diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 1051 |
1 files changed, 731 insertions, 320 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 186c6fd08acf..196d48babbef 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -223,7 +223,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |||
223 | { | 223 | { |
224 | ktime_t now; | 224 | ktime_t now; |
225 | 225 | ||
226 | if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF) | 226 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
227 | return; | 227 | return; |
228 | 228 | ||
229 | if (hrtimer_active(&rt_b->rt_period_timer)) | 229 | if (hrtimer_active(&rt_b->rt_period_timer)) |
@@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | |||
331 | */ | 331 | */ |
332 | static DEFINE_SPINLOCK(task_group_lock); | 332 | static DEFINE_SPINLOCK(task_group_lock); |
333 | 333 | ||
334 | #ifdef CONFIG_SMP | ||
335 | static int root_task_group_empty(void) | ||
336 | { | ||
337 | return list_empty(&root_task_group.children); | ||
338 | } | ||
339 | #endif | ||
340 | |||
334 | #ifdef CONFIG_FAIR_GROUP_SCHED | 341 | #ifdef CONFIG_FAIR_GROUP_SCHED |
335 | #ifdef CONFIG_USER_SCHED | 342 | #ifdef CONFIG_USER_SCHED |
336 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 343 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
@@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
391 | 398 | ||
392 | #else | 399 | #else |
393 | 400 | ||
401 | #ifdef CONFIG_SMP | ||
402 | static int root_task_group_empty(void) | ||
403 | { | ||
404 | return 1; | ||
405 | } | ||
406 | #endif | ||
407 | |||
394 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 408 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
395 | static inline struct task_group *task_group(struct task_struct *p) | 409 | static inline struct task_group *task_group(struct task_struct *p) |
396 | { | 410 | { |
@@ -467,11 +481,17 @@ struct rt_rq { | |||
467 | struct rt_prio_array active; | 481 | struct rt_prio_array active; |
468 | unsigned long rt_nr_running; | 482 | unsigned long rt_nr_running; |
469 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 483 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
470 | int highest_prio; /* highest queued rt task prio */ | 484 | struct { |
485 | int curr; /* highest queued rt task prio */ | ||
486 | #ifdef CONFIG_SMP | ||
487 | int next; /* next highest */ | ||
488 | #endif | ||
489 | } highest_prio; | ||
471 | #endif | 490 | #endif |
472 | #ifdef CONFIG_SMP | 491 | #ifdef CONFIG_SMP |
473 | unsigned long rt_nr_migratory; | 492 | unsigned long rt_nr_migratory; |
474 | int overloaded; | 493 | int overloaded; |
494 | struct plist_head pushable_tasks; | ||
475 | #endif | 495 | #endif |
476 | int rt_throttled; | 496 | int rt_throttled; |
477 | u64 rt_time; | 497 | u64 rt_time; |
@@ -549,7 +569,6 @@ struct rq { | |||
549 | unsigned long nr_running; | 569 | unsigned long nr_running; |
550 | #define CPU_LOAD_IDX_MAX 5 | 570 | #define CPU_LOAD_IDX_MAX 5 |
551 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 571 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
552 | unsigned char idle_at_tick; | ||
553 | #ifdef CONFIG_NO_HZ | 572 | #ifdef CONFIG_NO_HZ |
554 | unsigned long last_tick_seen; | 573 | unsigned long last_tick_seen; |
555 | unsigned char in_nohz_recently; | 574 | unsigned char in_nohz_recently; |
@@ -590,6 +609,7 @@ struct rq { | |||
590 | struct root_domain *rd; | 609 | struct root_domain *rd; |
591 | struct sched_domain *sd; | 610 | struct sched_domain *sd; |
592 | 611 | ||
612 | unsigned char idle_at_tick; | ||
593 | /* For active balancing */ | 613 | /* For active balancing */ |
594 | int active_balance; | 614 | int active_balance; |
595 | int push_cpu; | 615 | int push_cpu; |
@@ -618,9 +638,6 @@ struct rq { | |||
618 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 638 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
619 | 639 | ||
620 | /* sys_sched_yield() stats */ | 640 | /* sys_sched_yield() stats */ |
621 | unsigned int yld_exp_empty; | ||
622 | unsigned int yld_act_empty; | ||
623 | unsigned int yld_both_empty; | ||
624 | unsigned int yld_count; | 641 | unsigned int yld_count; |
625 | 642 | ||
626 | /* schedule() stats */ | 643 | /* schedule() stats */ |
@@ -1183,10 +1200,10 @@ static void resched_task(struct task_struct *p) | |||
1183 | 1200 | ||
1184 | assert_spin_locked(&task_rq(p)->lock); | 1201 | assert_spin_locked(&task_rq(p)->lock); |
1185 | 1202 | ||
1186 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 1203 | if (test_tsk_need_resched(p)) |
1187 | return; | 1204 | return; |
1188 | 1205 | ||
1189 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 1206 | set_tsk_need_resched(p); |
1190 | 1207 | ||
1191 | cpu = task_cpu(p); | 1208 | cpu = task_cpu(p); |
1192 | if (cpu == smp_processor_id()) | 1209 | if (cpu == smp_processor_id()) |
@@ -1242,7 +1259,7 @@ void wake_up_idle_cpu(int cpu) | |||
1242 | * lockless. The worst case is that the other CPU runs the | 1259 | * lockless. The worst case is that the other CPU runs the |
1243 | * idle task through an additional NOOP schedule() | 1260 | * idle task through an additional NOOP schedule() |
1244 | */ | 1261 | */ |
1245 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 1262 | set_tsk_need_resched(rq->idle); |
1246 | 1263 | ||
1247 | /* NEED_RESCHED must be visible before we test polling */ | 1264 | /* NEED_RESCHED must be visible before we test polling */ |
1248 | smp_mb(); | 1265 | smp_mb(); |
@@ -1610,21 +1627,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
1610 | 1627 | ||
1611 | #endif | 1628 | #endif |
1612 | 1629 | ||
1630 | #ifdef CONFIG_PREEMPT | ||
1631 | |||
1613 | /* | 1632 | /* |
1614 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 1633 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1634 | * way at the expense of forcing extra atomic operations in all | ||
1635 | * invocations. This assures that the double_lock is acquired using the | ||
1636 | * same underlying policy as the spinlock_t on this architecture, which | ||
1637 | * reduces latency compared to the unfair variant below. However, it | ||
1638 | * also adds more overhead and therefore may reduce throughput. | ||
1615 | */ | 1639 | */ |
1616 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 1640 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1641 | __releases(this_rq->lock) | ||
1642 | __acquires(busiest->lock) | ||
1643 | __acquires(this_rq->lock) | ||
1644 | { | ||
1645 | spin_unlock(&this_rq->lock); | ||
1646 | double_rq_lock(this_rq, busiest); | ||
1647 | |||
1648 | return 1; | ||
1649 | } | ||
1650 | |||
1651 | #else | ||
1652 | /* | ||
1653 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
1654 | * latency by eliminating extra atomic operations when the locks are | ||
1655 | * already in proper order on entry. This favors lower cpu-ids and will | ||
1656 | * grant the double lock to lower cpus over higher ids under contention, | ||
1657 | * regardless of entry order into the function. | ||
1658 | */ | ||
1659 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1617 | __releases(this_rq->lock) | 1660 | __releases(this_rq->lock) |
1618 | __acquires(busiest->lock) | 1661 | __acquires(busiest->lock) |
1619 | __acquires(this_rq->lock) | 1662 | __acquires(this_rq->lock) |
1620 | { | 1663 | { |
1621 | int ret = 0; | 1664 | int ret = 0; |
1622 | 1665 | ||
1623 | if (unlikely(!irqs_disabled())) { | ||
1624 | /* printk() doesn't work good under rq->lock */ | ||
1625 | spin_unlock(&this_rq->lock); | ||
1626 | BUG_ON(1); | ||
1627 | } | ||
1628 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1666 | if (unlikely(!spin_trylock(&busiest->lock))) { |
1629 | if (busiest < this_rq) { | 1667 | if (busiest < this_rq) { |
1630 | spin_unlock(&this_rq->lock); | 1668 | spin_unlock(&this_rq->lock); |
@@ -1637,6 +1675,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |||
1637 | return ret; | 1675 | return ret; |
1638 | } | 1676 | } |
1639 | 1677 | ||
1678 | #endif /* CONFIG_PREEMPT */ | ||
1679 | |||
1680 | /* | ||
1681 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
1682 | */ | ||
1683 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
1684 | { | ||
1685 | if (unlikely(!irqs_disabled())) { | ||
1686 | /* printk() doesn't work good under rq->lock */ | ||
1687 | spin_unlock(&this_rq->lock); | ||
1688 | BUG_ON(1); | ||
1689 | } | ||
1690 | |||
1691 | return _double_lock_balance(this_rq, busiest); | ||
1692 | } | ||
1693 | |||
1640 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1694 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1641 | __releases(busiest->lock) | 1695 | __releases(busiest->lock) |
1642 | { | 1696 | { |
@@ -1705,6 +1759,9 @@ static void update_avg(u64 *avg, u64 sample) | |||
1705 | 1759 | ||
1706 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1760 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
1707 | { | 1761 | { |
1762 | if (wakeup) | ||
1763 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
1764 | |||
1708 | sched_info_queued(p); | 1765 | sched_info_queued(p); |
1709 | p->sched_class->enqueue_task(rq, p, wakeup); | 1766 | p->sched_class->enqueue_task(rq, p, wakeup); |
1710 | p->se.on_rq = 1; | 1767 | p->se.on_rq = 1; |
@@ -1712,10 +1769,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | |||
1712 | 1769 | ||
1713 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1770 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
1714 | { | 1771 | { |
1715 | if (sleep && p->se.last_wakeup) { | 1772 | if (sleep) { |
1716 | update_avg(&p->se.avg_overlap, | 1773 | if (p->se.last_wakeup) { |
1717 | p->se.sum_exec_runtime - p->se.last_wakeup); | 1774 | update_avg(&p->se.avg_overlap, |
1718 | p->se.last_wakeup = 0; | 1775 | p->se.sum_exec_runtime - p->se.last_wakeup); |
1776 | p->se.last_wakeup = 0; | ||
1777 | } else { | ||
1778 | update_avg(&p->se.avg_wakeup, | ||
1779 | sysctl_sched_wakeup_granularity); | ||
1780 | } | ||
1719 | } | 1781 | } |
1720 | 1782 | ||
1721 | sched_info_dequeued(p); | 1783 | sched_info_dequeued(p); |
@@ -2017,7 +2079,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
2017 | * it must be off the runqueue _entirely_, and not | 2079 | * it must be off the runqueue _entirely_, and not |
2018 | * preempted! | 2080 | * preempted! |
2019 | * | 2081 | * |
2020 | * So if it wa still runnable (but just not actively | 2082 | * So if it was still runnable (but just not actively |
2021 | * running right now), it's preempted, and we should | 2083 | * running right now), it's preempted, and we should |
2022 | * yield - it could be a while. | 2084 | * yield - it could be a while. |
2023 | */ | 2085 | */ |
@@ -2266,18 +2328,8 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
2266 | if (!sched_feat(SYNC_WAKEUPS)) | 2328 | if (!sched_feat(SYNC_WAKEUPS)) |
2267 | sync = 0; | 2329 | sync = 0; |
2268 | 2330 | ||
2269 | if (!sync) { | ||
2270 | if (current->se.avg_overlap < sysctl_sched_migration_cost && | ||
2271 | p->se.avg_overlap < sysctl_sched_migration_cost) | ||
2272 | sync = 1; | ||
2273 | } else { | ||
2274 | if (current->se.avg_overlap >= sysctl_sched_migration_cost || | ||
2275 | p->se.avg_overlap >= sysctl_sched_migration_cost) | ||
2276 | sync = 0; | ||
2277 | } | ||
2278 | |||
2279 | #ifdef CONFIG_SMP | 2331 | #ifdef CONFIG_SMP |
2280 | if (sched_feat(LB_WAKEUP_UPDATE)) { | 2332 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { |
2281 | struct sched_domain *sd; | 2333 | struct sched_domain *sd; |
2282 | 2334 | ||
2283 | this_cpu = raw_smp_processor_id(); | 2335 | this_cpu = raw_smp_processor_id(); |
@@ -2355,6 +2407,22 @@ out_activate: | |||
2355 | activate_task(rq, p, 1); | 2407 | activate_task(rq, p, 1); |
2356 | success = 1; | 2408 | success = 1; |
2357 | 2409 | ||
2410 | /* | ||
2411 | * Only attribute actual wakeups done by this task. | ||
2412 | */ | ||
2413 | if (!in_interrupt()) { | ||
2414 | struct sched_entity *se = ¤t->se; | ||
2415 | u64 sample = se->sum_exec_runtime; | ||
2416 | |||
2417 | if (se->last_wakeup) | ||
2418 | sample -= se->last_wakeup; | ||
2419 | else | ||
2420 | sample -= se->start_runtime; | ||
2421 | update_avg(&se->avg_wakeup, sample); | ||
2422 | |||
2423 | se->last_wakeup = se->sum_exec_runtime; | ||
2424 | } | ||
2425 | |||
2358 | out_running: | 2426 | out_running: |
2359 | trace_sched_wakeup(rq, p, success); | 2427 | trace_sched_wakeup(rq, p, success); |
2360 | check_preempt_curr(rq, p, sync); | 2428 | check_preempt_curr(rq, p, sync); |
@@ -2365,8 +2433,6 @@ out_running: | |||
2365 | p->sched_class->task_wake_up(rq, p); | 2433 | p->sched_class->task_wake_up(rq, p); |
2366 | #endif | 2434 | #endif |
2367 | out: | 2435 | out: |
2368 | current->se.last_wakeup = current->se.sum_exec_runtime; | ||
2369 | |||
2370 | task_rq_unlock(rq, &flags); | 2436 | task_rq_unlock(rq, &flags); |
2371 | 2437 | ||
2372 | return success; | 2438 | return success; |
@@ -2396,6 +2462,8 @@ static void __sched_fork(struct task_struct *p) | |||
2396 | p->se.prev_sum_exec_runtime = 0; | 2462 | p->se.prev_sum_exec_runtime = 0; |
2397 | p->se.last_wakeup = 0; | 2463 | p->se.last_wakeup = 0; |
2398 | p->se.avg_overlap = 0; | 2464 | p->se.avg_overlap = 0; |
2465 | p->se.start_runtime = 0; | ||
2466 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
2399 | 2467 | ||
2400 | #ifdef CONFIG_SCHEDSTATS | 2468 | #ifdef CONFIG_SCHEDSTATS |
2401 | p->se.wait_start = 0; | 2469 | p->se.wait_start = 0; |
@@ -2458,6 +2526,8 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2458 | /* Want to start with kernel preemption disabled. */ | 2526 | /* Want to start with kernel preemption disabled. */ |
2459 | task_thread_info(p)->preempt_count = 1; | 2527 | task_thread_info(p)->preempt_count = 1; |
2460 | #endif | 2528 | #endif |
2529 | plist_node_init(&p->pushable_tasks, MAX_PRIO); | ||
2530 | |||
2461 | put_cpu(); | 2531 | put_cpu(); |
2462 | } | 2532 | } |
2463 | 2533 | ||
@@ -2501,7 +2571,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2501 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2571 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2502 | 2572 | ||
2503 | /** | 2573 | /** |
2504 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 2574 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
2505 | * @notifier: notifier struct to register | 2575 | * @notifier: notifier struct to register |
2506 | */ | 2576 | */ |
2507 | void preempt_notifier_register(struct preempt_notifier *notifier) | 2577 | void preempt_notifier_register(struct preempt_notifier *notifier) |
@@ -2598,6 +2668,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2598 | { | 2668 | { |
2599 | struct mm_struct *mm = rq->prev_mm; | 2669 | struct mm_struct *mm = rq->prev_mm; |
2600 | long prev_state; | 2670 | long prev_state; |
2671 | #ifdef CONFIG_SMP | ||
2672 | int post_schedule = 0; | ||
2673 | |||
2674 | if (current->sched_class->needs_post_schedule) | ||
2675 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
2676 | #endif | ||
2601 | 2677 | ||
2602 | rq->prev_mm = NULL; | 2678 | rq->prev_mm = NULL; |
2603 | 2679 | ||
@@ -2616,7 +2692,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2616 | finish_arch_switch(prev); | 2692 | finish_arch_switch(prev); |
2617 | finish_lock_switch(rq, prev); | 2693 | finish_lock_switch(rq, prev); |
2618 | #ifdef CONFIG_SMP | 2694 | #ifdef CONFIG_SMP |
2619 | if (current->sched_class->post_schedule) | 2695 | if (post_schedule) |
2620 | current->sched_class->post_schedule(rq); | 2696 | current->sched_class->post_schedule(rq); |
2621 | #endif | 2697 | #endif |
2622 | 2698 | ||
@@ -2923,6 +2999,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2923 | struct sched_domain *sd, enum cpu_idle_type idle, | 2999 | struct sched_domain *sd, enum cpu_idle_type idle, |
2924 | int *all_pinned) | 3000 | int *all_pinned) |
2925 | { | 3001 | { |
3002 | int tsk_cache_hot = 0; | ||
2926 | /* | 3003 | /* |
2927 | * We do not migrate tasks that are: | 3004 | * We do not migrate tasks that are: |
2928 | * 1) running (obviously), or | 3005 | * 1) running (obviously), or |
@@ -2946,10 +3023,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2946 | * 2) too many balance attempts have failed. | 3023 | * 2) too many balance attempts have failed. |
2947 | */ | 3024 | */ |
2948 | 3025 | ||
2949 | if (!task_hot(p, rq->clock, sd) || | 3026 | tsk_cache_hot = task_hot(p, rq->clock, sd); |
2950 | sd->nr_balance_failed > sd->cache_nice_tries) { | 3027 | if (!tsk_cache_hot || |
3028 | sd->nr_balance_failed > sd->cache_nice_tries) { | ||
2951 | #ifdef CONFIG_SCHEDSTATS | 3029 | #ifdef CONFIG_SCHEDSTATS |
2952 | if (task_hot(p, rq->clock, sd)) { | 3030 | if (tsk_cache_hot) { |
2953 | schedstat_inc(sd, lb_hot_gained[idle]); | 3031 | schedstat_inc(sd, lb_hot_gained[idle]); |
2954 | schedstat_inc(p, se.nr_forced_migrations); | 3032 | schedstat_inc(p, se.nr_forced_migrations); |
2955 | } | 3033 | } |
@@ -2957,7 +3035,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
2957 | return 1; | 3035 | return 1; |
2958 | } | 3036 | } |
2959 | 3037 | ||
2960 | if (task_hot(p, rq->clock, sd)) { | 3038 | if (tsk_cache_hot) { |
2961 | schedstat_inc(p, se.nr_failed_migrations_hot); | 3039 | schedstat_inc(p, se.nr_failed_migrations_hot); |
2962 | return 0; | 3040 | return 0; |
2963 | } | 3041 | } |
@@ -2997,6 +3075,16 @@ next: | |||
2997 | pulled++; | 3075 | pulled++; |
2998 | rem_load_move -= p->se.load.weight; | 3076 | rem_load_move -= p->se.load.weight; |
2999 | 3077 | ||
3078 | #ifdef CONFIG_PREEMPT | ||
3079 | /* | ||
3080 | * NEWIDLE balancing is a source of latency, so preemptible kernels | ||
3081 | * will stop after the first task is pulled to minimize the critical | ||
3082 | * section. | ||
3083 | */ | ||
3084 | if (idle == CPU_NEWLY_IDLE) | ||
3085 | goto out; | ||
3086 | #endif | ||
3087 | |||
3000 | /* | 3088 | /* |
3001 | * We only want to steal up to the prescribed amount of weighted load. | 3089 | * We only want to steal up to the prescribed amount of weighted load. |
3002 | */ | 3090 | */ |
@@ -3043,9 +3131,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3043 | sd, idle, all_pinned, &this_best_prio); | 3131 | sd, idle, all_pinned, &this_best_prio); |
3044 | class = class->next; | 3132 | class = class->next; |
3045 | 3133 | ||
3134 | #ifdef CONFIG_PREEMPT | ||
3135 | /* | ||
3136 | * NEWIDLE balancing is a source of latency, so preemptible | ||
3137 | * kernels will stop after the first task is pulled to minimize | ||
3138 | * the critical section. | ||
3139 | */ | ||
3046 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3140 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
3047 | break; | 3141 | break; |
3048 | 3142 | #endif | |
3049 | } while (class && max_load_move > total_load_moved); | 3143 | } while (class && max_load_move > total_load_moved); |
3050 | 3144 | ||
3051 | return total_load_moved > 0; | 3145 | return total_load_moved > 0; |
@@ -3095,246 +3189,480 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
3095 | 3189 | ||
3096 | return 0; | 3190 | return 0; |
3097 | } | 3191 | } |
3098 | 3192 | /********** Helpers for find_busiest_group ************************/ | |
3099 | /* | 3193 | /* |
3100 | * find_busiest_group finds and returns the busiest CPU group within the | 3194 | * sd_lb_stats - Structure to store the statistics of a sched_domain |
3101 | * domain. It calculates and returns the amount of weighted load which | 3195 | * during load balancing. |
3102 | * should be moved to restore balance via the imbalance parameter. | ||
3103 | */ | 3196 | */ |
3104 | static struct sched_group * | 3197 | struct sd_lb_stats { |
3105 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 3198 | struct sched_group *busiest; /* Busiest group in this sd */ |
3106 | unsigned long *imbalance, enum cpu_idle_type idle, | 3199 | struct sched_group *this; /* Local group in this sd */ |
3107 | int *sd_idle, const struct cpumask *cpus, int *balance) | 3200 | unsigned long total_load; /* Total load of all groups in sd */ |
3108 | { | 3201 | unsigned long total_pwr; /* Total power of all groups in sd */ |
3109 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 3202 | unsigned long avg_load; /* Average load across all groups in sd */ |
3110 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 3203 | |
3111 | unsigned long max_pull; | 3204 | /** Statistics of this group */ |
3112 | unsigned long busiest_load_per_task, busiest_nr_running; | 3205 | unsigned long this_load; |
3113 | unsigned long this_load_per_task, this_nr_running; | 3206 | unsigned long this_load_per_task; |
3114 | int load_idx, group_imb = 0; | 3207 | unsigned long this_nr_running; |
3208 | |||
3209 | /* Statistics of the busiest group */ | ||
3210 | unsigned long max_load; | ||
3211 | unsigned long busiest_load_per_task; | ||
3212 | unsigned long busiest_nr_running; | ||
3213 | |||
3214 | int group_imb; /* Is there imbalance in this sd */ | ||
3115 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3215 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3116 | int power_savings_balance = 1; | 3216 | int power_savings_balance; /* Is powersave balance needed for this sd */ |
3117 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | 3217 | struct sched_group *group_min; /* Least loaded group in sd */ |
3118 | unsigned long min_nr_running = ULONG_MAX; | 3218 | struct sched_group *group_leader; /* Group which relieves group_min */ |
3119 | struct sched_group *group_min = NULL, *group_leader = NULL; | 3219 | unsigned long min_load_per_task; /* load_per_task in group_min */ |
3220 | unsigned long leader_nr_running; /* Nr running of group_leader */ | ||
3221 | unsigned long min_nr_running; /* Nr running of group_min */ | ||
3120 | #endif | 3222 | #endif |
3223 | }; | ||
3224 | |||
3225 | /* | ||
3226 | * sg_lb_stats - stats of a sched_group required for load_balancing | ||
3227 | */ | ||
3228 | struct sg_lb_stats { | ||
3229 | unsigned long avg_load; /*Avg load across the CPUs of the group */ | ||
3230 | unsigned long group_load; /* Total load over the CPUs of the group */ | ||
3231 | unsigned long sum_nr_running; /* Nr tasks running in the group */ | ||
3232 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | ||
3233 | unsigned long group_capacity; | ||
3234 | int group_imb; /* Is there an imbalance in the group ? */ | ||
3235 | }; | ||
3121 | 3236 | ||
3122 | max_load = this_load = total_load = total_pwr = 0; | 3237 | /** |
3123 | busiest_load_per_task = busiest_nr_running = 0; | 3238 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. |
3124 | this_load_per_task = this_nr_running = 0; | 3239 | * @group: The group whose first cpu is to be returned. |
3240 | */ | ||
3241 | static inline unsigned int group_first_cpu(struct sched_group *group) | ||
3242 | { | ||
3243 | return cpumask_first(sched_group_cpus(group)); | ||
3244 | } | ||
3125 | 3245 | ||
3126 | if (idle == CPU_NOT_IDLE) | 3246 | /** |
3247 | * get_sd_load_idx - Obtain the load index for a given sched domain. | ||
3248 | * @sd: The sched_domain whose load_idx is to be obtained. | ||
3249 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. | ||
3250 | */ | ||
3251 | static inline int get_sd_load_idx(struct sched_domain *sd, | ||
3252 | enum cpu_idle_type idle) | ||
3253 | { | ||
3254 | int load_idx; | ||
3255 | |||
3256 | switch (idle) { | ||
3257 | case CPU_NOT_IDLE: | ||
3127 | load_idx = sd->busy_idx; | 3258 | load_idx = sd->busy_idx; |
3128 | else if (idle == CPU_NEWLY_IDLE) | 3259 | break; |
3260 | |||
3261 | case CPU_NEWLY_IDLE: | ||
3129 | load_idx = sd->newidle_idx; | 3262 | load_idx = sd->newidle_idx; |
3130 | else | 3263 | break; |
3264 | default: | ||
3131 | load_idx = sd->idle_idx; | 3265 | load_idx = sd->idle_idx; |
3266 | break; | ||
3267 | } | ||
3132 | 3268 | ||
3133 | do { | 3269 | return load_idx; |
3134 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; | 3270 | } |
3135 | int local_group; | ||
3136 | int i; | ||
3137 | int __group_imb = 0; | ||
3138 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3139 | unsigned long sum_nr_running, sum_weighted_load; | ||
3140 | unsigned long sum_avg_load_per_task; | ||
3141 | unsigned long avg_load_per_task; | ||
3142 | 3271 | ||
3143 | local_group = cpumask_test_cpu(this_cpu, | ||
3144 | sched_group_cpus(group)); | ||
3145 | 3272 | ||
3146 | if (local_group) | 3273 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3147 | balance_cpu = cpumask_first(sched_group_cpus(group)); | 3274 | /** |
3275 | * init_sd_power_savings_stats - Initialize power savings statistics for | ||
3276 | * the given sched_domain, during load balancing. | ||
3277 | * | ||
3278 | * @sd: Sched domain whose power-savings statistics are to be initialized. | ||
3279 | * @sds: Variable containing the statistics for sd. | ||
3280 | * @idle: Idle status of the CPU at which we're performing load-balancing. | ||
3281 | */ | ||
3282 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3283 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3284 | { | ||
3285 | /* | ||
3286 | * Busy processors will not participate in power savings | ||
3287 | * balance. | ||
3288 | */ | ||
3289 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3290 | sds->power_savings_balance = 0; | ||
3291 | else { | ||
3292 | sds->power_savings_balance = 1; | ||
3293 | sds->min_nr_running = ULONG_MAX; | ||
3294 | sds->leader_nr_running = 0; | ||
3295 | } | ||
3296 | } | ||
3297 | |||
3298 | /** | ||
3299 | * update_sd_power_savings_stats - Update the power saving stats for a | ||
3300 | * sched_domain while performing load balancing. | ||
3301 | * | ||
3302 | * @group: sched_group belonging to the sched_domain under consideration. | ||
3303 | * @sds: Variable containing the statistics of the sched_domain | ||
3304 | * @local_group: Does group contain the CPU for which we're performing | ||
3305 | * load balancing ? | ||
3306 | * @sgs: Variable containing the statistics of the group. | ||
3307 | */ | ||
3308 | static inline void update_sd_power_savings_stats(struct sched_group *group, | ||
3309 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) | ||
3310 | { | ||
3148 | 3311 | ||
3149 | /* Tally up the load of all CPUs in the group */ | 3312 | if (!sds->power_savings_balance) |
3150 | sum_weighted_load = sum_nr_running = avg_load = 0; | 3313 | return; |
3151 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3152 | 3314 | ||
3153 | max_cpu_load = 0; | 3315 | /* |
3154 | min_cpu_load = ~0UL; | 3316 | * If the local group is idle or completely loaded |
3317 | * no need to do power savings balance at this domain | ||
3318 | */ | ||
3319 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || | ||
3320 | !sds->this_nr_running)) | ||
3321 | sds->power_savings_balance = 0; | ||
3155 | 3322 | ||
3156 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | 3323 | /* |
3157 | struct rq *rq = cpu_rq(i); | 3324 | * If a group is already running at full capacity or idle, |
3325 | * don't include that group in power savings calculations | ||
3326 | */ | ||
3327 | if (!sds->power_savings_balance || | ||
3328 | sgs->sum_nr_running >= sgs->group_capacity || | ||
3329 | !sgs->sum_nr_running) | ||
3330 | return; | ||
3158 | 3331 | ||
3159 | if (*sd_idle && rq->nr_running) | 3332 | /* |
3160 | *sd_idle = 0; | 3333 | * Calculate the group which has the least non-idle load. |
3334 | * This is the group from where we need to pick up the load | ||
3335 | * for saving power | ||
3336 | */ | ||
3337 | if ((sgs->sum_nr_running < sds->min_nr_running) || | ||
3338 | (sgs->sum_nr_running == sds->min_nr_running && | ||
3339 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { | ||
3340 | sds->group_min = group; | ||
3341 | sds->min_nr_running = sgs->sum_nr_running; | ||
3342 | sds->min_load_per_task = sgs->sum_weighted_load / | ||
3343 | sgs->sum_nr_running; | ||
3344 | } | ||
3161 | 3345 | ||
3162 | /* Bias balancing toward cpus of our domain */ | 3346 | /* |
3163 | if (local_group) { | 3347 | * Calculate the group which is almost near its |
3164 | if (idle_cpu(i) && !first_idle_cpu) { | 3348 | * capacity but still has some space to pick up some load |
3165 | first_idle_cpu = 1; | 3349 | * from other group and save more power |
3166 | balance_cpu = i; | 3350 | */ |
3167 | } | 3351 | if (sgs->sum_nr_running > sgs->group_capacity - 1) |
3352 | return; | ||
3168 | 3353 | ||
3169 | load = target_load(i, load_idx); | 3354 | if (sgs->sum_nr_running > sds->leader_nr_running || |
3170 | } else { | 3355 | (sgs->sum_nr_running == sds->leader_nr_running && |
3171 | load = source_load(i, load_idx); | 3356 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { |
3172 | if (load > max_cpu_load) | 3357 | sds->group_leader = group; |
3173 | max_cpu_load = load; | 3358 | sds->leader_nr_running = sgs->sum_nr_running; |
3174 | if (min_cpu_load > load) | 3359 | } |
3175 | min_cpu_load = load; | 3360 | } |
3176 | } | ||
3177 | 3361 | ||
3178 | avg_load += load; | 3362 | /** |
3179 | sum_nr_running += rq->nr_running; | 3363 | * check_power_save_busiest_group - see if there is potential for some power-savings balance |
3180 | sum_weighted_load += weighted_cpuload(i); | 3364 | * @sds: Variable containing the statistics of the sched_domain |
3365 | * under consideration. | ||
3366 | * @this_cpu: Cpu at which we're currently performing load-balancing. | ||
3367 | * @imbalance: Variable to store the imbalance. | ||
3368 | * | ||
3369 | * Description: | ||
3370 | * Check if we have potential to perform some power-savings balance. | ||
3371 | * If yes, set the busiest group to be the least loaded group in the | ||
3372 | * sched_domain, so that it's CPUs can be put to idle. | ||
3373 | * | ||
3374 | * Returns 1 if there is potential to perform power-savings balance. | ||
3375 | * Else returns 0. | ||
3376 | */ | ||
3377 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | ||
3378 | int this_cpu, unsigned long *imbalance) | ||
3379 | { | ||
3380 | if (!sds->power_savings_balance) | ||
3381 | return 0; | ||
3181 | 3382 | ||
3182 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 3383 | if (sds->this != sds->group_leader || |
3183 | } | 3384 | sds->group_leader == sds->group_min) |
3385 | return 0; | ||
3184 | 3386 | ||
3185 | /* | 3387 | *imbalance = sds->min_load_per_task; |
3186 | * First idle cpu or the first cpu(busiest) in this sched group | 3388 | sds->busiest = sds->group_min; |
3187 | * is eligible for doing load balancing at this and above | ||
3188 | * domains. In the newly idle case, we will allow all the cpu's | ||
3189 | * to do the newly idle load balance. | ||
3190 | */ | ||
3191 | if (idle != CPU_NEWLY_IDLE && local_group && | ||
3192 | balance_cpu != this_cpu && balance) { | ||
3193 | *balance = 0; | ||
3194 | goto ret; | ||
3195 | } | ||
3196 | 3389 | ||
3197 | total_load += avg_load; | 3390 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { |
3198 | total_pwr += group->__cpu_power; | 3391 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = |
3392 | group_first_cpu(sds->group_leader); | ||
3393 | } | ||
3199 | 3394 | ||
3200 | /* Adjust by relative CPU power of the group */ | 3395 | return 1; |
3201 | avg_load = sg_div_cpu_power(group, | ||
3202 | avg_load * SCHED_LOAD_SCALE); | ||
3203 | 3396 | ||
3397 | } | ||
3398 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3399 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, | ||
3400 | struct sd_lb_stats *sds, enum cpu_idle_type idle) | ||
3401 | { | ||
3402 | return; | ||
3403 | } | ||
3204 | 3404 | ||
3205 | /* | 3405 | static inline void update_sd_power_savings_stats(struct sched_group *group, |
3206 | * Consider the group unbalanced when the imbalance is larger | 3406 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) |
3207 | * than the average weight of two tasks. | 3407 | { |
3208 | * | 3408 | return; |
3209 | * APZ: with cgroup the avg task weight can vary wildly and | 3409 | } |
3210 | * might not be a suitable number - should we keep a | ||
3211 | * normalized nr_running number somewhere that negates | ||
3212 | * the hierarchy? | ||
3213 | */ | ||
3214 | avg_load_per_task = sg_div_cpu_power(group, | ||
3215 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | ||
3216 | 3410 | ||
3217 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3411 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, |
3218 | __group_imb = 1; | 3412 | int this_cpu, unsigned long *imbalance) |
3413 | { | ||
3414 | return 0; | ||
3415 | } | ||
3416 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | ||
3219 | 3417 | ||
3220 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | ||
3221 | 3418 | ||
3419 | /** | ||
3420 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | ||
3421 | * @group: sched_group whose statistics are to be updated. | ||
3422 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3423 | * @idle: Idle status of this_cpu | ||
3424 | * @load_idx: Load index of sched_domain of this_cpu for load calc. | ||
3425 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3426 | * @local_group: Does group contain this_cpu. | ||
3427 | * @cpus: Set of cpus considered for load balancing. | ||
3428 | * @balance: Should we balance. | ||
3429 | * @sgs: variable to hold the statistics for this group. | ||
3430 | */ | ||
3431 | static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | ||
3432 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | ||
3433 | int local_group, const struct cpumask *cpus, | ||
3434 | int *balance, struct sg_lb_stats *sgs) | ||
3435 | { | ||
3436 | unsigned long load, max_cpu_load, min_cpu_load; | ||
3437 | int i; | ||
3438 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | ||
3439 | unsigned long sum_avg_load_per_task; | ||
3440 | unsigned long avg_load_per_task; | ||
3441 | |||
3442 | if (local_group) | ||
3443 | balance_cpu = group_first_cpu(group); | ||
3444 | |||
3445 | /* Tally up the load of all CPUs in the group */ | ||
3446 | sum_avg_load_per_task = avg_load_per_task = 0; | ||
3447 | max_cpu_load = 0; | ||
3448 | min_cpu_load = ~0UL; | ||
3449 | |||
3450 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { | ||
3451 | struct rq *rq = cpu_rq(i); | ||
3452 | |||
3453 | if (*sd_idle && rq->nr_running) | ||
3454 | *sd_idle = 0; | ||
3455 | |||
3456 | /* Bias balancing toward cpus of our domain */ | ||
3222 | if (local_group) { | 3457 | if (local_group) { |
3223 | this_load = avg_load; | 3458 | if (idle_cpu(i) && !first_idle_cpu) { |
3224 | this = group; | 3459 | first_idle_cpu = 1; |
3225 | this_nr_running = sum_nr_running; | 3460 | balance_cpu = i; |
3226 | this_load_per_task = sum_weighted_load; | 3461 | } |
3227 | } else if (avg_load > max_load && | 3462 | |
3228 | (sum_nr_running > group_capacity || __group_imb)) { | 3463 | load = target_load(i, load_idx); |
3229 | max_load = avg_load; | 3464 | } else { |
3230 | busiest = group; | 3465 | load = source_load(i, load_idx); |
3231 | busiest_nr_running = sum_nr_running; | 3466 | if (load > max_cpu_load) |
3232 | busiest_load_per_task = sum_weighted_load; | 3467 | max_cpu_load = load; |
3233 | group_imb = __group_imb; | 3468 | if (min_cpu_load > load) |
3469 | min_cpu_load = load; | ||
3234 | } | 3470 | } |
3235 | 3471 | ||
3236 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3472 | sgs->group_load += load; |
3237 | /* | 3473 | sgs->sum_nr_running += rq->nr_running; |
3238 | * Busy processors will not participate in power savings | 3474 | sgs->sum_weighted_load += weighted_cpuload(i); |
3239 | * balance. | ||
3240 | */ | ||
3241 | if (idle == CPU_NOT_IDLE || | ||
3242 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3243 | goto group_next; | ||
3244 | 3475 | ||
3245 | /* | 3476 | sum_avg_load_per_task += cpu_avg_load_per_task(i); |
3246 | * If the local group is idle or completely loaded | 3477 | } |
3247 | * no need to do power savings balance at this domain | ||
3248 | */ | ||
3249 | if (local_group && (this_nr_running >= group_capacity || | ||
3250 | !this_nr_running)) | ||
3251 | power_savings_balance = 0; | ||
3252 | 3478 | ||
3253 | /* | 3479 | /* |
3254 | * If a group is already running at full capacity or idle, | 3480 | * First idle cpu or the first cpu(busiest) in this sched group |
3255 | * don't include that group in power savings calculations | 3481 | * is eligible for doing load balancing at this and above |
3256 | */ | 3482 | * domains. In the newly idle case, we will allow all the cpu's |
3257 | if (!power_savings_balance || sum_nr_running >= group_capacity | 3483 | * to do the newly idle load balance. |
3258 | || !sum_nr_running) | 3484 | */ |
3259 | goto group_next; | 3485 | if (idle != CPU_NEWLY_IDLE && local_group && |
3486 | balance_cpu != this_cpu && balance) { | ||
3487 | *balance = 0; | ||
3488 | return; | ||
3489 | } | ||
3260 | 3490 | ||
3261 | /* | 3491 | /* Adjust by relative CPU power of the group */ |
3262 | * Calculate the group which has the least non-idle load. | 3492 | sgs->avg_load = sg_div_cpu_power(group, |
3263 | * This is the group from where we need to pick up the load | 3493 | sgs->group_load * SCHED_LOAD_SCALE); |
3264 | * for saving power | ||
3265 | */ | ||
3266 | if ((sum_nr_running < min_nr_running) || | ||
3267 | (sum_nr_running == min_nr_running && | ||
3268 | cpumask_first(sched_group_cpus(group)) > | ||
3269 | cpumask_first(sched_group_cpus(group_min)))) { | ||
3270 | group_min = group; | ||
3271 | min_nr_running = sum_nr_running; | ||
3272 | min_load_per_task = sum_weighted_load / | ||
3273 | sum_nr_running; | ||
3274 | } | ||
3275 | 3494 | ||
3276 | /* | 3495 | |
3277 | * Calculate the group which is almost near its | 3496 | /* |
3278 | * capacity but still has some space to pick up some load | 3497 | * Consider the group unbalanced when the imbalance is larger |
3279 | * from other group and save more power | 3498 | * than the average weight of two tasks. |
3280 | */ | 3499 | * |
3281 | if (sum_nr_running <= group_capacity - 1) { | 3500 | * APZ: with cgroup the avg task weight can vary wildly and |
3282 | if (sum_nr_running > leader_nr_running || | 3501 | * might not be a suitable number - should we keep a |
3283 | (sum_nr_running == leader_nr_running && | 3502 | * normalized nr_running number somewhere that negates |
3284 | cpumask_first(sched_group_cpus(group)) < | 3503 | * the hierarchy? |
3285 | cpumask_first(sched_group_cpus(group_leader)))) { | 3504 | */ |
3286 | group_leader = group; | 3505 | avg_load_per_task = sg_div_cpu_power(group, |
3287 | leader_nr_running = sum_nr_running; | 3506 | sum_avg_load_per_task * SCHED_LOAD_SCALE); |
3288 | } | 3507 | |
3508 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | ||
3509 | sgs->group_imb = 1; | ||
3510 | |||
3511 | sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | ||
3512 | |||
3513 | } | ||
3514 | |||
3515 | /** | ||
3516 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. | ||
3517 | * @sd: sched_domain whose statistics are to be updated. | ||
3518 | * @this_cpu: Cpu for which load balance is currently performed. | ||
3519 | * @idle: Idle status of this_cpu | ||
3520 | * @sd_idle: Idle status of the sched_domain containing group. | ||
3521 | * @cpus: Set of cpus considered for load balancing. | ||
3522 | * @balance: Should we balance. | ||
3523 | * @sds: variable to hold the statistics for this sched_domain. | ||
3524 | */ | ||
3525 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | ||
3526 | enum cpu_idle_type idle, int *sd_idle, | ||
3527 | const struct cpumask *cpus, int *balance, | ||
3528 | struct sd_lb_stats *sds) | ||
3529 | { | ||
3530 | struct sched_group *group = sd->groups; | ||
3531 | struct sg_lb_stats sgs; | ||
3532 | int load_idx; | ||
3533 | |||
3534 | init_sd_power_savings_stats(sd, sds, idle); | ||
3535 | load_idx = get_sd_load_idx(sd, idle); | ||
3536 | |||
3537 | do { | ||
3538 | int local_group; | ||
3539 | |||
3540 | local_group = cpumask_test_cpu(this_cpu, | ||
3541 | sched_group_cpus(group)); | ||
3542 | memset(&sgs, 0, sizeof(sgs)); | ||
3543 | update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, | ||
3544 | local_group, cpus, balance, &sgs); | ||
3545 | |||
3546 | if (local_group && balance && !(*balance)) | ||
3547 | return; | ||
3548 | |||
3549 | sds->total_load += sgs.group_load; | ||
3550 | sds->total_pwr += group->__cpu_power; | ||
3551 | |||
3552 | if (local_group) { | ||
3553 | sds->this_load = sgs.avg_load; | ||
3554 | sds->this = group; | ||
3555 | sds->this_nr_running = sgs.sum_nr_running; | ||
3556 | sds->this_load_per_task = sgs.sum_weighted_load; | ||
3557 | } else if (sgs.avg_load > sds->max_load && | ||
3558 | (sgs.sum_nr_running > sgs.group_capacity || | ||
3559 | sgs.group_imb)) { | ||
3560 | sds->max_load = sgs.avg_load; | ||
3561 | sds->busiest = group; | ||
3562 | sds->busiest_nr_running = sgs.sum_nr_running; | ||
3563 | sds->busiest_load_per_task = sgs.sum_weighted_load; | ||
3564 | sds->group_imb = sgs.group_imb; | ||
3289 | } | 3565 | } |
3290 | group_next: | 3566 | |
3291 | #endif | 3567 | update_sd_power_savings_stats(group, sds, local_group, &sgs); |
3292 | group = group->next; | 3568 | group = group->next; |
3293 | } while (group != sd->groups); | 3569 | } while (group != sd->groups); |
3294 | 3570 | ||
3295 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 3571 | } |
3296 | goto out_balanced; | ||
3297 | |||
3298 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | ||
3299 | 3572 | ||
3300 | if (this_load >= avg_load || | 3573 | /** |
3301 | 100*max_load <= sd->imbalance_pct*this_load) | 3574 | * fix_small_imbalance - Calculate the minor imbalance that exists |
3302 | goto out_balanced; | 3575 | * amongst the groups of a sched_domain, during |
3576 | * load balancing. | ||
3577 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | ||
3578 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. | ||
3579 | * @imbalance: Variable to store the imbalance. | ||
3580 | */ | ||
3581 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, | ||
3582 | int this_cpu, unsigned long *imbalance) | ||
3583 | { | ||
3584 | unsigned long tmp, pwr_now = 0, pwr_move = 0; | ||
3585 | unsigned int imbn = 2; | ||
3586 | |||
3587 | if (sds->this_nr_running) { | ||
3588 | sds->this_load_per_task /= sds->this_nr_running; | ||
3589 | if (sds->busiest_load_per_task > | ||
3590 | sds->this_load_per_task) | ||
3591 | imbn = 1; | ||
3592 | } else | ||
3593 | sds->this_load_per_task = | ||
3594 | cpu_avg_load_per_task(this_cpu); | ||
3303 | 3595 | ||
3304 | busiest_load_per_task /= busiest_nr_running; | 3596 | if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= |
3305 | if (group_imb) | 3597 | sds->busiest_load_per_task * imbn) { |
3306 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | 3598 | *imbalance = sds->busiest_load_per_task; |
3599 | return; | ||
3600 | } | ||
3307 | 3601 | ||
3308 | /* | 3602 | /* |
3309 | * We're trying to get all the cpus to the average_load, so we don't | 3603 | * OK, we don't have enough imbalance to justify moving tasks, |
3310 | * want to push ourselves above the average load, nor do we wish to | 3604 | * however we may be able to increase total CPU power used by |
3311 | * reduce the max loaded cpu below the average load, as either of these | 3605 | * moving them. |
3312 | * actions would just result in more rebalancing later, and ping-pong | ||
3313 | * tasks around. Thus we look for the minimum possible imbalance. | ||
3314 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
3315 | * be counted as no imbalance for these purposes -- we can't fix that | ||
3316 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
3317 | * appear as very large values with unsigned longs. | ||
3318 | */ | 3606 | */ |
3319 | if (max_load <= busiest_load_per_task) | ||
3320 | goto out_balanced; | ||
3321 | 3607 | ||
3608 | pwr_now += sds->busiest->__cpu_power * | ||
3609 | min(sds->busiest_load_per_task, sds->max_load); | ||
3610 | pwr_now += sds->this->__cpu_power * | ||
3611 | min(sds->this_load_per_task, sds->this_load); | ||
3612 | pwr_now /= SCHED_LOAD_SCALE; | ||
3613 | |||
3614 | /* Amount of load we'd subtract */ | ||
3615 | tmp = sg_div_cpu_power(sds->busiest, | ||
3616 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3617 | if (sds->max_load > tmp) | ||
3618 | pwr_move += sds->busiest->__cpu_power * | ||
3619 | min(sds->busiest_load_per_task, sds->max_load - tmp); | ||
3620 | |||
3621 | /* Amount of load we'd add */ | ||
3622 | if (sds->max_load * sds->busiest->__cpu_power < | ||
3623 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3624 | tmp = sg_div_cpu_power(sds->this, | ||
3625 | sds->max_load * sds->busiest->__cpu_power); | ||
3626 | else | ||
3627 | tmp = sg_div_cpu_power(sds->this, | ||
3628 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3629 | pwr_move += sds->this->__cpu_power * | ||
3630 | min(sds->this_load_per_task, sds->this_load + tmp); | ||
3631 | pwr_move /= SCHED_LOAD_SCALE; | ||
3632 | |||
3633 | /* Move if we gain throughput */ | ||
3634 | if (pwr_move > pwr_now) | ||
3635 | *imbalance = sds->busiest_load_per_task; | ||
3636 | } | ||
3637 | |||
3638 | /** | ||
3639 | * calculate_imbalance - Calculate the amount of imbalance present within the | ||
3640 | * groups of a given sched_domain during load balance. | ||
3641 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. | ||
3642 | * @this_cpu: Cpu for which currently load balance is being performed. | ||
3643 | * @imbalance: The variable to store the imbalance. | ||
3644 | */ | ||
3645 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | ||
3646 | unsigned long *imbalance) | ||
3647 | { | ||
3648 | unsigned long max_pull; | ||
3322 | /* | 3649 | /* |
3323 | * In the presence of smp nice balancing, certain scenarios can have | 3650 | * In the presence of smp nice balancing, certain scenarios can have |
3324 | * max load less than avg load(as we skip the groups at or below | 3651 | * max load less than avg load(as we skip the groups at or below |
3325 | * its cpu_power, while calculating max_load..) | 3652 | * its cpu_power, while calculating max_load..) |
3326 | */ | 3653 | */ |
3327 | if (max_load < avg_load) { | 3654 | if (sds->max_load < sds->avg_load) { |
3328 | *imbalance = 0; | 3655 | *imbalance = 0; |
3329 | goto small_imbalance; | 3656 | return fix_small_imbalance(sds, this_cpu, imbalance); |
3330 | } | 3657 | } |
3331 | 3658 | ||
3332 | /* Don't want to pull so many tasks that a group would go idle */ | 3659 | /* Don't want to pull so many tasks that a group would go idle */ |
3333 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 3660 | max_pull = min(sds->max_load - sds->avg_load, |
3661 | sds->max_load - sds->busiest_load_per_task); | ||
3334 | 3662 | ||
3335 | /* How much load to actually move to equalise the imbalance */ | 3663 | /* How much load to actually move to equalise the imbalance */ |
3336 | *imbalance = min(max_pull * busiest->__cpu_power, | 3664 | *imbalance = min(max_pull * sds->busiest->__cpu_power, |
3337 | (avg_load - this_load) * this->__cpu_power) | 3665 | (sds->avg_load - sds->this_load) * sds->this->__cpu_power) |
3338 | / SCHED_LOAD_SCALE; | 3666 | / SCHED_LOAD_SCALE; |
3339 | 3667 | ||
3340 | /* | 3668 | /* |
@@ -3343,78 +3671,110 @@ group_next: | |||
3343 | * a think about bumping its value to force at least one task to be | 3671 | * a think about bumping its value to force at least one task to be |
3344 | * moved | 3672 | * moved |
3345 | */ | 3673 | */ |
3346 | if (*imbalance < busiest_load_per_task) { | 3674 | if (*imbalance < sds->busiest_load_per_task) |
3347 | unsigned long tmp, pwr_now, pwr_move; | 3675 | return fix_small_imbalance(sds, this_cpu, imbalance); |
3348 | unsigned int imbn; | ||
3349 | |||
3350 | small_imbalance: | ||
3351 | pwr_move = pwr_now = 0; | ||
3352 | imbn = 2; | ||
3353 | if (this_nr_running) { | ||
3354 | this_load_per_task /= this_nr_running; | ||
3355 | if (busiest_load_per_task > this_load_per_task) | ||
3356 | imbn = 1; | ||
3357 | } else | ||
3358 | this_load_per_task = cpu_avg_load_per_task(this_cpu); | ||
3359 | 3676 | ||
3360 | if (max_load - this_load + busiest_load_per_task >= | 3677 | } |
3361 | busiest_load_per_task * imbn) { | 3678 | /******* find_busiest_group() helpers end here *********************/ |
3362 | *imbalance = busiest_load_per_task; | ||
3363 | return busiest; | ||
3364 | } | ||
3365 | 3679 | ||
3366 | /* | 3680 | /** |
3367 | * OK, we don't have enough imbalance to justify moving tasks, | 3681 | * find_busiest_group - Returns the busiest group within the sched_domain |
3368 | * however we may be able to increase total CPU power used by | 3682 | * if there is an imbalance. If there isn't an imbalance, and |
3369 | * moving them. | 3683 | * the user has opted for power-savings, it returns a group whose |
3370 | */ | 3684 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if |
3685 | * such a group exists. | ||
3686 | * | ||
3687 | * Also calculates the amount of weighted load which should be moved | ||
3688 | * to restore balance. | ||
3689 | * | ||
3690 | * @sd: The sched_domain whose busiest group is to be returned. | ||
3691 | * @this_cpu: The cpu for which load balancing is currently being performed. | ||
3692 | * @imbalance: Variable which stores amount of weighted load which should | ||
3693 | * be moved to restore balance/put a group to idle. | ||
3694 | * @idle: The idle status of this_cpu. | ||
3695 | * @sd_idle: The idleness of sd | ||
3696 | * @cpus: The set of CPUs under consideration for load-balancing. | ||
3697 | * @balance: Pointer to a variable indicating if this_cpu | ||
3698 | * is the appropriate cpu to perform load balancing at this_level. | ||
3699 | * | ||
3700 | * Returns: - the busiest group if imbalance exists. | ||
3701 | * - If no imbalance and user has opted for power-savings balance, | ||
3702 | * return the least loaded group whose CPUs can be | ||
3703 | * put to idle by rebalancing its tasks onto our group. | ||
3704 | */ | ||
3705 | static struct sched_group * | ||
3706 | find_busiest_group(struct sched_domain *sd, int this_cpu, | ||
3707 | unsigned long *imbalance, enum cpu_idle_type idle, | ||
3708 | int *sd_idle, const struct cpumask *cpus, int *balance) | ||
3709 | { | ||
3710 | struct sd_lb_stats sds; | ||
3371 | 3711 | ||
3372 | pwr_now += busiest->__cpu_power * | 3712 | memset(&sds, 0, sizeof(sds)); |
3373 | min(busiest_load_per_task, max_load); | ||
3374 | pwr_now += this->__cpu_power * | ||
3375 | min(this_load_per_task, this_load); | ||
3376 | pwr_now /= SCHED_LOAD_SCALE; | ||
3377 | |||
3378 | /* Amount of load we'd subtract */ | ||
3379 | tmp = sg_div_cpu_power(busiest, | ||
3380 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3381 | if (max_load > tmp) | ||
3382 | pwr_move += busiest->__cpu_power * | ||
3383 | min(busiest_load_per_task, max_load - tmp); | ||
3384 | |||
3385 | /* Amount of load we'd add */ | ||
3386 | if (max_load * busiest->__cpu_power < | ||
3387 | busiest_load_per_task * SCHED_LOAD_SCALE) | ||
3388 | tmp = sg_div_cpu_power(this, | ||
3389 | max_load * busiest->__cpu_power); | ||
3390 | else | ||
3391 | tmp = sg_div_cpu_power(this, | ||
3392 | busiest_load_per_task * SCHED_LOAD_SCALE); | ||
3393 | pwr_move += this->__cpu_power * | ||
3394 | min(this_load_per_task, this_load + tmp); | ||
3395 | pwr_move /= SCHED_LOAD_SCALE; | ||
3396 | 3713 | ||
3397 | /* Move if we gain throughput */ | 3714 | /* |
3398 | if (pwr_move > pwr_now) | 3715 | * Compute the various statistics relavent for load balancing at |
3399 | *imbalance = busiest_load_per_task; | 3716 | * this level. |
3400 | } | 3717 | */ |
3718 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, | ||
3719 | balance, &sds); | ||
3720 | |||
3721 | /* Cases where imbalance does not exist from POV of this_cpu */ | ||
3722 | /* 1) this_cpu is not the appropriate cpu to perform load balancing | ||
3723 | * at this level. | ||
3724 | * 2) There is no busy sibling group to pull from. | ||
3725 | * 3) This group is the busiest group. | ||
3726 | * 4) This group is more busy than the avg busieness at this | ||
3727 | * sched_domain. | ||
3728 | * 5) The imbalance is within the specified limit. | ||
3729 | * 6) Any rebalance would lead to ping-pong | ||
3730 | */ | ||
3731 | if (balance && !(*balance)) | ||
3732 | goto ret; | ||
3401 | 3733 | ||
3402 | return busiest; | 3734 | if (!sds.busiest || sds.busiest_nr_running == 0) |
3735 | goto out_balanced; | ||
3403 | 3736 | ||
3404 | out_balanced: | 3737 | if (sds.this_load >= sds.max_load) |
3405 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3738 | goto out_balanced; |
3406 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | ||
3407 | goto ret; | ||
3408 | 3739 | ||
3409 | if (this == group_leader && group_leader != group_min) { | 3740 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; |
3410 | *imbalance = min_load_per_task; | 3741 | |
3411 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | 3742 | if (sds.this_load >= sds.avg_load) |
3412 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | 3743 | goto out_balanced; |
3413 | cpumask_first(sched_group_cpus(group_leader)); | 3744 | |
3414 | } | 3745 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) |
3415 | return group_min; | 3746 | goto out_balanced; |
3416 | } | 3747 | |
3417 | #endif | 3748 | sds.busiest_load_per_task /= sds.busiest_nr_running; |
3749 | if (sds.group_imb) | ||
3750 | sds.busiest_load_per_task = | ||
3751 | min(sds.busiest_load_per_task, sds.avg_load); | ||
3752 | |||
3753 | /* | ||
3754 | * We're trying to get all the cpus to the average_load, so we don't | ||
3755 | * want to push ourselves above the average load, nor do we wish to | ||
3756 | * reduce the max loaded cpu below the average load, as either of these | ||
3757 | * actions would just result in more rebalancing later, and ping-pong | ||
3758 | * tasks around. Thus we look for the minimum possible imbalance. | ||
3759 | * Negative imbalances (*we* are more loaded than anyone else) will | ||
3760 | * be counted as no imbalance for these purposes -- we can't fix that | ||
3761 | * by pulling tasks to us. Be careful of negative numbers as they'll | ||
3762 | * appear as very large values with unsigned longs. | ||
3763 | */ | ||
3764 | if (sds.max_load <= sds.busiest_load_per_task) | ||
3765 | goto out_balanced; | ||
3766 | |||
3767 | /* Looks like there is an imbalance. Compute it */ | ||
3768 | calculate_imbalance(&sds, this_cpu, imbalance); | ||
3769 | return sds.busiest; | ||
3770 | |||
3771 | out_balanced: | ||
3772 | /* | ||
3773 | * There is no obvious imbalance. But check if we can do some balancing | ||
3774 | * to save power. | ||
3775 | */ | ||
3776 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) | ||
3777 | return sds.busiest; | ||
3418 | ret: | 3778 | ret: |
3419 | *imbalance = 0; | 3779 | *imbalance = 0; |
3420 | return NULL; | 3780 | return NULL; |
@@ -3890,19 +4250,24 @@ int select_nohz_load_balancer(int stop_tick) | |||
3890 | int cpu = smp_processor_id(); | 4250 | int cpu = smp_processor_id(); |
3891 | 4251 | ||
3892 | if (stop_tick) { | 4252 | if (stop_tick) { |
3893 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
3894 | cpu_rq(cpu)->in_nohz_recently = 1; | 4253 | cpu_rq(cpu)->in_nohz_recently = 1; |
3895 | 4254 | ||
3896 | /* | 4255 | if (!cpu_active(cpu)) { |
3897 | * If we are going offline and still the leader, give up! | 4256 | if (atomic_read(&nohz.load_balancer) != cpu) |
3898 | */ | 4257 | return 0; |
3899 | if (!cpu_active(cpu) && | 4258 | |
3900 | atomic_read(&nohz.load_balancer) == cpu) { | 4259 | /* |
4260 | * If we are going offline and still the leader, | ||
4261 | * give up! | ||
4262 | */ | ||
3901 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | 4263 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) |
3902 | BUG(); | 4264 | BUG(); |
4265 | |||
3903 | return 0; | 4266 | return 0; |
3904 | } | 4267 | } |
3905 | 4268 | ||
4269 | cpumask_set_cpu(cpu, nohz.cpu_mask); | ||
4270 | |||
3906 | /* time for ilb owner also to sleep */ | 4271 | /* time for ilb owner also to sleep */ |
3907 | if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { | 4272 | if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { |
3908 | if (atomic_read(&nohz.load_balancer) == cpu) | 4273 | if (atomic_read(&nohz.load_balancer) == cpu) |
@@ -4062,6 +4427,11 @@ static void run_rebalance_domains(struct softirq_action *h) | |||
4062 | #endif | 4427 | #endif |
4063 | } | 4428 | } |
4064 | 4429 | ||
4430 | static inline int on_null_domain(int cpu) | ||
4431 | { | ||
4432 | return !rcu_dereference(cpu_rq(cpu)->sd); | ||
4433 | } | ||
4434 | |||
4065 | /* | 4435 | /* |
4066 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 4436 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
4067 | * | 4437 | * |
@@ -4119,7 +4489,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) | |||
4119 | cpumask_test_cpu(cpu, nohz.cpu_mask)) | 4489 | cpumask_test_cpu(cpu, nohz.cpu_mask)) |
4120 | return; | 4490 | return; |
4121 | #endif | 4491 | #endif |
4122 | if (time_after_eq(jiffies, rq->next_balance)) | 4492 | /* Don't need to rebalance while attached to NULL domain */ |
4493 | if (time_after_eq(jiffies, rq->next_balance) && | ||
4494 | likely(!on_null_domain(cpu))) | ||
4123 | raise_softirq(SCHED_SOFTIRQ); | 4495 | raise_softirq(SCHED_SOFTIRQ); |
4124 | } | 4496 | } |
4125 | 4497 | ||
@@ -4513,11 +4885,33 @@ static inline void schedule_debug(struct task_struct *prev) | |||
4513 | #endif | 4885 | #endif |
4514 | } | 4886 | } |
4515 | 4887 | ||
4888 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | ||
4889 | { | ||
4890 | if (prev->state == TASK_RUNNING) { | ||
4891 | u64 runtime = prev->se.sum_exec_runtime; | ||
4892 | |||
4893 | runtime -= prev->se.prev_sum_exec_runtime; | ||
4894 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
4895 | |||
4896 | /* | ||
4897 | * In order to avoid avg_overlap growing stale when we are | ||
4898 | * indeed overlapping and hence not getting put to sleep, grow | ||
4899 | * the avg_overlap on preemption. | ||
4900 | * | ||
4901 | * We use the average preemption runtime because that | ||
4902 | * correlates to the amount of cache footprint a task can | ||
4903 | * build up. | ||
4904 | */ | ||
4905 | update_avg(&prev->se.avg_overlap, runtime); | ||
4906 | } | ||
4907 | prev->sched_class->put_prev_task(rq, prev); | ||
4908 | } | ||
4909 | |||
4516 | /* | 4910 | /* |
4517 | * Pick up the highest-prio task: | 4911 | * Pick up the highest-prio task: |
4518 | */ | 4912 | */ |
4519 | static inline struct task_struct * | 4913 | static inline struct task_struct * |
4520 | pick_next_task(struct rq *rq, struct task_struct *prev) | 4914 | pick_next_task(struct rq *rq) |
4521 | { | 4915 | { |
4522 | const struct sched_class *class; | 4916 | const struct sched_class *class; |
4523 | struct task_struct *p; | 4917 | struct task_struct *p; |
@@ -4589,8 +4983,8 @@ need_resched_nonpreemptible: | |||
4589 | if (unlikely(!rq->nr_running)) | 4983 | if (unlikely(!rq->nr_running)) |
4590 | idle_balance(cpu, rq); | 4984 | idle_balance(cpu, rq); |
4591 | 4985 | ||
4592 | prev->sched_class->put_prev_task(rq, prev); | 4986 | put_prev_task(rq, prev); |
4593 | next = pick_next_task(rq, prev); | 4987 | next = pick_next_task(rq); |
4594 | 4988 | ||
4595 | if (likely(prev != next)) { | 4989 | if (likely(prev != next)) { |
4596 | sched_info_switch(prev, next); | 4990 | sched_info_switch(prev, next); |
@@ -4712,7 +5106,7 @@ asmlinkage void __sched preempt_schedule(void) | |||
4712 | * between schedule and now. | 5106 | * between schedule and now. |
4713 | */ | 5107 | */ |
4714 | barrier(); | 5108 | barrier(); |
4715 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5109 | } while (need_resched()); |
4716 | } | 5110 | } |
4717 | EXPORT_SYMBOL(preempt_schedule); | 5111 | EXPORT_SYMBOL(preempt_schedule); |
4718 | 5112 | ||
@@ -4741,7 +5135,7 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
4741 | * between schedule and now. | 5135 | * between schedule and now. |
4742 | */ | 5136 | */ |
4743 | barrier(); | 5137 | barrier(); |
4744 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 5138 | } while (need_resched()); |
4745 | } | 5139 | } |
4746 | 5140 | ||
4747 | #endif /* CONFIG_PREEMPT */ | 5141 | #endif /* CONFIG_PREEMPT */ |
@@ -5215,7 +5609,7 @@ SYSCALL_DEFINE1(nice, int, increment) | |||
5215 | if (increment > 40) | 5609 | if (increment > 40) |
5216 | increment = 40; | 5610 | increment = 40; |
5217 | 5611 | ||
5218 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 5612 | nice = TASK_NICE(current) + increment; |
5219 | if (nice < -20) | 5613 | if (nice < -20) |
5220 | nice = -20; | 5614 | nice = -20; |
5221 | if (nice > 19) | 5615 | if (nice > 19) |
@@ -6014,12 +6408,7 @@ void sched_show_task(struct task_struct *p) | |||
6014 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 6408 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
6015 | #endif | 6409 | #endif |
6016 | #ifdef CONFIG_DEBUG_STACK_USAGE | 6410 | #ifdef CONFIG_DEBUG_STACK_USAGE |
6017 | { | 6411 | free = stack_not_used(p); |
6018 | unsigned long *n = end_of_stack(p); | ||
6019 | while (!*n) | ||
6020 | n++; | ||
6021 | free = (unsigned long)n - (unsigned long)end_of_stack(p); | ||
6022 | } | ||
6023 | #endif | 6412 | #endif |
6024 | printk(KERN_CONT "%5lu %5d %6d\n", free, | 6413 | printk(KERN_CONT "%5lu %5d %6d\n", free, |
6025 | task_pid_nr(p), task_pid_nr(p->real_parent)); | 6414 | task_pid_nr(p), task_pid_nr(p->real_parent)); |
@@ -6493,7 +6882,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
6493 | if (!rq->nr_running) | 6882 | if (!rq->nr_running) |
6494 | break; | 6883 | break; |
6495 | update_rq_clock(rq); | 6884 | update_rq_clock(rq); |
6496 | next = pick_next_task(rq, rq->curr); | 6885 | next = pick_next_task(rq); |
6497 | if (!next) | 6886 | if (!next) |
6498 | break; | 6887 | break; |
6499 | next->sched_class->put_prev_task(rq, next); | 6888 | next->sched_class->put_prev_task(rq, next); |
@@ -7014,20 +7403,26 @@ static void free_rootdomain(struct root_domain *rd) | |||
7014 | 7403 | ||
7015 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) | 7404 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
7016 | { | 7405 | { |
7406 | struct root_domain *old_rd = NULL; | ||
7017 | unsigned long flags; | 7407 | unsigned long flags; |
7018 | 7408 | ||
7019 | spin_lock_irqsave(&rq->lock, flags); | 7409 | spin_lock_irqsave(&rq->lock, flags); |
7020 | 7410 | ||
7021 | if (rq->rd) { | 7411 | if (rq->rd) { |
7022 | struct root_domain *old_rd = rq->rd; | 7412 | old_rd = rq->rd; |
7023 | 7413 | ||
7024 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) | 7414 | if (cpumask_test_cpu(rq->cpu, old_rd->online)) |
7025 | set_rq_offline(rq); | 7415 | set_rq_offline(rq); |
7026 | 7416 | ||
7027 | cpumask_clear_cpu(rq->cpu, old_rd->span); | 7417 | cpumask_clear_cpu(rq->cpu, old_rd->span); |
7028 | 7418 | ||
7029 | if (atomic_dec_and_test(&old_rd->refcount)) | 7419 | /* |
7030 | free_rootdomain(old_rd); | 7420 | * If we dont want to free the old_rt yet then |
7421 | * set old_rd to NULL to skip the freeing later | ||
7422 | * in this function: | ||
7423 | */ | ||
7424 | if (!atomic_dec_and_test(&old_rd->refcount)) | ||
7425 | old_rd = NULL; | ||
7031 | } | 7426 | } |
7032 | 7427 | ||
7033 | atomic_inc(&rd->refcount); | 7428 | atomic_inc(&rd->refcount); |
@@ -7038,6 +7433,9 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |||
7038 | set_rq_online(rq); | 7433 | set_rq_online(rq); |
7039 | 7434 | ||
7040 | spin_unlock_irqrestore(&rq->lock, flags); | 7435 | spin_unlock_irqrestore(&rq->lock, flags); |
7436 | |||
7437 | if (old_rd) | ||
7438 | free_rootdomain(old_rd); | ||
7041 | } | 7439 | } |
7042 | 7440 | ||
7043 | static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem) | 7441 | static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem) |
@@ -8279,11 +8677,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
8279 | __set_bit(MAX_RT_PRIO, array->bitmap); | 8677 | __set_bit(MAX_RT_PRIO, array->bitmap); |
8280 | 8678 | ||
8281 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 8679 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
8282 | rt_rq->highest_prio = MAX_RT_PRIO; | 8680 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
8681 | #ifdef CONFIG_SMP | ||
8682 | rt_rq->highest_prio.next = MAX_RT_PRIO; | ||
8683 | #endif | ||
8283 | #endif | 8684 | #endif |
8284 | #ifdef CONFIG_SMP | 8685 | #ifdef CONFIG_SMP |
8285 | rt_rq->rt_nr_migratory = 0; | 8686 | rt_rq->rt_nr_migratory = 0; |
8286 | rt_rq->overloaded = 0; | 8687 | rt_rq->overloaded = 0; |
8688 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); | ||
8287 | #endif | 8689 | #endif |
8288 | 8690 | ||
8289 | rt_rq->rt_time = 0; | 8691 | rt_rq->rt_time = 0; |
@@ -9285,6 +9687,16 @@ static int sched_rt_global_constraints(void) | |||
9285 | 9687 | ||
9286 | return ret; | 9688 | return ret; |
9287 | } | 9689 | } |
9690 | |||
9691 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | ||
9692 | { | ||
9693 | /* Don't accept realtime tasks when there is no way for them to run */ | ||
9694 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | ||
9695 | return 0; | ||
9696 | |||
9697 | return 1; | ||
9698 | } | ||
9699 | |||
9288 | #else /* !CONFIG_RT_GROUP_SCHED */ | 9700 | #else /* !CONFIG_RT_GROUP_SCHED */ |
9289 | static int sched_rt_global_constraints(void) | 9701 | static int sched_rt_global_constraints(void) |
9290 | { | 9702 | { |
@@ -9378,8 +9790,7 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |||
9378 | struct task_struct *tsk) | 9790 | struct task_struct *tsk) |
9379 | { | 9791 | { |
9380 | #ifdef CONFIG_RT_GROUP_SCHED | 9792 | #ifdef CONFIG_RT_GROUP_SCHED |
9381 | /* Don't accept realtime tasks when there is no way for them to run */ | 9793 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
9382 | if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) | ||
9383 | return -EINVAL; | 9794 | return -EINVAL; |
9384 | #else | 9795 | #else |
9385 | /* We don't support RT-tasks being in separate groups */ | 9796 | /* We don't support RT-tasks being in separate groups */ |
@@ -9542,7 +9953,7 @@ cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
9542 | 9953 | ||
9543 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | 9954 | static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) |
9544 | { | 9955 | { |
9545 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9956 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
9546 | u64 data; | 9957 | u64 data; |
9547 | 9958 | ||
9548 | #ifndef CONFIG_64BIT | 9959 | #ifndef CONFIG_64BIT |
@@ -9561,7 +9972,7 @@ static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | |||
9561 | 9972 | ||
9562 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | 9973 | static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) |
9563 | { | 9974 | { |
9564 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9975 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
9565 | 9976 | ||
9566 | #ifndef CONFIG_64BIT | 9977 | #ifndef CONFIG_64BIT |
9567 | /* | 9978 | /* |
@@ -9650,14 +10061,14 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |||
9650 | struct cpuacct *ca; | 10061 | struct cpuacct *ca; |
9651 | int cpu; | 10062 | int cpu; |
9652 | 10063 | ||
9653 | if (!cpuacct_subsys.active) | 10064 | if (unlikely(!cpuacct_subsys.active)) |
9654 | return; | 10065 | return; |
9655 | 10066 | ||
9656 | cpu = task_cpu(tsk); | 10067 | cpu = task_cpu(tsk); |
9657 | ca = task_ca(tsk); | 10068 | ca = task_ca(tsk); |
9658 | 10069 | ||
9659 | for (; ca; ca = ca->parent) { | 10070 | for (; ca; ca = ca->parent) { |
9660 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 10071 | u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); |
9661 | *cpuusage += cputime; | 10072 | *cpuusage += cputime; |
9662 | } | 10073 | } |
9663 | } | 10074 | } |