aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched.c')
-rw-r--r--kernel/sched.c393
1 files changed, 214 insertions, 179 deletions
diff --git a/kernel/sched.c b/kernel/sched.c
index dcb39bc88f6c..748ff924a290 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -267,6 +267,10 @@ struct task_group {
267 struct cgroup_subsys_state css; 267 struct cgroup_subsys_state css;
268#endif 268#endif
269 269
270#ifdef CONFIG_USER_SCHED
271 uid_t uid;
272#endif
273
270#ifdef CONFIG_FAIR_GROUP_SCHED 274#ifdef CONFIG_FAIR_GROUP_SCHED
271 /* schedulable entities of this group on each cpu */ 275 /* schedulable entities of this group on each cpu */
272 struct sched_entity **se; 276 struct sched_entity **se;
@@ -292,6 +296,12 @@ struct task_group {
292 296
293#ifdef CONFIG_USER_SCHED 297#ifdef CONFIG_USER_SCHED
294 298
299/* Helper function to pass uid information to create_sched_user() */
300void set_tg_uid(struct user_struct *user)
301{
302 user->tg->uid = user->uid;
303}
304
295/* 305/*
296 * Root task group. 306 * Root task group.
297 * Every UID task group (including init_task_group aka UID-0) will 307 * Every UID task group (including init_task_group aka UID-0) will
@@ -351,7 +361,9 @@ static inline struct task_group *task_group(struct task_struct *p)
351 struct task_group *tg; 361 struct task_group *tg;
352 362
353#ifdef CONFIG_USER_SCHED 363#ifdef CONFIG_USER_SCHED
354 tg = p->user->tg; 364 rcu_read_lock();
365 tg = __task_cred(p)->user->tg;
366 rcu_read_unlock();
355#elif defined(CONFIG_CGROUP_SCHED) 367#elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), 368 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css); 369 struct task_group, css);
@@ -592,6 +604,8 @@ struct rq {
592#ifdef CONFIG_SCHEDSTATS 604#ifdef CONFIG_SCHEDSTATS
593 /* latency stats */ 605 /* latency stats */
594 struct sched_info rq_sched_info; 606 struct sched_info rq_sched_info;
607 unsigned long long rq_cpu_time;
608 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
595 609
596 /* sys_sched_yield() stats */ 610 /* sys_sched_yield() stats */
597 unsigned int yld_exp_empty; 611 unsigned int yld_exp_empty;
@@ -709,45 +723,18 @@ static __read_mostly char *sched_feat_names[] = {
709 723
710#undef SCHED_FEAT 724#undef SCHED_FEAT
711 725
712static int sched_feat_open(struct inode *inode, struct file *filp) 726static int sched_feat_show(struct seq_file *m, void *v)
713{
714 filp->private_data = inode->i_private;
715 return 0;
716}
717
718static ssize_t
719sched_feat_read(struct file *filp, char __user *ubuf,
720 size_t cnt, loff_t *ppos)
721{ 727{
722 char *buf;
723 int r = 0;
724 int len = 0;
725 int i; 728 int i;
726 729
727 for (i = 0; sched_feat_names[i]; i++) { 730 for (i = 0; sched_feat_names[i]; i++) {
728 len += strlen(sched_feat_names[i]); 731 if (!(sysctl_sched_features & (1UL << i)))
729 len += 4; 732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
730 } 734 }
735 seq_puts(m, "\n");
731 736
732 buf = kmalloc(len + 2, GFP_KERNEL); 737 return 0;
733 if (!buf)
734 return -ENOMEM;
735
736 for (i = 0; sched_feat_names[i]; i++) {
737 if (sysctl_sched_features & (1UL << i))
738 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
739 else
740 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
741 }
742
743 r += sprintf(buf + r, "\n");
744 WARN_ON(r >= len + 2);
745
746 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
747
748 kfree(buf);
749
750 return r;
751} 738}
752 739
753static ssize_t 740static ssize_t
@@ -792,10 +779,17 @@ sched_feat_write(struct file *filp, const char __user *ubuf,
792 return cnt; 779 return cnt;
793} 780}
794 781
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
795static struct file_operations sched_feat_fops = { 787static struct file_operations sched_feat_fops = {
796 .open = sched_feat_open, 788 .open = sched_feat_open,
797 .read = sched_feat_read, 789 .write = sched_feat_write,
798 .write = sched_feat_write, 790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
799}; 793};
800 794
801static __init int sched_init_debug(void) 795static __init int sched_init_debug(void)
@@ -1480,27 +1474,13 @@ static void
1480update_group_shares_cpu(struct task_group *tg, int cpu, 1474update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight) 1475 unsigned long sd_shares, unsigned long sd_rq_weight)
1482{ 1476{
1483 int boost = 0;
1484 unsigned long shares; 1477 unsigned long shares;
1485 unsigned long rq_weight; 1478 unsigned long rq_weight;
1486 1479
1487 if (!tg->se[cpu]) 1480 if (!tg->se[cpu])
1488 return; 1481 return;
1489 1482
1490 rq_weight = tg->cfs_rq[cpu]->load.weight; 1483 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1491
1492 /*
1493 * If there are currently no tasks on the cpu pretend there is one of
1494 * average load so that when a new task gets to run here it will not
1495 * get delayed by group starvation.
1496 */
1497 if (!rq_weight) {
1498 boost = 1;
1499 rq_weight = NICE_0_LOAD;
1500 }
1501
1502 if (unlikely(rq_weight > sd_rq_weight))
1503 rq_weight = sd_rq_weight;
1504 1484
1505 /* 1485 /*
1506 * \Sum shares * rq_weight 1486 * \Sum shares * rq_weight
@@ -1508,7 +1488,7 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1508 * \Sum rq_weight 1488 * \Sum rq_weight
1509 * 1489 *
1510 */ 1490 */
1511 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1); 1491 shares = (sd_shares * rq_weight) / sd_rq_weight;
1512 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); 1492 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1513 1493
1514 if (abs(shares - tg->se[cpu]->load.weight) > 1494 if (abs(shares - tg->se[cpu]->load.weight) >
@@ -1517,11 +1497,7 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1517 unsigned long flags; 1497 unsigned long flags;
1518 1498
1519 spin_lock_irqsave(&rq->lock, flags); 1499 spin_lock_irqsave(&rq->lock, flags);
1520 /* 1500 tg->cfs_rq[cpu]->shares = shares;
1521 * record the actual number of shares, not the boosted amount.
1522 */
1523 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1524 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1525 1501
1526 __set_se_shares(tg->se[cpu], shares); 1502 __set_se_shares(tg->se[cpu], shares);
1527 spin_unlock_irqrestore(&rq->lock, flags); 1503 spin_unlock_irqrestore(&rq->lock, flags);
@@ -1535,13 +1511,23 @@ update_group_shares_cpu(struct task_group *tg, int cpu,
1535 */ 1511 */
1536static int tg_shares_up(struct task_group *tg, void *data) 1512static int tg_shares_up(struct task_group *tg, void *data)
1537{ 1513{
1538 unsigned long rq_weight = 0; 1514 unsigned long weight, rq_weight = 0;
1539 unsigned long shares = 0; 1515 unsigned long shares = 0;
1540 struct sched_domain *sd = data; 1516 struct sched_domain *sd = data;
1541 int i; 1517 int i;
1542 1518
1543 for_each_cpu_mask(i, sd->span) { 1519 for_each_cpu_mask(i, sd->span) {
1544 rq_weight += tg->cfs_rq[i]->load.weight; 1520 /*
1521 * If there are currently no tasks on the cpu pretend there
1522 * is one of average load so that when a new task gets to
1523 * run here it will not get delayed by group starvation.
1524 */
1525 weight = tg->cfs_rq[i]->load.weight;
1526 if (!weight)
1527 weight = NICE_0_LOAD;
1528
1529 tg->cfs_rq[i]->rq_weight = weight;
1530 rq_weight += weight;
1545 shares += tg->cfs_rq[i]->shares; 1531 shares += tg->cfs_rq[i]->shares;
1546 } 1532 }
1547 1533
@@ -1551,9 +1537,6 @@ static int tg_shares_up(struct task_group *tg, void *data)
1551 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) 1537 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1552 shares = tg->shares; 1538 shares = tg->shares;
1553 1539
1554 if (!rq_weight)
1555 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1556
1557 for_each_cpu_mask(i, sd->span) 1540 for_each_cpu_mask(i, sd->span)
1558 update_group_shares_cpu(tg, i, shares, rq_weight); 1541 update_group_shares_cpu(tg, i, shares, rq_weight);
1559 1542
@@ -1618,6 +1601,39 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1618 1601
1619#endif 1602#endif
1620 1603
1604/*
1605 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1606 */
1607static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1608 __releases(this_rq->lock)
1609 __acquires(busiest->lock)
1610 __acquires(this_rq->lock)
1611{
1612 int ret = 0;
1613
1614 if (unlikely(!irqs_disabled())) {
1615 /* printk() doesn't work good under rq->lock */
1616 spin_unlock(&this_rq->lock);
1617 BUG_ON(1);
1618 }
1619 if (unlikely(!spin_trylock(&busiest->lock))) {
1620 if (busiest < this_rq) {
1621 spin_unlock(&this_rq->lock);
1622 spin_lock(&busiest->lock);
1623 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1624 ret = 1;
1625 } else
1626 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1627 }
1628 return ret;
1629}
1630
1631static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1632 __releases(busiest->lock)
1633{
1634 spin_unlock(&busiest->lock);
1635 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1636}
1621#endif 1637#endif
1622 1638
1623#ifdef CONFIG_FAIR_GROUP_SCHED 1639#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -2262,6 +2278,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2262 2278
2263 smp_wmb(); 2279 smp_wmb();
2264 rq = task_rq_lock(p, &flags); 2280 rq = task_rq_lock(p, &flags);
2281 update_rq_clock(rq);
2265 old_state = p->state; 2282 old_state = p->state;
2266 if (!(old_state & state)) 2283 if (!(old_state & state))
2267 goto out; 2284 goto out;
@@ -2319,7 +2336,6 @@ out_activate:
2319 schedstat_inc(p, se.nr_wakeups_local); 2336 schedstat_inc(p, se.nr_wakeups_local);
2320 else 2337 else
2321 schedstat_inc(p, se.nr_wakeups_remote); 2338 schedstat_inc(p, se.nr_wakeups_remote);
2322 update_rq_clock(rq);
2323 activate_task(rq, p, 1); 2339 activate_task(rq, p, 1);
2324 success = 1; 2340 success = 1;
2325 2341
@@ -2820,40 +2836,6 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2820} 2836}
2821 2837
2822/* 2838/*
2823 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2824 */
2825static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2826 __releases(this_rq->lock)
2827 __acquires(busiest->lock)
2828 __acquires(this_rq->lock)
2829{
2830 int ret = 0;
2831
2832 if (unlikely(!irqs_disabled())) {
2833 /* printk() doesn't work good under rq->lock */
2834 spin_unlock(&this_rq->lock);
2835 BUG_ON(1);
2836 }
2837 if (unlikely(!spin_trylock(&busiest->lock))) {
2838 if (busiest < this_rq) {
2839 spin_unlock(&this_rq->lock);
2840 spin_lock(&busiest->lock);
2841 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2842 ret = 1;
2843 } else
2844 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2845 }
2846 return ret;
2847}
2848
2849static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2850 __releases(busiest->lock)
2851{
2852 spin_unlock(&busiest->lock);
2853 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2854}
2855
2856/*
2857 * If dest_cpu is allowed for this process, migrate the task to it. 2839 * If dest_cpu is allowed for this process, migrate the task to it.
2858 * This is accomplished by forcing the cpu_allowed mask to only 2840 * This is accomplished by forcing the cpu_allowed mask to only
2859 * allow dest_cpu, which will force the cpu onto dest_cpu. Then 2841 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
@@ -3714,7 +3696,7 @@ out_balanced:
3714static void idle_balance(int this_cpu, struct rq *this_rq) 3696static void idle_balance(int this_cpu, struct rq *this_rq)
3715{ 3697{
3716 struct sched_domain *sd; 3698 struct sched_domain *sd;
3717 int pulled_task = -1; 3699 int pulled_task = 0;
3718 unsigned long next_balance = jiffies + HZ; 3700 unsigned long next_balance = jiffies + HZ;
3719 cpumask_t tmpmask; 3701 cpumask_t tmpmask;
3720 3702
@@ -5141,6 +5123,22 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5141 set_load_weight(p); 5123 set_load_weight(p);
5142} 5124}
5143 5125
5126/*
5127 * check the target process has a UID that matches the current process's
5128 */
5129static bool check_same_owner(struct task_struct *p)
5130{
5131 const struct cred *cred = current_cred(), *pcred;
5132 bool match;
5133
5134 rcu_read_lock();
5135 pcred = __task_cred(p);
5136 match = (cred->euid == pcred->euid ||
5137 cred->euid == pcred->uid);
5138 rcu_read_unlock();
5139 return match;
5140}
5141
5144static int __sched_setscheduler(struct task_struct *p, int policy, 5142static int __sched_setscheduler(struct task_struct *p, int policy,
5145 struct sched_param *param, bool user) 5143 struct sched_param *param, bool user)
5146{ 5144{
@@ -5200,8 +5198,7 @@ recheck:
5200 return -EPERM; 5198 return -EPERM;
5201 5199
5202 /* can't change other user's priorities */ 5200 /* can't change other user's priorities */
5203 if ((current->euid != p->euid) && 5201 if (!check_same_owner(p))
5204 (current->euid != p->uid))
5205 return -EPERM; 5202 return -EPERM;
5206 } 5203 }
5207 5204
@@ -5433,8 +5430,7 @@ long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5433 read_unlock(&tasklist_lock); 5430 read_unlock(&tasklist_lock);
5434 5431
5435 retval = -EPERM; 5432 retval = -EPERM;
5436 if ((current->euid != p->euid) && (current->euid != p->uid) && 5433 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5437 !capable(CAP_SYS_NICE))
5438 goto out_unlock; 5434 goto out_unlock;
5439 5435
5440 retval = security_task_setscheduler(p, 0, NULL); 5436 retval = security_task_setscheduler(p, 0, NULL);
@@ -6134,7 +6130,6 @@ static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6134 6130
6135/* 6131/*
6136 * Figure out where task on dead CPU should go, use force if necessary. 6132 * Figure out where task on dead CPU should go, use force if necessary.
6137 * NOTE: interrupts should be disabled by the caller
6138 */ 6133 */
6139static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 6134static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6140{ 6135{
@@ -6646,28 +6641,6 @@ early_initcall(migration_init);
6646 6641
6647#ifdef CONFIG_SCHED_DEBUG 6642#ifdef CONFIG_SCHED_DEBUG
6648 6643
6649static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6650{
6651 switch (lvl) {
6652 case SD_LV_NONE:
6653 return "NONE";
6654 case SD_LV_SIBLING:
6655 return "SIBLING";
6656 case SD_LV_MC:
6657 return "MC";
6658 case SD_LV_CPU:
6659 return "CPU";
6660 case SD_LV_NODE:
6661 return "NODE";
6662 case SD_LV_ALLNODES:
6663 return "ALLNODES";
6664 case SD_LV_MAX:
6665 return "MAX";
6666
6667 }
6668 return "MAX";
6669}
6670
6671static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 6644static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6672 cpumask_t *groupmask) 6645 cpumask_t *groupmask)
6673{ 6646{
@@ -6687,8 +6660,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6687 return -1; 6660 return -1;
6688 } 6661 }
6689 6662
6690 printk(KERN_CONT "span %s level %s\n", 6663 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6691 str, sd_level_to_string(sd->level));
6692 6664
6693 if (!cpu_isset(cpu, sd->span)) { 6665 if (!cpu_isset(cpu, sd->span)) {
6694 printk(KERN_ERR "ERROR: domain->span does not contain " 6666 printk(KERN_ERR "ERROR: domain->span does not contain "
@@ -6824,6 +6796,8 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6824 SD_BALANCE_EXEC | 6796 SD_BALANCE_EXEC |
6825 SD_SHARE_CPUPOWER | 6797 SD_SHARE_CPUPOWER |
6826 SD_SHARE_PKG_RESOURCES); 6798 SD_SHARE_PKG_RESOURCES);
6799 if (nr_node_ids == 1)
6800 pflags &= ~SD_SERIALIZE;
6827 } 6801 }
6828 if (~cflags & pflags) 6802 if (~cflags & pflags)
6829 return 0; 6803 return 0;
@@ -7344,13 +7318,21 @@ struct allmasks {
7344}; 7318};
7345 7319
7346#if NR_CPUS > 128 7320#if NR_CPUS > 128
7347#define SCHED_CPUMASK_ALLOC 1 7321#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7348#define SCHED_CPUMASK_FREE(v) kfree(v) 7322static inline void sched_cpumask_alloc(struct allmasks **masks)
7349#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v 7323{
7324 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7325}
7326static inline void sched_cpumask_free(struct allmasks *masks)
7327{
7328 kfree(masks);
7329}
7350#else 7330#else
7351#define SCHED_CPUMASK_ALLOC 0 7331#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7352#define SCHED_CPUMASK_FREE(v) 7332static inline void sched_cpumask_alloc(struct allmasks **masks)
7353#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v 7333{ }
7334static inline void sched_cpumask_free(struct allmasks *masks)
7335{ }
7354#endif 7336#endif
7355 7337
7356#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \ 7338#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
@@ -7426,9 +7408,8 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7426 return -ENOMEM; 7408 return -ENOMEM;
7427 } 7409 }
7428 7410
7429#if SCHED_CPUMASK_ALLOC
7430 /* get space for all scratch cpumask variables */ 7411 /* get space for all scratch cpumask variables */
7431 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL); 7412 sched_cpumask_alloc(&allmasks);
7432 if (!allmasks) { 7413 if (!allmasks) {
7433 printk(KERN_WARNING "Cannot alloc cpumask array\n"); 7414 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7434 kfree(rd); 7415 kfree(rd);
@@ -7437,7 +7418,7 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7437#endif 7418#endif
7438 return -ENOMEM; 7419 return -ENOMEM;
7439 } 7420 }
7440#endif 7421
7441 tmpmask = (cpumask_t *)allmasks; 7422 tmpmask = (cpumask_t *)allmasks;
7442 7423
7443 7424
@@ -7691,13 +7672,13 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
7691 cpu_attach_domain(sd, rd, i); 7672 cpu_attach_domain(sd, rd, i);
7692 } 7673 }
7693 7674
7694 SCHED_CPUMASK_FREE((void *)allmasks); 7675 sched_cpumask_free(allmasks);
7695 return 0; 7676 return 0;
7696 7677
7697#ifdef CONFIG_NUMA 7678#ifdef CONFIG_NUMA
7698error: 7679error:
7699 free_sched_groups(cpu_map, tmpmask); 7680 free_sched_groups(cpu_map, tmpmask);
7700 SCHED_CPUMASK_FREE((void *)allmasks); 7681 sched_cpumask_free(allmasks);
7701 kfree(rd); 7682 kfree(rd);
7702 return -ENOMEM; 7683 return -ENOMEM;
7703#endif 7684#endif
@@ -7720,8 +7701,14 @@ static struct sched_domain_attr *dattr_cur;
7720 */ 7701 */
7721static cpumask_t fallback_doms; 7702static cpumask_t fallback_doms;
7722 7703
7723void __attribute__((weak)) arch_update_cpu_topology(void) 7704/*
7705 * arch_update_cpu_topology lets virtualized architectures update the
7706 * cpu core maps. It is supposed to return 1 if the topology changed
7707 * or 0 if it stayed the same.
7708 */
7709int __attribute__((weak)) arch_update_cpu_topology(void)
7724{ 7710{
7711 return 0;
7725} 7712}
7726 7713
7727/* 7714/*
@@ -7761,8 +7748,6 @@ static void detach_destroy_domains(const cpumask_t *cpu_map)
7761 cpumask_t tmpmask; 7748 cpumask_t tmpmask;
7762 int i; 7749 int i;
7763 7750
7764 unregister_sched_domain_sysctl();
7765
7766 for_each_cpu_mask_nr(i, *cpu_map) 7751 for_each_cpu_mask_nr(i, *cpu_map)
7767 cpu_attach_domain(NULL, &def_root_domain, i); 7752 cpu_attach_domain(NULL, &def_root_domain, i);
7768 synchronize_sched(); 7753 synchronize_sched();
@@ -7815,17 +7800,21 @@ void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7815 struct sched_domain_attr *dattr_new) 7800 struct sched_domain_attr *dattr_new)
7816{ 7801{
7817 int i, j, n; 7802 int i, j, n;
7803 int new_topology;
7818 7804
7819 mutex_lock(&sched_domains_mutex); 7805 mutex_lock(&sched_domains_mutex);
7820 7806
7821 /* always unregister in case we don't destroy any domains */ 7807 /* always unregister in case we don't destroy any domains */
7822 unregister_sched_domain_sysctl(); 7808 unregister_sched_domain_sysctl();
7823 7809
7810 /* Let architecture update cpu core mappings. */
7811 new_topology = arch_update_cpu_topology();
7812
7824 n = doms_new ? ndoms_new : 0; 7813 n = doms_new ? ndoms_new : 0;
7825 7814
7826 /* Destroy deleted domains */ 7815 /* Destroy deleted domains */
7827 for (i = 0; i < ndoms_cur; i++) { 7816 for (i = 0; i < ndoms_cur; i++) {
7828 for (j = 0; j < n; j++) { 7817 for (j = 0; j < n && !new_topology; j++) {
7829 if (cpus_equal(doms_cur[i], doms_new[j]) 7818 if (cpus_equal(doms_cur[i], doms_new[j])
7830 && dattrs_equal(dattr_cur, i, dattr_new, j)) 7819 && dattrs_equal(dattr_cur, i, dattr_new, j))
7831 goto match1; 7820 goto match1;
@@ -7840,12 +7829,12 @@ match1:
7840 ndoms_cur = 0; 7829 ndoms_cur = 0;
7841 doms_new = &fallback_doms; 7830 doms_new = &fallback_doms;
7842 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); 7831 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7843 dattr_new = NULL; 7832 WARN_ON_ONCE(dattr_new);
7844 } 7833 }
7845 7834
7846 /* Build new domains */ 7835 /* Build new domains */
7847 for (i = 0; i < ndoms_new; i++) { 7836 for (i = 0; i < ndoms_new; i++) {
7848 for (j = 0; j < ndoms_cur; j++) { 7837 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7849 if (cpus_equal(doms_new[i], doms_cur[j]) 7838 if (cpus_equal(doms_new[i], doms_cur[j])
7850 && dattrs_equal(dattr_new, i, dattr_cur, j)) 7839 && dattrs_equal(dattr_new, i, dattr_cur, j))
7851 goto match2; 7840 goto match2;
@@ -8500,7 +8489,7 @@ static
8500int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8489int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8501{ 8490{
8502 struct cfs_rq *cfs_rq; 8491 struct cfs_rq *cfs_rq;
8503 struct sched_entity *se, *parent_se; 8492 struct sched_entity *se;
8504 struct rq *rq; 8493 struct rq *rq;
8505 int i; 8494 int i;
8506 8495
@@ -8516,18 +8505,17 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8516 for_each_possible_cpu(i) { 8505 for_each_possible_cpu(i) {
8517 rq = cpu_rq(i); 8506 rq = cpu_rq(i);
8518 8507
8519 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), 8508 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8520 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8509 GFP_KERNEL, cpu_to_node(i));
8521 if (!cfs_rq) 8510 if (!cfs_rq)
8522 goto err; 8511 goto err;
8523 8512
8524 se = kmalloc_node(sizeof(struct sched_entity), 8513 se = kzalloc_node(sizeof(struct sched_entity),
8525 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8514 GFP_KERNEL, cpu_to_node(i));
8526 if (!se) 8515 if (!se)
8527 goto err; 8516 goto err;
8528 8517
8529 parent_se = parent ? parent->se[i] : NULL; 8518 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8530 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8531 } 8519 }
8532 8520
8533 return 1; 8521 return 1;
@@ -8588,7 +8576,7 @@ static
8588int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 8576int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8589{ 8577{
8590 struct rt_rq *rt_rq; 8578 struct rt_rq *rt_rq;
8591 struct sched_rt_entity *rt_se, *parent_se; 8579 struct sched_rt_entity *rt_se;
8592 struct rq *rq; 8580 struct rq *rq;
8593 int i; 8581 int i;
8594 8582
@@ -8605,18 +8593,17 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8605 for_each_possible_cpu(i) { 8593 for_each_possible_cpu(i) {
8606 rq = cpu_rq(i); 8594 rq = cpu_rq(i);
8607 8595
8608 rt_rq = kmalloc_node(sizeof(struct rt_rq), 8596 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8609 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8597 GFP_KERNEL, cpu_to_node(i));
8610 if (!rt_rq) 8598 if (!rt_rq)
8611 goto err; 8599 goto err;
8612 8600
8613 rt_se = kmalloc_node(sizeof(struct sched_rt_entity), 8601 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8614 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); 8602 GFP_KERNEL, cpu_to_node(i));
8615 if (!rt_se) 8603 if (!rt_se)
8616 goto err; 8604 goto err;
8617 8605
8618 parent_se = parent ? parent->rt_se[i] : NULL; 8606 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8619 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8620 } 8607 }
8621 8608
8622 return 1; 8609 return 1;
@@ -9259,11 +9246,12 @@ struct cgroup_subsys cpu_cgroup_subsys = {
9259 * (balbir@in.ibm.com). 9246 * (balbir@in.ibm.com).
9260 */ 9247 */
9261 9248
9262/* track cpu usage of a group of tasks */ 9249/* track cpu usage of a group of tasks and its child groups */
9263struct cpuacct { 9250struct cpuacct {
9264 struct cgroup_subsys_state css; 9251 struct cgroup_subsys_state css;
9265 /* cpuusage holds pointer to a u64-type object on every cpu */ 9252 /* cpuusage holds pointer to a u64-type object on every cpu */
9266 u64 *cpuusage; 9253 u64 *cpuusage;
9254 struct cpuacct *parent;
9267}; 9255};
9268 9256
9269struct cgroup_subsys cpuacct_subsys; 9257struct cgroup_subsys cpuacct_subsys;
@@ -9297,6 +9285,9 @@ static struct cgroup_subsys_state *cpuacct_create(
9297 return ERR_PTR(-ENOMEM); 9285 return ERR_PTR(-ENOMEM);
9298 } 9286 }
9299 9287
9288 if (cgrp->parent)
9289 ca->parent = cgroup_ca(cgrp->parent);
9290
9300 return &ca->css; 9291 return &ca->css;
9301} 9292}
9302 9293
@@ -9310,6 +9301,41 @@ cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9310 kfree(ca); 9301 kfree(ca);
9311} 9302}
9312 9303
9304static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9305{
9306 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9307 u64 data;
9308
9309#ifndef CONFIG_64BIT
9310 /*
9311 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9312 */
9313 spin_lock_irq(&cpu_rq(cpu)->lock);
9314 data = *cpuusage;
9315 spin_unlock_irq(&cpu_rq(cpu)->lock);
9316#else
9317 data = *cpuusage;
9318#endif
9319
9320 return data;
9321}
9322
9323static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9324{
9325 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9326
9327#ifndef CONFIG_64BIT
9328 /*
9329 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9330 */
9331 spin_lock_irq(&cpu_rq(cpu)->lock);
9332 *cpuusage = val;
9333 spin_unlock_irq(&cpu_rq(cpu)->lock);
9334#else
9335 *cpuusage = val;
9336#endif
9337}
9338
9313/* return total cpu usage (in nanoseconds) of a group */ 9339/* return total cpu usage (in nanoseconds) of a group */
9314static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 9340static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9315{ 9341{
@@ -9317,17 +9343,8 @@ static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9317 u64 totalcpuusage = 0; 9343 u64 totalcpuusage = 0;
9318 int i; 9344 int i;
9319 9345
9320 for_each_possible_cpu(i) { 9346 for_each_present_cpu(i)
9321 u64 *cpuusage = percpu_ptr(ca->cpuusage, i); 9347 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9322
9323 /*
9324 * Take rq->lock to make 64-bit addition safe on 32-bit
9325 * platforms.
9326 */
9327 spin_lock_irq(&cpu_rq(i)->lock);
9328 totalcpuusage += *cpuusage;
9329 spin_unlock_irq(&cpu_rq(i)->lock);
9330 }
9331 9348
9332 return totalcpuusage; 9349 return totalcpuusage;
9333} 9350}
@@ -9344,23 +9361,39 @@ static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9344 goto out; 9361 goto out;
9345 } 9362 }
9346 9363
9347 for_each_possible_cpu(i) { 9364 for_each_present_cpu(i)
9348 u64 *cpuusage = percpu_ptr(ca->cpuusage, i); 9365 cpuacct_cpuusage_write(ca, i, 0);
9349 9366
9350 spin_lock_irq(&cpu_rq(i)->lock);
9351 *cpuusage = 0;
9352 spin_unlock_irq(&cpu_rq(i)->lock);
9353 }
9354out: 9367out:
9355 return err; 9368 return err;
9356} 9369}
9357 9370
9371static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9372 struct seq_file *m)
9373{
9374 struct cpuacct *ca = cgroup_ca(cgroup);
9375 u64 percpu;
9376 int i;
9377
9378 for_each_present_cpu(i) {
9379 percpu = cpuacct_cpuusage_read(ca, i);
9380 seq_printf(m, "%llu ", (unsigned long long) percpu);
9381 }
9382 seq_printf(m, "\n");
9383 return 0;
9384}
9385
9358static struct cftype files[] = { 9386static struct cftype files[] = {
9359 { 9387 {
9360 .name = "usage", 9388 .name = "usage",
9361 .read_u64 = cpuusage_read, 9389 .read_u64 = cpuusage_read,
9362 .write_u64 = cpuusage_write, 9390 .write_u64 = cpuusage_write,
9363 }, 9391 },
9392 {
9393 .name = "usage_percpu",
9394 .read_seq_string = cpuacct_percpu_seq_read,
9395 },
9396
9364}; 9397};
9365 9398
9366static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 9399static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
@@ -9376,14 +9409,16 @@ static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9376static void cpuacct_charge(struct task_struct *tsk, u64 cputime) 9409static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9377{ 9410{
9378 struct cpuacct *ca; 9411 struct cpuacct *ca;
9412 int cpu;
9379 9413
9380 if (!cpuacct_subsys.active) 9414 if (!cpuacct_subsys.active)
9381 return; 9415 return;
9382 9416
9417 cpu = task_cpu(tsk);
9383 ca = task_ca(tsk); 9418 ca = task_ca(tsk);
9384 if (ca) {
9385 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9386 9419
9420 for (; ca; ca = ca->parent) {
9421 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9387 *cpuusage += cputime; 9422 *cpuusage += cputime;
9388 } 9423 }
9389} 9424}