aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c2956
1 files changed, 454 insertions, 2502 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index 4508fe7048be..d48408142503 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -55,9 +55,9 @@
55#include <linux/cpu.h> 55#include <linux/cpu.h>
56#include <linux/cpuset.h> 56#include <linux/cpuset.h>
57#include <linux/percpu.h> 57#include <linux/percpu.h>
58#include <linux/kthread.h>
59#include <linux/proc_fs.h> 58#include <linux/proc_fs.h>
60#include <linux/seq_file.h> 59#include <linux/seq_file.h>
60#include <linux/stop_machine.h>
61#include <linux/sysctl.h> 61#include <linux/sysctl.h>
62#include <linux/syscalls.h> 62#include <linux/syscalls.h>
63#include <linux/times.h> 63#include <linux/times.h>
@@ -71,6 +71,7 @@
71#include <linux/debugfs.h> 71#include <linux/debugfs.h>
72#include <linux/ctype.h> 72#include <linux/ctype.h>
73#include <linux/ftrace.h> 73#include <linux/ftrace.h>
74#include <linux/slab.h>
74 75
75#include <asm/tlb.h> 76#include <asm/tlb.h>
76#include <asm/irq_regs.h> 77#include <asm/irq_regs.h>
@@ -233,7 +234,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 */ 234 */
234static DEFINE_MUTEX(sched_domains_mutex); 235static DEFINE_MUTEX(sched_domains_mutex);
235 236
236#ifdef CONFIG_GROUP_SCHED 237#ifdef CONFIG_CGROUP_SCHED
237 238
238#include <linux/cgroup.h> 239#include <linux/cgroup.h>
239 240
@@ -243,13 +244,7 @@ static LIST_HEAD(task_groups);
243 244
244/* task group related information */ 245/* task group related information */
245struct task_group { 246struct task_group {
246#ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css; 247 struct cgroup_subsys_state css;
248#endif
249
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253 248
254#ifdef CONFIG_FAIR_GROUP_SCHED 249#ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */ 250 /* schedulable entities of this group on each cpu */
@@ -274,35 +269,7 @@ struct task_group {
274 struct list_head children; 269 struct list_head children;
275}; 270};
276 271
277#ifdef CONFIG_USER_SCHED
278
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
285/*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290struct task_group root_task_group;
291
292#ifdef CONFIG_FAIR_GROUP_SCHED
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297#endif /* CONFIG_FAIR_GROUP_SCHED */
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_USER_SCHED */
304#define root_task_group init_task_group 272#define root_task_group init_task_group
305#endif /* CONFIG_USER_SCHED */
306 273
307/* task_group_lock serializes add/remove of task groups and also changes to 274/* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares. 275 * a task group's cpu shares.
@@ -318,11 +285,7 @@ static int root_task_group_empty(void)
318} 285}
319#endif 286#endif
320 287
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323#else /* !CONFIG_USER_SCHED */
324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325#endif /* CONFIG_USER_SCHED */
326 289
327/* 290/*
328 * A weight of 0 or 1 can cause arithmetics problems. 291 * A weight of 0 or 1 can cause arithmetics problems.
@@ -348,11 +311,7 @@ static inline struct task_group *task_group(struct task_struct *p)
348{ 311{
349 struct task_group *tg; 312 struct task_group *tg;
350 313
351#ifdef CONFIG_USER_SCHED 314#ifdef CONFIG_CGROUP_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355#elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), 315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css); 316 struct task_group, css);
358#else 317#else
@@ -364,6 +323,15 @@ static inline struct task_group *task_group(struct task_struct *p)
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366{ 325{
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
367#ifdef CONFIG_FAIR_GROUP_SCHED 335#ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; 336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu]; 337 p->se.parent = task_group(p)->se[cpu];
@@ -373,6 +341,7 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu]; 341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu]; 342 p->rt.parent = task_group(p)->rt_se[cpu];
375#endif 343#endif
344 rcu_read_unlock();
376} 345}
377 346
378#else 347#else
@@ -383,7 +352,7 @@ static inline struct task_group *task_group(struct task_struct *p)
383 return NULL; 352 return NULL;
384} 353}
385 354
386#endif /* CONFIG_GROUP_SCHED */ 355#endif /* CONFIG_CGROUP_SCHED */
387 356
388/* CFS-related fields in a runqueue */ 357/* CFS-related fields in a runqueue */
389struct cfs_rq { 358struct cfs_rq {
@@ -478,7 +447,6 @@ struct rt_rq {
478 struct rq *rq; 447 struct rq *rq;
479 struct list_head leaf_rt_rq_list; 448 struct list_head leaf_rt_rq_list;
480 struct task_group *tg; 449 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif 450#endif
483}; 451};
484 452
@@ -535,8 +503,11 @@ struct rq {
535 #define CPU_LOAD_IDX_MAX 5 503 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537#ifdef CONFIG_NO_HZ 505#ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
538 unsigned char in_nohz_recently; 507 unsigned char in_nohz_recently;
539#endif 508#endif
509 unsigned int skip_clock_update;
510
540 /* capture load from *all* tasks on this cpu: */ 511 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load; 512 struct load_weight load;
542 unsigned long nr_load_updates; 513 unsigned long nr_load_updates;
@@ -578,15 +549,13 @@ struct rq {
578 int post_schedule; 549 int post_schedule;
579 int active_balance; 550 int active_balance;
580 int push_cpu; 551 int push_cpu;
552 struct cpu_stop_work active_balance_work;
581 /* cpu of this runqueue: */ 553 /* cpu of this runqueue: */
582 int cpu; 554 int cpu;
583 int online; 555 int online;
584 556
585 unsigned long avg_load_per_task; 557 unsigned long avg_load_per_task;
586 558
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg; 559 u64 rt_avg;
591 u64 age_stamp; 560 u64 age_stamp;
592 u64 idle_stamp; 561 u64 idle_stamp;
@@ -634,6 +603,13 @@ static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 603void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635{ 604{
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 605 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
606
607 /*
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
610 */
611 if (test_tsk_need_resched(p))
612 rq->skip_clock_update = 1;
637} 613}
638 614
639static inline int cpu_of(struct rq *rq) 615static inline int cpu_of(struct rq *rq)
@@ -645,6 +621,11 @@ static inline int cpu_of(struct rq *rq)
645#endif 621#endif
646} 622}
647 623
624#define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
628
648/* 629/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details. 631 * See detach_destroy_domains: synchronize_sched for details.
@@ -653,7 +634,7 @@ static inline int cpu_of(struct rq *rq)
653 * preempt-disabled sections. 634 * preempt-disabled sections.
654 */ 635 */
655#define for_each_domain(cpu, __sd) \ 636#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) 637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657 638
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 639#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues)) 640#define this_rq() (&__get_cpu_var(runqueues))
@@ -663,7 +644,8 @@ static inline int cpu_of(struct rq *rq)
663 644
664inline void update_rq_clock(struct rq *rq) 645inline void update_rq_clock(struct rq *rq)
665{ 646{
666 rq->clock = sched_clock_cpu(cpu_of(rq)); 647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
667} 649}
668 650
669/* 651/*
@@ -941,14 +923,25 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 923#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942 924
943/* 925/*
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
928 */
929static inline int task_is_waking(struct task_struct *p)
930{
931 return unlikely(p->state == TASK_WAKING);
932}
933
934/*
944 * __task_rq_lock - lock the runqueue a given task resides on. 935 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled. 936 * Must be called interrupts disabled.
946 */ 937 */
947static inline struct rq *__task_rq_lock(struct task_struct *p) 938static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock) 939 __acquires(rq->lock)
949{ 940{
941 struct rq *rq;
942
950 for (;;) { 943 for (;;) {
951 struct rq *rq = task_rq(p); 944 rq = task_rq(p);
952 raw_spin_lock(&rq->lock); 945 raw_spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p))) 946 if (likely(rq == task_rq(p)))
954 return rq; 947 return rq;
@@ -976,14 +969,6 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
976 } 969 }
977} 970}
978 971
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq->lock);
985}
986
987static void __task_rq_unlock(struct rq *rq) 972static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock) 973 __releases(rq->lock)
989{ 974{
@@ -1247,6 +1232,17 @@ void wake_up_idle_cpu(int cpu)
1247 if (!tsk_is_polling(rq->idle)) 1232 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu); 1233 smp_send_reschedule(cpu);
1249} 1234}
1235
1236int nohz_ratelimit(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239 u64 diff = rq->clock - rq->nohz_stamp;
1240
1241 rq->nohz_stamp = rq->clock;
1242
1243 return diff < (NSEC_PER_SEC / HZ) >> 1;
1244}
1245
1250#endif /* CONFIG_NO_HZ */ 1246#endif /* CONFIG_NO_HZ */
1251 1247
1252static u64 sched_avg_period(void) 1248static u64 sched_avg_period(void)
@@ -1390,32 +1386,6 @@ static const u32 prio_to_wmult[40] = {
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391}; 1387};
1392 1388
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417#endif
1418
1419/* Time spent by the tasks of the cpu accounting group executing in ... */ 1389/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index { 1390enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */ 1391 CPUACCT_STAT_USER, /* ... user mode */
@@ -1531,7 +1501,7 @@ static unsigned long target_load(int cpu, int type)
1531 1501
1532static struct sched_group *group_of(int cpu) 1502static struct sched_group *group_of(int cpu)
1533{ 1503{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); 1504 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1535 1505
1536 if (!sd) 1506 if (!sd)
1537 return NULL; 1507 return NULL;
@@ -1566,7 +1536,7 @@ static unsigned long cpu_avg_load_per_task(int cpu)
1566 1536
1567#ifdef CONFIG_FAIR_GROUP_SCHED 1537#ifdef CONFIG_FAIR_GROUP_SCHED
1568 1538
1569static __read_mostly unsigned long *update_shares_data; 1539static __read_mostly unsigned long __percpu *update_shares_data;
1570 1540
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1541static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572 1542
@@ -1701,16 +1671,6 @@ static void update_shares(struct sched_domain *sd)
1701 } 1671 }
1702} 1672}
1703 1673
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
1706 if (root_task_group_empty())
1707 return;
1708
1709 raw_spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 raw_spin_lock(&rq->lock);
1712}
1713
1714static void update_h_load(long cpu) 1674static void update_h_load(long cpu)
1715{ 1675{
1716 if (root_task_group_empty()) 1676 if (root_task_group_empty())
@@ -1725,10 +1685,6 @@ static inline void update_shares(struct sched_domain *sd)
1725{ 1685{
1726} 1686}
1727 1687
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
1732#endif 1688#endif
1733 1689
1734#ifdef CONFIG_PREEMPT 1690#ifdef CONFIG_PREEMPT
@@ -1805,6 +1761,49 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 raw_spin_unlock(&busiest->lock); 1761 raw_spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1762 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807} 1763}
1764
1765/*
1766 * double_rq_lock - safely lock two runqueues
1767 *
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1770 */
1771static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1774{
1775 BUG_ON(!irqs_disabled());
1776 if (rq1 == rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 __acquire(rq2->lock); /* Fake it out ;) */
1779 } else {
1780 if (rq1 < rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1783 } else {
1784 raw_spin_lock(&rq2->lock);
1785 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1786 }
1787 }
1788}
1789
1790/*
1791 * double_rq_unlock - safely unlock two runqueues
1792 *
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1795 */
1796static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1797 __releases(rq1->lock)
1798 __releases(rq2->lock)
1799{
1800 raw_spin_unlock(&rq1->lock);
1801 if (rq1 != rq2)
1802 raw_spin_unlock(&rq2->lock);
1803 else
1804 __release(rq2->lock);
1805}
1806
1808#endif 1807#endif
1809 1808
1810#ifdef CONFIG_FAIR_GROUP_SCHED 1809#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1816,7 +1815,7 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1816} 1815}
1817#endif 1816#endif
1818 1817
1819static void calc_load_account_active(struct rq *this_rq); 1818static void calc_load_account_idle(struct rq *this_rq);
1820static void update_sysctl(void); 1819static void update_sysctl(void);
1821static int get_update_sysctl_factor(void); 1820static int get_update_sysctl_factor(void);
1822 1821
@@ -1834,18 +1833,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1834#endif 1833#endif
1835} 1834}
1836 1835
1837#include "sched_stats.h" 1836static const struct sched_class rt_sched_class;
1838#include "sched_idletask.c"
1839#include "sched_fair.c"
1840#include "sched_rt.c"
1841#ifdef CONFIG_SCHED_DEBUG
1842# include "sched_debug.c"
1843#endif
1844 1837
1845#define sched_class_highest (&rt_sched_class) 1838#define sched_class_highest (&rt_sched_class)
1846#define for_each_class(class) \ 1839#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next) 1840 for (class = sched_class_highest; class; class = class->next)
1848 1841
1842#include "sched_stats.h"
1843
1849static void inc_nr_running(struct rq *rq) 1844static void inc_nr_running(struct rq *rq)
1850{ 1845{
1851 rq->nr_running++; 1846 rq->nr_running++;
@@ -1877,40 +1872,53 @@ static void set_load_weight(struct task_struct *p)
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; 1872 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878} 1873}
1879 1874
1880static void update_avg(u64 *avg, u64 sample) 1875static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1881{ 1876{
1882 s64 diff = sample - *avg; 1877 update_rq_clock(rq);
1883 *avg += diff >> 3; 1878 sched_info_queued(p);
1879 p->sched_class->enqueue_task(rq, p, flags);
1880 p->se.on_rq = 1;
1881}
1882
1883static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1884{
1885 update_rq_clock(rq);
1886 sched_info_dequeued(p);
1887 p->sched_class->dequeue_task(rq, p, flags);
1888 p->se.on_rq = 0;
1884} 1889}
1885 1890
1886static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) 1891/*
1892 * activate_task - move a task to the runqueue.
1893 */
1894static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1887{ 1895{
1888 if (wakeup) 1896 if (task_contributes_to_load(p))
1889 p->se.start_runtime = p->se.sum_exec_runtime; 1897 rq->nr_uninterruptible--;
1890 1898
1891 sched_info_queued(p); 1899 enqueue_task(rq, p, flags);
1892 p->sched_class->enqueue_task(rq, p, wakeup); 1900 inc_nr_running(rq);
1893 p->se.on_rq = 1;
1894} 1901}
1895 1902
1896static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) 1903/*
1904 * deactivate_task - remove a task from the runqueue.
1905 */
1906static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1897{ 1907{
1898 if (sleep) { 1908 if (task_contributes_to_load(p))
1899 if (p->se.last_wakeup) { 1909 rq->nr_uninterruptible++;
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
1907 }
1908 1910
1909 sched_info_dequeued(p); 1911 dequeue_task(rq, p, flags);
1910 p->sched_class->dequeue_task(rq, p, sleep); 1912 dec_nr_running(rq);
1911 p->se.on_rq = 0;
1912} 1913}
1913 1914
1915#include "sched_idletask.c"
1916#include "sched_fair.c"
1917#include "sched_rt.c"
1918#ifdef CONFIG_SCHED_DEBUG
1919# include "sched_debug.c"
1920#endif
1921
1914/* 1922/*
1915 * __normal_prio - return the priority that is based on the static prio 1923 * __normal_prio - return the priority that is based on the static prio
1916 */ 1924 */
@@ -1957,30 +1965,6 @@ static int effective_prio(struct task_struct *p)
1957 return p->prio; 1965 return p->prio;
1958} 1966}
1959 1967
1960/*
1961 * activate_task - move a task to the runqueue.
1962 */
1963static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1964{
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1967
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1970}
1971
1972/*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
1975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1976{
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1979
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1982}
1983
1984/** 1968/**
1985 * task_curr - is this task currently executing on a CPU? 1969 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question. 1970 * @p: the task in question.
@@ -2053,21 +2037,18 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2053 __set_task_cpu(p, new_cpu); 2037 __set_task_cpu(p, new_cpu);
2054} 2038}
2055 2039
2056struct migration_req { 2040struct migration_arg {
2057 struct list_head list;
2058
2059 struct task_struct *task; 2041 struct task_struct *task;
2060 int dest_cpu; 2042 int dest_cpu;
2061
2062 struct completion done;
2063}; 2043};
2064 2044
2045static int migration_cpu_stop(void *data);
2046
2065/* 2047/*
2066 * The task's runqueue lock must be held. 2048 * The task's runqueue lock must be held.
2067 * Returns true if you have to wait for migration thread. 2049 * Returns true if you have to wait for migration thread.
2068 */ 2050 */
2069static int 2051static bool migrate_task(struct task_struct *p, int dest_cpu)
2070migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2071{ 2052{
2072 struct rq *rq = task_rq(p); 2053 struct rq *rq = task_rq(p);
2073 2054
@@ -2075,58 +2056,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2075 * If the task is not on a runqueue (and not running), then 2056 * If the task is not on a runqueue (and not running), then
2076 * the next wake-up will properly place the task. 2057 * the next wake-up will properly place the task.
2077 */ 2058 */
2078 if (!p->se.on_rq && !task_running(rq, p)) 2059 return p->se.on_rq || task_running(rq, p);
2079 return 0;
2080
2081 init_completion(&req->done);
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
2085
2086 return 1;
2087}
2088
2089/*
2090 * wait_task_context_switch - wait for a thread to complete at least one
2091 * context switch.
2092 *
2093 * @p must not be current.
2094 */
2095void wait_task_context_switch(struct task_struct *p)
2096{
2097 unsigned long nvcsw, nivcsw, flags;
2098 int running;
2099 struct rq *rq;
2100
2101 nvcsw = p->nvcsw;
2102 nivcsw = p->nivcsw;
2103 for (;;) {
2104 /*
2105 * The runqueue is assigned before the actual context
2106 * switch. We need to take the runqueue lock.
2107 *
2108 * We could check initially without the lock but it is
2109 * very likely that we need to take the lock in every
2110 * iteration.
2111 */
2112 rq = task_rq_lock(p, &flags);
2113 running = task_running(rq, p);
2114 task_rq_unlock(rq, &flags);
2115
2116 if (likely(!running))
2117 break;
2118 /*
2119 * The switch count is incremented before the actual
2120 * context switch. We thus wait for two switches to be
2121 * sure at least one completed.
2122 */
2123 if ((p->nvcsw - nvcsw) > 1)
2124 break;
2125 if ((p->nivcsw - nivcsw) > 1)
2126 break;
2127
2128 cpu_relax();
2129 }
2130} 2060}
2131 2061
2132/* 2062/*
@@ -2184,7 +2114,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2184 * just go back and repeat. 2114 * just go back and repeat.
2185 */ 2115 */
2186 rq = task_rq_lock(p, &flags); 2116 rq = task_rq_lock(p, &flags);
2187 trace_sched_wait_task(rq, p); 2117 trace_sched_wait_task(p);
2188 running = task_running(rq, p); 2118 running = task_running(rq, p);
2189 on_rq = p->se.on_rq; 2119 on_rq = p->se.on_rq;
2190 ncsw = 0; 2120 ncsw = 0;
@@ -2282,6 +2212,9 @@ void task_oncpu_function_call(struct task_struct *p,
2282} 2212}
2283 2213
2284#ifdef CONFIG_SMP 2214#ifdef CONFIG_SMP
2215/*
2216 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2217 */
2285static int select_fallback_rq(int cpu, struct task_struct *p) 2218static int select_fallback_rq(int cpu, struct task_struct *p)
2286{ 2219{
2287 int dest_cpu; 2220 int dest_cpu;
@@ -2298,12 +2231,8 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
2298 return dest_cpu; 2231 return dest_cpu;
2299 2232
2300 /* No more Mr. Nice Guy. */ 2233 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) { 2234 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2302 rcu_read_lock(); 2235 dest_cpu = cpuset_cpus_allowed_fallback(p);
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2306
2307 /* 2236 /*
2308 * Don't tell them about moving exiting tasks or 2237 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never 2238 * kernel threads (both mm NULL), since they never
@@ -2320,19 +2249,12 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
2320} 2249}
2321 2250
2322/* 2251/*
2323 * Called from: 2252 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2324 *
2325 * - fork, @p is stable because it isn't on the tasklist yet
2326 *
2327 * - exec, @p is unstable, retry loop
2328 *
2329 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2330 * we should be good.
2331 */ 2253 */
2332static inline 2254static inline
2333int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 2255int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2334{ 2256{
2335 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 2257 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2336 2258
2337 /* 2259 /*
2338 * In order not to call set_task_cpu() on a blocking task we need 2260 * In order not to call set_task_cpu() on a blocking task we need
@@ -2350,6 +2272,12 @@ int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2350 2272
2351 return cpu; 2273 return cpu;
2352} 2274}
2275
2276static void update_avg(u64 *avg, u64 sample)
2277{
2278 s64 diff = sample - *avg;
2279 *avg += diff >> 3;
2280}
2353#endif 2281#endif
2354 2282
2355/*** 2283/***
@@ -2371,16 +2299,13 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2371{ 2299{
2372 int cpu, orig_cpu, this_cpu, success = 0; 2300 int cpu, orig_cpu, this_cpu, success = 0;
2373 unsigned long flags; 2301 unsigned long flags;
2374 struct rq *rq, *orig_rq; 2302 unsigned long en_flags = ENQUEUE_WAKEUP;
2375 2303 struct rq *rq;
2376 if (!sched_feat(SYNC_WAKEUPS))
2377 wake_flags &= ~WF_SYNC;
2378 2304
2379 this_cpu = get_cpu(); 2305 this_cpu = get_cpu();
2380 2306
2381 smp_wmb(); 2307 smp_wmb();
2382 rq = orig_rq = task_rq_lock(p, &flags); 2308 rq = task_rq_lock(p, &flags);
2383 update_rq_clock(rq);
2384 if (!(p->state & state)) 2309 if (!(p->state & state))
2385 goto out; 2310 goto out;
2386 2311
@@ -2400,24 +2325,35 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2400 * 2325 *
2401 * First fix up the nr_uninterruptible count: 2326 * First fix up the nr_uninterruptible count:
2402 */ 2327 */
2403 if (task_contributes_to_load(p)) 2328 if (task_contributes_to_load(p)) {
2404 rq->nr_uninterruptible--; 2329 if (likely(cpu_online(orig_cpu)))
2330 rq->nr_uninterruptible--;
2331 else
2332 this_rq()->nr_uninterruptible--;
2333 }
2405 p->state = TASK_WAKING; 2334 p->state = TASK_WAKING;
2406 2335
2407 if (p->sched_class->task_waking) 2336 if (p->sched_class->task_waking) {
2408 p->sched_class->task_waking(rq, p); 2337 p->sched_class->task_waking(rq, p);
2338 en_flags |= ENQUEUE_WAKING;
2339 }
2409 2340
2410 __task_rq_unlock(rq); 2341 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2411
2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2413 if (cpu != orig_cpu) 2342 if (cpu != orig_cpu)
2414 set_task_cpu(p, cpu); 2343 set_task_cpu(p, cpu);
2344 __task_rq_unlock(rq);
2415 2345
2416 rq = __task_rq_lock(p); 2346 rq = cpu_rq(cpu);
2417 update_rq_clock(rq); 2347 raw_spin_lock(&rq->lock);
2418 2348
2349 /*
2350 * We migrated the task without holding either rq->lock, however
2351 * since the task is not on the task list itself, nobody else
2352 * will try and migrate the task, hence the rq should match the
2353 * cpu we just moved it to.
2354 */
2355 WARN_ON(task_cpu(p) != cpu);
2419 WARN_ON(p->state != TASK_WAKING); 2356 WARN_ON(p->state != TASK_WAKING);
2420 cpu = task_cpu(p);
2421 2357
2422#ifdef CONFIG_SCHEDSTATS 2358#ifdef CONFIG_SCHEDSTATS
2423 schedstat_inc(rq, ttwu_count); 2359 schedstat_inc(rq, ttwu_count);
@@ -2436,36 +2372,20 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state,
2436 2372
2437out_activate: 2373out_activate:
2438#endif /* CONFIG_SMP */ 2374#endif /* CONFIG_SMP */
2439 schedstat_inc(p, se.nr_wakeups); 2375 schedstat_inc(p, se.statistics.nr_wakeups);
2440 if (wake_flags & WF_SYNC) 2376 if (wake_flags & WF_SYNC)
2441 schedstat_inc(p, se.nr_wakeups_sync); 2377 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2442 if (orig_cpu != cpu) 2378 if (orig_cpu != cpu)
2443 schedstat_inc(p, se.nr_wakeups_migrate); 2379 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2444 if (cpu == this_cpu) 2380 if (cpu == this_cpu)
2445 schedstat_inc(p, se.nr_wakeups_local); 2381 schedstat_inc(p, se.statistics.nr_wakeups_local);
2446 else 2382 else
2447 schedstat_inc(p, se.nr_wakeups_remote); 2383 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2448 activate_task(rq, p, 1); 2384 activate_task(rq, p, en_flags);
2449 success = 1; 2385 success = 1;
2450 2386
2451 /*
2452 * Only attribute actual wakeups done by this task.
2453 */
2454 if (!in_interrupt()) {
2455 struct sched_entity *se = &current->se;
2456 u64 sample = se->sum_exec_runtime;
2457
2458 if (se->last_wakeup)
2459 sample -= se->last_wakeup;
2460 else
2461 sample -= se->start_runtime;
2462 update_avg(&se->avg_wakeup, sample);
2463
2464 se->last_wakeup = se->sum_exec_runtime;
2465 }
2466
2467out_running: 2387out_running:
2468 trace_sched_wakeup(rq, p, success); 2388 trace_sched_wakeup(p, success);
2469 check_preempt_curr(rq, p, wake_flags); 2389 check_preempt_curr(rq, p, wake_flags);
2470 2390
2471 p->state = TASK_RUNNING; 2391 p->state = TASK_RUNNING;
@@ -2525,42 +2445,9 @@ static void __sched_fork(struct task_struct *p)
2525 p->se.sum_exec_runtime = 0; 2445 p->se.sum_exec_runtime = 0;
2526 p->se.prev_sum_exec_runtime = 0; 2446 p->se.prev_sum_exec_runtime = 0;
2527 p->se.nr_migrations = 0; 2447 p->se.nr_migrations = 0;
2528 p->se.last_wakeup = 0;
2529 p->se.avg_overlap = 0;
2530 p->se.start_runtime = 0;
2531 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2532 2448
2533#ifdef CONFIG_SCHEDSTATS 2449#ifdef CONFIG_SCHEDSTATS
2534 p->se.wait_start = 0; 2450 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2535 p->se.wait_max = 0;
2536 p->se.wait_count = 0;
2537 p->se.wait_sum = 0;
2538
2539 p->se.sleep_start = 0;
2540 p->se.sleep_max = 0;
2541 p->se.sum_sleep_runtime = 0;
2542
2543 p->se.block_start = 0;
2544 p->se.block_max = 0;
2545 p->se.exec_max = 0;
2546 p->se.slice_max = 0;
2547
2548 p->se.nr_migrations_cold = 0;
2549 p->se.nr_failed_migrations_affine = 0;
2550 p->se.nr_failed_migrations_running = 0;
2551 p->se.nr_failed_migrations_hot = 0;
2552 p->se.nr_forced_migrations = 0;
2553
2554 p->se.nr_wakeups = 0;
2555 p->se.nr_wakeups_sync = 0;
2556 p->se.nr_wakeups_migrate = 0;
2557 p->se.nr_wakeups_local = 0;
2558 p->se.nr_wakeups_remote = 0;
2559 p->se.nr_wakeups_affine = 0;
2560 p->se.nr_wakeups_affine_attempts = 0;
2561 p->se.nr_wakeups_passive = 0;
2562 p->se.nr_wakeups_idle = 0;
2563
2564#endif 2451#endif
2565 2452
2566 INIT_LIST_HEAD(&p->rt.run_list); 2453 INIT_LIST_HEAD(&p->rt.run_list);
@@ -2581,11 +2468,11 @@ void sched_fork(struct task_struct *p, int clone_flags)
2581 2468
2582 __sched_fork(p); 2469 __sched_fork(p);
2583 /* 2470 /*
2584 * We mark the process as waking here. This guarantees that 2471 * We mark the process as running here. This guarantees that
2585 * nobody will actually run it, and a signal or other external 2472 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either. 2473 * event cannot wake it up and insert it on the runqueue either.
2587 */ 2474 */
2588 p->state = TASK_WAKING; 2475 p->state = TASK_RUNNING;
2589 2476
2590 /* 2477 /*
2591 * Revert to default priority/policy on fork if requested. 2478 * Revert to default priority/policy on fork if requested.
@@ -2620,9 +2507,6 @@ void sched_fork(struct task_struct *p, int clone_flags)
2620 if (p->sched_class->task_fork) 2507 if (p->sched_class->task_fork)
2621 p->sched_class->task_fork(p); 2508 p->sched_class->task_fork(p);
2622 2509
2623#ifdef CONFIG_SMP
2624 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2625#endif
2626 set_task_cpu(p, cpu); 2510 set_task_cpu(p, cpu);
2627 2511
2628#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 2512#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
@@ -2652,19 +2536,37 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2652{ 2536{
2653 unsigned long flags; 2537 unsigned long flags;
2654 struct rq *rq; 2538 struct rq *rq;
2539 int cpu __maybe_unused = get_cpu();
2655 2540
2541#ifdef CONFIG_SMP
2656 rq = task_rq_lock(p, &flags); 2542 rq = task_rq_lock(p, &flags);
2657 BUG_ON(p->state != TASK_WAKING); 2543 p->state = TASK_WAKING;
2544
2545 /*
2546 * Fork balancing, do it here and not earlier because:
2547 * - cpus_allowed can change in the fork path
2548 * - any previously selected cpu might disappear through hotplug
2549 *
2550 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2551 * without people poking at ->cpus_allowed.
2552 */
2553 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2554 set_task_cpu(p, cpu);
2555
2658 p->state = TASK_RUNNING; 2556 p->state = TASK_RUNNING;
2659 update_rq_clock(rq); 2557 task_rq_unlock(rq, &flags);
2558#endif
2559
2560 rq = task_rq_lock(p, &flags);
2660 activate_task(rq, p, 0); 2561 activate_task(rq, p, 0);
2661 trace_sched_wakeup_new(rq, p, 1); 2562 trace_sched_wakeup_new(p, 1);
2662 check_preempt_curr(rq, p, WF_FORK); 2563 check_preempt_curr(rq, p, WF_FORK);
2663#ifdef CONFIG_SMP 2564#ifdef CONFIG_SMP
2664 if (p->sched_class->task_woken) 2565 if (p->sched_class->task_woken)
2665 p->sched_class->task_woken(rq, p); 2566 p->sched_class->task_woken(rq, p);
2666#endif 2567#endif
2667 task_rq_unlock(rq, &flags); 2568 task_rq_unlock(rq, &flags);
2569 put_cpu();
2668} 2570}
2669 2571
2670#ifdef CONFIG_PREEMPT_NOTIFIERS 2572#ifdef CONFIG_PREEMPT_NOTIFIERS
@@ -2783,7 +2685,13 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2783 */ 2685 */
2784 prev_state = prev->state; 2686 prev_state = prev->state;
2785 finish_arch_switch(prev); 2687 finish_arch_switch(prev);
2786 perf_event_task_sched_in(current, cpu_of(rq)); 2688#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_disable();
2690#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691 perf_event_task_sched_in(current);
2692#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2693 local_irq_enable();
2694#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2787 finish_lock_switch(rq, prev); 2695 finish_lock_switch(rq, prev);
2788 2696
2789 fire_sched_in_preempt_notifiers(current); 2697 fire_sched_in_preempt_notifiers(current);
@@ -2871,7 +2779,7 @@ context_switch(struct rq *rq, struct task_struct *prev,
2871 struct mm_struct *mm, *oldmm; 2779 struct mm_struct *mm, *oldmm;
2872 2780
2873 prepare_task_switch(rq, prev, next); 2781 prepare_task_switch(rq, prev, next);
2874 trace_sched_switch(rq, prev, next); 2782 trace_sched_switch(prev, next);
2875 mm = next->mm; 2783 mm = next->mm;
2876 oldmm = prev->active_mm; 2784 oldmm = prev->active_mm;
2877 /* 2785 /*
@@ -2988,6 +2896,61 @@ static unsigned long calc_load_update;
2988unsigned long avenrun[3]; 2896unsigned long avenrun[3];
2989EXPORT_SYMBOL(avenrun); 2897EXPORT_SYMBOL(avenrun);
2990 2898
2899static long calc_load_fold_active(struct rq *this_rq)
2900{
2901 long nr_active, delta = 0;
2902
2903 nr_active = this_rq->nr_running;
2904 nr_active += (long) this_rq->nr_uninterruptible;
2905
2906 if (nr_active != this_rq->calc_load_active) {
2907 delta = nr_active - this_rq->calc_load_active;
2908 this_rq->calc_load_active = nr_active;
2909 }
2910
2911 return delta;
2912}
2913
2914#ifdef CONFIG_NO_HZ
2915/*
2916 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2917 *
2918 * When making the ILB scale, we should try to pull this in as well.
2919 */
2920static atomic_long_t calc_load_tasks_idle;
2921
2922static void calc_load_account_idle(struct rq *this_rq)
2923{
2924 long delta;
2925
2926 delta = calc_load_fold_active(this_rq);
2927 if (delta)
2928 atomic_long_add(delta, &calc_load_tasks_idle);
2929}
2930
2931static long calc_load_fold_idle(void)
2932{
2933 long delta = 0;
2934
2935 /*
2936 * Its got a race, we don't care...
2937 */
2938 if (atomic_long_read(&calc_load_tasks_idle))
2939 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2940
2941 return delta;
2942}
2943#else
2944static void calc_load_account_idle(struct rq *this_rq)
2945{
2946}
2947
2948static inline long calc_load_fold_idle(void)
2949{
2950 return 0;
2951}
2952#endif
2953
2991/** 2954/**
2992 * get_avenrun - get the load average array 2955 * get_avenrun - get the load average array
2993 * @loads: pointer to dest load array 2956 * @loads: pointer to dest load array
@@ -3034,20 +2997,22 @@ void calc_global_load(void)
3034} 2997}
3035 2998
3036/* 2999/*
3037 * Either called from update_cpu_load() or from a cpu going idle 3000 * Called from update_cpu_load() to periodically update this CPU's
3001 * active count.
3038 */ 3002 */
3039static void calc_load_account_active(struct rq *this_rq) 3003static void calc_load_account_active(struct rq *this_rq)
3040{ 3004{
3041 long nr_active, delta; 3005 long delta;
3042 3006
3043 nr_active = this_rq->nr_running; 3007 if (time_before(jiffies, this_rq->calc_load_update))
3044 nr_active += (long) this_rq->nr_uninterruptible; 3008 return;
3045 3009
3046 if (nr_active != this_rq->calc_load_active) { 3010 delta = calc_load_fold_active(this_rq);
3047 delta = nr_active - this_rq->calc_load_active; 3011 delta += calc_load_fold_idle();
3048 this_rq->calc_load_active = nr_active; 3012 if (delta)
3049 atomic_long_add(delta, &calc_load_tasks); 3013 atomic_long_add(delta, &calc_load_tasks);
3050 } 3014
3015 this_rq->calc_load_update += LOAD_FREQ;
3051} 3016}
3052 3017
3053/* 3018/*
@@ -3079,1871 +3044,42 @@ static void update_cpu_load(struct rq *this_rq)
3079 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; 3044 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3080 } 3045 }
3081 3046
3082 if (time_after_eq(jiffies, this_rq->calc_load_update)) { 3047 calc_load_account_active(this_rq);
3083 this_rq->calc_load_update += LOAD_FREQ;
3084 calc_load_account_active(this_rq);
3085 }
3086} 3048}
3087 3049
3088#ifdef CONFIG_SMP 3050#ifdef CONFIG_SMP
3089 3051
3090/* 3052/*
3091 * double_rq_lock - safely lock two runqueues
3092 *
3093 * Note this does not disable interrupts like task_rq_lock,
3094 * you need to do so manually before calling.
3095 */
3096static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3097 __acquires(rq1->lock)
3098 __acquires(rq2->lock)
3099{
3100 BUG_ON(!irqs_disabled());
3101 if (rq1 == rq2) {
3102 raw_spin_lock(&rq1->lock);
3103 __acquire(rq2->lock); /* Fake it out ;) */
3104 } else {
3105 if (rq1 < rq2) {
3106 raw_spin_lock(&rq1->lock);
3107 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3108 } else {
3109 raw_spin_lock(&rq2->lock);
3110 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3111 }
3112 }
3113 update_rq_clock(rq1);
3114 update_rq_clock(rq2);
3115}
3116
3117/*
3118 * double_rq_unlock - safely unlock two runqueues
3119 *
3120 * Note this does not restore interrupts like task_rq_unlock,
3121 * you need to do so manually after calling.
3122 */
3123static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3124 __releases(rq1->lock)
3125 __releases(rq2->lock)
3126{
3127 raw_spin_unlock(&rq1->lock);
3128 if (rq1 != rq2)
3129 raw_spin_unlock(&rq2->lock);
3130 else
3131 __release(rq2->lock);
3132}
3133
3134/*
3135 * sched_exec - execve() is a valuable balancing opportunity, because at 3053 * sched_exec - execve() is a valuable balancing opportunity, because at
3136 * this point the task has the smallest effective memory and cache footprint. 3054 * this point the task has the smallest effective memory and cache footprint.
3137 */ 3055 */
3138void sched_exec(void) 3056void sched_exec(void)
3139{ 3057{
3140 struct task_struct *p = current; 3058 struct task_struct *p = current;
3141 struct migration_req req;
3142 int dest_cpu, this_cpu;
3143 unsigned long flags; 3059 unsigned long flags;
3144 struct rq *rq; 3060 struct rq *rq;
3145 3061 int dest_cpu;
3146again:
3147 this_cpu = get_cpu();
3148 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3149 if (dest_cpu == this_cpu) {
3150 put_cpu();
3151 return;
3152 }
3153 3062
3154 rq = task_rq_lock(p, &flags); 3063 rq = task_rq_lock(p, &flags);
3155 put_cpu(); 3064 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3065 if (dest_cpu == smp_processor_id())
3066 goto unlock;
3156 3067
3157 /* 3068 /*
3158 * select_task_rq() can race against ->cpus_allowed 3069 * select_task_rq() can race against ->cpus_allowed
3159 */ 3070 */
3160 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) 3071 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3161 || unlikely(!cpu_active(dest_cpu))) { 3072 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3162 task_rq_unlock(rq, &flags); 3073 struct migration_arg arg = { p, dest_cpu };
3163 goto again;
3164 }
3165 3074
3166 /* force the process onto the specified CPU */
3167 if (migrate_task(p, dest_cpu, &req)) {
3168 /* Need to wait for migration thread (might exit: take ref). */
3169 struct task_struct *mt = rq->migration_thread;
3170
3171 get_task_struct(mt);
3172 task_rq_unlock(rq, &flags); 3075 task_rq_unlock(rq, &flags);
3173 wake_up_process(mt); 3076 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3174 put_task_struct(mt);
3175 wait_for_completion(&req.done);
3176
3177 return; 3077 return;
3178 } 3078 }
3079unlock:
3179 task_rq_unlock(rq, &flags); 3080 task_rq_unlock(rq, &flags);
3180} 3081}
3181 3082
3182/*
3183 * pull_task - move a task from a remote runqueue to the local runqueue.
3184 * Both runqueues must be locked.
3185 */
3186static void pull_task(struct rq *src_rq, struct task_struct *p,
3187 struct rq *this_rq, int this_cpu)
3188{
3189 deactivate_task(src_rq, p, 0);
3190 set_task_cpu(p, this_cpu);
3191 activate_task(this_rq, p, 0);
3192 check_preempt_curr(this_rq, p, 0);
3193}
3194
3195/*
3196 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3197 */
3198static
3199int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3200 struct sched_domain *sd, enum cpu_idle_type idle,
3201 int *all_pinned)
3202{
3203 int tsk_cache_hot = 0;
3204 /*
3205 * We do not migrate tasks that are:
3206 * 1) running (obviously), or
3207 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3208 * 3) are cache-hot on their current CPU.
3209 */
3210 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3211 schedstat_inc(p, se.nr_failed_migrations_affine);
3212 return 0;
3213 }
3214 *all_pinned = 0;
3215
3216 if (task_running(rq, p)) {
3217 schedstat_inc(p, se.nr_failed_migrations_running);
3218 return 0;
3219 }
3220
3221 /*
3222 * Aggressive migration if:
3223 * 1) task is cache cold, or
3224 * 2) too many balance attempts have failed.
3225 */
3226
3227 tsk_cache_hot = task_hot(p, rq->clock, sd);
3228 if (!tsk_cache_hot ||
3229 sd->nr_balance_failed > sd->cache_nice_tries) {
3230#ifdef CONFIG_SCHEDSTATS
3231 if (tsk_cache_hot) {
3232 schedstat_inc(sd, lb_hot_gained[idle]);
3233 schedstat_inc(p, se.nr_forced_migrations);
3234 }
3235#endif
3236 return 1;
3237 }
3238
3239 if (tsk_cache_hot) {
3240 schedstat_inc(p, se.nr_failed_migrations_hot);
3241 return 0;
3242 }
3243 return 1;
3244}
3245
3246static unsigned long
3247balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3248 unsigned long max_load_move, struct sched_domain *sd,
3249 enum cpu_idle_type idle, int *all_pinned,
3250 int *this_best_prio, struct rq_iterator *iterator)
3251{
3252 int loops = 0, pulled = 0, pinned = 0;
3253 struct task_struct *p;
3254 long rem_load_move = max_load_move;
3255
3256 if (max_load_move == 0)
3257 goto out;
3258
3259 pinned = 1;
3260
3261 /*
3262 * Start the load-balancing iterator:
3263 */
3264 p = iterator->start(iterator->arg);
3265next:
3266 if (!p || loops++ > sysctl_sched_nr_migrate)
3267 goto out;
3268
3269 if ((p->se.load.weight >> 1) > rem_load_move ||
3270 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3271 p = iterator->next(iterator->arg);
3272 goto next;
3273 }
3274
3275 pull_task(busiest, p, this_rq, this_cpu);
3276 pulled++;
3277 rem_load_move -= p->se.load.weight;
3278
3279#ifdef CONFIG_PREEMPT
3280 /*
3281 * NEWIDLE balancing is a source of latency, so preemptible kernels
3282 * will stop after the first task is pulled to minimize the critical
3283 * section.
3284 */
3285 if (idle == CPU_NEWLY_IDLE)
3286 goto out;
3287#endif
3288
3289 /*
3290 * We only want to steal up to the prescribed amount of weighted load.
3291 */
3292 if (rem_load_move > 0) {
3293 if (p->prio < *this_best_prio)
3294 *this_best_prio = p->prio;
3295 p = iterator->next(iterator->arg);
3296 goto next;
3297 }
3298out:
3299 /*
3300 * Right now, this is one of only two places pull_task() is called,
3301 * so we can safely collect pull_task() stats here rather than
3302 * inside pull_task().
3303 */
3304 schedstat_add(sd, lb_gained[idle], pulled);
3305
3306 if (all_pinned)
3307 *all_pinned = pinned;
3308
3309 return max_load_move - rem_load_move;
3310}
3311
3312/*
3313 * move_tasks tries to move up to max_load_move weighted load from busiest to
3314 * this_rq, as part of a balancing operation within domain "sd".
3315 * Returns 1 if successful and 0 otherwise.
3316 *
3317 * Called with both runqueues locked.
3318 */
3319static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3320 unsigned long max_load_move,
3321 struct sched_domain *sd, enum cpu_idle_type idle,
3322 int *all_pinned)
3323{
3324 const struct sched_class *class = sched_class_highest;
3325 unsigned long total_load_moved = 0;
3326 int this_best_prio = this_rq->curr->prio;
3327
3328 do {
3329 total_load_moved +=
3330 class->load_balance(this_rq, this_cpu, busiest,
3331 max_load_move - total_load_moved,
3332 sd, idle, all_pinned, &this_best_prio);
3333 class = class->next;
3334
3335#ifdef CONFIG_PREEMPT
3336 /*
3337 * NEWIDLE balancing is a source of latency, so preemptible
3338 * kernels will stop after the first task is pulled to minimize
3339 * the critical section.
3340 */
3341 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3342 break;
3343#endif
3344 } while (class && max_load_move > total_load_moved);
3345
3346 return total_load_moved > 0;
3347}
3348
3349static int
3350iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3351 struct sched_domain *sd, enum cpu_idle_type idle,
3352 struct rq_iterator *iterator)
3353{
3354 struct task_struct *p = iterator->start(iterator->arg);
3355 int pinned = 0;
3356
3357 while (p) {
3358 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3359 pull_task(busiest, p, this_rq, this_cpu);
3360 /*
3361 * Right now, this is only the second place pull_task()
3362 * is called, so we can safely collect pull_task()
3363 * stats here rather than inside pull_task().
3364 */
3365 schedstat_inc(sd, lb_gained[idle]);
3366
3367 return 1;
3368 }
3369 p = iterator->next(iterator->arg);
3370 }
3371
3372 return 0;
3373}
3374
3375/*
3376 * move_one_task tries to move exactly one task from busiest to this_rq, as
3377 * part of active balancing operations within "domain".
3378 * Returns 1 if successful and 0 otherwise.
3379 *
3380 * Called with both runqueues locked.
3381 */
3382static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3383 struct sched_domain *sd, enum cpu_idle_type idle)
3384{
3385 const struct sched_class *class;
3386
3387 for_each_class(class) {
3388 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3389 return 1;
3390 }
3391
3392 return 0;
3393}
3394/********** Helpers for find_busiest_group ************************/
3395/*
3396 * sd_lb_stats - Structure to store the statistics of a sched_domain
3397 * during load balancing.
3398 */
3399struct sd_lb_stats {
3400 struct sched_group *busiest; /* Busiest group in this sd */
3401 struct sched_group *this; /* Local group in this sd */
3402 unsigned long total_load; /* Total load of all groups in sd */
3403 unsigned long total_pwr; /* Total power of all groups in sd */
3404 unsigned long avg_load; /* Average load across all groups in sd */
3405
3406 /** Statistics of this group */
3407 unsigned long this_load;
3408 unsigned long this_load_per_task;
3409 unsigned long this_nr_running;
3410
3411 /* Statistics of the busiest group */
3412 unsigned long max_load;
3413 unsigned long busiest_load_per_task;
3414 unsigned long busiest_nr_running;
3415
3416 int group_imb; /* Is there imbalance in this sd */
3417#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3418 int power_savings_balance; /* Is powersave balance needed for this sd */
3419 struct sched_group *group_min; /* Least loaded group in sd */
3420 struct sched_group *group_leader; /* Group which relieves group_min */
3421 unsigned long min_load_per_task; /* load_per_task in group_min */
3422 unsigned long leader_nr_running; /* Nr running of group_leader */
3423 unsigned long min_nr_running; /* Nr running of group_min */
3424#endif
3425};
3426
3427/*
3428 * sg_lb_stats - stats of a sched_group required for load_balancing
3429 */
3430struct sg_lb_stats {
3431 unsigned long avg_load; /*Avg load across the CPUs of the group */
3432 unsigned long group_load; /* Total load over the CPUs of the group */
3433 unsigned long sum_nr_running; /* Nr tasks running in the group */
3434 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3435 unsigned long group_capacity;
3436 int group_imb; /* Is there an imbalance in the group ? */
3437};
3438
3439/**
3440 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3441 * @group: The group whose first cpu is to be returned.
3442 */
3443static inline unsigned int group_first_cpu(struct sched_group *group)
3444{
3445 return cpumask_first(sched_group_cpus(group));
3446}
3447
3448/**
3449 * get_sd_load_idx - Obtain the load index for a given sched domain.
3450 * @sd: The sched_domain whose load_idx is to be obtained.
3451 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3452 */
3453static inline int get_sd_load_idx(struct sched_domain *sd,
3454 enum cpu_idle_type idle)
3455{
3456 int load_idx;
3457
3458 switch (idle) {
3459 case CPU_NOT_IDLE:
3460 load_idx = sd->busy_idx;
3461 break;
3462
3463 case CPU_NEWLY_IDLE:
3464 load_idx = sd->newidle_idx;
3465 break;
3466 default:
3467 load_idx = sd->idle_idx;
3468 break;
3469 }
3470
3471 return load_idx;
3472}
3473
3474
3475#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3476/**
3477 * init_sd_power_savings_stats - Initialize power savings statistics for
3478 * the given sched_domain, during load balancing.
3479 *
3480 * @sd: Sched domain whose power-savings statistics are to be initialized.
3481 * @sds: Variable containing the statistics for sd.
3482 * @idle: Idle status of the CPU at which we're performing load-balancing.
3483 */
3484static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3485 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3486{
3487 /*
3488 * Busy processors will not participate in power savings
3489 * balance.
3490 */
3491 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3492 sds->power_savings_balance = 0;
3493 else {
3494 sds->power_savings_balance = 1;
3495 sds->min_nr_running = ULONG_MAX;
3496 sds->leader_nr_running = 0;
3497 }
3498}
3499
3500/**
3501 * update_sd_power_savings_stats - Update the power saving stats for a
3502 * sched_domain while performing load balancing.
3503 *
3504 * @group: sched_group belonging to the sched_domain under consideration.
3505 * @sds: Variable containing the statistics of the sched_domain
3506 * @local_group: Does group contain the CPU for which we're performing
3507 * load balancing ?
3508 * @sgs: Variable containing the statistics of the group.
3509 */
3510static inline void update_sd_power_savings_stats(struct sched_group *group,
3511 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3512{
3513
3514 if (!sds->power_savings_balance)
3515 return;
3516
3517 /*
3518 * If the local group is idle or completely loaded
3519 * no need to do power savings balance at this domain
3520 */
3521 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3522 !sds->this_nr_running))
3523 sds->power_savings_balance = 0;
3524
3525 /*
3526 * If a group is already running at full capacity or idle,
3527 * don't include that group in power savings calculations
3528 */
3529 if (!sds->power_savings_balance ||
3530 sgs->sum_nr_running >= sgs->group_capacity ||
3531 !sgs->sum_nr_running)
3532 return;
3533
3534 /*
3535 * Calculate the group which has the least non-idle load.
3536 * This is the group from where we need to pick up the load
3537 * for saving power
3538 */
3539 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3540 (sgs->sum_nr_running == sds->min_nr_running &&
3541 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3542 sds->group_min = group;
3543 sds->min_nr_running = sgs->sum_nr_running;
3544 sds->min_load_per_task = sgs->sum_weighted_load /
3545 sgs->sum_nr_running;
3546 }
3547
3548 /*
3549 * Calculate the group which is almost near its
3550 * capacity but still has some space to pick up some load
3551 * from other group and save more power
3552 */
3553 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3554 return;
3555
3556 if (sgs->sum_nr_running > sds->leader_nr_running ||
3557 (sgs->sum_nr_running == sds->leader_nr_running &&
3558 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3559 sds->group_leader = group;
3560 sds->leader_nr_running = sgs->sum_nr_running;
3561 }
3562}
3563
3564/**
3565 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3566 * @sds: Variable containing the statistics of the sched_domain
3567 * under consideration.
3568 * @this_cpu: Cpu at which we're currently performing load-balancing.
3569 * @imbalance: Variable to store the imbalance.
3570 *
3571 * Description:
3572 * Check if we have potential to perform some power-savings balance.
3573 * If yes, set the busiest group to be the least loaded group in the
3574 * sched_domain, so that it's CPUs can be put to idle.
3575 *
3576 * Returns 1 if there is potential to perform power-savings balance.
3577 * Else returns 0.
3578 */
3579static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3580 int this_cpu, unsigned long *imbalance)
3581{
3582 if (!sds->power_savings_balance)
3583 return 0;
3584
3585 if (sds->this != sds->group_leader ||
3586 sds->group_leader == sds->group_min)
3587 return 0;
3588
3589 *imbalance = sds->min_load_per_task;
3590 sds->busiest = sds->group_min;
3591
3592 return 1;
3593
3594}
3595#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3596static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3597 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3598{
3599 return;
3600}
3601
3602static inline void update_sd_power_savings_stats(struct sched_group *group,
3603 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3604{
3605 return;
3606}
3607
3608static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3609 int this_cpu, unsigned long *imbalance)
3610{
3611 return 0;
3612}
3613#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3614
3615
3616unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3617{
3618 return SCHED_LOAD_SCALE;
3619}
3620
3621unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3622{
3623 return default_scale_freq_power(sd, cpu);
3624}
3625
3626unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3627{
3628 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3629 unsigned long smt_gain = sd->smt_gain;
3630
3631 smt_gain /= weight;
3632
3633 return smt_gain;
3634}
3635
3636unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3637{
3638 return default_scale_smt_power(sd, cpu);
3639}
3640
3641unsigned long scale_rt_power(int cpu)
3642{
3643 struct rq *rq = cpu_rq(cpu);
3644 u64 total, available;
3645
3646 sched_avg_update(rq);
3647
3648 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3649 available = total - rq->rt_avg;
3650
3651 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3652 total = SCHED_LOAD_SCALE;
3653
3654 total >>= SCHED_LOAD_SHIFT;
3655
3656 return div_u64(available, total);
3657}
3658
3659static void update_cpu_power(struct sched_domain *sd, int cpu)
3660{
3661 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3662 unsigned long power = SCHED_LOAD_SCALE;
3663 struct sched_group *sdg = sd->groups;
3664
3665 if (sched_feat(ARCH_POWER))
3666 power *= arch_scale_freq_power(sd, cpu);
3667 else
3668 power *= default_scale_freq_power(sd, cpu);
3669
3670 power >>= SCHED_LOAD_SHIFT;
3671
3672 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3673 if (sched_feat(ARCH_POWER))
3674 power *= arch_scale_smt_power(sd, cpu);
3675 else
3676 power *= default_scale_smt_power(sd, cpu);
3677
3678 power >>= SCHED_LOAD_SHIFT;
3679 }
3680
3681 power *= scale_rt_power(cpu);
3682 power >>= SCHED_LOAD_SHIFT;
3683
3684 if (!power)
3685 power = 1;
3686
3687 sdg->cpu_power = power;
3688}
3689
3690static void update_group_power(struct sched_domain *sd, int cpu)
3691{
3692 struct sched_domain *child = sd->child;
3693 struct sched_group *group, *sdg = sd->groups;
3694 unsigned long power;
3695
3696 if (!child) {
3697 update_cpu_power(sd, cpu);
3698 return;
3699 }
3700
3701 power = 0;
3702
3703 group = child->groups;
3704 do {
3705 power += group->cpu_power;
3706 group = group->next;
3707 } while (group != child->groups);
3708
3709 sdg->cpu_power = power;
3710}
3711
3712/**
3713 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3714 * @sd: The sched_domain whose statistics are to be updated.
3715 * @group: sched_group whose statistics are to be updated.
3716 * @this_cpu: Cpu for which load balance is currently performed.
3717 * @idle: Idle status of this_cpu
3718 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3719 * @sd_idle: Idle status of the sched_domain containing group.
3720 * @local_group: Does group contain this_cpu.
3721 * @cpus: Set of cpus considered for load balancing.
3722 * @balance: Should we balance.
3723 * @sgs: variable to hold the statistics for this group.
3724 */
3725static inline void update_sg_lb_stats(struct sched_domain *sd,
3726 struct sched_group *group, int this_cpu,
3727 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3728 int local_group, const struct cpumask *cpus,
3729 int *balance, struct sg_lb_stats *sgs)
3730{
3731 unsigned long load, max_cpu_load, min_cpu_load;
3732 int i;
3733 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3734 unsigned long sum_avg_load_per_task;
3735 unsigned long avg_load_per_task;
3736
3737 if (local_group) {
3738 balance_cpu = group_first_cpu(group);
3739 if (balance_cpu == this_cpu)
3740 update_group_power(sd, this_cpu);
3741 }
3742
3743 /* Tally up the load of all CPUs in the group */
3744 sum_avg_load_per_task = avg_load_per_task = 0;
3745 max_cpu_load = 0;
3746 min_cpu_load = ~0UL;
3747
3748 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3749 struct rq *rq = cpu_rq(i);
3750
3751 if (*sd_idle && rq->nr_running)
3752 *sd_idle = 0;
3753
3754 /* Bias balancing toward cpus of our domain */
3755 if (local_group) {
3756 if (idle_cpu(i) && !first_idle_cpu) {
3757 first_idle_cpu = 1;
3758 balance_cpu = i;
3759 }
3760
3761 load = target_load(i, load_idx);
3762 } else {
3763 load = source_load(i, load_idx);
3764 if (load > max_cpu_load)
3765 max_cpu_load = load;
3766 if (min_cpu_load > load)
3767 min_cpu_load = load;
3768 }
3769
3770 sgs->group_load += load;
3771 sgs->sum_nr_running += rq->nr_running;
3772 sgs->sum_weighted_load += weighted_cpuload(i);
3773
3774 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3775 }
3776
3777 /*
3778 * First idle cpu or the first cpu(busiest) in this sched group
3779 * is eligible for doing load balancing at this and above
3780 * domains. In the newly idle case, we will allow all the cpu's
3781 * to do the newly idle load balance.
3782 */
3783 if (idle != CPU_NEWLY_IDLE && local_group &&
3784 balance_cpu != this_cpu && balance) {
3785 *balance = 0;
3786 return;
3787 }
3788
3789 /* Adjust by relative CPU power of the group */
3790 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3791
3792
3793 /*
3794 * Consider the group unbalanced when the imbalance is larger
3795 * than the average weight of two tasks.
3796 *
3797 * APZ: with cgroup the avg task weight can vary wildly and
3798 * might not be a suitable number - should we keep a
3799 * normalized nr_running number somewhere that negates
3800 * the hierarchy?
3801 */
3802 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3803 group->cpu_power;
3804
3805 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3806 sgs->group_imb = 1;
3807
3808 sgs->group_capacity =
3809 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3810}
3811
3812/**
3813 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3814 * @sd: sched_domain whose statistics are to be updated.
3815 * @this_cpu: Cpu for which load balance is currently performed.
3816 * @idle: Idle status of this_cpu
3817 * @sd_idle: Idle status of the sched_domain containing group.
3818 * @cpus: Set of cpus considered for load balancing.
3819 * @balance: Should we balance.
3820 * @sds: variable to hold the statistics for this sched_domain.
3821 */
3822static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3823 enum cpu_idle_type idle, int *sd_idle,
3824 const struct cpumask *cpus, int *balance,
3825 struct sd_lb_stats *sds)
3826{
3827 struct sched_domain *child = sd->child;
3828 struct sched_group *group = sd->groups;
3829 struct sg_lb_stats sgs;
3830 int load_idx, prefer_sibling = 0;
3831
3832 if (child && child->flags & SD_PREFER_SIBLING)
3833 prefer_sibling = 1;
3834
3835 init_sd_power_savings_stats(sd, sds, idle);
3836 load_idx = get_sd_load_idx(sd, idle);
3837
3838 do {
3839 int local_group;
3840
3841 local_group = cpumask_test_cpu(this_cpu,
3842 sched_group_cpus(group));
3843 memset(&sgs, 0, sizeof(sgs));
3844 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3845 local_group, cpus, balance, &sgs);
3846
3847 if (local_group && balance && !(*balance))
3848 return;
3849
3850 sds->total_load += sgs.group_load;
3851 sds->total_pwr += group->cpu_power;
3852
3853 /*
3854 * In case the child domain prefers tasks go to siblings
3855 * first, lower the group capacity to one so that we'll try
3856 * and move all the excess tasks away.
3857 */
3858 if (prefer_sibling)
3859 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3860
3861 if (local_group) {
3862 sds->this_load = sgs.avg_load;
3863 sds->this = group;
3864 sds->this_nr_running = sgs.sum_nr_running;
3865 sds->this_load_per_task = sgs.sum_weighted_load;
3866 } else if (sgs.avg_load > sds->max_load &&
3867 (sgs.sum_nr_running > sgs.group_capacity ||
3868 sgs.group_imb)) {
3869 sds->max_load = sgs.avg_load;
3870 sds->busiest = group;
3871 sds->busiest_nr_running = sgs.sum_nr_running;
3872 sds->busiest_load_per_task = sgs.sum_weighted_load;
3873 sds->group_imb = sgs.group_imb;
3874 }
3875
3876 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3877 group = group->next;
3878 } while (group != sd->groups);
3879}
3880
3881/**
3882 * fix_small_imbalance - Calculate the minor imbalance that exists
3883 * amongst the groups of a sched_domain, during
3884 * load balancing.
3885 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3886 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3887 * @imbalance: Variable to store the imbalance.
3888 */
3889static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3890 int this_cpu, unsigned long *imbalance)
3891{
3892 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3893 unsigned int imbn = 2;
3894
3895 if (sds->this_nr_running) {
3896 sds->this_load_per_task /= sds->this_nr_running;
3897 if (sds->busiest_load_per_task >
3898 sds->this_load_per_task)
3899 imbn = 1;
3900 } else
3901 sds->this_load_per_task =
3902 cpu_avg_load_per_task(this_cpu);
3903
3904 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3905 sds->busiest_load_per_task * imbn) {
3906 *imbalance = sds->busiest_load_per_task;
3907 return;
3908 }
3909
3910 /*
3911 * OK, we don't have enough imbalance to justify moving tasks,
3912 * however we may be able to increase total CPU power used by
3913 * moving them.
3914 */
3915
3916 pwr_now += sds->busiest->cpu_power *
3917 min(sds->busiest_load_per_task, sds->max_load);
3918 pwr_now += sds->this->cpu_power *
3919 min(sds->this_load_per_task, sds->this_load);
3920 pwr_now /= SCHED_LOAD_SCALE;
3921
3922 /* Amount of load we'd subtract */
3923 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3924 sds->busiest->cpu_power;
3925 if (sds->max_load > tmp)
3926 pwr_move += sds->busiest->cpu_power *
3927 min(sds->busiest_load_per_task, sds->max_load - tmp);
3928
3929 /* Amount of load we'd add */
3930 if (sds->max_load * sds->busiest->cpu_power <
3931 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3932 tmp = (sds->max_load * sds->busiest->cpu_power) /
3933 sds->this->cpu_power;
3934 else
3935 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3936 sds->this->cpu_power;
3937 pwr_move += sds->this->cpu_power *
3938 min(sds->this_load_per_task, sds->this_load + tmp);
3939 pwr_move /= SCHED_LOAD_SCALE;
3940
3941 /* Move if we gain throughput */
3942 if (pwr_move > pwr_now)
3943 *imbalance = sds->busiest_load_per_task;
3944}
3945
3946/**
3947 * calculate_imbalance - Calculate the amount of imbalance present within the
3948 * groups of a given sched_domain during load balance.
3949 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3950 * @this_cpu: Cpu for which currently load balance is being performed.
3951 * @imbalance: The variable to store the imbalance.
3952 */
3953static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3954 unsigned long *imbalance)
3955{
3956 unsigned long max_pull;
3957 /*
3958 * In the presence of smp nice balancing, certain scenarios can have
3959 * max load less than avg load(as we skip the groups at or below
3960 * its cpu_power, while calculating max_load..)
3961 */
3962 if (sds->max_load < sds->avg_load) {
3963 *imbalance = 0;
3964 return fix_small_imbalance(sds, this_cpu, imbalance);
3965 }
3966
3967 /* Don't want to pull so many tasks that a group would go idle */
3968 max_pull = min(sds->max_load - sds->avg_load,
3969 sds->max_load - sds->busiest_load_per_task);
3970
3971 /* How much load to actually move to equalise the imbalance */
3972 *imbalance = min(max_pull * sds->busiest->cpu_power,
3973 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3974 / SCHED_LOAD_SCALE;
3975
3976 /*
3977 * if *imbalance is less than the average load per runnable task
3978 * there is no gaurantee that any tasks will be moved so we'll have
3979 * a think about bumping its value to force at least one task to be
3980 * moved
3981 */
3982 if (*imbalance < sds->busiest_load_per_task)
3983 return fix_small_imbalance(sds, this_cpu, imbalance);
3984
3985}
3986/******* find_busiest_group() helpers end here *********************/
3987
3988/**
3989 * find_busiest_group - Returns the busiest group within the sched_domain
3990 * if there is an imbalance. If there isn't an imbalance, and
3991 * the user has opted for power-savings, it returns a group whose
3992 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3993 * such a group exists.
3994 *
3995 * Also calculates the amount of weighted load which should be moved
3996 * to restore balance.
3997 *
3998 * @sd: The sched_domain whose busiest group is to be returned.
3999 * @this_cpu: The cpu for which load balancing is currently being performed.
4000 * @imbalance: Variable which stores amount of weighted load which should
4001 * be moved to restore balance/put a group to idle.
4002 * @idle: The idle status of this_cpu.
4003 * @sd_idle: The idleness of sd
4004 * @cpus: The set of CPUs under consideration for load-balancing.
4005 * @balance: Pointer to a variable indicating if this_cpu
4006 * is the appropriate cpu to perform load balancing at this_level.
4007 *
4008 * Returns: - the busiest group if imbalance exists.
4009 * - If no imbalance and user has opted for power-savings balance,
4010 * return the least loaded group whose CPUs can be
4011 * put to idle by rebalancing its tasks onto our group.
4012 */
4013static struct sched_group *
4014find_busiest_group(struct sched_domain *sd, int this_cpu,
4015 unsigned long *imbalance, enum cpu_idle_type idle,
4016 int *sd_idle, const struct cpumask *cpus, int *balance)
4017{
4018 struct sd_lb_stats sds;
4019
4020 memset(&sds, 0, sizeof(sds));
4021
4022 /*
4023 * Compute the various statistics relavent for load balancing at
4024 * this level.
4025 */
4026 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4027 balance, &sds);
4028
4029 /* Cases where imbalance does not exist from POV of this_cpu */
4030 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4031 * at this level.
4032 * 2) There is no busy sibling group to pull from.
4033 * 3) This group is the busiest group.
4034 * 4) This group is more busy than the avg busieness at this
4035 * sched_domain.
4036 * 5) The imbalance is within the specified limit.
4037 * 6) Any rebalance would lead to ping-pong
4038 */
4039 if (balance && !(*balance))
4040 goto ret;
4041
4042 if (!sds.busiest || sds.busiest_nr_running == 0)
4043 goto out_balanced;
4044
4045 if (sds.this_load >= sds.max_load)
4046 goto out_balanced;
4047
4048 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4049
4050 if (sds.this_load >= sds.avg_load)
4051 goto out_balanced;
4052
4053 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4054 goto out_balanced;
4055
4056 sds.busiest_load_per_task /= sds.busiest_nr_running;
4057 if (sds.group_imb)
4058 sds.busiest_load_per_task =
4059 min(sds.busiest_load_per_task, sds.avg_load);
4060
4061 /*
4062 * We're trying to get all the cpus to the average_load, so we don't
4063 * want to push ourselves above the average load, nor do we wish to
4064 * reduce the max loaded cpu below the average load, as either of these
4065 * actions would just result in more rebalancing later, and ping-pong
4066 * tasks around. Thus we look for the minimum possible imbalance.
4067 * Negative imbalances (*we* are more loaded than anyone else) will
4068 * be counted as no imbalance for these purposes -- we can't fix that
4069 * by pulling tasks to us. Be careful of negative numbers as they'll
4070 * appear as very large values with unsigned longs.
4071 */
4072 if (sds.max_load <= sds.busiest_load_per_task)
4073 goto out_balanced;
4074
4075 /* Looks like there is an imbalance. Compute it */
4076 calculate_imbalance(&sds, this_cpu, imbalance);
4077 return sds.busiest;
4078
4079out_balanced:
4080 /*
4081 * There is no obvious imbalance. But check if we can do some balancing
4082 * to save power.
4083 */
4084 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4085 return sds.busiest;
4086ret:
4087 *imbalance = 0;
4088 return NULL;
4089}
4090
4091/*
4092 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4093 */
4094static struct rq *
4095find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4096 unsigned long imbalance, const struct cpumask *cpus)
4097{
4098 struct rq *busiest = NULL, *rq;
4099 unsigned long max_load = 0;
4100 int i;
4101
4102 for_each_cpu(i, sched_group_cpus(group)) {
4103 unsigned long power = power_of(i);
4104 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4105 unsigned long wl;
4106
4107 if (!cpumask_test_cpu(i, cpus))
4108 continue;
4109
4110 rq = cpu_rq(i);
4111 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4112 wl /= power;
4113
4114 if (capacity && rq->nr_running == 1 && wl > imbalance)
4115 continue;
4116
4117 if (wl > max_load) {
4118 max_load = wl;
4119 busiest = rq;
4120 }
4121 }
4122
4123 return busiest;
4124}
4125
4126/*
4127 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4128 * so long as it is large enough.
4129 */
4130#define MAX_PINNED_INTERVAL 512
4131
4132/* Working cpumask for load_balance and load_balance_newidle. */
4133static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4134
4135/*
4136 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4137 * tasks if there is an imbalance.
4138 */
4139static int load_balance(int this_cpu, struct rq *this_rq,
4140 struct sched_domain *sd, enum cpu_idle_type idle,
4141 int *balance)
4142{
4143 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4144 struct sched_group *group;
4145 unsigned long imbalance;
4146 struct rq *busiest;
4147 unsigned long flags;
4148 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4149
4150 cpumask_copy(cpus, cpu_active_mask);
4151
4152 /*
4153 * When power savings policy is enabled for the parent domain, idle
4154 * sibling can pick up load irrespective of busy siblings. In this case,
4155 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4156 * portraying it as CPU_NOT_IDLE.
4157 */
4158 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4159 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4160 sd_idle = 1;
4161
4162 schedstat_inc(sd, lb_count[idle]);
4163
4164redo:
4165 update_shares(sd);
4166 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4167 cpus, balance);
4168
4169 if (*balance == 0)
4170 goto out_balanced;
4171
4172 if (!group) {
4173 schedstat_inc(sd, lb_nobusyg[idle]);
4174 goto out_balanced;
4175 }
4176
4177 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4178 if (!busiest) {
4179 schedstat_inc(sd, lb_nobusyq[idle]);
4180 goto out_balanced;
4181 }
4182
4183 BUG_ON(busiest == this_rq);
4184
4185 schedstat_add(sd, lb_imbalance[idle], imbalance);
4186
4187 ld_moved = 0;
4188 if (busiest->nr_running > 1) {
4189 /*
4190 * Attempt to move tasks. If find_busiest_group has found
4191 * an imbalance but busiest->nr_running <= 1, the group is
4192 * still unbalanced. ld_moved simply stays zero, so it is
4193 * correctly treated as an imbalance.
4194 */
4195 local_irq_save(flags);
4196 double_rq_lock(this_rq, busiest);
4197 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4198 imbalance, sd, idle, &all_pinned);
4199 double_rq_unlock(this_rq, busiest);
4200 local_irq_restore(flags);
4201
4202 /*
4203 * some other cpu did the load balance for us.
4204 */
4205 if (ld_moved && this_cpu != smp_processor_id())
4206 resched_cpu(this_cpu);
4207
4208 /* All tasks on this runqueue were pinned by CPU affinity */
4209 if (unlikely(all_pinned)) {
4210 cpumask_clear_cpu(cpu_of(busiest), cpus);
4211 if (!cpumask_empty(cpus))
4212 goto redo;
4213 goto out_balanced;
4214 }
4215 }
4216
4217 if (!ld_moved) {
4218 schedstat_inc(sd, lb_failed[idle]);
4219 sd->nr_balance_failed++;
4220
4221 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4222
4223 raw_spin_lock_irqsave(&busiest->lock, flags);
4224
4225 /* don't kick the migration_thread, if the curr
4226 * task on busiest cpu can't be moved to this_cpu
4227 */
4228 if (!cpumask_test_cpu(this_cpu,
4229 &busiest->curr->cpus_allowed)) {
4230 raw_spin_unlock_irqrestore(&busiest->lock,
4231 flags);
4232 all_pinned = 1;
4233 goto out_one_pinned;
4234 }
4235
4236 if (!busiest->active_balance) {
4237 busiest->active_balance = 1;
4238 busiest->push_cpu = this_cpu;
4239 active_balance = 1;
4240 }
4241 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4242 if (active_balance)
4243 wake_up_process(busiest->migration_thread);
4244
4245 /*
4246 * We've kicked active balancing, reset the failure
4247 * counter.
4248 */
4249 sd->nr_balance_failed = sd->cache_nice_tries+1;
4250 }
4251 } else
4252 sd->nr_balance_failed = 0;
4253
4254 if (likely(!active_balance)) {
4255 /* We were unbalanced, so reset the balancing interval */
4256 sd->balance_interval = sd->min_interval;
4257 } else {
4258 /*
4259 * If we've begun active balancing, start to back off. This
4260 * case may not be covered by the all_pinned logic if there
4261 * is only 1 task on the busy runqueue (because we don't call
4262 * move_tasks).
4263 */
4264 if (sd->balance_interval < sd->max_interval)
4265 sd->balance_interval *= 2;
4266 }
4267
4268 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4269 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4270 ld_moved = -1;
4271
4272 goto out;
4273
4274out_balanced:
4275 schedstat_inc(sd, lb_balanced[idle]);
4276
4277 sd->nr_balance_failed = 0;
4278
4279out_one_pinned:
4280 /* tune up the balancing interval */
4281 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4282 (sd->balance_interval < sd->max_interval))
4283 sd->balance_interval *= 2;
4284
4285 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4286 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4287 ld_moved = -1;
4288 else
4289 ld_moved = 0;
4290out:
4291 if (ld_moved)
4292 update_shares(sd);
4293 return ld_moved;
4294}
4295
4296/*
4297 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4298 * tasks if there is an imbalance.
4299 *
4300 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4301 * this_rq is locked.
4302 */
4303static int
4304load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4305{
4306 struct sched_group *group;
4307 struct rq *busiest = NULL;
4308 unsigned long imbalance;
4309 int ld_moved = 0;
4310 int sd_idle = 0;
4311 int all_pinned = 0;
4312 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4313
4314 cpumask_copy(cpus, cpu_active_mask);
4315
4316 /*
4317 * When power savings policy is enabled for the parent domain, idle
4318 * sibling can pick up load irrespective of busy siblings. In this case,
4319 * let the state of idle sibling percolate up as IDLE, instead of
4320 * portraying it as CPU_NOT_IDLE.
4321 */
4322 if (sd->flags & SD_SHARE_CPUPOWER &&
4323 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4324 sd_idle = 1;
4325
4326 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4327redo:
4328 update_shares_locked(this_rq, sd);
4329 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4330 &sd_idle, cpus, NULL);
4331 if (!group) {
4332 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4333 goto out_balanced;
4334 }
4335
4336 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4337 if (!busiest) {
4338 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4339 goto out_balanced;
4340 }
4341
4342 BUG_ON(busiest == this_rq);
4343
4344 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4345
4346 ld_moved = 0;
4347 if (busiest->nr_running > 1) {
4348 /* Attempt to move tasks */
4349 double_lock_balance(this_rq, busiest);
4350 /* this_rq->clock is already updated */
4351 update_rq_clock(busiest);
4352 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4353 imbalance, sd, CPU_NEWLY_IDLE,
4354 &all_pinned);
4355 double_unlock_balance(this_rq, busiest);
4356
4357 if (unlikely(all_pinned)) {
4358 cpumask_clear_cpu(cpu_of(busiest), cpus);
4359 if (!cpumask_empty(cpus))
4360 goto redo;
4361 }
4362 }
4363
4364 if (!ld_moved) {
4365 int active_balance = 0;
4366
4367 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4368 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4369 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4370 return -1;
4371
4372 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4373 return -1;
4374
4375 if (sd->nr_balance_failed++ < 2)
4376 return -1;
4377
4378 /*
4379 * The only task running in a non-idle cpu can be moved to this
4380 * cpu in an attempt to completely freeup the other CPU
4381 * package. The same method used to move task in load_balance()
4382 * have been extended for load_balance_newidle() to speedup
4383 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4384 *
4385 * The package power saving logic comes from
4386 * find_busiest_group(). If there are no imbalance, then
4387 * f_b_g() will return NULL. However when sched_mc={1,2} then
4388 * f_b_g() will select a group from which a running task may be
4389 * pulled to this cpu in order to make the other package idle.
4390 * If there is no opportunity to make a package idle and if
4391 * there are no imbalance, then f_b_g() will return NULL and no
4392 * action will be taken in load_balance_newidle().
4393 *
4394 * Under normal task pull operation due to imbalance, there
4395 * will be more than one task in the source run queue and
4396 * move_tasks() will succeed. ld_moved will be true and this
4397 * active balance code will not be triggered.
4398 */
4399
4400 /* Lock busiest in correct order while this_rq is held */
4401 double_lock_balance(this_rq, busiest);
4402
4403 /*
4404 * don't kick the migration_thread, if the curr
4405 * task on busiest cpu can't be moved to this_cpu
4406 */
4407 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4408 double_unlock_balance(this_rq, busiest);
4409 all_pinned = 1;
4410 return ld_moved;
4411 }
4412
4413 if (!busiest->active_balance) {
4414 busiest->active_balance = 1;
4415 busiest->push_cpu = this_cpu;
4416 active_balance = 1;
4417 }
4418
4419 double_unlock_balance(this_rq, busiest);
4420 /*
4421 * Should not call ttwu while holding a rq->lock
4422 */
4423 raw_spin_unlock(&this_rq->lock);
4424 if (active_balance)
4425 wake_up_process(busiest->migration_thread);
4426 raw_spin_lock(&this_rq->lock);
4427
4428 } else
4429 sd->nr_balance_failed = 0;
4430
4431 update_shares_locked(this_rq, sd);
4432 return ld_moved;
4433
4434out_balanced:
4435 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4436 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4437 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4438 return -1;
4439 sd->nr_balance_failed = 0;
4440
4441 return 0;
4442}
4443
4444/*
4445 * idle_balance is called by schedule() if this_cpu is about to become
4446 * idle. Attempts to pull tasks from other CPUs.
4447 */
4448static void idle_balance(int this_cpu, struct rq *this_rq)
4449{
4450 struct sched_domain *sd;
4451 int pulled_task = 0;
4452 unsigned long next_balance = jiffies + HZ;
4453
4454 this_rq->idle_stamp = this_rq->clock;
4455
4456 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4457 return;
4458
4459 for_each_domain(this_cpu, sd) {
4460 unsigned long interval;
4461
4462 if (!(sd->flags & SD_LOAD_BALANCE))
4463 continue;
4464
4465 if (sd->flags & SD_BALANCE_NEWIDLE)
4466 /* If we've pulled tasks over stop searching: */
4467 pulled_task = load_balance_newidle(this_cpu, this_rq,
4468 sd);
4469
4470 interval = msecs_to_jiffies(sd->balance_interval);
4471 if (time_after(next_balance, sd->last_balance + interval))
4472 next_balance = sd->last_balance + interval;
4473 if (pulled_task) {
4474 this_rq->idle_stamp = 0;
4475 break;
4476 }
4477 }
4478 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4479 /*
4480 * We are going idle. next_balance may be set based on
4481 * a busy processor. So reset next_balance.
4482 */
4483 this_rq->next_balance = next_balance;
4484 }
4485}
4486
4487/*
4488 * active_load_balance is run by migration threads. It pushes running tasks
4489 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4490 * running on each physical CPU where possible, and avoids physical /
4491 * logical imbalances.
4492 *
4493 * Called with busiest_rq locked.
4494 */
4495static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4496{
4497 int target_cpu = busiest_rq->push_cpu;
4498 struct sched_domain *sd;
4499 struct rq *target_rq;
4500
4501 /* Is there any task to move? */
4502 if (busiest_rq->nr_running <= 1)
4503 return;
4504
4505 target_rq = cpu_rq(target_cpu);
4506
4507 /*
4508 * This condition is "impossible", if it occurs
4509 * we need to fix it. Originally reported by
4510 * Bjorn Helgaas on a 128-cpu setup.
4511 */
4512 BUG_ON(busiest_rq == target_rq);
4513
4514 /* move a task from busiest_rq to target_rq */
4515 double_lock_balance(busiest_rq, target_rq);
4516 update_rq_clock(busiest_rq);
4517 update_rq_clock(target_rq);
4518
4519 /* Search for an sd spanning us and the target CPU. */
4520 for_each_domain(target_cpu, sd) {
4521 if ((sd->flags & SD_LOAD_BALANCE) &&
4522 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4523 break;
4524 }
4525
4526 if (likely(sd)) {
4527 schedstat_inc(sd, alb_count);
4528
4529 if (move_one_task(target_rq, target_cpu, busiest_rq,
4530 sd, CPU_IDLE))
4531 schedstat_inc(sd, alb_pushed);
4532 else
4533 schedstat_inc(sd, alb_failed);
4534 }
4535 double_unlock_balance(busiest_rq, target_rq);
4536}
4537
4538#ifdef CONFIG_NO_HZ
4539static struct {
4540 atomic_t load_balancer;
4541 cpumask_var_t cpu_mask;
4542 cpumask_var_t ilb_grp_nohz_mask;
4543} nohz ____cacheline_aligned = {
4544 .load_balancer = ATOMIC_INIT(-1),
4545};
4546
4547int get_nohz_load_balancer(void)
4548{
4549 return atomic_read(&nohz.load_balancer);
4550}
4551
4552#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4553/**
4554 * lowest_flag_domain - Return lowest sched_domain containing flag.
4555 * @cpu: The cpu whose lowest level of sched domain is to
4556 * be returned.
4557 * @flag: The flag to check for the lowest sched_domain
4558 * for the given cpu.
4559 *
4560 * Returns the lowest sched_domain of a cpu which contains the given flag.
4561 */
4562static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4563{
4564 struct sched_domain *sd;
4565
4566 for_each_domain(cpu, sd)
4567 if (sd && (sd->flags & flag))
4568 break;
4569
4570 return sd;
4571}
4572
4573/**
4574 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4575 * @cpu: The cpu whose domains we're iterating over.
4576 * @sd: variable holding the value of the power_savings_sd
4577 * for cpu.
4578 * @flag: The flag to filter the sched_domains to be iterated.
4579 *
4580 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4581 * set, starting from the lowest sched_domain to the highest.
4582 */
4583#define for_each_flag_domain(cpu, sd, flag) \
4584 for (sd = lowest_flag_domain(cpu, flag); \
4585 (sd && (sd->flags & flag)); sd = sd->parent)
4586
4587/**
4588 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4589 * @ilb_group: group to be checked for semi-idleness
4590 *
4591 * Returns: 1 if the group is semi-idle. 0 otherwise.
4592 *
4593 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4594 * and atleast one non-idle CPU. This helper function checks if the given
4595 * sched_group is semi-idle or not.
4596 */
4597static inline int is_semi_idle_group(struct sched_group *ilb_group)
4598{
4599 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4600 sched_group_cpus(ilb_group));
4601
4602 /*
4603 * A sched_group is semi-idle when it has atleast one busy cpu
4604 * and atleast one idle cpu.
4605 */
4606 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4607 return 0;
4608
4609 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4610 return 0;
4611
4612 return 1;
4613}
4614/**
4615 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4616 * @cpu: The cpu which is nominating a new idle_load_balancer.
4617 *
4618 * Returns: Returns the id of the idle load balancer if it exists,
4619 * Else, returns >= nr_cpu_ids.
4620 *
4621 * This algorithm picks the idle load balancer such that it belongs to a
4622 * semi-idle powersavings sched_domain. The idea is to try and avoid
4623 * completely idle packages/cores just for the purpose of idle load balancing
4624 * when there are other idle cpu's which are better suited for that job.
4625 */
4626static int find_new_ilb(int cpu)
4627{
4628 struct sched_domain *sd;
4629 struct sched_group *ilb_group;
4630
4631 /*
4632 * Have idle load balancer selection from semi-idle packages only
4633 * when power-aware load balancing is enabled
4634 */
4635 if (!(sched_smt_power_savings || sched_mc_power_savings))
4636 goto out_done;
4637
4638 /*
4639 * Optimize for the case when we have no idle CPUs or only one
4640 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4641 */
4642 if (cpumask_weight(nohz.cpu_mask) < 2)
4643 goto out_done;
4644
4645 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4646 ilb_group = sd->groups;
4647
4648 do {
4649 if (is_semi_idle_group(ilb_group))
4650 return cpumask_first(nohz.ilb_grp_nohz_mask);
4651
4652 ilb_group = ilb_group->next;
4653
4654 } while (ilb_group != sd->groups);
4655 }
4656
4657out_done:
4658 return cpumask_first(nohz.cpu_mask);
4659}
4660#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4661static inline int find_new_ilb(int call_cpu)
4662{
4663 return cpumask_first(nohz.cpu_mask);
4664}
4665#endif
4666
4667/*
4668 * This routine will try to nominate the ilb (idle load balancing)
4669 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4670 * load balancing on behalf of all those cpus. If all the cpus in the system
4671 * go into this tickless mode, then there will be no ilb owner (as there is
4672 * no need for one) and all the cpus will sleep till the next wakeup event
4673 * arrives...
4674 *
4675 * For the ilb owner, tick is not stopped. And this tick will be used
4676 * for idle load balancing. ilb owner will still be part of
4677 * nohz.cpu_mask..
4678 *
4679 * While stopping the tick, this cpu will become the ilb owner if there
4680 * is no other owner. And will be the owner till that cpu becomes busy
4681 * or if all cpus in the system stop their ticks at which point
4682 * there is no need for ilb owner.
4683 *
4684 * When the ilb owner becomes busy, it nominates another owner, during the
4685 * next busy scheduler_tick()
4686 */
4687int select_nohz_load_balancer(int stop_tick)
4688{
4689 int cpu = smp_processor_id();
4690
4691 if (stop_tick) {
4692 cpu_rq(cpu)->in_nohz_recently = 1;
4693
4694 if (!cpu_active(cpu)) {
4695 if (atomic_read(&nohz.load_balancer) != cpu)
4696 return 0;
4697
4698 /*
4699 * If we are going offline and still the leader,
4700 * give up!
4701 */
4702 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4703 BUG();
4704
4705 return 0;
4706 }
4707
4708 cpumask_set_cpu(cpu, nohz.cpu_mask);
4709
4710 /* time for ilb owner also to sleep */
4711 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4712 if (atomic_read(&nohz.load_balancer) == cpu)
4713 atomic_set(&nohz.load_balancer, -1);
4714 return 0;
4715 }
4716
4717 if (atomic_read(&nohz.load_balancer) == -1) {
4718 /* make me the ilb owner */
4719 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4720 return 1;
4721 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4722 int new_ilb;
4723
4724 if (!(sched_smt_power_savings ||
4725 sched_mc_power_savings))
4726 return 1;
4727 /*
4728 * Check to see if there is a more power-efficient
4729 * ilb.
4730 */
4731 new_ilb = find_new_ilb(cpu);
4732 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4733 atomic_set(&nohz.load_balancer, -1);
4734 resched_cpu(new_ilb);
4735 return 0;
4736 }
4737 return 1;
4738 }
4739 } else {
4740 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4741 return 0;
4742
4743 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4744
4745 if (atomic_read(&nohz.load_balancer) == cpu)
4746 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4747 BUG();
4748 }
4749 return 0;
4750}
4751#endif
4752
4753static DEFINE_SPINLOCK(balancing);
4754
4755/*
4756 * It checks each scheduling domain to see if it is due to be balanced,
4757 * and initiates a balancing operation if so.
4758 *
4759 * Balancing parameters are set up in arch_init_sched_domains.
4760 */
4761static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4762{
4763 int balance = 1;
4764 struct rq *rq = cpu_rq(cpu);
4765 unsigned long interval;
4766 struct sched_domain *sd;
4767 /* Earliest time when we have to do rebalance again */
4768 unsigned long next_balance = jiffies + 60*HZ;
4769 int update_next_balance = 0;
4770 int need_serialize;
4771
4772 for_each_domain(cpu, sd) {
4773 if (!(sd->flags & SD_LOAD_BALANCE))
4774 continue;
4775
4776 interval = sd->balance_interval;
4777 if (idle != CPU_IDLE)
4778 interval *= sd->busy_factor;
4779
4780 /* scale ms to jiffies */
4781 interval = msecs_to_jiffies(interval);
4782 if (unlikely(!interval))
4783 interval = 1;
4784 if (interval > HZ*NR_CPUS/10)
4785 interval = HZ*NR_CPUS/10;
4786
4787 need_serialize = sd->flags & SD_SERIALIZE;
4788
4789 if (need_serialize) {
4790 if (!spin_trylock(&balancing))
4791 goto out;
4792 }
4793
4794 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4795 if (load_balance(cpu, rq, sd, idle, &balance)) {
4796 /*
4797 * We've pulled tasks over so either we're no
4798 * longer idle, or one of our SMT siblings is
4799 * not idle.
4800 */
4801 idle = CPU_NOT_IDLE;
4802 }
4803 sd->last_balance = jiffies;
4804 }
4805 if (need_serialize)
4806 spin_unlock(&balancing);
4807out:
4808 if (time_after(next_balance, sd->last_balance + interval)) {
4809 next_balance = sd->last_balance + interval;
4810 update_next_balance = 1;
4811 }
4812
4813 /*
4814 * Stop the load balance at this level. There is another
4815 * CPU in our sched group which is doing load balancing more
4816 * actively.
4817 */
4818 if (!balance)
4819 break;
4820 }
4821
4822 /*
4823 * next_balance will be updated only when there is a need.
4824 * When the cpu is attached to null domain for ex, it will not be
4825 * updated.
4826 */
4827 if (likely(update_next_balance))
4828 rq->next_balance = next_balance;
4829}
4830
4831/*
4832 * run_rebalance_domains is triggered when needed from the scheduler tick.
4833 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4834 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4835 */
4836static void run_rebalance_domains(struct softirq_action *h)
4837{
4838 int this_cpu = smp_processor_id();
4839 struct rq *this_rq = cpu_rq(this_cpu);
4840 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4841 CPU_IDLE : CPU_NOT_IDLE;
4842
4843 rebalance_domains(this_cpu, idle);
4844
4845#ifdef CONFIG_NO_HZ
4846 /*
4847 * If this cpu is the owner for idle load balancing, then do the
4848 * balancing on behalf of the other idle cpus whose ticks are
4849 * stopped.
4850 */
4851 if (this_rq->idle_at_tick &&
4852 atomic_read(&nohz.load_balancer) == this_cpu) {
4853 struct rq *rq;
4854 int balance_cpu;
4855
4856 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4857 if (balance_cpu == this_cpu)
4858 continue;
4859
4860 /*
4861 * If this cpu gets work to do, stop the load balancing
4862 * work being done for other cpus. Next load
4863 * balancing owner will pick it up.
4864 */
4865 if (need_resched())
4866 break;
4867
4868 rebalance_domains(balance_cpu, CPU_IDLE);
4869
4870 rq = cpu_rq(balance_cpu);
4871 if (time_after(this_rq->next_balance, rq->next_balance))
4872 this_rq->next_balance = rq->next_balance;
4873 }
4874 }
4875#endif
4876}
4877
4878static inline int on_null_domain(int cpu)
4879{
4880 return !rcu_dereference(cpu_rq(cpu)->sd);
4881}
4882
4883/*
4884 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4885 *
4886 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4887 * idle load balancing owner or decide to stop the periodic load balancing,
4888 * if the whole system is idle.
4889 */
4890static inline void trigger_load_balance(struct rq *rq, int cpu)
4891{
4892#ifdef CONFIG_NO_HZ
4893 /*
4894 * If we were in the nohz mode recently and busy at the current
4895 * scheduler tick, then check if we need to nominate new idle
4896 * load balancer.
4897 */
4898 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4899 rq->in_nohz_recently = 0;
4900
4901 if (atomic_read(&nohz.load_balancer) == cpu) {
4902 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4903 atomic_set(&nohz.load_balancer, -1);
4904 }
4905
4906 if (atomic_read(&nohz.load_balancer) == -1) {
4907 int ilb = find_new_ilb(cpu);
4908
4909 if (ilb < nr_cpu_ids)
4910 resched_cpu(ilb);
4911 }
4912 }
4913
4914 /*
4915 * If this cpu is idle and doing idle load balancing for all the
4916 * cpus with ticks stopped, is it time for that to stop?
4917 */
4918 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4919 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4920 resched_cpu(cpu);
4921 return;
4922 }
4923
4924 /*
4925 * If this cpu is idle and the idle load balancing is done by
4926 * someone else, then no need raise the SCHED_SOFTIRQ
4927 */
4928 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4929 cpumask_test_cpu(cpu, nohz.cpu_mask))
4930 return;
4931#endif
4932 /* Don't need to rebalance while attached to NULL domain */
4933 if (time_after_eq(jiffies, rq->next_balance) &&
4934 likely(!on_null_domain(cpu)))
4935 raise_softirq(SCHED_SOFTIRQ);
4936}
4937
4938#else /* CONFIG_SMP */
4939
4940/*
4941 * on UP we do not need to balance between CPUs:
4942 */
4943static inline void idle_balance(int cpu, struct rq *rq)
4944{
4945}
4946
4947#endif 3083#endif
4948 3084
4949DEFINE_PER_CPU(struct kernel_stat, kstat); 3085DEFINE_PER_CPU(struct kernel_stat, kstat);
@@ -5298,7 +3434,7 @@ void scheduler_tick(void)
5298 curr->sched_class->task_tick(rq, curr, 0); 3434 curr->sched_class->task_tick(rq, curr, 0);
5299 raw_spin_unlock(&rq->lock); 3435 raw_spin_unlock(&rq->lock);
5300 3436
5301 perf_event_task_tick(curr, cpu); 3437 perf_event_task_tick(curr);
5302 3438
5303#ifdef CONFIG_SMP 3439#ifdef CONFIG_SMP
5304 rq->idle_at_tick = idle_cpu(cpu); 3440 rq->idle_at_tick = idle_cpu(cpu);
@@ -5412,23 +3548,9 @@ static inline void schedule_debug(struct task_struct *prev)
5412 3548
5413static void put_prev_task(struct rq *rq, struct task_struct *prev) 3549static void put_prev_task(struct rq *rq, struct task_struct *prev)
5414{ 3550{
5415 if (prev->state == TASK_RUNNING) { 3551 if (prev->se.on_rq)
5416 u64 runtime = prev->se.sum_exec_runtime; 3552 update_rq_clock(rq);
5417 3553 rq->skip_clock_update = 0;
5418 runtime -= prev->se.prev_sum_exec_runtime;
5419 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5420
5421 /*
5422 * In order to avoid avg_overlap growing stale when we are
5423 * indeed overlapping and hence not getting put to sleep, grow
5424 * the avg_overlap on preemption.
5425 *
5426 * We use the average preemption runtime because that
5427 * correlates to the amount of cache footprint a task can
5428 * build up.
5429 */
5430 update_avg(&prev->se.avg_overlap, runtime);
5431 }
5432 prev->sched_class->put_prev_task(rq, prev); 3554 prev->sched_class->put_prev_task(rq, prev);
5433} 3555}
5434 3556
@@ -5478,7 +3600,7 @@ need_resched:
5478 preempt_disable(); 3600 preempt_disable();
5479 cpu = smp_processor_id(); 3601 cpu = smp_processor_id();
5480 rq = cpu_rq(cpu); 3602 rq = cpu_rq(cpu);
5481 rcu_sched_qs(cpu); 3603 rcu_note_context_switch(cpu);
5482 prev = rq->curr; 3604 prev = rq->curr;
5483 switch_count = &prev->nivcsw; 3605 switch_count = &prev->nivcsw;
5484 3606
@@ -5491,14 +3613,13 @@ need_resched_nonpreemptible:
5491 hrtick_clear(rq); 3613 hrtick_clear(rq);
5492 3614
5493 raw_spin_lock_irq(&rq->lock); 3615 raw_spin_lock_irq(&rq->lock);
5494 update_rq_clock(rq);
5495 clear_tsk_need_resched(prev); 3616 clear_tsk_need_resched(prev);
5496 3617
5497 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3618 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5498 if (unlikely(signal_pending_state(prev->state, prev))) 3619 if (unlikely(signal_pending_state(prev->state, prev)))
5499 prev->state = TASK_RUNNING; 3620 prev->state = TASK_RUNNING;
5500 else 3621 else
5501 deactivate_task(rq, prev, 1); 3622 deactivate_task(rq, prev, DEQUEUE_SLEEP);
5502 switch_count = &prev->nvcsw; 3623 switch_count = &prev->nvcsw;
5503 } 3624 }
5504 3625
@@ -5512,7 +3633,7 @@ need_resched_nonpreemptible:
5512 3633
5513 if (likely(prev != next)) { 3634 if (likely(prev != next)) {
5514 sched_info_switch(prev, next); 3635 sched_info_switch(prev, next);
5515 perf_event_task_sched_out(prev, next, cpu); 3636 perf_event_task_sched_out(prev, next);
5516 3637
5517 rq->nr_switches++; 3638 rq->nr_switches++;
5518 rq->curr = next; 3639 rq->curr = next;
@@ -5562,7 +3683,7 @@ int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5562 * the mutex owner just released it and exited. 3683 * the mutex owner just released it and exited.
5563 */ 3684 */
5564 if (probe_kernel_address(&owner->cpu, cpu)) 3685 if (probe_kernel_address(&owner->cpu, cpu))
5565 goto out; 3686 return 0;
5566#else 3687#else
5567 cpu = owner->cpu; 3688 cpu = owner->cpu;
5568#endif 3689#endif
@@ -5572,14 +3693,14 @@ int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5572 * the cpu field may no longer be valid. 3693 * the cpu field may no longer be valid.
5573 */ 3694 */
5574 if (cpu >= nr_cpumask_bits) 3695 if (cpu >= nr_cpumask_bits)
5575 goto out; 3696 return 0;
5576 3697
5577 /* 3698 /*
5578 * We need to validate that we can do a 3699 * We need to validate that we can do a
5579 * get_cpu() and that we have the percpu area. 3700 * get_cpu() and that we have the percpu area.
5580 */ 3701 */
5581 if (!cpu_online(cpu)) 3702 if (!cpu_online(cpu))
5582 goto out; 3703 return 0;
5583 3704
5584 rq = cpu_rq(cpu); 3705 rq = cpu_rq(cpu);
5585 3706
@@ -5598,7 +3719,7 @@ int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5598 3719
5599 cpu_relax(); 3720 cpu_relax();
5600 } 3721 }
5601out: 3722
5602 return 1; 3723 return 1;
5603} 3724}
5604#endif 3725#endif
@@ -5722,6 +3843,7 @@ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5722{ 3843{
5723 __wake_up_common(q, mode, 1, 0, NULL); 3844 __wake_up_common(q, mode, 1, 0, NULL);
5724} 3845}
3846EXPORT_SYMBOL_GPL(__wake_up_locked);
5725 3847
5726void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3848void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5727{ 3849{
@@ -5821,8 +3943,7 @@ do_wait_for_common(struct completion *x, long timeout, int state)
5821 if (!x->done) { 3943 if (!x->done) {
5822 DECLARE_WAITQUEUE(wait, current); 3944 DECLARE_WAITQUEUE(wait, current);
5823 3945
5824 wait.flags |= WQ_FLAG_EXCLUSIVE; 3946 __add_wait_queue_tail_exclusive(&x->wait, &wait);
5825 __add_wait_queue_tail(&x->wait, &wait);
5826 do { 3947 do {
5827 if (signal_pending_state(state, current)) { 3948 if (signal_pending_state(state, current)) {
5828 timeout = -ERESTARTSYS; 3949 timeout = -ERESTARTSYS;
@@ -5933,6 +4054,23 @@ int __sched wait_for_completion_killable(struct completion *x)
5933EXPORT_SYMBOL(wait_for_completion_killable); 4054EXPORT_SYMBOL(wait_for_completion_killable);
5934 4055
5935/** 4056/**
4057 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4058 * @x: holds the state of this particular completion
4059 * @timeout: timeout value in jiffies
4060 *
4061 * This waits for either a completion of a specific task to be
4062 * signaled or for a specified timeout to expire. It can be
4063 * interrupted by a kill signal. The timeout is in jiffies.
4064 */
4065unsigned long __sched
4066wait_for_completion_killable_timeout(struct completion *x,
4067 unsigned long timeout)
4068{
4069 return wait_for_common(x, timeout, TASK_KILLABLE);
4070}
4071EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4072
4073/**
5936 * try_wait_for_completion - try to decrement a completion without blocking 4074 * try_wait_for_completion - try to decrement a completion without blocking
5937 * @x: completion structure 4075 * @x: completion structure
5938 * 4076 *
@@ -6043,14 +4181,14 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
6043 unsigned long flags; 4181 unsigned long flags;
6044 int oldprio, on_rq, running; 4182 int oldprio, on_rq, running;
6045 struct rq *rq; 4183 struct rq *rq;
6046 const struct sched_class *prev_class = p->sched_class; 4184 const struct sched_class *prev_class;
6047 4185
6048 BUG_ON(prio < 0 || prio > MAX_PRIO); 4186 BUG_ON(prio < 0 || prio > MAX_PRIO);
6049 4187
6050 rq = task_rq_lock(p, &flags); 4188 rq = task_rq_lock(p, &flags);
6051 update_rq_clock(rq);
6052 4189
6053 oldprio = p->prio; 4190 oldprio = p->prio;
4191 prev_class = p->sched_class;
6054 on_rq = p->se.on_rq; 4192 on_rq = p->se.on_rq;
6055 running = task_current(rq, p); 4193 running = task_current(rq, p);
6056 if (on_rq) 4194 if (on_rq)
@@ -6068,7 +4206,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
6068 if (running) 4206 if (running)
6069 p->sched_class->set_curr_task(rq); 4207 p->sched_class->set_curr_task(rq);
6070 if (on_rq) { 4208 if (on_rq) {
6071 enqueue_task(rq, p, 0); 4209 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
6072 4210
6073 check_class_changed(rq, p, prev_class, oldprio, running); 4211 check_class_changed(rq, p, prev_class, oldprio, running);
6074 } 4212 }
@@ -6090,7 +4228,6 @@ void set_user_nice(struct task_struct *p, long nice)
6090 * the task might be in the middle of scheduling on another CPU. 4228 * the task might be in the middle of scheduling on another CPU.
6091 */ 4229 */
6092 rq = task_rq_lock(p, &flags); 4230 rq = task_rq_lock(p, &flags);
6093 update_rq_clock(rq);
6094 /* 4231 /*
6095 * The RT priorities are set via sched_setscheduler(), but we still 4232 * The RT priorities are set via sched_setscheduler(), but we still
6096 * allow the 'normal' nice value to be set - but as expected 4233 * allow the 'normal' nice value to be set - but as expected
@@ -6135,7 +4272,7 @@ int can_nice(const struct task_struct *p, const int nice)
6135 /* convert nice value [19,-20] to rlimit style value [1,40] */ 4272 /* convert nice value [19,-20] to rlimit style value [1,40] */
6136 int nice_rlim = 20 - nice; 4273 int nice_rlim = 20 - nice;
6137 4274
6138 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || 4275 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6139 capable(CAP_SYS_NICE)); 4276 capable(CAP_SYS_NICE));
6140} 4277}
6141 4278
@@ -6270,7 +4407,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy,
6270{ 4407{
6271 int retval, oldprio, oldpolicy = -1, on_rq, running; 4408 int retval, oldprio, oldpolicy = -1, on_rq, running;
6272 unsigned long flags; 4409 unsigned long flags;
6273 const struct sched_class *prev_class = p->sched_class; 4410 const struct sched_class *prev_class;
6274 struct rq *rq; 4411 struct rq *rq;
6275 int reset_on_fork; 4412 int reset_on_fork;
6276 4413
@@ -6312,7 +4449,7 @@ recheck:
6312 4449
6313 if (!lock_task_sighand(p, &flags)) 4450 if (!lock_task_sighand(p, &flags))
6314 return -ESRCH; 4451 return -ESRCH;
6315 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; 4452 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
6316 unlock_task_sighand(p, &flags); 4453 unlock_task_sighand(p, &flags);
6317 4454
6318 /* can't set/change the rt policy */ 4455 /* can't set/change the rt policy */
@@ -6373,7 +4510,6 @@ recheck:
6373 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4510 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6374 goto recheck; 4511 goto recheck;
6375 } 4512 }
6376 update_rq_clock(rq);
6377 on_rq = p->se.on_rq; 4513 on_rq = p->se.on_rq;
6378 running = task_current(rq, p); 4514 running = task_current(rq, p);
6379 if (on_rq) 4515 if (on_rq)
@@ -6384,6 +4520,7 @@ recheck:
6384 p->sched_reset_on_fork = reset_on_fork; 4520 p->sched_reset_on_fork = reset_on_fork;
6385 4521
6386 oldprio = p->prio; 4522 oldprio = p->prio;
4523 prev_class = p->sched_class;
6387 __setscheduler(rq, p, policy, param->sched_priority); 4524 __setscheduler(rq, p, policy, param->sched_priority);
6388 4525
6389 if (running) 4526 if (running)
@@ -6683,7 +4820,9 @@ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6683 int ret; 4820 int ret;
6684 cpumask_var_t mask; 4821 cpumask_var_t mask;
6685 4822
6686 if (len < cpumask_size()) 4823 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4824 return -EINVAL;
4825 if (len & (sizeof(unsigned long)-1))
6687 return -EINVAL; 4826 return -EINVAL;
6688 4827
6689 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4828 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
@@ -6691,10 +4830,12 @@ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6691 4830
6692 ret = sched_getaffinity(pid, mask); 4831 ret = sched_getaffinity(pid, mask);
6693 if (ret == 0) { 4832 if (ret == 0) {
6694 if (copy_to_user(user_mask_ptr, mask, cpumask_size())) 4833 size_t retlen = min_t(size_t, len, cpumask_size());
4834
4835 if (copy_to_user(user_mask_ptr, mask, retlen))
6695 ret = -EFAULT; 4836 ret = -EFAULT;
6696 else 4837 else
6697 ret = cpumask_size(); 4838 ret = retlen;
6698 } 4839 }
6699 free_cpumask_var(mask); 4840 free_cpumask_var(mask);
6700 4841
@@ -7105,17 +5246,15 @@ static inline void sched_init_granularity(void)
7105/* 5246/*
7106 * This is how migration works: 5247 * This is how migration works:
7107 * 5248 *
7108 * 1) we queue a struct migration_req structure in the source CPU's 5249 * 1) we invoke migration_cpu_stop() on the target CPU using
7109 * runqueue and wake up that CPU's migration thread. 5250 * stop_one_cpu().
7110 * 2) we down() the locked semaphore => thread blocks. 5251 * 2) stopper starts to run (implicitly forcing the migrated thread
7111 * 3) migration thread wakes up (implicitly it forces the migrated 5252 * off the CPU)
7112 * thread off the CPU) 5253 * 3) it checks whether the migrated task is still in the wrong runqueue.
7113 * 4) it gets the migration request and checks whether the migrated 5254 * 4) if it's in the wrong runqueue then the migration thread removes
7114 * task is still in the wrong runqueue.
7115 * 5) if it's in the wrong runqueue then the migration thread removes
7116 * it and puts it into the right queue. 5255 * it and puts it into the right queue.
7117 * 6) migration thread up()s the semaphore. 5256 * 5) stopper completes and stop_one_cpu() returns and the migration
7118 * 7) we wake up and the migration is done. 5257 * is done.
7119 */ 5258 */
7120 5259
7121/* 5260/*
@@ -7129,24 +5268,20 @@ static inline void sched_init_granularity(void)
7129 */ 5268 */
7130int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 5269int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7131{ 5270{
7132 struct migration_req req;
7133 unsigned long flags; 5271 unsigned long flags;
7134 struct rq *rq; 5272 struct rq *rq;
5273 unsigned int dest_cpu;
7135 int ret = 0; 5274 int ret = 0;
7136 5275
7137 /* 5276 /*
7138 * Since we rely on wake-ups to migrate sleeping tasks, don't change 5277 * Serialize against TASK_WAKING so that ttwu() and wunt() can
7139 * the ->cpus_allowed mask from under waking tasks, which would be 5278 * drop the rq->lock and still rely on ->cpus_allowed.
7140 * possible when we change rq->lock in ttwu(), so synchronize against
7141 * TASK_WAKING to avoid that.
7142 */ 5279 */
7143again: 5280again:
7144 while (p->state == TASK_WAKING) 5281 while (task_is_waking(p))
7145 cpu_relax(); 5282 cpu_relax();
7146
7147 rq = task_rq_lock(p, &flags); 5283 rq = task_rq_lock(p, &flags);
7148 5284 if (task_is_waking(p)) {
7149 if (p->state == TASK_WAKING) {
7150 task_rq_unlock(rq, &flags); 5285 task_rq_unlock(rq, &flags);
7151 goto again; 5286 goto again;
7152 } 5287 }
@@ -7173,15 +5308,12 @@ again:
7173 if (cpumask_test_cpu(task_cpu(p), new_mask)) 5308 if (cpumask_test_cpu(task_cpu(p), new_mask))
7174 goto out; 5309 goto out;
7175 5310
7176 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { 5311 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5312 if (migrate_task(p, dest_cpu)) {
5313 struct migration_arg arg = { p, dest_cpu };
7177 /* Need help from migration thread: drop lock and wait. */ 5314 /* Need help from migration thread: drop lock and wait. */
7178 struct task_struct *mt = rq->migration_thread;
7179
7180 get_task_struct(mt);
7181 task_rq_unlock(rq, &flags); 5315 task_rq_unlock(rq, &flags);
7182 wake_up_process(rq->migration_thread); 5316 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
7183 put_task_struct(mt);
7184 wait_for_completion(&req.done);
7185 tlb_migrate_finish(p->mm); 5317 tlb_migrate_finish(p->mm);
7186 return 0; 5318 return 0;
7187 } 5319 }
@@ -7239,98 +5371,49 @@ fail:
7239 return ret; 5371 return ret;
7240} 5372}
7241 5373
7242#define RCU_MIGRATION_IDLE 0
7243#define RCU_MIGRATION_NEED_QS 1
7244#define RCU_MIGRATION_GOT_QS 2
7245#define RCU_MIGRATION_MUST_SYNC 3
7246
7247/* 5374/*
7248 * migration_thread - this is a highprio system thread that performs 5375 * migration_cpu_stop - this will be executed by a highprio stopper thread
7249 * thread migration by bumping thread off CPU then 'pushing' onto 5376 * and performs thread migration by bumping thread off CPU then
7250 * another runqueue. 5377 * 'pushing' onto another runqueue.
7251 */ 5378 */
7252static int migration_thread(void *data) 5379static int migration_cpu_stop(void *data)
7253{ 5380{
7254 int badcpu; 5381 struct migration_arg *arg = data;
7255 int cpu = (long)data;
7256 struct rq *rq;
7257
7258 rq = cpu_rq(cpu);
7259 BUG_ON(rq->migration_thread != current);
7260
7261 set_current_state(TASK_INTERRUPTIBLE);
7262 while (!kthread_should_stop()) {
7263 struct migration_req *req;
7264 struct list_head *head;
7265
7266 raw_spin_lock_irq(&rq->lock);
7267
7268 if (cpu_is_offline(cpu)) {
7269 raw_spin_unlock_irq(&rq->lock);
7270 break;
7271 }
7272
7273 if (rq->active_balance) {
7274 active_load_balance(rq, cpu);
7275 rq->active_balance = 0;
7276 }
7277
7278 head = &rq->migration_queue;
7279
7280 if (list_empty(head)) {
7281 raw_spin_unlock_irq(&rq->lock);
7282 schedule();
7283 set_current_state(TASK_INTERRUPTIBLE);
7284 continue;
7285 }
7286 req = list_entry(head->next, struct migration_req, list);
7287 list_del_init(head->next);
7288
7289 if (req->task != NULL) {
7290 raw_spin_unlock(&rq->lock);
7291 __migrate_task(req->task, cpu, req->dest_cpu);
7292 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7293 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7294 raw_spin_unlock(&rq->lock);
7295 } else {
7296 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7297 raw_spin_unlock(&rq->lock);
7298 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7299 }
7300 local_irq_enable();
7301
7302 complete(&req->done);
7303 }
7304 __set_current_state(TASK_RUNNING);
7305
7306 return 0;
7307}
7308
7309#ifdef CONFIG_HOTPLUG_CPU
7310
7311static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7312{
7313 int ret;
7314 5382
5383 /*
5384 * The original target cpu might have gone down and we might
5385 * be on another cpu but it doesn't matter.
5386 */
7315 local_irq_disable(); 5387 local_irq_disable();
7316 ret = __migrate_task(p, src_cpu, dest_cpu); 5388 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
7317 local_irq_enable(); 5389 local_irq_enable();
7318 return ret; 5390 return 0;
7319} 5391}
7320 5392
5393#ifdef CONFIG_HOTPLUG_CPU
7321/* 5394/*
7322 * Figure out where task on dead CPU should go, use force if necessary. 5395 * Figure out where task on dead CPU should go, use force if necessary.
7323 */ 5396 */
7324static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 5397void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7325{ 5398{
7326 int dest_cpu; 5399 struct rq *rq = cpu_rq(dead_cpu);
5400 int needs_cpu, uninitialized_var(dest_cpu);
5401 unsigned long flags;
7327 5402
7328again: 5403 local_irq_save(flags);
7329 dest_cpu = select_fallback_rq(dead_cpu, p);
7330 5404
7331 /* It can have affinity changed while we were choosing. */ 5405 raw_spin_lock(&rq->lock);
7332 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) 5406 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
7333 goto again; 5407 if (needs_cpu)
5408 dest_cpu = select_fallback_rq(dead_cpu, p);
5409 raw_spin_unlock(&rq->lock);
5410 /*
5411 * It can only fail if we race with set_cpus_allowed(),
5412 * in the racer should migrate the task anyway.
5413 */
5414 if (needs_cpu)
5415 __migrate_task(p, dead_cpu, dest_cpu);
5416 local_irq_restore(flags);
7334} 5417}
7335 5418
7336/* 5419/*
@@ -7394,7 +5477,6 @@ void sched_idle_next(void)
7394 5477
7395 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 5478 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7396 5479
7397 update_rq_clock(rq);
7398 activate_task(rq, p, 0); 5480 activate_task(rq, p, 0);
7399 5481
7400 raw_spin_unlock_irqrestore(&rq->lock, flags); 5482 raw_spin_unlock_irqrestore(&rq->lock, flags);
@@ -7449,7 +5531,6 @@ static void migrate_dead_tasks(unsigned int dead_cpu)
7449 for ( ; ; ) { 5531 for ( ; ; ) {
7450 if (!rq->nr_running) 5532 if (!rq->nr_running)
7451 break; 5533 break;
7452 update_rq_clock(rq);
7453 next = pick_next_task(rq); 5534 next = pick_next_task(rq);
7454 if (!next) 5535 if (!next)
7455 break; 5536 break;
@@ -7672,35 +5753,20 @@ static void set_rq_offline(struct rq *rq)
7672static int __cpuinit 5753static int __cpuinit
7673migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5754migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7674{ 5755{
7675 struct task_struct *p;
7676 int cpu = (long)hcpu; 5756 int cpu = (long)hcpu;
7677 unsigned long flags; 5757 unsigned long flags;
7678 struct rq *rq; 5758 struct rq *rq = cpu_rq(cpu);
7679 5759
7680 switch (action) { 5760 switch (action) {
7681 5761
7682 case CPU_UP_PREPARE: 5762 case CPU_UP_PREPARE:
7683 case CPU_UP_PREPARE_FROZEN: 5763 case CPU_UP_PREPARE_FROZEN:
7684 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7685 if (IS_ERR(p))
7686 return NOTIFY_BAD;
7687 kthread_bind(p, cpu);
7688 /* Must be high prio: stop_machine expects to yield to it. */
7689 rq = task_rq_lock(p, &flags);
7690 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7691 task_rq_unlock(rq, &flags);
7692 get_task_struct(p);
7693 cpu_rq(cpu)->migration_thread = p;
7694 rq->calc_load_update = calc_load_update; 5764 rq->calc_load_update = calc_load_update;
7695 break; 5765 break;
7696 5766
7697 case CPU_ONLINE: 5767 case CPU_ONLINE:
7698 case CPU_ONLINE_FROZEN: 5768 case CPU_ONLINE_FROZEN:
7699 /* Strictly unnecessary, as first user will wake it. */
7700 wake_up_process(cpu_rq(cpu)->migration_thread);
7701
7702 /* Update our root-domain */ 5769 /* Update our root-domain */
7703 rq = cpu_rq(cpu);
7704 raw_spin_lock_irqsave(&rq->lock, flags); 5770 raw_spin_lock_irqsave(&rq->lock, flags);
7705 if (rq->rd) { 5771 if (rq->rd) {
7706 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5772 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
@@ -7711,61 +5777,24 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7711 break; 5777 break;
7712 5778
7713#ifdef CONFIG_HOTPLUG_CPU 5779#ifdef CONFIG_HOTPLUG_CPU
7714 case CPU_UP_CANCELED:
7715 case CPU_UP_CANCELED_FROZEN:
7716 if (!cpu_rq(cpu)->migration_thread)
7717 break;
7718 /* Unbind it from offline cpu so it can run. Fall thru. */
7719 kthread_bind(cpu_rq(cpu)->migration_thread,
7720 cpumask_any(cpu_online_mask));
7721 kthread_stop(cpu_rq(cpu)->migration_thread);
7722 put_task_struct(cpu_rq(cpu)->migration_thread);
7723 cpu_rq(cpu)->migration_thread = NULL;
7724 break;
7725
7726 case CPU_DEAD: 5780 case CPU_DEAD:
7727 case CPU_DEAD_FROZEN: 5781 case CPU_DEAD_FROZEN:
7728 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7729 migrate_live_tasks(cpu); 5782 migrate_live_tasks(cpu);
7730 rq = cpu_rq(cpu);
7731 kthread_stop(rq->migration_thread);
7732 put_task_struct(rq->migration_thread);
7733 rq->migration_thread = NULL;
7734 /* Idle task back to normal (off runqueue, low prio) */ 5783 /* Idle task back to normal (off runqueue, low prio) */
7735 raw_spin_lock_irq(&rq->lock); 5784 raw_spin_lock_irq(&rq->lock);
7736 update_rq_clock(rq);
7737 deactivate_task(rq, rq->idle, 0); 5785 deactivate_task(rq, rq->idle, 0);
7738 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); 5786 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7739 rq->idle->sched_class = &idle_sched_class; 5787 rq->idle->sched_class = &idle_sched_class;
7740 migrate_dead_tasks(cpu); 5788 migrate_dead_tasks(cpu);
7741 raw_spin_unlock_irq(&rq->lock); 5789 raw_spin_unlock_irq(&rq->lock);
7742 cpuset_unlock();
7743 migrate_nr_uninterruptible(rq); 5790 migrate_nr_uninterruptible(rq);
7744 BUG_ON(rq->nr_running != 0); 5791 BUG_ON(rq->nr_running != 0);
7745 calc_global_load_remove(rq); 5792 calc_global_load_remove(rq);
7746 /*
7747 * No need to migrate the tasks: it was best-effort if
7748 * they didn't take sched_hotcpu_mutex. Just wake up
7749 * the requestors.
7750 */
7751 raw_spin_lock_irq(&rq->lock);
7752 while (!list_empty(&rq->migration_queue)) {
7753 struct migration_req *req;
7754
7755 req = list_entry(rq->migration_queue.next,
7756 struct migration_req, list);
7757 list_del_init(&req->list);
7758 raw_spin_unlock_irq(&rq->lock);
7759 complete(&req->done);
7760 raw_spin_lock_irq(&rq->lock);
7761 }
7762 raw_spin_unlock_irq(&rq->lock);
7763 break; 5793 break;
7764 5794
7765 case CPU_DYING: 5795 case CPU_DYING:
7766 case CPU_DYING_FROZEN: 5796 case CPU_DYING_FROZEN:
7767 /* Update our root-domain */ 5797 /* Update our root-domain */
7768 rq = cpu_rq(cpu);
7769 raw_spin_lock_irqsave(&rq->lock, flags); 5798 raw_spin_lock_irqsave(&rq->lock, flags);
7770 if (rq->rd) { 5799 if (rq->rd) {
7771 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5800 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
@@ -8096,6 +6125,9 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8096 struct rq *rq = cpu_rq(cpu); 6125 struct rq *rq = cpu_rq(cpu);
8097 struct sched_domain *tmp; 6126 struct sched_domain *tmp;
8098 6127
6128 for (tmp = sd; tmp; tmp = tmp->parent)
6129 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6130
8099 /* Remove the sched domains which do not contribute to scheduling. */ 6131 /* Remove the sched domains which do not contribute to scheduling. */
8100 for (tmp = sd; tmp; ) { 6132 for (tmp = sd; tmp; ) {
8101 struct sched_domain *parent = tmp->parent; 6133 struct sched_domain *parent = tmp->parent;
@@ -9202,11 +7234,13 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9202 7234
9203#ifdef CONFIG_SCHED_MC 7235#ifdef CONFIG_SCHED_MC
9204static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, 7236static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7237 struct sysdev_class_attribute *attr,
9205 char *page) 7238 char *page)
9206{ 7239{
9207 return sprintf(page, "%u\n", sched_mc_power_savings); 7240 return sprintf(page, "%u\n", sched_mc_power_savings);
9208} 7241}
9209static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, 7242static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7243 struct sysdev_class_attribute *attr,
9210 const char *buf, size_t count) 7244 const char *buf, size_t count)
9211{ 7245{
9212 return sched_power_savings_store(buf, count, 0); 7246 return sched_power_savings_store(buf, count, 0);
@@ -9218,11 +7252,13 @@ static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9218 7252
9219#ifdef CONFIG_SCHED_SMT 7253#ifdef CONFIG_SCHED_SMT
9220static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, 7254static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7255 struct sysdev_class_attribute *attr,
9221 char *page) 7256 char *page)
9222{ 7257{
9223 return sprintf(page, "%u\n", sched_smt_power_savings); 7258 return sprintf(page, "%u\n", sched_smt_power_savings);
9224} 7259}
9225static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, 7260static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7261 struct sysdev_class_attribute *attr,
9226 const char *buf, size_t count) 7262 const char *buf, size_t count)
9227{ 7263{
9228 return sched_power_savings_store(buf, count, 1); 7264 return sched_power_savings_store(buf, count, 1);
@@ -9437,7 +7473,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9437 tg->rt_rq[cpu] = rt_rq; 7473 tg->rt_rq[cpu] = rt_rq;
9438 init_rt_rq(rt_rq, rq); 7474 init_rt_rq(rt_rq, rq);
9439 rt_rq->tg = tg; 7475 rt_rq->tg = tg;
9440 rt_rq->rt_se = rt_se;
9441 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 7476 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9442 if (add) 7477 if (add)
9443 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); 7478 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
@@ -9468,9 +7503,6 @@ void __init sched_init(void)
9468#ifdef CONFIG_RT_GROUP_SCHED 7503#ifdef CONFIG_RT_GROUP_SCHED
9469 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7504 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9470#endif 7505#endif
9471#ifdef CONFIG_USER_SCHED
9472 alloc_size *= 2;
9473#endif
9474#ifdef CONFIG_CPUMASK_OFFSTACK 7506#ifdef CONFIG_CPUMASK_OFFSTACK
9475 alloc_size += num_possible_cpus() * cpumask_size(); 7507 alloc_size += num_possible_cpus() * cpumask_size();
9476#endif 7508#endif
@@ -9484,13 +7516,6 @@ void __init sched_init(void)
9484 init_task_group.cfs_rq = (struct cfs_rq **)ptr; 7516 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9485 ptr += nr_cpu_ids * sizeof(void **); 7517 ptr += nr_cpu_ids * sizeof(void **);
9486 7518
9487#ifdef CONFIG_USER_SCHED
9488 root_task_group.se = (struct sched_entity **)ptr;
9489 ptr += nr_cpu_ids * sizeof(void **);
9490
9491 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9492 ptr += nr_cpu_ids * sizeof(void **);
9493#endif /* CONFIG_USER_SCHED */
9494#endif /* CONFIG_FAIR_GROUP_SCHED */ 7519#endif /* CONFIG_FAIR_GROUP_SCHED */
9495#ifdef CONFIG_RT_GROUP_SCHED 7520#ifdef CONFIG_RT_GROUP_SCHED
9496 init_task_group.rt_se = (struct sched_rt_entity **)ptr; 7521 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
@@ -9499,13 +7524,6 @@ void __init sched_init(void)
9499 init_task_group.rt_rq = (struct rt_rq **)ptr; 7524 init_task_group.rt_rq = (struct rt_rq **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **); 7525 ptr += nr_cpu_ids * sizeof(void **);
9501 7526
9502#ifdef CONFIG_USER_SCHED
9503 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9504 ptr += nr_cpu_ids * sizeof(void **);
9505
9506 root_task_group.rt_rq = (struct rt_rq **)ptr;
9507 ptr += nr_cpu_ids * sizeof(void **);
9508#endif /* CONFIG_USER_SCHED */
9509#endif /* CONFIG_RT_GROUP_SCHED */ 7527#endif /* CONFIG_RT_GROUP_SCHED */
9510#ifdef CONFIG_CPUMASK_OFFSTACK 7528#ifdef CONFIG_CPUMASK_OFFSTACK
9511 for_each_possible_cpu(i) { 7529 for_each_possible_cpu(i) {
@@ -9525,22 +7543,13 @@ void __init sched_init(void)
9525#ifdef CONFIG_RT_GROUP_SCHED 7543#ifdef CONFIG_RT_GROUP_SCHED
9526 init_rt_bandwidth(&init_task_group.rt_bandwidth, 7544 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9527 global_rt_period(), global_rt_runtime()); 7545 global_rt_period(), global_rt_runtime());
9528#ifdef CONFIG_USER_SCHED
9529 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9530 global_rt_period(), RUNTIME_INF);
9531#endif /* CONFIG_USER_SCHED */
9532#endif /* CONFIG_RT_GROUP_SCHED */ 7546#endif /* CONFIG_RT_GROUP_SCHED */
9533 7547
9534#ifdef CONFIG_GROUP_SCHED 7548#ifdef CONFIG_CGROUP_SCHED
9535 list_add(&init_task_group.list, &task_groups); 7549 list_add(&init_task_group.list, &task_groups);
9536 INIT_LIST_HEAD(&init_task_group.children); 7550 INIT_LIST_HEAD(&init_task_group.children);
9537 7551
9538#ifdef CONFIG_USER_SCHED 7552#endif /* CONFIG_CGROUP_SCHED */
9539 INIT_LIST_HEAD(&root_task_group.children);
9540 init_task_group.parent = &root_task_group;
9541 list_add(&init_task_group.siblings, &root_task_group.children);
9542#endif /* CONFIG_USER_SCHED */
9543#endif /* CONFIG_GROUP_SCHED */
9544 7553
9545#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP 7554#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9546 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), 7555 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
@@ -9580,25 +7589,6 @@ void __init sched_init(void)
9580 * directly in rq->cfs (i.e init_task_group->se[] = NULL). 7589 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9581 */ 7590 */
9582 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); 7591 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9583#elif defined CONFIG_USER_SCHED
9584 root_task_group.shares = NICE_0_LOAD;
9585 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9586 /*
9587 * In case of task-groups formed thr' the user id of tasks,
9588 * init_task_group represents tasks belonging to root user.
9589 * Hence it forms a sibling of all subsequent groups formed.
9590 * In this case, init_task_group gets only a fraction of overall
9591 * system cpu resource, based on the weight assigned to root
9592 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9593 * by letting tasks of init_task_group sit in a separate cfs_rq
9594 * (init_tg_cfs_rq) and having one entity represent this group of
9595 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9596 */
9597 init_tg_cfs_entry(&init_task_group,
9598 &per_cpu(init_tg_cfs_rq, i),
9599 &per_cpu(init_sched_entity, i), i, 1,
9600 root_task_group.se[i]);
9601
9602#endif 7592#endif
9603#endif /* CONFIG_FAIR_GROUP_SCHED */ 7593#endif /* CONFIG_FAIR_GROUP_SCHED */
9604 7594
@@ -9607,12 +7597,6 @@ void __init sched_init(void)
9607 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 7597 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9608#ifdef CONFIG_CGROUP_SCHED 7598#ifdef CONFIG_CGROUP_SCHED
9609 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); 7599 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9610#elif defined CONFIG_USER_SCHED
9611 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9612 init_tg_rt_entry(&init_task_group,
9613 &per_cpu(init_rt_rq_var, i),
9614 &per_cpu(init_sched_rt_entity, i), i, 1,
9615 root_task_group.rt_se[i]);
9616#endif 7600#endif
9617#endif 7601#endif
9618 7602
@@ -9627,10 +7611,8 @@ void __init sched_init(void)
9627 rq->push_cpu = 0; 7611 rq->push_cpu = 0;
9628 rq->cpu = i; 7612 rq->cpu = i;
9629 rq->online = 0; 7613 rq->online = 0;
9630 rq->migration_thread = NULL;
9631 rq->idle_stamp = 0; 7614 rq->idle_stamp = 0;
9632 rq->avg_idle = 2*sysctl_sched_migration_cost; 7615 rq->avg_idle = 2*sysctl_sched_migration_cost;
9633 INIT_LIST_HEAD(&rq->migration_queue);
9634 rq_attach_root(rq, &def_root_domain); 7616 rq_attach_root(rq, &def_root_domain);
9635#endif 7617#endif
9636 init_rq_hrtick(rq); 7618 init_rq_hrtick(rq);
@@ -9697,7 +7679,7 @@ static inline int preempt_count_equals(int preempt_offset)
9697 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); 7679 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9698} 7680}
9699 7681
9700void __might_sleep(char *file, int line, int preempt_offset) 7682void __might_sleep(const char *file, int line, int preempt_offset)
9701{ 7683{
9702#ifdef in_atomic 7684#ifdef in_atomic
9703 static unsigned long prev_jiffy; /* ratelimiting */ 7685 static unsigned long prev_jiffy; /* ratelimiting */
@@ -9731,7 +7713,6 @@ static void normalize_task(struct rq *rq, struct task_struct *p)
9731{ 7713{
9732 int on_rq; 7714 int on_rq;
9733 7715
9734 update_rq_clock(rq);
9735 on_rq = p->se.on_rq; 7716 on_rq = p->se.on_rq;
9736 if (on_rq) 7717 if (on_rq)
9737 deactivate_task(rq, p, 0); 7718 deactivate_task(rq, p, 0);
@@ -9758,9 +7739,9 @@ void normalize_rt_tasks(void)
9758 7739
9759 p->se.exec_start = 0; 7740 p->se.exec_start = 0;
9760#ifdef CONFIG_SCHEDSTATS 7741#ifdef CONFIG_SCHEDSTATS
9761 p->se.wait_start = 0; 7742 p->se.statistics.wait_start = 0;
9762 p->se.sleep_start = 0; 7743 p->se.statistics.sleep_start = 0;
9763 p->se.block_start = 0; 7744 p->se.statistics.block_start = 0;
9764#endif 7745#endif
9765 7746
9766 if (!rt_task(p)) { 7747 if (!rt_task(p)) {
@@ -9787,9 +7768,9 @@ void normalize_rt_tasks(void)
9787 7768
9788#endif /* CONFIG_MAGIC_SYSRQ */ 7769#endif /* CONFIG_MAGIC_SYSRQ */
9789 7770
9790#ifdef CONFIG_IA64 7771#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9791/* 7772/*
9792 * These functions are only useful for the IA64 MCA handling. 7773 * These functions are only useful for the IA64 MCA handling, or kdb.
9793 * 7774 *
9794 * They can only be called when the whole system has been 7775 * They can only be called when the whole system has been
9795 * stopped - every CPU needs to be quiescent, and no scheduling 7776 * stopped - every CPU needs to be quiescent, and no scheduling
@@ -9809,6 +7790,9 @@ struct task_struct *curr_task(int cpu)
9809 return cpu_curr(cpu); 7790 return cpu_curr(cpu);
9810} 7791}
9811 7792
7793#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7794
7795#ifdef CONFIG_IA64
9812/** 7796/**
9813 * set_curr_task - set the current task for a given cpu. 7797 * set_curr_task - set the current task for a given cpu.
9814 * @cpu: the processor in question. 7798 * @cpu: the processor in question.
@@ -10008,7 +7992,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10008} 7992}
10009#endif /* CONFIG_RT_GROUP_SCHED */ 7993#endif /* CONFIG_RT_GROUP_SCHED */
10010 7994
10011#ifdef CONFIG_GROUP_SCHED 7995#ifdef CONFIG_CGROUP_SCHED
10012static void free_sched_group(struct task_group *tg) 7996static void free_sched_group(struct task_group *tg)
10013{ 7997{
10014 free_fair_sched_group(tg); 7998 free_fair_sched_group(tg);
@@ -10093,8 +8077,6 @@ void sched_move_task(struct task_struct *tsk)
10093 8077
10094 rq = task_rq_lock(tsk, &flags); 8078 rq = task_rq_lock(tsk, &flags);
10095 8079
10096 update_rq_clock(rq);
10097
10098 running = task_current(rq, tsk); 8080 running = task_current(rq, tsk);
10099 on_rq = tsk->se.on_rq; 8081 on_rq = tsk->se.on_rq;
10100 8082
@@ -10117,7 +8099,7 @@ void sched_move_task(struct task_struct *tsk)
10117 8099
10118 task_rq_unlock(rq, &flags); 8100 task_rq_unlock(rq, &flags);
10119} 8101}
10120#endif /* CONFIG_GROUP_SCHED */ 8102#endif /* CONFIG_CGROUP_SCHED */
10121 8103
10122#ifdef CONFIG_FAIR_GROUP_SCHED 8104#ifdef CONFIG_FAIR_GROUP_SCHED
10123static void __set_se_shares(struct sched_entity *se, unsigned long shares) 8105static void __set_se_shares(struct sched_entity *se, unsigned long shares)
@@ -10259,13 +8241,6 @@ static int tg_schedulable(struct task_group *tg, void *data)
10259 runtime = d->rt_runtime; 8241 runtime = d->rt_runtime;
10260 } 8242 }
10261 8243
10262#ifdef CONFIG_USER_SCHED
10263 if (tg == &root_task_group) {
10264 period = global_rt_period();
10265 runtime = global_rt_runtime();
10266 }
10267#endif
10268
10269 /* 8244 /*
10270 * Cannot have more runtime than the period. 8245 * Cannot have more runtime than the period.
10271 */ 8246 */
@@ -10668,7 +8643,7 @@ struct cgroup_subsys cpu_cgroup_subsys = {
10668struct cpuacct { 8643struct cpuacct {
10669 struct cgroup_subsys_state css; 8644 struct cgroup_subsys_state css;
10670 /* cpuusage holds pointer to a u64-type object on every cpu */ 8645 /* cpuusage holds pointer to a u64-type object on every cpu */
10671 u64 *cpuusage; 8646 u64 __percpu *cpuusage;
10672 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; 8647 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10673 struct cpuacct *parent; 8648 struct cpuacct *parent;
10674}; 8649};
@@ -10885,12 +8860,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10885} 8860}
10886 8861
10887/* 8862/*
8863 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8864 * in cputime_t units. As a result, cpuacct_update_stats calls
8865 * percpu_counter_add with values large enough to always overflow the
8866 * per cpu batch limit causing bad SMP scalability.
8867 *
8868 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8869 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8870 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8871 */
8872#ifdef CONFIG_SMP
8873#define CPUACCT_BATCH \
8874 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8875#else
8876#define CPUACCT_BATCH 0
8877#endif
8878
8879/*
10888 * Charge the system/user time to the task's accounting group. 8880 * Charge the system/user time to the task's accounting group.
10889 */ 8881 */
10890static void cpuacct_update_stats(struct task_struct *tsk, 8882static void cpuacct_update_stats(struct task_struct *tsk,
10891 enum cpuacct_stat_index idx, cputime_t val) 8883 enum cpuacct_stat_index idx, cputime_t val)
10892{ 8884{
10893 struct cpuacct *ca; 8885 struct cpuacct *ca;
8886 int batch = CPUACCT_BATCH;
10894 8887
10895 if (unlikely(!cpuacct_subsys.active)) 8888 if (unlikely(!cpuacct_subsys.active))
10896 return; 8889 return;
@@ -10899,7 +8892,7 @@ static void cpuacct_update_stats(struct task_struct *tsk,
10899 ca = task_ca(tsk); 8892 ca = task_ca(tsk);
10900 8893
10901 do { 8894 do {
10902 percpu_counter_add(&ca->cpustat[idx], val); 8895 __percpu_counter_add(&ca->cpustat[idx], val, batch);
10903 ca = ca->parent; 8896 ca = ca->parent;
10904 } while (ca); 8897 } while (ca);
10905 rcu_read_unlock(); 8898 rcu_read_unlock();
@@ -10916,43 +8909,32 @@ struct cgroup_subsys cpuacct_subsys = {
10916 8909
10917#ifndef CONFIG_SMP 8910#ifndef CONFIG_SMP
10918 8911
10919int rcu_expedited_torture_stats(char *page)
10920{
10921 return 0;
10922}
10923EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10924
10925void synchronize_sched_expedited(void) 8912void synchronize_sched_expedited(void)
10926{ 8913{
8914 barrier();
10927} 8915}
10928EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 8916EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10929 8917
10930#else /* #ifndef CONFIG_SMP */ 8918#else /* #ifndef CONFIG_SMP */
10931 8919
10932static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); 8920static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
10933static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10934
10935#define RCU_EXPEDITED_STATE_POST -2
10936#define RCU_EXPEDITED_STATE_IDLE -1
10937 8921
10938static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; 8922static int synchronize_sched_expedited_cpu_stop(void *data)
10939
10940int rcu_expedited_torture_stats(char *page)
10941{ 8923{
10942 int cnt = 0; 8924 /*
10943 int cpu; 8925 * There must be a full memory barrier on each affected CPU
10944 8926 * between the time that try_stop_cpus() is called and the
10945 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); 8927 * time that it returns.
10946 for_each_online_cpu(cpu) { 8928 *
10947 cnt += sprintf(&page[cnt], " %d:%d", 8929 * In the current initial implementation of cpu_stop, the
10948 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); 8930 * above condition is already met when the control reaches
10949 } 8931 * this point and the following smp_mb() is not strictly
10950 cnt += sprintf(&page[cnt], "\n"); 8932 * necessary. Do smp_mb() anyway for documentation and
10951 return cnt; 8933 * robustness against future implementation changes.
8934 */
8935 smp_mb(); /* See above comment block. */
8936 return 0;
10952} 8937}
10953EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10954
10955static long synchronize_sched_expedited_count;
10956 8938
10957/* 8939/*
10958 * Wait for an rcu-sched grace period to elapse, but use "big hammer" 8940 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
@@ -10966,18 +8948,14 @@ static long synchronize_sched_expedited_count;
10966 */ 8948 */
10967void synchronize_sched_expedited(void) 8949void synchronize_sched_expedited(void)
10968{ 8950{
10969 int cpu; 8951 int snap, trycount = 0;
10970 unsigned long flags;
10971 bool need_full_sync = 0;
10972 struct rq *rq;
10973 struct migration_req *req;
10974 long snap;
10975 int trycount = 0;
10976 8952
10977 smp_mb(); /* ensure prior mod happens before capturing snap. */ 8953 smp_mb(); /* ensure prior mod happens before capturing snap. */
10978 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; 8954 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
10979 get_online_cpus(); 8955 get_online_cpus();
10980 while (!mutex_trylock(&rcu_sched_expedited_mutex)) { 8956 while (try_stop_cpus(cpu_online_mask,
8957 synchronize_sched_expedited_cpu_stop,
8958 NULL) == -EAGAIN) {
10981 put_online_cpus(); 8959 put_online_cpus();
10982 if (trycount++ < 10) 8960 if (trycount++ < 10)
10983 udelay(trycount * num_online_cpus()); 8961 udelay(trycount * num_online_cpus());
@@ -10985,41 +8963,15 @@ void synchronize_sched_expedited(void)
10985 synchronize_sched(); 8963 synchronize_sched();
10986 return; 8964 return;
10987 } 8965 }
10988 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { 8966 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
10989 smp_mb(); /* ensure test happens before caller kfree */ 8967 smp_mb(); /* ensure test happens before caller kfree */
10990 return; 8968 return;
10991 } 8969 }
10992 get_online_cpus(); 8970 get_online_cpus();
10993 } 8971 }
10994 rcu_expedited_state = RCU_EXPEDITED_STATE_POST; 8972 atomic_inc(&synchronize_sched_expedited_count);
10995 for_each_online_cpu(cpu) { 8973 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
10996 rq = cpu_rq(cpu);
10997 req = &per_cpu(rcu_migration_req, cpu);
10998 init_completion(&req->done);
10999 req->task = NULL;
11000 req->dest_cpu = RCU_MIGRATION_NEED_QS;
11001 raw_spin_lock_irqsave(&rq->lock, flags);
11002 list_add(&req->list, &rq->migration_queue);
11003 raw_spin_unlock_irqrestore(&rq->lock, flags);
11004 wake_up_process(rq->migration_thread);
11005 }
11006 for_each_online_cpu(cpu) {
11007 rcu_expedited_state = cpu;
11008 req = &per_cpu(rcu_migration_req, cpu);
11009 rq = cpu_rq(cpu);
11010 wait_for_completion(&req->done);
11011 raw_spin_lock_irqsave(&rq->lock, flags);
11012 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11013 need_full_sync = 1;
11014 req->dest_cpu = RCU_MIGRATION_IDLE;
11015 raw_spin_unlock_irqrestore(&rq->lock, flags);
11016 }
11017 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11018 synchronize_sched_expedited_count++;
11019 mutex_unlock(&rcu_sched_expedited_mutex);
11020 put_online_cpus(); 8974 put_online_cpus();
11021 if (need_full_sync)
11022 synchronize_sched();
11023} 8975}
11024EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 8976EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11025 8977