diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 5004 |
1 files changed, 5004 insertions, 0 deletions
diff --git a/kernel/sched.c b/kernel/sched.c new file mode 100644 index 000000000000..f69c4a5361e3 --- /dev/null +++ b/kernel/sched.c | |||
@@ -0,0 +1,5004 @@ | |||
1 | /* | ||
2 | * kernel/sched.c | ||
3 | * | ||
4 | * Kernel scheduler and related syscalls | ||
5 | * | ||
6 | * Copyright (C) 1991-2002 Linus Torvalds | ||
7 | * | ||
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | ||
9 | * make semaphores SMP safe | ||
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | ||
11 | * by Andrea Arcangeli | ||
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | ||
13 | * hybrid priority-list and round-robin design with | ||
14 | * an array-switch method of distributing timeslices | ||
15 | * and per-CPU runqueues. Cleanups and useful suggestions | ||
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | ||
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | ||
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | ||
19 | */ | ||
20 | |||
21 | #include <linux/mm.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/nmi.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <asm/uaccess.h> | ||
26 | #include <linux/highmem.h> | ||
27 | #include <linux/smp_lock.h> | ||
28 | #include <asm/mmu_context.h> | ||
29 | #include <linux/interrupt.h> | ||
30 | #include <linux/completion.h> | ||
31 | #include <linux/kernel_stat.h> | ||
32 | #include <linux/security.h> | ||
33 | #include <linux/notifier.h> | ||
34 | #include <linux/profile.h> | ||
35 | #include <linux/suspend.h> | ||
36 | #include <linux/blkdev.h> | ||
37 | #include <linux/delay.h> | ||
38 | #include <linux/smp.h> | ||
39 | #include <linux/threads.h> | ||
40 | #include <linux/timer.h> | ||
41 | #include <linux/rcupdate.h> | ||
42 | #include <linux/cpu.h> | ||
43 | #include <linux/cpuset.h> | ||
44 | #include <linux/percpu.h> | ||
45 | #include <linux/kthread.h> | ||
46 | #include <linux/seq_file.h> | ||
47 | #include <linux/syscalls.h> | ||
48 | #include <linux/times.h> | ||
49 | #include <linux/acct.h> | ||
50 | #include <asm/tlb.h> | ||
51 | |||
52 | #include <asm/unistd.h> | ||
53 | |||
54 | /* | ||
55 | * Convert user-nice values [ -20 ... 0 ... 19 ] | ||
56 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | ||
57 | * and back. | ||
58 | */ | ||
59 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | ||
60 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | ||
61 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | ||
62 | |||
63 | /* | ||
64 | * 'User priority' is the nice value converted to something we | ||
65 | * can work with better when scaling various scheduler parameters, | ||
66 | * it's a [ 0 ... 39 ] range. | ||
67 | */ | ||
68 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | ||
69 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | ||
70 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | ||
71 | |||
72 | /* | ||
73 | * Some helpers for converting nanosecond timing to jiffy resolution | ||
74 | */ | ||
75 | #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ)) | ||
76 | #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) | ||
77 | |||
78 | /* | ||
79 | * These are the 'tuning knobs' of the scheduler: | ||
80 | * | ||
81 | * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | ||
82 | * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | ||
83 | * Timeslices get refilled after they expire. | ||
84 | */ | ||
85 | #define MIN_TIMESLICE max(5 * HZ / 1000, 1) | ||
86 | #define DEF_TIMESLICE (100 * HZ / 1000) | ||
87 | #define ON_RUNQUEUE_WEIGHT 30 | ||
88 | #define CHILD_PENALTY 95 | ||
89 | #define PARENT_PENALTY 100 | ||
90 | #define EXIT_WEIGHT 3 | ||
91 | #define PRIO_BONUS_RATIO 25 | ||
92 | #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100) | ||
93 | #define INTERACTIVE_DELTA 2 | ||
94 | #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS) | ||
95 | #define STARVATION_LIMIT (MAX_SLEEP_AVG) | ||
96 | #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG)) | ||
97 | |||
98 | /* | ||
99 | * If a task is 'interactive' then we reinsert it in the active | ||
100 | * array after it has expired its current timeslice. (it will not | ||
101 | * continue to run immediately, it will still roundrobin with | ||
102 | * other interactive tasks.) | ||
103 | * | ||
104 | * This part scales the interactivity limit depending on niceness. | ||
105 | * | ||
106 | * We scale it linearly, offset by the INTERACTIVE_DELTA delta. | ||
107 | * Here are a few examples of different nice levels: | ||
108 | * | ||
109 | * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] | ||
110 | * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] | ||
111 | * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0] | ||
112 | * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] | ||
113 | * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] | ||
114 | * | ||
115 | * (the X axis represents the possible -5 ... 0 ... +5 dynamic | ||
116 | * priority range a task can explore, a value of '1' means the | ||
117 | * task is rated interactive.) | ||
118 | * | ||
119 | * Ie. nice +19 tasks can never get 'interactive' enough to be | ||
120 | * reinserted into the active array. And only heavily CPU-hog nice -20 | ||
121 | * tasks will be expired. Default nice 0 tasks are somewhere between, | ||
122 | * it takes some effort for them to get interactive, but it's not | ||
123 | * too hard. | ||
124 | */ | ||
125 | |||
126 | #define CURRENT_BONUS(p) \ | ||
127 | (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \ | ||
128 | MAX_SLEEP_AVG) | ||
129 | |||
130 | #define GRANULARITY (10 * HZ / 1000 ? : 1) | ||
131 | |||
132 | #ifdef CONFIG_SMP | ||
133 | #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \ | ||
134 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \ | ||
135 | num_online_cpus()) | ||
136 | #else | ||
137 | #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \ | ||
138 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1))) | ||
139 | #endif | ||
140 | |||
141 | #define SCALE(v1,v1_max,v2_max) \ | ||
142 | (v1) * (v2_max) / (v1_max) | ||
143 | |||
144 | #define DELTA(p) \ | ||
145 | (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA) | ||
146 | |||
147 | #define TASK_INTERACTIVE(p) \ | ||
148 | ((p)->prio <= (p)->static_prio - DELTA(p)) | ||
149 | |||
150 | #define INTERACTIVE_SLEEP(p) \ | ||
151 | (JIFFIES_TO_NS(MAX_SLEEP_AVG * \ | ||
152 | (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1)) | ||
153 | |||
154 | #define TASK_PREEMPTS_CURR(p, rq) \ | ||
155 | ((p)->prio < (rq)->curr->prio) | ||
156 | |||
157 | /* | ||
158 | * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | ||
159 | * to time slice values: [800ms ... 100ms ... 5ms] | ||
160 | * | ||
161 | * The higher a thread's priority, the bigger timeslices | ||
162 | * it gets during one round of execution. But even the lowest | ||
163 | * priority thread gets MIN_TIMESLICE worth of execution time. | ||
164 | */ | ||
165 | |||
166 | #define SCALE_PRIO(x, prio) \ | ||
167 | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) | ||
168 | |||
169 | static inline unsigned int task_timeslice(task_t *p) | ||
170 | { | ||
171 | if (p->static_prio < NICE_TO_PRIO(0)) | ||
172 | return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); | ||
173 | else | ||
174 | return SCALE_PRIO(DEF_TIMESLICE, p->static_prio); | ||
175 | } | ||
176 | #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \ | ||
177 | < (long long) (sd)->cache_hot_time) | ||
178 | |||
179 | /* | ||
180 | * These are the runqueue data structures: | ||
181 | */ | ||
182 | |||
183 | #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long)) | ||
184 | |||
185 | typedef struct runqueue runqueue_t; | ||
186 | |||
187 | struct prio_array { | ||
188 | unsigned int nr_active; | ||
189 | unsigned long bitmap[BITMAP_SIZE]; | ||
190 | struct list_head queue[MAX_PRIO]; | ||
191 | }; | ||
192 | |||
193 | /* | ||
194 | * This is the main, per-CPU runqueue data structure. | ||
195 | * | ||
196 | * Locking rule: those places that want to lock multiple runqueues | ||
197 | * (such as the load balancing or the thread migration code), lock | ||
198 | * acquire operations must be ordered by ascending &runqueue. | ||
199 | */ | ||
200 | struct runqueue { | ||
201 | spinlock_t lock; | ||
202 | |||
203 | /* | ||
204 | * nr_running and cpu_load should be in the same cacheline because | ||
205 | * remote CPUs use both these fields when doing load calculation. | ||
206 | */ | ||
207 | unsigned long nr_running; | ||
208 | #ifdef CONFIG_SMP | ||
209 | unsigned long cpu_load; | ||
210 | #endif | ||
211 | unsigned long long nr_switches; | ||
212 | |||
213 | /* | ||
214 | * This is part of a global counter where only the total sum | ||
215 | * over all CPUs matters. A task can increase this counter on | ||
216 | * one CPU and if it got migrated afterwards it may decrease | ||
217 | * it on another CPU. Always updated under the runqueue lock: | ||
218 | */ | ||
219 | unsigned long nr_uninterruptible; | ||
220 | |||
221 | unsigned long expired_timestamp; | ||
222 | unsigned long long timestamp_last_tick; | ||
223 | task_t *curr, *idle; | ||
224 | struct mm_struct *prev_mm; | ||
225 | prio_array_t *active, *expired, arrays[2]; | ||
226 | int best_expired_prio; | ||
227 | atomic_t nr_iowait; | ||
228 | |||
229 | #ifdef CONFIG_SMP | ||
230 | struct sched_domain *sd; | ||
231 | |||
232 | /* For active balancing */ | ||
233 | int active_balance; | ||
234 | int push_cpu; | ||
235 | |||
236 | task_t *migration_thread; | ||
237 | struct list_head migration_queue; | ||
238 | #endif | ||
239 | |||
240 | #ifdef CONFIG_SCHEDSTATS | ||
241 | /* latency stats */ | ||
242 | struct sched_info rq_sched_info; | ||
243 | |||
244 | /* sys_sched_yield() stats */ | ||
245 | unsigned long yld_exp_empty; | ||
246 | unsigned long yld_act_empty; | ||
247 | unsigned long yld_both_empty; | ||
248 | unsigned long yld_cnt; | ||
249 | |||
250 | /* schedule() stats */ | ||
251 | unsigned long sched_switch; | ||
252 | unsigned long sched_cnt; | ||
253 | unsigned long sched_goidle; | ||
254 | |||
255 | /* try_to_wake_up() stats */ | ||
256 | unsigned long ttwu_cnt; | ||
257 | unsigned long ttwu_local; | ||
258 | #endif | ||
259 | }; | ||
260 | |||
261 | static DEFINE_PER_CPU(struct runqueue, runqueues); | ||
262 | |||
263 | #define for_each_domain(cpu, domain) \ | ||
264 | for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent) | ||
265 | |||
266 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | ||
267 | #define this_rq() (&__get_cpu_var(runqueues)) | ||
268 | #define task_rq(p) cpu_rq(task_cpu(p)) | ||
269 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | ||
270 | |||
271 | /* | ||
272 | * Default context-switch locking: | ||
273 | */ | ||
274 | #ifndef prepare_arch_switch | ||
275 | # define prepare_arch_switch(rq, next) do { } while (0) | ||
276 | # define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock) | ||
277 | # define task_running(rq, p) ((rq)->curr == (p)) | ||
278 | #endif | ||
279 | |||
280 | /* | ||
281 | * task_rq_lock - lock the runqueue a given task resides on and disable | ||
282 | * interrupts. Note the ordering: we can safely lookup the task_rq without | ||
283 | * explicitly disabling preemption. | ||
284 | */ | ||
285 | static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags) | ||
286 | __acquires(rq->lock) | ||
287 | { | ||
288 | struct runqueue *rq; | ||
289 | |||
290 | repeat_lock_task: | ||
291 | local_irq_save(*flags); | ||
292 | rq = task_rq(p); | ||
293 | spin_lock(&rq->lock); | ||
294 | if (unlikely(rq != task_rq(p))) { | ||
295 | spin_unlock_irqrestore(&rq->lock, *flags); | ||
296 | goto repeat_lock_task; | ||
297 | } | ||
298 | return rq; | ||
299 | } | ||
300 | |||
301 | static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags) | ||
302 | __releases(rq->lock) | ||
303 | { | ||
304 | spin_unlock_irqrestore(&rq->lock, *flags); | ||
305 | } | ||
306 | |||
307 | #ifdef CONFIG_SCHEDSTATS | ||
308 | /* | ||
309 | * bump this up when changing the output format or the meaning of an existing | ||
310 | * format, so that tools can adapt (or abort) | ||
311 | */ | ||
312 | #define SCHEDSTAT_VERSION 11 | ||
313 | |||
314 | static int show_schedstat(struct seq_file *seq, void *v) | ||
315 | { | ||
316 | int cpu; | ||
317 | |||
318 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | ||
319 | seq_printf(seq, "timestamp %lu\n", jiffies); | ||
320 | for_each_online_cpu(cpu) { | ||
321 | runqueue_t *rq = cpu_rq(cpu); | ||
322 | #ifdef CONFIG_SMP | ||
323 | struct sched_domain *sd; | ||
324 | int dcnt = 0; | ||
325 | #endif | ||
326 | |||
327 | /* runqueue-specific stats */ | ||
328 | seq_printf(seq, | ||
329 | "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu", | ||
330 | cpu, rq->yld_both_empty, | ||
331 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | ||
332 | rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | ||
333 | rq->ttwu_cnt, rq->ttwu_local, | ||
334 | rq->rq_sched_info.cpu_time, | ||
335 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | ||
336 | |||
337 | seq_printf(seq, "\n"); | ||
338 | |||
339 | #ifdef CONFIG_SMP | ||
340 | /* domain-specific stats */ | ||
341 | for_each_domain(cpu, sd) { | ||
342 | enum idle_type itype; | ||
343 | char mask_str[NR_CPUS]; | ||
344 | |||
345 | cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | ||
346 | seq_printf(seq, "domain%d %s", dcnt++, mask_str); | ||
347 | for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES; | ||
348 | itype++) { | ||
349 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu", | ||
350 | sd->lb_cnt[itype], | ||
351 | sd->lb_balanced[itype], | ||
352 | sd->lb_failed[itype], | ||
353 | sd->lb_imbalance[itype], | ||
354 | sd->lb_gained[itype], | ||
355 | sd->lb_hot_gained[itype], | ||
356 | sd->lb_nobusyq[itype], | ||
357 | sd->lb_nobusyg[itype]); | ||
358 | } | ||
359 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n", | ||
360 | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | ||
361 | sd->sbe_pushed, sd->sbe_attempts, | ||
362 | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); | ||
363 | } | ||
364 | #endif | ||
365 | } | ||
366 | return 0; | ||
367 | } | ||
368 | |||
369 | static int schedstat_open(struct inode *inode, struct file *file) | ||
370 | { | ||
371 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | ||
372 | char *buf = kmalloc(size, GFP_KERNEL); | ||
373 | struct seq_file *m; | ||
374 | int res; | ||
375 | |||
376 | if (!buf) | ||
377 | return -ENOMEM; | ||
378 | res = single_open(file, show_schedstat, NULL); | ||
379 | if (!res) { | ||
380 | m = file->private_data; | ||
381 | m->buf = buf; | ||
382 | m->size = size; | ||
383 | } else | ||
384 | kfree(buf); | ||
385 | return res; | ||
386 | } | ||
387 | |||
388 | struct file_operations proc_schedstat_operations = { | ||
389 | .open = schedstat_open, | ||
390 | .read = seq_read, | ||
391 | .llseek = seq_lseek, | ||
392 | .release = single_release, | ||
393 | }; | ||
394 | |||
395 | # define schedstat_inc(rq, field) do { (rq)->field++; } while (0) | ||
396 | # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) | ||
397 | #else /* !CONFIG_SCHEDSTATS */ | ||
398 | # define schedstat_inc(rq, field) do { } while (0) | ||
399 | # define schedstat_add(rq, field, amt) do { } while (0) | ||
400 | #endif | ||
401 | |||
402 | /* | ||
403 | * rq_lock - lock a given runqueue and disable interrupts. | ||
404 | */ | ||
405 | static inline runqueue_t *this_rq_lock(void) | ||
406 | __acquires(rq->lock) | ||
407 | { | ||
408 | runqueue_t *rq; | ||
409 | |||
410 | local_irq_disable(); | ||
411 | rq = this_rq(); | ||
412 | spin_lock(&rq->lock); | ||
413 | |||
414 | return rq; | ||
415 | } | ||
416 | |||
417 | #ifdef CONFIG_SCHED_SMT | ||
418 | static int cpu_and_siblings_are_idle(int cpu) | ||
419 | { | ||
420 | int sib; | ||
421 | for_each_cpu_mask(sib, cpu_sibling_map[cpu]) { | ||
422 | if (idle_cpu(sib)) | ||
423 | continue; | ||
424 | return 0; | ||
425 | } | ||
426 | |||
427 | return 1; | ||
428 | } | ||
429 | #else | ||
430 | #define cpu_and_siblings_are_idle(A) idle_cpu(A) | ||
431 | #endif | ||
432 | |||
433 | #ifdef CONFIG_SCHEDSTATS | ||
434 | /* | ||
435 | * Called when a process is dequeued from the active array and given | ||
436 | * the cpu. We should note that with the exception of interactive | ||
437 | * tasks, the expired queue will become the active queue after the active | ||
438 | * queue is empty, without explicitly dequeuing and requeuing tasks in the | ||
439 | * expired queue. (Interactive tasks may be requeued directly to the | ||
440 | * active queue, thus delaying tasks in the expired queue from running; | ||
441 | * see scheduler_tick()). | ||
442 | * | ||
443 | * This function is only called from sched_info_arrive(), rather than | ||
444 | * dequeue_task(). Even though a task may be queued and dequeued multiple | ||
445 | * times as it is shuffled about, we're really interested in knowing how | ||
446 | * long it was from the *first* time it was queued to the time that it | ||
447 | * finally hit a cpu. | ||
448 | */ | ||
449 | static inline void sched_info_dequeued(task_t *t) | ||
450 | { | ||
451 | t->sched_info.last_queued = 0; | ||
452 | } | ||
453 | |||
454 | /* | ||
455 | * Called when a task finally hits the cpu. We can now calculate how | ||
456 | * long it was waiting to run. We also note when it began so that we | ||
457 | * can keep stats on how long its timeslice is. | ||
458 | */ | ||
459 | static inline void sched_info_arrive(task_t *t) | ||
460 | { | ||
461 | unsigned long now = jiffies, diff = 0; | ||
462 | struct runqueue *rq = task_rq(t); | ||
463 | |||
464 | if (t->sched_info.last_queued) | ||
465 | diff = now - t->sched_info.last_queued; | ||
466 | sched_info_dequeued(t); | ||
467 | t->sched_info.run_delay += diff; | ||
468 | t->sched_info.last_arrival = now; | ||
469 | t->sched_info.pcnt++; | ||
470 | |||
471 | if (!rq) | ||
472 | return; | ||
473 | |||
474 | rq->rq_sched_info.run_delay += diff; | ||
475 | rq->rq_sched_info.pcnt++; | ||
476 | } | ||
477 | |||
478 | /* | ||
479 | * Called when a process is queued into either the active or expired | ||
480 | * array. The time is noted and later used to determine how long we | ||
481 | * had to wait for us to reach the cpu. Since the expired queue will | ||
482 | * become the active queue after active queue is empty, without dequeuing | ||
483 | * and requeuing any tasks, we are interested in queuing to either. It | ||
484 | * is unusual but not impossible for tasks to be dequeued and immediately | ||
485 | * requeued in the same or another array: this can happen in sched_yield(), | ||
486 | * set_user_nice(), and even load_balance() as it moves tasks from runqueue | ||
487 | * to runqueue. | ||
488 | * | ||
489 | * This function is only called from enqueue_task(), but also only updates | ||
490 | * the timestamp if it is already not set. It's assumed that | ||
491 | * sched_info_dequeued() will clear that stamp when appropriate. | ||
492 | */ | ||
493 | static inline void sched_info_queued(task_t *t) | ||
494 | { | ||
495 | if (!t->sched_info.last_queued) | ||
496 | t->sched_info.last_queued = jiffies; | ||
497 | } | ||
498 | |||
499 | /* | ||
500 | * Called when a process ceases being the active-running process, either | ||
501 | * voluntarily or involuntarily. Now we can calculate how long we ran. | ||
502 | */ | ||
503 | static inline void sched_info_depart(task_t *t) | ||
504 | { | ||
505 | struct runqueue *rq = task_rq(t); | ||
506 | unsigned long diff = jiffies - t->sched_info.last_arrival; | ||
507 | |||
508 | t->sched_info.cpu_time += diff; | ||
509 | |||
510 | if (rq) | ||
511 | rq->rq_sched_info.cpu_time += diff; | ||
512 | } | ||
513 | |||
514 | /* | ||
515 | * Called when tasks are switched involuntarily due, typically, to expiring | ||
516 | * their time slice. (This may also be called when switching to or from | ||
517 | * the idle task.) We are only called when prev != next. | ||
518 | */ | ||
519 | static inline void sched_info_switch(task_t *prev, task_t *next) | ||
520 | { | ||
521 | struct runqueue *rq = task_rq(prev); | ||
522 | |||
523 | /* | ||
524 | * prev now departs the cpu. It's not interesting to record | ||
525 | * stats about how efficient we were at scheduling the idle | ||
526 | * process, however. | ||
527 | */ | ||
528 | if (prev != rq->idle) | ||
529 | sched_info_depart(prev); | ||
530 | |||
531 | if (next != rq->idle) | ||
532 | sched_info_arrive(next); | ||
533 | } | ||
534 | #else | ||
535 | #define sched_info_queued(t) do { } while (0) | ||
536 | #define sched_info_switch(t, next) do { } while (0) | ||
537 | #endif /* CONFIG_SCHEDSTATS */ | ||
538 | |||
539 | /* | ||
540 | * Adding/removing a task to/from a priority array: | ||
541 | */ | ||
542 | static void dequeue_task(struct task_struct *p, prio_array_t *array) | ||
543 | { | ||
544 | array->nr_active--; | ||
545 | list_del(&p->run_list); | ||
546 | if (list_empty(array->queue + p->prio)) | ||
547 | __clear_bit(p->prio, array->bitmap); | ||
548 | } | ||
549 | |||
550 | static void enqueue_task(struct task_struct *p, prio_array_t *array) | ||
551 | { | ||
552 | sched_info_queued(p); | ||
553 | list_add_tail(&p->run_list, array->queue + p->prio); | ||
554 | __set_bit(p->prio, array->bitmap); | ||
555 | array->nr_active++; | ||
556 | p->array = array; | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * Put task to the end of the run list without the overhead of dequeue | ||
561 | * followed by enqueue. | ||
562 | */ | ||
563 | static void requeue_task(struct task_struct *p, prio_array_t *array) | ||
564 | { | ||
565 | list_move_tail(&p->run_list, array->queue + p->prio); | ||
566 | } | ||
567 | |||
568 | static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array) | ||
569 | { | ||
570 | list_add(&p->run_list, array->queue + p->prio); | ||
571 | __set_bit(p->prio, array->bitmap); | ||
572 | array->nr_active++; | ||
573 | p->array = array; | ||
574 | } | ||
575 | |||
576 | /* | ||
577 | * effective_prio - return the priority that is based on the static | ||
578 | * priority but is modified by bonuses/penalties. | ||
579 | * | ||
580 | * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] | ||
581 | * into the -5 ... 0 ... +5 bonus/penalty range. | ||
582 | * | ||
583 | * We use 25% of the full 0...39 priority range so that: | ||
584 | * | ||
585 | * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. | ||
586 | * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. | ||
587 | * | ||
588 | * Both properties are important to certain workloads. | ||
589 | */ | ||
590 | static int effective_prio(task_t *p) | ||
591 | { | ||
592 | int bonus, prio; | ||
593 | |||
594 | if (rt_task(p)) | ||
595 | return p->prio; | ||
596 | |||
597 | bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; | ||
598 | |||
599 | prio = p->static_prio - bonus; | ||
600 | if (prio < MAX_RT_PRIO) | ||
601 | prio = MAX_RT_PRIO; | ||
602 | if (prio > MAX_PRIO-1) | ||
603 | prio = MAX_PRIO-1; | ||
604 | return prio; | ||
605 | } | ||
606 | |||
607 | /* | ||
608 | * __activate_task - move a task to the runqueue. | ||
609 | */ | ||
610 | static inline void __activate_task(task_t *p, runqueue_t *rq) | ||
611 | { | ||
612 | enqueue_task(p, rq->active); | ||
613 | rq->nr_running++; | ||
614 | } | ||
615 | |||
616 | /* | ||
617 | * __activate_idle_task - move idle task to the _front_ of runqueue. | ||
618 | */ | ||
619 | static inline void __activate_idle_task(task_t *p, runqueue_t *rq) | ||
620 | { | ||
621 | enqueue_task_head(p, rq->active); | ||
622 | rq->nr_running++; | ||
623 | } | ||
624 | |||
625 | static void recalc_task_prio(task_t *p, unsigned long long now) | ||
626 | { | ||
627 | /* Caller must always ensure 'now >= p->timestamp' */ | ||
628 | unsigned long long __sleep_time = now - p->timestamp; | ||
629 | unsigned long sleep_time; | ||
630 | |||
631 | if (__sleep_time > NS_MAX_SLEEP_AVG) | ||
632 | sleep_time = NS_MAX_SLEEP_AVG; | ||
633 | else | ||
634 | sleep_time = (unsigned long)__sleep_time; | ||
635 | |||
636 | if (likely(sleep_time > 0)) { | ||
637 | /* | ||
638 | * User tasks that sleep a long time are categorised as | ||
639 | * idle and will get just interactive status to stay active & | ||
640 | * prevent them suddenly becoming cpu hogs and starving | ||
641 | * other processes. | ||
642 | */ | ||
643 | if (p->mm && p->activated != -1 && | ||
644 | sleep_time > INTERACTIVE_SLEEP(p)) { | ||
645 | p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG - | ||
646 | DEF_TIMESLICE); | ||
647 | } else { | ||
648 | /* | ||
649 | * The lower the sleep avg a task has the more | ||
650 | * rapidly it will rise with sleep time. | ||
651 | */ | ||
652 | sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1; | ||
653 | |||
654 | /* | ||
655 | * Tasks waking from uninterruptible sleep are | ||
656 | * limited in their sleep_avg rise as they | ||
657 | * are likely to be waiting on I/O | ||
658 | */ | ||
659 | if (p->activated == -1 && p->mm) { | ||
660 | if (p->sleep_avg >= INTERACTIVE_SLEEP(p)) | ||
661 | sleep_time = 0; | ||
662 | else if (p->sleep_avg + sleep_time >= | ||
663 | INTERACTIVE_SLEEP(p)) { | ||
664 | p->sleep_avg = INTERACTIVE_SLEEP(p); | ||
665 | sleep_time = 0; | ||
666 | } | ||
667 | } | ||
668 | |||
669 | /* | ||
670 | * This code gives a bonus to interactive tasks. | ||
671 | * | ||
672 | * The boost works by updating the 'average sleep time' | ||
673 | * value here, based on ->timestamp. The more time a | ||
674 | * task spends sleeping, the higher the average gets - | ||
675 | * and the higher the priority boost gets as well. | ||
676 | */ | ||
677 | p->sleep_avg += sleep_time; | ||
678 | |||
679 | if (p->sleep_avg > NS_MAX_SLEEP_AVG) | ||
680 | p->sleep_avg = NS_MAX_SLEEP_AVG; | ||
681 | } | ||
682 | } | ||
683 | |||
684 | p->prio = effective_prio(p); | ||
685 | } | ||
686 | |||
687 | /* | ||
688 | * activate_task - move a task to the runqueue and do priority recalculation | ||
689 | * | ||
690 | * Update all the scheduling statistics stuff. (sleep average | ||
691 | * calculation, priority modifiers, etc.) | ||
692 | */ | ||
693 | static void activate_task(task_t *p, runqueue_t *rq, int local) | ||
694 | { | ||
695 | unsigned long long now; | ||
696 | |||
697 | now = sched_clock(); | ||
698 | #ifdef CONFIG_SMP | ||
699 | if (!local) { | ||
700 | /* Compensate for drifting sched_clock */ | ||
701 | runqueue_t *this_rq = this_rq(); | ||
702 | now = (now - this_rq->timestamp_last_tick) | ||
703 | + rq->timestamp_last_tick; | ||
704 | } | ||
705 | #endif | ||
706 | |||
707 | recalc_task_prio(p, now); | ||
708 | |||
709 | /* | ||
710 | * This checks to make sure it's not an uninterruptible task | ||
711 | * that is now waking up. | ||
712 | */ | ||
713 | if (!p->activated) { | ||
714 | /* | ||
715 | * Tasks which were woken up by interrupts (ie. hw events) | ||
716 | * are most likely of interactive nature. So we give them | ||
717 | * the credit of extending their sleep time to the period | ||
718 | * of time they spend on the runqueue, waiting for execution | ||
719 | * on a CPU, first time around: | ||
720 | */ | ||
721 | if (in_interrupt()) | ||
722 | p->activated = 2; | ||
723 | else { | ||
724 | /* | ||
725 | * Normal first-time wakeups get a credit too for | ||
726 | * on-runqueue time, but it will be weighted down: | ||
727 | */ | ||
728 | p->activated = 1; | ||
729 | } | ||
730 | } | ||
731 | p->timestamp = now; | ||
732 | |||
733 | __activate_task(p, rq); | ||
734 | } | ||
735 | |||
736 | /* | ||
737 | * deactivate_task - remove a task from the runqueue. | ||
738 | */ | ||
739 | static void deactivate_task(struct task_struct *p, runqueue_t *rq) | ||
740 | { | ||
741 | rq->nr_running--; | ||
742 | dequeue_task(p, p->array); | ||
743 | p->array = NULL; | ||
744 | } | ||
745 | |||
746 | /* | ||
747 | * resched_task - mark a task 'to be rescheduled now'. | ||
748 | * | ||
749 | * On UP this means the setting of the need_resched flag, on SMP it | ||
750 | * might also involve a cross-CPU call to trigger the scheduler on | ||
751 | * the target CPU. | ||
752 | */ | ||
753 | #ifdef CONFIG_SMP | ||
754 | static void resched_task(task_t *p) | ||
755 | { | ||
756 | int need_resched, nrpolling; | ||
757 | |||
758 | assert_spin_locked(&task_rq(p)->lock); | ||
759 | |||
760 | /* minimise the chance of sending an interrupt to poll_idle() */ | ||
761 | nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | ||
762 | need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED); | ||
763 | nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | ||
764 | |||
765 | if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id())) | ||
766 | smp_send_reschedule(task_cpu(p)); | ||
767 | } | ||
768 | #else | ||
769 | static inline void resched_task(task_t *p) | ||
770 | { | ||
771 | set_tsk_need_resched(p); | ||
772 | } | ||
773 | #endif | ||
774 | |||
775 | /** | ||
776 | * task_curr - is this task currently executing on a CPU? | ||
777 | * @p: the task in question. | ||
778 | */ | ||
779 | inline int task_curr(const task_t *p) | ||
780 | { | ||
781 | return cpu_curr(task_cpu(p)) == p; | ||
782 | } | ||
783 | |||
784 | #ifdef CONFIG_SMP | ||
785 | enum request_type { | ||
786 | REQ_MOVE_TASK, | ||
787 | REQ_SET_DOMAIN, | ||
788 | }; | ||
789 | |||
790 | typedef struct { | ||
791 | struct list_head list; | ||
792 | enum request_type type; | ||
793 | |||
794 | /* For REQ_MOVE_TASK */ | ||
795 | task_t *task; | ||
796 | int dest_cpu; | ||
797 | |||
798 | /* For REQ_SET_DOMAIN */ | ||
799 | struct sched_domain *sd; | ||
800 | |||
801 | struct completion done; | ||
802 | } migration_req_t; | ||
803 | |||
804 | /* | ||
805 | * The task's runqueue lock must be held. | ||
806 | * Returns true if you have to wait for migration thread. | ||
807 | */ | ||
808 | static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req) | ||
809 | { | ||
810 | runqueue_t *rq = task_rq(p); | ||
811 | |||
812 | /* | ||
813 | * If the task is not on a runqueue (and not running), then | ||
814 | * it is sufficient to simply update the task's cpu field. | ||
815 | */ | ||
816 | if (!p->array && !task_running(rq, p)) { | ||
817 | set_task_cpu(p, dest_cpu); | ||
818 | return 0; | ||
819 | } | ||
820 | |||
821 | init_completion(&req->done); | ||
822 | req->type = REQ_MOVE_TASK; | ||
823 | req->task = p; | ||
824 | req->dest_cpu = dest_cpu; | ||
825 | list_add(&req->list, &rq->migration_queue); | ||
826 | return 1; | ||
827 | } | ||
828 | |||
829 | /* | ||
830 | * wait_task_inactive - wait for a thread to unschedule. | ||
831 | * | ||
832 | * The caller must ensure that the task *will* unschedule sometime soon, | ||
833 | * else this function might spin for a *long* time. This function can't | ||
834 | * be called with interrupts off, or it may introduce deadlock with | ||
835 | * smp_call_function() if an IPI is sent by the same process we are | ||
836 | * waiting to become inactive. | ||
837 | */ | ||
838 | void wait_task_inactive(task_t * p) | ||
839 | { | ||
840 | unsigned long flags; | ||
841 | runqueue_t *rq; | ||
842 | int preempted; | ||
843 | |||
844 | repeat: | ||
845 | rq = task_rq_lock(p, &flags); | ||
846 | /* Must be off runqueue entirely, not preempted. */ | ||
847 | if (unlikely(p->array || task_running(rq, p))) { | ||
848 | /* If it's preempted, we yield. It could be a while. */ | ||
849 | preempted = !task_running(rq, p); | ||
850 | task_rq_unlock(rq, &flags); | ||
851 | cpu_relax(); | ||
852 | if (preempted) | ||
853 | yield(); | ||
854 | goto repeat; | ||
855 | } | ||
856 | task_rq_unlock(rq, &flags); | ||
857 | } | ||
858 | |||
859 | /*** | ||
860 | * kick_process - kick a running thread to enter/exit the kernel | ||
861 | * @p: the to-be-kicked thread | ||
862 | * | ||
863 | * Cause a process which is running on another CPU to enter | ||
864 | * kernel-mode, without any delay. (to get signals handled.) | ||
865 | * | ||
866 | * NOTE: this function doesnt have to take the runqueue lock, | ||
867 | * because all it wants to ensure is that the remote task enters | ||
868 | * the kernel. If the IPI races and the task has been migrated | ||
869 | * to another CPU then no harm is done and the purpose has been | ||
870 | * achieved as well. | ||
871 | */ | ||
872 | void kick_process(task_t *p) | ||
873 | { | ||
874 | int cpu; | ||
875 | |||
876 | preempt_disable(); | ||
877 | cpu = task_cpu(p); | ||
878 | if ((cpu != smp_processor_id()) && task_curr(p)) | ||
879 | smp_send_reschedule(cpu); | ||
880 | preempt_enable(); | ||
881 | } | ||
882 | |||
883 | /* | ||
884 | * Return a low guess at the load of a migration-source cpu. | ||
885 | * | ||
886 | * We want to under-estimate the load of migration sources, to | ||
887 | * balance conservatively. | ||
888 | */ | ||
889 | static inline unsigned long source_load(int cpu) | ||
890 | { | ||
891 | runqueue_t *rq = cpu_rq(cpu); | ||
892 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | ||
893 | |||
894 | return min(rq->cpu_load, load_now); | ||
895 | } | ||
896 | |||
897 | /* | ||
898 | * Return a high guess at the load of a migration-target cpu | ||
899 | */ | ||
900 | static inline unsigned long target_load(int cpu) | ||
901 | { | ||
902 | runqueue_t *rq = cpu_rq(cpu); | ||
903 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | ||
904 | |||
905 | return max(rq->cpu_load, load_now); | ||
906 | } | ||
907 | |||
908 | #endif | ||
909 | |||
910 | /* | ||
911 | * wake_idle() will wake a task on an idle cpu if task->cpu is | ||
912 | * not idle and an idle cpu is available. The span of cpus to | ||
913 | * search starts with cpus closest then further out as needed, | ||
914 | * so we always favor a closer, idle cpu. | ||
915 | * | ||
916 | * Returns the CPU we should wake onto. | ||
917 | */ | ||
918 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | ||
919 | static int wake_idle(int cpu, task_t *p) | ||
920 | { | ||
921 | cpumask_t tmp; | ||
922 | struct sched_domain *sd; | ||
923 | int i; | ||
924 | |||
925 | if (idle_cpu(cpu)) | ||
926 | return cpu; | ||
927 | |||
928 | for_each_domain(cpu, sd) { | ||
929 | if (sd->flags & SD_WAKE_IDLE) { | ||
930 | cpus_and(tmp, sd->span, cpu_online_map); | ||
931 | cpus_and(tmp, tmp, p->cpus_allowed); | ||
932 | for_each_cpu_mask(i, tmp) { | ||
933 | if (idle_cpu(i)) | ||
934 | return i; | ||
935 | } | ||
936 | } | ||
937 | else break; | ||
938 | } | ||
939 | return cpu; | ||
940 | } | ||
941 | #else | ||
942 | static inline int wake_idle(int cpu, task_t *p) | ||
943 | { | ||
944 | return cpu; | ||
945 | } | ||
946 | #endif | ||
947 | |||
948 | /*** | ||
949 | * try_to_wake_up - wake up a thread | ||
950 | * @p: the to-be-woken-up thread | ||
951 | * @state: the mask of task states that can be woken | ||
952 | * @sync: do a synchronous wakeup? | ||
953 | * | ||
954 | * Put it on the run-queue if it's not already there. The "current" | ||
955 | * thread is always on the run-queue (except when the actual | ||
956 | * re-schedule is in progress), and as such you're allowed to do | ||
957 | * the simpler "current->state = TASK_RUNNING" to mark yourself | ||
958 | * runnable without the overhead of this. | ||
959 | * | ||
960 | * returns failure only if the task is already active. | ||
961 | */ | ||
962 | static int try_to_wake_up(task_t * p, unsigned int state, int sync) | ||
963 | { | ||
964 | int cpu, this_cpu, success = 0; | ||
965 | unsigned long flags; | ||
966 | long old_state; | ||
967 | runqueue_t *rq; | ||
968 | #ifdef CONFIG_SMP | ||
969 | unsigned long load, this_load; | ||
970 | struct sched_domain *sd; | ||
971 | int new_cpu; | ||
972 | #endif | ||
973 | |||
974 | rq = task_rq_lock(p, &flags); | ||
975 | old_state = p->state; | ||
976 | if (!(old_state & state)) | ||
977 | goto out; | ||
978 | |||
979 | if (p->array) | ||
980 | goto out_running; | ||
981 | |||
982 | cpu = task_cpu(p); | ||
983 | this_cpu = smp_processor_id(); | ||
984 | |||
985 | #ifdef CONFIG_SMP | ||
986 | if (unlikely(task_running(rq, p))) | ||
987 | goto out_activate; | ||
988 | |||
989 | #ifdef CONFIG_SCHEDSTATS | ||
990 | schedstat_inc(rq, ttwu_cnt); | ||
991 | if (cpu == this_cpu) { | ||
992 | schedstat_inc(rq, ttwu_local); | ||
993 | } else { | ||
994 | for_each_domain(this_cpu, sd) { | ||
995 | if (cpu_isset(cpu, sd->span)) { | ||
996 | schedstat_inc(sd, ttwu_wake_remote); | ||
997 | break; | ||
998 | } | ||
999 | } | ||
1000 | } | ||
1001 | #endif | ||
1002 | |||
1003 | new_cpu = cpu; | ||
1004 | if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | ||
1005 | goto out_set_cpu; | ||
1006 | |||
1007 | load = source_load(cpu); | ||
1008 | this_load = target_load(this_cpu); | ||
1009 | |||
1010 | /* | ||
1011 | * If sync wakeup then subtract the (maximum possible) effect of | ||
1012 | * the currently running task from the load of the current CPU: | ||
1013 | */ | ||
1014 | if (sync) | ||
1015 | this_load -= SCHED_LOAD_SCALE; | ||
1016 | |||
1017 | /* Don't pull the task off an idle CPU to a busy one */ | ||
1018 | if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2) | ||
1019 | goto out_set_cpu; | ||
1020 | |||
1021 | new_cpu = this_cpu; /* Wake to this CPU if we can */ | ||
1022 | |||
1023 | /* | ||
1024 | * Scan domains for affine wakeup and passive balancing | ||
1025 | * possibilities. | ||
1026 | */ | ||
1027 | for_each_domain(this_cpu, sd) { | ||
1028 | unsigned int imbalance; | ||
1029 | /* | ||
1030 | * Start passive balancing when half the imbalance_pct | ||
1031 | * limit is reached. | ||
1032 | */ | ||
1033 | imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2; | ||
1034 | |||
1035 | if ((sd->flags & SD_WAKE_AFFINE) && | ||
1036 | !task_hot(p, rq->timestamp_last_tick, sd)) { | ||
1037 | /* | ||
1038 | * This domain has SD_WAKE_AFFINE and p is cache cold | ||
1039 | * in this domain. | ||
1040 | */ | ||
1041 | if (cpu_isset(cpu, sd->span)) { | ||
1042 | schedstat_inc(sd, ttwu_move_affine); | ||
1043 | goto out_set_cpu; | ||
1044 | } | ||
1045 | } else if ((sd->flags & SD_WAKE_BALANCE) && | ||
1046 | imbalance*this_load <= 100*load) { | ||
1047 | /* | ||
1048 | * This domain has SD_WAKE_BALANCE and there is | ||
1049 | * an imbalance. | ||
1050 | */ | ||
1051 | if (cpu_isset(cpu, sd->span)) { | ||
1052 | schedstat_inc(sd, ttwu_move_balance); | ||
1053 | goto out_set_cpu; | ||
1054 | } | ||
1055 | } | ||
1056 | } | ||
1057 | |||
1058 | new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | ||
1059 | out_set_cpu: | ||
1060 | new_cpu = wake_idle(new_cpu, p); | ||
1061 | if (new_cpu != cpu) { | ||
1062 | set_task_cpu(p, new_cpu); | ||
1063 | task_rq_unlock(rq, &flags); | ||
1064 | /* might preempt at this point */ | ||
1065 | rq = task_rq_lock(p, &flags); | ||
1066 | old_state = p->state; | ||
1067 | if (!(old_state & state)) | ||
1068 | goto out; | ||
1069 | if (p->array) | ||
1070 | goto out_running; | ||
1071 | |||
1072 | this_cpu = smp_processor_id(); | ||
1073 | cpu = task_cpu(p); | ||
1074 | } | ||
1075 | |||
1076 | out_activate: | ||
1077 | #endif /* CONFIG_SMP */ | ||
1078 | if (old_state == TASK_UNINTERRUPTIBLE) { | ||
1079 | rq->nr_uninterruptible--; | ||
1080 | /* | ||
1081 | * Tasks on involuntary sleep don't earn | ||
1082 | * sleep_avg beyond just interactive state. | ||
1083 | */ | ||
1084 | p->activated = -1; | ||
1085 | } | ||
1086 | |||
1087 | /* | ||
1088 | * Sync wakeups (i.e. those types of wakeups where the waker | ||
1089 | * has indicated that it will leave the CPU in short order) | ||
1090 | * don't trigger a preemption, if the woken up task will run on | ||
1091 | * this cpu. (in this case the 'I will reschedule' promise of | ||
1092 | * the waker guarantees that the freshly woken up task is going | ||
1093 | * to be considered on this CPU.) | ||
1094 | */ | ||
1095 | activate_task(p, rq, cpu == this_cpu); | ||
1096 | if (!sync || cpu != this_cpu) { | ||
1097 | if (TASK_PREEMPTS_CURR(p, rq)) | ||
1098 | resched_task(rq->curr); | ||
1099 | } | ||
1100 | success = 1; | ||
1101 | |||
1102 | out_running: | ||
1103 | p->state = TASK_RUNNING; | ||
1104 | out: | ||
1105 | task_rq_unlock(rq, &flags); | ||
1106 | |||
1107 | return success; | ||
1108 | } | ||
1109 | |||
1110 | int fastcall wake_up_process(task_t * p) | ||
1111 | { | ||
1112 | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | ||
1113 | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | ||
1114 | } | ||
1115 | |||
1116 | EXPORT_SYMBOL(wake_up_process); | ||
1117 | |||
1118 | int fastcall wake_up_state(task_t *p, unsigned int state) | ||
1119 | { | ||
1120 | return try_to_wake_up(p, state, 0); | ||
1121 | } | ||
1122 | |||
1123 | #ifdef CONFIG_SMP | ||
1124 | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | ||
1125 | struct sched_domain *sd); | ||
1126 | #endif | ||
1127 | |||
1128 | /* | ||
1129 | * Perform scheduler related setup for a newly forked process p. | ||
1130 | * p is forked by current. | ||
1131 | */ | ||
1132 | void fastcall sched_fork(task_t *p) | ||
1133 | { | ||
1134 | /* | ||
1135 | * We mark the process as running here, but have not actually | ||
1136 | * inserted it onto the runqueue yet. This guarantees that | ||
1137 | * nobody will actually run it, and a signal or other external | ||
1138 | * event cannot wake it up and insert it on the runqueue either. | ||
1139 | */ | ||
1140 | p->state = TASK_RUNNING; | ||
1141 | INIT_LIST_HEAD(&p->run_list); | ||
1142 | p->array = NULL; | ||
1143 | spin_lock_init(&p->switch_lock); | ||
1144 | #ifdef CONFIG_SCHEDSTATS | ||
1145 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | ||
1146 | #endif | ||
1147 | #ifdef CONFIG_PREEMPT | ||
1148 | /* | ||
1149 | * During context-switch we hold precisely one spinlock, which | ||
1150 | * schedule_tail drops. (in the common case it's this_rq()->lock, | ||
1151 | * but it also can be p->switch_lock.) So we compensate with a count | ||
1152 | * of 1. Also, we want to start with kernel preemption disabled. | ||
1153 | */ | ||
1154 | p->thread_info->preempt_count = 1; | ||
1155 | #endif | ||
1156 | /* | ||
1157 | * Share the timeslice between parent and child, thus the | ||
1158 | * total amount of pending timeslices in the system doesn't change, | ||
1159 | * resulting in more scheduling fairness. | ||
1160 | */ | ||
1161 | local_irq_disable(); | ||
1162 | p->time_slice = (current->time_slice + 1) >> 1; | ||
1163 | /* | ||
1164 | * The remainder of the first timeslice might be recovered by | ||
1165 | * the parent if the child exits early enough. | ||
1166 | */ | ||
1167 | p->first_time_slice = 1; | ||
1168 | current->time_slice >>= 1; | ||
1169 | p->timestamp = sched_clock(); | ||
1170 | if (unlikely(!current->time_slice)) { | ||
1171 | /* | ||
1172 | * This case is rare, it happens when the parent has only | ||
1173 | * a single jiffy left from its timeslice. Taking the | ||
1174 | * runqueue lock is not a problem. | ||
1175 | */ | ||
1176 | current->time_slice = 1; | ||
1177 | preempt_disable(); | ||
1178 | scheduler_tick(); | ||
1179 | local_irq_enable(); | ||
1180 | preempt_enable(); | ||
1181 | } else | ||
1182 | local_irq_enable(); | ||
1183 | } | ||
1184 | |||
1185 | /* | ||
1186 | * wake_up_new_task - wake up a newly created task for the first time. | ||
1187 | * | ||
1188 | * This function will do some initial scheduler statistics housekeeping | ||
1189 | * that must be done for every newly created context, then puts the task | ||
1190 | * on the runqueue and wakes it. | ||
1191 | */ | ||
1192 | void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags) | ||
1193 | { | ||
1194 | unsigned long flags; | ||
1195 | int this_cpu, cpu; | ||
1196 | runqueue_t *rq, *this_rq; | ||
1197 | |||
1198 | rq = task_rq_lock(p, &flags); | ||
1199 | cpu = task_cpu(p); | ||
1200 | this_cpu = smp_processor_id(); | ||
1201 | |||
1202 | BUG_ON(p->state != TASK_RUNNING); | ||
1203 | |||
1204 | /* | ||
1205 | * We decrease the sleep average of forking parents | ||
1206 | * and children as well, to keep max-interactive tasks | ||
1207 | * from forking tasks that are max-interactive. The parent | ||
1208 | * (current) is done further down, under its lock. | ||
1209 | */ | ||
1210 | p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) * | ||
1211 | CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | ||
1212 | |||
1213 | p->prio = effective_prio(p); | ||
1214 | |||
1215 | if (likely(cpu == this_cpu)) { | ||
1216 | if (!(clone_flags & CLONE_VM)) { | ||
1217 | /* | ||
1218 | * The VM isn't cloned, so we're in a good position to | ||
1219 | * do child-runs-first in anticipation of an exec. This | ||
1220 | * usually avoids a lot of COW overhead. | ||
1221 | */ | ||
1222 | if (unlikely(!current->array)) | ||
1223 | __activate_task(p, rq); | ||
1224 | else { | ||
1225 | p->prio = current->prio; | ||
1226 | list_add_tail(&p->run_list, ¤t->run_list); | ||
1227 | p->array = current->array; | ||
1228 | p->array->nr_active++; | ||
1229 | rq->nr_running++; | ||
1230 | } | ||
1231 | set_need_resched(); | ||
1232 | } else | ||
1233 | /* Run child last */ | ||
1234 | __activate_task(p, rq); | ||
1235 | /* | ||
1236 | * We skip the following code due to cpu == this_cpu | ||
1237 | * | ||
1238 | * task_rq_unlock(rq, &flags); | ||
1239 | * this_rq = task_rq_lock(current, &flags); | ||
1240 | */ | ||
1241 | this_rq = rq; | ||
1242 | } else { | ||
1243 | this_rq = cpu_rq(this_cpu); | ||
1244 | |||
1245 | /* | ||
1246 | * Not the local CPU - must adjust timestamp. This should | ||
1247 | * get optimised away in the !CONFIG_SMP case. | ||
1248 | */ | ||
1249 | p->timestamp = (p->timestamp - this_rq->timestamp_last_tick) | ||
1250 | + rq->timestamp_last_tick; | ||
1251 | __activate_task(p, rq); | ||
1252 | if (TASK_PREEMPTS_CURR(p, rq)) | ||
1253 | resched_task(rq->curr); | ||
1254 | |||
1255 | /* | ||
1256 | * Parent and child are on different CPUs, now get the | ||
1257 | * parent runqueue to update the parent's ->sleep_avg: | ||
1258 | */ | ||
1259 | task_rq_unlock(rq, &flags); | ||
1260 | this_rq = task_rq_lock(current, &flags); | ||
1261 | } | ||
1262 | current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) * | ||
1263 | PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | ||
1264 | task_rq_unlock(this_rq, &flags); | ||
1265 | } | ||
1266 | |||
1267 | /* | ||
1268 | * Potentially available exiting-child timeslices are | ||
1269 | * retrieved here - this way the parent does not get | ||
1270 | * penalized for creating too many threads. | ||
1271 | * | ||
1272 | * (this cannot be used to 'generate' timeslices | ||
1273 | * artificially, because any timeslice recovered here | ||
1274 | * was given away by the parent in the first place.) | ||
1275 | */ | ||
1276 | void fastcall sched_exit(task_t * p) | ||
1277 | { | ||
1278 | unsigned long flags; | ||
1279 | runqueue_t *rq; | ||
1280 | |||
1281 | /* | ||
1282 | * If the child was a (relative-) CPU hog then decrease | ||
1283 | * the sleep_avg of the parent as well. | ||
1284 | */ | ||
1285 | rq = task_rq_lock(p->parent, &flags); | ||
1286 | if (p->first_time_slice) { | ||
1287 | p->parent->time_slice += p->time_slice; | ||
1288 | if (unlikely(p->parent->time_slice > task_timeslice(p))) | ||
1289 | p->parent->time_slice = task_timeslice(p); | ||
1290 | } | ||
1291 | if (p->sleep_avg < p->parent->sleep_avg) | ||
1292 | p->parent->sleep_avg = p->parent->sleep_avg / | ||
1293 | (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg / | ||
1294 | (EXIT_WEIGHT + 1); | ||
1295 | task_rq_unlock(rq, &flags); | ||
1296 | } | ||
1297 | |||
1298 | /** | ||
1299 | * finish_task_switch - clean up after a task-switch | ||
1300 | * @prev: the thread we just switched away from. | ||
1301 | * | ||
1302 | * We enter this with the runqueue still locked, and finish_arch_switch() | ||
1303 | * will unlock it along with doing any other architecture-specific cleanup | ||
1304 | * actions. | ||
1305 | * | ||
1306 | * Note that we may have delayed dropping an mm in context_switch(). If | ||
1307 | * so, we finish that here outside of the runqueue lock. (Doing it | ||
1308 | * with the lock held can cause deadlocks; see schedule() for | ||
1309 | * details.) | ||
1310 | */ | ||
1311 | static inline void finish_task_switch(task_t *prev) | ||
1312 | __releases(rq->lock) | ||
1313 | { | ||
1314 | runqueue_t *rq = this_rq(); | ||
1315 | struct mm_struct *mm = rq->prev_mm; | ||
1316 | unsigned long prev_task_flags; | ||
1317 | |||
1318 | rq->prev_mm = NULL; | ||
1319 | |||
1320 | /* | ||
1321 | * A task struct has one reference for the use as "current". | ||
1322 | * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and | ||
1323 | * calls schedule one last time. The schedule call will never return, | ||
1324 | * and the scheduled task must drop that reference. | ||
1325 | * The test for EXIT_ZOMBIE must occur while the runqueue locks are | ||
1326 | * still held, otherwise prev could be scheduled on another cpu, die | ||
1327 | * there before we look at prev->state, and then the reference would | ||
1328 | * be dropped twice. | ||
1329 | * Manfred Spraul <manfred@colorfullife.com> | ||
1330 | */ | ||
1331 | prev_task_flags = prev->flags; | ||
1332 | finish_arch_switch(rq, prev); | ||
1333 | if (mm) | ||
1334 | mmdrop(mm); | ||
1335 | if (unlikely(prev_task_flags & PF_DEAD)) | ||
1336 | put_task_struct(prev); | ||
1337 | } | ||
1338 | |||
1339 | /** | ||
1340 | * schedule_tail - first thing a freshly forked thread must call. | ||
1341 | * @prev: the thread we just switched away from. | ||
1342 | */ | ||
1343 | asmlinkage void schedule_tail(task_t *prev) | ||
1344 | __releases(rq->lock) | ||
1345 | { | ||
1346 | finish_task_switch(prev); | ||
1347 | |||
1348 | if (current->set_child_tid) | ||
1349 | put_user(current->pid, current->set_child_tid); | ||
1350 | } | ||
1351 | |||
1352 | /* | ||
1353 | * context_switch - switch to the new MM and the new | ||
1354 | * thread's register state. | ||
1355 | */ | ||
1356 | static inline | ||
1357 | task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next) | ||
1358 | { | ||
1359 | struct mm_struct *mm = next->mm; | ||
1360 | struct mm_struct *oldmm = prev->active_mm; | ||
1361 | |||
1362 | if (unlikely(!mm)) { | ||
1363 | next->active_mm = oldmm; | ||
1364 | atomic_inc(&oldmm->mm_count); | ||
1365 | enter_lazy_tlb(oldmm, next); | ||
1366 | } else | ||
1367 | switch_mm(oldmm, mm, next); | ||
1368 | |||
1369 | if (unlikely(!prev->mm)) { | ||
1370 | prev->active_mm = NULL; | ||
1371 | WARN_ON(rq->prev_mm); | ||
1372 | rq->prev_mm = oldmm; | ||
1373 | } | ||
1374 | |||
1375 | /* Here we just switch the register state and the stack. */ | ||
1376 | switch_to(prev, next, prev); | ||
1377 | |||
1378 | return prev; | ||
1379 | } | ||
1380 | |||
1381 | /* | ||
1382 | * nr_running, nr_uninterruptible and nr_context_switches: | ||
1383 | * | ||
1384 | * externally visible scheduler statistics: current number of runnable | ||
1385 | * threads, current number of uninterruptible-sleeping threads, total | ||
1386 | * number of context switches performed since bootup. | ||
1387 | */ | ||
1388 | unsigned long nr_running(void) | ||
1389 | { | ||
1390 | unsigned long i, sum = 0; | ||
1391 | |||
1392 | for_each_online_cpu(i) | ||
1393 | sum += cpu_rq(i)->nr_running; | ||
1394 | |||
1395 | return sum; | ||
1396 | } | ||
1397 | |||
1398 | unsigned long nr_uninterruptible(void) | ||
1399 | { | ||
1400 | unsigned long i, sum = 0; | ||
1401 | |||
1402 | for_each_cpu(i) | ||
1403 | sum += cpu_rq(i)->nr_uninterruptible; | ||
1404 | |||
1405 | /* | ||
1406 | * Since we read the counters lockless, it might be slightly | ||
1407 | * inaccurate. Do not allow it to go below zero though: | ||
1408 | */ | ||
1409 | if (unlikely((long)sum < 0)) | ||
1410 | sum = 0; | ||
1411 | |||
1412 | return sum; | ||
1413 | } | ||
1414 | |||
1415 | unsigned long long nr_context_switches(void) | ||
1416 | { | ||
1417 | unsigned long long i, sum = 0; | ||
1418 | |||
1419 | for_each_cpu(i) | ||
1420 | sum += cpu_rq(i)->nr_switches; | ||
1421 | |||
1422 | return sum; | ||
1423 | } | ||
1424 | |||
1425 | unsigned long nr_iowait(void) | ||
1426 | { | ||
1427 | unsigned long i, sum = 0; | ||
1428 | |||
1429 | for_each_cpu(i) | ||
1430 | sum += atomic_read(&cpu_rq(i)->nr_iowait); | ||
1431 | |||
1432 | return sum; | ||
1433 | } | ||
1434 | |||
1435 | #ifdef CONFIG_SMP | ||
1436 | |||
1437 | /* | ||
1438 | * double_rq_lock - safely lock two runqueues | ||
1439 | * | ||
1440 | * Note this does not disable interrupts like task_rq_lock, | ||
1441 | * you need to do so manually before calling. | ||
1442 | */ | ||
1443 | static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) | ||
1444 | __acquires(rq1->lock) | ||
1445 | __acquires(rq2->lock) | ||
1446 | { | ||
1447 | if (rq1 == rq2) { | ||
1448 | spin_lock(&rq1->lock); | ||
1449 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1450 | } else { | ||
1451 | if (rq1 < rq2) { | ||
1452 | spin_lock(&rq1->lock); | ||
1453 | spin_lock(&rq2->lock); | ||
1454 | } else { | ||
1455 | spin_lock(&rq2->lock); | ||
1456 | spin_lock(&rq1->lock); | ||
1457 | } | ||
1458 | } | ||
1459 | } | ||
1460 | |||
1461 | /* | ||
1462 | * double_rq_unlock - safely unlock two runqueues | ||
1463 | * | ||
1464 | * Note this does not restore interrupts like task_rq_unlock, | ||
1465 | * you need to do so manually after calling. | ||
1466 | */ | ||
1467 | static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2) | ||
1468 | __releases(rq1->lock) | ||
1469 | __releases(rq2->lock) | ||
1470 | { | ||
1471 | spin_unlock(&rq1->lock); | ||
1472 | if (rq1 != rq2) | ||
1473 | spin_unlock(&rq2->lock); | ||
1474 | else | ||
1475 | __release(rq2->lock); | ||
1476 | } | ||
1477 | |||
1478 | /* | ||
1479 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
1480 | */ | ||
1481 | static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest) | ||
1482 | __releases(this_rq->lock) | ||
1483 | __acquires(busiest->lock) | ||
1484 | __acquires(this_rq->lock) | ||
1485 | { | ||
1486 | if (unlikely(!spin_trylock(&busiest->lock))) { | ||
1487 | if (busiest < this_rq) { | ||
1488 | spin_unlock(&this_rq->lock); | ||
1489 | spin_lock(&busiest->lock); | ||
1490 | spin_lock(&this_rq->lock); | ||
1491 | } else | ||
1492 | spin_lock(&busiest->lock); | ||
1493 | } | ||
1494 | } | ||
1495 | |||
1496 | /* | ||
1497 | * find_idlest_cpu - find the least busy runqueue. | ||
1498 | */ | ||
1499 | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | ||
1500 | struct sched_domain *sd) | ||
1501 | { | ||
1502 | unsigned long load, min_load, this_load; | ||
1503 | int i, min_cpu; | ||
1504 | cpumask_t mask; | ||
1505 | |||
1506 | min_cpu = UINT_MAX; | ||
1507 | min_load = ULONG_MAX; | ||
1508 | |||
1509 | cpus_and(mask, sd->span, p->cpus_allowed); | ||
1510 | |||
1511 | for_each_cpu_mask(i, mask) { | ||
1512 | load = target_load(i); | ||
1513 | |||
1514 | if (load < min_load) { | ||
1515 | min_cpu = i; | ||
1516 | min_load = load; | ||
1517 | |||
1518 | /* break out early on an idle CPU: */ | ||
1519 | if (!min_load) | ||
1520 | break; | ||
1521 | } | ||
1522 | } | ||
1523 | |||
1524 | /* add +1 to account for the new task */ | ||
1525 | this_load = source_load(this_cpu) + SCHED_LOAD_SCALE; | ||
1526 | |||
1527 | /* | ||
1528 | * Would with the addition of the new task to the | ||
1529 | * current CPU there be an imbalance between this | ||
1530 | * CPU and the idlest CPU? | ||
1531 | * | ||
1532 | * Use half of the balancing threshold - new-context is | ||
1533 | * a good opportunity to balance. | ||
1534 | */ | ||
1535 | if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100) | ||
1536 | return min_cpu; | ||
1537 | |||
1538 | return this_cpu; | ||
1539 | } | ||
1540 | |||
1541 | /* | ||
1542 | * If dest_cpu is allowed for this process, migrate the task to it. | ||
1543 | * This is accomplished by forcing the cpu_allowed mask to only | ||
1544 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | ||
1545 | * the cpu_allowed mask is restored. | ||
1546 | */ | ||
1547 | static void sched_migrate_task(task_t *p, int dest_cpu) | ||
1548 | { | ||
1549 | migration_req_t req; | ||
1550 | runqueue_t *rq; | ||
1551 | unsigned long flags; | ||
1552 | |||
1553 | rq = task_rq_lock(p, &flags); | ||
1554 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | ||
1555 | || unlikely(cpu_is_offline(dest_cpu))) | ||
1556 | goto out; | ||
1557 | |||
1558 | /* force the process onto the specified CPU */ | ||
1559 | if (migrate_task(p, dest_cpu, &req)) { | ||
1560 | /* Need to wait for migration thread (might exit: take ref). */ | ||
1561 | struct task_struct *mt = rq->migration_thread; | ||
1562 | get_task_struct(mt); | ||
1563 | task_rq_unlock(rq, &flags); | ||
1564 | wake_up_process(mt); | ||
1565 | put_task_struct(mt); | ||
1566 | wait_for_completion(&req.done); | ||
1567 | return; | ||
1568 | } | ||
1569 | out: | ||
1570 | task_rq_unlock(rq, &flags); | ||
1571 | } | ||
1572 | |||
1573 | /* | ||
1574 | * sched_exec(): find the highest-level, exec-balance-capable | ||
1575 | * domain and try to migrate the task to the least loaded CPU. | ||
1576 | * | ||
1577 | * execve() is a valuable balancing opportunity, because at this point | ||
1578 | * the task has the smallest effective memory and cache footprint. | ||
1579 | */ | ||
1580 | void sched_exec(void) | ||
1581 | { | ||
1582 | struct sched_domain *tmp, *sd = NULL; | ||
1583 | int new_cpu, this_cpu = get_cpu(); | ||
1584 | |||
1585 | /* Prefer the current CPU if there's only this task running */ | ||
1586 | if (this_rq()->nr_running <= 1) | ||
1587 | goto out; | ||
1588 | |||
1589 | for_each_domain(this_cpu, tmp) | ||
1590 | if (tmp->flags & SD_BALANCE_EXEC) | ||
1591 | sd = tmp; | ||
1592 | |||
1593 | if (sd) { | ||
1594 | schedstat_inc(sd, sbe_attempts); | ||
1595 | new_cpu = find_idlest_cpu(current, this_cpu, sd); | ||
1596 | if (new_cpu != this_cpu) { | ||
1597 | schedstat_inc(sd, sbe_pushed); | ||
1598 | put_cpu(); | ||
1599 | sched_migrate_task(current, new_cpu); | ||
1600 | return; | ||
1601 | } | ||
1602 | } | ||
1603 | out: | ||
1604 | put_cpu(); | ||
1605 | } | ||
1606 | |||
1607 | /* | ||
1608 | * pull_task - move a task from a remote runqueue to the local runqueue. | ||
1609 | * Both runqueues must be locked. | ||
1610 | */ | ||
1611 | static inline | ||
1612 | void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, | ||
1613 | runqueue_t *this_rq, prio_array_t *this_array, int this_cpu) | ||
1614 | { | ||
1615 | dequeue_task(p, src_array); | ||
1616 | src_rq->nr_running--; | ||
1617 | set_task_cpu(p, this_cpu); | ||
1618 | this_rq->nr_running++; | ||
1619 | enqueue_task(p, this_array); | ||
1620 | p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) | ||
1621 | + this_rq->timestamp_last_tick; | ||
1622 | /* | ||
1623 | * Note that idle threads have a prio of MAX_PRIO, for this test | ||
1624 | * to be always true for them. | ||
1625 | */ | ||
1626 | if (TASK_PREEMPTS_CURR(p, this_rq)) | ||
1627 | resched_task(this_rq->curr); | ||
1628 | } | ||
1629 | |||
1630 | /* | ||
1631 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | ||
1632 | */ | ||
1633 | static inline | ||
1634 | int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | ||
1635 | struct sched_domain *sd, enum idle_type idle) | ||
1636 | { | ||
1637 | /* | ||
1638 | * We do not migrate tasks that are: | ||
1639 | * 1) running (obviously), or | ||
1640 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | ||
1641 | * 3) are cache-hot on their current CPU. | ||
1642 | */ | ||
1643 | if (task_running(rq, p)) | ||
1644 | return 0; | ||
1645 | if (!cpu_isset(this_cpu, p->cpus_allowed)) | ||
1646 | return 0; | ||
1647 | |||
1648 | /* | ||
1649 | * Aggressive migration if: | ||
1650 | * 1) the [whole] cpu is idle, or | ||
1651 | * 2) too many balance attempts have failed. | ||
1652 | */ | ||
1653 | |||
1654 | if (cpu_and_siblings_are_idle(this_cpu) || \ | ||
1655 | sd->nr_balance_failed > sd->cache_nice_tries) | ||
1656 | return 1; | ||
1657 | |||
1658 | if (task_hot(p, rq->timestamp_last_tick, sd)) | ||
1659 | return 0; | ||
1660 | return 1; | ||
1661 | } | ||
1662 | |||
1663 | /* | ||
1664 | * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq, | ||
1665 | * as part of a balancing operation within "domain". Returns the number of | ||
1666 | * tasks moved. | ||
1667 | * | ||
1668 | * Called with both runqueues locked. | ||
1669 | */ | ||
1670 | static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, | ||
1671 | unsigned long max_nr_move, struct sched_domain *sd, | ||
1672 | enum idle_type idle) | ||
1673 | { | ||
1674 | prio_array_t *array, *dst_array; | ||
1675 | struct list_head *head, *curr; | ||
1676 | int idx, pulled = 0; | ||
1677 | task_t *tmp; | ||
1678 | |||
1679 | if (max_nr_move <= 0 || busiest->nr_running <= 1) | ||
1680 | goto out; | ||
1681 | |||
1682 | /* | ||
1683 | * We first consider expired tasks. Those will likely not be | ||
1684 | * executed in the near future, and they are most likely to | ||
1685 | * be cache-cold, thus switching CPUs has the least effect | ||
1686 | * on them. | ||
1687 | */ | ||
1688 | if (busiest->expired->nr_active) { | ||
1689 | array = busiest->expired; | ||
1690 | dst_array = this_rq->expired; | ||
1691 | } else { | ||
1692 | array = busiest->active; | ||
1693 | dst_array = this_rq->active; | ||
1694 | } | ||
1695 | |||
1696 | new_array: | ||
1697 | /* Start searching at priority 0: */ | ||
1698 | idx = 0; | ||
1699 | skip_bitmap: | ||
1700 | if (!idx) | ||
1701 | idx = sched_find_first_bit(array->bitmap); | ||
1702 | else | ||
1703 | idx = find_next_bit(array->bitmap, MAX_PRIO, idx); | ||
1704 | if (idx >= MAX_PRIO) { | ||
1705 | if (array == busiest->expired && busiest->active->nr_active) { | ||
1706 | array = busiest->active; | ||
1707 | dst_array = this_rq->active; | ||
1708 | goto new_array; | ||
1709 | } | ||
1710 | goto out; | ||
1711 | } | ||
1712 | |||
1713 | head = array->queue + idx; | ||
1714 | curr = head->prev; | ||
1715 | skip_queue: | ||
1716 | tmp = list_entry(curr, task_t, run_list); | ||
1717 | |||
1718 | curr = curr->prev; | ||
1719 | |||
1720 | if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) { | ||
1721 | if (curr != head) | ||
1722 | goto skip_queue; | ||
1723 | idx++; | ||
1724 | goto skip_bitmap; | ||
1725 | } | ||
1726 | |||
1727 | #ifdef CONFIG_SCHEDSTATS | ||
1728 | if (task_hot(tmp, busiest->timestamp_last_tick, sd)) | ||
1729 | schedstat_inc(sd, lb_hot_gained[idle]); | ||
1730 | #endif | ||
1731 | |||
1732 | pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); | ||
1733 | pulled++; | ||
1734 | |||
1735 | /* We only want to steal up to the prescribed number of tasks. */ | ||
1736 | if (pulled < max_nr_move) { | ||
1737 | if (curr != head) | ||
1738 | goto skip_queue; | ||
1739 | idx++; | ||
1740 | goto skip_bitmap; | ||
1741 | } | ||
1742 | out: | ||
1743 | /* | ||
1744 | * Right now, this is the only place pull_task() is called, | ||
1745 | * so we can safely collect pull_task() stats here rather than | ||
1746 | * inside pull_task(). | ||
1747 | */ | ||
1748 | schedstat_add(sd, lb_gained[idle], pulled); | ||
1749 | return pulled; | ||
1750 | } | ||
1751 | |||
1752 | /* | ||
1753 | * find_busiest_group finds and returns the busiest CPU group within the | ||
1754 | * domain. It calculates and returns the number of tasks which should be | ||
1755 | * moved to restore balance via the imbalance parameter. | ||
1756 | */ | ||
1757 | static struct sched_group * | ||
1758 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
1759 | unsigned long *imbalance, enum idle_type idle) | ||
1760 | { | ||
1761 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | ||
1762 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | ||
1763 | |||
1764 | max_load = this_load = total_load = total_pwr = 0; | ||
1765 | |||
1766 | do { | ||
1767 | unsigned long load; | ||
1768 | int local_group; | ||
1769 | int i; | ||
1770 | |||
1771 | local_group = cpu_isset(this_cpu, group->cpumask); | ||
1772 | |||
1773 | /* Tally up the load of all CPUs in the group */ | ||
1774 | avg_load = 0; | ||
1775 | |||
1776 | for_each_cpu_mask(i, group->cpumask) { | ||
1777 | /* Bias balancing toward cpus of our domain */ | ||
1778 | if (local_group) | ||
1779 | load = target_load(i); | ||
1780 | else | ||
1781 | load = source_load(i); | ||
1782 | |||
1783 | avg_load += load; | ||
1784 | } | ||
1785 | |||
1786 | total_load += avg_load; | ||
1787 | total_pwr += group->cpu_power; | ||
1788 | |||
1789 | /* Adjust by relative CPU power of the group */ | ||
1790 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
1791 | |||
1792 | if (local_group) { | ||
1793 | this_load = avg_load; | ||
1794 | this = group; | ||
1795 | goto nextgroup; | ||
1796 | } else if (avg_load > max_load) { | ||
1797 | max_load = avg_load; | ||
1798 | busiest = group; | ||
1799 | } | ||
1800 | nextgroup: | ||
1801 | group = group->next; | ||
1802 | } while (group != sd->groups); | ||
1803 | |||
1804 | if (!busiest || this_load >= max_load) | ||
1805 | goto out_balanced; | ||
1806 | |||
1807 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | ||
1808 | |||
1809 | if (this_load >= avg_load || | ||
1810 | 100*max_load <= sd->imbalance_pct*this_load) | ||
1811 | goto out_balanced; | ||
1812 | |||
1813 | /* | ||
1814 | * We're trying to get all the cpus to the average_load, so we don't | ||
1815 | * want to push ourselves above the average load, nor do we wish to | ||
1816 | * reduce the max loaded cpu below the average load, as either of these | ||
1817 | * actions would just result in more rebalancing later, and ping-pong | ||
1818 | * tasks around. Thus we look for the minimum possible imbalance. | ||
1819 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
1820 | * be counted as no imbalance for these purposes -- we can't fix that | ||
1821 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
1822 | * appear as very large values with unsigned longs. | ||
1823 | */ | ||
1824 | /* How much load to actually move to equalise the imbalance */ | ||
1825 | *imbalance = min((max_load - avg_load) * busiest->cpu_power, | ||
1826 | (avg_load - this_load) * this->cpu_power) | ||
1827 | / SCHED_LOAD_SCALE; | ||
1828 | |||
1829 | if (*imbalance < SCHED_LOAD_SCALE) { | ||
1830 | unsigned long pwr_now = 0, pwr_move = 0; | ||
1831 | unsigned long tmp; | ||
1832 | |||
1833 | if (max_load - this_load >= SCHED_LOAD_SCALE*2) { | ||
1834 | *imbalance = 1; | ||
1835 | return busiest; | ||
1836 | } | ||
1837 | |||
1838 | /* | ||
1839 | * OK, we don't have enough imbalance to justify moving tasks, | ||
1840 | * however we may be able to increase total CPU power used by | ||
1841 | * moving them. | ||
1842 | */ | ||
1843 | |||
1844 | pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load); | ||
1845 | pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load); | ||
1846 | pwr_now /= SCHED_LOAD_SCALE; | ||
1847 | |||
1848 | /* Amount of load we'd subtract */ | ||
1849 | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power; | ||
1850 | if (max_load > tmp) | ||
1851 | pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE, | ||
1852 | max_load - tmp); | ||
1853 | |||
1854 | /* Amount of load we'd add */ | ||
1855 | if (max_load*busiest->cpu_power < | ||
1856 | SCHED_LOAD_SCALE*SCHED_LOAD_SCALE) | ||
1857 | tmp = max_load*busiest->cpu_power/this->cpu_power; | ||
1858 | else | ||
1859 | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power; | ||
1860 | pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp); | ||
1861 | pwr_move /= SCHED_LOAD_SCALE; | ||
1862 | |||
1863 | /* Move if we gain throughput */ | ||
1864 | if (pwr_move <= pwr_now) | ||
1865 | goto out_balanced; | ||
1866 | |||
1867 | *imbalance = 1; | ||
1868 | return busiest; | ||
1869 | } | ||
1870 | |||
1871 | /* Get rid of the scaling factor, rounding down as we divide */ | ||
1872 | *imbalance = *imbalance / SCHED_LOAD_SCALE; | ||
1873 | |||
1874 | return busiest; | ||
1875 | |||
1876 | out_balanced: | ||
1877 | if (busiest && (idle == NEWLY_IDLE || | ||
1878 | (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) { | ||
1879 | *imbalance = 1; | ||
1880 | return busiest; | ||
1881 | } | ||
1882 | |||
1883 | *imbalance = 0; | ||
1884 | return NULL; | ||
1885 | } | ||
1886 | |||
1887 | /* | ||
1888 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | ||
1889 | */ | ||
1890 | static runqueue_t *find_busiest_queue(struct sched_group *group) | ||
1891 | { | ||
1892 | unsigned long load, max_load = 0; | ||
1893 | runqueue_t *busiest = NULL; | ||
1894 | int i; | ||
1895 | |||
1896 | for_each_cpu_mask(i, group->cpumask) { | ||
1897 | load = source_load(i); | ||
1898 | |||
1899 | if (load > max_load) { | ||
1900 | max_load = load; | ||
1901 | busiest = cpu_rq(i); | ||
1902 | } | ||
1903 | } | ||
1904 | |||
1905 | return busiest; | ||
1906 | } | ||
1907 | |||
1908 | /* | ||
1909 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
1910 | * tasks if there is an imbalance. | ||
1911 | * | ||
1912 | * Called with this_rq unlocked. | ||
1913 | */ | ||
1914 | static int load_balance(int this_cpu, runqueue_t *this_rq, | ||
1915 | struct sched_domain *sd, enum idle_type idle) | ||
1916 | { | ||
1917 | struct sched_group *group; | ||
1918 | runqueue_t *busiest; | ||
1919 | unsigned long imbalance; | ||
1920 | int nr_moved; | ||
1921 | |||
1922 | spin_lock(&this_rq->lock); | ||
1923 | schedstat_inc(sd, lb_cnt[idle]); | ||
1924 | |||
1925 | group = find_busiest_group(sd, this_cpu, &imbalance, idle); | ||
1926 | if (!group) { | ||
1927 | schedstat_inc(sd, lb_nobusyg[idle]); | ||
1928 | goto out_balanced; | ||
1929 | } | ||
1930 | |||
1931 | busiest = find_busiest_queue(group); | ||
1932 | if (!busiest) { | ||
1933 | schedstat_inc(sd, lb_nobusyq[idle]); | ||
1934 | goto out_balanced; | ||
1935 | } | ||
1936 | |||
1937 | /* | ||
1938 | * This should be "impossible", but since load | ||
1939 | * balancing is inherently racy and statistical, | ||
1940 | * it could happen in theory. | ||
1941 | */ | ||
1942 | if (unlikely(busiest == this_rq)) { | ||
1943 | WARN_ON(1); | ||
1944 | goto out_balanced; | ||
1945 | } | ||
1946 | |||
1947 | schedstat_add(sd, lb_imbalance[idle], imbalance); | ||
1948 | |||
1949 | nr_moved = 0; | ||
1950 | if (busiest->nr_running > 1) { | ||
1951 | /* | ||
1952 | * Attempt to move tasks. If find_busiest_group has found | ||
1953 | * an imbalance but busiest->nr_running <= 1, the group is | ||
1954 | * still unbalanced. nr_moved simply stays zero, so it is | ||
1955 | * correctly treated as an imbalance. | ||
1956 | */ | ||
1957 | double_lock_balance(this_rq, busiest); | ||
1958 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | ||
1959 | imbalance, sd, idle); | ||
1960 | spin_unlock(&busiest->lock); | ||
1961 | } | ||
1962 | spin_unlock(&this_rq->lock); | ||
1963 | |||
1964 | if (!nr_moved) { | ||
1965 | schedstat_inc(sd, lb_failed[idle]); | ||
1966 | sd->nr_balance_failed++; | ||
1967 | |||
1968 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | ||
1969 | int wake = 0; | ||
1970 | |||
1971 | spin_lock(&busiest->lock); | ||
1972 | if (!busiest->active_balance) { | ||
1973 | busiest->active_balance = 1; | ||
1974 | busiest->push_cpu = this_cpu; | ||
1975 | wake = 1; | ||
1976 | } | ||
1977 | spin_unlock(&busiest->lock); | ||
1978 | if (wake) | ||
1979 | wake_up_process(busiest->migration_thread); | ||
1980 | |||
1981 | /* | ||
1982 | * We've kicked active balancing, reset the failure | ||
1983 | * counter. | ||
1984 | */ | ||
1985 | sd->nr_balance_failed = sd->cache_nice_tries; | ||
1986 | } | ||
1987 | |||
1988 | /* | ||
1989 | * We were unbalanced, but unsuccessful in move_tasks(), | ||
1990 | * so bump the balance_interval to lessen the lock contention. | ||
1991 | */ | ||
1992 | if (sd->balance_interval < sd->max_interval) | ||
1993 | sd->balance_interval++; | ||
1994 | } else { | ||
1995 | sd->nr_balance_failed = 0; | ||
1996 | |||
1997 | /* We were unbalanced, so reset the balancing interval */ | ||
1998 | sd->balance_interval = sd->min_interval; | ||
1999 | } | ||
2000 | |||
2001 | return nr_moved; | ||
2002 | |||
2003 | out_balanced: | ||
2004 | spin_unlock(&this_rq->lock); | ||
2005 | |||
2006 | schedstat_inc(sd, lb_balanced[idle]); | ||
2007 | |||
2008 | /* tune up the balancing interval */ | ||
2009 | if (sd->balance_interval < sd->max_interval) | ||
2010 | sd->balance_interval *= 2; | ||
2011 | |||
2012 | return 0; | ||
2013 | } | ||
2014 | |||
2015 | /* | ||
2016 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | ||
2017 | * tasks if there is an imbalance. | ||
2018 | * | ||
2019 | * Called from schedule when this_rq is about to become idle (NEWLY_IDLE). | ||
2020 | * this_rq is locked. | ||
2021 | */ | ||
2022 | static int load_balance_newidle(int this_cpu, runqueue_t *this_rq, | ||
2023 | struct sched_domain *sd) | ||
2024 | { | ||
2025 | struct sched_group *group; | ||
2026 | runqueue_t *busiest = NULL; | ||
2027 | unsigned long imbalance; | ||
2028 | int nr_moved = 0; | ||
2029 | |||
2030 | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | ||
2031 | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE); | ||
2032 | if (!group) { | ||
2033 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | ||
2034 | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); | ||
2035 | goto out; | ||
2036 | } | ||
2037 | |||
2038 | busiest = find_busiest_queue(group); | ||
2039 | if (!busiest || busiest == this_rq) { | ||
2040 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | ||
2041 | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); | ||
2042 | goto out; | ||
2043 | } | ||
2044 | |||
2045 | /* Attempt to move tasks */ | ||
2046 | double_lock_balance(this_rq, busiest); | ||
2047 | |||
2048 | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); | ||
2049 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | ||
2050 | imbalance, sd, NEWLY_IDLE); | ||
2051 | if (!nr_moved) | ||
2052 | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); | ||
2053 | |||
2054 | spin_unlock(&busiest->lock); | ||
2055 | |||
2056 | out: | ||
2057 | return nr_moved; | ||
2058 | } | ||
2059 | |||
2060 | /* | ||
2061 | * idle_balance is called by schedule() if this_cpu is about to become | ||
2062 | * idle. Attempts to pull tasks from other CPUs. | ||
2063 | */ | ||
2064 | static inline void idle_balance(int this_cpu, runqueue_t *this_rq) | ||
2065 | { | ||
2066 | struct sched_domain *sd; | ||
2067 | |||
2068 | for_each_domain(this_cpu, sd) { | ||
2069 | if (sd->flags & SD_BALANCE_NEWIDLE) { | ||
2070 | if (load_balance_newidle(this_cpu, this_rq, sd)) { | ||
2071 | /* We've pulled tasks over so stop searching */ | ||
2072 | break; | ||
2073 | } | ||
2074 | } | ||
2075 | } | ||
2076 | } | ||
2077 | |||
2078 | /* | ||
2079 | * active_load_balance is run by migration threads. It pushes running tasks | ||
2080 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | ||
2081 | * running on each physical CPU where possible, and avoids physical / | ||
2082 | * logical imbalances. | ||
2083 | * | ||
2084 | * Called with busiest_rq locked. | ||
2085 | */ | ||
2086 | static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu) | ||
2087 | { | ||
2088 | struct sched_domain *sd; | ||
2089 | struct sched_group *cpu_group; | ||
2090 | runqueue_t *target_rq; | ||
2091 | cpumask_t visited_cpus; | ||
2092 | int cpu; | ||
2093 | |||
2094 | /* | ||
2095 | * Search for suitable CPUs to push tasks to in successively higher | ||
2096 | * domains with SD_LOAD_BALANCE set. | ||
2097 | */ | ||
2098 | visited_cpus = CPU_MASK_NONE; | ||
2099 | for_each_domain(busiest_cpu, sd) { | ||
2100 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
2101 | /* no more domains to search */ | ||
2102 | break; | ||
2103 | |||
2104 | schedstat_inc(sd, alb_cnt); | ||
2105 | |||
2106 | cpu_group = sd->groups; | ||
2107 | do { | ||
2108 | for_each_cpu_mask(cpu, cpu_group->cpumask) { | ||
2109 | if (busiest_rq->nr_running <= 1) | ||
2110 | /* no more tasks left to move */ | ||
2111 | return; | ||
2112 | if (cpu_isset(cpu, visited_cpus)) | ||
2113 | continue; | ||
2114 | cpu_set(cpu, visited_cpus); | ||
2115 | if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu) | ||
2116 | continue; | ||
2117 | |||
2118 | target_rq = cpu_rq(cpu); | ||
2119 | /* | ||
2120 | * This condition is "impossible", if it occurs | ||
2121 | * we need to fix it. Originally reported by | ||
2122 | * Bjorn Helgaas on a 128-cpu setup. | ||
2123 | */ | ||
2124 | BUG_ON(busiest_rq == target_rq); | ||
2125 | |||
2126 | /* move a task from busiest_rq to target_rq */ | ||
2127 | double_lock_balance(busiest_rq, target_rq); | ||
2128 | if (move_tasks(target_rq, cpu, busiest_rq, | ||
2129 | 1, sd, SCHED_IDLE)) { | ||
2130 | schedstat_inc(sd, alb_pushed); | ||
2131 | } else { | ||
2132 | schedstat_inc(sd, alb_failed); | ||
2133 | } | ||
2134 | spin_unlock(&target_rq->lock); | ||
2135 | } | ||
2136 | cpu_group = cpu_group->next; | ||
2137 | } while (cpu_group != sd->groups); | ||
2138 | } | ||
2139 | } | ||
2140 | |||
2141 | /* | ||
2142 | * rebalance_tick will get called every timer tick, on every CPU. | ||
2143 | * | ||
2144 | * It checks each scheduling domain to see if it is due to be balanced, | ||
2145 | * and initiates a balancing operation if so. | ||
2146 | * | ||
2147 | * Balancing parameters are set up in arch_init_sched_domains. | ||
2148 | */ | ||
2149 | |||
2150 | /* Don't have all balancing operations going off at once */ | ||
2151 | #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS) | ||
2152 | |||
2153 | static void rebalance_tick(int this_cpu, runqueue_t *this_rq, | ||
2154 | enum idle_type idle) | ||
2155 | { | ||
2156 | unsigned long old_load, this_load; | ||
2157 | unsigned long j = jiffies + CPU_OFFSET(this_cpu); | ||
2158 | struct sched_domain *sd; | ||
2159 | |||
2160 | /* Update our load */ | ||
2161 | old_load = this_rq->cpu_load; | ||
2162 | this_load = this_rq->nr_running * SCHED_LOAD_SCALE; | ||
2163 | /* | ||
2164 | * Round up the averaging division if load is increasing. This | ||
2165 | * prevents us from getting stuck on 9 if the load is 10, for | ||
2166 | * example. | ||
2167 | */ | ||
2168 | if (this_load > old_load) | ||
2169 | old_load++; | ||
2170 | this_rq->cpu_load = (old_load + this_load) / 2; | ||
2171 | |||
2172 | for_each_domain(this_cpu, sd) { | ||
2173 | unsigned long interval; | ||
2174 | |||
2175 | if (!(sd->flags & SD_LOAD_BALANCE)) | ||
2176 | continue; | ||
2177 | |||
2178 | interval = sd->balance_interval; | ||
2179 | if (idle != SCHED_IDLE) | ||
2180 | interval *= sd->busy_factor; | ||
2181 | |||
2182 | /* scale ms to jiffies */ | ||
2183 | interval = msecs_to_jiffies(interval); | ||
2184 | if (unlikely(!interval)) | ||
2185 | interval = 1; | ||
2186 | |||
2187 | if (j - sd->last_balance >= interval) { | ||
2188 | if (load_balance(this_cpu, this_rq, sd, idle)) { | ||
2189 | /* We've pulled tasks over so no longer idle */ | ||
2190 | idle = NOT_IDLE; | ||
2191 | } | ||
2192 | sd->last_balance += interval; | ||
2193 | } | ||
2194 | } | ||
2195 | } | ||
2196 | #else | ||
2197 | /* | ||
2198 | * on UP we do not need to balance between CPUs: | ||
2199 | */ | ||
2200 | static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle) | ||
2201 | { | ||
2202 | } | ||
2203 | static inline void idle_balance(int cpu, runqueue_t *rq) | ||
2204 | { | ||
2205 | } | ||
2206 | #endif | ||
2207 | |||
2208 | static inline int wake_priority_sleeper(runqueue_t *rq) | ||
2209 | { | ||
2210 | int ret = 0; | ||
2211 | #ifdef CONFIG_SCHED_SMT | ||
2212 | spin_lock(&rq->lock); | ||
2213 | /* | ||
2214 | * If an SMT sibling task has been put to sleep for priority | ||
2215 | * reasons reschedule the idle task to see if it can now run. | ||
2216 | */ | ||
2217 | if (rq->nr_running) { | ||
2218 | resched_task(rq->idle); | ||
2219 | ret = 1; | ||
2220 | } | ||
2221 | spin_unlock(&rq->lock); | ||
2222 | #endif | ||
2223 | return ret; | ||
2224 | } | ||
2225 | |||
2226 | DEFINE_PER_CPU(struct kernel_stat, kstat); | ||
2227 | |||
2228 | EXPORT_PER_CPU_SYMBOL(kstat); | ||
2229 | |||
2230 | /* | ||
2231 | * This is called on clock ticks and on context switches. | ||
2232 | * Bank in p->sched_time the ns elapsed since the last tick or switch. | ||
2233 | */ | ||
2234 | static inline void update_cpu_clock(task_t *p, runqueue_t *rq, | ||
2235 | unsigned long long now) | ||
2236 | { | ||
2237 | unsigned long long last = max(p->timestamp, rq->timestamp_last_tick); | ||
2238 | p->sched_time += now - last; | ||
2239 | } | ||
2240 | |||
2241 | /* | ||
2242 | * Return current->sched_time plus any more ns on the sched_clock | ||
2243 | * that have not yet been banked. | ||
2244 | */ | ||
2245 | unsigned long long current_sched_time(const task_t *tsk) | ||
2246 | { | ||
2247 | unsigned long long ns; | ||
2248 | unsigned long flags; | ||
2249 | local_irq_save(flags); | ||
2250 | ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick); | ||
2251 | ns = tsk->sched_time + (sched_clock() - ns); | ||
2252 | local_irq_restore(flags); | ||
2253 | return ns; | ||
2254 | } | ||
2255 | |||
2256 | /* | ||
2257 | * We place interactive tasks back into the active array, if possible. | ||
2258 | * | ||
2259 | * To guarantee that this does not starve expired tasks we ignore the | ||
2260 | * interactivity of a task if the first expired task had to wait more | ||
2261 | * than a 'reasonable' amount of time. This deadline timeout is | ||
2262 | * load-dependent, as the frequency of array switched decreases with | ||
2263 | * increasing number of running tasks. We also ignore the interactivity | ||
2264 | * if a better static_prio task has expired: | ||
2265 | */ | ||
2266 | #define EXPIRED_STARVING(rq) \ | ||
2267 | ((STARVATION_LIMIT && ((rq)->expired_timestamp && \ | ||
2268 | (jiffies - (rq)->expired_timestamp >= \ | ||
2269 | STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \ | ||
2270 | ((rq)->curr->static_prio > (rq)->best_expired_prio)) | ||
2271 | |||
2272 | /* | ||
2273 | * Account user cpu time to a process. | ||
2274 | * @p: the process that the cpu time gets accounted to | ||
2275 | * @hardirq_offset: the offset to subtract from hardirq_count() | ||
2276 | * @cputime: the cpu time spent in user space since the last update | ||
2277 | */ | ||
2278 | void account_user_time(struct task_struct *p, cputime_t cputime) | ||
2279 | { | ||
2280 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2281 | cputime64_t tmp; | ||
2282 | |||
2283 | p->utime = cputime_add(p->utime, cputime); | ||
2284 | |||
2285 | /* Add user time to cpustat. */ | ||
2286 | tmp = cputime_to_cputime64(cputime); | ||
2287 | if (TASK_NICE(p) > 0) | ||
2288 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | ||
2289 | else | ||
2290 | cpustat->user = cputime64_add(cpustat->user, tmp); | ||
2291 | } | ||
2292 | |||
2293 | /* | ||
2294 | * Account system cpu time to a process. | ||
2295 | * @p: the process that the cpu time gets accounted to | ||
2296 | * @hardirq_offset: the offset to subtract from hardirq_count() | ||
2297 | * @cputime: the cpu time spent in kernel space since the last update | ||
2298 | */ | ||
2299 | void account_system_time(struct task_struct *p, int hardirq_offset, | ||
2300 | cputime_t cputime) | ||
2301 | { | ||
2302 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2303 | runqueue_t *rq = this_rq(); | ||
2304 | cputime64_t tmp; | ||
2305 | |||
2306 | p->stime = cputime_add(p->stime, cputime); | ||
2307 | |||
2308 | /* Add system time to cpustat. */ | ||
2309 | tmp = cputime_to_cputime64(cputime); | ||
2310 | if (hardirq_count() - hardirq_offset) | ||
2311 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | ||
2312 | else if (softirq_count()) | ||
2313 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | ||
2314 | else if (p != rq->idle) | ||
2315 | cpustat->system = cputime64_add(cpustat->system, tmp); | ||
2316 | else if (atomic_read(&rq->nr_iowait) > 0) | ||
2317 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | ||
2318 | else | ||
2319 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | ||
2320 | /* Account for system time used */ | ||
2321 | acct_update_integrals(p); | ||
2322 | /* Update rss highwater mark */ | ||
2323 | update_mem_hiwater(p); | ||
2324 | } | ||
2325 | |||
2326 | /* | ||
2327 | * Account for involuntary wait time. | ||
2328 | * @p: the process from which the cpu time has been stolen | ||
2329 | * @steal: the cpu time spent in involuntary wait | ||
2330 | */ | ||
2331 | void account_steal_time(struct task_struct *p, cputime_t steal) | ||
2332 | { | ||
2333 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | ||
2334 | cputime64_t tmp = cputime_to_cputime64(steal); | ||
2335 | runqueue_t *rq = this_rq(); | ||
2336 | |||
2337 | if (p == rq->idle) { | ||
2338 | p->stime = cputime_add(p->stime, steal); | ||
2339 | if (atomic_read(&rq->nr_iowait) > 0) | ||
2340 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | ||
2341 | else | ||
2342 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | ||
2343 | } else | ||
2344 | cpustat->steal = cputime64_add(cpustat->steal, tmp); | ||
2345 | } | ||
2346 | |||
2347 | /* | ||
2348 | * This function gets called by the timer code, with HZ frequency. | ||
2349 | * We call it with interrupts disabled. | ||
2350 | * | ||
2351 | * It also gets called by the fork code, when changing the parent's | ||
2352 | * timeslices. | ||
2353 | */ | ||
2354 | void scheduler_tick(void) | ||
2355 | { | ||
2356 | int cpu = smp_processor_id(); | ||
2357 | runqueue_t *rq = this_rq(); | ||
2358 | task_t *p = current; | ||
2359 | unsigned long long now = sched_clock(); | ||
2360 | |||
2361 | update_cpu_clock(p, rq, now); | ||
2362 | |||
2363 | rq->timestamp_last_tick = now; | ||
2364 | |||
2365 | if (p == rq->idle) { | ||
2366 | if (wake_priority_sleeper(rq)) | ||
2367 | goto out; | ||
2368 | rebalance_tick(cpu, rq, SCHED_IDLE); | ||
2369 | return; | ||
2370 | } | ||
2371 | |||
2372 | /* Task might have expired already, but not scheduled off yet */ | ||
2373 | if (p->array != rq->active) { | ||
2374 | set_tsk_need_resched(p); | ||
2375 | goto out; | ||
2376 | } | ||
2377 | spin_lock(&rq->lock); | ||
2378 | /* | ||
2379 | * The task was running during this tick - update the | ||
2380 | * time slice counter. Note: we do not update a thread's | ||
2381 | * priority until it either goes to sleep or uses up its | ||
2382 | * timeslice. This makes it possible for interactive tasks | ||
2383 | * to use up their timeslices at their highest priority levels. | ||
2384 | */ | ||
2385 | if (rt_task(p)) { | ||
2386 | /* | ||
2387 | * RR tasks need a special form of timeslice management. | ||
2388 | * FIFO tasks have no timeslices. | ||
2389 | */ | ||
2390 | if ((p->policy == SCHED_RR) && !--p->time_slice) { | ||
2391 | p->time_slice = task_timeslice(p); | ||
2392 | p->first_time_slice = 0; | ||
2393 | set_tsk_need_resched(p); | ||
2394 | |||
2395 | /* put it at the end of the queue: */ | ||
2396 | requeue_task(p, rq->active); | ||
2397 | } | ||
2398 | goto out_unlock; | ||
2399 | } | ||
2400 | if (!--p->time_slice) { | ||
2401 | dequeue_task(p, rq->active); | ||
2402 | set_tsk_need_resched(p); | ||
2403 | p->prio = effective_prio(p); | ||
2404 | p->time_slice = task_timeslice(p); | ||
2405 | p->first_time_slice = 0; | ||
2406 | |||
2407 | if (!rq->expired_timestamp) | ||
2408 | rq->expired_timestamp = jiffies; | ||
2409 | if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) { | ||
2410 | enqueue_task(p, rq->expired); | ||
2411 | if (p->static_prio < rq->best_expired_prio) | ||
2412 | rq->best_expired_prio = p->static_prio; | ||
2413 | } else | ||
2414 | enqueue_task(p, rq->active); | ||
2415 | } else { | ||
2416 | /* | ||
2417 | * Prevent a too long timeslice allowing a task to monopolize | ||
2418 | * the CPU. We do this by splitting up the timeslice into | ||
2419 | * smaller pieces. | ||
2420 | * | ||
2421 | * Note: this does not mean the task's timeslices expire or | ||
2422 | * get lost in any way, they just might be preempted by | ||
2423 | * another task of equal priority. (one with higher | ||
2424 | * priority would have preempted this task already.) We | ||
2425 | * requeue this task to the end of the list on this priority | ||
2426 | * level, which is in essence a round-robin of tasks with | ||
2427 | * equal priority. | ||
2428 | * | ||
2429 | * This only applies to tasks in the interactive | ||
2430 | * delta range with at least TIMESLICE_GRANULARITY to requeue. | ||
2431 | */ | ||
2432 | if (TASK_INTERACTIVE(p) && !((task_timeslice(p) - | ||
2433 | p->time_slice) % TIMESLICE_GRANULARITY(p)) && | ||
2434 | (p->time_slice >= TIMESLICE_GRANULARITY(p)) && | ||
2435 | (p->array == rq->active)) { | ||
2436 | |||
2437 | requeue_task(p, rq->active); | ||
2438 | set_tsk_need_resched(p); | ||
2439 | } | ||
2440 | } | ||
2441 | out_unlock: | ||
2442 | spin_unlock(&rq->lock); | ||
2443 | out: | ||
2444 | rebalance_tick(cpu, rq, NOT_IDLE); | ||
2445 | } | ||
2446 | |||
2447 | #ifdef CONFIG_SCHED_SMT | ||
2448 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | ||
2449 | { | ||
2450 | struct sched_domain *sd = this_rq->sd; | ||
2451 | cpumask_t sibling_map; | ||
2452 | int i; | ||
2453 | |||
2454 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | ||
2455 | return; | ||
2456 | |||
2457 | /* | ||
2458 | * Unlock the current runqueue because we have to lock in | ||
2459 | * CPU order to avoid deadlocks. Caller knows that we might | ||
2460 | * unlock. We keep IRQs disabled. | ||
2461 | */ | ||
2462 | spin_unlock(&this_rq->lock); | ||
2463 | |||
2464 | sibling_map = sd->span; | ||
2465 | |||
2466 | for_each_cpu_mask(i, sibling_map) | ||
2467 | spin_lock(&cpu_rq(i)->lock); | ||
2468 | /* | ||
2469 | * We clear this CPU from the mask. This both simplifies the | ||
2470 | * inner loop and keps this_rq locked when we exit: | ||
2471 | */ | ||
2472 | cpu_clear(this_cpu, sibling_map); | ||
2473 | |||
2474 | for_each_cpu_mask(i, sibling_map) { | ||
2475 | runqueue_t *smt_rq = cpu_rq(i); | ||
2476 | |||
2477 | /* | ||
2478 | * If an SMT sibling task is sleeping due to priority | ||
2479 | * reasons wake it up now. | ||
2480 | */ | ||
2481 | if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running) | ||
2482 | resched_task(smt_rq->idle); | ||
2483 | } | ||
2484 | |||
2485 | for_each_cpu_mask(i, sibling_map) | ||
2486 | spin_unlock(&cpu_rq(i)->lock); | ||
2487 | /* | ||
2488 | * We exit with this_cpu's rq still held and IRQs | ||
2489 | * still disabled: | ||
2490 | */ | ||
2491 | } | ||
2492 | |||
2493 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | ||
2494 | { | ||
2495 | struct sched_domain *sd = this_rq->sd; | ||
2496 | cpumask_t sibling_map; | ||
2497 | prio_array_t *array; | ||
2498 | int ret = 0, i; | ||
2499 | task_t *p; | ||
2500 | |||
2501 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | ||
2502 | return 0; | ||
2503 | |||
2504 | /* | ||
2505 | * The same locking rules and details apply as for | ||
2506 | * wake_sleeping_dependent(): | ||
2507 | */ | ||
2508 | spin_unlock(&this_rq->lock); | ||
2509 | sibling_map = sd->span; | ||
2510 | for_each_cpu_mask(i, sibling_map) | ||
2511 | spin_lock(&cpu_rq(i)->lock); | ||
2512 | cpu_clear(this_cpu, sibling_map); | ||
2513 | |||
2514 | /* | ||
2515 | * Establish next task to be run - it might have gone away because | ||
2516 | * we released the runqueue lock above: | ||
2517 | */ | ||
2518 | if (!this_rq->nr_running) | ||
2519 | goto out_unlock; | ||
2520 | array = this_rq->active; | ||
2521 | if (!array->nr_active) | ||
2522 | array = this_rq->expired; | ||
2523 | BUG_ON(!array->nr_active); | ||
2524 | |||
2525 | p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next, | ||
2526 | task_t, run_list); | ||
2527 | |||
2528 | for_each_cpu_mask(i, sibling_map) { | ||
2529 | runqueue_t *smt_rq = cpu_rq(i); | ||
2530 | task_t *smt_curr = smt_rq->curr; | ||
2531 | |||
2532 | /* | ||
2533 | * If a user task with lower static priority than the | ||
2534 | * running task on the SMT sibling is trying to schedule, | ||
2535 | * delay it till there is proportionately less timeslice | ||
2536 | * left of the sibling task to prevent a lower priority | ||
2537 | * task from using an unfair proportion of the | ||
2538 | * physical cpu's resources. -ck | ||
2539 | */ | ||
2540 | if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) > | ||
2541 | task_timeslice(p) || rt_task(smt_curr)) && | ||
2542 | p->mm && smt_curr->mm && !rt_task(p)) | ||
2543 | ret = 1; | ||
2544 | |||
2545 | /* | ||
2546 | * Reschedule a lower priority task on the SMT sibling, | ||
2547 | * or wake it up if it has been put to sleep for priority | ||
2548 | * reasons. | ||
2549 | */ | ||
2550 | if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) > | ||
2551 | task_timeslice(smt_curr) || rt_task(p)) && | ||
2552 | smt_curr->mm && p->mm && !rt_task(smt_curr)) || | ||
2553 | (smt_curr == smt_rq->idle && smt_rq->nr_running)) | ||
2554 | resched_task(smt_curr); | ||
2555 | } | ||
2556 | out_unlock: | ||
2557 | for_each_cpu_mask(i, sibling_map) | ||
2558 | spin_unlock(&cpu_rq(i)->lock); | ||
2559 | return ret; | ||
2560 | } | ||
2561 | #else | ||
2562 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | ||
2563 | { | ||
2564 | } | ||
2565 | |||
2566 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | ||
2567 | { | ||
2568 | return 0; | ||
2569 | } | ||
2570 | #endif | ||
2571 | |||
2572 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | ||
2573 | |||
2574 | void fastcall add_preempt_count(int val) | ||
2575 | { | ||
2576 | /* | ||
2577 | * Underflow? | ||
2578 | */ | ||
2579 | BUG_ON(((int)preempt_count() < 0)); | ||
2580 | preempt_count() += val; | ||
2581 | /* | ||
2582 | * Spinlock count overflowing soon? | ||
2583 | */ | ||
2584 | BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10); | ||
2585 | } | ||
2586 | EXPORT_SYMBOL(add_preempt_count); | ||
2587 | |||
2588 | void fastcall sub_preempt_count(int val) | ||
2589 | { | ||
2590 | /* | ||
2591 | * Underflow? | ||
2592 | */ | ||
2593 | BUG_ON(val > preempt_count()); | ||
2594 | /* | ||
2595 | * Is the spinlock portion underflowing? | ||
2596 | */ | ||
2597 | BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK)); | ||
2598 | preempt_count() -= val; | ||
2599 | } | ||
2600 | EXPORT_SYMBOL(sub_preempt_count); | ||
2601 | |||
2602 | #endif | ||
2603 | |||
2604 | /* | ||
2605 | * schedule() is the main scheduler function. | ||
2606 | */ | ||
2607 | asmlinkage void __sched schedule(void) | ||
2608 | { | ||
2609 | long *switch_count; | ||
2610 | task_t *prev, *next; | ||
2611 | runqueue_t *rq; | ||
2612 | prio_array_t *array; | ||
2613 | struct list_head *queue; | ||
2614 | unsigned long long now; | ||
2615 | unsigned long run_time; | ||
2616 | int cpu, idx; | ||
2617 | |||
2618 | /* | ||
2619 | * Test if we are atomic. Since do_exit() needs to call into | ||
2620 | * schedule() atomically, we ignore that path for now. | ||
2621 | * Otherwise, whine if we are scheduling when we should not be. | ||
2622 | */ | ||
2623 | if (likely(!current->exit_state)) { | ||
2624 | if (unlikely(in_atomic())) { | ||
2625 | printk(KERN_ERR "scheduling while atomic: " | ||
2626 | "%s/0x%08x/%d\n", | ||
2627 | current->comm, preempt_count(), current->pid); | ||
2628 | dump_stack(); | ||
2629 | } | ||
2630 | } | ||
2631 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | ||
2632 | |||
2633 | need_resched: | ||
2634 | preempt_disable(); | ||
2635 | prev = current; | ||
2636 | release_kernel_lock(prev); | ||
2637 | need_resched_nonpreemptible: | ||
2638 | rq = this_rq(); | ||
2639 | |||
2640 | /* | ||
2641 | * The idle thread is not allowed to schedule! | ||
2642 | * Remove this check after it has been exercised a bit. | ||
2643 | */ | ||
2644 | if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) { | ||
2645 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | ||
2646 | dump_stack(); | ||
2647 | } | ||
2648 | |||
2649 | schedstat_inc(rq, sched_cnt); | ||
2650 | now = sched_clock(); | ||
2651 | if (likely((long long)now - prev->timestamp < NS_MAX_SLEEP_AVG)) { | ||
2652 | run_time = now - prev->timestamp; | ||
2653 | if (unlikely((long long)now - prev->timestamp < 0)) | ||
2654 | run_time = 0; | ||
2655 | } else | ||
2656 | run_time = NS_MAX_SLEEP_AVG; | ||
2657 | |||
2658 | /* | ||
2659 | * Tasks charged proportionately less run_time at high sleep_avg to | ||
2660 | * delay them losing their interactive status | ||
2661 | */ | ||
2662 | run_time /= (CURRENT_BONUS(prev) ? : 1); | ||
2663 | |||
2664 | spin_lock_irq(&rq->lock); | ||
2665 | |||
2666 | if (unlikely(prev->flags & PF_DEAD)) | ||
2667 | prev->state = EXIT_DEAD; | ||
2668 | |||
2669 | switch_count = &prev->nivcsw; | ||
2670 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | ||
2671 | switch_count = &prev->nvcsw; | ||
2672 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | ||
2673 | unlikely(signal_pending(prev)))) | ||
2674 | prev->state = TASK_RUNNING; | ||
2675 | else { | ||
2676 | if (prev->state == TASK_UNINTERRUPTIBLE) | ||
2677 | rq->nr_uninterruptible++; | ||
2678 | deactivate_task(prev, rq); | ||
2679 | } | ||
2680 | } | ||
2681 | |||
2682 | cpu = smp_processor_id(); | ||
2683 | if (unlikely(!rq->nr_running)) { | ||
2684 | go_idle: | ||
2685 | idle_balance(cpu, rq); | ||
2686 | if (!rq->nr_running) { | ||
2687 | next = rq->idle; | ||
2688 | rq->expired_timestamp = 0; | ||
2689 | wake_sleeping_dependent(cpu, rq); | ||
2690 | /* | ||
2691 | * wake_sleeping_dependent() might have released | ||
2692 | * the runqueue, so break out if we got new | ||
2693 | * tasks meanwhile: | ||
2694 | */ | ||
2695 | if (!rq->nr_running) | ||
2696 | goto switch_tasks; | ||
2697 | } | ||
2698 | } else { | ||
2699 | if (dependent_sleeper(cpu, rq)) { | ||
2700 | next = rq->idle; | ||
2701 | goto switch_tasks; | ||
2702 | } | ||
2703 | /* | ||
2704 | * dependent_sleeper() releases and reacquires the runqueue | ||
2705 | * lock, hence go into the idle loop if the rq went | ||
2706 | * empty meanwhile: | ||
2707 | */ | ||
2708 | if (unlikely(!rq->nr_running)) | ||
2709 | goto go_idle; | ||
2710 | } | ||
2711 | |||
2712 | array = rq->active; | ||
2713 | if (unlikely(!array->nr_active)) { | ||
2714 | /* | ||
2715 | * Switch the active and expired arrays. | ||
2716 | */ | ||
2717 | schedstat_inc(rq, sched_switch); | ||
2718 | rq->active = rq->expired; | ||
2719 | rq->expired = array; | ||
2720 | array = rq->active; | ||
2721 | rq->expired_timestamp = 0; | ||
2722 | rq->best_expired_prio = MAX_PRIO; | ||
2723 | } | ||
2724 | |||
2725 | idx = sched_find_first_bit(array->bitmap); | ||
2726 | queue = array->queue + idx; | ||
2727 | next = list_entry(queue->next, task_t, run_list); | ||
2728 | |||
2729 | if (!rt_task(next) && next->activated > 0) { | ||
2730 | unsigned long long delta = now - next->timestamp; | ||
2731 | if (unlikely((long long)now - next->timestamp < 0)) | ||
2732 | delta = 0; | ||
2733 | |||
2734 | if (next->activated == 1) | ||
2735 | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; | ||
2736 | |||
2737 | array = next->array; | ||
2738 | dequeue_task(next, array); | ||
2739 | recalc_task_prio(next, next->timestamp + delta); | ||
2740 | enqueue_task(next, array); | ||
2741 | } | ||
2742 | next->activated = 0; | ||
2743 | switch_tasks: | ||
2744 | if (next == rq->idle) | ||
2745 | schedstat_inc(rq, sched_goidle); | ||
2746 | prefetch(next); | ||
2747 | clear_tsk_need_resched(prev); | ||
2748 | rcu_qsctr_inc(task_cpu(prev)); | ||
2749 | |||
2750 | update_cpu_clock(prev, rq, now); | ||
2751 | |||
2752 | prev->sleep_avg -= run_time; | ||
2753 | if ((long)prev->sleep_avg <= 0) | ||
2754 | prev->sleep_avg = 0; | ||
2755 | prev->timestamp = prev->last_ran = now; | ||
2756 | |||
2757 | sched_info_switch(prev, next); | ||
2758 | if (likely(prev != next)) { | ||
2759 | next->timestamp = now; | ||
2760 | rq->nr_switches++; | ||
2761 | rq->curr = next; | ||
2762 | ++*switch_count; | ||
2763 | |||
2764 | prepare_arch_switch(rq, next); | ||
2765 | prev = context_switch(rq, prev, next); | ||
2766 | barrier(); | ||
2767 | |||
2768 | finish_task_switch(prev); | ||
2769 | } else | ||
2770 | spin_unlock_irq(&rq->lock); | ||
2771 | |||
2772 | prev = current; | ||
2773 | if (unlikely(reacquire_kernel_lock(prev) < 0)) | ||
2774 | goto need_resched_nonpreemptible; | ||
2775 | preempt_enable_no_resched(); | ||
2776 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | ||
2777 | goto need_resched; | ||
2778 | } | ||
2779 | |||
2780 | EXPORT_SYMBOL(schedule); | ||
2781 | |||
2782 | #ifdef CONFIG_PREEMPT | ||
2783 | /* | ||
2784 | * this is is the entry point to schedule() from in-kernel preemption | ||
2785 | * off of preempt_enable. Kernel preemptions off return from interrupt | ||
2786 | * occur there and call schedule directly. | ||
2787 | */ | ||
2788 | asmlinkage void __sched preempt_schedule(void) | ||
2789 | { | ||
2790 | struct thread_info *ti = current_thread_info(); | ||
2791 | #ifdef CONFIG_PREEMPT_BKL | ||
2792 | struct task_struct *task = current; | ||
2793 | int saved_lock_depth; | ||
2794 | #endif | ||
2795 | /* | ||
2796 | * If there is a non-zero preempt_count or interrupts are disabled, | ||
2797 | * we do not want to preempt the current task. Just return.. | ||
2798 | */ | ||
2799 | if (unlikely(ti->preempt_count || irqs_disabled())) | ||
2800 | return; | ||
2801 | |||
2802 | need_resched: | ||
2803 | add_preempt_count(PREEMPT_ACTIVE); | ||
2804 | /* | ||
2805 | * We keep the big kernel semaphore locked, but we | ||
2806 | * clear ->lock_depth so that schedule() doesnt | ||
2807 | * auto-release the semaphore: | ||
2808 | */ | ||
2809 | #ifdef CONFIG_PREEMPT_BKL | ||
2810 | saved_lock_depth = task->lock_depth; | ||
2811 | task->lock_depth = -1; | ||
2812 | #endif | ||
2813 | schedule(); | ||
2814 | #ifdef CONFIG_PREEMPT_BKL | ||
2815 | task->lock_depth = saved_lock_depth; | ||
2816 | #endif | ||
2817 | sub_preempt_count(PREEMPT_ACTIVE); | ||
2818 | |||
2819 | /* we could miss a preemption opportunity between schedule and now */ | ||
2820 | barrier(); | ||
2821 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | ||
2822 | goto need_resched; | ||
2823 | } | ||
2824 | |||
2825 | EXPORT_SYMBOL(preempt_schedule); | ||
2826 | |||
2827 | /* | ||
2828 | * this is is the entry point to schedule() from kernel preemption | ||
2829 | * off of irq context. | ||
2830 | * Note, that this is called and return with irqs disabled. This will | ||
2831 | * protect us against recursive calling from irq. | ||
2832 | */ | ||
2833 | asmlinkage void __sched preempt_schedule_irq(void) | ||
2834 | { | ||
2835 | struct thread_info *ti = current_thread_info(); | ||
2836 | #ifdef CONFIG_PREEMPT_BKL | ||
2837 | struct task_struct *task = current; | ||
2838 | int saved_lock_depth; | ||
2839 | #endif | ||
2840 | /* Catch callers which need to be fixed*/ | ||
2841 | BUG_ON(ti->preempt_count || !irqs_disabled()); | ||
2842 | |||
2843 | need_resched: | ||
2844 | add_preempt_count(PREEMPT_ACTIVE); | ||
2845 | /* | ||
2846 | * We keep the big kernel semaphore locked, but we | ||
2847 | * clear ->lock_depth so that schedule() doesnt | ||
2848 | * auto-release the semaphore: | ||
2849 | */ | ||
2850 | #ifdef CONFIG_PREEMPT_BKL | ||
2851 | saved_lock_depth = task->lock_depth; | ||
2852 | task->lock_depth = -1; | ||
2853 | #endif | ||
2854 | local_irq_enable(); | ||
2855 | schedule(); | ||
2856 | local_irq_disable(); | ||
2857 | #ifdef CONFIG_PREEMPT_BKL | ||
2858 | task->lock_depth = saved_lock_depth; | ||
2859 | #endif | ||
2860 | sub_preempt_count(PREEMPT_ACTIVE); | ||
2861 | |||
2862 | /* we could miss a preemption opportunity between schedule and now */ | ||
2863 | barrier(); | ||
2864 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | ||
2865 | goto need_resched; | ||
2866 | } | ||
2867 | |||
2868 | #endif /* CONFIG_PREEMPT */ | ||
2869 | |||
2870 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key) | ||
2871 | { | ||
2872 | task_t *p = curr->task; | ||
2873 | return try_to_wake_up(p, mode, sync); | ||
2874 | } | ||
2875 | |||
2876 | EXPORT_SYMBOL(default_wake_function); | ||
2877 | |||
2878 | /* | ||
2879 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | ||
2880 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | ||
2881 | * number) then we wake all the non-exclusive tasks and one exclusive task. | ||
2882 | * | ||
2883 | * There are circumstances in which we can try to wake a task which has already | ||
2884 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | ||
2885 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | ||
2886 | */ | ||
2887 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | ||
2888 | int nr_exclusive, int sync, void *key) | ||
2889 | { | ||
2890 | struct list_head *tmp, *next; | ||
2891 | |||
2892 | list_for_each_safe(tmp, next, &q->task_list) { | ||
2893 | wait_queue_t *curr; | ||
2894 | unsigned flags; | ||
2895 | curr = list_entry(tmp, wait_queue_t, task_list); | ||
2896 | flags = curr->flags; | ||
2897 | if (curr->func(curr, mode, sync, key) && | ||
2898 | (flags & WQ_FLAG_EXCLUSIVE) && | ||
2899 | !--nr_exclusive) | ||
2900 | break; | ||
2901 | } | ||
2902 | } | ||
2903 | |||
2904 | /** | ||
2905 | * __wake_up - wake up threads blocked on a waitqueue. | ||
2906 | * @q: the waitqueue | ||
2907 | * @mode: which threads | ||
2908 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
2909 | */ | ||
2910 | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | ||
2911 | int nr_exclusive, void *key) | ||
2912 | { | ||
2913 | unsigned long flags; | ||
2914 | |||
2915 | spin_lock_irqsave(&q->lock, flags); | ||
2916 | __wake_up_common(q, mode, nr_exclusive, 0, key); | ||
2917 | spin_unlock_irqrestore(&q->lock, flags); | ||
2918 | } | ||
2919 | |||
2920 | EXPORT_SYMBOL(__wake_up); | ||
2921 | |||
2922 | /* | ||
2923 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | ||
2924 | */ | ||
2925 | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | ||
2926 | { | ||
2927 | __wake_up_common(q, mode, 1, 0, NULL); | ||
2928 | } | ||
2929 | |||
2930 | /** | ||
2931 | * __wake_up - sync- wake up threads blocked on a waitqueue. | ||
2932 | * @q: the waitqueue | ||
2933 | * @mode: which threads | ||
2934 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | ||
2935 | * | ||
2936 | * The sync wakeup differs that the waker knows that it will schedule | ||
2937 | * away soon, so while the target thread will be woken up, it will not | ||
2938 | * be migrated to another CPU - ie. the two threads are 'synchronized' | ||
2939 | * with each other. This can prevent needless bouncing between CPUs. | ||
2940 | * | ||
2941 | * On UP it can prevent extra preemption. | ||
2942 | */ | ||
2943 | void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | ||
2944 | { | ||
2945 | unsigned long flags; | ||
2946 | int sync = 1; | ||
2947 | |||
2948 | if (unlikely(!q)) | ||
2949 | return; | ||
2950 | |||
2951 | if (unlikely(!nr_exclusive)) | ||
2952 | sync = 0; | ||
2953 | |||
2954 | spin_lock_irqsave(&q->lock, flags); | ||
2955 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | ||
2956 | spin_unlock_irqrestore(&q->lock, flags); | ||
2957 | } | ||
2958 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | ||
2959 | |||
2960 | void fastcall complete(struct completion *x) | ||
2961 | { | ||
2962 | unsigned long flags; | ||
2963 | |||
2964 | spin_lock_irqsave(&x->wait.lock, flags); | ||
2965 | x->done++; | ||
2966 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | ||
2967 | 1, 0, NULL); | ||
2968 | spin_unlock_irqrestore(&x->wait.lock, flags); | ||
2969 | } | ||
2970 | EXPORT_SYMBOL(complete); | ||
2971 | |||
2972 | void fastcall complete_all(struct completion *x) | ||
2973 | { | ||
2974 | unsigned long flags; | ||
2975 | |||
2976 | spin_lock_irqsave(&x->wait.lock, flags); | ||
2977 | x->done += UINT_MAX/2; | ||
2978 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | ||
2979 | 0, 0, NULL); | ||
2980 | spin_unlock_irqrestore(&x->wait.lock, flags); | ||
2981 | } | ||
2982 | EXPORT_SYMBOL(complete_all); | ||
2983 | |||
2984 | void fastcall __sched wait_for_completion(struct completion *x) | ||
2985 | { | ||
2986 | might_sleep(); | ||
2987 | spin_lock_irq(&x->wait.lock); | ||
2988 | if (!x->done) { | ||
2989 | DECLARE_WAITQUEUE(wait, current); | ||
2990 | |||
2991 | wait.flags |= WQ_FLAG_EXCLUSIVE; | ||
2992 | __add_wait_queue_tail(&x->wait, &wait); | ||
2993 | do { | ||
2994 | __set_current_state(TASK_UNINTERRUPTIBLE); | ||
2995 | spin_unlock_irq(&x->wait.lock); | ||
2996 | schedule(); | ||
2997 | spin_lock_irq(&x->wait.lock); | ||
2998 | } while (!x->done); | ||
2999 | __remove_wait_queue(&x->wait, &wait); | ||
3000 | } | ||
3001 | x->done--; | ||
3002 | spin_unlock_irq(&x->wait.lock); | ||
3003 | } | ||
3004 | EXPORT_SYMBOL(wait_for_completion); | ||
3005 | |||
3006 | unsigned long fastcall __sched | ||
3007 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | ||
3008 | { | ||
3009 | might_sleep(); | ||
3010 | |||
3011 | spin_lock_irq(&x->wait.lock); | ||
3012 | if (!x->done) { | ||
3013 | DECLARE_WAITQUEUE(wait, current); | ||
3014 | |||
3015 | wait.flags |= WQ_FLAG_EXCLUSIVE; | ||
3016 | __add_wait_queue_tail(&x->wait, &wait); | ||
3017 | do { | ||
3018 | __set_current_state(TASK_UNINTERRUPTIBLE); | ||
3019 | spin_unlock_irq(&x->wait.lock); | ||
3020 | timeout = schedule_timeout(timeout); | ||
3021 | spin_lock_irq(&x->wait.lock); | ||
3022 | if (!timeout) { | ||
3023 | __remove_wait_queue(&x->wait, &wait); | ||
3024 | goto out; | ||
3025 | } | ||
3026 | } while (!x->done); | ||
3027 | __remove_wait_queue(&x->wait, &wait); | ||
3028 | } | ||
3029 | x->done--; | ||
3030 | out: | ||
3031 | spin_unlock_irq(&x->wait.lock); | ||
3032 | return timeout; | ||
3033 | } | ||
3034 | EXPORT_SYMBOL(wait_for_completion_timeout); | ||
3035 | |||
3036 | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | ||
3037 | { | ||
3038 | int ret = 0; | ||
3039 | |||
3040 | might_sleep(); | ||
3041 | |||
3042 | spin_lock_irq(&x->wait.lock); | ||
3043 | if (!x->done) { | ||
3044 | DECLARE_WAITQUEUE(wait, current); | ||
3045 | |||
3046 | wait.flags |= WQ_FLAG_EXCLUSIVE; | ||
3047 | __add_wait_queue_tail(&x->wait, &wait); | ||
3048 | do { | ||
3049 | if (signal_pending(current)) { | ||
3050 | ret = -ERESTARTSYS; | ||
3051 | __remove_wait_queue(&x->wait, &wait); | ||
3052 | goto out; | ||
3053 | } | ||
3054 | __set_current_state(TASK_INTERRUPTIBLE); | ||
3055 | spin_unlock_irq(&x->wait.lock); | ||
3056 | schedule(); | ||
3057 | spin_lock_irq(&x->wait.lock); | ||
3058 | } while (!x->done); | ||
3059 | __remove_wait_queue(&x->wait, &wait); | ||
3060 | } | ||
3061 | x->done--; | ||
3062 | out: | ||
3063 | spin_unlock_irq(&x->wait.lock); | ||
3064 | |||
3065 | return ret; | ||
3066 | } | ||
3067 | EXPORT_SYMBOL(wait_for_completion_interruptible); | ||
3068 | |||
3069 | unsigned long fastcall __sched | ||
3070 | wait_for_completion_interruptible_timeout(struct completion *x, | ||
3071 | unsigned long timeout) | ||
3072 | { | ||
3073 | might_sleep(); | ||
3074 | |||
3075 | spin_lock_irq(&x->wait.lock); | ||
3076 | if (!x->done) { | ||
3077 | DECLARE_WAITQUEUE(wait, current); | ||
3078 | |||
3079 | wait.flags |= WQ_FLAG_EXCLUSIVE; | ||
3080 | __add_wait_queue_tail(&x->wait, &wait); | ||
3081 | do { | ||
3082 | if (signal_pending(current)) { | ||
3083 | timeout = -ERESTARTSYS; | ||
3084 | __remove_wait_queue(&x->wait, &wait); | ||
3085 | goto out; | ||
3086 | } | ||
3087 | __set_current_state(TASK_INTERRUPTIBLE); | ||
3088 | spin_unlock_irq(&x->wait.lock); | ||
3089 | timeout = schedule_timeout(timeout); | ||
3090 | spin_lock_irq(&x->wait.lock); | ||
3091 | if (!timeout) { | ||
3092 | __remove_wait_queue(&x->wait, &wait); | ||
3093 | goto out; | ||
3094 | } | ||
3095 | } while (!x->done); | ||
3096 | __remove_wait_queue(&x->wait, &wait); | ||
3097 | } | ||
3098 | x->done--; | ||
3099 | out: | ||
3100 | spin_unlock_irq(&x->wait.lock); | ||
3101 | return timeout; | ||
3102 | } | ||
3103 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | ||
3104 | |||
3105 | |||
3106 | #define SLEEP_ON_VAR \ | ||
3107 | unsigned long flags; \ | ||
3108 | wait_queue_t wait; \ | ||
3109 | init_waitqueue_entry(&wait, current); | ||
3110 | |||
3111 | #define SLEEP_ON_HEAD \ | ||
3112 | spin_lock_irqsave(&q->lock,flags); \ | ||
3113 | __add_wait_queue(q, &wait); \ | ||
3114 | spin_unlock(&q->lock); | ||
3115 | |||
3116 | #define SLEEP_ON_TAIL \ | ||
3117 | spin_lock_irq(&q->lock); \ | ||
3118 | __remove_wait_queue(q, &wait); \ | ||
3119 | spin_unlock_irqrestore(&q->lock, flags); | ||
3120 | |||
3121 | void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q) | ||
3122 | { | ||
3123 | SLEEP_ON_VAR | ||
3124 | |||
3125 | current->state = TASK_INTERRUPTIBLE; | ||
3126 | |||
3127 | SLEEP_ON_HEAD | ||
3128 | schedule(); | ||
3129 | SLEEP_ON_TAIL | ||
3130 | } | ||
3131 | |||
3132 | EXPORT_SYMBOL(interruptible_sleep_on); | ||
3133 | |||
3134 | long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | ||
3135 | { | ||
3136 | SLEEP_ON_VAR | ||
3137 | |||
3138 | current->state = TASK_INTERRUPTIBLE; | ||
3139 | |||
3140 | SLEEP_ON_HEAD | ||
3141 | timeout = schedule_timeout(timeout); | ||
3142 | SLEEP_ON_TAIL | ||
3143 | |||
3144 | return timeout; | ||
3145 | } | ||
3146 | |||
3147 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | ||
3148 | |||
3149 | void fastcall __sched sleep_on(wait_queue_head_t *q) | ||
3150 | { | ||
3151 | SLEEP_ON_VAR | ||
3152 | |||
3153 | current->state = TASK_UNINTERRUPTIBLE; | ||
3154 | |||
3155 | SLEEP_ON_HEAD | ||
3156 | schedule(); | ||
3157 | SLEEP_ON_TAIL | ||
3158 | } | ||
3159 | |||
3160 | EXPORT_SYMBOL(sleep_on); | ||
3161 | |||
3162 | long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | ||
3163 | { | ||
3164 | SLEEP_ON_VAR | ||
3165 | |||
3166 | current->state = TASK_UNINTERRUPTIBLE; | ||
3167 | |||
3168 | SLEEP_ON_HEAD | ||
3169 | timeout = schedule_timeout(timeout); | ||
3170 | SLEEP_ON_TAIL | ||
3171 | |||
3172 | return timeout; | ||
3173 | } | ||
3174 | |||
3175 | EXPORT_SYMBOL(sleep_on_timeout); | ||
3176 | |||
3177 | void set_user_nice(task_t *p, long nice) | ||
3178 | { | ||
3179 | unsigned long flags; | ||
3180 | prio_array_t *array; | ||
3181 | runqueue_t *rq; | ||
3182 | int old_prio, new_prio, delta; | ||
3183 | |||
3184 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | ||
3185 | return; | ||
3186 | /* | ||
3187 | * We have to be careful, if called from sys_setpriority(), | ||
3188 | * the task might be in the middle of scheduling on another CPU. | ||
3189 | */ | ||
3190 | rq = task_rq_lock(p, &flags); | ||
3191 | /* | ||
3192 | * The RT priorities are set via sched_setscheduler(), but we still | ||
3193 | * allow the 'normal' nice value to be set - but as expected | ||
3194 | * it wont have any effect on scheduling until the task is | ||
3195 | * not SCHED_NORMAL: | ||
3196 | */ | ||
3197 | if (rt_task(p)) { | ||
3198 | p->static_prio = NICE_TO_PRIO(nice); | ||
3199 | goto out_unlock; | ||
3200 | } | ||
3201 | array = p->array; | ||
3202 | if (array) | ||
3203 | dequeue_task(p, array); | ||
3204 | |||
3205 | old_prio = p->prio; | ||
3206 | new_prio = NICE_TO_PRIO(nice); | ||
3207 | delta = new_prio - old_prio; | ||
3208 | p->static_prio = NICE_TO_PRIO(nice); | ||
3209 | p->prio += delta; | ||
3210 | |||
3211 | if (array) { | ||
3212 | enqueue_task(p, array); | ||
3213 | /* | ||
3214 | * If the task increased its priority or is running and | ||
3215 | * lowered its priority, then reschedule its CPU: | ||
3216 | */ | ||
3217 | if (delta < 0 || (delta > 0 && task_running(rq, p))) | ||
3218 | resched_task(rq->curr); | ||
3219 | } | ||
3220 | out_unlock: | ||
3221 | task_rq_unlock(rq, &flags); | ||
3222 | } | ||
3223 | |||
3224 | EXPORT_SYMBOL(set_user_nice); | ||
3225 | |||
3226 | #ifdef __ARCH_WANT_SYS_NICE | ||
3227 | |||
3228 | /* | ||
3229 | * sys_nice - change the priority of the current process. | ||
3230 | * @increment: priority increment | ||
3231 | * | ||
3232 | * sys_setpriority is a more generic, but much slower function that | ||
3233 | * does similar things. | ||
3234 | */ | ||
3235 | asmlinkage long sys_nice(int increment) | ||
3236 | { | ||
3237 | int retval; | ||
3238 | long nice; | ||
3239 | |||
3240 | /* | ||
3241 | * Setpriority might change our priority at the same moment. | ||
3242 | * We don't have to worry. Conceptually one call occurs first | ||
3243 | * and we have a single winner. | ||
3244 | */ | ||
3245 | if (increment < 0) { | ||
3246 | if (!capable(CAP_SYS_NICE)) | ||
3247 | return -EPERM; | ||
3248 | if (increment < -40) | ||
3249 | increment = -40; | ||
3250 | } | ||
3251 | if (increment > 40) | ||
3252 | increment = 40; | ||
3253 | |||
3254 | nice = PRIO_TO_NICE(current->static_prio) + increment; | ||
3255 | if (nice < -20) | ||
3256 | nice = -20; | ||
3257 | if (nice > 19) | ||
3258 | nice = 19; | ||
3259 | |||
3260 | retval = security_task_setnice(current, nice); | ||
3261 | if (retval) | ||
3262 | return retval; | ||
3263 | |||
3264 | set_user_nice(current, nice); | ||
3265 | return 0; | ||
3266 | } | ||
3267 | |||
3268 | #endif | ||
3269 | |||
3270 | /** | ||
3271 | * task_prio - return the priority value of a given task. | ||
3272 | * @p: the task in question. | ||
3273 | * | ||
3274 | * This is the priority value as seen by users in /proc. | ||
3275 | * RT tasks are offset by -200. Normal tasks are centered | ||
3276 | * around 0, value goes from -16 to +15. | ||
3277 | */ | ||
3278 | int task_prio(const task_t *p) | ||
3279 | { | ||
3280 | return p->prio - MAX_RT_PRIO; | ||
3281 | } | ||
3282 | |||
3283 | /** | ||
3284 | * task_nice - return the nice value of a given task. | ||
3285 | * @p: the task in question. | ||
3286 | */ | ||
3287 | int task_nice(const task_t *p) | ||
3288 | { | ||
3289 | return TASK_NICE(p); | ||
3290 | } | ||
3291 | |||
3292 | /* | ||
3293 | * The only users of task_nice are binfmt_elf and binfmt_elf32. | ||
3294 | * binfmt_elf is no longer modular, but binfmt_elf32 still is. | ||
3295 | * Therefore, task_nice is needed if there is a compat_mode. | ||
3296 | */ | ||
3297 | #ifdef CONFIG_COMPAT | ||
3298 | EXPORT_SYMBOL_GPL(task_nice); | ||
3299 | #endif | ||
3300 | |||
3301 | /** | ||
3302 | * idle_cpu - is a given cpu idle currently? | ||
3303 | * @cpu: the processor in question. | ||
3304 | */ | ||
3305 | int idle_cpu(int cpu) | ||
3306 | { | ||
3307 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | ||
3308 | } | ||
3309 | |||
3310 | EXPORT_SYMBOL_GPL(idle_cpu); | ||
3311 | |||
3312 | /** | ||
3313 | * idle_task - return the idle task for a given cpu. | ||
3314 | * @cpu: the processor in question. | ||
3315 | */ | ||
3316 | task_t *idle_task(int cpu) | ||
3317 | { | ||
3318 | return cpu_rq(cpu)->idle; | ||
3319 | } | ||
3320 | |||
3321 | /** | ||
3322 | * find_process_by_pid - find a process with a matching PID value. | ||
3323 | * @pid: the pid in question. | ||
3324 | */ | ||
3325 | static inline task_t *find_process_by_pid(pid_t pid) | ||
3326 | { | ||
3327 | return pid ? find_task_by_pid(pid) : current; | ||
3328 | } | ||
3329 | |||
3330 | /* Actually do priority change: must hold rq lock. */ | ||
3331 | static void __setscheduler(struct task_struct *p, int policy, int prio) | ||
3332 | { | ||
3333 | BUG_ON(p->array); | ||
3334 | p->policy = policy; | ||
3335 | p->rt_priority = prio; | ||
3336 | if (policy != SCHED_NORMAL) | ||
3337 | p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority; | ||
3338 | else | ||
3339 | p->prio = p->static_prio; | ||
3340 | } | ||
3341 | |||
3342 | /** | ||
3343 | * sched_setscheduler - change the scheduling policy and/or RT priority of | ||
3344 | * a thread. | ||
3345 | * @p: the task in question. | ||
3346 | * @policy: new policy. | ||
3347 | * @param: structure containing the new RT priority. | ||
3348 | */ | ||
3349 | int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param) | ||
3350 | { | ||
3351 | int retval; | ||
3352 | int oldprio, oldpolicy = -1; | ||
3353 | prio_array_t *array; | ||
3354 | unsigned long flags; | ||
3355 | runqueue_t *rq; | ||
3356 | |||
3357 | recheck: | ||
3358 | /* double check policy once rq lock held */ | ||
3359 | if (policy < 0) | ||
3360 | policy = oldpolicy = p->policy; | ||
3361 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | ||
3362 | policy != SCHED_NORMAL) | ||
3363 | return -EINVAL; | ||
3364 | /* | ||
3365 | * Valid priorities for SCHED_FIFO and SCHED_RR are | ||
3366 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0. | ||
3367 | */ | ||
3368 | if (param->sched_priority < 0 || | ||
3369 | param->sched_priority > MAX_USER_RT_PRIO-1) | ||
3370 | return -EINVAL; | ||
3371 | if ((policy == SCHED_NORMAL) != (param->sched_priority == 0)) | ||
3372 | return -EINVAL; | ||
3373 | |||
3374 | if ((policy == SCHED_FIFO || policy == SCHED_RR) && | ||
3375 | !capable(CAP_SYS_NICE)) | ||
3376 | return -EPERM; | ||
3377 | if ((current->euid != p->euid) && (current->euid != p->uid) && | ||
3378 | !capable(CAP_SYS_NICE)) | ||
3379 | return -EPERM; | ||
3380 | |||
3381 | retval = security_task_setscheduler(p, policy, param); | ||
3382 | if (retval) | ||
3383 | return retval; | ||
3384 | /* | ||
3385 | * To be able to change p->policy safely, the apropriate | ||
3386 | * runqueue lock must be held. | ||
3387 | */ | ||
3388 | rq = task_rq_lock(p, &flags); | ||
3389 | /* recheck policy now with rq lock held */ | ||
3390 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | ||
3391 | policy = oldpolicy = -1; | ||
3392 | task_rq_unlock(rq, &flags); | ||
3393 | goto recheck; | ||
3394 | } | ||
3395 | array = p->array; | ||
3396 | if (array) | ||
3397 | deactivate_task(p, rq); | ||
3398 | oldprio = p->prio; | ||
3399 | __setscheduler(p, policy, param->sched_priority); | ||
3400 | if (array) { | ||
3401 | __activate_task(p, rq); | ||
3402 | /* | ||
3403 | * Reschedule if we are currently running on this runqueue and | ||
3404 | * our priority decreased, or if we are not currently running on | ||
3405 | * this runqueue and our priority is higher than the current's | ||
3406 | */ | ||
3407 | if (task_running(rq, p)) { | ||
3408 | if (p->prio > oldprio) | ||
3409 | resched_task(rq->curr); | ||
3410 | } else if (TASK_PREEMPTS_CURR(p, rq)) | ||
3411 | resched_task(rq->curr); | ||
3412 | } | ||
3413 | task_rq_unlock(rq, &flags); | ||
3414 | return 0; | ||
3415 | } | ||
3416 | EXPORT_SYMBOL_GPL(sched_setscheduler); | ||
3417 | |||
3418 | static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | ||
3419 | { | ||
3420 | int retval; | ||
3421 | struct sched_param lparam; | ||
3422 | struct task_struct *p; | ||
3423 | |||
3424 | if (!param || pid < 0) | ||
3425 | return -EINVAL; | ||
3426 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | ||
3427 | return -EFAULT; | ||
3428 | read_lock_irq(&tasklist_lock); | ||
3429 | p = find_process_by_pid(pid); | ||
3430 | if (!p) { | ||
3431 | read_unlock_irq(&tasklist_lock); | ||
3432 | return -ESRCH; | ||
3433 | } | ||
3434 | retval = sched_setscheduler(p, policy, &lparam); | ||
3435 | read_unlock_irq(&tasklist_lock); | ||
3436 | return retval; | ||
3437 | } | ||
3438 | |||
3439 | /** | ||
3440 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | ||
3441 | * @pid: the pid in question. | ||
3442 | * @policy: new policy. | ||
3443 | * @param: structure containing the new RT priority. | ||
3444 | */ | ||
3445 | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | ||
3446 | struct sched_param __user *param) | ||
3447 | { | ||
3448 | return do_sched_setscheduler(pid, policy, param); | ||
3449 | } | ||
3450 | |||
3451 | /** | ||
3452 | * sys_sched_setparam - set/change the RT priority of a thread | ||
3453 | * @pid: the pid in question. | ||
3454 | * @param: structure containing the new RT priority. | ||
3455 | */ | ||
3456 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | ||
3457 | { | ||
3458 | return do_sched_setscheduler(pid, -1, param); | ||
3459 | } | ||
3460 | |||
3461 | /** | ||
3462 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | ||
3463 | * @pid: the pid in question. | ||
3464 | */ | ||
3465 | asmlinkage long sys_sched_getscheduler(pid_t pid) | ||
3466 | { | ||
3467 | int retval = -EINVAL; | ||
3468 | task_t *p; | ||
3469 | |||
3470 | if (pid < 0) | ||
3471 | goto out_nounlock; | ||
3472 | |||
3473 | retval = -ESRCH; | ||
3474 | read_lock(&tasklist_lock); | ||
3475 | p = find_process_by_pid(pid); | ||
3476 | if (p) { | ||
3477 | retval = security_task_getscheduler(p); | ||
3478 | if (!retval) | ||
3479 | retval = p->policy; | ||
3480 | } | ||
3481 | read_unlock(&tasklist_lock); | ||
3482 | |||
3483 | out_nounlock: | ||
3484 | return retval; | ||
3485 | } | ||
3486 | |||
3487 | /** | ||
3488 | * sys_sched_getscheduler - get the RT priority of a thread | ||
3489 | * @pid: the pid in question. | ||
3490 | * @param: structure containing the RT priority. | ||
3491 | */ | ||
3492 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | ||
3493 | { | ||
3494 | struct sched_param lp; | ||
3495 | int retval = -EINVAL; | ||
3496 | task_t *p; | ||
3497 | |||
3498 | if (!param || pid < 0) | ||
3499 | goto out_nounlock; | ||
3500 | |||
3501 | read_lock(&tasklist_lock); | ||
3502 | p = find_process_by_pid(pid); | ||
3503 | retval = -ESRCH; | ||
3504 | if (!p) | ||
3505 | goto out_unlock; | ||
3506 | |||
3507 | retval = security_task_getscheduler(p); | ||
3508 | if (retval) | ||
3509 | goto out_unlock; | ||
3510 | |||
3511 | lp.sched_priority = p->rt_priority; | ||
3512 | read_unlock(&tasklist_lock); | ||
3513 | |||
3514 | /* | ||
3515 | * This one might sleep, we cannot do it with a spinlock held ... | ||
3516 | */ | ||
3517 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | ||
3518 | |||
3519 | out_nounlock: | ||
3520 | return retval; | ||
3521 | |||
3522 | out_unlock: | ||
3523 | read_unlock(&tasklist_lock); | ||
3524 | return retval; | ||
3525 | } | ||
3526 | |||
3527 | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | ||
3528 | { | ||
3529 | task_t *p; | ||
3530 | int retval; | ||
3531 | cpumask_t cpus_allowed; | ||
3532 | |||
3533 | lock_cpu_hotplug(); | ||
3534 | read_lock(&tasklist_lock); | ||
3535 | |||
3536 | p = find_process_by_pid(pid); | ||
3537 | if (!p) { | ||
3538 | read_unlock(&tasklist_lock); | ||
3539 | unlock_cpu_hotplug(); | ||
3540 | return -ESRCH; | ||
3541 | } | ||
3542 | |||
3543 | /* | ||
3544 | * It is not safe to call set_cpus_allowed with the | ||
3545 | * tasklist_lock held. We will bump the task_struct's | ||
3546 | * usage count and then drop tasklist_lock. | ||
3547 | */ | ||
3548 | get_task_struct(p); | ||
3549 | read_unlock(&tasklist_lock); | ||
3550 | |||
3551 | retval = -EPERM; | ||
3552 | if ((current->euid != p->euid) && (current->euid != p->uid) && | ||
3553 | !capable(CAP_SYS_NICE)) | ||
3554 | goto out_unlock; | ||
3555 | |||
3556 | cpus_allowed = cpuset_cpus_allowed(p); | ||
3557 | cpus_and(new_mask, new_mask, cpus_allowed); | ||
3558 | retval = set_cpus_allowed(p, new_mask); | ||
3559 | |||
3560 | out_unlock: | ||
3561 | put_task_struct(p); | ||
3562 | unlock_cpu_hotplug(); | ||
3563 | return retval; | ||
3564 | } | ||
3565 | |||
3566 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | ||
3567 | cpumask_t *new_mask) | ||
3568 | { | ||
3569 | if (len < sizeof(cpumask_t)) { | ||
3570 | memset(new_mask, 0, sizeof(cpumask_t)); | ||
3571 | } else if (len > sizeof(cpumask_t)) { | ||
3572 | len = sizeof(cpumask_t); | ||
3573 | } | ||
3574 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | ||
3575 | } | ||
3576 | |||
3577 | /** | ||
3578 | * sys_sched_setaffinity - set the cpu affinity of a process | ||
3579 | * @pid: pid of the process | ||
3580 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | ||
3581 | * @user_mask_ptr: user-space pointer to the new cpu mask | ||
3582 | */ | ||
3583 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | ||
3584 | unsigned long __user *user_mask_ptr) | ||
3585 | { | ||
3586 | cpumask_t new_mask; | ||
3587 | int retval; | ||
3588 | |||
3589 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | ||
3590 | if (retval) | ||
3591 | return retval; | ||
3592 | |||
3593 | return sched_setaffinity(pid, new_mask); | ||
3594 | } | ||
3595 | |||
3596 | /* | ||
3597 | * Represents all cpu's present in the system | ||
3598 | * In systems capable of hotplug, this map could dynamically grow | ||
3599 | * as new cpu's are detected in the system via any platform specific | ||
3600 | * method, such as ACPI for e.g. | ||
3601 | */ | ||
3602 | |||
3603 | cpumask_t cpu_present_map; | ||
3604 | EXPORT_SYMBOL(cpu_present_map); | ||
3605 | |||
3606 | #ifndef CONFIG_SMP | ||
3607 | cpumask_t cpu_online_map = CPU_MASK_ALL; | ||
3608 | cpumask_t cpu_possible_map = CPU_MASK_ALL; | ||
3609 | #endif | ||
3610 | |||
3611 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | ||
3612 | { | ||
3613 | int retval; | ||
3614 | task_t *p; | ||
3615 | |||
3616 | lock_cpu_hotplug(); | ||
3617 | read_lock(&tasklist_lock); | ||
3618 | |||
3619 | retval = -ESRCH; | ||
3620 | p = find_process_by_pid(pid); | ||
3621 | if (!p) | ||
3622 | goto out_unlock; | ||
3623 | |||
3624 | retval = 0; | ||
3625 | cpus_and(*mask, p->cpus_allowed, cpu_possible_map); | ||
3626 | |||
3627 | out_unlock: | ||
3628 | read_unlock(&tasklist_lock); | ||
3629 | unlock_cpu_hotplug(); | ||
3630 | if (retval) | ||
3631 | return retval; | ||
3632 | |||
3633 | return 0; | ||
3634 | } | ||
3635 | |||
3636 | /** | ||
3637 | * sys_sched_getaffinity - get the cpu affinity of a process | ||
3638 | * @pid: pid of the process | ||
3639 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | ||
3640 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | ||
3641 | */ | ||
3642 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | ||
3643 | unsigned long __user *user_mask_ptr) | ||
3644 | { | ||
3645 | int ret; | ||
3646 | cpumask_t mask; | ||
3647 | |||
3648 | if (len < sizeof(cpumask_t)) | ||
3649 | return -EINVAL; | ||
3650 | |||
3651 | ret = sched_getaffinity(pid, &mask); | ||
3652 | if (ret < 0) | ||
3653 | return ret; | ||
3654 | |||
3655 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | ||
3656 | return -EFAULT; | ||
3657 | |||
3658 | return sizeof(cpumask_t); | ||
3659 | } | ||
3660 | |||
3661 | /** | ||
3662 | * sys_sched_yield - yield the current processor to other threads. | ||
3663 | * | ||
3664 | * this function yields the current CPU by moving the calling thread | ||
3665 | * to the expired array. If there are no other threads running on this | ||
3666 | * CPU then this function will return. | ||
3667 | */ | ||
3668 | asmlinkage long sys_sched_yield(void) | ||
3669 | { | ||
3670 | runqueue_t *rq = this_rq_lock(); | ||
3671 | prio_array_t *array = current->array; | ||
3672 | prio_array_t *target = rq->expired; | ||
3673 | |||
3674 | schedstat_inc(rq, yld_cnt); | ||
3675 | /* | ||
3676 | * We implement yielding by moving the task into the expired | ||
3677 | * queue. | ||
3678 | * | ||
3679 | * (special rule: RT tasks will just roundrobin in the active | ||
3680 | * array.) | ||
3681 | */ | ||
3682 | if (rt_task(current)) | ||
3683 | target = rq->active; | ||
3684 | |||
3685 | if (current->array->nr_active == 1) { | ||
3686 | schedstat_inc(rq, yld_act_empty); | ||
3687 | if (!rq->expired->nr_active) | ||
3688 | schedstat_inc(rq, yld_both_empty); | ||
3689 | } else if (!rq->expired->nr_active) | ||
3690 | schedstat_inc(rq, yld_exp_empty); | ||
3691 | |||
3692 | if (array != target) { | ||
3693 | dequeue_task(current, array); | ||
3694 | enqueue_task(current, target); | ||
3695 | } else | ||
3696 | /* | ||
3697 | * requeue_task is cheaper so perform that if possible. | ||
3698 | */ | ||
3699 | requeue_task(current, array); | ||
3700 | |||
3701 | /* | ||
3702 | * Since we are going to call schedule() anyway, there's | ||
3703 | * no need to preempt or enable interrupts: | ||
3704 | */ | ||
3705 | __release(rq->lock); | ||
3706 | _raw_spin_unlock(&rq->lock); | ||
3707 | preempt_enable_no_resched(); | ||
3708 | |||
3709 | schedule(); | ||
3710 | |||
3711 | return 0; | ||
3712 | } | ||
3713 | |||
3714 | static inline void __cond_resched(void) | ||
3715 | { | ||
3716 | do { | ||
3717 | add_preempt_count(PREEMPT_ACTIVE); | ||
3718 | schedule(); | ||
3719 | sub_preempt_count(PREEMPT_ACTIVE); | ||
3720 | } while (need_resched()); | ||
3721 | } | ||
3722 | |||
3723 | int __sched cond_resched(void) | ||
3724 | { | ||
3725 | if (need_resched()) { | ||
3726 | __cond_resched(); | ||
3727 | return 1; | ||
3728 | } | ||
3729 | return 0; | ||
3730 | } | ||
3731 | |||
3732 | EXPORT_SYMBOL(cond_resched); | ||
3733 | |||
3734 | /* | ||
3735 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | ||
3736 | * call schedule, and on return reacquire the lock. | ||
3737 | * | ||
3738 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | ||
3739 | * operations here to prevent schedule() from being called twice (once via | ||
3740 | * spin_unlock(), once by hand). | ||
3741 | */ | ||
3742 | int cond_resched_lock(spinlock_t * lock) | ||
3743 | { | ||
3744 | if (need_lockbreak(lock)) { | ||
3745 | spin_unlock(lock); | ||
3746 | cpu_relax(); | ||
3747 | spin_lock(lock); | ||
3748 | } | ||
3749 | if (need_resched()) { | ||
3750 | _raw_spin_unlock(lock); | ||
3751 | preempt_enable_no_resched(); | ||
3752 | __cond_resched(); | ||
3753 | spin_lock(lock); | ||
3754 | return 1; | ||
3755 | } | ||
3756 | return 0; | ||
3757 | } | ||
3758 | |||
3759 | EXPORT_SYMBOL(cond_resched_lock); | ||
3760 | |||
3761 | int __sched cond_resched_softirq(void) | ||
3762 | { | ||
3763 | BUG_ON(!in_softirq()); | ||
3764 | |||
3765 | if (need_resched()) { | ||
3766 | __local_bh_enable(); | ||
3767 | __cond_resched(); | ||
3768 | local_bh_disable(); | ||
3769 | return 1; | ||
3770 | } | ||
3771 | return 0; | ||
3772 | } | ||
3773 | |||
3774 | EXPORT_SYMBOL(cond_resched_softirq); | ||
3775 | |||
3776 | |||
3777 | /** | ||
3778 | * yield - yield the current processor to other threads. | ||
3779 | * | ||
3780 | * this is a shortcut for kernel-space yielding - it marks the | ||
3781 | * thread runnable and calls sys_sched_yield(). | ||
3782 | */ | ||
3783 | void __sched yield(void) | ||
3784 | { | ||
3785 | set_current_state(TASK_RUNNING); | ||
3786 | sys_sched_yield(); | ||
3787 | } | ||
3788 | |||
3789 | EXPORT_SYMBOL(yield); | ||
3790 | |||
3791 | /* | ||
3792 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | ||
3793 | * that process accounting knows that this is a task in IO wait state. | ||
3794 | * | ||
3795 | * But don't do that if it is a deliberate, throttling IO wait (this task | ||
3796 | * has set its backing_dev_info: the queue against which it should throttle) | ||
3797 | */ | ||
3798 | void __sched io_schedule(void) | ||
3799 | { | ||
3800 | struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id()); | ||
3801 | |||
3802 | atomic_inc(&rq->nr_iowait); | ||
3803 | schedule(); | ||
3804 | atomic_dec(&rq->nr_iowait); | ||
3805 | } | ||
3806 | |||
3807 | EXPORT_SYMBOL(io_schedule); | ||
3808 | |||
3809 | long __sched io_schedule_timeout(long timeout) | ||
3810 | { | ||
3811 | struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id()); | ||
3812 | long ret; | ||
3813 | |||
3814 | atomic_inc(&rq->nr_iowait); | ||
3815 | ret = schedule_timeout(timeout); | ||
3816 | atomic_dec(&rq->nr_iowait); | ||
3817 | return ret; | ||
3818 | } | ||
3819 | |||
3820 | /** | ||
3821 | * sys_sched_get_priority_max - return maximum RT priority. | ||
3822 | * @policy: scheduling class. | ||
3823 | * | ||
3824 | * this syscall returns the maximum rt_priority that can be used | ||
3825 | * by a given scheduling class. | ||
3826 | */ | ||
3827 | asmlinkage long sys_sched_get_priority_max(int policy) | ||
3828 | { | ||
3829 | int ret = -EINVAL; | ||
3830 | |||
3831 | switch (policy) { | ||
3832 | case SCHED_FIFO: | ||
3833 | case SCHED_RR: | ||
3834 | ret = MAX_USER_RT_PRIO-1; | ||
3835 | break; | ||
3836 | case SCHED_NORMAL: | ||
3837 | ret = 0; | ||
3838 | break; | ||
3839 | } | ||
3840 | return ret; | ||
3841 | } | ||
3842 | |||
3843 | /** | ||
3844 | * sys_sched_get_priority_min - return minimum RT priority. | ||
3845 | * @policy: scheduling class. | ||
3846 | * | ||
3847 | * this syscall returns the minimum rt_priority that can be used | ||
3848 | * by a given scheduling class. | ||
3849 | */ | ||
3850 | asmlinkage long sys_sched_get_priority_min(int policy) | ||
3851 | { | ||
3852 | int ret = -EINVAL; | ||
3853 | |||
3854 | switch (policy) { | ||
3855 | case SCHED_FIFO: | ||
3856 | case SCHED_RR: | ||
3857 | ret = 1; | ||
3858 | break; | ||
3859 | case SCHED_NORMAL: | ||
3860 | ret = 0; | ||
3861 | } | ||
3862 | return ret; | ||
3863 | } | ||
3864 | |||
3865 | /** | ||
3866 | * sys_sched_rr_get_interval - return the default timeslice of a process. | ||
3867 | * @pid: pid of the process. | ||
3868 | * @interval: userspace pointer to the timeslice value. | ||
3869 | * | ||
3870 | * this syscall writes the default timeslice value of a given process | ||
3871 | * into the user-space timespec buffer. A value of '0' means infinity. | ||
3872 | */ | ||
3873 | asmlinkage | ||
3874 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | ||
3875 | { | ||
3876 | int retval = -EINVAL; | ||
3877 | struct timespec t; | ||
3878 | task_t *p; | ||
3879 | |||
3880 | if (pid < 0) | ||
3881 | goto out_nounlock; | ||
3882 | |||
3883 | retval = -ESRCH; | ||
3884 | read_lock(&tasklist_lock); | ||
3885 | p = find_process_by_pid(pid); | ||
3886 | if (!p) | ||
3887 | goto out_unlock; | ||
3888 | |||
3889 | retval = security_task_getscheduler(p); | ||
3890 | if (retval) | ||
3891 | goto out_unlock; | ||
3892 | |||
3893 | jiffies_to_timespec(p->policy & SCHED_FIFO ? | ||
3894 | 0 : task_timeslice(p), &t); | ||
3895 | read_unlock(&tasklist_lock); | ||
3896 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | ||
3897 | out_nounlock: | ||
3898 | return retval; | ||
3899 | out_unlock: | ||
3900 | read_unlock(&tasklist_lock); | ||
3901 | return retval; | ||
3902 | } | ||
3903 | |||
3904 | static inline struct task_struct *eldest_child(struct task_struct *p) | ||
3905 | { | ||
3906 | if (list_empty(&p->children)) return NULL; | ||
3907 | return list_entry(p->children.next,struct task_struct,sibling); | ||
3908 | } | ||
3909 | |||
3910 | static inline struct task_struct *older_sibling(struct task_struct *p) | ||
3911 | { | ||
3912 | if (p->sibling.prev==&p->parent->children) return NULL; | ||
3913 | return list_entry(p->sibling.prev,struct task_struct,sibling); | ||
3914 | } | ||
3915 | |||
3916 | static inline struct task_struct *younger_sibling(struct task_struct *p) | ||
3917 | { | ||
3918 | if (p->sibling.next==&p->parent->children) return NULL; | ||
3919 | return list_entry(p->sibling.next,struct task_struct,sibling); | ||
3920 | } | ||
3921 | |||
3922 | static void show_task(task_t * p) | ||
3923 | { | ||
3924 | task_t *relative; | ||
3925 | unsigned state; | ||
3926 | unsigned long free = 0; | ||
3927 | static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" }; | ||
3928 | |||
3929 | printk("%-13.13s ", p->comm); | ||
3930 | state = p->state ? __ffs(p->state) + 1 : 0; | ||
3931 | if (state < ARRAY_SIZE(stat_nam)) | ||
3932 | printk(stat_nam[state]); | ||
3933 | else | ||
3934 | printk("?"); | ||
3935 | #if (BITS_PER_LONG == 32) | ||
3936 | if (state == TASK_RUNNING) | ||
3937 | printk(" running "); | ||
3938 | else | ||
3939 | printk(" %08lX ", thread_saved_pc(p)); | ||
3940 | #else | ||
3941 | if (state == TASK_RUNNING) | ||
3942 | printk(" running task "); | ||
3943 | else | ||
3944 | printk(" %016lx ", thread_saved_pc(p)); | ||
3945 | #endif | ||
3946 | #ifdef CONFIG_DEBUG_STACK_USAGE | ||
3947 | { | ||
3948 | unsigned long * n = (unsigned long *) (p->thread_info+1); | ||
3949 | while (!*n) | ||
3950 | n++; | ||
3951 | free = (unsigned long) n - (unsigned long)(p->thread_info+1); | ||
3952 | } | ||
3953 | #endif | ||
3954 | printk("%5lu %5d %6d ", free, p->pid, p->parent->pid); | ||
3955 | if ((relative = eldest_child(p))) | ||
3956 | printk("%5d ", relative->pid); | ||
3957 | else | ||
3958 | printk(" "); | ||
3959 | if ((relative = younger_sibling(p))) | ||
3960 | printk("%7d", relative->pid); | ||
3961 | else | ||
3962 | printk(" "); | ||
3963 | if ((relative = older_sibling(p))) | ||
3964 | printk(" %5d", relative->pid); | ||
3965 | else | ||
3966 | printk(" "); | ||
3967 | if (!p->mm) | ||
3968 | printk(" (L-TLB)\n"); | ||
3969 | else | ||
3970 | printk(" (NOTLB)\n"); | ||
3971 | |||
3972 | if (state != TASK_RUNNING) | ||
3973 | show_stack(p, NULL); | ||
3974 | } | ||
3975 | |||
3976 | void show_state(void) | ||
3977 | { | ||
3978 | task_t *g, *p; | ||
3979 | |||
3980 | #if (BITS_PER_LONG == 32) | ||
3981 | printk("\n" | ||
3982 | " sibling\n"); | ||
3983 | printk(" task PC pid father child younger older\n"); | ||
3984 | #else | ||
3985 | printk("\n" | ||
3986 | " sibling\n"); | ||
3987 | printk(" task PC pid father child younger older\n"); | ||
3988 | #endif | ||
3989 | read_lock(&tasklist_lock); | ||
3990 | do_each_thread(g, p) { | ||
3991 | /* | ||
3992 | * reset the NMI-timeout, listing all files on a slow | ||
3993 | * console might take alot of time: | ||
3994 | */ | ||
3995 | touch_nmi_watchdog(); | ||
3996 | show_task(p); | ||
3997 | } while_each_thread(g, p); | ||
3998 | |||
3999 | read_unlock(&tasklist_lock); | ||
4000 | } | ||
4001 | |||
4002 | void __devinit init_idle(task_t *idle, int cpu) | ||
4003 | { | ||
4004 | runqueue_t *rq = cpu_rq(cpu); | ||
4005 | unsigned long flags; | ||
4006 | |||
4007 | idle->sleep_avg = 0; | ||
4008 | idle->array = NULL; | ||
4009 | idle->prio = MAX_PRIO; | ||
4010 | idle->state = TASK_RUNNING; | ||
4011 | idle->cpus_allowed = cpumask_of_cpu(cpu); | ||
4012 | set_task_cpu(idle, cpu); | ||
4013 | |||
4014 | spin_lock_irqsave(&rq->lock, flags); | ||
4015 | rq->curr = rq->idle = idle; | ||
4016 | set_tsk_need_resched(idle); | ||
4017 | spin_unlock_irqrestore(&rq->lock, flags); | ||
4018 | |||
4019 | /* Set the preempt count _outside_ the spinlocks! */ | ||
4020 | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | ||
4021 | idle->thread_info->preempt_count = (idle->lock_depth >= 0); | ||
4022 | #else | ||
4023 | idle->thread_info->preempt_count = 0; | ||
4024 | #endif | ||
4025 | } | ||
4026 | |||
4027 | /* | ||
4028 | * In a system that switches off the HZ timer nohz_cpu_mask | ||
4029 | * indicates which cpus entered this state. This is used | ||
4030 | * in the rcu update to wait only for active cpus. For system | ||
4031 | * which do not switch off the HZ timer nohz_cpu_mask should | ||
4032 | * always be CPU_MASK_NONE. | ||
4033 | */ | ||
4034 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | ||
4035 | |||
4036 | #ifdef CONFIG_SMP | ||
4037 | /* | ||
4038 | * This is how migration works: | ||
4039 | * | ||
4040 | * 1) we queue a migration_req_t structure in the source CPU's | ||
4041 | * runqueue and wake up that CPU's migration thread. | ||
4042 | * 2) we down() the locked semaphore => thread blocks. | ||
4043 | * 3) migration thread wakes up (implicitly it forces the migrated | ||
4044 | * thread off the CPU) | ||
4045 | * 4) it gets the migration request and checks whether the migrated | ||
4046 | * task is still in the wrong runqueue. | ||
4047 | * 5) if it's in the wrong runqueue then the migration thread removes | ||
4048 | * it and puts it into the right queue. | ||
4049 | * 6) migration thread up()s the semaphore. | ||
4050 | * 7) we wake up and the migration is done. | ||
4051 | */ | ||
4052 | |||
4053 | /* | ||
4054 | * Change a given task's CPU affinity. Migrate the thread to a | ||
4055 | * proper CPU and schedule it away if the CPU it's executing on | ||
4056 | * is removed from the allowed bitmask. | ||
4057 | * | ||
4058 | * NOTE: the caller must have a valid reference to the task, the | ||
4059 | * task must not exit() & deallocate itself prematurely. The | ||
4060 | * call is not atomic; no spinlocks may be held. | ||
4061 | */ | ||
4062 | int set_cpus_allowed(task_t *p, cpumask_t new_mask) | ||
4063 | { | ||
4064 | unsigned long flags; | ||
4065 | int ret = 0; | ||
4066 | migration_req_t req; | ||
4067 | runqueue_t *rq; | ||
4068 | |||
4069 | rq = task_rq_lock(p, &flags); | ||
4070 | if (!cpus_intersects(new_mask, cpu_online_map)) { | ||
4071 | ret = -EINVAL; | ||
4072 | goto out; | ||
4073 | } | ||
4074 | |||
4075 | p->cpus_allowed = new_mask; | ||
4076 | /* Can the task run on the task's current CPU? If so, we're done */ | ||
4077 | if (cpu_isset(task_cpu(p), new_mask)) | ||
4078 | goto out; | ||
4079 | |||
4080 | if (migrate_task(p, any_online_cpu(new_mask), &req)) { | ||
4081 | /* Need help from migration thread: drop lock and wait. */ | ||
4082 | task_rq_unlock(rq, &flags); | ||
4083 | wake_up_process(rq->migration_thread); | ||
4084 | wait_for_completion(&req.done); | ||
4085 | tlb_migrate_finish(p->mm); | ||
4086 | return 0; | ||
4087 | } | ||
4088 | out: | ||
4089 | task_rq_unlock(rq, &flags); | ||
4090 | return ret; | ||
4091 | } | ||
4092 | |||
4093 | EXPORT_SYMBOL_GPL(set_cpus_allowed); | ||
4094 | |||
4095 | /* | ||
4096 | * Move (not current) task off this cpu, onto dest cpu. We're doing | ||
4097 | * this because either it can't run here any more (set_cpus_allowed() | ||
4098 | * away from this CPU, or CPU going down), or because we're | ||
4099 | * attempting to rebalance this task on exec (sched_exec). | ||
4100 | * | ||
4101 | * So we race with normal scheduler movements, but that's OK, as long | ||
4102 | * as the task is no longer on this CPU. | ||
4103 | */ | ||
4104 | static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | ||
4105 | { | ||
4106 | runqueue_t *rq_dest, *rq_src; | ||
4107 | |||
4108 | if (unlikely(cpu_is_offline(dest_cpu))) | ||
4109 | return; | ||
4110 | |||
4111 | rq_src = cpu_rq(src_cpu); | ||
4112 | rq_dest = cpu_rq(dest_cpu); | ||
4113 | |||
4114 | double_rq_lock(rq_src, rq_dest); | ||
4115 | /* Already moved. */ | ||
4116 | if (task_cpu(p) != src_cpu) | ||
4117 | goto out; | ||
4118 | /* Affinity changed (again). */ | ||
4119 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | ||
4120 | goto out; | ||
4121 | |||
4122 | set_task_cpu(p, dest_cpu); | ||
4123 | if (p->array) { | ||
4124 | /* | ||
4125 | * Sync timestamp with rq_dest's before activating. | ||
4126 | * The same thing could be achieved by doing this step | ||
4127 | * afterwards, and pretending it was a local activate. | ||
4128 | * This way is cleaner and logically correct. | ||
4129 | */ | ||
4130 | p->timestamp = p->timestamp - rq_src->timestamp_last_tick | ||
4131 | + rq_dest->timestamp_last_tick; | ||
4132 | deactivate_task(p, rq_src); | ||
4133 | activate_task(p, rq_dest, 0); | ||
4134 | if (TASK_PREEMPTS_CURR(p, rq_dest)) | ||
4135 | resched_task(rq_dest->curr); | ||
4136 | } | ||
4137 | |||
4138 | out: | ||
4139 | double_rq_unlock(rq_src, rq_dest); | ||
4140 | } | ||
4141 | |||
4142 | /* | ||
4143 | * migration_thread - this is a highprio system thread that performs | ||
4144 | * thread migration by bumping thread off CPU then 'pushing' onto | ||
4145 | * another runqueue. | ||
4146 | */ | ||
4147 | static int migration_thread(void * data) | ||
4148 | { | ||
4149 | runqueue_t *rq; | ||
4150 | int cpu = (long)data; | ||
4151 | |||
4152 | rq = cpu_rq(cpu); | ||
4153 | BUG_ON(rq->migration_thread != current); | ||
4154 | |||
4155 | set_current_state(TASK_INTERRUPTIBLE); | ||
4156 | while (!kthread_should_stop()) { | ||
4157 | struct list_head *head; | ||
4158 | migration_req_t *req; | ||
4159 | |||
4160 | if (current->flags & PF_FREEZE) | ||
4161 | refrigerator(PF_FREEZE); | ||
4162 | |||
4163 | spin_lock_irq(&rq->lock); | ||
4164 | |||
4165 | if (cpu_is_offline(cpu)) { | ||
4166 | spin_unlock_irq(&rq->lock); | ||
4167 | goto wait_to_die; | ||
4168 | } | ||
4169 | |||
4170 | if (rq->active_balance) { | ||
4171 | active_load_balance(rq, cpu); | ||
4172 | rq->active_balance = 0; | ||
4173 | } | ||
4174 | |||
4175 | head = &rq->migration_queue; | ||
4176 | |||
4177 | if (list_empty(head)) { | ||
4178 | spin_unlock_irq(&rq->lock); | ||
4179 | schedule(); | ||
4180 | set_current_state(TASK_INTERRUPTIBLE); | ||
4181 | continue; | ||
4182 | } | ||
4183 | req = list_entry(head->next, migration_req_t, list); | ||
4184 | list_del_init(head->next); | ||
4185 | |||
4186 | if (req->type == REQ_MOVE_TASK) { | ||
4187 | spin_unlock(&rq->lock); | ||
4188 | __migrate_task(req->task, cpu, req->dest_cpu); | ||
4189 | local_irq_enable(); | ||
4190 | } else if (req->type == REQ_SET_DOMAIN) { | ||
4191 | rq->sd = req->sd; | ||
4192 | spin_unlock_irq(&rq->lock); | ||
4193 | } else { | ||
4194 | spin_unlock_irq(&rq->lock); | ||
4195 | WARN_ON(1); | ||
4196 | } | ||
4197 | |||
4198 | complete(&req->done); | ||
4199 | } | ||
4200 | __set_current_state(TASK_RUNNING); | ||
4201 | return 0; | ||
4202 | |||
4203 | wait_to_die: | ||
4204 | /* Wait for kthread_stop */ | ||
4205 | set_current_state(TASK_INTERRUPTIBLE); | ||
4206 | while (!kthread_should_stop()) { | ||
4207 | schedule(); | ||
4208 | set_current_state(TASK_INTERRUPTIBLE); | ||
4209 | } | ||
4210 | __set_current_state(TASK_RUNNING); | ||
4211 | return 0; | ||
4212 | } | ||
4213 | |||
4214 | #ifdef CONFIG_HOTPLUG_CPU | ||
4215 | /* Figure out where task on dead CPU should go, use force if neccessary. */ | ||
4216 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk) | ||
4217 | { | ||
4218 | int dest_cpu; | ||
4219 | cpumask_t mask; | ||
4220 | |||
4221 | /* On same node? */ | ||
4222 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | ||
4223 | cpus_and(mask, mask, tsk->cpus_allowed); | ||
4224 | dest_cpu = any_online_cpu(mask); | ||
4225 | |||
4226 | /* On any allowed CPU? */ | ||
4227 | if (dest_cpu == NR_CPUS) | ||
4228 | dest_cpu = any_online_cpu(tsk->cpus_allowed); | ||
4229 | |||
4230 | /* No more Mr. Nice Guy. */ | ||
4231 | if (dest_cpu == NR_CPUS) { | ||
4232 | tsk->cpus_allowed = cpuset_cpus_allowed(tsk); | ||
4233 | dest_cpu = any_online_cpu(tsk->cpus_allowed); | ||
4234 | |||
4235 | /* | ||
4236 | * Don't tell them about moving exiting tasks or | ||
4237 | * kernel threads (both mm NULL), since they never | ||
4238 | * leave kernel. | ||
4239 | */ | ||
4240 | if (tsk->mm && printk_ratelimit()) | ||
4241 | printk(KERN_INFO "process %d (%s) no " | ||
4242 | "longer affine to cpu%d\n", | ||
4243 | tsk->pid, tsk->comm, dead_cpu); | ||
4244 | } | ||
4245 | __migrate_task(tsk, dead_cpu, dest_cpu); | ||
4246 | } | ||
4247 | |||
4248 | /* | ||
4249 | * While a dead CPU has no uninterruptible tasks queued at this point, | ||
4250 | * it might still have a nonzero ->nr_uninterruptible counter, because | ||
4251 | * for performance reasons the counter is not stricly tracking tasks to | ||
4252 | * their home CPUs. So we just add the counter to another CPU's counter, | ||
4253 | * to keep the global sum constant after CPU-down: | ||
4254 | */ | ||
4255 | static void migrate_nr_uninterruptible(runqueue_t *rq_src) | ||
4256 | { | ||
4257 | runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); | ||
4258 | unsigned long flags; | ||
4259 | |||
4260 | local_irq_save(flags); | ||
4261 | double_rq_lock(rq_src, rq_dest); | ||
4262 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | ||
4263 | rq_src->nr_uninterruptible = 0; | ||
4264 | double_rq_unlock(rq_src, rq_dest); | ||
4265 | local_irq_restore(flags); | ||
4266 | } | ||
4267 | |||
4268 | /* Run through task list and migrate tasks from the dead cpu. */ | ||
4269 | static void migrate_live_tasks(int src_cpu) | ||
4270 | { | ||
4271 | struct task_struct *tsk, *t; | ||
4272 | |||
4273 | write_lock_irq(&tasklist_lock); | ||
4274 | |||
4275 | do_each_thread(t, tsk) { | ||
4276 | if (tsk == current) | ||
4277 | continue; | ||
4278 | |||
4279 | if (task_cpu(tsk) == src_cpu) | ||
4280 | move_task_off_dead_cpu(src_cpu, tsk); | ||
4281 | } while_each_thread(t, tsk); | ||
4282 | |||
4283 | write_unlock_irq(&tasklist_lock); | ||
4284 | } | ||
4285 | |||
4286 | /* Schedules idle task to be the next runnable task on current CPU. | ||
4287 | * It does so by boosting its priority to highest possible and adding it to | ||
4288 | * the _front_ of runqueue. Used by CPU offline code. | ||
4289 | */ | ||
4290 | void sched_idle_next(void) | ||
4291 | { | ||
4292 | int cpu = smp_processor_id(); | ||
4293 | runqueue_t *rq = this_rq(); | ||
4294 | struct task_struct *p = rq->idle; | ||
4295 | unsigned long flags; | ||
4296 | |||
4297 | /* cpu has to be offline */ | ||
4298 | BUG_ON(cpu_online(cpu)); | ||
4299 | |||
4300 | /* Strictly not necessary since rest of the CPUs are stopped by now | ||
4301 | * and interrupts disabled on current cpu. | ||
4302 | */ | ||
4303 | spin_lock_irqsave(&rq->lock, flags); | ||
4304 | |||
4305 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | ||
4306 | /* Add idle task to _front_ of it's priority queue */ | ||
4307 | __activate_idle_task(p, rq); | ||
4308 | |||
4309 | spin_unlock_irqrestore(&rq->lock, flags); | ||
4310 | } | ||
4311 | |||
4312 | /* Ensures that the idle task is using init_mm right before its cpu goes | ||
4313 | * offline. | ||
4314 | */ | ||
4315 | void idle_task_exit(void) | ||
4316 | { | ||
4317 | struct mm_struct *mm = current->active_mm; | ||
4318 | |||
4319 | BUG_ON(cpu_online(smp_processor_id())); | ||
4320 | |||
4321 | if (mm != &init_mm) | ||
4322 | switch_mm(mm, &init_mm, current); | ||
4323 | mmdrop(mm); | ||
4324 | } | ||
4325 | |||
4326 | static void migrate_dead(unsigned int dead_cpu, task_t *tsk) | ||
4327 | { | ||
4328 | struct runqueue *rq = cpu_rq(dead_cpu); | ||
4329 | |||
4330 | /* Must be exiting, otherwise would be on tasklist. */ | ||
4331 | BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD); | ||
4332 | |||
4333 | /* Cannot have done final schedule yet: would have vanished. */ | ||
4334 | BUG_ON(tsk->flags & PF_DEAD); | ||
4335 | |||
4336 | get_task_struct(tsk); | ||
4337 | |||
4338 | /* | ||
4339 | * Drop lock around migration; if someone else moves it, | ||
4340 | * that's OK. No task can be added to this CPU, so iteration is | ||
4341 | * fine. | ||
4342 | */ | ||
4343 | spin_unlock_irq(&rq->lock); | ||
4344 | move_task_off_dead_cpu(dead_cpu, tsk); | ||
4345 | spin_lock_irq(&rq->lock); | ||
4346 | |||
4347 | put_task_struct(tsk); | ||
4348 | } | ||
4349 | |||
4350 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | ||
4351 | static void migrate_dead_tasks(unsigned int dead_cpu) | ||
4352 | { | ||
4353 | unsigned arr, i; | ||
4354 | struct runqueue *rq = cpu_rq(dead_cpu); | ||
4355 | |||
4356 | for (arr = 0; arr < 2; arr++) { | ||
4357 | for (i = 0; i < MAX_PRIO; i++) { | ||
4358 | struct list_head *list = &rq->arrays[arr].queue[i]; | ||
4359 | while (!list_empty(list)) | ||
4360 | migrate_dead(dead_cpu, | ||
4361 | list_entry(list->next, task_t, | ||
4362 | run_list)); | ||
4363 | } | ||
4364 | } | ||
4365 | } | ||
4366 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
4367 | |||
4368 | /* | ||
4369 | * migration_call - callback that gets triggered when a CPU is added. | ||
4370 | * Here we can start up the necessary migration thread for the new CPU. | ||
4371 | */ | ||
4372 | static int migration_call(struct notifier_block *nfb, unsigned long action, | ||
4373 | void *hcpu) | ||
4374 | { | ||
4375 | int cpu = (long)hcpu; | ||
4376 | struct task_struct *p; | ||
4377 | struct runqueue *rq; | ||
4378 | unsigned long flags; | ||
4379 | |||
4380 | switch (action) { | ||
4381 | case CPU_UP_PREPARE: | ||
4382 | p = kthread_create(migration_thread, hcpu, "migration/%d",cpu); | ||
4383 | if (IS_ERR(p)) | ||
4384 | return NOTIFY_BAD; | ||
4385 | p->flags |= PF_NOFREEZE; | ||
4386 | kthread_bind(p, cpu); | ||
4387 | /* Must be high prio: stop_machine expects to yield to it. */ | ||
4388 | rq = task_rq_lock(p, &flags); | ||
4389 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | ||
4390 | task_rq_unlock(rq, &flags); | ||
4391 | cpu_rq(cpu)->migration_thread = p; | ||
4392 | break; | ||
4393 | case CPU_ONLINE: | ||
4394 | /* Strictly unneccessary, as first user will wake it. */ | ||
4395 | wake_up_process(cpu_rq(cpu)->migration_thread); | ||
4396 | break; | ||
4397 | #ifdef CONFIG_HOTPLUG_CPU | ||
4398 | case CPU_UP_CANCELED: | ||
4399 | /* Unbind it from offline cpu so it can run. Fall thru. */ | ||
4400 | kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id()); | ||
4401 | kthread_stop(cpu_rq(cpu)->migration_thread); | ||
4402 | cpu_rq(cpu)->migration_thread = NULL; | ||
4403 | break; | ||
4404 | case CPU_DEAD: | ||
4405 | migrate_live_tasks(cpu); | ||
4406 | rq = cpu_rq(cpu); | ||
4407 | kthread_stop(rq->migration_thread); | ||
4408 | rq->migration_thread = NULL; | ||
4409 | /* Idle task back to normal (off runqueue, low prio) */ | ||
4410 | rq = task_rq_lock(rq->idle, &flags); | ||
4411 | deactivate_task(rq->idle, rq); | ||
4412 | rq->idle->static_prio = MAX_PRIO; | ||
4413 | __setscheduler(rq->idle, SCHED_NORMAL, 0); | ||
4414 | migrate_dead_tasks(cpu); | ||
4415 | task_rq_unlock(rq, &flags); | ||
4416 | migrate_nr_uninterruptible(rq); | ||
4417 | BUG_ON(rq->nr_running != 0); | ||
4418 | |||
4419 | /* No need to migrate the tasks: it was best-effort if | ||
4420 | * they didn't do lock_cpu_hotplug(). Just wake up | ||
4421 | * the requestors. */ | ||
4422 | spin_lock_irq(&rq->lock); | ||
4423 | while (!list_empty(&rq->migration_queue)) { | ||
4424 | migration_req_t *req; | ||
4425 | req = list_entry(rq->migration_queue.next, | ||
4426 | migration_req_t, list); | ||
4427 | BUG_ON(req->type != REQ_MOVE_TASK); | ||
4428 | list_del_init(&req->list); | ||
4429 | complete(&req->done); | ||
4430 | } | ||
4431 | spin_unlock_irq(&rq->lock); | ||
4432 | break; | ||
4433 | #endif | ||
4434 | } | ||
4435 | return NOTIFY_OK; | ||
4436 | } | ||
4437 | |||
4438 | /* Register at highest priority so that task migration (migrate_all_tasks) | ||
4439 | * happens before everything else. | ||
4440 | */ | ||
4441 | static struct notifier_block __devinitdata migration_notifier = { | ||
4442 | .notifier_call = migration_call, | ||
4443 | .priority = 10 | ||
4444 | }; | ||
4445 | |||
4446 | int __init migration_init(void) | ||
4447 | { | ||
4448 | void *cpu = (void *)(long)smp_processor_id(); | ||
4449 | /* Start one for boot CPU. */ | ||
4450 | migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | ||
4451 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | ||
4452 | register_cpu_notifier(&migration_notifier); | ||
4453 | return 0; | ||
4454 | } | ||
4455 | #endif | ||
4456 | |||
4457 | #ifdef CONFIG_SMP | ||
4458 | #define SCHED_DOMAIN_DEBUG | ||
4459 | #ifdef SCHED_DOMAIN_DEBUG | ||
4460 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | ||
4461 | { | ||
4462 | int level = 0; | ||
4463 | |||
4464 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | ||
4465 | |||
4466 | do { | ||
4467 | int i; | ||
4468 | char str[NR_CPUS]; | ||
4469 | struct sched_group *group = sd->groups; | ||
4470 | cpumask_t groupmask; | ||
4471 | |||
4472 | cpumask_scnprintf(str, NR_CPUS, sd->span); | ||
4473 | cpus_clear(groupmask); | ||
4474 | |||
4475 | printk(KERN_DEBUG); | ||
4476 | for (i = 0; i < level + 1; i++) | ||
4477 | printk(" "); | ||
4478 | printk("domain %d: ", level); | ||
4479 | |||
4480 | if (!(sd->flags & SD_LOAD_BALANCE)) { | ||
4481 | printk("does not load-balance\n"); | ||
4482 | if (sd->parent) | ||
4483 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); | ||
4484 | break; | ||
4485 | } | ||
4486 | |||
4487 | printk("span %s\n", str); | ||
4488 | |||
4489 | if (!cpu_isset(cpu, sd->span)) | ||
4490 | printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); | ||
4491 | if (!cpu_isset(cpu, group->cpumask)) | ||
4492 | printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); | ||
4493 | |||
4494 | printk(KERN_DEBUG); | ||
4495 | for (i = 0; i < level + 2; i++) | ||
4496 | printk(" "); | ||
4497 | printk("groups:"); | ||
4498 | do { | ||
4499 | if (!group) { | ||
4500 | printk("\n"); | ||
4501 | printk(KERN_ERR "ERROR: group is NULL\n"); | ||
4502 | break; | ||
4503 | } | ||
4504 | |||
4505 | if (!group->cpu_power) { | ||
4506 | printk("\n"); | ||
4507 | printk(KERN_ERR "ERROR: domain->cpu_power not set\n"); | ||
4508 | } | ||
4509 | |||
4510 | if (!cpus_weight(group->cpumask)) { | ||
4511 | printk("\n"); | ||
4512 | printk(KERN_ERR "ERROR: empty group\n"); | ||
4513 | } | ||
4514 | |||
4515 | if (cpus_intersects(groupmask, group->cpumask)) { | ||
4516 | printk("\n"); | ||
4517 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | ||
4518 | } | ||
4519 | |||
4520 | cpus_or(groupmask, groupmask, group->cpumask); | ||
4521 | |||
4522 | cpumask_scnprintf(str, NR_CPUS, group->cpumask); | ||
4523 | printk(" %s", str); | ||
4524 | |||
4525 | group = group->next; | ||
4526 | } while (group != sd->groups); | ||
4527 | printk("\n"); | ||
4528 | |||
4529 | if (!cpus_equal(sd->span, groupmask)) | ||
4530 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | ||
4531 | |||
4532 | level++; | ||
4533 | sd = sd->parent; | ||
4534 | |||
4535 | if (sd) { | ||
4536 | if (!cpus_subset(groupmask, sd->span)) | ||
4537 | printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); | ||
4538 | } | ||
4539 | |||
4540 | } while (sd); | ||
4541 | } | ||
4542 | #else | ||
4543 | #define sched_domain_debug(sd, cpu) {} | ||
4544 | #endif | ||
4545 | |||
4546 | /* | ||
4547 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | ||
4548 | * hold the hotplug lock. | ||
4549 | */ | ||
4550 | void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu) | ||
4551 | { | ||
4552 | migration_req_t req; | ||
4553 | unsigned long flags; | ||
4554 | runqueue_t *rq = cpu_rq(cpu); | ||
4555 | int local = 1; | ||
4556 | |||
4557 | sched_domain_debug(sd, cpu); | ||
4558 | |||
4559 | spin_lock_irqsave(&rq->lock, flags); | ||
4560 | |||
4561 | if (cpu == smp_processor_id() || !cpu_online(cpu)) { | ||
4562 | rq->sd = sd; | ||
4563 | } else { | ||
4564 | init_completion(&req.done); | ||
4565 | req.type = REQ_SET_DOMAIN; | ||
4566 | req.sd = sd; | ||
4567 | list_add(&req.list, &rq->migration_queue); | ||
4568 | local = 0; | ||
4569 | } | ||
4570 | |||
4571 | spin_unlock_irqrestore(&rq->lock, flags); | ||
4572 | |||
4573 | if (!local) { | ||
4574 | wake_up_process(rq->migration_thread); | ||
4575 | wait_for_completion(&req.done); | ||
4576 | } | ||
4577 | } | ||
4578 | |||
4579 | /* cpus with isolated domains */ | ||
4580 | cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE; | ||
4581 | |||
4582 | /* Setup the mask of cpus configured for isolated domains */ | ||
4583 | static int __init isolated_cpu_setup(char *str) | ||
4584 | { | ||
4585 | int ints[NR_CPUS], i; | ||
4586 | |||
4587 | str = get_options(str, ARRAY_SIZE(ints), ints); | ||
4588 | cpus_clear(cpu_isolated_map); | ||
4589 | for (i = 1; i <= ints[0]; i++) | ||
4590 | if (ints[i] < NR_CPUS) | ||
4591 | cpu_set(ints[i], cpu_isolated_map); | ||
4592 | return 1; | ||
4593 | } | ||
4594 | |||
4595 | __setup ("isolcpus=", isolated_cpu_setup); | ||
4596 | |||
4597 | /* | ||
4598 | * init_sched_build_groups takes an array of groups, the cpumask we wish | ||
4599 | * to span, and a pointer to a function which identifies what group a CPU | ||
4600 | * belongs to. The return value of group_fn must be a valid index into the | ||
4601 | * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we | ||
4602 | * keep track of groups covered with a cpumask_t). | ||
4603 | * | ||
4604 | * init_sched_build_groups will build a circular linked list of the groups | ||
4605 | * covered by the given span, and will set each group's ->cpumask correctly, | ||
4606 | * and ->cpu_power to 0. | ||
4607 | */ | ||
4608 | void __devinit init_sched_build_groups(struct sched_group groups[], | ||
4609 | cpumask_t span, int (*group_fn)(int cpu)) | ||
4610 | { | ||
4611 | struct sched_group *first = NULL, *last = NULL; | ||
4612 | cpumask_t covered = CPU_MASK_NONE; | ||
4613 | int i; | ||
4614 | |||
4615 | for_each_cpu_mask(i, span) { | ||
4616 | int group = group_fn(i); | ||
4617 | struct sched_group *sg = &groups[group]; | ||
4618 | int j; | ||
4619 | |||
4620 | if (cpu_isset(i, covered)) | ||
4621 | continue; | ||
4622 | |||
4623 | sg->cpumask = CPU_MASK_NONE; | ||
4624 | sg->cpu_power = 0; | ||
4625 | |||
4626 | for_each_cpu_mask(j, span) { | ||
4627 | if (group_fn(j) != group) | ||
4628 | continue; | ||
4629 | |||
4630 | cpu_set(j, covered); | ||
4631 | cpu_set(j, sg->cpumask); | ||
4632 | } | ||
4633 | if (!first) | ||
4634 | first = sg; | ||
4635 | if (last) | ||
4636 | last->next = sg; | ||
4637 | last = sg; | ||
4638 | } | ||
4639 | last->next = first; | ||
4640 | } | ||
4641 | |||
4642 | |||
4643 | #ifdef ARCH_HAS_SCHED_DOMAIN | ||
4644 | extern void __devinit arch_init_sched_domains(void); | ||
4645 | extern void __devinit arch_destroy_sched_domains(void); | ||
4646 | #else | ||
4647 | #ifdef CONFIG_SCHED_SMT | ||
4648 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | ||
4649 | static struct sched_group sched_group_cpus[NR_CPUS]; | ||
4650 | static int __devinit cpu_to_cpu_group(int cpu) | ||
4651 | { | ||
4652 | return cpu; | ||
4653 | } | ||
4654 | #endif | ||
4655 | |||
4656 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | ||
4657 | static struct sched_group sched_group_phys[NR_CPUS]; | ||
4658 | static int __devinit cpu_to_phys_group(int cpu) | ||
4659 | { | ||
4660 | #ifdef CONFIG_SCHED_SMT | ||
4661 | return first_cpu(cpu_sibling_map[cpu]); | ||
4662 | #else | ||
4663 | return cpu; | ||
4664 | #endif | ||
4665 | } | ||
4666 | |||
4667 | #ifdef CONFIG_NUMA | ||
4668 | |||
4669 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | ||
4670 | static struct sched_group sched_group_nodes[MAX_NUMNODES]; | ||
4671 | static int __devinit cpu_to_node_group(int cpu) | ||
4672 | { | ||
4673 | return cpu_to_node(cpu); | ||
4674 | } | ||
4675 | #endif | ||
4676 | |||
4677 | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | ||
4678 | /* | ||
4679 | * The domains setup code relies on siblings not spanning | ||
4680 | * multiple nodes. Make sure the architecture has a proper | ||
4681 | * siblings map: | ||
4682 | */ | ||
4683 | static void check_sibling_maps(void) | ||
4684 | { | ||
4685 | int i, j; | ||
4686 | |||
4687 | for_each_online_cpu(i) { | ||
4688 | for_each_cpu_mask(j, cpu_sibling_map[i]) { | ||
4689 | if (cpu_to_node(i) != cpu_to_node(j)) { | ||
4690 | printk(KERN_INFO "warning: CPU %d siblings map " | ||
4691 | "to different node - isolating " | ||
4692 | "them.\n", i); | ||
4693 | cpu_sibling_map[i] = cpumask_of_cpu(i); | ||
4694 | break; | ||
4695 | } | ||
4696 | } | ||
4697 | } | ||
4698 | } | ||
4699 | #endif | ||
4700 | |||
4701 | /* | ||
4702 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | ||
4703 | */ | ||
4704 | static void __devinit arch_init_sched_domains(void) | ||
4705 | { | ||
4706 | int i; | ||
4707 | cpumask_t cpu_default_map; | ||
4708 | |||
4709 | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | ||
4710 | check_sibling_maps(); | ||
4711 | #endif | ||
4712 | /* | ||
4713 | * Setup mask for cpus without special case scheduling requirements. | ||
4714 | * For now this just excludes isolated cpus, but could be used to | ||
4715 | * exclude other special cases in the future. | ||
4716 | */ | ||
4717 | cpus_complement(cpu_default_map, cpu_isolated_map); | ||
4718 | cpus_and(cpu_default_map, cpu_default_map, cpu_online_map); | ||
4719 | |||
4720 | /* | ||
4721 | * Set up domains. Isolated domains just stay on the dummy domain. | ||
4722 | */ | ||
4723 | for_each_cpu_mask(i, cpu_default_map) { | ||
4724 | int group; | ||
4725 | struct sched_domain *sd = NULL, *p; | ||
4726 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | ||
4727 | |||
4728 | cpus_and(nodemask, nodemask, cpu_default_map); | ||
4729 | |||
4730 | #ifdef CONFIG_NUMA | ||
4731 | sd = &per_cpu(node_domains, i); | ||
4732 | group = cpu_to_node_group(i); | ||
4733 | *sd = SD_NODE_INIT; | ||
4734 | sd->span = cpu_default_map; | ||
4735 | sd->groups = &sched_group_nodes[group]; | ||
4736 | #endif | ||
4737 | |||
4738 | p = sd; | ||
4739 | sd = &per_cpu(phys_domains, i); | ||
4740 | group = cpu_to_phys_group(i); | ||
4741 | *sd = SD_CPU_INIT; | ||
4742 | sd->span = nodemask; | ||
4743 | sd->parent = p; | ||
4744 | sd->groups = &sched_group_phys[group]; | ||
4745 | |||
4746 | #ifdef CONFIG_SCHED_SMT | ||
4747 | p = sd; | ||
4748 | sd = &per_cpu(cpu_domains, i); | ||
4749 | group = cpu_to_cpu_group(i); | ||
4750 | *sd = SD_SIBLING_INIT; | ||
4751 | sd->span = cpu_sibling_map[i]; | ||
4752 | cpus_and(sd->span, sd->span, cpu_default_map); | ||
4753 | sd->parent = p; | ||
4754 | sd->groups = &sched_group_cpus[group]; | ||
4755 | #endif | ||
4756 | } | ||
4757 | |||
4758 | #ifdef CONFIG_SCHED_SMT | ||
4759 | /* Set up CPU (sibling) groups */ | ||
4760 | for_each_online_cpu(i) { | ||
4761 | cpumask_t this_sibling_map = cpu_sibling_map[i]; | ||
4762 | cpus_and(this_sibling_map, this_sibling_map, cpu_default_map); | ||
4763 | if (i != first_cpu(this_sibling_map)) | ||
4764 | continue; | ||
4765 | |||
4766 | init_sched_build_groups(sched_group_cpus, this_sibling_map, | ||
4767 | &cpu_to_cpu_group); | ||
4768 | } | ||
4769 | #endif | ||
4770 | |||
4771 | /* Set up physical groups */ | ||
4772 | for (i = 0; i < MAX_NUMNODES; i++) { | ||
4773 | cpumask_t nodemask = node_to_cpumask(i); | ||
4774 | |||
4775 | cpus_and(nodemask, nodemask, cpu_default_map); | ||
4776 | if (cpus_empty(nodemask)) | ||
4777 | continue; | ||
4778 | |||
4779 | init_sched_build_groups(sched_group_phys, nodemask, | ||
4780 | &cpu_to_phys_group); | ||
4781 | } | ||
4782 | |||
4783 | #ifdef CONFIG_NUMA | ||
4784 | /* Set up node groups */ | ||
4785 | init_sched_build_groups(sched_group_nodes, cpu_default_map, | ||
4786 | &cpu_to_node_group); | ||
4787 | #endif | ||
4788 | |||
4789 | /* Calculate CPU power for physical packages and nodes */ | ||
4790 | for_each_cpu_mask(i, cpu_default_map) { | ||
4791 | int power; | ||
4792 | struct sched_domain *sd; | ||
4793 | #ifdef CONFIG_SCHED_SMT | ||
4794 | sd = &per_cpu(cpu_domains, i); | ||
4795 | power = SCHED_LOAD_SCALE; | ||
4796 | sd->groups->cpu_power = power; | ||
4797 | #endif | ||
4798 | |||
4799 | sd = &per_cpu(phys_domains, i); | ||
4800 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | ||
4801 | (cpus_weight(sd->groups->cpumask)-1) / 10; | ||
4802 | sd->groups->cpu_power = power; | ||
4803 | |||
4804 | #ifdef CONFIG_NUMA | ||
4805 | if (i == first_cpu(sd->groups->cpumask)) { | ||
4806 | /* Only add "power" once for each physical package. */ | ||
4807 | sd = &per_cpu(node_domains, i); | ||
4808 | sd->groups->cpu_power += power; | ||
4809 | } | ||
4810 | #endif | ||
4811 | } | ||
4812 | |||
4813 | /* Attach the domains */ | ||
4814 | for_each_online_cpu(i) { | ||
4815 | struct sched_domain *sd; | ||
4816 | #ifdef CONFIG_SCHED_SMT | ||
4817 | sd = &per_cpu(cpu_domains, i); | ||
4818 | #else | ||
4819 | sd = &per_cpu(phys_domains, i); | ||
4820 | #endif | ||
4821 | cpu_attach_domain(sd, i); | ||
4822 | } | ||
4823 | } | ||
4824 | |||
4825 | #ifdef CONFIG_HOTPLUG_CPU | ||
4826 | static void __devinit arch_destroy_sched_domains(void) | ||
4827 | { | ||
4828 | /* Do nothing: everything is statically allocated. */ | ||
4829 | } | ||
4830 | #endif | ||
4831 | |||
4832 | #endif /* ARCH_HAS_SCHED_DOMAIN */ | ||
4833 | |||
4834 | /* | ||
4835 | * Initial dummy domain for early boot and for hotplug cpu. Being static, | ||
4836 | * it is initialized to zero, so all balancing flags are cleared which is | ||
4837 | * what we want. | ||
4838 | */ | ||
4839 | static struct sched_domain sched_domain_dummy; | ||
4840 | |||
4841 | #ifdef CONFIG_HOTPLUG_CPU | ||
4842 | /* | ||
4843 | * Force a reinitialization of the sched domains hierarchy. The domains | ||
4844 | * and groups cannot be updated in place without racing with the balancing | ||
4845 | * code, so we temporarily attach all running cpus to a "dummy" domain | ||
4846 | * which will prevent rebalancing while the sched domains are recalculated. | ||
4847 | */ | ||
4848 | static int update_sched_domains(struct notifier_block *nfb, | ||
4849 | unsigned long action, void *hcpu) | ||
4850 | { | ||
4851 | int i; | ||
4852 | |||
4853 | switch (action) { | ||
4854 | case CPU_UP_PREPARE: | ||
4855 | case CPU_DOWN_PREPARE: | ||
4856 | for_each_online_cpu(i) | ||
4857 | cpu_attach_domain(&sched_domain_dummy, i); | ||
4858 | arch_destroy_sched_domains(); | ||
4859 | return NOTIFY_OK; | ||
4860 | |||
4861 | case CPU_UP_CANCELED: | ||
4862 | case CPU_DOWN_FAILED: | ||
4863 | case CPU_ONLINE: | ||
4864 | case CPU_DEAD: | ||
4865 | /* | ||
4866 | * Fall through and re-initialise the domains. | ||
4867 | */ | ||
4868 | break; | ||
4869 | default: | ||
4870 | return NOTIFY_DONE; | ||
4871 | } | ||
4872 | |||
4873 | /* The hotplug lock is already held by cpu_up/cpu_down */ | ||
4874 | arch_init_sched_domains(); | ||
4875 | |||
4876 | return NOTIFY_OK; | ||
4877 | } | ||
4878 | #endif | ||
4879 | |||
4880 | void __init sched_init_smp(void) | ||
4881 | { | ||
4882 | lock_cpu_hotplug(); | ||
4883 | arch_init_sched_domains(); | ||
4884 | unlock_cpu_hotplug(); | ||
4885 | /* XXX: Theoretical race here - CPU may be hotplugged now */ | ||
4886 | hotcpu_notifier(update_sched_domains, 0); | ||
4887 | } | ||
4888 | #else | ||
4889 | void __init sched_init_smp(void) | ||
4890 | { | ||
4891 | } | ||
4892 | #endif /* CONFIG_SMP */ | ||
4893 | |||
4894 | int in_sched_functions(unsigned long addr) | ||
4895 | { | ||
4896 | /* Linker adds these: start and end of __sched functions */ | ||
4897 | extern char __sched_text_start[], __sched_text_end[]; | ||
4898 | return in_lock_functions(addr) || | ||
4899 | (addr >= (unsigned long)__sched_text_start | ||
4900 | && addr < (unsigned long)__sched_text_end); | ||
4901 | } | ||
4902 | |||
4903 | void __init sched_init(void) | ||
4904 | { | ||
4905 | runqueue_t *rq; | ||
4906 | int i, j, k; | ||
4907 | |||
4908 | for (i = 0; i < NR_CPUS; i++) { | ||
4909 | prio_array_t *array; | ||
4910 | |||
4911 | rq = cpu_rq(i); | ||
4912 | spin_lock_init(&rq->lock); | ||
4913 | rq->active = rq->arrays; | ||
4914 | rq->expired = rq->arrays + 1; | ||
4915 | rq->best_expired_prio = MAX_PRIO; | ||
4916 | |||
4917 | #ifdef CONFIG_SMP | ||
4918 | rq->sd = &sched_domain_dummy; | ||
4919 | rq->cpu_load = 0; | ||
4920 | rq->active_balance = 0; | ||
4921 | rq->push_cpu = 0; | ||
4922 | rq->migration_thread = NULL; | ||
4923 | INIT_LIST_HEAD(&rq->migration_queue); | ||
4924 | #endif | ||
4925 | atomic_set(&rq->nr_iowait, 0); | ||
4926 | |||
4927 | for (j = 0; j < 2; j++) { | ||
4928 | array = rq->arrays + j; | ||
4929 | for (k = 0; k < MAX_PRIO; k++) { | ||
4930 | INIT_LIST_HEAD(array->queue + k); | ||
4931 | __clear_bit(k, array->bitmap); | ||
4932 | } | ||
4933 | // delimiter for bitsearch | ||
4934 | __set_bit(MAX_PRIO, array->bitmap); | ||
4935 | } | ||
4936 | } | ||
4937 | |||
4938 | /* | ||
4939 | * The boot idle thread does lazy MMU switching as well: | ||
4940 | */ | ||
4941 | atomic_inc(&init_mm.mm_count); | ||
4942 | enter_lazy_tlb(&init_mm, current); | ||
4943 | |||
4944 | /* | ||
4945 | * Make us the idle thread. Technically, schedule() should not be | ||
4946 | * called from this thread, however somewhere below it might be, | ||
4947 | * but because we are the idle thread, we just pick up running again | ||
4948 | * when this runqueue becomes "idle". | ||
4949 | */ | ||
4950 | init_idle(current, smp_processor_id()); | ||
4951 | } | ||
4952 | |||
4953 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | ||
4954 | void __might_sleep(char *file, int line) | ||
4955 | { | ||
4956 | #if defined(in_atomic) | ||
4957 | static unsigned long prev_jiffy; /* ratelimiting */ | ||
4958 | |||
4959 | if ((in_atomic() || irqs_disabled()) && | ||
4960 | system_state == SYSTEM_RUNNING && !oops_in_progress) { | ||
4961 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | ||
4962 | return; | ||
4963 | prev_jiffy = jiffies; | ||
4964 | printk(KERN_ERR "Debug: sleeping function called from invalid" | ||
4965 | " context at %s:%d\n", file, line); | ||
4966 | printk("in_atomic():%d, irqs_disabled():%d\n", | ||
4967 | in_atomic(), irqs_disabled()); | ||
4968 | dump_stack(); | ||
4969 | } | ||
4970 | #endif | ||
4971 | } | ||
4972 | EXPORT_SYMBOL(__might_sleep); | ||
4973 | #endif | ||
4974 | |||
4975 | #ifdef CONFIG_MAGIC_SYSRQ | ||
4976 | void normalize_rt_tasks(void) | ||
4977 | { | ||
4978 | struct task_struct *p; | ||
4979 | prio_array_t *array; | ||
4980 | unsigned long flags; | ||
4981 | runqueue_t *rq; | ||
4982 | |||
4983 | read_lock_irq(&tasklist_lock); | ||
4984 | for_each_process (p) { | ||
4985 | if (!rt_task(p)) | ||
4986 | continue; | ||
4987 | |||
4988 | rq = task_rq_lock(p, &flags); | ||
4989 | |||
4990 | array = p->array; | ||
4991 | if (array) | ||
4992 | deactivate_task(p, task_rq(p)); | ||
4993 | __setscheduler(p, SCHED_NORMAL, 0); | ||
4994 | if (array) { | ||
4995 | __activate_task(p, task_rq(p)); | ||
4996 | resched_task(rq->curr); | ||
4997 | } | ||
4998 | |||
4999 | task_rq_unlock(rq, &flags); | ||
5000 | } | ||
5001 | read_unlock_irq(&tasklist_lock); | ||
5002 | } | ||
5003 | |||
5004 | #endif /* CONFIG_MAGIC_SYSRQ */ | ||