diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 2254 |
1 files changed, 212 insertions, 2042 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index c535cc4f6428..9ab3cd7858d3 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
233 | */ | 233 | */ |
234 | static DEFINE_MUTEX(sched_domains_mutex); | 234 | static DEFINE_MUTEX(sched_domains_mutex); |
235 | 235 | ||
236 | #ifdef CONFIG_GROUP_SCHED | 236 | #ifdef CONFIG_CGROUP_SCHED |
237 | 237 | ||
238 | #include <linux/cgroup.h> | 238 | #include <linux/cgroup.h> |
239 | 239 | ||
@@ -243,13 +243,7 @@ static LIST_HEAD(task_groups); | |||
243 | 243 | ||
244 | /* task group related information */ | 244 | /* task group related information */ |
245 | struct task_group { | 245 | struct task_group { |
246 | #ifdef CONFIG_CGROUP_SCHED | ||
247 | struct cgroup_subsys_state css; | 246 | struct cgroup_subsys_state css; |
248 | #endif | ||
249 | |||
250 | #ifdef CONFIG_USER_SCHED | ||
251 | uid_t uid; | ||
252 | #endif | ||
253 | 247 | ||
254 | #ifdef CONFIG_FAIR_GROUP_SCHED | 248 | #ifdef CONFIG_FAIR_GROUP_SCHED |
255 | /* schedulable entities of this group on each cpu */ | 249 | /* schedulable entities of this group on each cpu */ |
@@ -274,35 +268,7 @@ struct task_group { | |||
274 | struct list_head children; | 268 | struct list_head children; |
275 | }; | 269 | }; |
276 | 270 | ||
277 | #ifdef CONFIG_USER_SCHED | ||
278 | |||
279 | /* Helper function to pass uid information to create_sched_user() */ | ||
280 | void set_tg_uid(struct user_struct *user) | ||
281 | { | ||
282 | user->tg->uid = user->uid; | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * Root task group. | ||
287 | * Every UID task group (including init_task_group aka UID-0) will | ||
288 | * be a child to this group. | ||
289 | */ | ||
290 | struct task_group root_task_group; | ||
291 | |||
292 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
293 | /* Default task group's sched entity on each cpu */ | ||
294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | ||
295 | /* Default task group's cfs_rq on each cpu */ | ||
296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); | ||
297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
298 | |||
299 | #ifdef CONFIG_RT_GROUP_SCHED | ||
300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | ||
301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var); | ||
302 | #endif /* CONFIG_RT_GROUP_SCHED */ | ||
303 | #else /* !CONFIG_USER_SCHED */ | ||
304 | #define root_task_group init_task_group | 271 | #define root_task_group init_task_group |
305 | #endif /* CONFIG_USER_SCHED */ | ||
306 | 272 | ||
307 | /* task_group_lock serializes add/remove of task groups and also changes to | 273 | /* task_group_lock serializes add/remove of task groups and also changes to |
308 | * a task group's cpu shares. | 274 | * a task group's cpu shares. |
@@ -318,11 +284,7 @@ static int root_task_group_empty(void) | |||
318 | } | 284 | } |
319 | #endif | 285 | #endif |
320 | 286 | ||
321 | #ifdef CONFIG_USER_SCHED | ||
322 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | ||
323 | #else /* !CONFIG_USER_SCHED */ | ||
324 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD | 287 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
325 | #endif /* CONFIG_USER_SCHED */ | ||
326 | 288 | ||
327 | /* | 289 | /* |
328 | * A weight of 0 or 1 can cause arithmetics problems. | 290 | * A weight of 0 or 1 can cause arithmetics problems. |
@@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
348 | { | 310 | { |
349 | struct task_group *tg; | 311 | struct task_group *tg; |
350 | 312 | ||
351 | #ifdef CONFIG_USER_SCHED | 313 | #ifdef CONFIG_CGROUP_SCHED |
352 | rcu_read_lock(); | ||
353 | tg = __task_cred(p)->user->tg; | ||
354 | rcu_read_unlock(); | ||
355 | #elif defined(CONFIG_CGROUP_SCHED) | ||
356 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | 314 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
357 | struct task_group, css); | 315 | struct task_group, css); |
358 | #else | 316 | #else |
@@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p) | |||
383 | return NULL; | 341 | return NULL; |
384 | } | 342 | } |
385 | 343 | ||
386 | #endif /* CONFIG_GROUP_SCHED */ | 344 | #endif /* CONFIG_CGROUP_SCHED */ |
387 | 345 | ||
388 | /* CFS-related fields in a runqueue */ | 346 | /* CFS-related fields in a runqueue */ |
389 | struct cfs_rq { | 347 | struct cfs_rq { |
@@ -478,7 +436,6 @@ struct rt_rq { | |||
478 | struct rq *rq; | 436 | struct rq *rq; |
479 | struct list_head leaf_rt_rq_list; | 437 | struct list_head leaf_rt_rq_list; |
480 | struct task_group *tg; | 438 | struct task_group *tg; |
481 | struct sched_rt_entity *rt_se; | ||
482 | #endif | 439 | #endif |
483 | }; | 440 | }; |
484 | 441 | ||
@@ -645,6 +602,11 @@ static inline int cpu_of(struct rq *rq) | |||
645 | #endif | 602 | #endif |
646 | } | 603 | } |
647 | 604 | ||
605 | #define rcu_dereference_check_sched_domain(p) \ | ||
606 | rcu_dereference_check((p), \ | ||
607 | rcu_read_lock_sched_held() || \ | ||
608 | lockdep_is_held(&sched_domains_mutex)) | ||
609 | |||
648 | /* | 610 | /* |
649 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 611 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
650 | * See detach_destroy_domains: synchronize_sched for details. | 612 | * See detach_destroy_domains: synchronize_sched for details. |
@@ -653,7 +615,7 @@ static inline int cpu_of(struct rq *rq) | |||
653 | * preempt-disabled sections. | 615 | * preempt-disabled sections. |
654 | */ | 616 | */ |
655 | #define for_each_domain(cpu, __sd) \ | 617 | #define for_each_domain(cpu, __sd) \ |
656 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 618 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
657 | 619 | ||
658 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | 620 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
659 | #define this_rq() (&__get_cpu_var(runqueues)) | 621 | #define this_rq() (&__get_cpu_var(runqueues)) |
@@ -941,16 +903,33 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
941 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 903 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
942 | 904 | ||
943 | /* | 905 | /* |
906 | * Check whether the task is waking, we use this to synchronize against | ||
907 | * ttwu() so that task_cpu() reports a stable number. | ||
908 | * | ||
909 | * We need to make an exception for PF_STARTING tasks because the fork | ||
910 | * path might require task_rq_lock() to work, eg. it can call | ||
911 | * set_cpus_allowed_ptr() from the cpuset clone_ns code. | ||
912 | */ | ||
913 | static inline int task_is_waking(struct task_struct *p) | ||
914 | { | ||
915 | return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); | ||
916 | } | ||
917 | |||
918 | /* | ||
944 | * __task_rq_lock - lock the runqueue a given task resides on. | 919 | * __task_rq_lock - lock the runqueue a given task resides on. |
945 | * Must be called interrupts disabled. | 920 | * Must be called interrupts disabled. |
946 | */ | 921 | */ |
947 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 922 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
948 | __acquires(rq->lock) | 923 | __acquires(rq->lock) |
949 | { | 924 | { |
925 | struct rq *rq; | ||
926 | |||
950 | for (;;) { | 927 | for (;;) { |
951 | struct rq *rq = task_rq(p); | 928 | while (task_is_waking(p)) |
929 | cpu_relax(); | ||
930 | rq = task_rq(p); | ||
952 | raw_spin_lock(&rq->lock); | 931 | raw_spin_lock(&rq->lock); |
953 | if (likely(rq == task_rq(p))) | 932 | if (likely(rq == task_rq(p) && !task_is_waking(p))) |
954 | return rq; | 933 | return rq; |
955 | raw_spin_unlock(&rq->lock); | 934 | raw_spin_unlock(&rq->lock); |
956 | } | 935 | } |
@@ -967,10 +946,12 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | |||
967 | struct rq *rq; | 946 | struct rq *rq; |
968 | 947 | ||
969 | for (;;) { | 948 | for (;;) { |
949 | while (task_is_waking(p)) | ||
950 | cpu_relax(); | ||
970 | local_irq_save(*flags); | 951 | local_irq_save(*flags); |
971 | rq = task_rq(p); | 952 | rq = task_rq(p); |
972 | raw_spin_lock(&rq->lock); | 953 | raw_spin_lock(&rq->lock); |
973 | if (likely(rq == task_rq(p))) | 954 | if (likely(rq == task_rq(p) && !task_is_waking(p))) |
974 | return rq; | 955 | return rq; |
975 | raw_spin_unlock_irqrestore(&rq->lock, *flags); | 956 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
976 | } | 957 | } |
@@ -1390,32 +1371,6 @@ static const u32 prio_to_wmult[40] = { | |||
1390 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 1371 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
1391 | }; | 1372 | }; |
1392 | 1373 | ||
1393 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | ||
1394 | |||
1395 | /* | ||
1396 | * runqueue iterator, to support SMP load-balancing between different | ||
1397 | * scheduling classes, without having to expose their internal data | ||
1398 | * structures to the load-balancing proper: | ||
1399 | */ | ||
1400 | struct rq_iterator { | ||
1401 | void *arg; | ||
1402 | struct task_struct *(*start)(void *); | ||
1403 | struct task_struct *(*next)(void *); | ||
1404 | }; | ||
1405 | |||
1406 | #ifdef CONFIG_SMP | ||
1407 | static unsigned long | ||
1408 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1409 | unsigned long max_load_move, struct sched_domain *sd, | ||
1410 | enum cpu_idle_type idle, int *all_pinned, | ||
1411 | int *this_best_prio, struct rq_iterator *iterator); | ||
1412 | |||
1413 | static int | ||
1414 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
1415 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
1416 | struct rq_iterator *iterator); | ||
1417 | #endif | ||
1418 | |||
1419 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | 1374 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1420 | enum cpuacct_stat_index { | 1375 | enum cpuacct_stat_index { |
1421 | CPUACCT_STAT_USER, /* ... user mode */ | 1376 | CPUACCT_STAT_USER, /* ... user mode */ |
@@ -1531,7 +1486,7 @@ static unsigned long target_load(int cpu, int type) | |||
1531 | 1486 | ||
1532 | static struct sched_group *group_of(int cpu) | 1487 | static struct sched_group *group_of(int cpu) |
1533 | { | 1488 | { |
1534 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | 1489 | struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd); |
1535 | 1490 | ||
1536 | if (!sd) | 1491 | if (!sd) |
1537 | return NULL; | 1492 | return NULL; |
@@ -1566,7 +1521,7 @@ static unsigned long cpu_avg_load_per_task(int cpu) | |||
1566 | 1521 | ||
1567 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1522 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1568 | 1523 | ||
1569 | static __read_mostly unsigned long *update_shares_data; | 1524 | static __read_mostly unsigned long __percpu *update_shares_data; |
1570 | 1525 | ||
1571 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1526 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1572 | 1527 | ||
@@ -1701,16 +1656,6 @@ static void update_shares(struct sched_domain *sd) | |||
1701 | } | 1656 | } |
1702 | } | 1657 | } |
1703 | 1658 | ||
1704 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1705 | { | ||
1706 | if (root_task_group_empty()) | ||
1707 | return; | ||
1708 | |||
1709 | raw_spin_unlock(&rq->lock); | ||
1710 | update_shares(sd); | ||
1711 | raw_spin_lock(&rq->lock); | ||
1712 | } | ||
1713 | |||
1714 | static void update_h_load(long cpu) | 1659 | static void update_h_load(long cpu) |
1715 | { | 1660 | { |
1716 | if (root_task_group_empty()) | 1661 | if (root_task_group_empty()) |
@@ -1725,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd) | |||
1725 | { | 1670 | { |
1726 | } | 1671 | } |
1727 | 1672 | ||
1728 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | ||
1729 | { | ||
1730 | } | ||
1731 | |||
1732 | #endif | 1673 | #endif |
1733 | 1674 | ||
1734 | #ifdef CONFIG_PREEMPT | 1675 | #ifdef CONFIG_PREEMPT |
@@ -1805,6 +1746,51 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |||
1805 | raw_spin_unlock(&busiest->lock); | 1746 | raw_spin_unlock(&busiest->lock); |
1806 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 1747 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1807 | } | 1748 | } |
1749 | |||
1750 | /* | ||
1751 | * double_rq_lock - safely lock two runqueues | ||
1752 | * | ||
1753 | * Note this does not disable interrupts like task_rq_lock, | ||
1754 | * you need to do so manually before calling. | ||
1755 | */ | ||
1756 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1757 | __acquires(rq1->lock) | ||
1758 | __acquires(rq2->lock) | ||
1759 | { | ||
1760 | BUG_ON(!irqs_disabled()); | ||
1761 | if (rq1 == rq2) { | ||
1762 | raw_spin_lock(&rq1->lock); | ||
1763 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1764 | } else { | ||
1765 | if (rq1 < rq2) { | ||
1766 | raw_spin_lock(&rq1->lock); | ||
1767 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
1768 | } else { | ||
1769 | raw_spin_lock(&rq2->lock); | ||
1770 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
1771 | } | ||
1772 | } | ||
1773 | update_rq_clock(rq1); | ||
1774 | update_rq_clock(rq2); | ||
1775 | } | ||
1776 | |||
1777 | /* | ||
1778 | * double_rq_unlock - safely unlock two runqueues | ||
1779 | * | ||
1780 | * Note this does not restore interrupts like task_rq_unlock, | ||
1781 | * you need to do so manually after calling. | ||
1782 | */ | ||
1783 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1784 | __releases(rq1->lock) | ||
1785 | __releases(rq2->lock) | ||
1786 | { | ||
1787 | raw_spin_unlock(&rq1->lock); | ||
1788 | if (rq1 != rq2) | ||
1789 | raw_spin_unlock(&rq2->lock); | ||
1790 | else | ||
1791 | __release(rq2->lock); | ||
1792 | } | ||
1793 | |||
1808 | #endif | 1794 | #endif |
1809 | 1795 | ||
1810 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1796 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1834,18 +1820,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |||
1834 | #endif | 1820 | #endif |
1835 | } | 1821 | } |
1836 | 1822 | ||
1837 | #include "sched_stats.h" | 1823 | static const struct sched_class rt_sched_class; |
1838 | #include "sched_idletask.c" | ||
1839 | #include "sched_fair.c" | ||
1840 | #include "sched_rt.c" | ||
1841 | #ifdef CONFIG_SCHED_DEBUG | ||
1842 | # include "sched_debug.c" | ||
1843 | #endif | ||
1844 | 1824 | ||
1845 | #define sched_class_highest (&rt_sched_class) | 1825 | #define sched_class_highest (&rt_sched_class) |
1846 | #define for_each_class(class) \ | 1826 | #define for_each_class(class) \ |
1847 | for (class = sched_class_highest; class; class = class->next) | 1827 | for (class = sched_class_highest; class; class = class->next) |
1848 | 1828 | ||
1829 | #include "sched_stats.h" | ||
1830 | |||
1849 | static void inc_nr_running(struct rq *rq) | 1831 | static void inc_nr_running(struct rq *rq) |
1850 | { | 1832 | { |
1851 | rq->nr_running++; | 1833 | rq->nr_running++; |
@@ -1883,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample) | |||
1883 | *avg += diff >> 3; | 1865 | *avg += diff >> 3; |
1884 | } | 1866 | } |
1885 | 1867 | ||
1886 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1868 | static void |
1869 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
1887 | { | 1870 | { |
1888 | if (wakeup) | 1871 | if (wakeup) |
1889 | p->se.start_runtime = p->se.sum_exec_runtime; | 1872 | p->se.start_runtime = p->se.sum_exec_runtime; |
1890 | 1873 | ||
1891 | sched_info_queued(p); | 1874 | sched_info_queued(p); |
1892 | p->sched_class->enqueue_task(rq, p, wakeup); | 1875 | p->sched_class->enqueue_task(rq, p, wakeup, head); |
1893 | p->se.on_rq = 1; | 1876 | p->se.on_rq = 1; |
1894 | } | 1877 | } |
1895 | 1878 | ||
@@ -1912,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | |||
1912 | } | 1895 | } |
1913 | 1896 | ||
1914 | /* | 1897 | /* |
1898 | * activate_task - move a task to the runqueue. | ||
1899 | */ | ||
1900 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1901 | { | ||
1902 | if (task_contributes_to_load(p)) | ||
1903 | rq->nr_uninterruptible--; | ||
1904 | |||
1905 | enqueue_task(rq, p, wakeup, false); | ||
1906 | inc_nr_running(rq); | ||
1907 | } | ||
1908 | |||
1909 | /* | ||
1910 | * deactivate_task - remove a task from the runqueue. | ||
1911 | */ | ||
1912 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1913 | { | ||
1914 | if (task_contributes_to_load(p)) | ||
1915 | rq->nr_uninterruptible++; | ||
1916 | |||
1917 | dequeue_task(rq, p, sleep); | ||
1918 | dec_nr_running(rq); | ||
1919 | } | ||
1920 | |||
1921 | #include "sched_idletask.c" | ||
1922 | #include "sched_fair.c" | ||
1923 | #include "sched_rt.c" | ||
1924 | #ifdef CONFIG_SCHED_DEBUG | ||
1925 | # include "sched_debug.c" | ||
1926 | #endif | ||
1927 | |||
1928 | /* | ||
1915 | * __normal_prio - return the priority that is based on the static prio | 1929 | * __normal_prio - return the priority that is based on the static prio |
1916 | */ | 1930 | */ |
1917 | static inline int __normal_prio(struct task_struct *p) | 1931 | static inline int __normal_prio(struct task_struct *p) |
@@ -1957,30 +1971,6 @@ static int effective_prio(struct task_struct *p) | |||
1957 | return p->prio; | 1971 | return p->prio; |
1958 | } | 1972 | } |
1959 | 1973 | ||
1960 | /* | ||
1961 | * activate_task - move a task to the runqueue. | ||
1962 | */ | ||
1963 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | ||
1964 | { | ||
1965 | if (task_contributes_to_load(p)) | ||
1966 | rq->nr_uninterruptible--; | ||
1967 | |||
1968 | enqueue_task(rq, p, wakeup); | ||
1969 | inc_nr_running(rq); | ||
1970 | } | ||
1971 | |||
1972 | /* | ||
1973 | * deactivate_task - remove a task from the runqueue. | ||
1974 | */ | ||
1975 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | ||
1976 | { | ||
1977 | if (task_contributes_to_load(p)) | ||
1978 | rq->nr_uninterruptible++; | ||
1979 | |||
1980 | dequeue_task(rq, p, sleep); | ||
1981 | dec_nr_running(rq); | ||
1982 | } | ||
1983 | |||
1984 | /** | 1974 | /** |
1985 | * task_curr - is this task currently executing on a CPU? | 1975 | * task_curr - is this task currently executing on a CPU? |
1986 | * @p: the task in question. | 1976 | * @p: the task in question. |
@@ -2320,14 +2310,12 @@ static int select_fallback_rq(int cpu, struct task_struct *p) | |||
2320 | } | 2310 | } |
2321 | 2311 | ||
2322 | /* | 2312 | /* |
2323 | * Called from: | 2313 | * Gets called from 3 sites (exec, fork, wakeup), since it is called without |
2324 | * | 2314 | * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done |
2325 | * - fork, @p is stable because it isn't on the tasklist yet | 2315 | * by: |
2326 | * | 2316 | * |
2327 | * - exec, @p is unstable, retry loop | 2317 | * exec: is unstable, retry loop |
2328 | * | 2318 | * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING |
2329 | * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so | ||
2330 | * we should be good. | ||
2331 | */ | 2319 | */ |
2332 | static inline | 2320 | static inline |
2333 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | 2321 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) |
@@ -2371,7 +2359,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2371 | { | 2359 | { |
2372 | int cpu, orig_cpu, this_cpu, success = 0; | 2360 | int cpu, orig_cpu, this_cpu, success = 0; |
2373 | unsigned long flags; | 2361 | unsigned long flags; |
2374 | struct rq *rq, *orig_rq; | 2362 | struct rq *rq; |
2375 | 2363 | ||
2376 | if (!sched_feat(SYNC_WAKEUPS)) | 2364 | if (!sched_feat(SYNC_WAKEUPS)) |
2377 | wake_flags &= ~WF_SYNC; | 2365 | wake_flags &= ~WF_SYNC; |
@@ -2379,7 +2367,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2379 | this_cpu = get_cpu(); | 2367 | this_cpu = get_cpu(); |
2380 | 2368 | ||
2381 | smp_wmb(); | 2369 | smp_wmb(); |
2382 | rq = orig_rq = task_rq_lock(p, &flags); | 2370 | rq = task_rq_lock(p, &flags); |
2383 | update_rq_clock(rq); | 2371 | update_rq_clock(rq); |
2384 | if (!(p->state & state)) | 2372 | if (!(p->state & state)) |
2385 | goto out; | 2373 | goto out; |
@@ -2410,14 +2398,27 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2410 | __task_rq_unlock(rq); | 2398 | __task_rq_unlock(rq); |
2411 | 2399 | ||
2412 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | 2400 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); |
2413 | if (cpu != orig_cpu) | 2401 | if (cpu != orig_cpu) { |
2402 | /* | ||
2403 | * Since we migrate the task without holding any rq->lock, | ||
2404 | * we need to be careful with task_rq_lock(), since that | ||
2405 | * might end up locking an invalid rq. | ||
2406 | */ | ||
2414 | set_task_cpu(p, cpu); | 2407 | set_task_cpu(p, cpu); |
2408 | } | ||
2415 | 2409 | ||
2416 | rq = __task_rq_lock(p); | 2410 | rq = cpu_rq(cpu); |
2411 | raw_spin_lock(&rq->lock); | ||
2417 | update_rq_clock(rq); | 2412 | update_rq_clock(rq); |
2418 | 2413 | ||
2414 | /* | ||
2415 | * We migrated the task without holding either rq->lock, however | ||
2416 | * since the task is not on the task list itself, nobody else | ||
2417 | * will try and migrate the task, hence the rq should match the | ||
2418 | * cpu we just moved it to. | ||
2419 | */ | ||
2420 | WARN_ON(task_cpu(p) != cpu); | ||
2419 | WARN_ON(p->state != TASK_WAKING); | 2421 | WARN_ON(p->state != TASK_WAKING); |
2420 | cpu = task_cpu(p); | ||
2421 | 2422 | ||
2422 | #ifdef CONFIG_SCHEDSTATS | 2423 | #ifdef CONFIG_SCHEDSTATS |
2423 | schedstat_inc(rq, ttwu_count); | 2424 | schedstat_inc(rq, ttwu_count); |
@@ -2620,9 +2621,6 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2620 | if (p->sched_class->task_fork) | 2621 | if (p->sched_class->task_fork) |
2621 | p->sched_class->task_fork(p); | 2622 | p->sched_class->task_fork(p); |
2622 | 2623 | ||
2623 | #ifdef CONFIG_SMP | ||
2624 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | ||
2625 | #endif | ||
2626 | set_task_cpu(p, cpu); | 2624 | set_task_cpu(p, cpu); |
2627 | 2625 | ||
2628 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2626 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
@@ -2652,8 +2650,29 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2652 | { | 2650 | { |
2653 | unsigned long flags; | 2651 | unsigned long flags; |
2654 | struct rq *rq; | 2652 | struct rq *rq; |
2653 | int cpu = get_cpu(); | ||
2654 | |||
2655 | #ifdef CONFIG_SMP | ||
2656 | /* | ||
2657 | * Fork balancing, do it here and not earlier because: | ||
2658 | * - cpus_allowed can change in the fork path | ||
2659 | * - any previously selected cpu might disappear through hotplug | ||
2660 | * | ||
2661 | * We still have TASK_WAKING but PF_STARTING is gone now, meaning | ||
2662 | * ->cpus_allowed is stable, we have preemption disabled, meaning | ||
2663 | * cpu_online_mask is stable. | ||
2664 | */ | ||
2665 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | ||
2666 | set_task_cpu(p, cpu); | ||
2667 | #endif | ||
2668 | |||
2669 | /* | ||
2670 | * Since the task is not on the rq and we still have TASK_WAKING set | ||
2671 | * nobody else will migrate this task. | ||
2672 | */ | ||
2673 | rq = cpu_rq(cpu); | ||
2674 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
2655 | 2675 | ||
2656 | rq = task_rq_lock(p, &flags); | ||
2657 | BUG_ON(p->state != TASK_WAKING); | 2676 | BUG_ON(p->state != TASK_WAKING); |
2658 | p->state = TASK_RUNNING; | 2677 | p->state = TASK_RUNNING; |
2659 | update_rq_clock(rq); | 2678 | update_rq_clock(rq); |
@@ -2665,6 +2684,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2665 | p->sched_class->task_woken(rq, p); | 2684 | p->sched_class->task_woken(rq, p); |
2666 | #endif | 2685 | #endif |
2667 | task_rq_unlock(rq, &flags); | 2686 | task_rq_unlock(rq, &flags); |
2687 | put_cpu(); | ||
2668 | } | 2688 | } |
2669 | 2689 | ||
2670 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2690 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
@@ -2783,7 +2803,13 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2783 | */ | 2803 | */ |
2784 | prev_state = prev->state; | 2804 | prev_state = prev->state; |
2785 | finish_arch_switch(prev); | 2805 | finish_arch_switch(prev); |
2786 | perf_event_task_sched_in(current, cpu_of(rq)); | 2806 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2807 | local_irq_disable(); | ||
2808 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
2809 | perf_event_task_sched_in(current); | ||
2810 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
2811 | local_irq_enable(); | ||
2812 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | ||
2787 | finish_lock_switch(rq, prev); | 2813 | finish_lock_switch(rq, prev); |
2788 | 2814 | ||
2789 | fire_sched_in_preempt_notifiers(current); | 2815 | fire_sched_in_preempt_notifiers(current); |
@@ -3088,50 +3114,6 @@ static void update_cpu_load(struct rq *this_rq) | |||
3088 | #ifdef CONFIG_SMP | 3114 | #ifdef CONFIG_SMP |
3089 | 3115 | ||
3090 | /* | 3116 | /* |
3091 | * double_rq_lock - safely lock two runqueues | ||
3092 | * | ||
3093 | * Note this does not disable interrupts like task_rq_lock, | ||
3094 | * you need to do so manually before calling. | ||
3095 | */ | ||
3096 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
3097 | __acquires(rq1->lock) | ||
3098 | __acquires(rq2->lock) | ||
3099 | { | ||
3100 | BUG_ON(!irqs_disabled()); | ||
3101 | if (rq1 == rq2) { | ||
3102 | raw_spin_lock(&rq1->lock); | ||
3103 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
3104 | } else { | ||
3105 | if (rq1 < rq2) { | ||
3106 | raw_spin_lock(&rq1->lock); | ||
3107 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
3108 | } else { | ||
3109 | raw_spin_lock(&rq2->lock); | ||
3110 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
3111 | } | ||
3112 | } | ||
3113 | update_rq_clock(rq1); | ||
3114 | update_rq_clock(rq2); | ||
3115 | } | ||
3116 | |||
3117 | /* | ||
3118 | * double_rq_unlock - safely unlock two runqueues | ||
3119 | * | ||
3120 | * Note this does not restore interrupts like task_rq_unlock, | ||
3121 | * you need to do so manually after calling. | ||
3122 | */ | ||
3123 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
3124 | __releases(rq1->lock) | ||
3125 | __releases(rq2->lock) | ||
3126 | { | ||
3127 | raw_spin_unlock(&rq1->lock); | ||
3128 | if (rq1 != rq2) | ||
3129 | raw_spin_unlock(&rq2->lock); | ||
3130 | else | ||
3131 | __release(rq2->lock); | ||
3132 | } | ||
3133 | |||
3134 | /* | ||
3135 | * sched_exec - execve() is a valuable balancing opportunity, because at | 3117 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3136 | * this point the task has the smallest effective memory and cache footprint. | 3118 | * this point the task has the smallest effective memory and cache footprint. |
3137 | */ | 3119 | */ |
@@ -3179,1771 +3161,6 @@ again: | |||
3179 | task_rq_unlock(rq, &flags); | 3161 | task_rq_unlock(rq, &flags); |
3180 | } | 3162 | } |
3181 | 3163 | ||
3182 | /* | ||
3183 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
3184 | * Both runqueues must be locked. | ||
3185 | */ | ||
3186 | static void pull_task(struct rq *src_rq, struct task_struct *p, | ||
3187 | struct rq *this_rq, int this_cpu) | ||
3188 | { | ||
3189 | deactivate_task(src_rq, p, 0); | ||
3190 | set_task_cpu(p, this_cpu); | ||
3191 | activate_task(this_rq, p, 0); | ||
3192 | check_preempt_curr(this_rq, p, 0); | ||
3193 | } | ||
3194 | |||
3195 | /* | ||
3196 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
3197 | */ | ||
3198 | static | ||
3199 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | ||
3200 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3201 | int *all_pinned) | ||
3202 | { | ||
3203 | int tsk_cache_hot = 0; | ||
3204 | /* | ||
3205 | * We do not migrate tasks that are: | ||
3206 | * 1) running (obviously), or | ||
3207 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
3208 | * 3) are cache-hot on their current CPU. | ||
3209 | */ | ||
3210 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | ||
3211 | schedstat_inc(p, se.nr_failed_migrations_affine); | ||
3212 | return 0; | ||
3213 | } | ||
3214 | *all_pinned = 0; | ||
3215 | |||
3216 | if (task_running(rq, p)) { | ||
3217 | schedstat_inc(p, se.nr_failed_migrations_running); | ||
3218 | return 0; | ||
3219 | } | ||
3220 | |||
3221 | /* | ||
3222 | * Aggressive migration if: | ||
3223 | * 1) task is cache cold, or | ||
3224 | * 2) too many balance attempts have failed. | ||
3225 | */ | ||
3226 | |||
3227 | tsk_cache_hot = task_hot(p, rq->clock, sd); | ||
3228 | if (!tsk_cache_hot || | ||
3229 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
3230 | #ifdef CONFIG_SCHEDSTATS | ||
3231 | if (tsk_cache_hot) { | ||
3232 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
3233 | schedstat_inc(p, se.nr_forced_migrations); | ||
3234 | } | ||
3235 | #endif | ||
3236 | return 1; | ||
3237 | } | ||
3238 | |||
3239 | if (tsk_cache_hot) { | ||
3240 | schedstat_inc(p, se.nr_failed_migrations_hot); | ||
3241 | return 0; | ||
3242 | } | ||
3243 | return 1; | ||
3244 | } | ||
3245 | |||
3246 | static unsigned long | ||
3247 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3248 | unsigned long max_load_move, struct sched_domain *sd, | ||
3249 | enum cpu_idle_type idle, int *all_pinned, | ||
3250 | int *this_best_prio, struct rq_iterator *iterator) | ||
3251 | { | ||
3252 | int loops = 0, pulled = 0, pinned = 0; | ||
3253 | struct task_struct *p; | ||
3254 | long rem_load_move = max_load_move; | ||
3255 | |||
3256 | if (max_load_move == 0) | ||
3257 | goto out; | ||
3258 | |||
3259 | pinned = 1; | ||
3260 | |||
3261 | /* | ||
3262 | * Start the load-balancing iterator: | ||
3263 | */ | ||
3264 | p = iterator->start(iterator->arg); | ||
3265 | next: | ||
3266 | if (!p || loops++ > sysctl_sched_nr_migrate) | ||
3267 | goto out; | ||
3268 | |||
3269 | if ((p->se.load.weight >> 1) > rem_load_move || | ||
3270 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3271 | p = iterator->next(iterator->arg); | ||
3272 | goto next; | ||
3273 | } | ||
3274 | |||
3275 | pull_task(busiest, p, this_rq, this_cpu); | ||
3276 | pulled++; | ||
3277 | rem_load_move -= p->se.load.weight; | ||
3278 | |||
3279 | #ifdef CONFIG_PREEMPT | ||
3280 | /* | ||
3281 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3282 | * will stop after the first task is pulled to minimize the critical | ||
3283 | * section. | ||
3284 | */ | ||
3285 | if (idle == CPU_NEWLY_IDLE) | ||
3286 | goto out; | ||
3287 | #endif | ||
3288 | |||
3289 | /* | ||
3290 | * We only want to steal up to the prescribed amount of weighted load. | ||
3291 | */ | ||
3292 | if (rem_load_move > 0) { | ||
3293 | if (p->prio < *this_best_prio) | ||
3294 | *this_best_prio = p->prio; | ||
3295 | p = iterator->next(iterator->arg); | ||
3296 | goto next; | ||
3297 | } | ||
3298 | out: | ||
3299 | /* | ||
3300 | * Right now, this is one of only two places pull_task() is called, | ||
3301 | * so we can safely collect pull_task() stats here rather than | ||
3302 | * inside pull_task(). | ||
3303 | */ | ||
3304 | schedstat_add(sd, lb_gained[idle], pulled); | ||
3305 | |||
3306 | if (all_pinned) | ||
3307 | *all_pinned = pinned; | ||
3308 | |||
3309 | return max_load_move - rem_load_move; | ||
3310 | } | ||
3311 | |||
3312 | /* | ||
3313 | * move_tasks tries to move up to max_load_move weighted load from busiest to | ||
3314 | * this_rq, as part of a balancing operation within domain "sd". | ||
3315 | * Returns 1 if successful and 0 otherwise. | ||
3316 | * | ||
3317 | * Called with both runqueues locked. | ||
3318 | */ | ||
3319 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3320 | unsigned long max_load_move, | ||
3321 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3322 | int *all_pinned) | ||
3323 | { | ||
3324 | const struct sched_class *class = sched_class_highest; | ||
3325 | unsigned long total_load_moved = 0; | ||
3326 | int this_best_prio = this_rq->curr->prio; | ||
3327 | |||
3328 | do { | ||
3329 | total_load_moved += | ||
3330 | class->load_balance(this_rq, this_cpu, busiest, | ||
3331 | max_load_move - total_load_moved, | ||
3332 | sd, idle, all_pinned, &this_best_prio); | ||
3333 | class = class->next; | ||
3334 | |||
3335 | #ifdef CONFIG_PREEMPT | ||
3336 | /* | ||
3337 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3338 | * kernels will stop after the first task is pulled to minimize | ||
3339 | * the critical section. | ||
3340 | */ | ||
3341 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | ||
3342 | break; | ||
3343 | #endif | ||
3344 | } while (class && max_load_move > total_load_moved); | ||
3345 | |||
3346 | return total_load_moved > 0; | ||
3347 | } | ||
3348 | |||
3349 | static int | ||
3350 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3351 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
3352 | struct rq_iterator *iterator) | ||
3353 | { | ||
3354 | struct task_struct *p = iterator->start(iterator->arg); | ||
3355 | int pinned = 0; | ||
3356 | |||
3357 | while (p) { | ||
3358 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | ||
3359 | pull_task(busiest, p, this_rq, this_cpu); | ||
3360 | /* | ||
3361 | * Right now, this is only the second place pull_task() | ||
3362 | * is called, so we can safely collect pull_task() | ||
3363 | * stats here rather than inside pull_task(). | ||
3364 | */ | ||
3365 | schedstat_inc(sd, lb_gained[idle]); | ||
3366 | |||
3367 | return 1; | ||
3368 | } | ||
3369 | p = iterator->next(iterator->arg); | ||
3370 | } | ||
3371 | |||
3372 | return 0; | ||
3373 | } | ||
3374 | |||
3375 | /* | ||
3376 | * move_one_task tries to move exactly one task from busiest to this_rq, as | ||
3377 | * part of active balancing operations within "domain". | ||
3378 | * Returns 1 if successful and 0 otherwise. | ||
3379 | * | ||
3380 | * Called with both runqueues locked. | ||
3381 | */ | ||
3382 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | ||
3383 | struct sched_domain *sd, enum cpu_idle_type idle) | ||
3384 | { | ||
3385 | const struct sched_class *class; | ||
3386 | |||
3387 | for_each_class(class) { | ||
3388 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | ||
3389 | return 1; | ||
3390 | } | ||
3391 | |||
3392 | return 0; | ||
3393 | } | ||
3394 | /********** Helpers for find_busiest_group ************************/ | ||
3395 | /* | ||
3396 | * sd_lb_stats - Structure to store the statistics of a sched_domain | ||
3397 | * during load balancing. | ||
3398 | */ | ||
3399 | struct sd_lb_stats { | ||
3400 | struct sched_group *busiest; /* Busiest group in this sd */ | ||
3401 | struct sched_group *this; /* Local group in this sd */ | ||
3402 | unsigned long total_load; /* Total load of all groups in sd */ | ||
3403 | unsigned long total_pwr; /* Total power of all groups in sd */ | ||
3404 | unsigned long avg_load; /* Average load across all groups in sd */ | ||
3405 | |||
3406 | /** Statistics of this group */ | ||
3407 | unsigned long this_load; | ||
3408 | unsigned long this_load_per_task; | ||
3409 | unsigned long this_nr_running; | ||
3410 | |||
3411 | /* Statistics of the busiest group */ | ||
3412 | unsigned long max_load; | ||
3413 | unsigned long busiest_load_per_task; | ||
3414 | unsigned long busiest_nr_running; | ||
3415 | |||
3416 | int group_imb; /* Is there imbalance in this sd */ | ||
3417 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3418 | int power_savings_balance; /* Is powersave balance needed for this sd */ | ||
3419 | struct sched_group *group_min; /* Least loaded group in sd */ | ||
3420 | struct sched_group *group_leader; /* Group which relieves group_min */ | ||
3421 | unsigned long min_load_per_task; /* load_per_task in group_min */ | ||
3422 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3423 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3424 | #endif | ||
3425 | }; | ||
3426 | |||
3427 | /* | ||
3428 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3429 | */ | ||
3430 | struct sg_lb_stats { | ||
3431 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3432 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3433 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3434 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3435 | unsigned long group_capacity; | ||
3436 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3437 | }; | ||
3438 | |||
3439 | /** | ||
3440 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | ||
3441 | * @group: The group whose first cpu is to be returned. | ||
3442 | */ | ||
3443 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3444 | { | ||
3445 | return cpumask_first(sched_group_cpus(group)); | ||
3446 | } | ||
3447 | |||
3448 | /** | ||
3449 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3450 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3451 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3452 | */ | ||
3453 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3454 | enum cpu_idle_type idle) | ||
3455 | { | ||
3456 | int load_idx; | ||
3457 | |||
3458 | switch (idle) { | ||
3459 | case CPU_NOT_IDLE: | ||
3460 | load_idx = sd->busy_idx; | ||
3461 | break; | ||
3462 | |||
3463 | case CPU_NEWLY_IDLE: | ||
3464 | load_idx = sd->newidle_idx; | ||
3465 | break; | ||
3466 | default: | ||
3467 | load_idx = sd->idle_idx; | ||
3468 | break; | ||
3469 | } | ||
3470 | |||
3471 | return load_idx; | ||
3472 | } | ||
3473 | |||
3474 | |||
3475 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
3476 | /** | ||
3477 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3478 | * the given sched_domain, during load balancing. | ||
3479 | * | ||
3480 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3481 | * @sds: Variable containing the statistics for sd. | ||
3482 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3483 | */ | ||
3484 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3485 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3486 | { | ||
3487 | /* | ||
3488 | * Busy processors will not participate in power savings | ||
3489 | * balance. | ||
3490 | */ | ||
3491 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3492 | sds->power_savings_balance = 0; | ||
3493 | else { | ||
3494 | sds->power_savings_balance = 1; | ||
3495 | sds->min_nr_running = ULONG_MAX; | ||
3496 | sds->leader_nr_running = 0; | ||
3497 | } | ||
3498 | } | ||
3499 | |||
3500 | /** | ||
3501 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
3502 | * sched_domain while performing load balancing. | ||
3503 | * | ||
3504 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3505 | * @sds: Variable containing the statistics of the sched_domain | ||
3506 | * @local_group: Does group contain the CPU for which we're performing | ||
3507 | * load balancing ? | ||
3508 | * @sgs: Variable containing the statistics of the group. | ||
3509 | */ | ||
3510 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3511 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3512 | { | ||
3513 | |||
3514 | if (!sds->power_savings_balance) | ||
3515 | return; | ||
3516 | |||
3517 | /* | ||
3518 | * If the local group is idle or completely loaded | ||
3519 | * no need to do power savings balance at this domain | ||
3520 | */ | ||
3521 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3522 | !sds->this_nr_running)) | ||
3523 | sds->power_savings_balance = 0; | ||
3524 | |||
3525 | /* | ||
3526 | * If a group is already running at full capacity or idle, | ||
3527 | * don't include that group in power savings calculations | ||
3528 | */ | ||
3529 | if (!sds->power_savings_balance || | ||
3530 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3531 | !sgs->sum_nr_running) | ||
3532 | return; | ||
3533 | |||
3534 | /* | ||
3535 | * Calculate the group which has the least non-idle load. | ||
3536 | * This is the group from where we need to pick up the load | ||
3537 | * for saving power | ||
3538 | */ | ||
3539 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
3540 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3541 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3542 | sds->group_min = group; | ||
3543 | sds->min_nr_running = sgs->sum_nr_running; | ||
3544 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3545 | sgs->sum_nr_running; | ||
3546 | } | ||
3547 | |||
3548 | /* | ||
3549 | * Calculate the group which is almost near its | ||
3550 | * capacity but still has some space to pick up some load | ||
3551 | * from other group and save more power | ||
3552 | */ | ||
3553 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) | ||
3554 | return; | ||
3555 | |||
3556 | if (sgs->sum_nr_running > sds->leader_nr_running || | ||
3557 | (sgs->sum_nr_running == sds->leader_nr_running && | ||
3558 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { | ||
3559 | sds->group_leader = group; | ||
3560 | sds->leader_nr_running = sgs->sum_nr_running; | ||
3561 | } | ||
3562 | } | ||
3563 | |||
3564 | /** | ||
3565 | * check_power_save_busiest_group - see if there is potential for some power-savings balance | ||
3566 | * @sds: Variable containing the statistics of the sched_domain | ||
3567 | * under consideration. | ||
3568 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3569 | * @imbalance: Variable to store the imbalance. | ||
3570 | * | ||
3571 | * Description: | ||
3572 | * Check if we have potential to perform some power-savings balance. | ||
3573 | * If yes, set the busiest group to be the least loaded group in the | ||
3574 | * sched_domain, so that it's CPUs can be put to idle. | ||
3575 | * | ||
3576 | * Returns 1 if there is potential to perform power-savings balance. | ||
3577 | * Else returns 0. | ||
3578 | */ | ||
3579 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3580 | int this_cpu, unsigned long *imbalance) | ||
3581 | { | ||
3582 | if (!sds->power_savings_balance) | ||
3583 | return 0; | ||
3584 | |||
3585 | if (sds->this != sds->group_leader || | ||
3586 | sds->group_leader == sds->group_min) | ||
3587 | return 0; | ||
3588 | |||
3589 | *imbalance = sds->min_load_per_task; | ||
3590 | sds->busiest = sds->group_min; | ||
3591 | |||
3592 | return 1; | ||
3593 | |||
3594 | } | ||
3595 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3596 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3597 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3598 | { | ||
3599 | return; | ||
3600 | } | ||
3601 | |||
3602 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3603 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3604 | { | ||
3605 | return; | ||
3606 | } | ||
3607 | |||
3608 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3609 | int this_cpu, unsigned long *imbalance) | ||
3610 | { | ||
3611 | return 0; | ||
3612 | } | ||
3613 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3614 | |||
3615 | |||
3616 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3617 | { | ||
3618 | return SCHED_LOAD_SCALE; | ||
3619 | } | ||
3620 | |||
3621 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3622 | { | ||
3623 | return default_scale_freq_power(sd, cpu); | ||
3624 | } | ||
3625 | |||
3626 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3627 | { | ||
3628 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3629 | unsigned long smt_gain = sd->smt_gain; | ||
3630 | |||
3631 | smt_gain /= weight; | ||
3632 | |||
3633 | return smt_gain; | ||
3634 | } | ||
3635 | |||
3636 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3637 | { | ||
3638 | return default_scale_smt_power(sd, cpu); | ||
3639 | } | ||
3640 | |||
3641 | unsigned long scale_rt_power(int cpu) | ||
3642 | { | ||
3643 | struct rq *rq = cpu_rq(cpu); | ||
3644 | u64 total, available; | ||
3645 | |||
3646 | sched_avg_update(rq); | ||
3647 | |||
3648 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
3649 | available = total - rq->rt_avg; | ||
3650 | |||
3651 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
3652 | total = SCHED_LOAD_SCALE; | ||
3653 | |||
3654 | total >>= SCHED_LOAD_SHIFT; | ||
3655 | |||
3656 | return div_u64(available, total); | ||
3657 | } | ||
3658 | |||
3659 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
3660 | { | ||
3661 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
3662 | unsigned long power = SCHED_LOAD_SCALE; | ||
3663 | struct sched_group *sdg = sd->groups; | ||
3664 | |||
3665 | if (sched_feat(ARCH_POWER)) | ||
3666 | power *= arch_scale_freq_power(sd, cpu); | ||
3667 | else | ||
3668 | power *= default_scale_freq_power(sd, cpu); | ||
3669 | |||
3670 | power >>= SCHED_LOAD_SHIFT; | ||
3671 | |||
3672 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
3673 | if (sched_feat(ARCH_POWER)) | ||
3674 | power *= arch_scale_smt_power(sd, cpu); | ||
3675 | else | ||
3676 | power *= default_scale_smt_power(sd, cpu); | ||
3677 | |||
3678 | power >>= SCHED_LOAD_SHIFT; | ||
3679 | } | ||
3680 | |||
3681 | power *= scale_rt_power(cpu); | ||
3682 | power >>= SCHED_LOAD_SHIFT; | ||
3683 | |||
3684 | if (!power) | ||
3685 | power = 1; | ||
3686 | |||
3687 | sdg->cpu_power = power; | ||
3688 | } | ||
3689 | |||
3690 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
3691 | { | ||
3692 | struct sched_domain *child = sd->child; | ||
3693 | struct sched_group *group, *sdg = sd->groups; | ||
3694 | unsigned long power; | ||
3695 | |||
3696 | if (!child) { | ||
3697 | update_cpu_power(sd, cpu); | ||
3698 | return; | ||
3699 | } | ||
3700 | |||
3701 | power = 0; | ||
3702 | |||
3703 | group = child->groups; | ||
3704 | do { | ||
3705 | power += group->cpu_power; | ||
3706 | group = group->next; | ||
3707 | } while (group != child->groups); | ||
3708 | |||
3709 | sdg->cpu_power = power; | ||
3710 | } | ||
3711 | |||
3712 | /** | ||
3713 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3714 | * @sd: The sched_domain whose statistics are to be updated. | ||
3715 | * @group: sched_group whose statistics are to be updated. | ||
3716 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3717 | * @idle: Idle status of this_cpu | ||
3718 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3719 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3720 | * @local_group: Does group contain this_cpu. | ||
3721 | * @cpus: Set of cpus considered for load balancing. | ||
3722 | * @balance: Should we balance. | ||
3723 | * @sgs: variable to hold the statistics for this group. | ||
3724 | */ | ||
3725 | static inline void update_sg_lb_stats(struct sched_domain *sd, | ||
3726 | struct sched_group *group, int this_cpu, | ||
3727 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
3728 | int local_group, const struct cpumask *cpus, | ||
3729 | int *balance, struct sg_lb_stats *sgs) | ||
3730 | { | ||
3731 | unsigned long load, max_cpu_load, min_cpu_load; | ||
3732 | int i; | ||
3733 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3734 | unsigned long sum_avg_load_per_task; | ||
3735 | unsigned long avg_load_per_task; | ||
3736 | |||
3737 | if (local_group) { | ||
3738 | balance_cpu = group_first_cpu(group); | ||
3739 | if (balance_cpu == this_cpu) | ||
3740 | update_group_power(sd, this_cpu); | ||
3741 | } | ||
3742 | |||
3743 | /* Tally up the load of all CPUs in the group */ | ||
3744 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3745 | max_cpu_load = 0; | ||
3746 | min_cpu_load = ~0UL; | ||
3747 | |||
3748 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3749 | struct rq *rq = cpu_rq(i); | ||
3750 | |||
3751 | if (*sd_idle && rq->nr_running) | ||
3752 | *sd_idle = 0; | ||
3753 | |||
3754 | /* Bias balancing toward cpus of our domain */ | ||
3755 | if (local_group) { | ||
3756 | if (idle_cpu(i) && !first_idle_cpu) { | ||
3757 | first_idle_cpu = 1; | ||
3758 | balance_cpu = i; | ||
3759 | } | ||
3760 | |||
3761 | load = target_load(i, load_idx); | ||
3762 | } else { | ||
3763 | load = source_load(i, load_idx); | ||
3764 | if (load > max_cpu_load) | ||
3765 | max_cpu_load = load; | ||
3766 | if (min_cpu_load > load) | ||
3767 | min_cpu_load = load; | ||
3768 | } | ||
3769 | |||
3770 | sgs->group_load += load; | ||
3771 | sgs->sum_nr_running += rq->nr_running; | ||
3772 | sgs->sum_weighted_load += weighted_cpuload(i); | ||
3773 | |||
3774 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | ||
3775 | } | ||
3776 | |||
3777 | /* | ||
3778 | * First idle cpu or the first cpu(busiest) in this sched group | ||
3779 | * is eligible for doing load balancing at this and above | ||
3780 | * domains. In the newly idle case, we will allow all the cpu's | ||
3781 | * to do the newly idle load balance. | ||
3782 | */ | ||
3783 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
3784 | balance_cpu != this_cpu && balance) { | ||
3785 | *balance = 0; | ||
3786 | return; | ||
3787 | } | ||
3788 | |||
3789 | /* Adjust by relative CPU power of the group */ | ||
3790 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
3791 | |||
3792 | |||
3793 | /* | ||
3794 | * Consider the group unbalanced when the imbalance is larger | ||
3795 | * than the average weight of two tasks. | ||
3796 | * | ||
3797 | * APZ: with cgroup the avg task weight can vary wildly and | ||
3798 | * might not be a suitable number - should we keep a | ||
3799 | * normalized nr_running number somewhere that negates | ||
3800 | * the hierarchy? | ||
3801 | */ | ||
3802 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / | ||
3803 | group->cpu_power; | ||
3804 | |||
3805 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
3806 | sgs->group_imb = 1; | ||
3807 | |||
3808 | sgs->group_capacity = | ||
3809 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | ||
3810 | } | ||
3811 | |||
3812 | /** | ||
3813 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
3814 | * @sd: sched_domain whose statistics are to be updated. | ||
3815 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3816 | * @idle: Idle status of this_cpu | ||
3817 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3818 | * @cpus: Set of cpus considered for load balancing. | ||
3819 | * @balance: Should we balance. | ||
3820 | * @sds: variable to hold the statistics for this sched_domain. | ||
3821 | */ | ||
3822 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3823 | enum cpu_idle_type idle, int *sd_idle, | ||
3824 | const struct cpumask *cpus, int *balance, | ||
3825 | struct sd_lb_stats *sds) | ||
3826 | { | ||
3827 | struct sched_domain *child = sd->child; | ||
3828 | struct sched_group *group = sd->groups; | ||
3829 | struct sg_lb_stats sgs; | ||
3830 | int load_idx, prefer_sibling = 0; | ||
3831 | |||
3832 | if (child && child->flags & SD_PREFER_SIBLING) | ||
3833 | prefer_sibling = 1; | ||
3834 | |||
3835 | init_sd_power_savings_stats(sd, sds, idle); | ||
3836 | load_idx = get_sd_load_idx(sd, idle); | ||
3837 | |||
3838 | do { | ||
3839 | int local_group; | ||
3840 | |||
3841 | local_group = cpumask_test_cpu(this_cpu, | ||
3842 | sched_group_cpus(group)); | ||
3843 | memset(&sgs, 0, sizeof(sgs)); | ||
3844 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, | ||
3845 | local_group, cpus, balance, &sgs); | ||
3846 | |||
3847 | if (local_group && balance && !(*balance)) | ||
3848 | return; | ||
3849 | |||
3850 | sds->total_load += sgs.group_load; | ||
3851 | sds->total_pwr += group->cpu_power; | ||
3852 | |||
3853 | /* | ||
3854 | * In case the child domain prefers tasks go to siblings | ||
3855 | * first, lower the group capacity to one so that we'll try | ||
3856 | * and move all the excess tasks away. | ||
3857 | */ | ||
3858 | if (prefer_sibling) | ||
3859 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
3860 | |||
3861 | if (local_group) { | ||
3862 | sds->this_load = sgs.avg_load; | ||
3863 | sds->this = group; | ||
3864 | sds->this_nr_running = sgs.sum_nr_running; | ||
3865 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
3866 | } else if (sgs.avg_load > sds->max_load && | ||
3867 | (sgs.sum_nr_running > sgs.group_capacity || | ||
3868 | sgs.group_imb)) { | ||
3869 | sds->max_load = sgs.avg_load; | ||
3870 | sds->busiest = group; | ||
3871 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
3872 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
3873 | sds->group_imb = sgs.group_imb; | ||
3874 | } | ||
3875 | |||
3876 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | ||
3877 | group = group->next; | ||
3878 | } while (group != sd->groups); | ||
3879 | } | ||
3880 | |||
3881 | /** | ||
3882 | * fix_small_imbalance - Calculate the minor imbalance that exists | ||
3883 | * amongst the groups of a sched_domain, during | ||
3884 | * load balancing. | ||
3885 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
3886 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
3887 | * @imbalance: Variable to store the imbalance. | ||
3888 | */ | ||
3889 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
3890 | int this_cpu, unsigned long *imbalance) | ||
3891 | { | ||
3892 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
3893 | unsigned int imbn = 2; | ||
3894 | |||
3895 | if (sds->this_nr_running) { | ||
3896 | sds->this_load_per_task /= sds->this_nr_running; | ||
3897 | if (sds->busiest_load_per_task > | ||
3898 | sds->this_load_per_task) | ||
3899 | imbn = 1; | ||
3900 | } else | ||
3901 | sds->this_load_per_task = | ||
3902 | cpu_avg_load_per_task(this_cpu); | ||
3903 | |||
3904 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= | ||
3905 | sds->busiest_load_per_task * imbn) { | ||
3906 | *imbalance = sds->busiest_load_per_task; | ||
3907 | return; | ||
3908 | } | ||
3909 | |||
3910 | /* | ||
3911 | * OK, we don't have enough imbalance to justify moving tasks, | ||
3912 | * however we may be able to increase total CPU power used by | ||
3913 | * moving them. | ||
3914 | */ | ||
3915 | |||
3916 | pwr_now += sds->busiest->cpu_power * | ||
3917 | min(sds->busiest_load_per_task, sds->max_load); | ||
3918 | pwr_now += sds->this->cpu_power * | ||
3919 | min(sds->this_load_per_task, sds->this_load); | ||
3920 | pwr_now /= SCHED_LOAD_SCALE; | ||
3921 | |||
3922 | /* Amount of load we'd subtract */ | ||
3923 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3924 | sds->busiest->cpu_power; | ||
3925 | if (sds->max_load > tmp) | ||
3926 | pwr_move += sds->busiest->cpu_power * | ||
3927 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3928 | |||
3929 | /* Amount of load we'd add */ | ||
3930 | if (sds->max_load * sds->busiest->cpu_power < | ||
3931 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3932 | tmp = (sds->max_load * sds->busiest->cpu_power) / | ||
3933 | sds->this->cpu_power; | ||
3934 | else | ||
3935 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / | ||
3936 | sds->this->cpu_power; | ||
3937 | pwr_move += sds->this->cpu_power * | ||
3938 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3939 | pwr_move /= SCHED_LOAD_SCALE; | ||
3940 | |||
3941 | /* Move if we gain throughput */ | ||
3942 | if (pwr_move > pwr_now) | ||
3943 | *imbalance = sds->busiest_load_per_task; | ||
3944 | } | ||
3945 | |||
3946 | /** | ||
3947 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3948 | * groups of a given sched_domain during load balance. | ||
3949 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3950 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
3951 | * @imbalance: The variable to store the imbalance. | ||
3952 | */ | ||
3953 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
3954 | unsigned long *imbalance) | ||
3955 | { | ||
3956 | unsigned long max_pull; | ||
3957 | /* | ||
3958 | * In the presence of smp nice balancing, certain scenarios can have | ||
3959 | * max load less than avg load(as we skip the groups at or below | ||
3960 | * its cpu_power, while calculating max_load..) | ||
3961 | */ | ||
3962 | if (sds->max_load < sds->avg_load) { | ||
3963 | *imbalance = 0; | ||
3964 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3965 | } | ||
3966 | |||
3967 | /* Don't want to pull so many tasks that a group would go idle */ | ||
3968 | max_pull = min(sds->max_load - sds->avg_load, | ||
3969 | sds->max_load - sds->busiest_load_per_task); | ||
3970 | |||
3971 | /* How much load to actually move to equalise the imbalance */ | ||
3972 | *imbalance = min(max_pull * sds->busiest->cpu_power, | ||
3973 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) | ||
3974 | / SCHED_LOAD_SCALE; | ||
3975 | |||
3976 | /* | ||
3977 | * if *imbalance is less than the average load per runnable task | ||
3978 | * there is no gaurantee that any tasks will be moved so we'll have | ||
3979 | * a think about bumping its value to force at least one task to be | ||
3980 | * moved | ||
3981 | */ | ||
3982 | if (*imbalance < sds->busiest_load_per_task) | ||
3983 | return fix_small_imbalance(sds, this_cpu, imbalance); | ||
3984 | |||
3985 | } | ||
3986 | /******* find_busiest_group() helpers end here *********************/ | ||
3987 | |||
3988 | /** | ||
3989 | * find_busiest_group - Returns the busiest group within the sched_domain | ||
3990 | * if there is an imbalance. If there isn't an imbalance, and | ||
3991 | * the user has opted for power-savings, it returns a group whose | ||
3992 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if | ||
3993 | * such a group exists. | ||
3994 | * | ||
3995 | * Also calculates the amount of weighted load which should be moved | ||
3996 | * to restore balance. | ||
3997 | * | ||
3998 | * @sd: The sched_domain whose busiest group is to be returned. | ||
3999 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
4000 | * @imbalance: Variable which stores amount of weighted load which should | ||
4001 | * be moved to restore balance/put a group to idle. | ||
4002 | * @idle: The idle status of this_cpu. | ||
4003 | * @sd_idle: The idleness of sd | ||
4004 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
4005 | * @balance: Pointer to a variable indicating if this_cpu | ||
4006 | * is the appropriate cpu to perform load balancing at this_level. | ||
4007 | * | ||
4008 | * Returns: - the busiest group if imbalance exists. | ||
4009 | * - If no imbalance and user has opted for power-savings balance, | ||
4010 | * return the least loaded group whose CPUs can be | ||
4011 | * put to idle by rebalancing its tasks onto our group. | ||
4012 | */ | ||
4013 | static struct sched_group * | ||
4014 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
4015 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
4016 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
4017 | { | ||
4018 | struct sd_lb_stats sds; | ||
4019 | |||
4020 | memset(&sds, 0, sizeof(sds)); | ||
4021 | |||
4022 | /* | ||
4023 | * Compute the various statistics relavent for load balancing at | ||
4024 | * this level. | ||
4025 | */ | ||
4026 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
4027 | balance, &sds); | ||
4028 | |||
4029 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
4030 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
4031 | * at this level. | ||
4032 | * 2) There is no busy sibling group to pull from. | ||
4033 | * 3) This group is the busiest group. | ||
4034 | * 4) This group is more busy than the avg busieness at this | ||
4035 | * sched_domain. | ||
4036 | * 5) The imbalance is within the specified limit. | ||
4037 | * 6) Any rebalance would lead to ping-pong | ||
4038 | */ | ||
4039 | if (balance && !(*balance)) | ||
4040 | goto ret; | ||
4041 | |||
4042 | if (!sds.busiest || sds.busiest_nr_running == 0) | ||
4043 | goto out_balanced; | ||
4044 | |||
4045 | if (sds.this_load >= sds.max_load) | ||
4046 | goto out_balanced; | ||
4047 | |||
4048 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; | ||
4049 | |||
4050 | if (sds.this_load >= sds.avg_load) | ||
4051 | goto out_balanced; | ||
4052 | |||
4053 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) | ||
4054 | goto out_balanced; | ||
4055 | |||
4056 | sds.busiest_load_per_task /= sds.busiest_nr_running; | ||
4057 | if (sds.group_imb) | ||
4058 | sds.busiest_load_per_task = | ||
4059 | min(sds.busiest_load_per_task, sds.avg_load); | ||
4060 | |||
4061 | /* | ||
4062 | * We're trying to get all the cpus to the average_load, so we don't | ||
4063 | * want to push ourselves above the average load, nor do we wish to | ||
4064 | * reduce the max loaded cpu below the average load, as either of these | ||
4065 | * actions would just result in more rebalancing later, and ping-pong | ||
4066 | * tasks around. Thus we look for the minimum possible imbalance. | ||
4067 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
4068 | * be counted as no imbalance for these purposes -- we can't fix that | ||
4069 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
4070 | * appear as very large values with unsigned longs. | ||
4071 | */ | ||
4072 | if (sds.max_load <= sds.busiest_load_per_task) | ||
4073 | goto out_balanced; | ||
4074 | |||
4075 | /* Looks like there is an imbalance. Compute it */ | ||
4076 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
4077 | return sds.busiest; | ||
4078 | |||
4079 | out_balanced: | ||
4080 | /* | ||
4081 | * There is no obvious imbalance. But check if we can do some balancing | ||
4082 | * to save power. | ||
4083 | */ | ||
4084 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
4085 | return sds.busiest; | ||
4086 | ret: | ||
4087 | *imbalance = 0; | ||
4088 | return NULL; | ||
4089 | } | ||
4090 | |||
4091 | /* | ||
4092 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
4093 | */ | ||
4094 | static struct rq * | ||
4095 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | ||
4096 | unsigned long imbalance, const struct cpumask *cpus) | ||
4097 | { | ||
4098 | struct rq *busiest = NULL, *rq; | ||
4099 | unsigned long max_load = 0; | ||
4100 | int i; | ||
4101 | |||
4102 | for_each_cpu(i, sched_group_cpus(group)) { | ||
4103 | unsigned long power = power_of(i); | ||
4104 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
4105 | unsigned long wl; | ||
4106 | |||
4107 | if (!cpumask_test_cpu(i, cpus)) | ||
4108 | continue; | ||
4109 | |||
4110 | rq = cpu_rq(i); | ||
4111 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; | ||
4112 | wl /= power; | ||
4113 | |||
4114 | if (capacity && rq->nr_running == 1 && wl > imbalance) | ||
4115 | continue; | ||
4116 | |||
4117 | if (wl > max_load) { | ||
4118 | max_load = wl; | ||
4119 | busiest = rq; | ||
4120 | } | ||
4121 | } | ||
4122 | |||
4123 | return busiest; | ||
4124 | } | ||
4125 | |||
4126 | /* | ||
4127 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | ||
4128 | * so long as it is large enough. | ||
4129 | */ | ||
4130 | #define MAX_PINNED_INTERVAL 512 | ||
4131 | |||
4132 | /* Working cpumask for load_balance and load_balance_newidle. */ | ||
4133 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); | ||
4134 | |||
4135 | /* | ||
4136 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4137 | * tasks if there is an imbalance. | ||
4138 | */ | ||
4139 | static int load_balance(int this_cpu, struct rq *this_rq, | ||
4140 | struct sched_domain *sd, enum cpu_idle_type idle, | ||
4141 | int *balance) | ||
4142 | { | ||
4143 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | ||
4144 | struct sched_group *group; | ||
4145 | unsigned long imbalance; | ||
4146 | struct rq *busiest; | ||
4147 | unsigned long flags; | ||
4148 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4149 | |||
4150 | cpumask_copy(cpus, cpu_active_mask); | ||
4151 | |||
4152 | /* | ||
4153 | * When power savings policy is enabled for the parent domain, idle | ||
4154 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4155 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | ||
4156 | * portraying it as CPU_NOT_IDLE. | ||
4157 | */ | ||
4158 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | ||
4159 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4160 | sd_idle = 1; | ||
4161 | |||
4162 | schedstat_inc(sd, lb_count[idle]); | ||
4163 | |||
4164 | redo: | ||
4165 | update_shares(sd); | ||
4166 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | ||
4167 | cpus, balance); | ||
4168 | |||
4169 | if (*balance == 0) | ||
4170 | goto out_balanced; | ||
4171 | |||
4172 | if (!group) { | ||
4173 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
4174 | goto out_balanced; | ||
4175 | } | ||
4176 | |||
4177 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | ||
4178 | if (!busiest) { | ||
4179 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
4180 | goto out_balanced; | ||
4181 | } | ||
4182 | |||
4183 | BUG_ON(busiest == this_rq); | ||
4184 | |||
4185 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
4186 | |||
4187 | ld_moved = 0; | ||
4188 | if (busiest->nr_running > 1) { | ||
4189 | /* | ||
4190 | * Attempt to move tasks. If find_busiest_group has found | ||
4191 | * an imbalance but busiest->nr_running <= 1, the group is | ||
4192 | * still unbalanced. ld_moved simply stays zero, so it is | ||
4193 | * correctly treated as an imbalance. | ||
4194 | */ | ||
4195 | local_irq_save(flags); | ||
4196 | double_rq_lock(this_rq, busiest); | ||
4197 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4198 | imbalance, sd, idle, &all_pinned); | ||
4199 | double_rq_unlock(this_rq, busiest); | ||
4200 | local_irq_restore(flags); | ||
4201 | |||
4202 | /* | ||
4203 | * some other cpu did the load balance for us. | ||
4204 | */ | ||
4205 | if (ld_moved && this_cpu != smp_processor_id()) | ||
4206 | resched_cpu(this_cpu); | ||
4207 | |||
4208 | /* All tasks on this runqueue were pinned by CPU affinity */ | ||
4209 | if (unlikely(all_pinned)) { | ||
4210 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4211 | if (!cpumask_empty(cpus)) | ||
4212 | goto redo; | ||
4213 | goto out_balanced; | ||
4214 | } | ||
4215 | } | ||
4216 | |||
4217 | if (!ld_moved) { | ||
4218 | schedstat_inc(sd, lb_failed[idle]); | ||
4219 | sd->nr_balance_failed++; | ||
4220 | |||
4221 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
4222 | |||
4223 | raw_spin_lock_irqsave(&busiest->lock, flags); | ||
4224 | |||
4225 | /* don't kick the migration_thread, if the curr | ||
4226 | * task on busiest cpu can't be moved to this_cpu | ||
4227 | */ | ||
4228 | if (!cpumask_test_cpu(this_cpu, | ||
4229 | &busiest->curr->cpus_allowed)) { | ||
4230 | raw_spin_unlock_irqrestore(&busiest->lock, | ||
4231 | flags); | ||
4232 | all_pinned = 1; | ||
4233 | goto out_one_pinned; | ||
4234 | } | ||
4235 | |||
4236 | if (!busiest->active_balance) { | ||
4237 | busiest->active_balance = 1; | ||
4238 | busiest->push_cpu = this_cpu; | ||
4239 | active_balance = 1; | ||
4240 | } | ||
4241 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | ||
4242 | if (active_balance) | ||
4243 | wake_up_process(busiest->migration_thread); | ||
4244 | |||
4245 | /* | ||
4246 | * We've kicked active balancing, reset the failure | ||
4247 | * counter. | ||
4248 | */ | ||
4249 | sd->nr_balance_failed = sd->cache_nice_tries+1; | ||
4250 | } | ||
4251 | } else | ||
4252 | sd->nr_balance_failed = 0; | ||
4253 | |||
4254 | if (likely(!active_balance)) { | ||
4255 | /* We were unbalanced, so reset the balancing interval */ | ||
4256 | sd->balance_interval = sd->min_interval; | ||
4257 | } else { | ||
4258 | /* | ||
4259 | * If we've begun active balancing, start to back off. This | ||
4260 | * case may not be covered by the all_pinned logic if there | ||
4261 | * is only 1 task on the busy runqueue (because we don't call | ||
4262 | * move_tasks). | ||
4263 | */ | ||
4264 | if (sd->balance_interval < sd->max_interval) | ||
4265 | sd->balance_interval *= 2; | ||
4266 | } | ||
4267 | |||
4268 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4269 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4270 | ld_moved = -1; | ||
4271 | |||
4272 | goto out; | ||
4273 | |||
4274 | out_balanced: | ||
4275 | schedstat_inc(sd, lb_balanced[idle]); | ||
4276 | |||
4277 | sd->nr_balance_failed = 0; | ||
4278 | |||
4279 | out_one_pinned: | ||
4280 | /* tune up the balancing interval */ | ||
4281 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | ||
4282 | (sd->balance_interval < sd->max_interval)) | ||
4283 | sd->balance_interval *= 2; | ||
4284 | |||
4285 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4286 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4287 | ld_moved = -1; | ||
4288 | else | ||
4289 | ld_moved = 0; | ||
4290 | out: | ||
4291 | if (ld_moved) | ||
4292 | update_shares(sd); | ||
4293 | return ld_moved; | ||
4294 | } | ||
4295 | |||
4296 | /* | ||
4297 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
4298 | * tasks if there is an imbalance. | ||
4299 | * | ||
4300 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | ||
4301 | * this_rq is locked. | ||
4302 | */ | ||
4303 | static int | ||
4304 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) | ||
4305 | { | ||
4306 | struct sched_group *group; | ||
4307 | struct rq *busiest = NULL; | ||
4308 | unsigned long imbalance; | ||
4309 | int ld_moved = 0; | ||
4310 | int sd_idle = 0; | ||
4311 | int all_pinned = 0; | ||
4312 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); | ||
4313 | |||
4314 | cpumask_copy(cpus, cpu_active_mask); | ||
4315 | |||
4316 | /* | ||
4317 | * When power savings policy is enabled for the parent domain, idle | ||
4318 | * sibling can pick up load irrespective of busy siblings. In this case, | ||
4319 | * let the state of idle sibling percolate up as IDLE, instead of | ||
4320 | * portraying it as CPU_NOT_IDLE. | ||
4321 | */ | ||
4322 | if (sd->flags & SD_SHARE_CPUPOWER && | ||
4323 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4324 | sd_idle = 1; | ||
4325 | |||
4326 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | ||
4327 | redo: | ||
4328 | update_shares_locked(this_rq, sd); | ||
4329 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | ||
4330 | &sd_idle, cpus, NULL); | ||
4331 | if (!group) { | ||
4332 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | ||
4333 | goto out_balanced; | ||
4334 | } | ||
4335 | |||
4336 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | ||
4337 | if (!busiest) { | ||
4338 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | ||
4339 | goto out_balanced; | ||
4340 | } | ||
4341 | |||
4342 | BUG_ON(busiest == this_rq); | ||
4343 | |||
4344 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | ||
4345 | |||
4346 | ld_moved = 0; | ||
4347 | if (busiest->nr_running > 1) { | ||
4348 | /* Attempt to move tasks */ | ||
4349 | double_lock_balance(this_rq, busiest); | ||
4350 | /* this_rq->clock is already updated */ | ||
4351 | update_rq_clock(busiest); | ||
4352 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | ||
4353 | imbalance, sd, CPU_NEWLY_IDLE, | ||
4354 | &all_pinned); | ||
4355 | double_unlock_balance(this_rq, busiest); | ||
4356 | |||
4357 | if (unlikely(all_pinned)) { | ||
4358 | cpumask_clear_cpu(cpu_of(busiest), cpus); | ||
4359 | if (!cpumask_empty(cpus)) | ||
4360 | goto redo; | ||
4361 | } | ||
4362 | } | ||
4363 | |||
4364 | if (!ld_moved) { | ||
4365 | int active_balance = 0; | ||
4366 | |||
4367 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | ||
4368 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4369 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4370 | return -1; | ||
4371 | |||
4372 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) | ||
4373 | return -1; | ||
4374 | |||
4375 | if (sd->nr_balance_failed++ < 2) | ||
4376 | return -1; | ||
4377 | |||
4378 | /* | ||
4379 | * The only task running in a non-idle cpu can be moved to this | ||
4380 | * cpu in an attempt to completely freeup the other CPU | ||
4381 | * package. The same method used to move task in load_balance() | ||
4382 | * have been extended for load_balance_newidle() to speedup | ||
4383 | * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) | ||
4384 | * | ||
4385 | * The package power saving logic comes from | ||
4386 | * find_busiest_group(). If there are no imbalance, then | ||
4387 | * f_b_g() will return NULL. However when sched_mc={1,2} then | ||
4388 | * f_b_g() will select a group from which a running task may be | ||
4389 | * pulled to this cpu in order to make the other package idle. | ||
4390 | * If there is no opportunity to make a package idle and if | ||
4391 | * there are no imbalance, then f_b_g() will return NULL and no | ||
4392 | * action will be taken in load_balance_newidle(). | ||
4393 | * | ||
4394 | * Under normal task pull operation due to imbalance, there | ||
4395 | * will be more than one task in the source run queue and | ||
4396 | * move_tasks() will succeed. ld_moved will be true and this | ||
4397 | * active balance code will not be triggered. | ||
4398 | */ | ||
4399 | |||
4400 | /* Lock busiest in correct order while this_rq is held */ | ||
4401 | double_lock_balance(this_rq, busiest); | ||
4402 | |||
4403 | /* | ||
4404 | * don't kick the migration_thread, if the curr | ||
4405 | * task on busiest cpu can't be moved to this_cpu | ||
4406 | */ | ||
4407 | if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { | ||
4408 | double_unlock_balance(this_rq, busiest); | ||
4409 | all_pinned = 1; | ||
4410 | return ld_moved; | ||
4411 | } | ||
4412 | |||
4413 | if (!busiest->active_balance) { | ||
4414 | busiest->active_balance = 1; | ||
4415 | busiest->push_cpu = this_cpu; | ||
4416 | active_balance = 1; | ||
4417 | } | ||
4418 | |||
4419 | double_unlock_balance(this_rq, busiest); | ||
4420 | /* | ||
4421 | * Should not call ttwu while holding a rq->lock | ||
4422 | */ | ||
4423 | raw_spin_unlock(&this_rq->lock); | ||
4424 | if (active_balance) | ||
4425 | wake_up_process(busiest->migration_thread); | ||
4426 | raw_spin_lock(&this_rq->lock); | ||
4427 | |||
4428 | } else | ||
4429 | sd->nr_balance_failed = 0; | ||
4430 | |||
4431 | update_shares_locked(this_rq, sd); | ||
4432 | return ld_moved; | ||
4433 | |||
4434 | out_balanced: | ||
4435 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | ||
4436 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | ||
4437 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | ||
4438 | return -1; | ||
4439 | sd->nr_balance_failed = 0; | ||
4440 | |||
4441 | return 0; | ||
4442 | } | ||
4443 | |||
4444 | /* | ||
4445 | * idle_balance is called by schedule() if this_cpu is about to become | ||
4446 | * idle. Attempts to pull tasks from other CPUs. | ||
4447 | */ | ||
4448 | static void idle_balance(int this_cpu, struct rq *this_rq) | ||
4449 | { | ||
4450 | struct sched_domain *sd; | ||
4451 | int pulled_task = 0; | ||
4452 | unsigned long next_balance = jiffies + HZ; | ||
4453 | |||
4454 | this_rq->idle_stamp = this_rq->clock; | ||
4455 | |||
4456 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | ||
4457 | return; | ||
4458 | |||
4459 | for_each_domain(this_cpu, sd) { | ||
4460 | unsigned long interval; | ||
4461 | |||
4462 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4463 | continue; | ||
4464 | |||
4465 | if (sd->flags & SD_BALANCE_NEWIDLE) | ||
4466 | /* If we've pulled tasks over stop searching: */ | ||
4467 | pulled_task = load_balance_newidle(this_cpu, this_rq, | ||
4468 | sd); | ||
4469 | |||
4470 | interval = msecs_to_jiffies(sd->balance_interval); | ||
4471 | if (time_after(next_balance, sd->last_balance + interval)) | ||
4472 | next_balance = sd->last_balance + interval; | ||
4473 | if (pulled_task) { | ||
4474 | this_rq->idle_stamp = 0; | ||
4475 | break; | ||
4476 | } | ||
4477 | } | ||
4478 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | ||
4479 | /* | ||
4480 | * We are going idle. next_balance may be set based on | ||
4481 | * a busy processor. So reset next_balance. | ||
4482 | */ | ||
4483 | this_rq->next_balance = next_balance; | ||
4484 | } | ||
4485 | } | ||
4486 | |||
4487 | /* | ||
4488 | * active_load_balance is run by migration threads. It pushes running tasks | ||
4489 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
4490 | * running on each physical CPU where possible, and avoids physical / | ||
4491 | * logical imbalances. | ||
4492 | * | ||
4493 | * Called with busiest_rq locked. | ||
4494 | */ | ||
4495 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | ||
4496 | { | ||
4497 | int target_cpu = busiest_rq->push_cpu; | ||
4498 | struct sched_domain *sd; | ||
4499 | struct rq *target_rq; | ||
4500 | |||
4501 | /* Is there any task to move? */ | ||
4502 | if (busiest_rq->nr_running <= 1) | ||
4503 | return; | ||
4504 | |||
4505 | target_rq = cpu_rq(target_cpu); | ||
4506 | |||
4507 | /* | ||
4508 | * This condition is "impossible", if it occurs | ||
4509 | * we need to fix it. Originally reported by | ||
4510 | * Bjorn Helgaas on a 128-cpu setup. | ||
4511 | */ | ||
4512 | BUG_ON(busiest_rq == target_rq); | ||
4513 | |||
4514 | /* move a task from busiest_rq to target_rq */ | ||
4515 | double_lock_balance(busiest_rq, target_rq); | ||
4516 | update_rq_clock(busiest_rq); | ||
4517 | update_rq_clock(target_rq); | ||
4518 | |||
4519 | /* Search for an sd spanning us and the target CPU. */ | ||
4520 | for_each_domain(target_cpu, sd) { | ||
4521 | if ((sd->flags & SD_LOAD_BALANCE) && | ||
4522 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | ||
4523 | break; | ||
4524 | } | ||
4525 | |||
4526 | if (likely(sd)) { | ||
4527 | schedstat_inc(sd, alb_count); | ||
4528 | |||
4529 | if (move_one_task(target_rq, target_cpu, busiest_rq, | ||
4530 | sd, CPU_IDLE)) | ||
4531 | schedstat_inc(sd, alb_pushed); | ||
4532 | else | ||
4533 | schedstat_inc(sd, alb_failed); | ||
4534 | } | ||
4535 | double_unlock_balance(busiest_rq, target_rq); | ||
4536 | } | ||
4537 | |||
4538 | #ifdef CONFIG_NO_HZ | ||
4539 | static struct { | ||
4540 | atomic_t load_balancer; | ||
4541 | cpumask_var_t cpu_mask; | ||
4542 | cpumask_var_t ilb_grp_nohz_mask; | ||
4543 | } nohz ____cacheline_aligned = { | ||
4544 | .load_balancer = ATOMIC_INIT(-1), | ||
4545 | }; | ||
4546 | |||
4547 | int get_nohz_load_balancer(void) | ||
4548 | { | ||
4549 | return atomic_read(&nohz.load_balancer); | ||
4550 | } | ||
4551 | |||
4552 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
4553 | /** | ||
4554 | * lowest_flag_domain - Return lowest sched_domain containing flag. | ||
4555 | * @cpu: The cpu whose lowest level of sched domain is to | ||
4556 | * be returned. | ||
4557 | * @flag: The flag to check for the lowest sched_domain | ||
4558 | * for the given cpu. | ||
4559 | * | ||
4560 | * Returns the lowest sched_domain of a cpu which contains the given flag. | ||
4561 | */ | ||
4562 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | ||
4563 | { | ||
4564 | struct sched_domain *sd; | ||
4565 | |||
4566 | for_each_domain(cpu, sd) | ||
4567 | if (sd && (sd->flags & flag)) | ||
4568 | break; | ||
4569 | |||
4570 | return sd; | ||
4571 | } | ||
4572 | |||
4573 | /** | ||
4574 | * for_each_flag_domain - Iterates over sched_domains containing the flag. | ||
4575 | * @cpu: The cpu whose domains we're iterating over. | ||
4576 | * @sd: variable holding the value of the power_savings_sd | ||
4577 | * for cpu. | ||
4578 | * @flag: The flag to filter the sched_domains to be iterated. | ||
4579 | * | ||
4580 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' | ||
4581 | * set, starting from the lowest sched_domain to the highest. | ||
4582 | */ | ||
4583 | #define for_each_flag_domain(cpu, sd, flag) \ | ||
4584 | for (sd = lowest_flag_domain(cpu, flag); \ | ||
4585 | (sd && (sd->flags & flag)); sd = sd->parent) | ||
4586 | |||
4587 | /** | ||
4588 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. | ||
4589 | * @ilb_group: group to be checked for semi-idleness | ||
4590 | * | ||
4591 | * Returns: 1 if the group is semi-idle. 0 otherwise. | ||
4592 | * | ||
4593 | * We define a sched_group to be semi idle if it has atleast one idle-CPU | ||
4594 | * and atleast one non-idle CPU. This helper function checks if the given | ||
4595 | * sched_group is semi-idle or not. | ||
4596 | */ | ||
4597 | static inline int is_semi_idle_group(struct sched_group *ilb_group) | ||
4598 | { | ||
4599 | cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, | ||
4600 | sched_group_cpus(ilb_group)); | ||
4601 | |||
4602 | /* | ||
4603 | * A sched_group is semi-idle when it has atleast one busy cpu | ||
4604 | * and atleast one idle cpu. | ||
4605 | */ | ||
4606 | if (cpumask_empty(nohz.ilb_grp_nohz_mask)) | ||
4607 | return 0; | ||
4608 | |||
4609 | if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) | ||
4610 | return 0; | ||
4611 | |||
4612 | return 1; | ||
4613 | } | ||
4614 | /** | ||
4615 | * find_new_ilb - Finds the optimum idle load balancer for nomination. | ||
4616 | * @cpu: The cpu which is nominating a new idle_load_balancer. | ||
4617 | * | ||
4618 | * Returns: Returns the id of the idle load balancer if it exists, | ||
4619 | * Else, returns >= nr_cpu_ids. | ||
4620 | * | ||
4621 | * This algorithm picks the idle load balancer such that it belongs to a | ||
4622 | * semi-idle powersavings sched_domain. The idea is to try and avoid | ||
4623 | * completely idle packages/cores just for the purpose of idle load balancing | ||
4624 | * when there are other idle cpu's which are better suited for that job. | ||
4625 | */ | ||
4626 | static int find_new_ilb(int cpu) | ||
4627 | { | ||
4628 | struct sched_domain *sd; | ||
4629 | struct sched_group *ilb_group; | ||
4630 | |||
4631 | /* | ||
4632 | * Have idle load balancer selection from semi-idle packages only | ||
4633 | * when power-aware load balancing is enabled | ||
4634 | */ | ||
4635 | if (!(sched_smt_power_savings || sched_mc_power_savings)) | ||
4636 | goto out_done; | ||
4637 | |||
4638 | /* | ||
4639 | * Optimize for the case when we have no idle CPUs or only one | ||
4640 | * idle CPU. Don't walk the sched_domain hierarchy in such cases | ||
4641 | */ | ||
4642 | if (cpumask_weight(nohz.cpu_mask) < 2) | ||
4643 | goto out_done; | ||
4644 | |||
4645 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { | ||
4646 | ilb_group = sd->groups; | ||
4647 | |||
4648 | do { | ||
4649 | if (is_semi_idle_group(ilb_group)) | ||
4650 | return cpumask_first(nohz.ilb_grp_nohz_mask); | ||
4651 | |||
4652 | ilb_group = ilb_group->next; | ||
4653 | |||
4654 | } while (ilb_group != sd->groups); | ||
4655 | } | ||
4656 | |||
4657 | out_done: | ||
4658 | return cpumask_first(nohz.cpu_mask); | ||
4659 | } | ||
4660 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ | ||
4661 | static inline int find_new_ilb(int call_cpu) | ||
4662 | { | ||
4663 | return cpumask_first(nohz.cpu_mask); | ||
4664 | } | ||
4665 | #endif | ||
4666 | |||
4667 | /* | ||
4668 | * This routine will try to nominate the ilb (idle load balancing) | ||
4669 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | ||
4670 | * load balancing on behalf of all those cpus. If all the cpus in the system | ||
4671 | * go into this tickless mode, then there will be no ilb owner (as there is | ||
4672 | * no need for one) and all the cpus will sleep till the next wakeup event | ||
4673 | * arrives... | ||
4674 | * | ||
4675 | * For the ilb owner, tick is not stopped. And this tick will be used | ||
4676 | * for idle load balancing. ilb owner will still be part of | ||
4677 | * nohz.cpu_mask.. | ||
4678 | * | ||
4679 | * While stopping the tick, this cpu will become the ilb owner if there | ||
4680 | * is no other owner. And will be the owner till that cpu becomes busy | ||
4681 | * or if all cpus in the system stop their ticks at which point | ||
4682 | * there is no need for ilb owner. | ||
4683 | * | ||
4684 | * When the ilb owner becomes busy, it nominates another owner, during the | ||
4685 | * next busy scheduler_tick() | ||
4686 | */ | ||
4687 | int select_nohz_load_balancer(int stop_tick) | ||
4688 | { | ||
4689 | int cpu = smp_processor_id(); | ||
4690 | |||
4691 | if (stop_tick) { | ||
4692 | cpu_rq(cpu)->in_nohz_recently = 1; | ||
4693 | |||
4694 | if (!cpu_active(cpu)) { | ||
4695 | if (atomic_read(&nohz.load_balancer) != cpu) | ||
4696 | return 0; | ||
4697 | |||
4698 | /* | ||
4699 | * If we are going offline and still the leader, | ||
4700 | * give up! | ||
4701 | */ | ||
4702 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4703 | BUG(); | ||
4704 | |||
4705 | return 0; | ||
4706 | } | ||
4707 | |||
4708 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
4709 | |||
4710 | /* time for ilb owner also to sleep */ | ||
4711 | if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { | ||
4712 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4713 | atomic_set(&nohz.load_balancer, -1); | ||
4714 | return 0; | ||
4715 | } | ||
4716 | |||
4717 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4718 | /* make me the ilb owner */ | ||
4719 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | ||
4720 | return 1; | ||
4721 | } else if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4722 | int new_ilb; | ||
4723 | |||
4724 | if (!(sched_smt_power_savings || | ||
4725 | sched_mc_power_savings)) | ||
4726 | return 1; | ||
4727 | /* | ||
4728 | * Check to see if there is a more power-efficient | ||
4729 | * ilb. | ||
4730 | */ | ||
4731 | new_ilb = find_new_ilb(cpu); | ||
4732 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { | ||
4733 | atomic_set(&nohz.load_balancer, -1); | ||
4734 | resched_cpu(new_ilb); | ||
4735 | return 0; | ||
4736 | } | ||
4737 | return 1; | ||
4738 | } | ||
4739 | } else { | ||
4740 | if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4741 | return 0; | ||
4742 | |||
4743 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4744 | |||
4745 | if (atomic_read(&nohz.load_balancer) == cpu) | ||
4746 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | ||
4747 | BUG(); | ||
4748 | } | ||
4749 | return 0; | ||
4750 | } | ||
4751 | #endif | ||
4752 | |||
4753 | static DEFINE_SPINLOCK(balancing); | ||
4754 | |||
4755 | /* | ||
4756 | * It checks each scheduling domain to see if it is due to be balanced, | ||
4757 | * and initiates a balancing operation if so. | ||
4758 | * | ||
4759 | * Balancing parameters are set up in arch_init_sched_domains. | ||
4760 | */ | ||
4761 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | ||
4762 | { | ||
4763 | int balance = 1; | ||
4764 | struct rq *rq = cpu_rq(cpu); | ||
4765 | unsigned long interval; | ||
4766 | struct sched_domain *sd; | ||
4767 | /* Earliest time when we have to do rebalance again */ | ||
4768 | unsigned long next_balance = jiffies + 60*HZ; | ||
4769 | int update_next_balance = 0; | ||
4770 | int need_serialize; | ||
4771 | |||
4772 | for_each_domain(cpu, sd) { | ||
4773 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
4774 | continue; | ||
4775 | |||
4776 | interval = sd->balance_interval; | ||
4777 | if (idle != CPU_IDLE) | ||
4778 | interval *= sd->busy_factor; | ||
4779 | |||
4780 | /* scale ms to jiffies */ | ||
4781 | interval = msecs_to_jiffies(interval); | ||
4782 | if (unlikely(!interval)) | ||
4783 | interval = 1; | ||
4784 | if (interval > HZ*NR_CPUS/10) | ||
4785 | interval = HZ*NR_CPUS/10; | ||
4786 | |||
4787 | need_serialize = sd->flags & SD_SERIALIZE; | ||
4788 | |||
4789 | if (need_serialize) { | ||
4790 | if (!spin_trylock(&balancing)) | ||
4791 | goto out; | ||
4792 | } | ||
4793 | |||
4794 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | ||
4795 | if (load_balance(cpu, rq, sd, idle, &balance)) { | ||
4796 | /* | ||
4797 | * We've pulled tasks over so either we're no | ||
4798 | * longer idle, or one of our SMT siblings is | ||
4799 | * not idle. | ||
4800 | */ | ||
4801 | idle = CPU_NOT_IDLE; | ||
4802 | } | ||
4803 | sd->last_balance = jiffies; | ||
4804 | } | ||
4805 | if (need_serialize) | ||
4806 | spin_unlock(&balancing); | ||
4807 | out: | ||
4808 | if (time_after(next_balance, sd->last_balance + interval)) { | ||
4809 | next_balance = sd->last_balance + interval; | ||
4810 | update_next_balance = 1; | ||
4811 | } | ||
4812 | |||
4813 | /* | ||
4814 | * Stop the load balance at this level. There is another | ||
4815 | * CPU in our sched group which is doing load balancing more | ||
4816 | * actively. | ||
4817 | */ | ||
4818 | if (!balance) | ||
4819 | break; | ||
4820 | } | ||
4821 | |||
4822 | /* | ||
4823 | * next_balance will be updated only when there is a need. | ||
4824 | * When the cpu is attached to null domain for ex, it will not be | ||
4825 | * updated. | ||
4826 | */ | ||
4827 | if (likely(update_next_balance)) | ||
4828 | rq->next_balance = next_balance; | ||
4829 | } | ||
4830 | |||
4831 | /* | ||
4832 | * run_rebalance_domains is triggered when needed from the scheduler tick. | ||
4833 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | ||
4834 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | ||
4835 | */ | ||
4836 | static void run_rebalance_domains(struct softirq_action *h) | ||
4837 | { | ||
4838 | int this_cpu = smp_processor_id(); | ||
4839 | struct rq *this_rq = cpu_rq(this_cpu); | ||
4840 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | ||
4841 | CPU_IDLE : CPU_NOT_IDLE; | ||
4842 | |||
4843 | rebalance_domains(this_cpu, idle); | ||
4844 | |||
4845 | #ifdef CONFIG_NO_HZ | ||
4846 | /* | ||
4847 | * If this cpu is the owner for idle load balancing, then do the | ||
4848 | * balancing on behalf of the other idle cpus whose ticks are | ||
4849 | * stopped. | ||
4850 | */ | ||
4851 | if (this_rq->idle_at_tick && | ||
4852 | atomic_read(&nohz.load_balancer) == this_cpu) { | ||
4853 | struct rq *rq; | ||
4854 | int balance_cpu; | ||
4855 | |||
4856 | for_each_cpu(balance_cpu, nohz.cpu_mask) { | ||
4857 | if (balance_cpu == this_cpu) | ||
4858 | continue; | ||
4859 | |||
4860 | /* | ||
4861 | * If this cpu gets work to do, stop the load balancing | ||
4862 | * work being done for other cpus. Next load | ||
4863 | * balancing owner will pick it up. | ||
4864 | */ | ||
4865 | if (need_resched()) | ||
4866 | break; | ||
4867 | |||
4868 | rebalance_domains(balance_cpu, CPU_IDLE); | ||
4869 | |||
4870 | rq = cpu_rq(balance_cpu); | ||
4871 | if (time_after(this_rq->next_balance, rq->next_balance)) | ||
4872 | this_rq->next_balance = rq->next_balance; | ||
4873 | } | ||
4874 | } | ||
4875 | #endif | ||
4876 | } | ||
4877 | |||
4878 | static inline int on_null_domain(int cpu) | ||
4879 | { | ||
4880 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4881 | } | ||
4882 | |||
4883 | /* | ||
4884 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | ||
4885 | * | ||
4886 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | ||
4887 | * idle load balancing owner or decide to stop the periodic load balancing, | ||
4888 | * if the whole system is idle. | ||
4889 | */ | ||
4890 | static inline void trigger_load_balance(struct rq *rq, int cpu) | ||
4891 | { | ||
4892 | #ifdef CONFIG_NO_HZ | ||
4893 | /* | ||
4894 | * If we were in the nohz mode recently and busy at the current | ||
4895 | * scheduler tick, then check if we need to nominate new idle | ||
4896 | * load balancer. | ||
4897 | */ | ||
4898 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | ||
4899 | rq->in_nohz_recently = 0; | ||
4900 | |||
4901 | if (atomic_read(&nohz.load_balancer) == cpu) { | ||
4902 | cpumask_clear_cpu(cpu, nohz.cpu_mask); | ||
4903 | atomic_set(&nohz.load_balancer, -1); | ||
4904 | } | ||
4905 | |||
4906 | if (atomic_read(&nohz.load_balancer) == -1) { | ||
4907 | int ilb = find_new_ilb(cpu); | ||
4908 | |||
4909 | if (ilb < nr_cpu_ids) | ||
4910 | resched_cpu(ilb); | ||
4911 | } | ||
4912 | } | ||
4913 | |||
4914 | /* | ||
4915 | * If this cpu is idle and doing idle load balancing for all the | ||
4916 | * cpus with ticks stopped, is it time for that to stop? | ||
4917 | */ | ||
4918 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | ||
4919 | cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | ||
4920 | resched_cpu(cpu); | ||
4921 | return; | ||
4922 | } | ||
4923 | |||
4924 | /* | ||
4925 | * If this cpu is idle and the idle load balancing is done by | ||
4926 | * someone else, then no need raise the SCHED_SOFTIRQ | ||
4927 | */ | ||
4928 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | ||
4929 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | ||
4930 | return; | ||
4931 | #endif | ||
4932 | /* Don't need to rebalance while attached to NULL domain */ | ||
4933 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4934 | likely(!on_null_domain(cpu))) | ||
4935 | raise_softirq(SCHED_SOFTIRQ); | ||
4936 | } | ||
4937 | |||
4938 | #else /* CONFIG_SMP */ | ||
4939 | |||
4940 | /* | ||
4941 | * on UP we do not need to balance between CPUs: | ||
4942 | */ | ||
4943 | static inline void idle_balance(int cpu, struct rq *rq) | ||
4944 | { | ||
4945 | } | ||
4946 | |||
4947 | #endif | 3164 | #endif |
4948 | 3165 | ||
4949 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 3166 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
@@ -5298,7 +3515,7 @@ void scheduler_tick(void) | |||
5298 | curr->sched_class->task_tick(rq, curr, 0); | 3515 | curr->sched_class->task_tick(rq, curr, 0); |
5299 | raw_spin_unlock(&rq->lock); | 3516 | raw_spin_unlock(&rq->lock); |
5300 | 3517 | ||
5301 | perf_event_task_tick(curr, cpu); | 3518 | perf_event_task_tick(curr); |
5302 | 3519 | ||
5303 | #ifdef CONFIG_SMP | 3520 | #ifdef CONFIG_SMP |
5304 | rq->idle_at_tick = idle_cpu(cpu); | 3521 | rq->idle_at_tick = idle_cpu(cpu); |
@@ -5512,7 +3729,7 @@ need_resched_nonpreemptible: | |||
5512 | 3729 | ||
5513 | if (likely(prev != next)) { | 3730 | if (likely(prev != next)) { |
5514 | sched_info_switch(prev, next); | 3731 | sched_info_switch(prev, next); |
5515 | perf_event_task_sched_out(prev, next, cpu); | 3732 | perf_event_task_sched_out(prev, next); |
5516 | 3733 | ||
5517 | rq->nr_switches++; | 3734 | rq->nr_switches++; |
5518 | rq->curr = next; | 3735 | rq->curr = next; |
@@ -5530,8 +3747,11 @@ need_resched_nonpreemptible: | |||
5530 | 3747 | ||
5531 | post_schedule(rq); | 3748 | post_schedule(rq); |
5532 | 3749 | ||
5533 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 3750 | if (unlikely(reacquire_kernel_lock(current) < 0)) { |
3751 | prev = rq->curr; | ||
3752 | switch_count = &prev->nivcsw; | ||
5534 | goto need_resched_nonpreemptible; | 3753 | goto need_resched_nonpreemptible; |
3754 | } | ||
5535 | 3755 | ||
5536 | preempt_enable_no_resched(); | 3756 | preempt_enable_no_resched(); |
5537 | if (need_resched()) | 3757 | if (need_resched()) |
@@ -6040,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
6040 | unsigned long flags; | 4260 | unsigned long flags; |
6041 | int oldprio, on_rq, running; | 4261 | int oldprio, on_rq, running; |
6042 | struct rq *rq; | 4262 | struct rq *rq; |
6043 | const struct sched_class *prev_class = p->sched_class; | 4263 | const struct sched_class *prev_class; |
6044 | 4264 | ||
6045 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 4265 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
6046 | 4266 | ||
@@ -6048,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
6048 | update_rq_clock(rq); | 4268 | update_rq_clock(rq); |
6049 | 4269 | ||
6050 | oldprio = p->prio; | 4270 | oldprio = p->prio; |
4271 | prev_class = p->sched_class; | ||
6051 | on_rq = p->se.on_rq; | 4272 | on_rq = p->se.on_rq; |
6052 | running = task_current(rq, p); | 4273 | running = task_current(rq, p); |
6053 | if (on_rq) | 4274 | if (on_rq) |
@@ -6065,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
6065 | if (running) | 4286 | if (running) |
6066 | p->sched_class->set_curr_task(rq); | 4287 | p->sched_class->set_curr_task(rq); |
6067 | if (on_rq) { | 4288 | if (on_rq) { |
6068 | enqueue_task(rq, p, 0); | 4289 | enqueue_task(rq, p, 0, oldprio < prio); |
6069 | 4290 | ||
6070 | check_class_changed(rq, p, prev_class, oldprio, running); | 4291 | check_class_changed(rq, p, prev_class, oldprio, running); |
6071 | } | 4292 | } |
@@ -6109,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
6109 | delta = p->prio - old_prio; | 4330 | delta = p->prio - old_prio; |
6110 | 4331 | ||
6111 | if (on_rq) { | 4332 | if (on_rq) { |
6112 | enqueue_task(rq, p, 0); | 4333 | enqueue_task(rq, p, 0, false); |
6113 | /* | 4334 | /* |
6114 | * If the task increased its priority or is running and | 4335 | * If the task increased its priority or is running and |
6115 | * lowered its priority, then reschedule its CPU: | 4336 | * lowered its priority, then reschedule its CPU: |
@@ -6132,7 +4353,7 @@ int can_nice(const struct task_struct *p, const int nice) | |||
6132 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 4353 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
6133 | int nice_rlim = 20 - nice; | 4354 | int nice_rlim = 20 - nice; |
6134 | 4355 | ||
6135 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 4356 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
6136 | capable(CAP_SYS_NICE)); | 4357 | capable(CAP_SYS_NICE)); |
6137 | } | 4358 | } |
6138 | 4359 | ||
@@ -6267,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy, | |||
6267 | { | 4488 | { |
6268 | int retval, oldprio, oldpolicy = -1, on_rq, running; | 4489 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
6269 | unsigned long flags; | 4490 | unsigned long flags; |
6270 | const struct sched_class *prev_class = p->sched_class; | 4491 | const struct sched_class *prev_class; |
6271 | struct rq *rq; | 4492 | struct rq *rq; |
6272 | int reset_on_fork; | 4493 | int reset_on_fork; |
6273 | 4494 | ||
@@ -6309,7 +4530,7 @@ recheck: | |||
6309 | 4530 | ||
6310 | if (!lock_task_sighand(p, &flags)) | 4531 | if (!lock_task_sighand(p, &flags)) |
6311 | return -ESRCH; | 4532 | return -ESRCH; |
6312 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | 4533 | rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); |
6313 | unlock_task_sighand(p, &flags); | 4534 | unlock_task_sighand(p, &flags); |
6314 | 4535 | ||
6315 | /* can't set/change the rt policy */ | 4536 | /* can't set/change the rt policy */ |
@@ -6381,6 +4602,7 @@ recheck: | |||
6381 | p->sched_reset_on_fork = reset_on_fork; | 4602 | p->sched_reset_on_fork = reset_on_fork; |
6382 | 4603 | ||
6383 | oldprio = p->prio; | 4604 | oldprio = p->prio; |
4605 | prev_class = p->sched_class; | ||
6384 | __setscheduler(rq, p, policy, param->sched_priority); | 4606 | __setscheduler(rq, p, policy, param->sched_priority); |
6385 | 4607 | ||
6386 | if (running) | 4608 | if (running) |
@@ -7131,23 +5353,8 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
7131 | struct rq *rq; | 5353 | struct rq *rq; |
7132 | int ret = 0; | 5354 | int ret = 0; |
7133 | 5355 | ||
7134 | /* | ||
7135 | * Since we rely on wake-ups to migrate sleeping tasks, don't change | ||
7136 | * the ->cpus_allowed mask from under waking tasks, which would be | ||
7137 | * possible when we change rq->lock in ttwu(), so synchronize against | ||
7138 | * TASK_WAKING to avoid that. | ||
7139 | */ | ||
7140 | again: | ||
7141 | while (p->state == TASK_WAKING) | ||
7142 | cpu_relax(); | ||
7143 | |||
7144 | rq = task_rq_lock(p, &flags); | 5356 | rq = task_rq_lock(p, &flags); |
7145 | 5357 | ||
7146 | if (p->state == TASK_WAKING) { | ||
7147 | task_rq_unlock(rq, &flags); | ||
7148 | goto again; | ||
7149 | } | ||
7150 | |||
7151 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | 5358 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
7152 | ret = -EINVAL; | 5359 | ret = -EINVAL; |
7153 | goto out; | 5360 | goto out; |
@@ -9199,11 +7406,13 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |||
9199 | 7406 | ||
9200 | #ifdef CONFIG_SCHED_MC | 7407 | #ifdef CONFIG_SCHED_MC |
9201 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | 7408 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
7409 | struct sysdev_class_attribute *attr, | ||
9202 | char *page) | 7410 | char *page) |
9203 | { | 7411 | { |
9204 | return sprintf(page, "%u\n", sched_mc_power_savings); | 7412 | return sprintf(page, "%u\n", sched_mc_power_savings); |
9205 | } | 7413 | } |
9206 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | 7414 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
7415 | struct sysdev_class_attribute *attr, | ||
9207 | const char *buf, size_t count) | 7416 | const char *buf, size_t count) |
9208 | { | 7417 | { |
9209 | return sched_power_savings_store(buf, count, 0); | 7418 | return sched_power_savings_store(buf, count, 0); |
@@ -9215,11 +7424,13 @@ static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | |||
9215 | 7424 | ||
9216 | #ifdef CONFIG_SCHED_SMT | 7425 | #ifdef CONFIG_SCHED_SMT |
9217 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | 7426 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
7427 | struct sysdev_class_attribute *attr, | ||
9218 | char *page) | 7428 | char *page) |
9219 | { | 7429 | { |
9220 | return sprintf(page, "%u\n", sched_smt_power_savings); | 7430 | return sprintf(page, "%u\n", sched_smt_power_savings); |
9221 | } | 7431 | } |
9222 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | 7432 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
7433 | struct sysdev_class_attribute *attr, | ||
9223 | const char *buf, size_t count) | 7434 | const char *buf, size_t count) |
9224 | { | 7435 | { |
9225 | return sched_power_savings_store(buf, count, 1); | 7436 | return sched_power_savings_store(buf, count, 1); |
@@ -9434,7 +7645,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |||
9434 | tg->rt_rq[cpu] = rt_rq; | 7645 | tg->rt_rq[cpu] = rt_rq; |
9435 | init_rt_rq(rt_rq, rq); | 7646 | init_rt_rq(rt_rq, rq); |
9436 | rt_rq->tg = tg; | 7647 | rt_rq->tg = tg; |
9437 | rt_rq->rt_se = rt_se; | ||
9438 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 7648 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
9439 | if (add) | 7649 | if (add) |
9440 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 7650 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); |
@@ -9465,9 +7675,6 @@ void __init sched_init(void) | |||
9465 | #ifdef CONFIG_RT_GROUP_SCHED | 7675 | #ifdef CONFIG_RT_GROUP_SCHED |
9466 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 7676 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
9467 | #endif | 7677 | #endif |
9468 | #ifdef CONFIG_USER_SCHED | ||
9469 | alloc_size *= 2; | ||
9470 | #endif | ||
9471 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7678 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9472 | alloc_size += num_possible_cpus() * cpumask_size(); | 7679 | alloc_size += num_possible_cpus() * cpumask_size(); |
9473 | #endif | 7680 | #endif |
@@ -9481,13 +7688,6 @@ void __init sched_init(void) | |||
9481 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 7688 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; |
9482 | ptr += nr_cpu_ids * sizeof(void **); | 7689 | ptr += nr_cpu_ids * sizeof(void **); |
9483 | 7690 | ||
9484 | #ifdef CONFIG_USER_SCHED | ||
9485 | root_task_group.se = (struct sched_entity **)ptr; | ||
9486 | ptr += nr_cpu_ids * sizeof(void **); | ||
9487 | |||
9488 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | ||
9489 | ptr += nr_cpu_ids * sizeof(void **); | ||
9490 | #endif /* CONFIG_USER_SCHED */ | ||
9491 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7691 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9492 | #ifdef CONFIG_RT_GROUP_SCHED | 7692 | #ifdef CONFIG_RT_GROUP_SCHED |
9493 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 7693 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; |
@@ -9496,13 +7696,6 @@ void __init sched_init(void) | |||
9496 | init_task_group.rt_rq = (struct rt_rq **)ptr; | 7696 | init_task_group.rt_rq = (struct rt_rq **)ptr; |
9497 | ptr += nr_cpu_ids * sizeof(void **); | 7697 | ptr += nr_cpu_ids * sizeof(void **); |
9498 | 7698 | ||
9499 | #ifdef CONFIG_USER_SCHED | ||
9500 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | ||
9501 | ptr += nr_cpu_ids * sizeof(void **); | ||
9502 | |||
9503 | root_task_group.rt_rq = (struct rt_rq **)ptr; | ||
9504 | ptr += nr_cpu_ids * sizeof(void **); | ||
9505 | #endif /* CONFIG_USER_SCHED */ | ||
9506 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7699 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9507 | #ifdef CONFIG_CPUMASK_OFFSTACK | 7700 | #ifdef CONFIG_CPUMASK_OFFSTACK |
9508 | for_each_possible_cpu(i) { | 7701 | for_each_possible_cpu(i) { |
@@ -9522,22 +7715,13 @@ void __init sched_init(void) | |||
9522 | #ifdef CONFIG_RT_GROUP_SCHED | 7715 | #ifdef CONFIG_RT_GROUP_SCHED |
9523 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | 7716 | init_rt_bandwidth(&init_task_group.rt_bandwidth, |
9524 | global_rt_period(), global_rt_runtime()); | 7717 | global_rt_period(), global_rt_runtime()); |
9525 | #ifdef CONFIG_USER_SCHED | ||
9526 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | ||
9527 | global_rt_period(), RUNTIME_INF); | ||
9528 | #endif /* CONFIG_USER_SCHED */ | ||
9529 | #endif /* CONFIG_RT_GROUP_SCHED */ | 7718 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9530 | 7719 | ||
9531 | #ifdef CONFIG_GROUP_SCHED | 7720 | #ifdef CONFIG_CGROUP_SCHED |
9532 | list_add(&init_task_group.list, &task_groups); | 7721 | list_add(&init_task_group.list, &task_groups); |
9533 | INIT_LIST_HEAD(&init_task_group.children); | 7722 | INIT_LIST_HEAD(&init_task_group.children); |
9534 | 7723 | ||
9535 | #ifdef CONFIG_USER_SCHED | 7724 | #endif /* CONFIG_CGROUP_SCHED */ |
9536 | INIT_LIST_HEAD(&root_task_group.children); | ||
9537 | init_task_group.parent = &root_task_group; | ||
9538 | list_add(&init_task_group.siblings, &root_task_group.children); | ||
9539 | #endif /* CONFIG_USER_SCHED */ | ||
9540 | #endif /* CONFIG_GROUP_SCHED */ | ||
9541 | 7725 | ||
9542 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | 7726 | #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP |
9543 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | 7727 | update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), |
@@ -9577,25 +7761,6 @@ void __init sched_init(void) | |||
9577 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 7761 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). |
9578 | */ | 7762 | */ |
9579 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 7763 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
9580 | #elif defined CONFIG_USER_SCHED | ||
9581 | root_task_group.shares = NICE_0_LOAD; | ||
9582 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | ||
9583 | /* | ||
9584 | * In case of task-groups formed thr' the user id of tasks, | ||
9585 | * init_task_group represents tasks belonging to root user. | ||
9586 | * Hence it forms a sibling of all subsequent groups formed. | ||
9587 | * In this case, init_task_group gets only a fraction of overall | ||
9588 | * system cpu resource, based on the weight assigned to root | ||
9589 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | ||
9590 | * by letting tasks of init_task_group sit in a separate cfs_rq | ||
9591 | * (init_tg_cfs_rq) and having one entity represent this group of | ||
9592 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | ||
9593 | */ | ||
9594 | init_tg_cfs_entry(&init_task_group, | ||
9595 | &per_cpu(init_tg_cfs_rq, i), | ||
9596 | &per_cpu(init_sched_entity, i), i, 1, | ||
9597 | root_task_group.se[i]); | ||
9598 | |||
9599 | #endif | 7764 | #endif |
9600 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 7765 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9601 | 7766 | ||
@@ -9604,12 +7769,6 @@ void __init sched_init(void) | |||
9604 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 7769 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
9605 | #ifdef CONFIG_CGROUP_SCHED | 7770 | #ifdef CONFIG_CGROUP_SCHED |
9606 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 7771 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
9607 | #elif defined CONFIG_USER_SCHED | ||
9608 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); | ||
9609 | init_tg_rt_entry(&init_task_group, | ||
9610 | &per_cpu(init_rt_rq_var, i), | ||
9611 | &per_cpu(init_sched_rt_entity, i), i, 1, | ||
9612 | root_task_group.rt_se[i]); | ||
9613 | #endif | 7772 | #endif |
9614 | #endif | 7773 | #endif |
9615 | 7774 | ||
@@ -9694,7 +7853,7 @@ static inline int preempt_count_equals(int preempt_offset) | |||
9694 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | 7853 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); |
9695 | } | 7854 | } |
9696 | 7855 | ||
9697 | void __might_sleep(char *file, int line, int preempt_offset) | 7856 | void __might_sleep(const char *file, int line, int preempt_offset) |
9698 | { | 7857 | { |
9699 | #ifdef in_atomic | 7858 | #ifdef in_atomic |
9700 | static unsigned long prev_jiffy; /* ratelimiting */ | 7859 | static unsigned long prev_jiffy; /* ratelimiting */ |
@@ -10005,7 +8164,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |||
10005 | } | 8164 | } |
10006 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8165 | #endif /* CONFIG_RT_GROUP_SCHED */ |
10007 | 8166 | ||
10008 | #ifdef CONFIG_GROUP_SCHED | 8167 | #ifdef CONFIG_CGROUP_SCHED |
10009 | static void free_sched_group(struct task_group *tg) | 8168 | static void free_sched_group(struct task_group *tg) |
10010 | { | 8169 | { |
10011 | free_fair_sched_group(tg); | 8170 | free_fair_sched_group(tg); |
@@ -10110,11 +8269,11 @@ void sched_move_task(struct task_struct *tsk) | |||
10110 | if (unlikely(running)) | 8269 | if (unlikely(running)) |
10111 | tsk->sched_class->set_curr_task(rq); | 8270 | tsk->sched_class->set_curr_task(rq); |
10112 | if (on_rq) | 8271 | if (on_rq) |
10113 | enqueue_task(rq, tsk, 0); | 8272 | enqueue_task(rq, tsk, 0, false); |
10114 | 8273 | ||
10115 | task_rq_unlock(rq, &flags); | 8274 | task_rq_unlock(rq, &flags); |
10116 | } | 8275 | } |
10117 | #endif /* CONFIG_GROUP_SCHED */ | 8276 | #endif /* CONFIG_CGROUP_SCHED */ |
10118 | 8277 | ||
10119 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8278 | #ifdef CONFIG_FAIR_GROUP_SCHED |
10120 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8279 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
@@ -10256,13 +8415,6 @@ static int tg_schedulable(struct task_group *tg, void *data) | |||
10256 | runtime = d->rt_runtime; | 8415 | runtime = d->rt_runtime; |
10257 | } | 8416 | } |
10258 | 8417 | ||
10259 | #ifdef CONFIG_USER_SCHED | ||
10260 | if (tg == &root_task_group) { | ||
10261 | period = global_rt_period(); | ||
10262 | runtime = global_rt_runtime(); | ||
10263 | } | ||
10264 | #endif | ||
10265 | |||
10266 | /* | 8418 | /* |
10267 | * Cannot have more runtime than the period. | 8419 | * Cannot have more runtime than the period. |
10268 | */ | 8420 | */ |
@@ -10665,7 +8817,7 @@ struct cgroup_subsys cpu_cgroup_subsys = { | |||
10665 | struct cpuacct { | 8817 | struct cpuacct { |
10666 | struct cgroup_subsys_state css; | 8818 | struct cgroup_subsys_state css; |
10667 | /* cpuusage holds pointer to a u64-type object on every cpu */ | 8819 | /* cpuusage holds pointer to a u64-type object on every cpu */ |
10668 | u64 *cpuusage; | 8820 | u64 __percpu *cpuusage; |
10669 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | 8821 | struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; |
10670 | struct cpuacct *parent; | 8822 | struct cpuacct *parent; |
10671 | }; | 8823 | }; |
@@ -10882,12 +9034,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
10882 | } | 9034 | } |
10883 | 9035 | ||
10884 | /* | 9036 | /* |
9037 | * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | ||
9038 | * in cputime_t units. As a result, cpuacct_update_stats calls | ||
9039 | * percpu_counter_add with values large enough to always overflow the | ||
9040 | * per cpu batch limit causing bad SMP scalability. | ||
9041 | * | ||
9042 | * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | ||
9043 | * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | ||
9044 | * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | ||
9045 | */ | ||
9046 | #ifdef CONFIG_SMP | ||
9047 | #define CPUACCT_BATCH \ | ||
9048 | min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | ||
9049 | #else | ||
9050 | #define CPUACCT_BATCH 0 | ||
9051 | #endif | ||
9052 | |||
9053 | /* | ||
10885 | * Charge the system/user time to the task's accounting group. | 9054 | * Charge the system/user time to the task's accounting group. |
10886 | */ | 9055 | */ |
10887 | static void cpuacct_update_stats(struct task_struct *tsk, | 9056 | static void cpuacct_update_stats(struct task_struct *tsk, |
10888 | enum cpuacct_stat_index idx, cputime_t val) | 9057 | enum cpuacct_stat_index idx, cputime_t val) |
10889 | { | 9058 | { |
10890 | struct cpuacct *ca; | 9059 | struct cpuacct *ca; |
9060 | int batch = CPUACCT_BATCH; | ||
10891 | 9061 | ||
10892 | if (unlikely(!cpuacct_subsys.active)) | 9062 | if (unlikely(!cpuacct_subsys.active)) |
10893 | return; | 9063 | return; |
@@ -10896,7 +9066,7 @@ static void cpuacct_update_stats(struct task_struct *tsk, | |||
10896 | ca = task_ca(tsk); | 9066 | ca = task_ca(tsk); |
10897 | 9067 | ||
10898 | do { | 9068 | do { |
10899 | percpu_counter_add(&ca->cpustat[idx], val); | 9069 | __percpu_counter_add(&ca->cpustat[idx], val, batch); |
10900 | ca = ca->parent; | 9070 | ca = ca->parent; |
10901 | } while (ca); | 9071 | } while (ca); |
10902 | rcu_read_unlock(); | 9072 | rcu_read_unlock(); |