_highest; class; class = class->next) | 1827 | for (class = sched_class_highest; class; class = class->next) |
1825 | 1828 | ||
1829 | #include "sched_stats.h" | ||
1830 | |||
1826 | static void inc_nr_running(struct rq *rq) | 1831 | static void inc_nr_running(struct rq *rq) |
1827 | { | 1832 | { |
1828 | rq->nr_running++; | 1833 | rq->nr_running++; |
@@ -1860,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample) | |||
1860 | *avg += diff >> 3; | 1865 | *avg += diff >> 3; |
1861 | } | 1866 | } |
1862 | 1867 | ||
1863 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1868 | static void |
1869 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
1864 | { | 1870 | { |
1865 | if (wakeup) | 1871 | if (wakeup) |
1866 | p->se.start_runtime = p->se.sum_exec_runtime; | 1872 | p->se.start_runtime = p->se.sum_exec_runtime; |
1867 | 1873 | ||
1868 | sched_info_queued(p); | 1874 | sched_info_queued(p); |
1869 | p->sched_class->enqueue_task(rq, p, wakeup); | 1875 | p->sched_class->enqueue_task(rq, p, wakeup, head); |
1870 | p->se.on_rq = 1; | 1876 | p->se.on_rq = 1; |
1871 | } | 1877 | } |
1872 | 1878 | ||
@@ -1889,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | |||
1889 | } | 1895 | } |
1890 | 1896 | ||
1891 | /* | 1897 | /* |
1898 | * activate_task - move a task to the runqueue. | ||
1899 | */ | ||
1900 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1901 | { | ||
1902 | if (task_contributes_to_load(p)) | ||
1903 | rq->nr_uninterruptible--; | ||
1904 | |||
1905 | enqueue_task(rq, p, wakeup, false); | ||
1906 | inc_nr_running(rq); | ||
1907 | } | ||
1908 | |||
1909 | /* | ||
1910 | * deactivate_task - remove a task from the runqueue. | ||
1911 | */ | ||
1912 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1913 | { | ||
1914 | if (task_contributes_to_load(p)) | ||
1915 | rq->nr_uninterruptible++; | ||
1916 | |||
1917 | dequeue_task(rq, p, sleep); | ||
1918 | dec_nr_running(rq); | ||
1919 | } | ||
1920 | |||
1921 | #include "sched_idletask.c" | ||
1922 | #include "sched_fair.c" | ||
1923 | #include "sched_rt.c" | ||
1924 | #ifdef CONFIG_SCHED_DEBUG | ||
1925 | # include "sched_debug.c" | ||
1926 | #endif | ||
1927 | |||
1928 | /* | ||
1892 | * __normal_prio - return the priority that is based on the static prio | 1929 | * __normal_prio - return the priority that is based on the static prio |
1893 | */ | 1930 | */ |
1894 | static inline int __normal_prio(struct task_struct *p) | 1931 | static inline int __normal_prio(struct task_struct *p) |
@@ -1934,30 +1971,6 @@ static int effective_prio(struct task_struct *p) | |||
1934 | return p->prio; | 1971 | return p->prio; |
1935 | } | 1972 | } |
1936 | 1973 | ||
1937 | /* | ||
1938 | * activate_task - move a task to the runqueue. | ||
1939 | */ | ||
1940 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1941 | { | ||
1942 | if (task_contributes_to_load(p)) | ||
1943 | rq->nr_uninterruptible--; | ||
1944 | |||
1945 | enqueue_task(rq, p, wakeup); | ||
1946 | inc_nr_running(rq); | ||
1947 | } | ||
1948 | |||
1949 | /* | ||
1950 | * deactivate_task - remove a task from the runqueue. | ||
1951 | */ | ||
1952 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1953 | { | ||
1954 | if (task_contributes_to_load(p)) | ||
1955 | rq->nr_uninterruptible++; | ||
1956 | |||
1957 | dequeue_task(rq, p, sleep); | ||
1958 | dec_nr_running(rq); | ||
1959 | } | ||
1960 | |||
1961 | /** | 1974 | /** |
1962 | * task_curr - is this task currently executing on a CPU? | 1975 | * task_curr - is this task currently executing on a CPU? |
1963 | * @p: the task in question. | 1976 | * @p: the task in question. |
@@ -1967,20 +1980,6 @@ inline int task_curr(const struct task_struct *p) | |||
1967 | return cpu_curr(task_cpu(p)) == p; | 1980 | return cpu_curr(task_cpu(p)) == p; |
1968 | } | 1981 | } |
1969 | 1982 | ||
1970 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
1971 | { | ||
1972 | set_task_rq(p, cpu); | ||
1973 | #ifdef CONFIG_SMP | ||
1974 | /* | ||
1975 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
1976 | * successfuly executed on another CPU. We must ensure that updates of | ||
1977 | * per-task data have been completed by this moment. | ||
1978 | */ | ||
1979 | smp_wmb(); | ||
1980 | task_thread_info(p)->cpu = cpu; | ||
1981 | #endif | ||
1982 | } | ||
1983 | |||
1984 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 1983 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1985 | const struct sched_class *prev_class, | 1984 | const struct sched_class *prev_class, |
1986 | int oldprio, int running) | 1985 | int oldprio, int running) |
@@ -1993,38 +1992,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
1993 | p->sched_class->prio_changed(rq, p, oldprio, running); | 1992 | p->sched_class->prio_changed(rq, p, oldprio, running); |
1994 | } | 1993 | } |
1995 | 1994 | ||
1996 | /** | ||
1997 | * kthread_bind - bind a just-created kthread to a cpu. | ||
1998 | * @p: thread created by kthread_create(). | ||
1999 | * @cpu: cpu (might not be online, must be possible) for @k to run on. | ||
2000 | * | ||
2001 | * Description: This function is equivalent to set_cpus_allowed(), | ||
2002 | * except that @cpu doesn't need to be online, and the thread must be | ||
2003 | * stopped (i.e., just returned from kthread_create()). | ||
2004 | * | ||
2005 | * Function lives here instead of kthread.c because it messes with | ||
2006 | * scheduler internals which require locking. | ||
2007 | */ | ||
2008 | void kthread_bind(struct task_struct *p, unsigned int cpu) | ||
2009 | { | ||
2010 | struct rq *rq = cpu_rq(cpu); | ||
2011 | unsigned long flags; | ||
2012 | |||
2013 | /* Must have done schedule() in kthread() before we set_task_cpu */ | ||
2014 | if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) { | ||
2015 | WARN_ON(1); | ||
2016 | return; | ||
2017 | } | ||
2018 | |||
2019 | spin_lock_irqsave(&rq->lock, flags); | ||
2020 | set_task_cpu(p, cpu); | ||
2021 | p->cpus_allowed = cpumask_of_cpu(cpu); | ||
2022 | p->rt.nr_cpus_allowed = 1; | ||
2023 | p->flags |= PF_THREAD_BOUND; | ||
2024 | spin_unlock_irqrestore(&rq->lock, flags); | ||
2025 | } | ||
2026 | EXPORT_SYMBOL(kthread_bind); | ||
2027 | |||
2028 | #ifdef CONFIG_SMP | 1995 | #ifdef CONFIG_SMP |
2029 | /* | 1996 | /* |
2030 | * Is this task likely cache-hot: | 1997 | * Is this task likely cache-hot: |
@@ -2034,6 +2001,9 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
2034 | { | 2001 | { |
2035 | s64 delta; | 2002 | s64 delta; |
2036 | 2003 | ||
2004 | if (p->sched_class != &fair_sched_class) | ||
2005 | return 0; | ||
2006 | |||
2037 | /* | 2007 | /* |
2038 | * Buddy candidates are cache hot: | 2008 | * Buddy candidates are cache hot: |
2039 | */ | 2009 | */ |
@@ -2042,9 +2012,6 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
2042 | &p->se == cfs_rq_of(&p->se)->last)) | 2012 | &p->se == cfs_rq_of(&p->se)->last)) |
2043 | return 1; | 2013 | return 1; |
2044 | 2014 | ||
2045 | if (p->sched_class != &fair_sched_class) | ||
2046 | return 0; | ||
2047 | |||
2048 | if (sysctl_sched_migration_cost == -1) | 2015 | if (sysctl_sched_migration_cost == -1) |
2049 | return 1; | 2016 | return 1; |
2050 | if (sysctl_sched_migration_cost == 0) | 2017 | if (sysctl_sched_migration_cost == 0) |
@@ -2055,39 +2022,23 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |||
2055 | return delta < (s64)sysctl_sched_migration_cost; | 2022 | return delta < (s64)sysctl_sched_migration_cost; |
2056 | } | 2023 | } |
2057 | 2024 | ||
2058 | |||
2059 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 2025 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
2060 | { | 2026 | { |
2061 | int old_cpu = task_cpu(p); | 2027 | #ifdef CONFIG_SCHED_DEBUG |
2062 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | 2028 | /* |
2063 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), | 2029 | * We should never call set_task_cpu() on a blocked task, |
2064 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | 2030 | * ttwu() will sort out the placement. |
2065 | u64 clock_offset; | 2031 | */ |
2066 | 2032 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | |
2067 | clock_offset = old_rq->clock - new_rq->clock; | 2033 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); |
2034 | #endif | ||
2068 | 2035 | ||
2069 | trace_sched_migrate_task(p, new_cpu); | 2036 | trace_sched_migrate_task(p, new_cpu); |
2070 | 2037 | ||
2071 | #ifdef CONFIG_SCHEDSTATS | 2038 | if (task_cpu(p) != new_cpu) { |
2072 | if (p->se.wait_start) | ||
2073 | p->se.wait_start -= clock_offset; | ||
2074 | if (p->se.sleep_start) | ||
2075 | p->se.sleep_start -= clock_offset; | ||
2076 | if (p->se.block_start) | ||
2077 | p->se.block_start -= clock_offset; | ||
2078 | #endif | ||
2079 | if (old_cpu != new_cpu) { | ||
2080 | p->se.nr_migrations++; | 2039 | p->se.nr_migrations++; |
2081 | new_rq->nr_migrations_in++; | 2040 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); |
2082 | #ifdef CONFIG_SCHEDSTATS | ||
2083 | if (task_hot(p, old_rq->clock, NULL)) | ||
2084 | schedstat_inc(p, se.nr_forced2_migrations); | ||
2085 | #endif | ||
2086 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, | ||
2087 | 1, 1, NULL, 0); | ||
2088 | } | 2041 | } |
2089 | p->se.vruntime -= old_cfsrq->min_vruntime - | ||
2090 | new_cfsrq->min_vruntime; | ||
2091 | 2042 | ||
2092 | __set_task_cpu(p, new_cpu); | 2043 | __set_task_cpu(p, new_cpu); |
2093 | } | 2044 | } |
@@ -2112,12 +2063,10 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |||
2112 | 2063 | ||
2113 | /* | 2064 | /* |
2114 | * If the task is not on a runqueue (and not running), then | 2065 | * If the task is not on a runqueue (and not running), then |
2115 | * it is sufficient to simply update the task's cpu field. | 2066 | * the next wake-up will properly place the task. |
2116 | */ | 2067 | */ |
2117 | if (!p->se.on_rq && !task_running(rq, p)) { | 2068 | if (!p->se.on_rq && !task_running(rq, p)) |
2118 | set_task_cpu(p, dest_cpu); | ||
2119 | return 0; | 2069 | return 0; |
2120 | } | ||
2121 | 2070 | ||
2122 | init_completion(&req->done); | 2071 | init_completion(&req->done); |
2123 | req->task = p; | 2072 | req->task = p; |
@@ -2322,6 +2271,75 @@ void task_oncpu_function_call(struct task_struct *p, | |||
2322 | preempt_enable(); | 2271 | preempt_enable(); |
2323 | } | 2272 | } |
2324 | 2273 | ||
2274 | #ifdef CONFIG_SMP | ||
2275 | static int select_fallback_rq(int cpu, struct task_struct *p) | ||
2276 | { | ||
2277 | int dest_cpu; | ||
2278 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | ||
2279 | |||
2280 | /* Look for allowed, online CPU in same node. */ | ||
2281 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | ||
2282 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | ||
2283 | return dest_cpu; | ||
2284 | |||
2285 | /* Any allowed, online CPU? */ | ||
2286 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | ||
2287 | if (dest_cpu < nr_cpu_ids) | ||
2288 | return dest_cpu; | ||
2289 | |||
2290 | /* No more Mr. Nice Guy. */ | ||
2291 | if (dest_cpu >= nr_cpu_ids) { | ||
2292 | rcu_read_lock(); | ||
2293 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
2294 | rcu_read_unlock(); | ||
2295 | dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); | ||
2296 | |||
2297 | /* | ||
2298 | * Don't tell them about moving exiting tasks or | ||
2299 | * kernel threads (both mm NULL), since they never | ||
2300 | * leave kernel. | ||
2301 | */ | ||
2302 | if (p->mm && printk_ratelimit()) { | ||
2303 | printk(KERN_INFO "process %d (%s) no " | ||
2304 | "longer affine to cpu%d\n", | ||
2305 | task_pid_nr(p), p->comm, cpu); | ||
2306 | } | ||
2307 | } | ||
2308 | |||
2309 | return dest_cpu; | ||
2310 | } | ||
2311 | |||
2312 | /* | ||
2313 | * Gets called from 3 sites (exec, fork, wakeup), since it is called without | ||
2314 | * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done | ||
2315 | * by: | ||
2316 | * | ||
2317 | * exec: is unstable, retry loop | ||
2318 | * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING | ||
2319 | */ | ||
2320 | static inline | ||
2321 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | ||
2322 | { | ||
2323 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); | ||
2324 | |||
2325 | /* | ||
2326 | * In order not to call set_task_cpu() on a blocking task we need | ||
2327 | * to rely on ttwu() to place the task on a valid ->cpus_allowed | ||
2328 | * cpu. | ||
2329 | * | ||
2330 | * Since this is common to all placement strategies, this lives here. | ||
2331 | * | ||
2332 | * [ this allows ->select_task() to simply return task_cpu(p) and | ||
2333 | * not worry about this generic constraint ] | ||
2334 | */ | ||
2335 | if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || | ||
2336 | !cpu_online(cpu))) | ||
2337 | cpu = select_fallback_rq(task_cpu(p), p); | ||
2338 | |||
2339 | return cpu; | ||
2340 | } | ||
2341 | #endif | ||
2342 | |||
2325 | /*** | 2343 | /*** |
2326 | * try_to_wake_up - wake up a thread | 2344 | * try_to_wake_up - wake up a thread |
2327 | * @p: the to-be-woken-up thread | 2345 | * @p: the to-be-woken-up thread |
@@ -2373,19 +2391,34 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2373 | if (task_contributes_to_load(p)) | 2391 | if (task_contributes_to_load(p)) |
2374 | rq->nr_uninterruptible--; | 2392 | rq->nr_uninterruptible--; |
2375 | p->state = TASK_WAKING; | 2393 | p->state = TASK_WAKING; |
2376 | task_rq_unlock(rq, &flags); | ||
2377 | 2394 | ||
2378 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | 2395 | if (p->sched_class->task_waking) |
2379 | if (cpu != orig_cpu) | 2396 | p->sched_class->task_waking(rq, p); |
2380 | set_task_cpu(p, cpu); | ||
2381 | 2397 | ||
2382 | rq = task_rq_lock(p, &flags); | 2398 | __task_rq_unlock(rq); |
2383 | 2399 | ||
2384 | if (rq != orig_rq) | 2400 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); |
2385 | update_rq_clock(rq); | 2401 | if (cpu != orig_cpu) { |
2402 | /* | ||
2403 | * Since we migrate the task without holding any rq->lock, | ||
2404 | * we need to be careful with task_rq_lock(), since that | ||
2405 | * might end up locking an invalid rq. | ||
2406 | */ | ||
2407 | set_task_cpu(p, cpu); | ||
2408 | } | ||
2386 | 2409 | ||
2410 | rq = cpu_rq(cpu); | ||
2411 | raw_spin_lock(&rq->lock); | ||
2412 | update_rq_clock(rq); | ||
2413 | |||
2414 | /* | ||
2415 | * We migrated the task without holding either rq->lock, however | ||
2416 | * since the task is not on the task list itself, nobody else | ||
2417 | * will try and migrate the task, hence the rq should match the | ||
2418 | * cpu we just moved it to. | ||
2419 | */ | ||
2420 | WARN_ON(task_cpu(p) != cpu); | ||
2387 | WARN_ON(p->state != TASK_WAKING); | 2421 | WARN_ON(p->state != TASK_WAKING); |
2388 | cpu = task_cpu(p); | ||
2389 | 2422 | ||
2390 | #ifdef CONFIG_SCHEDSTATS | 2423 | #ifdef CONFIG_SCHEDSTATS |
2391 | schedstat_inc(rq, ttwu_count); | 2424 | schedstat_inc(rq, ttwu_count); |
@@ -2438,8 +2471,19 @@ out_running: | |||
2438 | 2471 | ||
2439 | p->state = TASK_RUNNING; | 2472 | p->state = TASK_RUNNING; |
2440 | #ifdef CONFIG_SMP | 2473 | #ifdef CONFIG_SMP |
2441 | if (p->sched_class->task_wake_up) | 2474 | if (p->sched_class->task_woken) |
2442 | p->sched_class->task_wake_up(rq, p); | 2475 | p->sched_class->task_woken(rq, p); |
2476 | |||
2477 | if (unlikely(rq->idle_stamp)) { | ||
2478 | u64 delta = rq->clock - rq->idle_stamp; | ||
2479 | u64 max = 2*sysctl_sched_migration_cost; | ||
2480 | |||
2481 | if (delta > max) | ||
2482 | rq->avg_idle = max; | ||
2483 | else | ||
2484 | update_avg(&rq->avg_idle, delta); | ||
2485 | rq->idle_stamp = 0; | ||
2486 | } | ||
2443 | #endif | 2487 | #endif |
2444 | out: | 2488 | out: |
2445 | task_rq_unlock(rq, &flags); | 2489 | task_rq_unlock(rq, &flags); |
@@ -2486,7 +2530,6 @@ static void __sched_fork(struct task_struct *p) | |||
2486 | p->se.avg_overlap = 0; | 2530 | p->se.avg_overlap = 0; |
2487 | p->se.start_runtime = 0; | 2531 | p->se.start_runtime = 0; |
2488 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2532 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
2489 | p->se.avg_running = 0; | ||
2490 | 2533 | ||
2491 | #ifdef CONFIG_SCHEDSTATS | 2534 | #ifdef CONFIG_SCHEDSTATS |
2492 | p->se.wait_start = 0; | 2535 | p->se.wait_start = 0; |
@@ -2508,7 +2551,6 @@ static void __sched_fork(struct task_struct *p) | |||
2508 | p->se.nr_failed_migrations_running = 0; | 2551 | p->se.nr_failed_migrations_running = 0; |
2509 | p->se.nr_failed_migrations_hot = 0; | 2552 | p->se.nr_failed_migrations_hot = 0; |
2510 | p->se.nr_forced_migrations = 0; | 2553 | p->se.nr_forced_migrations = 0; |
2511 | p->se.nr_forced2_migrations = 0; | ||
2512 | 2554 | ||
2513 | p->se.nr_wakeups = 0; | 2555 | p->se.nr_wakeups = 0; |
2514 | p->se.nr_wakeups_sync = 0; | 2556 | p->se.nr_wakeups_sync = 0; |
@@ -2529,14 +2571,6 @@ static void __sched_fork(struct task_struct *p) | |||
2529 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2530 | INIT_HLIST_HEAD(&p->preempt_notifiers); | 2572 | INIT_HLIST_HEAD(&p->preempt_notifiers); |
2531 | #endif | 2573 | #endif |
2532 | |||
2533 | /* | ||
2534 | * We mark the process as running here, but have not actually | ||
2535 | * inserted it onto the runqueue yet. This guarantees that | ||
2536 | * nobody will actually run it, and a signal or other external | ||
2537 | * event cannot wake it up and insert it on the runqueue either. | ||
2538 | */ | ||
2539 | p->state = TASK_RUNNING; | ||
2540 | } | 2574 | } |
2541 | 2575 | ||
2542 | /* | 2576 | /* |
@@ -2547,6 +2581,12 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2547 | int cpu = get_cpu(); | 2581 | int cpu = get_cpu(); |
2548 | 2582 | ||
2549 | __sched_fork(p); | 2583 | __sched_fork(p); |
2584 | /* | ||
2585 | * We mark the process as waking here. This guarantees that | ||
2586 | * nobody will actually run it, and a signal or other external | ||
2587 | * event cannot wake it up and insert it on the runqueue either. | ||
2588 | */ | ||
2589 | p->state = TASK_WAKING; | ||
2550 | 2590 | ||
2551 | /* | 2591 | /* |
2552 | * Revert to default priority/policy on fork if requested. | 2592 | * Revert to default priority/policy on fork if requested. |
@@ -2578,9 +2618,9 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2578 | if (!rt_prio(p->prio)) | 2618 | if (!rt_prio(p->prio)) |
2579 | p->sched_class = &fair_sched_class; | 2619 | p->sched_class = &fair_sched_class; |
2580 | 2620 | ||
2581 | #ifdef CONFIG_SMP | 2621 | if (p->sched_class->task_fork) |
2582 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | 2622 | p->sched_class->task_fork(p); |
2583 | #endif | 2623 | |
2584 | set_task_cpu(p, cpu); | 2624 | set_task_cpu(p, cpu); |
2585 | 2625 | ||
2586 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2626 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
@@ -2610,28 +2650,41 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2610 | { | 2650 | { |
2611 | unsigned long flags; | 2651 | unsigned long flags; |
2612 | struct rq *rq; | 2652 | struct rq *rq; |
2653 | int cpu = get_cpu(); | ||
2613 | 2654 | ||
2614 | rq = task_rq_lock(p, &flags); | 2655 | #ifdef CONFIG_SMP |
2615 | BUG_ON(p->state != TASK_RUNNING); | 2656 | /* |
2616 | update_rq_clock(rq); | 2657 | * Fork balancing, do it here and not earlier because: |
2658 | * - cpus_allowed can change in the fork path | ||
2659 | * - any previously selected cpu might disappear through hotplug | ||
2660 | * | ||
2661 | * We still have TASK_WAKING but PF_STARTING is gone now, meaning | ||
2662 | * ->cpus_allowed is stable, we have preemption disabled, meaning | ||
2663 | * cpu_online_mask is stable. | ||
2664 | */ | ||
2665 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | ||
2666 | set_task_cpu(p, cpu); | ||
2667 | #endif | ||
2617 | 2668 | ||
2618 | if (!p->sched_class->task_new || !current->se.on_rq) { | 2669 | /* |
2619 | activate_task(rq, p, 0); | 2670 | * Since the task is not on the rq and we still have TASK_WAKING set |
2620 | } else { | 2671 | * nobody else will migrate this task. |
2621 | /* | 2672 | */ |
2622 | * Let the scheduling class do new task startup | 2673 | rq = cpu_rq(cpu); |
2623 | * management (if any): | 2674 | raw_spin_lock_irqsave(&rq->lock, flags); |
2624 | */ | 2675 | |
2625 | p->sched_class->task_new(rq, p); | 2676 | BUG_ON(p->state != TASK_WAKING); |
2626 | inc_nr_running(rq); | 2677 | p->state = TASK_RUNNING; |
2627 | } | 2678 | update_rq_clock(rq); |
2679 | activate_task(rq, p, 0); | ||
2628 | trace_sched_wakeup_new(rq, p, 1); | 2680 | trace_sched_wakeup_new(rq, p, 1); |
2629 | check_preempt_curr(rq, p, WF_FORK); | 2681 | check_preempt_curr(rq, p, WF_FORK); |
2630 | #ifdef CONFIG_SMP | 2682 | #ifdef CONFIG_SMP |
2631 | if (p->sched_class->task_wake_up) | 2683 | if (p->sched_class->task_woken) |
2632 | p->sched_class->task_wake_up(rq, p); | 2684 | p->sched_class->task_woken(rq, p); |
2633 | #endif | 2685 | #endif |
2634 | task_rq_unlock(rq, &flags); | 2686 | task_rq_unlock(rq, &flags); |
2687 | put_cpu(); | ||
2635 | } | 2688 | } |
2636 | 2689 | ||
2637 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2690 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
@@ -2750,7 +2803,13 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2750 | */ | 2803 | */ |
2751 | prev_state = prev->state; | 2804 | prev_state = prev->state; |
2752 | finish_arch_switch(prev); | 2805 | finish_arch_switch(prev); |
2753 | perf_event_task_sched_in(current, cpu_of(rq)); | 2806 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2807 | local_irq_disable(); | ||
2808 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
2809 | perf_event_task_sched_in(current); | ||
2810 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
2811 | local_irq_enable(); | ||
2812 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
2754 | finish_lock_switch(rq, prev); | 2813 | finish_lock_switch(rq, prev); |
2755 | 2814 | ||
2756 | fire_sched_in_preempt_notifiers(current); | 2815 | fire_sched_in_preempt_notifiers(current); |
@@ -2781,10 +2840,10 @@ static inline void post_schedule(struct rq *rq) | |||
2781 | if (rq->post_schedule) { | 2840 | if (rq->post_schedule) { |
2782 | unsigned long flags; | 2841 | unsigned long flags; |
2783 | 2842 | ||
2784 | spin_lock_irqsave(&rq->lock, flags); | 2843 | raw_spin_lock_irqsave(&rq->lock, flags); |
2785 | if (rq->curr->sched_class->post_schedule) | 2844 | if (rq->curr->sched_class->post_schedule) |
2786 | rq->curr->sched_class->post_schedule(rq); | 2845 | rq->curr->sched_class->post_schedule(rq); |
2787 | spin_unlock_irqrestore(&rq->lock, flags); | 2846 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
2788 | 2847 | ||
2789 | rq->post_schedule = 0; | 2848 | rq->post_schedule = 0; |
2790 | } | 2849 | } |
@@ -2848,14 +2907,14 @@ context_switch(struct rq *rq, struct task_struct *prev, | |||
2848 | */ | 2907 | */ |
2849 | arch_start_context_switch(prev); | 2908 | arch_start_context_switch(prev); |
2850 | 2909 | ||
2851 | if (unlikely(!mm)) { | 2910 | if (likely(!mm)) { |
2852 | next->active_mm = oldmm; | 2911 | next->active_mm = oldmm; |
2853 | atomic_inc(&oldmm->mm_count); | 2912 | atomic_inc(&oldmm->mm_count); |
2854 | enter_lazy_tlb(oldmm, next); | 2913 | enter_lazy_tlb(oldmm, next); |
2855 | } else | 2914 | } else |
2856 | switch_mm(oldmm, mm, next); | 2915 | switch_mm(oldmm, mm, next); |
2857 | 2916 | ||
2858 | if (unlikely(!prev->mm)) { | 2917 | if (likely(!prev->mm)) { |
2859 | prev->active_mm = NULL; | 2918 | prev->active_mm = NULL; |
2860 | rq->prev_mm = oldmm; | 2919 | rq->prev_mm = oldmm; |
2861 | } | 2920 | } |
@@ -3018,15 +3077,6 @@ static void calc_load_account_active(struct rq *this_rq) | |||
3018 | } | 3077 | } |
3019 | 3078 | ||
3020 | /* | 3079 | /* |
3021 | * Externally visible per-cpu scheduler statistics: | ||
3022 | * cpu_nr_migrations(cpu) - number of migrations into that cpu | ||
3023 | */ | ||
3024 | u64 cpu_nr_migrations(int cpu) | ||
3025 | { | ||
3026 | return cpu_rq(cpu)->nr_migrations_in; | ||
3027 | } | ||
3028 | |||
3029 | /* | ||
3030 | * Update rq->cpu_load[] statistics. This function is usually called every | 3080 | * Update rq->cpu_load[] statistics. This function is usually called every |
3031 | * scheduler tick (TICK_NSEC). | 3081 | * scheduler tick (TICK_NSEC). |
3032 | */ | 3082 | */ |
@@ -3064,65 +3114,36 @@ static void update_cpu_load(struct rq *this_rq) | |||
3064 | #ifdef CONFIG_SMP | 3114 | #ifdef CONFIG_SMP |
3065 | 3115 | ||
3066 | /* | 3116 | /* |
3067 | * double_rq_lock - safely lock two runqueues | 3117 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3068 | * | 3118 | * this point the task has the smallest effective memory and cache footprint. |
3069 | * Note this does not disable interrupts like task_rq_lock, | ||
3070 | * you need to do so manually before calling. | ||
3071 | */ | ||
3072 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
3073 | __acquires(rq1->lock) | ||
3074 | __acquires(rq2->lock) | ||
3075 | { | ||
3076 | BUG_ON(!irqs_disabled()); | ||
3077 | if (rq1 == rq2) { | ||
3078 | spin_lock(&rq1->lock); | ||
3079 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
3080 | } else { | ||
3081 | if (rq1 < rq2) { | ||
3082 | spin_lock(&rq1->lock); | ||
3083 | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
3084 | } else { | ||
3085 | spin_lock(&rq2->lock); | ||
3086 | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
3087 | } | ||
3088 | } | ||
3089 | update_rq_clock(rq1); | ||
3090 | update_rq_clock(rq2); | ||
3091 | } | ||
3092 | |||
3093 | /* | ||
3094 | * double_rq_unlock - safely unlock two runqueues | ||
3095 | * | ||
3096 | * Note this does not restore interrupts like task_rq_unlock, | ||
3097 | * you need to do so manually after calling. | ||
3098 | */ | ||
3099 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
3100 | __releases(rq1->lock) | ||
3101 | __releases(rq2->lock) | ||
3102 | { | ||
3103 | spin_unlock(&rq1->lock); | ||
3104 | if (rq1 != rq2) | ||
3105 | spin_unlock(&rq2->lock); | ||
3106 | else | ||
3107 | __release(rq2->lock); | ||
3108 | } | ||
3109 | |||
3110 | /* | ||
3111 | * If dest_cpu is allowed for this process, migrate the task to it. | ||
3112 | * This is accomplished by forcing the cpu_allowed mask to only | ||
3113 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | ||
3114 | * the cpu_allowed mask is restored. | ||
3115 | */ | 3119 | */ |
3116 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) | 3120 | void sched_exec(void) |
3117 | { | 3121 | { |
3122 | struct task_struct *p = current; | ||
3118 | struct migration_req req; | 3123 | struct migration_req req; |
3124 | int dest_cpu, this_cpu; | ||
3119 | unsigned long flags; | 3125 | unsigned long flags; |
3120 | struct rq *rq; | 3126 | struct rq *rq; |
3121 | 3127 | ||
3128 | again: | ||
3129 | this_cpu = get_cpu(); | ||
3130 | dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); | ||
3131 | if (dest_cpu == this_cpu) { | ||
3132 | put_cpu(); | ||
3133 | return; | ||
3134 | } | ||
3135 | |||
3122 | rq = task_rq_lock(p, &flags); | 3136 | rq = task_rq_lock(p, &flags); |
3137 | put_cpu(); | ||
3138 | |||
3139 | /* | ||
3140 | * select_task_rq() can race against ->cpus_allowed | ||
3141 | */ | ||
3123 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) | 3142 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) |
3124 | || unlikely(!cpu_active(dest_cpu))) | 3143 | || unlikely(!cpu_active(dest_cpu))) { |
3125 | goto out; | 3144 | task_rq_unlock(rq, &flags); |
3145 | goto again; | ||
3146 | } | ||
3126 | 3147 | ||
3127 | /* force the process onto the specified CPU */ | 3148 | /* force the process onto the specified CPU */ |
3128 | if (migrate_task(p, dest_cpu, &req)) { | 3149 | if (migrate_task(p, dest_cpu, &req)) { |
@@ -3137,1784 +3158,9 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu) | |||
3137 | 3158 | ||
3138 | return; | 3159 | return; |
3139 | } | 3160 | } |
3140 | out: | ||
3141 | task_rq_unlock(rq, &flags); | 3161 | task_rq_unlock(rq, &flags); |
3142 | } | 3162 | } |
3143 | 3163 | ||
3144 | /* | ||
3145 | * sched_exec - execve() is a valuable balancing opportunity, because at | ||
3146 | * this point the task has the smallest effective memory and cache footprint. | ||
3147 | */ | ||
3148 | void sched_exec(void) | ||
3149 | { | ||
3150 | int new_cpu, this_cpu = get_cpu(); | ||
3151 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); | ||
3152 | put_cpu(); | ||
3153 | if (new_cpu != this_cpu) | ||
3154 | sched_migrate_task(current, new_cpu); | ||
3155 | } | ||
3156 | |||
3157 | /* | ||
3158 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
3159 | * Both runqueues must be locked. | ||
3160 | */ | ||
3161 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
3162 | struct rq *this_rq, int this_cpu) | ||
3163 | { | ||
3164 | deactivate_task(src_rq, p, 0); | ||
3165 | set_task_cpu(p, this_cpu); | ||
3166 | activate_task(this_rq, p, 0); | ||
3167 | /* | ||
3168 | * Note that idle threads have a prio of MAX_PRIO, for this test | ||
3169 | * to be always true for them. | ||
3170 | */ | ||
3171 | check_preempt_curr(this_rq, p, 0); | ||
3172 | } | ||
3173 | |||
3174 | /* | ||
3175 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
3176 | */ | ||
3177 | static | ||
3178 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
3179 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3180 | int *all_pinned) | ||
3181 | { | ||
3182 | int tsk_cache_hot = 0; | ||
3183 | /* | ||
3184 | * We do not migrate tasks that are: | ||
3185 | * 1) running (obviously), or | ||
3186 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
3187 | * 3) are cache-hot on their current CPU. | ||
3188 | */ | ||
3189 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
3190 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
3191 | return 0; | ||
3192 | } | ||
3193 | *all_pinned = 0; | ||
3194 | |||
3195 | if (task_running(rq, p)) { | ||
3196 | schedstat_inc(p, se.nr_failed_migrations_running); | ||
3197 | return 0; | ||
3198 | } | ||
3199 | |||
3200 | /* | ||
3201 | * Aggressive migration if: | ||
3202 | * 1) task is cache cold, or | ||
3203 | * 2) too many balance attempts have failed. | ||
3204 | */ | ||
3205 | |||
3206 | tsk_cache_hot = task_hot(p, rq->clock, sd); | ||
3207 | if (!tsk_cache_hot || | ||
3208 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
3209 | #ifdef CONFIG_SCHEDSTATS | ||
3210 | if (tsk_cache_hot) { | ||
3211 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
3212 | schedstat_inc(p, se.nr_forced_migrations); | ||
3213 | } | ||
3214 | #endif | ||
3215 | return 1; | ||
3216 | } | ||
3217 | |||
3218 | if (tsk_cache_hot) { | ||
3219 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
3220 | return 0; | ||
3221 | } | ||
3222 | return 1; | ||
3223 | } | ||
3224 | |||
3225 | static unsigned long | ||
3226 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3227 | unsigned long max_load_move, struct sched_domain *sd, | ||
3228 | enum cpu_idle_type idle, int *all_pinned, | ||
3229 | int *this_best_prio, struct rq_iterator *iterator) | ||
3230 | { | ||
3231 | int loops = 0, pulled = 0, pinned = 0; | ||
3232 | struct task_struct *p; | ||
3233 | long rem_load_move = max_load_move; | ||
3234 | |||
3235 | if (max_load_move == 0) | ||
3236 | goto out; | ||
3237 | |||
3238 | pinned = 1; | ||
3239 | |||
3240 | /* | ||
3241 | * Start the load-balancing iterator: | ||
3242 | */ | ||
3243 | p = iterator->start(iterator->arg); | ||
3244 | next: | ||
3245 | if (!p || loops++ > sysctl_sched_nr_migrate) | ||
3246 | goto out; | ||
3247 | |||
3248 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
3249 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3250 | p = iterator->next(iterator->arg); | ||
3251 | goto next; | ||
3252 | } | ||
3253 | |||
3254 | pull_task(busiest, p, this_rq, this_cpu); | ||
3255 | pulled++; | ||
3256 | rem_load_move -= p->se.load.weight; | ||
3257 | |||
3258 | #ifdef CONFIG_PREEMPT | ||
3259 | /* | ||
3260 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3261 | * will stop after the first task is pulled to minimize the critical | ||
3262 | * section. | ||
3263 | */ | ||
3264 | if (idle == CPU_NEWLY_IDLE) | ||
3265 | goto out; | ||
3266 | #endif | ||
3267 | |||
3268 | /* | ||
3269 | * We only want to steal up to the prescribed amount of weighted load. | ||
3270 | */ | ||
3271 | if (rem_load_move > 0) { | ||
3272 | if (p->prio < *this_best_prio) | ||
3273 | *this_best_prio = p->prio; | ||
3274 | p = iterator->next(iterator->arg); | ||
3275 | goto next; | ||
3276 | } | ||
3277 | out: | ||
3278 | /* | ||
3279 | * Right now, this is one of only two places pull_task() is called, | ||
3280 | * so we can safely collect pull_task() stats here rather than | ||
3281 | * inside pull_task(). | ||
3282 | */ | ||
3283 | schedstat_add(sd, lb_gained[idle], pulled); | ||
3284 | |||
3285 | if (all_pinned) | ||
3286 | *all_pinned = pinned; | ||
3287 | |||
3288 | return max_load_move - rem_load_move; | ||
3289 | } | ||
3290 | |||
3291 | /* | ||
3292 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
3293 | * this_rq, as part of a balancing operation within domain "sd". | ||
3294 | * Returns 1 if successful and 0 otherwise. | ||
3295 | * | ||
3296 | * Called with both runqueues locked. | ||
3297 | */ | ||
3298 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3299 | unsigned long max_load_move, | ||
3300 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3301 | int *all_pinned) | ||
3302 | { | ||
3303 | const struct sched_class *class = sched_class_highest; | ||
3304 | unsigned long total_load_moved = 0; | ||
3305 | int this_best_prio = this_rq->curr->prio; | ||
3306 | |||
3307 | do { | ||
3308 | total_load_moved += | ||
3309 | class->load_balance(this_rq, this_cpu, busiest, | ||
3310 | max_load_move - total_load_moved, | ||
3311 | sd, idle, all_pinned, &this_best_prio); | ||
3312 | class = class->next; | ||
3313 | |||
3314 | #ifdef CONFIG_PREEMPT | ||
3315 | /* | ||
3316 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3317 | * kernels will stop after the first task is pulled to minimize | ||
3318 | * the critical section. | ||
3319 | */ | ||
3320 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
3321 | break; | ||
3322 | #endif | ||
3323 | } while (class && max_load_move > total_load_moved); | ||
3324 | |||
3325 | return total_load_moved > 0; | ||
3326 | } | ||
3327 | |||
3328 | static int | ||
3329 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3330 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3331 | struct rq_iterator *iterator) | ||
3332 | { | ||
3333 | struct task_struct *p = iterator->start(iterator->arg); | ||
3334 | int pinned = 0; | ||
3335 | |||
3336 | while (p) { | ||
3337 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3338 | pull_task(busiest, p, this_rq, this_cpu); | ||
3339 | /* | ||
3340 | * Right now, this is only the second place pull_task() | ||
3341 | * is called, so we can safely collect pull_task() | ||
3342 | * stats here rather than inside pull_task(). | ||
3343 | */ | ||
3344 | schedstat_inc(sd, lb_gained[idle]); | ||
3345 | |||
3346 | return 1; | ||
3347 | } | ||
3348 | p = iterator->next(iterator->arg); | ||
3349 | } | ||
3350 | |||
3351 | return 0; | ||
3352 | } | ||
3353 | |||
3354 | /* | ||
3355 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
3356 | * part of active balancing operations within "domain". | ||
3357 | * Returns 1 if successful and 0 otherwise. | ||
3358 | * | ||
3359 | * Called with both runqueues locked. | ||
3360 | */ | ||
3361 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3362 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
3363 | { | ||
3364 | const struct sched_class *class; | ||
3365 | |||
3366 | for_each_class(class) { | ||
3367 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | ||
3368 | return 1; | ||
3369 | } | ||
3370 | |||
3371 | return 0; | ||
3372 | } | ||
3373 | /********** Helpers for find_busiest_group ************************/ | ||
3374 | /* | ||
3375 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
3376 | * during load balancing. | ||
3377 | */ | ||
3378 | struct sd_lb_stats { | ||
3379 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
3380 | struct sched_group *this; /* Local group in this sd */ | ||
3381 | unsigned long total_load; /* Total load of all groups in sd */ | ||
3382 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
3383 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
3384 | |||
3385 | /** Statistics of this group */ | ||
3386 | unsigned long this_load; | ||
3387 | unsigned long this_load_per_task; | ||
3388 | unsigned long this_nr_running; | ||
3389 | |||
3390 | /* Statistics of the busiest group */ | ||
3391 | unsigned long max_load; | ||
3392 | unsigned long busiest_load_per_task; | ||
3393 | unsigned long busiest_nr_running; | ||
3394 | |||
3395 | int group_imb; /* Is there imbalance in this sd */ | ||
3396 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3397 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
3398 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
3399 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
3400 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
3401 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3402 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3403 | #endif | ||
3404 | }; | ||
3405 | |||
3406 | /* | ||
3407 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3408 | */ | ||
3409 | struct sg_lb_stats { | ||
3410 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3411 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3412 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3413 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3414 | unsigned long group_capacity; | ||
3415 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3416 | }; | ||
3417 | |||
3418 | /** | ||
3419 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
3420 | * @group: The group whose first cpu is to be returned. | ||
3421 | */ | ||
3422 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3423 | { | ||
3424 | return cpumask_first(sched_group_cpus(group)); | ||
3425 | } | ||
3426 | |||
3427 | /** | ||
3428 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3429 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3430 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3431 | */ | ||
3432 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3433 | enum cpu_idle_type idle) | ||
3434 | { | ||
3435 | int load_idx; | ||
3436 | |||
3437 | switch (idle) { | ||
3438 | case CPU_NOT_IDLE: | ||
3439 | load_idx = sd->busy_idx; | ||
3440 | break; | ||
3441 | |||
3442 | case CPU_NEWLY_IDLE: | ||
3443 | load_idx = sd->newidle_idx; | ||
3444 | break; | ||
3445 | default: | ||
3446 | load_idx = sd->idle_idx; | ||
3447 | break; | ||
3448 | } | ||
3449 | |||
3450 | return load_idx; | ||
3451 | } | ||
3452 | |||
3453 | |||
3454 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3455 | /** | ||
3456 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3457 | * the given sched_domain, during load balancing. | ||
3458 | * | ||
3459 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3460 | * @sds: Variable containing the statistics for sd. | ||
3461 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3462 | */ | ||
3463 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3464 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3465 | { | ||
3466 | /* | ||
3467 | * Busy processors will not participate in power savings | ||
3468 | * balance. | ||
3469 | */ | ||
3470 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3471 | sds->power_savings_balance = 0; | ||
3472 | else { | ||
3473 | sds->power_savings_balance = 1; | ||
3474 | sds->min_nr_running = ULONG_MAX; | ||
3475 | sds->leader_nr_running = 0; | ||
3476 | } | ||
3477 | } | ||
3478 | |||
3479 | /** | ||
3480 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
3481 | * sched_domain while performing load balancing. | ||
3482 | * | ||
3483 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3484 | * @sds: Variable containing the statistics of the sched_domain | ||
3485 | * @local_group: Does group contain the CPU for which we're performing | ||
3486 | * load balancing ? | ||
3487 | * @sgs: Variable containing the statistics of the group. | ||
3488 | */ | ||
3489 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3490 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3491 | { | ||
3492 | |||
3493 | if (!sds->power_savings_balance) | ||
3494 | return; | ||
3495 | |||
3496 | /* | ||
3497 | * If the local group is idle or completely loaded | ||
3498 | * no need to do power savings balance at this domain | ||
3499 | */ | ||
3500 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3501 | !sds->this_nr_running)) | ||
3502 | sds->power_savings_balance = 0; | ||
3503 | |||
3504 | /* | ||
3505 | * If a group is already running at full capacity or idle, | ||
3506 | * don't include that group in power savings calculations | ||
3507 | */ | ||
3508 | if (!sds->power_savings_balance || | ||
3509 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3510 | !sgs->sum_nr_running) | ||
3511 | return; | ||
3512 | |||
3513 | /* | ||
3514 | * Calculate the group which has the least non-idle load. | ||
3515 | * This is the group from where we need to pick up the load | ||
3516 | * for saving power | ||
3517 | */ | ||
3518 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
3519 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3520 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3521 | sds->group_min = group; | ||
3522 | sds->min_nr_running = sgs->sum_nr_running; | ||
3523 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3524 | sgs->sum_nr_running; | ||
3525 | } | ||
3526 | |||
3527 | /* | ||
3528 | * Calculate the group which is almost near its | ||
3529 | * capacity but still has some space to pick up some load | ||
3530 | * from other group and save more power | ||
3531 | */ | ||
3532 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
3533 | return; | ||
3534 | |||
3535 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
3536 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
3537 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
3538 | sds->group_leader = group; | ||
3539 | sds->leader_nr_running = sgs->sum_nr_running; | ||
3540 | } | ||
3541 | } | ||
3542 | |||
3543 | /** | ||
3544 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
3545 | * @sds: Variable containing the statistics of the sched_domain | ||
3546 | * under consideration. | ||
3547 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3548 | * @imbalance: Variable to store the imbalance. | ||
3549 | * | ||
3550 | * Description: | ||
3551 | * Check if we have potential to perform some power-savings balance. | ||
3552 | * If yes, set the busiest group to be the least loaded group in the | ||
3553 | * sched_domain, so that it's CPUs can be put to idle. | ||
3554 | * | ||
3555 | * Returns 1 if there is potential to perform power-savings balance. | ||
3556 | * Else returns 0. | ||
3557 | */ | ||
3558 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3559 | int this_cpu, unsigned long *imbalance) | ||
3560 | { | ||
3561 | if (!sds->power_savings_balance) | ||
3562 | return 0; | ||
3563 | |||
3564 | if (sds->this != sds->group_leader || | ||
3565 | sds->group_leader == sds->group_min) | ||
3566 | return 0; | ||
3567 | |||
3568 | *imbalance = sds->min_load_per_task; | ||
3569 | sds->busiest = sds->group_min; | ||
3570 | |||
3571 | return 1; | ||
3572 | |||
3573 | } | ||
3574 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3575 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3576 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3577 | { | ||
3578 | return; | ||
3579 | } | ||
3580 | |||
3581 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3582 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3583 | { | ||
3584 | return; | ||
3585 | } | ||
3586 | |||
3587 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3588 | int this_cpu, unsigned long *imbalance) | ||
3589 | { | ||
3590 | return 0; | ||
3591 | } | ||
3592 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3593 | |||
3594 | |||
3595 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3596 | { | ||
3597 | return SCHED_LOAD_SCALE; | ||
3598 | } | ||
3599 | |||
3600 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3601 | { | ||
3602 | return default_scale_freq_power(sd, cpu); | ||
3603 | } | ||
3604 | |||
3605 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3606 | { | ||
3607 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3608 | unsigned long smt_gain = sd->smt_gain; | ||
3609 | |||
3610 | smt_gain /= weight; | ||
3611 | |||
3612 | return smt_gain; | ||
3613 | } | ||
3614 | |||
3615 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3616 | { | ||
3617 | return default_scale_smt_power(sd, cpu); | ||
3618 | } | ||
3619 | |||
3620 | unsigned long scale_rt_power(int cpu) | ||
3621 | { | ||
3622 | struct rq *rq = cpu_rq(cpu); | ||
3623 | u64 total, available; | ||
3624 | |||
3625 | sched_avg_update(rq); | ||
3626 | |||
3627 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
3628 | available = total - rq->rt_avg; | ||
3629 | |||
3630 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
3631 | total = SCHED_LOAD_SCALE; | ||
3632 | |||
3633 | total >>= SCHED_LOAD_SHIFT; | ||
3634 | |||
3635 | return div_u64(available, total); | ||
3636 | } | ||
3637 | |||
3638 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
3639 | { | ||
3640 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3641 | unsigned long power = SCHED_LOAD_SCALE; | ||
3642 | struct sched_group *sdg = sd->groups; | ||
3643 | |||
3644 | if (sched_feat(ARCH_POWER)) | ||
3645 | power *= arch_scale_freq_power(sd, cpu); | ||
3646 | else | ||
3647 | power *= default_scale_freq_power(sd, cpu); | ||
3648 | |||
3649 | power >>= SCHED_LOAD_SHIFT; | ||
3650 | |||
3651 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
3652 | if (sched_feat(ARCH_POWER)) | ||
3653 | power *= arch_scale_smt_power(sd, cpu); | ||
3654 | else | ||
3655 | power *= default_scale_smt_power(sd, cpu); | ||
3656 | |||
3657 | power >>= SCHED_LOAD_SHIFT; | ||
3658 | } | ||
3659 | |||
3660 | power *= scale_rt_power(cpu); | ||
3661 | power >>= SCHED_LOAD_SHIFT; | ||
3662 | |||
3663 | if (!power) | ||
3664 | power = 1; | ||
3665 | |||
3666 | sdg->cpu_power = power; | ||
3667 | } | ||
3668 | |||
3669 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
3670 | { | ||
3671 | struct sched_domain *child = sd->child; | ||
3672 | struct sched_group *group, *sdg = sd->groups; | ||
3673 | unsigned long power; | ||
3674 | |||
3675 | if (!child) { | ||
3676 | update_cpu_power(sd, cpu); | ||
3677 | return; | ||
3678 | } | ||
3679 | |||
3680 | power = 0; | ||
3681 | |||
3682 | group = child->groups; | ||
3683 | do { | ||
3684 | power += group->cpu_power; | ||
3685 | group = group->next; | ||
3686 | } while (group != child->groups); | ||
3687 | |||
3688 | sdg->cpu_power = power; | ||
3689 | } | ||
3690 | |||
3691 | /** | ||
3692 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3693 | * @sd: The sched_domain whose statistics are to be updated. | ||
3694 | * @group: sched_group whose statistics are to be updated. | ||
3695 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3696 | * @idle: Idle status of this_cpu | ||
3697 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3698 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3699 | * @local_group: Does group contain this_cpu. | ||
3700 | * @cpus: Set of cpus considered for load balancing. | ||
3701 | * @balance: Should we balance. | ||
3702 | * @sgs: variable to hold the statistics for this group. | ||
3703 | */ | ||
3704 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
3705 | struct sched_group *group, int this_cpu, | ||
3706 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
3707 | int local_group, const struct cpumask *cpus, | ||
3708 | int *balance, struct sg_lb_stats *sgs) | ||
3709 | { | ||
3710 | unsigned long load, max_cpu_load, min_cpu_load; | ||
3711 | int i; | ||
3712 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3713 | unsigned long sum_avg_load_per_task; | ||
3714 | unsigned long avg_load_per_task; | ||
3715 | |||
3716 | if (local_group) { | ||
3717 | balance_cpu = group_first_cpu(group); | ||
3718 | if (balance_cpu == this_cpu) | ||
3719 | update_group_power(sd, this_cpu); | ||
3720 | } | ||
3721 | |||
3722 | /* Tally up the load of all CPUs in the group */ | ||
3723 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3724 | max_cpu_load = 0; | ||
3725 | min_cpu_load = ~0UL; | ||
3726 | |||
3727 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3728 | struct rq *rq = cpu_rq(i); | ||
3729 | |||
3730 | if (*sd_idle && rq->nr_running) | ||
3731 | *sd_idle = 0; | ||
3732 | |||
3733 | /* Bias balancing toward cpus of our domain */ | ||
3734 | if (local_group) { | ||
3735 | if (idle_cpu(i) && !first_idle_cpu) { | ||
3736 | first_idle_cpu = 1; | ||
3737 | balance_cpu = i; | ||
3738 | } | ||
3739 | |||
3740 | load = target_load(i, load_idx); | ||
3741 | } else { | ||
3742 | load = source_load(i, load_idx); | ||
3743 | if (load > max_cpu_load) | ||
3744 | max_cpu_load = load; | ||
3745 | if (min_cpu_load > load) | ||
3746 | min_cpu_load = load; | ||
3747 | } | ||
3748 | |||
3749 | sgs->group_load += load; | ||
3750 | sgs->sum_nr_running += rq->nr_running; | ||
3751 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
3752 | |||
3753 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | ||
3754 | } | ||
3755 | |||
3756 | /* | ||
3757 | * First idle cpu or the first cpu(busiest) in this sched group | ||
3758 | * is eligible for doing load balancing at this and above | ||
3759 | * domains. In the newly idle case, we will allow all the cpu's | ||
3760 | * to do the newly idle load balance. | ||
3761 | */ | ||
3762 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
3763 | balance_cpu != this_cpu && balance) { | ||
3764 | *balance = 0; | ||
3765 | return; | ||
3766 | } | ||
3767 | |||
3768 | /* Adjust by relative CPU power of the group */ | ||
3769 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
3770 | |||
3771 | |||
3772 | /* | ||
3773 | * Consider the group unbalanced when the imbalance is larger | ||
3774 | * than the average weight of two tasks. | ||
3775 | * | ||
3776 | * APZ: with cgroup the avg task weight can vary wildly and | ||
3777 | * might not be a suitable number - should we keep a | ||
3778 | * normalized nr_running number somewhere that negates | ||
3779 | * the hierarchy? | ||
3780 | */ | ||
3781 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / | ||
3782 | group->cpu_power; | ||
3783 | |||
3784 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
3785 | sgs->group_imb = 1; | ||
3786 | |||
3787 | sgs->group_capacity = | ||
3788 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
3789 | } | ||
3790 | |||
3791 | /** | ||
3792 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
3793 | * @sd: sched_domain whose statistics are to be updated. | ||
3794 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3795 | * @idle: Idle status of this_cpu | ||
3796 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3797 | * @cpus: Set of cpus considered for load balancing. | ||
3798 | * @balance: Should we balance. | ||
3799 | * @sds: variable to hold the statistics for this sched_domain. | ||
3800 | */ | ||
3801 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3802 | enum cpu_idle_type idle, int *sd_idle, | ||
3803 | const struct cpumask *cpus, int *balance, | ||
3804 | struct sd_lb_stats *sds) | ||
3805 | { | ||
3806 | struct sched_domain *child = sd->child; | ||
3807 | struct sched_group *group = sd->groups; | ||
3808 | struct sg_lb_stats sgs; | ||
3809 | int load_idx, prefer_sibling = 0; | ||
3810 | |||
3811 | if (child && child->flags & SD_PREFER_SIBLING) | ||
3812 | prefer_sibling = 1; | ||
3813 | |||
3814 | init_sd_power_savings_stats(sd, sds, idle); | ||
3815 | load_idx = get_sd_load_idx(sd, idle); | ||
3816 | |||
3817 | do { | ||
3818 | int local_group; | ||
3819 | |||
3820 | local_group = cpumask_test_cpu(this_cpu, | ||
3821 | sched_group_cpus(group)); | ||
3822 | memset(&sgs, 0, sizeof(sgs)); | ||
3823 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
3824 | local_group, cpus, balance, &sgs); | ||
3825 | |||
3826 | if (local_group && balance && !(*balance)) | ||
3827 | return; | ||
3828 | |||
3829 | sds->total_load += sgs.group_load; | ||
3830 | sds->total_pwr += group->cpu_power; | ||
3831 | |||
3832 | /* | ||
3833 | * In case the child domain prefers tasks go to siblings | ||
3834 | * first, lower the group capacity to one so that we'll try | ||
3835 | * and move all the excess tasks away. | ||
3836 | */ | ||
3837 | if (prefer_sibling) | ||
3838 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
3839 | |||
3840 | if (local_group) { | ||
3841 | sds->this_load = sgs.avg_load; | ||
3842 | sds->this = group; | ||
3843 | sds->this_nr_running = sgs.sum_nr_running; | ||
3844 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
3845 | } else if (sgs.avg_load > sds->max_load && | ||
3846 | (sgs.sum_nr_running > sgs.group_capacity || | ||
3847 | sgs.group_imb)) { | ||
3848 | sds->max_load = sgs.avg_load; | ||
3849 | sds->busiest = group; | ||
3850 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
3851 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
3852 | sds->group_imb = sgs.group_imb; | ||
3853 | } | ||
3854 | |||
3855 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
3856 | group = group->next; | ||
3857 | } while (group != sd->groups); | ||
3858 | } | ||
3859 | |||
3860 | /** | ||
3861 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
3862 | * amongst the groups of a sched_domain, during | ||
3863 | * load balancing. | ||
3864 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
3865 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
3866 | * @imbalance: Variable to store the imbalance. | ||
3867 | */ | ||
3868 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
3869 | int this_cpu, unsigned long *imbalance) | ||
3870 | { | ||
3871 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
3872 | unsigned int imbn = 2; | ||
3873 | |||
3874 | if (sds->this_nr_running) { | ||
3875 | sds->this_load_per_task /= sds->this_nr_running; | ||
3876 | if (sds->busiest_load_per_task > | ||
3877 | sds->this_load_per_task) | ||
3878 | imbn = 1; | ||
3879 | } else | ||
3880 | sds->this_load_per_task = | ||
3881 | cpu_avg_load_per_task(this_cpu); | ||
3882 | |||
3883 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | ||
3884 | sds->busiest_load_per_task * imbn) { | ||
3885 | *imbalance = sds->busiest_load_per_task; | ||
3886 | return; | ||
3887 | } | ||
3888 | |||
3889 | /* | ||
3890 | * OK, we don't have enough imbalance to justify moving tasks, | ||
3891 | * however we may be able to increase total CPU power used by | ||
3892 | * moving them. | ||
3893 | */ | ||
3894 | |||
3895 | pwr_now += sds->busiest->cpu_power * | ||
3896 | min(sds->busiest_load_per_task, sds->max_load); | ||
3897 | pwr_now += sds->this->cpu_power * | ||
3898 | min(sds->this_load_per_task, sds->this_load); | ||
3899 | pwr_now /= SCHED_LOAD_SCALE; | ||
3900 | |||
3901 | /* Amount of load we'd subtract */ | ||
3902 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3903 | sds->busiest->cpu_power; | ||
3904 | if (sds->max_load > tmp) | ||
3905 | pwr_move += sds->busiest->cpu_power * | ||
3906 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3907 | |||
3908 | /* Amount of load we'd add */ | ||
3909 | if (sds->max_load * sds->busiest->cpu_power < | ||
3910 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3911 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
3912 | sds->this->cpu_power; | ||
3913 | else | ||
3914 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3915 | sds->this->cpu_power; | ||
3916 | pwr_move += sds->this->cpu_power * | ||
3917 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3918 | pwr_move /= SCHED_LOAD_SCALE; | ||
3919 | |||
3920 | /* Move if we gain throughput */ | ||
3921 | if (pwr_move > pwr_now) | ||
3922 | *imbalance = sds->busiest_load_per_task; | ||
3923 | } | ||
3924 | |||
3925 | /** | ||
3926 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3927 | * groups of a given sched_domain during load balance. | ||
3928 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3929 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
3930 | * @imbalance: The variable to store the imbalance. | ||
3931 | */ | ||
3932 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
3933 | unsigned long *imbalance) | ||
3934 | { | ||
3935 | unsigned long max_pull; | ||
3936 | /* | ||
3937 | * In the presence of smp nice balancing, certain scenarios can have | ||
3938 | * max load less than avg load(as we skip the groups at or below | ||
3939 | * its cpu_power, while calculating max_load..) | ||
3940 | */ | ||
3941 | if (sds->max_load < sds->avg_load) { | ||
3942 | *imbalance = 0; | ||
3943 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3944 | } | ||
3945 | |||
3946 | /* Don't want to pull so many tasks that a group would go idle */ | ||
3947 | max_pull = min(sds->max_load - sds->avg_load, | ||
3948 | sds->max_load - sds->busiest_load_per_task); | ||
3949 | |||
3950 | /* How much load to actually move to equalise the imbalance */ | ||
3951 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
3952 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
3953 | / SCHED_LOAD_SCALE; | ||
3954 | |||
3955 | /* | ||
3956 | * if *imbalance is less than the average load per runnable task | ||
3957 | * there is no gaurantee that any tasks will be moved so we'll have | ||
3958 | * a think about bumping its value to force at least one task to be | ||
3959 | * moved | ||
3960 | */ | ||
3961 | if (*imbalance < sds->busiest_load_per_task) | ||
3962 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3963 | |||
3964 | } | ||
3965 | /******* find_busiest_group() helpers end here *********************/ | ||
3966 | |||
3967 | /** | ||
3968 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
3969 | * if there is an imbalance. If there isn't an imbalance, and | ||
3970 | * the user has opted for power-savings, it returns a group whose | ||
3971 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
3972 | * such a group exists. | ||
3973 | * | ||
3974 | * Also calculates the amount of weighted load which should be moved | ||
3975 | * to restore balance. | ||
3976 | * | ||
3977 | * @sd: The sched_domain whose busiest group is to be returned. | ||
3978 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
3979 | * @imbalance: Variable which stores amount of weighted load which should | ||
3980 | * be moved to restore balance/put a group to idle. | ||
3981 | * @idle: The idle status of this_cpu. | ||
3982 | * @sd_idle: The idleness of sd | ||
3983 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
3984 | * @balance: Pointer to a variable indicating if this_cpu | ||
3985 | * is the appropriate cpu to perform load balancing at this_level. | ||
3986 | * | ||
3987 | * Returns: - the busiest group if imbalance exists. | ||
3988 | * - If no imbalance and user has opted for power-savings balance, | ||
3989 | * return the least loaded group whose CPUs can be | ||
3990 | * put to idle by rebalancing its tasks onto our group. | ||
3991 | */ | ||
3992 | static struct sched_group * | ||
3993 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
3994 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
3995 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
3996 | { | ||
3997 | struct sd_lb_stats sds; | ||
3998 | |||
3999 | memset(&sds, 0, sizeof(sds)); | ||
4000 | |||
4001 | /* | ||
4002 | * Compute the various statistics relavent for load balancing at | ||
4003 | * this level. | ||
4004 | */ | ||
4005 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
4006 | balance, &sds); | ||
4007 | |||
4008 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
4009 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
4010 | * at this level. | ||
4011 | * 2) There is no busy sibling group to pull from. | ||
4012 | * 3) This group is the busiest group. | ||
4013 | * 4) This group is more busy than the avg busieness at this | ||
4014 | * sched_domain. | ||
4015 | * 5) The imbalance is within the specified limit. | ||
4016 | * 6) Any rebalance would lead to ping-pong | ||
4017 | */ | ||
4018 | if (balance && !(*balance)) | ||
4019 | goto ret; | ||
4020 | |||
4021 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
4022 | goto out_balanced; | ||
4023 | |||
4024 | if (sds.this_load >= sds.max_load) | ||
4025 | goto out_balanced; | ||
4026 | |||
4027 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
4028 | |||
4029 | if (sds.this_load >= sds.avg_load) | ||
4030 | goto out_balanced; | ||
4031 | |||
4032 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
4033 | goto out_balanced; | ||
4034 | |||
4035 | sds.busiest_load_per_task /= sds.busiest_nr_running; | ||
4036 | if (sds.group_imb) | ||
4037 | sds.busiest_load_per_task = | ||
4038 | min(sds.busiest_load_per_task, sds.avg_load); | ||
4039 | |||
4040 | /* | ||
4041 | * We're trying to get all the cpus to the average_load, so we don't | ||
4042 | * want to push ourselves above the average load, nor do we wish to | ||
4043 | * reduce the max loaded cpu below the average load, as either of these | ||
4044 | * actions would just result in more rebalancing later, and ping-pong | ||
4045 | * tasks around. Thus we look for the minimum possible imbalance. | ||
4046 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
4047 | * be counted as no imbalance for these purposes -- we can't fix that | ||
4048 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
4049 | * appear as very large values with unsigned longs. | ||
4050 | */ | ||
4051 | if (sds.max_load <= sds.busiest_load_per_task) | ||
4052 | goto out_balanced; | ||
4053 | |||
4054 | /* Looks like there is an imbalance. Compute it */ | ||
4055 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
4056 | return sds.busiest; | ||
4057 | |||
4058 | out_balanced: | ||
4059 | /* | ||
4060 | * There is no obvious imbalance. But check if we can do some balancing | ||
4061 | * to save power. | ||
4062 | */ | ||
4063 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
4064 | return sds.busiest; | ||
4065 | ret: | ||
4066 | *imbalance = 0; | ||
4067 | return NULL; | ||
4068 | } | ||
4069 | |||
4070 | /* | ||
4071 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
4072 | */ | ||
4073 | static struct rq * | ||
4074 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
4075 | unsigned long imbalance, const struct cpumask *cpus) | ||
4076 | { | ||
4077 | struct rq *busiest = NULL, *rq; | ||
4078 | unsigned long max_load = 0; | ||
4079 | int i; | ||
4080 | |||
4081 | for_each_cpu(i, sched_group_cpus(group)) { | ||
4082 | unsigned long power = power_of(i); | ||
4083 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
4084 | unsigned long wl; | ||
4085 | |||
4086 | if (!cpumask_test_cpu(i, cpus)) | ||
4087 | continue; | ||
4088 | |||
4089 | rq = cpu_rq(i); | ||
4090 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; | ||
4091 | wl /= power; | ||
4092 | |||
4093 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
4094 | continue; | ||
4095 | |||
4096 | if (wl > max_load) { | ||
4097 | max_load = wl; | ||
4098 | busiest = rq; | ||
4099 | } | ||
4100 | } | ||
4101 | |||
4102 | return busiest; | ||
4103 | } | ||
4104 | |||
4105 | /* | ||
4106 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
4107 | * so long as it is large enough. | ||
4108 | */ | ||
4109 | #define MAX_PINNED_INTERVAL 512 | ||
4110 | |||
4111 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
4112 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
4113 | |||
4114 | /* | ||
4115 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4116 | * tasks if there is an imbalance. | ||
4117 | */ | ||
4118 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
4119 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
4120 | int *balance) | ||
4121 | { | ||
4122 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
4123 | struct sched_group *group; | ||
4124 | unsigned long imbalance; | ||
4125 | struct rq *busiest; | ||
4126 | unsigned long flags; | ||
4127 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4128 | |||
4129 | cpumask_setall(cpus); | ||
4130 | |||
4131 | /* | ||
4132 | * When power savings policy is enabled for the parent domain, idle | ||
4133 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4134 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
4135 | * portraying it as CPU_NOT_IDLE. | ||
4136 | */ | ||
4137 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
4138 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4139 | sd_idle = 1; | ||
4140 | |||
4141 | schedstat_inc(sd, lb_count[idle]); | ||
4142 | |||
4143 | redo: | ||
4144 | update_shares(sd); | ||
4145 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
4146 | cpus, balance); | ||
4147 | |||
4148 | if (*balance == 0) | ||
4149 | goto out_balanced; | ||
4150 | |||
4151 | if (!group) { | ||
4152 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
4153 | goto out_balanced; | ||
4154 | } | ||
4155 | |||
4156 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
4157 | if (!busiest) { | ||
4158 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
4159 | goto out_balanced; | ||
4160 | } | ||
4161 | |||
4162 | BUG_ON(busiest == this_rq); | ||
4163 | |||
4164 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
4165 | |||
4166 | ld_moved = 0; | ||
4167 | if (busiest->nr_running > 1) { | ||
4168 | /* | ||
4169 | * Attempt to move tasks. If find_busiest_group has found | ||
4170 | * an imbalance but busiest->nr_running <= 1, the group is | ||
4171 | * still unbalanced. ld_moved simply stays zero, so it is | ||
4172 | * correctly treated as an imbalance. | ||
4173 | */ | ||
4174 | local_irq_save(flags); | ||
4175 | double_rq_lock(this_rq, busiest); | ||
4176 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4177 | imbalance, sd, idle, &all_pinned); | ||
4178 | double_rq_unlock(this_rq, busiest); | ||
4179 | local_irq_restore(flags); | ||
4180 | |||
4181 | /* | ||
4182 | * some other cpu did the load balance for us. | ||
4183 | */ | ||
4184 | if (ld_moved && this_cpu != smp_processor_id()) | ||
4185 | resched_cpu(this_cpu); | ||
4186 | |||
4187 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
4188 | if (unlikely(all_pinned)) { | ||
4189 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4190 | if (!cpumask_empty(cpus)) | ||
4191 | goto redo; | ||
4192 | goto out_balanced; | ||
4193 | } | ||
4194 | } | ||
4195 | |||
4196 | if (!ld_moved) { | ||
4197 | schedstat_inc(sd, lb_failed[idle]); | ||
4198 | sd->nr_balance_failed++; | ||
4199 | |||
4200 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
4201 | |||
4202 | spin_lock_irqsave(&busiest->lock, flags); | ||
4203 | |||
4204 | /* don't kick the migration_thread, if the curr | ||
4205 | * task on busiest cpu can't be moved to this_cpu | ||
4206 | */ | ||
4207 | if (!cpumask_test_cpu(this_cpu, | ||
4208 | &busiest->curr->cpus_allowed)) { | ||
4209 | spin_unlock_irqrestore(&busiest->lock, flags); | ||
4210 | all_pinned = 1; | ||
4211 | goto out_one_pinned; | ||
4212 | } | ||
4213 | |||
4214 | if (!busiest->active_balance) { | ||
4215 | busiest->active_balance = 1; | ||
4216 | busiest->push_cpu = this_cpu; | ||
4217 | active_balance = 1; | ||
4218 | } | ||
4219 | spin_unlock_irqrestore(&busiest->lock, flags); | ||
4220 | if (active_balance) | ||
4221 | wake_up_process(busiest->migration_thread); | ||
4222 | |||
4223 | /* | ||
4224 | * We've kicked active balancing, reset the failure | ||
4225 | * counter. | ||
4226 | */ | ||
4227 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
4228 | } | ||
4229 | } else | ||
4230 | sd->nr_balance_failed = 0; | ||
4231 | |||
4232 | if (likely(!active_balance)) { | ||
4233 | /* We were unbalanced, so reset the balancing interval */ | ||
4234 | sd->balance_interval = sd->min_interval; | ||
4235 | } else { | ||
4236 | /* | ||
4237 | * If we've begun active balancing, start to back off. This | ||
4238 | * case may not be covered by the all_pinned logic if there | ||
4239 | * is only 1 task on the busy runqueue (because we don't call | ||
4240 | * move_tasks). | ||
4241 | */ | ||
4242 | if (sd->balance_interval < sd->max_interval) | ||
4243 | sd->balance_interval *= 2; | ||
4244 | } | ||
4245 | |||
4246 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4247 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4248 | ld_moved = -1; | ||
4249 | |||
4250 | goto out; | ||
4251 | |||
4252 | out_balanced: | ||
4253 | schedstat_inc(sd, lb_balanced[idle]); | ||
4254 | |||
4255 | sd->nr_balance_failed = 0; | ||
4256 | |||
4257 | out_one_pinned: | ||
4258 | /* tune up the balancing interval */ | ||
4259 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
4260 | (sd->balance_interval < sd->max_interval)) | ||
4261 | sd->balance_interval *= 2; | ||
4262 | |||
4263 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4264 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4265 | ld_moved = -1; | ||
4266 | else | ||
4267 | ld_moved = 0; | ||
4268 | out: | ||
4269 | if (ld_moved) | ||
4270 | update_shares(sd); | ||
4271 | return ld_moved; | ||
4272 | } | ||
4273 | |||
4274 | /* | ||
4275 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4276 | * tasks if there is an imbalance. | ||
4277 | * | ||
4278 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | ||
4279 | * this_rq is locked. | ||
4280 | */ | ||
4281 | static int | ||
4282 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | ||
4283 | { | ||
4284 | struct sched_group *group; | ||
4285 | struct rq *busiest = NULL; | ||
4286 | unsigned long imbalance; | ||
4287 | int ld_moved = 0; | ||
4288 | int sd_idle = 0; | ||
4289 | int all_pinned = 0; | ||
4290 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4291 | |||
4292 | cpumask_setall(cpus); | ||
4293 | |||
4294 | /* | ||
4295 | * When power savings policy is enabled for the parent domain, idle | ||
4296 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4297 | * let the state of idle sibling percolate up as IDLE, instead of | ||
4298 | * portraying it as CPU_NOT_IDLE. | ||
4299 | */ | ||
4300 | if (sd->flags & SD_SHARE_CPUPOWER && | ||
4301 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4302 | sd_idle = 1; | ||
4303 | |||
4304 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | ||
4305 | redo: | ||
4306 | update_shares_locked(this_rq, sd); | ||
4307 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | ||
4308 | &sd_idle, cpus, NULL); | ||
4309 | if (!group) { | ||
4310 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | ||
4311 | goto out_balanced; | ||
4312 | } | ||
4313 | |||
4314 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | ||
4315 | if (!busiest) { | ||
4316 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | ||
4317 | goto out_balanced; | ||
4318 | } | ||
4319 | |||
4320 | BUG_ON(busiest == this_rq); | ||
4321 | |||
4322 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | ||
4323 | |||
4324 | ld_moved = 0; | ||
4325 | if (busiest->nr_running > 1) { | ||
4326 | /* Attempt to move tasks */ | ||
4327 | double_lock_balance(this_rq, busiest); | ||
4328 | /* this_rq->clock is already updated */ | ||
4329 | update_rq_clock(busiest); | ||
4330 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4331 | imbalance, sd, CPU_NEWLY_IDLE, | ||
4332 | &all_pinned); | ||
4333 | double_unlock_balance(this_rq, busiest); | ||
4334 | |||
4335 | if (unlikely(all_pinned)) { | ||
4336 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4337 | if (!cpumask_empty(cpus)) | ||
4338 | goto redo; | ||
4339 | } | ||
4340 | } | ||
4341 | |||
4342 | if (!ld_moved) { | ||
4343 | int active_balance = 0; | ||
4344 | |||
4345 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | ||
4346 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4347 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4348 | return -1; | ||
4349 | |||
4350 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
4351 | return -1; | ||
4352 | |||
4353 | if (sd->nr_balance_failed++ < 2) | ||
4354 | return -1; | ||
4355 | |||
4356 | /* | ||
4357 | * The only task running in a non-idle cpu can be moved to this | ||
4358 | * cpu in an attempt to completely freeup the other CPU | ||
4359 | * package. The same method used to move task in load_balance() | ||
4360 | * have been extended for load_balance_newidle() to speedup | ||
4361 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | ||
4362 | * | ||
4363 | * The package power saving logic comes from | ||
4364 | * find_busiest_group(). If there are no imbalance, then | ||
4365 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
4366 | * f_b_g() will select a group from which a running task may be | ||
4367 | * pulled to this cpu in order to make the other package idle. | ||
4368 | * If there is no opportunity to make a package idle and if | ||
4369 | * there are no imbalance, then f_b_g() will return NULL and no | ||
4370 | * action will be taken in load_balance_newidle(). | ||
4371 | * | ||
4372 | * Under normal task pull operation due to imbalance, there | ||
4373 | * will be more than one task in the source run queue and | ||
4374 | * move_tasks() will succeed. ld_moved will be true and this | ||
4375 | * active balance code will not be triggered. | ||
4376 | */ | ||
4377 | |||
4378 | /* Lock busiest in correct order while this_rq is held */ | ||
4379 | double_lock_balance(this_rq, busiest); | ||
4380 | |||
4381 | /* | ||
4382 | * don't kick the migration_thread, if the curr | ||
4383 | * task on busiest cpu can't be moved to this_cpu | ||
4384 | */ | ||
4385 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { | ||
4386 | double_unlock_balance(this_rq, busiest); | ||
4387 | all_pinned = 1; | ||
4388 | return ld_moved; | ||
4389 | } | ||
4390 | |||
4391 | if (!busiest->active_balance) { | ||
4392 | busiest->active_balance = 1; | ||
4393 | busiest->push_cpu = this_cpu; | ||
4394 | active_balance = 1; | ||
4395 | } | ||
4396 | |||
4397 | double_unlock_balance(this_rq, busiest); | ||
4398 | /* | ||
4399 | * Should not call ttwu while holding a rq->lock | ||
4400 | */ | ||
4401 | spin_unlock(&this_rq->lock); | ||
4402 | if (active_balance) | ||
4403 | wake_up_process(busiest->migration_thread); | ||
4404 | spin_lock(&this_rq->lock); | ||
4405 | |||
4406 | } else | ||
4407 | sd->nr_balance_failed = 0; | ||
4408 | |||
4409 | update_shares_locked(this_rq, sd); | ||
4410 | return ld_moved; | ||
4411 | |||
4412 | out_balanced: | ||
4413 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | ||
4414 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4415 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4416 | return -1; | ||
4417 | sd->nr_balance_failed = 0; | ||
4418 | |||
4419 | return 0; | ||
4420 | } | ||
4421 | |||
4422 | /* | ||
4423 | * idle_balance is called by schedule() if this_cpu is about to become | ||
4424 | * idle. Attempts to pull tasks from other CPUs. | ||
4425 | */ | ||
4426 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
4427 | { | ||
4428 | struct sched_domain *sd; | ||
4429 | int pulled_task = 0; | ||
4430 | unsigned long next_balance = jiffies + HZ; | ||
4431 | |||
4432 | for_each_domain(this_cpu, sd) { | ||
4433 | unsigned long interval; | ||
4434 | |||
4435 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4436 | continue; | ||
4437 | |||
4438 | if (sd->flags & SD_BALANCE_NEWIDLE) | ||
4439 | /* If we've pulled tasks over stop searching: */ | ||
4440 | pulled_task = load_balance_newidle(this_cpu, this_rq, | ||
4441 | sd); | ||
4442 | |||
4443 | interval = msecs_to_jiffies(sd->balance_interval); | ||
4444 | if (time_after(next_balance, sd->last_balance + interval)) | ||
4445 | next_balance = sd->last_balance + interval; | ||
4446 | if (pulled_task) | ||
4447 | break; | ||
4448 | } | ||
4449 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
4450 | /* | ||
4451 | * We are going idle. next_balance may be set based on | ||
4452 | * a busy processor. So reset next_balance. | ||
4453 | */ | ||
4454 | this_rq->next_balance = next_balance; | ||
4455 | } | ||
4456 | } | ||
4457 | |||
4458 | /* | ||
4459 | * active_load_balance is run by migration threads. It pushes running tasks | ||
4460 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
4461 | * running on each physical CPU where possible, and avoids physical / | ||
4462 | * logical imbalances. | ||
4463 | * | ||
4464 | * Called with busiest_rq locked. | ||
4465 | */ | ||
4466 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
4467 | { | ||
4468 | int target_cpu = busiest_rq->push_cpu; | ||
4469 | struct sched_domain *sd; | ||
4470 | struct rq *target_rq; | ||
4471 | |||
4472 | /* Is there any task to move? */ | ||
4473 | if (busiest_rq->nr_running <= 1) | ||
4474 | return; | ||
4475 | |||
4476 | target_rq = cpu_rq(target_cpu); | ||
4477 | |||
4478 | /* | ||
4479 | * This condition is "impossible", if it occurs | ||
4480 | * we need to fix it. Originally reported by | ||
4481 | * Bjorn Helgaas on a 128-cpu setup. | ||
4482 | */ | ||
4483 | BUG_ON(busiest_rq == target_rq); | ||
4484 | |||
4485 | /* move a task from busiest_rq to target_rq */ | ||
4486 | double_lock_balance(busiest_rq, target_rq); | ||
4487 | update_rq_clock(busiest_rq); | ||
4488 | update_rq_clock(target_rq); | ||
4489 | |||
4490 | /* Search for an sd spanning us and the target CPU. */ | ||
4491 | for_each_domain(target_cpu, sd) { | ||
4492 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
4493 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
4494 | break; | ||
4495 | } | ||
4496 | |||
4497 | if (likely(sd)) { | ||
4498 | schedstat_inc(sd, alb_count); | ||
4499 | |||
4500 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
4501 | sd, CPU_IDLE)) | ||
4502 | schedstat_inc(sd, alb_pushed); | ||
4503 | else | ||
4504 | schedstat_inc(sd, alb_failed); | ||
4505 | } | ||
4506 | double_unlock_balance(busiest_rq, target_rq); | ||
4507 | } | ||
4508 | |||
4509 | #ifdef CONFIG_NO_HZ | ||
4510 | static struct { | ||
4511 | atomic_t load_balancer; | ||
4512 | cpumask_var_t cpu_mask; | ||
4513 | cpumask_var_t ilb_grp_nohz_mask; | ||
4514 | } nohz ____cacheline_aligned = { | ||
4515 | .load_balancer = ATOMIC_INIT(-1), | ||
4516 | }; | ||
4517 | |||
4518 | int get_nohz_load_balancer(void) | ||
4519 | { | ||
4520 | return atomic_read(&nohz.load_balancer); | ||
4521 | } | ||
4522 | |||
4523 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
4524 | /** | ||
4525 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
4526 | * @cpu: The cpu whose lowest level of sched domain is to | ||
4527 | * be returned. | ||
4528 | * @flag: The flag to check for the lowest sched_domain | ||
4529 | * for the given cpu. | ||
4530 | * | ||
4531 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
4532 | */ | ||
4533 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
4534 | { | ||
4535 | struct sched_domain *sd; | ||
4536 | |||
4537 | for_each_domain(cpu, sd) | ||
4538 | if (sd && (sd->flags & flag)) | ||
4539 | break; | ||
4540 | |||
4541 | return sd; | ||
4542 | } | ||
4543 | |||
4544 | /** | ||
4545 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
4546 | * @cpu: The cpu whose domains we're iterating over. | ||
4547 | * @sd: variable holding the value of the power_savings_sd | ||
4548 | * for cpu. | ||
4549 | * @flag: The flag to filter the sched_domains to be iterated. | ||
4550 | * | ||
4551 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
4552 | * set, starting from the lowest sched_domain to the highest. | ||
4553 | */ | ||
4554 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
4555 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
4556 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
4557 | |||
4558 | /** | ||
4559 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
4560 | * @ilb_group: group to be checked for semi-idleness | ||
4561 | * | ||
4562 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
4563 | * | ||
4564 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
4565 | * and atleast one non-idle CPU. This helper function checks if the given | ||
4566 | * sched_group is semi-idle or not. | ||
4567 | */ | ||
4568 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
4569 | { | ||
4570 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
4571 | sched_group_cpus(ilb_group)); | ||
4572 | |||
4573 | /* | ||
4574 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
4575 | * and atleast one idle cpu. | ||
4576 | */ | ||
4577 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
4578 | return 0; | ||
4579 | |||
4580 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
4581 | return 0; | ||
4582 | |||
4583 | return 1; | ||
4584 | } | ||
4585 | /** | ||
4586 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
4587 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
4588 | * | ||
4589 | * Returns: Returns the id of the idle load balancer if it exists, | ||
4590 | * Else, returns >= nr_cpu_ids. | ||
4591 | * | ||
4592 | * This algorithm picks the idle load balancer such that it belongs to a | ||
4593 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
4594 | * completely idle packages/cores just for the purpose of idle load balancing | ||
4595 | * when there are other idle cpu's which are better suited for that job. | ||
4596 | */ | ||
4597 | static int find_new_ilb(int cpu) | ||
4598 | { | ||
4599 | struct sched_domain *sd; | ||
4600 | struct sched_group *ilb_group; | ||
4601 | |||
4602 | /* | ||
4603 | * Have idle load balancer selection from semi-idle packages only | ||
4604 | * when power-aware load balancing is enabled | ||
4605 | */ | ||
4606 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
4607 | goto out_done; | ||
4608 | |||
4609 | /* | ||
4610 | * Optimize for the case when we have no idle CPUs or only one | ||
4611 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
4612 | */ | ||
4613 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
4614 | goto out_done; | ||
4615 | |||
4616 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
4617 | ilb_group = sd->groups; | ||
4618 | |||
4619 | do { | ||
4620 | if (is_semi_idle_group(ilb_group)) | ||
4621 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
4622 | |||
4623 | ilb_group = ilb_group->next; | ||
4624 | |||
4625 | } while (ilb_group != sd->groups); | ||
4626 | } | ||
4627 | |||
4628 | out_done: | ||
4629 | return cpumask_first(nohz.cpu_mask); | ||
4630 | } | ||
4631 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
4632 | static inline int find_new_ilb(int call_cpu) | ||
4633 | { | ||
4634 | return cpumask_first(nohz.cpu_mask); | ||
4635 | } | ||
4636 | #endif | ||
4637 | |||
4638 | /* | ||
4639 | * This routine will try to nominate the ilb (idle load balancing) | ||
4640 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
4641 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
4642 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
4643 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
4644 | * arrives... | ||
4645 | * | ||
4646 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
4647 | * for idle load balancing. ilb owner will still be part of | ||
4648 | * nohz.cpu_mask.. | ||
4649 | * | ||
4650 | * While stopping the tick, this cpu will become the ilb owner if there | ||
4651 | * is no other owner. And will be the owner till that cpu becomes busy | ||
4652 | * or if all cpus in the system stop their ticks at which point | ||
4653 | * there is no need for ilb owner. | ||
4654 | * | ||
4655 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
4656 | * next busy scheduler_tick() | ||
4657 | */ | ||
4658 | int select_nohz_load_balancer(int stop_tick) | ||
4659 | { | ||
4660 | int cpu = smp_processor_id(); | ||
4661 | |||
4662 | if (stop_tick) { | ||
4663 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
4664 | |||
4665 | if (!cpu_active(cpu)) { | ||
4666 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
4667 | return 0; | ||
4668 | |||
4669 | /* | ||
4670 | * If we are going offline and still the leader, | ||
4671 | * give up! | ||
4672 | */ | ||
4673 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4674 | BUG(); | ||
4675 | |||
4676 | return 0; | ||
4677 | } | ||
4678 | |||
4679 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
4680 | |||
4681 | /* time for ilb owner also to sleep */ | ||
4682 | if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
4683 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4684 | atomic_set(&nohz.load_balancer, -1); | ||
4685 | return 0; | ||
4686 | } | ||
4687 | |||
4688 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4689 | /* make me the ilb owner */ | ||
4690 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
4691 | return 1; | ||
4692 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4693 | int new_ilb; | ||
4694 | |||
4695 | if (!(sched_smt_power_savings || | ||
4696 | sched_mc_power_savings)) | ||
4697 | return 1; | ||
4698 | /* | ||
4699 | * Check to see if there is a more power-efficient | ||
4700 | * ilb. | ||
4701 | */ | ||
4702 | new_ilb = find_new_ilb(cpu); | ||
4703 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
4704 | atomic_set(&nohz.load_balancer, -1); | ||
4705 | resched_cpu(new_ilb); | ||
4706 | return 0; | ||
4707 | } | ||
4708 | return 1; | ||
4709 | } | ||
4710 | } else { | ||
4711 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4712 | return 0; | ||
4713 | |||
4714 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4715 | |||
4716 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4717 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4718 | BUG(); | ||
4719 | } | ||
4720 | return 0; | ||
4721 | } | ||
4722 | #endif | ||
4723 | |||
4724 | static DEFINE_SPINLOCK(balancing); | ||
4725 | |||
4726 | /* | ||
4727 | * It checks each scheduling domain to see if it is due to be balanced, | ||
4728 | * and initiates a balancing operation if so. | ||
4729 | * | ||
4730 | * Balancing parameters are set up in arch_init_sched_domains. | ||
4731 | */ | ||
4732 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
4733 | { | ||
4734 | int balance = 1; | ||
4735 | struct rq *rq = cpu_rq(cpu); | ||
4736 | unsigned long interval; | ||
4737 | struct sched_domain *sd; | ||
4738 | /* Earliest time when we have to do rebalance again */ | ||
4739 | unsigned long next_balance = jiffies + 60*HZ; | ||
4740 | int update_next_balance = 0; | ||
4741 | int need_serialize; | ||
4742 | |||
4743 | for_each_domain(cpu, sd) { | ||
4744 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4745 | continue; | ||
4746 | |||
4747 | interval = sd->balance_interval; | ||
4748 | if (idle != CPU_IDLE) | ||
4749 | interval *= sd->busy_factor; | ||
4750 | |||
4751 | /* scale ms to jiffies */ | ||
4752 | interval = msecs_to_jiffies(interval); | ||
4753 | if (unlikely(!interval)) | ||
4754 | interval = 1; | ||
4755 | if (interval > HZ*NR_CPUS/10) | ||
4756 | interval = HZ*NR_CPUS/10; | ||
4757 | |||
4758 | need_serialize = sd->flags & SD_SERIALIZE; | ||
4759 | |||
4760 | if (need_serialize) { | ||
4761 | if (!spin_trylock(&balancing)) | ||
4762 | goto out; | ||
4763 | } | ||
4764 | |||
4765 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
4766 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
4767 | /* | ||
4768 | * We've pulled tasks over so either we're no | ||
4769 | * longer idle, or one of our SMT siblings is | ||
4770 | * not idle. | ||
4771 | */ | ||
4772 | idle = CPU_NOT_IDLE; | ||
4773 | } | ||
4774 | sd->last_balance = jiffies; | ||
4775 | } | ||
4776 | if (need_serialize) | ||
4777 | spin_unlock(&balancing); | ||
4778 | out: | ||
4779 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
4780 | next_balance = sd->last_balance + interval; | ||
4781 | update_next_balance = 1; | ||
4782 | } | ||
4783 | |||
4784 | /* | ||
4785 | * Stop the load balance at this level. There is another | ||
4786 | * CPU in our sched group which is doing load balancing more | ||
4787 | * actively. | ||
4788 | */ | ||
4789 | if (!balance) | ||
4790 | break; | ||
4791 | } | ||
4792 | |||
4793 | /* | ||
4794 | * next_balance will be updated only when there is a need. | ||
4795 | * When the cpu is attached to null domain for ex, it will not be | ||
4796 | * updated. | ||
4797 | */ | ||
4798 | if (likely(update_next_balance)) | ||
4799 | rq->next_balance = next_balance; | ||
4800 | } | ||
4801 | |||
4802 | /* | ||
4803 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
4804 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
4805 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
4806 | */ | ||
4807 | static void run_rebalance_domains(struct softirq_action *h) | ||
4808 | { | ||
4809 | int this_cpu = smp_processor_id(); | ||
4810 | struct rq *this_rq = cpu_rq(this_cpu); | ||
4811 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
4812 | CPU_IDLE : CPU_NOT_IDLE; | ||
4813 | |||
4814 | rebalance_domains(this_cpu, idle); | ||
4815 | |||
4816 | #ifdef CONFIG_NO_HZ | ||
4817 | /* | ||
4818 | * If this cpu is the owner for idle load balancing, then do the | ||
4819 | * balancing on behalf of the other idle cpus whose ticks are | ||
4820 | * stopped. | ||
4821 | */ | ||
4822 | if (this_rq->idle_at_tick && | ||
4823 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
4824 | struct rq *rq; | ||
4825 | int balance_cpu; | ||
4826 | |||
4827 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
4828 | if (balance_cpu == this_cpu) | ||
4829 | continue; | ||
4830 | |||
4831 | /* | ||
4832 | * If this cpu gets work to do, stop the load balancing | ||
4833 | * work being done for other cpus. Next load | ||
4834 | * balancing owner will pick it up. | ||
4835 | */ | ||
4836 | if (need_resched()) | ||
4837 | break; | ||
4838 | |||
4839 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
4840 | |||
4841 | rq = cpu_rq(balance_cpu); | ||
4842 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
4843 | this_rq->next_balance = rq->next_balance; | ||
4844 | } | ||
4845 | } | ||
4846 | #endif | ||
4847 | } | ||
4848 | |||
4849 | static inline int on_null_domain(int cpu) | ||
4850 | { | ||
4851 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4852 | } | ||
4853 | |||
4854 | /* | ||
4855 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
4856 | * | ||
4857 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
4858 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
4859 | * if the whole system is idle. | ||
4860 | */ | ||
4861 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
4862 | { | ||
4863 | #ifdef CONFIG_NO_HZ | ||
4864 | /* | ||
4865 | * If we were in the nohz mode recently and busy at the current | ||
4866 | * scheduler tick, then check if we need to nominate new idle | ||
4867 | * load balancer. | ||
4868 | */ | ||
4869 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
4870 | rq->in_nohz_recently = 0; | ||
4871 | |||
4872 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4873 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4874 | atomic_set(&nohz.load_balancer, -1); | ||
4875 | } | ||
4876 | |||
4877 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4878 | int ilb = find_new_ilb(cpu); | ||
4879 | |||
4880 | if (ilb < nr_cpu_ids) | ||
4881 | resched_cpu(ilb); | ||
4882 | } | ||
4883 | } | ||
4884 | |||
4885 | /* | ||
4886 | * If this cpu is idle and doing idle load balancing for all the | ||
4887 | * cpus with ticks stopped, is it time for that to stop? | ||
4888 | */ | ||
4889 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
4890 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
4891 | resched_cpu(cpu); | ||
4892 | return; | ||
4893 | } | ||
4894 | |||
4895 | /* | ||
4896 | * If this cpu is idle and the idle load balancing is done by | ||
4897 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
4898 | */ | ||
4899 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
4900 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4901 | return; | ||
4902 | #endif | ||
4903 | /* Don't need to rebalance while attached to NULL domain */ | ||
4904 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4905 | likely(!on_null_domain(cpu))) | ||
4906 | raise_softirq(SCHED_SOFTIRQ); | ||
4907 | } | ||
4908 | |||
4909 | #else /* CONFIG_SMP */ | ||
4910 | |||
4911 | /* | ||
4912 | * on UP we do not need to balance between CPUs: | ||
4913 | */ | ||
4914 | static inline void idle_balance(int cpu, struct rq *rq) | ||
4915 | { | ||
4916 | } | ||
4917 | |||
4918 | #endif | 3164 | #endif |
4919 | 3165 | ||
4920 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 3166 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
@@ -5046,8 +3292,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime, | |||
5046 | p->gtime = cputime_add(p->gtime, cputime); | 3292 | p->gtime = cputime_add(p->gtime, cputime); |
5047 | 3293 | ||
5048 | /* Add guest time to cpustat. */ | 3294 | /* Add guest time to cpustat. */ |
5049 | cpustat->user = cputime64_add(cpustat->user, tmp); | 3295 | if (TASK_NICE(p) > 0) { |
5050 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | 3296 | cpustat->nice = cputime64_add(cpustat->nice, tmp); |
3297 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | ||
3298 | } else { | ||
3299 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
3300 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | ||
3301 | } | ||
5051 | } | 3302 | } |
5052 | 3303 | ||
5053 | /* | 3304 | /* |
@@ -5162,60 +3413,86 @@ void account_idle_ticks(unsigned long ticks) | |||
5162 | * Use precise platform statistics if available: | 3413 | * Use precise platform statistics if available: |
5163 | */ | 3414 | */ |
5164 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 3415 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
5165 | cputime_t task_utime(struct task_struct *p) | 3416 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
5166 | { | 3417 | { |
5167 | return p->utime; | 3418 | *ut = p->utime; |
3419 | *st = p->stime; | ||
5168 | } | 3420 | } |
5169 | 3421 | ||
5170 | cputime_t task_stime(struct task_struct *p) | 3422 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
5171 | { | 3423 | { |
5172 | return p->stime; | 3424 | struct task_cputime cputime; |
3425 | |||
3426 | thread_group_cputime(p, &cputime); | ||
3427 | |||
3428 | *ut = cputime.utime; | ||
3429 | *st = cputime.stime; | ||
5173 | } | 3430 | } |
5174 | #else | 3431 | #else |
5175 | cputime_t task_utime(struct task_struct *p) | 3432 | |
3433 | #ifndef nsecs_to_cputime | ||
3434 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) | ||
3435 | #endif | ||
3436 | |||
3437 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
5176 | { | 3438 | { |
5177 | clock_t utime = cputime_to_clock_t(p->utime), | 3439 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); |
5178 | total = utime + cputime_to_clock_t(p->stime); | ||
5179 | u64 temp; | ||
5180 | 3440 | ||
5181 | /* | 3441 | /* |
5182 | * Use CFS's precise accounting: | 3442 | * Use CFS's precise accounting: |
5183 | */ | 3443 | */ |
5184 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | 3444 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
5185 | 3445 | ||
5186 | if (total) { | 3446 | if (total) { |
5187 | temp *= utime; | 3447 | u64 temp; |
3448 | |||
3449 | temp = (u64)(rtime * utime); | ||
5188 | do_div(temp, total); | 3450 | do_div(temp, total); |
5189 | } | 3451 | utime = (cputime_t)temp; |
5190 | utime = (clock_t)temp; | 3452 | } else |
3453 | utime = rtime; | ||
5191 | 3454 | ||
5192 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | 3455 | /* |
5193 | return p->prev_utime; | 3456 | * Compare with previous values, to keep monotonicity: |
3457 | */ | ||
3458 | p->prev_utime = max(p->prev_utime, utime); | ||
3459 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | ||
3460 | |||
3461 | *ut = p->prev_utime; | ||
3462 | *st = p->prev_stime; | ||
5194 | } | 3463 | } |
5195 | 3464 | ||
5196 | cputime_t task_stime(struct task_struct *p) | 3465 | /* |
3466 | * Must be called with siglock held. | ||
3467 | */ | ||
3468 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | ||
5197 | { | 3469 | { |
5198 | clock_t stime; | 3470 | struct signal_struct *sig = p->signal; |
3471 | struct task_cputime cputime; | ||
3472 | cputime_t rtime, utime, total; | ||
5199 | 3473 | ||
5200 | /* | 3474 | thread_group_cputime(p, &cputime); |
5201 | * Use CFS's precise accounting. (we subtract utime from | ||
5202 | * the total, to make sure the total observed by userspace | ||
5203 | * grows monotonically - apps rely on that): | ||
5204 | */ | ||
5205 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | ||
5206 | cputime_to_clock_t(task_utime(p)); | ||
5207 | 3475 | ||
5208 | if (stime >= 0) | 3476 | total = cputime_add(cputime.utime, cputime.stime); |
5209 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | 3477 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
5210 | 3478 | ||
5211 | return p->prev_stime; | 3479 | if (total) { |
5212 | } | 3480 | u64 temp; |
5213 | #endif | ||
5214 | 3481 | ||
5215 | inline cputime_t task_gtime(struct task_struct *p) | 3482 | temp = (u64)(rtime * cputime.utime); |
5216 | { | 3483 | do_div(temp, total); |
5217 | return p->gtime; | 3484 | utime = (cputime_t)temp; |
3485 | } else | ||
3486 | utime = rtime; | ||
3487 | |||
3488 | sig->prev_utime = max(sig->prev_utime, utime); | ||
3489 | sig->prev_stime = max(sig->prev_stime, | ||
3490 | cputime_sub(rtime, sig->prev_utime)); | ||
3491 | |||
3492 | *ut = sig->prev_utime; | ||
3493 | *st = sig->prev_stime; | ||
5218 | } | 3494 | } |
3495 | #endif | ||
5219 | 3496 | ||
5220 | /* | 3497 | /* |
5221 | * This function gets called by the timer code, with HZ frequency. | 3498 | * This function gets called by the timer code, with HZ frequency. |
@@ -5232,13 +3509,13 @@ void scheduler_tick(void) | |||
5232 | 3509 | ||
5233 | sched_clock_tick(); | 3510 | sched_clock_tick(); |
5234 | 3511 | ||
5235 | spin_lock(&rq->lock); | 3512 | raw_spin_lock(&rq->lock); |
5236 | update_rq_clock(rq); | 3513 | update_rq_clock(rq); |
5237 | update_cpu_load(rq); | 3514 | update_cpu_load(rq); |
5238 | curr->sched_class->task_tick(rq, curr, 0); | 3515 | curr->sched_class->task_tick(rq, curr, 0); |
5239 | spin_unlock(&rq->lock); | 3516 | raw_spin_unlock(&rq->lock); |
5240 | 3517 | ||
5241 | perf_event_task_tick(curr, cpu); | 3518 | perf_event_task_tick(curr); |
5242 | 3519 | ||
5243 | #ifdef CONFIG_SMP | 3520 | #ifdef CONFIG_SMP |
5244 | rq->idle_at_tick = idle_cpu(cpu); | 3521 | rq->idle_at_tick = idle_cpu(cpu); |
@@ -5350,13 +3627,14 @@ static inline void schedule_debug(struct task_struct *prev) | |||
5350 | #endif | 3627 | #endif |
5351 | } | 3628 | } |
5352 | 3629 | ||
5353 | static void put_prev_task(struct rq *rq, struct task_struct *p) | 3630 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
5354 | { | 3631 | { |
5355 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; | 3632 | if (prev->state == TASK_RUNNING) { |
3633 | u64 runtime = prev->se.sum_exec_runtime; | ||
5356 | 3634 | ||
5357 | update_avg(&p->se.avg_running, runtime); | 3635 | runtime -= prev->se.prev_sum_exec_runtime; |
3636 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
5358 | 3637 | ||
5359 | if (p->state == TASK_RUNNING) { | ||
5360 | /* | 3638 | /* |
5361 | * In order to avoid avg_overlap growing stale when we are | 3639 | * In order to avoid avg_overlap growing stale when we are |
5362 | * indeed overlapping and hence not getting put to sleep, grow | 3640 | * indeed overlapping and hence not getting put to sleep, grow |
@@ -5366,12 +3644,9 @@ static void put_prev_task(struct rq *rq, struct task_struct *p) | |||
5366 | * correlates to the amount of cache footprint a task can | 3644 | * correlates to the amount of cache footprint a task can |
5367 | * build up. | 3645 | * build up. |
5368 | */ | 3646 | */ |
5369 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | 3647 | update_avg(&prev->se.avg_overlap, runtime); |
5370 | update_avg(&p->se.avg_overlap, runtime); | ||
5371 | } else { | ||
5372 | update_avg(&p->se.avg_running, 0); | ||
5373 | } | 3648 | } |
5374 | p->sched_class->put_prev_task(rq, p); | 3649 | prev->sched_class->put_prev_task(rq, prev); |
5375 | } | 3650 | } |
5376 | 3651 | ||
5377 | /* | 3652 | /* |
@@ -5432,7 +3707,7 @@ need_resched_nonpreemptible: | |||
5432 | if (sched_feat(HRTICK)) | 3707 | if (sched_feat(HRTICK)) |
5433 | hrtick_clear(rq); | 3708 | hrtick_clear(rq); |
5434 | 3709 | ||
5435 | spin_lock_irq(&rq->lock); | 3710 | raw_spin_lock_irq(&rq->lock); |
5436 | update_rq_clock(rq); | 3711 | update_rq_clock(rq); |
5437 | clear_tsk_need_resched(prev); | 3712 | clear_tsk_need_resched(prev); |
5438 | 3713 | ||
@@ -5454,7 +3729,7 @@ need_resched_nonpreemptible: | |||
5454 | 3729 | ||
5455 | if (likely(prev != next)) { | 3730 | if (likely(prev != next)) { |
5456 | sched_info_switch(prev, next); | 3731 | sched_info_switch(prev, next); |
5457 | perf_event_task_sched_out(prev, next, cpu); | 3732 | perf_event_task_sched_out(prev, next); |
5458 | 3733 | ||
5459 | rq->nr_switches++; | 3734 | rq->nr_switches++; |
5460 | rq->curr = next; | 3735 | rq->curr = next; |
@@ -5468,12 +3743,15 @@ need_resched_nonpreemptible: | |||
5468 | cpu = smp_processor_id(); | 3743 | cpu = smp_processor_id(); |
5469 | rq = cpu_rq(cpu); | 3744 | rq = cpu_rq(cpu); |
5470 | } else | 3745 | } else |
5471 | spin_unlock_irq(&rq->lock); | 3746 | raw_spin_unlock_irq(&rq->lock); |
5472 | 3747 | ||
5473 | post_schedule(rq); | 3748 | post_schedule(rq); |
5474 | 3749 | ||
5475 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 3750 | if (unlikely(reacquire_kernel_lock(current) < 0)) { |
3751 | prev = rq->curr; | ||
3752 | switch_count = &prev->nivcsw; | ||
5476 | goto need_resched_nonpreemptible; | 3753 | goto need_resched_nonpreemptible; |
3754 | } | ||
5477 | 3755 | ||
5478 | preempt_enable_no_resched(); | 3756 | preempt_enable_no_resched(); |
5479 | if (need_resched()) | 3757 | if (need_resched()) |
@@ -5481,7 +3759,7 @@ need_resched_nonpreemptible: | |||
5481 | } | 3759 | } |
5482 | EXPORT_SYMBOL(schedule); | 3760 | EXPORT_SYMBOL(schedule); |
5483 | 3761 | ||
5484 | #ifdef CONFIG_SMP | 3762 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
5485 | /* | 3763 | /* |
5486 | * Look out! "owner" is an entirely speculative pointer | 3764 | * Look out! "owner" is an entirely speculative pointer |
5487 | * access and not reliable. | 3765 | * access and not reliable. |
@@ -5885,14 +4163,15 @@ EXPORT_SYMBOL(wait_for_completion_killable); | |||
5885 | */ | 4163 | */ |
5886 | bool try_wait_for_completion(struct completion *x) | 4164 | bool try_wait_for_completion(struct completion *x) |
5887 | { | 4165 | { |
4166 | unsigned long flags; | ||
5888 | int ret = 1; | 4167 | int ret = 1; |
5889 | 4168 | ||
5890 | spin_lock_irq(&x->wait.lock); | 4169 | spin_lock_irqsave(&x->wait.lock, flags); |
5891 | if (!x->done) | 4170 | if (!x->done) |
5892 | ret = 0; | 4171 | ret = 0; |
5893 | else | 4172 | else |
5894 | x->done--; | 4173 | x->done--; |
5895 | spin_unlock_irq(&x->wait.lock); | 4174 | spin_unlock_irqrestore(&x->wait.lock, flags); |
5896 | return ret; | 4175 | return ret; |
5897 | } | 4176 | } |
5898 | EXPORT_SYMBOL(try_wait_for_completion); | 4177 | EXPORT_SYMBOL(try_wait_for_completion); |
@@ -5907,12 +4186,13 @@ EXPORT_SYMBOL(try_wait_for_completion); | |||
5907 | */ | 4186 | */ |
5908 | bool completion_done(struct completion *x) | 4187 | bool completion_done(struct completion *x) |
5909 | { | 4188 | { |
4189 | unsigned long flags; | ||
5910 | int ret = 1; | 4190 | int ret = 1; |
5911 | 4191 | ||
5912 | spin_lock_irq(&x->wait.lock); | 4192 | spin_lock_irqsave(&x->wait.lock, flags); |
5913 | if (!x->done) | 4193 | if (!x->done) |
5914 | ret = 0; | 4194 | ret = 0; |
5915 | spin_unlock_irq(&x->wait.lock); | 4195 | spin_unlock_irqrestore(&x->wait.lock, flags); |
5916 | return ret; | 4196 | return ret; |
5917 | } | 4197 | } |
5918 | EXPORT_SYMBOL(completion_done); | 4198 | EXPORT_SYMBOL(completion_done); |
@@ -5980,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
5980 | unsigned long flags; | 4260 | unsigned long flags; |
5981 | int oldprio, on_rq, running; | 4261 | int oldprio, on_rq, running; |
5982 | struct rq *rq; | 4262 | struct rq *rq; |
5983 | const struct sched_class *prev_class = p->sched_class; | 4263 | const struct sched_class *prev_class; |
5984 | 4264 | ||
5985 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 4265 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
5986 | 4266 | ||
@@ -5988,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
5988 | update_rq_clock(rq); | 4268 | update_rq_clock(rq); |
5989 | 4269 | ||
5990 | oldprio = p->prio; | 4270 | oldprio = p->prio; |
4271 | prev_class = p->sched_class; | ||
5991 | on_rq = p->se.on_rq; | 4272 | on_rq = p->se.on_rq; |
5992 | running = task_current(rq, p); | 4273 | running = task_current(rq, p); |
5993 | if (on_rq) | 4274 | if (on_rq) |
@@ -6005,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
6005 | if (running) | 4286 | if (running) |
6006 | p->sched_class->set_curr_task(rq); | 4287 | p->sched_class->set_curr_task(rq); |
6007 | if (on_rq) { | 4288 | if (on_rq) { |
6008 | enqueue_task(rq, p, 0); | 4289 | enqueue_task(rq, p, 0, oldprio < prio); |
6009 | 4290 | ||
6010 | check_class_changed(rq, p, prev_class, oldprio, running); | 4291 | check_class_changed(rq, p, prev_class, oldprio, running); |
6011 | } | 4292 | } |
@@ -6049,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
6049 | delta = p->prio - old_prio; | 4330 | delta = p->prio - old_prio; |
6050 | 4331 | ||
6051 | if (on_rq) { | 4332 | if (on_rq) { |
6052 | enqueue_task(rq, p, 0); | 4333 | enqueue_task(rq, p, 0, false); |
6053 | /* | 4334 | /* |
6054 | * If the task increased its priority or is running and | 4335 | * If the task increased its priority or is running and |
6055 | * lowered its priority, then reschedule its CPU: | 4336 | * lowered its priority, then reschedule its CPU: |
@@ -6072,7 +4353,7 @@ int can_nice(const struct task_struct *p, const int nice) | |||
6072 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 4353 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
6073 | int nice_rlim = 20 - nice; | 4354 | int nice_rlim = 20 - nice; |
6074 | 4355 | ||
6075 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 4356 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
6076 | capable(CAP_SYS_NICE)); | 4357 | capable(CAP_SYS_NICE)); |
6077 | } | 4358 | } |
6078 | 4359 | ||
@@ -6175,22 +4456,14 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |||
6175 | BUG_ON(p->se.on_rq); | 4456 | BUG_ON(p->se.on_rq); |
6176 | 4457 | ||
6177 | p->policy = policy; | 4458 | p->policy = policy; |
6178 | switch (p->policy) { | ||
6179 | case SCHED_NORMAL: | ||
6180 | case SCHED_BATCH: | ||
6181 | case SCHED_IDLE: | ||
6182 | p->sched_class = &fair_sched_class; | ||
6183 | break; | ||
6184 | case SCHED_FIFO: | ||
6185 | case SCHED_RR: | ||
6186 | p->sched_class = &rt_sched_class; | ||
6187 | break; | ||
6188 | } | ||
6189 | |||
6190 | p->rt_priority = prio; | 4459 | p->rt_priority = prio; |
6191 | p->normal_prio = normal_prio(p); | 4460 | p->normal_prio = normal_prio(p); |
6192 | /* we are holding p->pi_lock already */ | 4461 | /* we are holding p->pi_lock already */ |
6193 | p->prio = rt_mutex_getprio(p); | 4462 | p->prio = rt_mutex_getprio(p); |
4463 | if (rt_prio(p->prio)) | ||
4464 | p->sched_class = &rt_sched_class; | ||
4465 | else | ||
4466 | p->sched_class = &fair_sched_class; | ||
6194 | set_load_weight(p); | 4467 | set_load_weight(p); |
6195 | } | 4468 | } |
6196 | 4469 | ||
@@ -6215,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy, | |||
6215 | { | 4488 | { |
6216 | int retval, oldprio, oldpolicy = -1, on_rq, running; | 4489 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
6217 | unsigned long flags; | 4490 | unsigned long flags; |
6218 | const struct sched_class *prev_class = p->sched_class; | 4491 | const struct sched_class *prev_class; |
6219 | struct rq *rq; | 4492 | struct rq *rq; |
6220 | int reset_on_fork; | 4493 | int reset_on_fork; |
6221 | 4494 | ||
@@ -6257,7 +4530,7 @@ recheck: | |||
6257 | 4530 | ||
6258 | if (!lock_task_sighand(p, &flags)) | 4531 | if (!lock_task_sighand(p, &flags)) |
6259 | return -ESRCH; | 4532 | return -ESRCH; |
6260 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | 4533 | rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); |
6261 | unlock_task_sighand(p, &flags); | 4534 | unlock_task_sighand(p, &flags); |
6262 | 4535 | ||
6263 | /* can't set/change the rt policy */ | 4536 | /* can't set/change the rt policy */ |
@@ -6305,7 +4578,7 @@ recheck: | |||
6305 | * make sure no PI-waiters arrive (or leave) while we are | 4578 | * make sure no PI-waiters arrive (or leave) while we are |
6306 | * changing the priority of the task: | 4579 | * changing the priority of the task: |
6307 | */ | 4580 | */ |
6308 | spin_lock_irqsave(&p->pi_lock, flags); | 4581 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
6309 | /* | 4582 | /* |
6310 | * To be able to change p->policy safely, the apropriate | 4583 | * To be able to change p->policy safely, the apropriate |
6311 | * runqueue lock must be held. | 4584 | * runqueue lock must be held. |
@@ -6315,7 +4588,7 @@ recheck: | |||
6315 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 4588 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
6316 | policy = oldpolicy = -1; | 4589 | policy = oldpolicy = -1; |
6317 | __task_rq_unlock(rq); | 4590 | __task_rq_unlock(rq); |
6318 | spin_unlock_irqrestore(&p->pi_lock, flags); | 4591 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
6319 | goto recheck; | 4592 | goto recheck; |
6320 | } | 4593 | } |
6321 | update_rq_clock(rq); | 4594 | update_rq_clock(rq); |
@@ -6329,6 +4602,7 @@ recheck: | |||
6329 | p->sched_reset_on_fork = reset_on_fork; | 4602 | p->sched_reset_on_fork = reset_on_fork; |
6330 | 4603 | ||
6331 | oldprio = p->prio; | 4604 | oldprio = p->prio; |
4605 | prev_class = p->sched_class; | ||
6332 | __setscheduler(rq, p, policy, param->sched_priority); | 4606 | __setscheduler(rq, p, policy, param->sched_priority); |
6333 | 4607 | ||
6334 | if (running) | 4608 | if (running) |
@@ -6339,7 +4613,7 @@ recheck: | |||
6339 | check_class_changed(rq, p, prev_class, oldprio, running); | 4613 | check_class_changed(rq, p, prev_class, oldprio, running); |
6340 | } | 4614 | } |
6341 | __task_rq_unlock(rq); | 4615 | __task_rq_unlock(rq); |
6342 | spin_unlock_irqrestore(&p->pi_lock, flags); | 4616 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
6343 | 4617 | ||
6344 | rt_mutex_adjust_pi(p); | 4618 | rt_mutex_adjust_pi(p); |
6345 | 4619 | ||
@@ -6439,7 +4713,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
6439 | return -EINVAL; | 4713 | return -EINVAL; |
6440 | 4714 | ||
6441 | retval = -ESRCH; | 4715 | retval = -ESRCH; |
6442 | read_lock(&tasklist_lock); | 4716 | rcu_read_lock(); |
6443 | p = find_process_by_pid(pid); | 4717 | p = find_process_by_pid(pid); |
6444 | if (p) { | 4718 | if (p) { |
6445 | retval = security_task_getscheduler(p); | 4719 | retval = security_task_getscheduler(p); |
@@ -6447,7 +4721,7 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
6447 | retval = p->policy | 4721 | retval = p->policy |
6448 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | 4722 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); |
6449 | } | 4723 | } |
6450 | read_unlock(&tasklist_lock); | 4724 | rcu_read_unlock(); |
6451 | return retval; | 4725 | return retval; |
6452 | } | 4726 | } |
6453 | 4727 | ||
@@ -6465,7 +4739,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
6465 | if (!param || pid < 0) | 4739 | if (!param || pid < 0) |
6466 | return -EINVAL; | 4740 | return -EINVAL; |
6467 | 4741 | ||
6468 | read_lock(&tasklist_lock); | 4742 | rcu_read_lock(); |
6469 | p = find_process_by_pid(pid); | 4743 | p = find_process_by_pid(pid); |
6470 | retval = -ESRCH; | 4744 | retval = -ESRCH; |
6471 | if (!p) | 4745 | if (!p) |
@@ -6476,7 +4750,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
6476 | goto out_unlock; | 4750 | goto out_unlock; |
6477 | 4751 | ||
6478 | lp.sched_priority = p->rt_priority; | 4752 | lp.sched_priority = p->rt_priority; |
6479 | read_unlock(&tasklist_lock); | 4753 | rcu_read_unlock(); |
6480 | 4754 | ||
6481 | /* | 4755 | /* |
6482 | * This one might sleep, we cannot do it with a spinlock held ... | 4756 | * This one might sleep, we cannot do it with a spinlock held ... |
@@ -6486,7 +4760,7 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |||
6486 | return retval; | 4760 | return retval; |
6487 | 4761 | ||
6488 | out_unlock: | 4762 | out_unlock: |
6489 | read_unlock(&tasklist_lock); | 4763 | rcu_read_unlock(); |
6490 | return retval; | 4764 | return retval; |
6491 | } | 4765 | } |
6492 | 4766 | ||
@@ -6497,22 +4771,18 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | |||
6497 | int retval; | 4771 | int retval; |
6498 | 4772 | ||
6499 | get_online_cpus(); | 4773 | get_online_cpus(); |
6500 | read_lock(&tasklist_lock); | 4774 | rcu_read_lock(); |
6501 | 4775 | ||
6502 | p = find_process_by_pid(pid); | 4776 | p = find_process_by_pid(pid); |
6503 | if (!p) { | 4777 | if (!p) { |
6504 | read_unlock(&tasklist_lock); | 4778 | rcu_read_unlock(); |
6505 | put_online_cpus(); | 4779 | put_online_cpus(); |
6506 | return -ESRCH; | 4780 | return -ESRCH; |
6507 | } | 4781 | } |
6508 | 4782 | ||
6509 | /* | 4783 | /* Prevent p going away */ |
6510 | * It is not safe to call set_cpus_allowed with the | ||
6511 | * tasklist_lock held. We will bump the task_struct's | ||
6512 | * usage count and then drop tasklist_lock. | ||
6513 | */ | ||
6514 | get_task_struct(p); | 4784 | get_task_struct(p); |
6515 | read_unlock(&tasklist_lock); | 4785 | rcu_read_unlock(); |
6516 | 4786 | ||
6517 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | 4787 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
6518 | retval = -ENOMEM; | 4788 | retval = -ENOMEM; |
@@ -6593,10 +4863,12 @@ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | |||
6593 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 4863 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
6594 | { | 4864 | { |
6595 | struct task_struct *p; | 4865 | struct task_struct *p; |
4866 | unsigned long flags; | ||
4867 | struct rq *rq; | ||
6596 | int retval; | 4868 | int retval; |
6597 | 4869 | ||
6598 | get_online_cpus(); | 4870 | get_online_cpus(); |
6599 | read_lock(&tasklist_lock); | 4871 | rcu_read_lock(); |
6600 | 4872 | ||
6601 | retval = -ESRCH; | 4873 | retval = -ESRCH; |
6602 | p = find_process_by_pid(pid); | 4874 | p = find_process_by_pid(pid); |
@@ -6607,10 +4879,12 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask) | |||
6607 | if (retval) | 4879 | if (retval) |
6608 | goto out_unlock; | 4880 | goto out_unlock; |
6609 | 4881 | ||
4882 | rq = task_rq_lock(p, &flags); | ||
6610 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); | 4883 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
4884 | task_rq_unlock(rq, &flags); | ||
6611 | 4885 | ||
6612 | out_unlock: | 4886 | out_unlock: |
6613 | read_unlock(&tasklist_lock); | 4887 | rcu_read_unlock(); |
6614 | put_online_cpus(); | 4888 | put_online_cpus(); |
6615 | 4889 | ||
6616 | return retval; | 4890 | return retval; |
@@ -6665,7 +4939,7 @@ SYSCALL_DEFINE0(sched_yield) | |||
6665 | */ | 4939 | */ |
6666 | __release(rq->lock); | 4940 | __release(rq->lock); |
6667 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 4941 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
6668 | _raw_spin_unlock(&rq->lock); | 4942 | do_raw_spin_unlock(&rq->lock); |
6669 | preempt_enable_no_resched(); | 4943 | preempt_enable_no_resched(); |
6670 | 4944 | ||
6671 | schedule(); | 4945 | schedule(); |
@@ -6845,6 +5119,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6845 | { | 5119 | { |
6846 | struct task_struct *p; | 5120 | struct task_struct *p; |
6847 | unsigned int time_slice; | 5121 | unsigned int time_slice; |
5122 | unsigned long flags; | ||
5123 | struct rq *rq; | ||
6848 | int retval; | 5124 | int retval; |
6849 | struct timespec t; | 5125 | struct timespec t; |
6850 | 5126 | ||
@@ -6852,7 +5128,7 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6852 | return -EINVAL; | 5128 | return -EINVAL; |
6853 | 5129 | ||
6854 | retval = -ESRCH; | 5130 | retval = -ESRCH; |
6855 | read_lock(&tasklist_lock); | 5131 | rcu_read_lock(); |
6856 | p = find_process_by_pid(pid); | 5132 | p = find_process_by_pid(pid); |
6857 | if (!p) | 5133 | if (!p) |
6858 | goto out_unlock; | 5134 | goto out_unlock; |
@@ -6861,15 +5137,17 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6861 | if (retval) | 5137 | if (retval) |
6862 | goto out_unlock; | 5138 | goto out_unlock; |
6863 | 5139 | ||
6864 | time_slice = p->sched_class->get_rr_interval(p); | 5140 | rq = task_rq_lock(p, &flags); |
5141 | time_slice = p->sched_class->get_rr_interval(rq, p); | ||
5142 | task_rq_unlock(rq, &flags); | ||
6865 | 5143 | ||
6866 | read_unlock(&tasklist_lock); | 5144 | rcu_read_unlock(); |
6867 | jiffies_to_timespec(time_slice, &t); | 5145 | jiffies_to_timespec(time_slice, &t); |
6868 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 5146 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
6869 | return retval; | 5147 | return retval; |
6870 | 5148 | ||
6871 | out_unlock: | 5149 | out_unlock: |
6872 | read_unlock(&tasklist_lock); | 5150 | rcu_read_unlock(); |
6873 | return retval; | 5151 | return retval; |
6874 | } | 5152 | } |
6875 | 5153 | ||
@@ -6935,7 +5213,7 @@ void show_state_filter(unsigned long state_filter) | |||
6935 | /* | 5213 | /* |
6936 | * Only show locks if all tasks are dumped: | 5214 | * Only show locks if all tasks are dumped: |
6937 | */ | 5215 | */ |
6938 | if (state_filter == -1) | 5216 | if (!state_filter) |
6939 | debug_show_all_locks(); | 5217 | debug_show_all_locks(); |
6940 | } | 5218 | } |
6941 | 5219 | ||
@@ -6957,12 +5235,12 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) | |||
6957 | struct rq *rq = cpu_rq(cpu); | 5235 | struct rq *rq = cpu_rq(cpu); |
6958 | unsigned long flags; | 5236 | unsigned long flags; |
6959 | 5237 | ||
6960 | spin_lock_irqsave(&rq->lock, flags); | 5238 | raw_spin_lock_irqsave(&rq->lock, flags); |
6961 | 5239 | ||
6962 | __sched_fork(idle); | 5240 | __sched_fork(idle); |
5241 | idle->state = TASK_RUNNING; | ||
6963 | idle->se.exec_start = sched_clock(); | 5242 | idle->se.exec_start = sched_clock(); |
6964 | 5243 | ||
6965 | idle->prio = idle->normal_prio = MAX_PRIO; | ||
6966 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); | 5244 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
6967 | __set_task_cpu(idle, cpu); | 5245 | __set_task_cpu(idle, cpu); |
6968 | 5246 | ||
@@ -6970,7 +5248,7 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) | |||
6970 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 5248 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
6971 | idle->oncpu = 1; | 5249 | idle->oncpu = 1; |
6972 | #endif | 5250 | #endif |
6973 | spin_unlock_irqrestore(&rq->lock, flags); | 5251 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
6974 | 5252 | ||
6975 | /* Set the preempt count _outside_ the spinlocks! */ | 5253 | /* Set the preempt count _outside_ the spinlocks! */ |
6976 | #if defined(CONFIG_PREEMPT) | 5254 | #if defined(CONFIG_PREEMPT) |
@@ -7003,22 +5281,43 @@ cpumask_var_t nohz_cpu_mask; | |||
7003 | * | 5281 | * |
7004 | * This idea comes from the SD scheduler of Con Kolivas: | 5282 | * This idea comes from the SD scheduler of Con Kolivas: |
7005 | */ | 5283 | */ |
7006 | static inline void sched_init_granularity(void) | 5284 | static int get_update_sysctl_factor(void) |
7007 | { | 5285 | { |
7008 | unsigned int factor = 1 + ilog2(num_online_cpus()); | 5286 | unsigned int cpus = min_t(int, num_online_cpus(), 8); |
7009 | const unsigned long limit = 200000000; | 5287 | unsigned int factor; |
7010 | 5288 | ||
7011 | sysctl_sched_min_granularity *= factor; | 5289 | switch (sysctl_sched_tunable_scaling) { |
7012 | if (sysctl_sched_min_granularity > limit) | 5290 | case SCHED_TUNABLESCALING_NONE: |
7013 | sysctl_sched_min_granularity = limit; | 5291 | factor = 1; |
5292 | break; | ||
5293 | case SCHED_TUNABLESCALING_LINEAR: | ||
5294 | factor = cpus; | ||
5295 | break; | ||
5296 | case SCHED_TUNABLESCALING_LOG: | ||
5297 | default: | ||
5298 | factor = 1 + ilog2(cpus); | ||
5299 | break; | ||
5300 | } | ||
7014 | 5301 | ||
7015 | sysctl_sched_latency *= factor; | 5302 | return factor; |
7016 | if (sysctl_sched_latency > limit) | 5303 | } |
7017 | sysctl_sched_latency = limit; | ||
7018 | 5304 | ||
7019 | sysctl_sched_wakeup_granularity *= factor; | 5305 | static void update_sysctl(void) |
5306 | { | ||
5307 | unsigned int factor = get_update_sysctl_factor(); | ||
7020 | 5308 | ||
7021 | sysctl_sched_shares_ratelimit *= factor; | 5309 | #define SET_SYSCTL(name) \ |
5310 | (sysctl_##name = (factor) * normalized_sysctl_##name) | ||
5311 | SET_SYSCTL(sched_min_granularity); | ||
5312 | SET_SYSCTL(sched_latency); | ||
5313 | SET_SYSCTL(sched_wakeup_granularity); | ||
5314 | SET_SYSCTL(sched_shares_ratelimit); | ||
5315 | #undef SET_SYSCTL | ||
5316 | } | ||
5317 | |||
5318 | static inline void sched_init_granularity(void) | ||
5319 | { | ||
5320 | update_sysctl(); | ||
7022 | } | 5321 | } |
7023 | 5322 | ||
7024 | #ifdef CONFIG_SMP | 5323 | #ifdef CONFIG_SMP |
@@ -7055,7 +5354,8 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
7055 | int ret = 0; | 5354 | int ret = 0; |
7056 | 5355 | ||
7057 | rq = task_rq_lock(p, &flags); | 5356 | rq = task_rq_lock(p, &flags); |
7058 | if (!cpumask_intersects(new_mask, cpu_online_mask)) { | 5357 | |
5358 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | ||
7059 | ret = -EINVAL; | 5359 | ret = -EINVAL; |
7060 | goto out; | 5360 | goto out; |
7061 | } | 5361 | } |
@@ -7077,7 +5377,7 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
7077 | if (cpumask_test_cpu(task_cpu(p), new_mask)) | 5377 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
7078 | goto out; | 5378 | goto out; |
7079 | 5379 | ||
7080 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { | 5380 | if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { |
7081 | /* Need help from migration thread: drop lock and wait. */ | 5381 | /* Need help from migration thread: drop lock and wait. */ |
7082 | struct task_struct *mt = rq->migration_thread; | 5382 | struct task_struct *mt = rq->migration_thread; |
7083 | 5383 | ||
@@ -7110,7 +5410,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | |||
7110 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 5410 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
7111 | { | 5411 | { |
7112 | struct rq *rq_dest, *rq_src; | 5412 | struct rq *rq_dest, *rq_src; |
7113 | int ret = 0, on_rq; | 5413 | int ret = 0; |
7114 | 5414 | ||
7115 | if (unlikely(!cpu_active(dest_cpu))) | 5415 | if (unlikely(!cpu_active(dest_cpu))) |
7116 | return ret; | 5416 | return ret; |
@@ -7126,12 +5426,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | |||
7126 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | 5426 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
7127 | goto fail; | 5427 | goto fail; |
7128 | 5428 | ||
7129 | on_rq = p->se.on_rq; | 5429 | /* |
7130 | if (on_rq) | 5430 | * If we're not on a rq, the next wake-up will ensure we're |
5431 | * placed properly. | ||
5432 | */ | ||
5433 | if (p->se.on_rq) { | ||
7131 | deactivate_task(rq_src, p, 0); | 5434 | deactivate_task(rq_src, p, 0); |
7132 | 5435 | set_task_cpu(p, dest_cpu); | |
7133 | set_task_cpu(p, dest_cpu); | ||
7134 | if (on_rq) { | ||
7135 | activate_task(rq_dest, p, 0); | 5436 | activate_task(rq_dest, p, 0); |
7136 | check_preempt_curr(rq_dest, p, 0); | 5437 | check_preempt_curr(rq_dest, p, 0); |
7137 | } | 5438 | } |
@@ -7166,10 +5467,10 @@ static int migration_thread(void *data) | |||
7166 | struct migration_req *req; | 5467 | struct migration_req *req; |
7167 | struct list_head *head; | 5468 | struct list_head *head; |
7168 | 5469 | ||
7169 | spin_lock_irq(&rq->lock); | 5470 | raw_spin_lock_irq(&rq->lock); |
7170 | 5471 | ||
7171 | if (cpu_is_offline(cpu)) { | 5472 | if (cpu_is_offline(cpu)) { |
7172 | spin_unlock_irq(&rq->lock); | 5473 | raw_spin_unlock_irq(&rq->lock); |
7173 | break; | 5474 | break; |
7174 | } | 5475 | } |
7175 | 5476 | ||
@@ -7181,7 +5482,7 @@ static int migration_thread(void *data) | |||
7181 | head = &rq->migration_queue; | 5482 | head = &rq->migration_queue; |
7182 | 5483 | ||
7183 | if (list_empty(head)) { | 5484 | if (list_empty(head)) { |
7184 | spin_unlock_irq(&rq->lock); | 5485 | raw_spin_unlock_irq(&rq->lock); |
7185 | schedule(); | 5486 | schedule(); |
7186 | set_current_state(TASK_INTERRUPTIBLE); | 5487 | set_current_state(TASK_INTERRUPTIBLE); |
7187 | continue; | 5488 | continue; |
@@ -7190,14 +5491,14 @@ static int migration_thread(void *data) | |||
7190 | list_del_init(head->next); | 5491 | list_del_init(head->next); |
7191 | 5492 | ||
7192 | if (req->task != NULL) { | 5493 | if (req->task != NULL) { |
7193 | spin_unlock(&rq->lock); | 5494 | raw_spin_unlock(&rq->lock); |
7194 | __migrate_task(req->task, cpu, req->dest_cpu); | 5495 | __migrate_task(req->task, cpu, req->dest_cpu); |
7195 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { | 5496 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { |
7196 | req->dest_cpu = RCU_MIGRATION_GOT_QS; | 5497 | req->dest_cpu = RCU_MIGRATION_GOT_QS; |
7197 | spin_unlock(&rq->lock); | 5498 | raw_spin_unlock(&rq->lock); |
7198 | } else { | 5499 | } else { |
7199 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | 5500 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; |
7200 | spin_unlock(&rq->lock); | 5501 | raw_spin_unlock(&rq->lock); |
7201 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | 5502 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); |
7202 | } | 5503 | } |
7203 | local_irq_enable(); | 5504 | local_irq_enable(); |
@@ -7227,37 +5528,10 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |||
7227 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 5528 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
7228 | { | 5529 | { |
7229 | int dest_cpu; | 5530 | int dest_cpu; |
7230 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); | ||
7231 | 5531 | ||
7232 | again: | 5532 | again: |
7233 | /* Look for allowed, online CPU in same node. */ | 5533 | dest_cpu = select_fallback_rq(dead_cpu, p); |
7234 | for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) | ||
7235 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | ||
7236 | goto move; | ||
7237 | |||
7238 | /* Any allowed, online CPU? */ | ||
7239 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); | ||
7240 | if (dest_cpu < nr_cpu_ids) | ||
7241 | goto move; | ||
7242 | |||
7243 | /* No more Mr. Nice Guy. */ | ||
7244 | if (dest_cpu >= nr_cpu_ids) { | ||
7245 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
7246 | dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); | ||
7247 | 5534 | ||
7248 | /* | ||
7249 | * Don't tell them about moving exiting tasks or | ||
7250 | * kernel threads (both mm NULL), since they never | ||
7251 | * leave kernel. | ||
7252 | */ | ||
7253 | if (p->mm && printk_ratelimit()) { | ||
7254 | printk(KERN_INFO "process %d (%s) no " | ||
7255 | "longer affine to cpu%d\n", | ||
7256 | task_pid_nr(p), p->comm, dead_cpu); | ||
7257 | } | ||
7258 | } | ||
7259 | |||
7260 | move: | ||
7261 | /* It can have affinity changed while we were choosing. */ | 5535 | /* It can have affinity changed while we were choosing. */ |
7262 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | 5536 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) |
7263 | goto again; | 5537 | goto again; |
@@ -7272,7 +5546,7 @@ move: | |||
7272 | */ | 5546 | */ |
7273 | static void migrate_nr_uninterruptible(struct rq *rq_src) | 5547 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
7274 | { | 5548 | { |
7275 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); | 5549 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); |
7276 | unsigned long flags; | 5550 | unsigned long flags; |
7277 | 5551 | ||
7278 | local_irq_save(flags); | 5552 | local_irq_save(flags); |
@@ -7320,14 +5594,14 @@ void sched_idle_next(void) | |||
7320 | * Strictly not necessary since rest of the CPUs are stopped by now | 5594 | * Strictly not necessary since rest of the CPUs are stopped by now |
7321 | * and interrupts disabled on the current cpu. | 5595 | * and interrupts disabled on the current cpu. |
7322 | */ | 5596 | */ |
7323 | spin_lock_irqsave(&rq->lock, flags); | 5597 | raw_spin_lock_irqsave(&rq->lock, flags); |
7324 | 5598 | ||
7325 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 5599 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
7326 | 5600 | ||
7327 | update_rq_clock(rq); | 5601 | update_rq_clock(rq); |
7328 | activate_task(rq, p, 0); | 5602 | activate_task(rq, p, 0); |
7329 | 5603 | ||
7330 | spin_unlock_irqrestore(&rq->lock, flags); | 5604 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7331 | } | 5605 | } |
7332 | 5606 | ||
7333 | /* | 5607 | /* |
@@ -7363,9 +5637,9 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | |||
7363 | * that's OK. No task can be added to this CPU, so iteration is | 5637 | * that's OK. No task can be added to this CPU, so iteration is |
7364 | * fine. | 5638 | * fine. |
7365 | */ | 5639 | */ |
7366 | spin_unlock_irq(&rq->lock); | 5640 | raw_spin_unlock_irq(&rq->lock); |
7367 | move_task_off_dead_cpu(dead_cpu, p); | 5641 | move_task_off_dead_cpu(dead_cpu, p); |
7368 | spin_lock_irq(&rq->lock); | 5642 | raw_spin_lock_irq(&rq->lock); |
7369 | 5643 | ||
7370 | put_task_struct(p); | 5644 | put_task_struct(p); |
7371 | } | 5645 | } |
@@ -7406,17 +5680,16 @@ static struct ctl_table sd_ctl_dir[] = { | |||
7406 | .procname = "sched_domain", | 5680 | .procname = "sched_domain", |
7407 | .mode = 0555, | 5681 | .mode = 0555, |
7408 | }, | 5682 | }, |
7409 | {0, }, | 5683 | {} |
7410 | }; | 5684 | }; |
7411 | 5685 | ||
7412 | static struct ctl_table sd_ctl_root[] = { | 5686 | static struct ctl_table sd_ctl_root[] = { |
7413 | { | 5687 | { |
7414 | .ctl_name = CTL_KERN, | ||
7415 | .procname = "kernel", | 5688 | .procname = "kernel", |
7416 | .mode = 0555, | 5689 | .mode = 0555, |
7417 | .child = sd_ctl_dir, | 5690 | .child = sd_ctl_dir, |
7418 | }, | 5691 | }, |
7419 | {0, }, | 5692 | {} |
7420 | }; | 5693 | }; |
7421 | 5694 | ||
7422 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 5695 | static struct ctl_table *sd_alloc_ctl_entry(int n) |
@@ -7526,7 +5799,7 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | |||
7526 | static struct ctl_table_header *sd_sysctl_header; | 5799 | static struct ctl_table_header *sd_sysctl_header; |
7527 | static void register_sched_domain_sysctl(void) | 5800 | static void register_sched_domain_sysctl(void) |
7528 | { | 5801 | { |
7529 | int i, cpu_num = num_online_cpus(); | 5802 | int i, cpu_num = num_possible_cpus(); |
7530 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 5803 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
7531 | char buf[32]; | 5804 | char buf[32]; |
7532 | 5805 | ||
@@ -7536,7 +5809,7 @@ static void register_sched_domain_sysctl(void) | |||
7536 | if (entry == NULL) | 5809 | if (entry == NULL) |
7537 | return; | 5810 | return; |
7538 | 5811 | ||
7539 | for_each_online_cpu(i) { | 5812 | for_each_possible_cpu(i) { |
7540 | snprintf(buf, 32, "cpu%d", i); | 5813 | snprintf(buf, 32, "cpu%d", i); |
7541 | entry->procname = kstrdup(buf, GFP_KERNEL); | 5814 | entry->procname = kstrdup(buf, GFP_KERNEL); |
7542 | entry->mode = 0555; | 5815 | entry->mode = 0555; |
@@ -7632,13 +5905,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7632 | 5905 | ||
7633 | /* Update our root-domain */ | 5906 | /* Update our root-domain */ |
7634 | rq = cpu_rq(cpu); | 5907 | rq = cpu_rq(cpu); |
7635 | spin_lock_irqsave(&rq->lock, flags); | 5908 | raw_spin_lock_irqsave(&rq->lock, flags); |
7636 | if (rq->rd) { | 5909 | if (rq->rd) { |
7637 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5910 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
7638 | 5911 | ||
7639 | set_rq_online(rq); | 5912 | set_rq_online(rq); |
7640 | } | 5913 | } |
7641 | spin_unlock_irqrestore(&rq->lock, flags); | 5914 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7642 | break; | 5915 | break; |
7643 | 5916 | ||
7644 | #ifdef CONFIG_HOTPLUG_CPU | 5917 | #ifdef CONFIG_HOTPLUG_CPU |
@@ -7663,14 +5936,13 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7663 | put_task_struct(rq->migration_thread); | 5936 | put_task_struct(rq->migration_thread); |
7664 | rq->migration_thread = NULL; | 5937 | rq->migration_thread = NULL; |
7665 | /* Idle task back to normal (off runqueue, low prio) */ | 5938 | /* Idle task back to normal (off runqueue, low prio) */ |
7666 | spin_lock_irq(&rq->lock); | 5939 | raw_spin_lock_irq(&rq->lock); |
7667 | update_rq_clock(rq); | 5940 | update_rq_clock(rq); |
7668 | deactivate_task(rq, rq->idle, 0); | 5941 | deactivate_task(rq, rq->idle, 0); |
7669 | rq->idle->static_prio = MAX_PRIO; | ||
7670 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 5942 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
7671 | rq->idle->sched_class = &idle_sched_class; | 5943 | rq->idle->sched_class = &idle_sched_class; |
7672 | migrate_dead_tasks(cpu); | 5944 | migrate_dead_tasks(cpu); |
7673 | spin_unlock_irq(&rq->lock); | 5945 | raw_spin_unlock_irq(&rq->lock); |
7674 | cpuset_unlock(); | 5946 | cpuset_unlock(); |
7675 | migrate_nr_uninterruptible(rq); | 5947 | migrate_nr_uninterruptible(rq); |
7676 | BUG_ON(rq->nr_running != 0); | 5948 | BUG_ON(rq->nr_running != 0); |
@@ -7680,30 +5952,30 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7680 | * they didn't take sched_hotcpu_mutex. Just wake up | 5952 | * they didn't take sched_hotcpu_mutex. Just wake up |
7681 | * the requestors. | 5953 | * the requestors. |
7682 | */ | 5954 | */ |
7683 | spin_lock_irq(&rq->lock); | 5955 | raw_spin_lock_irq(&rq->lock); |
7684 | while (!list_empty(&rq->migration_queue)) { | 5956 | while (!list_empty(&rq->migration_queue)) { |
7685 | struct migration_req *req; | 5957 | struct migration_req *req; |
7686 | 5958 | ||
7687 | req = list_entry(rq->migration_queue.next, | 5959 | req = list_entry(rq->migration_queue.next, |
7688 | struct migration_req, list); | 5960 | struct migration_req, list); |
7689 | list_del_init(&req->list); | 5961 | list_del_init(&req->list); |
7690 | spin_unlock_irq(&rq->lock); | 5962 | raw_spin_unlock_irq(&rq->lock); |
7691 | complete(&req->done); | 5963 | complete(&req->done); |
7692 | spin_lock_irq(&rq->lock); | 5964 | raw_spin_lock_irq(&rq->lock); |
7693 | } | 5965 | } |
7694 | spin_unlock_irq(&rq->lock); | 5966 | raw_spin_unlock_irq(&rq->lock); |
7695 | break; | 5967 | break; |
7696 | 5968 | ||
7697 | case CPU_DYING: | 5969 | case CPU_DYING: |
7698 | case CPU_DYING_FROZEN: | 5970 | case CPU_DYING_FROZEN: |
7699 | /* Update our root-domain */ | 5971 | /* Update our root-domain */ |
7700 | rq = cpu_rq(cpu); | 5972 | rq = cpu_rq(cpu); |
7701 | spin_lock_irqsave(&rq->lock, flags); | 5973 | raw_spin_lock_irqsave(&rq->lock, flags); |
7702 | if (rq->rd) { | 5974 | if (rq->rd) { |
7703 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5975 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
7704 | set_rq_offline(rq); | 5976 | set_rq_offline(rq); |
7705 | } | 5977 | } |
7706 | spin_unlock_irqrestore(&rq->lock, flags); | 5978 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7707 | break; | 5979 | break; |
7708 | #endif | 5980 | #endif |
7709 | } | 5981 | } |
@@ -7740,6 +6012,16 @@ early_initcall(migration_init); | |||
7740 | 6012 | ||
7741 | #ifdef CONFIG_SCHED_DEBUG | 6013 | #ifdef CONFIG_SCHED_DEBUG |
7742 | 6014 | ||
6015 | static __read_mostly int sched_domain_debug_enabled; | ||
6016 | |||
6017 | static int __init sched_domain_debug_setup(char *str) | ||
6018 | { | ||
6019 | sched_domain_debug_enabled = 1; | ||
6020 | |||
6021 | return 0; | ||
6022 | } | ||
6023 | early_param("sched_debug", sched_domain_debug_setup); | ||
6024 | |||
7743 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 6025 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
7744 | struct cpumask *groupmask) | 6026 | struct cpumask *groupmask) |
7745 | { | 6027 | { |
@@ -7826,6 +6108,9 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu) | |||
7826 | cpumask_var_t groupmask; | 6108 | cpumask_var_t groupmask; |
7827 | int level = 0; | 6109 | int level = 0; |
7828 | 6110 | ||
6111 | if (!sched_domain_debug_enabled) | ||
6112 | return; | ||
6113 | |||
7829 | if (!sd) { | 6114 | if (!sd) { |
7830 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 6115 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
7831 | return; | 6116 | return; |
@@ -7905,6 +6190,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
7905 | 6190 | ||
7906 | static void free_rootdomain(struct root_domain *rd) | 6191 | static void free_rootdomain(struct root_domain *rd) |
7907 | { | 6192 | { |
6193 | synchronize_sched(); | ||
6194 | |||
7908 | cpupri_cleanup(&rd->cpupri); | 6195 | cpupri_cleanup(&rd->cpupri); |
7909 | 6196 | ||
7910 | free_cpumask_var(rd->rto_mask); | 6197 | free_cpumask_var(rd->rto_mask); |
@@ -7918,7 +6205,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |||
7918 | struct root_domain *old_rd = NULL; | 6205 | struct root_domain *old_rd = NULL; |
7919 | unsigned long flags; | 6206 | unsigned long flags; |
7920 | 6207 | ||
7921 | spin_lock_irqsave(&rq->lock, flags); | 6208 | raw_spin_lock_irqsave(&rq->lock, flags); |
7922 | 6209 | ||
7923 | if (rq->rd) { | 6210 | if (rq->rd) { |
7924 | old_rd = rq->rd; | 6211 | old_rd = rq->rd; |
@@ -7944,7 +6231,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |||
7944 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) | 6231 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
7945 | set_rq_online(rq); | 6232 | set_rq_online(rq); |
7946 | 6233 | ||
7947 | spin_unlock_irqrestore(&rq->lock, flags); | 6234 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7948 | 6235 | ||
7949 | if (old_rd) | 6236 | if (old_rd) |
7950 | free_rootdomain(old_rd); | 6237 | free_rootdomain(old_rd); |
@@ -8045,6 +6332,7 @@ static cpumask_var_t cpu_isolated_map; | |||
8045 | /* Setup the mask of cpus configured for isolated domains */ | 6332 | /* Setup the mask of cpus configured for isolated domains */ |
8046 | static int __init isolated_cpu_setup(char *str) | 6333 | static int __init isolated_cpu_setup(char *str) |
8047 | { | 6334 | { |
6335 | alloc_bootmem_cpumask_var(&cpu_isolated_map); | ||
8048 | cpulist_parse(str, cpu_isolated_map); | 6336 | cpulist_parse(str, cpu_isolated_map); |
8049 | return 1; | 6337 | return 1; |
8050 | } | 6338 | } |
@@ -8229,14 +6517,14 @@ enum s_alloc { | |||
8229 | */ | 6517 | */ |
8230 | #ifdef CONFIG_SCHED_SMT | 6518 | #ifdef CONFIG_SCHED_SMT |
8231 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); | 6519 | static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); |
8232 | static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); | 6520 | static DEFINE_PER_CPU(struct static_sched_group, sched_groups); |
8233 | 6521 | ||
8234 | static int | 6522 | static int |
8235 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, | 6523 | cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, |
8236 | struct sched_group **sg, struct cpumask *unused) | 6524 | struct sched_group **sg, struct cpumask *unused) |
8237 | { | 6525 | { |
8238 | if (sg) | 6526 | if (sg) |
8239 | *sg = &per_cpu(sched_group_cpus, cpu).sg; | 6527 | *sg = &per_cpu(sched_groups, cpu).sg; |
8240 | return cpu; | 6528 | return cpu; |
8241 | } | 6529 | } |
8242 | #endif /* CONFIG_SCHED_SMT */ | 6530 | #endif /* CONFIG_SCHED_SMT */ |
@@ -8881,7 +7169,7 @@ static int build_sched_domains(const struct cpumask *cpu_map) | |||
8881 | return __build_sched_domains(cpu_map, NULL); | 7169 | return __build_sched_domains(cpu_map, NULL); |
8882 | } | 7170 | } |
8883 | 7171 | ||
8884 | static struct cpumask *doms_cur; /* current sched domains */ | 7172 | static cpumask_var_t *doms_cur; /* current sched domains */ |
8885 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 7173 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
8886 | static struct sched_domain_attr *dattr_cur; | 7174 | static struct sched_domain_attr *dattr_cur; |
8887 | /* attribues of custom domains in 'doms_cur' */ | 7175 | /* attribues of custom domains in 'doms_cur' */ |
@@ -8903,6 +7191,31 @@ int __attribute__((weak)) arch_update_cpu_topology(void) | |||
8903 | return 0; | 7191 | return 0; |
8904 | } | 7192 | } |
8905 | 7193 | ||
7194 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | ||
7195 | { | ||
7196 | int i; | ||
7197 | cpumask_var_t *doms; | ||
7198 | |||
7199 | doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | ||
7200 | if (!doms) | ||
7201 | return NULL; | ||
7202 | for (i = 0; i < ndoms; i++) { | ||
7203 | if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | ||
7204 | free_sched_domains(doms, i); | ||
7205 | return NULL; | ||
7206 | } | ||
7207 | } | ||
7208 | return doms; | ||
7209 | } | ||
7210 | |||
7211 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | ||
7212 | { | ||
7213 | unsigned int i; | ||
7214 | for (i = 0; i < ndoms; i++) | ||
7215 | free_cpumask_var(doms[i]); | ||
7216 | kfree(doms); | ||
7217 | } | ||
7218 | |||
8906 | /* | 7219 | /* |
8907 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 7220 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
8908 | * For now this just excludes isolated cpus, but could be used to | 7221 | * For now this just excludes isolated cpus, but could be used to |
@@ -8914,12 +7227,12 @@ static int arch_init_sched_domains(const struct cpumask *cpu_map) | |||
8914 | 7227 | ||
8915 | arch_update_cpu_topology(); | 7228 | arch_update_cpu_topology(); |
8916 | ndoms_cur = 1; | 7229 | ndoms_cur = 1; |
8917 | doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); | 7230 | doms_cur = alloc_sched_domains(ndoms_cur); |
8918 | if (!doms_cur) | 7231 | if (!doms_cur) |
8919 | doms_cur = fallback_doms; | 7232 | doms_cur = &fallback_doms; |
8920 | cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); | 7233 | cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); |
8921 | dattr_cur = NULL; | 7234 | dattr_cur = NULL; |
8922 | err = build_sched_domains(doms_cur); | 7235 | err = build_sched_domains(doms_cur[0]); |
8923 | register_sched_domain_sysctl(); | 7236 | register_sched_domain_sysctl(); |
8924 | 7237 | ||
8925 | return err; | 7238 | return err; |
@@ -8969,19 +7282,19 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
8969 | * doms_new[] to the current sched domain partitioning, doms_cur[]. | 7282 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
8970 | * It destroys each deleted domain and builds each new domain. | 7283 | * It destroys each deleted domain and builds each new domain. |
8971 | * | 7284 | * |
8972 | * 'doms_new' is an array of cpumask's of length 'ndoms_new'. | 7285 | * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. |
8973 | * The masks don't intersect (don't overlap.) We should setup one | 7286 | * The masks don't intersect (don't overlap.) We should setup one |
8974 | * sched domain for each mask. CPUs not in any of the cpumasks will | 7287 | * sched domain for each mask. CPUs not in any of the cpumasks will |
8975 | * not be load balanced. If the same cpumask appears both in the | 7288 | * not be load balanced. If the same cpumask appears both in the |
8976 | * current 'doms_cur' domains and in the new 'doms_new', we can leave | 7289 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
8977 | * it as it is. | 7290 | * it as it is. |
8978 | * | 7291 | * |
8979 | * The passed in 'doms_new' should be kmalloc'd. This routine takes | 7292 | * The passed in 'doms_new' should be allocated using |
8980 | * ownership of it and will kfree it when done with it. If the caller | 7293 | * alloc_sched_domains. This routine takes ownership of it and will |
8981 | * failed the kmalloc call, then it can pass in doms_new == NULL && | 7294 | * free_sched_domains it when done with it. If the caller failed the |
8982 | * ndoms_new == 1, and partition_sched_domains() will fallback to | 7295 | * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, |
8983 | * the single partition 'fallback_doms', it also forces the domains | 7296 | * and partition_sched_domains() will fallback to the single partition |
8984 | * to be rebuilt. | 7297 | * 'fallback_doms', it also forces the domains to be rebuilt. |
8985 | * | 7298 | * |
8986 | * If doms_new == NULL it will be replaced with cpu_online_mask. | 7299 | * If doms_new == NULL it will be replaced with cpu_online_mask. |
8987 | * ndoms_new == 0 is a special case for destroying existing domains, | 7300 | * ndoms_new == 0 is a special case for destroying existing domains, |
@@ -8989,8 +7302,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |||
8989 | * | 7302 | * |
8990 | * Call with hotplug lock held | 7303 | * Call with hotplug lock held |
8991 | */ | 7304 | */ |
8992 | /* FIXME: Change to struct cpumask *doms_new[] */ | 7305 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
8993 | void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | ||
8994 | struct sched_domain_attr *dattr_new) | 7306 | struct sched_domain_attr *dattr_new) |
8995 | { | 7307 | { |
8996 | int i, j, n; | 7308 | int i, j, n; |
@@ -9009,40 +7321,40 @@ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, | |||
9009 | /* Destroy deleted domains */ | 7321 | /* Destroy deleted domains */ |
9010 | for (i = 0; i < ndoms_cur; i++) { | 7322 | for (i = 0; i < ndoms_cur; i++) { |
9011 | for (j = 0; j < n && !new_topology; j++) { | 7323 | for (j = 0; j < n && !new_topology; j++) { |
9012 | if (cpumask_equal(&doms_cur[i], &doms_new[j]) | 7324 | if (cpumask_equal(doms_cur[i], doms_new[j]) |
9013 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | 7325 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
9014 | goto match1; | 7326 | goto match1; |
9015 | } | 7327 | } |
9016 | /* no match - a current sched domain not in new doms_new[] */ | 7328 | /* no match - a current sched domain not in new doms_new[] */ |
9017 | detach_destroy_domains(doms_cur + i); | 7329 | detach_destroy_domains(doms_cur[i]); |
9018 | match1: | 7330 | match1: |
9019 | ; | 7331 | ; |
9020 | } | 7332 | } |
9021 | 7333 | ||
9022 | if (doms_new == NULL) { | 7334 | if (doms_new == NULL) { |
9023 | ndoms_cur = 0; | 7335 | ndoms_cur = 0; |
9024 | doms_new = fallback_doms; | 7336 | doms_new = &fallback_doms; |
9025 | cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); | 7337 | cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); |
9026 | WARN_ON_ONCE(dattr_new); | 7338 | WARN_ON_ONCE(dattr_new); |
9027 | } | 7339 | } |
9028 | 7340 | ||
9029 | /* Build new domains */ | 7341 | /* Build new domains */ |
9030 | for (i = 0; i < ndoms_new; i++) { | 7342 | for (i = 0; i < ndoms_new; i++) { |
9031 | for (j = 0; j < ndoms_cur && !new_topology; j++) { | 7343 | for (j = 0; j < ndoms_cur && !new_topology; j++) { |
9032 | if (cpumask_equal(&doms_new[i], &doms_cur[j]) | 7344 | if (cpumask_equal(doms_new[i], doms_cur[j]) |
9033 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | 7345 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
9034 | goto match2; | 7346 | goto match2; |
9035 | } | 7347 | } |
9036 | /* no match - add a new doms_new */ | 7348 | /* no match - add a new doms_new */ |
9037 | __build_sched_domains(doms_new + i, | 7349 | __build_sched_domains(doms_new[i], |
9038 | dattr_new ? dattr_new + i : NULL); | 7350 | dattr_new ? dattr_new + i : NULL); |
9039 | match2: | 7351 | match2: |
9040 | ; | 7352 | ; |
9041 | } | 7353 | } |
9042 | 7354 | ||
9043 | /* Remember the new sched domains */ | 7355 | /* Remember the new sched domains */ |
9044 | if (doms_cur != fallback_doms) | 7356 | if (doms_cur != &fallback_doms) |
9045 | kfree(doms_cur); | 7357 | free_sched_domains(doms_cur, ndoms_cur); |
9046 | kfree(dattr_cur); /* kfree(NULL) is safe */ | 7358 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
9047 | doms_cur = doms_new; | 7359 | doms_cur = doms_new; |
9048 | dattr_cur = dattr_new; | 7360 | dattr_cur = dattr_new; |
@@ -9094,11 +7406,13 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |||
9094 | 7406 | ||
9095 | #ifdef CONFIG_SCHED_MC | 7407 | #ifdef CONFIG_SCHED_MC |
9096 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | 7408 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
7409 | struct sysdev_class_attribute *attr, | ||
9097 | char *page) | 7410 | char *page) |
9098 | { | 7411 | { |
9099 | return sprintf(page, "%u\n", sched_mc_power_savings); | 7412 | return sprintf(page, "%u\n", sched_mc_power_savings); |
9100 | } | 7413 | } |
9101 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | 7414 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
7415 | struct sysdev_class_attribute *attr, | ||
9102 | const char *buf, size_t count) | 7416 | const char *buf, size_t count) |
9103 | { | 7417 | { |
9104 | return sched_power_savings_store(buf, count, 0); | 7418 | return sched_power_savings_store(buf, count, 0); |
@@ -9110,11 +7424,13 @@ static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | |||
9110 | 7424 | ||
9111 | #ifdef CONFIG_SCHED_SMT | 7425 | #ifdef CONFIG_SCHED_SMT |
9112 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | 7426 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
7427 | struct sysdev_class_attribute *attr, | ||
9113 | char *page) | 7428 | char *page) |
9114 | { | 7429 | { |
9115 | return sprintf(page, "%u\n", sched_smt_power_savings); | 7430 | return sprintf(page, "%u\n", sched_smt_power_savings); |
9116 | } | 7431 | } |
9117 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | 7432 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
7433 | struct sysdev_class_attribute *attr, | ||
9118 | const char *buf, size_t count) | 7434 | const char *buf, size_t count) |
9119 | { | 7435 | { |
9120 | return sched_power_savings_store(buf, count, 1); | 7436 | return sched_power_savings_store(buf, count, 1); |
@@ -9153,8 +7469,10 @@ static int update_sched_domains(struct notifier_block *nfb, | |||
9153 | switch (action) { | 7469 | switch (action) { |
9154 | case CPU_ONLINE: | 7470 | case CPU_ONLINE: |
9155 | case CPU_ONLINE_FROZEN: | 7471 | case CPU_ONLINE_FROZEN: |
9156 | case CPU_DEAD: | 7472 | case CPU_DOWN_PREPARE: |
9157 | case CPU_DEAD_FROZEN: | 7473 | case CPU_DOWN_PREPARE_FROZEN: |
7474 | case CPU_DOWN_FAILED: | ||
7475 | case CPU_DOWN_FAILED_FROZEN: | ||
9158 | partition_sched_domains(1, NULL, NULL); | 7476 | partition_sched_domains(1, NULL, NULL); |
9159 | return NOTIFY_OK; | 7477 | return NOTIFY_OK; |
9160 | 7478 | ||
@@ -9201,7 +7519,7 @@ void __init sched_init_smp(void) | |||
9201 | #endif | 7519 | #endif |
9202 | get_online_cpus(); | 7520 | get_online_cpus(); |
9203 | mutex_lock(&sched_domains_mutex); | 7521 | mutex_lock(&sched_domains_mutex); |
9204 | arch_init_sched_domains(cpu_online_mask); | 7522 | arch_init_sched_domains(cpu_active_mask); |
9205 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | 7523 | cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); |
9206 | if (cpumask_empty(non_isolated_cpus)) | 7524 | if (cpumask_empty(non_isolated_cpus)) |
9207 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | 7525 | cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); |
@@ -9274,13 +7592,13 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
9274 | #ifdef CONFIG_SMP | 7592 | #ifdef CONFIG_SMP |
9275 | rt_rq->rt_nr_migratory = 0; | 7593 | rt_rq->rt_nr_migratory = 0; |
9276 | rt_rq->overloaded = 0; | 7594 | rt_rq->overloaded = 0; |
9277 | plist_head_init(&rt_rq->pushable_tasks, &rq->lock); | 7595 | plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); |
9278 | #endif | 7596 | #endif |
9279 | 7597 | ||
9280 | rt_rq->rt_time = 0; | 7598 | rt_rq->rt_time = 0; |
9281 | rt_rq->rt_throttled = 0; | 7599 | rt_rq->rt_throttled = 0; |
9282 | rt_rq->rt_runtime = 0; | 7600 | rt_rq->rt_runtime = 0; |
9283 | spin_lock_init(&rt_rq->rt_runtime_lock); | 7601 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); |
9284 | 7602 | ||
9285 | #ifdef CONFIG_RT_GROUP_SCHED | 7603 | #ifdef CONFIG_RT_GROUP_SCHED |
9286 | rt_rq->rt_nr_boosted = 0; | 7604 | rt_rq->rt_nr_boosted = 0; |
@@ -9327,7 +7645,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |||
9327 | tg->rt_rq[cpu] = rt_rq; | 7645 | tg->rt_rq[cpu] = rt_rq; |
9328 | init_rt_rq(rt_rq, rq); | 7646 | init_rt_rq(rt_rq, rq); |
9329 | rt_rq->tg = tg; | 7647 | rt_rq->tg = tg; |
9330 | rt_rq->rt_se = rt_se; | ||
9331 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 7648 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
9332 | if (add) | 7649 | if (add) |
9333 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 7650 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); |
@@ -9358,16 +7675,9 @@ void __init sched_init(void) | |||
9358 | #ifdef CONFIG_RT_GROUP_SCHED | 7675 | #ifdef CONFIG_RT_GROUP_SCHED |
9359 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 7676 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
9360 | #endif | 7677 | #endif |
9361 | #ifdef CONFIG_USER_SCHED | ||
9362 | alloc_size *= 2; | ||
9363 | #endif | ||
9364 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7678 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9365 | alloc_size += num_possible_cpus() * cpumask_size(); | 7679 | alloc_size += num_possible_cpus() * cpumask_size(); |
9366 | #endif | 7680 | #endif |
9367 | /* | ||
9368 | * As sched_init() is called before page_alloc is setup, | ||
9369 | * we use alloc_bootmem(). | ||
9370 | */ | ||
9371 | if (alloc_size) { | 7681 | if (alloc_size) { |
9372 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | 7682 | ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); |
9373 | 7683 | ||
@@ -9378,13 +7688,6 @@ void __init sched_init(void) | |||
9378 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 7688 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; |
9379 | ptr += nr_cpu_ids * sizeof(void **); | 7689 | ptr += nr_cpu_ids * sizeof(void **); |
9380 | 7690 | ||
9381 | #ifdef CONFIG_USER_SCHED | ||
9382 | root_task_group.se = (struct sched_entity **)ptr; | ||
9383 | ptr += nr_cpu_ids * sizeof(void **); | ||
9384 | |||
9385 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | ||
9386 | ptr += nr_cpu_ids * sizeof(void **); | ||
9387 | #endif /* CONFIG_USER_SCHED */ | ||
9388 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7691 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9389 | #ifdef CONFIG_RT_GROUP_SCHED | 7692 | #ifdef CONFIG_RT_GROUP_SCHED |
9390 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 7693 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; |
@@ -9393,13 +7696,6 @@ void __init sched_init(void) | |||
9393 | init_task_group.rt_rq = (struct rt_rq **)ptr; | 7696 | init_task_group.rt_rq = (struct rt_rq **)ptr; |
9394 | ptr += nr_cpu_ids * sizeof(void **); | 7697 | ptr += nr_cpu_ids * sizeof(void **); |
9395 | 7698 | ||
9396 | #ifdef CONFIG_USER_SCHED | ||
9397 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | ||
9398 | ptr += nr_cpu_ids * sizeof(void **); | ||
9399 | |||
9400 | root_task_group.rt_rq = (struct rt_rq **)ptr; | ||
9401 | ptr += nr_cpu_ids * sizeof(void **); | ||
9402 | #endif /* CONFIG_USER_SCHED */ | ||
9403 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7699 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9404 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7700 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9405 | for_each_possible_cpu(i) { | 7701 | for_each_possible_cpu(i) { |
@@ -9419,22 +7715,13 @@ void __init sched_init(void) | |||
9419 | #ifdef CONFIG_RT_GROUP_SCHED | 7715 | #ifdef CONFIG_RT_GROUP_SCHED |
9420 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | 7716 | init_rt_bandwidth(&init_task_group.rt_bandwidth, |
9421 | global_rt_period(), global_rt_runtime()); | 7717 | global_rt_period(), global_rt_runtime()); |
9422 | #ifdef CONFIG_USER_SCHED | ||
9423 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | ||
9424 | global_rt_period(), RUNTIME_INF); | ||
9425 | #endif /* CONFIG_USER_SCHED */ | ||
9426 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7718 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9427 | 7719 | ||
9428 | #ifdef CONFIG_GROUP_SCHED | 7720 | #ifdef CONFIG_CGROUP_SCHED |
9429 | list_add(&init_task_group.list, &task_groups); | 7721 | list_add(&init_task_group.list, &task_groups); |
9430 | INIT_LIST_HEAD(&init_task_group.children); | 7722 | INIT_LIST_HEAD(&init_task_group.children); |
9431 | 7723 | ||
9432 | #ifdef CONFIG_USER_SCHED | 7724 | #endif /* CONFIG_CGROUP_SCHED */ |
9433 | INIT_LIST_HEAD(&root_task_group.children); | ||
9434 | init_task_group.parent = &root_task_group; | ||
9435 | list_add(&init_task_group.siblings, &root_task_group.children); | ||
9436 | #endif /* CONFIG_USER_SCHED */ | ||
9437 | #endif /* CONFIG_GROUP_SCHED */ | ||
9438 | 7725 | ||
9439 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | 7726 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP |
9440 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | 7727 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), |
@@ -9444,7 +7731,7 @@ void __init sched_init(void) | |||
9444 | struct rq *rq; | 7731 | struct rq *rq; |
9445 | 7732 | ||
9446 | rq = cpu_rq(i); | 7733 | rq = cpu_rq(i); |
9447 | spin_lock_init(&rq->lock); | 7734 | raw_spin_lock_init(&rq->lock); |
9448 | rq->nr_running = 0; | 7735 | rq->nr_running = 0; |
9449 | rq->calc_load_active = 0; | 7736 | rq->calc_load_active = 0; |
9450 | rq->calc_load_update = jiffies + LOAD_FREQ; | 7737 | rq->calc_load_update = jiffies + LOAD_FREQ; |
@@ -9474,25 +7761,6 @@ void __init sched_init(void) | |||
9474 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 7761 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). |
9475 | */ | 7762 | */ |
9476 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 7763 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
9477 | #elif defined CONFIG_USER_SCHED | ||
9478 | root_task_group.shares = NICE_0_LOAD; | ||
9479 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | ||
9480 | /* | ||
9481 | * In case of task-groups formed thr' the user id of tasks, | ||
9482 | * init_task_group represents tasks belonging to root user. | ||
9483 | * Hence it forms a sibling of all subsequent groups formed. | ||
9484 | * In this case, init_task_group gets only a fraction of overall | ||
9485 | * system cpu resource, based on the weight assigned to root | ||
9486 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | ||
9487 | * by letting tasks of init_task_group sit in a separate cfs_rq | ||
9488 | * (init_tg_cfs_rq) and having one entity represent this group of | ||
9489 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | ||
9490 | */ | ||
9491 | init_tg_cfs_entry(&init_task_group, | ||
9492 | &per_cpu(init_tg_cfs_rq, i), | ||
9493 | &per_cpu(init_sched_entity, i), i, 1, | ||
9494 | root_task_group.se[i]); | ||
9495 | |||
9496 | #endif | 7764 | #endif |
9497 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7765 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9498 | 7766 | ||
@@ -9501,12 +7769,6 @@ void __init sched_init(void) | |||
9501 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 7769 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
9502 | #ifdef CONFIG_CGROUP_SCHED | 7770 | #ifdef CONFIG_CGROUP_SCHED |
9503 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 7771 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
9504 | #elif defined CONFIG_USER_SCHED | ||
9505 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); | ||
9506 | init_tg_rt_entry(&init_task_group, | ||
9507 | &per_cpu(init_rt_rq, i), | ||
9508 | &per_cpu(init_sched_rt_entity, i), i, 1, | ||
9509 | root_task_group.rt_se[i]); | ||
9510 | #endif | 7772 | #endif |
9511 | #endif | 7773 | #endif |
9512 | 7774 | ||
@@ -9522,6 +7784,8 @@ void __init sched_init(void) | |||
9522 | rq->cpu = i; | 7784 | rq->cpu = i; |
9523 | rq->online = 0; | 7785 | rq->online = 0; |
9524 | rq->migration_thread = NULL; | 7786 | rq->migration_thread = NULL; |
7787 | rq->idle_stamp = 0; | ||
7788 | rq->avg_idle = 2*sysctl_sched_migration_cost; | ||
9525 | INIT_LIST_HEAD(&rq->migration_queue); | 7789 | INIT_LIST_HEAD(&rq->migration_queue); |
9526 | rq_attach_root(rq, &def_root_domain); | 7790 | rq_attach_root(rq, &def_root_domain); |
9527 | #endif | 7791 | #endif |
@@ -9540,7 +7804,7 @@ void __init sched_init(void) | |||
9540 | #endif | 7804 | #endif |
9541 | 7805 | ||
9542 | #ifdef CONFIG_RT_MUTEXES | 7806 | #ifdef CONFIG_RT_MUTEXES |
9543 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | 7807 | plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); |
9544 | #endif | 7808 | #endif |
9545 | 7809 | ||
9546 | /* | 7810 | /* |
@@ -9571,7 +7835,9 @@ void __init sched_init(void) | |||
9571 | zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); | 7835 | zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); |
9572 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); | 7836 | alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); |
9573 | #endif | 7837 | #endif |
9574 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 7838 | /* May be allocated at isolcpus cmdline parse time */ |
7839 | if (cpu_isolated_map == NULL) | ||
7840 | zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | ||
9575 | #endif /* SMP */ | 7841 | #endif /* SMP */ |
9576 | 7842 | ||
9577 | perf_event_init(); | 7843 | perf_event_init(); |
@@ -9582,12 +7848,12 @@ void __init sched_init(void) | |||
9582 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 7848 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
9583 | static inline int preempt_count_equals(int preempt_offset) | 7849 | static inline int preempt_count_equals(int preempt_offset) |
9584 | { | 7850 | { |
9585 | int nested = preempt_count() & ~PREEMPT_ACTIVE; | 7851 | int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); |
9586 | 7852 | ||
9587 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | 7853 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); |
9588 | } | 7854 | } |
9589 | 7855 | ||
9590 | void __might_sleep(char *file, int line, int preempt_offset) | 7856 | void __might_sleep(const char *file, int line, int preempt_offset) |
9591 | { | 7857 | { |
9592 | #ifdef in_atomic | 7858 | #ifdef in_atomic |
9593 | static unsigned long prev_jiffy; /* ratelimiting */ | 7859 | static unsigned long prev_jiffy; /* ratelimiting */ |
@@ -9663,13 +7929,13 @@ void normalize_rt_tasks(void) | |||
9663 | continue; | 7929 | continue; |
9664 | } | 7930 | } |
9665 | 7931 | ||
9666 | spin_lock(&p->pi_lock); | 7932 | raw_spin_lock(&p->pi_lock); |
9667 | rq = __task_rq_lock(p); | 7933 | rq = __task_rq_lock(p); |
9668 | 7934 | ||
9669 | normalize_task(rq, p); | 7935 | normalize_task(rq, p); |
9670 | 7936 | ||
9671 | __task_rq_unlock(rq); | 7937 | __task_rq_unlock(rq); |
9672 | spin_unlock(&p->pi_lock); | 7938 | raw_spin_unlock(&p->pi_lock); |
9673 | } while_each_thread(g, p); | 7939 | } while_each_thread(g, p); |
9674 | 7940 | ||
9675 | read_unlock_irqrestore(&tasklist_lock, flags); | 7941 | read_unlock_irqrestore(&tasklist_lock, flags); |
@@ -9765,13 +8031,15 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |||
9765 | se = kzalloc_node(sizeof(struct sched_entity), | 8031 | se = kzalloc_node(sizeof(struct sched_entity), |
9766 | GFP_KERNEL, cpu_to_node(i)); | 8032 | GFP_KERNEL, cpu_to_node(i)); |
9767 | if (!se) | 8033 | if (!se) |
9768 | goto err; | 8034 | goto err_free_rq; |
9769 | 8035 | ||
9770 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); | 8036 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
9771 | } | 8037 | } |
9772 | 8038 | ||
9773 | return 1; | 8039 | return 1; |
9774 | 8040 | ||
8041 | err_free_rq: | ||
8042 | kfree(cfs_rq); | ||
9775 | err: | 8043 | err: |
9776 | return 0; | 8044 | return 0; |
9777 | } | 8045 | } |
@@ -9853,13 +8121,15 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |||
9853 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 8121 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
9854 | GFP_KERNEL, cpu_to_node(i)); | 8122 | GFP_KERNEL, cpu_to_node(i)); |
9855 | if (!rt_se) | 8123 | if (!rt_se) |
9856 | goto err; | 8124 | goto err_free_rq; |
9857 | 8125 | ||
9858 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); | 8126 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
9859 | } | 8127 | } |
9860 | 8128 | ||
9861 | return 1; | 8129 | return 1; |
9862 | 8130 | ||
8131 | err_free_rq: | ||
8132 | kfree(rt_rq); | ||
9863 | err: | 8133 | err: |
9864 | return 0; | 8134 | return 0; |
9865 | } | 8135 | } |
@@ -9894,7 +8164,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |||
9894 | } | 8164 | } |
9895 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8165 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9896 | 8166 | ||
9897 | #ifdef CONFIG_GROUP_SCHED | 8167 | #ifdef CONFIG_CGROUP_SCHED |
9898 | static void free_sched_group(struct task_group *tg) | 8168 | static void free_sched_group(struct task_group *tg) |
9899 | { | 8169 | { |
9900 | free_fair_sched_group(tg); | 8170 | free_fair_sched_group(tg); |
@@ -9993,17 +8263,17 @@ void sched_move_task(struct task_struct *tsk) | |||
9993 | 8263 | ||
9994 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8264 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9995 | if (tsk->sched_class->moved_group) | 8265 | if (tsk->sched_class->moved_group) |
9996 | tsk->sched_class->moved_group(tsk); | 8266 | tsk->sched_class->moved_group(tsk, on_rq); |
9997 | #endif | 8267 | #endif |
9998 | 8268 | ||
9999 | if (unlikely(running)) | 8269 | if (unlikely(running)) |
10000 | tsk->sched_class->set_curr_task(rq); | 8270 | tsk->sched_class->set_curr_task(rq); |
10001 | if (on_rq) | 8271 | if (on_rq) |
10002 | enqueue_task(rq, tsk, 0); | 8272 | enqueue_task(rq, tsk, 0, false); |
10003 | 8273 | ||
10004 | task_rq_unlock(rq, &flags); | 8274 | task_rq_unlock(rq, &flags); |
10005 | } | 8275 | } |
10006 | #endif /* CONFIG_GROUP_SCHED */ | 8276 | #endif /* CONFIG_CGROUP_SCHED */ |
10007 | 8277 | ||
10008 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8278 | #ifdef CONFIG_FAIR_GROUP_SCHED |
10009 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8279 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
@@ -10028,9 +8298,9 @@ static void set_se_shares(struct sched_entity *se, unsigned long shares) | |||
10028 | struct rq *rq = cfs_rq->rq; | 8298 | struct rq *rq = cfs_rq->rq; |
10029 | unsigned long flags; | 8299 | unsigned long flags; |
10030 | 8300 | ||
10031 | spin_lock_irqsave(&rq->lock, flags); | 8301 | raw_spin_lock_irqsave(&rq->lock, flags); |
10032 | __set_se_shares(se, shares); | 8302 | __set_se_shares(se, shares); |
10033 | spin_unlock_irqrestore(&rq->lock, flags); | 8303 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
10034 | } | 8304 | } |
10035 | 8305 | ||
10036 | static DEFINE_MUTEX(shares_mutex); | 8306 | static DEFINE_MUTEX(shares_mutex); |
@@ -10145,13 +8415,6 @@ static int tg_schedulable(struct task_group *tg, void *data) | |||
10145 | runtime = d->rt_runtime; | 8415 | runtime = d->rt_runtime; |
10146 | } | 8416 | } |
10147 | 8417 | ||
10148 | #ifdef CONFIG_USER_SCHED | ||
10149 | if (tg == &root_task_group) { | ||
10150 | period = global_rt_period(); | ||
10151 | runtime = global_rt_runtime(); | ||
10152 | } | ||
10153 | #endif | ||
10154 | |||
10155 | /* | 8418 | /* |
10156 | * Cannot have more runtime than the period. | 8419 | * Cannot have more runtime than the period. |
10157 | */ | 8420 | */ |
@@ -10215,18 +8478,18 @@ static int tg_set_bandwidth(struct task_group *tg, | |||
10215 | if (err) | 8478 | if (err) |
10216 | goto unlock; | 8479 | goto unlock; |
10217 | 8480 | ||
10218 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 8481 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
10219 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 8482 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
10220 | tg->rt_bandwidth.rt_runtime = rt_runtime; | 8483 | tg->rt_bandwidth.rt_runtime = rt_runtime; |
10221 | 8484 | ||
10222 | for_each_possible_cpu(i) { | 8485 | for_each_possible_cpu(i) { |
10223 | struct rt_rq *rt_rq = tg->rt_rq[i]; | 8486 | struct rt_rq *rt_rq = tg->rt_rq[i]; |
10224 | 8487 | ||
10225 | spin_lock(&rt_rq->rt_runtime_lock); | 8488 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
10226 | rt_rq->rt_runtime = rt_runtime; | 8489 | rt_rq->rt_runtime = rt_runtime; |
10227 | spin_unlock(&rt_rq->rt_runtime_lock); | 8490 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
10228 | } | 8491 | } |
10229 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 8492 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
10230 | unlock: | 8493 | unlock: |
10231 | read_unlock(&tasklist_lock); | 8494 | read_unlock(&tasklist_lock); |
10232 | mutex_unlock(&rt_constraints_mutex); | 8495 | mutex_unlock(&rt_constraints_mutex); |
@@ -10331,15 +8594,15 @@ static int sched_rt_global_constraints(void) | |||
10331 | if (sysctl_sched_rt_runtime == 0) | 8594 | if (sysctl_sched_rt_runtime == 0) |
10332 | return -EBUSY; | 8595 | return -EBUSY; |
10333 | 8596 | ||
10334 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 8597 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
10335 | for_each_possible_cpu(i) { | 8598 | for_each_possible_cpu(i) { |
10336 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 8599 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; |
10337 | 8600 | ||
10338 | spin_lock(&rt_rq->rt_runtime_lock); | 8601 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
10339 | rt_rq->rt_runtime = global_rt_runtime(); | 8602 | rt_rq->rt_runtime = global_rt_runtime(); |
10340 | spin_unlock(&rt_rq->rt_runtime_lock); | 8603 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
10341 | } | 8604 | } |
10342 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 8605 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); |
10343 | 8606 | ||
10344 | return 0; | 8607 | return 0; |
10345 | } | 8608 | } |
@@ -10554,7 +8817,7 @@ struct cgroup_subsys cpu_cgroup_subsys = { | |||
10554 | struct cpuacct { | 8817 | struct cpuacct { |
10555 | struct cgroup_subsys_state css; | 8818 | struct cgroup_subsys_state css; |
10556 | /* cpuusage holds pointer to a u64-type object on every cpu */ | 8819 | /* cpuusage holds pointer to a u64-type object on every cpu */ |
10557 | u64 *cpuusage; | 8820 | u64 __percpu *cpuusage; |
10558 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | 8821 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; |
10559 | struct cpuacct *parent; | 8822 | struct cpuacct *parent; |
10560 | }; | 8823 | }; |
@@ -10630,9 +8893,9 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | |||
10630 | /* | 8893 | /* |
10631 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. | 8894 | * Take rq->lock to make 64-bit read safe on 32-bit platforms. |
10632 | */ | 8895 | */ |
10633 | spin_lock_irq(&cpu_rq(cpu)->lock); | 8896 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
10634 | data = *cpuusage; | 8897 | data = *cpuusage; |
10635 | spin_unlock_irq(&cpu_rq(cpu)->lock); | 8898 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
10636 | #else | 8899 | #else |
10637 | data = *cpuusage; | 8900 | data = *cpuusage; |
10638 | #endif | 8901 | #endif |
@@ -10648,9 +8911,9 @@ static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |||
10648 | /* | 8911 | /* |
10649 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. | 8912 | * Take rq->lock to make 64-bit write safe on 32-bit platforms. |
10650 | */ | 8913 | */ |
10651 | spin_lock_irq(&cpu_rq(cpu)->lock); | 8914 | raw_spin_lock_irq(&cpu_rq(cpu)->lock); |
10652 | *cpuusage = val; | 8915 | *cpuusage = val; |
10653 | spin_unlock_irq(&cpu_rq(cpu)->lock); | 8916 | raw_spin_unlock_irq(&cpu_rq(cpu)->lock); |
10654 | #else | 8917 | #else |
10655 | *cpuusage = val; | 8918 | *cpuusage = val; |
10656 | #endif | 8919 | #endif |
@@ -10771,12 +9034,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
10771 | } | 9034 | } |
10772 | 9035 | ||
10773 | /* | 9036 | /* |
9037 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | ||
9038 | * in cputime_t units. As a result, cpuacct_update_stats calls | ||
9039 | * percpu_counter_add with values large enough to always overflow the | ||
9040 | * per cpu batch limit causing bad SMP scalability. | ||
9041 | * | ||
9042 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | ||
9043 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | ||
9044 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | ||
9045 | */ | ||
9046 | #ifdef CONFIG_SMP | ||
9047 | #define CPUACCT_BATCH \ | ||
9048 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | ||
9049 | #else | ||
9050 | #define CPUACCT_BATCH 0 | ||
9051 | #endif | ||
9052 | |||
9053 | /* | ||
10774 | * Charge the system/user time to the task's accounting group. | 9054 | * Charge the system/user time to the task's accounting group. |
10775 | */ | 9055 | */ |
10776 | static void cpuacct_update_stats(struct task_struct *tsk, | 9056 | static void cpuacct_update_stats(struct task_struct *tsk, |
10777 | enum cpuacct_stat_index idx, cputime_t val) | 9057 | enum cpuacct_stat_index idx, cputime_t val) |
10778 | { | 9058 | { |
10779 | struct cpuacct *ca; | 9059 | struct cpuacct *ca; |
9060 | int batch = CPUACCT_BATCH; | ||
10780 | 9061 | ||
10781 | if (unlikely(!cpuacct_subsys.active)) | 9062 | if (unlikely(!cpuacct_subsys.active)) |
10782 | return; | 9063 | return; |
@@ -10785,7 +9066,7 @@ static void cpuacct_update_stats(struct task_struct *tsk, | |||
10785 | ca = task_ca(tsk); | 9066 | ca = task_ca(tsk); |
10786 | 9067 | ||
10787 | do { | 9068 | do { |
10788 | percpu_counter_add(&ca->cpustat[idx], val); | 9069 | __percpu_counter_add(&ca->cpustat[idx], val, batch); |
10789 | ca = ca->parent; | 9070 | ca = ca->parent; |
10790 | } while (ca); | 9071 | } while (ca); |
10791 | rcu_read_unlock(); | 9072 | rcu_read_unlock(); |
@@ -10884,9 +9165,9 @@ void synchronize_sched_expedited(void) | |||
10884 | init_completion(&req->done); | 9165 | init_completion(&req->done); |
10885 | req->task = NULL; | 9166 | req->task = NULL; |
10886 | req->dest_cpu = RCU_MIGRATION_NEED_QS; | 9167 | req->dest_cpu = RCU_MIGRATION_NEED_QS; |
10887 | spin_lock_irqsave(&rq->lock, flags); | 9168 | raw_spin_lock_irqsave(&rq->lock, flags); |
10888 | list_add(&req->list, &rq->migration_queue); | 9169 | list_add(&req->list, &rq->migration_queue); |
10889 | spin_unlock_irqrestore(&rq->lock, flags); | 9170 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
10890 | wake_up_process(rq->migration_thread); | 9171 | wake_up_process(rq->migration_thread); |
10891 | } | 9172 | } |
10892 | for_each_online_cpu(cpu) { | 9173 | for_each_online_cpu(cpu) { |
@@ -10894,13 +9175,14 @@ void synchronize_sched_expedited(void) | |||
10894 | req = &per_cpu(rcu_migration_req, cpu); | 9175 | req = &per_cpu(rcu_migration_req, cpu); |
10895 | rq = cpu_rq(cpu); | 9176 | rq = cpu_rq(cpu); |
10896 | wait_for_completion(&req->done); | 9177 | wait_for_completion(&req->done); |
10897 | spin_lock_irqsave(&rq->lock, flags); | 9178 | raw_spin_lock_irqsave(&rq->lock, flags); |
10898 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | 9179 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) |
10899 | need_full_sync = 1; | 9180 | need_full_sync = 1; |
10900 | req->dest_cpu = RCU_MIGRATION_IDLE; | 9181 | req->dest_cpu = RCU_MIGRATION_IDLE; |
10901 | spin_unlock_irqrestore(&rq->lock, flags); | 9182 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
10902 | } | 9183 | } |
10903 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | 9184 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; |
9185 | synchronize_sched_expedited_count++; | ||
10904 | mutex_unlock(&rcu_sched_expedited_mutex); | 9186 | mutex_unlock(&rcu_sched_expedited_mutex); |
10905 | put_online_cpus(); | 9187 | put_online_cpus(); |
10906 | if (need_full_sync) | 9188 | if (need_full_sync) |